WorldWideScience

Sample records for exterior wall loadings

  1. Monitoring Interior and Exterior Wall Inspections within a Virtual Environment

    Directory of Open Access Journals (Sweden)

    A. Z. Sampaio

    2012-01-01

    Full Text Available This paper describes two prototype applications based on the Virtual Reality (VR technology for use in maintenance planning of buildings. In a building, the paint coating applied to interior walls and the different types of materials applied to façades convey their aesthetic character and also perform an important function of protection. This a construction component which is exposed to agents of deterioration related to its use, needing the regular evaluation of its state of repair. The applications support the performance of such periodic inspections and the monitoring of interior and exterior wall maintenance, using the VR technology. Used during an inspection visit, the applications allow users to consult a database of irregularities, normally associated with the coating, classified by the most probable causes and by the recommended repair methodologies. In addition, a chromatic scale related to the degree of deterioration of the coating, defined as a function of the time between the dates of the application of the paint and the scheduled repainting, can be attributed to each element of coating monitored. This use of the VR technology allows inspections and the evaluation of the degree of wear and tear of materials to be carried out in a highly direct and intuitive manner.

  2. Conceptual Design and Feasibility Analyses of a Robotic System for Automated Exterior Wall Painting

    Directory of Open Access Journals (Sweden)

    Young S. Kim

    2008-11-01

    Full Text Available There are approximately 6,677,000 apartment housing units in South Korea. Exterior wall painting for such multi-dwelling apartment housings in South Korea represents a typical area to which construction automation technology can be applied for improvement in safety, productivity, quality, and cost over the conventional method. The conventional exterior wall painting is costly and labor-intensive, and it especially exposes workers to significant health and safety risks. The primary objective of this study is to design a conceptual model of an exterior wall painting robot which is applicable to apartment housing construction and maintenance, and to conduct its technical?economical feasibility analyses. In this study, a design concept using a high ladder truck is proposed as the best alternative for automation of the exterior wall painting. Conclusions made in this study show that the proposed exterior wall painting robot is technically and economically feasible, and can greatly enhance safety, productivity, and quality compared to the conventional method. Finally, it is expected that the conceptual model of the exterior wall painting robot would be efficiently used in various applications in exterior wall finishing and maintenance of other architectural and civil structures such as commercial buildings, towers, and high-rise storage tanks.

  3. Sustainable wall construction and exterior insulation retrofit technology process and structure

    Science.gov (United States)

    Vohra, Arun

    2000-01-01

    A low-cost process for exterior wall insulation retrofit, or new wall construction by stacking layers of fabric tube filled with insulating material against a wall and covering them with mesh and stucco provides a durable structure with good insulating value.

  4. Measure Guideline: Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    Energy Technology Data Exchange (ETDEWEB)

    Lstiburek, Joseph [Building Science Corporation, Westford, MA (United States); Baker, Peter [Building Science Corporation, Westford, MA (United States)

    2015-04-01

    This measure guideline provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ inches and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: fundamental building science principles relating to the use of exterior insulation on wall assemblies; design principles for tailoring this use to the specific project goals and requirements; and construction detailing to increase understanding about implementing the various design elements.

  5. Measure Guideline. Incorporating Thick Layers of Exterior Rigid Insulation on Walls

    Energy Technology Data Exchange (ETDEWEB)

    Lstiburek, Joseph [Building Science Corporation, Westford, MA (United States); Baker, Peter [Building Science Corporation, Westford, MA (United States)

    2015-04-09

    This measure guideline, written by the U.S. Department of Energy’s Building America team Building Science Corporation, provides information about the design and construction of wall assemblies that use layers of rigid exterior insulation thicker than 1-½ in. and that require a secondary cladding attachment location exterior to the insulation. The guideline is separated into several distinct sections that cover: (1) fundamental building science principles relating to the use of exterior insulation on wall assemblies; (2) design principles for tailoring this use to the specific project goals and requirements; and (3) construction detailing to increase understanding about implementing the various design elements.

  6. Modeling thermal performance of exterior walls retrofitted from insulation and modified laterite based bricks materials

    Science.gov (United States)

    Wati, Elvis; Meukam, Pierre; Damfeu, Jean Claude

    2017-12-01

    Uninsulated concrete block walls commonly found in tropical region have to be retrofitted to save energy. The thickness of insulation layer used can be reduced with the help of modified laterite based bricks layer (with the considerably lower thermal conductivity than that of concrete block layer) during the retrofit building fabrics. The aim of this study is to determine the optimum location and distribution of different materials. The investigation is carried out under steady periodic conditions under the climatic conditions of Garoua in Cameroon using a Simulink model constructed from H-Tools (the library of Simulink models). Results showed that for the continuous air-conditioned space, the best wall configuration from the maximum time lag, minimum decrement factor and peak cooling transmission load perspective, is dividing the insulation layer into two layers and placing one at the exterior surface and the other layer between the two different massive layers with the modified laterite based bricks layer at the interior surface. For intermittent cooling space, the best wall configuration from the minimum energy consumption depends on total insulation thickness. For the total insulation thickness less than 8 cm approximately, the best wall configuration is placing the half layer of insulation material at the interior surface and the other half between the two different massive layers with the modified earthen material at the exterior surface. Results also showed that, the optimum insulation thickness calculated from the yearly cooling transmission (estimated only during the occupied period) and some economic considerations slightly depends on the location of that insulation.

  7. Selection of exterior wall using advantageousness comparison; Ulkoseinaen valinta elinkaariedullisuuden perusteella

    Energy Technology Data Exchange (ETDEWEB)

    Saari, A.; Vesa, M.

    2001-07-01

    The objective of the study was to clarify the advantageousness of six chosen exterior wall solutions and at the same time to produce the procedure the measurement of the advantageousness. The examined wall types were: (1) brick wall, (2) brick-wool-concrete wall, (2b) brick-wool-concrete wall (not plastered), (3) brick-wool-wood wall, (4) precast concrete wall, and (5) plaster-wool-concrete wall. The analysis was made to a residential construction project which is built in a frame municipality of the metropolitan area. Here the life cycle costs, environmental burdens, and other factors (the aesthetic character, image, a comfort and easy maintenance) have an affect to the advantageousness of exterior wall. The averages of appreciation of the seven members of the supervising body of this study were used as the weights of the aforementioned value factors in the comparison. The result of the analysis was that the unplastered brick-wool-concrete wall had the equal life cycle costs as the precast concrete wall (an annual cost FIM 70 per apartment floor area). They were superior in relation to other examined wall types. In turn the brick wall had the highest life cycle costs (an annual cost nearly FIM 200 per apartment floor area) from the examined wall solutions on the advantageousness measuring straightforwardly likewise. It was chosen for an examination time period for 50 years. Likewise the brick wall was the distinctly weakest solution eco-economically, irrespective of, how costs and environmental factors are weighted. The brick wall was both the most expensive and unecological from the examined exterior wall types. It had a weak ecological qualities because considerably more building material than to other examined wall types. Also it's thermal insulation capacity was the weakest. But if in the decision-making also the aesthetic character, image, the effect on the comfort, and easy maintenance of the exterior wall indeed are included in addition to the eco

  8. Construction Guidelines for High R-Value Walls without Exterior Rigid Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois B. [Steven Winter Associates, Inc., Norwalk, CT (United States). Consortium for Advanced Residential Buildings

    2016-07-13

    High-R wall assemblies (R-40 and above) are gaining popularity in the market due to programs like the DOE's Zero Energy Ready Home program, Passive House (PH), Net Zero Energy Home (NZEH) challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used 'double wall' systems to more practically achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double wall systems is that there are very few new exterior details. Exterior sheathing, structural bracing, house wrap or building paper, window and door flashing, and siding attachment are usually identical to good details in conventional framed wall systems. The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and result in a reduction of material brought to landfills due to failures and resulting decay. While this document focuses on double wall framing techniques, the majority of the information on how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super insulated homes.

  9. Compare the difference of architecture design in Hong Kong and Penang – Exterior wall

    Directory of Open Access Journals (Sweden)

    Liu Wen Tao

    2015-12-01

    Full Text Available This research focuses on the exterior wall of architecture design of Hong Kong and Penang, it also analyzes how light pollution affects human life. As we know, Hong Kong prefers to use steel to build skyscrapers and middle or high rise buildings. However, Penang prefers to use concrete to do the construction. So, there are some advantages and disadvantages between the glass curtain wall and concrete wall in Hong Kong and Penang. The researcher used 400 samples to determine effect of the glass curtain wall and concrete wall on human life in Hong Kong and Penang separately. The result is light pollution created by glass curtain wall in Hong Kong is a serious problem to residents’ life. The glass curtain wall seriously glaze people’s eyes who drive or walk on the street. Thus, many car accidents were caused by this problem. The concrete wall is more often contaminated by fungus and difficult to clean. But, concrete wall is more natural and green for humans. Therefore, from the sustainable aspect that concrete is more healthy for humans, the previous researchers suggest that if the exterior wall is a mixture of both glass curtain and concrete it will not cause light pollution and will be easily involved in the natural environment.

  10. Integrated Life Cycle Energy and Greenhouse Gas Analysis of Exterior Wall Systems for Residential Buildings

    Directory of Open Access Journals (Sweden)

    Reza Broun

    2014-11-01

    Full Text Available This paper investigates the breakdown of primary energy use and greenhouse gas (GHG emissions of two common types of exterior walls in the U.K.: insulated concrete form (ICF and cavity walls. A comprehensive assessment was conducted to evaluate the environmental performance of each exterior wall system over 50 years of service life in Edinburgh and Bristol. The results indicate that for both wall systems, use phase is the major contributor to the overall environmental impacts, mainly due to associated electricity consumption. For the ICF wall system in Edinburgh, 91% of GHG emissions were attributed to the use phase, with 7.8% in the pre-use and 1.2% in end-of-life phases. For the same system in Bristol, emissions were 89%, 9% and 2%, respectively. A similar trend was observed for cavity wall systems in both locations. It was concluded that in each scenario, the ICF wall system performed better when compared to the cavity wall system. The results of the sensitivity analysis clearly show that the uncertainties relevant to the change of the thickness of the wall are quite tolerable: variable up to 5%, as far as energy and greenhouse emissions are concerned.

  11. Construction Guidelines for High R-Value Walls without Exterior Rigid Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois B. [Steven Winter Associates, Inc., Norwalk, CT (United States). Consortium for Advanced Residential Buildings (CARB)

    2016-07-13

    High R-value wall assemblies (R-40 and above) are gaining popularity in the market due to programs such as the U.S. Department of Energy Zero Energy Ready Home program, Passive House, Net Zero Energy Home challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used double-wall systems to achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double-wall systems is that there are very few new exterior details. Exterior sheathings, structural bracings, house wraps or building paper, window and door flashings, and siding attachments are usually identical to good details in conventional framed-wall systems. However, although the details in double-wall systems are very similar to those in conventional stick framing, there is sometimes less room for error. Several studies have confirmed colder temperatures of exterior sheathing in high R-value wall assemblies that do not have exterior rigid foam insulation. These colder temperatures can lead to increased chances for condensation from air exfiltration, and they have the potential to result in moisture-related problems (Straube and Smegal 2009, Arena 2014, Ueno 2015). The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and reduce material brought to landfills due to failures and resulting decay. Although this document focuses on double-wall framing techniques, the majority of the information about how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture-related damage and are intended for builders, framing contractors, architects, and

  12. Effects of Exterior Insulation on Moisture Performance of Wood-Frame Walls in the Pacific Northwest: Measurements and Hygrothermal Modeling

    Science.gov (United States)

    Samuel V. Glass; Borjen Yeh; Benjamin J. Herzog

    2016-01-01

    Continuous exterior insulation on above-grade walls is becoming more common in many parts of North America. It is generally accepted that exterior insulation provides advantages for energy performance, by reducing thermal bridging, and for moisture performance, by warming the wood structural members, thereby reducing the potential for wintertime moisture accumulation....

  13. The DEMO wall load challenge

    Czech Academy of Sciences Publication Activity Database

    Wenninger, R.; Albanese, R.; Ambrosino, R.; Arbeiter, F.; Aubert, J.; Bachmann, C.; Barbato, L.; Barrett, T.; Beckers, M.; Biel, W.; Boccaccini, L.; Carralero, D.; Coster, D.; Eich, T.; Fasoli, A.; Federici, G.; Firdaouss, M.; Graves, J.; Horáček, Jan; Kovari, M.; Lanthaler, S.; Loschiavo, V.; Lowry, C.; Lux, H.; Maddaluno, G.; Maviglia, F.; Mitteau, R.; Neu, R.; Pfefferle, D.; Schmid, K.; Siccinio, M.; Sieglin, B.; Silva, C.; Snicker, A.; Subba, F.; Varje, J.; Zohm, H.

    2017-01-01

    Roč. 57, č. 4 (2017), č. článku 046002. ISSN 0029-5515 EU Projects: European Commission(XE) 633053 - EUROfusion Institutional support: RVO:61389021 Keywords : DEMO * power loads * first wall Subject RIV: BL - Plasma and Gas Discharge Physics OBOR OECD: Fluids and plasma physics (including surface physics) Impact factor: 3.307, year: 2016 http://iopscience.iop.org/article/10.1088/1741-4326/aa4fb4

  14. Sustainable refurbishment of exterior walls and building facades. Final report, Part A - Methods and recommendations

    Energy Technology Data Exchange (ETDEWEB)

    Hakkinen, T. (ed.)

    2012-11-01

    This report is the final report of Sustainable refurbishment of building facades and exterior walls (SUSREF). SUSREF project was a collaborative (small/medium size) research project within the 7th Framework Programme of the Commission and it was financed under the theme Environment (including climate change) (Grant agreement no. 226858). The project started in October 1st 2009 and ended in April 30th 2012. The project included 11 partners from five countries. SUSREF developed sustainable concepts and technologies for the refurbishment of building facades and external walls. This report together with SUSREF Final report Part B and SUSREF Final Report Part C introduce the main results of the project. Part A focuses on methodological issues. The descriptions of the concepts and the assessment results of the developed concepts are presented in SUSREF Final report part B (generic concepts) and SUSREF Final report Part C (SME concepts). (orig.)

  15. Investigation of thermal effect on exterior wall surface of building material at urban city area

    Energy Technology Data Exchange (ETDEWEB)

    Md Din, Mohd Fadhil; Dzinun, Hazlini; Ponraj, M.; Chelliapan, Shreeshivadasan; Noor, Zainura Zainun [Institute of Environmental Water Resources and Management (IPASA), Faculty of Civil Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Remaz, Dilshah [Faculty of Built Environment, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor (Malaysia); Iwao, Kenzo [Nagoya Institute of Technology, Nagoya (Japan)

    2012-07-01

    This paper describes the investigation of heat impact on the vertical surfaces of buildings based on their thermal behavior. The study was performed based on four building materials that is commonly used in Malaysia; brick, concrete, granite and white concrete tiles. The thermal performances on the building materials were investigated using a surface temperature sensor, data logging system and infrared thermography. Results showed that the brick had the capability to absorb and store heat greater than other materials during the investigation period. The normalized heat (total heat/solar radiation) of the brick was 0.093 and produces high heat (51% compared to granite), confirming a substantial amount of heat being released into the atmosphere through radiation and convection. The most sensitive material that absorbs and stores heat was in the following order: brick > concrete > granite > white concrete tiles. It was concluded that the type of exterior wall material used in buildings had significant impact to the environment.

  16. Experimental and FE Analysis of Exterior Plastic Components of Cars under Static and Dynamic Loading Conditions

    OpenAIRE

    Faghihi, Hassan

    2011-01-01

    This thesis is composed by an experimental part and numerical part, aimed at contributing to a better knowledge of the behavior of plastic parts under different loading conditions. The study is intended to validate a FE model for simulating exterior plastic components of car especially the A-decor and plastic clips in the context of thermal and static load analysis. From the comparison of numerical and experimental results in the terms of thermal and static deformation of the A-decor, it is c...

  17. Building America Case Study: Construction Guidelines for High R-Value Walls without Exterior Rigid Insulation, Cold Climate Region

    Energy Technology Data Exchange (ETDEWEB)

    2017-01-01

    High-R wall assemblies (R-40 and above) are gaining popularity in the market due to programs like the DOE's Zero Energy Ready Home program, Passive House (PH), Net Zero Energy Home (NZEH) challenges in several states, and highly incentivized retrofit programs. In response to this demand, several builders have successfully used 'double wall' systems to more practically achieve higher R-values in thicker, framed walls. To builders of conventional stick-framed homes, often one of the most appealing features of double wall systems is that there are very few new exterior details. Exterior sheathing, structural bracing, house wrap or building paper, window and door flashing, and siding attachment are usually identical to good details in conventional framed wall systems. The information presented in this guide is intended to reduce the risk of failure in these types of assemblies, increase durability, and result in a reduction of material brought to landfills due to failures and resulting decay. While this document focuses on double wall framing techniques, the majority of the information on how to properly construct and finish high R-value assemblies is applicable to all wall assemblies that do not have foam insulation installed on the exterior of the structural sheathing. The techniques presented have been shown through field studies to reduce the likelihood of mold growth and moisture related damage and are intended for builders, framing contractors, architects, and consultants involved in designing and building super insulated homes.

  18. Sustainable refurbishment of exterior walls and building facades. Final report, Part B - General refurbishment concepts

    Energy Technology Data Exchange (ETDEWEB)

    Vares, S.; Pulakka, S.; Toratti, T. [and others

    2012-11-01

    This report is the second part of the final report of Sustainable refurbishment of building facades and exterior walls (SUSREF). SUSREF project was a collaborative (small/medium size) research project within the 7th Framework Programme of the Commission and it was financed under the theme Environment (including climate change) (Grant agreement no. 226858). The project started in October 1st 2009 and ended in April 30th 2012. The project included 11 partners from five countries. SUSREF developed sustainable concepts and technologies for the refurbishment of building facades and external walls. This report together with SUSREF Final report Part B and SUSREF Final Report Part C introduce the main results of the project. Part A focuses on methodological issues. The descriptions of the concepts and the assessment results of the developed concepts are presented in SUSREF Final report part B (generic concepts) and SUSREF Final report Part C (SME concepts). The following list shows the sustainability assessment criteria defined by the SUSREF project. These are Durability; Impact on energy demand for heating; Impact on energy demand for cooling; Impact on renewable energy use potential; Impact on daylight; Environmental impact of manufacture and maintenance; Indoor air quality and acoustics; Structural stability; Fire safety; Aesthetic quality; Effect on cultural heritage; Life cycle costs; Need for care and maintenance; Disturbance to the tenants and to the site; Buildability. This report presents sustainability assessment results of general refurbishment concepts and gives recommendations on the basis of the results. The report covers the following refurbishment cases - External insulation - Internal insulation - Cavity wall insulation - Replacement Insulation during renovation.

  19. Determination of optimum insulation thicknesses using economical analyse for exterior walls of buildings with different masses

    Directory of Open Access Journals (Sweden)

    Okan Kon

    2017-07-01

    Full Text Available In this study, five different cities were selected from the five climatic zones according to Turkish standard TS 825, and insulation thicknesses of exterior walls of sample buildings were calculated by using optimization. Vertical perforated bricks with density of 550 kg/m3 and 1000 kg/m3 were chosen within the study content. Glass wool, expanded polystyrene (XPS, extruded polystyrene (EPS were considered as insulation materials. Additionally, natural gas, coal, fuel oil and LPG were utilized as fuel for heating process while electricity was used for cooling.  Life cycle cost (LCC analysis and degree-day method were the approaches for optimum insulation thickness calculations. As a result, in case of usage vertical perforated bricks with density of 550 kg/m3 and 1000 kg/m3 resulted different values in between 0.005-0.007 m (5-7 mm in the optimum insulation thickness calculations under different insulation materials.  Minimum optimum insulation thickness was calculated in case XPS was preferred as insulation material, and the maximum one was calculated in case of using glass wool.

  20. A survey of spatially distributed exterior dust lead loadings in New York City

    Energy Technology Data Exchange (ETDEWEB)

    Caravanos, Jack [Hunter College-CUNY, School of Health Sciences (United States); Weiss, Arlene L [Environmental Medicine Inc., 263 Center Avenue, Westwood, NJ 07675 (United States); School of Medicine, New York University, NY 10016 (United States); Blaise, Marc J [Hunter College-CUNY, School of Health Sciences (United States); Jaeger, Rudolph J [Environmental Medicine Inc., 263 Center Avenue, Westwood, NJ 07675 (United States) and School of Medicine, New York University, NY 10016 (United States)

    2006-02-15

    This work documents ambient lead dust deposition values (lead loading) for the boroughs of New York City in 2003-2004. Currently, no regulatory standards exist for exterior concentrations of lead in settled dust. This is in contrast to the clearance and risk assessment standards that exist for interior residential dust. The reported potential for neurobehavioral toxicity and adverse cognitive development in children due to lead exposure prompts public health concerns about undocumented lead sources. Such sources may include settled dust of outdoor origin. Dust sampling throughout the five boroughs of NYC was done from the top horizontal portion of pedestrian traffic control signals (PTCS) at selected street intersections along main thoroughfares. The data (n=214 samples) show that lead in dust varies within each borough with Brooklyn having the highest median concentration (730{mu}g/ft{sup 2}), followed in descending order by Staten Island (452{mu}g/ft{sup 2}), the Bronx (382{mu}g/ft{sup 2}), Queens (198{mu}g/ft{sup 2}) and finally, Manhattan (175{mu}g/ft{sup 2}). When compared to the HUD/EPA indoor lead in dust standard of 40{mu}g/ft{sup 2}, our data show that this value is exceeded in 86% of the samples taken. An effort was made to determine the source of the lead in the dust atop of the PTCS. The lead in the dust and the yellow signage paint (which contains lead) were compared using isotopic ratio analysis. Results showed that the lead-based paint chip samples from intact signage did not isotopically match the dust wipe samples taken from the same surface. We know that exterior dust containing lead contributes to interior dust lead loading. Therefore, settled leaded dust in the outdoor environment poses a risk for lead exposure to children living in urban areas, namely, areas with elevated childhood blood lead levels and background lead dust levels from a variety of unidentified sources.

  1. A survey of spatially distributed exterior dust lead loadings in New York City

    International Nuclear Information System (INIS)

    Caravanos, Jack; Weiss, Arlene L.; Blaise, Marc J.; Jaeger, Rudolph J.

    2006-01-01

    This work documents ambient lead dust deposition values (lead loading) for the boroughs of New York City in 2003-2004. Currently, no regulatory standards exist for exterior concentrations of lead in settled dust. This is in contrast to the clearance and risk assessment standards that exist for interior residential dust. The reported potential for neurobehavioral toxicity and adverse cognitive development in children due to lead exposure prompts public health concerns about undocumented lead sources. Such sources may include settled dust of outdoor origin. Dust sampling throughout the five boroughs of NYC was done from the top horizontal portion of pedestrian traffic control signals (PTCS) at selected street intersections along main thoroughfares. The data (n=214 samples) show that lead in dust varies within each borough with Brooklyn having the highest median concentration (730μg/ft 2 ), followed in descending order by Staten Island (452μg/ft 2 ), the Bronx (382μg/ft 2 ), Queens (198μg/ft 2 ) and finally, Manhattan (175μg/ft 2 ). When compared to the HUD/EPA indoor lead in dust standard of 40μg/ft 2 , our data show that this value is exceeded in 86% of the samples taken. An effort was made to determine the source of the lead in the dust atop of the PTCS. The lead in the dust and the yellow signage paint (which contains lead) were compared using isotopic ratio analysis. Results showed that the lead-based paint chip samples from intact signage did not isotopically match the dust wipe samples taken from the same surface. We know that exterior dust containing lead contributes to interior dust lead loading. Therefore, settled leaded dust in the outdoor environment poses a risk for lead exposure to children living in urban areas, namely, areas with elevated childhood blood lead levels and background lead dust levels from a variety of unidentified sources

  2. The influence of wall orientation and exterior surface solar absorptivity on time lag and decrement factor in the Greek region

    Energy Technology Data Exchange (ETDEWEB)

    Kontoleon, K.J.; Eumorfopoulou, E.A. [Department of Civil Engineering, Laboratory of Building Construction and Physics, Aristotle University of Thessaloniki (A.U.Th.), Gr-541 24 Thessaloniki (Greece)

    2008-07-15

    The aim of this study is to determine how time lag and decrement factor are affected by wall orientation and exterior surface solar absorptivity, for specific climatic conditions. Their influence forms a non-sinusoidal periodical forcing function that simulates suitably the outdoor temperature fluctuations. This novel approach, allows the predictability of building's thermal response in an efficient way. The investigation is carried out for various insulated opaque wall formations comprising typical material elements, during the summer period in the mild Greek region. This study that allows proper building planning procedures, at the very early stages of the envelope design, presents great importance. The analysed configurations are assumed to have an orientation that corresponds to each compass point. In addition, the solar absorptivity of surface coatings is assumed to be varying from 0 to 1. The transient thermal analysis is obtained via a thermal circuit that models accurately the fundamental heat transfer mechanisms on both boundaries and through the multi-layered wall configurations. Moreover, the mathematical formulation and solution of this lumped model is achieved in discrete time steps by adopting the non-linear nodal method. The simulation results are focused on the single and combined effects of orientation and solar absorptivity on the dynamic thermal characteristics of various wall configurations. (author)

  3. Scaling of reactor cavity wall loads and stresses

    International Nuclear Information System (INIS)

    Bohachevsky, I.O.

    1977-11-01

    Scalings of reactor cavity wall loads and stresses are determined by deriving an analytic expression in terms of relevant parameters for each loading induced in the reactor cavity walls by fuel pellet microexplosion and by deriving associated expressions relating resulting stresses to shell thicknesses. Also identified are problems that require additional investigations to obtain satisfactory explicit stress estimates for the reactor cavity walls

  4. SUBSTANTIATION OF DESIGN MEASURES TO INCREASE ENERGY EFFICIENCY OF EXTERIOR WALLS

    Directory of Open Access Journals (Sweden)

    Musorina Tat'yana Aleksandrovna

    2017-11-01

    Full Text Available Subject: multi-layer building envelope is the subject of the paper. Recently, in the context of energy conservation policies, the heat engineering requirements for enveloping structures of buildings and structures have significantly increased. At the same time, their moisture condition has a significant impact on the operational properties of materials of structures and on microclimate of rooms constrained by these structures. Research objectives: emphasize importance of the task of predicting the temperature and moisture condition of the walling at the stage of design and construction of building envelopes. In this paper, the temperature distributions in layered walls are analyzed. Materials and methods: to achieve the objectives, computational and experimental studies are conducted. By alternating (rearranging layers and preserving the thermal resistance of the wall on the whole, we find the optimal alternation of layers that minimizes deviation of the maximum wall temperature from the average temperature. Results: for the optimal location of layers in the wall’s structure, the moisture penetration into the wall is minimal or absent altogether. This is possible if the heat-insulating layer is mounted on the outer surface of the structure. Conclusions: the obtained results of computational and experimental studies allow us to verify appropriateness of accounting for alternation of layers in multilayer structures. These calculations proved that the higher the average temperature level, the more energy-efficient the structure will be.

  5. Local wall power loading variations in thermonuclear fusion devices

    International Nuclear Information System (INIS)

    Carroll, M.C.; Miley, G.H.

    1989-01-01

    A 2 1/2-dimensional geometric model is presented that allows calculation of power loadings at various points on the first wall of a thermonuclear fusion device. Given average wall power loadings for brems-strahlung, cyclotron radiation charged particles, and neutrons, which are determined from various plasma-physics computation models, local wall heat loads are calculated by partitioning the plasma volume and surface into cells and superimposing the heating effects of the individual cells on selected first-wall differential areas. Heat loads from the entire plasma are thus determined as a function of position on the first-wall surface. Significant differences in local power loadings were found for most fusion designs, and it was therefore concluded that the effect of local power loading variations must be taken into account when calculating temperatures and heat transfer rates in fusion device first walls

  6. Lateral load performance of SIP walls with full bearing

    Science.gov (United States)

    Boren Yeh; Tom Skaggs; Xiping Wang; Tom Williamson

    2018-01-01

    The purpose of this study was to develop test data needed to characterize lateral load performance of structural insulated panel (SIP) walls with full bearing (restrained). The research program involved structural testing of 29 full-size SIP walls (8 ft tall by 8 ft long) of various configurations that bracket a range of SIP wall configurations commonly used in the...

  7. Spalling of concrete walls under blast load

    International Nuclear Information System (INIS)

    Kot, C.A.

    1977-01-01

    A common effect of the detonation of explosives in close proximity of concrete shield walls is the spalling (scabbing) of the back face of the wall. Spalling is caused by the free surface reflection of the shock wave induced in the wall by high pressure air blast and occurs whenever the dynamic tensile rupture strength is exceeded. While a complex process, reasonable analytical spall estimates can be obtained for brittle materials with low tensile strengths, such as concrete, by assuming elastic material behavior and instantaneous spall formation. Specifically, the spall thicknesses and velocities for both normal and oblique incidence of the shock wave on the back face of the wall are calculated. The complex exponential decay wave forms of the air blast are locally approximated by simple power law expressions. Variations of blast wave strength with distance to the wall, charge weight and angle of incidence are taken into consideration. The shock wave decay in the wall is also accounted for by assuming elastic wave propagation. For explosions close-in to the wall, where the reflected blast wave pressures are sufficiently high, multiple spall layers are formed. Successive spall layers are of increasing thickness, at the same time the spall velocities decrease. The spall predictions based on elastic theory are in overall agreement with experimntal results and provide a rapid means of estimating spalling trends of concrete walls subjected to air blast. (Auth.)

  8. STRUCTURAL SOLUTIONS AND SPECIAL FEATURES OF THE THERMAL PROTECTION ANALYSIS OF EXTERIOR WALLS OF BUILDINGS MADE OF AUTOCLAVED GAS-CONCRETE BLOCKS

    Directory of Open Access Journals (Sweden)

    Bedov Anatolij Ivanovich

    2012-10-01

    Full Text Available Relevant structural solutions, physical and mechanical characteristics, coefficients of thermal conductivity for exterior masonry walls made of autoclaved gas-concrete blocks are provided in the article. If a single-layer wall is under consideration, an autoclaved gas-concrete block is capable of performing the two principal functions of a shell structure, including the function of thermal protection and the bearing function. The functions are performed simultaneously. Therefore, the application of the above masonry material means the design development and erection of exterior walls of residential buildings noteworthy for their thermal efficiency. In the event of frameless structures, the height of the residential building in question may be up to 5 stories, while the use of a monolithic or a ready-made frame makes it possible to build high-rise buildings, and the number of stories is not limited in this case. If the average block density is equal to 400…500 kilograms per cubic meter, the designed wall thickness is to be equal to 400 mm. Its thermal resistance may be lower than the one set in the event of the per-element design of the thermal protection (Rreq = 3.41 м2 C/Watt, in Ufa, although it will meet the requirements of the applicable regulations if per-unit power consumption rate is considered.

  9. Inelastic behavior of cold-formed braced walls under monotonic and cyclic loading

    Science.gov (United States)

    Gerami, Mohsen; Lotfi, Mohsen; Nejat, Roya

    2015-06-01

    The ever-increasing need for housing generated the search for new and innovative building methods to increase speed and efficiency and enhance quality. One method is the use of light thin steel profiles as load-bearing elements having different solutions for interior and exterior cladding. Due to the increase in CFS construction in low-rise residential structures in the modern construction industry, there is an increased demand for performance inelastic analysis of CFS walls. In this study, the nonlinear behavior of cold-formed steel frames with various bracing arrangements including cross, chevron and k-shape straps was evaluated under cyclic and monotonic loading and using nonlinear finite element analysis methods. In total, 68 frames with different bracing arrangements and different ratios of dimensions were studied. Also, seismic parameters including resistance reduction factor, ductility and force reduction factor due to ductility were evaluated for all samples. On the other hand, the seismic response modification factor was calculated for these systems. It was concluded that the highest response modification factor would be obtained for walls with bilateral cross bracing systems with a value of 3.14. In all samples, on increasing the distance of straps from each other, shear strength increased and shear strength of the wall with bilateral bracing system was 60 % greater than that with lateral bracing system.

  10. Experimental Investigations on Axially and Eccentrically Loaded Masonry Walls

    Science.gov (United States)

    Keshava, Mangala; Raghunath, Seshagiri Rao

    2017-12-01

    In India, un-reinforced masonry walls are often used as main structural components in load bearing structures. Indian code on masonry accounts the reduction in strength of walls by using stress reduction factors in its design philosophy. This code was introduced in 1987 and reaffirmed in 1995. The present study investigates the use of these factors for south Indian masonry. Also, with the gaining popularity in block work construction, the aim of this study was to find out the suitability of these factors given in the Indian code to block work masonry. Normally, the load carrying capacity of masonry walls can be assessed in three ways, namely, (1) tests on masonry constituents, (2) tests on masonry prisms and (3) tests on full-scale wall specimens. Tests on bricks/blocks, cement-sand mortar, brick/block masonry prisms and 14 full-scale brick/block masonry walls formed the experimental investigation. The behavior of the walls was investigated under varying slenderness and eccentricity ratios. Hollow concrete blocks normally used as in-fill masonry can be considered as load bearing elements as its load carrying capacity was found to be high when compared to conventional brick masonry. Higher slenderness and eccentricity ratios drastically reduced the strength capacity of south Indian brick masonry walls. The reduction in strength due to slenderness and eccentricity is presented in the form of stress reduction factors in the Indian code. These factors obtained through experiments on eccentrically loaded brick masonry walls was lower while that of brick/block masonry under axial loads was higher than the values indicated in the Indian code. Also the reduction in strength is different for brick and block work masonry thus indicating the need for separate stress reduction factors for these two masonry materials.

  11. Liquid loading experiments with tube wall modifications

    NARCIS (Netherlands)

    Belfroid, S.P.C.; Schiferli, W.; Veltin, J.; Veeken, K.

    2011-01-01

    This paper discusses the multiphase flow mechanism responsible for gas-well liquid loading. It demonstrates that the conventional idea of droplet flow reversal (Turner et al. (1)) does not capture reality and that actual observations are better described by film flow reversal phenomenon. The

  12. Poloidal variations in toroidal fusion reactor wall power loadings

    International Nuclear Information System (INIS)

    Carroll, M.C.; Miley, G.H.

    1985-01-01

    A geometric formulation is developed by the authors for determining poloidal variations in bremmstrahlung, cyclotron radiation, and neutron wall power loadings in toroidal fusion devices. Assuming toroidal symmetry and utilizing a numerical model which partitions the plasma into small cells, it was generally found that power loadings are highest on the outer surface of the torus, although variations are not as large as some have predicted. Results are presented for various plasma power generation configurations, plasma volume fractions, and toroidal aspect ratios, and include plasma and wall blockage effects

  13. Buckling of thin-walled beams under concentrated transverse loading

    NARCIS (Netherlands)

    Menken, C.M.; Erp, van G.M.; Krupta, V.; Drdacky, M.

    1991-01-01

    The transversely loaded thin-walled beam under a non-uniform bending moment forms an example of the detrimental influence that a local effect may have on the overall behaviour. The local effect is the plate buckling in the region of maximum bending moment. The overall behaviour is the

  14. Fragility assessment method of Concrete Wall Subjected to Impact Loading

    International Nuclear Information System (INIS)

    Hahm, Daegi; Shin, Sang Shup; Choi, In-Kil

    2014-01-01

    These studies have been aimed to verify and ensure the safety of the targeted walls and structures especially in the viewpoint of the deterministic approach. However, recently, the regulation and the assessment of the safety of the nuclear power plants (NPPs) against to an aircraft impact are strongly encouraged to adopt a probabilistic approach, i.e., the probabilistic risk assessment of an aircraft impact. In Korea, research to develop aircraft impact risk quantification technology was initiated in 2012 by Korea Atomic Energy Research Institute (KAERI). In this paper, for the one example of the probabilistic safety assessment approach, a method to estimate the failure probability and fragility of concrete wall subjected to impact loading caused by missiles or engine parts of aircrafts will be introduced. This method and the corresponding results will be used for the total technical roadmap and the procedure to assess the aircraft impact risk (Fig.1). A method and corresponding results of the estimation of the failure probability and fragility for a concrete wall subjected to impact loadings caused by missiles or engine parts of aircrafts was introduced. The detailed information of the target concrete wall in NPP, and the example aircraft engine model is considered safeguard information (SGI), and is not contained in this paper

  15. Finite element limit loads for non-idealized through-wall cracks in thick-walled pipe

    International Nuclear Information System (INIS)

    Shim, Do-Jun; Han, Tae-Song; Huh, Nam-Su

    2013-01-01

    Highlights: • The lower bound bulging factor of thin-walled pipe can be used for thick-walled pipe. • The limit loads are proposed for thick-walled, transition through-wall cracked pipe. • The correction factors are proposed for estimating limit loads of transition cracks. • The limit loads of short transition cracks are similar to those of idealized cracks. - Abstract: The present paper provides plastic limit loads for non-idealized through-wall cracks in thick-walled pipe. These solutions are based on detailed 3-dimensional finite element (FE) analyses which can be used for structural integrity assessment of nuclear piping. To cover a practical range of interest, the geometric variables and loading conditions affecting the plastic limit loads of thick-walled pipe with non-idealized through-wall cracks were systematically varied. In terms of crack orientation, both circumferential and axial through-wall cracks were considered. As for loading conditions, axial tension, global bending, and internal pressure were considered for circumferential cracks, whereas only internal pressure was considered for axial cracks. Furthermore, the values of geometric factor representing shape characteristics of non-idealized through-wall cracks were also systematically varied. In order to provide confidence in the present FE analyses results, plastic limit loads of un-cracked, thick-walled pipe resulting from the present FE analyses were compared with the theoretical solutions. Finally, correction factors to the idealized through-wall crack solutions were developed to determine the plastic limit loads of non-idealized through-wall cracks in thick-walled pipe

  16. Limit load analysis of thick-walled concrete structures

    International Nuclear Information System (INIS)

    Argyris, J.H.; Faust, G.; Willam, K.J.

    1975-01-01

    The paper illustrates the interaction of constitutive modeling and finite element solution techniques for limit load prediction of concrete structures. On the constitutive side, an engineering model of concrete fracture is developed in which the Mohr-Coulomb criterion is augmented by tension cut-off to describe incipient failure. Upon intersection with the stress path the failure surface collapses for brittle behaviour according to one of three softening rules, no-tension, no-cohesion, and no-friction. The stress transfer accompanying the energy dissipation during local failure is modelled by several fracture rules which are examined with regard to ultimate load prediction. On the numerical side the effect of finite element idealization is studied first as far as ultimate load convergence is concerned. Subsequently, incremental tangential and initial load techniques are compared together with the effect of step size. Limit load analyses of a thick-walled concrete ring and a lined concrete reactor closure conclude the paper with examples from practical engineering. (orig.) [de

  17. Design of SC walls and slabs for impulsive loading

    Energy Technology Data Exchange (ETDEWEB)

    Varma, Amit H. [Purdue Univ., West Lafayette, IN (United States)

    2015-11-11

    Reinforced concrete (RC) structures have historically been the preferred choice for blast resistant structures because of their mass and the ductility provided by steel reinforcement. Steel-plate composite (SC) walls are a viable alternative to RC for protecting the infrastructure against explosive threats. SC structures consist of two steel faceplates with a plain concrete core between them. The steel faceplates are anchored to the concrete using stud anchors and connected to each other using tie bars. SC structures provide mass from the concrete infill and ductility from the continuous external steel faceplates. This dissertation presents findings and recommendations from experimental and analytical investigations of the performance of SC walls subjected to far-field blast loads.

  18. The effect of load-controlled bending load on the failure pressure of wall-thinned pipe elbows

    International Nuclear Information System (INIS)

    Kim, Jin Weon; Yoon, Min Soo; Park, Chi Yong

    2013-01-01

    Highlights: • We evaluated bending load effect on the failure pressure of wall-thinned pipe elbows. • Burst tests were conducted on real-scale elbow specimens with local wall thinning. • The tests were performed under combined pressure and load-controlled bending. • Load-controlled bending reduced the failure pressure of wall-thinned elbows. • Bending load effect was significant for opening-mode and intrados wall-thinning case. - Abstract: In this research, burst tests were conducted on real-scale elbow specimens, each with an artificial local wall-thinning defect, under combined internal pressure and constant in-plane bending load, as well as under simple internal pressure, to evaluate the effect of load-controlled bending load on the failure pressure of locally wall-thinned pipe elbows. Ninety-degree, 65A Schedule 80 elbows, with wall-thinning defects in the intrados and extrados, were used as specimens. The bending loads were in-plane opening- and closing-mode bending, applied in load-control mode. The results clearly indicated that a load-controlled in-plane bending load reduced the failure pressure of wall-thinned pipe elbows, in contrast to observations previously made under displacement-controlled bending conditions. The effect of the bending load was more significant for opening-mode than for closing-mode bending, regardless of the wall-thinning location in the elbow. Also, the effect was greater when the wall-thinning defect was located in the intrados region of the elbow, rather than the extrados region. Existing models that have been proposed to evaluate the failure of wall-thinned elbows under simple internal pressure conservatively predicted the failure pressure of elbows subjected to a combined internal pressure and load-controlled bending load

  19. Exterior Insulation Implications for Heating and Cooling Systems in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anastasia [IBACOS Inc., Pittsburgh, PA (United States); Poerschke, Andrew [IBACOS Inc., Pittsburgh, PA (United States)

    2015-04-09

    The New York State Energy Research and Development Authority (NYSERDA) is interested in finding cost-effective solutions for deep energy retrofits (DERs) related to exterior wall insulation in a cold climate, with targets of 50% peak load reduction and 50% space conditioning energy savings. The U.S. Department of Energy Building America team, IBACOS, in collaboration with GreenHomes America, Inc. (GHA), was contracted by NYSERDA to research exterior wall insulation solutions. In addition to exterior wall insulation, the strategies included energy upgrades where needed in the attic, mechanical and ventilation systems, basement, band joist, walls, and floors. Under Building America, IBACOS is studying the impact of a “thermal enclosure” DER on the sizing of the space conditioning system and the occupant comfort if the thermal capacity of the heating and cooling system is dramatically downsized without any change in the existing heating and cooling distribution system (e.g., size, tightness and supply outlet configurations).

  20. Exterior Insulation Implications for Heating and Cooling Systems in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anastasia; Poerschke, Andrew

    2015-04-01

    The New York State Energy Research and Development Authority (NYSERDA) is interested in finding cost-effective solutions for deep energy retrofits (DERs) related to exterior wall insulation in a cold climate, with targets of 50% peak load reduction and 50% space conditioning energy savings. The U.S. Department of Energy Building America team, IBACOS, in collaboration with GreenHomes America, Inc. (GHA), was contracted by NYSERDA to research exterior wall insulation solutions. In addition to exterior wall insulation, the strategies included energy upgrades where needed in the attic, mechanical and ventilation systems, basement, band joist, walls, and floors. Under Building America, IBACOS is studying the impact of a “thermal enclosure” DER on the sizing of the space conditioning system and the occupant comfort if the thermal capacity of the heating and cooling system is dramatically downsized without any change in the existing heating and cooling distribution system (e.g., size, tightness and supply outlet configurations).

  1. limit loads for wall-thinning feeder pipes under combined bending and internal pressure

    International Nuclear Information System (INIS)

    Je, Jin Ho; Lee, Kuk Hee; Chung, Ha Joo; Kim, Ju Hee; Han, Jae Jun; Kim, Yun Jae

    2009-01-01

    Flow Accelerated Corrosion (FAC) during inservice conditions produces local wall-thinning in the feeder pipes of CANDU. The Wall-thinning in the feeder pipes is main degradation mechanisms affecting the integrity of piping systems. This paper discusses the integrity assessment of wall-thinned feeder pipes using limit load analysis. Based on finite element limit analyses, this paper compare limit loads for wall-thinning feeder pipes under combined bending and internal pressure with proposed limit loads. The limit loads are determined from limit analyses based on rectangular wall-thinning and elastic-perfectly-plastic materials using the large geometry change.

  2. Consistent HYLIFE wall design that withstands transient loading conditions

    International Nuclear Information System (INIS)

    Pitts, J.H.

    1980-10-01

    The design for a first structural wall (FSW) promises to satisfy the impact and thermal stress loads for the 30-year lifetime anticipated for the HYLIFE reaction chamber. The FSW is a 50-mm-thick cylindrical plate that is 10 m in diameter; it can withstand a rapidly varying liquid metal impact stress up to a peak of 60 MPa, combined with slowly varying thermal stresses up to 86 MPa. We selected 2 1/4 Cr-1 Mo ferritic steel as the structural material because it has adequate fatigue properties and yield strength at the peak operating temperature of 810 0 K, is compatible with liquid lithium, and has good neutron activation characteristics

  3. Power loading on the first wall during disruptions in TFTR

    International Nuclear Information System (INIS)

    Janos, A.; Fredrickson, E.D.; McGuire, K.M.; Nagayama, Y.; Owens, D.K.; Wilfrid, E.

    1992-01-01

    Heating of the first wall of TFTR due to disruptions is investigated experimentally using an extensive array of thermocouples. By comparing results from discharges with and without disruptions, we extract effects due to the disruption alone. Disruptions preferentially heat the same areas which are heated during discharges without disruptions. Hot areas are inward protrusions or regions unshielded by neighboring areas. Peaking factors in the toroidal direction, defined as peak temperature divided by average toroidal temperature, as a function of poloidal angle, are calculated. For nondisruptive discharges, the peaking factor varies between 2 and 4. For the disruptive portion of a discharge only, the peaking factor near the midplane, where most of the energy is deposited, ranges from 3 to 5. Further away from the midplane, the peaking factor can reach 28, although the heat load is less in that region. (orig.)

  4. Experimental evaluation of the interaction between strength concrete block walls under vertical loads

    Directory of Open Access Journals (Sweden)

    L. O. CASTRO

    Full Text Available Abstract This paper aims to evaluate the interaction between structural masonry walls made of high performance concrete blocks, under vertical loads. Two H-shaped flanged wall series, all full scale and using direct bond, have been analyzed experimentally. In one series, three flanged-walls were built with the central wall (web supported and, in the other one, three specimens were built without any support at the central web. The load was applied on the central wall and vertical displacements were measured by means of displacement transducers located at eighteen points in the wall-assemblages. The results showed that the estimated load values for the flanges were close to those supported by the walls without central support, where 100% of the load transfer to the flanges occur. The average transfer load rate calculated based on the deformation ratio in the upper and lower section of the flanged-walls, with the central web support, were 37.65% and 77.30%, respectively, showing that there is load transfer from the central wall (web toward the flanges, particularly in the lower part of the flanged walls. Thus, there is indication that the distribution of vertical loads may be considered for projects of buildings for service load, such as in the method of isolated walls group. For estimation of the failure load, the method that considers the walls acting independently showed better results, due to the fact that failure started at the top of the central wall, where there is no effect of load distribution from the adjacent walls.

  5. Numerical Investigation of Structural Response of Corrugated Blast Wall Depending on Blast Load Pulse Shapes

    Directory of Open Access Journals (Sweden)

    Jung Min Sohn

    Full Text Available Abstract Hydrocarbon explosions are one of most hazardous events for workers on offshore platforms. To protect structures against explosion loads, corrugated blast walls are typically installed. However, the profiles of real explosion loads are quite different depending on the congestion and confinement of Topside structures. As the level of congestion and confinement increases, the explosion load increases by up to 8 bar, and the rising time of the load decreases. This study primarily aims to investigate the structural behavior characteristics of corrugated blast walls under different types of explosion loadings. Four loading shapes were applied in the structural response analysis, which utilized a dynamic nonlinear finite element method.

  6. Air permeability for a concrete shear wall after a damaging seismic load simulation cycle

    International Nuclear Information System (INIS)

    Girrens, S.P.; Farrar, C.R.

    1991-01-01

    A study was initiated to estimate air leakage, driven by wind-generated pressure gradients, from a seismically damaged concrete structure. This paper describes an experiment performed to measure the air permeability in a reinforced concrete shear wall, both before and after simulated seismic loading. Static load-cycle testing was used to simulate earthquake loading. Permeability measurements were made by pressurizing one side of the shear wall above atmospheric conditions and recording the transient-pressure decay. Air permeability measurements made on the shear wall before loading fell within the range of values for concrete permeability published in the literature. As long as the structure exhibited linear load-displacement response, no variation in the air permeability was detected. However, experimental results indicate that the air permeability in the shear wall increased by a factor of 40 after the wall had been damaged (cracked)

  7. Expert Meeting Report: Cladding Attachment Over Exterior Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)

    2013-10-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on thestructure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explorethese topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help informdesign standards and criteria.

  8. Expert Meeting Report: Cladding Attachment Over Exterior Insulation (BSC Report)

    Energy Technology Data Exchange (ETDEWEB)

    None

    2013-10-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. The location of the insulation to the exterior of the structure has many direct benefits including better effective R-value from reduced thermal bridging, better condensation resistance, reduced thermal stress on the structure, as well as other commonly associated improvements such as increased air tightness and improved water management (Hutcheon 1964, Lstiburek 2007). The intent of the meeting was to review the current state of industry knowledge regarding cladding attachment over exterior insulation with a specific focus on: 1. Gravity load resistance, 2. Wind load resistance. The presentations explore these topics from an engineering design, laboratory testing, field monitoring, as well as practical construction perspective. By bringing various groups together (who have been conduction research or have experience in this area), a more holistic review of the design limits and current code language proposals can be completed and additional gaps identified. The results of which will help inform design standards and criteria.

  9. Experimental behavior of full-scale exterior beam-column space joints retrofitted by ferrocement layers under cyclic loading

    Directory of Open Access Journals (Sweden)

    Ibrahim G. Shaaban

    2018-06-01

    Full Text Available A majority of the traditional reinforced concrete frame buildings, existing across the Middle East, lack adequate confinement in beam-column joints, or in other words, are shear deficient because they were constructed before the introduction of seismic codes for construction. This research studies the experimental behavior of full-scale beam-column space (three-dimensional joints under displacement-controlled cyclic loading. Eleven joint specimens, included a traditionally reinforced one (without adequate shear reinforcement, a reference one with sufficient shear reinforcement according to ACI 318, and nine specimens retrofitted by ferrocement layers, were experimentally tested to evaluate a retrofit technique for strengthening shear deficient beam column joints. The studied variables were the number of layers, orientation angle of expanded wire mesh per layer, and presence of steel angles in the corners of joint specimen prior to wrapping with ferrocement layers. The experimental results showed that proper shear reinforcement for the test joints, according to ACI 318, enhanced the behavior of the specimen over that of the traditionally reinforced specimens without adequate shear reinforcement. The joints retrofitted by ferrocement layers showed higher ultimate capacity, higher ultimate displacement prior to failure (better ductility, and they did not suffer heavily damage as observed for the traditionally reinforced one. Increasing the number of ferrocement layers for retrofitted specimens led to improving performance for such specimens compared to the traditionally reinforced ones in terms of enhancing the ultimate capacity and ultimate displacement. Specimens retrofitted by ferrocement layers reinforced by expanded wire mesh of 60° orientation angle showed slightly better performance than those of 45° orientation angles. Retrofitting using steel angles in addition to ferrocement layers improves the seismic performance of the specimens

  10. Experimental study on concrete shear wall behavior under seismic loading

    International Nuclear Information System (INIS)

    Gantenbein, F.; Queval, J.C.; Epstein, A.; Dalbera, J.

    1991-01-01

    An experimental program has been undertaken on the dynamic behavior of shear walls with and without openings. The experimental set-up, the test program and the main results will be detailed in the paper

  11. Reliability Analysis of Retaining Walls Subjected to Blast Loading by Finite Element Approach

    Science.gov (United States)

    GuhaRay, Anasua; Mondal, Stuti; Mohiuddin, Hisham Hasan

    2018-02-01

    Conventional design methods adopt factor of safety as per practice and experience, which are deterministic in nature. The limit state method, though not completely deterministic, does not take into account effect of design parameters, which are inherently variable such as cohesion, angle of internal friction, etc. for soil. Reliability analysis provides a measure to consider these variations into analysis and hence results in a more realistic design. Several studies have been carried out on reliability of reinforced concrete walls and masonry walls under explosions. Also, reliability analysis of retaining structures against various kinds of failure has been done. However, very few research works are available on reliability analysis of retaining walls subjected to blast loading. Thus, the present paper considers the effect of variation of geotechnical parameters when a retaining wall is subjected to blast loading. However, it is found that the variation of geotechnical random variables does not have a significant effect on the stability of retaining walls subjected to blast loading.

  12. Multiaxial loading of large-diameter, thin-walled tube rock specimens

    International Nuclear Information System (INIS)

    Hecker, S.S.; Petrovic, J.J.

    1981-01-01

    A large-scale mechanical testing facility permits previously impossible thin-walled tube multiaxial loading experiments on rock materials. Constraints are removed regarding tube wall thickness in relation to rock microstructural features and tube diameter as well as test machine load capacity. Thin-walled tube studies clarify the influence of intermediate principal stress sigma 2 on rock fracture and help define a realistic rock fracture criterion for all multiaxial stressing situations. By comparing results of thin-walled and thick-walled tube fracture investigations, effects of stress gradients can be established. Finally, influence of stress path on rock fracture, an area largely ignored in current rock failure criteria, can be examined in detail using controlled loading changes as well as specimen prestrains

  13. Simulation of reinforced concrete short shear wall subjected to cyclic loading

    International Nuclear Information System (INIS)

    Parulekar, Y.M.; Reddy, G.R.; Vaze, K.K.; Pegon, P.; Wenzel, H.

    2014-01-01

    Highlights: • Prediction of the capacity of squat shear wall using tests and analysis. • Modification of model of concrete in the softening part. • Pushover analysis using softened truss theory and FE analysis is performed. • Modified concrete model gives reasonable accurate peak load and displacement. • The ductility, ultimate load and also crack pattern can be accurately predicted. - Abstract: This paper addresses the strength and deformation capacity of stiff squat shear wall subjected to monotonic and pseudo-static cyclic loading using experiments and analysis. Reinforced concrete squat shear walls offer great potential for lateral load resistance and the failure mode of these shear walls is brittle shear mode. Shear strength of these shear walls depend strongly on softening of concrete struts in principal compression direction due to principal tension in other direction. In this work simulation of the behavior of a squat shear wall is accurately predicted by finite element modeling by incorporating the appropriate softening model in the program. Modification of model of concrete in the softening part is suggested and reduction factor given by Vecchio et al. (1994) is used in the model. The accuracy of modeling is confirmed by comparing the simulated response with experimental one. The crack pattern generated from the 3D model is compared with that obtained from experiments. The load deflection for monotonic loads is also obtained using softened truss theory and compared with experimental one

  14. Load bearing capacity of welded joints between dissimilar pipelines with unequal wall thickness

    Energy Technology Data Exchange (ETDEWEB)

    Beak, Jonghyun; Kim, Youngpyo; Kim, Woosik [Korea Gas Corporation, Suwon (Korea, Republic of)

    2012-09-15

    The behavior of the load bearing capacity of a pipeline with unequal wall thickness was evaluated using finite element analyses. Pipelines with a wall thickness ratio of 1.22-1.89 were adopted to investigate plastic collapse under tensile, internal pressure, or bending stress. A parametric study showed that the tensile strength and moment of a pipeline with a wall thickness ratio less than 1.5 were not influenced by the wall thickness ratio and taper angle; however, those of a pipeline with a wall thickness ratio more than 1.5 decreased considerably at a low taper angle. The failure pressure of a pipeline with unequal wall thickness was not influenced by the wall thickness ratio and taper angle.

  15. Experimental and analytical investigation of the lateral load response of confined masonry walls

    Directory of Open Access Journals (Sweden)

    Hussein Okail

    2016-04-01

    Full Text Available This paper investigates the behavior of confined masonry walls subjected to lateral loads. Six full-scale wall assembles, consisting of a clay masonry panel, two confining columns and a tie beam, were tested under a combination of vertical load and monotonic pushover up to failure. Wall panels had various configurations, namely, solid and perforated walls with window and door openings, variable longitudinal and transverse reinforcement ratios for the confining elements and different brick types, namely, cored clay and solid concrete masonry units. Key experimental results showed that the walls in general experienced a shear failure at the end of the lightly reinforced confining elements after the failure of the diagonal struts formed in the brick wall due to transversal diagonal tension. Stepped bed joint cracks formed in the masonry panel either diagonally or around the perforations. A numerical model was built using the finite element method and was validated in light of the experimental results. The model showed acceptable correlation and was used to conduct a thorough parametric study on various design configurations. The conducted parametric study involved the assessment of the load/displacement response for walls with different aspect ratios, axial load ratios, number of confining elements as well as the size and orientation of perforations. It was found that the strength of the bricks and the number of confining elements play a significant role in increasing the walls’ ultimate resistance and displacement ductility.

  16. Structural pounding of concrete frame structure with masonry infill wall under seismic loading

    Science.gov (United States)

    Ismail, Rozaina; Hasnan, Mohd Hafizudin; Shamsudin, Nurhanis

    2017-10-01

    Structural pounding is additional problem than the other harmful damage that may occurs due to the earthquake vibrations. A lot of study has been made by past researcher but most of them did not include the walls. The infill masonry walls are rarely involved analysis of structural systems but it does contribute to earthquake response of the structures. In this research, a comparison between adjacent building of 10-storey and 7-storey concrete frame structure without of masonry infill walls and the same dynamic properties of buildings. The diagonal strut approach is adopted for modeling masonry infill walls. This research also focused on finding critical building separation in order to prevent the adjacent structures from pounding. LUSAS FEA v14.03 software has been used for modeling analyzing the behavior of structures due to seismic loading and the displacement each floor of the building has been taken in order to determine the critical separation distance between the buildings. From the analysis that has been done, it is found that masonry infill walls do affect the structures behavior under seismic load. Structures without masonry infill walls needs more distance between the structures to prevent structural pounding due to higher displacement of the buildings when it sways under seismic load compared to structures with masonry infill walls. This shows that contribution of masonry infill walls to the analysis of structures cannot be neglected.

  17. Failure mode and fracture behavior evaluation of pipes with local wall thinning subjected to bending load

    International Nuclear Information System (INIS)

    Ahn, Seok Hwan; Nam, Ki Woo; Kim, Seon Jin; Kim, Jin Hwan; Kim, Hyun Soo; Do, Jae Yoon

    2003-01-01

    Fracture behaviors of pipes with local wall thinning are very important for the integrity of nuclear power plant. In pipes of energy plants, sometimes, the local wall thinning may result from severe Erosion-Corrosion (E/C) damage. However, the effects of local wall thinning on strength and fracture behaviors of piping system were not well studied. In this paper, the monotonic bending tests were performed of full-scale carbon steel pipes with local wall thinning. A monotonic bending load was applied to straight pipe specimens by four-point loading at ambient temperature without internal pressure. From the tests, fracture behaviors and fracture strength of locally thinned pipe were manifested systematically. The observed failure modes were divided into four types; ovalization, crack initiation/growth after ovalization, local buckling and crack initiating/growth after local buckling. Also, the strength and the allowable limit of piping system with local wall thinning were evaluated

  18. Total contact cast wall load in patients with a plantar forefoot ulcer and diabetes.

    Science.gov (United States)

    Begg, Lindy; McLaughlin, Patrick; Vicaretti, Mauro; Fletcher, John; Burns, Joshua

    2016-01-01

    The total contact cast (TCC) is an effective intervention to reduce plantar pressure in patients with diabetes and a plantar forefoot ulcer. The walls of the TCC have been indirectly shown to bear approximately 30 % of the plantar load. A new direct method to measure inside the TCC walls with capacitance sensors has shown that the anterodistal and posterolateral-distal regions of the lower leg bear the highest load. The objective of this study was to directly measure these two regions in patients with Diabetes and a plantar forefoot ulcer to further understand the mechanism of pressure reduction in the TCC. A TCC was applied to 17 patients with Diabetes and a plantar forefoot ulcer. TCC wall load (contact area, peak pressure and max force) at the anterodistal and posterolateral-distal regions of the lower leg were evaluated with two capacitance sensor strips measuring 90 cm(2) (pliance®, novel GmbH, Germany). Plantar load (contact area, peak pressure and max force) was measured with a capacitance sensor insole (pedar®, novel GmbH, Germany) placed inside the TCC. Both pedar® and pliance® collected data simultaneously at a sampling rate of 50Hz synchronised to heel strike. The magnitude of TCC wall load as a proportion of plantar load was calculated. The TCC walls were then removed to determine the differences in plantar loading between the TCC and the cut down shoe-cast for the whole foot, rearfoot, midfoot and forefoot (region of interest). TCC wall load was substantial. The anterodistal lower leg recorded 48 % and the posterolateral-distal lower leg recorded 34 % of plantar contact area. The anterodistal lower leg recorded 28 % and the posterolateral-distal lower leg recorded 12 % of plantar peak pressure. The anterodistal lower leg recorded 12 % and the posterolateral-distal lower leg recorded 4 % of plantar max force. There were significant differences in plantar load between the TCC and the cut down shoe-cast for the whole foot, rearfoot, midfoot and

  19. Effect of plastic soil on a retaining wall subjected to surcharge loading

    Directory of Open Access Journals (Sweden)

    Al-Juari Khawla

    2016-01-01

    Full Text Available The seasonal variation and climatic changes play a significant role that affects the stresses exerted on a retaining wall, and the state of stresses in the soil mass behind the wall especially for highly expansive soil. These stresses resulted in the wall moving either away or towards the soil. In this study, a laboratory physical model of the retaining wall formed of a box having (950×900×600 mm dimensions with one side representing the wall being developed. After the soil being laid out in the box in specified layers, specified conditions of saturation and normal stresses were applied. The wall is allowed to move horizontally in several distances (0.1, 0.2, 0.3, 0.6, 0.8, 1.0 , 2.0, 3.0 and 4.0 mm, and the stresses being measured, then the vertical loading was released. The main measured variables during the tests are; the active and passive earth pressures, vertical movement of the soil, total suction and time. Results showed that the lateral earth pressure along the depth of the wall largely decreased when wall moved away from the soil. Total suction was slightly affected during wall’s movement. At unloading stage, the lateral earth pressure decreased at the upper half of wall height, but increased at the other wall part. Total suction was increased at all depths during this stage.

  20. Deflection Prediction of No-Fines Lightweight Concrete Wall Using Neural Network Caused Dynamic Loads

    Directory of Open Access Journals (Sweden)

    Ridho Bayuaji

    2018-04-01

    Full Text Available No-fines lightweight concrete wall with horizontal reinforcement refers to an alternative material for wall construction with an aim of improving the wall quality towards horizontal loads. This study is focused on artificial neural network (ANN application to predicting the deflection deformation caused by dynamic loads. The ANN method is able to capture the complex interactions among input/output variables in a system without any knowledge of interaction nature and without any explicit assumption to model form. This paper explains the existing data research, data selection and process of ANN modelling training process and validation. The results of this research show that the deformation can be predicted more accurately, simply and quickly due to the alternating horizontal loads.

  1. Experimental assessment of air permeability in a concrete shear wall subjected to simulated seismic loading

    International Nuclear Information System (INIS)

    Girrens, S.P.; Farrar, C.R.

    1991-07-01

    A safety concern for the proposed Special Nuclear Materials Laboratory (SNML) facility at the Los Alamos National Laboratory was air leakage from the facility if it were to experience a design basis earthquake event. To address this concern, a study was initiated to estimate air leakage, driven by wind-generated pressure gradients, from a seismically damaged concrete structure. This report describes a prototype experiment developed and performed to measure the air permeability in a reinforced concrete shear wall, both before and after simulated seismic loading. A shear wall test structure was fabricated with standard 4000-psi concrete mix. Static load-cycle testing was used to simulate earthquake loading. Permeability measurements were made by pressurizing one side of the shear wall above atmospheric conditions and recording the transient pressure decay. As long as the structure exhibited linear load displacement response, no variation in the air permeability was detected. However, experimental results indicate that the air permeability in the shear wall increased by a factor of 40 after the wall had been damaged (cracked). 17 figs., 8 tabs

  2. Stability of Monolithic Rubble Mound Breakwater Crown Walls Subjected to Impulsive Loading

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Harck; Andersen, Lars Vabbersgaard; Andersen, Thomas Lykke

    2012-01-01

    This paper evaluates the validity of a simple onedimensional dynamic analysis as well as a FEM model to determine the sliding of a rubble mound breakwater crown wall. The evaluation is based on a case example with real wave load time series and displacements measured from two-dimensional physical...... model tests. The outcome is a more reliable evaluation of the applicability of simple dynamic calculations for the estimation of sliding distances of rubble mound superstructures. This is of great practical importance since many existing rubble mound crown walls are subjected to increasing wave loads...

  3. Thermal and radiation loads on the first wall and divertor plates in the KTM tokamak

    International Nuclear Information System (INIS)

    Azizov, Eh.A.; Buzhinskij, O.I.; Gladush, G.G.; Darmagraj, V.V.; Priyampol'skij, I.R.; Dvorkin, N.Ya.; Lejkin, I.N.; Tazhibaeva, I.L.; Shestakov, V.P.

    2001-01-01

    The constructing of the KTM tokamak is intended for wide scale studies of behavior both inner-chamber element materials and structures (first wall, limiters, divertor, hf-antennas, etc.) under conditions approaching to the ITER-FEAT and a future thermonuclear reactors. The KTM tokamak is designed for maintain of interaction conditions of plasma-wall, plasma flows and divertor field, stimulating conditions of ITER-FEAT; and for examination of a future tokamaks' materials. In the work the thermal loads on the first wall, divertor plates are presented

  4. Initial and Long-Term Movement of Cladding Installed Over Exterior Rigid Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.

    2014-09-01

    Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC builders are going to finding themselves required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. However, there has been a significant resistance to its widespread implementation due to a lack of research and understanding of the mechanisms involved and potential creep effects of the assembly under the sustained dead load of a cladding. This research was an extension on previous research conducted by BSC in 2011, and 2012. Each year the understanding of the system discrete load component interactions, as well as impacts of environmental loading has increased. The focus of the research was to examine more closely the impacts of screw fastener bending on the total system capacity, effects of thermal expansion and contraction of materials on the compressive forces in the assembly, as well as to analyze a full years worth of cladding movement data from assemblies constructed in an exposed outdoor environment.

  5. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    Science.gov (United States)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2009-04-01

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  6. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany)], E-mail: bazylev@ihm.fzk.de; Janeschitz, G. [Forschungszentrum Karlsruhe, Fusion, P.O. Box 3640, 76021 Karlsruhe (Germany); Landman, I.; Pestchanyi, S. [Forschungszentrum Karlsruhe, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Loarte, A. [ITER Organisation, Cadarache, 13108 Saint Paul Lez Durance Cedex (France)

    2009-04-30

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  7. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    International Nuclear Information System (INIS)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2009-01-01

    The beryllium is foreseen as plasma facing armour for the first wall in the ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting and melt motion erosion, which determines the lifetime of the plasma facing components. Melting thresholds and melt layer depth of the Be armour under transient loads are estimated for different temperatures of the bulk Be and different shapes of transient loads. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the Lorentz force are analyzed for bulk Be and different sizes of Be-brushes. The damage of FW under radiative loads arising during mitigated disruptions is numerically simulated.

  8. On exterior variational calculus

    International Nuclear Information System (INIS)

    Aldrovandi, R.; Kraenkel, R.A.

    1987-01-01

    Exterior variational calculus is introduced through examples in field theory. It provides a very simple technique to decide on the existence of Lagrangians for given equations of motions and, in the case, to find them. Only local aspects are discussed but the analogy to exterior calculus on finite dimensional manifolds is complete, strongly suggesting its suitability to the study of topological aspects. (Author) [pt

  9. Effect of load eccentricity on the buckling of thin-walled laminated C-columns

    Science.gov (United States)

    Wysmulski, Pawel; Teter, Andrzej; Debski, Hubert

    2018-01-01

    The study investigates the behaviour of short, thin-walled laminated C-columns under eccentric compression. The tested columns are simple-supported. The effect of load inaccuracy on the critical and post-critical (local buckling) states is examined. A numerical analysis by the finite element method and experimental tests on a test stand are performed. The samples were produced from a carbon-epoxy prepreg by the autoclave technique. The experimental tests rest on the assumption that compressive loads are 1.5 higher than the theoretical critical force. Numerical modelling is performed using the commercial software package ABAQUS®. The critical load is determined by solving an eigen problem using the Subspace algorithm. The experimental critical loads are determined based on post-buckling paths. The numerical and experimental results show high agreement, thus demonstrating a significant effect of load inaccuracy on the critical load corresponding to the column's local buckling.

  10. Flexural behavior and design of steel-plate composite (SC) walls for accident thermal loading

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Peter N., E-mail: boothpn@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Varma, Amit H., E-mail: ahvarma@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Sener, Kadir C., E-mail: ksener@purdue.edu [Lyles School of Civil Engineering, Purdue University, West Lafayette, IN (United States); Malushte, Sanjeev R. [Bechtel Corp., Frederick, MD (United States)

    2015-12-15

    Modular steel-plate composite (SC) safety-related nuclear power plant structures must be designed to resist accident thermal and mechanical loads. The design accident thermal load represents the condition where high pressure and temperature steam is released as result of a mechanical failure and applied against the surfaces of power plant structural walls. The effect of heating and pressure can have both short and long term effects on the mechanical integrity of SC structures including degradation and cracking of concrete infill, residual stresses, and out-of-plane deformations. The purpose of this research is to study the effects of thermal and mechanical loads on the out-of-plane flexural response of SC walls and to develop simplified equations that can be used to predict behavior. Four experimental beam tests are reported that represent full-scale cross-sections of SC walls subjected to combinations of mechanical and thermal loads. The study determined that thermal loads reduce the out-of-plane flexural stiffness of SC walls. For the ambient condition, the flexural stiffness closely matches a conventional elastic cracked-transformed model, and at elevated temperatures, the stiffness is reduced to a fully-cracked flexural stiffness that only takes into account the stiffness of the steel faceplates. A method is presented for estimating the thermal curvature, ϕ{sub th}, and thermal moment, M{sub th}, resulting from unequal heating of opposing faces of an SC wall. Based on the tests in this study, the application of accident thermal loads did not result in a reduction of the flexural strength of the SC section.

  11. The JET real-time plasma-wall load monitoring system

    International Nuclear Information System (INIS)

    Valcárcel, D.F.; Alves, D.; Card, P.; Carvalho, B.B.; Devaux, S.; Felton, R.; Goodyear, A.; Lomas, P.J.; Maviglia, F.; McCullen, P.; Reux, C.; Rimini, F.; Stephen, A.; Zabeo, L.

    2014-01-01

    Highlights: • The paper describes the JET real-time system monitoring the first-wall plasma loads. • It presents the motivation, physics basis, design and implementation of the system. • It also presents the integration in the JET CODAS. • Operational results are presented. - Abstract: In the past, the Joint European Torus (JET) has operated with a first-wall composed of Carbon Fibre Composite (CFC) tiles. The thermal properties of the wall were monitored in real-time during plasma operations by the WALLS system. This software routinely performed model-based thermal calculations of the divertor and Inner Wall Guard Limiter (IWGL) tiles calculating bulk temperatures and strike-point positions as well as raising alarms when these were beyond operational limits. Operation with the new ITER-like wall presents a whole new set of challenges regarding machine protection. One example relates to the new beryllium limiter tiles with a melting point of 1278 °C, which can be achieved during a plasma discharge well before the bulk temperature rises to this value. This requires new and accurate power deposition and thermal diffusion models. New systems were deployed for safe operation with the new wall: the Real-time Protection Sequencer (RTPS) and the Vessel Thermal Map (VTM). The former allows for a coordinated stop of the pulse and the latter uses the surface temperature map, measured by infra-red (IR) cameras, to raise alarms in case of hot-spots. Integration of WALLS with these systems is required as RTPS responds to raised alarms and VTM, the primary protection system for the ITER-like wall, can use WALLS as a vessel temperature provider. This paper presents the engineering design, implementation and results of WALLS towards D-T operation, where it will act as a primary protection system when the IR cameras are blinded by the fusion reaction neutrons. The first operational results, with emphasis on its performance, are also presented

  12. The JET real-time plasma-wall load monitoring system

    Energy Technology Data Exchange (ETDEWEB)

    Valcárcel, D.F., E-mail: daniel.valcarcel@ipfn.ist.utl.pt [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Alves, D. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Card, P. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Carvalho, B.B. [Associação EURATOM/IST, Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade Técnica de Lisboa, P-1049-001 Lisboa (Portugal); Devaux, S. [Max-Planck-Institut für Plasmaphysik, EURATOM-Assoziation, D-85748 Garching (Germany); Felton, R.; Goodyear, A.; Lomas, P.J. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Maviglia, F. [Associazione EURATOM-ENEA-CREATE, Univ. di Napoli Federico II, Via Claudio 21, 80125 Napoli (Italy); McCullen, P. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Reux, C. [Ecole Polytechnique, LPP, CNRS UMR 7648, 91128 Palaiseau (France); Rimini, F.; Stephen, A. [Euratom/CCFE Fusion Association, Culham Science Centre, Abingdon, Oxon OX14 3DB (United Kingdom); Zabeo, L. [ITER Organization, Route de Vinon sur Verdon, 13115 St., Paul Lez Durance (France); and others

    2014-03-15

    Highlights: • The paper describes the JET real-time system monitoring the first-wall plasma loads. • It presents the motivation, physics basis, design and implementation of the system. • It also presents the integration in the JET CODAS. • Operational results are presented. - Abstract: In the past, the Joint European Torus (JET) has operated with a first-wall composed of Carbon Fibre Composite (CFC) tiles. The thermal properties of the wall were monitored in real-time during plasma operations by the WALLS system. This software routinely performed model-based thermal calculations of the divertor and Inner Wall Guard Limiter (IWGL) tiles calculating bulk temperatures and strike-point positions as well as raising alarms when these were beyond operational limits. Operation with the new ITER-like wall presents a whole new set of challenges regarding machine protection. One example relates to the new beryllium limiter tiles with a melting point of 1278 °C, which can be achieved during a plasma discharge well before the bulk temperature rises to this value. This requires new and accurate power deposition and thermal diffusion models. New systems were deployed for safe operation with the new wall: the Real-time Protection Sequencer (RTPS) and the Vessel Thermal Map (VTM). The former allows for a coordinated stop of the pulse and the latter uses the surface temperature map, measured by infra-red (IR) cameras, to raise alarms in case of hot-spots. Integration of WALLS with these systems is required as RTPS responds to raised alarms and VTM, the primary protection system for the ITER-like wall, can use WALLS as a vessel temperature provider. This paper presents the engineering design, implementation and results of WALLS towards D-T operation, where it will act as a primary protection system when the IR cameras are blinded by the fusion reaction neutrons. The first operational results, with emphasis on its performance, are also presented.

  13. load-displacement and stability characteristics of tidn-walled beams

    African Journals Online (AJOL)

    construction. Such structural ... The finite displacement formulation is used for load- displacement .... The other stress term, which is the incremental linear stress term a/ is .... formulation, only two out of the four general governing ..... 119, Paper. No. 2700 ... Deformations Spatial Buckling of Thin-Walled Beams and Frames ...

  14. Distribution of Wave Loads for Design of Crown Walls in Deep and Shallow Water

    DEFF Research Database (Denmark)

    Nørgaard, Jørgen Quvang Harck; Andersen, Thomas Lykke

    2014-01-01

    This paper puts forward a new method to determine horizontal wave loads on rubble mound breakwater crown walls with specific exceedance probabilities based on the formulae by Nørgaard et al. (2013) as well as presents a new modified version of the wave run-up formula by Van der Meer & Stam (1992)...

  15. Layer-dependent role of collagen recruitment during loading of the rat bladder wall.

    Science.gov (United States)

    Cheng, Fangzhou; Birder, Lori A; Kullmann, F Aura; Hornsby, Jack; Watton, Paul N; Watkins, Simon; Thompson, Mark; Robertson, Anne M

    2018-04-01

    In this work, we re-evaluated long-standing conjectures as to the source of the exceptionally large compliance of the bladder wall. Whereas these conjectures were based on indirect measures of loading mechanisms, in this work we take advantage of advances in bioimaging to directly assess collagen fibers and wall architecture during biaxial loading. A custom biaxial mechanical testing system compatible with multiphoton microscopy was used to directly measure the layer-dependent collagen fiber recruitment in bladder tissue from 9 male Fischer rats (4 adult and 5 aged). As for other soft tissues, the bladder loading curve was exponential in shape and could be divided into toe, transition and high stress regimes. The relationship between collagen recruitment and loading curves was evaluated in the context of the inner (lamina propria) and outer (detrusor smooth muscle) layers. The large extensibility of the bladder was found to be possible due to folds in the wall (rugae) that provide a mechanism for low resistance flattening without any discernible recruitment of collagen fibers throughout the toe regime. For more extensible bladders, as the loading extended into the transition regime, a gradual coordinated recruitment of collagen fibers between the lamina propria layer and detrusor smooth muscle layer was found. A second important finding was that wall extensibility could be lost by premature recruitment of collagen in the outer wall that cut short the toe region. This change was correlated with age. This work provides, for the first time, a mechanistic understanding of the role of collagen recruitment in determining bladder extensibility and capacitance.

  16. Development of assessment methodology for locally wall-thinned pipe under combined loading

    International Nuclear Information System (INIS)

    Shim, Do Jun; Kim, Yun Jae; Kim, Young Jin; Park, Chi Yong

    2005-01-01

    Recently authors have proposed a new method to estimate failure strength of a pipe with local wall thinning subject to either internal pressure or global bending. The proposed method was based on the equivalent stress averaged over the minimum ligament in the locally wall thinned region, and the simple scheme to estimate the equivalent stress in the minimum ligament was proposed, based on the reference stress concept. This paper extends the new method to combined internal pressure and global bending. The proposed method is validated against FE results for various geometries of local wall thinning under combined loading. The effect of internal pressure is also investigated in the present study. Comparison of maximum moments, predicted according to the proposed method, with published full-scale pipe test data for locally wall-thinned pipes under combined internal pressure and global bending, shows good agreement

  17. Investigating Wind-Driven Rain Intrusion in Walls with the CARWASh

    Science.gov (United States)

    C.R. Boardman; Samuel V. Glass

    2013-01-01

    Wind-driven rain provides the primary external moisture load for exterior walls.Water absorption by the cladding, runoff, and penetration through the cladding or at details determine how a wall system performs. In this paper we describe a new laboratory facility that can create controlled outdoor and indoor conditions and use it to investigate the water...

  18. Initial and Long-Term Movement of Cladding Installed Over Exterior Rigid Insulation

    Energy Technology Data Exchange (ETDEWEB)

    Baker, Peter [Building Science Corporation, Somerville, MA (United States)

    2014-09-01

    Changes in the International Energy Conservation Code (IECC) from 2009 to 2012 have resulted in the use of exterior rigid insulation becoming part of the prescriptive code requirements. With more jurisdictions adopting the 2012 IECC builders will be required to incorporate exterior insulation in the construction of their exterior wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location. This research was an extension on previous research conducted by Building Science Corporation in 2011, and 2012. Each year the understanding of the system discrete load component interactions, as well as impacts of environmental loading, has increased. The focus of the research was to examine more closely the impacts of screw fastener bending on the total system capacity, effects of thermal expansion and contraction of materials on the compressive forces in the assembly, as well as to analyze a full year’s worth of cladding movement data from assemblies constructed in an exposed outdoor environment.

  19. Fire propagation over combustible exterior facades exposed to intensified flame in Japan

    Directory of Open Access Journals (Sweden)

    Nishio Yuhei

    2016-01-01

    Full Text Available With regard to fire safety for exterior walls of a building, fire-resistance performance is considered, according to the current Building Standard Law of Japan. And it was revealed that the fire safety is not specifically regulated from the viewpoint of reaction-to-fire performance, such as fire propagation caused by combustible materials or products installed on the exterior side of fire-resistant load-bearing walls. Actual fire incidents in the world have shown that massive façade fire could occur at the exterior side of building wall even when the wall itself is fire resistant. In previous studies of the authors, a test method of façade fire was proposed for evaluating the vertical fire propagation over an external wall within the same building [1,2]. Based on these studies, new domestic standard test method was established in Japan as JIS A 1310: 2015, “Test method for fire propagation over building façades” at the end of January 2015 [3]. But there was the argument that heat output of burner inside the combustion chamber was not sufficiently high in the previous study. In this paper, results of fire tests on combustible façades are discussed from the viewpoints of different strength of flame exposing facade. In this research, it was clearly found that JIS A 1310 with heat output of 900kW could be applicable for evaluating fire propagation behaviour over various types of combustible exterior façades.

  20. Numerical Analysis of Carbon Fiber Reinforced Plastic (CFRP) Shear Walls and Steel Strips under Cyclic Loads Using Finite Element Method

    OpenAIRE

    Askarizadeh, N.; Mohammadizadeh, M. R.

    2017-01-01

    Reinforced concrete shear walls are the main elements of resistance against lateral loads in reinforced concrete structures. These walls should not only provide sufficient resistance but also provide sufficient ductility in order to avoid brittle fracture, particularly under strong seismic loads. However, many reinforced concrete shear walls need to be stabilized and reinforced due to various reasons such as changes in requirements of seismic regulations, weaknesses in design and execution, p...

  1. Controlled nanostructure and high loading of single-walled carbon nanotubes reinforced polycarbonate composite

    International Nuclear Information System (INIS)

    Wang Shiren; Liang Zhiyong; Pham, Giang; Park, Young-Bin; Wang, Ben; Zhang, Chuck; Kramer, Leslie; Funchess, Percy

    2007-01-01

    This paper presents an effective technique to fabricate thermoplastic nanocomposites with high loading of well-dispersed single-walled carbon nanotubes (SWNTs). SWNT membranes were made from a multi-step dispersion and filtration method, and then impregnated with polycarbonate solution to make thermoplastic nanocomposites. High loading of nanotubes was achieved by controlling the viscosity of polycarbonate solution. SEM and AFM characterization results revealed the controlled nanostructure in the resultant nanocomposites. Dynamic mechanical property tests indicated that the storage modulus of the resulting nanocomposites at 20 wt% nanotubes loading was improved by a factor of 3.4 compared with neat polycarbonate material. These results suggest the developed approach is an effective way to fabricate thermoplastic nanocomposites with good dispersion and high SWNT loading

  2. Heterogeneous upper-bound finite element limit analysis of masonry walls out-of-plane loaded

    Science.gov (United States)

    Milani, G.; Zuccarello, F. A.; Olivito, R. S.; Tralli, A.

    2007-11-01

    A heterogeneous approach for FE upper bound limit analyses of out-of-plane loaded masonry panels is presented. Under the assumption of associated plasticity for the constituent materials, mortar joints are reduced to interfaces with a Mohr Coulomb failure criterion with tension cut-off and cap in compression, whereas for bricks both limited and unlimited strength are taken into account. At each interface, plastic dissipation can occur as a combination of out-of-plane shear, bending and torsion. In order to test the reliability of the model proposed, several examples of dry-joint panels out-of-plane loaded tested at the University of Calabria (Italy) are discussed. Numerical results are compared with experimental data for three different series of walls at different values of the in-plane compressive vertical loads applied. The comparisons show that reliable predictions of both collapse loads and failure mechanisms can be obtained by means of the numerical procedure employed.

  3. Properties of single-walled carbon nanotube-based aerogels as a function of nanotube loading

    International Nuclear Information System (INIS)

    Worsley, Marcus A.; Pauzauskie, Peter J.; Kucheyev, Sergei O.; Zaug, Joseph M.; Hamza, Alex V.; Satcher, Joe H.; Baumann, Theodore F.

    2009-01-01

    Here, we present the synthesis and characterization of low-density single-walled carbon nanotube-based aerogels (SWNT-CA). Aerogels with varying nanotube loading (0-55 wt.%) and density (20-350 mg cm -3 ) were fabricated and characterized by four-probe method, electron microscopy, Raman spectroscopy and nitrogen porosimetry. Several properties of the SWNT-CAs were highly dependent upon nanotube loading. At nanotube loadings of 55 wt.%, shrinkage of the aerogel monoliths during carbonization and drying was almost completely eliminated. Electrical conductivities are improved by an order of magnitude for the SWNT-CA (55 wt.% nanotubes) compared to those of foams without nanotubes. Surface areas as high as 184 m 2 g -1 were achieved for SWNT-CAs with greater than 20 wt.% nanotube loading.

  4. A computational and experimental investigation of wall loading near the DITE limiters

    International Nuclear Information System (INIS)

    Maddison, G.P.; Allen, J.; Fielding, S.J.; Johnson, P.C.; Matthews, G.F.

    1987-01-01

    Recycling from the DITE fixed limiter has been simulated employing a three-dimensional version of the DEGAS Monte Carlo neutral particle transport code. Experimental plasma data are used for input, in conjunction with a reasonable approximation to the DITE geometry. Between basic cases, moments of the neutral distribution function exhibit a scaling with limiter ion flux which becomes increasingly non-linear with order, a prominent instance being the first wall power loading. This reflects principally the influence of charge exchange neutrals sensing the ion temperature profiles. By also modifying the geometry, the neutral distribution is found for the regime investigated to depend primarily on plasma properties in velocity space and confining geometry in configuration space. On DITE, a so-called 'energy sensor array' (ESA) of bolometers detects wall loading adjacent to the limiter directly. Supposing a homogeneous radiation background, the computational model agress with ESA data roughly within a factor of 2. (orig.)

  5. Erosion simulation of first wall beryllium armour after ITER transient heat loads and runaway electrons action

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B., E-mail: boris.bazylev@kit.edu [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Igitkhanov, Yu.; Landman, I.; Pestchanyi, S. [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, D-76021 Karlsruhe (Germany); Loarte, A. [ITER Organisation, Cadarache, 13108 Saint Paul Lez Durance Cedex (France)

    2011-10-01

    Beryllium is foreseen as plasma facing armour for the first wall (FW) in ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) and runaway electrons impact are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting, evaporation, and melt motion, which determine the life-time of the plasma facing components. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the J x B forces are analyzed for bulk Be and different sizes of Be-brushes. The damage of the FW due to heat loads caused by runaway electrons is numerically simulated.

  6. Erosion simulation of first wall beryllium armour after ITER transient heat loads and runaway electrons action

    International Nuclear Information System (INIS)

    Bazylev, B.; Igitkhanov, Yu.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2011-01-01

    Beryllium is foreseen as plasma facing armour for the first wall (FW) in ITER in form of Be-clad blanket modules in macrobrush design with brush size about 8-10 cm. In ITER significant heat loads during transient events (TE) and runaway electrons impact are expected at the main chamber wall that may leads to the essential damage of the Be armour. The main mechanisms of metallic target damage remain surface melting, evaporation, and melt motion, which determine the life-time of the plasma facing components. The melt motion damages of Be macrobrush armour caused by the tangential friction force and the J x B forces are analyzed for bulk Be and different sizes of Be-brushes. The damage of the FW due to heat loads caused by runaway electrons is numerically simulated.

  7. Static resistance function for steel-plate composite (SC) walls subject to impactive loading

    Energy Technology Data Exchange (ETDEWEB)

    Bruhl, Jakob C., E-mail: jbruhl@purdue.edu; Varma, Amit H., E-mail: ahvarma@purdue.edu; Kim, Joo Min, E-mail: kim1493@purdue.edu

    2015-12-15

    Highlights: • An idealized static resistance function for SC walls is proposed. • The influence of design parameters on static resistance is explained. • SDOF models can accurately estimate global response of SC walls to missile impact. - Abstract: Steel-plate composite (SC) walls consist of a plain concrete core reinforced with two steel faceplates on the surfaces. Modules (consisting of steel faceplates, shear connectors and tie-bars) can be shop-fabricated and shipped to the site for erection and concrete casting, which expedites construction schedule and thus economy. SC structures have recently been used in nuclear power plant designs and are being considered for the next generation of small modular reactors. Design for impactive and impulsive loading is an important consideration for SC walls in safety-related nuclear facilities. The authors have previously developed design methods to prevent local failure (perforation) of SC walls due to missile impact. This paper presents the development of static resistance functions for use in single-degree-of-freedom (SDOF) analyses to predict the maximum displacement response of SC walls subjected to missile impact and designed to resist local failure (perforation). The static resistance function for SC walls is developed using results of numerical analyses and parametric studies conducted using benchmarked 3D finite element (FE) models. The influence of various design parameters are discussed and used to develop idealized bilinear resistance functions for SC walls with fixed edges and simply supported edges. Results from dynamic non-linear FE analysis of SC panels subjected to rigid missile impact are compared with the maximum displacements predicted by SDOF analyses using the bilinear resistance function.

  8. Static resistance function for steel-plate composite (SC) walls subject to impactive loading

    International Nuclear Information System (INIS)

    Bruhl, Jakob C.; Varma, Amit H.; Kim, Joo Min

    2015-01-01

    Highlights: • An idealized static resistance function for SC walls is proposed. • The influence of design parameters on static resistance is explained. • SDOF models can accurately estimate global response of SC walls to missile impact. - Abstract: Steel-plate composite (SC) walls consist of a plain concrete core reinforced with two steel faceplates on the surfaces. Modules (consisting of steel faceplates, shear connectors and tie-bars) can be shop-fabricated and shipped to the site for erection and concrete casting, which expedites construction schedule and thus economy. SC structures have recently been used in nuclear power plant designs and are being considered for the next generation of small modular reactors. Design for impactive and impulsive loading is an important consideration for SC walls in safety-related nuclear facilities. The authors have previously developed design methods to prevent local failure (perforation) of SC walls due to missile impact. This paper presents the development of static resistance functions for use in single-degree-of-freedom (SDOF) analyses to predict the maximum displacement response of SC walls subjected to missile impact and designed to resist local failure (perforation). The static resistance function for SC walls is developed using results of numerical analyses and parametric studies conducted using benchmarked 3D finite element (FE) models. The influence of various design parameters are discussed and used to develop idealized bilinear resistance functions for SC walls with fixed edges and simply supported edges. Results from dynamic non-linear FE analysis of SC panels subjected to rigid missile impact are compared with the maximum displacements predicted by SDOF analyses using the bilinear resistance function.

  9. Experimental study on lateral strength of wall-slab joint subjected to lateral cyclic load

    Science.gov (United States)

    Masrom, Mohd Asha'ari; Mohamad, Mohd Elfie; Hamid, Nor Hayati Abdul; Yusuff, Amer

    2017-10-01

    Tunnel form building has been utilised in building construction since 1960 in Malaysia. This method of construction has been applied extensively in the construction of high rise residential house (multistory building) such as condominium and apartment. Most of the tunnel form buildings have been designed according to British standard (BS) whereby there is no provision for seismic loading. The high-rise tunnel form buildings are vulnerable to seismic loading. The connections between slab and shear walls in the tunnel-form building constitute an essential link in the lateral load resisting mechanism. Malaysia is undergoing a shifting process from BS code to Eurocode (EC) for building construction since the country has realised the safety threats of earthquake. Hence, this study is intended to compare the performance of the interior wall slab joint for a tunnel form structure designed based on Euro and British codes. The experiment included a full scale test of the wall slab joint sub-assemblages under reversible lateral cyclic loading. Two sub-assemblage specimens of the wall slab joint were designed and constructed based on both codes. Each specimen was tested using lateral displacement control (drift control). The specimen designed by using Eurocode was found could survive up to 3.0% drift while BS specimen could last to 1.5% drift. The analysis results indicated that the BS specimen was governed by brittle failure modes with Ductility Class Low (DCL) while the EC specimen behaved in a ductile manner with Ductility Class Medium (DCM). The low ductility recorded in BS specimen was resulted from insufficient reinforcement provided in the BS code specimen. Consequently, the BS specimen could not absorb energy efficiently (low energy dissipation) and further sustain under inelastic deformation.

  10. Two-leaf wall structures under 'soft' impact load - aircraft crash

    International Nuclear Information System (INIS)

    Eibl, J.; Block, K.

    1982-01-01

    The article describes a mechanical model with which the load conditions associated with aircraft crash on a two-leaf wall or roof structure can be analysed quite simply. The necessary assumptions for the material behaviour governing the contact of the two slabs and, in general, the maximum limit deformations of reinforced concrete slabs are more particularly dealt with. Treating the problem the authors make use, inter alia, of some of their own experimental results. (orig.)

  11. Maximum attainable power density and wall load in tokamaks underlying reactor relevant constraints

    International Nuclear Information System (INIS)

    Borrass, K.; Buende, R.

    1979-09-01

    The characteristic data of tokamaks optimized with respect to their power density or wall load are determined. Reactor relevant constraints are imposed, such as a fixed plant net power output, a fixed blanket thickness and the dependence of the maximum toroidal field on the geometry and conductor material. The impact of finite burn times is considered. Various scaling laws of the toroidal beta with the aspect ratio are discussed. (orig.) 891 GG/orig. 892 RDG [de

  12. Moisture Management for High R-Value Walls

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R.; Schumacher, C.; Lukachko, A.

    2013-11-01

    The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.

  13. Construction solutions for the exterior walls in the process of increasing the width of residential buildings of brownfield construction in seismic hazardousand dry hot conditions of Central Asia

    Directory of Open Access Journals (Sweden)

    Usmonov Shukhrat Zaurovich

    2014-02-01

    Full Text Available The main object of this study is the reconstruction, renovation and modernization of the housing built in the period 1975—1985. These buildings have low energy efficiency due to the poor thermal insulation properties of the walls. These apartments do not meet the necessary requirements for year round warmth and comfort.Reconstruction is more preferable, than new-build, because of the cost saving for the land acquisition. Reconstruction is generally 1.5 times cheaper than new-build with 25—40 % reduced cost on building materials and engineering infrastructure.Increasing the width of the apartment blocks from 12 to 15 m can save 9—10 % on the consumption of thermal energy for heating and reduce the m2 construction cost by 5.5—7.0 %. In—5-9 storey high-rise buildings the savings are 3—5 %.Therefore, the width of the apartment block should preferably be between 9—12 m but could be extended to 18 m. The depth of the apartments themselves will be 5.4 — 6.0 —7.2 or 9.0 m. During the reconstruction of 5-storey residential buildings (Building Type105 in a seismic zone, an increase in the width of the block and the lateral stiffness of the building is achieved by building a new reinforced concrete (RC frame on both sides of the building with a depth of between 2 and 6 m. This technique is especially effective in increasing the seismic resistance of the building. Self-supporting walls of cellular concrete blocks (density 600 kg/m3 and a thickness of 300 mm are constructed on the outside of the frame, taking care to avoid cold bridges.Model studies have shown that in the conditions of hot-arid climate the thickness of the air gap in a ventilated facade does not significantly change the cooling-energy consumption of the building, and heating consumption is significantly increased. The building's energy consumption is most influenced by the volume of the air in the air gap. By increasing the ventilation rate in the air gap, the energy

  14. Transfer cell wall ingrowths and vein loading characteristics in pea leaf discs

    International Nuclear Information System (INIS)

    Wimmers, L.E.; Turgeon, R.

    1987-01-01

    Transfer cell wall ingrowths are thought to increase transport capacity by increasing plasmalemma surface area. Leaf minor vein phloem transfer cells presumably enhance phloem loading. In Pisum sativum cv. Little marvel grown under different light regimes (150 to 1000 μmol photons m -2 sec -1 ) there is a positive correlation between light intensity and wall ingrowth area in phloem transfer cells. The extent of ingrowth and correlation to light intensity is greatest in minor veins, decreasing as vein size increases. Vein loading was assayed by floating abraded leaf discs on 14 C-sucrose (10 mM). There is a positive correlation between uptake and transfer cell wall area, although the latter increased more than the former. The difference in uptake is stable throughout the photoperiod, and is also stable in mature leaves for at least four days after plants are transfered to a different light intensity. Sucrose uptake is biphasic. The saturable component of uptake is sensitive to light intensity, the Km for sucrose is negatively correlated to light intensity, while V/sub max/remains unchanged

  15. Thermal load resistance of erosion-monitoring beryllium maker tile for JET ITER like wall project

    International Nuclear Information System (INIS)

    Hirai, T.; Linke, J.; Sundelin, P.; Rubel, M.; Coad, J.P.; Matthews, G.F.; Lungu, C.P.

    2007-01-01

    The ITER reference materials, beryllium (Be), carbon fibre composite (CFC) and tungsten (W), have been tested separately in tokamaks. An integrated test demonstrating both compatibility of metal plasma facing components with high-power operation and acceptable tritium retention has not yet been carried out. At JET, the size, magnetic field strength and high plasma current allow to conducting tests with the combination of the materials. Thus, the ITER-like Wall (ILW) project has been launched. In the project, Be will be the plasmafacing material on the main chamber wall of JET. To assess the erosion of the Be tiles, a Be marker tile was proposed and designed. The test samples which simulate the JET Be marker tile have been produced in MEdC, Romania in order to study the thermal load resistance of the JET Be marker (20 x 20 mm 2 size with 30 mm height). The marker tile sample consists of bulk Be, high-Z interlayer (2-3 μm Ni coating) and 8-9 μm Be coating. Thermionic Vacuum Arc (TVA) techniques based on the electron-induced evaporation have been selected for this purpose. In the present work, the global characterization of the maker tile samples and thermal load tests were performed. After the pre-characterization (microstructure observation by scanning electron microscope and elemental analysis by means of Wavelength Dispersive X-ray Spectroscopy and Energy Dispersive X-ray Spectroscopy), the thermal loading tests were performed in the electron beam facility JUDITH. The coating consisted of tiny platelets of ∝0.1 um in diameter and localized larger platelets of 1 um in diameter. The surface and bulk temperature were observed during the tests. In the screening thermal load test, the samples were loaded to 6 MW/m 2 for 10 s. The layers did not show any macroscopic damages at up to 4.5 MW/m 2 for 10 s (45 MJ/m 2 ). However, the coating delaminated and the maker was damaged when the thermal loading reached at 5 MW/m 2 (∝50 MJ/m 2 ). Cyclic heat load tests were

  16. Beam heat load due to geometrical and resistive wall impedance in COLDDIAG

    Science.gov (United States)

    Casalbuoni, S.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Spataro, B.

    2012-11-01

    One of the still open issues for the development of superconductive insertion devices is the understanding of the heat intake from the electron beam. With the aim of measuring the beam heat load to a cold bore and the hope to gain a deeper understanding in the underlying mechanisms, a cold vacuum chamber for diagnostics (COLDDIAG) was built. It is equipped with the following instrumentation: retarding field analyzers to measure the electron flux, temperature sensors to measure the beam heat load, pressure gauges, and mass spectrometers to measure the gas content. Possible beam heat load sources are: synchrotron radiation, wakefield effects due to geometrical and resistive wall impedance and electron/ion bombardment. The flexibility of the engineering design will allow the installation of the cryostat in different synchrotron light sources. COLDDIAG was first installed in the Diamond Light Source (DLS) in 2011. Due to a mechanical failure of the thermal transition of the cold liner, the cryostat had to be removed after one week of operation. After having implemented design changes in the thermal liner transition, COLDDIAG has been reinstalled in the DLS at the end of August 2012. In order to understand the beam heat load mechanism it is important to compare the measured COLDDIAG parameters with theoretical expectations. In this paper we report on the analytical and numerical computation of the COLDDIAG beam heat load due to coupling impedances deriving from unavoidable step transitions, ports used for pumping and diagnostics, surface roughness, and resistive wall. The results might have an important impact on future technological solutions to be applied to cold bore devices.

  17. Performance of Screen Grid Insulating Concrete Form Walls under Combined In-Plane Vertical and Lateral Loads

    KAUST Repository

    Abdel Mooty, Mohamed

    2010-12-01

    Insulating Concrete Forms (ICF) walls generally comprise two layers of Expanded Polystyrene (EPS), steel reinforcement is placed in the center between the two layers and concrete is poured to fill the gap between those two layers. ICF\\'s have many advantages over traditional methods of wall construction such as reduced construction time, noise reduction, strength enhancement, energy efficiency, and compatibility with any inside or outside surface finish. The focus of this study is the Screen Grid ICF wall system consisting of a number of beams and columns forming a concrete mesh. The performance of ICF wall systems under lateral loads simulating seismic effect is experimentally evaluated in this paper. This work addresses the effect of the different design parameters on the wall behavior under seismic simulated loads. This includes different steel reinforcement ratio, various reinforcement distribution, wall aspect ratios, different openings sizes for windows and doors, as well as different spacing of the grid elements of the screen grid wall. Ten full scale wall specimens were tested where the effects of the various parameters on wall behavior in terms of lateral load capacity, lateral displacement, and modes of failure are presented. The test results are stored to be used for further analysis and calibration of numerical models developed for this study. © (2011) Trans Tech Publications.

  18. The effect of optimal wall loads and blanket technologies on the cost of fusion electricity

    International Nuclear Information System (INIS)

    Knight, P.J.; Ward, D.J.

    2000-01-01

    This paper presents a discussion of trends in fusion economics based on technology, as well as, physics arguments. Based on relatively simple physics considerations, supported by detailed systems code calculations, it is shown that optimal wall loads are not high. The results of systems code calculations, focussing on the economic impact of different blanket technologies, are described. These suggest that the economically favourable thermodynamic efficiencies of some blankets capable of operating at higher temperatures may be counterbalanced by the economic penalties of shorter lifetimes

  19. Upper and Lower Bound Limit Loads for Thin-Walled Pressure Vessels Used for Aerosol Cans

    Directory of Open Access Journals (Sweden)

    Stephen John Hardy

    2009-01-01

    Full Text Available The elastic compensation method proposed by Mackenzie and Boyle is used to estimate the upper and lower bound limit (collapse loads for one-piece aluminium aerosol cans, which are thin-walled pressure vessels subjected to internal pressure loading. Elastic-plastic finite element predictions for yield and collapse pressures are found using axisymmetric models. However, it is shown that predictions for the elastic-plastic buckling of the vessel base require the use of a full three-dimensional model with a small unsymmetrical imperfection introduced. The finite element predictions for the internal pressure to cause complete failure via collapse fall within the upper and lower bounds. Hence the method, which involves only elastic analyses, can be used in place of complex elastic-plastic finite element analyses when upper and lower bound estimates are adequate for design purposes. Similarly, the lower bound value underpredicts the pressure at which first yield occurs.

  20. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    Energy Technology Data Exchange (ETDEWEB)

    Bazylev, B.; Janeschitz, G. [Forschungszentrum Karlsruhe GmbH, FZK, Karlsruhe (Germany); Landman, I.; Pestchanyi, S. [FZK-Forschungszentrum Karlsruhe, Association Euratom-FZK, Technik und Umwelt, Karlsruhe (Germany); Loarte, A. [EFDA Close Support Unit Garching, Garching bei Munchen(Germany)

    2007-07-01

    Full text of publication follows: Operation of ITER at high fusion gain is assumed to be the H-mode. A characteristic feature of this regime is the transient release of energy from the confined plasma onto divertor and the first wall by multiple ELMs (about 10{sup 4} ELMs per ITER discharge), which can play a determining role in the erosion rate and lifetime of these components. It is expected that about 50-70 % of the ELM energy releases onto divertor armour and the rest is dumped onto the First Wall (FW) armour. The expected energy heat loads on the ITER divertor and FW during Type I ELM are in range 0.5 - 4 MJ/m{sup 2} in timescales of 0.3-0.6 ms. In case of the ITER disruptions the material evaporated from the divertor expands into the SOL and generates significant radiation heating of the FW armour up to several GW/m2 during a few milliseconds that can also lead to the its melting and noticeable damage. Beryllium macro-brush armour (Be-brushes) is foreseen as plasma FW facing component (PFC) in ITER. During the intense transient events in ITER the surface melting, melt motion, melt splashing and evaporation are seen as the main mechanisms of Be-erosion. The expected erosion of the ITER plasma facing components under transient energy loads can be properly estimated by numerical simulations using the codes MEMOS and PHEMOBRID validated against experimental data obtained at the plasma gun facilities QSPA-T, MK-200UG and QSPA-Kh50 that provide a way to simulate the energy loads expected in ITER in laboratory experiments. The numerical simulations were carried out for the expected ITER ELMs for the heat loads in the range 0.5 - 3.0 MJ/m{sup 2} and the timescale up 0.6 ms and ITER disruptions for the heat loads in the range 2 - 13 MJ/m{sup 2} in timescales of 1-5 ms. Radiation heat loads at the FW armour from the vapour expanded into the SOL were calculated using the codes FOREV-2 and TOKES for both ITER ELM and ITER disruption scenarios. Melt layer damage of the Be

  1. Erosion simulation of first wall beryllium armour under ITER transient heat loads

    International Nuclear Information System (INIS)

    Bazylev, B.; Janeschitz, G.; Landman, I.; Pestchanyi, S.; Loarte, A.

    2007-01-01

    Full text of publication follows: Operation of ITER at high fusion gain is assumed to be the H-mode. A characteristic feature of this regime is the transient release of energy from the confined plasma onto divertor and the first wall by multiple ELMs (about 10 4 ELMs per ITER discharge), which can play a determining role in the erosion rate and lifetime of these components. It is expected that about 50-70 % of the ELM energy releases onto divertor armour and the rest is dumped onto the First Wall (FW) armour. The expected energy heat loads on the ITER divertor and FW during Type I ELM are in range 0.5 - 4 MJ/m 2 in timescales of 0.3-0.6 ms. In case of the ITER disruptions the material evaporated from the divertor expands into the SOL and generates significant radiation heating of the FW armour up to several GW/m2 during a few milliseconds that can also lead to the its melting and noticeable damage. Beryllium macro-brush armour (Be-brushes) is foreseen as plasma FW facing component (PFC) in ITER. During the intense transient events in ITER the surface melting, melt motion, melt splashing and evaporation are seen as the main mechanisms of Be-erosion. The expected erosion of the ITER plasma facing components under transient energy loads can be properly estimated by numerical simulations using the codes MEMOS and PHEMOBRID validated against experimental data obtained at the plasma gun facilities QSPA-T, MK-200UG and QSPA-Kh50 that provide a way to simulate the energy loads expected in ITER in laboratory experiments. The numerical simulations were carried out for the expected ITER ELMs for the heat loads in the range 0.5 - 3.0 MJ/m 2 and the timescale up 0.6 ms and ITER disruptions for the heat loads in the range 2 - 13 MJ/m 2 in timescales of 1-5 ms. Radiation heat loads at the FW armour from the vapour expanded into the SOL were calculated using the codes FOREV-2 and TOKES for both ITER ELM and ITER disruption scenarios. Melt layer damage of the Be FW macro

  2. Recent results on high thermal energy load testing of beryllium for ITER first wall application

    Science.gov (United States)

    Kupriyanov, I. B.; Roedig, M.; Nikolaev, G. N.; Kurbatova, L. A.; Linke, J.; Gervash, A. A.; Giniyatulin, R. N.; Podkovyrov, V. L.; Muzichenko, A. D.; Khimchenko, L.

    2011-12-01

    In this paper, progress in the high heat flux (HHF) qualification testing of TGP-56FW beryllium grade for ITER first wall applications is presented. Two actively cooled Be/CuCrZr brazing mock-ups were tested under complex thermal loading conditions in the electron beam facility JUDITH-1 (step 1: vertical displacement event test at 40 MJ m-2, 0.3 s, 1 shot; step 2: disruption tests at 3 MJ m-2, 1 shot, Δt=5 ms; step 3: repetitive fatigue test at 80 MW m-2, 1000 shots, Δt=25 ms). After testing, metallographic investigations on the microstructure and crack morphology were carried out. The results of these studies of Be tiles are reported and discussed. The overall results of TGP-56FW grade qualification testing have demonstrated the reliable performance capability of TGP-56FW for application as the armor of the ITER first wall. In addition, the results of first experiments with TGP-56FW and S-65C beryllium grades in the QSPA-Be plasma gun facility are also reported. In these experiments, beryllium tiles (80×80×10 mm3) were tested in a hydrogen plasma stream (5 cm in diameter) with pulse duration 0.5 ms and heat loads of 0.5-2 MJ m-2. Experiments were performed at room temperature. The evolution of the surface microstructure and mass loss of beryllium exposed to up to 100 shots is presented.

  3. Recent results on high thermal energy load testing of beryllium for ITER first wall application

    International Nuclear Information System (INIS)

    Kupriyanov, I B; Nikolaev, G N; Kurbatova, L A; Roedig, M; Linke, J; Gervash, A A; Giniyatulin, R N; Podkovyrov, V L; Muzichenko, A D; Khimchenko, L

    2011-01-01

    In this paper, progress in the high heat flux (HHF) qualification testing of TGP-56FW beryllium grade for ITER first wall applications is presented. Two actively cooled Be/CuCrZr brazing mock-ups were tested under complex thermal loading conditions in the electron beam facility JUDITH-1 (step 1: vertical displacement event test at 40 MJ m - 2, 0.3 s, 1 shot; step 2: disruption tests at 3 MJ m - 2, 1 shot, Δt=5 ms; step 3: repetitive fatigue test at 80 MW m - 2, 1000 shots, Δt=25 ms). After testing, metallographic investigations on the microstructure and crack morphology were carried out. The results of these studies of Be tiles are reported and discussed. The overall results of TGP-56FW grade qualification testing have demonstrated the reliable performance capability of TGP-56FW for application as the armor of the ITER first wall. In addition, the results of first experiments with TGP-56FW and S-65C beryllium grades in the QSPA-Be plasma gun facility are also reported. In these experiments, beryllium tiles (80×80×10 mm 3 ) were tested in a hydrogen plasma stream (5 cm in diameter) with pulse duration 0.5 ms and heat loads of 0.5-2 MJ m - 2. Experiments were performed at room temperature. The evolution of the surface microstructure and mass loss of beryllium exposed to up to 100 shots is presented.

  4. Optimum Insulation Thickness for Walls and Roofs for Reducing Peak Cooling Loads in Residential Buildings in Lahore

    Directory of Open Access Journals (Sweden)

    SIBGHA SIDDIQUE SIDDIQUE

    2016-10-01

    Full Text Available Thermal insulation is the most effective energy saving measure for cooling in buildings. Therefore, the main subject of many engineering investigations is the selection and determination of the optimum insulation thickness. In the present study, the optimum insulation thickness on external walls and roofs is determined based on the peak cooling loads for an existing residential building in Lahore, Pakistan. Autodesk® Revit 2013 is used for the analysis of the building and determination of the peak cooling loads. The analysis shows that the optimum insulation thickness to reduce peak cooling loads up to 40.1% is 1 inch for external walls and roof respectively.

  5. Optimum Insulation Thickness for Walls and Roofs for Reducing Peak Cooling Loads in Residential Buildings in Lahore

    International Nuclear Information System (INIS)

    Siddique, S.; Arif, S.; Khan, A.; Alam, A.T.

    2016-01-01

    Thermal insulation is the most effective energy saving measure for cooling in buildings. Therefore, the main subject of many engineering investigations is the selection and determination of the optimum insulation thickness. In the present study, the optimum insulation thickness on external walls and roofs is determined based on the peak cooling loads for an existing residential building in Lahore, Pakistan. Autodesk at the rate Revit 2013 is used for the analysis of the building and determination of the peak cooling loads. The analysis shows that the optimum insulation thickness to reduce peak cooling loads up to 40.1 percent is 1 inch for external walls and roof respectively. (author)

  6. Dynamic loading of the structural wall in a lithium fall fusion reactor

    International Nuclear Information System (INIS)

    Glenn, L.A.

    1979-01-01

    In one version of an inertial confinement fusion (ICF) power reactor, the laser-imploded pellet is surrounded by a thick, annular 'waterfall' of liquid lithium. The fall has three functions: to breed tritium for pellet resupply, to act as an energy sink and heat exchange mdeium with an external power loop, and to protect the first wall of the reactor from excessive neutronic and hydrodynamic loading. Our primary concern here is with this last function. We formulated a simple model of a lithium-fall ICF reactor and calculated the fall disassembly and the subsequent fluid-wall interaction resulting from the energy deposition by the imploded pellet. Two potential mechanisms for wall damage were identified: surface erosion and hoop failure. For single fall designs, the erosion problem appears to be serious. Concentric annuli (multiple fall) or packed jet configurations may be feasible but experiments are needed to clarify the physical model, especially with reg (orig.)ard to /orig.the characteristics of the cavitated liquid lithium and of the two-phase liquid-vapor region.

  7. Numerical Analysis of Carbon Fiber Reinforced Plastic (CFRP Shear Walls and Steel Strips under Cyclic Loads Using Finite Element Method

    Directory of Open Access Journals (Sweden)

    N. Askarizadeh

    2017-12-01

    Full Text Available Reinforced concrete shear walls are the main elements of resistance against lateral loads in reinforced concrete structures. These walls should not only provide sufficient resistance but also provide sufficient ductility in order to avoid brittle fracture, particularly under strong seismic loads. However, many reinforced concrete shear walls need to be stabilized and reinforced due to various reasons such as changes in requirements of seismic regulations, weaknesses in design and execution, passage of time, damaging environmental factors, patch of rebar in plastic hinges and in some cases failures and weaknesses caused by previous earthquakes or explosion loads. Recently, Fiber Reinforced Polymer (FRP components have been extensively and successfully used in seismic improvement. This study reinforces FRP reinforced concrete shear walls and steel strips. CFRP and steel strips are evaluated by different yield and ultimate strength. Numerical and experimental studies are done on walls with scale 1/2. These walls are exposed to cyclic loading. Hysteresis curves of force, drift and strain of FRP strips are reviewed in order to compare results of numerical work and laboratory results. Both numerical and laboratory results show that CFRP and steel strips increase resistance, capacity and ductility of the structure.

  8. Effect of Eccentricity of Load on Critical Force of Thin-Walled Columns CFRP

    Directory of Open Access Journals (Sweden)

    Pawel Wysmulski

    2017-09-01

    Full Text Available The subject of study was a thin-walled C-section made of carbon fiber reinforced polymer (CFRP. Column was subjected to eccentric compression in the established direction. In the computer simulation, the boundary conditions were assumed in the form of articulated support of the sections of the column. Particular studies included an analysis of the effects of eccentricity on the critical force value. The research was conducted using two independent research methods: numerical and experimental. Numerical simulations were done using the finite element method using the advanced system Abaqus®. The high sensitivity of the critical force value corresponding to the local buckling of the channel section to the load eccentricity was demonstrated.

  9. In-pile testing of ITER first wall mock-ups at relevant thermal loading conditions

    Science.gov (United States)

    Litunovsky, N.; Gervash, A.; Lorenzetto, P.; Mazul, I.; Melder, R.

    2009-04-01

    The paper describes the experimental technique and preliminary results of thermal fatigue testing of ITER first wall (FW) water-cooled mock-ups inside the core of the RBT-6 experimental fission reactor (RIAR, Dimitrovgrad, Russia). This experiment has provided simultaneous effect of neutron fluence and thermal cycling damages on the mock-ups. A PC-controlled high-temperature graphite ohmic heater was applied to provide cyclic thermal load onto the mock-ups surface. This experiment lasted for 309 effective irradiation days with a final damage level (CuCrZr) of 1 dpa in the mock-ups. About 3700 thermal cycles with a heat flux of 0.4-0.5 MW/m 2 onto the mock-ups were realized before the heater fails. Then, irradiation was continued in a non-cycling mode.

  10. Si-coated single-walled carbon nanotubes under axial loads: An atomistic simulation study

    International Nuclear Information System (INIS)

    Song Haiyang; Zha Xinwei

    2007-01-01

    The mechanical properties of the Si-coated imperfect (5, 5) single-walled carbon nanotube (SWCNT), the imperfect (5, 5) SWCNT and several perfect armchair SWCNTs under axial loads were investigated using molecular dynamics simulation. The interactions between atoms were modeled using the empirical Tersoff potential and the Tersoff-Brenner potential coupled with the Lennard-Jones potential. We get Young's modulus of the defective (5, 5) nanotube with and without the Si coating under axial tension 1107.92 and 1076.02 GPa, respectively. The results also show that the structure failure of the Si-coated imperfect (5, 5) SWCNT under axial compression occurs at a slightly higher strain than for the perfect (5, 5) SWCNT. Therefore, we can confirm the protective effect of Si as a coating material for defective SWCNTs. We also obtain the critical buckling strains of perfect SWCNTs

  11. Study on structural integrity of thinned wall piping against seismic loading-overview and future program

    International Nuclear Information System (INIS)

    Nakamura, Izumi; Otani, Akihito; Shiratori, Masaki

    2005-01-01

    In order to clarify the behavior of thinned wall pipes under seismic events, cyclic in-plane and/or out-of-plane bending tests on thinned straight pipe and elbow and also shaking table tests using degraded piping system models were conducted. Relation between the failure mode and thinned condition and the influence of the final failure mode of degraded piping systems were investigated. In addition to these experiments, elastic-plastic FEM analysis using ABAQUS were conducted on thinned piping elements. It has been found that the strain concentrated point could be predicted and the cause of its generation could be explained by the simulated deformation behavior of the pipe. In order to predict the piping system's maximum response under elastic-plastic response, a simple response prediction method was proposed. Further tests and safety margin analyses of thinned pipes against seismic loading will be performed. (T. Tanaka)

  12. Cost optimization of load carrying thin-walled precast high performance concrete sandwich panels

    DEFF Research Database (Denmark)

    Hodicky, Kamil; Hansen, Sanne; Hulin, Thomas

    2015-01-01

    and HPCSP’s geometrical parameters as well as on material cost function in the HPCSP design. Cost functions are presented for High Performance Concrete (HPC), insulation layer, reinforcement and include labour-related costs. The present study reports the economic data corresponding to specific manufacturing......The paper describes a procedure to find the structurally and thermally efficient design of load-carrying thin-walled precast High Performance Concrete Sandwich Panels (HPCSP) with an optimal economical solution. A systematic optimization approach is based on the selection of material’s performances....... The solution of the optimization problem is performed in the computer package software Matlab® with SQPlab package and integrates the processes of HPCSP design, quantity take-off and cost estimation. The proposed optimization process outcomes in complex HPCSP design proposals to achieve minimum cost of HPCSP....

  13. Fast ion power loads on ITER first wall structures in the presence of NTMs and microturbulence

    International Nuclear Information System (INIS)

    Kurki-Suonio, T.; Asunta, O.; Hirvijoki, E.; Koskela, T.; Snicker, A.; Sipilae, S.; Hauff, T.; Jenko, F.; Poli, E.

    2011-01-01

    The level and distribution of the wall power flux of energetic ions in ITER have to be known accurately in order to ensure the integrity of the first wall. Until now, most quantitative estimates have been based on the assumption that fast ion transport is dictated by neoclassical effects only. However, in ITER, the fast ion distribution is likely to be affected by various MHD effects and probably also by microturbulence. We have now upgraded our orbit-following Monte Carlo code ASCOT so that it has simple, theory-based models for neoclassical tearing mode (NTM)-type islands as well as for turbulent diffusion. ASCOT also allows for full-orbit following, which is important close to the material surfaces and, possibly, also when strong toroidal inhomogeneities are present in the magnetic field. Here we introduce the new models, preliminary results obtained with them, and how these models could be made more realistic in the future. The simulations are carried out for thermonuclear alpha particles in ITER scenario 2 plasma, because we consider this combination to be most critical for the successful operation of ITER. Neither the turbulent transport nor NTM-type islands are found to introduce alarming changes in the wall loads. However, at this stage it was not possible to combine the island structures with the non-axisymmetric magnetic field of ITER, and it remains to be seen what the combined effect of drift islands together with the toroidal ripple and local field aberrations, such as those due to test blanket modules and resonant magnetic perturbations will be.

  14. Proposal of failure criterion applicable to finite element analysis results for wall-thinned pipes under bending load

    Energy Technology Data Exchange (ETDEWEB)

    Meshii, Toshiyuki, E-mail: meshii@u-fukui.ac.jp [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui (Japan); Ito, Yoshiaki [Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui (Japan)

    2012-01-15

    Highlights: Black-Right-Pointing-Pointer Limit bending load (LBL) of wall-thinned pipe by large strain FEA was considered. Black-Right-Pointing-Pointer Net section yield load had sufficient margin to LBL. Black-Right-Pointing-Pointer LBL for collapse was the load when volume with nominal thickness yielded. Black-Right-Pointing-Pointer LBL for cracking was the load when flawed section stress exceeded tensile strength. Black-Right-Pointing-Pointer Failure criterion considering above was named Domain Collapse Criterion. - Abstract: In this work, a failure criterion applicable to large strain Finite Element Analysis (FEA) results was proposed in order to predict both the fracture mode (collapse or cracking) and the limit bending load of wall-thinned straight pipes. This work was motivated from the recent experimental results of ; that is, fracture mode is not always collapse, and the fracture mode affects the limit bending load. The key finding in comparing their test results and a detailed large strain FEA results was that the Mises stress distribution at the limit bending load of a flawed cylinder was similar to that of a flawless cylinder; specifically, in case of collapse, the Mises stress exceeded the true yield stress of a material for the whole 'volume' of a cylinder with a nominal wall thickness. Based on this finding, a failure criterion applicable to large strain FEA results of wall-thinned straight pipes under a bending load that can predict both fracture mode and limit bending load was proposed and was named the Domain Collapse Criterion (DCC). DCC predicts the limit bending load as the lower value of either the M{sub c}{sup FEA}, which is the load at which the Mises stress exceeds the true yield strength of a straight pipe for the whole 'volume' with a nominal wall thickness (fracture mode: collapse), or the M{sub c}{sup FEAb}, which is the load at which the Mises stress in a section of the flaw ligament exceeds the true tensile stress

  15. Excavationless Exterior Foundation Insulation Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T.; Mosiman, G.; Ojczyk, C.

    2014-10-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with a liquid insulating foam. The team was able to excavate a continuous 4" wide by 4' to 5' deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  16. Excavationless Exterior Foundation Insulation Field Study

    Energy Technology Data Exchange (ETDEWEB)

    Schirber, T. [NorthernSTAR, Minneaplolis, MN (United States); Mosiman, G. [NorthernSTAR, Minneaplolis, MN (United States); Ojczyk, C. [NorthernSTAR, Minneaplolis, MN (United States)

    2014-09-01

    Building science research supports installing exterior (soil side) foundation insulation as the optimal method to enhance the hygrothermal performance of new homes. With exterior foundation insulation, water management strategies are maximized while insulating the basement space and ensuring a more even temperature at the foundation wall. However, such an approach can be very costly and disruptive when applied to an existing home, requiring deep excavation around the entire house. The NorthernSTAR Building America Partnership team implemented an innovative, minimally invasive foundation insulation upgrade technique on an existing home. The approach consisted of using hydrovac excavation technology combined with liquid insulating foam. The team was able to excavate a continuous 4 inches wide by 4 feet to 5 feet deep trench around the entire house, 128 linear feet, except for one small part under the stoop that was obstructed with concrete debris. The combination pressure washer and vacuum extraction technology also enabled the elimination of large trenches and soil stockpiles normally produced by backhoe excavation. The resulting trench was filled with liquid insulating foam, which also served as a water-control layer of the assembly. The insulation was brought above grade using a liquid foam/rigid foam hybrid system and terminated at the top of the rim joist. Cost savings over the traditional excavation process ranged from 23% to 50%. The excavationless process could result in even greater savings since replacement of building structures, exterior features, utility meters, and landscaping would be minimal or non-existent in an excavationless process.

  17. Plato (power load analysis tool) - a module of west wall monitoring system

    International Nuclear Information System (INIS)

    Ranjan, Sutapa; Travere, Jean-marcel; Moreau, P.

    2015-01-01

    The mandate of the WEST (W Environment for Steady-state Tokamak) project, is to upgrade the medium- sized superconducting Tokamak, Tore Supra in a major scale. One of it's objectives, is to also act as a test-bed for ITER divertor components, to be procured and used in ITER. WEST would be installing actively cooled Tungsten divertor elements, like the ones to be used in ITER. These components would be tested under two experimental scenarios: high power (Ip = 0.8MA, lasting 30s with 15MW injected power) and high fluence (Ip = 0.6 MA, lasting 1000s with 12 MW injected power). Heat load on the divertor target will range from a few MW/m 2 up to 20 MW/m 2 depending on the X point location and the heat flux decay length. The tungsten Plasma Facing Components (PFCs) are less tolerant to overheating than their Carbon counterparts and prevention of their burnout is a major concern. It is in this context that the Wall Monitoring System (WMS) - a software framework aimed at monitoring the health of the Wall components, was conceived. WMS has been divided into three parts: a) a pre-discharge power load analysis tool to check compatibility between plasma scenario and PFC's operational limits in terms of heat flux b) a real-time system during discharge, to take into account all necessary measurements involved in the PFCs protection c) a set of analysis tools that would be used post-discharge, that would access WEST database and compare predicted and experimental results. This paper presents an overview of PLATo - the pre-pulse module of WMS that has been recently developed under IPR-IRFM research collaboration. PLAto has two major components - one that produces heat flux information of the PFCS and the other that produces energy graphs depending on shot profile defined by time variant magnetic equilibrium and injected power profiles. Preliminary results will be presented based on foreseen WEST plasma reference scenarios. (author)

  18. Thermal load testing of erosion-monitoring beryllium marker tile for the ITER-Like Wall Project at JET

    International Nuclear Information System (INIS)

    Hirai, T.; Linke, J.; Rubel, M.; Coad, J.P.; Likonen, J.; Lungu, C.P.; Matthews, G.F.; Philipps, V.; Wessel, E.

    2008-01-01

    ITER-Like Wall Project has been launched at JET in order to perform a fully integrated test of plasma-facing materials. During the next major shutdown a full metal wall will be installed: tungsten in the divertor and beryllium in the main chamber. Beryllium erosion is one of key issues to be addressed. Special marker tiles have been designed for this purpose. Test coupons of such markers have been manufactured and examined. The performance test under high power deposition was carried in the electron beam facility JUDITH. The results of material characterization before and after high heat flux loads are presented. The samples survived, without macroscopic damage, power loads of up to 4.5 MW/m 2 for 10 s (surface temperature ∼650 deg. C) and 50 cyclic loads at 3.5 MW/m 2 lasting 10 s each (surface temperature ∼600 deg. C)

  19. Plastic Limit Loads for Slanted Circumferential Through-Wall Cracked Pipes Using 3D Finite-Element Limit Analyses

    International Nuclear Information System (INIS)

    Jang, Hyun Min; Cho, Doo Ho; Kim, Young Jin; Huh, Nam Su; Shim, Do Jun; Choi, Young Hwan; Park, Jung Soon

    2011-01-01

    On the basis of detailed 3D finite-element (FE) limit analyses, the plastic limit load solutions for pipes with slanted circumferential through-wall cracks (TWCs) subjected to axial tension, global bending, and internal pressure are reported. The FE model and analysis procedure employed in the present numerical study were validated by comparing the present FE results with existing solutions for plastic limit loads of pipes with idealized TWCs. For the quantification of the effect of slanted crack on plastic limit load, slant correction factors for calculating the plastic limit loads of pipes with slanted TWCs from pipes with idealized TWCs are newly proposed from extensive 3D FE calculations. These slant-correction factors are presented in tabulated form for practical ranges of geometry and for each set of loading conditions

  20. The stability of through-wall circumferential cracks in cylindrical pipes subjected to bending loads

    International Nuclear Information System (INIS)

    Smith, E.

    1983-01-01

    Tada, Paris and Gamble have used the tearing modulus approach to show that when a circumferential through-wall crack exists in a 304 SS circular cylindrical pipe, and the pipe is subjected to an applied bending moment, then crack growth requires the rotation at the pipe-ends to be increased, (i.e. crack growth is stable), unless the pipe length is unduly large. On this basis it was concluded that unstable fracture is unlikely to occur in BWR SS piping, when the system is designed in accord with the ASME Code load levels for normal operation and anticipated transients. The Tada-Paris-Gamble analysis focuses on the inter-relation between instability and the onset of crack extension, and does not specifically consider the possibility that a crack might become unstable after some stable crack extension. The paper addresses this aspect of the crack stability problem using a crack tip opening angle criterion for crack extension, which has similarities with the tearing modulus approach. The results show that unstable fracture should not occur even after some stable crack extension, again provided that the pipe length is not unduly large. In other words, guillotine failure of a pipe in a BWR system is unlikely, even though the ASME Code limiting stress levels as might be exceeded, as may be the case with a very severe earthquake. (orig./HP)

  1. Effect of design geometry of the demo first wall on the plasma heat load

    Directory of Open Access Journals (Sweden)

    Yu. Igitkhanov

    2016-12-01

    Full Text Available In this work we analyse the effect of W armour surface shaping on the heat load on the W/EUROFER DEMO sandwich type first wall blanket module with the water coolant. The armour wetted area is varied by changing the inclination and height of the «roof» type armor surface. The deleterious effect of leading edge at the tiles corner caused by misalignment is replaced in current design by rounded corners. Analysis has been carried out by means of the MEMOS code to assess the influence of the thickness of the layers and effect of the magnetic field inclination. Calculations show the evolution of the maximum temperatures in the tungsten, EUROFER, Cu allow and the stainless-steel water tube for different level of surface inclination (chamfering and in the case of rounded corners used in the current design. It is shown that the blanket module materials remain within a proper temperature range only at shallow incident angle if the width of EUROFER is reduced at list twice compare with the reference case.

  2. A compression and shear loading test of concrete filled steel bearing wall

    International Nuclear Information System (INIS)

    Akiyama, Hiroshi; Sekimoto, Hisashi; Fukihara, Masaaki; Nakanishi, Kazuo; Hara, Kiyoshi.

    1991-01-01

    Concrete-filled steel bearing walls called SC structure which are the composite structure of concrete and steel plates have larger load-carrying capacity and higher ductility as compared with conventional RC structures, and their construction method enables the rationalization of construction procedures at sites and the shortening of construction period. Accordingly, the SC structures have become to be applied to the inner concrete structures of PWR nuclear power plants, and subsequently, it is planned to apply them to the auxiliary buildings of nuclear power plants. The purpose of this study is to establish a rational design method for the SC structures which can be applied to the auxiliary buildings of nuclear power plants. In this study, the buckling strength of surface plates and the ultimate strength of the SC structure were evaluated with the results of the compression and shear tests which have been carried out. The outline of the study and the tests, the results of the compression test and the shear test and their evaluation are reported. Stud bolts were effective for preventing the buckling of surface plates. The occurrence of buckling can be predicted analytically. (K.I.)

  3. Load-carrying capacity of lightly reinforced, prefabricated walls of lightweight aggregate concrete with open structure

    DEFF Research Database (Denmark)

    Goltermann, Per

    2009-01-01

    The paper presents and evaluates the results of a coordinated testing of prefabricated, lightly reinforced walls of lightweight aggregate concrete with open structure. The coordinated testing covers all wall productions in Denmark and will therefore provide a representative assessment...

  4. 10 CFR 434.516 - Building exterior envelope.

    Science.gov (United States)

    2010-01-01

    ... Buildings for calculating the Energy Cost Budget. In calculating the Design Energy Consumption of the... assumptions for calculating the Energy Cost Budget and default assumptions for the Design Energy Consumption... without operable windows shall be assumed to be 0.038 cfm/ft2 of gross exterior wall. Hotels/motels and...

  5. Cladding Attachment Over Thick Exterior Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States); Eng, P. [Building Science Corporation, Somerville, MA (United States); Lepage, R. [Building Science Corporation, Somerville, MA (United States)

    2014-01-01

    The addition of insulation to the exterior of buildings is an effective means of increasing the thermal resistance of both wood framed walls as well as mass masonry wall assemblies. For thick layers of exterior insulation (levels greater than 1.5 inches), the use of wood furring strips attached through the insulation back to the structure has been used by many contractors and designers as a means to provide a convenient cladding attachment location (Straube and Smegal 2009, Pettit 2009, Joyce 2009, Ueno 2010). The research presented in this report is intended to help develop a better understanding of the system mechanics involved and the potential for environmental exposure induced movement between the furring strip and the framing. BSC sought to address the following research questions: 1. What are the relative roles of the mechanisms and the magnitudes of the force that influence the vertical displacement resistance of the system? 2. Can the capacity at a specified deflection be reliably calculated using mechanics based equations? 3. What are the impacts of environmental exposure on the vertical displacement of furring strips attached directly through insulation back to a wood structure?

  6. Room temperature elastic--plastic response of thin-walled tubes subjected to nonradial combinations of axial and torsional loadings

    International Nuclear Information System (INIS)

    Liu, K.C.

    1975-01-01

    Two tubular specimens of type 304 stainless steel with uniform thin walls were subjected to a program of segmental combined tension/compression and torsion loadings at room temperature. A proportional, or radial, loading into the plastic range was initially applied to each specimen. Two nonproportional (nonradial) loadings along straight line segments for which neither the loading paths nor their linear extrapolations passed through the origin of the stress space were then applied. The axial and torsional stress-strain curves for these segmental prestress loadings were plotted. Hence, the stress-strain response characteristics for nonproportional loadings as well as for proportional loading can be studied. In addition, the axial and torsional plastic strain components were calculated, and the total plastic strain trajectories were plotted in a plastic strain space. Finally, using results from a detailed study of yield surfaces, which was performed for the first specimen, a spectrum of initial and subsequent yield curves corresponding to the segmental prestress loadings is presented. (U.S.)

  7. Spray Foam Exterior Insulation with Stand-Off Furring

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anastasia [IBACOS, Inc., Pittsburgh, PA (United States); Baker, Richard [IBACOS, Inc., Pittsburgh, PA (United States); Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using 'L' clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and 'picture framing' the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  8. Spray Foam Exterior Insulation with Stand-Off Furring

    Energy Technology Data Exchange (ETDEWEB)

    Herk, Anatasia [IBACOS, Inc., Pittsburgh, PA (United States); Baker, Richard [IBACOS, Inc., Pittsburgh, PA (United States); Prahl, Duncan [IBACOS, Inc., Pittsburgh, PA (United States)

    2014-03-01

    IBACOS, in collaboration with GreenHomes America, was contracted by the New York State Energy Research and Development Authority to research exterior wall insulation solutions. This research investigated cost-effective deep energy retrofit (DER) solutions for improving the building shell exterior while achieving a cost-reduction goal, including reduced labor costs to reach a 50/50 split between material and labor. The strategies included exterior wall insulation plus energy upgrades as needed in the attic, mechanical and ventilation systems, and basement band joist, walls, and floors. The work can be integrated with other home improvements such as siding or window replacement. This strategy minimizes physical connections to existing wall studs, encapsulates existing siding materials (including lead paint) with spray foam, and creates a vented rain screen assembly to promote drying. GreenHomes America applied construction details created by IBACOS to a test home. 2x4 framing members were attached to the wall at band joists and top plates using "L" clips, with spray foam insulating the wall after framing was installed. Windows were installed simultaneously with the framing, including extension jambs. The use of clips in specific areas provided the best strength potential, and "picture framing" the spray foam held the 2x4s in place. Short-term testing was performed at this house, with monitoring equipment installed for long-term testing. Testing measurements will be provided in a later report, as well as utility impact (before and after), costs (labor and materials), construction time, standard specifications, and analysis for the exterior wall insulation strategy.

  9. A More Realistic Lateral Load Pattern for Design of Reinforced Concrete Buildings with Moment Frames and Shear Walls

    International Nuclear Information System (INIS)

    Hosseini, Mahmood; Khosahmadi, Arash

    2008-01-01

    In this research it has been tried to find a more realistic distribution pattern for the seismic load in reinforced concrete (R/C) buildings, having moment frames with shear walls as their lateral resisting system, by using Nonlinear Time History Analyses (NLTHA). Having shear wall as lateral load bearing system decreases the effect of infill walls in the seismic behavior of the building, and therefore the case of buildings with shear walls has been considered for this study as the first stage of the studies on lateral load patterns for R/C buildings. For this purpose, by assuming three different numbers of bays in each direction and also three different numbers of stories for the buildings, several R/C buildings, have been studied. At first, the buildings have been designed by the Iranian National Code for R/C Buildings. Then they have been analyzed by a NLTHA software using the accelerograms of some well-known earthquakes. The used accelerograms have been also scaled to various levels of peak ground acceleration (PGA) such as 0.35 g, 0.50 g, and 0.70 g, to find out the effect of PGA in the seismic response. Numerical results have shown that firstly the values of natural period of the building and their shear force values, calculated by the code, are not appropriate in all cases. Secondly, it has been found out that the real lateral load pattern is quite different with the one suggested by the seismic code. Based on the NLTHA results a new lateral load pattern has been suggested for this kind of buildings, in the form of some story-dependent modification factors applied to the existing code formula. The effects of building's natural period, as well as its number of stories, are taken into account explicitly in the proposed new load pattern. The proposed load pattern has been employed to redesign the buildings and again by NLTHA the real lateral load distribution in each case has been obtained which has shown very good agreement with the proposed pattern

  10. Fracture toughness of epoxy/multi-walled carbon nanotube nano-composites under bending and shear loading conditions

    International Nuclear Information System (INIS)

    Ayatollahi, M.R.; Shadlou, S.; Shokrieh, M.M.

    2011-01-01

    Research highlights: → Mode I and mode II fracture tests were conducted on epoxy/MWCNT nano-composites. → Addition of MWCNT to epoxy increased both K Ic and K IIc of nano-composites. → The improvement in K IIc was more pronounced than in K Ic . → Mode I and mode II fracture surfaces were studied by scanning electron microscopy. -- Abstract: The effects of multi-walled carbon nanotubes (MWCNTs) on the mechanical properties of epoxy/MWCNT nano-composites were studied with emphasis on fracture toughness under bending and shear loading conditions. Several finite element (FE) analyses were performed to determine appropriate shear loading boundary conditions for a single-edge notch bend specimen (SENB) and an equation was derived for calculating the shear loading fracture toughness from the fracture load. It was seen that the increase in fracture toughness of nano-composite depends on the type of loading. That is to say, the presence of MWCNTs had a greater effect on fracture toughness of nano-composites under shear loading compared with normal loading. To study the fracture mechanisms, several scanning electron microscopy (SEM) pictures were taken from the fracture surfaces. A correlation was found between the characteristics of fracture surface and the mechanical behaviors observed in the fracture tests.

  11. Wall envelopes in office buildings: design trend and implications on cooling load of buildings

    International Nuclear Information System (INIS)

    Ibrahim, N.; Ahmed, A.Z.; Ahmed, S.S.

    2006-01-01

    The wall envelope is a vital element of a building especially to a high rise building where its wall to building volume ratio is higher compared to other building forms. As well as a means of architectural expression, the wall envelope protects and regulates the indoor environment. In recent years there have been many applications of glass products and cladding systems in high-rise buildings built in Kuala Lumpur. This paper describes a recent research and survey on wall envelope designs adopted in 33 high-rise office buildings built in the central business district of Kuala Lumpur since 1990. This research adopts component design analysis to identify dominant trends on wall envelope design for the surveyed buildings. The paper seeks to discourse the implications of this design trend on energy consumption of high-rise office buildings in the country

  12. Allowable heat load on the edge of the ITER first wall panel beryllium flat tiles

    Directory of Open Access Journals (Sweden)

    R. Mitteau

    2017-08-01

    Full Text Available Plasma facing components are usually qualified to a given heat load density applied at the top face of the armour tiles with normal incidence angle. When employed in tokamak fusion machines, heat loading on the tile sides is possible due to optimised shaping, that doesn't provide edge shadowing for all design situations. An edge heat load may occur both at the tile and component scales. The edge load needs to be controlled and quantified. The adequate control of edge heat loads is especially critical for water cooled components that uses armour tiles which are bonded to the heat sink, for ensuring the long-term integrity of the tile bonding. An edge heat load allowance criterion of 10% of the top heat load is proposed. The 10% criterion is supported by experimental heat flux tests.

  13. Synthesis of Single-Walled Carbon Nanotubes: Effects of Active Metals, Catalyst Supports, and Metal Loading Percentage

    Directory of Open Access Journals (Sweden)

    Wei-Wen Liu

    2013-01-01

    Full Text Available The effects of active metals, catalyst supports, and metal loading percentage on the formation of single-walled carbon nanotubes (SWNTs were studied. In particular, iron, cobalt, and nickel were investigated for SWNTs synthesis. Iron was found to grow better-quality SWNTs compared to cobalt and nickel. To study the effect of catalyst supports, magnesium oxide, silicon oxide, and aluminium oxide were chosen for iron. Among the studied supports, MgO was identified to be a suitable support for iron as it produced SWNTs with better graphitisation determined by Raman analysis. Increasing the iron loading decreased the quality of SWNTs due to extensive agglomeration of the iron particles. Thus, lower metal loading percentage is preferred to grow better-quality SWNTs with uniform diameters.

  14. Loads experiments study on two-story RC box and truncated conical walls

    International Nuclear Information System (INIS)

    Asega, H.; Iizuka, S.; Kurihara, I.; Kubo, T.

    1987-01-01

    The failure modes of the two specimens were the sliding shear failure. The two specimens showed almost equal deformation at the maximum shear strength. The ratio of the flexural deformation in the deformation of the truncated conical was larger than that of the box wall. The ratio of the shear deformation in the deformation of the two-story RC box wall was larger than that of the flexural deformation. (orig./HP)

  15. Tensor spaces and exterior algebra

    CERN Document Server

    Yokonuma, Takeo

    1992-01-01

    This book explains, as clearly as possible, tensors and such related topics as tensor products of vector spaces, tensor algebras, and exterior algebras. You will appreciate Yokonuma's lucid and methodical treatment of the subject. This book is useful in undergraduate and graduate courses in multilinear algebra. Tensor Spaces and Exterior Algebra begins with basic notions associated with tensors. To facilitate understanding of the definitions, Yokonuma often presents two or more different ways of describing one object. Next, the properties and applications of tensors are developed, including the classical definition of tensors and the description of relative tensors. Also discussed are the algebraic foundations of tensor calculus and applications of exterior algebra to determinants and to geometry. This book closes with an examination of algebraic systems with bilinear multiplication. In particular, Yokonuma discusses the theory of replicas of Chevalley and several properties of Lie algebras deduced from them.

  16. Properties of Shredded Roof Membrane–Sand Mixture and Its Application as Retaining Wall Backfill under Static and Earthquake Loads

    Directory of Open Access Journals (Sweden)

    Bennett Livingston

    2017-04-01

    Full Text Available About 20 billion square feet of Ethylene Propylene Diene Monomer (EPDM rubber is installed on roofs in the United States and most of them will be reaching the end of their lifespan soon. The purpose of this study is to investigate potential reuses of this rubber in Civil Engineering projects rather than disposing it into landfills. First, laboratory tests were performed on various shredded rubber-sand mixtures to quantify the basic geotechnical engineering properties. The laboratory test results show that the shredded rubber-sand mixture is lightweight with good drainage properties and has shear strength parameters comparable to sand. This indicates that the rubber-sand mixture has potential to be used for retaining wall backfill and many other projects. To assess the economic advantage of using shredded rubber-sand mixtures as a lightweight backfill for retaining walls subjected to static and earthquake loadings, geotechnical designs of a 6 m tall gravity cantilever retaining wall were performed. The computed volume of concrete to build the structural components and volume of backfill material were compared with those of conventional sand backfill. Results show significant reductions in the volume of concrete and backfill material in both static and earthquake loading conditions when the portion of shredded rubber increased in the mixture.

  17. Measurement of the nonaxisymmetric heat load distribution on the first wall of TFTR due to locked modes

    International Nuclear Information System (INIS)

    Janos, A.C.; Fredrickson, E.; McGuire, K.M.; Nagayama, Y.; Owens, D.K.

    1992-01-01

    The first wall of TFTR is covered in large part (23%) by an inner-wall bumper limiter which is the primary power handling structure in TFTR. The limiter is comprised of more than 2000 tiles, and is instrumented with a large number (>100) of thermocouples in a two-dimensional (2D) array, primarily for protection of the wall. While only about 5% of the tiles are monitored, this thermocouple system is nevertheless capable of mapping details in the nonaxisymmetric, as well as symmetric, heat load patterns encountered under different conditions. In particular, helical heating patterns are observed in discharges which have locked modes. The helical patterns clearly match the expected trajectories based on the m/n mode numbers obtained from Mirnov coils (m/n=2/1 and 4/1), so that the thermocouple system can and was used to identify the existence and mode number of a locked mode. While TFTR discharges rarely suffer from locked modes, locked modes always alter the heating pattern. The locked modes are found to very significantly redistribute the heat load for both ohmic and NBI heated discharges. Locked modes can make what were the coldest areas into the hottest areas, and vice versa. Locked modes also can alter the heat pattern resulting from the frequent disruptions which occur as a result of a locked mode

  18. Experimental Studies on the Behavior of a Newly-Developed Type of Self-Insulating Concrete Masonry Shear Wall under in-Plane Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Abu-Bakre Abdelmoneim Elamin Mohamad

    2017-04-01

    Full Text Available This study aimed to investigate the inelastic behavior of a newly-developed type of self-insulating concrete masonry shear wall (SCMSW under in-plane cyclic loading. The new masonry system was made from concrete blocks with special configurations to provide a stronger bond between units than ordinary concrete masonry units. A total of six fully-grouted SCMSWs were prepared with different heights (1.59 to 5.78 m and different vertical steel configurations. The developed masonry walls were tested under in-plane cyclic loading and different constant axial load ratios. In addition, the relationship between the amount of axial loading, the amount of the flexural reinforcement and the wall aspect ratios and the nonlinear hysteretic response of the SCMSW was evaluated. The results showed that the lateral load capacity of SCMSW increases with the amount of applied axial load and the amount of vertical reinforcement. However, the lateral load capacity decreases as the wall aspect ratio increases. The existence of the boundary elements at the SCMSW ends increases the ductility and the lateral load capacity. Generally, the SCMSW exhibited predominantly flexural behavior. These results agreed with those reported in previous research for walls constructed with ordinary units.

  19. Numerical investigation of the influence of particle-particle and particle-wall collisions in turbulent wall-bounded flows at high mass loadings

    International Nuclear Information System (INIS)

    Alletto, Michael

    2014-01-01

    The present work deals with the simulation of turbulent particle-laden flows at high mass loadings. In order to achieve this goal, the fluid flow is described by means of the eddy-resolving concept known as Large-Eddy Simulation (LES) and the particles are described in a Lagrangian frame of reference. Special emphasis is placed on the interparticle collisions and the impact of solid particles on rough walls. Both mechanisms are shown to be crucial for the correct description of the particle dynamics in wall-bounded flows. In order to distinguish the present methodology from the variety of methods available in the literature to treat turbulent flows laden with solid particles, the thesis starts with an overview of different simulation techniques to calculate this class of flows. In this overview special care is taken to underline the parameter space, where the different simulation methods are valid. After that, the governing equations and the boundary conditions applied for the continuous phase of the Euler-Lagrange approach used in the present thesis are given. In the subsequent section the governing equations for the solid particles and their interaction with smooth and rough walls are discussed. Here a new wall roughness model for the particles which incorporates an amplitude parameter used in technical applications such as the mean roughness height or the root-mean-squared roughness is presented. After that, the coupling mechanisms between the phases and the algorithmic realization are discussed. Furthermore, a new agglomeration model capable to treat interparticle collisions with friction is presented. However, the agglomeration model is not evaluated in such a detail as the interparticle collisions and the particle-wall collisions. The reason is that it does not represent a central aspect of this thesis. The numerical methods for the continuous and the disperse phase are presented in the subsequent section. The efficient algorithm to detect the interparticle

  20. Numerical investigation of the influence of particle-particle and particle-wall collisions in turbulent wall-bounded flows at high mass loadings

    Energy Technology Data Exchange (ETDEWEB)

    Alletto, Michael

    2014-05-16

    The present work deals with the simulation of turbulent particle-laden flows at high mass loadings. In order to achieve this goal, the fluid flow is described by means of the eddy-resolving concept known as Large-Eddy Simulation (LES) and the particles are described in a Lagrangian frame of reference. Special emphasis is placed on the interparticle collisions and the impact of solid particles on rough walls. Both mechanisms are shown to be crucial for the correct description of the particle dynamics in wall-bounded flows. In order to distinguish the present methodology from the variety of methods available in the literature to treat turbulent flows laden with solid particles, the thesis starts with an overview of different simulation techniques to calculate this class of flows. In this overview special care is taken to underline the parameter space, where the different simulation methods are valid. After that, the governing equations and the boundary conditions applied for the continuous phase of the Euler-Lagrange approach used in the present thesis are given. In the subsequent section the governing equations for the solid particles and their interaction with smooth and rough walls are discussed. Here a new wall roughness model for the particles which incorporates an amplitude parameter used in technical applications such as the mean roughness height or the root-mean-squared roughness is presented. After that, the coupling mechanisms between the phases and the algorithmic realization are discussed. Furthermore, a new agglomeration model capable to treat interparticle collisions with friction is presented. However, the agglomeration model is not evaluated in such a detail as the interparticle collisions and the particle-wall collisions. The reason is that it does not represent a central aspect of this thesis. The numerical methods for the continuous and the disperse phase are presented in the subsequent section. The efficient algorithm to detect the interparticle

  1. Seismic and Power Generation Performance of U-Shaped Steel Connected PV-Shear Wall under Lateral Cyclic Loading

    Directory of Open Access Journals (Sweden)

    Hongmei Zhang

    2014-01-01

    Full Text Available BIPV is now widely used in office and residential buildings, but its seismic performance still remained vague especially when the photovoltaic (PV modules are installed on high-rise building facades. A new form of reinforced concrete shear wall integrated with photovoltaic module is proposed in this paper, aiming to apply PV module to the facades of high-rise buildings. In this new form, the PV module is integrated with the reinforced concrete wall by U-shaped steel connectors through embedded steel plates. The lateral cyclic loading test is executed to investigate the seismic behavior and the electric and thermal performance with different drift angles. The seismic behavior, including failure pattern, lateral force-top displacement relationship, and deformation capacity, was investigated. The power generation and temperature variation on the back of the PV module and both sides of the shear wall were also tested. Two main results are demonstrated through the experiment: (1 the U-shaped steel connectors provide enough deformation capacity for the compatibility of the PV module to the shear wall during the whole cyclic test; (2 the electricity generation capacity is effective and stable during this seismic simulation test.

  2. Mount Protects Thin-Walled Glass or Ceramic Tubes from Large Thermal and Vibration Loads

    Science.gov (United States)

    Amato, Michael; Schmidt, Stephen; Marsh. James; Dahya, Kevin

    2011-01-01

    The design allows for the low-stress mounting of fragile objects, like thin walled glass, by using particular ways of compensating, isolating, or releasing the coefficient of thermal expansion (CTE) differences between the mounted object and the mount itself. This mount profile is lower than true full kinematic mounting. Also, this approach enables accurate positioning of the component for electrical and optical interfaces. It avoids the higher and unpredictable stress issues that often result from potting the object. The mount has been built and tested to space-flight specifications, and has been used for fiber-optic, optical, and electrical interfaces for a spaceflight mission. This mount design is often metal and is slightly larger than the object to be mounted. The objects are optical or optical/electrical, and optical and/or electrical interfaces are required from the top and bottom. This requires the mount to be open at both ends, and for the object s position to be controlled. Thin inside inserts at the top and bottom contact the housing at defined lips, or edges, and hold the fragile object in the mount. The inserts can be customized to mimic the outer surface of the object, which further reduces stress. The inserts have the opposite CTE of the housing material, partially compensating for the CTE difference that causes thermal stress. A spring washer is inserted at one end to compensate for more CTE difference and to hold the object against the location edge of the mount for any optical position requirements. The spring also ensures that any fiber-optic or optic interface, which often requires some pressure to ensure a good interface, does not overstress the fragile object. The insert thickness, material, and spring washer size can be traded against each other to optimize the mount and stresses for various thermal and vibration load ranges and other mounting requirements. The alternate design uses two separate, unique features to reduce stress and hold the

  3. Behavior of deep flaws in a thick-wall cylinder under thermal shock loading

    International Nuclear Information System (INIS)

    Cheverton, R.D.

    1979-01-01

    Behavior of inner-surface flaws in thick-walled vessels was studied in a 991-mm OD x 152 mm wall x 1220 mm length cylinder with toughness properties similar to those for HSST Plate. The initial temperature of 93 0 C and a thermal shock medium of liquid nitrogen (-197 0 C) were employed. The initial flaw selected was a sharp, 16 mm deep, long (1220 mm) axial crack. Crack arrest methodology was shown to be valid for deep flaws under severe thermal shock

  4. Concrete shielding exterior to iron

    International Nuclear Information System (INIS)

    Yurista, P.; Cossairt, D.

    1983-08-01

    A rule of thumb at Fermilab has been to use 3 feet of concrete exterior to iron shielding. A recent design of a shield with a severe dimensional constraint has prompted a re-evaluation of this rule of thumb and has led to the following calculations of the concrete thickness required to nullify this problem. 4 references, 4 figures

  5. Stress state of thin – walled member of the structure with operation damages under nonuniform loading

    Directory of Open Access Journals (Sweden)

    В.В. Астанін

    2004-01-01

    Full Text Available  The publication is dedicated to determining of stress state in particular the stress concentration factors for thin – walled members of the structures subject to nonuniform tension. A structure member has obtained the operation damage generation by corrosion and other causes.

  6. Effects of reducing temperatures on the hydrogen storage capacity of double-walled carbon nanotubes with Pd loading.

    Science.gov (United States)

    Sheng, Qu; Wu, Huimin; Wexler, David; Liu, Huakun

    2014-06-01

    The effects of different temperatures on the hydrogen sorption characteristics of double-walled carbon nanotubes (DWCNTs) with palladium loading have been investigated. When we use different temperatures, the particle sizes and specific surface areas of the samples are different, which affects the hydrogen storage capacity of the DWCNTs. In this work, the amount of hydrogen storage capacity was determined (by AMC Gas Reactor Controller) to be 1.70, 1.85, 2.00, and 1.93 wt% for pristine DWCNTS and for 2%Pd/DWCNTs-300 degrees C, 2%Pd/DWCNTs-400 degrees C, and 2%Pd/DWCNTs-500 degrees C, respectively. We found that the hydrogen storage capacity can be enhanced by loading with 2% Pd nanoparticles and selecting a suitable temperature. Furthermore, the sorption can be attributed to the chemical reaction between atomic hydrogen and the dangling bonds of the DWCNTs.

  7. Reactive bonding mediated high mass loading of individualized single-walled carbon nanotubes in an elastomeric polymer

    Science.gov (United States)

    Zhao, Liping; Li, Yongjin; Qiu, Jishan; You, Jichun; Dong, Wenyong; Cao, Xiaojun

    2012-09-01

    A reactive chemical bonding strategy was developed for the incorporation of a high mass loading of individual single-wall carbon nanotubes (SWCNTs) into an elastomeric matrix using a reactive ionic liquid as a linker. This method simultaneously prevented the agglomeration of SWCNTs and caused strong interfacial bonding, while the electronic properties of the SWCNTs remained intact. As a result, the high conductivity of the carbon nanotubes (CNTs) and the flexibility of the elastomeric matrix were retained, producing optimum electrical and mechanical properties. A composite material with a loading of 20 wt% SWCNTs was fabricated with excellent mechanical properties and a high conductivity (9500 S m-1). The method could be used to form transparent thin conductive films that could tolerate over 800 bend cycles at a bending angle of 180° while maintaining a constant sheet resistance.A reactive chemical bonding strategy was developed for the incorporation of a high mass loading of individual single-wall carbon nanotubes (SWCNTs) into an elastomeric matrix using a reactive ionic liquid as a linker. This method simultaneously prevented the agglomeration of SWCNTs and caused strong interfacial bonding, while the electronic properties of the SWCNTs remained intact. As a result, the high conductivity of the carbon nanotubes (CNTs) and the flexibility of the elastomeric matrix were retained, producing optimum electrical and mechanical properties. A composite material with a loading of 20 wt% SWCNTs was fabricated with excellent mechanical properties and a high conductivity (9500 S m-1). The method could be used to form transparent thin conductive films that could tolerate over 800 bend cycles at a bending angle of 180° while maintaining a constant sheet resistance. Electronic supplementary information (ESI) available: Conductivity test of the SEBS-SWCNTs film, transmission spectra and sheet resistance for the spin-coated SEBS-SWCNTs thin films on PET slides. See DOI: 10

  8. Load carrying capacity of shear wall t-connections reinforced with high strength wire ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik B.; Bryndom, Thor; Larsen, Michael

    2016-01-01

    -friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope......Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  9. Radiation loads on the ITER first wall during massive gas injection

    Energy Technology Data Exchange (ETDEWEB)

    Landman, I., E-mail: igor.landman@kit.edu [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Bazylev, B. [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Pitts, R.A. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France); Saibene, G. [Fusion for Energy Joint Undertaking, Josep Pla no. 2 – Torres Diagonal Litoral Edificio B3 7/03, Barselona 08019 (Spain); Pestchanyi, S. [Karlsruhe Institute of Technology, IHM, P.O. Box 3640, 76021 Karlsruhe (Germany); Putvinski, S.; Sugihara, M. [ITER Organization, Route de Vinon sur Verdon, 13115 Saint Paul Lez Durance (France)

    2013-10-15

    Highlights: • The massive gas injection (neon) is simulated with the two-dimensional tokamak code TOKES assuming the toroidal symmetry. • The neon injection, assimilation and transport of impurities through the entire plasma volume are modelled. • The output of TOKES is used by the melt motion code MEMOS to assess beryllium wall temperature and the regime with melting. • Complete plasma cooling occurs in minimum time of 5.7 ms with avoiding Be melting at any point on the first wall. -- Abstract: Unmitigated disruptions in ITER can produce strong localized surface damage on the first wall (FW). Massive gas injection (MGI) systems are being designed to dissipate a large fraction of the plasma stored energy at the disruption thermal quench (TQ) and hence reduce the consequences for FW components. The stored energies can be high enough, however, for there to be potential for the photon flash at the MGI TQ to drive local melting of beryllium FW components. To estimate the poloidal distribution of FW surface temperatures, the MGI process is being simulated using the 2D code TOKES, assuming toroidal symmetry. High pressure neon injection, assimilation and transport of injected impurities through the entire plasma volume are modelled. The output of these simulations is used by the melt motion code MEMOS to assess the resulting maximum surface temperature and the regimes with melting on the FW surface.

  10. Load Carrying Capacity of Shear Wall T-Connections Reinforced with High Strength Wire Ropes

    DEFF Research Database (Denmark)

    Jørgensen, Henrik Brøner; Bryndum, Thor; Larsen, Michael

    2017-01-01

    Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction-friendly so......Traditionally, U-bar loop connections with keyed joints have been used in vertical shear connections between precast concrete wall elements. However, in the recent years, connections with looped high strength wire ropes instead of U-bar loops have proven to be a much more construction......-friendly solution. The wire ropes have no bending stiffness and therefore allow for an easier vertical installation of the wall elements. During the last 10 – 15 years, a number of shear tests on plane wire rope connections have been carried out. However, to the best knowledge of the authors, tests on wire rope...... connections for assembly of precast elements in different planes, such as T- and L-connections, have not yet been published. This paper presents the results of a large test series recently conducted at the University of Southern Denmark to study the shear behaviour of high strength wire rope T...

  11. Nonlinear response of vessel walls due to short-time thermomechanical loading

    International Nuclear Information System (INIS)

    Pfeiffer, P.A.; Kulak, R.F.

    1994-01-01

    Maintaining structural integrity of the reactor pressure vessel (RPV) during a postulated core melt accident is an important safety consideration in the design of the vessel. This study addresses the failure predictions of the vessel due to thermal and pressure loadings fro the molten core debris depositing on the lower head of the vessel. Different loading combinations were considered based on the dead load, yield stress assumptions, material response and internal pressurization. The analyses considered only short term failure (quasi static) modes, long term failure modes were not considered. Short term failure modes include plastic instabilities of the structure and failure due to exceeding the failure strain. Long term failure odes would be caused by creep rupture that leads to plastic instability of the structure. Due to the sort time durations analyzed, creep was not considered in the analyses presented

  12. Lifetime analysis of the ITER first wall under steady-state and off-normal loads

    International Nuclear Information System (INIS)

    Mitteau, R; Sugihara, M; Raffray, R; Carpentier-Chouchana, S; Merola, M; Pitts, R A; Labidi, H; Stangeby, P

    2011-01-01

    The lifetime of the beryllium armor of the ITER first wall is evaluated for normal and off-normal operation. For the individual events considered, the lifetime spans between 930 and 35×10 6 discharges. The discrepancy between low and high estimates is caused by uncertainties about the behavior of the melt layer during off-normal events, variable plasma operation parameters and variability of the sputtering yields. These large uncertainties in beryllium armor loss estimates are a good example of the experimental nature of the ITER project and will not be truly resolved until ITER begins burning plasma operation.

  13. On the sensitivity of a helicopter combustor wall temperature to convective and radiative thermal loads

    International Nuclear Information System (INIS)

    Berger, S.; Richard, S.; Duchaine, F.; Staffelbach, G.; Gicquel, L.Y.M.

    2016-01-01

    Highlights: • Coupling of LES, DOM and conduction is applied to an industrial combustor. • Thermal sensitivity of the combustor to convection and radiation is investigated. • CHT based on LES is feasible in an industrial context with acceptable CPU costs. • Radiation heat fluxes are of the same order of magnitude that the convective ones. • CHT with radiation are globally in good agreement with thermocolor test. - Abstract: The design of aeronautical engines is subject to many constraints that cover performance gain as well as increasingly sensitive environmental issues. These often contradicting objectives are currently being answered through an increase in the local and global temperature in the hot stages of the engine. As a result, hot spots could appear causing a premature aging of the combustion chamber. Today, the characterization of wall temperatures is performed experimentally by complex thermocolor tests in advanced phases of the design process. To limit such expensive experiments and integrate the knowledge of the thermal environment earlier in the design process, efforts are currently performed to provide high fidelity numerical tools able to predict the combustion chamber wall temperature including the main physical phenomena: combustion, convection and mixing of hot products and cold flows, radiative transfers as well as conduction in the solid parts. In this paper, partitioned coupling approaches based on a Large Eddy Simulation (LES) solver, a Discrete Ordinate Method radiation solver and an unsteady conduction code are used to investigate the sensitivity of an industrial combustor thermal environment to convection and radiation. Four computations including a reference adiabatic fluid only simulation, Conjugate Heat Transfer, Radiation-Fluid Thermal Interaction and fully coupled simulations are performed and compared with thermocolor experimental data. From the authors knowledge, such comparative study with LES has never been published. It

  14. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites

    International Nuclear Information System (INIS)

    Zhou, Weiwei; Yamaguchi, Tatsuya; Kikuchi, Keiko; Nomura, Naoyuki; Kawasaki, Akira

    2017-01-01

    The thermal expansion response of multi-walled carbon nanotube (MWCNT) reinforced Al matrix composites was employed to discuss the improvement of the load transfer at the interface between the MWCNTs and the Al matrix. An aluminum carbide (Al_4C_3) nanostructure at the end of the MWCNTs, incorporated in the Al matrix, was produced by appropriate heat-treatment. The stress contrast around the Al_4C_3 observed in the high-resolution transmission electron microscopy (HRTEM) image revealed the evidence of a trace of friction, which would lead to the enhancement of the anchor effect from the Al matrix. This anchor effect of Al_4C_3 may hinder the local interfacial slippage and constrain the deformation of the Al matrix. As a result, the thermal expansion behavior became linear and reversible under cyclic thermal load. It is concluded that the formation of Al_4C_3 could effectively enhance the load transfer in MWCNT/Al composites. The yield strength of MWCNT/Al composites was substantially increased under the appropriate quantity of Al_4C_3 produced at the MWCNT-Al interface by precisely controlled heat-treatment.

  15. Rammed earth walls strengthened with polyester fabric strips: Experimental analysis under in-plane cyclic loading

    Czech Academy of Sciences Publication Activity Database

    Miccoli, L.; Müller, U.; Pospíšil, Stanislav

    2017-01-01

    Roč. 149, September (2017), s. 29-36 ISSN 0950-0618 R&D Projects: GA MŠk(CZ) LO1219 Keywords : rammed earth * pseudo-dynamic loads * shear-compression tests * strengthening * polyester fabric strips Subject RIV: JM - Building Engineering OBOR OECD: Construction engineering, Municipal and structural engineering Impact factor: 3.169, year: 2016 http://www.sciencedirect.com/science/article/pii/S0950061817310000

  16. Load capacity of a thick-walled cylinder with a radial hole

    International Nuclear Information System (INIS)

    Laczek, S.; Rys, J.; Zielinski, A.P.

    2010-01-01

    The paper deals with elastic-plastic analysis of the stress-strain state in the vicinity of a hole in a thick-walled cylindrical pressure vessel. The investigations have been inspired by the phenomenon of ductile fracture observed in a high-pressure reactor. Using finite element calculations, different failure criteria are proposed to aid design and control of high-pressure vessels with piping attachments. They are compared with suggestions of American (ASME) and European (EN) standards. A simple shakedown analysis of the structure is also presented. The local stress distribution near the hole results in a specific failure of the vessel. A plastic zone appears in the vicinity of the internal cylinder surface and propagates along the hole side. The vessel unloading can cause local reverse plasticity, which leads to plastic shakedown in the small zone and then to progressive ductile fracture in this zone. This is dangerous for the whole structure.

  17. Tragacanth gum as a natural polymeric wall for producing antimicrobial nanocapsules loaded with plant extract.

    Science.gov (United States)

    Ghayempour, Soraya; Montazer, Majid; Mahmoudi Rad, Mahnaz

    2015-11-01

    Tragacanth gum as a biocompatible and biodegradable polymer with good properties including emulsifying, viscosity and cross-linking ability can be used as the wall material in encapsulation of different compounds, specifically plant extracts. In this paper, for the first time, Tragacanth gum was used to produce nanocapsules containing plant extract through microemulsion method. The effect of different parameters on the average size of prepared nanocapsules in presence of aluminum and calcium chloride through ultrasonic and magnetic stirrer was investigated. The high efficient nanocapsules were prepared with spherical shape and smooth surface. The average size of nanocapsules prepared through ultrasonic using aluminum chloride (22nm) was smaller than other products. The structure of prepared nanocapsules was studied by FT-IR spectroscopy. Antimicrobial activity of different nanocapsules against Escherichia coli, Staphylococcus aureus and Candida albicans was investigated by shake flask method during their release showed 100% microbial reduction after 12h stirring. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Plastic fracture instability analysis of wall breakthrough in a circumferentially cracked pipe subjected to bending loads

    International Nuclear Information System (INIS)

    Zahoor, A.; Kanninen, M.F.

    1981-01-01

    A method of analyzing internal surface circumferential cracks in ductile reactor piping is presented. The method utilizes an alternate but equivalent definition of the J-integral based on nonlinear structural compliance. The analysis is valid for situations where the cross section containing the crack is fully yielded. Results are obtained for radial and circumferential crack growth for pipes subjected to bending. The stability of radial crack growth (wall breakthrough) is assessed using the J-integral-based tearing modulus approach. The analysis is shown to be in agreement with experimental results on the stability of surface crack growth in Type 304 stainless stee pipes. Example quantitative results for fracture instability assessments for nuclear piping are presented. 23 refs

  19. Plastic fracture instability analysis of wall breakthrough in a circumferentially cracked pipe subjected to bending loads

    Energy Technology Data Exchange (ETDEWEB)

    Zahoor, A.; Kanninen, M.F.

    1981-07-01

    A method of analyzing internal surface circumferential cracks in ductile reactor piping is presented. The method utilizes an alternate but equivalent definition of the J-integral based on nonlinear structural compliance. The analysis is valid for situations where the cross section containing the crack is fully yielded. Results are obtained for radial and circumferential crack growth for pipes subjected to bending. The stability of radial crack growth (wall breakthrough) is assessed using the J-integral-based tearing modulus approach. The analysis is shown to be in agreement with experimental results on the stability of surface crack growth in Type 304 stainless stee pipes. Example quantitative results for fracture instability assessments for nuclear piping are presented. 23 refs.

  20. High heat load experiments for first wall materials by high power ion beams

    Energy Technology Data Exchange (ETDEWEB)

    Kuroda, Tsutomu; Kaneko, Osamu; Sakurai, Keiichi; Oka, Yoshihide; Shibui, Masanao; Ohmori, Junji

    1985-09-01

    Preliminary results are presented with some analytical calculations for thermal shock fractures of first-wall material candidates under plasma disruption heating conditions. A 120 keV - 90 A ion source has been used as an energy source to heat large specimens with heat fluxes of about 9 kW/cm/sup 2/ for pulse length of about 57 msec. Materials examined here are graphite (POCO), SiC, AlN, TiC-coated graphite, and sus 304. The SiC and AlN specimens were completely broken by only one thermal shock. The web-like surface cracks with a depth of about 0.6 mm were created in the tungsten specimen during five shots. No apparent destructive changes were observed in the graphite specimen.

  1. Assessment of the impact of degraded shear wall stiffnesses on seismic plant risk and seismic design loads

    International Nuclear Information System (INIS)

    Klamerus, E.W.; Bohn, M.P.; Johnson, J.J.; Asfura, A.P.; Doyle, D.J.

    1994-02-01

    Test results sponsored by the USNRC have shown that reinforced shear wall (Seismic Category I) structures exhibit stiffnesses and natural frequencies which are smaller than those calculated in the design process. The USNRC has sponsored Sandia National Labs to perform an evaluation of the effects of the reduced frequencies on several existing seismic PRAs in order to determine the seismic risk implications inherent in these test results. This report presents the results for the re-evaluation of the seismic risk for three nuclear power plants: the Peach Bottom Atomic Power Station, the Zion Nuclear Power Plant, and Arkansas Nuclear One -- Unit 1 (ANO-1). Increases in core damage frequencies for seismic initiated events at Peach Bottom were 25 to 30 percent (depending on whether LLNL or EPRI hazard curves were used). At the ANO-1 site, the corresponding increases in plant risk were 10 percent (for each set of hazard curves). Finally, at Zion, there was essentially no change in the computed core damage frequency when the reduction in shear wall stiffness was included. In addition, an evaluation of deterministic ''design-like'' structural dynamic calculations with and without the shear stiffness reductions was made. Deterministic loads calculated for these two cases typically increased on the order of 10 to 20 percent for the affected structures

  2. Distortional solutions for loaded semi-discretized thin-walled beams

    DEFF Research Database (Denmark)

    Andreassen, Michael Joachim; Jönsson, Jeppe

    2012-01-01

    distortional displacement fields which decouple the reduced order differential equations. In this process the cross section is discretized into finite cross-section elements, and the natural distortional modes as well as the related axial variations are found as solutions to the established coupled fourth...... order homogeneous differential equations of GBT.In this paper the non-homogeneous distortional differential equations of GBT are formulated using this novel semi-discretization process. Transforming these non-homogeneous distortional differential equations into the natural eigenmode space by using...... the distortional modal matrix found for the homogeneous system, we get the uncoupled set of differential equations including the distributed loads. This uncoupling is very important in GBT, since the shear stiffness contribution from St. Venant torsional shear stress as well as “Bredt's shear flow” cannot...

  3. Plasma induced material defects and threshold values for thermal loads in high temperature resistant alloys and in refractory metals for first wall application in fusion reactors

    International Nuclear Information System (INIS)

    Bolt, H.; Hoven, H.; Kny, E.; Koizlik, K.; Linke, J.; Nickel, H.; Wallura, E.

    1986-10-01

    Materials for the application in the first wall of fusion reactors of the tokamak type are subjected to pulsed heat fluxes which range from some 0.5 MW m -2 to 10 MW m -2 during normal plasma operation, and which can exceed 1000 MW m -2 during total plasma disruptions. The structural defects and material fatigue caused by this types of plasma wall interaction are investigated and the results are plotted in threshold loading curves. Additionally, the results are, as far as possible, compared with quantitative, theoretical calculations. These procedures allow a semiquantitative evaluation of the applicability of the mentioned metals in the first wall of fusion reactors. (orig.) [de

  4. Thermographic method for evaluation of thermal influence of exterior surface colour of buildings

    Science.gov (United States)

    Wu, Yanpeng; Li, Deying; Jin, Rendong; Liu, Li; Bai, Jiabin; Feng, Jianming

    2008-12-01

    Architecture colour is an important part in urban designing. It directly affects the expressing and the thermal effect of exterior surface of buildings. It has proved that four factors affect the sign visibility, graphics, colour, lighting condition and age of the observers, and colour is the main aspect. The best method is to prevent the exterior space heating up in the first place, by reflecting heat away room the exterior surface.The colour of paint to coat building's exterior wall can have a huge impact on energy efficiency. While the suitable colour is essential to increasing the energy efficiency of paint colour during the warm summer months, those products also help paint colour efficiency and reduce heat loss from buildings during winter months making the interior more comfortable all year long. The article is based on analyzing the importance of architecture color design and existing urban colour design. The effect of external surface colour on the thermal behaviour of a building has been studied experimentally by Infrared Thermographic method in University of Science and technology Beijing insummer.The experimental results showed that different colour has quietly different thermal effect on the exterior surface of buildings. The thermal effect of carmine and fawn has nearly the same values. The main factor which is color express, give some suggest ting about urban color design. The investigation reveals that the use of suitable surface colour can dramatically reduce maximum the temperatures of the exterior wall. Keywords: architectural colour, thermal, thermographic

  5. Contribution to the understanding of the behaviour of reinforced concrete shear walls under seismic loading: contribution of experiment and modeling to the design

    International Nuclear Information System (INIS)

    Ile, N.

    2000-12-01

    This thesis deals with aspects of seismic behaviour of reinforced concrete shear walls (RCSW). Its objective is to introduce a useful modelling approach for addressing the non-linear response of a large variety of RCSW and to identify several aspects in which this numerical approach could be implemented into design applications. Firstly, the characteristics of the behaviour of RCSW under seismic loading, some design principles and different modelling approaches are discussed. As an important lack of knowledge in several fields was identified, it was considered that three types of shear walls deserve more attention: slightly reinforced slender walls; U-shaped walls and heavily reinforced squat shear walls. A local modelling approach is adopted and the material constitutive models are described in details. Secondly, the behaviour of the two mock-up, CAMUS I and II, tested on the shaking-table during the CAMUS programme, which are slightly reinforced and designed according to the French code PS92 is simulated using a 2-D finite element model (FEM). For comparison purposes, the case of the CAMUS III mock-up, designed according to EC8, is considered. We are then dealing with the case of U-shaped walls under dynamic and cyclic loading. The results obtained from numerical simulations, based on a 3-D shell FEM, are compared with those obtained from tests carried out in the frame of the ICONS programme. Finally, the numerical model is applied to the case of heavily reinforced squat shear walls (similar to those used in the nuclear power plant buildings) subjected to shear loading. A 2-D FEM is considered in order to simulate the behaviour of three different walls, which were tested pseudo-dynamically during the SAFE programme. The results from both experimental and numerical studies are compared and discussed. The most important factors affecting the behaviour of RCSW are highlighted. Different examples of possible contributions to design are presented. (author)

  6. Global limit load solutions for thick-walled cylinders with circumferential cracks under combined internal pressure, axial force and bending moment − Part II: Finite element validation

    International Nuclear Information System (INIS)

    Li, Yuebing; Lei, Yuebao; Gao, Zengliang

    2014-01-01

    Global limit load solutions for thick-walled cylinders with circumferential internal/external surface and through-wall defects under combined positive/negative axial force, positive/negative global bending moment and internal pressure have been developed in Part I of this paper. In this Part II, elastic-perfectly plastic 3-D finite element (FE) analyses are performed for selected cases, covering a wide range of geometries and load combinations, to validate the developed limit load solutions. The results show that these limit load solutions can predict the FE data very well for the cases with shallow or deep and short cracks and are conservative. For the cases with very long and deep cracks, the predictions are reasonably accurate and more conservative. -- Highlights: • Elastic-perfectly plastic 3D finite element limiting analyses of cylinders. • Thin/thick-walled cylinders with circumferential surface defects. • Combined loading for pressure, end-force and global bending moment. • Totally 1458 cases analysed and tabulated normalised results provided. • Results used to validate the developed limit load solutions in Part I of this paper

  7. 75 FR 34170 - Plastic Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC...

    Science.gov (United States)

    2010-06-16

    ... Omnium Automotive Exteriors, LLC, Anderson, SC; Plastic Omnium Automotive Exteriors, LLC, Troy, MI... the Anderson, South Carolina location of Plastic Omnium Automotive Exteriors, LLC, working out of Troy... certification to include workers in support of the Anderson, South Carolina facility working out of Troy...

  8. Evaluation of Shear Wall-RC Frame Interaction of High-Rise Buildings using 2-D model Approach

    Directory of Open Access Journals (Sweden)

    Dipali Patel

    2015-09-01

    Full Text Available The usefulness of structural walls in the framing of buildings has long been recognized. It is generally preferred to use shear wall in combination with moment resisting frame. In the present study, an effort is also made to investigate the shear wall-RC frame interaction using 2-D modeling of 20, 30 and 35 storey RC frame building with shear wall. In equivalent simplified 2-D model, two exterior frames with shear wall modeled as single frame with double stiffness, strength and weight. The interior frames without shear wall are modeled as a single frame with equivalent stiffness, strength and weight. The modeled frames are connected with rigid link at each floor level. Using 2-D plane frame model the lateral force distribution between Exterior frame with shear wall and Interior frame without shear wall is investigated. From the analysis, it is observed that up to bottom seven/eight storey more than 50% load is taken by frame with shear wall and the lower most three storeys take about 75% of total storey shear.

  9. Effect of local wall thinning on the collapse behavior of pipe elbows subjected to a combined internal pressure and in-plane bending load

    International Nuclear Information System (INIS)

    Kim, Jin-Weon; Na, Man-Gyun; Park, Chi-Yong

    2008-01-01

    The objective of this study was to investigate the effect of local wall thinning on the collapse behavior of pipe elbows subjected to a combined internal pressure and in-plane bending load. This study evaluated the global deformation behavior and collapse moment of the elbows, which contained various types of local wall-thinning defects at their intrados or extrados, using three-dimensional elastic-plastic finite element analysis. The analysis results showed that the global deformation behavior of locally wall-thinned elbows was largely governed by the mode of the bending and the elbow geometry rather than the wall-thinning parameters, except for elbows with considerably large and deep wall thinning that showed plastic instabilities induced by local buckling and plastic collapsing in the thinned area. The reduction in the collapse moment with wall-thinning depth was considerable when local buckling occurred in the thinned areas, whereas the effect of the thinning depth was small when ovalization occurred. The effects of the circumferential thinning angle and thinning length on the collapse moment of elbows were not major for shallow wall-thinning cases. For deeper wall-thinning cases, however, their effects were significant and the dependence of collapse moment on the axial thinning length was governed by the stress type applied to the wall-thinned area. Typically, the reduction in the collapse moment due to local wall thinning was clearer when the thinning defect was located at the intrados rather than the extrados, and it was apparent for elbows with larger bend radius

  10. Removal of methylene blue from aqueous solution with magnetite loaded multi-wall carbon nanotube: Kinetic, isotherm and mechanism analysis

    International Nuclear Information System (INIS)

    Ai, Lunhong; Zhang, Chunying; Liao, Fang; Wang, Yao; Li, Ming; Meng, Lanying; Jiang, Jing

    2011-01-01

    Highlights: ► M-MWCNTs were synthesized by a facile one-pot solvothermal method and used as an efficient adsorbent for removing toxic dye from aqueous solution. ► The adsorption process was characterized by kinetics and isotherm analysis. ► FTIR analysis was employed to investigate the interactions between M-MWCNTs and dye. - Abstract: In this study, we have demonstrated the efficient removal of cationic dye, methylene blue (MB), from aqueous solution with the one-pot solvothermal synthesized magnetite-loaded multi-walled carbon nanotubes (M-MWCNTs). The as-prepared M-MWCNTs were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The effects of contact time, initial dye concentration, and solution pH on the adsorption of MB onto M-MWCNTs were systematically studied. It was shown that the MB adsorption was pH-dependent. Adsorption kinetics was best described by the pseudo-second-order model. Equilibrium data were well fitted to the Langmuir isotherm model, yielding maximum monolayer adsorption capacity of 48.06 mg g −1 . FTIR analysis suggested that the adsorption mechanism was possibly attributed to the electrostatic attraction and π–π stacking interactions between MWCNTs and MB.

  11. Lifetime assessment of thick-walled components made of nickel-base alloys under near-service loading conditions

    International Nuclear Information System (INIS)

    Hueggenberg, Daniel

    2015-01-01

    and the transmission electron microscope for the base raw material, the creep and creep-fatigue exposed material. For the classification the investigation results were compared to the results of the other projects and no differences could be identified. For the description of the deformation and damage behavior under creep-fatigue loading with finite elements simulations a viscoplastic deformation model with an integrated damage model of Lemaitre was used. The material dependent model parameters were fitted under consideration of the basis characterization test results of the Alloy 617 mod. and Alloy 263. All basis characterization tests are simulated with finite elements to classify the parameter fittings. The verification of the fitted material models was carried out by simulations of the complex lab tests. From the comparison of the simulation and test results it is obvious that the deformation and damage behavior can be reproduced with the used material model in a good manner. With finite element simulations of complex thick-walled components (header, formed part) under realistic thermal and mechanic loading conditions could be shown that the viscoplastic material model fitted for the Alloy 617 mod. and Alloy 263 is able to predict the locations of the maximum loadings and the lifetime until the first cracks appear. This could be confirmed by dye penetrant testing on the one hand and destructive investigations of two fracture surfaces of the header on the other hand. Additionally the approaches of the European DIN EN 12952-3/4, the American ASME Section III Division 1 Subsection NH, the French RCC-MR RB 3262.12 and the British R5 recommendations Volume 2/3 are used to predict the lifetimes. It can be seen that the approaches of ASME and RCC-MR provide very conservative predictions and that the approaches of R5 and DIN EN 12952 provide non-conservative predictions. These results lead to the conclusion that no approach of the standards/recommendation is suitable for

  12. Seismic strengthening of RC structures with exterior shear walls

    Indian Academy of Sciences (India)

    Nowadays, most of the strengthening strategies are based on global ..... In the present work, sliding shear capacity was calculated based on the code formulations, ... This study has been carried out with the financial support of State Planning ...

  13. Upstate Windows and Exteriors Information Sheet

    Science.gov (United States)

    Upstate Windows and Exteriors (the Company) is located in Greenville, South Carolina. The settlement involves renovation activities conducted at properties constructed prior to 1978, located in Greenville and Easley, South Carolina.

  14. A primer on exterior differential calculus

    Directory of Open Access Journals (Sweden)

    Burton D.A.

    2003-01-01

    Full Text Available A pedagogical application-oriented introduction to the cal­culus of exterior differential forms on differential manifolds is presented. Stokes' theorem, the Lie derivative, linear con­nections and their curvature, torsion and non-metricity are discussed. Numerous examples using differential calculus are given and some detailed comparisons are made with their tradi­tional vector counterparts. In particular, vector calculus on R3 is cast in terms of exterior calculus and the traditional Stokes' and divergence theorems replaced by the more powerful exterior expression of Stokes' theorem. Examples from classical continuum mechanics and spacetime physics are discussed and worked through using the language of exterior forms. The numerous advantages of this calculus, over more traditional ma­chinery, are stressed throughout the article. .

  15. Evaluation of Extended Wall OSB Sheathing Connection under Combined Uplift and Shear Loading for 24-inch Heel Trusses

    Science.gov (United States)

    Vladimir Kochkin; Andrew DeRenzis; Xiping Wang

    2014-01-01

    This study was designed to evaluate the performance of the extended wall structural panel connection in resisting combined uplift and shear forces at the roof-to-wall interface with a focus on a truss heel height of 24 in. to address the expected increases in the depth of attic insulation used in Climate Zones 5 and higher. Five full-size roof-wall assemblies were...

  16. An Applied Method for Predicting the Load-Carrying Capacity in Compression of Thin-Wall Composite Structures with Impact Damage

    Science.gov (United States)

    Mitrofanov, O.; Pavelko, I.; Varickis, S.; Vagele, A.

    2018-03-01

    The necessity for considering both strength criteria and postbuckling effects in calculating the load-carrying capacity in compression of thin-wall composite structures with impact damage is substantiated. An original applied method ensuring solution of these problems with an accuracy sufficient for practical design tasks is developed. The main advantage of the method is its applicability in terms of computing resources and the set of initial data required. The results of application of the method to solution of the problem of compression of fragments of thin-wall honeycomb panel damaged by impacts of various energies are presented. After a comparison of calculation results with experimental data, a working algorithm for calculating the reduction in the load-carrying capacity of a composite object with impact damage is adopted.

  17. Exterior differentials in superspace and Poisson brackets

    International Nuclear Information System (INIS)

    Soroka, Dmitrij V.; Soroka, Vyacheslav A.

    2003-01-01

    It is shown that two definitions for an exterior differential in superspace, giving the same exterior calculus, yet lead to different results when applied to the Poisson bracket. A prescription for the transition with the help of these exterior differentials from the given Poisson bracket of definite Grassmann parity to another bracket is introduced. It is also indicated that the resulting bracket leads to generalization of the Schouten-Nijenhuis bracket for the cases of superspace and brackets of diverse Grassmann parities. It is shown that in the case of the Grassmann-odd exterior differential the resulting bracket is the bracket given on exterior forms. The above-mentioned transition with the use of the odd exterior differential applied to the linear even/odd Poisson brackets, that correspond to semi-simple Lie groups, results, respectively, in also linear odd/even brackets which are naturally connected with the Lie superalgebra. The latter contains the BRST and anti-BRST charges and can be used for calculation of the BRST operator cogomology. (author)

  18. Fatigue life assessment of thin-walled welded joints under non-proportional load-time histories by the shear stress rate integral approach

    Directory of Open Access Journals (Sweden)

    A. Bolchoun

    2016-10-01

    Full Text Available Fatigue life tests under constant and variable amplitude loadings were performed on the tube-tube thin-walled welded specimens made of magnesium (AZ31 and AZ61 alloys. The tests included pure axial, pure torsional and combined in-phase and out-of-phase loadings with the load ratio  RR " ", " " 1  . For the tests with variable amplitude loads a Gaußdistributed loading spectrum with S L 4 5 10  cycles was used. Since magnesium welds show a fatigue life reduction under out-of-phase loads, a stress-based method, which takes this behavior into account, is proposed. The out-of-phase loading results in rotating shear stress vectors in the section planes, which are not orthogonal to the surface. This fact is used in order to provide an out-of-phase measure of the load. This measure is computed as an area covered by the shear stress vectors in all planes over a certain time interval, its computation involves the shear stress and the shear stress rate vectors in the individual planes. Fatigue life evaluation for the variable amplitudes loadings is performed using the Palmgren-Miner linear damage accumulation, whereas the total damage of every cycle is split up into two components: the amplitude component and the out-of-phase component. In order to compute the two components a modification of the rainflow counting method, which keeps track of the time intervals, where the cycles occur, must be used. The proposed method also takes into account different slopes of the pure axial and the pure torsional Wöhler-line by means of a Wöhler-line interpolation for combined loadings

  19. Several loadings and stresses of first wall of SiC with metal liner on conceptual design of moving ring reactor 'KARIN-1'

    International Nuclear Information System (INIS)

    Nishikawa, Masahiro; Tachibana, Eizaburo; Watanabe, Kenji; Fujiie, Yoichi.

    1983-01-01

    On conceptual design of moving ring reactor ''KARIN-I'' (Output: 1850 MWe), the first wall of SiC with metal liner is considered by reason that SiC ceramics has specific features of excellent radiation damage resistance in fast neutron spectra and a very low residual radioactivity, and that the thin metal liner has good compatibility with liquid lithium and good vaccum-tight, however, a extent electromagnetic interaction. The electromagnetic force applied on the metal liner and several pressure losses of liquid lithum flow are estimated, and these forces correspond to the fluid mechanical loading on SiC first wall. Thermal loading by neutron flux is calculated on the first wall to obtain temperature distributions along the flow direction and toward the wall thickness. At the outlet of the burning section, the surface temperature of SiC rises to the value of 825 0 C on plasma side and on the metal liner, it rises to the value of 540 0 C. Finally, the stress analysis is performed. The thermal stress is about one order larger than the stress induced by the fluid mechanical loading. At the inlet of the burning section, the average tensile stress of 22.4kg/mm 2 is induced on the outer side of SiC wall, and on the inner side, the average compressive stress of -26.1kg/mm 2 is induced. At the outlet of the burning section, the tensile stress is found to oscillate between 25.5kg/mm 2 and 27.3kg/mm 2 on the outer side of SiC wall by frequency of 1 Hz, and on the inner side, the compressive stress also oscillates between -21.6kg/mm 2 and -29.0kg/mm 2 by the same frequency. These stresses are within the value of fracture stress, (72.5kg/mm 2 ). Difficult residual problems on the first wall are also discussed. (author)

  20. Damage and fatigue crack growth of Eurofer steel first wall mock-up under cyclic heat flux loads. Part 1: Electron beam irradiation tests

    Energy Technology Data Exchange (ETDEWEB)

    You, J.H., E-mail: you@ipp.mpg.de [Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching (Germany); Höschen, T. [Max-Planck-Institut für Plasmaphysik, Euratom Association, Boltzmannstr. 2, 85748 Garching (Germany); Pintsuk, G. [Forschungszentrum Jülich GmbH, IEK2, Euratom Association, 52425 Jülich (Germany)

    2014-04-15

    Highlights: • Clear evidence of microscopic damage and crack formation at the notch root in the early stage of the fatigue loading (50–100 load cycles). • Propagation of fatigue crack at the notch root in the course of subsequent cyclic heat-flux loading followed by saturation after roughly 600 load cycles. • No sign of damage on the notch-free surface up to 800 load cycles. • No obvious effect of the pulse time duration on the crack extension. • Slight change in the grain microstructure due to the formation of sub-grain boundaries by plastic deformation. - Abstract: Recently, the idea of bare steel first wall (FW) is drawing attention, where the surface of the steel is to be directly exposed to high heat flux loads. Hence, the thermo-mechanical impacts on the bare steel FW will be different from those of the tungsten-coated one. There are several previous works on the thermal fatigue tests of bare steel FW made of austenitic steel with regard to the ITER application. In the case of reduced-activation steel Eurofer97, a candidate structural material for the DEMO FW, there is no report on high heat flux tests yet. The aim of the present study is to investigate the thermal fatigue behavior of the Eurofer-based bare steel FW under cyclic heat flux loads relevant to DEMO operation. To this end, we conducted a series of electron beam irradiation tests with heat flux load of 3.5 MW/m{sup 2} on water-cooled mock-ups with an engraved thin notch on the surface. It was found that the notch root region exhibited a marked development of damage and fatigue cracks whereas the notch-free surface manifested no sign of crack formation up to 800 load cycles. Results of extensive microscopic investigation are reported.

  1. Evaluating an Exterior Insulation and Finish System for Deep Energy Retrofits

    Energy Technology Data Exchange (ETDEWEB)

    Dentz, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Podorson, David [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2014-01-01

    Exterior insulation and finish systems (EIFS) are proprietary synthetic formulations that are applied to the exterior walls of buildings to serve as insulation and exterior cladding. The insulation thickness can vary from less than one inch to a foot or more. In this project the applicability of EIFS for residential deep energy retrofits was investigated through modeling and a case study home. The home was retrofitted using a site-applied four-inch-thick EIFS. Site-specific details were developed as required for the residential retrofit application. Site work and the costs of the EIFS system were documented. The demonstration home was modeled using Building Energy Optimization energy and cost analysis software to explore cost effectiveness of various EIFS insulation thicknesses in two climate locations.

  2. Steel plates and concrete filled composite shear walls related nuclear structural engineering: Experimental study for out-of-plane cyclic loading

    Energy Technology Data Exchange (ETDEWEB)

    Li, Xiaohu [The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124 (China); Li, Xiaojun, E-mail: beerli@vip.sina.com [The College of Architecture and Civil Engineering, Beijing University of Technology, Beijing 100124 (China); Institute of Geophysics, China Earthquake Administration, Beijing 100081 (China)

    2017-04-15

    Based on the program of CAP1400 nuclear structural engineering, the out-of-plane seismic behavior of steel plate and concrete infill composite shear walls (SCW) was investigated. 6 1/5 scaled specimens were conducted which consist of 5 SCW specimens and 1 reinforced concrete (RC) specimen. The specimens were tested under out-of-plane cyclic loading. The effect of the thickness of steel plate, vertical load and the strength grade of concrete on the out-of-plane seismic behavior of SCW were analyzed. The results show that the thickness of steel plate and vertical load have great influence on the ultimate bearing capacity and lateral stiffness, however, the influence of the strength grade of concrete was little within a certain range. SCW is presented to have a better ultimate capacity and lateral stiffness but have worse ductility in failure stage than that of RC. Based on the experiment, the cracking load of concrete infill SCW was analyzed in theory. The modified calculation formula of the cracking load was made, the calculated results showed good agreement with the test results. The formula can be used as the practical design for the design of cracking loads.

  3. Steel plates and concrete filled composite shear walls related nuclear structural engineering: Experimental study for out-of-plane cyclic loading

    International Nuclear Information System (INIS)

    Li, Xiaohu; Li, Xiaojun

    2017-01-01

    Based on the program of CAP1400 nuclear structural engineering, the out-of-plane seismic behavior of steel plate and concrete infill composite shear walls (SCW) was investigated. 6 1/5 scaled specimens were conducted which consist of 5 SCW specimens and 1 reinforced concrete (RC) specimen. The specimens were tested under out-of-plane cyclic loading. The effect of the thickness of steel plate, vertical load and the strength grade of concrete on the out-of-plane seismic behavior of SCW were analyzed. The results show that the thickness of steel plate and vertical load have great influence on the ultimate bearing capacity and lateral stiffness, however, the influence of the strength grade of concrete was little within a certain range. SCW is presented to have a better ultimate capacity and lateral stiffness but have worse ductility in failure stage than that of RC. Based on the experiment, the cracking load of concrete infill SCW was analyzed in theory. The modified calculation formula of the cracking load was made, the calculated results showed good agreement with the test results. The formula can be used as the practical design for the design of cracking loads.

  4. Performance of Screen Grid Insulating Concrete Form Walls under Combined In-Plane Vertical and Lateral Loads

    KAUST Repository

    Abdel Mooty, Mohamed; Haroun, Medhat; El Maghraby, Yosra; Fahmy, Ezzat; Abou Zeid, Mohamed

    2010-01-01

    advantages over traditional methods of wall construction such as reduced construction time, noise reduction, strength enhancement, energy efficiency, and compatibility with any inside or outside surface finish. The focus of this study is the Screen Grid ICF

  5. Validation of nonlinear FEA models of a thin-walled elbow under extreme loading conditions for Sodium-cooled Fast Reactors

    International Nuclear Information System (INIS)

    Watakabe, Tomoyoshi; Wakai, Takashi; Jin, Chuanrong; Usui, Yoshiya; Sakai, Shinkichi; Ooshika, Junji; Tsukimori, Kazuyuki

    2015-01-01

    For the purpose of confirming failure modes and safety margin, some studies on the ultimate strength of thin-walled piping components for Sodium-cooled Fast Reactors (SFRs) under extreme loading conditions such as large earthquakes have been reported these several years. Nonlinear finite element analysis has been applied in these studies to simulate buckling and yielding with large deformation, whose accuracy is dependent on the element type, the mesh size, the elasto-plastic model and so on. It is important to check the validation of a finite element model for nonlinear analysis especially under extreme loading conditions. This paper presents static and dynamic analyses of a thin-walled elbow with large deformation under large seismic loading, and discusses the validation of the FEA models comparing with experimental results. The finite element analysis models in this study are generated by shell elements for a stainless steel pipe elbow of diameter-to-thickness ratio 59:1 similar to the main pipe of SFRs, which is used for shaking table tests. At first, a static analysis is carried out for an in-plane monotonic bending test, in order to confirm that the shell element is appropriate to the large deformation analysis and the material parameters are proper for the strain level in the experiments. And then, a dynamic in-plane bending test with the maximum acceleration of 11.7G is simulated by the nonlinear FEA with stiffness-proportional damping. The influence of mesh sizes on results is investigated, to determine proper mesh sizes and reduce the computational cost. Finally, comparing the results of the FEM analyses with those of experiments, it is concluded that the appropriately generated FEA models are effective and give accurate results for nonlinear analyses of the thin-walled elbow under large seismic loading. (author)

  6. Seismic and Power Generation Performance of U-Shaped Steel Connected PV-Shear Wall under Lateral Cyclic Loading

    OpenAIRE

    Zhang, Hongmei; Dong, Jinzhi; Duan, Yuanfeng; Lu, Xilin; Peng, Jinqing

    2014-01-01

    BIPV is now widely used in office and residential buildings, but its seismic performance still remained vague especially when the photovoltaic (PV) modules are installed on high-rise building facades. A new form of reinforced concrete shear wall integrated with photovoltaic module is proposed in this paper, aiming to apply PV module to the facades of high-rise buildings. In this new form, the PV module is integrated with the reinforced concrete wall by U-shaped steel connectors through embedd...

  7. Experimental assessment and numerical modeling of the nonlinear behavior of the masonry shear walls under in-plane cyclic loading considering the brickwork-setting effect

    Directory of Open Access Journals (Sweden)

    Amir Hossein Karimi

    2017-08-01

    Full Text Available In this article, the main purpose is nonlinear analysis of the cyclic behavior of the masonry shear walls including brickwork setting using finite element method. Three different brickwork-settings including running bond style, herringbone style and Zarbi style (herreh style were investigated. To this end, the walls (in dimension of 195×1500×1720 mm were tested in the laboratory and then were simulated using macro modeling method by Abaqus software, and their hysteretic curves was drawn. The concrete damaged plasticity criteria in the Abaqus software is a model used in this research.In this method, the main failure mechanisms of fracture are cracking in tension and crushing in compression. The macro modeling method was used for numerical assessment of the masonry walls. After numerical modeling and drawing hysteretic curves and contrasting them with laboratory results, it was proven that the concrete damaged plasticity model, which is behavioral model for simulating concrete material, can be used for modeling masonry materials under seismic loading. However, this model cannot be used to simulate pinching effect in hysteretic curve drawn from seismic loading. The envelope curve resulted from the numerical analysis of all three brickwork layouts had a good agreement with the results of the laboratory tests, but in Hysteretic curve of Herringbone style and Zarbi style the pinching effect did not match experimental results

  8. Study of failure criterion applicable to elastic-plastic finite element analyses of wall-thinned pipes subjected to multi-axial loading. Case for groove type flaw under combined internal pressure and bending loading

    International Nuclear Information System (INIS)

    Mori, Kosuke; Meshii, Toshiyuki

    2015-01-01

    In this paper, a failure criterion applicable to large-strain finite element analysis (FEA) results was studied to predict the limit bending load M_c of the groove shaped wall-thinned pipes, under combined internal pressure and bending load, that experienced cracking. In our previous studies, Meshii and Ito (2012) considered cracking of pipes with groove shaped flaw (small axial length δ_z in Fig. 1) was due to the plastic instability at the wall-thinned section and proposed the Domain Collapse Criterion (DCC). The DCC could predict M_c of cracking for small δ_z by comparing the von Mises stress σ_M_i_s_e_s with the true tensile strength σ_B. Because the discrepancy in prediction of the M_c in the case of cracking was within 15%, it was considered that the predictability was could be improved further. Thus, in this work, attempt was made to improve the accuracy of M_c prediction with a perspective that multi-axial stress state might affect this plastic instability at the wall-thinned section. As a result of examination of the various failure criteria based on multi-axial stress, it was confirmed that the limit bending load of the groove flawed pipe that experienced cracking in experiment (Hereafter, it was expressed 'flawed pipe that experienced cracking') could be predicted within 5% accuracy by applying Hill's plastic instability onset criterion (Hill, 1952) to the outer surface of the crack penetration section. The accuracy of the predicted limit bending load was improved from DCC's within 15% to within 5%. (author)

  9. Sensitivity of Variables with Time for Degraded RC Shear Wall with Low Steel Ratio under Seismic Load

    International Nuclear Information System (INIS)

    Park, Jun Hee; Choun, Young Sun; Choi, In Kil

    2011-01-01

    Various factors lead to the degradation of reinforced concrete (RC) shear wall over time. The steel section loss, concrete spalling and strength of material have been considered for the structural analysis of degraded shear wall. When all variables with respect to degradation are considered for probabilistic evaluation of degraded shear wall, many of time and effort were demanded. Therefore, it is required to define important variables related to structural behavior for effectively conducting probabilistic seismic analysis of structures with age-related degradation. In this study, variables were defined by applying the function of time to consider degradation with time. Importance of variables with time on the seismic response was investigated by conducting sensitivity analysis

  10. Simulation and analysis of collapsing vapor-bubble clusters with special emphasis on potentially erosive impact loads at walls

    Science.gov (United States)

    Ogloblina, Daria; Schmidt, Steffen J.; Adams, Nikolaus A.

    2018-06-01

    Cavitation is a process where a liquid evaporates due to a pressure drop and re-condenses violently. Noise, material erosion and altered system dynamics characterize for such a process for which shock waves, rarefaction waves and vapor generation are typical phenomena. The current paper presents novel results for collapsing vapour-bubble clusters in a liquid environment close to a wall obtained by computational fluid mechanics (CFD) simulations. The driving pressure initially is 10 MPa in the liquid. Computations are carried out by using a fully compressible single-fluid flow model in combination with a conservative finite volume method (FVM). The investigated bubble clusters (referred to as "clouds") differ by their initial vapor volume fractions, initial stand-off distances to the wall and by initial bubble radii. The effects of collapse focusing due to bubble-bubble interaction are analysed by investigating the intensities and positions of individual bubble collapses, as well as by the resulting shock-induced pressure field at the wall. Stronger interaction of the bubbles leads to an intensification of the collapse strength for individual bubbles, collapse focusing towards the center of the cloud and enhanced re-evaporation. The obtained results reveal collapse features which are common for all cases, as well as case-specific differences during collapse-rebound cycles. Simultaneous measurements of maximum pressures at the wall and within the flow field and of the vapor volume evolution show that not only the primary collapse but also subsequent collapses are potentially relevant for erosion.

  11. The influence of engine speed and load on the heat transfer between gases and in-cylinder walls at fired and motored conditions of an IDI diesel engine

    International Nuclear Information System (INIS)

    Sanli, Ali; Ozsezen, Ahmet N.; Kilicaslan, Ibrahim; Canakci, Mustafa

    2008-01-01

    In this study, the heat transfer characteristics between gases and in-cylinder walls at fired and motored conditions in a diesel engine were investigated by using engine data obtained experimentally. For this investigation, a four-cylinder, indirect injection (IDI) diesel engine was tested under different engine speeds and loads. The heat transfer coefficient was calculated by using Woschni expression correlated for the IDI diesel engines, and also using Annand and Hohenberg expressions. The temperature of in-cylinder gases were determined from a basic model based on the first law of thermodynamics after measuring in-cylinder pressure experimentally. The results show that the heat transfer characteristics of the IDI diesel engine strongly depend on the engine speed and load as a function of crank angle at fired and motored conditions

  12. The influence of engine speed and load on the heat transfer between gases and in-cylinder walls at fired and motored conditions of an IDI diesel engine

    Energy Technology Data Exchange (ETDEWEB)

    Sanli, Ali; Kilicaslan, Ibrahim [Department of Mechanical Education, Kocaeli University, 41380 Izmit (Turkey); Ozsezen, Ahmet N.; Canakci, Mustafa [Department of Mechanical Education, Kocaeli University, 41380 Izmit (Turkey); Alternative Fuels R and D Center, Kocaeli University, 41040 Izmit (Turkey)

    2008-08-15

    In this study, the heat transfer characteristics between gases and in-cylinder walls at fired and motored conditions in a diesel engine were investigated by using engine data obtained experimentally. For this investigation, a four-cylinder, indirect injection (IDI) diesel engine was tested under different engine speeds and loads. The heat transfer coefficient was calculated by using Woschni expression correlated for the IDI diesel engines, and also using Annand and Hohenberg expressions. The temperature of in-cylinder gases were determined from a basic model based on the first law of thermodynamics after measuring in-cylinder pressure experimentally. The results show that the heat transfer characteristics of the IDI diesel engine strongly depend on the engine speed and load as a function of crank angle at fired and motored conditions. (author)

  13. Thermo-sensitive liposomes loaded with doxorubicin and lysine modified single-walled carbon nanotubes as tumor-targeting drug delivery system.

    Science.gov (United States)

    Zhu, Xiali; Xie, Yingxia; Zhang, Yingjie; Huang, Heqing; Huang, Shengnan; Hou, Lin; Zhang, Huijuan; Li, Zhi; Shi, Jinjin; Zhang, Zhenzhong

    2014-11-01

    This report focuses on the thermo-sensitive liposomes loaded with doxorubicin and lysine-modified single-walled carbon nanotube drug delivery system, which was designed to enhance the anti-tumor effect and reduce the side effects of doxorubicin. Doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes was prepared by reverse-phase evaporation method, the mean particle size was 232.0 ± 5.6 nm, and drug entrapment efficiency was 86.5 ± 3.7%. The drug release test showed that doxorubicin released more quickly at 42℃ than at 37℃. Compared with free doxorubicin, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes could efficiently cross the cell membranes and afford higher anti-tumor efficacy on the human hepatic carcinoma cell line (SMMC-7721) cells in vitro. For in vivo experiments, the relative tumor volumes of the sarcomaia 180-bearing mice in thermo-sensitive liposomes group and doxorubicin group were significantly smaller than those of N.S. group. Meanwhile, the combination of near-infrared laser irradiation at 808 nm significantly enhanced the tumor growth inhibition both on SMMC-7721 cells and the sarcomaia 180-bearing mice. The quality of life such as body weight, mental state, food and water intake of sarcomaia 180 tumor-bearing mice treated with doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes were much higher than those treated with doxorubicin. In conclusion, doxorubicin-lysine/single-walled carbon nanotube-thermo-sensitive liposomes combined with near-infrared laser irradiation at 808 nm may potentially provide viable clinical strategies for targeting delivery of anti-cancer drugs. © The Author(s) 2014 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  14. Gravitational Metric Tensor Exterior to Rotating Homogeneous ...

    African Journals Online (AJOL)

    The covariant and contravariant metric tensors exterior to a homogeneous spherical body rotating uniformly about a common φ axis with constant angular velocity ω is constructed. The constructed metric tensors in this gravitational field have seven non-zero distinct components.The Lagrangian for this gravitational field is ...

  15. On the exterior structure of graphs

    International Nuclear Information System (INIS)

    Kastler, Daniel

    2004-01-01

    After a detailed ab initio description of the exterior structure of graphs as handled by Connes and Kreimer in their work on renormalization (illustrated by the example of the φ 3 model in six dimensions) we spell out in detail their study of the Lie algebra of infinitesimal characters and of the group of characters of the Hopf algebra of Feynman graphs

  16. Relevance of exterior appraisal in pig breeding

    NARCIS (Netherlands)

    Steenbergen, van E.J.

    1990-01-01

    In farm animals characterization of exterior is not a goal in itself but rather serves as an indicator of economically important traits, i.e. for pigs: growth performance, reproductivity and constitution. This indication might be of interest when these traits can not be measured

  17. Experimental evaluation of ability of Relap5, Drako, Flowmaster2TM and program using unsteady wall friction model to calculate water hammer loadings on pipelines

    International Nuclear Information System (INIS)

    Marcinkiewicz, Jerzy; Adamowski, Adam; Lewandowski, Mariusz

    2008-01-01

    Mechanical loadings on pipe systems caused by water hammer (hydraulic transients) belong to the most important and most difficult to calculate design loadings in nuclear power plants. The most common procedure in Sweden is to calculate the water hammer loadings on pipe segments, according to the classical one-dimensional (1D) theory of liquid transient flow in a pipeline, and then transfer the results to strength analyses of pipeline structure. This procedure assumes that there is quasi-steady respond of the pipeline structure to pressure surges-no dynamic interaction between the fluid and the pipeline construction. The hydraulic loadings are calculated with 1D so-called 'network' programs. Commonly used in Sweden are Relap5, Drako and Flowmaster2-all using quasi-steady wall friction model. As a third party accredited inspection body Inspecta Nuclear AB reviews calculations of water hammer loadings. The presented work shall be seen as an attempt to illustrate ability of Relap5, Flowmaster2 and Drako programs to calculate the water hammer loadings. A special attention was paid to using of Relap5 for calculation of water hammer pressure surges and forces (including some aspects of influence of Courant number on the calculation results) and also the importance of considering the dynamic (or unsteady) friction models. The calculations are compared with experimental results. The experiments have been conducted at a test rig designed and constructed at the Szewalski Institute of Fluid Flow Machinery of the Polish Academy of Sciences (IMP PAN) in Gdansk, Poland. The analyses show quite small differences between pressures and forces calculated with Relap5, Flowmaster2 and Drako (the differences regard mainly damping of pressure waves). The comparison of calculated and measured pressures and also a force acting on a pre-defined pipe segment shows significant differences. It is shown that the differences can be reduced by using unsteady friction models in calculations

  18. Influence of a boatlanding and j-tubes on wave loads and wall thickness of the monopile support structure design

    NARCIS (Netherlands)

    Segeren, M.L.A.

    2011-01-01

    Support structures for offshore wind turbines play a significant part in the cost of offshore wind energy. With current access systems a conventional boat landing is not necessary. Secondary steel, such as a boat landing and J-tube, influences wave loads. A way of taking the secondary steel items

  19. Inequivalence of interior and exterior dynamical problems

    International Nuclear Information System (INIS)

    Santilli, R.M.

    1991-09-01

    We begin a series of notes with the review of the historical distinction by Lagrange, Hamilton, Jacobi and other Founding Fathers of analytic dynamics, between the exteriordynamical problem, consisting of motion in vacuum under action-at-a-distance interactions, and the interior dynamical problem, consisting of motion within a resistive medium with the additional presence of contact, nonlinear, nonlocal and nonhamiltonian internal forces. After recalling some of the historical reasons that led to the contemporary, virtually complete restriction of research to the exterior problem, we show that the interior dynamical problem cannot be reduced to the exterior one. This establishes the open character of the central objective of these notes: the identification of the space-time symmetries and relativities that are applicable to interior, nonlinear, nonlocal and nonhamiltonian systems. (author). 29 refs

  20. Process design (exterior – interior design)

    OpenAIRE

    Sandeva, Vaska; Despot, Katerina

    2013-01-01

    The design is a complex process of spatial organization and creative problem object. It switched to the study of complex natural conditions (analysis and evaluation) and the development of compositional solution structure of the object. Construction and shaping of all buildings whether it is exterior or interior, be it street, Square apartment building, park or greater forest massif, public facility (administrative buildings, hospitals, schools, galleries etc.), residential object (garsion...

  1. Excavationless Exterior Foundation Insulation Exploratory Study

    Energy Technology Data Exchange (ETDEWEB)

    Mosiman, G.; Wagner, R.; Schirber, T.

    2013-02-01

    The key objective of this exploratory study was to investigate the feasibility of the development or adoption of technologies that would enable a large percentage of existing homes in cold climates to apply a combination 'excavationless' soil removal process with appropriate insulation and water management on the exterior of existing foundations at a low cost. Our approach was to explore existing excavation and material technologies and systems to discover whether potential successful combinations existed.

  2. Exterior LED Lighting Projects at Princeton University

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Evans, William [Princeton Univ., NJ (United States); Murphy, Arthur T. [Princeton Univ., NJ (United States); Perrin, Tess E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-01

    For this report, PNNL / the U.S. Department of Energy (DOE) studied a series of past exterior lighting projects at Princeton, in order to document Princeton’s experiences with solid-state lighting (SSL) and the lessons learned along the way, and to show how their approach to SSL projects evolved as their own learning expanded and as the products available improved in performance and sophistication.

  3. Realization of FRC interior and exterior furniture

    Science.gov (United States)

    Šonka, Š.; Frantová, M.; Štemberk, P.; Havrda, J.; Janouch, P.

    2017-09-01

    This article deals with the implementation of fibre reinforced concrete for interior and exterior furniture. The use of fibre reinforced concrete for non-traditional and small structures brings some specifics in design and realization. These are, in particular, the design of a suitable mixture, the choice of the shape of the structure in relation to the technological possibilities of realization, the static effects and finally the actual production of the element.

  4. Dynamic wall demonstration project

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsui, L.; Mayhew, W.

    1990-12-01

    The dynamic wall concept is a ventilation strategy that can be applied to a single family dwelling. With suitable construction, outside air can be admitted through the exterior walls of the house to the interior space to function as ventilation air. The construction and performance monitoring of a demonstration house built to test the dynamic wall concept in Sherwood Park, Alberta, is described. The project had the objectives of demonstrating and assessing the construction methods; determining the cost-effectiveness of the concept in Alberta; analyzing the operation of the dynamic wall system; and determining how other components and systems in the house interact with the dynamic wall. The exterior wall construction consisted of vinyl siding, spun-bonded polyolefin-backed (SBPO) rigid fiberglass sheathing, 38 mm by 89 mm framing, fiberglass batt insulation and 12.7 mm drywall. The mechanical system was designed to operate in the dynamic (negative pressure) mode, however flexibility was provided to allow operation in the static (balanced pressure) mode to permit monitoring of the walls as if they were in a conventional house. The house was monitored by an extensive computerized monitoring system. Dynamic wall operation was dependent on pressure and temperature differentials between indoor and outdoor as well as wind speed and direction. The degree of heat gain was found to be ca 74% of the indoor-outdoor temperature differential. Temperature of incoming dynamic air was significantly affected by solar radiation and measurement of indoor air pollutants found no significant levels. 4 refs., 34 figs., 11 tabs.

  5. Influence of stochastic geometric imperfections on the load-carrying behaviour of thin-walled structures using constrained random fields

    Science.gov (United States)

    Lauterbach, S.; Fina, M.; Wagner, W.

    2018-04-01

    Since structural engineering requires highly developed and optimized structures, the thickness dependency is one of the most controversially debated topics. This paper deals with stability analysis of lightweight thin structures combined with arbitrary geometrical imperfections. Generally known design guidelines only consider imperfections for simple shapes and loading, whereas for complex structures the lower-bound design philosophy still holds. Herein, uncertainties are considered with an empirical knockdown factor representing a lower bound of existing measurements. To fully understand and predict expected bearable loads, numerical investigations are essential, including geometrical imperfections. These are implemented into a stand-alone program code with a stochastic approach to compute random fields as geometric imperfections that are applied to nodes of the finite element mesh of selected structural examples. The stochastic approach uses the Karhunen-Loève expansion for the random field discretization. For this approach, the so-called correlation length l_c controls the random field in a powerful way. This parameter has a major influence on the buckling shape, and also on the stability load. First, the impact of the correlation length is studied for simple structures. Second, since most structures for engineering devices are more complex and combined structures, these are intensively discussed with the focus on constrained random fields for e.g. flange-web-intersections. Specific constraints for those random fields are pointed out with regard to the finite element model. Further, geometrical imperfections vanish where the structure is supported.

  6. Improved iterative image reconstruction algorithm for the exterior problem of computed tomography

    International Nuclear Information System (INIS)

    Guo, Yumeng; Zeng, Li

    2017-01-01

    In industrial applications that are limited by the angle of a fan-beam and the length of a detector, the exterior problem of computed tomography (CT) uses only the projection data that correspond to the external annulus of the objects to reconstruct an image. Because the reconstructions are not affected by the projection data that correspond to the interior of the objects, the exterior problem is widely applied to detect cracks in the outer wall of large-sized objects, such as in-service pipelines. However, image reconstruction in the exterior problem is still a challenging problem due to truncated projection data and beam-hardening, both of which can lead to distortions and artifacts. Thus, developing an effective algorithm and adopting a scanning trajectory suited for the exterior problem may be valuable. In this study, an improved iterative algorithm that combines total variation minimization (TVM) with a region scalable fitting (RSF) model was developed for a unilateral off-centered scanning trajectory and can be utilized to inspect large-sized objects for defects. Experiments involving simulated phantoms and real projection data were conducted to validate the practicality of our algorithm. Furthermore, comparative experiments show that our algorithm outperforms others in suppressing the artifacts caused by truncated projection data and beam-hardening.

  7. Improved iterative image reconstruction algorithm for the exterior problem of computed tomography

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yumeng [Chongqing University, College of Mathematics and Statistics, Chongqing 401331 (China); Chongqing University, ICT Research Center, Key Laboratory of Optoelectronic Technology and System of the Education Ministry of China, Chongqing 400044 (China); Zeng, Li, E-mail: drlizeng@cqu.edu.cn [Chongqing University, College of Mathematics and Statistics, Chongqing 401331 (China); Chongqing University, ICT Research Center, Key Laboratory of Optoelectronic Technology and System of the Education Ministry of China, Chongqing 400044 (China)

    2017-01-11

    In industrial applications that are limited by the angle of a fan-beam and the length of a detector, the exterior problem of computed tomography (CT) uses only the projection data that correspond to the external annulus of the objects to reconstruct an image. Because the reconstructions are not affected by the projection data that correspond to the interior of the objects, the exterior problem is widely applied to detect cracks in the outer wall of large-sized objects, such as in-service pipelines. However, image reconstruction in the exterior problem is still a challenging problem due to truncated projection data and beam-hardening, both of which can lead to distortions and artifacts. Thus, developing an effective algorithm and adopting a scanning trajectory suited for the exterior problem may be valuable. In this study, an improved iterative algorithm that combines total variation minimization (TVM) with a region scalable fitting (RSF) model was developed for a unilateral off-centered scanning trajectory and can be utilized to inspect large-sized objects for defects. Experiments involving simulated phantoms and real projection data were conducted to validate the practicality of our algorithm. Furthermore, comparative experiments show that our algorithm outperforms others in suppressing the artifacts caused by truncated projection data and beam-hardening.

  8. Measurement of gas species, temperatures, char burnout, and wall heat fluxes in a 200-MW{sub e} lignite-fired boiler at different loads

    Energy Technology Data Exchange (ETDEWEB)

    Li, Zhengqi; Jing, Jianping; Liu, Guangkui; Chen, Zhichao; Liu, Chunlong [School of Energy Science and Engineering, Harbin Institute of Technology, 92, West Dazhi Street, Harbin 150001 (China)

    2010-04-15

    We measured various operational parameters of a 200-MW{sub e}, wall-fired, lignite utility boiler under different loads. The parameters measured were gas temperature, gas species concentration, char burnout, component release rates (C, H and N), furnace temperature, heat flux, and boiler efficiency. Cold air experiments of a single burner were conducted in the laboratory. A double swirl flow pulverized-coal burner has two ring recirculation zones that start in the secondary air region of the burner. With increasing secondary air flow, the air flow axial velocity increases, the maximum values for the radial velocity, tangential velocity, and turbulence intensity all increase, and there are slight increases in the air flow swirl intensity and the recirculation zone size. With increasing load gas, the temperature and CO concentration in the central region of burner decrease, while O{sub 2} concentration, NO{sub x} concentration, char burnout, and component release rates of C, H, and N increase. Pulverized-coal ignites farther into the burner, in the secondary air region. Gas temperature, O{sub 2} concentration, NO{sub x} concentration, char burnout and component release rates of C, H, and N all increase. Furthermore, CO concentration varies slightly and pulverized-coal ignites closer. In the side wall region, gas temperature, O{sub 2} concentration, and NO{sub x} concentration all increase, but CO concentration varies only slightly. In the bottom row burner region the furnace temperature and heat flux increase appreciably, but the increase become more obvious in the middle and top row burner regions and in the burnout region. Compared with a 120-MW{sub e} load, the mean NO{sub x} emission at the air preheater exits for 190-MW{sub e} load increases from 589.5 mg/m{sup 3} (O{sub 2} = 6%) to 794.6 mg/m{sup 3} (O{sub 2} = 6%), and the boiler efficiency increases from 90.73% to 92.45%. (author)

  9. Homogenized rigid body and spring-mass (HRBSM) model for the pushover analysis of out-of-plane loaded unreinforced and FRP reinforced walls

    Science.gov (United States)

    Bertolesi, Elisa; Milani, Gabriele

    2017-07-01

    The present paper is devoted to the discussion of a series of unreinforced and FRP retrofitted panels analyzed adopting the Rigid Body and Spring-Mass (HRBSM) model developed by the authors. To this scope, a total of four out of plane loaded masonry walls tested up to failure are considered. At a structural level, the non-linear analyses are conducted replacing the homogenized orthotropic continuum with a rigid element and non-linear spring assemblage by means of which out of plane mechanisms are allowed. FRP retrofitting is modeled adopting two noded truss elements whose mechanical properties are selected in order to describe possible debonding phenomenon or tensile rupture of the strengthening. The outcome provided numerically are compared to the experimental results showing a satisfactory agreement in terms of global pressure-deflection curves and failure mechanisms.

  10. Triply coupled vibrational band gap in a periodic and nonsymmetrical axially loaded thin-walled Bernoulli-Euler beam including the warping effect

    International Nuclear Information System (INIS)

    Yu Dianlong; Fang Jianyu; Cai Li; Han Xiaoyun; Wen Jihong

    2009-01-01

    The propagation of triply coupled vibrations in a periodic, nonsymmetrical and axially loaded thin-walled Bernoulli-Euler beam composed of two kinds of materials is investigated with the transfer matrix method. The cross-section of the beam lacks symmetrical axes, and bending vibrations in the two perpendicular directions are coupled with torsional vibrations. Furthermore, the effect of warping stiffness is included. The band structures of the periodic beam, both including and excluding the warping effect, are obtained. The frequency response function of the finite periodic beam is simulated with the finite element method. These simulations show large vibration-based attenuation in the frequency range of the gap, as expected. By comparing the band structure of the beam with plane wave expansion method calculations that are available in the literature, one finds that including the warping effect leads to a more accurate simulation. The effects of warping stiffness and axial force on the band structure are also discussed.

  11. Influence of Connection Placement to the Behavior of Precast Concrete Exterior Beam-Column Joint

    OpenAIRE

    Elly Tjahjono; Heru Purnomo

    2010-01-01

    This paper presents an experimental study on the influence of connection placement to the behaviour of exterior beamcolumn joint of precast concrete structure under semi cyclic loading. Four half-scale beam-column specimens were investigated. Three beam-columns were jointed through connection that are placed in beam-column joint region and the forth is connected at the plastic hinge potensial region of the beam. Crack patterns, strength, stiffness and ductility of the test specimens have been...

  12. Enhancement of the thermal and mechanical properties of polyurethane/polyvinyl chloride blend by loading single walled carbon nanotubes

    Directory of Open Access Journals (Sweden)

    A.M. Hezma

    2017-06-01

    Full Text Available Structural, thermal, and mechanical properties of pure blend and nanocomposites based on polyurethane (PU and polyvinyl chloride (PVC doped with low different content of single walled-carbon nanotubes (SWCNTs were studied. The nanocomposites at different concentration were prepared via casting technique. The interaction between PU/PVC and CNTs were examined via FT-IR studies. The changes in the structures of the nanocomposites were examined using X- Ray Diffraction (XRD, and the results indicated that the amorphous domains of nanocomposites increased with increasing SWCNTs content. Transmission electron microscope (TEM observation indicated that SWCNTs surface was wrapped with the polymer with the thermal properties of nanocomposites improved. The mechanical behavior of the nanocomposites was evaluated as a function of SWCNTs content. The main enhancement in tensile properties was observed, e.g., the tensile strength and elastic modulus increased compared with the pure blend, which may be attributed to the interaction and adhesion between CNTs and the polymer matrices due to the hydrogen bonding between carbonyl groups (C=O of polymer blend chains and carboxylic acid (COOH groups of CNTs.

  13. Impact of wind-driven rain on historic brick wall buildings in a moderately cold and humid climate: Numerical analyses of mould growth risk, indoor climate and energy consumption

    DEFF Research Database (Denmark)

    Masaru, Abuku; Janssen, Hans; Roels, Staf

    2009-01-01

    This paper gives an onset to whole building hygrothermal modelling in which the interaction between interior and exterior climates via building enclosures is simulated under a moderately cold and humid climate. The focus is particularly on the impact of wind-driven rain (WDR) oil the hygrothermal...... response, mould growth at interior wall surfaces, indoor climate and energy consumption. First the WDR load oil the facades of a 4 m x 4 m x 10 m tower is determined. Then the hygrothermal behaviour of the brick walls is analysed oil a horizontal slice through the tower. The simulations demonstrate...

  14. Exteriorized colon anastomosis for unprepared bowel: An alternative to routine colostomy

    Science.gov (United States)

    Asfar, Sami K; Al-Sayer, Hilal M; Juma, Talib H

    2007-01-01

    AIM: To see the possibility of avoiding routine colostomy in patients presenting with unprepared bowel. METHODS: The cohort is composed of 103 patients, of these, 86 patients presented as emergencies (self-inflected and iatrogenic colon injuries, stab wounds and blast injury of the colon, volvulus sigmoid, obstructing left colon cancer, and strangulated ventral hernia). Another 17 patients were managed electively for other colon pathologies. During laparotomy, the involved segment was resected and the two ends of the colon were brought out via a separate colostomy wound. One layer of interrupted 3/0 silk was used for colon anastomosis. The exteriorized segment was immediately covered with a colostomy bag. Between the 5th and 7th postoperative day, the colon was easily dropped into the peritoneal cavity. The defect in the abdominal wall was closed with interrupted nonabsorbable suture. The skin was left open for secondary closure. RESULTS: The mean hospital stay (± SD) was 11.5 ± 2.6 d (8-20 d). The exteriorized colon was successfully dropped back into the peritoneal cavity in all patients except two. One developed a leak from oesophago-jejunostomy and from the exteriorized colon. She subsequently died of sepsis and multiple organ failure (MOF). In a second patient the colon proximal to the exteriorized anastomosis prolapsed and developed severe serositis, an elective ileo-colic anastomosis (to the left colon) was successfully performed. CONCLUSION: Exteriorized colon anastomosis is simple, avoids the inconvenience of colostomy and can be an alternative to routine colostomy. It is suitable where colostomy is socially unacceptable or the facilities and care is not available. PMID:17589900

  15. Damage and fatigue crack growth of Eurofer steel first wall mock-up under cyclic heat flux loads. Part 2: Finite element analysis of damage evolution

    International Nuclear Information System (INIS)

    You, Jeong-Ha

    2014-01-01

    Highlights: • The surface heat flux load of 3.5 MW/m 2 produced substantial stresses and inelastic strains in the heat-loaded surface region, especially at the notch root. • The notch root exhibited a typical notch effect such as stress concentration and localized inelastic yield leading to a preferred damage development. • The predicted damage evolution feature agrees well with the experimental observation. • The smooth surface also experiences considerable stresses and inelastic strains. However, the stress intensity and the amount of inelastic deformation are not high enough to cause any serious damage. • The level of maximum inelastic strain is higher at the notch root than at the smooth surface. On the other hand, the amplitude of inelastic strain variation is comparable at both positions. • The amount of inelastic deformation is significantly affected by the length of pulse duration time indicating the important role of creep. - Abstract: In the preceding companion article (part 1), the experimental results of the high-heat-flux (3.5 MW/m 2 ) fatigue tests of a Eurofer bare steel first wall mock-up was presented. The aim was to investigate the damage evolution and crack initiation feature. The mock-up used there was a simplified model having only basic and generic structural feature of an actively cooled steel FW component for DEMO reactor. In that study, it was found that microscopic damage was formed at the notch root already in the early stage of the fatigue loading. On the contrary, the heat-loaded smooth surface exhibited no damage up to 800 load cycles. In this paper, the high-heat-flux fatigue behavior is investigated with a finite element analysis to provide a theoretical interpretation. The thermal fatigue test was simulated using the coupled damage-viscoplastic constitutive model developed by Aktaa. The stresses, inelastic deformation and damage evolution at the notch groove and at the smooth surface are compared. The different damage

  16. Crack opening displacement of circumferential through-wall cracked cylinders subjected to tension and in-plane bending loads

    International Nuclear Information System (INIS)

    Yoo, Yeon-Sik

    2003-01-01

    This study is concerned with crack opening displacements (CODs) of cylinders with a circumferential through-crack which is subjected to tension and in-plane bending loads. Most studies about crack opening behavior have performed on membrane and global bending stresses. Moreover, they cannot be valid for large-scale structures. For simplicity on evaluation for structural integrity, crack opening displacement has been often calculated by plate or pipe model considering almost stresses as a membrane component. However, it is important to investigate ones close to real crack opening behaviors under stress states for reliability on evaluation. The results must be directly related to evaluate leakage detection in reactor vessel and the primary piping system of FBR structures. From that purpose, a series of FEM analyses were performed, and hence the characteristics of COD under an in-plane bending stress were compared with those under a membrane stress. In addition, the plate model was indicated to be unreasonable for application on large-scale pipes by comparing the plate model with the pipe model. The results of this study are expected to be valid for leakage evaluation of high temperature structures especially. (author)

  17. Detailed energy saving performance analyses on thermal mass walls demonstrated in a zero energy house

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, L. [School of Architecture, Tianjin University, Tianjin 300072 (China); Hurt, R.; Correia, D.; Boehm, R. [Center for Energy Research, University of Nevada, Las Vegas, NV 89154 (United States)

    2009-03-15

    An insulated concrete wall system{sup 1}1 was used on exterior walls of a zero energy house. Its thermal functions were investigated using actual data in comparison to a conventional wood frame system. The internal wall temperature of massive systems changes more slowly than the conventional wall constructions, leading to a more stable indoor temperature. The Energy10 simulated equivalent R-value and DBMS of the mass walls under actual climate conditions are, respectively, 6.98 (m{sup 2} C)/W and 3.39. However, the simulated heating energy use was much lower for the massive walls while the cooling load was a little higher. Further investigation on the heat flux indicates that the heat actually is transferred inside all day and night, which results in a higher cooling energy consumption. A one-dimensional model further verified these analyses, and the calculated results are in good agreement with the actual data. We conclude that the thermal mass wall does have the ability to store heat during the daytime and release it back at night, but in desert climates with high 24-h ambient temperature and intense sunlight, more heat will be stored than can be transferred back outside at night. As a result, an increased cooling energy will be required. (author)

  18. The Solar Dynamic Buffer Zone (SDBZ) curtain wall: Validation and design of a solar air collector curtain wall

    Science.gov (United States)

    Richman, Russell Corey

    Given the increases in both the environmental and economic costs of energy, there is a need to design and building more sustainable and low-energy building systems now. Curtain wall assemblies show great promise---the spandrel panels within them can be natural solar collectors. By using a Solar Dynamic Buffer Zone (SDBZ) in the spandrel cavity, solar energy can be efficiently gathered using the movement of air. There is a need for a numerical model capable of predicting performance of an SDBZ Curtain Wall system. This research designed, constructed and quantified a prototype SDBZ curtain wall system through by experimental testing in a laboratory environment. The laboratory experiments focussed on three main variables: air flow through the system, incoming radiation and collector surface type. Results from the experimental testing were used to validate a one-dimensional numerical model of the prototype. Results from this research show a SDBZ curtain wall system as an effective means of reducing building heating energy consumption through the preheating of incoming exterior ventilation air during the heating season in cold climates. The numerical model showed good correlation with experimental results at higher operating flows and at lower flows when using an apparent velocity at the heat transfer boundary layer. A seasonal simulation for Toronto, ON predicted energy savings of 205 kWh/m2 with an average seasonal efficiency of 28%. This is considered in the upper range when compared to other solar air collectors. Given the lack of published literature for similar systems, this research acts to introduce a simple, innovative approach to collect solar energy that would otherwise be lost to the exterior using already existing components within a curtain wall. Specifically, the research has provided: results from experiments and simulation, a first generation numerical model, aspects of design and construction of the SDBZ curtain wall and specific directions for further

  19. Adaptive boundary conditions for exterior flow problems

    CERN Document Server

    Boenisch, V; Wittwer, S

    2003-01-01

    We consider the problem of solving numerically the stationary incompressible Navier-Stokes equations in an exterior domain in two dimensions. This corresponds to studying the stationary fluid flow past a body. The necessity to truncate for numerical purposes the infinite exterior domain to a finite domain leads to the problem of finding appropriate boundary conditions on the surface of the truncated domain. We solve this problem by providing a vector field describing the leading asymptotic behavior of the solution. This vector field is given in the form of an explicit expression depending on a real parameter. We show that this parameter can be determined from the total drag exerted on the body. Using this fact we set up a self-consistent numerical scheme that determines the parameter, and hence the boundary conditions and the drag, as part of the solution process. We compare the values of the drag obtained with our adaptive scheme with the results from using traditional constant boundary conditions. Computati...

  20. Exterior field evaluation of new generation video motion detection systems

    International Nuclear Information System (INIS)

    Malone, T.P.

    1988-01-01

    Recent advancements in video motion detection (VMD) system design and technology have resulted in several new commercial VMD systems. Considerable interest in the new VMD systems has been generated because the systems are advertised to work effectively in exterior applications. Previous VMD systems, when used in an exterior environment, tended to have very high nuisance alarm rates due to weather conditions, wildlife activity and lighting variations. The new VMD systems advertise more advanced processing of the incoming video signal which is aimed at rejecting exterior environmental nuisance alarm sources while maintaining a high detection capability. This paper discusses the results of field testing, in an exterior environment, of two new VMD systems

  1. Analysis of thin-walled cylindrical composite shell structures subject to axial and bending loads: Concept development, analytical modeling and experimental verification

    Science.gov (United States)

    Mahadev, Sthanu

    Continued research and development efforts devoted in recent years have generated novel avenues towards the advancement of efficient and effective, slender laminated fiber-reinforced composite members. Numerous studies have focused on the modeling and response characterization of composite structures with particular relevance to thin-walled cylindrical composite shells. This class of shell configurations is being actively explored to fully determine their mechanical efficacy as primary aerospace structural members. The proposed research is targeted towards formulating a composite shell theory based prognosis methodology that entails an elaborate analysis and investigation of thin-walled cylindrical shell type laminated composite configurations that are highly desirable in increasing number of mechanical and aerospace applications. The prime motivation to adopt this theory arises from its superior ability to generate simple yet viable closed-form analytical solution procedure to numerous geometrically intense, inherent curvature possessing composite structures. This analytical evaluative routine offers to acquire a first-hand insight on the primary mechanical characteristics that essentially govern the behavior of slender composite shells under typical static loading conditions. Current work exposes the robustness of this mathematical framework via demonstrating its potential towards the prediction of structural properties such as axial stiffness and bending stiffness respectively. Longitudinal ply-stress computations are investigated upon deriving the global stiffness matrix model for composite cylindrical tubes with circular cross-sections. Additionally, this work employs a finite element based numerical technique to substantiate the analytical results reported for cylindrically shaped circular composite tubes. Furthermore, this concept development is extended to the study of thin-walled, open cross-sectioned, curved laminated shells that are geometrically

  2. PDLLA honeycomb-like scaffolds with a high loading of superhydrophilic graphene/multi-walled carbon nanotubes promote osteoblast in vitro functions and guided in vivo bone regeneration.

    Science.gov (United States)

    Silva, Edmundo; Vasconcellos, Luana Marotta Reis de; Rodrigues, Bruno V M; Dos Santos, Danilo Martins; Campana-Filho, Sergio P; Marciano, Fernanda Roberta; Webster, Thomas J; Lobo, Anderson Oliveira

    2017-04-01

    Herein, we developed honeycomb-like scaffolds by combining poly (d, l-lactic acid) (PDLLA) with a high amount of graphene/multi-walled carbon nanotube oxides (MWCNTO-GO, 50% w/w). From pristine multi-walled carbon nanotubes (MWCNT) powders, we produced MWCNTO-GO via oxygen plasma etching (OPE), which promoted their exfoliation and oxidation. Initially, we evaluated PDLLA and PDLLA/MWCNTO-GO scaffolds for tensile strength tests, cell adhesion and cell viability (with osteoblast-like MG-63 cells), alkaline phosphatase (ALP, a marker of osteoblast differentiation) activity and mineralized nodule formation. In vivo tests were carried out using PDLLA and PDLLA/MWCNTO-GO scaffolds as fillers for critical defects in the tibia of rats. MWCNTO-GO loading was responsible for decreasing the tensile strength and elongation-at-break of PDLLA scaffolds, although the high mechanical performance observed (~600MPa) assures their application in bone tissue regeneration. In vitro results showed that the scaffolds were not cytotoxic and allowed for osteoblast-like cell interactions and the formation of mineralized matrix nodules. Furthermore, MG-63 cells grown on PDLLA/MWCNTO-GO significantly enhanced osteoblast ALP activity compared to controls (cells alone), while the PDLLA group showed similar ALP activity when compared to controls and PDLLA/MWCNTO-GO. Most impressively, in vivo tests suggested that compared to PDLLA scaffolds, PDLLA/MWCNTO-GO had a superior influence on bone cell activity, promoting greater new bone formation. In summary, the results of this study highlighted that this novel scaffold (MWCNTO-GO, 50% w/w) is a promising alternative for bone tissue regeneration and, thus, should be further studied. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. High loading of graphene oxide/multi-walled carbon nanotubes into PDLLA: A route towards the design of osteoconductive, bactericidal and non-immunogenic 3D porous scaffolds

    International Nuclear Information System (INIS)

    Zanin, Hudson; Rodrigues, Bruno Vinícius Manzolli; Ribeiro Neto, Wilson Alves; Bretas, Rosario Elida Suman; Da-Silva, Newton Soares; Marciano, Fernanda Roberta; Oliveira Lobo, Anderson

    2016-01-01

    We have prepared a novel 3D porous biomaterial combining poly (DL-lactic acid) (PDLLA) and graphene and multi-walled carbon nanotubes oxides (MWCNTO-GO) composite. PDLLA as control and a high loading of PDLLA/MWCNTO-GO (50/50 w/w) bioscaffolds were prepared and functionalized. MWCNTs were exfoliated to form MWCNTO-GO by oxygen plasma etching. The later was also applied to enhance the scaffolds wettability, attaching oxygen-containing groups on their surfaces. This approach produced a porous architecture observed by scanning electron microscopy and semi-quantified by electrochemical analysis. The later also indicated a notable increase on the conductivity of PDLLA/MWCNTO-GO scaffold compared to MWCNTO-GO free PDLLA (about 5 orders of magnitudes at low frequencies). Thermogravimetric analysis showed that the MWCNTO-GO acted protecting the PDLLA matrix, enhancing its thermal stability. The PDLLA/MWCNTO-GO scaffolds had significant cellular adhesion, did not present cytotoxicity effect, besides reduced bactericidal proliferation and produced mineralized tissues in SBF media. The metallic MWCNTO-GO powder held together by PDLLA polymer opens a whole new branch of applications, including bioelectroanalyses, drug delivery systems and tissue engineering. - Highlights: • We produced a novel 3D porous material from PDLLA, graphene oxide and MWCNT oxide. • MWCNTO-GO loading (50/50 w/w) increased notably the conductivity of PDLLA scaffold. • MWCNTO-GO acted protecting the PDLLA matrix, enhancing its thermal stability. • PDLLA/MWCNTO-GO scaffolds did not present cytotoxicity effect. • PDLLA/MWCNTO-GO scaffolds presented bioactivity properties.

  4. High loading of graphene oxide/multi-walled carbon nanotubes into PDLLA: A route towards the design of osteoconductive, bactericidal and non-immunogenic 3D porous scaffolds

    Energy Technology Data Exchange (ETDEWEB)

    Zanin, Hudson [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil); Laboratory of Energy Storage & Supply - ES& S, Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, CEP: 12.244-000, Sao Paulo (Brazil); Rodrigues, Bruno Vinícius Manzolli [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil); Ribeiro Neto, Wilson Alves; Bretas, Rosario Elida Suman [Department of Materials Engineering, Federal University of Sao Carlos, Rodovia Washington Luis, km 235 – SP-310, Sao Carlos, Sao Paulo (Brazil); Da-Silva, Newton Soares [Laboratory of Cell Biology and Tissue, Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, CEP: 12244-000, Sao Paulo (Brazil); Marciano, Fernanda Roberta [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil); Oliveira Lobo, Anderson, E-mail: aolobo@pq.cnpq.br [Laboratory of Biomedical Nanotechnology (NANOBIO), Institute of Research and Development - IP& D, University of Vale do Paraiba, Av. Shishima Hifumi 2911, Sao Jose dos Campos, 12244-000, Sao Paulo (Brazil)

    2016-07-01

    We have prepared a novel 3D porous biomaterial combining poly (DL-lactic acid) (PDLLA) and graphene and multi-walled carbon nanotubes oxides (MWCNTO-GO) composite. PDLLA as control and a high loading of PDLLA/MWCNTO-GO (50/50 w/w) bioscaffolds were prepared and functionalized. MWCNTs were exfoliated to form MWCNTO-GO by oxygen plasma etching. The later was also applied to enhance the scaffolds wettability, attaching oxygen-containing groups on their surfaces. This approach produced a porous architecture observed by scanning electron microscopy and semi-quantified by electrochemical analysis. The later also indicated a notable increase on the conductivity of PDLLA/MWCNTO-GO scaffold compared to MWCNTO-GO free PDLLA (about 5 orders of magnitudes at low frequencies). Thermogravimetric analysis showed that the MWCNTO-GO acted protecting the PDLLA matrix, enhancing its thermal stability. The PDLLA/MWCNTO-GO scaffolds had significant cellular adhesion, did not present cytotoxicity effect, besides reduced bactericidal proliferation and produced mineralized tissues in SBF media. The metallic MWCNTO-GO powder held together by PDLLA polymer opens a whole new branch of applications, including bioelectroanalyses, drug delivery systems and tissue engineering. - Highlights: • We produced a novel 3D porous material from PDLLA, graphene oxide and MWCNT oxide. • MWCNTO-GO loading (50/50 w/w) increased notably the conductivity of PDLLA scaffold. • MWCNTO-GO acted protecting the PDLLA matrix, enhancing its thermal stability. • PDLLA/MWCNTO-GO scaffolds did not present cytotoxicity effect. • PDLLA/MWCNTO-GO scaffolds presented bioactivity properties.

  5. Source amplitudes for active exterior cloaking

    International Nuclear Information System (INIS)

    Norris, Andrew N; Amirkulova, Feruza A; Parnell, William J

    2012-01-01

    The active cloak comprises a discrete set of multipole sources that destructively interfere with an incident time harmonic scalar wave to produce zero total field over a finite spatial region. For a given number of sources and their positions in two dimensions it is shown that the multipole amplitudes can be expressed as infinite sums of the coefficients of the incident wave decomposed into regular Bessel functions. The field generated by the active sources vanishes in the infinite region exterior to a set of circles defined by the relative positions of the sources. The results provide a direct solution to the inverse problem of determining the source amplitudes. They also define a broad class of non-radiating discrete sources. (paper)

  6. High Performance Walls in Hot-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [National Renewable Energy Lab. (NREL), Golden, CO (United States); Springer, David [National Renewable Energy Lab. (NREL), Golden, CO (United States); Dakin, Bill [National Renewable Energy Lab. (NREL), Golden, CO (United States); German, Alea [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-01-01

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist, and reducing the amount of wood penetrating the wall cavity.

  7. Composite steel panels for tornado missile barrier walls. Topical report

    International Nuclear Information System (INIS)

    1975-10-01

    A composite steel panel wall system is defined as a wall system with concrete fill sandwiched between two steel layers such that no concrete surface is exposed on the interior or the exterior wall surface. Three full scale missile tests were conducted on two specific composite wall systems. The results of the full scale tests were in good agreement with the finalized theory. The theory is presented, and the acceptance of the theory for design calculations is discussed

  8. Inclined asymmetric librations in exterior resonances

    Science.gov (United States)

    Voyatzis, G.; Tsiganis, K.; Antoniadou, K. I.

    2018-04-01

    Librational motion in Celestial Mechanics is generally associated with the existence of stable resonant configurations and signified by the existence of stable periodic solutions and oscillation of critical (resonant) angles. When such an oscillation takes place around a value different than 0 or π , the libration is called asymmetric. In the context of the planar circular restricted three-body problem, asymmetric librations have been identified for the exterior mean motion resonances (MMRs) 1:2, 1:3, etc., as well as for co-orbital motion (1:1). In exterior MMRs the massless body is the outer one. In this paper, we study asymmetric librations in the three-dimensional space. We employ the computational approach of Markellos (Mon Not R Astron Soc 184:273-281, https://doi.org/10.1093/mnras/184.2.273, 1978) and compute families of asymmetric periodic orbits and their stability. Stable asymmetric periodic orbits are surrounded in phase space by domains of initial conditions which correspond to stable evolution and librating resonant angles. Our computations were focused on the spatial circular restricted three-body model of the Sun-Neptune-TNO system (TNO = trans-Neptunian object). We compare our results with numerical integrations of observed TNOs, which reveal that some of them perform 1:2 resonant, inclined asymmetric librations. For the stable 1:2 TNO librators, we find that their libration seems to be related to the vertically stable planar asymmetric orbits of our model, rather than the three-dimensional ones found in the present study.

  9. Gravitational time dilation and length contraction in fields exterior to ...

    African Journals Online (AJOL)

    Here, we use our new metric tensor exterior to a massiv3e oblate spheroid to study the gravitational phenomena of time dilation and length contraction. It turns out most profoundly that, the above phenomena hold good in the gravitational field exterior to an oblate spheroid. We then use the oblate spheroidal Earth to ...

  10. Cylinder wall insulation effects on the first- and second-law balances of a turbocharged diesel engine operating under transient load conditions

    International Nuclear Information System (INIS)

    Giakoumis, E.G.

    2007-01-01

    During the last decades there has been an increasing interest in the low heat rejection (LHR) diesel engine. In an LHR engine, an increased level of temperatures inside the cylinder is achieved, resulting from the insulation applied to the walls. The steady-state, LHR engine operation has been studied so far by applying either first- or second-law balances. Only a few works, however, have treated this subject during the very important transient operation with the results limited to the engine speed response. To this aim an experimentally validated transient diesel engine simulation code has been expanded so as to include the second-law balance. Two common insulators for the engine in hand, i.e. silicon nitride and plasma spray zirconia are studied and their effect is compared to the nominal non-insulated operation from the first- and second-law perspective. It is revealed that after a step increase in load, the second-law values unlike the first-law ones are heavily impacted by the insulation scheme applied. Combustion and total engine irreversibilities decrease significantly (up to 23% for the cases examined) with increasing insulation. Unfortunately, this decrease is not transformed into an increase in the mechanical work but rather increases the potential for extra work recovery owing to the higher availability content of the exhaust gas

  11. Investigation of Mild Steel Thin-Wall Tubes in Unfilled and Foam-Filled Triangle, Square, and Hexagonal Cross Sections Under Compression Load

    Science.gov (United States)

    Rajak, Dipen Kumar; Kumaraswamidhas, L. A.; Das, S.

    2018-02-01

    This study has examined proposed structures with mild steel-reinforced LM30 aluminum (Al) alloy having diversely unfilled and 10 wt.% SiCp composite foam-filled tubes for improving axial compression performance. This class of material has novel physical, mechanical, and electrical properties along with low density. In the present experiment, Al alloy foams were prepared by the melt route technique using metal hydride powder as a foaming agent. Crash energy phenomena for diverse unfilled and foam-filled in mild steel thin-wall tubes (triangular, square and hexagonal) were studied as well. Compression deformation investigation was conducted at strain rates of 0.001-0.1/s for evaluating specific energy absorption (SEA) under axial loading conditions. The results were examined to measure plateau stress, maximum densification strain, and deformation mechanism of the materials. Specific energy absorption and total energy absorption capacities of the unfilled and filled sections were determined from the compressive stress-strain curves, which were then compared with each other.

  12. Photothermal-triggered control of sub-cellular drug accumulation using doxorubicin-loaded single-walled carbon nanotubes for the effective killing of human breast cancer cells

    Science.gov (United States)

    Oh, Yunok; Jin, Jun-O.; Oh, Junghwan

    2017-03-01

    Single-walled carbon nanotubes (SWNTs) are often the subject of investigation as effective photothermal therapy (PTT) agents owing to their unique strong optical absorption. Doxorubicin (DOX)-loaded SWNTs (SWNTs-DOX) can be used as an efficient therapeutic agent for combined near infrared (NIR) cancer photothermal and chemotherapy. However, SWNTs-DOX-mediated induction of cancer cell death has not been fully investigated, particularly the reaction of DOX inside cancer cells by PTT. In this study, we examined how the SWNTs-DOX promoted effective MDA-MB-231 cell death compared to DOX and PTT alone. We successfully synthesized the SWNTs-DOX. The SWNTs-DOX exhibited a slow DOX release, which was accelerated by NIR irradiation. Furthermore, DOX released from the SWNTs-DOX accumulated inside the cells at high concentration and effectively localized into the MDA-MB-231 cell nucleus. A combination of SWNTs-DOX and PTT promoted an effective MDA-MB-231 cell death by mitochondrial disruption and ROS generation. Thus, SWNTs-DOX can be utilized as an excellent anticancer agent for early breast cancer treatment.

  13. Lifetime assessment of thick-walled components made of nickel-base alloys under near-service loading conditions; Lebensdauerbewertung dickwandiger Bauteile aus Nickelbasislegierungen unter betriebsnahen Beanspruchungen

    Energy Technology Data Exchange (ETDEWEB)

    Hueggenberg, Daniel

    2015-11-06

    and the transmission electron microscope for the base raw material, the creep and creep-fatigue exposed material. For the classification the investigation results were compared to the results of the other projects and no differences could be identified. For the description of the deformation and damage behavior under creep-fatigue loading with finite elements simulations a viscoplastic deformation model with an integrated damage model of Lemaitre was used. The material dependent model parameters were fitted under consideration of the basis characterization test results of the Alloy 617 mod. and Alloy 263. All basis characterization tests are simulated with finite elements to classify the parameter fittings. The verification of the fitted material models was carried out by simulations of the complex lab tests. From the comparison of the simulation and test results it is obvious that the deformation and damage behavior can be reproduced with the used material model in a good manner. With finite element simulations of complex thick-walled components (header, formed part) under realistic thermal and mechanic loading conditions could be shown that the viscoplastic material model fitted for the Alloy 617 mod. and Alloy 263 is able to predict the locations of the maximum loadings and the lifetime until the first cracks appear. This could be confirmed by dye penetrant testing on the one hand and destructive investigations of two fracture surfaces of the header on the other hand. Additionally the approaches of the European DIN EN 12952-3/4, the American ASME Section III Division 1 Subsection NH, the French RCC-MR RB 3262.12 and the British R5 recommendations Volume 2/3 are used to predict the lifetimes. It can be seen that the approaches of ASME and RCC-MR provide very conservative predictions and that the approaches of R5 and DIN EN 12952 provide non-conservative predictions. These results lead to the conclusion that no approach of the standards/recommendation is suitable for

  14. Docetaxel-loaded single-wall carbon nanohorns using anti-VEGF antibody as a targeting agent: characterization, in vitro and in vivo antitumor activity

    Science.gov (United States)

    Zhao, Qian; Li, Nannan; Shu, Chang; Li, Ruixin; Ma, Xiaona; Li, Xuequan; Wang, Ran; Zhong, Wenying

    2015-05-01

    A novel antitumor drug delivery system, docetaxel (DTX)-loaded oxidized single-wall carbon nanohorns (oxSWNHs) with anti-VEGF monoclonal antibody (mAb) as a target agent was constructed. DTX was absorbed onto the oxSWNHs via the physical adsorption or π-π interaction. DSPE-PEG-COOH was non-covalently wrapped to the hydrophobic surface of oxSWNHs to improve its water solubility and biocompatibility. The mAb was bonded to the PEG through amide bond. The DTX@oxSWNHs-PEG-mAb (DDS) exhibited suitable particle size (191.2 ± 2.1 nm), good particle size distribution (PDI: 0.196), and negative zeta potential (-24.3 ± 0.85 mV). These features enhanced permeability and retention (EPR) effect and reduced the drug molecule uptake by the reticuloendothelial system. The in vitro drug release followed non-Fickian diffusion ( n = 0.6857, R = 0.9924) with the cumulative release of DTX 59 ± 1.35 % at 72 h. Compared with free DTX, the DDS enhanced the cytotoxicity in MCF-7 cell lines in vitro efficiently (IC50: 2.96 ± 0.6 μg/ml), and provided higher antitumor efficacy (TGI: 69.88 %) in vivo. The histological analysis indicated that the DDS had no significant side effect. Therefore, the new DDS is promising to attain higher pharmaceutical efficacy and lower side effects than free DTX for cancer therapy. The research demonstrated that DTX@oxSWNHs-PEG-mAb might have promising biomedical applications for future cancer therapy.

  15. Docetaxel-loaded single-wall carbon nanohorns using anti-VEGF antibody as a targeting agent: characterization, in vitro and in vivo antitumor activity

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Qian; Li, Nannan; Shu, Chang; Li, Ruixin; Ma, Xiaona; Li, Xuequan; Wang, Ran; Zhong, Wenying, E-mail: wyzhong@cpu.edu.cn [China Pharmaceutical University, Department of Analytical Chemistry (China)

    2015-05-15

    A novel antitumor drug delivery system, docetaxel (DTX)-loaded oxidized single-wall carbon nanohorns (oxSWNHs) with anti-VEGF monoclonal antibody (mAb) as a target agent was constructed. DTX was absorbed onto the oxSWNHs via the physical adsorption or π–π interaction. DSPE–PEG–COOH was non-covalently wrapped to the hydrophobic surface of oxSWNHs to improve its water solubility and biocompatibility. The mAb was bonded to the PEG through amide bond. The DTX@oxSWNHs-PEG-mAb (DDS) exhibited suitable particle size (191.2 ± 2.1 nm), good particle size distribution (PDI: 0.196), and negative zeta potential (−24.3 ± 0.85 mV). These features enhanced permeability and retention (EPR) effect and reduced the drug molecule uptake by the reticuloendothelial system. The in vitro drug release followed non-Fickian diffusion (n = 0.6857, R = 0.9924) with the cumulative release of DTX 59 ± 1.35 % at 72 h. Compared with free DTX, the DDS enhanced the cytotoxicity in MCF-7 cell lines in vitro efficiently (IC{sub 50}: 2.96 ± 0.6 μg/ml), and provided higher antitumor efficacy (TGI: 69.88 %) in vivo. The histological analysis indicated that the DDS had no significant side effect. Therefore, the new DDS is promising to attain higher pharmaceutical efficacy and lower side effects than free DTX for cancer therapy. The research demonstrated that DTX@oxSWNHs-PEG-mAb might have promising biomedical applications for future cancer therapy.

  16. An intrinsic and exterior form of the Bianchi identities

    Science.gov (United States)

    Do, Thoan; Prince, Geoff

    2017-09-01

    We give an elegant formulation of the structure equations (of Cartan) and the Bianchi identities in terms of exterior calculus without reference to a particular basis and without the exterior covariant derivative. This approach allows both structure equations and the Bianchi identities to be expressed in terms of forms of arbitrary degree. We demonstrate the relationship with both the conventional vector version of the Bianchi identities and to the exterior covariant derivative approach. Contact manifolds, codimension one foliations and the Cartan form of classical mechanics are studied as examples of its flexibility and utility.

  17. Comercio exterior del sector porcino mexicano

    Directory of Open Access Journals (Sweden)

    Encarnación Ernesto Bobadilla-Soto

    2012-01-01

    Full Text Available El objetivo del presente trabajo fue analizar la dinámica del comercio exterior porcino mexicano, y el efecto de las importaciones de productos porcinos en el desplazamiento y sustitución de la producción en México. Para la dinámica se analizaron las tasas de crecimiento (decremento y las variaciones tanto en volumen y valor del subsector, de las fracciones arancelarias agrupadas en dos grandes rubros: a animales vivos y b carnes y despojos comestibles, que tienen un impacto directo en el desplazamiento y sustitución de la producción nacional. El desplazamiento y sustitución se calcularon con la suma de los valores de las importaciones, su relación con los pesos en canal de los animales durante los años analizados, y su equivalente en porcentaje a número de animales. El estudio comprende de 1990 a 2008. La balanza comercial al inicio del estudio fue de -180 mil toneladas equivalente a 1.4 millones de cerdos desplazados y al 13 % de la producción nacional. Para el 2008, la balanza comercial fue -581 mil toneladas, los cerdos desplazados se incrementaron a 5.9 millones equivalente al 39 % de la producción nacional.

  18. Meshes optimized for discrete exterior calculus (DEC).

    Energy Technology Data Exchange (ETDEWEB)

    Mousley, Sarah C. [Univ. of Illinois, Urbana-Champaign, IL (United States); Deakin, Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Knupp, Patrick [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Scott A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    We study the optimization of an energy function used by the meshing community to measure and improve mesh quality. This energy is non-traditional because it is dependent on both the primal triangulation and its dual Voronoi (power) diagram. The energy is a measure of the mesh's quality for usage in Discrete Exterior Calculus (DEC), a method for numerically solving PDEs. In DEC, the PDE domain is triangulated and this mesh is used to obtain discrete approximations of the continuous operators in the PDE. The energy of a mesh gives an upper bound on the error of the discrete diagonal approximation of the Hodge star operator. In practice, one begins with an initial mesh and then makes adjustments to produce a mesh of lower energy. However, we have discovered several shortcomings in directly optimizing this energy, e.g. its non-convexity, and we show that the search for an optimized mesh may lead to mesh inversion (malformed triangles). We propose a new energy function to address some of these issues.

  19. Structural design for aircraft impact loading

    International Nuclear Information System (INIS)

    Schmidt, R.; Heckhausen, H.; Chen, C.; Rieck, P.J.; Lemons, G.W.

    1977-01-01

    The distribution of military aircraft and proximity to commercial air routes requires the analysis of aircraft impact effect on nuclear power plant facilities in Europe. The typical approach on recent projects has been the hardening of safety-related buildings and/or protection of redundant safety-related equipment through separation. The 'hardened-building' approach has led to the consideration of severe shock and vibration caused by the aircraft impact and development of corresponding floor response spectra for component design. Conservatively calculated loads resulting from these are in some cases quite severe. The reactor auxiliary system building (Soft Shell Hardcore design) allows a more defensive alternate in the form of a partially softened design. In this approach the equipment layout is arranged such that equipment performing either safety functions or having the potential for significant release of radioactivity (upon destruction) is located in the central area of the plant and is enclosed in thick concrete walls for shielding and protection purposes. The non-safety class equipment is arranged in the area peripheral to the hardened central area and enclosed in thin concrete walls. Since the kinetic energy of the impacting aircraft is absorbed by the collapsed thin walls and ceilings, the vibrational effect on the safety class equipment is drastically reduced. In order to achieve the objective of absorbing high kinetic energy and yet reduce the shock and vibration effects, the softened exterior walls require low resistance and high ductility. This investigation determines the feasibility of two 0.5 m thick walls of the Soft Shell with the simplest possible mathematical model. (Auth.)

  20. Influence of Connection Placement to the Behavior of Precast Concrete Exterior Beam-Column Joint

    Directory of Open Access Journals (Sweden)

    Elly Tjahjono

    2010-10-01

    Full Text Available This paper presents an experimental study on the influence of connection placement to the behaviour of exterior beamcolumn joint of precast concrete structure under semi cyclic loading. Four half-scale beam-column specimens were investigated. Three beam-columns were jointed through connection that are placed in beam-column joint region and the forth is connected at the plastic hinge potensial region of the beam. Crack patterns, strength, stiffness and ductility of the test specimens have been evaluated. The test result indicated that all beam-column specimens show good ductility behavior.

  1. Numerical convergence of discrete exterior calculus on arbitrary surface meshes

    KAUST Repository

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2018-01-01

    Discrete exterior calculus (DEC) is a structure-preserving numerical framework for partial differential equations solution, particularly suitable for simplicial meshes. A longstanding and widespread assumption has been that DEC requires special

  2. Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations

    KAUST Repository

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2017-01-01

    A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy

  3. Notes on symmetric and exterior depth and annihilator numbers

    Directory of Open Access Journals (Sweden)

    Gesa Kampf

    2008-11-01

    Full Text Available We survey and compare invariants of modules over the polynomial ring and the exterior algebra. In our considerations, we focus on the depth. The exterior analogue of depth was first introduced by Aramova, Avramov and Herzog. We state similarities between the two notion of depth and exhibit their relation in the case of squarefree modules. Work of Conca, Herzog and Hibi and Trung, respectively, shows that annihilator numbers are a meaningful generalization of depth over the polynomial ring. We introduce and study annihilator numbers over the exterior algebra. Despite some minor differences in the definition, those invariants show common behavior. In both situations a positive linear combination of the annihilator numbers can be used to bound the symmetric and exterior graded Betti numbers, respectively, from above.

  4. Differential pressures on building walls during tornados

    International Nuclear Information System (INIS)

    Yeh, G.C.K.

    1975-01-01

    In the United States, containment structures and some auxiliary structures (control building, auxiliary building, spent fuel building, etc.) in nuclear power plants are required to be designed to withstand the effects of the design basis tornado. In addition to velocity pressures and missile impact a tornado also gives rise to a rapid change in atmospheric pressure, which can, in cases of closed or partially vented structures, produce direct differential pressure loading. In this paper a digital computer program is described which applies a tornado-induced, time-dependent atmospheric pressure change to a building and calculates the differential pressure histories across the interior and exterior walls of the building. Laws for quasi-steady, one-dimensional motion of an ideal compressible gas are used to calculate the pressures due to the flow of air through ports, doors and windows in the building. Numerical examples show that for each assumed atmospheric pressure change history a vent area to compartment volume ratio may be specified as the criterion for a building to be considered fully vented. (orig.) [de

  5. Monitoring of Double Stud Wall Moisture Conditions in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Westford, MA (United States)

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double stud walls have a higher risk of interior-sourced condensation moisture damage, when compared with high-R approaches using exterior insulating sheathing.; Moisture conditions in double stud walls were monitored in Zone 5A (Massachusetts); three double stud assemblies were compared.

  6. Salazarismo y política exterior

    Directory of Open Access Journals (Sweden)

    Juan Carlos JIMÉNEZ REDONDO

    2010-02-01

    Full Text Available RESUMEN: El sistema internacional jugó para la Portugal de Salazar un papel esencial al actuar como fuente privilegiada de la que extraer los recursos materiales (económicos, tecnológicos o financieros e inmateriales (factores de legitimación que garantizaron el programa de reforma política de la dictadura y que permitieron al país desempeñar un papel internacional desproporcionadamente relevante si consideramos su condición de pequeña potencia periférica europea. La novedad del salazarismo respecto a períodos anteriores consistió en la adecuación de esas necesidades de apertura al exterior con una fuerte percepción de los intereses nacionales, dentro de una estrategia pragmática que le permitió acomodarse a la acelerada evolución del sistema internacional y, sobre todo, al cambio que se produjo en el sistema internacional de acuerdo a la dinámica de la Guerra Fría y sus distintas fases. Palabras clave: Salazarismo, OTAN, EFTA, Botelho Moniz, Guerra colonial, descolonización. ABSTRACT: The international system played for the Portugal of Salazar an essential role when acting like privileged source of which to extract the material resources (economic, technological or financial and immaterial (legitimation factors that guaranteed the program of political reform of the dictatorship and that allowed the country to play very out of proportion excellent a role international if we considered its condition of small European peripheral power. The newness of the salazarism with respect to previous periods consisted of the adjustment of those necessities of opening to the outside with a strong perception of the national interests, within a pragmatic strategy that allowed to comply him to the accelerated evolution of the international system and, mainly, to the change that took place in the international system according to the dynamics of the cold war and its different phases. Keywords: Salazarism, NATO, EFTA, Botelho Moniz, Colonial

  7. ELASTO-PLASTIC BEHAVIOR OF RC FRAMES COMPOSED OF STEEL JACKETTED RC SHORT COLUMNS AND SPANDREL WALLS

    OpenAIRE

    Nasruddin

    2012-01-01

    This experimental study is a part of the investigation on the seismic design method for Double Tubes Hybrid System (DTHS) for buildings. This structural system consists of RC core walls as the interior tube, and the exterior frames composed of RC short columns and RC spandrel walls as the exterior tube. The RC core walls are designed as the Energy Dissipation Structural Walls (EDSW), which are composed of RC coupled shear walls linked by short steel H-shaped beams as the energy dissipation de...

  8. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P.

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1" to 1 1/2"), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  9. External Insulation of Masonry Walls and Wood Framed Walls

    Energy Technology Data Exchange (ETDEWEB)

    Baker, P. [Building Science Corporation, Somerville, MA (United States)

    2013-01-01

    The use of exterior insulation on a building is an accepted and effective means to increase the overall thermal resistance of the assembly that also has other advantages of improved water management and often increased air tightness of building assemblies. For thin layers of insulation (1” to 1 ½”), the cladding can typically be attached directly through the insulation back to the structure. For thicker insulation layers, furring strips have been added as a cladding attachment location. This approach has been used in the past on numerous Building America test homes and communities (both new and retrofit applications), and has been proven to be an effective and durable means to provide cladding attachment. However, the lack of engineering data has been a problem for many designers, contractors, and code officials. This research project developed baseline engineering analysis to support the installation of thick layers of exterior insulation on existing masonry and frame walls. Furthermore, water management details necessary to integrate windows, doors, decks, balconies and roofs were created to provide guidance on the integration of exterior insulation strategies with other enclosure elements.

  10. Analyzing Design Heating Loads in Superinsulated Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Arena, Lois [Consortium for Advanced Residential Buildings, Norwalk, CT (United States)

    2015-06-01

    Super-insulated homes offer many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for super insulated homes.

  11. Modeling Enclosure Design in Above-Grade Walls

    Energy Technology Data Exchange (ETDEWEB)

    Lstiburek, J. [Building Science Corporation, Westford, MA (United States); Ueno, K. [Building Science Corporation, Westford, MA (United States); Musunuru, S. [Building Science Corporation, Westford, MA (United States)

    2016-03-01

    This report describes the modeling of typical wall assemblies that have performed well historically in various climate zones. The WUFI (Warme und Feuchte instationar) software (Version 5.3) model was used. A library of input data and results are provided. The provided information can be generalized for application to a broad population of houses, within the limits of existing experience. The WUFI software model was calibrated or tuned using wall assemblies with historically successful performance. The primary performance criteria or failure criteria establishing historic performance was moisture content of the exterior sheathing. The primary tuning parameters (simulation inputs) were airflow and specifying appropriate material properties. Rational hygric loads were established based on experience - specifically rain wetting and interior moisture (RH levels). The tuning parameters were limited or bounded by published data or experience. The WUFI templates provided with this report supply useful information resources to new or less-experienced users. The files present various custom settings that will help avoid results that will require overly conservative enclosure assemblies. Overall, better material data, consistent initial assumptions, and consistent inputs among practitioners will improve the quality of WUFI modeling, and improve the level of sophistication in the field.

  12. QPFT operator algebras and commutative exterior differential calculus

    International Nuclear Information System (INIS)

    Yur'ev, D.V.

    1993-01-01

    The reduction of the structure theory of the operator algebras of quantum projective (sl(2, C)-invariant) field theory (QPFT operator algebras) to a commutative exterior differential calculus by means of the operation of renormalization of a pointwise product of operator fields is described. In the first section, the author introduces the concept of the operator algebra of quantum field theory and describes the operation of the renormalization of a pointwise product of operator fields. The second section is devoted to a brief exposition of the fundamentals of the structure theory of QPT operator algebras. The third section is devoted to commutative exterior differential calculus. In the fourth section, the author establishes the connection between the renormalized pointwise product of operator fields in QPFT operator algebras and the commutative exterior differential calculus. 5 refs

  13. Plasma-wall interaction

    International Nuclear Information System (INIS)

    Reichle, R.

    2004-01-01

    This document gathers the 43 slides presented in the framework of the week long lecture 'hot plasmas 2004' and dedicated to plasma-wall interaction in a tokamak. This document is divided into 4 parts: 1) thermal load on the wall, power extraction and particle recovery, 2) basic edge plasma physics, 3) processes that drive the plasma-solid interaction, and 4) material conditioning (surface treatment...) for ITER

  14. The generalization of the exterior square of a Bieberbach group

    Science.gov (United States)

    Masri, Rohaidah; Hassim, Hazzirah Izzati Mat; Sarmin, Nor Haniza; Ali, Nor Muhainiah Mohd; Idrus, Nor'ashiqin Mohd

    2014-06-01

    The exterior square of a group is one of the homological functors which were originated in the homotopy theory. Meanwhile, a Bieberbach group is a torsion free crystallographic group. A Bieberbach group with cyclic point group of order two, C2, of dimension n can be defined as the direct product of that group of the smallest dimension with a free abelian group. Using the group presentation and commutator generating sequence, the exterior square of a Bieberbach group with point group C2 of dimension n is computed.

  15. Deformed exterior algebra, quons and their coherent states

    International Nuclear Information System (INIS)

    El Baz, M.; Hassouni, Y.

    2002-08-01

    We review the notion of the deformation of the exterior wedge product. This allows us to construct the deformation of the algebra of exterior forms over a vector space and also over an arbitrary manifold. We relate this approach to the generalized statistics and we study quons, as a particular case of these generalized statistics. We also give their statistical properties. A large part of the work is devoted to the problem of constructing coherent states for the deformed oscillators. We give a review of all the approaches existing in the literature concerning this point and enforce it with many examples. (author)

  16. Numerical investigation on exterior conformal mappings with application to airfoils

    International Nuclear Information System (INIS)

    Mohamad Rashidi Md Razali; Hu Laey Nee

    2000-01-01

    A numerical method is described in computing a conformal map from an exterior region onto the exterior of the unit disk. The numerical method is based on a boundary integral equation which is similar to the Kerzman-Stein integral equation for interior mapping. Some examples show that numerical results of high accuracy can be obtained provided that the boundaries are smooth. This numerical method has been applied to the mapping airfoils. However, due to the fact that the parametric representation of an air foil is not known, a cubic spline interpolation method has been used. Some numerical examples with satisfying results have been obtained for the symmetrical and cambered airfoils. (Author)

  17. Numerical conformal mapping methods for exterior and doubly connected regions

    Energy Technology Data Exchange (ETDEWEB)

    DeLillo, T.K. [Wichita State Univ., KS (United States); Pfaltzgraff, J.A. [Univ. of North Carolina, Chapel Hill, NC (United States)

    1996-12-31

    Methods are presented and analyzed for approximating the conformal map from the exterior of the disk to the exterior a smooth, simple closed curve and from an annulus to a bounded, doubly connected region with smooth boundaries. The methods are Newton-like methods for computing the boundary correspondences and conformal moduli similar to Fornberg`s method for the interior of the disk. We show that the linear systems are discretizations of the identity plus a compact operator and, hence, that the conjugate gradient method converges superlinearly.

  18. Moisture performance properties of exterior sheathing products made of spruce plywood or OSB

    Energy Technology Data Exchange (ETDEWEB)

    Ojanen, T.; Ahonen, J. [VTT Building and Transport, Espoo (Finland)

    2005-02-01

    Plywood and OSB (Oriented Strand Board) are building boards that are made of timber and glue and that have good structural strength. OSB is a relatively new product that is produced from various timber materials and even some wastewood can be used as raw material for this product. Due to the easy access of raw material and economical reasons, the use of OSB has been highly increasing. The moisture safety of the building envelope depends on the properties of the building products. The moisture performance properties of the sheathing boards have not got enough attention, too often these wood based materials are equated without considering the real properties and their effect on the overall moisture performance. This research was carried out to experimentally determine the material properties and performance characteristics that have an effect on the moisture performance of building structures where OSB or spruce plywood are applied as exterior sheathing boards. A relatively representative amount of samples were used to study the moisture properties of European OSB and plywood products and a comparison to one Canadian OSB and one plywood product was done. All the products used in this research were meant to be used also as exterior sheathing boards. The results shows clearly the differences between OSB and plywood products. The products are not interchangeable. The main differences can be found from the vapour permeability levels that have an effect on the drying efficiency of building structures. The products have different performance criteria, and the climate conditions and moisture loads have to be studied to evaluate their suitability and moisture safety aspects in different applications. Water repellent features and drying efficiency are somewhat opposite properties of the products and the dimensional changes under varying moisture contents can set some boundary conditions when the optimum solution for the exterior sheathing is considered. (orig.)

  19. Selection and application of exterior stains for wood

    Science.gov (United States)

    R. Sam. Williams; William C. Feist

    1999-01-01

    Exterior stains for wood protect the wood surface from sunlight and moisture. Because stains are formulated to penetrate the wood surface, they are not prone to crack or peel as can film-forming finishes, such as paints. This publication describes the properties of stains and wood, methods for applying stains, and the expected service life of stains.

  20. A Probabilistic Model for Exteriors of Residential Buildings

    KAUST Repository

    Fan, Lubin; Wonka, Peter

    2016-01-01

    We propose a new framework to model the exterior of residential buildings. The main goal of our work is to design a model that can be learned from data that is observable from the outside of a building and that can be trained with widely available

  1. Non-static vacuum strings: exterior and interior solutions

    International Nuclear Information System (INIS)

    Stein-Schabes, J.A.

    1986-01-01

    New non-static cylindrically symmetric solutions of Einsteins's equations are presented. Some of these solutions represent string-like objects. An exterior vacuum solution is matched to a non-vacuum interior solution for different forms of the energy-momentum tensor. They generalize the standard static string. 12 refs

  2. Applications of exterior difference systems to variations in discrete mechanics

    International Nuclear Information System (INIS)

    Xie Zheng; Li Hongbo

    2008-01-01

    In discrete mechanics, difference equations describe the fundamental physical laws and exhibit many geometric properties. Can these equations be obtained in a geometric way? Using some techniques in exterior difference systems, we investigate the discrete variational problem. As an application, we give a positive answer to the above question for the discrete Newton's, Euler-Lagrange, and Hamilton's equations

  3. Minimizing and predicting delamination of southern plywood in exterior exposure

    Science.gov (United States)

    Peter Koch

    1967-01-01

    Southern pine plywood is substantially all being manufactured with phenolic glue for exterior use. Because panels must not delaminate in service, a reliable predictor of glueline durability is required. Drawing on the experience of the Douglas-fir plywood industry, southern manufacutrers have adopted as a predictor the percentage of wood failure(% WF) observed in...

  4. Port exteriorization appendectomy in children: An alternative to the ...

    African Journals Online (AJOL)

    Introduction Laparoscopic appendectomy is usually performed using an intracorporeal approach. The conventional procedure uses three ports. The port exteriorization appendectomy uses two trocars to perform the entire procedure and can be considered an efficient alternative to the conventional approach, especially in ...

  5. 40 CFR 205.55-5 - Labeling-exterior. [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Labeling-exterior. [Reserved] 205.55-5 Section 205.55-5 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) NOISE ABATEMENT PROGRAMS TRANSPORTATION EQUIPMENT NOISE EMISSION CONTROLS Medium and Heavy Trucks § 205.55-5 Labeling...

  6. Numerical Method for Darcy Flow Derived Using Discrete Exterior Calculus

    Science.gov (United States)

    Hirani, A. N.; Nakshatrala, K. B.; Chaudhry, J. H.

    2015-05-01

    We derive a numerical method for Darcy flow, and also for Poisson's equation in mixed (first order) form, based on discrete exterior calculus (DEC). Exterior calculus is a generalization of vector calculus to smooth manifolds and DEC is one of its discretizations on simplicial complexes such as triangle and tetrahedral meshes. DEC is a coordinate invariant discretization, in that it does not depend on the embedding of the simplices or the whole mesh. We start by rewriting the governing equations of Darcy flow using the language of exterior calculus. This yields a formulation in terms of flux differential form and pressure. The numerical method is then derived by using the framework provided by DEC for discretizing differential forms and operators that act on forms. We also develop a discretization for a spatially dependent Hodge star that varies with the permeability of the medium. This also allows us to address discontinuous permeability. The matrix representation for our discrete non-homogeneous Hodge star is diagonal, with positive diagonal entries. The resulting linear system of equations for flux and pressure are saddle type, with a diagonal matrix as the top left block. The performance of the proposed numerical method is illustrated on many standard test problems. These include patch tests in two and three dimensions, comparison with analytically known solutions in two dimensions, layered medium with alternating permeability values, and a test with a change in permeability along the flow direction. We also show numerical evidence of convergence of the flux and the pressure. A convergence experiment is included for Darcy flow on a surface. A short introduction to the relevant parts of smooth and discrete exterior calculus is included in this article. We also include a discussion of the boundary condition in terms of exterior calculus.

  7. On the robustness of the geometrical model for cell wall deposition

    NARCIS (Netherlands)

    Diotallevi, F.; Mulder, B.M.; Grasman, J.

    2010-01-01

    All plant cells are provided with the necessary rigidity to withstand the turgor by an exterior cell wall. This wall is composed of long crystalline cellulose microfibrils embedded in a matrix of other polysaccharides. The cellulose microfibrils are deposited by mobile membrane bound protein

  8. First wall

    International Nuclear Information System (INIS)

    Omori, Junji.

    1991-01-01

    Graphite and C/C composite are used recently for the first wall of a thermonuclear device since materials with small atom number have great impurity allowable capacity for plasmas. Among them, those materials having high thermal conduction are generally anisotropic and have an upper limit for the thickness upon production. Then, anisotropic materials are used for a heat receiving plate, such that the surfaces of the heat receiving plate on the side of lower heat conductivity are brought into contact with each other, and the side of higher thermal conductivity is arranged in parallel with small radius direction and the toroidal direction of the thermonuclear device. As a result, the incident heat on an edge portion can be transferred rapidly to the heat receiving plate, which can suppress the temperature elevation at the surface to thereby reduce the amount of abrasion. Since the heat expansion coefficient of the anisotropic materials is great in the direction of the lower heat conductivity and small in the direction of the higher heat conductivity, the gradient of a thermal load distribution in the direction of the higher heat expansion coefficient is small, and occurrence of thermal stresses due to temperature difference is reduced, to improve the reliability. (N.H.)

  9. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, K.

    2013-08-01

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago. The strategy was implemented at a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area. High heating energy use typical in these buildings threaten housing affordability. Uninsulated mass masonry wall assemblies also have a strongly detrimental impact on comfort. Significant changes to the performance of masonry wall assemblies is generally beyond the reach of typical weatherization (Wx) program resources. The Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by the United States Department of Energy (DOE). This grant provides CEDA the opportunity to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The exterior insulation and over-clad strategy implemented through this project was designed to allow implementation by contractors active in CEDA weatherization programs and using materials and methods familiar to these contractors. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.

  10. Optimization of wall thickness and lay-up for the shell-like composite structure loaded by non-uniform pressure field

    Science.gov (United States)

    Shevtsov, S.; Zhilyaev, I.; Oganesyan, P.; Axenov, V.

    2017-01-01

    The glass/carbon fiber composites are widely used in the design of various aircraft and rotorcraft components such as fairings and cowlings, which have predominantly a shell-like geometry and are made of quasi-isotropic laminates. The main requirements to such the composite parts are the specified mechanical stiffness to withstand the non-uniform air pressure at the different flight conditions and reduce a level of noise caused by the airflow-induced vibrations at the constrained weight of the part. The main objective of present study is the optimization of wall thickness and lay-up of composite shell-like cowling. The present approach assumes conversion of the CAD model of the cowling surface to finite element (FE) representation, then its wind tunnel testing simulation at the different orientation of airflow to find the most stressed mode of flight. Numerical solutions of the Reynolds averaged Navier-Stokes (RANS) equations supplemented by k-w turbulence model provide the spatial distributions of air pressure applied to the shell surface. At the formulation of optimization problem the global strain energy calculated within the optimized shell was assumed as the objective. A wall thickness of the shell had to change over its surface to minimize the objective at the constrained weight. We used a parameterization of the problem that assumes an initiation of auxiliary sphere with varied radius and coordinates of the center, which were the design variables. Curve that formed by the intersection of the shell with sphere defined boundary of area, which should be reinforced by local thickening the shell wall. To eliminate a local stress concentration this increment was defined as the smooth function defined on the shell surface. As a result of structural optimization we obtained the thickness of shell's wall distribution, which then was used to design the draping and lay-up of composite prepreg layers. The global strain energy in the optimized cowling was reduced in2

  11. Seismic behavior and design of a primary shield structure consisting of steel-plate composite (SC) walls

    Energy Technology Data Exchange (ETDEWEB)

    Booth, Peter N., E-mail: boothpn@purdue.edu [Lyles School of Civil Engineering, Purdue University, W. Lafayette, IN (United States); Varma, Amit H., E-mail: ahvarma@purdue.edu [Lyles School of Civil Engineering, Purdue University, W. Lafayette, IN (United States); Sener, Kadir C., E-mail: ksener@purdue.edu [Lyles School of Civil Engineering, Purdue University, W. Lafayette, IN (United States); Mori, Kentaro, E-mail: kentaro_mori@mhi.co.jp [Mitsubishi Heavy Industries, Ltd, Kobe (Japan)

    2015-12-15

    This paper presents an analytical evaluation of the seismic behavior and design of a unique primary shield (PSW) structure consisting of steel-plate composite (SC) walls designed for a typical pressurized water reactor (PWR) nuclear power plant. Researchers in Japan have previously conducted a reduced (1/6th) scale test of a PSW structure to evaluate its seismic (lateral) load-deformation behavior. This paper presents the development and benchmarking of a detailed 3D nonlinear inelastic finite element (NIFE) model to predict the lateral load-deformation response and behavior of the 1/6th scale test structure. The PSW structure consists of thick SC wall segments with complex and irregular geometry that surround the central reactor vessel cavity. The wall segments have three layers of steel plates (one each on the interior and exterior surfaces and one embedded in the middle) that are anchored to the concrete infill with stud anchors. The results from the 3D NIFE analyses include: (i) the lateral load-deformation behavior of the PSW structure, (ii) the progression of yielding in the steel plates, concrete cracking, formation of compression struts, and (iii) the final failure mode. These results are compared and benchmarked using experimental measurements and observations reported by Shodo et al. (2003). The analytical results provide significant insight into the lateral behavior and strength of the PSW structure, and are used for developing a design approach. This design approach starts with ACI 349 code equations for reinforced concrete shear walls and modifies them for application to the PSW structure. A simplified 3D linear elastic finite element (LEFE) model of the PSW structure is also proposed as a conventional structural analysis tool for estimating the design force demands for various load combinations.

  12. Seismic behavior and design of a primary shield structure consisting of steel-plate composite (SC) walls

    International Nuclear Information System (INIS)

    Booth, Peter N.; Varma, Amit H.; Sener, Kadir C.; Mori, Kentaro

    2015-01-01

    This paper presents an analytical evaluation of the seismic behavior and design of a unique primary shield (PSW) structure consisting of steel-plate composite (SC) walls designed for a typical pressurized water reactor (PWR) nuclear power plant. Researchers in Japan have previously conducted a reduced (1/6th) scale test of a PSW structure to evaluate its seismic (lateral) load-deformation behavior. This paper presents the development and benchmarking of a detailed 3D nonlinear inelastic finite element (NIFE) model to predict the lateral load-deformation response and behavior of the 1/6th scale test structure. The PSW structure consists of thick SC wall segments with complex and irregular geometry that surround the central reactor vessel cavity. The wall segments have three layers of steel plates (one each on the interior and exterior surfaces and one embedded in the middle) that are anchored to the concrete infill with stud anchors. The results from the 3D NIFE analyses include: (i) the lateral load-deformation behavior of the PSW structure, (ii) the progression of yielding in the steel plates, concrete cracking, formation of compression struts, and (iii) the final failure mode. These results are compared and benchmarked using experimental measurements and observations reported by Shodo et al. (2003). The analytical results provide significant insight into the lateral behavior and strength of the PSW structure, and are used for developing a design approach. This design approach starts with ACI 349 code equations for reinforced concrete shear walls and modifies them for application to the PSW structure. A simplified 3D linear elastic finite element (LEFE) model of the PSW structure is also proposed as a conventional structural analysis tool for estimating the design force demands for various load combinations.

  13. In-pile testing of ITER first wall mock-ups at relevant thermal loading conditions in the LVR-15 nuclear research reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kysela, Jan [Research Centre Rez, Hlavni 130, 250 68 Husinec-Rez (Czech Republic); Entler, Slavomir, E-mail: slavomir.entler@cvrez.cz [Research Centre Rez, Hlavni 130, 250 68 Husinec-Rez (Czech Republic); Vsolak, Rudolf; Klabik, Tomas [Research Centre Rez, Hlavni 130, 250 68 Husinec-Rez (Czech Republic); Zlamal, Ondrej [CEZ, Duhova 2/1444, 140 53 Praha 4 (Czech Republic); Bellin, Boris; Zacchia, Francesco [Fusion for Energy, Josep Pla, 2, Torres Diagonal Litoral B3, 08019 Barcelona (Spain)

    2015-10-15

    Highlights: • Irradiated thermal fatigue testing of the ITER primary first wall mock-ups. • Cyclic heat flux of 0.5 MW/m{sup 2} in the neutron field of the nuclear reactor core. • 17,040 thermal cycles. • Radiation damage in the range of 0.41–1.17 dpa depending on the material. - Abstract: The TW3 in-pile rig enabled the thermal fatigue testing of ITER primary first wall mock-ups in the core of the nuclear reactor. This experiment investigated the neutron irradiation influence on the design performance under high heat flux testing. A thermal flux of 0.5 MW/m{sup 2} in the neutron field of the core of the LVR-15 nuclear reactor was applied. Within the scope of the tests with simultaneous neutron irradiation, the TW3 rig reached a record of 17,040 thermal cycles with the radiation damage in the range of 0.41–1.17 dpa depending on the material. Even after a high number of thermal cycles, while being irradiated by neutrons, no damage of the tested mock-ups was visually observed. Further testing and analysis will follow in the Forschungszentrum Juelich.

  14. Electrocatalytic glucose oxidation via hybrid nanomaterial catalyst of multi-wall TiO2 nanotubes supported Ni(OH)2 nanoparticles: Optimization of the loading level

    International Nuclear Information System (INIS)

    Gu, Yingying; Liu, Yicheng; Yang, Haihong; Li, Benqiang; An, Yarui

    2015-01-01

    Highlights: • Multi-wall TiO 2 nanotube supported Ni(OH) 2 nanoparticles, Ni(OH) 2 /TNTs, was prepared and investigated as anode electro-catalysts for glucose oxidation. • Ni(OH) 2 -24.2%/TNTs obtains the best catalytic activity. • Compared with Ni(OH) 2, the current density of Ni(OH) 2 -24.2%/TNTs increased 5.9 times in 0.1 M NaOH solution. - Abstract: The novel hybrid nanomaterial catalyst of multi-wall TiO 2 nanotube supported Ni(OH) 2 nanoparticles (Ni(OH) 2 /TNTs) was prepared through hydrothermal method and investigated as anode electro-catalysts for glucose oxidation. The nanostructure was characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), transmission electron microscopy (TEM), thermogravimetry-differential thermal analysis (TGA) and nitrogen adsorption-desorption (BET-BJH). The electrochemical performance was measured by a range of electrochemical measurements. Compared with Ni(OH) 2 , the current density of Ni(OH) 2 /TNTs modified GC electrode increased 5.9 times in 0.1 M NaOH solution. The results indicated that the synthesized nanoparticles exhibited good electro-catalytic activity and stability for glucose oxidation. Meanwhile, the hybrid nanomaterial of Ni(OH) 2 /TNTs may be a potential candidate catalyst for direct glucose fuel cell

  15. Experimental study of heat transfer to the N2O4 dissociating coolant in the circular tube with variable heat load on the wall

    International Nuclear Information System (INIS)

    Golovnya, V.N.; Kolykhan, L.I.

    1983-01-01

    The results of the experimental study of heat transfer to N 2 O 4 dissociating coolant with a sinusoidal law of heat flux density variation by length are presented. The heat transfer process has been studied at subcritical and supercritical parameters and different substance aggregation states. Maximum error of heat transfer coefficient determination don't exceed 15%. The esimation of the effect of variable heat load on heat transfer has been condUcted by comparison of experimental data on the Nusselt number change along the tube length with that calculated using conventional relations for the conditions of uniform heat release. It is shown that heat transfer is enhanced in the region of heat load qsub(c) growth while its intensity is decreased in the region of heat flux reduction. The quantitative effect of qsub(c) variation on heat transfer can be regarded for by the method of superpositions

  16. Construction Guide to Next-Generation High-Performance Walls in Climate Zones 3-5 - Part 1: 2x6 Walls

    Energy Technology Data Exchange (ETDEWEB)

    Kochkin, V. [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, J. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2017-08-31

    Part 1 of this Construction Guide to High-Performance Walls in Climate Zones 3-5 provides time-proven, practical, and cost-effective strategies for constructing durable, energy-efficient walls. It addresses walls constructed with 2x6 wood frame studs, wood structural panel (WSP) exterior sheathing, and a cladding system installed over WSP sheathing in low-rise residential buildings up to three stories high.

  17. A Probabilistic Model for Exteriors of Residential Buildings

    KAUST Repository

    Fan, Lubin

    2016-07-29

    We propose a new framework to model the exterior of residential buildings. The main goal of our work is to design a model that can be learned from data that is observable from the outside of a building and that can be trained with widely available data such as aerial images and street-view images. First, we propose a parametric model to describe the exterior of a building (with a varying number of parameters) and propose a set of attributes as a building representation with fixed dimensionality. Second, we propose a hierarchical graphical model with hidden variables to encode the relationships between building attributes and learn both the structure and parameters of the model from the database. Third, we propose optimization algorithms to generate three-dimensional models based on building attributes sampled from the graphical model. Finally, we demonstrate our framework by synthesizing new building models and completing partially observed building models from photographs.

  18. GATEWAY Demonstrations: Exterior LED Lighting Projects at Princeton University

    Energy Technology Data Exchange (ETDEWEB)

    Davis, Robert G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Evans, WIlliam E. [Princeton Univ., NJ (United States); Murphy, Arthur [Princeton Univ., NJ (United States); Perrin, Tess [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-10-30

    This report focuses on four exterior solid-state lighting projects that have been completed at Princeton since 2008, when the University adopted a comprehensive sustainability plan. Through these initial projects – which include a parking garage, a pedestrian path, and two parking lot installations – the school’s facilities engineering staff learned important lessons about SSL technology and gained experience in dealing with the rapidly changing landscape of lighting manufacturers and their suppliers.

  19. Detection of Watermelon Seeds Exterior Quality based on Machine Vision

    OpenAIRE

    Xiai Chen; Ling Wang; Wenquan Chen; Yanfeng Gao

    2013-01-01

    To investigate the detection of watermelon seeds exterior quality, a machine vision system based on least square support vector machine was developed. Appearance characteristics of watermelon seeds included area, perimeter, roughness, minimum enclosing rectangle and solidity were calculated by image analysis after image preprocess.The broken seeds, normal seeds and high-quality seeds were distinguished by least square support vector machine optimized by genetic algorithm. Compared to the grid...

  20. Exterior difference systems and invariance properties of discrete mechanics

    International Nuclear Information System (INIS)

    Xie Zheng; Xie Duanqiang; Li Hongbo

    2008-01-01

    Invariance properties describe the fundamental physical laws in discrete mechanics. Can those properties be described in a geometric way? We investigate an exterior difference system called the discrete Euler-Lagrange system, whose solution has one-to-one correspondence with solutions of discrete Euler-Lagrange equations, and use it to define the first integrals. The preservation of the discrete symplectic form along the discrete Hamilton phase flows and the discrete Noether's theorem is also described in the language of difference forms

  1. Microcapsules loaded with the probiotic Lactobacillus paracasei BGP-1 produced by co-extrusion technology using alginate/shellac as wall material: Characterization and evaluation of drying processes.

    Science.gov (United States)

    Silva, Marluci P; Tulini, Fabricio L; Ribas, Marcela M; Penning, Manfred; Fávaro-Trindade, Carmen S; Poncelet, Denis

    2016-11-01

    Microcapsules containing Lactobacillus paracasei BGP-1 were produced by co-extrusion technology using alginate and alginate-shellac blend as wall materials. Sunflower oil and coconut fat were used as vehicles to incorporate BGP-1 into the microcapsules. The microcapsules were evaluated with regard the particle size, morphology, water activity and survival of probiotics after 60days of storage at room temperature. Fluidized bed and lyophilization were used to dry the microcapsules and the effect of these processes on probiotic viability was also evaluated. Next, dried microcapsules were exposed to simulated gastrointestinal fluids to verify the survival of BGP-1. Microcapsules dried by fluidized bed had spherical shape and robust structures, whereas lyophilized microcapsules had porous and fragile structures. Dried microcapsules presented a medium size of 0.71-0.86mm and a w ranging from 0.14 to 0.36, depending on the drying process. When comparing the effects of drying processes on BGP-1 viability, the fluidized bed was less aggressive than lyophilization. The alginate-shellac blend combined with coconut fat as core effectively protected the encapsulated probiotic under simulated gastrointestinal conditions. Thus, the production of microcapsules by co-extrusion followed by drying using the fluidized bed is a promising strategy for protection of probiotic cells. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Physicochemical characterization and oxidative stability of fish oil-loaded electrosprayed capsules: Combined use of whey protein and carbohydrates as wall materials

    DEFF Research Database (Denmark)

    García Moreno, Pedro Jesús; Pelayo, Andres; Yu, Sen

    2018-01-01

    The encapsulation of fish oil in electrosprayed capsules using whey protein and carbohydrates (pullulan and dextran or glucose syrup) mixtures as glassy wall materials was studied. Capsules with fish oil emulsified by using only a rotor-stator emulsification exhibited higher oxidative stability...... than capsules where the oil was emulsified by high-pressure homogenization. Moreover, glucose syrup capsules (with a peroxide value, PV, of 19.7 ± 4.4 meq/kg oil and a content of 1-penten-3-ol of 751.0 ± 69.8 ng/g oil) were less oxidized than dextran capsules after 21 days of storage at 20 °C (PV of 24.......9 ± 0.4 meq/kg oil and 1-penten-3-ol of 1161.0 ± 222.0 ng/g oil). This finding may be attributed to differences in oxygen permeability between both types of capsules. These results indicated the potential of both combinations of whey protein, pullulan, and dextran or glucose syrup as shell materials...

  3. Full size testing of sheet pile walls

    NARCIS (Netherlands)

    Kuilen, J.W.G. van de; Linden, M.L.R. van der; Katsma, H.; Stolle, P.

    1996-01-01

    Azobé (Lophira alata) is widely used in timber sheet pile walls in the Netherlands. The boards in these walls are coupled and therefore load-sharing can be expected. A simulation model based on the finite element method DIANA (DIANA, 1992) was developed and load-sharing could be calculated. To check

  4. Monitoring of Double-Stud Wall Moisture Conditions in the Northeast

    Energy Technology Data Exchange (ETDEWEB)

    Ueno, K. [Building Science Corporation, Westford, MA (United States)

    2015-03-01

    Double-stud walls insulated with cellulose or low-density spray foam can have R-values of 40 or higher. However, double-stud walls have a higher risk of interior-sourced condensation moisture damage when compared with high-R approaches using exterior insulating sheathing. Moisture conditions in double-stud walls were monitored in Zone 5A (Massachusetts); three double-stud assemblies were compared.

  5. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how wall...

  6. Ambiguous walls

    DEFF Research Database (Denmark)

    Mody, Astrid

    2012-01-01

    The introduction of Light Emitting Diodes (LEDs) in the built environment has encouraged myriad applications, often embedded in surfaces as an integrated part of the architecture. Thus the wall as responsive luminous skin is becoming, if not common, at least familiar. Taking into account how walls...... have encouraged architectural thinking of enclosure, materiality, construction and inhabitation in architectural history, the paper’s aim is to define new directions for the integration of LEDs in walls, challenging the thinking of inhabitation and program. This paper introduces the notion...... of “ambiguous walls” as a more “critical” approach to design [1]. The concept of ambiguous walls refers to the diffuse status a lumious and possibly responsive wall will have. Instead of confining it can open up. Instead of having a static appearance, it becomes a context over time. Instead of being hard...

  7. Contribution to the understanding of the behaviour of reinforced concrete shear walls under seismic loading: contribution of experiment and modeling to the design; Contribution a la comprehension du fonctionnement des voiles en beton arme sous sollicitation sismique: apport de l'experimentation et de la modelisation a la conception

    Energy Technology Data Exchange (ETDEWEB)

    Ile, N

    2000-12-01

    This thesis deals with aspects of seismic behaviour of reinforced concrete shear walls (RCSW). Its objective is to introduce a useful modelling approach for addressing the non-linear response of a large variety of RCSW and to identify several aspects in which this numerical approach could be implemented into design applications. Firstly, the characteristics of the behaviour of RCSW under seismic loading, some design principles and different modelling approaches are discussed. As an important lack of knowledge in several fields was identified, it was considered that three types of shear walls deserve more attention: slightly reinforced slender walls; U-shaped walls and heavily reinforced squat shear walls. A local modelling approach is adopted and the material constitutive models are described in details. Secondly, the behaviour of the two mock-up, CAMUS I and II, tested on the shaking-table during the CAMUS programme, which are slightly reinforced and designed according to the French code PS92 is simulated using a 2-D finite element model (FEM). For comparison purposes, the case of the CAMUS III mock-up, designed according to EC8, is considered. We are then dealing with the case of U-shaped walls under dynamic and cyclic loading. The results obtained from numerical simulations, based on a 3-D shell FEM, are compared with those obtained from tests carried out in the frame of the ICONS programme. Finally, the numerical model is applied to the case of heavily reinforced squat shear walls (similar to those used in the nuclear power plant buildings) subjected to shear loading. A 2-D FEM is considered in order to simulate the behaviour of three different walls, which were tested pseudo-dynamically during the SAFE programme. The results from both experimental and numerical studies are compared and discussed. The most important factors affecting the behaviour of RCSW are highlighted. Different examples of possible contributions to design are presented. (author)

  8. Contribution to the understanding of the behaviour of reinforced concrete shear walls under seismic loading: contribution of experiment and modeling to the design; Contribution a la comprehension du fonctionnement des voiles en beton arme sous sollicitation sismique: apport de l'experimentation et de la modelisation a la conception

    Energy Technology Data Exchange (ETDEWEB)

    Ile, N

    2000-12-01

    This thesis deals with aspects of seismic behaviour of reinforced concrete shear walls (RCSW). Its objective is to introduce a useful modelling approach for addressing the non-linear response of a large variety of RCSW and to identify several aspects in which this numerical approach could be implemented into design applications. Firstly, the characteristics of the behaviour of RCSW under seismic loading, some design principles and different modelling approaches are discussed. As an important lack of knowledge in several fields was identified, it was considered that three types of shear walls deserve more attention: slightly reinforced slender walls; U-shaped walls and heavily reinforced squat shear walls. A local modelling approach is adopted and the material constitutive models are described in details. Secondly, the behaviour of the two mock-up, CAMUS I and II, tested on the shaking-table during the CAMUS programme, which are slightly reinforced and designed according to the French code PS92 is simulated using a 2-D finite element model (FEM). For comparison purposes, the case of the CAMUS III mock-up, designed according to EC8, is considered. We are then dealing with the case of U-shaped walls under dynamic and cyclic loading. The results obtained from numerical simulations, based on a 3-D shell FEM, are compared with those obtained from tests carried out in the frame of the ICONS programme. Finally, the numerical model is applied to the case of heavily reinforced squat shear walls (similar to those used in the nuclear power plant buildings) subjected to shear loading. A 2-D FEM is considered in order to simulate the behaviour of three different walls, which were tested pseudo-dynamically during the SAFE programme. The results from both experimental and numerical studies are compared and discussed. The most important factors affecting the behaviour of RCSW are highlighted. Different examples of possible contributions to design are presented. (author)

  9. The effect of lighting exterior and interior design

    OpenAIRE

    Sandeva, Vaska; Despot, Katerina

    2017-01-01

    Light, whether natural or artificial is a very important element in interior and exterior design. It actually helps us to see color because color is visible to our eye because the substances of which was obtained reflect wavelengths of light. Light as an element of design influences other elements. It can make the space large or small, showy and bright or dark and unpleasant. Places that are well-lit with clean, clear light make the space seem larger, while the fading light and shadows ...

  10. Numerical Simulation of Antennae by Discrete Exterior Calculus

    International Nuclear Information System (INIS)

    Xie Zheng; Ye Zheng; Ma Yujie

    2009-01-01

    Numerical simulation of antennae is a topic in computational electromagnetism, which is concerned with the numerical study of Maxwell equations. By discrete exterior calculus and the lattice gauge theory with coefficient R, we obtain the Bianchi identity on prism lattice. By defining an inner product of discrete differential forms, we derive the source equation and continuity equation. Those equations compose the discrete Maxwell equations in vacuum case on discrete manifold, which are implemented on Java development platform to simulate the Gaussian pulse radiation on antennaes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  11. Numerical convergence of discrete exterior calculus on arbitrary surface meshes

    KAUST Repository

    Mohamed, Mamdouh S.

    2018-02-13

    Discrete exterior calculus (DEC) is a structure-preserving numerical framework for partial differential equations solution, particularly suitable for simplicial meshes. A longstanding and widespread assumption has been that DEC requires special (Delaunay) triangulations, which complicated the mesh generation process especially for curved surfaces. This paper presents numerical evidence demonstrating that this restriction is unnecessary. Convergence experiments are carried out for various physical problems using both Delaunay and non-Delaunay triangulations. Signed diagonal definition for the key DEC operator (Hodge star) is adopted. The errors converge as expected for all considered meshes and experiments. This relieves the DEC paradigm from unnecessary triangulation limitation.

  12. Discrete Exterior Calculus Discretization of Incompressible Navier-Stokes Equations

    KAUST Repository

    Mohamed, Mamdouh S.

    2017-05-23

    A conservative discretization of incompressible Navier-Stokes equations over surface simplicial meshes is developed using discrete exterior calculus (DEC). Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy otherwise. The mimetic character of many of the DEC operators provides exact conservation of both mass and vorticity, in addition to superior kinetic energy conservation. The employment of barycentric Hodge star allows the discretization to admit arbitrary simplicial meshes. The discretization scheme is presented along with various numerical test cases demonstrating its main characteristics.

  13. Improved interior wall detection using designated dictionaries in compressive urban sensing problems

    Science.gov (United States)

    Lagunas, Eva; Amin, Moeness G.; Ahmad, Fauzia; Nájar, Montse

    2013-05-01

    In this paper, we address sparsity-based imaging of building interior structures for through-the-wall radar imaging and urban sensing applications. The proposed approach utilizes information about common building construction practices to form an appropriate sparse representation of the building layout. With a ground based SAR system, and considering that interior walls are either parallel or perpendicular to the exterior walls, the antenna at each position would receive reflections from the walls parallel to the radar's scan direction as well as from the corners between two meeting walls. We propose a two-step approach for wall detection and localization. In the first step, a dictionary of possible wall locations is used to recover the positions of both interior and exterior walls that are parallel to the scan direction. A follow-on step uses a dictionary of possible corner reflectors to locate wall-wall junctions along the detected wall segments, thereby determining the true wall extents and detecting walls perpendicular to the scan direction. The utility of the proposed approach is demonstrated using simulated data.

  14. Wall Turbulence.

    Science.gov (United States)

    Hanratty, Thomas J.

    1980-01-01

    This paper gives an account of research on the structure of turbulence close to a solid boundary. Included is a method to study the flow close to the wall of a pipe without interferring with it. (Author/JN)

  15. Seismic Performance of Precast Polystyrene RC Walls

    Directory of Open Access Journals (Sweden)

    Wibowo Ari

    2017-01-01

    Full Text Available Precast concrete structure such as precast wall is a concept that is growing rapidly these days. However, the earthquake resistance is believed to be one of its drawbacks. Additionally, the large weight of solid elements also increase the building weight significantly which consequently increase the earthquake base shear force as well. Therefore, investigation on the seismic performance of precast concrete wall has been carried out. Three RC wall specimens using wire mesh reinforcement and EPS (Extended Polystyrene System panel have been tested. This wall was designed as a structural wall that was capable in sustaining lateral loads (in-plane yet were lightweight to reduce the total weight of the building. Parameter observed was the ratio of height to width (aspect ratio of wall of 1.0, 1.5 and 2.0 respectively with the aim to study the behaviour of brittle to ductile transition of the wall. Incremental static load tests were conducted until reaching peak load and then followed by displacement control until failure. Several data were measured at every stage of loading comprising lateral load-displacement behaviour, ultimate strength and collapse mechanism. The outcomes showed that precast concrete walls with a steel wire and EPS panel filler provided considerably good resistance against lateral load.

  16. Structural load combinations

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Ellingwood, B.; Shinozuka, M.

    1985-01-01

    This paper presents the latest results of the program entitled, ''Probability Based Load Combinations For Design of Category I Structures''. In FY 85, a probability-based reliability analysis method has been developed to evaluate safety of shear wall structures. The shear walls are analyzed using stick models with beam elements and may be subjected to dead load, live load and in-plane eqrthquake. Both shear and flexure limit states are defined analytically. The limit state probabilities can be evaluated on the basis of these limit states. Utilizing the reliability analysis method mentioned above, load combinations for the design of shear wall structures have been established. The proposed design criteria are in the load and resistance factor design (LRFD) format. In this study, the resistance factors for shear and flexure and load factors for dead and live loads are preassigned, while the load factor for SSE is determined for a specified target limit state probability of 1.0 x 10 -6 or 1.0 x 10 -5 during a lifetime of 40 years. 23 refs., 9 tabs

  17. Structural load combinations

    International Nuclear Information System (INIS)

    Hwang, H.; Reich, M.; Ellingwood, B.; Shinozuka, M.

    1986-01-01

    This paper presents the latest results of the program entitled, ''Probability Based Load Combinations For Design of Category I Structures''. In FY 85, a probability-based reliability analysis method has been developed to evaluate safety of shear wall structures. The shear walls are analyzed using stick models with beam elements and may be subjected to dead load, live load and in-plane earthquake. Both shear and flexure limit states are defined analytically. The limit state probabilities can be evaluated on the basis of these limit states. Utilizing the reliability analysis method mentioned above, load combinations for the design of shear wall structures have been established. The proposed design criteria are in the load and resistance factor design (LRFD) format. In this study, the resistance factors for shear and flexure and load factors for dead and live loads are preassigned, while the load factor for SSE is determined for a specified target limit state probability of 1.0 x 10 -6 or 1.0 x 10 -5 during a lifetime of 40 years

  18. Asia Central en la política exterior rusa

    Directory of Open Access Journals (Sweden)

    Javier Morales

    2012-01-01

    Full Text Available Las políticas rusas hacia Asia Central han estado condicionadas por la herencia histórica anterior a la disolución de la URSS, pero también por los cambios en el sistema internacional y en la propia Rusia acaecidos desde entonces. ¿En qué medida la actuación de Rusia ha sido coherente y estable, basada en una estrategia para Asia Central fundamentada en los intereses nacionales? En este artículo examinamos los fundamentos de la política exterior rusa en relación con Asia Central, dividiéndola en tres apartados: político, económico y de seguridad.

  19. Dimensión social de la publicidad exterior

    Directory of Open Access Journals (Sweden)

    Lic. Marta Pacheco Rueda

    1998-01-01

    Full Text Available La publicidad exterior moderna nace en España a principios de los años 60, en un período en que desde el gobierno se acomete una serie de iniciativas tendentes a reactivar la economía del país. La incipiente apertura económica no es desaprovechada por grandes firmas internacionales que aumentan sus inversiones e introducen en el mercado español productos con una larga tradición de consumo en los países occidentales industrializados. Se produce el asentamiento definitivo de las agencias multinacionales de publicidad, de procedencia norteamericana sobre todo, que traen consigo técnicas que responden a una filosofía de marketing, término que si en aquel momento resulta un tanto extraño, con el paso de los años se convierte en un vocablo de uso extendido.

  20. Covariant differential calculus on the quantum exterior vector space

    International Nuclear Information System (INIS)

    Parashar, P.; Soni, S.K.

    1992-01-01

    We formulate a differential calculus on the quantum exterior vector space spanned by the generators of a non-anticommutative algebra satisfying r ij = θ i θ j +B kl ij θ k θ l =0 i, j=1, 2, ..., n. and (θ i ) 2 =(θ j ) 2 =...=(θ n ) 2 =0, where B kl ij is the most general matrix defined in terms of complex deformation parameters. Following considerations analogous to those of Wess and Zumino, we are able to exhibit covariance of our calculus under ( 2 n )+1 parameter deformation of GL(n) and explicitly check that the non-anticommutative differential calculus satisfies the general constraints given by them, such as the 'linear' conditions dr ij ≅0 and the 'quadratic' condition r ij x n ≅0 where x n =dθ n are the differentials of the variables. (orig.)

  1. The use of exterior forms in Einstein's gravitation theory

    International Nuclear Information System (INIS)

    Thirring, W.; Wallner, R.

    1978-01-01

    Cartan's calculus is used to reformulate the general variational principle and conservation laws in terms of exterior forms. In applying this method to Einstein's gravitation theory, we do not only benefit from the great economy of Cartan's formalism but also gain a deeper understanding of fundamental results already known. So the existence of superpotential-forms may be deduced from d o d identical to 0 and as a consequence the vanishing of total energy and momentum in a closed universe is affirmed in a more general way. Simple expressions for the sundry superpotential are obtained quite naturally. As a byproduct, Einstein's equations are rewritten in a form where the coderivative of a 2-form (the superpotential-form) is a current, and therefore resembles the inhomogeneous Maxwell equations. In passing from the Lagrangian to the Hamiltonian 4-form, the ADM formalism is immediately entered without lengthy calculations [pt

  2. Cluster Observations of Particle Injections in the Exterior Cusp

    Science.gov (United States)

    Escoubet, C. P.; Grison, B.; Berchem, J.; Trattner, K. J.; Lavraud, B.; Pitout, F.; Soucek, J.; Richard, R. L.; Laakso, H. E.; Masson, A.; Dunlop, M. W.; Dandouras, I. S.; Reme, H.; Fazakerley, A. N.; Daly, P. W.

    2014-12-01

    The main process that injects solar wind plasma into the polar cusp is now generally accepted to be magnetic reconnection. Depending on the IMF direction, this process takes place equatorward (for IMF southward), poleward (for IMF northward) or on the dusk or dawn sides (for IMF azimuthal) of the cusp. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed lower than usual around 280 km/s with the density of order 5 cm-3. The four Cluster spacecraft had an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. Using the time of flight technique on the upgoing and downgoing ions, which leads to energy dispersions, we obtain distances of the ion sources between 14 and 20 RE from the spacecraft. Using Tsyganenko model, we find that these sources are located on the dusk flank, past the terminator. The first injection by C3 is seen at approximately the same time as the 2nd injection on C1 but their sources at the magnetopause were separated by more than 7 RE. This would imply that two distinct sources were active at the same time on the dusk flank of the magnetosphere. In addition, a flow reversal was observed at the magnetopause on C4 which would be an indication that reconnection is taking place near the exterior cusp.

  3. Investigation of vessel exterior air cooling for a HLMC reactor

    International Nuclear Information System (INIS)

    Sienicki, J. J.; Spencer, B. W.

    2000-01-01

    The Secure Transportable Autonomous Reactor (STAR) concept under development at Argonne National Laboratory provides a small (300 MWt) reactor module for steam supply that incorporates design features to attain proliferation resistance, heightened passive safety, and improved cost competitiveness through extreme simplification. Examples are the achievement of 100%+ natural circulation heat removal from the low power density/low pressure drop ultra-long lifetime core and utilization of lead-bismuth eutectic (LBE) coolant enabling elimination of main coolant pumps as well as the need for an intermediate heat transport circuit. It is required to provide a passive means of removing decay heat and effecting reactor cooldown in the event that the normal steam generator heat sink, including its normal shutdown heat removal mode, is postulated to be unavailable. In the present approach, denoted as the Reactor Exterior Cooling System (RECS), passive decay heat removal is provided by cooling the outside of the containment/guard vessel with air. RECS is similar to the Reactor Vessel Auxiliary Cooling System (RVACS) incorporated into the PRISM design. However, to enhance the heat removal, RECS incorporates fins on the containment vessel exterior to enhance heat transfer to air as well as removable steel venetian conductors that provide a conduction heat transfer path across the reactor vessel-containment vessel gap to enhance heat transfer between the vessels. The objective of the present work is to investigate the effectiveness of air cooling in removing heat from the vessel and limiting the coolant temperature increase following a sudden complete loss of the steam generator heat sink

  4. Accuracy analysis of exterior orientation elements on vertical parallax in POS-supported aerial photogrammetry

    Science.gov (United States)

    Wu, Zhenli; Yuan, Xiuxiao

    2009-10-01

    This paper analyzes the effect of exterior orientation elements on vertical parallax, especially using the orientation parameters of aerial images obtained by a POS (Positioning and Orientation System) after calibration. Firstly, based on the theory of analytical relative orientation of consecutive photo connection, the exterior orientation elements can be easily translated to relative orientation elements. Then, the formula of vertical parallax can be deduced. The results of vertical parallax in left image space coordinate system are compared with the results calculated in the image coordinate system which are parallel to those of the object coordinate system. The validity and feasibility of the mathematical model are tested using two sets of actual data at different images scales. Finally, the differences between the effects of exterior orientation parameters on vertical parallax are compared using exterior orientation parameters obtained by traditional bundle block adjustment and by a POS after calibrated. And how the single element of exterior orientation effected on vertical parallax and how they worked together are analyzed. The empirical results indicate that the effects of different elements of exterior orientation on vertical parallax are different, all exterior orientation parameters can be affected by each other, so the overall effect of vertical parallax accuracy can be restricted by all exterior orientation parameters.

  5. Advanced Extended Plate and Beam Wall System in a Cold-Climate House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, Dave [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, Joseph [Home Innovation Research Labs, Upper Marlboro, MD (United States); Kochkin, Vladimir [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2016-01-29

    This report presents the design and evaluation of an innovative wall system. This highly insulated (high-R) light-frame wall system for use above grade in residential buildings is referred to as Extended Plate & Beam (EP&B). The EP&B design is the first of its kind to be featured in a new construction test house (NCTH) for the DOE Building America program. The EP&B wall design integrates standard building methods and common building products to construct a high-R wall that minimizes transition risks and costs to builders. The EP&B design combines optimized framing with integrated rigid foam sheathing to increase the wall system's R-value and reduce thermal bridging. The foam sheathing is installed between the wall studs and structural wood sheathing. The exterior wood sheathing is attached directly to a framing extension formed by extended top and bottom plates. The exterior wood sheathing can dry to the exterior and provides bracing, a clear drainage plane and flashing surface for window and door openings, and a nailing surface for siding attachment. With support of the DOE Building America program, Home Innovation Research Labs partnered with Lancaster County Career and Technology Center (LCCTC) to build a NCTH in Lancaster, PA to demonstrate the EP&B wall design in a cold climate (IECC climate zone 5A). The results of the study confirmed the benefits of the systems and the viability of its integration into the house construction process.

  6. Behaviour of partially composite precast concrete sandwich panels under flexural and axial loads

    Science.gov (United States)

    Tomlinson, Douglas George

    Precast concrete sandwich panels are commonly used on building exteriors. They are typically composed of two concrete wythes that surround rigid insulation. They are advantageous as they provide both structural and thermal resistance. The structural response of sandwich panels is heavily influenced by shear connectors that link the wythes together. This thesis presents a study on partially composite non-prestressed precast concrete wall panels. Nine flexure tests were conducted on a wall design incorporating 'floating' concrete studs and Glass Fibre Reinforced Polymer (GFRP) connectors. The studs encapsulate and stiffen the connectors, reducing shear deformations. Ultimate loads increased from 58 to 80% that of a composite section as the connectors' reinforcement ratio increased from 2.6 to 9.8%. This design was optimized by reinforcing the studs and integrating them with the structural wythe; new connectors composed of angled steel or Basalt-FRP (BFRP) were used. The load-slip response of the new connector design was studied through 38 double shear push-through tests using various connector diameters and insertion angles. Larger connectors were stronger but more likely to pull out. Seven flexure tests were conducted on the new wall design reinforced with different combinations of steel and BFRP connectors and reinforcement. Composite action varied from 50 to 90% depending on connector and reinforcement material. Following this study, the axial-bending interaction curves were established for the new wall design using both BFRP and steel connectors and reinforcement. Eight panels were axially loaded to predesignated loads then loaded in flexure to failure. A technique is presented to experimentally determine the effective centroid of partially composite sections. Beyond the tension and compression-controlled failure regions of the interaction curve, a third region was observed in between, governed by connector failure. Theoretical models were developed for the bond

  7. Mold attack on frescoes and stone walls of Gradac monastery

    Directory of Open Access Journals (Sweden)

    Stupar Miloš Č.

    2011-01-01

    Full Text Available Microfungi can colonize stone surfaces and form sub-aerial biofilms which can lead to biodeterioration of historic monuments. In this investigation samples for mycological analyses were collected from stone material with visible alteration on stone walls of Gradac monastery exterior. The prevailing fungi found on stone walls were dematiaceous hyphomycetes with melanized hyphae and reproductive structures (Alternaria, Aureobasidium, Cladosporium and Epicoccum species. The frescoes inside the monastery building were also analyzed for the presence of mycobiota. The predominant fungi found on frescoes were osmophilic species from genera Aspergillus and Penicillium. The significant result is identification of human pathogen species Aspergillus fumigatus on frescoes.

  8. Shear wall ultimate drift limits

    International Nuclear Information System (INIS)

    Duffey, T.A.; Goldman, A.; Farrar, C.R.

    1994-04-01

    Drift limits for reinforced-concrete shear walls are investigated by reviewing the open literature for appropriate experimental data. Drift values at ultimate are determined for walls with aspect ratios ranging up to a maximum of 3.53 and undergoing different types of lateral loading (cyclic static, monotonic static, and dynamic). Based on the geometry of actual nuclear power plant structures exclusive of containments and concerns regarding their response during seismic (i.e.,cyclic) loading, data are obtained from pertinent references for which the wall aspect ratio is less than or equal to approximately 1, and for which testing is cyclic in nature (typically displacement controlled). In particular, lateral deflections at ultimate load, and at points in the softening region beyond ultimate for which the load has dropped to 90, 80, 70, 60, and 50 percent of its ultimate value, are obtained and converted to drift information. The statistical nature of the data is also investigated. These data are shown to be lognormally distributed, and an analysis of variance is performed. The use of statistics to estimate Probability of Failure for a shear wall structure is illustrated

  9. Lateral resistance of plybamboo wall-panels

    OpenAIRE

    Gonzalez Beltran, G.E.; Herwijnen, van, F.; Janssen, J.J.A.; Moonen, S.P.G.; Gutierrez, J.A.

    2003-01-01

    This paper deals with the experimental and theoretical behavior of plybamboo (kind of plywood made out of bamboo) wall-panels subjected to lateral load. The wall-panels are part of a house design method proposed in the author's PhD thesis for prefabricated social housing in developing countries. Sixteen fullscaled wallpanels with or without window and door openings were tested and their theoretical capacities estimated. Design wind and seismic loads were determined according to the Internatio...

  10. Diseño de un armario eléctrico para alumbrado exterior

    OpenAIRE

    Vermeil, Bastien

    2009-01-01

    El Proyecto tiene como objetivo el diseño de un armario eléctrico de alumbrado exterior que proporcione un valor añadido a los existentes actualmente. Este producto, diseñado para proteger los sistemas de alimentación y control de las instalaciones eléctricas, guardará esta función principal, tendrá un diseño exterior nuevo, y nuevas funcionalidades. Ahora, estas instalaciones permiten de alimentar la calle, los alumbradores exteriores en electricidad y gestionar las diferentes líneas desd...

  11. Numerical electromagnetic frequency domain analysis with discrete exterior calculus

    Science.gov (United States)

    Chen, Shu C.; Chew, Weng Cho

    2017-12-01

    In this paper, we perform a numerical analysis in frequency domain for various electromagnetic problems based on discrete exterior calculus (DEC) with an arbitrary 2-D triangular or 3-D tetrahedral mesh. We formulate the governing equations in terms of DEC for 3-D and 2-D inhomogeneous structures, and also show that the charge continuity relation is naturally satisfied. Then we introduce a general construction for signed dual volume to incorporate material information and take into account the case when circumcenters fall outside triangles or tetrahedrons, which may lead to negative dual volume without Delaunay triangulation. Then we examine the boundary terms induced by the dual mesh and provide a systematical treatment of various boundary conditions, including perfect magnetic conductor (PMC), perfect electric conductor (PEC), Dirichlet, periodic, and absorbing boundary conditions (ABC) within this method. An excellent agreement is achieved through the numerical calculation of several problems, including homogeneous waveguides, microstructured fibers, photonic crystals, scattering by a 2-D PEC, and resonant cavities.

  12. Recycling Roof Tile Waste Material for Wall Cover Tiles

    Directory of Open Access Journals (Sweden)

    Ambar Mulyono

    2014-02-01

    Full Text Available Prior research on roof tile waste treatment has attempted to find the appropriate technology to reuse old roof tile waste by  create  wall  cladding  materials  from  it.  Through  exploration  and  experimentation,  a  treatment  method  has  been discovered  to  transform  the  tile  fragments  into  artificial  stone  that  resembles  the  shape  of  coral.  This  baked  clay artificial stone material is then processed as a decorative element for vertical surfaces that are not load-bearing, such as on the interior and exterior walls of a building. Before applying the fragments as wall tiles, several steps must be taken: 1  Blunting,  which  changes  the  look  of  tile  fragments  using  a  machine  created  specifically  to  blunt  the  roof-tile fragment  edges,  2  Closing  the  pores  of  the  blunted  fragments  as  a  finishing  step  that  can  be  done  with  a  transparent coat or a solid color of paint, 3 Planting the transformed roof-tile fragments on a prepared tile body made of concrete. In this study, the second phase is done using the method of ceramics glazing at a temperature of 700 °C. The finishing step is the strength of this product because it produces a rich color artificial pebble.

  13. Side loading filter apparatus

    International Nuclear Information System (INIS)

    Reynolds, K.E.

    1981-01-01

    A side loading filter chamber for use with radioactive gases is described. The equipment incorporates an inexpensive, manually operated, mechanism for aligning filter units with a number of laterally spaced wall openings and for removing the units from the chamber. (U.K.)

  14. El enlucido exterior de yeso en las rehabilitaciones de las fachadas de París

    Directory of Open Access Journals (Sweden)

    Raymond Pigache, M.

    1986-07-01

    Full Text Available The use, the manufacture, the putting into excution of gypsum plaster on old Paris façades -a marely manual technique- are specified since long ago. A number of gypsum plaster carried out under Louis the 14th reign, have still a good behaviour in spite of, as it is well known, gypsum in the outside is very sensible to dissolution. This study allows to clarify four fundamental parameters, and its conclusions make it possible to carry out rehabilitations both in prestigeous and in humble buildings: - The use of a mortar which components will be similar to those old materials; - A merely handwork. - An established proportion with a view to protect the gypsum plasters, cornices, moldings, etc. from drainage waters. - Bearing walls with higher mechanical characteristics than those of platers.La utilización, fabricación y puesto en obra de morteros de yeso, sobre las fachadas antiguas en el viejo París -técnica puramente manual-, están precisadas desde hace mucho tiempo. Numerosos enlucidos de mortero de yeso, realizados bajo el reinado de Luis XIV, presentan todavía un excelente comportamiento a pesar de que, como es sabido, el yeso en exteriores es muy sensible a disolverse. Este estudio ha permitido aclarar cuatro parámetros fundamentales y, sobre todo, sus conclusiones han permitido la realización de numerosas rehabilitaciones, tanto en inmuebles de prestigio como en edificaciones modestas: - El empleo de un mortero cuyos componentes sean más cercanos a los materiales antiguos. - Una aplicación puramente manual. - Una proporción establecida a fin de proteger de las aguas de desagüe los enlucidos de mortero de yeso, las cornisas, molduras y etc. - Muros portantes con las características mecánicas más elevadas que las de los enlucidos.

  15. Evaluation of Two CEDA Weatherization Pilot Implementations of an Exterior Insulation and Over-Clad Retrofit Strategy for Residential Masonry Buildings in Chicago

    Energy Technology Data Exchange (ETDEWEB)

    Neuhauser, Ken [Building Science Corporation, Somerville, MA (United States)

    2013-08-01

    This project examines the implementation of an exterior insulation and over-clad strategy for brick masonry buildings in Chicago—a free-standing two story two-family dwelling and a larger free-standing multifamily building. The test homes selected for this research represent predominant housing types for the Chicago area, in which high heating energy use typical in these buildings threaten housing affordability, and uninsulated mass masonry wall assemblies are uncomfortable for residents. In this project, the Community and Economic Development Association of Cook County, Inc. (CEDA) has secured a Sustainable Energy Resources for Consumers (SERC) innovation grant sponsored by DOE to pursue a pilot implementation of innovative approaches to retrofit in masonry wall enclosures. The retrofit measures are evaluated in terms of feasibility, cost and performance. Through observations of the strategies implemented, the research described in this report identifies measures critical to performance as well as conditions for wider adoption. The research also identifies common factors that must be considered in determining whether the exterior insulation and over-clad strategy is appropriate for the building.

  16. First wall of thermonuclear device

    International Nuclear Information System (INIS)

    Kizawa, Makoto; Koizumi, Makoto; Nishihara, Yoshihiro.

    1990-01-01

    The first wall of a thermonuclear device is constituted with inner wall tiles, e.g. made of graphite and metal substrates for fixing them. However, since the heat expansion coefficient is different between the metal substrates and intermediate metal members, thermal stresses are caused to deteriorate the endurance of the inner wall tiles. In view of the above, low melting metals are disposed at the portion of contact between the inner wall tiles and the metal substrates and, further, a heat pipe structure is incorporated into the metal substrates. Under the thermal load, for example, during operation of the thermonuclear device, the low melting metals at the portion of contact are melted into liquid metals to enhance the state of contact between the inner wall tiles and the metal substrate to reduce the heat resistance and improve the heat conductivity. Even if there is a difference in the heat expansion coefficient between the inner wall tiles and the metal substrates, neither sharing stresses not thermal stresses are caused. Further, since the heat pipe structure is incorporated into the metal substrates, the lateral unevenness of the temperature in the metal substrates can be eliminated. Thus, the durability of the inner wall tiles can be improved. (N.H.)

  17. Shielding wall for thermonuclear device

    International Nuclear Information System (INIS)

    Uchida, Takaho.

    1989-01-01

    This invention concerns shielding walls opposing to plasmas of a thermonuclear device and it is an object thereof to conduct reactor operation with no troubles even if a portion of shielding wall tiles should be damaged. That is, the shielding wall tiles are constituted as a dual layer structure in which the lower base tiles are connected by means of bolts to first walls. Further, the upper surface tiles are bolt-connected to the layer base tiles. In this structure, the plasma thermal loads are directly received by the surface layer tiles and heat is conducted by means of conduction and radiation to the underlying base tiles and the first walls. Even upon occurrence of destruction accidents to the surface layer tiles caused by incident heat or electromagnetic force upon elimination of plasmas, since the underlying base tiles remain as they are, the first walls constituted with stainless steels, etc. are not directly exposed to the plasmas. Accordingly, the integrity of the first walls having cooling channels can be maintained and sputtering intrusion of atoms of high atom number into the plasmas can be prevented. (I.S.)

  18. Discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes

    KAUST Repository

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-01-01

    A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a

  19. New exact solution for the exterior gravitational field of a charged spinning mass

    International Nuclear Information System (INIS)

    Chamorro, A.; Manko, V.S.; Denisova, T.E.

    1991-01-01

    An exact asymptotically flat solution of the Einstein-Maxwell equations describing the exterior gravitational field of a charged rotating axisymmetric mass possessing an arbitrary set of multipole moments is presented explicitly

  20. New exact solution for the exterior gravitational field of a spinning mass

    International Nuclear Information System (INIS)

    Manko, V.S.

    1990-01-01

    An exact asymptotically flat solution of the vacuum Einstein equations representing the exterior gravitational field of a stationary axisymmetric mass with an arbitrary mass-multipole structure is presented

  1. Seismic behavior of reinforced concrete shear walls

    International Nuclear Information System (INIS)

    Wang, F.; Gantenbein, F.

    1989-01-01

    Reinforced concrete shear walls have an important contribution to building stiffness. So, it is necessary to know their behavior under seismic loads. The ultimate behavior study of shear walls subjected to dynamic loadings includes: - a description of the nonlinear global model based on cyclic static tests, - nonlinear time history calculations for various forcing functions. The comparison of linear and nonlinear results shows important margins related to the ductility when the bandwidth of the forcing function is narrow and centred on the wall natural frequency

  2. Cluster Observations of Ion Dispersions near the Exterior Cusp

    Science.gov (United States)

    Escoubet, C.; Grison, B.; Berchem, J.; Trattner, K. J.; Pitout, F.; Richard, R. L.; Taylor, M. G.; Laakso, H. E.; Masson, A.; Dunlop, M. W.; Dandouras, I. S.; Reme, H.; Fazakerley, A. N.; Daly, P. W.

    2013-12-01

    The cusps are the places where the Earth's magnetic field lines, connected to the inner side of the magnetopause, converge. It is therefore the place where signatures of processes occurring near the subsolar point, in the tail lobes, as well as near the dawn and dusk flanks are observed. The main process that injects solar wind plasma into the polar cusp is now generally accepted to be magnetic reconnection. Depending on the IMF direction, this process will take place equatorward (for IMF southward), poleward (for IMF northward) or on the side (for IMF azimuthal) of the cusp. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed around 280 km/s and the density around 5 cm-3. The four Cluster spacecraft were still in the "magnetotail" configuration with two perfect tetrahedra of 2000 km around apogee and turning into an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. We will investigate the origin of the injections forming the dispersions and if these can be explained by the reconnection between the interplanetary magnetic field and the Earth's magnetic field.

  3. Inplane shear capacity of reinforced composite masonry block walls

    International Nuclear Information System (INIS)

    White, W.H.; Tseng, W.S.

    1981-01-01

    The objective of this paper is to describe a test program performed to determine the inplane shear capacity, stiffness and ductility of composite masonry walls subjected to earthquake type loadings. Specimens were simultaneously subjected to a range of compressive loads to simulate dead load; and inplane shear loads with full load reversal to simulate the earthquake cycling load. The influence of horizontal and vertical reinforcing steel percentages on the inplane shear capacity, stiffness and ductility was also investigated. (orig./HP)

  4. Reflective coatings for interior and exterior of buildings and improving thermal performance

    International Nuclear Information System (INIS)

    Joudi, Ali; Svedung, Harald; Cehlin, Mathias; Rönnelid, Mats

    2013-01-01

    Highlights: ► Increase building energy efficiency by optimizing surface optical properties. ► Study different scenarios with both interior and exterior reflective coatings. ► Combined thermal effect of both interior and exterior reflective coatings. -- Abstract: The importance of reducing building energy usage and thriving for more energy efficient architectures, has nurtured creative solutions and smart choices of materials in the last few decades. Among those are optimizing surface optical properties for both interior and exterior claddings of the building. Development in the coil-coating steel industries has now made it possible to allocate correct optical properties for steel clad buildings with improved thermal performance. Although the importance of the exterior coating and solar gain are thoroughly studied in many literatures, the effect of interior cladding are less tackled, especially when considering a combination of both interior and exterior reflective coatings. This paper contemplates the thermal behavior of small cabins with reflective coatings on both interior and exterior cladding, under different conditions and climates with the aim to clarify and point out to the potential energy saving by smart choices of clad coatings.

  5. Modeling of shear wall buildings

    Energy Technology Data Exchange (ETDEWEB)

    Gupta, A K [North Carolina State Univ., Raleigh (USA). Dept. of Civil Engineering

    1984-05-01

    Many nuclear power plant buildings, for example, the auxiliary building, have reinforced concrete shear walls as the primary lateral load resisting system. Typically, these walls have low height to length ratio, often less than unity. Such walls exhibit marked shear lag phenomenon which would affect their bending stiffness and the overall stress distribution in the building. The deformation and the stress distribution in walls have been studied which is applicable to both the short and the tall buildings. The behavior of the wall is divided into two parts: the symmetric flange action and the antisymmetry web action. The latter has two parts: the web shear and the web bending. Appropriate stiffness equations have been derived for all the three actions. These actions can be synthesized to solve any nonlinear cross-section. Two specific problems, that of lateral and torsional loadings of a rectangular box, have been studied. It is found that in short buildings shear lag plays a very important role. Any beam type formulation which either ignores shear lag or includes it in an idealized form is likely to lead to erroneous results. On the other hand a rigidity type approach with some modifications to the standard procedures would yield nearly accurate answers.

  6. Seismic evaluation of reinforced masonry walls

    International Nuclear Information System (INIS)

    Kelly, T.E.; Button, M.R.; Mayes, R.L.

    1984-01-01

    Masonry walls in operating nuclear plants are in many cases found to be overstressed in terms of allowable stresses when evaluated using current seismic design criteria. However, experimental evidence exists indicating that reinforced masonry walls have a considerable margin between the load levels at which allowable stresses are exceeded and the load levels at which structural distress and loss of function occurs. This paper presents a methodology which allows the actual capacity of reinforced masonry walls under seismic loading to be quantified. The methodology is based on the use of non-linear dynamic analyses and incorporates observed hysteretic behavior for both in-plane and out-of-plane response. Experimental data is used to develop response parameters and to validate the results predicted by the models. Criteria have been concurrently developed to evaluate the deformations and material performance in the walls to ensure adequate margins of safety for the required function. An example of the application of these procedures is provided

  7. Moisture Performance of Energy-Efficient and Conventional Wood-Frame Wall Assemblies in a Mixed-Humid Climate

    Directory of Open Access Journals (Sweden)

    Samuel V. Glass

    2015-07-01

    Full Text Available Long-term moisture performance is a critical consideration for design and construction of building envelopes in energy-efficient buildings, yet field measurements of moisture characteristics for highly insulated wood-frame walls in mixed-humid climates are lacking. Temperature, relative humidity, and moisture content of wood framing and oriented strand board (OSB structural panel sheathing were measured over a period from mid-November 2011 through March 2013 in both north- and south-facing orientations in test structures near Washington, DC, USA. Wall configurations varied in exterior cladding, water-resistive barrier, level of cavity insulation, presence of exterior continuous insulation, and interior vapor retarder. The combination of high interior humidity and high vapor permeance of painted gypsum board led to significant moisture accumulation in OSB sheathing during winter in walls without a vapor retarder. In contrast, wintertime moisture accumulation was not significant with an interior kraft vapor retarder. Extruded polystyrene exterior insulation had a predictable effect on wall cavity temperature but a marginal impact on OSB moisture content in walls with vinyl siding and interior kraft vapor retarder. Hygrothermal simulations approximately captured the timing of seasonal changes in OSB moisture content, differences between north- and south-facing walls, and differences between walls with and without an interior kraft vapor retarder.

  8. Influence of facing vertical stiffness on reinforced soil wall design

    OpenAIRE

    Puig Damians, Ivan; Bathurst, Richard; Josa Garcia-Tornel, Alejandro; Lloret Morancho, Antonio

    2013-01-01

    Current design practices for reinforced soil walls typically ignore the influence of facing type and foundation compressibility on the magnitude and distribution of reinforcement loads in steel reinforced soil walls under operational conditions. In this paper, the effect of the facing vertical stiffness (due to elastomeric bearing pads placed in the horizontal joints between panels) on load capacity of steel reinforced soil walls is examined in a systematic manner using a numerical modelli...

  9. Application of flexi-wall in noise barriers renewal

    Directory of Open Access Journals (Sweden)

    B. Daee

    2015-12-01

    Full Text Available This paper presents an experimental study on structural performance of an innovative noise barrier consisting of poly-block, light polyurethane foam (LPF and polyurea. This wall system (flexi-wall is intended to be employed as a vertical extension to existing noise barriers (sound walls in an accelerated construction method. To aid in the wall design, several mechanical tests were conducted on LPF specimens and two full-scale walls were then fabricated employing the same LPF material. The full-scale walls were subjected to lateral loading in order to establish their lateral resistance. A cyclic fatigue test was also performed on a full-scale flexi-wall in order to evaluate the performance of the wall under a repetitive loading condition. The results of the experiments indicated the suitability of flexi-wall in accelerated construction and confirmed that the structural performance of the wall system under lateral loading is satisfactory for the sound wall application. The experimental results were discussed and a preliminary design procedure for application of flexi-wall in sound wall applications was also developed.

  10. Investigation of interior post-insulated masonry walls with wooden beam ends

    DEFF Research Database (Denmark)

    Morelli, Martin; Svendsen, Svend

    2013-01-01

    The preponderant number of multistorey buildings constructed in Denmark in the period between 1850 and 1930 were built with masonry walls incorporating wooden floor beams. Given the nature of this construction, it is supposed that significant energy savings could be achieved by simply insulating...... the facades of such buildings. To maintain the exterior appearance of the facade, the only possible means of installing the required insulation is placing it on the interior of the wall. However, the installation of insulation on the interior of the wall assembly reduces the overall drying potential...

  11. Falling walls

    CERN Multimedia

    It was 20 years ago this week that the Berlin wall was opened for the first time since its construction began in 1961. Although the signs of a thaw had been in the air for some time, few predicted the speed of the change that would ensue. As members of the scientific community, we can take a moment to reflect on the role our field played in bringing East and West together. CERN’s collaboration with the East, primarily through links with the Joint Institute for Nuclear Research, JINR, in Dubna, Russia, is well documented. Less well known, however, is the role CERN played in bringing the scientists of East and West Germany together. As the Iron curtain was going up, particle physicists on both sides were already creating the conditions that would allow it to be torn down. Cold war historian Thomas Stange tells the story in his 2002 CERN Courier article. It was my privilege to be in Berlin on Monday, the anniversary of the wall’s opening, to take part in a conference entitled &lsquo...

  12. Thermal stress and creep fatigue limitations in first wall design

    International Nuclear Information System (INIS)

    Majumdar, S.; Misra, B.; Harkness, S.D.

    1977-01-01

    The thermal-hydraulic performance of a lithium cooled cylindrical first wall module has been analyzed as a function of the incident neutron wall loading. Three criteria were established for the purpose of defining the maximum wall loading allowable for modules constructed of Type 316 stainless steel and a vanadium alloy. Of the three, the maximum structural temperature criterion of 750 0 C for vanadium resulted in the limiting wall loading value of 7 MW/m 2 . The second criterion limited thermal stress levels to the yield strength of the alloy. This led to the lowest wall loading value for the Type 316 stainless steel wall (1.7 MW/m 2 ). The third criterion required that the creep-fatigue characteristics of the module allow a lifetime of 10 MW-yr/m 2 . At wall temperatures of 600 0 C, this lifetime could be achieved in a stainless steel module for wall loadings less than 3.2 MW/m 2 , while the same lifetime could be achieved for much higher wall loadings in a vanadium module

  13. Development of Acacia Glulam Wood Exterior Beam-to-Column Connection with Angles and Steel Rods System

    Directory of Open Access Journals (Sweden)

    Simanta Djoni

    2017-01-01

    Full Text Available In this paper, two models (M9B1 and M9B2 connection types of acacia glulam wood exterior beam-to-column connections with angles and steel rod system have been developed. Both models have been tested experimentally under monotonic static and cyclic loadings. The behaviour of each model under static and cyclic loadings, maximum displacement, maximum moment, equivalent viscous damping ratio, stiffness degradation, rotational stiffness and ductility have been observed. From the test results it can be concluded that the behaviour of the connections were influenced by the number of bearing steel rods at the beam, wood quality, and thickness of the angles. The M9B1 connection type has more flexibility than the M9B2 connection type. Three dimensional finite element analyses considering anisotropic plasticity have been conducted for both models. It can be concluded that in M9B1 connection type, the tensile forces due to the moment are received by the combination of tensile steel rods and bearing force in the steel rod and wood around it. Overall performance of M9B2 connection type is better than that of M9B1 connection type because the former has higher initial stiffness and higher rotational ductility than the later.

  14. Response of Rubble Foundation to Dynamic Loading

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Ibsen, Lars Bo

    1993-01-01

    The soil beneath vertical monolithic structures is subjected to a combination of static load due to the submerged weight of the structure and stochastic non-stationary loads as a result of the wave loads on the vertical wall. The stress conditions in the soil below a foundation exposed to both...

  15. Response of Rubble Foundation to Dynamic Loading

    DEFF Research Database (Denmark)

    Burcharth, H. F.; Ibsen, Lars Bo

    1994-01-01

    The soil beneath vertical monolithic structures is subjected to a combination of static load due to the submerged weight of the structure and stochastic non-stationary loads as a result of the wave loads on the vertical wall. The stress conditions in the soil below a foundation exposed to both...

  16. Discrete exterior calculus discretization of incompressible Navier–Stokes equations over surface simplicial meshes

    KAUST Repository

    Mohamed, Mamdouh S.

    2016-02-11

    A conservative discretization of incompressible Navier–Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.

  17. Discrete exterior calculus discretization of incompressible Navier-Stokes equations over surface simplicial meshes

    Science.gov (United States)

    Mohamed, Mamdouh S.; Hirani, Anil N.; Samtaney, Ravi

    2016-05-01

    A conservative discretization of incompressible Navier-Stokes equations is developed based on discrete exterior calculus (DEC). A distinguishing feature of our method is the use of an algebraic discretization of the interior product operator and a combinatorial discretization of the wedge product. The governing equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. The discretization is then carried out by substituting with the corresponding discrete operators based on the DEC framework. Numerical experiments for flows over surfaces reveal a second order accuracy for the developed scheme when using structured-triangular meshes, and first order accuracy for otherwise unstructured meshes. By construction, the method is conservative in that both mass and vorticity are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step.

  18. Implementation of exterior complex scaling in B-splines to solve atomic and molecular collision problems

    International Nuclear Information System (INIS)

    McCurdy, C William; MartIn, Fernando

    2004-01-01

    B-spline methods are now well established as widely applicable tools for the evaluation of atomic and molecular continuum states. The mathematical technique of exterior complex scaling has been shown, in a variety of other implementations, to be a powerful method with which to solve atomic and molecular scattering problems, because it allows the correct imposition of continuum boundary conditions without their explicit analytic application. In this paper, an implementation of exterior complex scaling in B-splines is described that can bring the well-developed technology of B-splines to bear on new problems, including multiple ionization and breakup problems, in a straightforward way. The approach is demonstrated for examples involving the continuum motion of nuclei in diatomic molecules as well as electronic continua. For problems involving electrons, a method based on Poisson's equation is presented for computing two-electron integrals over B-splines under exterior complex scaling

  19. Comparison of critical circumferential through-wall-crack-lengths in welds between pieces of straight pipes to welds between straigth pipes and bends with and without internal pressure at force- and displacement-controlled bending load; Vergleich kritischer Umfangsdurchrisslaengen in Schweissnaehten zwischen Geradrohrstuecken mit Schweissnaehten an Rohrbogen-Geradrohrverbindungen mit und ohne Innendruck bei kraft- und wegkontrollierter Biegebelastung

    Energy Technology Data Exchange (ETDEWEB)

    Steinbuch, R [Fachhochschule fuer Technik und Wirtschaft Reutlingen (Germany). Fachbereich Maschinenbau

    1998-11-01

    Methods for calculation of critical, circumferential through-wall crack lengths in pipes have been developed and verified by several research projects. In applications during the last few years it has been found that the force or displacement-controlled loads have to be considered separately, and this approach was integrated into the recent methods. Methods so far assumed cracks to be located in welds joining straight pipes. But this approach starts from an incomplete picture of reality, as with today`s technology, circumferential welds are less frequent in straight pipes and much more frequent in pipework of other geometry, as for instance in welds joining straight pipes and bends, or bends with longer legs, nozzles, or T-pieces. The non-linear FEM parameter study presented in the paper, covering cases with internal pressure of pipes and one-dimensional bending loads, is based on current geometries of pipework in the primary and secondary loops of industrial plants and compares the conditions induced by circumferential through-wall cracks in welds joining only straight pipes and in those joining bended and straight pipes. At the relevant, displacement-controlled bending loads due to hampered thermal expansion of the pipe system, the critical through-wall cracks lengths occurring in pipe-to-bend welds are of about the same size and importance as those in pipe-to-pipe welds. As for the case of force-controlled loads, the technical codes calculate more serious effects and require lower bending load limits. Within the range of admissible loads given in the codes, the critical through-wall crack lengths occurring in pipe-to-bend welds are similar in size to those in straight pipe welds. It is therefore a conservative or realistic approach to apply the values determined for critical through-wall crack lengths in pipe-to-pipe joints also to pipe-to-bend welds. (orig./CB) [Deutsch] Verfahren zur Berechnung kritischer Umfangdurchrisslaengen in Rohrleitungen wurden in

  20. Elementos para una política exterior ambiental (Tema Central)

    OpenAIRE

    Salvador, Íñigo

    2002-01-01

    La necesidad de una política exterior ecuatoriana en lo ambiental surge de la naturaleza global del medio ambiente, de la responsabilidad del Ecuador como país privilegiado por su megadiversidad, de la vinculación inevitable entre la pobreza que le aqueja y la degradación del ambiente y de los compromisos internacionales por él adquiridos. Una política exterior ambiental debe resultar de un proceso de diseño en que participen todos los actores de la temática ambiental, aunque su ejecución deb...

  1. Exterior domain problems and decomposition of tensor fields in weighted Sobolev spaces

    OpenAIRE

    Schwarz, Günter

    1996-01-01

    The Hodge decompOsition is a useful tool for tensor analysis on compact manifolds with boundary. This paper aims at generalising the decomposition to exterior domains G ⊂ IR n. Let L 2a Ω k(G) be the space weighted square integrable differential forms with weight function (1 + |χ|²)a, let d a be the weighted perturbation of the exterior derivative and δ a its adjoint. Then L 2a Ω k(G) splits into the orthogonal sum of the subspaces of the d a-exact forms with vanishi...

  2. Being the corresponding accents of red in one interior and one exterior as

    OpenAIRE

    Sandeva, Vaska; Despot, Katerina; Namicev, Petar; Ignatov, Aleksandar

    2013-01-01

    What is the emphasis in the interior and what is exterior accent? Thair next goal is to attract attention and to clarify the answer to his location i.e. to highlight the special effect of the composition, which we have set. The color is the emphasis that has been selected for analysis. From the color palette, accent color is red, a primary color and while contrast to green or color that represented 60% of the exterior and is dominant. Ability of the human eye to focus and take depending on th...

  3. La dolarización y su incidencia en el Comercio Exterior Ecuatoriano.

    OpenAIRE

    Tanicuchi, Jorge Arturo

    2004-01-01

    En razón de que la economía ecuatoriana depende en gran medida del desempeño de su comercio exterior, así como del funcionamiento del esquema de la dolarización, surge, entonces, la necesidad de comprender una serie de inquietudes en torno a este delicado tema, especialmente en lo concerniente al ¿cómo está respondiendo la dolarización a las necesidades del comercio exterior del país, al sector de los exportadores e importadores y a la economía nacional misma?; ¿cómo está...

  4. Acción exterior de la Unión Europea: UE-Rusia

    OpenAIRE

    Martín Garzón, Jorge

    2017-01-01

    El principal objetivo de este trabajo ha sido desarrollar las competencias de la UE en materia de acción exterior, así como su alcance sobre un tercer Estado, la Federación Rusa. Se parte de la identificación de la UE como sujeto con personalidad jurídica y un régimen jurídico propio. Se va a especificar las instituciones y organismos competentes que desarrollan las políticas exteriores. Después se analiza la estructura de la Federación Rusa junto con sus relaciones con la UE. ...

  5. A dual exterior point simplex type algorithm for the minimum cost network flow problem

    Directory of Open Access Journals (Sweden)

    Geranis George

    2009-01-01

    Full Text Available A new dual simplex type algorithm for the Minimum Cost Network Flow Problem (MCNFP is presented. The proposed algorithm belongs to a special 'exterior- point simplex type' category. Similarly to the classical network dual simplex algorithm (NDSA, this algorithm starts with a dual feasible tree-solution and reduces the primal infeasibility, iteration by iteration. However, contrary to the NDSA, the new algorithm does not always maintain a dual feasible solution. Instead, the new algorithm might reach a basic point (tree-solution outside the dual feasible area (exterior point - dual infeasible tree.

  6. Maintenance and Durability of the Concrete External Layer of Curtain Walls in Prefabricated Technological Poznan Large Panel System

    Science.gov (United States)

    Jasiczak, Józef; Girus, Krzysztof

    2017-10-01

    The issue of usability and durability of large-panel building constructed several decades ago is a subject of an in-depth analysis of many domestic and foreign investments. When considering the durability of specific large-panel system, one should consider, among others, the process of making external walls. The long-term and direct impact of weather conditions on the external layer of curtain walls is significant for the durability of large-panel buildings. For the needs of the presented paper, in 2016, the survey of cracks and a series of other tests of large-panel façade, residential building constructed in 1986, in Poland, in the PLP process system - Rataje was executed. Several hundred large-size, triple-layer curtain-wall slab with a 6-cm, concrete exterior cladding layer anchored using pins and hangers with the load-bearing layer, a 9-cm insulation layer made of mineral wool, and a 21-cm structural layer were surveyed. Significant deviations in thicknesses of particular wall layers were proven. Other significant damages and defects of external layers were found. At the second stage, many tests, both nondestructive and destructive, were conducted. They involved determining mechanical properties of an external layer. The concrete thickness was measured using with a type N Schmidt sclerometer and core samples were taken from this layer in order to mark concrete’s compressive strength. The range of carbonation (by phenolphthalein method) and the actual location and condition of reinforcement were estimated using a ferromagnetic device to determine the condition of the external layer. The diagnosis conducted in such a manner was the verification of necessary repair of the walls and their thermal efficiency improvement while ensuring safe conditions of their operation and modern functional and utility requirements. It should be also emphasized that the method of diagnosing the external walls presented in this paper may be popularized when evaluating such

  7. Structural behavior of load bearing brick walls of soil-cement with the addition of ground ceramic waste Comportamento estrutural de paredes estruturais de tijolos de solo-cimento com adição de resíduo cerâmico moído

    Directory of Open Access Journals (Sweden)

    Humberto C. Lima Júnior

    2003-12-01

    Full Text Available An experimental study of three load bearing walls is presented and discussed in this paper. The walls were of soil-cement bricks made with three different material proportions, in which two of them had part of the cement amount replaced by crushed ceramic waste. The walls were 95.20 cm high, 75.32 cm wide and 12.56 cm thick and had their bricks layered with cement paste. The walls were tested under compression and their displacements were measured with 5 dial gages. The walls had satisfactory behaviour and their strengths were suitable as required by Brazilian popular houses. The differences between the brick strength and the wall strength were less than 20%. A finite element analysis (FEA was performed and the uniformity of the compressive stress distributions in the walls was evaluated. Finally, it was observed that the partial replacement of the cement by crushed ceramic waste is possible.Neste trabalho, apresenta-se resultados do estudo experimental de três paredes estruturais, construídas com tijolos de solo-cimento. Os tijolos foram fabricados com três diferentes proporções de materiais, nas quais duas delas tiveram parte do cimento substituído por resíduo cerâmico moído. As paredes apresentavam altura de 95,20 cm, largura de 75,32 cm e espessura de 12,56 cm e tiveram seus tijolos rejuntados com pasta de cimento, que foram ensaiadas sob compressão centrada e tiveram seus deslocamentos avaliados por cinco relógios medidores de deslocamento. Observou-se comportamento estrutural satisfatório e resistências compatíveis com as requeridas pelas paredes das casas populares brasileiras. Em todos os casos, as diferenças entre as tensões máximas nas paredes e as resistências dos tijolos, foram inferiores a 20%. Para concluir o estudo, realizou-se análise por meio do método dos elementos finitos (MEF com o intuito de avaliar a uniformidade na distribuição das tensões ao longo das paredes. Finalmente, observou-se que a substitui

  8. Inverse measurement of wall pressure field in flexible-wall wind tunnels using global wall deformation data

    Science.gov (United States)

    Brown, Kenneth; Brown, Julian; Patil, Mayuresh; Devenport, William

    2018-02-01

    The Kevlar-wall anechoic wind tunnel offers great value to the aeroacoustics research community, affording the capability to make simultaneous aeroacoustic and aerodynamic measurements. While the aeroacoustic potential of the Kevlar-wall test section is already being leveraged, the aerodynamic capability of these test sections is still to be fully realized. The flexibility of the Kevlar walls suggests the possibility that the internal test section flow may be characterized by precisely measuring small deflections of the flexible walls. Treating the Kevlar fabric walls as tensioned membranes with known pre-tension and material properties, an inverse stress problem arises where the pressure distribution over the wall is sought as a function of the measured wall deflection. Experimental wall deformations produced by the wind loading of an airfoil model are measured using digital image correlation and subsequently projected onto polynomial basis functions which have been formulated to mitigate the impact of measurement noise based on a finite-element study. Inserting analytic derivatives of the basis functions into the equilibrium relations for a membrane, full-field pressure distributions across the Kevlar walls are computed. These inversely calculated pressures, after being validated against an independent measurement technique, can then be integrated along the length of the test section to give the sectional lift of the airfoil. Notably, these first-time results are achieved with a non-contact technique and in an anechoic environment.

  9. Evaluation of the effectiveness of lamination for preventing discoloration and fading of radiation warning signs posted on the exterior of radiation facilities

    International Nuclear Information System (INIS)

    Hiroi, Tomoko; Ootaki, Masanori; Nawa, Yukino; Kuwabara, Rie; Tatsunami, Shinobu; Matsui, Hiroaki; Kumazawa, Yutaka; Yamamoto, Takio

    2014-01-01

    Radiation warning signs posted on the exterior of radiation facilities become faded and discolored with time. There are various types of commercially available laminating films for protecting signs from ultraviolet light. We examined the protection effect of polyvinyl chloride (PVC), acrylic resin and fluororesin films applied to the surface of radiation warning signs. The laminated signs were exposed to direct sunlight on the wall of an air filter chamber of a radiation facility for 1200 days. Simultaneously, another set of laminated signs was exposed to light from a xenon-arc weatherometer for 1200 hours. After exposure, the colors on the surface of each sign were evaluated digitally by using a spectrum colorimeter. The results indicated that lamination with a film that blocks ultraviolet light is effective for protecting the signs from fading and discoloration. For long-term protection under direct sunlight, PVC was the most effective among the three materials tested. (author)

  10. Degree of coupling in high-rise mixed shear walls structures

    Indian Academy of Sciences (India)

    A simple method of analysis is presented to determine the influence of single shear walls (SSW) on the degree of coupling DoC and on the peak shear demand PSD for beams of coupled shear walls (CSW) in mixed shear wall structures (MSW). Non-coupled lateral load resisting structures such as singular planar walls and ...

  11. Modeling Force Transfer around Openings in Wood-Frame Shear Walls

    Science.gov (United States)

    Minghao Li; Frank Lam; Borjen Yeh; Tom Skaggs; Doug Rammer; James Wacker

    2012-01-01

    This paper presented a modeling study on force transfer around openings (FTAO) in wood-frame shear walls detailed for FTAO. To understand the load transfer in the walls, this study used a finite-element model WALL2D, which is able to model individual wall components, including framing members, sheathing panels, oriented panel-frame nailed connections, framing...

  12. Motion of particles of non-zero rest masses exterior to ...

    African Journals Online (AJOL)

    In this article, we extend the metric tensor exterior to astrophysically real or imaginary spherical distributions of mass whose tensor field varies with polar angle only; to derive equations of motion for test particles in this field. The time, radial, polar and azimuthal equations of motion for particles of non-zero rest masses moving ...

  13. Bondability of ipê (Tabebuia spp.) wood using ambient-curing exterior wood adhesives

    Science.gov (United States)

    Daniel J. Yelle

    2016-01-01

    Ipê is an extremely difficult species to bond because of its high density, interlocking grain, and high volumetric swelling–shrinkage under prolonged wet conditions. Despite its difficulties, the wood is known to be extremely durable in exterior conditions because of its resistance to microbial and insect degradation. Therefore, investigating its bondability with...

  14. Solutions for Creating the Main Elements which Condition the Energy Consumption. Exterior Windows - Roof

    OpenAIRE

    Rubnicu, Alin

    2013-01-01

    The envelope of the building often has a complex geometry in which a multitude of different sub-assemblies can be identified. The envelope elements specific to roof areas can generally be of three types: walk and non-walk terrace roof as well as roof truss. The exterior joinery analysed is PVC type with four glass sheets.

  15. Deformation of the exterior algebra and the GLq (r, included in) algebra

    International Nuclear Information System (INIS)

    El Hassouni, A.; Hassouni, Y.; Zakkari, M.

    1993-06-01

    The deformation of the associative algebra of exterior forms is performed. This operation leads to a Y.B. equation. Its relation with the braid group B n-1 is analyzed. The correspondence of this deformation with the GL q (r, included in) algebra is developed. (author). 9 refs

  16. La “caja negra” de la política exterior estadounidense en Oriente Medio

    Directory of Open Access Journals (Sweden)

    Marcela Ulloa

    2013-07-01

    Full Text Available Reseña del siguiente libro:CHOMSKY, Noam y Gilbert Achar (2007. Estados peligrosos: oriente medio y la política exterior estadounidense. Barcelona: Ediciones Paidós Ibérica, 349 pp.

  17. Initial boundary value problems of nonlinear wave equations in an exterior domain

    International Nuclear Information System (INIS)

    Chen Yunmei.

    1987-06-01

    In this paper, we investigate the existence and uniqueness of the global solutions to the initial boundary value problems of nonlinear wave equations in an exterior domain. When the space dimension n >= 3, the unique global solution of the above problem is obtained for small initial data, even if the nonlinear term is fully nonlinear and contains the unknown function itself. (author). 10 refs

  18. Global existence of solutions for semilinear damped wave equation in 2-D exterior domain

    Science.gov (United States)

    Ikehata, Ryo

    We consider a mixed problem of a damped wave equation utt-Δ u+ ut=| u| p in the two dimensional exterior domain case. Small global in time solutions can be constructed in the case when the power p on the nonlinear term | u| p satisfies p ∗=2Japon. 55 (2002) 33) plays an effective role.

  19. Diffusion phenomenon for linear dissipative wave equations in an exterior domain

    Science.gov (United States)

    Ikehata, Ryo

    Under the general condition of the initial data, we will derive the crucial estimates which imply the diffusion phenomenon for the dissipative linear wave equations in an exterior domain. In order to derive the diffusion phenomenon for dissipative wave equations, the time integral method which was developed by Ikehata and Matsuyama (Sci. Math. Japon. 55 (2002) 33) plays an effective role.

  20. Exterior Decay of Wood-Plastic Composite Boards: Characterization and Magnetic Resonance Imaging

    Science.gov (United States)

    Rebecca Ibach; Grace Sun; Marek Gnatowski; Jessie Glaeser; Mathew Leung; John Haight

    2016-01-01

    Magnetic resonance imaging (MRI) was used to evaluate free water content and distribution in wood-plastic composite (WPC) materials decayed during exterior exposure near Hilo, Hawaii. Two segments of the same board blend were selected from 6 commercial decking boards that had fungal fruiting bodies. One of the two board segments was exposed in sun, the other in shadow...

  1. Extended Plate and Beam Wall System: Concept Investigation and Initial Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Wiehagen, J. [Partnership for Home Innovation, Upper Marlboro, MD (United States); Kochkin, V. [Partnership for Home Innovation, Upper Marlboro, MD (United States)

    2015-08-01

    A new and innovative High-R wall design, referred to as the Extended Plate & Beam (EP&B), is under development. The EP&B system uniquely integrates foam sheathing insulation with wall framing such that wood structural panels are installed exterior of the foam sheathing, enabling the use of standard practices for installation of drainage plane, windows and doors, claddings, cavity insulation, and the standard exterior foam sheathing installation approach prone to damage of the foam during transportation of prefabricated wall panels. As part of the ongoing work, the EP&B wall system concept has undergone structural verification testing and has been positively vetted by a group of industry stakeholders. Having passed these initial milestone markers, the advanced wall system design has been analyzed to assess cost implications relative to other advanced wall systems, undergone design assessment to develop construction details, and has been evaluated to develop representative prescriptive requirements for the building code. This report summarizes the assessment steps conducted to-date and provides details of the concept development.

  2. Degree of coupling in high-rise mixed shear walls structures

    Indian Academy of Sciences (India)

    assessment of the structural behaviour of coupled shear wall bents in mixed shear wall ... efficient lateral load resisting system against wind and earthquake effects. .... can be obtained from the second derivative of equation (11) which must be ...

  3. Damage Accumulation in Vertical Breakwaters due to Combined Impact Loading and Pulsating Wave Loads

    DEFF Research Database (Denmark)

    Sørensen, John Dalsgaard; Nielsen, Søren R. K.

    1999-01-01

    Vertical wall breakwaters used to protect for example an harbour from large waves usually consist of large concrete caissons placed on the seabed. The wave loads can be divided in two types, pulsating and impact loads. For some types of breakwaters especially the impact wave loads can be very large...

  4. Configuración actual del comercio exterior en Galicia = Current foreign trade framework in Galicia

    Directory of Open Access Journals (Sweden)

    José Luis Placer Galán

    2016-12-01

    Full Text Available La reciente crisis económica y la contracción de la demanda interna han impulsado un creciente interés por los mercados exteriores. Esta investigación pretende caracterizar la configuración actual del comercio exterior de la Comunidad Autónoma de Galicia, tanto en lo relativo a los productos como a los mercados geográficos de origen y destino. Para ello se emplean una serie de indicadores, ampliamente contrastados en la investigación económica, que permiten identificar: el grado de apertura de la economía provincial leonesa; la propensión exportadora y la dependencia importadora; el grado de concentración, por producto y mercados, de sus flujos comerciales exteriores; la especialización exportadora y la ventaja comparativa sectorial; la composición inter o intra-industrial del comercio exterior; y la distribución geográfica de los flujos comerciales de la economía gallega con los mercados exteriores. The recent economic crisis and internal demand contraction have encouraged the emerging interest in international markets. This study aims at featuring the current foreign trade framework of the Galicia, in regards to both import and export products and geographical markets. For that purpose, several indexes, widely verified in this study, have been utilized to identify the trade openness level of Leon economy, its export propensity, import dependence as well as the concentration level for products and internal trade flows. Leon export specialization, its comparative advantage by sector, the inter-intra-industry trade composition and geographical distribution of trade with international markets have been likewise included in this study.   Keywords: .

  5. Exteriorization or in-situ repair, comparison of options for uterine repair at cesarean delivery

    International Nuclear Information System (INIS)

    Zafar, B.; Shehzad, F.; Safdar, C.A.

    2016-01-01

    Objective of study is to compare peri-operative complications between exteriorization and intraabdominal repair of uterus after cesarean delivery. Study Design: Randomized controlled trial. Place and Duration of Study: Obstetrics and Gynecology Department of Pakistan Ordinance Factory Hospital, Wah Cantt, from 1st April 2010 to 30th September 2010. Material and Methods: Patients planned for 1st cesarean section under spinal anesthesia were randomly allocated by lottery method to exteriorized (A) or in situ uterine repair (B) group. Patients with history of uterine surgeries and cesarean section were excluded from study. Variables analyzed were operation time, peri-operative hemoglobin (Hb) fall, nausea and vomiting during the cesarean delivery. Results: The study analyzed 170 patients and divided them in 2 groups, having no significant difference with respect to maternal demographics, procedure statistics and indication of cesarean section. Significant difference was observed in operation time being 32.78 min in exteriorized group and 36.38 min in situ uterine repair group (p-value 0.0001). Hb percent fall was 0.85 g/dl and 0.92 g/dl respectively in both groups (p-value 0.62) Nausea and vomiting was 23.5 percent in group A and 11.8 percent in group B (p-value 0.02, 0.04 respectively) Conclusion: Peri-operative complications like operative time and Hb fall are less in uterine repair after temporary exteriorization as compared to intra-abdominal repair of uterus after cesarean delivery. Nausea and vomiting were increased in exteriorized group but proper regional anesthetic technique and achieving adequate analgesia can reduce patient discomfort. (author)

  6. The role of wall calcium in the extension of cell walls of soybean hypocotyls

    Science.gov (United States)

    Virk, S. S.; Cleland, R. E.

    1990-01-01

    Calcium crosslinks are load-bearing bonds in soybean (Glycine max (L.) Merr.) hypocotyl cell walls, but they are not the same load-bearing bonds that are broken during acid-mediated cell elongation. This conclusion is reached by studying the relationship between wall calcium, pH and the facilitated creep of frozen-thawed soybean hypocotyl sections. Supporting data include the following observations: 1) 2-[(2-bis-[carboxymethyl]amino-5-methylphenoxy)methyl]-6-methoxy-8-bis[car boxymethyl]aminoquinoline (Quin 2) and ethylene glycol-bis(2-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) caused only limited facilitated creep as compared with acid, despite removal of comparable or larger amounts of wall calcium; 2) the pH-response curves for calcium removal and acid-facilitated creep were different; 3) reversible acid-extension occurred even after removal of almost all wall calcium with Quin 2; and 4) growth of abraded sections did not involve a proportional loss of wall calcium. Removal of wall calcium, however, increased the capacity of the walls to undergo acid-facilitated creep. These data indicate that breakage of calcium crosslinks is not a major mechanism of cell-wall loosening in soybean hypocotyl tissues.

  7. Side loading vault system and method for the disposal of radioactive waste

    International Nuclear Information System (INIS)

    Meess, D.C.; Jones, B.J.; Mello, R.M.; Weiss, T.G. Jr.; Wright, J.B.

    1990-01-01

    This patent describes a method for the disposal of hazardous radioactive waste. It comprises: constructing a floor slab in the earth; constructing an elongated wall assembly over the floor slab having sidewalls and a front wall and a back wall at either end the side walls being longer than the front and back walls; providing an accessway in the front wall; constructing a ceiling slab over the wall assembly that is supported at least in part by the wall assembly to form a vault cell; inspecting the vault cell for structural defects, introducing hazardous radioactive waste through the accessway in the front wall and loading the cell with the waste from the back wall to the front wall in rows, each of which is substantially parallel to the back wall to minimize radiation exposure to workers loading the cell, and closing the accessway of the vault cell by constructing a removable wall structure within the accessway

  8. DISTORTION ANALYSIS OF TILL -WALLED BOX GIRDERS

    African Journals Online (AJOL)

    NIJOTECH

    bridges, buildings, motor vehicles, ships and aircrafts. Due to thinness of the box walls, generalized loads applied to this structure give rise to warping and distortion of ..... Recommendation for Design of. Intermediate Diaphragms in Box. Girders, Transactions of Japanese. Society of Civil Engineers, Vol. 14,1984, pp 121-126.

  9. Methodology for first wall design

    International Nuclear Information System (INIS)

    Galambos, J.D.; Conner, D.L.; Goranson, P.L.; Lousteau, D.C.; Williamson, D.E.; Nelson, B.E.; Davis, F.C.

    1993-01-01

    An analytic parametric scoping tool has been developed for application to first wall (FW) design problems. Both thermal and disruption force effects are considered. For the high heat flux and high disruption load conditions expected in the International Thermonuclear Experimental Reactor (ITER) device, Vanadium alloy and dispersion-strengthened copper offer the best stress margins using a somewhat flattened plasma-facing configuration. Ferritic steels also appear to have an acceptable stress margin, whereas the conventional stainless steel 316 does not appear feasible. If a full semicircle shape FW is required, only the Vanadium and ferritic steel alloy have acceptable solutions

  10. Vertical Equilibrium of Sheet Pile Walls with Emphasis on Toe Capacity and Plugging

    DEFF Research Database (Denmark)

    Iversen, Kirsten Malte; Augustesen, Anders Hust; Nielsen, Benjaminn Nordahl

    Constructions including retaining walls are normally established in areas where it is impossible to conduct an excavation with inclined sides. Due to large excavation depths and due to restrictions on the deformations of the wall, it is often necessary to anchor the wall. The limited space makes...... at the pile toe to fulfil vertical equilibrium. The paper describes a case study of sheet pile walls in Aalborg Clay, and the amount of loads transferred as point loads at the pile toe for free and anchored walls is estimated. A parametric study is made for the free wall with regards to the height...... and the roughness of the wall. Due to limitations of the calculation method, the study of the anchored wall only includes variation of the roughness. For the case study, it is found that the vertical equilibrium is fulfilled for the considered free wall. An anchored wall needs a plug forming at the pile toe...

  11. First wall of thermonuclear device

    International Nuclear Information System (INIS)

    Miki, Nobuharu.

    1992-01-01

    In a first wall of a thermonuclear device, armour tiles are metallurgically bonded to a support substrate only for the narrow area of the central portion thereof, while bonded by metallurgical bonding with cooling tubes of low mechanical toughness, separated from each other in other regions. Since the bonding area with the support substrate of great mechanical rigidity is limited to the narrow region at the central portion of the armour tiles, cracking are scarcely caused at the end portion of the bonding surface. In other regions, since cooling tubes of low mechanical rigidity are bonded metallurgically, they can be sufficiently withstand to high thermal load. That is, even if the armour tiles are deformed while undergoing thermal load from plasmas, since the cooling tubes absorb it, there is no worry of damaging the metallurgically bonded face. Since the cooling tubes are bonded directly to the armour tiles, they absorb the heat of the armour tiles efficiently. (N.H.)

  12. Impact of measurement uncertainty from experimental load distribution factors on bridge load rating

    Science.gov (United States)

    Gangone, Michael V.; Whelan, Matthew J.

    2018-03-01

    Load rating and testing of highway bridges is important in determining the capacity of the structure. Experimental load rating utilizes strain transducers placed at critical locations of the superstructure to measure normal strains. These strains are then used in computing diagnostic performance measures (neutral axis of bending, load distribution factor) and ultimately a load rating. However, it has been shown that experimentally obtained strain measurements contain uncertainties associated with the accuracy and precision of the sensor and sensing system. These uncertainties propagate through to the diagnostic indicators that in turn transmit into the load rating calculation. This paper will analyze the effect that measurement uncertainties have on the experimental load rating results of a 3 span multi-girder/stringer steel and concrete bridge. The focus of this paper will be limited to the uncertainty associated with the experimental distribution factor estimate. For the testing discussed, strain readings were gathered at the midspan of each span of both exterior girders and the center girder. Test vehicles of known weight were positioned at specified locations on each span to generate maximum strain response for each of the five girders. The strain uncertainties were used in conjunction with a propagation formula developed by the authors to determine the standard uncertainty in the distribution factor estimates. This distribution factor uncertainty is then introduced into the load rating computation to determine the possible range of the load rating. The results show the importance of understanding measurement uncertainty in experimental load testing.

  13. Heat transfer models for fusion blanket first walls

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1977-01-01

    In the development of magnetically confined fusion reactors, the ability to cool the first wall, i.e., the first material surface interfacing the plasma, appears to be a critical factor involved in establishing the wall load limit. In order to understand the thermal behavior of the first wall time-dependent, one-dimensional heat conduction models are reviewed with differing modes of heat extraction and cooling

  14. Parametric Evaluation of Racking Performance of Platform Timber Framed Walls

    OpenAIRE

    Dhonju, R..; D’Amico, B..; Kermani, A..; Porteous, J..; Zhang, B..

    2017-01-01

    This paper provides a quantitative assessment of the racking performance of partially anchored timber framed walls, based on experimental tests. A total of 17 timber framed wall specimens, constructed from a combination of materials under different load configurations, were tested. The experimental study was designed toexamine the influence of a range of geometrical parameters, such as fastener size and spacings, wall length, arrangement of studs and horizontal members, as well as the effect ...

  15. Lateral resistance of piles near vertical MSE abutment walls.

    Science.gov (United States)

    2013-03-01

    Full scale lateral load tests were performed on eight piles located at various distances behind MSE walls. The objective of the testing was to determine the effect of spacing from the wall on the lateral resistance of the piles and on the force induc...

  16. Load forecasting

    International Nuclear Information System (INIS)

    Mak, H.

    1995-01-01

    Slides used in a presentation at The Power of Change Conference in Vancouver, BC in April 1995 about the changing needs for load forecasting were presented. Technological innovations and population increase were said to be the prime driving forces behind the changing needs in load forecasting. Structural changes, market place changes, electricity supply planning changes, and changes in planning objectives were other factors discussed. It was concluded that load forecasting was a form of information gathering, that provided important market intelligence

  17. Estrutura de informação sobre comércio exterior em Santa Catarina

    OpenAIRE

    Lino, Sônia Regina Lamego

    2001-01-01

    Dissertação (mestrado) - Universidade Federal de Santa Catarina, Centro Sócio-Econômico O trabalho tem como objetivo geral estudar a estrutura de informação sobre comércio exterior em Santa Catarina e o uso dessa estrutura de informação pelos usuários das médias empresas do setor moveleiro catarinense que exportam para o MERCOSUL. Os objetivos específicos são: 1) identificar as instituições públicas e privadas que mantêm estrutura de informações sobre comércio exterior em Santa Catarina; 2...

  18. Fabrication of DNA nanotubes with an array of exterior magnetic nanoparticles.

    Science.gov (United States)

    Rafati, Adele; Zarrabi, Ali; Gill, Pooria

    2017-10-01

    Described here a methodology for arraying of magnetic nanoparticles (MNPs) on the surface of DNA nanotubes (DNTs). Positioning of magnetic nanoparticles at exterior surface of DNTs were shaped after self-assembling of oligonucleotide staples within an M13mp18 DNA scaffold via an origami process. The staples were partially labeled with biotin to be arrayed at the surface of DNTs. Gel retardation assay of the DNTs carrying magnetic nanoparticles indicated a reversely behavioral electrophoretic movement in comparison to the nanotubes have been demonstrated previously. Also, high resolution transmission electron microscopy confirmed positioning magnetic nanoparticles at the exterior surface of DNTs, correctly. Ultrastructural characteristics of these DNA nanotubes using atomic force microscopy demonstrated topographic heights on their surfaces formed through positioning of magnetic nanoparticles outside the tubules. This nanoarchitecture would be potential for multiple arraying of nanoparticles that those be useful as functionalized chimeric nanocarriers for developing novel nanodrugs and nanobiosensors. Copyright © 2017. Published by Elsevier B.V.

  19. Importance of location and exterior of city hotels as elements of guest satisfaction

    Directory of Open Access Journals (Sweden)

    Tepavčević Jelena

    2016-01-01

    Full Text Available Business practices and attitudes of tourists show that hospitality represents the primary factor in the development of urban tourism. It is considered that, besides the exclusive appearance, there is no business success for hotel properties without a proper location. It is known that a typical tourist would like to be close enough to tourist attractions, to be able to reach them on foot. This paper deals with the importance of location and exterior of urban hotels on guests decision on the selection and overall satisfaction with hotel products. The survey was conducted in the hotels two largest urban centers in Serbia (Belgrade and Novi Sad. The aim of the research is an insight into the real impact of location and exterior when assessing the guest satisfaction. Descriptive statistical analysis, t-test and regression analysis were used for statistical data processing.

  20. Cartan for beginners differential geometry via moving frames and exterior differential systems

    CERN Document Server

    Ivey, Thomas A

    2016-01-01

    Two central aspects of Cartan's approach to differential geometry are the theory of exterior differential systems (EDS) and the method of moving frames. This book presents thorough and modern treatments of both subjects, including their applications to both classic and contemporary problems in geometry. It begins with the classical differential geometry of surfaces and basic Riemannian geometry in the language of moving frames, along with an elementary introduction to exterior differential systems. Key concepts are developed incrementally, with motivating examples leading to definitions, theorems, and proofs. Once the basics of the methods are established, the authors develop applications and advanced topics. One notable application is to complex algebraic geometry, where they expand and update important results from projective differential geometry. As well, the book features an introduction to G-structures and a treatment of the theory of connections. The techniques of EDS are also applied to obtain explici...

  1. La evolución de la política exterior China

    Directory of Open Access Journals (Sweden)

    Mario Esteban Rodríguez

    2016-01-01

    Full Text Available Este artículo sintetiza y analiza los principales cambios experimentados por la política exterior de la República Popular China desde su fundación en 1949 hasta la actualidad. Para explicar esas transformaciones se recurre fundamentalmente a tres variables (la política interna de China, las características del sistema internacional y el contexto de seguridad, que las autoridades chinas han interpretado influidas por tres componentes ideacionales: el comunismo, el nacionalismo y el pragmatismo. A modo de conclusión se subraya que, a pesar de sus vaivenes, la política exterior de Pekín ha mantenido tres objetivos fundamentales en las últimas siete décadas: modernización, reconocimiento internacional como gran potencia y reunificación nacional.

  2. Comercio Exterior Argentino (1935-1946: Comportamiento de las Importaciones en un Contexto de Turbulencia Internacional.

    Directory of Open Access Journals (Sweden)

    Teresita Gomez

    2017-11-01

    Full Text Available La estructura de la economía argentina, hasta la crisis de los años treinta, se había conformado de acuerdo a su inserción en el mercado internacional como exportador de bienes primarios alimentarios e importador de bienes energéticos y manufacturados. A partir de las modificaciones que se producen a nivel del comercio, especialmente la dificultad de las importaciones de bienes, se desarrolla la industrialización, orientada hacia la sustitución de importaciones. Nos interesa analizar la contribución del comercio exterior a esta transformación de estructura que se va produciendo. Se utilizan como fuentes: series de comercio exterior correspondientes a esos años (1935-1947, revistas especializadas y periódicos.

  3. Development and Application of High-Cr Ferritic Stainless Steels as Building Exterior Materials

    International Nuclear Information System (INIS)

    Kim, Yeong H.; Lee, Yong H.; Lee, Yong D.

    2008-01-01

    Stainless Steels have been widely used as a building exterior materials in Asian countries for the last decade. It is required for the materials in this field to have an aesthetic appearance,a relatively high strength, and an excellent corrosion resistance. Other metallic materials such as copper, aluminum, and carbon steels have been also used as the exterior materials. Considering the cost of maintenance, stainless steel, having the outstanding corrosion resistance, is replacing other materials in the several parts in the building exteriors. Ferritic stainless steel has been applied as the roofing materials because its thermal expansion is much smaller than that of austenitic stainless steel. Therefore, it is suitable for the large-scale construction such as airport terminal, convention center, and football stadium. To improve the corrosion resistance of the ferritic stainless steels, the modification of alloy composition has been studied to develop new grade materials and the progress in the surface technology has been introduced. Corrosion properties, of these materials were evaluated in the laboratory and in the field for longer than two years. High-Cr ferritic stainless steel showed excellent corrosion resistance to the atmospheric environments. In the region close to the sea, the corrosion resistance of high-Cr ferritic stainless steel was much superior to that of other materials, which may prove this steel to be the appropriate materials for the construction around seashore. In some of the large constructions around seashore in South Korea, high-Cr ferritic stainless steels have been used as the building exterior materials for six years

  4. Child-directed marketing inside and on the exterior of fast food restaurants.

    Science.gov (United States)

    Ohri-Vachaspati, Punam; Isgor, Zeynep; Rimkus, Leah; Powell, Lisa M; Barker, Dianne C; Chaloupka, Frank J

    2015-01-01

    Children who eat fast food have poor diet and health outcomes. Fast food is heavily marketed to youth, and exposure to such marketing is associated with higher fast food consumption. To examine the extent of child-directed marketing (CDM) inside and on the exterior of fast food restaurants. Data were collected from 6,716 fast food restaurants located in a nationally representative sample of public middle- and high-school enrollment areas in 2010, 2011, and 2012. CDM was defined as the presence of one or more of seven components inside or on the exterior of the restaurant. Analyses were conducted in 2014. More than 20% of fast food restaurants used CDM inside or on their exterior. In multivariate analyses, fast food restaurants that were part of a chain, offered kids' meals, were located in middle- (compared to high)-income neighborhoods, and in rural (compared to urban) areas had significantly higher odds of using any CDM; chain restaurants and those located in majority black neighborhoods (compared to white) had significantly higher odds of having an indoor display of kids' meal toys. Compared to 2010, there was a significant decline in use of CDM in 2011, but the prevalence increased close to the 2010 level in 2012. CDM inside and on the exterior of fast food restaurants is prevalent in chain restaurants; majority black communities, rural areas, and middle-income communities are disproportionately exposed. The fast food industry should limit children's exposure to marketing that promotes unhealthy food choices. Copyright © 2015 American Journal of Preventive Medicine. Published by Elsevier Inc. All rights reserved.

  5. Development and Application of High-Cr Ferritic Stainless Steels as Building Exterior Materials

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yeong H.; Lee, Yong H.; Lee, Yong D. [POSCO Technical Reseaarch Lab., Pohang (Korea, Republic of)

    2008-12-15

    Stainless Steels have been widely used as a building exterior materials in Asian countries for the last decade. It is required for the materials in this field to have an aesthetic appearance,a relatively high strength, and an excellent corrosion resistance. Other metallic materials such as copper, aluminum, and carbon steels have been also used as the exterior materials. Considering the cost of maintenance, stainless steel, having the outstanding corrosion resistance, is replacing other materials in the several parts in the building exteriors. Ferritic stainless steel has been applied as the roofing materials because its thermal expansion is much smaller than that of austenitic stainless steel. Therefore, it is suitable for the large-scale construction such as airport terminal, convention center, and football stadium. To improve the corrosion resistance of the ferritic stainless steels, the modification of alloy composition has been studied to develop new grade materials and the progress in the surface technology has been introduced. Corrosion properties, of these materials were evaluated in the laboratory and in the field for longer than two years. High-Cr ferritic stainless steel showed excellent corrosion resistance to the atmospheric environments. In the region close to the sea, the corrosion resistance of high-Cr ferritic stainless steel was much superior to that of other materials, which may prove this steel to be the appropriate materials for the construction around seashore. In some of the large constructions around seashore in South Korea, high-Cr ferritic stainless steels have been used as the building exterior materials for six years.

  6. Black Holes in the Framework of the Metric Tensor Exterior to the Sun and Planets

    Directory of Open Access Journals (Sweden)

    Chifu E.N.

    2011-04-01

    Full Text Available The conditions for the Sun and oblate spheroidal planets in the solar system to reduce to black holes is investigated. The metric tensor exterior to oblate spheroidal masses indicates that for the Sun to reduce to a black hole, its mass must condense by a factor of 2 : 32250 10 5 . Using Schwarzschild’s metric, this factor is obtained as 2 : 3649 10 5 . Similar results are obtained for oblate spheroidal planets in the solar system.

  7. Energy decay for solutions to semilinear systems of elastic waves in exterior domains

    Directory of Open Access Journals (Sweden)

    Marcio V. Ferreira

    2006-05-01

    Full Text Available We consider the dynamical system of elasticity in the exterior of a bounded open domain in 3-D with smooth boundary. We prove that under the effect of "weak" dissipation, the total energy decays at a uniform rate as $t o +infty$, provided the initial data is "small" at infinity. No assumptions on the geometry of the obstacle are required. The results are then applied to a semilinear problem proving global existence and decay for small initial data.

  8. Lie Symmetry Analysis of the Inhomogeneous Toda Lattice Equation via Semi-Discrete Exterior Calculus

    International Nuclear Information System (INIS)

    Liu Jiang; Wang Deng-Shan; Yin Yan-Bin

    2017-01-01

    In this work, the Lie point symmetries of the inhomogeneous Toda lattice equation are obtained by semi-discrete exterior calculus, which is a semi-discrete version of Harrison and Estabrook’s geometric approach. A four-dimensional Lie algebra and its one-, two- and three-dimensional subalgebras are given. Two similarity reductions of the inhomogeneous Toda lattice equation are obtained by using the symmetry vectors. (paper)

  9. Los grabados exteriores de Santo Adriano (Tuñón. Santo Adriano. Asturias

    Directory of Open Access Journals (Sweden)

    F.J. Fortea Pérez

    2005-01-01

    Full Text Available En este trabajo se dan a conocer los grabados exteriores de la cueva de Santo Adriano, que se comparan con grabados del mismo tipo existentes en la Región Cantábrica, a lo largo de una franja territorial de 220 km, entre las cuencas de los ríos Nalón al oeste y el Asón al este.

  10. Optimisation of the Lowest Robin Eigenvalue in the Exterior of a Compact Set

    Czech Academy of Sciences Publication Activity Database

    Krejčiřík, David; Lotoreichik, Vladimir

    2018-01-01

    Roč. 25, č. 1 (2018), s. 319-337 ISSN 0944-6532 R&D Projects: GA ČR GA17-01706S Institutional support: RVO:61389005 Keywords : Robin Laplacian * negative boundary parameter * exterior of a convex set * spectral isoperimetric inequality * spectral isochoric inequality * parallel coordinates Subject RIV: BA - General Mathematics OBOR OECD: Pure mathematics Impact factor: 0.496, year: 2016

  11. Primordial black hole and wormhole formation by domain walls

    Energy Technology Data Exchange (ETDEWEB)

    Deng, Heling; Garriga, Jaume; Vilenkin, Alexander, E-mail: heling.deng@tufts.edu, E-mail: garriga@cosmos.phy.tufts.edu, E-mail: vilenkin@cosmos.phy.tufts.edu [Institute of Cosmology, Tufts University, 574 Boston Ave, Medford, MA, 02155 (United States)

    2017-04-01

    In theories with a broken discrete symmetry, Hubble sized spherical domain walls may spontaneously nucleate during inflation. These objects are subsequently stretched by the inflationary expansion, resulting in a broad distribution of sizes. The fate of the walls after inflation depends on their radius. Walls smaller than a critical radius fall within the cosmological horizon early on and collapse due to their own tension, forming ordinary black holes. But if a wall is large enough, its repulsive gravitational field becomes dominant much before the wall can fall within the cosmological horizon. In this ''supercritical'' case, a wormhole throat develops, connecting the ambient exterior FRW universe with an interior baby universe, where the exponential growth of the wall radius takes place. The wormhole pinches off in a time-scale comparable to its light-crossing time, and black holes are formed at its two mouths. As discussed in previous work, the resulting black hole population has a wide distribution of masses and can have significant astrophysical effects. The mechanism of black hole formation has been previously studied for a dust-dominated universe. Here we investigate the case of a radiation-dominated universe, which is more relevant cosmologically, by using numerical simulations in order to find the initial mass of a black hole as a function of the wall size at the end of inflation. For large supercritical domain walls, this mass nearly saturates the upper bound according to which the black hole cannot be larger than the cosmological horizon. We also find that the subsequent accretion of radiation satisfies a scaling relation, resulting in a mass increase by about a factor of 2.

  12. Nonlinear analysis techniques of block masonry walls in nuclear power plants

    International Nuclear Information System (INIS)

    Hamid, A.A.; Harris, H.G.

    1986-01-01

    Concrete masonry walls have been used extensively in nuclear power plants as non-load bearing partitions serving as pipe supports, fire walls, radiation shielding barriers, and similar heavy construction separations. When subjected to earthquake loads, these walls should maintain their structural integrity. However, some of the walls do not meet design requirements based on working stress allowables. Consequently, utilities have used non-linear analysis techniques, such as the arching theory and the energy balance technique, to qualify such walls. This paper presents a critical review of the applicability of non-linear analysis techniques for both unreinforced and reinforced block masonry walls under seismic loading. These techniques are critically assessed in light of the performance of walls from limited available test data. It is concluded that additional test data are needed to justify the use of nonlinear analysis techniques to qualify block walls in nuclear power plants. (orig.)

  13. Slowly rotating charged fluid balls and their matching to an exterior domain

    International Nuclear Information System (INIS)

    Fodor, Gyula; Perjes, Zoltan; Bradley, Michael

    2002-01-01

    The slow-rotation approximation of Hartle is developed to a setting where a charged rotating fluid is present. The linearized Einstein-Maxwell equations are solved on the background of the Reissner-Nordstroem space-time in the exterior electrovacuum region. The theory is put to action for the charged generalization of the Wahlquist solution found by Garcia. The Garcia solution is transformed to coordinates suitable for the matching and expanded in powers of the angular velocity. The two domains are then matched along the zero pressure surface using the Darmois-Israel procedure. We prove a theorem to the effect that the exterior region is asymptotically flat if and only if the parameter C 2 , characterizing the magnitude of an external magnetic field, vanishes. We obtain the form of the constant C 2 for the Garcia solution. We conjecture that the Garcia metric cannot be matched to an asymptotically flat exterior electrovacuum region even to first order in the angular velocity. This conjecture is supported by a high precision numerical analysis

  14. Simulations of incompressible Navier Stokes equations on curved surfaces using discrete exterior calculus

    Science.gov (United States)

    Samtaney, Ravi; Mohamed, Mamdouh; Hirani, Anil

    2015-11-01

    We present examples of numerical solutions of incompressible flow on 2D curved domains. The Navier-Stokes equations are first rewritten using the exterior calculus notation, replacing vector calculus differential operators by the exterior derivative, Hodge star and wedge product operators. A conservative discretization of Navier-Stokes equations on simplicial meshes is developed based on discrete exterior calculus (DEC). The discretization is then carried out by substituting the corresponding discrete operators based on the DEC framework. By construction, the method is conservative in that both the discrete divergence and circulation are conserved up to machine precision. The relative error in kinetic energy for inviscid flow test cases converges in a second order fashion with both the mesh size and the time step. Numerical examples include Taylor vortices on a sphere, Stuart vortices on a sphere, and flow past a cylinder on domains with varying curvature. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1401-01.

  15. The Weathering Study of PC/ASA Alloy For Automotive Exterior Applications

    Directory of Open Access Journals (Sweden)

    Sinan Öztürk

    2017-10-01

    Full Text Available Polycarbonates (PC are used in automotive industry due to high physical and mechanical properties like high impact resistance and ductility. Polycarbonates are blended with ABS (Acrylonitrile-Butadiene-Styrene and ASA (Acrylonitrile-Styrene-Acrylate terpolymers for interior and exterior applications of automotive components to achieve good physical and mechanical properties. Other reason for choosing such alloys for interior applications is the IZOD impact resistance requirement higher than 40kJ/m2. Recently, grades of PC/ASA with UV stabilized are developed for non-painted exterior applications. The aim of our study is to investigate whether new developed PC/ASA could be chosen for exterior applications of automotive industry. In this study, the samples are prepared from injection molding and the weathering performance of PC/ASA was tested by a weather-o-meter for 1500h at a total of 1890 kJ/m2 at 340nm with a cut-off filter at λ<290nm. The results are evaluated by FT-IR, DSC, TGA and SEM. It has been observed that UV degradation of PC/ASA leads to several major changes in its IR spectrum like broad bands occurred in the hydroxyl region around 3300 cm-1, and carbonyl stretching region increased around 1728 cm-1. The main degradations were based on photo-oxidation and photo-Fries rearrangement of PC. In our study, the photo-oxidation was followed by the color shift to yellowing of the polymer.

  16. Failure Behavior of Elbows with Local Wall Thinning

    Science.gov (United States)

    Lee, Sung-Ho; Lee, Jeong-Keun; Park, Jai-Hak

    Wall thinning defect due to corrosion is one of major aging phenomena in carbon steel pipes in most plant industries, and it results in reducing load carrying capacity of the piping components. A failure test system was set up for real scale elbows containing various simulated wall thinning defects, and monotonic in-plane bending tests were performed under internal pressure to find out the failure behavior of them. The failure behavior of wall-thinned elbows was characterized by the circumferential angle of thinned region and the loading conditions to the piping system.

  17. Analysis, design, and constrution of a sacrificial shield wall

    International Nuclear Information System (INIS)

    Fialkow; Shah, S.B.

    1978-01-01

    The sacrificial shield wall, a cylindrical enclosure around the reactor pressure vessel (RPV), is a major component of nuclear power plants of the Boiling Water Reactor (BWR) type. A method developed for the analysis and design of such walls is described which eliminates shortcomings in methods used in current practice. The method treats the wall as a space frame of ring beams and columns and includes the skin plates as finite elements. Design loadings, load combinations, and acceptance criteria are presented. Results by this method are furnished and compared with results by an alternate method. Significant design features are described and a narrative of construction procedures is included. (Author)

  18. Abdominal wall fat pad biopsy

    Science.gov (United States)

    Amyloidosis - abdominal wall fat pad biopsy; Abdominal wall biopsy; Biopsy - abdominal wall fat pad ... is the most common method of taking an abdominal wall fat pad biopsy . The health care provider cleans the ...

  19. Obtaining Approximate Values of Exterior Orientation Elements of Multi-Intersection Images Using Particle Swarm Optimization

    Science.gov (United States)

    Li, X.; Li, S. W.

    2012-07-01

    In this paper, an efficient global optimization algorithm in the field of artificial intelligence, named Particle Swarm Optimization (PSO), is introduced into close range photogrammetric data processing. PSO can be applied to obtain the approximate values of exterior orientation elements under the condition that multi-intersection photography and a small portable plane control frame are used. PSO, put forward by an American social psychologist J. Kennedy and an electrical engineer R.C. Eberhart, is a stochastic global optimization method based on swarm intelligence, which was inspired by social behavior of bird flocking or fish schooling. The strategy of obtaining the approximate values of exterior orientation elements using PSO is as follows: in terms of image coordinate observed values and space coordinates of few control points, the equations of calculating the image coordinate residual errors can be given. The sum of absolute value of each image coordinate is minimized to be the objective function. The difference between image coordinate observed value and the image coordinate computed through collinear condition equation is defined as the image coordinate residual error. Firstly a gross area of exterior orientation elements is given, and then the adjustment of other parameters is made to get the particles fly in the gross area. After iterative computation for certain times, the satisfied approximate values of exterior orientation elements are obtained. By doing so, the procedures like positioning and measuring space control points in close range photogrammetry can be avoided. Obviously, this method can improve the surveying efficiency greatly and at the same time can decrease the surveying cost. And during such a process, only one small portable control frame with a couple of control points is employed, and there are no strict requirements for the space distribution of control points. In order to verify the effectiveness of this algorithm, two experiments are

  20. OBTAINING APPROXIMATE VALUES OF EXTERIOR ORIENTATION ELEMENTS OF MULTI-INTERSECTION IMAGES USING PARTICLE SWARM OPTIMIZATION

    Directory of Open Access Journals (Sweden)

    X. Li

    2012-07-01

    Full Text Available In this paper, an efficient global optimization algorithm in the field of artificial intelligence, named Particle Swarm Optimization (PSO, is introduced into close range photogrammetric data processing. PSO can be applied to obtain the approximate values of exterior orientation elements under the condition that multi-intersection photography and a small portable plane control frame are used. PSO, put forward by an American social psychologist J. Kennedy and an electrical engineer R.C. Eberhart, is a stochastic global optimization method based on swarm intelligence, which was inspired by social behavior of bird flocking or fish schooling. The strategy of obtaining the approximate values of exterior orientation elements using PSO is as follows: in terms of image coordinate observed values and space coordinates of few control points, the equations of calculating the image coordinate residual errors can be given. The sum of absolute value of each image coordinate is minimized to be the objective function. The difference between image coordinate observed value and the image coordinate computed through collinear condition equation is defined as the image coordinate residual error. Firstly a gross area of exterior orientation elements is given, and then the adjustment of other parameters is made to get the particles fly in the gross area. After iterative computation for certain times, the satisfied approximate values of exterior orientation elements are obtained. By doing so, the procedures like positioning and measuring space control points in close range photogrammetry can be avoided. Obviously, this method can improve the surveying efficiency greatly and at the same time can decrease the surveying cost. And during such a process, only one small portable control frame with a couple of control points is employed, and there are no strict requirements for the space distribution of control points. In order to verify the effectiveness of this algorithm

  1. Study of the mechanical behavior of the fronts of exterior monuments in Morelia, Michoacan, Mexico

    International Nuclear Information System (INIS)

    Alonso, E.; Martinez, W.; Avalos, M.; Castano, V.; Martinez, L.

    2005-01-01

    There are 1,130 architectural ancient monuments in the historic center in Morelia, Michoacan, Mexico built with ignimbrites from the surrounding quarry stones. In some facades is acute the damage. The walls are between 0.50 and 1.50 meters wide, it helps the structure under seismic or accidental loads. The main winds come from the S-SW and their ratio speed (4-20 m/s) does not allow mechanical corrosion (corrosion) but it is able to carry anthropogenic particles (2-25 m), form the burnt of fossil fuels, and they lay on the facades. The damage is observed specially on the facades on the dominant winds and also on the facades located on streets less than 6.0 m wide. The capillary humidity is visible until highs of 2.0 meters on the streets, and it is appreciate the efflorescence crystals and biologic patinas. We performance non destructive tests in situ with the Schmidt hammer to quantify the mechanical resistance on the ignimbrite blocks forming the buildings, in the lowest part of them we took the data because the damage is acute in that wet zone and because in this part could occur the collapse in an extraordinary earthquake. The collected data were compared with the data obtained in ignimbrites blocks taken from the 'healthy' quarry stones. (Author)

  2. Life Cycle Assessment of Wall Systems

    Science.gov (United States)

    Ramachandran, Sriranjani

    Natural resource depletion and environmental degradation are the stark realities of the times we live in. As awareness about these issues increases globally, industries and businesses are becoming interested in understanding and minimizing the ecological footprints of their activities. Evaluating the environmental impacts of products and processes has become a key issue, and the first step towards addressing and eventually curbing climate change. Additionally, companies are finding it beneficial and are interested in going beyond compliance using pollution prevention strategies and environmental management systems to improve their environmental performance. Life-cycle Assessment (LCA) is an evaluative method to assess the environmental impacts associated with a products' life-cycle from cradle-to-grave (i.e. from raw material extraction through to material processing, manufacturing, distribution, use, repair and maintenance, and finally, disposal or recycling). This study focuses on evaluating building envelopes on the basis of their life-cycle analysis. In order to facilitate this analysis, a small-scale office building, the University Services Building (USB), with a built-up area of 148,101 ft2 situated on ASU campus in Tempe, Arizona was studied. The building's exterior envelope is the highlight of this study. The current exterior envelope is made of tilt-up concrete construction, a type of construction in which the concrete elements are constructed horizontally and tilted up, after they are cured, using cranes and are braced until other structural elements are secured. This building envelope is compared to five other building envelope systems (i.e. concrete block, insulated concrete form, cast-in-place concrete, steel studs and curtain wall constructions) evaluating them on the basis of least environmental impact. The research methodology involved developing energy models, simulating them and generating changes in energy consumption due to the above mentioned

  3. Liquid Wall Chambers

    Energy Technology Data Exchange (ETDEWEB)

    Meier, W R

    2011-02-24

    The key feature of liquid wall chambers is the use of a renewable liquid layer to protect chamber structures from target emissions. Two primary options have been proposed and studied: wetted wall chambers and thick liquid wall (TLW) chambers. With wetted wall designs, a thin layer of liquid shields the structural first wall from short ranged target emissions (x-rays, ions and debris) but not neutrons. Various schemes have been proposed to establish and renew the liquid layer between shots including flow-guiding porous fabrics (e.g., Osiris, HIBALL), porous rigid structures (Prometheus) and thin film flows (KOYO). The thin liquid layer can be the tritium breeding material (e.g., flibe, PbLi, or Li) or another liquid metal such as Pb. TLWs use liquid jets injected by stationary or oscillating nozzles to form a neutronically thick layer (typically with an effective thickness of {approx}50 cm) of liquid between the target and first structural wall. In addition to absorbing short ranged emissions, the thick liquid layer degrades the neutron flux and energy reaching the first wall, typically by {approx}10 x x, so that steel walls can survive for the life of the plant ({approx}30-60 yrs). The thick liquid serves as the primary coolant and tritium breeding material (most recent designs use flibe, but the earliest concepts used Li). In essence, the TLW places the fusion blanket inside the first wall instead of behind the first wall.

  4. Critical traffic loading for the design of prestressed concrete bridge

    International Nuclear Information System (INIS)

    Hassan, M.I.U.

    2009-01-01

    A study has been carried out to determine critical traffic loadings for the design of bridge superstructures. The prestressed concrete girder bridge already constructed in Lahore is selected for the analysis as an example. Standard traffic loadings according to AASHTO (American Association of State Highway and Transportation Officials) and Pakistan Highway Standards are used for this purpose. These include (1) HL-93 Truck, (2) Lane and (3) Tandem Loadings in addition to (4) Military tank loading, (5) Class-A, (6) Class-B and (7) Class-AA loading, (8) NLC (National Logistic Cell) and (9) Volvo truck loadings. Bridge superstructure including transom beam is analyzed Using ASD and LRFD (Load and Resistance Factor Design) provisions of AASHTO specifications. For the analysis, two longer and shorter spans are selected. This includes the analysis of bridge deck; interior and exterior girder; a typical transom beam and a pier. Dead and live loading determination is carried out using both computer aided and manual calculations. Evaluation of traffic loadings is done for all the bridge components to find out the critical loading. HL-93 loading comes out to be the most critical loading and where this loading is not critical in case of bridge decks; a factor of 1.15 is introduced to make it equivalent with HL-93 -Ioading. SAP-2000 (Structural Engineering Services of Pakistan) and MS-Excel is employed for analysis of bridge superstructure subjected to this loading. Internal forces are obtained for the structural elements of the bridge for all traffic loadings mentioned. It is concluded that HL-93 loading can be used for the design of prestressed concrete girder bridge. Bridge design authorities like NHA (National Highway Authority) and different cities development authorities are using different standard traffic loadings. A number of suggestions are made from the results of the research work related to traffic loadings and method of design. These recommendations may be

  5. Finite element analyses for Seismic Shear Wall International Standard Problem

    International Nuclear Information System (INIS)

    Park, Y.; Hofmayer, C.; Chokshi, N.

    1997-01-01

    In the seismic design of shear wall structures, e.g., nuclear reactor buildings, a linear FEM analysis is frequently used to quantify the stresses under the design loading condition. The final design decisions, however, are still based on empirical design rules established over decades from accumulated laboratory test data. This paper presents an overview of the state-of-the-art on the application of nonlinear FEM analysis to reinforced concrete (RC) shear wall structures under severe earthquake loadings based on the findings obtained during the Seismic Shear Wall International Standard Problem (SSWISP) Workshop in 1996. Also, BNL's analysis results of the International Standard Problem (ISP) shear walls under monotonic static, cyclic static and dynamic loading conditions are described

  6. Analysis of a Floodplain I-Wall Embedded in Horizontally Stratified Soil Layers During Flood Events Using Corps I-Wall Software Version 1.0

    Science.gov (United States)

    2016-07-01

    100, 300, 500 and 1,000 simulations. ........................... 255 Figure A1. Cantilever retaining wall . (a) Two layered soil site. (b...of flood elevation. In a safety or risk assessment of I- Walls , the rotational limit state or probability of rotational failure of the I- Wall about a...for the net loading is computed about the lower of the RHS or LHS ground surfaces for level ground, for a retaining wall design with differential

  7. Use of reinforced soil wall to support steam generator transfer

    International Nuclear Information System (INIS)

    Davie, J.R.; Wang, J.T.; Gladstone, R.A.

    1991-01-01

    Consumers Power Company had the two steam generators at its Palisades Nuclear Plant in Michigan replaced in November 1990. This replacement was accomplished through a 26-foot wide by 28-foot high opening cut into the wall of the containment building, about 45 feet above the original ground surface. Because this ground surface was at an approximately 3-H:1-V slope, leveling was required before replacement in order to provide access for the steam generators and adequate support for the heavy-duty gantry crane system used to transfer the generators. A 25-foot high reinforced soil wall was constructed to achieve the level surface. This paper describes the design and construction of the heavily loaded reinforced soil wall, including ground improvement measures required to obtain adequate wall stability. The performance of the wall under test loading will also be presented and discussed

  8. Behaviour of Masonry Walls under Horizontal Shear in Mining Areas

    Science.gov (United States)

    Kadela, Marta; Bartoszek, Marek; Fedorowicz, Jan

    2017-12-01

    The paper discusses behaviour of masonry walls constructed with small-sized elements under the effects of mining activity. It presents some mechanisms of damage occurring in such structures, its forms in real life and the behaviour of large fragments of masonry walls subjected to specific loads in FEM computational models. It offers a constitutive material model, which enables numerical analyses and monitoring of the behaviour of numerical models as regards elastic-plastic performance of the material, with consideration of its degradation. Results from the numerical analyses are discussed for isolated fragments of the wall subjected to horizontal shear, with consideration of degradation, impact of imposed vertical load as well as the effect of weakening of the wall, which was achieved by introducing openings in it, on the performance and deformation of the wall.

  9. First wall thermal hydraulic models for fusion blankets

    International Nuclear Information System (INIS)

    Fillo, J.A.

    1980-01-01

    Subject to normal and off-normal reactor conditions, thermal hydraulic models of first walls, e.g., a thermal mass barrier, a tubular shield, and a radiating liner are reviewed. Under normal operation the plasma behaves as expected in a predicted way for transient and steady-state conditions. The most severe thermal loading on the first wall occurs when the plasma becomes unstable and dumps its energy on the wall in a very short period of time (milliseconds). Depending on the plasma dump time and area over which the energy is deposited may result in melting of the first wall surface, and if the temperature is high enough, vaporization

  10. Considerations on the design of through-wall anchors

    International Nuclear Information System (INIS)

    Ricklefs, Ulf

    2012-01-01

    Connections to existing buildings are often the most difficult planning challenge for the realization of construction measures in case of piping system replacements in nuclear power plants. This is due to restricted space or limited load reserves of the building structure. Usually the realization of support connections to the existing buildings is achieved by anchor bolts. But in critical cases the preferred alternative solution uses through-wall anchors. Up to now uniform assessment thresholds are not available, no technical guidelines or regulations for construction variants exist. Through-wall anchors allow significantly higher load capacities for tensile and shear loads but require enhanced planning and realization efforts.

  11. Beam loading

    OpenAIRE

    Boussard, Daniel

    1987-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superco...

  12. Control of cracking in R.C. Structures: Numerical simulation of a squat shear wall

    NARCIS (Netherlands)

    Damoni, C.; Belletti, B.; Lilliu, G.

    2013-01-01

    In this paper the behavior of a squat shear wall subjected to monotonic shear loading is investigated. The study fits into the experimental program driven by CEOS.fr on modeling of the behavior of the tested mocks-ups (monotonic and cycling loading-under prevented or free shrinkage). The shear wall

  13. Dynamic thermal reaction analysis of wall structures in various cooling operation conditions

    International Nuclear Information System (INIS)

    Yan, Biao; Long, Enshen; Meng, Xi

    2015-01-01

    Highlights: • Four different envelop structures are separately built in the same test building. • Cooling temperature and operation time were chosen as perturbations. • State Space Method is used to analyze the influence of wall sequence order. • The numerical models are validated by the comparisons of theory and test results. • The contrast of temperature change of different envelop structures was stark. - Abstract: This paper proposes a methodology of performance assessing of envelops under different cooling operation conditions, by focusing on indoor temperature change and dynamic thermal behavior performance of walls. To obtain a general relationship between the thermal environment change and the reaction of envelop, variously insulated walls made with the same insulation material are separately built in the same wall of a testing building with the four different structures, namely self-heat insulation (full insulation material), exterior insulation, internal insulation and intermediate insulation. The advantage of this setting is that the test targets are exposed to the same environmental variables, and the tests results are thus comparable. The target responses to two types of perturbations, cooling temperature and operation time were chosen as the important variations in the tests. Parameters of cooling set temperature of 22 °C and 18 °C, operation and restoring time 10 min and 15 min are set in the test models, and discussed with simulation results respectively. The results reveal that the exterior insulation and internal insulation are more sensitive to thermal environment change than self-heat insulation and intermediate insulation.

  14. High Performance Walls in Hot-Dry Climates

    Energy Technology Data Exchange (ETDEWEB)

    Hoeschele, Marc [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Springer, David [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); Dakin, Bill [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States); German, Alea [Alliance for Residential Building Innovation (ARBI), Davis, CA (United States)

    2015-01-01

    High performance walls represent a high priority measure for moving the next generation of new homes to the Zero Net Energy performance level. The primary goal in improving wall thermal performance revolves around increasing the wall framing from 2x4 to 2x6, adding more cavity and exterior rigid insulation, achieving insulation installation criteria meeting ENERGY STAR's thermal bypass checklist. To support this activity, in 2013 the Pacific Gas & Electric Company initiated a project with Davis Energy Group (lead for the Building America team, Alliance for Residential Building Innovation) to solicit builder involvement in California to participate in field demonstrations of high performance wall systems. Builders were given incentives and design support in exchange for providing site access for construction observation, cost information, and builder survey feedback. Information from the project was designed to feed into the 2016 Title 24 process, but also to serve as an initial mechanism to engage builders in more high performance construction strategies. This Building America project utilized information collected in the California project.

  15. Interaction between drilled shaft and mechanically stabilized earth (MSE) wall : project summary.

    Science.gov (United States)

    2015-08-31

    Drilled shafts are being constructed within the reinforced zone of mechanically stabilized earth (MSE) walls (Figure 1). The drilled shafts may be subjected to horizontal loads and push against the front of the wall. Distress of MSE wall panels has b...

  16. Nanotechnology And Examination Of Multi Walled Carbon Nanotubes

    OpenAIRE

    Kutucu, Burcu

    2010-01-01

    The main subject of this study is the definition of nanotechnology, benefits of nanotechnology, nanotechnology applications in Turkey and world and the history of nanotechnology. Also single and multi walled carbon nanotubes and Van der Waals bands are examined in this study. At first a fixed end frame loaded with a load P is studied and governing equations solved in MATHEMATICA. Secontly the same procedure is repeated for a fixed and frame loaded with moment M is studied and governing equati...

  17. Evaluation of masonry wall design at nuclear power plants

    International Nuclear Information System (INIS)

    Con, V.N.; Subramonian, N.; Chokshi, N.

    1983-01-01

    The structural integrity of safety-related masonry walls in operating nuclear power plants may not be maintained when subjected to certain loads and load combinations. The paper presents some findings based upon the review of the design and analysis procedures used by the licensees in the reevaluation of safety-related masonry walls. The design criteria developed by the Structural Engineering Branch (SEB) of the United States Nuclear Regulatory Commission (NRC) along with other standard codes such as the Uniform Building Code, ACI 531-79, ATC 3-06, and NCMA were used as guidance in evaluating the design criteria developed by the licensees. The paper deals with the following subject areas: loads and load combinations, allowable stresses, analytical procedures, and modification methods. The paper concludes that, in general, the masonry walls in nuclear power plants comply with the working stress design requirements. In some cases, certain nonlinear analysis methods were used. The applicability of these methods is discussed. (orig.)

  18. Nonlinear load-deflection behavior of abutment backwalls with varying height and soil density.

    Science.gov (United States)

    2011-12-01

    We address the scaling of abutment wall lateral response with wall height and compaction condition through testing and analytical work. The : analytical work was undertaken to develop hyperbolic curves representing the load-deflection response of bac...

  19. Exterior egg quality as affected by enrichment resources layout in furnished laying-hen cages.

    Science.gov (United States)

    Li, Xiang; Chen, Donghua; Meng, Fanyu; Su, Yingying; Wang, Lisha; Zhang, Runxiang; Li, Jianhong; Bao, Jun

    2017-10-01

    This study aimed to investigate the effects of enrichment resources (a perch, dustbath, and nest) layout in furnished laying-hen cages (FC) on exterior quality of eggs. One hundred and sixty-eight (168) Hy-Line Brown laying hens at 16 weeks of age were randomly distributed to four treatments: small furnished cages (SFC), medium furnished cages type I (MFC-I), medium furnished cages type II (MFC-II), and medium furnished cages type III (MFC-III). Each treatment had 4 replicates or cages with 6 hens for SFC (24 birds for each SFC) and 12 hen/cage for MFC-I, -II, and -III (48 birds for each MFC-I, -II and -III). Following a 2-week acclimation, data collection started at 18 weeks of age and continued till 52 weeks of age. Dirtiness of egg surface or cracked shell as indicators of the exterior egg quality were recorded each week. The results showed that the proportion of cracked or dirty eggs was significantly affected by the FC type (p<0.01) in that the highest proportion of cracked or dirty eggs was found in MFC-I and the lowest proportion of dirty eggs in SFC. The results of this showed that furnished cage types affected both dirty eggs and cracked eggs (p<0.01). The results also indicated that not nest but dustbath lead to more dirty eggs. Only MFC-I had higher dirty eggs at nest than other FC (p< 0.01). The results of dirty eggs in MFC-I and MFC-II compared with SFC and MFC-III seemed suggest that a low position of dustbath led to more dirty eggs. SFC design affected exterior egg quality and the low position of dustbath in FC resulted in higher proportion of dirty eggs.

  20. Polychlorinated biphenyls in the exterior caulk of San Francisco Bay Area buildings, California, USA.

    Science.gov (United States)

    Klosterhaus, Susan; McKee, Lester J; Yee, Donald; Kass, Jamie M; Wong, Adam

    2014-05-01

    Extensive evidence of the adverse impacts of polychlorinated biphenyls (PCBs) to wildlife, domestic animals, and humans has now been documented for over 40 years. Despite the ban on production and new use of PCBs in the United States in 1979, a number of fish consumption advisories remain in effect, and there remains considerable uncertainty regarding ongoing environmental sources and management alternatives. Using a blind sampling approach, 25 caulk samples were collected from the exterior of ten buildings in the San Francisco Bay Area and analyzed for PCBs using congener-specific gas chromatography-mass spectrometry (GC-MS) and chlorine using portable X-ray fluorescence (XRF). PCBs were detected in 88% of the caulk samples collected from the study area buildings, with 40% exceeding 50 ppm. Detectable PCB concentrations ranged from 1 to 220,000 ppm. These data are consistent with previous studies in other cities that have identified relatively high concentrations of PCBs in concrete and masonry buildings built between 1950 and 1980. Portable XRF was not a good predictor of the PCB content in caulk and the results indicate that portable XRF analysis may only be useful for identifying caulk that contains low concentrations of Cl (≤ 10,000 ppm) and by extension low or no PCBs. A geographic information system-based approach was used to estimate that 10,500 kg of PCBs remain in interior and exterior caulk in buildings located in the study area, which equates to an average of 4.7 kg PCBs per building. The presence of high concentrations in the exterior caulk of currently standing buildings suggests that building caulk may be an ongoing source of PCBs to the San Francisco Bay Area environment. Further studies to expand the currently small international dataset on PCBs in caulking materials in buildings of countries that produced or imported PCBs appear justified in the context of both human health and possible ongoing environmental release. Copyright © 2014 Elsevier

  1. Solving the three-body Coulomb breakup problem using exterior complex scaling

    Energy Technology Data Exchange (ETDEWEB)

    McCurdy, C.W.; Baertschy, M.; Rescigno, T.N.

    2004-05-17

    Electron-impact ionization of the hydrogen atom is the prototypical three-body Coulomb breakup problem in quantum mechanics. The combination of subtle correlation effects and the difficult boundary conditions required to describe two electrons in the continuum have made this one of the outstanding challenges of atomic physics. A complete solution of this problem in the form of a ''reduction to computation'' of all aspects of the physics is given by the application of exterior complex scaling, a modern variant of the mathematical tool of analytic continuation of the electronic coordinates into the complex plane that was used historically to establish the formal analytic properties of the scattering matrix. This review first discusses the essential difficulties of the three-body Coulomb breakup problem in quantum mechanics. It then describes the formal basis of exterior complex scaling of electronic coordinates as well as the details of its numerical implementation using a variety of methods including finite difference, finite elements, discrete variable representations, and B-splines. Given these numerical implementations of exterior complex scaling, the scattering wave function can be generated with arbitrary accuracy on any finite volume in the space of electronic coordinates, but there remains the fundamental problem of extracting the breakup amplitudes from it. Methods are described for evaluating these amplitudes. The question of the volume-dependent overall phase that appears in the formal theory of ionization is resolved. A summary is presented of accurate results that have been obtained for the case of electron-impact ionization of hydrogen as well as a discussion of applications to the double photoionization of helium.

  2. Hazardous drug residue on exterior vial surfaces: evaluation of a commercial manufacturing process.

    Science.gov (United States)

    Power, Luci A; Sessink, Paul J M; Gesy, Kathy; Charbonneau, Flay

    2014-04-01

    Hazardous drug residue on the exterior surface of drug vials poses a potential risk for exposure of health care workers involved in handling these products. The purpose of this article is to heighten the awareness of this serious issue and to evaluate a commercial manufacturing process for removing and containing hazardous drug (HD) residue on exterior vial surfaces. Additionally, findings from this study are interpreted, incorporated into the current body of evidence, and discussed by experts in this field. This study includes separate evaluations for the presence or absence of surface drug contamination on the vials of 3 HD products: 5-fluorouracil, cisplatin, and methotrexate. The drug products were packaged in vials using a patented prewashing/decontamination method, application of a polyvinylchloride (PVC) base, and use of clear glass vials. An additional step of encasing the vial in a shrink-wrapped sheath was used for 5-fluorouracil and cisplatin. Of all 5-fluorouracil (110 vials), methotrexate (60 vials), and cisplatin (60 vials) tested, only 2 had detectable amounts of surface residue. One 5-fluorouracil vial was found to have approximately 4 mg of 5-fluorouracil on the surface of the vial. The second contaminated vial was cisplatin, which was discovered to have 131 ng of platinum, equal to 200 ng of cisplatin or 0.2 μL of cisplatin solution, on the vial sheath. Using validated extraction and analytic methods, all but 2 of the 230 tested vials were found to be free of surface drug contamination. Pharmacy leaders need to take an active role in promoting the need for clean HD vials. Manufacturers should be required to provide their clients with data derived from externally validated analytic studies, reporting the level of HD contamination on the exterior of their vial products.

  3. Experiment and Simulation Study on the Amorphous Silicon Photovoltaic Walls

    Directory of Open Access Journals (Sweden)

    Wenjie Zhang

    2014-01-01

    Full Text Available Based on comparative study on two amorphous silicon photovoltaic walls (a-Si PV walls, the temperature distribution and the instant power were tested; and with EnergyPlus software, similar models of the walls were built to simulate annual power generation and air conditioning load. On typical sunshine day, the corresponding position temperature of nonventilated PV wall was generally 0.5~1.5°C higher than that of ventilated one, while the power generation was 0.2%~0.4% lower, which was consistent with the simulation results with a difference of 0.41% in annual energy output. As simulation results, in summer, comparing the PV walls with normal wall, the heat per unit area of these two photovoltaic walls was 5.25 kWh/m2 (nonventilated and 0.67 kWh/m2 (ventilated higher, respectively. But in winter the heat loss of nonventilated one was smaller, while ventilated PV wall was similar to normal wall. To annual energy consumption of heating and cooling, the building with ventilated PV wall and normal wall was also similar but slightly better than nonventilated one. Therefore, it is inferred that, at low latitudes, such as Zhuhai, China, air gap ventilation is suitable, while the length to thickness ratio of the air gap needs to be taken into account.

  4. Variations of Hodge Structure Considered as an Exterior Differential System: Old and New Results

    Directory of Open Access Journals (Sweden)

    James Carlson

    2009-09-01

    Full Text Available This paper is a survey of the subject of variations of Hodge structure (VHS considered as exterior differential systems (EDS. We review developments over the last twenty-six years, with an emphasis on some key examples. In the penultimate section we present some new results on the characteristic cohomology of a homogeneous Pfaffian system. In the last section we discuss how the integrability conditions of an EDS affect the expected dimension of an integral submanifold. The paper ends with some speculation on EDS and Hodge conjecture for Calabi-Yau manifolds.

  5. Comércio exterior : mercado para as empresas pernambucanas de base tecnológica

    OpenAIRE

    Oliveira, Sandro Severino de

    2008-01-01

    Este trabalho estuda as empresas de base tecnológica do Estado de Pernambuco, que são notórias por valerem-se das práticas de Pesquisa e Desenvolvimento para gerarem inovações tecnológicas. O objetivo deste estudo é descrever o perfil dessas organizações, de seus empreendedores e de suas potencialidades para o comércio exterior. Para tanto, foi realizada uma pesquisa descritiva onde fez-se uso de dois instrumentos de coleta de dados: pesquisa bibliográfica e pesquisa de campo. ...

  6. Multi-point observations of Ion Dispersions near the Exterior Cusp with Cluster

    Science.gov (United States)

    Escoubet, C.-Philippe; Grison, Benjamin; Berchem, Jean; Trattner, Kralheinz; Pitout, Frederic; Richard, Robert; Taylor, Matt; Soucek, Jan; Laakso, Harri; Masson, Arnaud; Dunlop, Malcolm; Dandouras, Iannis; Reme, Henri; Fazakerley, Andrew; Daly, Patrick

    2014-05-01

    The exterior cusp is the most external region of the polar magnetosphere in direct contact with the plasma and the magnetic field from the solar wind. Unlike the rest of the magnetopause surface, the exterior cusp is a singular region with small and turbulent magnetic field and where large entry of plasma from solar origin takes place. The main process that injects solar wind plasma into the polar cusp is now generally accepted to be magnetic reconnection. Depending on the IMF direction, this process will take place equatorward (for IMF southward), poleward (for IMF northward) or on the dusk or dawn sides (for IMF azimuthal) of the cusp. We report a Cluster crossing on 5 January 2002 near the exterior cusp on the southern dusk side. The IMF was mainly azimuthal (IMF-By around -5 nT), the solar wind speed lower than usual around 280 km/s and the density around 5 cm-3. The four Cluster spacecraft were still in the "magnetotail" configuration with two perfect tetrahedra of 2000 km around apogee and turning into an elongated configuration near the magnetopause. C4 was the first spacecraft to enter the cusp around 19:52:04 UT, followed by C2 at 19:52:35 UT, C1 at 19:54:24 UT and C3 at 20:13:15 UT. C4 and C1 observed two ion energy dispersions at 20:10 UT and 20:40 UT and C3 at 20:35 UT and 21:15 UT. Using the time of flight technique on the upgoing and downgoing ions in the dispersions, we obtain an altitude of the sources of these ions between 14 and 20 RE. Using Tsyganenko model, these sources are located on the dusk flank, past the terminator. In addition, before entering the cusp, the magnetopause crossing was characterized by a large shear in By and bipolar plasma flows, suggesting that reconnection was taking place near the exterior cusp. We will discuss the extent of the reconnection line along the flank of the magnetopause based on these observations.

  7. Development of an anti-flood board to protect the interiors and exteriors of the infrastructure

    Science.gov (United States)

    Petru, Michal; Srb, Pavel; Sevcik, Ladislav; Martinec, Tomas; Kulhavy, Petr

    2018-06-01

    This article deals with the development of an anti-flood board to protect the interior and exterior of various infrastructures, such a houses, cottages or industrial buildings. It was designed prototypes and assembled numerical simulations. In Central Europe and in particular in the Czech Republic, floods are an integral part of the natural water cycle and cause great loss of life and great property damage. The development of new types of mobile anti-flood boards is very important as the design solution is developed for flood protection with regard to minimizing weight, cost of production, easy manipulation, simplicity and speed of installation.

  8. Electron-helium scattering in the S-wave model using exterior complex scaling

    International Nuclear Information System (INIS)

    Horner, Daniel A.; McCurdy, C. William; Rescigno, Thomas N.

    2004-01-01

    Electron-impact excitation and ionization of helium is studied in the S-wave model. The problem is treated in full dimensionality using a time-dependent formulation of the exterior complex scaling method that does not involve the solution of large linear systems of equations. We discuss the steps that must be taken to compute stable ionization amplitudes. We present total excitation, total ionization and single differential cross sections from the ground and n=2 excited states and compare our results with those obtained by others using a frozen-core model

  9. Lie Symmetry Analysis of the Inhomogeneous Toda Lattice Equation via Semi-Discrete Exterior Calculus

    Science.gov (United States)

    Liu, Jiang; Wang, Deng-Shan; Yin, Yan-Bin

    2017-06-01

    In this work, the Lie point symmetries of the inhomogeneous Toda lattice equation are obtained by semi-discrete exterior calculus, which is a semi-discrete version of Harrison and Estabrook’s geometric approach. A four-dimensional Lie algebra and its one-, two- and three-dimensional subalgebras are given. Two similarity reductions of the inhomogeneous Toda lattice equation are obtained by using the symmetry vectors. Supported by National Natural Science Foundation of China under Grant Nos. 11375030, 11472315, and Department of Science and Technology of Henan Province under Grant No. 162300410223 and Beijing Finance Funds of Natural Science Program for Excellent Talents under Grant No. 2014000026833ZK19

  10. Identification of complex model thermal boundary conditions based on exterior temperature measurement

    International Nuclear Information System (INIS)

    Lu Jianming; Ouyang Guangyao; Zhang Ping; Rong Bojun

    2012-01-01

    Combining the advantages of the finite element software in temperature field analyzing with the multivariate function optimization arithmetic, a feasibility method based on the exterior temperature was proposed to get the thermal boundary conditions, which was required in temperature field analyzing. The thermal boundary conditions can be obtained only by some temperature measurement values. Taking the identification of the convection heat transfer coefficient of a high power density diesel engine cylinder head as an example, the calculation result shows that when the temperature measurement error was less than 0.5℃, the maximum relative error was less than 2%. It is shown that the new method was feasible (authors)

  11. Time-dependent approach to collisional ionization using exterior complex scaling

    International Nuclear Information System (INIS)

    McCurdy, C. William; Horner, Daniel A.; Rescigno, Thomas N.

    2002-01-01

    We present a time-dependent formulation of the exterior complex scaling method that has previously been used to treat electron-impact ionization of the hydrogen atom accurately at low energies. The time-dependent approach solves a driven Schroedinger equation, and scales more favorably with the number of electrons than the original formulation. The method is demonstrated in calculations for breakup processes in two dimensions (2D) and three dimensions for systems involving short-range potentials and in 2D for electron-impact ionization in the Temkin-Poet model for electron-hydrogen atom collisions

  12. Synthetic pubovaginal sling (TVT: failure in conservative treatment following vaginal exteriorization

    Directory of Open Access Journals (Sweden)

    Edgar Thorell

    2004-04-01

    Full Text Available Female, 57 year-old patient, reported having undergone surgery for correction of urinary incontinence due to sphincteric insufficiency with the implantation of a synthetic pubovaginal sling 14 months earlier. Though she did not present urine loss any longer, approximately 60 days following the surgical procedure she started to report dysuria, pollakiuria and dyspareunia. Attempts of a conservative solution were ineffective. The appearance of a vaginal infra-urethral granuloma and the exteriorization of the synthetic material led to its removal.

  13. El comercio exterior durante la década revolucionaria: un acercamiento preliminar

    OpenAIRE

    Sandra Kuntz Ficker

    2001-01-01

    El propósito de este trabajo es realizar un primer acercamiento sistemático al análisis del comercio exterior de México durante la década de 1910. Tal objetivo se ha visto obstaculizado en el pasado por la escasez de fuentes cuantitativas de procedencia mexicana para los años de la revolución. Para suplir esta carencia, este artículo recurre a las estadísticas comerciales publicadas por los principales socios de México durante estos años (Estados Unidos, Gran Bretaña y Francia). A pa...

  14. Institucionalidad y política exterior del Ecuador a inicios de la República

    OpenAIRE

    Núñez Endara, Pablo

    2000-01-01

    La investigación que planteamos pretende visualizar, en un período histórico corto, los mecanismos utilizados por el Estado para lograr el reconocimiento político de la comunidad internacional, ya sea a través de la suscripción de Tratados Comerciales, al establecimiento de relaciones diplomáticas o la apertura de oficinas consulares, entre otros. Simultáneamente, la investigación se propone utilizar el manejo de la Política Exterior como uno de los vehículos para entender la o...

  15. Wall Finishes; Carpentry: 901895.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The course outline is designed to provide instruction in selecting, preparing, and installing wall finishing materials. Prerequisites for the course include mastery of building construction plans, foundations and walls, and basic mathematics. Intended for use in grades 11 and 12, the course contains five blocks of study totaling 135 hours of…

  16. Wall Construction; Carpentry: 901892.

    Science.gov (United States)

    Dade County Public Schools, Miami, FL.

    The curriculum guide outlines a course designed to provide instruction in floor and wall layout, and in the diverse methods and construction of walls. Upon completion of this course the students should have acquired a knowledge of construction plans and structural foundations in addition to a basic knowledge of mathematics. The course consists of…

  17. International Divider Walls

    NARCIS (Netherlands)

    Kruis, A.; Sneller, Lineke

    2013-01-01

    The subject of this teaching case is the Enterprise Resource Planning (ERP) system implementation at International Divider Walls, the world market leader in design, production, and sales of divider walls. The implementation in one of the divisions of this multinational company had been successful,

  18. Supersymmetric domain walls

    NARCIS (Netherlands)

    Bergshoeff, Eric A.; Kleinschmidt, Axel; Riccioni, Fabio

    2012-01-01

    We classify the half-supersymmetric "domain walls," i.e., branes of codimension one, in toroidally compactified IIA/IIB string theory and show to which gauged supergravity theory each of these domain walls belong. We use as input the requirement of supersymmetric Wess-Zumino terms, the properties of

  19. Seismic behavior of semi-supported steel shear walls

    DEFF Research Database (Denmark)

    Jahanpour, A.; Jönsson, J.; Moharrami, H.

    2012-01-01

    During the recent past decade semi-supported steel shear walls (SSSW) have been introduced as an alternative to the traditional type of steel plate shear walls. In this system the shear wall does not connect directly to the main columns of the building frame; instead it is connected to a pair...... of secondary columns that do not carry vertical gravity loads. In this paper, the interaction between the wall plate and the surrounding frame is investigated experimentally for typical SSSW systems in which the wall-frame has a bending-dominant behavior. Based on the possible storey failure mechanisms...... a simple method is proposed for design of the floor beams. A quasi static cyclic experimental study has been performed in order to investigate the collapse behavior of the wall-plate and surrounding frame. Furthermore the test setup has been developed in order to facilitate standardized cyclic tests...

  20. First Wall, Blanket, Shield Engineering Technology Program

    International Nuclear Information System (INIS)

    Nygren, R.E.

    1982-01-01

    The First Wall/Blanket/Shield Engineering Technology Program sponsored by the Office of Fusion Energy of DOE has the overall objective of providing engineering data that will define performance parameters for nuclear systems in advanced fusion reactors. The program comprises testing and the development of computational tools in four areas: (1) thermomechanical and thermal-hydraulic performance of first-wall component facsimiles with emphasis on surface heat loads; (2) thermomechanical and thermal-hydraulic performance of blanket and shield component facsimiles with emphasis on bulk heating; (3) electromagnetic effects in first wall, blanket, and shield component facsimiles with emphasis on transient field penetration and eddy-current effects; (4) assembly, maintenance and repair with emphasis on remote-handling techniques. This paper will focus on elements 2 and 4 above and, in keeping with the conference participation from both fusion and fission programs, will emphasize potential interfaces between fusion technology and experience in the fission industry

  1. Beam loading

    CERN Document Server

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed.

  2. Beam loading

    International Nuclear Information System (INIS)

    Gamp, Alexander

    2013-01-01

    We begin by giving a description of the radio-frequency generator-cavity-beam coupled system in terms of basic quantities. Taking beam loading and cavity detuning into account, expressions for the cavity impedance as seen by the generator and as seen by the beam are derived. Subsequently methods of beam-loading compensation by cavity detuning, radio-frequency feedback and feedforward are described. Examples of digital radio-frequency phase and amplitude control for the special case of superconducting cavities are also given. Finally, a dedicated phase loop for damping synchrotron oscillations is discussed. (author)

  3. Solar Walls in tsbi3

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne

    tsbi3 is a user-friendly and flexible computer program, which provides support to the design team in the analysis of the indoor climate and the energy performance of buildings. The solar wall module gives tsbi3 the capability of simulating solar walls and their interaction with the building....... This version, C, of tsbi3 is capable of simulating five types of solar walls say: mass-walls, Trombe-walls, double Trombe-walls, internally ventilated walls and solar walls for preheating ventilation air. The user's guide gives a description of the capabilities and how to simulate solar walls in tsbi3....

  4. Work Models in the Design Process for House Interior and Exterior: Physical or Virtual?

    Science.gov (United States)

    Bradecki, Tomasz; Uherek-Bradecka, Barbara

    2017-10-01

    The article presents the effects of research on different types of models of single family houses and multifamily houses. Exterior layout and interior functional layout are the main drivers for the final result of a design. Models are an important medium for presentation of architectural designs and play a pivotal role in explaining the first idea to people and potential clients. Although 3D models have unlimited possibilities of representation, some people cannot understand or ‘feel’ the designed space. The authors try to test how to combine the interior and the exterior in a single synthetic model. Several models of different houses have been presented in the article. All the case studies were developed with physical models, 3D models, and 2D hand sketches. The main focus of the work with the models was to achieve a coherent vision for future feeling of open space in designed houses. The research shows how synthetic models might be helpful in the design process. The research was carried in the URBAN model research group (urbanmodel.org, Gliwice, Poland) that consists of academic researchers and architects. The models reflect architectural experience gathered by the authors during their work on theoretical models, architectural projects and by supervision on site during construction site visits. Conclusions might be helpful for developers, architects, interior designers and architecture students.

  5. Automotive Exterior Noise Optimization Using Grey Relational Analysis Coupled with Principal Component Analysis

    Science.gov (United States)

    Chen, Shuming; Wang, Dengfeng; Liu, Bo

    This paper investigates optimization design of the thickness of the sound package performed on a passenger automobile. The major characteristics indexes for performance selected to evaluate the processes are the SPL of the exterior noise and the weight of the sound package, and the corresponding parameters of the sound package are the thickness of the glass wool with aluminum foil for the first layer, the thickness of the glass fiber for the second layer, and the thickness of the PE foam for the third layer. In this paper, the process is fundamentally with multiple performances, thus, the grey relational analysis that utilizes grey relational grade as performance index is especially employed to determine the optimal combination of the thickness of the different layers for the designed sound package. Additionally, in order to evaluate the weighting values corresponding to various performance characteristics, the principal component analysis is used to show their relative importance properly and objectively. The results of the confirmation experiments uncover that grey relational analysis coupled with principal analysis methods can successfully be applied to find the optimal combination of the thickness for each layer of the sound package material. Therefore, the presented method can be an effective tool to improve the vehicle exterior noise and lower the weight of the sound package. In addition, it will also be helpful for other applications in the automotive industry, such as the First Automobile Works in China, Changan Automobile in China, etc.

  6. Unidad de destino en lo universal Falange y la propaganda exterior (1936-1945

    Directory of Open Access Journals (Sweden)

    Antonio César MORENO CANTANO

    2009-08-01

    Full Text Available RESUMEN: El control de la prensa y la propaganda se convirtió desde los inicios del régimen franquista en una preocupación constante por parte de las autoridades. El presente artículo analiza el papel desempeñado por la Delegación Nacional del Servicio Exterior de Falange, órgano encargado de difundir y promocionar en el campo internacional el ideario de la Nueva España. Para la realización de esta tarea se valió de una serie de delegaciones de Prensa y Propaganda que se localizaron principalmente en América y Europa.ABSTRACT: The control on the press and the propaganda became since the beginning of the Franco regime a constant preocupation for the authorities. The present article makes an analysis of the role of National Delegation of the Falange Exterior Services made, organization who had competences on the difusion and distribution of the idea of «The New Spain». To make this promotion, this organization had the cooperation of the press delegations specially in America and Europe.

  7. Basic exterior characteristics of body and head in Bulgarian scent hound

    Directory of Open Access Journals (Sweden)

    Urošević Milivoje

    2014-01-01

    Full Text Available A group of dogs known as hounds is widespread and highly appreciated among the hunters on the Balkans. Hounds are referred to as hunting dogs that engage in loud pursuit of game along its trail. These dogs do not need to se the game in order to pursue it and begin to bark once they stumble upon game trail. First serious research along with zootechnical measurement was conducted in 1905, at which occasion three large groups of hounds that inhabit the Balkans were described. This undertaking provided a solid foundation for further research and standardization of certain hound breeds. Though a lot of field work and standardization efforts were undertaken since then, there are still groups of hounds not encompassed in previous research work that are well-spread on the field and frequently utilized as hunting companions. One of the variety among these non-standardized breeds are Bulgarian scent hound, which differ from described hound breeds by certain exterior characteristics. In this paper, processed and analyzed some of the basic exterior features of body and head of the Bulgarian Scent Hound. Measurements were performed in 21 males and 15 females of following parameters, the height at withers, back height, loin height, chest circumference, body length, head length, skull length, nozzle length, head width and nozzle width. The average height of males is 54.60 and female 51.73 cm. Head length of males, on average, was 23.95 cm and females 23, 53 cm.

  8. Estimation of exterior vertical daylight for the humid tropic of Kota Kinabalu city in East Malaysia

    Energy Technology Data Exchange (ETDEWEB)

    Djamila, Harimi; Ming, Chu Chi; Kumaresan, Sivakumar [School of Engineering and Information Technology, Universiti Malaysia Sabah, Locked Bag No. 2073, 88999 Kota Kinabalu, Sabah (Malaysia)

    2011-01-15

    In tropical regions natural daylight has been a fundamental factor in building design. It is the most efficient way of lighting a building in the daytime and has a great potential for energy conservation in buildings. In Malaysia there are a limited available data of measured illuminance which is the case of several regions in the tropics. Using established models it is possible to predict the luminous efficacy and then estimate the monthly mean hourly exterior illuminance. In this study two different models were chosen. The Perez and Du Mortier-Perraudeau-Page-Littlefair models were selected for the prediction of hourly exterior horizontal illuminance for the city of Kota Kinabalu in East Malaysia. Comparison between the two models were made. The vertical hourly illuminance was predicted also using Perez approach. The potentiality of daylight in four orientations was discussed. This study highlights the importance of Sunpath diagram on daylight illuminance during the conceptual design stage. The results in this study is hoped to contribute further insight into the potentiality of daylighting of tropical sky. (author)

  9. Iteratively-coupled propagating exterior complex scaling method for electron-hydrogen collisions

    International Nuclear Information System (INIS)

    Bartlett, Philip L; Stelbovics, Andris T; Bray, Igor

    2004-01-01

    A newly-derived iterative coupling procedure for the propagating exterior complex scaling (PECS) method is used to efficiently calculate the electron-impact wavefunctions for atomic hydrogen. An overview of this method is given along with methods for extracting scattering cross sections. Differential scattering cross sections at 30 eV are presented for the electron-impact excitation to the n = 1, 2, 3 and 4 final states, for both PECS and convergent close coupling (CCC), which are in excellent agreement with each other and with experiment. PECS results are presented at 27.2 eV and 30 eV for symmetric and asymmetric energy-sharing triple differential cross sections, which are in excellent agreement with CCC and exterior complex scaling calculations, and with experimental data. At these intermediate energies, the efficiency of the PECS method with iterative coupling has allowed highly accurate partial-wave solutions of the full Schroedinger equation, for L ≤ 50 and a large number of coupled angular momentum states, to be obtained with minimal computing resources. (letter to the editor)

  10. BWR fuel assembly having fuel rod spacers axially positioned by exterior springs

    International Nuclear Information System (INIS)

    Taleyarkhan, R.P.

    1988-01-01

    In a fuel assembly having spaced fuel rods, an outer hollow tubular flow channel surrounding the fuel rods so as to direct flow of coolant/moderator fluid there-along, and at least one spacer being disposed along the channel and about the fuel rods so as to maintain them in side-by-side spaced relationship, an arrangement for disposing the spacer in a desired axial position along the fuel rods is described comprising: yieldably resilient springs disposed between an interior side of the outer channel and an exterior side of the spacer. The springs have an inherent spring bias directed away from the exterior sides of the spacers and toward the interior side of the channel such that by contact with the channel and spacer the springs assume states in which they are deflected away from the channel interior side so as to exert sufficient compressive contacting force thereon to maintain the spacer substantially stationary in the desired axial position along the fuel rods

  11. Índices de valor unitario y quantum del comercio exterior colombiano

    Directory of Open Access Journals (Sweden)

    Aarón Garavito

    2014-01-01

    Full Text Available Los índices de valor unitario y quantum de las importaciones y exportaciones son una herramienta importante para el análisis del comportamiento del comercio exterior de un país y su repercusión sobre la economía nacional. Estos indicadores se usan principalmente como insumo para el estudio de los términos de intercambio, la competitividad externa y los efectos en la inflación interna de cambios en los precios internacionales. Dada su importancia, este artículo presenta la estimación mensual de los índices encadenados de precios y cantida¬des del comercio exterior colombiano con base en estadísticas de aduanas. La metodología propuesta sigue las reco¬mendaciones de los organismos internacionales (FMI, CAN, EUROSTAT con el fin de afrontar los problemas de agregación y volatilidad propios de la información utilizada. Se obtienen resultados tales como la descomposición en efecto precio y cantidad del valor de las importaciones y exportaciones y los términos de intercambio bilaterales.

  12. Índices de valor unitario y quantum del comercio exterior colombiano

    Directory of Open Access Journals (Sweden)

    Aarón Garavito

    2014-01-01

    Full Text Available Los índices de valor unitario y quantum de las importaciones y exportaciones son una herramienta importante para el análisis del comportamiento del comercio exterior de un país y su repercusión sobre la economía nacional. Estos indicadores se usan principalmente como insumo para el estudio de los términos de intercambio, la competitividad externa y los efectos en la inflación interna de cambios en los precios internacionales. Dada su importancia, este artículo presenta la estimación mensual de los índices encadenados de precios y cantidades del comercio exterior colombiano con base en estadísticas de aduanas. La metodología propuesta sigue las recomendaciones de los organismos internacionales (FMI, CAN, EUROSTAT con el fin de afrontar los problemas de agregación y volatilidad propios de la información utilizada. Se obtienen resultados tales como la descomposición en efecto precio y cantidad del valor de las importaciones y exportaciones y los términos de intercambio bilaterales

  13. Load sensor

    NARCIS (Netherlands)

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder

  14. Carbohydrate Loading.

    Science.gov (United States)

    Csernus, Marilyn

    Carbohydrate loading is a frequently used technique to improve performance by altering an athlete's diet. The objective is to increase glycogen stored in muscles for use in prolonged strenuous exercise. For two to three days, the athlete consumes a diet that is low in carbohydrates and high in fat and protein while continuing to exercise and…

  15. Reactor wall in thermonuclear device

    International Nuclear Information System (INIS)

    Shibui, Masanao.

    1988-01-01

    Purpose: To always monitor the life of armours in reactor walls and automatically shutdown the reactor if it should be operated in excess of the limit of use. Constitution: Monitoring material of lower melting point than armours (for example beryllium pellets) as one of the reactor wall constituents of a thermonuclear device are embedded in a region leaving the thickness corresponding to the allowable abrasion of the armour. In this structure, if the armours are abrased due to particle loads of a plasma and the abrasion exceeds a predetermined allowable level, the monitoring material is exposed to the plasma and melted and evaporated. Since this can be detected by impurity monitors disposed in the reactor, it is possible to recognize the limit for the working life of the armours. If the thermonuclear reactor should be operated accidentally exceeding the life of the armours, since a great amount of the monitoring materials have been evaporated, they flow into the plasma to increase the plasma radiation loss thereby automatically eliminate the plasma. (K.M.)

  16. Plasma-wall interactions

    International Nuclear Information System (INIS)

    Behrisch, Rainer

    1978-01-01

    The plasma wall interactions for two extreme cases, the 'vacuum model' and the 'cold gas blanket' are outlined. As a first step for understanding the plasma wall interactions the elementary interaction processes at the first wall are identified. These are energetic ion and neutral particle trapping and release, ion and neutral backscattering, ion sputtering, desorption by ions, photons and electrons and evaporation. These processes have only recently been started to be investigated in the parameter range of interest for fusion research. The few measured data and their extrapolation into regions not yet investigated are reviewed

  17. Sustainable green inner-wall design for flexible floor plan

    International Nuclear Information System (INIS)

    Tawil, N M; Husaini, H A; Ani, A I; Saleh, R M; Basri, H

    2013-01-01

    The rises of house price in the market is so drastic that it effects the younger generation nowadays especially young executives and young couples who could not afford to buy their first home. The factors that determine the house price presumably are the interior and exterior structural of the house itself. So to lessen the house price, we have to minimize the usage of wet construction thus the idea of having a sustainable green inner-wall implemented into the house with a flexible floor plan. This concept is user-friendly as it is built on needs and the ownership's affordability. They can design the interior of the house however they want with using minimal cost because it does not involve wet construction.

  18. Climate and colored walls: in search of visual comfort

    Science.gov (United States)

    Arrarte-Grau, Malvina

    2002-06-01

    The quality of natural light, the landscape surrounds and the techniques of construction are important factors in the selection of architectural colors. Observation of exterior walls in differentiated climates allows the recognition of particularities in the use of color which satisfy the need for visual comfort. At a distance of 2000 kilometers along the coast of Peru, Lima and Mancora at 12° and 4° respectively, are well defined for their climatic characteristics: in Mancora sunlight causes high reflection, in Lima overcast sky and high humidity cause glare. The study of building color effects at these locations serves to illustrate that color values may be controlled in order to achieve visual comfort and contribute to color identity.

  19. Efficiency analysis and assessment of interlocking PVC sheet piling walls

    International Nuclear Information System (INIS)

    Emam, A.A.

    2005-01-01

    The use of PVC sheet piling in marine environments offers a number of unique advantages that include weight saving, corrosion resistance and environmentally safe material. In this study, one of the widely used classical methods as well as a finite element analysis are used to analyze such sheet piling walls. The analysis focuses on the effect of some important parameters on the wall global behavior, bending moments, stresses and deflections. The parameters include wall cross-section, wall height, embedment depth, number and spacing of anchor rods, and type of soil and loading conditions. Furthermore, the effect of the shape of the wall cross-section and the location of the interlocking joints has been studied by using plane frame and arch-like models. Results indicate that the finite element modeling is an effective tool for numerical approximation of soil-structure interaction problems. The required theoretical embedment depth is nearly 30 % of the clear wall height. Also, the modulus of subgrade reaction has a minor effect on both cantilever wall and one anchor sheet-pile wall. Finally, lateral (horizontal) action shows that deep sections tend to behave like an arch under radial loading which might increase normal stresses at some critical sections

  20. Studies on first wall and plasma wall interaction in JT-60

    International Nuclear Information System (INIS)

    Nakamura, Hiroo

    1988-12-01

    This paper describes studies on first wall and plasma wall interaction in JT-60. Main results are as follows; (1) To select JT-60 first wall material, various RandD were done in FY1975 ∼ 1976. Mo was selected as first wall materials of limiters and divertor plates because of its reliability under a high heat flux condition. (2) Development of low-Z material has been done to reduce impurity problem of Mo first wall. As a result, titanium carbide (TiC) was selected as a coating material on the Mo. High heat load testing has been done for TiC coated Mo limiter same as JT-60. This material can survive under the condition of 1 kW/cm 2 x 10 s, expected in JT-60 limiter design. (3) To reduce high heat load on the divertor plate, separatrix swing is proposed. Optimum frequency of the sweeping is evaluated to be 2 Hz in JT-60. For a discharge with heating power of 30 MW and duration time of 10 s, in addition to the separatrix swing, remote radiative cooling in the divertor region is necessary. Moreover, calculations of erosion thickness have been done for stainless steel, Mo, graphite, TiC and silicon caibide under high heat flux during plasma disruption. (4) In divertor experiments in JT-60, divertor functions on particle, heat load and impurity controls have been demonstrated. In elctron density of 6 x 10 19 m -3 , particle fueling rate of 20 MW NB heating (3 Pa m 3 /s) can be exhausted by divertor pumping system. Effectiveness of remote radiative cooling is demonstrated under the condition of 20 MW NB heating power. Also, separatrix swing is demonstrated to reduce heat load on the divertor plate. Total radiation in main plasma is 5 ∼ 10% of total absorbed power. (author) 120 refs

  1. A Systematic Method of Assessing the Durability of Wood-Frame Wall Assemblies

    DEFF Research Database (Denmark)

    Lacasse, Michael A.; Morelli, Martin

    2016-01-01

    The long-term performance in respect to moisture management within any wall assembly depends on the hygrothermal response of the wall. Critical factors in estimating the longevity of wood-frame structures include limiting the temperature range, wood moisture content, and time of exposure to condi......The long-term performance in respect to moisture management within any wall assembly depends on the hygrothermal response of the wall. Critical factors in estimating the longevity of wood-frame structures include limiting the temperature range, wood moisture content, and time of exposure...... to the effects of moisture accumulation in wall cavities. Several approaches to assessing the vulnerability of wood-frame structures to deterioration have been developed in recent years, some of which suggest applying a limit-states design approach to the performance assessment of the assembly. In this paper......, a limit-states design approach is described that forms the basis of a performance assessment method for wood-frame wall assemblies. The approach is based on the requirements set out in ISO 13823. The approach, developed for the Moisture Management of Exterior Wall Systems (MEWS) project, is described...

  2. Advanced walling systems

    CSIR Research Space (South Africa)

    De Villiers, A

    2010-01-01

    Full Text Available The question addressed by this chapter is: How should advanced walling systems be planned, designed, built, refurbished, and end their useful lives, to classify as smart, sustainable, green or eco-building environments?...

  3. Fusion: first wall problems

    International Nuclear Information System (INIS)

    Behrisch, R.

    1976-01-01

    Some of the relevant elementary atomic processes which are expected to be of significance to the first wall of a fusion reactor are reviewed. Up to the present, most investigations have been performed at relatively high ion energies, typically E greater than 5 keV, and even in this range the available data are very poor. If the plasma wall interaction takes place at energies of E greater than 1 keV the impurity introduction and first wall erosion which will take place predominantly by sputtering, will be large and may severely limit the burning time of the plasma. The wall bombardment and surface erosion will presumably not decrease substantially by introducing a divertor. The erosion can only be kept low if the energy of the bombarding ions and neutrals can be kept below the threshold for sputtering of 1 to 10 eV. 93 refs

  4. Análisis del yeso empleado en revestimientos exteriores mediante técnicas geológicas

    OpenAIRE

    Sanz Arauz, David

    2011-01-01

    El presente trabajo se centra en el yeso fabricado en hornos tradicionales y empleado históricamente para la ejecución de revestimientos exteriores. Para ello se realiza un estudio documental y un trabajo experimental mediante técnicas geológicas. En el estudio documental se ha pasado revisión a la historia del yeso como material de construcción con especial atención a su empleo en revestimientos exteriores, desde la antigüedad hasta mitad del siglo XX, momento en el que la industrializaci...

  5. Preparation of Thermoplastic Poly (vinyl Alcohol), Ethylene Vinyl Acetate and Vinyl Acetate Versatic Ester Blends for Exterior Masonry Coating

    International Nuclear Information System (INIS)

    EL-Nahas, H.H.; Gad, Y.H.; Magida, M.M.

    2013-01-01

    Blend systems including ethylene vinyl acetate (EVA), poly (vinyl alcohol) (PVA) and vinyl acetate versatic copolymer latex (VAcVe) were prepared and used as exterior coatings. Mechanical and thermal properties of the blends were investigated using a testo meter, shore hardness tester, thermogravimetric analysis (TGA) and scanning electron microscopy (SEM). The water resistance of the samples was measured. Effect of ionizing irradiation on gel content, tensile strength and surface hardness were also followed. The blend offers binder base for exterior masonry coating systems having superior water resistant and mechanical properties

  6. [Ca2+]i in exterior of cells effected on apoptosis of HL-60 cells induced by irradiation

    International Nuclear Information System (INIS)

    He Ziyi; Meng Qingyong

    2005-01-01

    Objective: To investigate of the different [Ca 2+ ]i in exterior of cells promotion function on apoptosis of HL-60 cells induced by irradiation. Methods: To put ration dose 32 P and different [Ca 2+ ]i into culture of HL-60 and measure the apoptosis rate with FCM after 24 and 48 hours. Result: Apoptosis rate increased with the increase of [Ca 2+ ]i which shows an obvious function to promote apoptosis, r 24 =0.9001 (P=0.0145); r48=0.9343 (P=0.0063). Conclusion: [Ca 2+ ]i in exterior of cells has a obvious function in promoteing apoptosis induced by irradiation. (authors)

  7. La incidencia del totalitarismo en la configuración de una política exterior aislacionista

    OpenAIRE

    Patiño García, Andres Felipe

    2016-01-01

    El presente estudio de caso consiste en identificar la incidencia del totalitarismo en la configuración de una política exterior aislacionista, tomando los casos del Tercer Reich y la República Democrática Popular de Corea; se trata de inferir si la incidencia de un régimen totalitario en la configuración de una política exterior aislacionista es directa, en tanto que responde al interés nacional del Estado con el fin de implementar reformas y actos que conlleven al aislamiento de la nación d...

  8. Análisis del yeso empleado en revestimientos exteriores mediante técnicas geológicas

    OpenAIRE

    Sanz Arauz, David

    2009-01-01

    El presente trabajo se centra en el yeso fabricado en hornos tradicionales y empleado históricamente para la ejecución de revestimientos exteriores. Para ello se realiza un estudio documental y un trabajo experimental mediante técnicas geológicas. En el estudio documental se ha pasado revisión a la historia del yeso como material de construcción con especial atención a su empleo en revestimientos exteriores, desde la antigüedad hasta mitad del siglo XX, momento en el que la industrializaci...

  9. La política exterior de Estados Unidos: una visión desde la periferia

    OpenAIRE

    Andrade A., Pablo

    2004-01-01

    Este artículo trata explica la forma como la política exterior de Estados Unidos persigue dos objetivos interrelacionados: primero, en el corto y mediano plazo consolidar y aumentar su predominio militar a nivel global y, segundo, en el largo plazo institucionalizar ese dominio en un orden político sumamente difícil –o costoso- de transformar. Así, la política exterior estadounidense hacia América Latina y, sobre todo, en relación con la Región Andina y más específicamente con el Ecuador debe...

  10. Thermal simulation of different construction types in six climatic regions on heating and cooling loads

    CSIR Research Space (South Africa)

    Kumirai, T

    2012-10-01

    Full Text Available reduces its heating and cooling loads the most. 3. Applying both roof and ceiling insulation should always be avoided. 4. Building insulation is an effective intervention in all climatic regions. 5. Slightly increasing the thermal mass of a wall... were designed to evaluate the following: ? Case A ? base case ? Case B ? insulated walls ? Case C ? insulated walls and insulated ceiling ? Case D ? insulated walls, insulated ceiling and roof ? Case E ? increased thermal mass wall and insulated...

  11. Analysis of Brick Masonry Wall using Applied Element Method

    Science.gov (United States)

    Lincy Christy, D.; Madhavan Pillai, T. M.; Nagarajan, Praveen

    2018-03-01

    The Applied Element Method (AEM) is a versatile tool for structural analysis. Analysis is done by discretising the structure as in the case of Finite Element Method (FEM). In AEM, elements are connected by a set of normal and shear springs instead of nodes. AEM is extensively used for the analysis of brittle materials. Brick masonry wall can be effectively analyzed in the frame of AEM. The composite nature of masonry wall can be easily modelled using springs. The brick springs and mortar springs are assumed to be connected in series. The brick masonry wall is analyzed and failure load is determined for different loading cases. The results were used to find the best aspect ratio of brick to strengthen brick masonry wall.

  12. Orbital wall fractures

    International Nuclear Information System (INIS)

    Iinuma, Toshitaka; Ishio, Ken-ichirou; Yoshinami, Hiroyoshi; Kuriyama, Jun-ichi; Hirota, Yoshiharu.

    1993-01-01

    A total of 59 cases of mild facial fractures (simple orbital wall fractures, 34 cases, other facial fractures, 25 cases) with the clinical suspects of orbital wall fractures were evaluated both by conventional views (Waters' and Caldwell views) and coronal CT scans. Conventional views were obtained, as an average, after 4 days and CT after 7 days of injuries. Both the medial wall and the floor were evaluated at two sites, i.e., anterior and posterior. The ethmoid-maxillary plate was also included in the study. The degree of fractures was classified as, no fractures, fractures of discontinuity, dislocation and fragmentation. The coronal CT images in bone window condition was used as reference and the findings were compared between conventional views and CT. The correct diagnosis was obtained as follows: orbital floor (anterior, 78%, posterior, 73%), medial orbital wall (anterior, 72%, posterior, 72%) and ethmoid-maxillary plate (64%). The false positive diagnosis was as follows: orbital floor (anterior only, 13%), medial orbital wall (anterior only, 7%) and ethmoid-maxillary plate (11%). The false negative diagnosis was as follows: orbital floor (anterior, 9%, posterior, 10%), medial orbital wall (anterior, 21%, posterior, 28%) and ethmoid-maxillary plate (21%). The results were compared with those of others in the past. (author)

  13. Load sensor

    OpenAIRE

    Van den Ende, D.; Almeida, P.M.R.; Dingemans, T.J.; Van der Zwaag, S.

    2007-01-01

    The invention relates to a load sensor comprising a polymer matrix and a piezo-ceramic material such as PZT, em not bedded in the polymer matrix, which together form a compos not ite, wherein the polymer matrix is a liquid crystalline resin, and wherein the piezo-ceramic material is a PZT powder forming 30-60% by volume of the composite, and wherein the PZT powder forms 40-50% by volume of the composite.

  14. Retrofit with Interior Insulation on Solid Masonry Walls in Cool Temperate Climates

    DEFF Research Database (Denmark)

    Bjarløv, Søren Peter; Finken, G.R.; Odgaard, Tommy

    2015-01-01

    For historic buildings, where an alteration of the exterior façade is not wanted, interior insulation can be the solution to improve the indoor climate and reduce heat loss, but might also introduce moisture problems like condensation in the wall. Capillary active/hydrophilic insulation materials...... have been introduced to cope with the moisture problem. An extensive amount of calculations indicating where the challenges lie in the complex work with interior insulation in cool temperate climate has been carried out. In areas with high precipitation like Denmark, capillary active insulation may...

  15. KETERASINGAN DALAM FILM WALL-E

    Directory of Open Access Journals (Sweden)

    Rahmadya Putra Nugraha

    2017-05-01

    Full Text Available Modern society nowadays technological advances at first create efficiency in human life. Further development of the technology thus drown human in a routine and automation of work created. The State is to be one of the causes of man separated from fellow or the outside world and eventually experiencing alienation. The movie as a mass media function to obtain the movie and entertainment can be informative or educative function is contained, even persuasive. The purpose of this research was conducted to find out the alienation in the movie Wall E. The concepts used to analyze the movie Wall E this is communication, movie, and alienation. The concept of alienation of human alienation from covering its own products of human alienation from its activities, the human alienation from nature of his humanity and human alienation from each other. Paradigm used is a critical paradigm with type a descriptive research with qualitative approach. The method used is the analysis of semiotics Roland Barthes to interpretation the scope of social alienation and fellow humans in the movie.This writing research results found that alienation of humans with other humans influenced the development of the technology and how the human it self represented of technology, not from our fellow human beings. Masyarakat modern saat ini kemajuan teknologi pada awalnya membuat efisiensi dalam kehidupan manusia. Perkembangan selanjutnya teknologi justru menenggelamkan manusia dalam suatu rutinitas dan otomatisasi kerja yang diciptakan. Keadaan itulah yang menjadi salah satu penyebab manusia terpisah dari sesama atau dunia luar dan akhirnya mengalami keterasingan. Film sebagai media massa berfungsi untuk memperoleh hiburan dan dalam film dapat terkandung fungsi informatif maupun edukatif, bahkan persuasif. Tujuan Penelitian ini dilakukan untuk mengetahui Keterasingan dalam film Wall E. Konsep-konsep yang digunakan untuk menganalisis film Wall E ini adalah komunikasi, film, dan

  16. Reinforced concrete wall under hydrogen detonation

    International Nuclear Information System (INIS)

    Saarenheimo, A.

    2000-11-01

    The structural integrity of a reinforced concrete wall in the BWR reactor building under hydrogen detonation conditions has been analysed. Of particular interest is whether the containment integrity can be jeopardised by an external hydrogen detonation. The load carrying capacity of a reinforced concrete wall was studied. The detonation pressure loads were estimated with computerised hand calculations assuming a direct initiation of detonation and applying the strong explosion theory. The results can be considered as rough and conservative estimates for the first shock pressure impact induced by a reflecting detonation wave. Structural integrity may be endangered due to slow pressurisation or dynamic impulse loads associated with local detonations. The static pressure following the passage of a shock front may be relatively high, thus this static or slowly decreasing pressure after a detonation may damage the structure severely. The mitigating effects of the opening of a door on pressure history and structural response were also studied. The non-linear behaviour of the wall was studied under detonations corresponding a detonable hydrogen mass of 0.5 kg and 1.428 kg. Non-linear finite element analyses of the reinforced concrete structure were carried out by the ABAQUS/Explicit program. The reinforcement and its non-linear material behaviour and the tensile cracking of concrete were modelled. Reinforcement was defined as layers of uniformly spaced reinforcing bars in shell elements. In these studies the surrounding structures of the non-linearly modelled reinforced concrete wall were modelled using idealised boundary conditions. Especially concrete cracking and yielding of the reinforcement was monitored during the numerical simulation. (au)

  17. Consideraciones Legales Relativas a la Privacidad en Proyectos de Cloud Computing en el Exterior de Argentina

    Directory of Open Access Journals (Sweden)

    Juan Cruz González Allonca

    2014-02-01

    Full Text Available El modelo de prestación de servicios de cómputo en la nube (cloud computing ofrece múltiples ventajas tanto técnicas como económicas para las empresas y organismos que deciden implementarla. Este modelo, sin embargo, requiere tener consideraciones de carácter legal y de cumplimiento normativo desde el inicio del proyecto. Este estudio se propone recorrer la normativa argentina relativa a la protección de datos personales bajo esta plataforma, brindándole al lector un panorama sobre el cuerpo normativo vigente que debe ser aplicado a servicios de cloud computing en el exterior del país. A su vez identifica los riesgos asociados a estos servicios que deben ser contemplados con el fin de evitar responsabilidades.

  18. Associations between retail food store exterior advertisements and community demographic and socioeconomic composition.

    Science.gov (United States)

    Isgor, Zeynep; Powell, Lisa; Rimkus, Leah; Chaloupka, Frank

    2016-05-01

    This paper examines the association between the prevalence of various types of outdoor food and beverage advertising found on the building exteriors and properties of retail food outlets and community racial/ethnic and socioeconomic composition in a nationwide sample of food outlets in the U.S. Our major finding from multivariable analysis is that food stores in low-income communities have higher prevalence of all food and beverage ads, including those for unhealthy products such as regular soda, controlling for community racial/ethnic composition and other covariates. This adds to growing research pointing to socioeconomic disparities in food and beverage marketing exposure. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. Boundary conditions for the numerical solution of elliptic equations in exterior regions

    International Nuclear Information System (INIS)

    Bayliss, A.; Gunzburger, M.; Turkel, E.

    1982-01-01

    Elliptic equations in exterior regions frequently require a boundary condition at infinity to ensure the well-posedness of the problem. Examples of practical applications include the Helmholtz equation and Laplace's equation. Computational procedures based on a direct discretization of the elliptic problem require the replacement of the condition at infinity by a boundary condition on a finite artificial surface. Direct imposition of the condition at infinity along the finite boundary results in large errors. A sequence of boundary conditions is developed which provides increasingly accurate approximations to the problem in the infinite domain. Estimates of the error due to the finite boundary are obtained for several cases. Computations are presented which demonstrate the increased accuracy that can be obtained by the use of the higher order boundary conditions. The examples are based on a finite element formulation but finite difference methods can also be used

  20. Interior and exterior resonances in acoustic scattering. pt. 1 - spherical targets

    International Nuclear Information System (INIS)

    Gaunaurd, G.C.; Tanglis, E.; Uberall, H.; Brill, D.

    1983-01-01

    In acoustic scattering from elastic objects, resonance features appear in the returned echo at frequencies at which the object's eigenfrequencies are located, which are explained by the excitation of 'interior' creeping waves. Corresponding resonance terms may be split off from the total scattering amplitude, leaving behind an apparently nonresonant background amplitude. This is demonstrated here for scatterers of spherical geometry and in a companion paper also for scatterers of arbitrary geometry, by using the T-matrix approach. For the case of near-impenetrable spheres, it is subsequently shown that the background amplitude can be split further into specularly reflected contributions, plus highly attenuated resonance terms which are explained by the excitation of 'exterior' (Franz-type) creeping waves. The singularity structure of the scattering function is shown mathematically, by using the R-matrix approach of the nuclear-scattering theory, as that of a meromorphic function 'without' any additional 'entire function' (as had been postulated by the singularity expansion method)

  1. Relativistic Mechanics in Gravitational Fields Exterior to Rotating Homogeneous Mass Distributions within Spherical Geometry

    Directory of Open Access Journals (Sweden)

    Chifu E. N.

    2009-07-01

    Full Text Available General Relativistic metric tensors for gravitational fields exterior to homogeneous spherical mass distributions rotating with constant angular velocity about a fixed di- ameter are constructed. The coeffcients of affine connection for the gravitational field are used to derive equations of motion for test particles. The laws of conservation of energy and angular momentum are deduced using the generalized Lagrangian. The law of conservation of angular momentum is found to be equal to that in Schwarzschild’s gravitational field. The planetary equation of motion and the equation of motion for a photon in the vicinity of the rotating spherical mass distribution have rotational terms not found in Schwarzschild’s field.

  2. A new numerical approach for uniquely solvable exterior Riemann-Hilbert problem on region with corners

    Science.gov (United States)

    Zamzamir, Zamzana; Murid, Ali H. M.; Ismail, Munira

    2014-06-01

    Numerical solution for uniquely solvable exterior Riemann-Hilbert problem on region with corners at offcorner points has been explored by discretizing the related integral equation using Picard iteration method without any modifications to the left-hand side (LHS) and right-hand side (RHS) of the integral equation. Numerical errors for all iterations are converge to the required solution. However, for certain problems, it gives lower accuracy. Hence, this paper presents a new numerical approach for the problem by treating the generalized Neumann kernel at LHS and the function at RHS of the integral equation. Due to the existence of the corner points, Gaussian quadrature is employed which avoids the corner points during numerical integration. Numerical example on a test region is presented to demonstrate the effectiveness of this formulation.

  3. Exterior Space Retrofitting Planning with Possible Effect on Building Thermal Characteristics

    Science.gov (United States)

    Berezin, D. V.

    2017-11-01

    The problems of mass housing which was serially designed and produced throughout Eastern European and former Soviet cities in the middle of the 20th century, in regard to its solar-related thermal conditions improvement by refurbishing are raised in the paper. The impact of functional zones’ dimensions (based on the dwellers’ domestic actions) on shading properties of balconies and loggias is analyzed. As a result, the ratios of exterior space area (as a complex of shading elements related to balconies/loggias) to the windows area that reflect the frequency of the indoor air overheating are determined which can serve as a simple evaluative thermal comfort-related tool for projected and existing buildings under a real solar activity between the geographic latitudes 55° - 56°.

  4. en el exterior y su impacto en la política mexicana

    Directory of Open Access Journals (Sweden)

    Jesús Martínez Saldaña

    2003-01-01

    Full Text Available En este artículo se estudia el impacto del activismo político de los migrantes mexicanos residentes en los Estados Unidos que buscan ejercer sus derechos políticos en México. Se analizan los factores que están creando las condiciones en México para hacer efectivos derechos ciudadanos fundamentales como el voto en elecciones presidenciales y la representación en el Poder Legislativo para ciudadanos en el exterior. La apertura del sistema político mexicano a los migrantes internacionales se atribuye a una convergencia de procesos, que incluyen la incipiente transición a la democracia, la institucionalización de la relación entre migrantes y partidos políticos y el activismo de los propios migrantes, quienes buscan promover reformas electorales y políticas relacionadas con su condición social

  5. Investigation on Wall Panel Sandwiched With Lightweight Concrete

    Science.gov (United States)

    Lakshmikandhan, K. N.; Harshavardhan, B. S.; Prabakar, J.; Saibabu, S.

    2017-08-01

    The rapid population growth and urbanization have made a massive demand for the shelter and construction materials. Masonry walls are the major component in the housing sector and it has brittle characteristics and exhibit poor performance against the uncertain loads. Further, the structure requires heavier sections for carrying the dead weight of masonry walls. The present investigations are carried out to develop a simple, lightweight and cost effective technology for replacing the existing wall systems. The lightweight concrete is developed for the construction of sandwich wall panel. The EPS (Expanded Polystyrene) beads of 3 mm diameter size are mixed with concrete and developed a lightweight concrete with a density 9 kN/m3. The lightweight sandwich panel is cast with a lightweight concrete inner core and ferrocement outer skins. This lightweight wall panel is tested for in-plane compression loading. A nonlinear finite element analysis with damaged plasticity model is carried out with both material and geometrical nonlinearities. The experimental and analytical results were compared. The finite element study predicted the ultimate load carrying capacity of the sandwich panel with reasonable accuracy. The present study showed that the lightweight concrete is well suitable for the lightweight sandwich wall panels.

  6. Extraperitoneal exteriorization for treatment of colonic injuries:a report of 24 cases

    Directory of Open Access Journals (Sweden)

    Lian-yang ZHANG

    2011-05-01

    Full Text Available Objective To investigate the effectiveness and safety of extraperitoneal exteriorization after repair or anastomosis of colonic injuries.Methods The clinical data of 24 cases of colonic injuries from Jan.2001 to Nov.2010 were retrospectively analyzed,including 13 males and 11 females,age from 12 to 77 with a mean of 37.4 years.The causes of colon injury were blunt trauma in 17 cases,penetrating injury in 5 cases,and iatrogenic in 2 cases.Of them 15 were admitted to our hospital directly after the injury,and the rest were transferred from other hospitals after emergency surgical management.Data on colonic injury score,incision infection,intra-abdominal abscess,colonic fistula,pulmonary infection and death rate were recorded.Results The injured region was respectively cecum,ascending colon,decending colon and sigmoid colon.Abbreviated injury scale(AIS of colonic injuries ranged form 2 to 4(with a mean of 2.57.Multiple injuries in abdominal cavity and pelvic cavity were found in 12 patients.The time from injury to definitive operation ranged from 3 to 26(mean,9.8 hours.Twenty-three patient recovered and 1 patient died of hemorrhagic shock.Complications occurred in 5 cases(20.8%,including incision infection in 3 cases,colonic fistula in 1 case and low small intestine obstruction in 1 case.Conclusion Extra-peritoneal exteriorization of colon following repair of rapture or anastomosis is an effective and safe method in treating colonic injuries,especially in patients with delayed operation,and one-stage operation rate can be increased by this procedure.

  7. Method of the Determination of Exterior Orientation of Sensors in Hilbert Type Space.

    Science.gov (United States)

    Stępień, Grzegorz

    2018-03-17

    The following article presents a new isometric transformation algorithm based on the transformation in the newly normed Hilbert type space. The presented method is based on so-called virtual translations, already known in advance, of two relative oblique orthogonal coordinate systems-interior and exterior orientation of sensors-to a common, known in both systems, point. Each of the systems is translated along its axis (the systems have common origins) and at the same time the angular relative orientation of both coordinate systems is constant. The translation of both coordinate systems is defined by the spatial norm determining the length of vectors in the new Hilbert type space. As such, the displacement of two relative oblique orthogonal systems is reduced to zero. This makes it possible to directly calculate the rotation matrix of the sensor. The next and final step is the return translation of the system along an already known track. The method can be used for big rotation angles. The method was verified in laboratory conditions for the test data set and measurement data (field data). The accuracy of the results in the laboratory test is on the level of 10 -6 of the input data. This confirmed the correctness of the assumed calculation method. The method is a further development of the author's 2017 Total Free Station (TFS) transformation to several centroids in Hilbert type space. This is the reason why the method is called Multi-Centroid Isometric Transformation-MCIT. MCIT is very fast and enables, by reducing to zero the translation of two relative oblique orthogonal coordinate systems, direct calculation of the exterior orientation of the sensors.

  8. Method of the Determination of Exterior Orientation of Sensors in Hilbert Type Space

    Directory of Open Access Journals (Sweden)

    Grzegorz Stępień

    2018-03-01

    Full Text Available The following article presents a new isometric transformation algorithm based on the transformation in the newly normed Hilbert type space. The presented method is based on so-called virtual translations, already known in advance, of two relative oblique orthogonal coordinate systems—interior and exterior orientation of sensors—to a common, known in both systems, point. Each of the systems is translated along its axis (the systems have common origins and at the same time the angular relative orientation of both coordinate systems is constant. The translation of both coordinate systems is defined by the spatial norm determining the length of vectors in the new Hilbert type space. As such, the displacement of two relative oblique orthogonal systems is reduced to zero. This makes it possible to directly calculate the rotation matrix of the sensor. The next and final step is the return translation of the system along an already known track. The method can be used for big rotation angles. The method was verified in laboratory conditions for the test data set and measurement data (field data. The accuracy of the results in the laboratory test is on the level of 10−6 of the input data. This confirmed the correctness of the assumed calculation method. The method is a further development of the author’s 2017 Total Free Station (TFS transformation to several centroids in Hilbert type space. This is the reason why the method is called Multi-Centroid Isometric Transformation—MCIT. MCIT is very fast and enables, by reducing to zero the translation of two relative oblique orthogonal coordinate systems, direct calculation of the exterior orientation of the sensors.

  9. Leakage tests of wall segments of reactor containments

    International Nuclear Information System (INIS)

    Rizkalla, S.H.; Simmonds, S.H.; MacGregor, J.G.

    1979-10-01

    Two prestressed concrete wall segments simulating portions of containment walls were loaded by axial tensile forces to cause cracking of the concrete. At each load increment air pressure was applied in steps up to 21 psi to one side of the segment and the rate of leakage of air through the cracked concrete section was measured. A theoretical equation for the flow of air through concrete cracks is developed and the results from one leakage test are used to determine the dimensionless constant required for this equation. (author)

  10. Mechanical response of wall-patterned GaAs surface

    International Nuclear Information System (INIS)

    Le Bourhis, E.; Patriarche, G.

    2005-01-01

    Wall-patterned GaAs surfaces have been elaborated by photolithography and dry etching. Different surfaces were produced in order to change the aspect ratio of the walls formed at the substrate surface. The mechanical behaviour of individual walls was investigated by nanoindentation and the responses were compared to that of a standard bulk reference (flat surface). Deviation from the bulk response is detected in a load range of 1-25 mN depending on the aspect ratio of the walls. A central plastic zone criterion is proposed in view of transmission electron microscopy images of indented walls and allows the prediction of the response deviation of a given wall if its width is known. The mechanical response of the different types of walls is further investigated in terms of stiffness, total penetration of indenter and apparent hardness, and is scanned in relation to the proximity of a wall side. Overall results show that contact stiffness remains almost unaffected by aspect ratio, while penetration drastically increases because of the free sides of the wall as compared to a flat surface (bulk substrate). The application of substrate patterning for optoelectronic devices is discussed in the perspective of eliminating residual dislocations appearing in mismatched structures

  11. Mechanochemical Polarization of Contiguous Cell Walls Shapes Plant Pavement Cells.

    Science.gov (United States)

    Majda, Mateusz; Grones, Peter; Sintorn, Ida-Maria; Vain, Thomas; Milani, Pascale; Krupinski, Pawel; Zagórska-Marek, Beata; Viotti, Corrado; Jönsson, Henrik; Mellerowicz, Ewa J; Hamant, Olivier; Robert, Stéphanie

    2017-11-06

    The epidermis of aerial plant organs is thought to be limiting for growth, because it acts as a continuous load-bearing layer, resisting tension. Leaf epidermis contains jigsaw puzzle piece-shaped pavement cells whose shape has been proposed to be a result of subcellular variations in expansion rate that induce local buckling events. Paradoxically, such local compressive buckling should not occur given the tensile stresses across the epidermis. Using computational modeling, we show that the simplest scenario to explain pavement cell shapes within an epidermis under tension must involve mechanical wall heterogeneities across and along the anticlinal pavement cell walls between adjacent cells. Combining genetics, atomic force microscopy, and immunolabeling, we demonstrate that contiguous cell walls indeed exhibit hybrid mechanochemical properties. Such biochemical wall heterogeneities precede wall bending. Altogether, this provides a possible mechanism for the generation of complex plant cell shapes. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Los impuestos al comercio exterior en México en la era de las exportaciones, 1872-1930

    Directory of Open Access Journals (Sweden)

    Luz María Uhthoff López

    2005-12-01

    Full Text Available Este trabajo analiza la relación entre la fiscalidad y el comportamiento del comercio exterior en los años de 1872 a 1930. Especial énfasis se hace en la normatividad de la política arancelaria y la relación entre la dinámica política, el sistema fiscal y los impuestos al comercio exterior. Durante este periodo se observa, por un lado, una continuidad entre el antiguo régimen y la etapa de la revolución: el comercio exterior se mantuvo, incluso algunas ramas experimentaron un gran desarrollo y, por lo tanto, los impuestos exteriores continuaron siendo importantes. No obstante, también se registró una tendencia a la baja en los impuestos provenientes de este sector, y una disminución de su importancia en el conjunto de los ingresos federales, lo que indica que existió entre los gobiernos de esos años, tanto de la primera como de la segunda etapa, la preocupación de no depender solamente de éstos, aumentando las fuentes alternativas de ingresos internos, como es el caso del impuesto del timbre y del impuesto sobre la renta.

  13. 24 CFR 200.946 - Building product standards and certification program for exterior finish and insulation systems...

    Science.gov (United States)

    2010-04-01

    ... product standards and certification program for exterior finish and insulation systems, use of Materials... product, the administrator's validation mark and the manufacturer's certification of compliance with the... 24 Housing and Urban Development 2 2010-04-01 2010-04-01 false Building product standards and...

  14. Don’t get (sun) burned : exposing exterior wood to the weather prior to painting contributes to finish failure

    Science.gov (United States)

    R. Sam Williams

    2005-01-01

    Contrary to what might be called popular myth, research shows that allowing exterior wood surfaces to weather before applying paint does not help the cause of long-term coating performance. Instead, weathering prior to painting has been shown to contribute significantly to premature failure of the finish due to loss of adhesion.

  15. Discrete exterior geometry approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems

    NARCIS (Netherlands)

    Seslija, Marko; van der Schaft, Arjan; Scherpen, Jacquelien M.A.

    This paper addresses the issue of structure-preserving discretization of open distributed-parameter systems with Hamiltonian dynamics. Employing the formalism of discrete exterior calculus, we introduce a simplicial Dirac structure as a discrete analogue of the Stokes-Dirac structure and demonstrate

  16. A discrete exterior approach to structure-preserving discretization of distributed-parameter port-Hamiltonian systems

    NARCIS (Netherlands)

    Seslija, Marko; Scherpen, Jacquelien M.A.; van der Schaft, Arjan

    2011-01-01

    This paper addresses the issue of structure-preserving discretization of open distributed-parameter systems with Hamiltonian dynamics. Employing the formalism of discrete exterior calculus, we introduce simplicial Dirac structures as discrete analogues of the Stokes-Dirac structure and demonstrate

  17. Project Overcoat - An Exploration of Exterior Insulation Strategies for 1-1/2-Story Roof Applications in Cold Climates

    Energy Technology Data Exchange (ETDEWEB)

    Ojczyk, Cindy [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Mosiman, Garrett [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Huelman, Pat [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Schirber, Tom [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Yost, Peter [NorthernSTAR Building America Partnership, St. Paul, MN (United States); Murry, Tessa [NorthernSTAR Building America Partnership, St. Paul, MN (United States)

    2013-04-01

    The development of an alternative method to interior-applied insulation strategies or exterior applied 'band-aids' such as heat tapes and ice belts may help reduce energy needs of millions of 1-1/2 story homes while reducing the risk of ice dam formation. A potential strategy for energy improvement of the roof is borrowed from new construction best practices: Here an 'overcoat' of a continuous air, moisture, and thermal barrier is applied on the outside of the roof structure for improved overall performance. The continuous insulation of this approach facilitates a reduction in thermal bridging which could further reduce energy consumption and bring existing homes closer to meeting the Building America goals for energy reduction. Research favors an exterior approach to deep energy retrofits and ice dam prevention in existing homes. The greatest amount of research focuses on whole house deep energy retrofits leaving a void in roof-only applications. The research is also void of data supporting the hygrothermal performance, durability, constructability, and cost of roof-only exterior overcoat strategies. Yet, contractors interviewed for this report indicate an understanding that exterior approaches are most promising for mitigating ice dams and energy loss and are able to sell these strategies to homeowners.

  18. Magnetic resonance imaging used for the evaluation of water presence in wood plastic composite boards exposed to exterior conditions

    Science.gov (United States)

    Marek Gnatowski; Rebecca Ibach; Mathew Leung; Grace Sun

    2014-01-01

    Two wood plastic composite (WPC) boards, one experimental and one commercial, were exposed to exterior conditions and evaluated non-destructively using a clinical magnetic resonance imaging (MRI) unit for moisture content (MC) and distribution. The experimental board was exposed in Vancouver, British Columbia, for more than 8 years, and the commercial board was exposed...

  19. Short communication: quantification of the transmission of microorganisms to milk via dirt attached to the exterior of teats

    NARCIS (Netherlands)

    Vissers, M.M.M.; Driehuis, F.; Giffel, M.C.T.; Jong, de P.; Lankveld, J.M.G.

    2007-01-01

    Pathogens and spoilage microorganisms can be transmitted to milk via dirt (e.g., feces, bedding material, soil, or a combination of these) attached to the exterior of the cows¿ teats. To determine the relevance of this pathway and to perform quantitative microbial risk analysis of the microbial

  20. Loading capacities and failure modes of various reinforced concrete slabs subjected to high-speed loading

    International Nuclear Information System (INIS)

    Saito, H.; Imamura, A.; Takeuchi, M.; Okamoto, S.; Kasai, Y.; Tsubota, H.; Yoshimura, M.

    1993-01-01

    The objective of this study was to clarify experimentally and analytically the loading capacities, deformations and failure modes of various types of reinforced concrete structures subjected to loads applied at various loading rates. Flat slabs, slabs with beams and cylindrical walls were tested under static, low-speed and high-speed loading. Analysis was applied to estimate the test results by the finite element method using a layered shell element. The analysis closely simulated the experimental results until punching shear failure occurred. (author)