WorldWideScience

Sample records for extensive vegetative cover

  1. Exploring an extensive dataset to establish woody vegetation cover and composition in Kruger National Park for the late 1980s

    Directory of Open Access Journals (Sweden)

    Gregory A. Kiker

    2014-09-01

    Conservation implications: The results provided evidence that large-scale, woody vegetation surveys conducted along roads offer useful ecosystem level information. However, such an approach fails to pick up less common species. The data presented here provided a useful snapshot of KNP woody vegetation structure and composition and could provide excellent opportunities for spatio-temporal comparisons.

  2. Special study on vegetative covers

    International Nuclear Information System (INIS)

    1988-11-01

    This report describes the findings of a special study on the use of vegetative covers to stabilize tailings piles for the Uranium Mill Tailings Remedial Action (UMTRA) Project. The principal rationale for using plants would be to establish a dynamic system for controlling water balance. Specifically, vegetation would be used to intercept and transpire precipitation to the atmosphere, rather than allowing water to drain into the tailings and mobilize contaminants. This would facilitate compliance with groundwater standards proposed for the UMTRA Project by the Environmental Protection Agency. The goals of the study were to evaluate the feasibility of using vegetative covers on UMTRA Project piles, define the advantages and disadvantages of vegetative covers, and develop general guidelines for their use when such use seems reasonable. The principal method for the study was to analyze and apply to the UMTRA Project the results of research programs on vegetative covers at other US Department of Energy (DOE) waste management facilities. The study also relied upon observations made of existing stabilized piles at UMTRA Project sites where natural vegetation is growing on the rock-covered surfaces. Water balance and erosion models were also used to quantify the long-term performance of vegetative covers planned for the topslopes of stabilized piles at Grand Junction and Durango, Colorado, two UMTRA Project sites where the decision was made during the course of this special study to use vegetative covers. Elements in the design and construction of the vegetative covers at these two sites are discussed in the report, with explanations of the differing features that reflect differing environmental conditions. 28 refs., 18 figs., 9 tabs

  3. ISLSCP II Potential Natural Vegetation Cover

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set was developed to describe the state of the global land cover in terms of 15 major vegetation types, plus water, before alteration by humans....

  4. Central American Vegetation/Land Cover Classification and Conservation Status

    Data.gov (United States)

    National Aeronautics and Space Administration — The Central American Vegetation/Land Cover Classification and Conservation Status data set consists of GIS coverages of vegetation classes (forests, woodlands,...

  5. Assessment of human impacts on landuse and vegetation cover ...

    African Journals Online (AJOL)

    This paper is an assessment of the impact of man's activities on the landuse and vegetation cover of Mubi region. Landsat MSS Landuse/vegetation image of 1978 and Spot XS landuse/vegetation image of 1995 were used to study the landuse/vegetation cover changes of the region between 1978 and 1995 – a period of 17 ...

  6. Water quality function of an extensive vegetated roof.

    Science.gov (United States)

    Todorov, Dimitar; Driscoll, Charles T; Todorova, Svetoslava; Montesdeoca, Mario

    2018-06-01

    In this paper we present the results of a four-year study of water quality in runoff from an extensive, sedum covered, vegetated roof on an urban commercial building. Monitoring commenced seven months after the roof was constructed, with the first growing season. Stormwater drainage quality function of the vegetated roof was compared to a conventional (impermeable, high-albedo) membrane roof in addition to paired measurements of wet and bulk depositions at the study site. We present concentrations and fluxes of nutrients and major solutes. We discuss seasonal and year-to-year variation in water quality of drainage from the vegetated roof and how it compares with atmospheric deposition and drainage from the impermeable roof. Drainage waters from the vegetated roof exhibited a high concentration of nutrients compared to atmospheric deposition, particularly during the warm temperature growing season. However, nutrient losses were generally low because of the strong retention of water by the vegetated roof. There was marked variation in the retention of nutrients by season due to variations in concentrations in drainage from the vegetated roof. The vegetated roof was a sink of nitrogen, total phosphorus and chloride, and a source of phosphate and dissolved inorganic and organic carbon. Chloride exhibited elevated inputs and leaching during the winter. The drainage from the vegetated and impermeable roofs met the United States Environmental Protection Agency freshwater standards for all parameters, except for total phosphorus. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Final vegetative cover for closed waste sites

    International Nuclear Information System (INIS)

    Cook, J.R.; Salvo, S.K.

    1993-01-01

    Low-level, hazardous, and mixed waste disposal sites normally require some form of plant material to prevent erosion of the final closure cap. Waste disposal sites are closed and capped in a complex scientific manner to minimize water infiltration and percolation into and through the waste material. Turf type grasses are currently being used as an interim vegetative cover for most sites. This coverage allows for required monitoring of the closure cap for settlement and maintenance activities. The purpose of this five year study was to evaluate plant materials for use on wastes sites after the post-closure care period that are quickly and easily established and economically maintained, retard water infiltration, provide maximum year-round evapotranspiration, are ecologically acceptable and do not harm the closure cap. The results of the study suggest that two species of bamboo (Phyllostachys (P.) bissetii and P. rubromarginata) can be utilized to provide long lived, low maintenance, climax vegetation for the waste sites after surveillance and maintenance requirements have ceased

  8. METHANE PHYTOREMEDIATION BY VEGETATIVE LANDFILL COVER SYSTEMS

    Science.gov (United States)

    Landfill gas, consisting of methane and other gases, is produced from organic compounds degrading in landfills, contributes to global climate change, is toxic to various types of vegetation, and may pose a combustion hazard at higher concentrations. New landfills are required to ...

  9. Assessment of human impacts on landuse and vegetation cover ...

    African Journals Online (AJOL)

    Assessment of human impacts on landuse and vegetation cover changes in Mubi region, Adamawa state, Nigeria; remote sensing and GIS approach. ... Global Journal of Environmental Sciences. Journal Home · ABOUT THIS JOURNAL ...

  10. Estimation of vegetation cover resilience from satellite time series

    Directory of Open Access Journals (Sweden)

    T. Simoniello

    2008-07-01

    Full Text Available Resilience is a fundamental concept for understanding vegetation as a dynamic component of the climate system. It expresses the ability of ecosystems to tolerate disturbances and to recover their initial state. Recovery times are basic parameters of the vegetation's response to forcing and, therefore, are essential for describing realistic vegetation within dynamical models. Healthy vegetation tends to rapidly recover from shock and to persist in growth and expansion. On the contrary, climatic and anthropic stress can reduce resilience thus favouring persistent decrease in vegetation activity.

    In order to characterize resilience, we analyzed the time series 1982–2003 of 8 km GIMMS AVHRR-NDVI maps of the Italian territory. Persistence probability of negative and positive trends was estimated according to the vegetation cover class, altitude, and climate. Generally, mean recovery times from negative trends were shorter than those estimated for positive trends, as expected for vegetation of healthy status. Some signatures of inefficient resilience were found in high-level mountainous areas and in the Mediterranean sub-tropical ones. This analysis was refined by aggregating pixels according to phenology. This multitemporal clustering synthesized information on vegetation cover, climate, and orography rather well. The consequent persistence estimations confirmed and detailed hints obtained from the previous analyses. Under the same climatic regime, different vegetation resilience levels were found. In particular, within the Mediterranean sub-tropical climate, clustering was able to identify features with different persistence levels in areas that are liable to different levels of anthropic pressure. Moreover, it was capable of enhancing reduced vegetation resilience also in the southern areas under Warm Temperate sub-continental climate. The general consistency of the obtained results showed that, with the help of suited analysis

  11. EFFECT OF VEGETATIVE COVER AND SLOPE ON SOIL LOSS BY ...

    African Journals Online (AJOL)

    Toshiba

    and 9.7 % were 1.045, 1.070, 1.100, 2.266 and 3.121 kg, respectively. Vegetative cover soil with grasses reduced the runoff volume and soil loss. Runoff volume and soil loss increased as slope of the land increases. Keywords: erodibility, erosion, erosivity, rainfall simulator, soil loss,. INTRODUCTION. Erosion is a serious ...

  12. Vegetation Cover Changes in Selected Pastoral Villages in Mkata ...

    African Journals Online (AJOL)

    Arid and semi-arid savannah ecosystems of Tanzania are subjected to increasing pressure from pastoral land-use systems. A spatial temporal study involving analysis of satellite imageries and range surveys was carried out to determine the effects of high stocking levels on savannah vegetation cover types in Mkata plains.

  13. assessment of human impacts on landuse and vegetation cover ...

    African Journals Online (AJOL)

    Ada

    ADAMAWA STATE, NIGERIA; REMOTE SENSING AND GIS. APPROACH ... image of 1995 were used to study the landuse/vegetation cover changes of the region between 1978 and 1995 – a ... deteriorating environmental quality, loss of important wetlands, ... GIS to the land use of the River Glen catchments in England by ...

  14. Texture classification of vegetation cover in high altitude wetlands zone

    International Nuclear Information System (INIS)

    Wentao, Zou; Bingfang, Wu; Hongbo, Ju; Hua, Liu

    2014-01-01

    The aim of this study was to investigate the utility of datasets composed of texture measures and other features for the classification of vegetation cover, specifically wetlands. QUEST decision tree classifier was applied to a SPOT-5 image sub-scene covering the typical wetlands area in Three River Sources region in Qinghai province, China. The dataset used for the classification comprised of: (1) spectral data and the components of principal component analysis; (2) texture measures derived from pixel basis; (3) DEM and other ancillary data covering the research area. Image textures is an important characteristic of remote sensing images; it can represent spatial variations with spectral brightness in digital numbers. When the spectral information is not enough to separate the different land covers, the texture information can be used to increase the classification accuracy. The texture measures used in this study were calculated from GLCM (Gray level Co-occurrence Matrix); eight frequently used measures were chosen to conduct the classification procedure. The results showed that variance, mean and entropy calculated by GLCM with a 9*9 size window were effective in distinguishing different vegetation types in wetlands zone. The overall accuracy of this method was 84.19% and the Kappa coefficient was 0.8261. The result indicated that the introduction of texture measures can improve the overall accuracy by 12.05% and the overall kappa coefficient by 0.1407 compared with the result using spectral and ancillary data

  15. Estimation of Soil Moisture Under Vegetation Cover at Multiple Frequencies

    Science.gov (United States)

    Jadghuber, Thomas; Hajnsek, Irena; Weiß, Thomas; Papathanassiou, Konstantinos P.

    2015-04-01

    Soil moisture under vegetation cover was estimated by a polarimetric, iterative, generalized, hybrid decomposition and inversion approach at multiple frequencies (X-, C- and L-band). Therefore the algorithm, originally designed for longer wavelength (L-band), was adapted to deal with the short wavelength scattering scenarios of X- and C-band. The Integral Equation Method (IEM) was incorporated together with a pedo-transfer function of Dobson et al. to account for the peculiarities of short wavelength scattering at X- and C-band. DLR's F-SAR system acquired fully polarimetric SAR data in X-, C- and L-band over the Wallerfing test site in Lower Bavaria, Germany in 2014. Simultaneously, soil and vegetation measurements were conducted on different agricultural test fields. The results indicate a spatially continuous inversion of soil moisture in all three frequencies (inversion rates >92%), mainly due to the careful adaption of the vegetation volume removal including a physical constraining of the decomposition algorithm. However, for X- and C-band the inversion results reveal moisture pattern inconsistencies and in some cases an incorrectly high inversion of soil moisture at X-band. The validation with in situ measurements states a stable performance of 2.1- 7.6vol.% at L-band for the entire growing period. At C- and X-band a reliable performance of 3.7-13.4vol.% in RMSE can only be achieved after distinct filtering (X- band) leading to a loss of almost 60% in spatial inversion rate. Hence, a robust inversion for soil moisture estimation under vegetation cover can only be conducted at L-band due to a constant availability of the soil signal in contrast to higher frequencies (X- and C-band).

  16. Evaluation of vegetation cover using the normalized difference vegetation index (NDVI

    Directory of Open Access Journals (Sweden)

    Gabriela Camargos Lima

    2013-08-01

    Full Text Available Soil loss by water erosion is the main cause of soil degradation in Brazil. However, erosion can be reduced by the presence of vegetation. The Normalized Difference Vegetation Index (NDVI makes it possible to identify the vegetative vigor of crops or natural vegetation which facilities the identification of areas with vegetation covers. This information is very important in identifying the phenomena which might be occurring in a particular area, especially those related to soil degradation by water erosion. Thus, the aim of this work was to assess the canopy cover by using NDVI, checking the image accuracy using the Coverage Index (CI based on the Stocking method, in the Sub-basin of Posses, which belongs to the Cantareira System, located in the Extrema municipality, Minas Gerais, Brazil. Landsat-5 TM images were used. The sub-basin of Posses was very altered in comparison to the surrounding areas. The NDVI technique proved to be a suitable tool to assess the uses that occur in the sub-basin of Posses, as validated by the Stocking methodology. The map derived from NDVI allowed the geographic distribution of different land uses to be observed and allowed for the identification of critical areas in relation to vegetation cover as well. This finding can be used to optimize efforts to recover and protect soil in areas with bare soil and degraded pasture, in order to reduce environmental degradation. The CI has not exceeded 40% for land use classes that occur in the majority of the sub-basin (91%, except in areas of woody vegetation.

  17. 488-D Ash Basin Vegetative Cover Treatibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Barton, Christopher; Marx, Don; Blake, John; Adriano, Domy; Koo, Bon-Jun; Czapka, Stephen

    2003-01-01

    The 488-D Ash Basin is an unlined containment basin that received ash and coal reject material from the operation of a powerhouse at the USDOE's Savannah River Site, SC. They pyretic nature of the coal rejects has resulted in the formation of acidic drainage (AD), which has contributed to groundwater deterioration and threatens biota in down gradient wetlands. Establishment of a vegetative cover was examined as a remedial alternative for reducing AD generation within this system by enhanced utilization of rainwater and subsequent non-point source water pollution control. The low nutrient content, high acidity, and high salinity of the basin material, however, was deleterious to plant survivability. As such, studies to identify suitable plant species and potential adaptations, and pretreatment techniques in the form of amendments, tilling, and/or chemical stabilization were needed. A randomized block design consisting of three subsurface treatments (blocks) and five duplicated surface amendments (treatments) was developed. One hundred inoculated pine trees were planted on each plot. Herbaceous species were also planted on half of the plots in duplicated 1-m2 beds. After two growing seasons, deep ripping, subsurface amendments and surface covers were shown to be essential for the successful establishment of vegetation on the basin. This is the final report of the study.

  18. Decoupling factors affecting plant diversity and cover on extensive green roofs.

    Science.gov (United States)

    MacIvor, J Scott; Margolis, Liat; Puncher, Curtis L; Carver Matthews, Benjamin J

    2013-11-30

    Supplemental irrigation systems are often specified on green roofs to ensure plant cover and growth, both important components of green roof performance and aesthetics. Properties of the growing media environment too can alter the assemblage of plant species able to thrive. In this study we determine how plant cover, above ground biomass and species diversity are influenced by irrigation and growing media. Grass and forb vegetative cover and biomass were significantly greater in organic based growing media but there was no effect of supplemental irrigation, with two warm season grasses dominating in those treatments receiving no supplemental irrigation. On the other hand, plant diversity declined without irrigation in organic media, and having no irrigation in inorganic growing media resulted in almost a complete loss of cover. Sedum biomass was less in inorganic growing media treatments and species dominance shifted when growing media organic content increased. Our results demonstrate that supplemental irrigation is required to maintain plant diversity on an extensive green roof, but not necessarily plant cover or biomass. These results provide evidence that planting extensive green roofs with a mix of plant species can ensure the survival of some species; maintaining cover and biomass when supplemental irrigation is turned off to conserve water, or during extreme drought. Crown Copyright © 2013. Published by Elsevier Ltd. All rights reserved.

  19. Soil parameter retrieval under vegetation cover using SAR polarimetery

    Energy Technology Data Exchange (ETDEWEB)

    Jagdhuber, Thomas

    2012-07-01

    Soil conditions under vegetation cover and their spatial and temporal variations from point to catchment scale are crucial for understanding hydrological processes within the vadose zone, for managing irrigation and consequently maximizing yield by precision farming. Soil moisture and soil roughness are the key parameters that characterize the soil status. In order to monitor their spatial and temporal variability on large scales, remote sensing techniques are required. Therefore the determination of soil parameters under vegetation cover was approached in this thesis by means of (multi-angular) polarimetric SAR acquisitions at a longer wavelength (L-band, {lambda}{sub c}=23cm). In this thesis, the penetration capabilities of L-band are combined with newly developed (multi-angular) polarimetric decomposition techniques to separate the different scattering contributions, which are occurring in vegetation and on ground. Subsequently the ground components are inverted to estimate the soil characteristics. The novel (multi-angular) polarimetric decomposition techniques for soil parameter retrieval are physically-based, computationally inexpensive and can be solved analytically without any a priori knowledge. Therefore they can be applied without test site calibration directly to agricultural areas. The developed algorithms are validated with fully polarimetric SAR data acquired by the airborne E-SAR sensor of the German Aerospace Center (DLR) for three different study areas in Germany. The achieved results reveal inversion rates up to 99% for the soil moisture and soil roughness retrieval in agricultural areas. However, in forested areas the inversion rate drops significantly for most of the algorithms, because the inversion in forests is invalid for the applied scattering models at L-band. The validation against simultaneously acquired field measurements indicates an estimation accuracy (root mean square error) of 5-10vol.% for the soil moisture (range of in situ

  20. Normalized difference vegetation index (ndvi) analysis for land cover types using landsat 8 oli in besitang watershed, Indonesia

    Science.gov (United States)

    Zaitunah, A.; Samsuri; Ahmad, A. G.; Safitri, R. A.

    2018-03-01

    Watershed is an ecosystem area confined by topography and has function as a catcher, storage, and supplier of water, sediments, pollutants and nutrients in the river system and exit through a single outlet. Various activities around watershed areas of Besitang have changed the land cover and vegetation index (NDVI) that exist in the region. In order to detect changes in land cover and NDVI quickly and accurately, we used remote sensing technology and geographic information systems (GIS). The study aimed to assess changes in land cover and vegetation density (NDVI) between 2005 and 2015, as well as obtaining the density of vegetation (NDVI) on each of the land cover of 2005 and 2015. The research showed the extensive of forest area of 949.65 Ha and a decline of mangrove forest area covering an area of 2,884.06 Ha. The highest vegetation density reduced 39,714.58 Ha, and rather dense increased 24,410.72 Ha between 2005 and 2015. The land cover that have the highest NDVI value range with very dense vegetation density class is the primary dry forest (0.804 to 0.876), followed by secondary dry forest (0.737 to 0.804) for 2015. In 2015 the land cover has NDVI value range the primary dry forest (0.513 to 0.57), then secondary dry forest (0.456 to 0.513) with dense vegetation density class

  1. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest,...

  2. Estimating fractional vegetation cover and the vegetation index of bare soil and highly dense vegetation with a physically based method

    Science.gov (United States)

    Song, Wanjuan; Mu, Xihan; Ruan, Gaiyan; Gao, Zhan; Li, Linyuan; Yan, Guangjian

    2017-06-01

    Normalized difference vegetation index (NDVI) of highly dense vegetation (NDVIv) and bare soil (NDVIs), identified as the key parameters for Fractional Vegetation Cover (FVC) estimation, are usually obtained with empirical statistical methods However, it is often difficult to obtain reasonable values of NDVIv and NDVIs at a coarse resolution (e.g., 1 km), or in arid, semiarid, and evergreen areas. The uncertainty of estimated NDVIs and NDVIv can cause substantial errors in FVC estimations when a simple linear mixture model is used. To address this problem, this paper proposes a physically based method. The leaf area index (LAI) and directional NDVI are introduced in a gap fraction model and a linear mixture model for FVC estimation to calculate NDVIv and NDVIs. The model incorporates the Moderate Resolution Imaging Spectroradiometer (MODIS) Bidirectional Reflectance Distribution Function (BRDF) model parameters product (MCD43B1) and LAI product, which are convenient to acquire. Two types of evaluation experiments are designed 1) with data simulated by a canopy radiative transfer model and 2) with satellite observations. The root-mean-square deviation (RMSD) for simulated data is less than 0.117, depending on the type of noise added on the data. In the real data experiment, the RMSD for cropland is 0.127, for grassland is 0.075, and for forest is 0.107. The experimental areas respectively lack fully vegetated and non-vegetated pixels at 1 km resolution. Consequently, a relatively large uncertainty is found while using the statistical methods and the RMSD ranges from 0.110 to 0.363 based on the real data. The proposed method is convenient to produce NDVIv and NDVIs maps for FVC estimation on regional and global scales.

  3. Multi-scale associations between vegetation cover and woodland bird communities across a large agricultural region.

    Directory of Open Access Journals (Sweden)

    Karen Ikin

    Full Text Available Improving biodiversity conservation in fragmented agricultural landscapes has become an important global issue. Vegetation at the patch and landscape-scale is important for species occupancy and diversity, yet few previous studies have explored multi-scale associations between vegetation and community assemblages. Here, we investigated how patch and landscape-scale vegetation cover structure woodland bird communities. We asked: (1 How is the bird community associated with the vegetation structure of woodland patches and the amount of vegetation cover in the surrounding landscape? (2 Do species of conservation concern respond to woodland vegetation structure and surrounding vegetation cover differently to other species in the community? And (3 Can the relationships between the bird community and the woodland vegetation structure and surrounding vegetation cover be explained by the ecological traits of the species comprising the bird community? We studied 103 woodland patches (0.5 - 53.8 ha over two time periods across a large (6,800 km(2 agricultural region in southeastern Australia. We found that both patch vegetation and surrounding woody vegetation cover were important for structuring the bird community, and that these relationships were consistent over time. In particular, the occurrence of mistletoe within the patches and high values of woody vegetation cover within 1,000 ha and 10,000 ha were important, especially for bird species of conservation concern. We found that the majority of these species displayed similar, positive responses to patch and landscape vegetation attributes. We also found that these relationships were related to the foraging and nesting traits of the bird community. Our findings suggest that management strategies to increase both remnant vegetation quality and the cover of surrounding woody vegetation in fragmented agricultural landscapes may lead to improved conservation of bird communities.

  4. A simulation model for methane emissions from landfills with interaction of vegetation and cover soil.

    Science.gov (United States)

    Bian, Rongxing; Xin, Danhui; Chai, Xiaoli

    2018-01-01

    Global climate change and ecological problems brought about by greenhouse gas effect have become a severe threat to humanity in the 21st century. Vegetation plays an important role in methane (CH 4 ) transport, oxidation and emissions from municipal solid waste (MSW) landfills as it modifies the physical and chemical properties of the cover soil, and transports CH 4 to the atmosphere directly via their conduits, which are mainly aerenchymatous structures. In this study, a novel 2-D simulation CH 4 emission model was established, based on an interactive mechanism of cover soil and vegetation, to model CH 4 transport, oxidation and emissions in landfill cover soil. Results of the simulation model showed that the distribution of CH 4 concentration and emission fluxes displayed a significant difference between vegetated and non-vegetated areas. CH 4 emission flux was 1-2 orders of magnitude higher than bare areas in simulation conditions. Vegetation play a negative role in CH 4 emissions from landfill cover soil due to the strong CH 4 transport capacity even though vegetation also promotes CH 4 oxidation via changing properties of cover soil and emitting O 2 via root system. The model will be proposed to allow decision makers to reconsider the actual CH 4 emission from vegetated and non-vegetated covered landfills. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Examination of the semi-automatic calculation technique of vegetation cover rate by digital camera images.

    Science.gov (United States)

    Takemine, S.; Rikimaru, A.; Takahashi, K.

    The rice is one of the staple foods in the world High quality rice production requires periodically collecting rice growth data to control the growth of rice The height of plant the number of stem the color of leaf is well known parameters to indicate rice growth Rice growth diagnosis method based on these parameters is used operationally in Japan although collecting these parameters by field survey needs a lot of labor and time Recently a laborsaving method for rice growth diagnosis is proposed which is based on vegetation cover rate of rice Vegetation cover rate of rice is calculated based on discriminating rice plant areas in a digital camera image which is photographed in nadir direction Discrimination of rice plant areas in the image was done by the automatic binarization processing However in the case of vegetation cover rate calculation method depending on the automatic binarization process there is a possibility to decrease vegetation cover rate against growth of rice In this paper a calculation method of vegetation cover rate was proposed which based on the automatic binarization process and referred to the growth hysteresis information For several images obtained by field survey during rice growing season vegetation cover rate was calculated by the conventional automatic binarization processing and the proposed method respectively And vegetation cover rate of both methods was compared with reference value obtained by visual interpretation As a result of comparison the accuracy of discriminating rice plant areas was increased by the proposed

  6. Vegetation study in support of the design and optimization of vegetative soil covers, Sandia National Laboratories, Albuquerque, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Peace, Gerald (Jerry) L.; Goering, Timothy James (GRAM inc., Albuquerque, NM); Knight, Paul J. (Marron and Associates, Albuquerque, NM); Ashton, Thomas S. (Marron and Associates, Albuquerque, NM)

    2004-11-01

    A vegetation study was conducted in Technical Area 3 at Sandia National Laboratories, Albuquerque, New Mexico in 2003 to assist in the design and optimization of vegetative soil covers for hazardous, radioactive, and mixed waste landfills at Sandia National Laboratories/New Mexico and Kirtland Air Force Base. The objective of the study was to obtain site-specific, vegetative input parameters for the one-dimensional code UNSAT-H and to identify suitable, diverse native plant species for use on vegetative soil covers that will persist indefinitely as a climax ecological community with little or no maintenance. The identification and selection of appropriate native plant species is critical to the proper design and long-term performance of vegetative soil covers. Major emphasis was placed on the acquisition of representative, site-specific vegetation data. Vegetative input parameters measured in the field during this study include root depth, root length density, and percent bare area. Site-specific leaf area index was not obtained in the area because there was no suitable platform to measure leaf area during the 2003 growing season due to severe drought that has persisted in New Mexico since 1999. Regional LAI data was obtained from two unique desert biomes in New Mexico, Sevilletta Wildlife Refuge and Jornada Research Station.

  7. Response of alpine vegetation growth dynamics to snow cover phenology on the Tibetan Plateau

    Science.gov (United States)

    Wang, X.; Wu, C.

    2017-12-01

    Alpine vegetation plays a crucial role in global energy cycles with snow cover, an essential component of alpine land cover showing high sensitivity to climate change. The Tibetan Plateau (TP) has a typical alpine vegetation ecosystem and is rich of snow resources. With global warming, the snow of the TP has undergone significant changes that will inevitably affect the growth of alpine vegetation, but observed evidence of such interaction is limited. In particular, a comprehensive understanding of the responses of alpine vegetation growth to snow cover variability is still not well characterized on TP region. To investigate this, we calculated three indicators, the start (SOS) and length (LOS) of growing season, and the maximum of normalized difference vegetation index (NDVImax) as proxies of vegetation growth dynamics from the Moderate Resolution Imaging Spectroradiometer (MODIS) data for 2000-2015. Snow cover duration (SCD) and melt (SCM) dates were also extracted during the same time frame from the combination of MODIS and the Interactive Multi-sensor Snow and Ice Mapping System (IMS) data. We found that the snow cover phenology had a strong control on alpine vegetation growth dynamics. Furthermore, the responses of SOS, LOS and NDVImax to snow cover phenology varied among plant functional types, eco-geographical zones, and temperature and precipitation gradients. The alpine steppes showed a much stronger negative correlation between SOS and SCD, and also a more evidently positive relationship between LOS and SCD than other types, indicating a longer SCD would lead to an earlier SOS and longer LOS. Most areas showed positive correlation between SOS and SCM, while a contrary response was also found in the warm but drier areas. Both SCD and SCM showed positive correlations with NDVImax, but the relationship became weaker with the increase of precipitation. Our findings provided strong evidences between vegetation growth and snow cover phenology, and changes in

  8. Cover crop frequency and compost effects on a legume-rye cover crop during 8 years of organic vegetables

    Science.gov (United States)

    Organic matter inputs from compost or cover crops (CC) are important to maintain or improve soil quality, but their impact in high-value vegetable production systems are not well understood. Therefore, we evaluated the effects of CC frequency (every winter versus every 4th winter) and yard-waste co...

  9. [Application of biotope mapping model integrated with vegetation cover continuity attributes in urban biodiversity conservation].

    Science.gov (United States)

    Gao, Tian; Qiu, Ling; Chen, Cun-gen

    2010-09-01

    Based on the biotope classification system with vegetation structure as the framework, a modified biotope mapping model integrated with vegetation cover continuity attributes was developed, and applied to the study of the greenbelts in Helsingborg in southern Sweden. An evaluation of the vegetation cover continuity in the greenbelts was carried out by the comparisons of the vascular plant species richness in long- and short-continuity forests, based on the identification of woodland continuity by using ancient woodland indicator species (AWIS). In the test greenbelts, long-continuity woodlands had more AWIS. Among the forests where the dominant trees were more than 30-year-old, the long-continuity ones had a higher biodiversity of vascular plants, compared with the short-continuity ones with the similar vegetation structure. The modified biotope mapping model integrated with the continuity features of vegetation cover could be an important tool in investigating urban biodiversity, and provide corresponding strategies for future urban biodiversity conservation.

  10. Examination of the relationship between vegetation cover indices ...

    African Journals Online (AJOL)

    Therefore it is recommended that agroforestry and land scaping should be embraced in the area with emphasis on short economic trees with moderate crown cover that will allow crops or grasses to grow under it as well as avoid the negative impact of rain water drops from very tall tree that can cause soil erosion.

  11. Vegetation Cover based on Eagleson's Ecohydrological Optimality in Northeast China Transect (NECT)

    Science.gov (United States)

    Cong, Z.; Mo, K.; Qinshu, L.; Zhang, L.

    2016-12-01

    Vegetation is considered as the indicator of climate, thus the study of vegetation growth and distribution is of great importance to cognize the ecosystem construction and functions. Vegetation cover is used as an important index to describe vegetation conditions. In Eagleson's ecohydrological optimality, the theoretical optimal vegetation cover M* can be estimated by solving water balance equations. In this study, the theory is applied in the Northeast China Transect (NECT), one of International Geosphere-Biosphere Programs (IGBP) terrestrial transects. The spatial distribution of actual vegetation cover M, which is derived from Normalized Vegetation Index (NDVI) from Moderate-resolution Imaging Spectroradiometer (MODIS), shows that there is a significant gradient ranging from 1 in the east forests to 0 in the west desert. The result indicates that the theoretical M* fits the actual M well (for forest, M* = 0.822 while M = 0.826; for grassland, M* = 0.353 while M = 0.352; the correlation coefficient between M and M* is 0.81). The reasonable calculated proportion of water balance components further demonstrates the applicability of the ecohydrological optimality theory. M* increases with the increase of LAI, leaf angle, stem fraction and temperature, and decreases with the increase of precipitation amount. This method offers the possibility to analyze the impacts of climate change to vegetation cover quantitatively, thus providing advices for eco-restoration projects.

  12. Impact of Vegetative Cover on Runoff and Soil Erosion at Hillslope Scale in Lanjaron, Spain

    NARCIS (Netherlands)

    Duran Zuazo, V.H.; Francia-Martinez, J.R.; Martinez-Raya, A.

    2004-01-01

    Soil loss and surface runoff patterns over a four-year period (1997¿2000) were studied in erosion plots from three hillslopes under different vegetative covers (Rosmarinus officinalis, Triticum aestivum and natural-spontaneous vegetation) in Lanjaron (Alpujarras) on the south flank of the Sierra

  13. River flow response to changes in vegetation cover in a South ...

    African Journals Online (AJOL)

    It was hypothesised in this study that annual river yield (river flow as a fraction of rainfall) in the Molenaars catchment near Paarl, South Africa co-varies with an index of green vegetation cover derived from satellite data (the normalised difference vegetation index, NDVI). The catchment was partitioned into 'upland' and ...

  14. [Advance in researches on vegetation cover and management factor in the soil erosion prediction model].

    Science.gov (United States)

    Zhang, Yan; Yuan, Jianping; Liu, Baoyuan

    2002-08-01

    Vegetation cover and land management are the main limiting factors of soil erosion, and quantitative evaluation on the effect of different vegetation on soil erosion is essential to land use and soil conservation planning. The vegetation cover and management factor (C) in the universal soil loss equation (USLE) is an index to evaluate this effect, which has been studied deeply and used widely. However, the C factor study is insufficient in China. In order to strengthen the research of C factor, this paper reviewed the developing progress of C factor, and compared the methods of estimating C value in different USLE versions. The relative studies in China were also summarized from the aspects of vegetation canopy coverage, soil surface cover, and root density. Three problems in C factor study were pointed out. The authors suggested that cropland C factor research should be furthered, and its methodology should be unified in China to represent reliable C values for soil loss prediction and conservation planning.

  15. Simulating vegetation dynamics in Chile from 21ka BP to present: Effects of climate change on vegetation functions and cover

    Science.gov (United States)

    Werner, Christian; Liakka, Johan; Schmid, Manuel; Fuentes, Juan-Pablo; Ehlers, Todd A.; Hickler, Thomas

    2017-04-01

    Vegetation composition and establishment is strongly dependent on climate conditions but also a result of vegetation dynamics (competition for light, water and nutrients). In addition, vegetation exerts control over the development of landscapes as it mediates the climatic and hydrological forces shaping the terrain via hillslope and fluvial processes. At the same time, topography as well as soil texture and soil depth affect the microclimate, soil water storage and rooting space that is defining the environmental envelope for vegetation development. Within the EarthShape research program (www.earthshape.net) we evaluate these interactions by simulating the co-evolution of landscape and vegetation with a dynamic vegetation model (LPJ-GUESS) and a landscape evolution model (LandLab). LPJ-GUESS is a mechanistic model driven by daily or monthly weather data and explicitly simulates vegetation physiology, succession, competition and water and nutrient cycling. Here we present the results of first transient vegetation simulations from 21kyr BP to present-day using the TraCE-21ka climate dataset for four focus sites along the coastal cordillera of Chile that are exposed to a substantial meridional climate gradient (ranging from hyper-arid to humid-temperate conditions). We show that the warming occurring in the region from LGM to present, in addition to the increase of atmospheric CO2 concentrations, led to a shift in vegetation composition and surface cover. Future work will show how these changes resonate in the dynamics of hillslope and fluvial erosion and ultimately bi-directional feedback mechanisms of vegetation development and landscape evolution/ soil formation (see also companion presentation by Schmid et al., this session).

  16. Deforestation and benthic indicators: how much vegetation cover is needed to sustain healthy Andean streams?

    Science.gov (United States)

    Iñiguez-Armijos, Carlos; Leiva, Adrián; Frede, Hans-Georg; Hampel, Henrietta; Breuer, Lutz

    2014-01-01

    Deforestation in the tropical Andes is affecting ecological conditions of streams, and determination of how much forest should be retained is a pressing task for conservation, restoration and management strategies. We calculated and analyzed eight benthic metrics (structural, compositional and water quality indices) and a physical-chemical composite index with gradients of vegetation cover to assess the effects of deforestation on macroinvertebrate communities and water quality of 23 streams in southern Ecuadorian Andes. Using a geographical information system (GIS), we quantified vegetation cover at three spatial scales: the entire catchment, the riparian buffer of 30 m width extending the entire stream length, and the local scale defined for a stream reach of 100 m in length and similar buffer width. Macroinvertebrate and water quality metrics had the strongest relationships with vegetation cover at catchment and riparian scales, while vegetation cover did not show any association with the macroinvertebrate metrics at local scale. At catchment scale, the water quality metrics indicate that ecological condition of Andean streams is good when vegetation cover is over 70%. Further, macroinvertebrate community assemblages were more diverse and related in catchments largely covered by native vegetation (>70%). Our results suggest that retaining an important quantity of native vegetation cover within the catchments and a linkage between headwater and riparian forests help to maintain and improve stream biodiversity and water quality in Andean streams affected by deforestation. This research proposes that a strong regulation focused to the management of riparian buffers can be successful when decision making is addressed to conservation/restoration of Andean catchments.

  17. Vegetation Cover Analysis of Hazardous Waste Sites in Utah and Arizona Using Hyperspectral Remote Sensing

    Directory of Open Access Journals (Sweden)

    Mike Serrato

    2012-01-01

    Full Text Available This study investigated the usability of hyperspectral remote sensing for characterizing vegetation at hazardous waste sites. The specific objectives of this study were to: (1 estimate leaf-area-index (LAI of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP, and machine learning regression trees, and (2 map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF-derived metrics and vegetation indices. HyMap airborne data (126 bands at 2.3 × 2.3 m spatial resolution, collected over the U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona, were used. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. Regression trees resulted in the best calibration performance of LAI estimation (R2 > 0.80. The use of REPs failed to accurately predict LAI (R2 < 0.2. The use of the MTMF-derived metrics (matched filter scores and infeasibility and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches ( < 1 m found on the sites.

  18. Vegetation Cover Analysis Of Hazardous Waste Sites In Utah And Arizona Using Hyperspectral Remote Sensing

    International Nuclear Information System (INIS)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-01

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R 2 > 0.80). The use of REPs failed to accurately predict LAI (R 2 < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  19. VEGETATION COVER ANALYSIS OF HAZARDOUS WASTE SITES IN UTAH AND ARIZONA USING HYPERSPECTRAL REMOTE SENSING

    Energy Technology Data Exchange (ETDEWEB)

    Serrato, M.; Jungho, I.; Jensen, J.; Jensen, R.; Gladden, J.; Waugh, J.

    2012-01-17

    Remote sensing technology can provide a cost-effective tool for monitoring hazardous waste sites. This study investigated the usability of HyMap airborne hyperspectral remote sensing data (126 bands at 2.3 x 2.3 m spatial resolution) to characterize the vegetation at U.S. Department of Energy uranium processing sites near Monticello, Utah and Monument Valley, Arizona. Grass and shrub species were mixed on an engineered disposal cell cover at the Monticello site while shrub species were dominant in the phytoremediation plantings at the Monument Valley site. The specific objectives of this study were to: (1) estimate leaf-area-index (LAI) of the vegetation using three different methods (i.e., vegetation indices, red-edge positioning (REP), and machine learning regression trees), and (2) map the vegetation cover using machine learning decision trees based on either the scaled reflectance data or mixture tuned matched filtering (MTMF)-derived metrics and vegetation indices. Regression trees resulted in the best calibration performance of LAI estimation (R{sup 2} > 0.80). The use of REPs failed to accurately predict LAI (R{sup 2} < 0.2). The use of the MTMF-derived metrics (matched filter scores and infeasibility) and a range of vegetation indices in decision trees improved the vegetation mapping when compared to the decision tree classification using just the scaled reflectance. Results suggest that hyperspectral imagery are useful for characterizing biophysical characteristics (LAI) and vegetation cover on capped hazardous waste sites. However, it is believed that the vegetation mapping would benefit from the use of 1 higher spatial resolution hyperspectral data due to the small size of many of the vegetation patches (< 1m) found on the sites.

  20. [Process study on hysteresis of vegetation cover influencing sand-dust events].

    Science.gov (United States)

    Xu, Xing-Kui; Wang, Xiao-Tao; Zhang, Feng

    2009-02-15

    Data analysis from satellite and weather stations during 1982-2000 shows nonlinear relationship between vegetation cover and sand-dust events is present in most part of China. Vegetation cover ratio in summer can impact significantly on the frequency of sand-dust storms from winter to spring in the source regions of sand-dust events. It is not quite clear about the hysteresis that vegetation cover in summer influence sand-dust events during winter and spring. A quasi-geostrophic barotropic model is used under the condition of 3 magnitude of frictional coefficient to investigate the cause of the hysteresis. Wind velocity shows a greatest decline at 90% during 72 h as initial wind velocity is 10 m/s for magnitude of frictional coefficient between atmosphere and water surface, greatest decline at 100% during 18 h for magnitude of frictional coefficient between atmosphere and bare soil and a 100% reduction of wind speed during 1 h for magnitude of frictional coefficient between atmosphere and vegetation cover. Observation and simulation prove that residual root and stem from summervegetation are one of factors to influence sand-dust events happened during winter and spring. Air inhibition from residual root and stem is a most important reason for hysteresis that vegetation cover influence sand-dust events.

  1. Assessing the impact of climate variability on catchment water balance and vegetation cover

    Directory of Open Access Journals (Sweden)

    X. Xu

    2012-01-01

    Full Text Available Understanding the interactions among climate, vegetation cover and the water cycle lies at the heart of the study of watershed ecohydrology. Recently, considerable attention is being paid to the effect of climate variability on catchment water balance and also associated vegetation cover. In this paper, we investigate the general pattern of long-term water balance and vegetation cover (as reflected by fPAR among 193 study catchments in Australia through statistical analysis. We then employ the elasticity analysis approach for quantifying the effects of climate variability on hydrologic partitioning (including total, surface and subsurface runoff and on vegetation cover (including total, woody and non-woody vegetation cover. Based on the results of statistical analysis, we conclude that annual runoff (R, evapotranspiration (E and runoff coefficient (R/P increase with vegetation cover for catchments in which woody vegetation is dominant and annual precipitation is relatively high. Control of water available on annual evapotranspiration in non-woody dominated catchments is relatively stronger compared to woody dominated ones. The ratio of subsurface runoff to total runoff (Rg/R also increases with woody vegetation cover. Through the elasticity analysis of catchment runoff, it is shown that precipitation (P in current year is the most important factor affecting the change in annual total runoff (R, surface runoff (Rs and subsurface runoff (Rg. The significance of other controlling factors is in the order of annual precipitation in previous years (P−1 and P−2, which represents the net effect of soil moisture and annual mean temperature (T in current year. Change of P by +1% causes a +3.35% change of R, a +3.47% change of Rs and a +2.89% change of

  2. Nonlinear vegetation cover changes in the North Ethiopian Highlands: Evidence from the Lake Ashenge closed basin

    Energy Technology Data Exchange (ETDEWEB)

    Lanckriet, Sil, E-mail: sil.lanckriet@ugent.be [Department of Geography, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent (Belgium); Rucina, Stephen [National Museum of Kenya, Earth Science Department, Palynology Section, P.O. Box 40658 00100, Nairobi (Kenya); Frankl, Amaury [Department of Geography, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent (Belgium); Ritler, Alfons [Centre for Development and Environment, University of Bern, Hallerstrasse 10, CH-3012 Bern (Switzerland); Gelorini, Vanessa [Department of Geology and Soil Science, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent (Belgium); Nyssen, Jan [Department of Geography, Ghent University, Krijgslaan 281 (S8), B-9000 Ghent (Belgium)

    2015-12-01

    Vegetation cover changes in African drylands are often thought to result from population growth, social factors and aridification. Here we show that long-term vegetation proxy records can help disentangling these main driving factors. Taking the case of North Ethiopia, we performed an integrated investigation of land cover changes over the last four centuries around the endorheic Lake Ashenge, as derived from pollen analysis and repeat photography complemented with information from historical sources. Pollen and sediment analysis of radiocarbon-dated lake deposits shows a phase of environmental destabilization during the 18th century, after a more stable previous period. This is evidenced by decreases of tree pollen (Juniperus, Olea, Celtis, Podocarpus < 5%), increases in Poaceae (> 40%) and deposition of coarser silt lake sediments (> 70%). Quantitative analysis of 30 repeated landscape photographs around the lake indicates a gradual decline of the vegetation cover since a relative maximum during the mid-19th Century. Vegetation cover declined sharply between the 1950s and the 1980s, but has since begun to recover. Overall, the data from around Lake Ashenge reveal a nonlinear pattern of deforestation and forest regrowth with several periods of vegetation cover change over the past four centuries. While there is forcing of regional drought and the regional land tenure system, the cyclic changes do not support a simplified focus on aridification or population growth. - Highlights: • Vegetation cover changes are often related with population growth or climate • We investigated land cover changes over the last four centuries near Lake Ashenge • Overall, the data reveal a nonlinear pattern of deforestation and forest regrowth.

  3. Nonlinear vegetation cover changes in the North Ethiopian Highlands: Evidence from the Lake Ashenge closed basin

    International Nuclear Information System (INIS)

    Lanckriet, Sil; Rucina, Stephen; Frankl, Amaury; Ritler, Alfons; Gelorini, Vanessa; Nyssen, Jan

    2015-01-01

    Vegetation cover changes in African drylands are often thought to result from population growth, social factors and aridification. Here we show that long-term vegetation proxy records can help disentangling these main driving factors. Taking the case of North Ethiopia, we performed an integrated investigation of land cover changes over the last four centuries around the endorheic Lake Ashenge, as derived from pollen analysis and repeat photography complemented with information from historical sources. Pollen and sediment analysis of radiocarbon-dated lake deposits shows a phase of environmental destabilization during the 18th century, after a more stable previous period. This is evidenced by decreases of tree pollen (Juniperus, Olea, Celtis, Podocarpus < 5%), increases in Poaceae (> 40%) and deposition of coarser silt lake sediments (> 70%). Quantitative analysis of 30 repeated landscape photographs around the lake indicates a gradual decline of the vegetation cover since a relative maximum during the mid-19th Century. Vegetation cover declined sharply between the 1950s and the 1980s, but has since begun to recover. Overall, the data from around Lake Ashenge reveal a nonlinear pattern of deforestation and forest regrowth with several periods of vegetation cover change over the past four centuries. While there is forcing of regional drought and the regional land tenure system, the cyclic changes do not support a simplified focus on aridification or population growth. - Highlights: • Vegetation cover changes are often related with population growth or climate • We investigated land cover changes over the last four centuries near Lake Ashenge • Overall, the data reveal a nonlinear pattern of deforestation and forest regrowth

  4. Recovery of Vegetation Cover and Soil after the Removal of Sheep in Socorro Island, Mexico

    Directory of Open Access Journals (Sweden)

    Antonio Ortíz-Alcaraz

    2016-04-01

    Full Text Available For over 140 years, the habitat of Socorro Island in the Mexican Pacific has been altered by the presence of exotic sheep. Overgrazing, jointly with tropical storms, has caused soil erosion, and more than 2000 hectares of native vegetation have been lost. Sheep eradication was conducted from 2009 to 2012. Since then, the vegetation has begun to recover passively, modifying soil properties. The objective of our study was to verify that this island was resilient enough to be recovered and in a relatively short time scale. To confirm our hypothesis, we analyzed changes in the physical-chemical properties of the soil and vegetation cover, the last one in different times and habitats after sheep eradication. The change in vegetation cover was estimated by comparing the normalized difference vegetation index (NDVI between 2008 and 2013. In sites altered by feral sheep, soil compaction was assessed, and soil samples were taken, analyzing pH, electrical conductivity, organic carbon, total nitrogen, phosphorus, calcium, and magnesium. After a year of total sheep eradication, clear indications in the recovery of vegetation cover and improvement of soil quality parameters were observed and confirmed, specifically compaction and nitrogen, organic carbon, phosphorus, and calcium. The results seem to support our hypothesis.

  5. Responses of Vegetation Cover to Environmental Change in Large Cities of China

    Directory of Open Access Journals (Sweden)

    Kai Jin

    2018-01-01

    Full Text Available Vegetation cover is crucial for the sustainability of urban ecosystems; however, this cover has been undergoing substantial changes in cities. Based on climate data, city statistical data, nighttime light data and the Normalized Difference Vegetation Index (NDVI dataset, we investigate the spatiotemporal variations of climate factors, urban lands and vegetation cover in 71 large cities of China during 1998–2012, and explore their correlations. A regression model between growing-season NDVI (G-NDVI and urban land proportion (PU is built to quantify the impact of urbanization on vegetation cover change. The results indicate that the spatiotemporal variations of temperature, precipitation, PU and G-NDVI are greatly different among the 71 cities which experienced rapid urbanization. The spatial difference of G-NDVI is closely related to diverse climate conditions, while the inter-annual variations of G-NDVI are less sensitive to climate changes. In addition, there is a negative correlation between G-NDVI trend and PU change, indicating vegetation cover in cities have been negatively impacted by urbanization. For most of the inland cities, the urbanization impacts on vegetation cover in urban areas are more severe than in suburban areas. But the opposite occurs in 17 cities mainly located in the coastal areas which have been undergoing the most rapid urbanization. Overall, the impacts of urbanization on G-NDVI change are estimated to be −0.026 per decade in urban areas and −0.015 per decade in suburban areas during 1998–2012. The long-term developments of cities would persist and continue to impact on the environmental change and sustainability. We use a 15-year window here as a case study, which implies the millennia of human effects on the natural biotas and warns us to manage landscapes and preserve ecological environments properly.

  6. Tropical climate and vegetation cover during Heinrich event 1: Simulations with coupled climate vegetation models

    OpenAIRE

    Handiani, Dian Noor

    2012-01-01

    This study focuses on the climate and vegetation responses to abrupt climate change in the Northern Hemisphere during the last glacial period. Two abrupt climate events are explored: the abrupt cooling of the Heinrich event 1 (HE1), followed by the abrupt warming of the Bølling-Allerød interstadial (BA). These two events are simulated by perturbing the freshwater balance of the Atlantic Ocean, with the intention of altering the Atlantic Meridional Overturning Circulation (AMOC) and also of in...

  7. Covering soils and vegetations during decommissioning disposal of a uranium mine

    International Nuclear Information System (INIS)

    Feng Weihua

    2010-01-01

    The disposals of waste ore dumps and tailings are an important part in the decommissioning disposal of uranium mines. Important indexes of the disposal include stabilization, harmlessness, rehabilitation and improvement of the ecological environment. These are closely related with vegetations. Taking example of decommissioning disposal of a uranium mine in Guizhou province, the selection of grasses and effects after covering soils and planting grasses are introduced. It is pointed out that covering soils and vegetations play an important role in decommissioning disposal of uranium mines. (authors)

  8. Feasibility Study of Land Cover Classification Based on Normalized Difference Vegetation Index for Landslide Risk Assessment

    Directory of Open Access Journals (Sweden)

    Thilanki Dahigamuwa

    2016-10-01

    Full Text Available Unfavorable land cover leads to excessive damage from landslides and other natural hazards, whereas the presence of vegetation is expected to mitigate rainfall-induced landslide potential. Hence, unexpected and rapid changes in land cover due to deforestation would be detrimental in landslide-prone areas. Also, vegetation cover is subject to phenological variations and therefore, timely classification of land cover is an essential step in effective evaluation of landslide hazard potential. The work presented here investigates methods that can be used for land cover classification based on the Normalized Difference Vegetation Index (NDVI, derived from up-to-date satellite images, and the feasibility of application in landslide risk prediction. A major benefit of this method would be the eventual ability to employ NDVI as a stand-alone parameter for accurate assessment of the impact of land cover in landslide hazard evaluation. An added benefit would be the timely detection of undesirable practices such as deforestation using satellite imagery. A landslide-prone region in Oregon, USA is used as a model for the application of the classification method. Five selected classification techniques—k-nearest neighbor, Gaussian support vector machine (GSVM, artificial neural network, decision tree and quadratic discriminant analysis support the viability of the NDVI-based land cover classification. Finally, its application in landslide risk evaluation is demonstrated.

  9. Using Unmanned Aerial Vehicles to Assess Vegetative Cover in Sagebrush Steppe Ecosytstems

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge

    2005-09-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service (USDA-ARS) was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  10. Vegetative cover and PAHs accumulation in soils of urban green space

    International Nuclear Information System (INIS)

    Peng Chi; Ouyang Zhiyun; Wang Meie; Chen Weiping; Jiao Wentao

    2012-01-01

    We investigated how urban land uses influence soil accumulation of polycyclic aromatic hydrocarbons (PAHs) in the urban green spaces composed of different vegetative cover. How did soil properties, urbanization history, and population density affect the outcomes were also considered. Soils examined were obtained at 97 green spaces inside the Beijing metropolis. PAH contents of the soils were influenced most significantly by their proximity to point source of industries such as the coal combustion installations. Beyond the influence circle of industrial emissions, land use classifications had no significant effect on the extent of PAH accumulation in soils. Instead, the nature of vegetative covers affected PAH contents of the soils. Tree–shrub–herb and woodland settings trapped more airborne PAH and soils under these vegetative patterns accumulated more PAHs than those of the grassland. Urbanization history, population density and soil properties had no apparent impact on PAHs accumulations in soils of urban green space. - Highlights: ► Land use did not affect PAHs in soils except for areas adjacent to industrial sources. ► Tree–shrub–herb and woodland cover amass more PAHs in soils than grassland cover. ► Urban development and soil property factors had little effect on PAHs in soils. - Industrial emissions aside, vegetative cover is the dominant factor controlling accumulation of PAHs in urban green space soils.

  11. Long-term monitoring of stream bank stability under different vegetation cover

    Science.gov (United States)

    Krzeminska, Dominika; Skaalsveen, Kamilla; Kerkhof, Tjibbe

    2017-04-01

    Vegetated buffer zones are common environmental measures in many countries, including Norway. The presence of riparian vegetation on stream banks not only provides ecological benefits but also influence bank slope stability, through several complex interactions between riparian vegetation and hydro - mechanical processes. The hydrological processes associated with slope stability are complex and yet difficult to quantify, especially because their transient effects (e.g. changes throughout the vegetation life cycle). Additionally, there is very limited amount of field scale research focusing on investigation of coupled hydrological and mechanical influence of vegetation on stream bank behavior, accounting for both seasonal time scale and different vegetation type, and none dedicated to marine clay soils (typically soil for Norway). In order to fill this gap we established continues, long term hydrogeological monitoring o selected cross - section within stream bank, covered with different types of vegetation, typical for Norwegian agriculture areas (grass, shrubs, and trees). The monitoring involves methods such as spatial and temporal monitoring of soil moisture conditions, ground water level and fluctuation of water level in the stream. Herein we will present first 10 months of monitoring data: observed hydrological trends and differences between three cross - sections. Moreover, we will present first modelling exercises that aims to estimate stream banks stability with accounting on presence of different vegetation types using BSTEM and HYDRUS models. With this presentation, we would like to stimulate the discussion and get feedback that could help us to improve both, our experimental set up and analysis approach.

  12. Vegetation growth patterns on six rock-covered UMTRA Project disposal cells

    International Nuclear Information System (INIS)

    1992-02-01

    This study assessed vegetation growth patterns, the potential impacts of vegetation growth on disposal cell cover integrity, and possible measures that could be taken to monitor and/or control plant growth, where necessary, on six Uranium Mill Tailings Remedial Action (UMTRA) Project rock-covered disposal cells. A large-scale invasion of volunteer plants was observed on the Shiprock and Burrell disposal cells. Plant growth at the South Clive, Green River, and Tuba City disposal cells was sparse except for the south rock apron and south slope of the Tuba City disposal cell, where windblown sand had filled up part of the rock cover and plant growth was observed. The rock-covered topslope of the Collins Ranch disposal cell was intentionally covered with topsoil and vegetated. Plant roots growing on the disposal cells are changing the characteristics of the cover by drying out the radon barrier, encouraging the establishment of soil-building processes in the bedding and radon barrier layers, creating channels in the radon barrier, and facilitating ecological succession, which could lead to the establishment of additional deep-rooted plants on the disposal cells. If left unchecked, plant roots would reach the tailings at the Burrell and Collins Ranch disposal cells within a few years, likely resulting in the transport of contaminants out of the cells

  13. Photopolarimetric properties of leaf and vegetation covers over a wide range of measurement directions

    Science.gov (United States)

    Sun, Zhongqiu; Peng, Zhiyan; Wu, Di; Lv, Yunfeng

    2018-02-01

    The optical scattering property of the target is the essential signal for passive remote sensing applications. To deepen our understanding of the light reflected from vegetation, we present results of photopolarimetric laboratory measurements from single leaf and two vegetation covers (planophile and erectophile) over a wide range of viewing directions. The bidirectional polarized reflectance factor (BPRF) was used to characterize the polarization property of our samples. We observed positive and negative polarization (-BPRFQ) of all samples in the forward scattering and backward scattering directions, respectively. Based on the comparison of the BPRF among single leaf, planophile vegetation and erectophile vegetation, our measurements demonstrate that the orientation of the leaf is a key factor in describing the amount of polarization in the forward scattering direction. Our measurements also validated certain model results stating that (1) specular reflection generates a portion of polarization in the forward scattering direction and diffuses scattering of polarized light in all hemisphere directions, (2) BPRFU is anti-symmetric in the principal plane from a recent study in which the authors simulated the polarized reflectance of vegetation cover using the vector radiative transfer theory. These photopolarimetric measurement results, which can be completely explained by the theoretical results, are useful in remote sensing applications to vegetation.

  14. Development of canopy cover and woody vegetation biomass on reclaimed and unreclaimed post-mining sites

    Czech Academy of Sciences Publication Activity Database

    Frouz, Jan; Dvorščík, P.; Vávrová, A.; Doušová, O.; Kadochová, Štěpánka; Matějíček, L.

    2015-01-01

    Roč. 84, November (2015), s. 233-239 ISSN 0925-8574 Grant - others:GA ČR(CZ) GAP504/12/1288 Program:GA Institutional support: RVO:60077344 Keywords : aerial photographs * reclaimed sites * succession * tree biomass * woody vegetation cover Subject RIV: EH - Ecology, Behaviour Impact factor: 2.740, year: 2015

  15. Complex responses of spring alpine vegetation phenology to snow cover dynamics over the Tibetan Plateau, China.

    Science.gov (United States)

    Wang, Siyuan; Wang, Xiaoyue; Chen, Guangsheng; Yang, Qichun; Wang, Bin; Ma, Yuanxu; Shen, Ming

    2017-09-01

    Snow cover dynamics are considered to play a key role on spring phenological shifts in the high-latitude, so investigating responses of spring phenology to snow cover dynamics is becoming an increasingly important way to identify and predict global ecosystem dynamics. In this study, we quantified the temporal trends and spatial variations of spring phenology and snow cover across the Tibetan Plateau by calibrating and analyzing time series of the NOAA AVHRR-derived normalized difference vegetation index (NDVI) during 1983-2012. We also examined how snow cover dynamics affect the spatio-temporal pattern of spring alpine vegetation phenology over the plateau. Our results indicated that 52.21% of the plateau experienced a significant advancing trend in the beginning of vegetation growing season (BGS) and 34.30% exhibited a delaying trend. Accordingly, the snow cover duration days (SCD) and snow cover melt date (SCM) showed similar patterns with a decreasing trend in the west and an increasing trend in the southeast, but the start date of snow cover (SCS) showed an opposite pattern. Meanwhile, the spatial patterns of the BGS, SCD, SCS and SCM varied in accordance with the gradients of temperature, precipitation and topography across the plateau. The response relationship of spring phenology to snow cover dynamics varied within different climate, terrain and alpine plant community zones, and the spatio-temporal response patterns were primarily controlled by the long-term local heat-water conditions and topographic conditions. Moreover, temperature and precipitation played a profound impact on diverse responses of spring phenology to snow cover dynamics. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Testing the Potential of Vegetation Indices for Land Use/cover Classification Using High Resolution Data

    Science.gov (United States)

    Karakacan Kuzucu, A.; Bektas Balcik, F.

    2017-11-01

    Accurate and reliable land use/land cover (LULC) information obtained by remote sensing technology is necessary in many applications such as environmental monitoring, agricultural management, urban planning, hydrological applications, soil management, vegetation condition study and suitability analysis. But this information still remains a challenge especially in heterogeneous landscapes covering urban and rural areas due to spectrally similar LULC features. In parallel with technological developments, supplementary data such as satellite-derived spectral indices have begun to be used as additional bands in classification to produce data with high accuracy. The aim of this research is to test the potential of spectral vegetation indices combination with supervised classification methods and to extract reliable LULC information from SPOT 7 multispectral imagery. The Normalized Difference Vegetation Index (NDVI), the Ratio Vegetation Index (RATIO), the Soil Adjusted Vegetation Index (SAVI) were the three vegetation indices used in this study. The classical maximum likelihood classifier (MLC) and support vector machine (SVM) algorithm were applied to classify SPOT 7 image. Catalca is selected region located in the north west of the Istanbul in Turkey, which has complex landscape covering artificial surface, forest and natural area, agricultural field, quarry/mining area, pasture/scrubland and water body. Accuracy assessment of all classified images was performed through overall accuracy and kappa coefficient. The results indicated that the incorporation of these three different vegetation indices decrease the classification accuracy for the MLC and SVM classification. In addition, the maximum likelihood classification slightly outperformed the support vector machine classification approach in both overall accuracy and kappa statistics.

  17. Separation and Extension of Cover Inequalities for Conic Quadratic Knapsack Constraints with Generalized Upper Bounds

    DEFF Research Database (Denmark)

    Atamtürk, Alper; Muller, Laurent Flindt; Pisinger, David

    2013-01-01

    Motivated by addressing probabilistic 0-1 programs we study the conic quadratic knapsack polytope with generalized upper bound (GUB) constraints. In particular, we investigate separating and extending GUB cover inequalities. We show that, unlike in the linear case, determining whether a cover can...... be extended with a single variable is NP-hard. We describe and compare a number of exact and heuristic separation and extension algorithms which make use of the structure of the constraints. Computational experiments are performed for comparing the proposed separation and extension algorithms...

  18. Separation and extension of cover inequalities for second-order conic knapsack constraints with GUBs

    DEFF Research Database (Denmark)

    Atamtürk, Alper; Muller, Laurent Flindt; Pisinger, David

    We consider the second-order conic equivalent of the classic knapsack polytope where the variables are subject to generalized upper bound constraints. We describe and compare a number of separation and extension algorithms which make use of the extra structure implied by the generalized upper bound...... constraints in order to strengthen the second-order conic equivalent of the classic cover cuts. We show that determining whether a cover can be extended with a variable is NP-hard. Computational experiments are performed comparing the proposed separation and extension algorithms. These experiments show...

  19. Changes in climatic conditions, vegetation cover and erosion during the Holocene in southeast Spain

    Energy Technology Data Exchange (ETDEWEB)

    Bellin, N.; Vanacker, V.

    2009-07-01

    The present-day landscape in Southeast Spain is the result of a long occupation history. To have a better understanding of the impact of human societies on soil degradation, we analysed the main shifts in vegetation cover, climate and human occupation for the last 12000 years. Our analyses use recently published information from continental and marine pollen series. The data suggest that climatic factors appear to be important driving factors of vegetation degradation induced by an increased aridity that is already recorded at about 5000 years ago. (Author) 19 refs.

  20. Changes in climatic conditions, vegetation cover and erosion during the Holocene in southeast Spain

    International Nuclear Information System (INIS)

    Bellin, N.; Vanacker, V.

    2009-01-01

    The present-day landscape in Southeast Spain is the result of a long occupation history. To have a better understanding of the impact of human societies on soil degradation, we analysed the main shifts in vegetation cover, climate and human occupation for the last 12000 years. Our analyses use recently published information from continental and marine pollen series. The data suggest that climatic factors appear to be important driving factors of vegetation degradation induced by an increased aridity that is already recorded at about 5000 years ago. (Author) 19 refs.

  1. Calculation set for design and optimization of vegetative soil covers Sandia National Laboratories, Albuquerque, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Peace, Gerald L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM)

    2005-02-01

    This study demonstrates that containment of municipal and hazardous waste in arid and semiarid environments can be accomplished effectively without traditional, synthetic materials and complex, multi-layer systems. This research demonstrates that closure covers combining layers of natural soil, native plant species, and climatic conditions to form a sustainable, functioning ecosystem will meet the technical equivalency criteria prescribed by the U. S. Environmental Protection Agency. In this study, percolation through a natural analogue and an engineered cover is simulated using the one-dimensional, numerical code UNSAT-H. UNSAT-H is a Richards. equation-based model that simulates soil water infiltration, unsaturated flow, redistribution, evaporation, plant transpiration, and deep percolation. This study incorporates conservative, site-specific soil hydraulic and vegetation parameters. Historical meteorological data are used to simulate percolation through the natural analogue and an engineered cover, with and without vegetation. This study indicates that a 3-foot (ft) cover in arid and semiarid environments is the minimum design thickness necessary to meet the U. S. Environmental Protection Agency-prescribed technical equivalency criteria of 31.5 millimeters/year and 1 x 10{sup -7} centimeters/second for net annual percolation and average flux, respectively. Increasing cover thickness to 4 or 5 ft results in limited additional improvement in cover performance.

  2. Field performance of alternative landfill covers vegetated with cottonwood and eucalyptus trees.

    Science.gov (United States)

    Abichou, Tarek; Musagasa, Jubily; Yuan, Lei; Chanton, Jeff; Tawfiq, Kamal; Rockwood, Donald; Licht, Louis

    2012-01-01

    A field study was conducted to assess the ability of landfill covers to control percolation into the waste. Performance of one conventional cover was compared to that of two evapotranspiration (ET) tree covers, using large (7 x 14 m) lined lysimeters at the Leon County Solid Waste management facility in Tallahassee, Florida. Additional unlined test sections were also constructed and monitored in order to compare soil water storage, soil temperature, and tree growth inside lysimeters and in unlined test sections. The unlined test sections were in direct contact with landfill gas. Surface runoff on the ET covers was a small proportion of the water balance (1% of precipitation) as compared to 13% in the conventional cover. Percolation in the ET covers averaged 17% and 24% of precipitation as compared to 33% in the conventional cover. On average, soil water storage was higher in the lined lysimeters (429 mm) compared to unlined test sections (408 mm). The average soil temperature in the lysimeters was lower than in the unlined test sections. The average tree height inside the lysimeters was not significantly lower (8.04 mfor eucalyptus and 7.11 mfor cottonwood) than outside (8.82 m for eucalyptus and 8.01 m for cottonwood). ET tree covers vegetated with cottonwood or eucalyptus are feasible for North Florida climate as an alternative to GCL covers.

  3. Consequences of changes in vegetation and snow cover for climate feedbacks in Alaska and northwest Canada

    Science.gov (United States)

    Euskirchen, Eugénie S.; Bennett, A. P.; Breen, Amy L.; Genet, Helene; Lindgren, Michael A.; Kurkowski, Tom; McGuire, A. David; Rupp, T. Scott

    2016-01-01

    Changes in vegetation and snow cover may lead to feedbacks to climate through changes in surface albedo and energy fluxes between the land and atmosphere. In addition to these biogeophysical feedbacks, biogeochemical feedbacks associated with changes in carbon (C) storage in the vegetation and soils may also influence climate. Here, using a transient biogeographic model (ALFRESCO) and an ecosystem model (DOS-TEM), we quantified the biogeophysical feedbacks due to changes in vegetation and snow cover across continuous permafrost to non-permafrost ecosystems in Alaska and northwest Canada. We also computed the changes in carbon storage in this region to provide a general assessment of the direction of the biogeochemical feedback. We considered four ecoregions, or Landscape Conservations Cooperatives (LCCs; including the Arctic, North Pacific, Western Alaska, and Northwest Boreal). We examined the 90 year period from 2010 to 2099 using one future emission scenario (A1B), under outputs from two general circulation models (MPI-ECHAM5 and CCCMA-CGCM3.1). We found that changes in snow cover duration, including both the timing of snowmelt in the spring and snow return in the fall, provided the dominant positive biogeophysical feedback to climate across all LCCs, and was greater for the ECHAM (+3.1 W m−2 decade−1regionally) compared to the CCCMA (+1.3 W m−2 decade−1 regionally) scenario due to an increase in loss of snow cover in the ECHAM scenario. The greatest overall negative feedback to climate from changes in vegetation cover was due to fire in spruce forests in the Northwest Boreal LCC and fire in shrub tundra in the Western LCC (−0.2 to −0.3 W m−2 decade−1). With the larger positive feedbacks associated with reductions in snow cover compared to the smaller negative feedbacks associated with shifts in vegetation, the feedback to climate warming was positive (total feedback of +2.7 W m−2decade regionally in the ECHAM scenario compared to +0.76 W

  4. Status of vegetation cover after 25 years since the last wildfire (Río Verde, Spain)

    Science.gov (United States)

    Martinez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.

    2016-04-01

    Climatic conditions play an important role in the post-fire vegetation recovery as well as other factors like topography, soil, and pre and post-fire land use (Shakesby, 2011; Robichaud et al., 2013). This study deals with the characterization of the vegetation cover status in an area affected by a wildfire 25 years ago. Namely, the objectives are to: i) compare the current and previous vegetation cover to wildfire; and ii) evaluate whether the current vegetation has recovered the previous cover to wildfire. The study area is mainly located in the Rio Verde watershed (Sierra de las Nieves, South of Spain). It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8,156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1700 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. The Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover maps were obtained by means of object-oriented classifications. Also, NDVI index were calculated and mapped for both years in order to compare the status of vegetation cover. According to the results, the combination of remote sensing and GIS analysis let map the most recovered areas affected by the wildfire in 1991. The vegetation indexes indicated that

  5. Land Use and Land Cover - LAND_COVER_PRESETTLEMENT_IDNR_IN: Generalized Presettlement Vegetation Types of Indiana, Circa 1820 (Indiana Department of Natural Resources, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — LAND_COVER_PRESETTLEMENT_IDNR_IN.SHP is a polygon shapefile showing generalized presettlement vegetation types of Indiana, circa 1820. The work was based on original...

  6. Artichoke (Cynara scolymus L. as cash-cover crop in an organic vegetable system

    Directory of Open Access Journals (Sweden)

    Anna LENZI

    2015-11-01

    Full Text Available In organic vegetable systems green manure crops play an important role as a nitrogen source, but they cover the soil for several months without producing a direct income. Globe artichoke (Cynara scolymus L. provides both heads to be harvested and particularly abundant plant residues to be possibly incorporated into the soil, so it may play a double role of cash and cover crop. This paper describes an on-farm study in which seed-propagated artichoke, cultivated as an annual crop, preceded zucchini squash and lettuce cultivated in sequence within a vegetable organic system. Artichoke produced about 7 t ha-1 of saleable heads and left, after harvest, 50.3 t ha-1 of fresh biomass usable as green manure. Zucchini squash and lettuce following artichoke showed a significant increase in yield when artichoke residues were incorporated into the soil. Furthermore, a residual positive effect of green manure on soil fertility was detected after lettuce harvest. 

  7. Vegetation cover and land use of a protected coastal area and its surroundings, southeast Brazil

    OpenAIRE

    Caris,Elisa Araujo Penna; Kurtz,Bruno Coutinho; Cruz,Carla Bernadete Madureira; Scarano,Fabio Rubio

    2013-01-01

    We applied remote sensing techniques on a TM Landsat 5 image (1:50,000) to map land use and vegetation cover of the Restinga de Jurubatiba National Park and surroundings. The thematic map generated from the digital classification of the image allowed us to spatially characterize and quantify the different land uses and soil covers of the area. Thirteen classes were identified. The most representative classes in the park were the Clusia (31.99%) and Ericaceae formations (29.14%). More than 90%...

  8. Surrounding land cover types as predictors of palustrine wetland vegetation quality in conterminous USA

    Science.gov (United States)

    Stapanian, Martin A.; Gara, Brian; Schumacher, William

    2018-01-01

    The loss of wetland habitats and their often-unique biological communities is a major environmental concern. We examined vegetation data obtained from 380 wetlands sampled in a statistical survey of wetlands in the USA. Our goal was to identify which surrounding land cover types best predict two indices of vegetation quality in wetlands at the regional scale. We considered palustrine wetlands in four regions (Coastal Plains, North Central East, Interior Plains, and West) in which the dominant vegetation was emergent, forested, or scrub-shrub. For each wetland, we calculated weighted proportions of eight land cover types surrounding the area in which vegetation was assessed, in four zones radiating from the edge of the assessment area to 2 km. Using Akaike's Information Criterion, we determined the best 1-, 2- and 3-predictor models of the two indices, using the weighted proportions of the land cover types as potential predictors. Mean values of the two indices were generally higher in the North Central East and Coastal Plains than the other regions for forested and emergent wetlands. In nearly all cases, the best predictors of the indices were not the dominant surrounding land cover types. Overall, proportions of forest (positive effect) and agriculture (negative effect) surrounding the assessment area were the best predictors of the two indices. One or both of these variables were included as predictors in 65 of the 72 models supported by the data. Wetlands surrounding the assessment area had a positive effect on the indices, and ranked third (33%) among the predictors included in supported models. Development had a negative effect on the indices and was included in only 28% of supported models. These results can be used to develop regional management plans for wetlands, such as creating forest buffers around wetlands, or to conserve zones between wetlands to increase habitat connectivity.

  9. Snowmelt in a High Latitude Mountain Catchment: Effect of Vegetation Cover and Elevation

    Science.gov (United States)

    Pomeroy, J. W.; Essery, R. L.; Ellis, C. R.; Hedstrom, N. R.; Janowicz, R.; Granger, R. J.

    2004-12-01

    The energetics and mass balance of snowpacks in the premelt and melt period were compared from three elevation bands in a high latitude mountain catchment, Wolf Creek Research Basin, Yukon. Elevation is strongly correlated with vegetation cover and in this case the three elevation bands (low, middle, high) correspond to mature spruce forest, dense shrub tundra and sparse tundra (alpine). Measurements of radiation, ground heat flux, snow depth, snowfall, air temperature, wind speed were made on a half-hourly basis at the three elevations for a 10 year period. Sondes provided vertical gradients of air temperature, humidity, wind speed and air pressure. Snow depth and density surveys were conducted monthly. Comparisons of wind speed, air temperature and humidity at three elevations show that the expected elevational gradients in the free atmosphere were slightly enhanced just above the surface canopies, but that the climate at the snow surface was further influenced by complex canopy effects. Premelt snow accumulation was strongly affected by intercepted snow in the forest and blowing snow sublimation in the sparse tundra but not by the small elevational gradients in snowfall. As a result the maximum premelt SWE was found in the mid-elevation shrub tundra and was roughly double that of the sparse tundra or forest. Minimum variability of SWE was observed in the forest and shrub tundra (CV=0.25) while in the sparse tundra variability doubled (CV=0.5). Snowmelt was influenced by differences in premelt accumulation as well as differences in the net energy fluxes to snow. Elevation had a strong effect on the initiation of melt with the forest melt starting on average 16 days before the shrub tundra and 19 days before the sparse tundra. Mean melt rates showed a maximum in middle elevations and increased from 860 kJ/day in the forest to 1460 kJ/day in the sparse tundra and 2730 kJ/day in the shrub tundra. The forest canopy reduced melt while the shrub canopy enhanced it

  10. A land-cover map for South and Southeast Asia derived from SPOT-VEGETATION data

    Science.gov (United States)

    Stibig, H.-J.; Belward, A.S.; Roy, P.S.; Rosalina-Wasrin, U.; Agrawal, S.; Joshi, P.K.; ,; Beuchle, R.; Fritz, S.; Mubareka, S.; Giri, C.

    2007-01-01

    Aim  Our aim was to produce a uniform ‘regional’ land-cover map of South and Southeast Asia based on ‘sub-regional’ mapping results generated in the context of the Global Land Cover 2000 project.Location  The ‘region’ of tropical and sub-tropical South and Southeast Asia stretches from the Himalayas and the southern border of China in the north, to Sri Lanka and Indonesia in the south, and from Pakistan in the west to the islands of New Guinea in the far east.Methods  The regional land-cover map is based on sub-regional digital mapping results derived from SPOT-VEGETATION satellite data for the years 1998–2000. Image processing, digital classification and thematic mapping were performed separately for the three sub-regions of South Asia, continental Southeast Asia, and insular Southeast Asia. Landsat TM images, field data and existing national maps served as references. We used the FAO (Food and Agriculture Organization) Land Cover Classification System (LCCS) for coding the sub-regional land-cover classes and for aggregating the latter to a uniform regional legend. A validation was performed based on a systematic grid of sample points, referring to visual interpretation from high-resolution Landsat imagery. Regional land-cover area estimates were obtained and compared with FAO statistics for the categories ‘forest’ and ‘cropland’.Results  The regional map displays 26 land-cover classes. The LCCS coding provided a standardized class description, independent from local class names; it also allowed us to maintain the link to the detailed sub-regional land-cover classes. The validation of the map displayed a mapping accuracy of 72% for the dominant classes of ‘forest’ and ‘cropland’; regional area estimates for these classes correspond reasonably well to existing regional statistics.Main conclusions  The land-cover map of South and Southeast Asia provides a synoptic view of the distribution of land cover of tropical and sub

  11. Effect of management systems and cover crops on organic matter dynamics of soil under vegetables

    Directory of Open Access Journals (Sweden)

    Rodrigo Fernandes de Souza

    2014-06-01

    Full Text Available Vegetable production in conservation tillage has increased in Brazil, with positive effects on the soil quality. Since management systems alter the quantity and quality of organic matter, this study evaluated the influence of different management systems and cover crops on the organic matter dynamics of a dystrophic Red Latosol under vegetables. The treatments consisted of the combination of three soil tillage systems: no-tillage (NT, reduced tillage (RT and conventional tillage (CT and of two cover crops: maize monoculture and maize-mucuna intercrop. Vegetables were grown in the winter and the cover crops in the summer for straw production. The experiment was arranged in a randomized block design with four replications. Soil samples were collected between the crop rows in three layers (0.0-0.05, 0.05-0.10, and 0.10-0.30 m twice: in October, before planting cover crops for straw, and in July, during vegetable cultivation. The total organic carbon (TOC, microbial biomass carbon (MBC, oxidizable fractions, and the carbon fractions fulvic acid (C FA, humic acid (C HA and humin (C HUM were determined. The main changes in these properties occurred in the upper layers (0.0-0.05 and 0.05-0.10 m where, in general, TOC levels were highest in NT with maize straw. The MBC levels were lowest in CT systems, indicating sensitivity to soil disturbance. Under mucuna, the levels of C HA were lower in RT than NT systems, while the C FA levels were lower in RT than CT. For vegetable production, the C HUM values were lowest in the 0.05-0.10 m layer under CT. With regard to the oxidizable fractions, the tillage systems differed only in the most labile C fractions, with higher levels in NT than CT in the 0.0-0.05 m layer in both summer and winter, with no differences between these systems in the other layers. The cabbage yield was not influenced by the soil management system, but benefited from the mulch production of the preceding maize-mucuna intercrop as cover

  12. Non supervised classification of vegetable covers on digital images of remote sensors: Landsat - ETM+

    International Nuclear Information System (INIS)

    Arango Gutierrez, Mauricio; Branch Bedoya, John William; Botero Fernandez, Veronica

    2005-01-01

    The plant species diversity in Colombia and the lack of inventory of them suggests the need for a process that facilitates the work of investigators in these disciplines. Remote satellite sensors such as landsat ETM+ and non-supervised artificial intelligence techniques, such as self-organizing maps - SOM, could provide viable alternatives for advancing in the rapid obtaining of information related to zones with different vegetative covers in the national geography. The zone proposed for the study case was classified in a supervised form by the method of maximum likelihood by another investigation in forest sciences and eight types of vegetative covers were discriminated. This information served as a base line to evaluate the performance of the non-supervised sort keys isodata and SOM. However, the information that the images provided had to first be purified according to the criteria of use and data quality, so that adequate information for these non-supervised methods were used. For this, several concepts were used; such as, image statistics, spectral behavior of the vegetative communities, sensor characteristics and the average divergence that allowed to define the best bands and their combinations. Principal component analysis was applied to these to reduce to the number of data while conserving a large percentage of the information. The non-supervised techniques were applied to these purified data, modifying some parameters that could yield a better convergence of the methods. The results obtained were compared with the supervised classification via confusion matrices and it was concluded that there was not a good convergence of non-supervised classification methods with this process for the case of vegetative covers

  13. Vegetation cover, avoided erosion and water quality in high Andean wetlands, Yeso River Basin

    Science.gov (United States)

    León, Alejandro; Soto, Jorge; Seguel, Oscar; Pérez, Javier; Osses, Daniela; Leiva, Nicolás; Zerega, Linka

    2017-04-01

    Wetlands on the high Andes mountains near Santiago de Chile have been impacted by overgrazing and off-road tourists. We studied wetlands in El Yeso River basin. In February 2015 we established 36 exclusions and measured vegetation cover and height, biomass production in and out the exclusions starting in October. Water and undisturbed soil samples were collected. Data were analyzed statistically to estimate i) the recovery of vegetation, and ii) the influence of grazing and vehicle traffic on vegetation loss, and iii) impacts on soil and water quality. In areas with less intense traffic, the difference in vegetation coverage in and out the exclusions is 22% (± 11.4%); in areas with more intense traffic this difference is 16% (± 16%). Height of vegetation, in the less intense traffic areas, ranges from 6.25 cm (± 2.8) to 13.32 cm (± 6.3). With higher traffic it varies between 6.9 cm (± 3.1) and 13.6 cm (± 5.4). Biomass varies between 0.06 kg DM/m2 to 0.57 kg DM/m2 depending on botanical composition and date. After water circulates through the wetlands its content of nitrogen increases 37.33% to 0.37 mg N/l and the fecal coliforms 66.67% to 0.67 MPN/100 ml, because of cattle. On the contrary, turbidity decreases 20.67% to 0.21 UNT because sediments are captured by vegetation. We also estimated an avoided erosion rate, ranging between 1.23% and 31.87% (depending on the slope) due to the increase in coverage within the exclusions.

  14. A dataset mapping the potential biophysical effects of vegetation cover change

    Science.gov (United States)

    Duveiller, Gregory; Hooker, Josh; Cescatti, Alessandro

    2018-02-01

    Changing the vegetation cover of the Earth has impacts on the biophysical properties of the surface and ultimately on the local climate. Depending on the specific type of vegetation change and on the background climate, the resulting competing biophysical processes can have a net warming or cooling effect, which can further vary both spatially and seasonally. Due to uncertain climate impacts and the lack of robust observations, biophysical effects are not yet considered in land-based climate policies. Here we present a dataset based on satellite remote sensing observations that provides the potential changes i) of the full surface energy balance, ii) at global scale, and iii) for multiple vegetation transitions, as would now be required for the comprehensive evaluation of land based mitigation plans. We anticipate that this dataset will provide valuable information to benchmark Earth system models, to assess future scenarios of land cover change and to develop the monitoring, reporting and verification guidelines required for the implementation of mitigation plans that account for biophysical land processes.

  15. NDVI indicated characteristics of vegetation cover change in China's metropolises over the last three decades.

    Science.gov (United States)

    Sun, Jinyu; Wang, Xuhui; Chen, Anping; Ma, Yuecun; Cui, Mengdi; Piao, Shilong

    2011-08-01

    How urban vegetation was influenced by three decades of intensive urbanization in China is of great interest but rarely studied. In this paper, we used satellite derived Normalized Difference Vegetation Index (NDVI) and socioeconomic data to evaluate effects of urbanization on vegetation cover in China's 117 metropolises over the last three decades. Our results suggest that current urbanization has caused deterioration of urban vegetation across most cities in China, particularly in East China. At the national scale, average urban area NDVI (NDVI(u)) significantly decreased during the last three decades (P NDVI(u) did not show statistically significant trend before 1990 but decrease remarkably after 1990 (P NDVI(u) turning point. The year when NDVI(u) started to decline significantly for Central China and East China was 1987 and 1990, respectively, while NDVI(u) in West China remained relatively constant until 1998. NDVI(u) changes in the Yangtze River Delta and the Pearl River Delta, two regions which has been undergoing the most rapid urbanization in China, also show different characteristics. The Pearl River Delta experienced a rapid decline in NDVI(u) from the early 1980s to the mid-1990s; while in the Yangtze River Delta, NDVI(u) did not decline significantly until the early 1990s. Such different patterns of NDVI(u) changes are closely linked with policy-oriented difference in urbanization dynamics of these regions, which highlights the importance of implementing a sustainable urban development policy.

  16. Analysing land and vegetation cover dynamics during last three decades in Katerniaghat wildlife sanctuary, India

    Science.gov (United States)

    Chitale, V. S.; Behera, M. D.

    2014-10-01

    The change in the tropical forests could be clearly linked to the expansion of the human population and economies. An understanding of the anthropogenic forcing plays an important role in analyzing the impacts of climate change and the fate of tropical forests in the present and future scenario. In the present study, we analyze the impact of natural and anthropogenic factors in forest dynamics in Katerniaghat wildlife sanctuary situated along the Indo-Nepal border in Uttar Pradesh state, India. The study site is under tremendous pressure due to anthropogenic factors from surrounding areas since last three decades. The vegetation cover of the sanctuary primarily comprised of Shorea robusta forests, Tectona grandis plantation, and mixed deciduous forest; while the land cover comprised of agriculture, barren land, and water bodies. The classification accuracy was 83.5%, 91.5%, and 95.2% with MSS, IKONOS, and Quickbird datasets, respectively. Shorea robusta forests showed an increase of 16 km2; while Tectona grandis increased by 63.01 km2 during 1975-2010. The spatial heterogeneity in these tropical vegetation classes surrounded by the human dominated agricultural lands could not be addressed using Landsat MSS data due to coarse spatial resolution; whereas the IKONOS and Quickbird satellite datasets proved to advantageous, thus being able to precisely address the variations within the vegetation classes as well as in the land cover classes and along the edge areas. Massive deforestation during 1970s along the adjoining international boundary with Nepal has led to destruction of the wildlife corridor and has exposed the wildlife sanctuary to human interference like grazing and poaching. Higher rates of forest dynamics during the 25-year period indicate the vulnerability of the ecosystem to the natural and anthropogenic disturbances in the proximity of the sanctuary.

  17. Vegetation cover, tidal amplitude and land area predict short-term marsh vulnerability in Coastal Louisiana

    Science.gov (United States)

    Schoolmaster, Donald; Stagg, Camille L.; Sharp, Leigh Anne; McGinnis, Tommy S.; Wood, Bernard; Piazza, Sarai

    2018-01-01

    The loss of coastal marshes is a topic of great concern, because these habitats provide tangible ecosystem services and are at risk from sea-level rise and human activities. In recent years, significant effort has gone into understanding and modeling the relationships between the biological and physical factors that contribute to marsh stability. Simulation-based process models suggest that marsh stability is the product of a complex feedback between sediment supply, flooding regime and vegetation response, resulting in elevation gains sufficient to match the combination of relative sea-level rise and losses from erosion. However, there have been few direct, empirical tests of these models, because long-term datasets that have captured sufficient numbers of marsh loss events in the context of a rigorous monitoring program are rare. We use a multi-year data set collected by the Coastwide Reference Monitoring System (CRMS) that includes transitions of monitored vegetation plots to open water to build and test a predictive model of near-term marsh vulnerability. We found that despite the conclusions of previous process models, elevation change had no ability to predict the transition of vegetated marsh to open water. However, we found that the processes that drive elevation change were significant predictors of transitions. Specifically, vegetation cover in prior year, land area in the surrounding 1 km2 (an estimate of marsh fragmentation), and the interaction of tidal amplitude and position in tidal frame were all significant factors predicting marsh loss. This suggests that 1) elevation change is likely better a predictor of marsh loss at time scales longer than we consider in this study and 2) the significant predictive factors affect marsh vulnerability through pathways other than elevation change, such as resistance to erosion. In addition, we found that, while sensitivity of marsh vulnerability to the predictive factors varied spatially across coastal Louisiana

  18. Present-day vegetation helps quantifying past land cover in selected regions of the Czech Republic.

    Directory of Open Access Journals (Sweden)

    Vojtěch Abraham

    Full Text Available The REVEALS model is a tool for recalculating pollen data into vegetation abundances on a regional scale. We explored the general effect of selected parameters by performing simulations and ascertained the best model setting for the Czech Republic using the shallowest samples from 120 fossil sites and data on actual regional vegetation (60 km radius. Vegetation proportions of 17 taxa were obtained by combining the CORINE Land Cover map with forest inventories, agricultural statistics and habitat mapping data. Our simulation shows that changing the site radius for all taxa substantially affects REVEALS estimates of taxa with heavy or light pollen grains. Decreasing the site radius has a similar effect as increasing the wind speed parameter. However, adjusting the site radius to 1 m for local taxa only (even taxa with light pollen yields lower, more correct estimates despite their high pollen signal. Increasing the background radius does not affect the estimates significantly. Our comparison of estimates with actual vegetation in seven regions shows that the most accurate relative pollen productivity estimates (PPEs come from Central Europe and Southern Sweden. The initial simulation and pollen data yielded unrealistic estimates for Abies under the default setting of the wind speed parameter (3 m/s. We therefore propose the setting of 4 m/s, which corresponds to the spring average in most regions of the Czech Republic studied. Ad hoc adjustment of PPEs with this setting improves the match 3-4-fold. We consider these values (apart from four exceptions to be appropriate, because they are within the ranges of standard errors, so they are related to original PPEs. Setting a 1 m radius for local taxa (Alnus, Salix, Poaceae significantly improves the match between estimates and actual vegetation. However, further adjustments to PPEs exceed the ranges of original values, so their relevance is uncertain.

  19. Influence of vegetable cover on propagation of electromagnetic waves with wavelength longer than 100 m

    Science.gov (United States)

    Egorov, V. A.; Makarov, G. I.

    2006-12-01

    [1] The influence of vegetable cover on propagation ofelectromagnetic waves in the Earth-ionosphere wave channel isstudied in the scope of the model of a homogeneous isotropic``forest layer'' with effective value of the dielectric permeabilityɛf=1.2 and electric conductivityσf (t oC)depending on theenvironmental temperature according to the results obtained in thispaper. It is shown that the character of the electromagnetic fieldbehavior in the presence of large forests is of a well-pronouncedseasonal character additionally complicated by the diurnalvariations of the field depending on the environmental temperaturevariations.

  20. Improvement in remote sensing of low vegetation cover in arid regions by correcting vegetation indices for soil ''noise''

    International Nuclear Information System (INIS)

    Escadafal, R.; Huete, A.

    1991-01-01

    The variations of near-infrared red reflectance ratios of ten aridic soil samples were correlated with a ''redness index'' computed from red and green spectral bands. These variations have been shown to limit the performances of vegetation indices (NDVI and SAVI) in discriminating low vegetation covers. The redness index is used to adjust for this ''soil noise''. Dala simulated for vegetation densities of 5 to 15% cover showed that the sensitivity of the corrected vegetation indices was significantly improved. Specifically, the ''noise-corrected'' SAVI was able to assess vegetation amounts with an error four times smaller than the uncorrected NDVI. These promising results should lead to a significant improvement in assessing biomass in arid lands from remotely sensed data. (author) [fr

  1. Effect of litter, leaf cover and cover of basal internodes of the dominant species Molinia caerulea on seedling recruitment and established vegetation

    Science.gov (United States)

    Janeček, Štěpán; Lepš, Jan

    2005-09-01

    The effects of litter removal, leaf cover of established plants and cover of basal internodes of a dominant species Molinia caerulea on seedling germination and the dynamics of established plants were studied in a field experiment in an oligotrophic wet meadow. Although the negative influence of litter on total seedling number and seedling species composition was non-significant, litter significantly affected the dynamics of the established vegetation and caused inhibition of total leaf cover development. The effects of total leaf cover of established plants on seedling establishment changed during the vegetation season. Whereas the effect of total leaf cover was positive at the start and in the middle of the vegetation season, at the end the total leaf cover negatively affected seedling establishment. Both total leaf cover and cover of basal internodes affected seedling composition. Effects of these two variables were statistically separable suggesting that they are based on different mechanisms. The response of seedling establishment to these factors was species specific and, consequently, our data support the hypothesis that that biotically generated spatial heterogeneity can promote species co-existence through the differentiation of species regeneration niches.

  2. Evaluation of soil resources for sustained vegetative cover of cut-slopes along I-70 near Straight Creek.

    Science.gov (United States)

    2013-07-01

    Revegetation of high elevation decomposed granite cut-slopes often requires repeated applications of soil : amendments to attain sustained vegetative cover. Plant transects from slopes west of the Eisenhower Tunnel from : 2007 to 2012 showed that cov...

  3. Integrating Remote Sensing and Field Data to Monitor Changes in Vegetative Cover on a Multipurpose Range Complex and Adjacent Training Lands at Camp Grayling, Michigan

    National Research Council Canada - National Science Library

    Tweddale, Scott

    2001-01-01

    .... Remote sensing and field surveys were used to determine vegetative cover. In the field, vegetative cover data were collected on systematically allocated plots during the peak of the growing season in 1997...

  4. Rapid responses of permafrost and vegetation to experimentally increased snow cover in sub-arctic Sweden

    International Nuclear Information System (INIS)

    Johansson, Margareta; Bosiö, Julia; Akerman, H Jonas; Jackowicz-Korczynski, Marcin; Christensen, Torben R; Callaghan, Terry V

    2013-01-01

    Increased snow depth already observed, and that predicted for the future are of critical importance to many geophysical and biological processes as well as human activities. The future characteristics of sub-arctic landscapes where permafrost is particularly vulnerable will depend on complex interactions between snow cover, vegetation and permafrost. An experimental manipulation was, therefore, set up on a lowland peat plateau with permafrost, in northernmost Sweden, to simulate projected future increases in winter precipitation and to study their effects on permafrost and vegetation. After seven years of treatment, statistically significant differences between manipulated and control plots were found in mean winter ground temperatures, which were 1.5 ° C higher in manipulated plots. During the winter, a difference in minimum temperatures of up to 9 ° C higher could be found in individual manipulated plots compared with control plots. Active layer thicknesses increased at the manipulated plots by almost 20% compared with the control plots and a mean surface subsidence of 24 cm was recorded in the manipulated plots compared to 5 cm in the control plots. The graminoid Eriophorum vaginatum has expanded in the manipulated plots and the vegetation remained green longer in the season. (letter)

  5. Solar radiation measurements and Leaf Area Index (LAI) from vegetal covers

    International Nuclear Information System (INIS)

    Wandelli, E.V.; Marques Filho, A. de O.

    1999-01-01

    A method by which a physical model of the solar radiation transfer in a vegetal medium is inverted to estimate the leaf area index (LAI) for different types of vegetation is presented here, as an alternative to the destructive experiments, which are a hard task to implement on the vegetation covers. Radiation data were obtained during the dry season — 1996, at the Embrapa Experimental Station, (BR 174 - km 54, 2° 31' S, 60° 01' W), Manaus, Brazil. The method yielded convergent values for the LAI between different adopted radiation classes with more stable estimates at time when there is a predominant diffuse radiation. The application of the inversion algorithm yields the following values for the leaf area index and respective annual foliage increments: 3.5 (0.35 yr. -1 ) for the intact secondary forest; 2.0 (0.5 yr -1 ) for the palm agroforestry system; and 1.6 (0.4 yr -1 ) for the multi-layer ones [pt

  6. EnviroAtlas - Austin, TX - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. EnviroAtlas - Cleveland, OH - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  8. EnviroAtlas - New York, NY - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  9. EnviroAtlas - Des Moines, IA - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest and Grass & Herbaceous. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://enviroatlas.epa.gov/EnviroAtlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets)

  10. EnviroAtlas - Minneapolis/St. Paul, MN - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. In this community, vegetated cover is defined as Trees and Forest, Grass and Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. Impact of Vegetation Cover Fraction Parameterization schemes on Land Surface Temperature Simulation in the Tibetan Plateau

    Science.gov (United States)

    Lv, M.; Li, C.; Lu, H.; Yang, K.; Chen, Y.

    2017-12-01

    The parameterization of vegetation cover fraction (VCF) is an important component of land surface models. This paper investigates the impacts of three VCF parameterization schemes on land surface temperature (LST) simulation by the Common Land Model (CoLM) in the Tibetan Plateau (TP). The first scheme is a simple land cover (LC) based method; the second one is based on remote sensing observation (hereafter named as RNVCF) , in which multi-year climatology VCFs is derived from Moderate-resolution Imaging Spectroradiometer (MODIS) NDVI (Normalized Difference Vegetation Index); the third VCF parameterization scheme derives VCF from the LAI simulated by LSM and clump index at every model time step (hereafter named as SMVCF). Simulated land surface temperature(LST) and soil temperature by CoLM with three VCF parameterization schemes were evaluated by using satellite LST observation and in situ soil temperature observation, respectively, during the period of 2010 to 2013. The comparison against MODIS Aqua LST indicates that (1) CTL produces large biases for both four seasons in early afternoon (about 13:30, local solar time), while the mean bias in spring reach to 12.14K; (2) RNVCF and SMVCF reduce the mean bias significantly, especially in spring as such reduce is about 6.5K. Surface soil temperature observed at 5 cm depth from three soil moisture and temperature monitoring networks is also employed to assess the skill of three VCF schemes. The three networks, crossing TP from West to East, have different climate and vegetation conditions. In the Ngari network, located in the Western TP with an arid climate, there are not obvious differences among three schemes. In Naqu network, located in central TP with a semi-arid climate condition, CTL shows a severe overestimates (12.1 K), but such overestimations can be reduced by 79% by RNVCF and 87% by SMVCF. In the third humid network (Maqu in eastern TP), CoLM performs similar to Naqu. However, at both Naqu and Maqu networks

  12. Vegetation Cover and Furrow Erosion due to Extreme Rain Events in Semiarid Environments

    Directory of Open Access Journals (Sweden)

    Belén Cárceles-Rodríguez

    2017-05-01

    Full Text Available The conservation of the soil resource in semi-arid environments is one of the major challenges of agricultural systems, particularly in the Mediterranean region. In the present study, two types of soil management were compared: minimum tillage (ML and minimum tillage with spontaneous vegetation cover (MLVE. The comparison was conducted in a rainfed almond plantation at slope (35%, under an extraordinary event in 2015 (91.3 mm and EI30 of 2,719.89 mm ha-1 h-1. In this situation in MLVE plots, the development of furrows in contrast to ML were not recorded; the total soil loss was more than 12 times lower than that recorded in the latter. This fact demonstrated the effectiveness of the vegetal cover in the protection of the agricultural soil against the erosion during extreme events. Also, for ML management, furrow erosion represented more than 60% of the total soil loss, demonstrating the dominance of this type of erosion. Finally, it should be noted that this event represents the almost total loss of soil recorded in the experimental plots during the period 2012-2015; and this consequently shows the significant impact of extreme events on erosion rates in the Mediterranean region.

  13. Influence of shrub cover vegetal and slope length on soil bulk density

    International Nuclear Information System (INIS)

    Bienes, R.; Jimenez, R.; Ruiz, M.; Garcia-Estringana, P.; Marques, M. J.

    2009-01-01

    In arid and semiarid environments of the Mediterranean climate, the shrub species play an important role in the revegetation of abandoned lands, which enables to control the soil losses, organic material and water. In this article are compared the results obtained under different revegetation in abandoned lands in the central area of Spain. In these revegetation has been used two native shrubs: A triplex halimus (Ah) and Retama sphaerocarpa (Rs), and were analyzed the influence of these revegetation in the contents of organic material of soil and apparent density in 5 years time after planting. As control, have been considered the pieces of ground with spontaneous vegetation abandoned in the same date that the shrubs revegetation. Atriplex halimus gives to the soil a covering capable to intercept a big amount of water drops absorbing a great amount part of the kinetic energy of the rain, while provides a microclimates as a result of be able to soften the wind, the temperature and the evaporation-transpiration, which makes it efficient to control the erosion and the desertification (Le Houerou, 2000). Retama sphaerocarpa was chosen because it is a native shrub very characteristic, and, due to its symbiosis with the Bradyrhizobium, enriches the soil in nitrogen, which is taken by the nitrophilous species enhancing the spontaneous vegetal covering. (Author) 9 refs.

  14. Simulating the effect of vegetation cover on the sediment yield of mediterranean catchments using SHETRAN

    Science.gov (United States)

    Lukey, B. T.; Sheffield, J.; Bathurst, J. C.; Lavabre, J.; Mathys, N.; Martin, C.

    1995-08-01

    The sediment yield of two catchments in southern France was modelled using the newly developed sediment code of SHETRAN. A fire in August 1990 denuded the Rimbaud catchment, providing an opportunity to study the effect of vegetation cover on sediment yield by running the model for both pre-and post-fire cases. Model output is in the form of upper and lower bounds on sediment discharge, reflecting the uncertainty in the erodibility of the soil. The results are encouraging since measured sediment discharge falls largely between the predicted bounds, and simulated sediment yield is dramatically lower for the catchment before the fire which matches observation. SHETRAN is also applied to the Laval catchment, which is subject to Badlands gulley erosion. Again using the principle of generating upper and lower bounds on sediment discharge, the model is shown to be capable of predicting the bulk sediment discharge over periods of months. To simulate the effect of reforestation, the model is run with vegetation cover equivalent to a neighbouring fully forested basin. The results obtained indicate that SHETRAN provides a powerful tool for predicting the impact of environmental change and land management on sediment yield.

  15. Landfill cover soil, soil solution, and vegetation responses to municipal landfill leachate applications.

    Science.gov (United States)

    Macdonald, Neil W; Rediske, Richard R; Scull, Brian T; Wierzbicki, David

    2008-01-01

    Municipal solid waste landfill leachate must be removed and treated to maintain landfill cover integrity and to prevent contamination of surface and ground waters. From 2003 to 2007, we studied an onsite disposal system in Ottawa County, Michigan, where leachate was spray irrigated on the vegetated landfill cover. We established six 20-m-diameter circular experimental plots on the landfill; three were spray irrigated as part of the operational system, and three remained as untreated control plots. We quantified the effects of leachate application on soil properties, soil solution chemistry, vegetative growth, and estimated solute leaching. The leachate had high mean levels of electrical conductivity (0.6-0.7 S m(-1)), Cl (760-900 mg L(-1)), and NH(4)-N (290-390 mg L(-1)) but was low in metals and volatile organic compounds. High rates of leachate application in 2003 (32 cm) increased soil electrical conductivity and NO(3)-N leaching, so a sequential rotation of spray areas was implemented to limit total leachate application to <9.6 cm yr(-1) per spray area. Concentrations of NO(3)-N and leaching losses remained higher on irrigated plots in subsequent years but were substantially reduced by spray area rotation. Leachate irrigation increased plant biomass but did not significantly affect soil metal concentrations, and plant metal concentrations remained within normal ranges. Rotating spray areas and timing irrigation to conform to seasonal capacities for evapotranspiration reduced the localized impacts of leachate application observed in 2003. Careful monitoring of undiluted leachate applications is required to avoid adverse impacts to vegetation or soils and elevated solute leaching losses.

  16. Landslides and vegetation cover in the 2005 North Pakistan earthquake: a GIS and statistical quantitative approach

    Directory of Open Access Journals (Sweden)

    P. Peduzzi

    2010-04-01

    Full Text Available The growing concern for loss of services once provided by natural ecosystems is getting increasing attention. However, the accelerating rate of natural resources destruction calls for rapid and global action. With often very limited budgets, environmental agencies and NGOs need cost-efficient ways to quickly convince decision-makers that sound management of natural resources can help to protect human lives and their welfare. The methodology described in this paper, is based on geospatial and statistical analysis, involving simple Geographical Information System (GIS and remote sensing algorithms. It is based on free or very low-cost data. It aims to scientifically assess the potential role of vegetation in mitigating landslides triggered by earthquakes by normalising for other factors such as slopes and distance from active fault. The methodology was applied to the 2005 North Pakistan/India earthquake which generated a large number of victims and hundreds of landslides. The study shows that if slopes and proximity from active fault are the main susceptibility factors for post landslides triggered by earthquakes in this area, the results clearly revealed that areas covered by denser vegetation suffered less and smaller landslides than areas with thinner (or devoid of vegetation cover. Short distance from roads/trails and rivers also proved to be pertinent factors in increasing landslides susceptibility. This project is a component of a wider initiative involving the Global Resource Information Database Europe from the United Nations Environment Programme, the International Union for Conservation of Nature, the Institute of Geomatics and Risk Analysis from the University of Lausanne and the "institut universitaire d'études du développement" from the University of Geneva.

  17. Contrasting Convective Flux Gradients in the U.S. Corn Belt as a Result of Vegetation Land Cover Type

    Science.gov (United States)

    Hiestand, M.

    2017-12-01

    Phenological differences between extensive croplands and remnant forests in the U.S. Corn Belt have been suggested as enhancing spatial gradients of latent and sensible heat fluxes that contribute to the distribution and amounts of convective rainfall on mesoscales. However, the exact magnitude of the intra-seasonal variability in convective fluxes between these two land-cover types has yet to be quantified. Previous work suggesting that non-classical mesoscale circulations operate within the Corn Belt has not involved direct flux observations obtained using the eddy flux covariance technique. This study compares five day running means of daily heat fluxes between two Ameriflux towers (US-Bo1 in Illinois and US-MMS in Indiana) representing rain-fed cropland and remnant forest, respectively for the growing seasons of 1999-2008. Latent heat values normalized to the net radiation show higher rates of evapotranspiration at the forested site than over the cropland during the start of the growing season. However, toward the end of the growing season, latent heat fluxes from the forest decrease and the cropland becomes the dominate source of evapotranspiration. Conversely, croplands dominate sensible heat fluxes at the start of the growing season whereas the remnant forests are associated with strong sensible heat fluxes in late summer. These intra-seasonal spatial differences of latent and sensible heat fluxes across the Corn Belt imply differences in moisture pooling that are suggested as enhancing atmospheric convection during favorable synoptic conditions, especially near the boundaries of these two land cover types. Understanding the physical mechanisms by which the spatial distribution of vegetated land cover can generate contrasting latent and sensible heat fluxes will lay the groundwork for improving mesoscale precipitation forecasts in the Corn Belt, and determining the possible impacts of ongoing land-cover and climate changes there.

  18. Accuracy assessment of the vegetation continuous field tree cover product using 3954 ground plots in the southwestern USA

    Science.gov (United States)

    M. A. White; J. D. Shaw; R. D. Ramsey

    2005-01-01

    An accuracy assessment of the Moderate Resolution Imaging Spectroradiometer (MODIS) vegetation continuous field (VCF) tree cover product using two independent ground-based tree cover databases was conducted. Ground data included 1176 Forest Inventory and Analysis (FIA) plots for Arizona and 2778 Southwest Regional GAP (SWReGAP) plots for Utah and western Colorado....

  19. Evaluation of the data of vegetable covering using fraction images and multitemporal vegetation index, derived of orbital data of moderate resolution of the sensor MODIS

    International Nuclear Information System (INIS)

    Murillo Mejia, Mario Humberto

    2006-01-01

    The objective was to evaluate the data obtained by sensor MODIS onboard the EOS terra satellite land cover units. The study area is the republic of Colombia in South America. The methodology consisted of analyzing the multitemporal (vegetation, soil and shade-water) fraction images and vegetation indices (NDVI) apply the lineal spectral mixture model to products derived from derived images by sensor MODIS data obtained in years 2001 and 2003. The mosaics of the original and the transformed vegetation (soil and shade-water) bands were generated for the whole study area using SPRING 4. 0 software, developed by INPE then these mosaics were segmented, classified, mapped, and edited to obtain a moderate resolution land cover map. The results derived from MODIS analysis were compared with Landsat ETM+ data acquire for a single test site. The results of the project showed the usefulness of MODIS images for large-scale land cover mapping and monitoring studies

  20. Vegetation cover in relation to socioeconomic factors in a tropical city assessed from sub-meter resolution imagery.

    Science.gov (United States)

    Martinuzzi, Sebastián; Ramos-González, Olga M; Muñoz-Erickson, Tischa A; Locke, Dexter H; Lugo, Ariel E; Radeloff, Volker C

    2018-04-01

    Fine-scale information about urban vegetation and social-ecological relationships is crucial to inform both urban planning and ecological research, and high spatial resolution imagery is a valuable tool for assessing urban areas. However, urban ecology and remote sensing have largely focused on cities in temperate zones. Our goal was to characterize urban vegetation cover with sub-meter (urban vegetation patterns in a tropical city, the San Juan Metropolitan Area, Puerto Rico. Our specific objectives were to (1) map vegetation cover using sub-meter spatial resolution (0.3-m) imagery, (2) quantify the amount of residential and non-residential vegetation, and (3) investigate the relationship between patterns of urban vegetation vs. socioeconomic and environmental factors. We found that 61% of the San Juan Metropolitan Area was green and that our combination of high spatial resolution imagery and object-based classification was highly successful for extracting vegetation cover in a moist tropical city (97% accuracy). In addition, simple spatial pattern analysis allowed us to separate residential from non-residential vegetation with 76% accuracy, and patterns of residential and non-residential vegetation varied greatly across the city. Both socioeconomic (e.g., population density, building age, detached homes) and environmental variables (e.g., topography) were important in explaining variations in vegetation cover in our spatial regression models. However, important socioeconomic drivers found in cities in temperate zones, such as income and home value, were not important in San Juan. Climatic and cultural differences between tropical and temperate cities may result in different social-ecological relationships. Our study provides novel information for local land use planners, highlights the value of high spatial resolution remote sensing data to advance ecological research and urban planning in tropical cities, and emphasizes the need for more studies in tropical

  1. [Retrieval of Copper Pollution Information from Hyperspectral Satellite Data in a Vegetation Cover Mining Area].

    Science.gov (United States)

    Qu, Yong-hua; Jiao, Si-hong; Liu, Su-hong; Zhu, Ye-qing

    2015-11-01

    level, using stepwise multiple linear regression and cross validation on the dataset which is consisting of 44 groups of copper ion content information in the polluted vegetation leaves from Dexing Copper Mine in Jiangxi Province to build up a statistical model by also incorporating the HJ-1 satellite images. This model was then used to estimate the copper content distribution over the whole research area at Dexing Copper Mine. The result has shown that there is strong statistical significance of the model which revealed the most sensitive waveband to copper ion is located at 516 nm. The distribution map illustrated that the copper ion content is generally in the range of 0-130 mg · kg⁻¹ in the vegetation covering area at Dexing Copper Mine and the most seriously polluted area is located at the South-east corner of Dexing City as well as the mining spots with a higher value between 80 and 100 mg · kg⁻¹. This result is consistent with the ground observation experiment data. The distribution map can certainly provide some important basic data on the copper pollution monitoring and treatment.

  2. Vegetation

    DEFF Research Database (Denmark)

    Epstein, H.E.; Walker, D.A.; Bhatt, U.S.

    2012-01-01

    increased 20-26%. • Increasing shrub growth and range extension throughout the Low Arctic are related to winter and early growing season temperature increases. Growth of other tundra plant types, including graminoids and forbs, is increasing, while growth of mosses and lichens is decreasing. • Increases...... in vegetation (including shrub tundra expansion) and thunderstorm activity, each a result of Arctic warming, have created conditions that favor a more active Arctic fire regime....

  3. EVALUATION OF DATA APPLICABILITY FOR D-INSAR IN AREAS COVERED BY ABUNDANT VEGETATION

    Directory of Open Access Journals (Sweden)

    P. Zhang

    2018-04-01

    Full Text Available In the past few years, the frequent geological disasters have caused enormous casualties and economic losses. Therefore, D-InSAR (differential interferometry synthetic aperture radar has been widely used in early-warning and post disaster assessment. However, large area of decorrelation often occurs in the areas covered with abundant vegetation, which seriously affects the accuracy of surface deformation monitoring. In this paper, we analysed the effect of sensor parameters and external environment parameters on special decorrelation. Then Synthetic Aperture Radar (SAR datasets acquired by X-band TerraSAR-X, Phased Array type L-band Synthetic Aperture Satellite-2 (ALOS-2, and C-band Sentinel-1 in Guizhou province were collected and analysed to generate the maps of coherence, which were used to evaluating the applicability of datasets of different wavelengths for D-InSAR in forest area. Finally, we found that datasets acquired by ALOS-2 had the best monitoring effect.

  4. Estimating the Fractional Vegetation Cover from GLASS Leaf Area Index Product

    Directory of Open Access Journals (Sweden)

    Zhiqiang Xiao

    2016-04-01

    Full Text Available The fractional vegetation cover (FCover is an essential biophysical variable and plays a critical role in the carbon cycle studies. Existing FCover products from satellite observations are spatially incomplete and temporally discontinuous, and also inaccurate for some vegetation types to meet the requirements of various applications. In this study, an operational method is proposed to calculate high-quality, accurate FCover from the Global LAnd Surface Satellite (GLASS leaf area index (LAI product to ensure physical consistency between LAI and FCover retrievals. As a result, a global FCover product (denoted by TRAGL were generated from the GLASS LAI product from 2000 to present. With no missing values, the TRAGL FCover product is spatially complete. A comparison of the TRAGL FCover product with the Geoland2/BioPar version 1 (GEOV1 FCover product indicates that these FCover products exhibit similar spatial distribution pattern. However, there were relatively large discrepancies between these FCover products over equatorial rainforests, broadleaf crops in East-central United States, and needleleaf forests in Europe and Siberia. Temporal consistency analysis indicates that TRAGL FCover product has continuous trajectories. Direct validation with ground-based FCover estimates demonstrated that TRAGL FCover values were more accurate (RMSE = 0.0865, and R2 = 0.8848 than GEOV1 (RMSE = 0.1541, and R2 = 0.7621.

  5. Use of LANDSAT images of vegetation cover to estimate effective hydraulic properties of soils

    Science.gov (United States)

    Eagleson, Peter S.; Jasinski, Michael F.

    1988-01-01

    The estimation of the spatially variable surface moisture and heat fluxes of natural, semivegetated landscapes is difficult due to the highly random nature of the vegetation (e.g., plant species, density, and stress) and the soil (e.g., moisture content, and soil hydraulic conductivity). The solution to that problem lies, in part, in the use of satellite remotely sensed data, and in the preparation of those data in terms of the physical properties of the plant and soil. The work was focused on the development and testing of a stochastic geometric canopy-soil reflectance model, which can be applied to the physically-based interpretation of LANDSAT images. The model conceptualizes the landscape as a stochastic surface with bulk plant and soil reflective properties. The model is particularly suited for regional scale investigations where the quantification of the bulk landscape properties, such as fractional vegetation cover, is important on a pixel by pixel basis. A summary of the theoretical analysis and the preliminary testing of the model with actual aerial radiometric data is provided.

  6. EnviroAtlas - Memphis, TN - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. Vegetated cover is defined as Trees & Forest, Grass & Herbaceous, Woody Wetlands, and Emergent Wetlands. There is a potential for decreased water quality in areas where the riparian buffer is less forested. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the EnviroAtlas community area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. Using high-resolution radar images to determine vegetation cover for soil erosion assessments.

    Science.gov (United States)

    Bargiel, D; Herrmann, S; Jadczyszyn, J

    2013-07-30

    Healthy soils are crucial for human well-being. Because soils are threatened worldwide, politicians recognize the need for soil protection. For example, the European Commission has launched the Thematic Strategy for Soil Protection, which requests the European member states to identify high risk areas for soil degradation. Most states use the Universal Soil Loss Equation (USLE) to assess soil erosion risk at the national scale. The USLE includes different factors, one of them is the vegetation cover and management factor (C factor). Modern satellite-based radar sensors now provide highly accurate vegetation cover data, enabling opportunities to improve the accuracy of the C factor. The presented study proves the suitability for C factor determination based on a multi-temporal classification of high-resolution radar images. Further USLE factors were derived from existing data sources (meteorological data, soil maps, digital elevation model) to conduct an USLE-based soil erosion assessment. The resulting map illustrates a qualitative assessment for soil erosion risk within a plot of about 7*12 km in an agricultural region in Poland that is very susceptible to soil erosion processes. A high erosion risk of more than 10 tonnes per ha and year was assessed to occur on 13.6% (646 ha) of the agricultural areas within the investigated plot. Further 7.8% (372 ha) of agricultural land is threaten by a medium risk of 5-10 tonnes per ha and year. Such a spatial information about areas of high or medium soil erosion risk are crucial for the development of strategies for the protection of soils. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. [Quantitative estimation of vegetation cover and management factor in USLE and RUSLE models by using remote sensing data: a review].

    Science.gov (United States)

    Wu, Chang-Guang; Li, Sheng; Ren, Hua-Dong; Yao, Xiao-Hua; Huang, Zi-Jie

    2012-06-01

    Soil loss prediction models such as universal soil loss equation (USLE) and its revised universal soil loss equation (RUSLE) are the useful tools for risk assessment of soil erosion and planning of soil conservation at regional scale. To make a rational estimation of vegetation cover and management factor, the most important parameters in USLE or RUSLE, is particularly important for the accurate prediction of soil erosion. The traditional estimation based on field survey and measurement is time-consuming, laborious, and costly, and cannot rapidly extract the vegetation cover and management factor at macro-scale. In recent years, the development of remote sensing technology has provided both data and methods for the estimation of vegetation cover and management factor over broad geographic areas. This paper summarized the research findings on the quantitative estimation of vegetation cover and management factor by using remote sensing data, and analyzed the advantages and the disadvantages of various methods, aimed to provide reference for the further research and quantitative estimation of vegetation cover and management factor at large scale.

  9. Simultaneous colour visualizations of multiple ALS point cloud attributes for land cover and vegetation analysis

    Science.gov (United States)

    Zlinszky, András; Schroiff, Anke; Otepka, Johannes; Mandlburger, Gottfried; Pfeifer, Norbert

    2014-05-01

    LIDAR point clouds hold valuable information for land cover and vegetation analysis, not only in the spatial distribution of the points but also in their various attributes. However, LIDAR point clouds are rarely used for visual interpretation, since for most users, the point cloud is difficult to interpret compared to passive optical imagery. Meanwhile, point cloud viewing software is available allowing interactive 3D interpretation, but typically only one attribute at a time. This results in a large number of points with the same colour, crowding the scene and often obscuring detail. We developed a scheme for mapping information from multiple LIDAR point attributes to the Red, Green, and Blue channels of a widely used LIDAR data format, which are otherwise mostly used to add information from imagery to create "photorealistic" point clouds. The possible combinations of parameters are therefore represented in a wide range of colours, but relative differences in individual parameter values of points can be well understood. The visualization was implemented in OPALS software, using a simple and robust batch script, and is viewer independent since the information is stored in the point cloud data file itself. In our case, the following colour channel assignment delivered best results: Echo amplitude in the Red, echo width in the Green and normalized height above a Digital Terrain Model in the Blue channel. With correct parameter scaling (but completely without point classification), points belonging to asphalt and bare soil are dark red, low grassland and crop vegetation are bright red to yellow, shrubs and low trees are green and high trees are blue. Depending on roof material and DTM quality, buildings are shown from red through purple to dark blue. Erroneously high or low points, or points with incorrect amplitude or echo width usually have colours contrasting from terrain or vegetation. This allows efficient visual interpretation of the point cloud in planar

  10. Vegetation cover analysis using a low budget hyperspectral proximal sensing system

    Directory of Open Access Journals (Sweden)

    C. Daquino

    2006-06-01

    Full Text Available This report describes the implementation of a hyperspectral proximal sensing low-budget acquisition system and its application to the detection of terrestrian vegetation cover anomalies in sites of high environmental quality. Anomalies can be due to stress for lack of water and/or pollution phenomena and weed presence in agricultural fields. The hyperspectral cube (90-bands ranging from 450 to 900 nm was acquired from the hill near Segni (RM, approximately 500 m far from the target, by means of electronically tunable filters and 8 bit CCD cameras. Spectral libraries were built using both endmember identification method and extraction of centroids of the clusters obtained from a k-means analysis of the image itself. Two classification methods were applied on the hyperspectral cube: Spectral Angle Mapper (hard and Mixed Tuned Matching Filters (MTMF. Results show the good capability of the system in detecting areas with an arboreal, shrub or leafage cover, distinguishing between zones with different spectral response. Better results were obtained using spectral library originated by the k-means method. The detected anomalies not correlated to seasonal phenomena suggest a ground true analysis to identify their origin.

  11. Spatial Variation of Temperature and Precipitation in Bhutan and Links to Vegetation and Land Cover

    Directory of Open Access Journals (Sweden)

    Ugyen Dorji

    2016-02-01

    Full Text Available Bhutan, located in the Himalayas in the South Asian monsoon region, has extremely high variation in elevation, climatic conditions, and land cover despite its small geographical area, as well as great biodiversity. This paper provides the first comprehensive description of climatic conditions in Bhutan. It assesses the spatial variation of temperature and precipitation across the country and evaluates the causes for this variation based on daily data from 70 meteorological stations that have been recording data for time spans ranging from 3 to 21 years. Temperature and precipitation show contrasting spatial variation, with temperature primarily affected by elevation and precipitation by latitude. Models were developed using mixed linear regression models to predict seasonal and annual mean temperature and precipitation based on geographical location. Using linear regression we found that temperatures changed by about 0.5°C for every 100 m of change in elevation, with lapse rates being highest in February, March, and November and lowest from June to August. The lapse rate was highest for minimum temperatures and lowest for maximum temperatures, with the greatest difference during winter. The spatial distribution of precipitation was mainly controlled by latitude, having a quadratic relationship, with the highest rates in the southern foothills of the Himalayan range and the lowest at midlatitudes. The land cover is affected by topography and local climate, with variations in temperature being a main deciding factor for vegetation types; most human settlements and associated land uses are concentrated at lower elevations.

  12. Environmental impact of almond crop in strong slope with two vegetable covers: bush and leguminous

    International Nuclear Information System (INIS)

    Carceles Rodriguez, B.; Francia Martinez, J. R.; Martinez Raya, A.

    2009-01-01

    Soil erosion is one of the main physical processes of land degradation in Spain. Several studies in the Mediterranean environment have demonstrated the positive effect of vegetation covers on the reduction of water erosion and their indirect improvement of the soil physical and chemical properties, essentially by the incorporation of organic matter. Sol loss and surface runoff patterns over a four-year period were monitors in erosion plots from hill slope with two different cover-crop strips: (1) non-tillage with leguminous (Lens esculenta Moench) and (2) non-tillage with and a mixture of autochthonous thymes (Thymus baeticus Boiss. ex Lacaita, Thymus capitatus (L) Hoffmanns and Link., Thymus vulgaris L.) of 3 m with, in Lanjaron (Granada) on the south flank of the Sierra Nevada of southeast Spain. The erosion plots were located on the hill slope at 35% incline, at 580 m in altitude and with 144 m 2 (24 m x 6 m) in area. the area selected for the experiment is the part of the rainfed orchard given entirely with almond (Prunus amygdalus Basch cv. Desmayo Largueta) trees, the planting gird were 6 x 7 m. (Author) 10 refs.

  13. Vegetation Cover Analysis in Shaanxi Province of China Based on Grid Pixel Ternd Analysis and Stability Evaluation

    Science.gov (United States)

    Yue, H.; Liu, Y.

    2018-04-01

    As a key factor affecting the biogeochemical cycle of human existence, terrestrial vegetation is vulnerable to natural environment and human activities, with obvious temporal and spatial characteristics. The change of vegetation cover will affect the ecological balance and environmental quality to a great extent. Therefore, the research on the causes and influencing factors of vegetation cover has become the focus of attention of scholars at home and abroad. In the evolution of human activities and natural environment, the vegetation coverage in Shaanxi has changed accordingly. Using MODIS/NDVI 2000-2014 time series data, using the method of raster pixel trend analysis, stability evaluation, rescaled range analysis and correlation analysis, the climatic factors in Shaanxi province were studied in the near 15 years vegetation spatial and temporal variation and influence of vegetation NDVI changes. The results show that NDVI in Shaanxi province in the near 15 years increased by 0.081, the increase of NDVI in Northern Shaanxi was obvious, and negative growth was found in some areas of Guanzhong, southern Shaanxi NDVI overall still maintained at a high level; the trend of vegetation change in Shaanxi province has obvious spatial differences, most of the province is a slight tendency to improve vegetation, there are many obvious improvement areas in Northern Shaanxi Province. Guanzhong area vegetation area decreased, the small range of variation of vegetation in Shaanxi province; the most stable areas are mainly concentrated in the southern, southern Yanan, Yulin, Xi'an area of Weinan changed greatly; Shaanxi Province in recent 15 a, the temperature and precipitation have shown an increasing trend, and the vegetation NDVI is more closely related to the average annual rainfall, with increase of 0.48 °C/10 years and 69.5 mm per year.

  14. Changes in the Vegetation Cover in a Constructed Wetland at Argonne National Laboratory, Illinois

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, C.L.; LaGory, K.

    2004-01-01

    Wetlands are valuable resources that are disappearing at an alarming rate. Land development has resulted in the destruction of wetlands for approximately 200 years. To combat this destruction, the federal government passed legislation that requires no net loss of wetlands. The United States Army Corps of Engineers (USACE) is responsible for regulating wetland disturbances. In 1991, the USACE determined that the construction of the Advanced Photon Source at Argonne National Laboratory would damage three wetlands that had a total area of one acre. Argonne was required to create a wetland of equal acreage to replace the damaged wetlands. For the first five years after this wetland was created (1992-1996), the frequency of plant species, relative cover, and water depth was closely monitored. The wetland was not monitored again until 2002. In 2003, the vegetation cover data were again collected with a similar methodology to previous years. The plant species were sampled using quadrats at randomly selected locations along transects throughout the wetland. The fifty sampling locations were monitored once in June and percent cover of each of the plant species was determined for each plot. Furthermore, the extent of standing water in the wetland was measured. In 2003, 21 species of plants were found and identified. Eleven species dominated the wetland, among which were reed canary grass (Phalaris arundinacea), crown vetch (Coronilla varia), and Canada thistle (Cirsium arvense). These species are all non-native, invasive species. In the previous year, 30 species were found in the same wetland. The common species varied from the 2002 study but still had these non-native species in common. Reed canary grass and Canada thistle both increased by more than 100% from 2002. Unfortunately, the non-native species may be contributing to the loss of biodiversity in the wetland. In the future, control measures should be taken to ensure the establishment of more desired native species.

  15. Unravelling long-term vegetation change patterns in a binational watershed using multitemporal land cover data and historical photography

    Science.gov (United States)

    Villarreal, Miguel L.; Norman, Laura M.; Webb, Robert H.; Boyer, Diane E.; Turner, Raymond M.

    2011-01-01

    A significant amount of research conducted in the Sonoran Desert of North America has documented, both anecdotally and empirically, major vegetation changes over the past century due to human land use activities. However, many studies lack coincidental landscape-scale data characterizing the spatial and temporal manifestation of these changes. Vegetation changes in a binational (USA and Mexico) watershed were documented using a series of four land cover maps (1979-2009) derived from multispectral satellite imagery. Cover changes are compared to georeferenced, repeat oblique photographs dating from the late 19th century to present. Results indicate the expansion of grassland over the past 20 years following nearly a century of decline. Historical repeat photography documents early-mid 20th century mesquite invasions, but recent land cover data and rephotography demonstrate declines in xeroriparian/riparian mesquite communities in recent decades. These vegetation changes are variable over the landscape and influenced by topography and land management.

  16. Occupational Health and Safety Issues among Vegetable Farmers in Trinidad and the Implications for Extension.

    Science.gov (United States)

    Baksh, K S; Ganpat, W; Narine, L K

    2015-07-01

    Trinidad has an aged farming population. For a host of reasons, young persons are not entering the agricultural sector; therefore, these aged farmers will continue to be the backbone of the industry. Hence, there is much need for improving the health and safety of the workers within this sector. This first-time study assessed the prevalence of occupational health and safety disorders and discomforts among Trinidad's vegetable farmers in an attempt to understand the extent of the problem within the general farm population. The implications for extension are highlighted, and several recommendations are provided. Small-scale commercial-oriented vegetable farmers (n = 100) from ten of the most populated agricultural areas across Trinidad were surveyed. Results indicated that there was an overall moderate prevalence of occupational injuries among vegetable farmers. Most prevalent were musculoskeletal disorders of the lower back and upper body extremities, watery/burning eyes, skin rashes/itching, headaches, fatigue, dehydration, stress, and injuries attributed to slips and falls. Based on the evidence that a problem exists with health and safety, the extension service can now prepare and deliver programs to educate farmers on the actions necessary to improve their personal health and safety and that of their workers. This type of study has not been done before among farmers in Trinidad. It brings a very important and timely issue to the fore because of the aged farming population. Additionally, since the farmer profile and farming systems are similar in the wider Caribbean, policy makers can take note of the findings and recommendations and embrace actions.

  17. Quantifying BRDF Effects in Comparing Landsat-7 and AVIRIS Near-Simultaneous Acquisitions for Studies of High Plains Vegetation Cover

    Science.gov (United States)

    Goetz, A. F. H.; Heidebrecht, K. B.; Gutmann, E. D.; Warner, A. S.; Johnson, E. L.; Lestak, L. R.

    1999-01-01

    Approximately 100,000 sq. km of the High Plains of the central United States are covered by sand dunes and sand sheets deposited during the Holocene. Soil-dating evidence shows that there were at least four periods of dune reactivation during major droughts in the last 10,000 years. The dunes in this region are anchored by vegetation. We have undertaken a study of land-use change in the High Plains from 1985 to the present using Landsat 5 TM and Landsat 7 ETM+ images to map variation in vegetation cover during wet and dry years. Mapping vegetation cover of less than 20% is important in modeling potential surface reactivation since at this level the vegetation no longer sufficiently shields sandy surfaces from movement by wind. Landsat TM data have both the spatial resolution and temporal coverage to facilitate vegetation cover analysis for model development and verification. However, there is still the question of how accurate TM data are for the measurement of both growing and senescent vegetation in and and semi-arid regions. AVIRIS provides both high spectral resolution as well as high signal-to-noise ratio and can be used to test the accuracy of Landsat TM and ETM+ data. We have analyzed data from AVIRIS flown nearly concurrently with a Landsat 7 overpass. The comparison between an AVIRIS image swath of 11 km width subtending a 30 deg. angle and the same area covered by a 0.8 deg. angle from Landsat required accounting for the BRDF. A normalization technique using the ratio of the reflectances from registered AVIRIS and Landsat data proved superior to the techniques of column averaging on AVIRIS data alone published previously by Kennedy et al. This technique can be applied to aircraft data covering a wider swath angle than AVIRIS to develop BRDF responses for a wide variety of surfaces more efficiently than from ground measurements.

  18. Development and Interpretation of New Sediment Rating Curve Considering the Effect of Vegetation Cover for Asian Basins

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2013-01-01

    Full Text Available Suspended sediment concentration of a river can provide very important perspective on erosion or soil loss of one river basin ecosystem. The changes of land use and land cover, such as deforestation or afforestation, affect sediment yield process of a catchment through changing the hydrological cycle of the area. A sediment rating curve can describe the average relation between discharge and suspended sediment concentration for a certain location. However, the sediment load of a river is likely to be undersimulated from water discharge using least squares regression of log-transformed variables and the sediment rating curve does not consider temporal changes of vegetation cover. The Normalized Difference Vegetation Index (NDVI can well be used to analyze the status of the vegetation cover well. Thus long time monthly NDVI data was used to detect vegetation change in the past 19 years in this study. Then monthly suspended sediment concentration and discharge from 1988 to 2006 in Laichau station were used to develop one new sediment rating curve and were validated in other Asian basins. The new sediment model can describe the relationship among sediment yield, streamflow, and vegetation cover, which can be the basis for soil conservation and sustainable ecosystem management.

  19. Using Unmanned Aerial Vehicles to Assess Vegetative Cover and Identify Biotic Resources in Sagebrush Steppe Ecosystems: Preliminary Evaluation

    Energy Technology Data Exchange (ETDEWEB)

    Robert P. Breckenridge

    2006-04-01

    The Idaho National Laboratory (INL), in conjunction with the University of Idaho, is evaluating novel approaches for using unmanned aerial vehicles (UAVs) as a quicker and safer method for monitoring biotic resources. Evaluating vegetative cover is an important factor in understanding the sustainability of many ecosystems. In assessing vegetative cover, methods that improve accuracy and cost efficiency could revolutionize how biotic resources are monitored on western federal lands. Sagebrush steppe ecosystems provide important habitat for a variety of species, some of which are important indicator species (e.g., sage grouse). Improved methods are needed to support monitoring these habitats because there are not enough resource specialists or funds available for comprehensive ground evaluation of these ecosystems. In this project, two types of UAV platforms (fixed wing and helicopter) were used to collect still-frame imagery to assess cover in sagebrush steppe ecosystems. This paper discusses the process for collecting and analyzing imagery from the UAVs to (1) estimate total percent cover, (2) estimate percent cover for six different types of vegetation, and (3) locate sage grouse based on representative decoys. The field plots were located on the INL site west of Idaho Falls, Idaho, in areas with varying amounts and types of vegetative cover. A software program called SamplePoint developed by the U.S. Department of Agriculture, Agricultural Research Service was used to evaluate the imagery for percent cover for the six vegetation types (bare ground, litter, shrubs, dead shrubs, grasses, and forbs). Results were compared against standard field measurements to assess accuracy.

  20. Differentiation in native as well as introduced ranges: germination reflects mean and variance in cover of surrounding vegetation.

    Science.gov (United States)

    Heger, Tina; Nikles, Gabriele; Jacobs, Brooke S

    2018-02-01

    Germination, a crucial phase in the life cycle of a plant, can be significantly influenced by competition and facilitation. The aim of this study was to test whether differences in cover of surrounding vegetation can lead to population differentiation in germination behaviour of an annual grassland species, and if so, whether such a differentiation can be found in the native as well as in the introduced range. We used maternal progeny of Erodium cicutarium previously propagated under uniform conditions that had been collected in multiple populations in the native and two introduced ranges, in populations representing extremes in terms of mean and variability of the cover of surrounding vegetation. In the first experiment, we tested the effect of germination temperature and mean cover at the source site on germination, and found interlinked effects of these factors. In seeds from one of the introduced ranges (California), we found indication for a 2-fold dormancy, hindering germination at high temperatures even if physical dormancy was broken and water was available. This behaviour was less strong in high cover populations, indicating cross-generational facilitating effects of dense vegetation. In the second experiment, we tested whether spatial variation in cover of surrounding vegetation has an effect on the proportion of dormant seeds. Contrary to our expectations, we found that across source regions, high variance in cover was associated with higher proportions of seeds germinating directly after storage. In all three regions, germination seemed to match the local environment in terms of climate and vegetation cover. We suggest that this is due to a combined effect of introduction of preadapted genotypes and local evolutionary processes.

  1. Vegetation height and cover fraction between 60° S and 60° N from ICESat GLAS data

    Directory of Open Access Journals (Sweden)

    S. O. Los

    2012-03-01

    Full Text Available We present new coarse resolution (0.5° × 0.5° vegetation height and vegetation-cover fraction data sets between 60° S and 60° N for use in climate models and ecological models. The data sets are derived from 2003–2009 measurements collected by the Geoscience Laser Altimeter System (GLAS on the Ice, Cloud and land Elevation Satellite (ICESat, the only LiDAR instrument that provides close to global coverage. Initial vegetation height is calculated from GLAS data using a development of the model of Rosette et al. (2008 with with further calibration on desert sites. Filters are developed to identify and eliminate spurious observations in the GLAS data, e.g. data that are affected by clouds, atmosphere and terrain and as such result in erroneous estimates of vegetation height or vegetation cover. Filtered GLAS vegetation height estimates are aggregated in histograms from 0 to 70 m in 0.5 m intervals for each 0.5° × 0.5°. The GLAS vegetation height product is evaluated in four ways. Firstly, the Vegetation height data and data filters are evaluated using aircraft LiDAR measurements of the same for ten sites in the Americas, Europe, and Australia. Application of filters to the GLAS vegetation height estimates increases the correlation with aircraft data from r = 0.33 to r = 0.78, decreases the root-mean-square error by a factor 3 to about 6 m (RMSE or 4.5 m (68% error distribution and decreases the bias from 5.7 m to −1.3 m. Secondly, the global aggregated GLAS vegetation height product is tested for sensitivity towards the choice of data quality filters; areas with frequent cloud cover and areas with steep terrain are the most sensitive to the choice of thresholds for the filters. The changes in height estimates by applying different filters are, for the main part, smaller than the overall uncertainty of 4.5–6 m established from the site measurements. Thirdly, the GLAS global vegetation height product is compared with a

  2. Use of satellite imagery to identify vegetation cover changes following the Waldo Canyon Fire event, Colorado, 2012-2013

    Science.gov (United States)

    Cole, Christopher J.; Friesen, Beverly A.; Wilson, Earl M.

    2014-01-01

    The Waldo Canyon Fire of 2012 was one of the most destructive wildfire events in Colorado history. The fire burned a total of 18,247 acres, claimed 2 lives, and destroyed 347 homes. The Waldo Canyon Fire continues to pose challenges to nearby communities. In a preliminary emergency assessment conducted in 2012, the U.S. Geological Survey (USGS) concluded that drainage basins within and near the area affected by the Waldo Canyon Fire pose a risk for future debris flow events. Rainfall over burned, formerly vegetated surfaces resulted in multiple flood and debris flow events that affected the cities of Colorado Springs and Manitou Springs in 2013. One fatality resulted from a mudslide near Manitou Springs in August 2013. Federal, State, and local governments continue to monitor these hazards and other post-fire effects, along with the region’s ecological recovery. At the request of the Colorado Springs Office of Emergency Management, the USGS Special Applications Science Center developed a geospatial product to identify vegetation cover changes following the 2012 Waldo Canyon Fire event. Vegetation cover was derived from July 2012 WorldView-2 and September 2013 QuickBird multispectral imagery at a spatial resolution of two meters. The 2012 image was collected after the fire had reached its maximum extent. Per-pixel increases and decreases in vegetation cover were identified by measuring spectral changes that occurred between the 2012 and 2013 image dates. A Normalized Difference Vegetation Index (NDVI), and Green-Near Infrared Index (GRNIR) were computed from each image. These spectral indices are commonly used to characterize vegetation cover and health condition, due to their sensitivity to detect foliar chlorophyll content. Vector polygons identifying surface-cover feature boundaries were derived from the 2013 imagery using image segmentation software. This geographic software groups similar image pixels into vector objects based upon their spatial and spectral

  3. Large-scale assessment of soil erosion in Africa: satellites help to jointly account for dynamic rainfall and vegetation cover

    Science.gov (United States)

    Vrieling, Anton; Hoedjes, Joost C. B.; van der Velde, Marijn

    2015-04-01

    Efforts to map and monitor soil erosion need to account for the erratic nature of the soil erosion process. Soil erosion by water occurs on sloped terrain when erosive rainfall and consequent surface runoff impact soils that are not well-protected by vegetation or other soil protective measures. Both rainfall erosivity and vegetation cover are highly variable through space and time. Due to data paucity and the relative ease of spatially overlaying geographical data layers into existing models like USLE (Universal Soil Loss Equation), many studies and mapping efforts merely use average annual values for erosivity and vegetation cover as input. We first show that rainfall erosivity can be estimated from satellite precipitation data. We obtained average annual erosivity estimates from 15 yr of 3-hourly TRMM Multi-satellite Precipitation Analysis (TMPA) data (1998-2012) using intensity-erosivity relationships. Our estimates showed a positive correlation (r = 0.84) with long-term annual erosivity values of 37 stations obtained from literature. Using these TMPA erosivity retrievals, we demonstrate the large interannual variability, with maximum annual erosivity often exceeding two to three times the mean value, especially in semi-arid areas. We then calculate erosivity at a 10-daily time-step and combine this with vegetation cover development for selected locations in Africa using NDVI - normalized difference vegetation index - time series from SPOT VEGETATION. Although we do not integrate the data at this point, the joint analysis of both variables stresses the need for joint accounting for erosivity and vegetation cover for large-scale erosion assessment and monitoring.

  4. ASSESSMENT OF VEGETATION COVER ON SODA WASTE DISPOSAL SITE AT JANIKOWO, FOLLOWING 13-YEAR-LONG RECLAMATION

    Directory of Open Access Journals (Sweden)

    Kazimierz Henryk Dyguś

    2014-10-01

    Full Text Available The results are presented of vegetation survey on the alkaline and saline soda waste disposal site at Janikowo Soda Plant near Toruń (central Poland. The site was subject to reclamation using diverse techniques including sewage sludge and ash, starting from the year 2000 onwards. The survey was made to evaluate the status of plant succession as well as stability and diversity of vegetation cover. The vegetation was inventoried using the cover-frequency method, on a 10 x 10 m quadrat samples randomly distributed over the reclaimed area. Communities were classified using the Central-European approach by Braun-Blanquet (1964. In 2013, the vegetation was well established and provided a dense cover of the substrate. 108 plant species were found compared to some 5–8 plants which arrived spontaneously until the year 2000. Species richness increased 15 fold since the year when reclamation started. Species of graminoid and Asteraceae families prevailed in most patches of local vegetation. The vegetation cover on sites treated with a mixt of power plant ash and sewage sludge was less stable and less diverse than that on sites where sewage sludge only was applied. Annuals and biennials dominated in the vegetation on ash grounds while more competitive perennials prevailed on sewage sludge substrates. On the latter substrates there develop plant communities classified as an association of smooth meadow grass and common yarrow Poa pratensis-Achillea millefolium, whose species combination closely resembles that of seminatural fresh meadows. On the ash grounds, a variety of associations of ruderal plants were found with dominating Loesel mustard and common mugwort Sisymbrium loeselii-Artemisia vulgaris. Phytoindicatory methods using Ellenberg values have shown that waste substrates contained increased salt concentrations, however, there was no indication of increased heavy metal contents, as no plants tolerating excessive amounts of heavy metals were

  5. Vegetative, productive and qualitative performance of grapevine "Cabernet Sauvignon" according to the use of winter cover crops

    OpenAIRE

    Bettoni, Jean Carlos; Feldberg, Nelson Pires; Nava, Gilberto; Veiga, Milton da; Wildner, Leandro do Prado

    2016-01-01

    ABSTRACT To study the effect of winter cover crops on the vegetative, productive and qualitative behavior of "Cabernet Sauvignon" grapevines, an experiment was conducted in two wine harvests by sowing different species of winter cover crops and additional treatments with manual weeding and mechanical mowing in an experimental vineyard located at the Experimental Station of Epagri in Videira, state of Santa Catarina, Brazil. Plant attributes of the grapevine, such as number of rods and weight ...

  6. Modeled Impacts of Cover Crops and Vegetative Barriers on Corn Stover Availability and Soil Quality

    Energy Technology Data Exchange (ETDEWEB)

    Ian J. Bonner; David J. Muth Jr.; Joshua B. Koch; Douglas L. Karlen

    2014-06-01

    Environmentally benign, economically viable, and socially acceptable agronomic strategies are needed to launch a sustainable lignocellulosic biofuel industry. Our objective was to demonstrate a landscape planning process that can ensure adequate supplies of corn (Zea mays L.) stover feedstock while protecting and improving soil quality. The Landscape Environmental Assessment Framework (LEAF) was used to develop land use strategies that were then scaled up for five U.S. Corn Belt states (Nebraska, Iowa, Illinois, Indiana, and Minnesota) to illustrate the impact that could be achieved. Our results show an annual sustainable stover supply of 194 million Mg without exceeding soil erosion T values or depleting soil organic carbon [i.e., soil conditioning index (SCI)?>?0] when no-till, winter cover crop, and vegetative barriers were incorporated into the landscape. A second, more rigorous conservation target was set to enhance soil quality while sustainably harvesting stover. By requiring erosion to be <1/2 T and the SCI-organic matter (OM) subfactor to be >?0, the annual sustainable quantity of harvestable stover dropped to148 million Mg. Examining removal rates by state and soil resource showed that soil capability class and slope generally determined the effectiveness of the three conservation practices and the resulting sustainable harvest rate. This emphasizes that sustainable biomass harvest must be based on subfield management decisions to ensure soil resources are conserved or enhanced, while providing sufficient biomass feedstock to support the economic growth of bioenergy enterprises.

  7. SPOT-Based Sub-Field Level Monitoring of Vegetation Cover Dynamics: A Case of Irrigated Croplands

    Directory of Open Access Journals (Sweden)

    Olena Dubovyk

    2015-05-01

    Full Text Available Acquiring multi-temporal spatial information on vegetation condition at scales appropriate for site-specific agricultural management is often complicated by the need for meticulous field measurements. Understanding spatial/temporal crop cover heterogeneity within irrigated croplands may support sustainable land use, specifically in areas affected by land degradation due to secondary soil salinization. This study demonstrates the use of multi-temporal, high spatial resolution (10 m SPOT-4/5 image data in an integrated change vector analysis and spectral mixture analysis (CVA-SMA procedure. This procedure was implemented with the principal objective of mapping sub-field vegetation cover dynamics in irrigated lowland areas within the lowerlands of the Amu Darya River. CVA intensity and direction were calculated separately for the periods of 1998–2006 and 2006–2010. Cumulative change intensity and the overall directional trend were also derived for the entire observation period of 1998–2010. Results show that most of the vector changes were observed between 1998 and 2006; persistent conditions were seen within the study region during the 2006–2010 period. A decreasing vegetation cover trend was identified within 38% of arable land. Areas of decreasing vegetation cover were located principally in the irrigation system periphery where deficient water supply and low soil quality lead to substandard crop development. During the 2006–2010 timeframe, degraded crop cover conditions persisted in 37% of arable land. Vegetation cover increased in 25% of the arable land where irrigation water supply was adequate. This high sub-field crop performance spatial heterogeneity clearly indicates that current land management practices are inefficient. Such information can provide the basis for implementing and adapting irrigation applications and salt leaching techniques to site-specific conditions and thereby make a significant contribution to sustainable

  8. Extension of virtual flux decomposition model to the case of two vegetation layers: FDM-2

    International Nuclear Information System (INIS)

    Kallel, Abdelaziz

    2012-01-01

    As an approximation, the forest could be assumed a discrete media composed of three main components: trees, understory vegetation and soil background. To describe the reflectance of such a canopy in the optical wavelength domain, it is necessary to develop a radiative transfer model which considers two vegetation layers (understory and trees). In this article, we propose a new model, FDM-2, an extension of the flux decomposition model (FDM), to take into account such a canopy architecture. Like FDM, FDM-2 models the diffuse flux anisotropy and takes into account the hot spot effect as well as conserves energy. The hot spot which corresponds to an increase of the probability of photon escape after first collision close to the backscattering direction is modeled as a decrease of “the effective vegetation density” encountered by the diffuse flux (E + 1 ) and the radiance both created by first order scattering of the direct sun radiation. Compared to the turbid case (for which our model is equivalent to SAIL++ and therefore accurately conserving energy), such a density variation redistributes energy but does not affect the budget. Energy remains well conserved in the discrete case as well. To solve the RT problem, FDM-2 separates E + 1 from the high order diffuse flux. As E + 1 corresponding effective density is not constant function of the altitude (when traveling along the canopy) therefore it is decomposed into sub-fluxes of constant densities. The sub-flux RT problems are linear and simply solved based on SAIL++ formalism. The global RT solution is obtained summing the contribution of the sub-fluxes. Simulation tests confirm that FDM-2 conserves energy (i.e., radiative budget closes to zero in the purist corner case with an error due to the discretization less than 0.5%). Compared to the Rayspread model (among the best 3-D models of the RAMI Exercise third phase), our model provides similar performance.

  9. Evaluating rapid ground sampling and scaling estimated plant cover using UAV imagery up to Landsat for mapping arctic vegetation

    Science.gov (United States)

    Nelson, P.; Paradis, D. P.

    2017-12-01

    The small stature and spectral diversity of arctic plant taxa presents challenges in mapping arctic vegetation. Mapping vegetation at the appropriate scale is needed to visualize effects of disturbance, directional vegetation change or mapping of specific plant groups for other applications (eg. habitat mapping). Fine spatial grain of remotely sensed data (ca. 10 cm pixels) is often necessary to resolve patches of many arctic plant groups, such as bryophytes and lichens. These groups are also spectrally different from mineral, litter and vascular plants. We sought to explore method to generate high-resolution spatial and spectral data to explore better mapping methods for arctic vegetation. We sampled ground vegetation at seven sites north or west of tree-line in Alaska, four north of Fairbanks and three northwest of Bethel, respectively. At each site, we estimated cover of plant functional types in 1m2 quadrats spaced approximately every 10 m along a 100 m long transect. Each quadrat was also scanned using a field spectroradiometer (PSR+ Spectral Evolution, 400-2500 nm range) and photographed from multiple perspectives. We then flew our small UAV with a RGB camera over the transect and at least 50 m on either side collecting on imagery of the plot, which were used to generate a image mosaic and digital surface model of the plot. We compare plant functional group cover ocular estimated in situ to post-hoc estimation, either automated or using a human observer, using the quadrat photos. We also compare interpolated lichen cover from UAV scenes to estimated lichen cover using a statistical models using Landsat data, with focus on lichens. Light and yellow lichens are discernable in the UAV imagery but certain lichens, especially dark colored lichens or those with spectral signatures similar to graminoid litter, present challenges. Future efforts will focus on integrating UAV-upscaled ground cover estimates to hyperspectral sensors (eg. AVIRIS ng) for better combined

  10. Estimating vegetation biomass and cover across large plots in shrub and grass dominated drylands using terrestrial lidar and machine learning

    Science.gov (United States)

    Anderson, Kyle E.; Glenn, Nancy F.; Spaete, Lucas P.; Shinneman, Douglas; Pilliod, David S.; Arkle, Robert; McIlroy, Susan; Derryberry, DeWayne R.

    2018-01-01

    Terrestrial laser scanning (TLS) has been shown to enable an efficient, precise, and non-destructive inventory of vegetation structure at ranges up to hundreds of meters. We developed a method that leverages TLS collections with machine learning techniques to model and map canopy cover and biomass of several classes of short-stature vegetation across large plots. We collected high-definition TLS scans of 26 1-ha plots in desert grasslands and big sagebrush shrublands in southwest Idaho, USA. We used the Random Forests machine learning algorithm to develop decision tree models predicting the biomass and canopy cover of several vegetation classes from statistical descriptors of the aboveground heights of TLS points. Manual measurements of vegetation characteristics collected within each plot served as training and validation data. Models based on five or fewer TLS descriptors of vegetation heights were developed to predict the canopy cover fraction of shrubs (R2 = 0.77, RMSE = 7%), annual grasses (R2 = 0.70, RMSE = 21%), perennial grasses (R2 = 0.36, RMSE = 12%), forbs (R2 = 0.52, RMSE = 6%), bare earth or litter (R2 = 0.49, RMSE = 19%), and the biomass of shrubs (R2 = 0.71, RMSE = 175 g) and herbaceous vegetation (R2 = 0.61, RMSE = 99 g) (all values reported are out-of-bag). Our models explained much of the variability between predictions and manual measurements, and yet we expect that future applications could produce even better results by reducing some of the methodological sources of error that we encountered. Our work demonstrates how TLS can be used efficiently to extend manual measurement of vegetation characteristics from small to large plots in grasslands and shrublands, with potential application to other similarly structured ecosystems. Our method shows that vegetation structural characteristics can be modeled without classifying and delineating individual plants, a challenging and time-consuming step common in previous

  11. Streptomyces odonnellii sp. nov., a proteolytic streptomycete isolated from soil under cerrado (savanna) vegetation cover.

    Science.gov (United States)

    Pereira, Pedro Henrique Freitas; Macrae, Andrew; Reinert, Fernanda; de Souza, Rodrigo Fonseca; Coelho, Rosalie Reed Rodrigues; Pötter, Gabrielle; Klenk, Hans-Peter; Labeda, David P

    2017-12-01

    A novel streptomycete, strain 594 T , isolated from Brazilian soil collected under cerrado (savanna) vegetation cover is described. Strain 594 T produced thermophilic chitinolytic proteases in assays containing feather meal and corn steep liquor as sole sources of carbon and nitrogen. The strain produced white to grey aerial mycelium and spiral chains of spiny-surfaced spores on the aerial mycelium and did not produce diffusible pigments. The ll-isomer of diaminopimelic acid was present in the cell wall and menaquinones were predominantly MK-9(H6) (52 %) and MK-9(H8) (30 %) with 6 % MK-9(H4) and slightly less than 1 % MK-9(H2). Polar lipids present were phosphatidylethanolamine, diphosphatidylglycerol, phosphatidylglycerol, phosphatidylinositol and an unknown phospholipid. The major fatty acids were anteiso-C15 : 0, anteiso-C16 : 0, anteiso-C14 : 0 and anteiso-C17 : 0. The G+C content of the genomic DNA was 70.4 mol%. Phylogenetic analysis of the nearly complete 16S rRNA gene sequence indicated that it differed from described Streptomyces species. Multilocus sequence analysis (MLSA) using five housekeeping genes (atpD, gyrB, rpoB, recA and trpB) comparing Streptomyces type strains showed that the MLSA distance of strain 594 T to the most closely related species was greater than the 0.007 threshold. The in silico DNA-DNA relatedness between the genome sequence of strain 594 T and that of the phylogenetically nearest species was well below the species level recommendation. There was thus multiple evidence justifying the description of this strain as representing a novel species, for which the name Streptomyces odonnellii sp. nov. is proposed. The type strain is 594 T (=IMPPG 594 T =DSM 41949 T =NRRL B-24891 T ).

  12. Assessing Vegetation Cover Dynamics Induced by Policy-Driven Ecological Restoration and Implication to Soil Erosion in Southern China.

    Directory of Open Access Journals (Sweden)

    Jien Zhang

    Full Text Available In the aftermath of the severe droughts and floods at the end of the 20th century, the Chinese government launched several ecological restoration projects, including the Natural Forest Protection Program in 1998 and the Grain-for-Green Program in 1999, to promote afforestation and reforestation to reduce surface runoff and consequent soil erosion nationwide. However, it is still unclear how vegetation has changed in southern China since the launch of these programs. In this study, we used the MODIS Enhanced Vegetation Index (EVI to analyze the vegetation cover dynamics in southern China from 2000 to 2009 and evaluate the resulting effects of controlling soil erosion. Our observations indicate that 5.3% of the study area significantly increased and 0.98% significantly decreased in EVI value (p < 0.05. The spring EVI had largest increase in space. The conversions of croplands on steep slopes to forests resulting from national policies led to significant increases in EVI. The increase in EVI was not driven by annual average temperature and annual precipitation. By referencing ecological restoration statistical data and field observations, we showed that ecological restoration programs significantly improved vegetation cover in southern China. Increase in the area of farmland-converted forestlands has reduced soil erosion based upon monitoring sediment yields at hydrologic stations in the Yangtze River. This study displays the spatial patterns of trend in vegetation growth since the beginning of the 21st century in southern China and highlights the important role of China's afforestation program.

  13. Diurnal and Seasonal Variations of Eddy-Covariance Carbon Dioxide Fluxes Above an Urban Wetland, Partitioned by Vegetation Cover

    Science.gov (United States)

    Schafer, K. V.; Duman, T.

    2017-12-01

    The New Jersey Meadowlands are an urban brackish marsh with a long history of human activity causing disturbances and alterations. Carbon emissions were measured from two sites in the Meadowlands, a natural site and a restored site, using eddy-covariance (EC) from 2014 to 2016. At each site, the EC towers were placed at the interface of two vegetation covers, allowing capturing this aspect of the wetland's heterogeneity. Using footprint modeling and light response curves we were able to partition measured fluxes between vegetation cover types and compare CO2 fluxes from patches of invasive versus native wetland vegetation communities. We show that further separating the data into seasonal and diurnal fluxes reveals patterns in CO2 fluxes that allow determining the nature of each vegetation cover as a source or sink for CO2. Our results also show that CO2 emissions from the restored wetland are significantly higher than the natural wetland. Areas of invasive Phragmites australis at the natural site had the lowest CO2 release rates during winter. These were consistently lower in magnitude than summer daytime uptake, therefore making this part of the wetland a CO2 sink. Areas planted with native Spartina alterniflora at the restored site had the largest uptake during daytime, therefore seemingly justifying restoration activities. However, they also had the highest emission rates during summer nighttime, and therefore the daily summer net uptake was not the highest compared with other vegetation covers. Furthermore, emissions from the restored site during winter were larger compared to the natural site, indicating that restoration activities might have led to a significant increase of carbon release from the wetland. Thus, during the study period the restored wetland acted as a carbon source.

  14. Alterations in fruit and vegetable beta-carotene and vitamin C content caused by open-sun drying, visqueen-covered and polyethylene-covered solar-dryers.

    Science.gov (United States)

    Ndawula, J; Kabasa, J D; Byaruhanga, Y B

    2004-08-01

    This study investigated the effects of three drying methods (open sun drying, visqueen-covered solar dryer and polyethylene-covered solar dryer) on b-carotene and vitamin C content of edible portions of mango fruit (Mangifera indica) and cowpea leaves (Vigna unguiculata). Commercial samples were analysed for vitamin C by titrimetry and b-carotene by spectrophotometry at 450 nm. Differences in vitamin retention and loss associated with the three drying methods were assessed by analysis of variance and least significant difference (LSD) at (pdrying. Open sun drying method caused the greatest b-carotene and vitamin C loss (58% and 84% respectively), while the visqueen-covered solar dryer caused the least loss (34.5% and 71% respectively). Blanching cowpea leaves improved b-carotene and vitamin C retention by 15% and 7.5% respectively. The b-carotene and vitamin C content of fresh ripe mango fruit was 5.9 and 164.3 mg/100g DM respectively. Similar to effects on cowpea leaves, the mango micronutrient content decreased (pdrying. The open sun drying method caused the greatest b-carotene (94.2%) and vitamin C (84.5%) loss, while the visqueen-covered solar dryer caused the least (73 and 53% respectively). These results show that the three solar drying methods cause significant loss of pro-vitamin A and vitamin C in dried fruits and vegetables. However, open sun drying causes the most loss and the visqueen-covered solar dryer the least, making the later a probable better drying technology for fruit and vegetable preservation. The drying technologies should be improved to enhance vitamin retention.

  15. Effect of vegetal cover on runoff and soil erosion under light intensity events. Rainfall simulation over USLE plots.

    Science.gov (United States)

    Marques, María José; Bienes, Ramón; Jiménez, Luis; Pérez-Rodríguez, Raquel

    2007-05-25

    The erosive power of frequent light rainfalls is studied in this paper. Field experiments of simulated rainfall (Intensity, 21 mm h(-1) and kinetic energy, 13.5 J m(-2) mm(-1)) were conducted over 8 bounded USLE plots (80 m(2) each) with a slope of 10%. In 4 plots the soil was almost bare (<4% vegetation cover); the other 4 plots had almost full cover with natural vegetation in one year. Runoff and sediment yield was recorded. The results revealed the efficiency of vegetation cover reducing runoff and sediments. Runoff and sediments were negligible in covered plots. Therefore, in bare plots, although sediment yield was generally low, averaging 74+/-43 kg ha(-1), the mean of runoff achieved a coefficient of 35%, this magnitude has to be taken into consideration in this region verging on aridity. Rains around 13.5 J m(-2) mm(-1) of kinetic energy are quite frequent in the study area (34% of recorded rains en 12 years). If we would consider the usual lower limits from the literature, we would be ignoring an important percent of natural rainfall episodes.

  16. Monitoring vegetation cover in the postfire in Tavira - São Brás de Alportel (southern Portugal)

    Science.gov (United States)

    Ramos-Simões, Nuno A.; Granja-Martins, Fernando M.; Neto-Paixão, Helena M.; Jordán, Antonio; Zavala, Lorena M.

    2014-05-01

    1. INTRODUCTION Often, restoration of areas affected by fire faces lack of knowledge of how ecosystems respond to the action of fire. Depending on environmental conditions, structure and diversity of the vegetation or the severity of the fire, burnt systems can provide responses ranging from spontaneous recovery in a relatively short time to onset of severe degradation processes. For this reason, it is necessary to monitor the evolution of post-burned in the fire, in order to plan effective strategies for restoring systems and soil erosion control. In order to assess soil erosion risk, this research aims to is to analyse the evolution of vegetation cover in a Mediterranean burnt forest soil, using vegetation indexes derived from Landsat-7 (Thematic Mapper sensor-TM) and Landsat-8 (Operation Land Imager sensor, OLI). 2. METHODS This study was carried out in a forest area affected by a wildfire by 18-22 July 2012. The study area is located within the coordinates 37o 9' - 37o 21' N and 7o 40' - 7o 53' W, including part of the municipalities of Tavira and São Brás de Alportel (southern Portugal). The relief in the studied area has an irregular topography. Soils are shallow and develop mainly metamorphic rocks (as slates or quartzite) and igneous rocks, which produce acidic and nutrient-poor soils, poorly developed in depth. The wildfire was one of the most important fires in Portugal during the recent years, and affected more than 24000 ha. Vegetation is dominated by cork oak (Quercus suber) ,holm oaks (Quercus ilex), strawberry tree (Arbutus unedo) and sclerophyllous vegetation (mostly formed by Quercus coccifera and Rosmarinus officinalis). These species are adapted to acidic-poor soils and show a great capability of resprouting and germination after fire. The study area is poorly developed, with cork and timber harvesting and other forest products or tourism as main economic activities. The area shows a highly fragmented urban fabric with the sparse

  17. Comparative study of oxidation in canned foods with a combination of vegetables and covering oils

    Directory of Open Access Journals (Sweden)

    E. Bravi

    2015-06-01

    Full Text Available The effects of sunflower (SFO, extra-virgin olive (EVO, and soybean oils (SBO, in combination with canned aubergins and dried tomatoes were studied during an accelerated shelf-life trial. Hydrolytic and oxidative quality parameters was determined and a sensorial test was run. For both canned vegetables, the SBO showed greater resistance to the oxidation at the end of the shelflife trial. The SBO in both vegetables yielded similar results for peroxide formation, whereas a reduced formation of secondary oxidation products was observed in aubergins. The results highlighted a higher oxidation stability of canned vegetables in SBO and EVO than those in SFO. The sensorial test underlined differences between the oils, in aubergins and dried tomatoes, after 30 days of accelerated storage (corresponding to the sell-by date. Flavour and texture were judged better for vegetables in SBO.

  18. EnviroAtlas - Portland, ME - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  19. EnviroAtlas - Portland, OR - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  20. EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  1. EnviroAtlas - Durham, NC - 51m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  2. EnviroAtlas - Woodbine, IA - 15m Riparian Buffer Vegetated Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — This EnviroAtlas dataset describes the percentage of a 15-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the...

  3. Comparative study of oxidation in canned foods with a combination of vegetables and covering oils

    OpenAIRE

    E. Bravi; A. Mangione; O. Marconi; G. Perretti

    2015-01-01

    The effects of sunflower (SFO), extra-virgin olive (EVO), and soybean oils (SBO), in combination with canned aubergins and dried tomatoes were studied during an accelerated shelf-life trial. Hydrolytic and oxidative quality parameters was determined and a sensorial test was run. For both canned vegetables, the SBO showed greater resistance to the oxidation at the end of the shelflife trial. The SBO in both vegetables yielded similar results for peroxide formation, whereas a reduced formation ...

  4. INTER-SEASONAL DYNAMICS OF VEGETATION COVER AND SURFACE TEMPERATURE DISTRIBUTION: A CASE STUDY OF ONDO STATE, NIGERIA

    Directory of Open Access Journals (Sweden)

    H. A. Ibitolu

    2016-06-01

    Full Text Available This study employs Landsat ETM+ satellite imagery to access the inter-seasonal variations of Surface Temperature and Vegetation cover in Ondo State in 2013. Also, air temperature data for year 2013 acquired from 3 synoptic meteorological stations across the state were analyzed. The Single-channel Algorithm was used to extract the surface temperature maps from the digital number embedded within the individual pixel. To understand the spatio-temporal distribution of LST and vegetation across the various landuse types, 200 sample points were randomly chosen, so that each land-use covers 40 points. Imagery for the raining season where unavailable because of the intense cloud cover. Result showed that the lowest air temperature of 20.9°C was in January, while the highest air temperature of 34°C occurred in January and March. There was a significant shift in the vegetation greenness over Ondo State, as average NDVI tend to increase from a weak positive value (0.189 to a moderate value (0.419. The LULC map revealed that vegetation cover occupied the largest area (65% followed by Built-up (26%, Swampy land (4%, Rock outcrop (3% and water bodies (2%. The surface temperature maps revealed that January has the lowest temperature of 10°C experienced in the coastal riverine areas of Ilaje and Igbokoda, while the highest temperature of 39°C observed in September is experienced on the rocky grounds. The study also showed the existence of pockets of Urban Heat Islands (UHI that are well scattered all over the state. This finding proves the capability and reliability of Satellite remote sensing for environmental studies.

  5. Adapting Extension Food Safety Programming for Vegetable Growers to Accommodate Differences in Ethnicity, Farming Scale, and Other Individual Factors

    Science.gov (United States)

    Kline, Terence R.; Kneen, Harold; Barrett, Eric; Kleinschmidt, Andy; Doohan, Doug

    2012-01-01

    Differences in vegetable production methods utilized by American growers create distinct challenges for Extension personnel providing food safety training to producer groups. A program employing computers and projectors will not be accepted by an Amish group that does not accept modern technology. We have developed an outreach program that covers…

  6. Tree Plantation Will not Compensate Natural Woody Vegetation Cover Loss in the Atlantic Department of Southern Benin

    Directory of Open Access Journals (Sweden)

    Toyi, MS.

    2013-01-01

    Full Text Available This study deals with land use and land cover changes for a 33 years period. We assessed these changes for eight land cover classes in the south of Benin by using an integrated multi-temporal analysis using three Landsat images (1972 Landsat MSS, 1986 Landsat TM and 2005 Landsat ETM+. Three scenarios for the future were simulated using a first-order Markovian model based on annual probability matrices. The contribution of tree plantations to compensate forest loss was assessed. The results show a strong loss of forest and savanna, mainly due to increased agricultural land. Natural woody vegetation ("forest", "wooded savanna" and "tree and shrub savanna" will seriously decrease by 2025 due to the expansion of agricultural activities and the increase of settlements. Tree plantations are expected to double by 2025, but they will not compensate for the loss of natural woody vegetation cover. Consequently, we assist to a continuing woody vegetation area decrease. Policies regarding reforestation and forest conservation must be initiated to reverse the currently projected tendencies.

  7. Effects of seagulls on ecosystem respiration, soil nitrogen and vegetation cover on a pristine volcanic island, Surtsey, Iceland

    Science.gov (United States)

    Sigurdsson, B. D.; Magnusson, B.

    2010-03-01

    When Surtsey rose from the North Atlantic Ocean south of Iceland in 1963, it became a unique natural laboratory on how organisms colonize volcanic islands and form ecosystems with contrasting structures and functions. In July, 2004, ecosystem respiration rate (Re), soil properties and surface cover of vascular plants were measured in 21 permanent research plots distributed among the juvenile communities of the island. The plots were divided into two main groups, inside and outside a seagull (Larus spp.) colony established on the island. Vegetation cover of the plots was strongly related to the density of gull nests. Occurrence of nests and increased vegetation cover also coincided with significant increases in Re, soil carbon, nitrogen and C:N ratio, and with significant reductions in soil pH and soil temperatures. Temperature sensitivity (Q10 value) of Re was determined as 5.3. When compared at constant temperature the Re was found to be 59 times higher within the seagull colony, similar to the highest fluxes measured in drained wetlands or agricultural fields in Iceland. The amount of soil nitrogen, mainly brought onto the island by the seagulls, was the critical factor that most influenced ecosystem fluxes and vegetation development on Surtsey. The present study shows how ecosystem activity can be enhanced by colonization of animals that transfer resources from a nearby ecosystem.

  8. Effects of seagulls on ecosystem respiration, soil nitrogen and vegetation cover on a pristine volcanic island, Surtsey, Iceland

    Directory of Open Access Journals (Sweden)

    B. D. Sigurdsson

    2010-03-01

    Full Text Available When Surtsey rose from the North Atlantic Ocean south of Iceland in 1963, it became a unique natural laboratory on how organisms colonize volcanic islands and form ecosystems with contrasting structures and functions. In July, 2004, ecosystem respiration rate (Re, soil properties and surface cover of vascular plants were measured in 21 permanent research plots distributed among the juvenile communities of the island. The plots were divided into two main groups, inside and outside a seagull (Larus spp. colony established on the island. Vegetation cover of the plots was strongly related to the density of gull nests. Occurrence of nests and increased vegetation cover also coincided with significant increases in Re, soil carbon, nitrogen and C:N ratio, and with significant reductions in soil pH and soil temperatures. Temperature sensitivity (Q10 value of Re was determined as 5.3. When compared at constant temperature the Re was found to be 59 times higher within the seagull colony, similar to the highest fluxes measured in drained wetlands or agricultural fields in Iceland. The amount of soil nitrogen, mainly brought onto the island by the seagulls, was the critical factor that most influenced ecosystem fluxes and vegetation development on Surtsey. The present study shows how ecosystem activity can be enhanced by colonization of animals that transfer resources from a nearby ecosystem.

  9. Development and validation of extensive growth and growth boundary models for psychrotolerant pseudomonads in seafood, meat and vegetable products

    DEFF Research Database (Denmark)

    Martinez Rios, Veronica; Dalgaard, Paw

    Extensive growth and growth boundary models were developed and validated for psychrotolerant pseudomonads growing in seafood, meat and vegetable products. The new models were developed by expanding anexisting cardinal parameter-type model for growth of pseudomonads in milk (Martinez-Rios et al......, when observed and predicted μmax -values were compared. Thus, on average μmax -values for seafood and meat products were overestimated by 14%. Additionally, the reference growth rate parameter μref25˚C was calibrated by fitting the model to 21 μmax -values in vegetable products. This resulted in a μref......25˚C -value of 0.54 1/h. The calibrated vegetable model wassuccessfully validated using 51 μmax -values for psychrotolerant pseudomonads in vegetables. Average bias and accuracy factor values of 1.24 and 1.38 were obtained, respectively. Lag time models were developed by using relative lag times from...

  10. Evidence for an extensive Phanerozoic sediment cover on the Canadian and Fenno-Scandian shields

    Energy Technology Data Exchange (ETDEWEB)

    Laine, E.P.; Dickson, S.M.

    1985-01-01

    Examination of the age and diameter of 75 terrestrial meteorite impact craters taken from platform and shield regions throughout the world suggest that both the Canadian and Fenno-Scandian Shields were covered by a sedimentary blanket during a portion of the Phanerozoic. Subsequent erosion, fostered perhaps by a combination of glacial and tectonic processes, has exposed both of these shields to reveal an anomalous distribution of craters through time. The primary evidence for sedimentary cover and subsequent erosion is in the form of a 280 Myr gap in the record of craters less than 15 km in diameter. Small craters of Cambrian, Ordovician and Silurian age are found in shield regions, suggesting either a thin or non-existent sediment cover during this period. However, there is no record of small diameter craters on either shield of Devonian, Carboniferous, Permian, Triassic, or Jurassic age (400 to 120 Myr). This 280 Myr gap suggests that the shields were protected from smaller body impacts by a sedimentary cover. In contrast, the record of impacts on platform sediments implies no such hiatus in the infall of cosmic bodies to the earth's surface between the Devonian and the Early Cretaceous. Subsequent erosion, perhaps by Early Cretaceous time, exposed the shields to further bombardment. In addition, pre-Devonian craters became exhumed. Thus, the record of impact craters suggests that the Canadian and Fenno-Scandian Shields were covered by sediments while part of Pangaea.

  11. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature

    Energy Technology Data Exchange (ETDEWEB)

    Blok, Daan; Heijmans, Monique M P D; Berendse, Frank [Nature Conservation and Plant Ecology Group, Wageningen University, PO Box 47, 6700 AA, Wageningen (Netherlands); Schaepman-Strub, Gabriela [Institute of Evolutionary Biology and Environmental Studies, University of Zuerich, Winterthurerstrasse 190, 8057 Zuerich (Switzerland); Bartholomeus, Harm [Centre for Geo-Information, Wageningen University, PO Box 47, 6700 AA, Wageningen (Netherlands); Maximov, Trofim C, E-mail: daan.blok@wur.nl [Biological Problems of the Cryolithozone, Russian Academy of Sciences, Siberian Division, 41, Lenin Prospekt, Yakutsk, The Republic of Sakha, Yakutia 677980 (Russian Federation)

    2011-07-15

    Recently observed Arctic greening trends from normalized difference vegetation index (NDVI) data suggest that shrub growth is increasing in response to increasing summer temperature. An increase in shrub cover is expected to decrease summer albedo and thus positively feed back to climate warming. However, it is unknown how albedo and NDVI are affected by shrub cover and inter-annual variations in the summer climate. Here, we examine the relationship between deciduous shrub fractional cover, NDVI and albedo using field data collected at a tundra site in NE Siberia. Field data showed that NDVI increased and albedo decreased with increasing deciduous shrub cover. We then selected four Arctic tundra study areas and compiled annual growing season maximum NDVI and minimum albedo maps from MODIS satellite data (2000-10) and related these satellite products to tundra vegetation types (shrub, graminoid, barren and wetland tundra) and regional summer temperature. We observed that maximum NDVI was greatest in shrub tundra and that inter-annual variation was negatively related to summer minimum albedo but showed no consistent relationship with summer temperature. Shrub tundra showed higher albedo than wetland and barren tundra in all four study areas. These results suggest that a northwards shift of shrub tundra might not lead to a decrease in summer minimum albedo during the snow-free season when replacing wetland tundra. A fully integrative study is however needed to link results from satellite data with in situ observations across the Arctic to test the effect of increasing shrub cover on summer albedo in different tundra vegetation types.

  12. The response of Arctic vegetation to the summer climate: relation between shrub cover, NDVI, surface albedo and temperature

    International Nuclear Information System (INIS)

    Blok, Daan; Heijmans, Monique M P D; Berendse, Frank; Schaepman-Strub, Gabriela; Bartholomeus, Harm; Maximov, Trofim C

    2011-01-01

    Recently observed Arctic greening trends from normalized difference vegetation index (NDVI) data suggest that shrub growth is increasing in response to increasing summer temperature. An increase in shrub cover is expected to decrease summer albedo and thus positively feed back to climate warming. However, it is unknown how albedo and NDVI are affected by shrub cover and inter-annual variations in the summer climate. Here, we examine the relationship between deciduous shrub fractional cover, NDVI and albedo using field data collected at a tundra site in NE Siberia. Field data showed that NDVI increased and albedo decreased with increasing deciduous shrub cover. We then selected four Arctic tundra study areas and compiled annual growing season maximum NDVI and minimum albedo maps from MODIS satellite data (2000-10) and related these satellite products to tundra vegetation types (shrub, graminoid, barren and wetland tundra) and regional summer temperature. We observed that maximum NDVI was greatest in shrub tundra and that inter-annual variation was negatively related to summer minimum albedo but showed no consistent relationship with summer temperature. Shrub tundra showed higher albedo than wetland and barren tundra in all four study areas. These results suggest that a northwards shift of shrub tundra might not lead to a decrease in summer minimum albedo during the snow-free season when replacing wetland tundra. A fully integrative study is however needed to link results from satellite data with in situ observations across the Arctic to test the effect of increasing shrub cover on summer albedo in different tundra vegetation types.

  13. Human Activity Influences on Vegetation Cover Changes in Beijing, China, from 2000 to 2015

    Directory of Open Access Journals (Sweden)

    Meichen Jiang

    2017-03-01

    Full Text Available For centuries, the rapid development of human society has already made human activity the dominant factor in the terrestrial ecosystem. As the city of greatest importance in China, the capital Beijing has experienced eco-environmental changes with unprecedented economic and population growth during the past few decades. To better understand the ecological transition and its correlations in Beijing, Landsat Thematic Mapper (TM and Operational Land Imager (OLI images were used to investigate vegetation coverage changes using a dimidiate pixel model. Piecewise linear regression, bivariate-partial correlation analysis, and factor analysis were applied to the probing of the relationship between vegetation coverage changes and climatic/human-induced factors. The results showed that from 2000 to 2005, 2005 to 2010, and 2010 to 2015, Beijing experienced both restoration (6.33%, 10.08%, and 12.81%, respectively and degradation (13.62%, 9.35%, and 9.49%, respectively. The correlation analysis results between climate and vegetation changes demonstrated that from 2000 to 2015, both the multi-year annual mean temperature (r = −0.819, p < 0.01 and the multi-year annual mean precipitation (r = 0.653, p < 0.05 had a significantly correlated relationship with vegetation change. The Beijing-Tianjin Sandstorm Source Control Project (BTSSCP has shown beneficial spatial effects on vegetation restoration; the total effectiveness in conservation areas (84.94 in 2000–2010 was much better than non-BTSSCP areas (34.34 in 2000–2010. The most contributory socioeconomic factors were the population (contribution = 54.356% and gross domestic product (GDP (contribution = 30.677%. The population showed a significantly negative correlation with the overall vegetation coverage (r = −0.684, p < 0.05. The GDP was significantly negatively correlated with vegetation in Tongzhou, Daxing, Central city, Fangshan, Shunyi, and Changping (r = −0.601, p < 0.01, while positively

  14. Monitoring riparian-vegetation composition and cover along the Colorado River downstream of Glen Canyon Dam, Arizona

    Science.gov (United States)

    Palmquist, Emily C.; Ralston, Barbara E.; Sarr, Daniel A.; Johnson, Taylor C.

    2018-06-05

    Vegetation in the riparian zone (the area immediately adjacent to streams, such as stream banks) along the Colorado River downstream of Glen Canyon Dam, Arizona, supports many ecosystem and societal functions. In both Glen Canyon and Grand Canyon, this ecosystem has changed over time in response to flow alterations, invasive species, and recreational use. Riparian-vegetation cover and composition are likely to continue to change as these pressures persist and new ones emerge. Because this system is a valuable resource that is known to change in response to flow regime and other disturbances, a long-term monitoring protocol has been designed with three primary objectives:Annually measure and summarize the status (composition and cover) of native and non-native vascular-plant species within the riparian zone of the Colorado River between Glen Canyon Dam and Lake Mead.At 5-year intervals, assess change in vegetation composition and cover in the riparian zone, as related to geomorphic setting and dam operations, particularly flow regime.Collect data in a manner that can be used by multiple stakeholders, particularly the basinwide monitoring program overseen by the National Park Service’s Northern Colorado Plateau Network Inventory and Monitoring program.A protocol for the long-term monitoring of riparian vegetation is described in detail and standard operating procedures are included herein for all tasks. Visual estimates of foliar and ground covers are collected in conjunction with environmental measurements to assess correlations of foliar cover with abiotic and flow variables. Sample quadrats are stratified by frequency of inundation, geomorphic feature, and by river segment to account for differences in vegetation type. Photographs of sites are also taken to illustrate qualitative characteristics of the site at the time of sampling. Procedures for field preparation, generating random samples, data collection, data management, collecting and managing unknown

  15. Vegetative, productive and qualitative performance of grapevine "Cabernet Sauvignon" according to the use of winter cover crops

    Directory of Open Access Journals (Sweden)

    Jean Carlos Bettoni

    Full Text Available ABSTRACT To study the effect of winter cover crops on the vegetative, productive and qualitative behavior of "Cabernet Sauvignon" grapevines, an experiment was conducted in two wine harvests by sowing different species of winter cover crops and additional treatments with manual weeding and mechanical mowing in an experimental vineyard located at the Experimental Station of Epagri in Videira, state of Santa Catarina, Brazil. Plant attributes of the grapevine, such as number of rods and weight of pruned material and number of branches per plant. At the time of skin color change, petioles of recently matured leaves were collected for analysis of the levels of N, P, K, Ca, Mg, Fe, Mn, Zn and B. Moments before harvest, 100 grape berries were collected randomly to determine the total soluble solids, titratable acidity and pH. At harvest, the number of bunches per branch, the number and mass of clusters per plant and the average mass of clusters per plot were determined. Fresh and dry matter yields of the cover crop and weed plants were also determined when coverage reached full bloom. The winter cover crops did not alter the yield and quality of "Cabernet Sauvignon" grapes and showed no differences from each other for the management of spontaneous vegetation by hand weeding or mechanical mowing. Rye and ryegrass are effective alternatives for weed control alternatives. The species of white and red clover present difficulty in initial establishment, producing a small amount of biomass.

  16. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River.

    Science.gov (United States)

    Ouyang, Wei; Hao, Fanghua; Skidmore, Andrew K; Toxopeus, A G

    2010-12-15

    Soil erosion is a significant concern when considering regional environmental protection, especially in the Yellow River Basin in China. This study evaluated the temporal-spatial interaction of land cover status with soil erosion characteristics in the Longliu Catchment of China, using the Soil and Water Assessment Tool (SWAT) model. SWAT is a physical hydrological model which uses the RUSLE equation as a sediment algorithm. Considering the spatial and temporal scale of the relationship between soil erosion and sediment yield, simulations were undertaken at monthly and annual temporal scales and basin and sub-basin spatial scales. The corresponding temporal and spatial Normalized Difference Vegetation Index (NDVI) information was summarized from MODIS data, which can integrate regional land cover and climatic features. The SWAT simulation revealed that the annual soil erosion and sediment yield showed similar spatial distribution patterns, but the monthly variation fluctuated significantly. The monthly basin soil erosion varied from almost no erosion load to 3.92 t/ha and the maximum monthly sediment yield was 47,540 tones. The inter-annual simulation focused on the spatial difference and relationship with the corresponding vegetation NDVI value for every sub-basin. It is concluded that, for this continental monsoon climate basin, the higher NDVI vegetation zones prevented sediment transport, but at the same time they also contributed considerable soil erosion. The monthly basin soil erosion and sediment yield both correlated with NDVI, and the determination coefficients of their exponential correlation model were 0.446 and 0.426, respectively. The relationships between soil erosion and sediment yield with vegetation NDVI indicated that the vegetation status has a significant impact on sediment formation and transport. The findings can be used to develop soil erosion conservation programs for the study area. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Detecting land-cover change using mappable vegetation related indices: A case study from Sinharaja Man and the Biosphere Reserve

    Directory of Open Access Journals (Sweden)

    BD Madurapperuma

    2014-06-01

    Full Text Available This study evaluates multi-year changes of vegetation in the Sinharaja Man and the Biosphere (MAB reserve using mappable vegetation related indices viz., Normalized Difference Vegetation Index (NDVI and Burn Index (BI. Land-cover changes in the Sinharaja MAB reserve were detected using Landsat 7 ETM+ images for 1993, 2001, and 2005. Seven individual bands of each image were converted to new multiband files by layer stacking using ENVI® 4.5. Then the multiband files were re-projected to UTM Zone 44 North, WGS-84 Datum. Each data set was exported to ENVI® EX software package to detect the changes between time steps based on NDVI and BI using an image difference tool. Land-cover data, which were obtained from the DIVA GIS web portal, were compared with Landsat image data. Results of BI showed that the Sinharaja MAB reserve fringe was vulnerable to forest fire. For example, from 1993- 2001, 160 ha identified as burned area. In contrast, from 2001-2005, 79 ha burned, and for the entire period of 1993-2005, 10 ha burned. NDVI resulted in a 962 ha increase of vegetation prime at the western Sinharaja from 2001-2005. In addition, there was a 15 ha decrease in vegetation from 1993-2005. The results were visualized using an embedded 3D render window of Google Earth and 2D view of ArcGIS explorer online. In conclusion, in-situ ground truthing data is needed for the fire-influenced area for implementing sustainable forest resource management at the Sinharaja MAB reserve. Normal 0 false false false EN-GB X-NONE X-NONE

  18. Radiative transfer in shrub savanna sites in Niger: preliminary results from HAPEX-Sahel. 3. Optical dynamics and vegetation index sensitivity to biomass and plant cover

    International Nuclear Information System (INIS)

    Leeuwen, W.J.D. van; Huete, A.R.; Duncan, J.; Franklin, J.

    1994-01-01

    A shrub savannah landscape in Niger was optically characterized utilizing blue, green, red and near-infrared wavelengths. Selected vegetation indices were evaluated for their performance and sensitivity to describe the complex Sahelian soil/vegetation canopies. Bidirectional reflectance factors (BRF) of plants and soils were measured at several view angles, and used as input to various vegetation indices. Both soil and vegetation targets had strong anisotropic reflectance properties, rendering all vegetation index (VI) responses to be a direct function of sun and view geometry. Soil background influences were shown to alter the response of most vegetation indices. N-space greenness had the smallest dynamic range in VI response, but the n-space brightness index provided additional useful information. The global environmental monitoring index (GEMI) showed a large VI dynamic range for bare soils, which was undesirable for a vegetation index. The view angle response of the normalized difference vegetation index (NDVI), atmosphere resistant vegetation index (ARVI) and soil atmosphere resistant vegetation index (SARVI) were asymmetric about nadir for multiple view angles, and were, except for the SARVI, altered seriously by soil moisture and/or soil brightness effects. The soil adjusted vegetation index (SAVI) was least affected by surface soil moisture and was symmetric about nadir for grass vegetation covers. Overall the SAVI, SARVI and the n-space vegetation index performed best under all adverse conditions and were recommended to monitor vegetation growth in the sparsely vegetated Sahelian zone. (author)

  19. A Proposed Extension to the Soil Moisture and Ocean Salinity Level 2 Algorithm for Mixed Forest and Moderate Vegetation Pixels

    Science.gov (United States)

    Panciera, Rocco; Walker, Jeffrey P.; Kalma, Jetse; Kim, Edward

    2011-01-01

    The Soil Moisture and Ocean Salinity (SMOS)mission, launched in November 2009, provides global maps of soil moisture and ocean salinity by measuring the L-band (1.4 GHz) emission of the Earth's surface with a spatial resolution of 40-50 km.Uncertainty in the retrieval of soilmoisture over large heterogeneous areas such as SMOS pixels is expected, due to the non-linearity of the relationship between soil moisture and the microwave emission. The current baseline soilmoisture retrieval algorithm adopted by SMOS and implemented in the SMOS Level 2 (SMOS L2) processor partially accounts for the sub-pixel heterogeneity of the land surface, by modelling the individual contributions of different pixel fractions to the overall pixel emission. This retrieval approach is tested in this study using airborne L-band data over an area the size of a SMOS pixel characterised by a mix Eucalypt forest and moderate vegetation types (grassland and crops),with the objective of assessing its ability to correct for the soil moisture retrieval error induced by the land surface heterogeneity. A preliminary analysis using a traditional uniform pixel retrieval approach shows that the sub-pixel heterogeneity of land cover type causes significant errors in soil moisture retrieval (7.7%v/v RMSE, 2%v/v bias) in pixels characterised by a significant amount of forest (40-60%). Although the retrieval approach adopted by SMOS partially reduces this error, it is affected by errors beyond the SMOS target accuracy, presenting in particular a strong dry bias when a fraction of the pixel is occupied by forest (4.1%v/v RMSE,-3.1%v/v bias). An extension to the SMOS approach is proposed that accounts for the heterogeneity of vegetation optical depth within the SMOS pixel. The proposed approach is shown to significantly reduce the error in retrieved soil moisture (2.8%v/v RMSE, -0.3%v/v bias) in pixels characterised by a critical amount of forest (40-60%), at the limited cost of only a crude estimate of the

  20. Automated Land Cover Change Detection and Mapping from Hidden Parameter Estimates of Normalized Difference Vegetation Index (NDVI) Time-Series

    Science.gov (United States)

    Chakraborty, S.; Banerjee, A.; Gupta, S. K. S.; Christensen, P. R.; Papandreou-Suppappola, A.

    2017-12-01

    Multitemporal observations acquired frequently by satellites with short revisit periods such as the Moderate Resolution Imaging Spectroradiometer (MODIS), is an important source for modeling land cover. Due to the inherent seasonality of the land cover, harmonic modeling reveals hidden state parameters characteristic to it, which is used in classifying different land cover types and in detecting changes due to natural or anthropogenic factors. In this work, we use an eight day MODIS composite to create a Normalized Difference Vegetation Index (NDVI) time-series of ten years. Improved hidden parameter estimates of the nonlinear harmonic NDVI model are obtained using the Particle Filter (PF), a sequential Monte Carlo estimator. The nonlinear estimation based on PF is shown to improve parameter estimation for different land cover types compared to existing techniques that use the Extended Kalman Filter (EKF), due to linearization of the harmonic model. As these parameters are representative of a given land cover, its applicability in near real-time detection of land cover change is also studied by formulating a metric that captures parameter deviation due to change. The detection methodology is evaluated by considering change as a rare class problem. This approach is shown to detect change with minimum delay. Additionally, the degree of change within the change perimeter is non-uniform. By clustering the deviation in parameters due to change, this spatial variation in change severity is effectively mapped and validated with high spatial resolution change maps of the given regions.

  1. Comparing Different Approaches for Mapping Urban Vegetation Cover from Landsat ETM+ Data: A Case Study on Brussels

    Directory of Open Access Journals (Sweden)

    Frank Canters

    2008-06-01

    Full Text Available Urban growth and its related environmental problems call for sustainable urban management policies to safeguard the quality of urban environments. Vegetation plays an important part in this as it provides ecological, social, health and economic benefits to a city’s inhabitants. Remotely sensed data are of great value to monitor urban green and despite the clear advantages of contemporary high resolution images, the benefits of medium resolution data should not be discarded. The objective of this research was to estimate fractional vegetation cover from a Landsat ETM+ image with sub-pixel classification, and to compare accuracies obtained with multiple stepwise regression analysis, linear spectral unmixing and multi-layer perceptrons (MLP at the level of meaningful urban spatial entities. Despite the small, but nevertheless statistically significant differences at pixel level between the alternative approaches, the spatial pattern of vegetation cover and estimation errors is clearly distinctive at neighbourhood level. At this spatially aggregated level, a simple regression model appears to attain sufficient accuracy. For mapping at a spatially more detailed level, the MLP seems to be the most appropriate choice. Brightness normalisation only appeared to affect the linear models, especially the linear spectral unmixing.

  2. Protection against productivity versus erosion vineyards. Testing of vegetal covers in slope crops

    International Nuclear Information System (INIS)

    Marques, M. J.; Ruiz-Colmenero, M.; Garcia-Munoz, S.; Cabello, F.; Munoz-Organero, G.; Perez-Jimenez, M. A.; Bienes, R.

    2009-01-01

    Temporary and permanent cover crops were used in three rain fed vineyards in the Center of Spain. They were sown in the middle of the strips to assess their ability to control erosion as well as their influence on grape production. Data from the year 2008 are compared with those obtained with traditional tillage treatment. The permanent cover formed by Brachypodium distachyon showed better ability to control erosion but it produced a decrease in production in young vines. barley and rye treatments were temporary covers, mowed in spring. They also reduced the erosion compared with the tillage however they did not appear to affect the vineyard production. (Author)

  3. Assessing Vegetation Cover Dynamics Induced by Policy-Driven Ecological Restoration and Implication to Soil Erosion in Southern China.

    Science.gov (United States)

    Zhang, Jien; Wang, Tianming; Ge, Jianping

    2015-01-01

    In the aftermath of the severe droughts and floods at the end of the 20th century, the Chinese government launched several ecological restoration projects, including the Natural Forest Protection Program in 1998 and the Grain-for-Green Program in 1999, to promote afforestation and reforestation to reduce surface runoff and consequent soil erosion nationwide. However, it is still unclear how vegetation has changed in southern China since the launch of these programs. In this study, we used the MODIS Enhanced Vegetation Index (EVI) to analyze the vegetation cover dynamics in southern China from 2000 to 2009 and evaluate the resulting effects of controlling soil erosion. Our observations indicate that 5.3% of the study area significantly increased and 0.98% significantly decreased in EVI value (p soil erosion based upon monitoring sediment yields at hydrologic stations in the Yangtze River. This study displays the spatial patterns of trend in vegetation growth since the beginning of the 21st century in southern China and highlights the important role of China's afforestation program.

  4. [Effects of climate and grazing on the vegetation cover change in Xilinguole League of Inner Mongolia, North China].

    Science.gov (United States)

    Wang, Hai-Mei; Li, Zheng-Hai; Wang, Zhen

    2013-01-01

    Based on the monthly temperature and precipitation data of 15 meteorological stations and the statistical data of livestock density in Xilinguole League in 1981-2007, and by using ArcGIS, this paper analyzed the spatial distribution of the climate aridity and livestock density in the League, and in combining with the ten-day data of the normalized difference vegetation index (NDVI) in 1981-2007, the driving factors of the vegetation cover change in the League were discussed. In the study period, there was a satisfactory linear regression relationship between the climate aridity and the vegetation coverage. The NDVI and the livestock density had a favorable binomial regression relationship. With the increase of NDVI, the livestock density increased first and decreased then. The vegetation coverage had a complex linear relationship with livestock density and climate aridity. The NDVI had a positive correlation with climate aridity, but a negative correlation with livestock density. Compared with livestock density, climate aridity had far greater effects on the NDVI.

  5. Land Use and Land Cover Change, and Woody Vegetation Diversity in Human Driven Landscape of Gilgel Tekeze Catchment, Northern Ethiopia

    Directory of Open Access Journals (Sweden)

    Samuale Tesfaye

    2014-01-01

    Full Text Available Land use and land cover (LULC change through inappropriate agricultural practices and high human and livestock population pressure have led to severe land degradation in the Ethiopian highlands. This has led to further degradation such as biodiversity loss, deforestation, and soil erosion. The study examined woody vegetation diversity status and the impact of drivers of change across different LULC types and agroecological zones in Gilgel Tekeze catchment, northern Ethiopian highlands. LULC dynamics were assessed using GIS techniques on 1976, 1986, and 2008 satellite images. Vegetation data were collected from 135 sample plots (20 m × 20 m from five LULC types, namely, forest, shrub-bush, grazing, settlement, and cultivated land, in the three agroecological zones; Kolla, Weyna-Dega, and Dega. Differences in vegetation structure and composition and their relationship to agroecological zones were tested using two-way ANOVA and PCA technique. The results show that vegetation structure and composition significantly differed across all LULC types in different agroecological zones particularly in sapling density, tree height, and shrub height and in each agroecological zone between forest land, shrub-bush land, and settlement area. Overall, Weyna-Dega agroecological zone and the shrub-bush land had more structural and compositional diversity than the other agroecological zones and LULC types.

  6. Analyses of changes in vegetation cover in the South and Sub-Taiga of Western Siberia using Landsat data

    Science.gov (United States)

    Dyukarev, Egor; Pologova, Nina; Golovatskaya, Eugenia

    2010-05-01

    Understanding human impact on vegetation composition and structure, at scales from the patch to the globe, and capacity to monitor change over time is fundamental research problem to address Global Change and ensure sustainable development. Natural ecosystems at the South and Sob-Taiga zone of Western Siberia are characterized by development of an early successional states, given the projected increase in disturbance, or will be converted into human-dominated terrestrial production systems. Disturbances (e.g., fire, dieback due to insect attacks) appear to be increasing in some regions, leading to fragmentation of natural ecosystems and to a generally "weedier," structurally simpler biosphere with fewer systems in a more ecologically complex old-growth state. The analysis of structure of vegetation cover at two test sites located at the south-west part of the West-Siberian Plain in the South and Sub-Taiga zone was made using LANDSAT space images and ground data. The studied area of the first test site ("Bakchar") is occupied by bogs, paludificated forests and cultivated lands. Test site "Tomsk" covered by cultivated lands in the south, dark coniferous forest complexes an early and old-growth state in the north part. Mire types at the test sites are presented by open fens, ridge-hollow / ridge-lake complexes and pine-shrub-sphagnum communities with different tree height and layer density. During the XX century the vegetation cover was exposed to natural and anthropogenic changes. Comparison of space images from different years (1990, 1999 and 2007) allowed revealing dynamics in vegetation cover. Forest change was calculated using the Disturbance Index (Healey, 2006). Decrease of forest area in 1990-1999 are primary occurs due to intense forest cutting for timber industry and local use. A strong wind have damaged forests between 1990 and 1999 in stripes oriented from south-west to north -east in the prevailing wind direction. Strong winds were registered in 2003

  7. Effects of vegetation and soil-surface cover treatments on the hydrologic behavior of low-level waste trench caps

    International Nuclear Information System (INIS)

    Lopez, E.A.; Barnes, F.J.; Antonio, E.J.

    1988-01-01

    Preliminary results are presented on a three-year field study at Los Alamos National Laboratory to evaluate the influence of different low-level radioactive waste trench cap designs on water balance under natural precipitation. Erosion plots having two different vegetative covers (shrubs and grasses) and with either gravel-mulched or unmulched soil surface treatments have been established on three different soil profiles on a decommissioned waste site. Total runoff and soil loss from each plot is measured after each precipitation event. Soil moisture is measured biweekly while plant canopy cover is measured seasonally. Preliminary results from the first year show that the application of a gravel mulch reduced runoff by 73 to 90%. Total soil loss was reduced by 83 to 93% by the mulch treatment. On unmulched plots, grass cover reduced both runoff and soil loss by about 50% compared to the shrub plots. Continued monitoring of the study site will provide data that will be used to analyze complex interactions between independent variables such rainfall amount and intensity, antecedent soil moisture, and soil and vegetation factors, as they influence water balance, and soil erosion. 18 refs., 2 figs., 3 tabs

  8. Mineralization of organic phosphorus in soil size fractions under different vegetation covers in the north of Rio de Janeiro

    Directory of Open Access Journals (Sweden)

    Joice Cleide de Oliveira Rita

    2013-10-01

    Full Text Available In unfertilized, highly weathered tropical soils, phosphorus (P availability to plants is dependent on the mineralization of organic P (Po compounds. The objective of this study was to estimate the mineralization of total and labile Po in soil size fractions of > 2.0, 2.0-0.25 and 2.0 and 2.0-0.25 mm fractions, respectively. In contrast, there was an average increase of 90 % of total Po in microaggregates of 2.0 (-50 % and < 0.25 mm (-76 % fractions, but labile Po increased by 35 % in the 2.0-0.25 mm fraction. The Po fraction relative to total extracted P and total labile P within the soil size fractions varied with the vegetation cover and incubation time. Therefore, the distribution of P fractions (Pi and Po in the soil size fraction revealed the distinctive ability of the cover species to recycle soil P. Consequently, the potential of Po mineralization varied with the size fraction and vegetation cover. Because Po accounted for most of the total labile P, the P availability to plants was closely related to the mineralization of this P fraction.

  9. Using NDVI to assess vegetative land cover change in central Puget Sound.

    Science.gov (United States)

    Morawitz, Dana F; Blewett, Tina M; Cohen, Alex; Alberti, Marina

    2006-03-01

    We used the Normalized Difference Vegetation Index (NDVI) in the rapidly growing Puget Sound region over three 5-year time blocks between 1986-1999 at three spatial scales in 42 Watershed Administrative Units (WAUs) to assess changes in the amounts and patterns of green vegetation. On average, approximately 20% of the area in each WAU experienced significant NDVI change over each 5-year time block. Cumulative NDVI change over 15 years (summing change over each 5-year time block) was an average of approximately 60% of each WAU, but was as high as 100% in some. At the regional scale, seasonal weather patterns and green-up from logging were the primary drivers of observed increases in NDVI values. At the WAU scale, anthropogenic factors were important drivers of both positive and negative NDVI change. For example, population density was highly correlated with negative NDVI change over 15 years (r = 0.66, P < 0.01), as was road density (r = 0.71, P < 0.01). At the smallest scale (within 3 case study WAUs) land use differences such as preserving versus harvesting forest lands drove vegetation change. We conclude that large areas within most watersheds are continually and heavily impacted by the high levels of human use and development over short time periods. Our results indicate that varying patterns and processes can be detected at multiple scales using changes in NDVIa values.

  10. EnviroAtlas - Paterson, NJ - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. EnviroAtlas defines vegetated buffer for this community as trees and forest and grass and herbaceous. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. Uranium potential in outcropping Permian basins in France and their extensions beneath mesozoic and tertiary cover

    International Nuclear Information System (INIS)

    Hery, B.

    1990-01-01

    About a third of metropolitan France's uranium production is from Permian deposits located in the Lodeve and, to a lesser extent, Bourbon-l'Archambault basins. Of the Autun, west Vanoise, St-Affrique, Rodez, Brive and Var basins investigated in this study, only those of Rodez and Var have been shown to contain significant deposits. Some of the basins contain potentially interesting targets, often removed from the areas of known mineral occurrences, that have never been investigated. Geophysical exploration and drilling have shown that the Permian extends over a vast area beneath the cover of the large Mesozoic and Tertiary basins. However zones within reach of mineral exploration, ie. those less than 500 m deep, are only found in a few areas. To reach the distant targets down-dip in the outcropping basins or beneath the Mesozoic and Tertiary cover, a detailed study of the basin must be undertaken beforehand. To define and locate targets that are obviously more costly to investigate, direct methods of investigation need to be used such as drilling and geochemistry, and indirect methods such as remote sensing, geophysics and well-logging [fr

  12. The long-term relationship between population growth and vegetation cover: an empirical analysis based on the panel data of 21 cities in Guangdong Province, China.

    Science.gov (United States)

    Li, Chao; Kuang, Yaoqiu; Huang, Ningsheng; Zhang, Chao

    2013-02-07

    It is generally believed that there is an inverse relationship between population growth and vegetation cover. However, reports about vegetation protection and reforestation around the World have been continuously increasing in recent decades, which seems to indicate that this relationship may not be true. In this paper, we have taken 21 cities in Guangdong Province, China as the study area to test the long-term relationship between population growth and vegetation cover, using an AVHRR NDVI data set and the panel cointegrated regression method. The results show that there is a long-term inverted N-shaped curve relationship between population growth and vegetation cover in the region where there are frequent human activities and the influence of climate change on vegetation cover changes is relatively small. The two turning points of the inverted N-shaped curve for the case of Guangdong Province correspond to 2,200 persons · km(-2) and 3,820 persons · km(-2), and they can provide a reference range for similar regions of the World. It also states that the population urbanization may have a negative impact on the vegetation cover at the early stage, but have a positive impact at the later stage. In addition, the Panel Error Correction Model (PECM) is used to investigate the causality direction between population growth and vegetation cover. The results show that not only will the consuming destruction effect and planting construction effect induced by the population growth have a great impact on vegetation cover changes, but vegetation cover changes in turn will also affect the population growth in the long term.

  13. The Long-Term Relationship between Population Growth and Vegetation Cover: An Empirical Analysis Based on the Panel Data of 21 Cities in Guangdong Province, China

    Directory of Open Access Journals (Sweden)

    Chao Li

    2013-02-01

    Full Text Available It is generally believed that there is an inverse relationship between population growth and vegetation cover. However, reports about vegetation protection and reforestation around the World have been continuously increasing in recent decades, which seems to indicate that this relationship may not be true. In this paper, we have taken 21 cities in Guangdong Province, China as the study area to test the long-term relationship between population growth and vegetation cover, using an AVHRR NDVI data set and the panel cointegrated regression method. The results show that there is a long-term inverted N-shaped curve relationship between population growth and vegetation cover in the region where there are frequent human activities and the influence of climate change on vegetation cover changes is relatively small. The two turning points of the inverted N-shaped curve for the case of Guangdong Province correspond to 2,200 persons·km−2 and 3,820 persons·km−2, and they can provide a reference range for similar regions of the World. It also states that the population urbanization may have a negative impact on the vegetation cover at the early stage, but have a positive impact at the later stage. In addition, the Panel Error Correction Model (PECM is used to investigate the causality direction between population growth and vegetation cover. The results show that not only will the consuming destruction effect and planting construction effect induced by the population growth have a great impact on vegetation cover changes, but vegetation cover changes in turn will also affect the population growth in the long term.

  14. VEGETAL COVERING IN CUT SLOPES BY MEANS OF GEOCELLS OF RUBBERIZED SISAL BIOBLANKETS IN BRASILIA/DF, BRAZIL

    Directory of Open Access Journals (Sweden)

    Maurizio Sponga

    2005-05-01

    Full Text Available The strongly wavy relief transposition for implantation of highways has became intensely used in the last decades by means of tunnels, cuts and fillings, causing impacts to the landscape in result of some factors, as decapitation of surfaces, abrupt transformation of land morphology, disequilibrium of superficial and sub superficial water circulation, waste handling sistems, enchainment of erosive processes etc. As an alleviating measure of part of the impacts generated for the excavations for constructing the roadways, procedures of containment and vegetal resetting of surfaces for reduction of the erosive processes and stabilization of mass movements are adopted. The found terrain are very diversified and several occasions the vegetal covering becomes difficult in reason of the physical-chemical characteristics for germination to be inadequate. In areas of high risk to the occupation with stability problems, commonly they use covering with projected concrete for containment of hillsides, that parallelly causes strong environmental and visual impact in the intervention area, and furthermore, possibly, not consisting insolutions duly adequate or definitive for these situations.The search for alternatives is frequent in academic medium as much as in the private initiative for techniques for containment of hillsides and more economic erosion control, looking for lesser ambient impacts and better results. The search of these alternatives gradually becomes technically systemizing itself, aiming at the recovery of the conditions of dynamic balance of the impacted landscapes due to the explosive increase of social and environmental problems intrinsically related.In this direction, it will be presented the description of a work of vegetal covering by grass in plates, antierosive bioblanket and geocells in fibers of rubberized sisal for the confinement of soil in cut slopes of a highway in Brasilia/DF, in Brazil. This technique presented excellent

  15. Vegetation and overburden cover on phosphogypsum: Effects on radon emission, runoff water quality, and plant uptake of fluoride and radium

    Energy Technology Data Exchange (ETDEWEB)

    Richardson, S.G. [Florida Institute of Phosphate Research, Bartow, FL (United States)

    1997-12-31

    Phosphogypsum is a byproduct of phosphate fertilizer production, and more than 700 million metric tons have accumulated on 2,500 ha in Florida. Field research was conducted to compare the benefits of capping phosphogypsum with overburden (up to 15 cm in depth) from mined sites versus treatment of the phosphogypsum with minimal amendments. After four growing seasons, vegetation cover was excellent (no bare ground) on plots amended with dolomitic limestone or capped with overburden. However, more species became established with an overburden cap. Fluoride uptake by bermudagrass (Cynodon dactylon) was high when grown directly on phosphogypsum (895 mg kg{sup -1} in leaf tissue) and was reduced slightly by a 15 cm overburden cap (670 mg kg{sup -1}). Unexpectedly, radium ({sup 226}Ra) uptake in bermudagrass grown directly on phosphogypsum (0.6 pCi g{sup -1}) was less than when grown on the overburden cap (1.8 pCi g{sup -1}). The presence of grass cut the radon ({sup 222}Rn) efflux from phosphogypsum in half (from 24 pCi m{sup -2} s{sup -1} to 11 pCi m{sup -2} s{sup -1}), while 15 cm of overburden, in addition to grass cover, halved it again (down to 5 pCi m{sup -2} s{sup -1}). Vegetation cover on phosphogypsum resulted in a 30-fold decrease in electrical conductivity and a 5-fold decrease in the fluoride concentration of surface runoff water. Runoff water quality from vegetated plots was equally good with or without a 15 cm overburden cap on top of the phosphogypsum.

  16. Low-cost computer classification of land cover in the Portland area, Oregon, by signature extension techniques

    Science.gov (United States)

    Gaydos, Leonard

    1978-01-01

    Computer-aided techniques for interpreting multispectral data acquired by Landsat offer economies in the mapping of land cover. Even so, the actual establishment of the statistical classes, or "signatures," is one of the relatively more costly operations involved. Analysts have therefore been seeking cost-saving signature extension techniques that would accept training data acquired for one time or place and apply them to another. Opportunities to extend signatures occur in preprocessing steps and in the classification steps that follow. In the present example, land cover classes were derived by the simplest and most direct form of signature extension: Classes statistically derived from a Landsat scene for the Puget Sound area, Wash., were applied to the Portland area, Oreg., using data for the next Landsat scene acquired less than 25 seconds down orbit. Many features can be recognized on the reduced-scale version of the Portland land cover map shown in this report, although no statistical assessment of its accuracy is available.

  17. Influence of urbanization on the original vegetation cover in urban river basin: case study in Campinas/SP, Brazil

    Science.gov (United States)

    Leite Silva, Alessandra; Márcia Longo, Regina

    2017-04-01

    ABSTRACT: In most Brazilian municipalities, urban development was not based on adequate planning; one of the consequences was the reduction of the original vegetation, limiting the forest formations to scarce and isolated fragments. In Campinas, São Paulo, Brazil, the vegetation fragmentation was mainly related to the expeditions and to the cycles of sugar cane and coffee. In this way, the present study aims to identify, quantify and evaluate the remaining arboreal vegetation spatial distribution in the Anhumas River Basin - Campinas/SP, Brazil. This study was developed with the aid of GIS software and field visits in order to construct a diagnosis of these areas and subsidize future actions required and to discuss the influence of urbanization on the original vegetation cover. The area was initially occupied by the Atlantic Forest (semi-deciduous forest) and drains one of the oldest urban occupation areas in the municipality; according to researchers, based on the water and geomorphological conditions of the basin, it can be subdivided into high, medium and low course. With a total area of 156,514 km2, only 16.74% are classified as green areas; where just 1.07% and 6.17% of total area represents forests and reforestation areas, respectively. The remaining green areas consists of: wetlands close to water bodies, but with no presence of trees and shrubs (area of 0.12% of the basin); urban green space, including parks and squares (2.19%); and natural field, constituted by natural non-arboreous vegetation (7.18%). In a scenario like this, a characteristic situation is the forest fragmentation; this process results in native vegetation remnants, isolated and more susceptible to external interference, coming from, for example, the proximity to agricultural areas or others land uses. The ecological knowledge of the remnants and their correct management can not only make it possible to diagnose current problems and to estimate future influences, but also to point out the

  18. Hydraulic Balance, under three contrasting vegetable coverings in the San Cristobal River basin, Bogota

    International Nuclear Information System (INIS)

    De las salas, Gonzalo; Garcia Olmos, Carlos

    2000-01-01

    A hydrological balance fewer than three forest covers in the San Cristobal river watershed was done. Records of precipitation during one year under each canopy were registered along with measurements on the river stream of three micro watersheds adjacent to the forest canopies. The following parameters were evaluated: evapotranspiration, trough fall, interception, infiltration and water storage, which are discussed critically

  19. Increasing the accuracy and automation of fractional vegetation cover estimation from digital photographs

    Science.gov (United States)

    The use of automated methods to estimate canopy cover (CC) from digital photographs has increased in recent years given its potential to produce accurate, fast and inexpensive CC measurements. Wide acceptance has been delayed because of the limitations of these methods. This work introduces a novel ...

  20. EnviroAtlas - Durham, NC - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas ) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  1. EnviroAtlas - Portland, ME - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  2. EnviroAtlas - New Bedford, MA - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. EnviroAtlas - Milwaukee, WI - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  4. EnviroAtlas - Phoenix, AZ - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  5. EnviroAtlas - Woodbine, IA - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  6. EnviroAtlas - Green Bay, WI - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets ).

  7. EnviroAtlas - Portland, OR - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (http:/www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. EnviroAtlas - Pittsburgh, PA - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. EnviroAtlas - Fresno, CA - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  10. EnviroAtlas - Tampa, FL - 51m Riparian Buffer Vegetated Cover

    Science.gov (United States)

    This EnviroAtlas dataset describes the percentage of a 51-m riparian buffer that is vegetated. There is a potential for decreased water quality in areas where the riparian buffer is less vegetated. The displayed line represents the center of the analyzed riparian buffer. The water bodies analyzed include hydrologically connected streams, rivers, connectors, reservoirs, lakes/ponds, ice masses, washes, locks, and rapids within the Atlas Area. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. Comparison of Methods for Estimating Fractional Cover of Photosynthetic and Non-Photosynthetic Vegetation in the Otindag Sandy Land Using GF-1 Wide-Field View Data

    OpenAIRE

    Xiaosong Li; Guoxiong Zheng; Jinying Wang; Cuicui Ji; Bin Sun; Zhihai Gao

    2016-01-01

    Photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) are important ground cover types for desertification monitoring and land management. Hyperspectral remote sensing has been proven effective for separating NPV from bare soil, but few studies determined fractional cover of PV (fpv) and NPV (fnpv) using multispectral information. The purpose of this study is to evaluate several spectral unmixing approaches for retrieval of fpv and fnpv in the Otindag Sandy Land using GF-1 wi...

  12. Effect of size and vegetation cover in urban parks in the richness and diversity of bird life in Bogota, Colombia

    International Nuclear Information System (INIS)

    Berget, Carolina

    2006-01-01

    In one section of Bogota city some characteristics of urban recreational areas (size, distance to the east hills, coverage and diversity of vegetation) and their effects over the bird fauna diversity were studied between April and June of 2004. The samplings were made in 18 recreational areas of different sizes (100 m2 1 300000 m2), and at different distances (1.40 km -7.0 km) from two native vegetation patches to the east hills in Bogota, which were thought to be habitat sources. Lineal regression analysis showed that bird fauna diversity is affected by the size of the recreational area and, to a lesser extent, the vegetation cover, but not by other variables. These recreational areas are not considered fragments but human made islands and, therefore, they do not contain many relict forest bird species. I concluded that the east hills are not source habitat of bird species for the urban recreational areas studied. These habitats are suitable for the establishment of species associated to open areas

  13. Effect of removal of hesperis matronalis (Dame's rocket) on species cover of forest understory vegetation in NW indiana

    Science.gov (United States)

    Pavlovic, N.B.; Leicht-Young, S. A.; Frohnapple, K.J.; Grundel, R.

    2009-01-01

    Exotic invasive plant species differ in their effects on indigenous vegetation as evidenced by research evaluating community response to their removal. We used a removal approach to quantify the response of a mesic woodland to the removal versus retention of an invasive plant, Hesperis matronalis (dame's rocket) from paired treatment plots over 3 y. Cover of H. matronalis did not differ between control and treatment plots prior to removal, declined in the removal plots and remained significantly lower in cover compared to the control plots. Removal did not significantly affect species richness and species diversity (evenness, Shannon and Simpson) at the plot scale, but did result in increased species richness overall in the removal plots in the last sampling year when compared to control plots. Non-metric multidimensional scaling ordination analysis indicated a significant compositional change in the spring plant composition of plots over the 3 y, reflecting an increase in exotic woody species. Exotic woody plants, especially Rosa multiflora and Euonymus alatus, increased in cover in response to H. matronalis removal. In the 3 y, neither native nor exotic forbs, nor native woody plants responded to the removal of H. matronalis in a statistically significant manner. The increasing cover of woody invasive plants in response to the removal of H. matronalis has important management implications for restoration of degraded communities.

  14. The effects of size of opening in vegetation and litter cover on seedling establishment of goldenrods (Solidago spp.).

    Science.gov (United States)

    Goldberg, Deborah E; Werner, Patricia A

    1983-11-01

    We investigated the effects of size of opening in the vegetation and litter cover on seedling establishment of two species of goldenrods (Solidago spp.) in an abandoned field in southwestern Michigan, U.S.A. Seeds of S. canadensis and S. juncea were sown into clipped plots, ranging from 0 cm (control, unclipped) to 100 cm in diameter, with and without litter. Seedling emergence, survival and growth were followed for one year. Soil moisture was not significantly different among the opening sizes, but, within a size, tended to be lower when litter was removed. Light intensity at the soil surface was positively related to opening size early in the growing season, but later in the growing season reached a maximum in intermediate-sized openings and then leveled off.Litter strongly inhibited seedling emergence in both species. Emergence of S. canadensis seedlings was lower in 0 and 10 cm openings than in the larger openings, while emergence of S. juncea seedlings was lower in the largest openings (100 cm) than in all the smaller openings. In contrast, seedling growth and probability of survival increased with diameter of opening for both species. Some seedlings of S. juncea did survive in complete vegetation cover (controls, 0 cm openings) while seedlings of S. canadensis survived only in openings of at least 30 cm diameter. Thus, S. juncea had a smaller minimum opening size for seedling establishment than S. canadensis, although both species grew and survived best in the largest openings made in the experiment.

  15. Quantifying Impacts of Land-Use/Cover Change on Urban Vegetation Gross Primary Production: A Case Study of Wuhan, China

    Directory of Open Access Journals (Sweden)

    Shishi Liu

    2018-03-01

    Full Text Available This study quantified the impacts of land-use/cover change (LUCC on gross primary production (GPP during 2000–2013 in a typical densely urbanized Chinese city, Wuhan. GPP was estimated at 30-m spatial resolution using annual land cover maps, meteorological data of the baseline year, and the normalized difference vegetation index (NDVI, which was generated with the spatial and temporal adaptive reflectance fusion model (STARFM based on Landsat and MODIS images. The results showed that approximately 309.95 Gg C was lost over 13 years, which was mainly due to the conversion from cropland to built-up areas. The interannual variation of GPP was affected by the change of vegetation composition, especially the increasing relative fraction of forests. The loss of GPP due to the conversion from forest to cropland fluctuated through the study period, but showed a sharp decrease in 2007 and 2008. The gain of GPP due to the conversion from cropland to forest was low between 2001 and 2009, but increased dramatically between 2009 and 2013. The change rate map showed an increasing trend along the highways, and a decreasing trend around the metropolitan area and lakes. The results indicated that carbon consequences should be considered before land management policies are put forth.

  16. Sensitivity of the normalized difference vegetation index to subpixel canopy cover, soil albedo, and pixel scale

    Science.gov (United States)

    Jasinski, Michael F.

    1990-01-01

    An analytical framework is provided for examining the physically based behavior of the normalized difference vegetation index (NDVI) in terms of the variability in bulk subpixel landscape components and with respect to variations in pixel scales, within the context of the stochastic-geometric canopy reflectance model. Analysis focuses on regional scale variability in horizontal plant density and soil background reflectance distribution. Modeling is generalized to different plant geometries and solar angles through the use of the nondimensional solar-geometric similarity parameter. Results demonstrate that, for Poisson-distributed plants and for one deterministic distribution, NDVI increases with increasing subpixel fractional canopy amount, decreasing soil background reflectance, and increasing shadows, at least within the limitations of the geometric reflectance model. The NDVI of a pecan orchard and a juniper landscape is presented and discussed.

  17. An ecological approach to the assessment of vegetation cover on inactive uranium mill tailings sites

    International Nuclear Information System (INIS)

    Kalin, M.; Caza, C.

    1982-01-01

    Vascular plants have been collected from abandoned or inactive uranium mill tailings in three mining areas in Canada. The collection was evaluated to determine some characteristics of vegetation development and to identify the plants which will persist on the sites. A total of 170 species were identified. Many of the species are widely distributed in North America, none has been reported as rare in any of the locations from which they were collected. Species richness was highest on Bancroft sites and lowest on Uranium City sites, though values were variable between sites. Forty-four per cent of the total number of species were found on only a single site. Only seven species occurred on more than half of the tailings sites and in all three mining areas. There was no difference between amended and unamended sites in terms of either species richness or species composition. There was no apparent relationship between species richness and either site size, site age or amendment history. The results of this survey suggest that the uranium mill tailings sites are at an early stage of colonization where the seed input from surrounding areas and the heterogeneity of the sites are factors determining species composition and species richness. The fate of an individual once it has reached the site will be determined by its ability to establish on the sites. A perennial growth habit and the ability to expand clonally are important characteristics of the species on the tailings. The species on the tailings are commonly found in a variety of habitats. Consistent with the observation that the tailings sites are at a stage of early colonization, we find that the few species widely distributed across sites are all characteristic pioneering species with wide environmental tolerances. These species included Populus tremuloides, P. balsamifera, Scirpus cyperinus, Equisetum arvense, Betula papyrifera, Achillea millefolium and Typha spp. The vegetation on the tailings is likely to be

  18. The importance of parameterization when simulating the hydrologic response of vegetative land-cover change

    Science.gov (United States)

    White, Jeremy; Stengel, Victoria; Rendon, Samuel; Banta, John

    2017-08-01

    Computer models of hydrologic systems are frequently used to investigate the hydrologic response of land-cover change. If the modeling results are used to inform resource-management decisions, then providing robust estimates of uncertainty in the simulated response is an important consideration. Here we examine the importance of parameterization, a necessarily subjective process, on uncertainty estimates of the simulated hydrologic response of land-cover change. Specifically, we applied the soil water assessment tool (SWAT) model to a 1.4 km2 watershed in southern Texas to investigate the simulated hydrologic response of brush management (the mechanical removal of woody plants), a discrete land-cover change. The watershed was instrumented before and after brush-management activities were undertaken, and estimates of precipitation, streamflow, and evapotranspiration (ET) are available; these data were used to condition and verify the model. The role of parameterization in brush-management simulation was evaluated by constructing two models, one with 12 adjustable parameters (reduced parameterization) and one with 1305 adjustable parameters (full parameterization). Both models were subjected to global sensitivity analysis as well as Monte Carlo and generalized likelihood uncertainty estimation (GLUE) conditioning to identify important model inputs and to estimate uncertainty in several quantities of interest related to brush management. Many realizations from both parameterizations were identified as behavioral in that they reproduce daily mean streamflow acceptably well according to Nash-Sutcliffe model efficiency coefficient, percent bias, and coefficient of determination. However, the total volumetric ET difference resulting from simulated brush management remains highly uncertain after conditioning to daily mean streamflow, indicating that streamflow data alone are not sufficient to inform the model inputs that influence the simulated outcomes of brush management

  19. Chemical composition of overland flow produced on soils covered with vegetative ash

    Directory of Open Access Journals (Sweden)

    M.B. Bodí

    2013-05-01

    Full Text Available The objective of this study was to ascertain the differences between the soluble elements of ash obtained under laboratory conditions and the dissolved in overland flow from soils covered with a layer of ash. The overland flow was obtained during series of rainfall simulations over soils covered with two different types of ash. This study indicates that the soluble elements released from ash can modify water quality increasing its pH, electrical conductivity and especially cation content. The nutrients solubilised are not necessarily the same as the elemental composition of ash itself. Runoff composition depends on the volume of water produced, on the solubility of the ash components and on the chemical interactions with water from rainfall and soil. After the first intense rain event, most of the elements are solubilised and lixiviated or washed out, however, some of them may increase in the runoff or soil water some weeks later due to chemical interactions with water from rainfall and soil nutrients.

  20. Flutuações de temperatura e umidade do solo em resposta à cobertura vegetal Soil temperature and moisture fluctuations in response to vegetation cover

    Directory of Open Access Journals (Sweden)

    Milson L. de Oliveira

    2005-12-01

    Full Text Available Com o objetivo de verificar as flutuações de temperatura e umidade do solo em resposta à cobertura vegetal, realizou-se um experimento com sete diferentes situações de cobertura do solo, constituídas por solo sem cobertura, presença de vegetação espontânea, cultivo de mucuna e plantio de milho a 0, 30, 60 e 90º em relação ao eixo leste-oeste. Dois meses após a semeadura, em janeiro de 1999, por igual período determinou-se o sombreamento nas entrelinhas do milho, às 8:30, 12:30 e 16:30 h, como também, para todos os tratamentos, a temperatura e umidade do solo nas profundidades de 2,5, 5,0 e 7,5 cm; constatou-se diferença no sombreamento entre o cultivo de milho a 0º e os outros ângulos testados nas determinações matutina e vespertina, mas tais diferenças não foram acompanhadas pela temperatura do solo que, neste caso, registrou valores intermediários entre o solo sem cobertura e os tratamentos com vegetação espontânea e mucuna. No tratamento sem cobertura verificou-se a maior amplitude de variação da temperatura ambiente acima da superfície do solo, registrando-se os menores valores de umidade e os maiores de temperatura do solo.An experimental study was carried out to evaluate the fluctuations of temperature and soil moisture in response to vegetation cover, using the following treatments: bare soil, natural weed cover, velvet bean, and maize at 0, 30, 60 and 90º in relation to a east-west axis. Two months after sowing in January 1999, for similar period the shadowed area between the lines at 8:30, 12:30 and 16:30 h, as well as for all treatments, the temperature and soil moisture at 2.5, 5.0 and 7.5 cm depths were measured. Differences in shadowing between maize cultivated at 0º and all other angles were observed in both morning and afternoon measurements. However, these differences were not accompanied by soil temperature, which showed intermediary values between the bare soil and the treatments with natural

  1. Land use and vegetation cover on native symbionts and interactions with cowpea

    Directory of Open Access Journals (Sweden)

    Beatriz C. F. Rocha

    Full Text Available ABSTRACT Arbuscular mycorrhizal fungi and rhizobia are important components of agroecosystems and they respond to human interference. The objective of this study was to investigate native communities of those microorganisms in soil collected under the native forest, four pastures (Brachiaria brizantha, Panicum maximum, Arachis pintoi and Stylosanthes guianensis and a fallow soil after maize cultivation, in interaction with cowpea (Vigna unguculata. The cowpea grew in a greenhouse until flowering. They were randomly distributed depending on soil, in five replications. The lowest mycorrhizal fungi sporulation and mycorrhizal root colonization occurred under the Panicum and forest soil. In the soils under forest and Stylosanthes, the cowpea did not exhibit nodules and grew less. Among the anthropized areas, the effect was variable, with stimulus to the multiplication and symbiosis of these microorganisms, except in areas of Panicum and Stylosanthes. When the native vegetation is substituted by pasture or farming, the mycorrhizal fungi and rhizobia proliferation predominate. However, the effect and its magnitude depends on the grown plant species, with reflects on the plant species in succession, such as the cowpea.

  2. Effects of Land Cover / Land Use, Soil Texture, and Vegetation on the Water Balance of Lake Chad Basin

    Science.gov (United States)

    Babamaaji, R. A.; Lee, J.

    2013-12-01

    Lake Chad Basin (LCB) has experienced drastic changes of land cover and poor water management practices during the last 50 years. The successive droughts in the 1970s and 1980s resulted in the shortage of surface water and groundwater resources. This problem of drought has a devastating implication on the natural resources of the Basin with great consequence on food security, poverty reduction and quality of life of the inhabitants in the LCB. Therefore, understanding the effects of land use / land cover must be a first step to find how they disturb cycle especially the groundwater in the LCB. The abundance of groundwater is affected by the climate change through the interaction with surface water, such as lakes and rivers, and disuse recharge through an infiltration process. Quantifying the impact of climate change on the groundwater resource requires reliable forecasting of changes in the major climatic variables and other spatial variations including the land use/land cover, soil texture, topographic slope, and vegetation. In this study, we employed a spatially distributed water balance model WetSpass to simulate a long-term average change of groundwater recharge in the LCB of Africa. WetSpass is a water balance-based model to estimate seasonal and spatial distribution of surface runoff, interception, evapotranspiration, and groundwater recharge. The model is especially suitable for studying the effect of land use/land cover change on the water regime in the LCB. The present study describes the concept of the model and its application to the development of recharge map of the LCB. The study shows that major role in the water balance of LCB. The mean yearly actual evapotranspiration (ET) from the basin range from 60mm - 400 mm, which is 90 % (69mm - 430) of the annual precipitation from 2003 - 2010. It is striking that about 50 - 60 % of the total runoff is produced on build-up (impervious surfaces), while much smaller contributions are obtained from vegetated

  3. Impacts of changes in vegetation cover on soil water heat coupling in an alpine meadow of the Qinghai-Tibet Plateau, China

    Directory of Open Access Journals (Sweden)

    W. Genxu

    2009-03-01

    Full Text Available Alpine meadow is one of the most widespread grassland types in the permafrost regions of the Qinghai-Tibet Plateau, and the transmission of coupled soil water heat is one of the most crucial processes influencing cyclic variations in the hydrology of frozen soil regions, especially under different vegetation covers. The present study assesses the impact of changes in vegetation cover on the coupling of soil water and heat in a permafrost region. Soil moisture (θv, soil temperature (Ts, soil heat content, and differences in θvTs coupling were monitored on a seasonal and daily basis under three different vegetation covers (30, 65, and 93% on both thawed and frozen soils. Regression analysis of θv vs. Ts plots under different levels of vegetation cover indicates that soil freeze-thaw processes were significantly affected by the changes in vegetation cover. The decrease in vegetation cover of an alpine meadow reduced the difference between air temperature and ground temperature (ΔTa−s, and it also resulted in a decrease in Ts at which soil froze, and an increase in the temperature at which it thawed. This was reflected in a greater response of soil temperature to changes in air temperature (Ta. For ΔTa−s outside the range of −0.1 to 1.0°C, root zone soil-water temperatures showed a significant increase with increasing ΔTa−s; however, the magnitude of this relationship was dampened with increasing vegetation cover. At the time of maximum water content in the thawing season, the soil temperature decreased with increasing vegetation. Changes in vegetation cover also led to variations in θvTs coupling. With the increase in vegetation cover, the surface heat flux decreased. Soil heat storage at 20 cm in

  4. Evaluation of Spatiotemporal Variations of Global Fractional Vegetation Cover Based on GIMMS NDVI Data from 1982 to 2011

    Directory of Open Access Journals (Sweden)

    Donghai Wu

    2014-05-01

    Full Text Available Fractional vegetation cover (FVC is an important biophysical parameter of terrestrial ecosystems. Variation of FVC is a major problem in research fields related to remote sensing applications. In this study, the global FVC from 1982 to 2011 was estimated by GIMMS NDVI data, USGS global land cover characteristics data and HWSD soil type data with a modified dimidiate pixel model, which considered vegetation and soil types and mixed pixels decomposition. The evaluation of the robustness and accuracy of the GIMMS FVC with MODIS FVC and Validation of Land European Remote sensing Instruments (VALERI FVC show high reliability. Trends of the annual FVCmax and FVCmean datasets in the last 30 years were reported by the Mann–Kendall method and Sen’s slope estimator. The results indicated that global FVC change was 0.20 and 0.60 in a year with obvious seasonal variability. All of the continents in the world experience a change in the annual FVCmax and FVCmean, which represents biomass production, except for Oceania, which exhibited a significant increase based on a significance level of p = 0.001 with the Student’s t-test. Global annual maximum and mean FVC growth rates are 0.14%/y and 0.12%/y, respectively. The trends of the annual FVCmax and FVCmean based on pixels also illustrated that the global vegetation had turned green in the last 30 years. A significant trend on the p = 0.05 level was found for 15.36% of the GIMMS FVCmax pixels on a global scale (excluding permanent snow and ice, in which 1.8% exhibited negative trends and 13.56% exhibited positive trends. The GIMMS FVCmean similarly produced a total of 16.64% significant pixels with 2.28% with a negative trend and 14.36% with a positive trend. The North Frigid Zone represented the highest annual FVCmax significant increase (p = 0.05 of 25.17%, which may be caused mainly by global warming, Arctic sea-ice loss and an advance in growing seasons. Better FVC predictions at large regional scales

  5. Ecosystem and Community Responses to Rainfall Manipulations in Shrublands Depends on Dominant Vegetation Cover

    Science.gov (United States)

    Esch, E. H.; Lipson, D.; Kim, J. B.; Cleland, E. E.

    2014-12-01

    Southern California is predicted to face decreasing precipitation with increased interannual variability in the coming century. Native shrublands in this area are increasingly invaded by exotic annual grasses, though invasion dynamics can vary by rainfall scenario, with wet years generally associated with high invasion pressure. Interplay between rainfall and invasion scenarios can influence carbon stocks and community composition. Here we asked how invasion alters ecosystem and community responses in drought versus high rainfall scenarios, as quantified by community identity, biomass production, and the normalized difference vegetation index (NDVI). To do this, we performed a rainfall manipulation experiment with paired plots dominated either by native shrubs or exotic herbaceous species, subjected to treatments of 50%, 100%, or 150% of ambient rainfall. The study site was located in a coastal sage scrub ecosystem, with patches dominated by native shrubs and exotic grasses located in San Diego County, USA. During two growing seasons, we found that native, herbaceous biomass production was significantly affected by rainfall treatment (p<0.05 for both years), though was not affected by dominant community composition. Photosynthetic biomass production of shrub species also varied by treatment (p=0.035). Exotic biomass production showed a significant interaction between dominant community composition and rainfall treatment, and both individual effects (p<0.001 for all). NDVI showed similar results, but also indicated the importance of rainfall timing on overall biomass production between years. Community composition data showed certain species, of both native and exotic identities, segregating by treatment. These results indicate that exotic species are more sensitive to rainfall, and that increased rainfall may promote greater carbon storage in annual dominated communities when compared to shrub dominated communities in high rainfall years, but with drought, this

  6. Development of a methodology for monthly forecasting of surface fires of Colombia's vegetation cover, an application to north Andean region

    International Nuclear Information System (INIS)

    Gonzalez Hernandez, Yolanda; Rangel CH, Jesus Orlando

    2004-01-01

    In the present article a methodology is presented for the forecasting of the monthly risk of surface fires of the vegetation cover in Colombia, based on the analysis of meteorological components and variables of climatic and anthropic variability involved in fire risks of the north Andean region. The methodology enables one to regionalize the country, with fire prediction purposes in mind, into ten sub-regions, in each one of which seven height levels are defined to make up separate regions of study. For each of these, a database is built to feed both the logistic regression models and the Poisson models, which identify the variables independent from, and/or associated with the presence or absence of fires

  7. Nitrogen fixation in seedlings of sabia and leucena grown in the caatinga soils under different vegetation covers

    International Nuclear Information System (INIS)

    Santana, Augusto Cesar de Arruda; Nascimento, Luciana Remigio Santos; Silva, Arthur Jorge da; Freitas, Ana Dolores Santiago de

    2013-01-01

    The aim of this study was to evaluate the efficiency differences of populations forming bacteria in legume nodules (BNL) in areas under different vegetation cover in semi-arid Pernambuco state, Brazil, using the methodology of the natural abundance of 15 N to estimate the amount of N fixed symbiotically. The highest levels of nitrogen was found in plants of leucena, and the sabia had levels that did not differ from reference species. The analysis by the technique of 15N showed that in all areas the leucena and the sabia showed signs of 15N different of the average signal of the control plants. The largest nitrogen accumulation was observed for leucena in the Caatinga and Capoeira. The sabia got greater accumulation of N from the Caatinga. The areas of Capoeira and Caatinga has showed the native populations of rhizobia with greater ability to fix nitrogen for the leucena

  8. Vegetation cover and land use impacts on soil water repellency in an Urban Park located in Vilnius, Lithuania

    Science.gov (United States)

    Pereira, Paulo; Cerda, Artemi

    2015-04-01

    It is strongly recognized that vegetation cover, land use have important impacts on the degree of soil water repellency (SWR). Soil water repellency is a natural property of soils, but can be induced by natural and anthropogenic disturbances as fire and soil tillage (Doerr et al., 2000; Urbanek et al., 2007; Mataix-Solera et al., 2014). Urban parks are areas where soils have a strong human impact, with implications on their hydrological properties. The aim of this work is to study the impact of different vegetations cover and urban soils impact on SWR and the relation to other soil variables as pH, Electrical Conductivity (EC) and soil organic matter (SOM) in an urban park. The study area is located in Vilnius city (54°.68' N, 25°.25' E). It was collected 15 soil samples under different vegetation cover as Pine (Pinus Sylvestris), Birch (Alnus glutinosa), Penduculate Oak (Quercus robur), Platanus (Platanus orientalis) and other human disturbed areas as forest trails and soils collected from human planted grass. Soils were taken to the laboratory, air-dried at room temperature and sieved with the 3600 (extremely water repellent). The results showed significant differences among the different vegetation cover (Kruskal-Wallis H=20.64, ppost-fire management scenarios, CGL2013-47862-C2-1-R), funded by the Spanish Ministry of Economy and Competitiveness; Fuegored; RECARE (Preventing and Remediating Degradation of Soils in Europe Through Land Care, FP7-ENV-2013-TWO STAGE), funded by the European Commission; and for the COST action ES1306 (Connecting European connectivity research). References Bisdom, E.B.A., Dekker, L., Schoute, J.F.Th. (1993) Water repellency of sieve fractions from sandy soils and relationships with organic material and soil structure. Geoderma, 56, 105-118. Doerr, S.H., Shakesby, R.A., Walsh, R.P.D. (2000) Soil water repellency: Its causes, characteristics and hydro-geomorphological significance. Earth-Science Reviews, 51, 33-65. Doerr, S.H. (1998

  9. Selection and cultivation of final vegetative cover for closed waste sites at the Savannah River Site, SC

    International Nuclear Information System (INIS)

    Cook, J.R.; Salvo, S.K.

    1992-01-01

    Low-level, hazardous, and mixed waste disposal sites normally require some form of plant material to prevent erosion of the final closure cap. Waste disposal sites are closed and capped in a complex scientific manner to minimize water infiltration and percolation into and through the waste material. Turf type grasses are currently being used as a vegetative cover for most sites. Consequently, the sites require periodic mowing and other expensive annual maintenance practices. The purpose of this five year study was to evaluate alternative plant material for use on wastes sites that is quickly and easily established and economically maintained, retards water infiltration, provides maximum year-round evapotranspiration, is ecologically acceptable and does not harm the closure cap. The results of the study are described in this report and suggest that two species of bamboo (Phyllostachys bissetii and P. rubromarainata) can be utilized to provide long lived, low maintenance, climax vegetation for the waste sites. These large species of bamboo will also reduce the probability of intrusion by humans, animals and deeply rooted plant species

  10. Extensive caustic esophageal stricture in children can be treated by serial dilatations interspersed with silicone-covered nitinol stenting

    Directory of Open Access Journals (Sweden)

    Veronica Alonso

    2016-01-01

    Full Text Available Recurrent esophageal stenosis secondary to caustic ingestion may be challenging to treat. Self-expandable esophageal stents may be an alternative to repetitive endoscopic esophageal dilatation. We report a case of a 2-year-old male child with an extensive esophageal caustic stricture successfully treated using a combination of endoscopic dilatation and stenting. After 5 months of serial balloon dilatations, three nitinol internal silicone covered self-expandable stents were placed through the patient′s gastrostomy spanning the entire esophagus. The stents were positioned using a combination of both endoscopic and fluoroscopic guidance. The procedure was repeated with only one stent 3 months later. A new stricture in the proximal esophagus needed surgical resection and anastomosis, followed by two pneumatic dilatations with progressively longer asymptomatic intervals. The results are promising with the patient able to use his own esophagus; however, this is a single case and optimal stent standing time is still to be determined.

  11. The landscape configuration of zoonotic transmission of Ebola virus disease in West and Central Africa: interaction between population density and vegetation cover

    Directory of Open Access Journals (Sweden)

    Michael G. Walsh

    2015-01-01

    Full Text Available Ebola virus disease (EVD is an emerging infectious disease of zoonotic origin that has been responsible for high mortality and significant social disruption in West and Central Africa. Zoonotic transmission of EVD requires contact between susceptible human hosts and the reservoir species for Ebolaviruses, which are believed to be fruit bats. Nevertheless, features of the landscape that may facilitate such points of contact have not yet been adequately identified. Nor have spatial dependencies between zoonotic EVD transmission and landscape structures been delineated. This investigation sought to describe the spatial relationship between zoonotic EVD transmission events, or spillovers, and population density and vegetation cover. An inhomogeneous Poisson process model was fitted to all precisely geolocated zoonotic transmissions of EVD in West and Central Africa. Population density was strongly associated with spillover; however, there was significant interaction between population density and green vegetation cover. In areas of very low population density, increasing vegetation cover was associated with a decrease in risk of zoonotic transmission, but as population density increased in a given area, increasing vegetation cover was associated with increased risk of zoonotic transmission. This study showed that the spatial dependencies of Ebolavirus spillover were associated with the distribution of population density and vegetation cover in the landscape, even after controlling for climate and altitude. While this is an observational study, and thus precludes direct causal inference, the findings do highlight areas that may be at risk for zoonotic EVD transmission based on the spatial configuration of important features of the landscape.

  12. The Energy Impact in Buildings of Vegetative Solutions for Extensive Green Roofs in Temperate Climates

    Directory of Open Access Journals (Sweden)

    Benedetta Barozzi

    2016-08-01

    Full Text Available Many bibliographical studies have highlighted the positive effects of green roofs as technological solutions both for new and renovated buildings. The one-year experimental monitoring campaign conducted has investigated, in detail, some aspects related to the surface temperature variation induced by the presence of different types of vegetation compared to traditional finishing systems for flat roofs and their impact from an energy and environmental point of view. The results obtained underlined how an appropriate vegetative solution selection can contribute to a significant reduction of the external surface temperatures (10 °C–20 °C for I > 500 W/m2 and 0 °C–5 °C for I < 500 W/m2, regardless of the season compared to traditional flat roofs. During the winter season, the thermal gradients of the planted surface temperatures are close to zero compared to the floor, except under special improving conditions. This entails a significant reduction of the energy loads from summer air conditioning, and an almost conservative behavior with respect to that from winter heating consumption. The analysis of the inside growing medium temperatures returned a further interesting datum, too: the temperature gradient with respect to surface temperature (annual average 4 °C–9 °C is a function of solar radiation and involves the insulating contribution of the soil.

  13. MODEL RECONSTRUCTION OF THE VEGETATION COVER OF THE SOUTH OF THE WEST SIBERIAN PLAIN FROM THE LATE PALEOLITHIC PERIOD UNTIL THE LATE XIX CENTURY

    Directory of Open Access Journals (Sweden)

    М. А. Kharitonenkov

    2016-06-01

    Full Text Available Model reconstruction of vegetation cover of the south of the West Siberian Plain from the late Pleistocene to the modern era has been carried out on the basis of the associated chronological analysis of paleontological, archaeological and paleoclimate data. We have determined the starting point of active vegetation transformation in the south of the West Siberian Plain as a result of tradition-bound exploitation of natural resources. Periods of maximum anthropogenic load – peak and relative recession – on vegetation cover, acting as a further determinant factor, have been determined in this study for the first time. Comprehensive analysis and new understanding of palynological, paleozoological, archaeological and paleoclimate data in terms of theoretical synecology confirmed the notions on the determinant role of the anthropogenic factor in the transformation of the Pleistocene forest-meadow-steppe vegetation into contemporary communities of the southern taiga, the subtaiga and the forest-steppe of the West Siberian Plain.

  14. Analysis of vegetation and land cover dynamics in north-western Morocco during the last decade using MODIS NDVI time series data

    Directory of Open Access Journals (Sweden)

    C. Höpfner

    2011-11-01

    Full Text Available Vegetation phenology as well as the current variability and dynamics of vegetation and land cover, including its climatic and human drivers, are examined in a region in north-western Morocco that is nearly 22 700 km2 big. A gapless time series of Normalized Differenced Vegetation Index (NDVI composite raster data from 29 September 2000 to 29 September 2009 is utilised. The data have a spatial resolution of 250 m and were acquired by the Moderate Resolution Imaging Spectroradiometer (MODIS sensor.

    The presented approach allows to compose and to analyse yearly land cover maps in a widely unknown region with scarce validated ground truth data by deriving phenological parameters. Results show that the high temporal resolution of 16 d is sufficient for (a determining local land cover better than global land cover classifications of Plant Functional Types (PFT and Global Land Cover 2000 (GLC2000 and (b for drawing conclusions on vegetation dynamics and its drivers. Areas of stably classified land cover types (i.e. areas that did not change their land cover type show climatically driven inter- and intra-annual variability with indicated influence of droughts. The presented approach to determine human-driven influence on vegetation dynamics caused by agriculture results in a more than ten times larger area compared with stably classified areas. Change detection based on yearly land cover maps shows a gain of high-productive vegetation (cropland of about 259.3 km2. Statistically significant inter-annual trends in vegetation dynamics during the last decade could however not be discovered. A sequence of correlations was respectively carried out to extract the most important periods of rainfall responsible for the production of green biomass and for the extent of land cover types. Results show that mean daily precipitation from 1 October to 15 December has high correlation results (max. r2=0.85 on an intra

  15. Vegetation-climate feedback causes reduced precipitation and tropical rainforest cover in CMIP5 regional Earth system model simulation over Africa

    Science.gov (United States)

    Wu, M.; Smith, B.; Samuelsson, P.; Rummukainen, M.; Schurgers, G.

    2012-12-01

    We applied a coupled regional climate-vegetation model, RCA-GUESS (Smith et al. 2011), over the CORDEX Africa domain, forced by boundary conditions from a CanESM2 CMIP5 simulation under the RCP8.5 future climate scenario. The simulations were from 1961 to 2100 and covered the African continent at a horizontal grid spacing of 0.44°. RCA-GUESS simulates changes in the phenology, productivity, relative cover and population structure of up to eight plant function types (PFTs) in response to forcing from the climate part of the model. These vegetation changes feed back to simulated climate through dynamic adjustments in surface energy fluxes and surface properties. Changes in the net ecosystem-atmosphere carbon flux and its components net primary production (NPP), heterotrophic respiration and emissions from biomass burning were also simulated but do not feed back to climate in our model. Constant land cover was assumed. We compared simulations with and without vegetation feedback switched "on" to assess the influence of vegetation-climate feedback on simulated climate, vegetation and ecosystem carbon cycling. Both positive and negative warming feedbacks were identified in different parts of Africa. In the Sahel savannah zone near 15°N, reduced vegetation cover and productivity, and mortality caused by a deterioration of soil water conditions led to a positive warming feedback mediated by decreased evapotranspiration and increased sensible heat flux between vegetation and the atmosphere. In the equatorial rainforest stronghold region of central Africa, a feedback syndrome characterised by reduced plant production and LAI, a dominance shift from tropical trees to grasses, reduced soil water and reduced rainfall was identified. The likely underlying mechanism was a decline in evaporative water recycling associated with sparser vegetation cover, reminiscent of Earth system model studies in which a similar feedback mechanism was simulated to force dieback of tropical

  16. AVALIAÇÃO E MAPEAMENTO DA COBERTURA VEGETAL DA REGIÃO CENTRAL DA CIDADE DE JUIZ DE FORA – MG - EVALUATION AND MAPPING OF REGION CENTRAL VEGETATION COVER OF JUIZ DE FORA – MG

    Directory of Open Access Journals (Sweden)

    Isabela Fernanda Moraes de Paula

    2017-04-01

    Full Text Available A presença da cobertura vegetal nas cidades tem sido considerada por diversos pesquisadores uma variável importante, devido aos diversos benefícios que proporcionam ao homem e ao equilíbrio ambiental. Nesse contexto este artigo objetiva contribuir para o conhecimento do verde urbano da área central do município de Juiz de Fora, calculando índices de cobertura vegetal e aplicando a metodologia proposta por Jim (1989, na análise da forma e espacialização da cobertura vegetal. Nesse sentido, os resultados alcançados demonstram que grande parte das regiões da área central da cidade de Juiz de Fora encontram-se abaixo do desejável em cobertura vegetal, necessitando de investimentos, principalmente, nos espaços de integração urbana, cujo percentual de áreas cobertas por vegetação em relação à totalidade abrange apenas 2%. Destaca-se que quanto maior a densidade demográfica, menor foi o percentual de cobertura vegetal, pode-se afirmar que a cobertura vegetal da área central da cidade de Juiz de Fora é fragmentada, descontínua e apresenta muitos “espaços vazios”. No mapeamento realizado foi encontrado 15,401% de áreas cobertas por vegetação arbórea, cerca de 1,694% de vegetação arbustiva e 8,59% de vegetação rasteira. As maiores extensões de manchas verdes encontram-se dispersas no meio, espalhadas por toda a área e desconectas uma com as outras. Logo, sua mensuração, classificação e distribuição espacial são de suma importância, pois tornam-se base essenciais para melhorias e planejamentos, no contexto das áreas urbanas. ABSTRACT The presence of vegetation cover in the cities has been considered by many researchers an important variable, due to the many benefits they provide to humans and the environmental balance. In this context, this article aims to contribute to the knowledge of green urban central area of the city of Juiz de Fora, calculating vegetation cover ratios and applying the methodology

  17. Climate change impacts detection in dry forested ecosystem as indicated by vegetation cover change in -Laikipia, of Kenya.

    Science.gov (United States)

    M'mboroki, Kiambi Gilbert; Wandiga, Shem; Oriaso, Silas Odongo

    2018-03-29

    The objective of the study was to detect and identify land cover changes in Laikipia County of Kenya that have occurred during the last three decades. The land use types of study area are six, of which three are the main and the other three are the minor. The main three, forest, shrub or bush land and grassland, changed during the period, of which grasslands reduced by 5864 ha (40%), forest by 3071 ha (24%) and shrub and bush land increased by 8912 ha (43%). The other three minor land use types were bare land which had reduced by 238 ha (45%), river bed vegetation increased by 209 ha (72%) and agriculture increased by 52 ha (600%) over the period decades. Differences in spatiotemporal variations of vegetation could be largely attributed to the effects of climate factors, anthropogenic activities and their interactions. Precipitation and temperature have been demonstrated to be the key climate factors for plant growth and vegetation development where rainfall decreased by 200 mm and temperatures increased by 1.5 °C over the period. Also, the opinion of the community on the change of land use and management was attributed to climate change and also adaptation strategies applied by the community over time. For example unlike the common understanding that forest resources utilisation increases with increasing human population, Mukogodo dry forested ecosystem case is different in that the majority of the respondents (78.9%) reported that the forest resource use was more in that period than now and also a similar majority (74.2%) had the same opinion that forest resource utilisation was low compared to last 30 years. In Yaaku community, change impacts were evidenced and thus mitigation measures suggested to address the impacts which included the following: controlled bush management and indigenous grass reseeding programme were advocated to restore original grasslands, and agricultural (crop farming) activities are carried out in designated areas outside the

  18. Beech Range Extension and Vegetation History: Pollen Stratigraphy of Two Wisconsin Lakes.

    Science.gov (United States)

    Webb, Sara L

    1987-12-01

    The pollen stratigraphy of two small lakes in eastern Wisconsin (Radtke Lake, Washington county, and Gass Lake, Manitowoc County) records the Holocene (past 10 000 yr) spread of beech (Fagus grandifolia: Fagaceae). Radiocarbon dates were obtained for the oldest stratigraphic levels at which beech pollen appeared consistently in amounts > 0.5% of terrestrial pollen. A spatially continuous pattern of beech expansion from the north was ruled out, because beech trees grew in Wisconsin by 6000 BP, 2000 yr before adjacent populations were established to the north. Alternative geographic patterns of speed (from the south or east) were spatially discontinuous, requiring seed dispersal distances of perhaps 25-130 km. That beechnuts could be dispersed across such distances suggests (1) the involvement of Blue Jays, Passenger Pigeons, or other vertebrates, and (2) a capacity for reaching climatically controlled range limits, given sufficient time despite such discontinuities in habitat. A lag 1000-2000 yr between the establishment of source populations in Michigan and Indiana and the appearance of beech in Wisconsin suggests that low-probability dispersal events were involved and that dispersal constraints limited the range of beech during this time, although climatic and edaphic explanations for the lag cannot be ruled out. Pollen data from the two sites reveal other features of vegetation history in eastern Wisconsin: an open Picea-Fraxinus woodland prior to 11 000 BP; sequence of Picea, Abies, Betula, and then Pinus forests between 11 000 and 7500 BP; the establishment of a coniferous/deciduous forest ecotone ("tension zone") ° 7000 BP in this region; and the presence of Quercus-dominanted deciduous forests from 7000 BP until 110 BP (time of Euro-American settlement), a period punctuated by a gradual decrease in Ulmus populations (° 4500 and 5700 BP at the two sites) and by an increase in mesophytic tree abundance at the expense of Quercus after 3500 BP. © 1987 by the

  19. Effect of land-use practice on soil moisture variability for soils covered with dense forest vegetation of Puerto Rico

    Science.gov (United States)

    Tsegaye, T.; Coleman, T.; Senwo, Z.; Shaffer, D.; Zou, X.

    1998-01-01

    Little is known about the landuse management effect on soil moisture and soil pH distribution on a landscape covered with dense tropical forest vegetation. This study was conducted at three locations where the history of the landuse management is different. Soil moisture was measured using a 6-cm three-rod Time Domain Reflectometery (TDR) probe. Disturbed soil samples were taken from the top 5-cm at the up, mid, and foothill landscape position from the same spots where soil moisture was measured. The results showed that soil moisture varies with landscape position and depth at all three locations. Soil pH and moisture variability were found to be affected by the change in landuse management and landscape position. Soil moisture distribution usually expected to be relatively higher in the foothill (P3) area of these forests than the uphill (P1) position. However, our results indicated that in the Luquillo and Guanica site the surface soil moisture was significantly higher for P1 than P3 position. These suggest that the surface and subsurface drainage in these two sites may have been poor due to the nature of soil formation and type.

  20. Changing landscape in the Three Gorges Reservoir Area of Yangtze River from 1977 to 2005: Land use/land cover, vegetation cover changes estimated using multi-source satellite data

    Science.gov (United States)

    Zhang, Jixian; Zhengjun, Liu; Xiaoxia, Sun

    2009-12-01

    The eco-environment in the Three Gorges Reservoir Area (TGRA) in China has received much attention due to the construction of the Three Gorges Hydropower Station. Land use/land cover changes (LUCC) are a major cause of ecological environmental changes. In this paper, the spatial landscape dynamics from 1978 to 2005 in this area are monitored and recent changes are analyzed, using the Landsat TM (MSS) images of 1978, 1988, 1995, 2000 and 2005. Vegetation cover fractions for a vegetation cover analysis are retrieved from MODIS/Terra imagery from 2000 to 2006, being the period before and after the rising water level of the reservoir. Several analytical indices have been used to analyze spatial and temporal changes. Results indicate that cropland, woodland, and grassland areas reduced continuously over the past 30 years, while river and built-up area increased by 2.79% and 4.45% from 2000 to 2005, respectively. The built-up area increased at the cost of decreased cropland, woodland and grassland. The vegetation cover fraction increased slightly. We conclude that significant changes in land use/land cover have occurred in the Three Gorges Reservoir Area. The main cause is a continuous economic and urban/rural development, followed by environmental management policies after construction of the Three Gorges Dam.

  1. Assessment of the vegetation cover in a burned area 22-years ago using remote sensing techniques and GIS analysis (Sierra de las Nieves, South of Spain).

    Science.gov (United States)

    Martínez-Murillo, Juan F.; Remond, Ricardo; Ruiz-Sinoga, José D.

    2015-04-01

    The study aim was to characterize the vegetation cover in a burned area 22-years ago considering the previous situation to wildfire in 1991 and the current one in 2013. The objectives were to: (i) compare the current and previous vegetation cover to widlfire; (ii) evaluate whether the current vegetation has recovered the previous cover to wildfire; and (iii) determine the spatial variability of vegetation recovery after 22-years since the wildfire. The study area is located in Sierra de las Nieves, South of Spain. It corresponds to an area affected by a wildfire in August 8th, 1991. The burned area was equal to 8156 ha. The burn severity was spatially very high. The main geographic features of the burned area are: mountainous topography (altitudes ranging from 250 m to 1500 m; slope gradient >25%; exposure mainly southfacing); igneous (peridotites), metamorphic (gneiss) and calcareous rocks (limestones); and predominant forest land use (Pinus pinaster sp. woodlands, 10%; pinus opened forest + shrubland, 40%; shrubland, 35%; and bare soil + grassland, 15%). Remote sensing techniques and GIS analysis has been applied to achieve the objectives. Landsat 5 and Landsat 8 images were used: July 13th, 1991 and July 1st, 2013, for the previous wildfire situation and 22-years after, respectively. The 1990 CORINE land cover was also considered to map 1991 land uses prior the wildfire. Likewise, the Andalucía Regional Government wildfire historic records were used to select the burned area and its geographical limit. 1991 and 2013 land cover map were obtained by means of object-oriented classifications. Also, NDVI and PVI1 vegetation indexes were calculated and mapped for both years. Finally, some images transformations and kernel density images were applied to determine the most recovered areas and to map the spatial concentration of bare soil and pine cover areas in 1991 and 2013, respectively. According to the results, the combination of remote sensing and GIS analysis let

  2. The Application of Remote Sensing Data to GIS Studies of Land Use, Land Cover, and Vegetation Mapping in the State of Hawaii

    Science.gov (United States)

    Hogan, Christine A.

    1996-01-01

    A land cover-vegetation map with a base classification system for remote sensing use in a tropical island environment was produced of the island of Hawaii for the State of Hawaii to evaluate whether or not useful land cover information can be derived from Landsat TM data. In addition, an island-wide change detection mosaic combining a previously created 1977 MSS land classification with the TM-based classification was produced. In order to reach the goal of transferring remote sensing technology to State of Hawaii personnel, a pilot project was conducted while training State of Hawaii personnel in remote sensing technology and classification systems. Spectral characteristics of young island land cover types were compared to determine if there are differences in vegetation types on lava, vegetation types on soils, and barren lava from soils, and if they can be detected remotely, based on differences in pigments detecting plant physiognomic type, health, stress at senescence, heat, moisture level, and biomass. Geographic information systems (GIS) and global positioning systems (GPS) were used to assist in image rectification and classification. GIS was also used to produce large-format color output maps. An interactive GIS program was written to provide on-line access to scanned photos taken at field sites. The pilot project found Landsat TM to be a credible source of land cover information for geologically young islands, and TM data bands are effective in detecting spectral characteristics of different land cover types through remote sensing. Large agriculture field patterns were resolved and mapped successfully from wildland vegetation, but small agriculture field patterns were not. Additional processing was required to work with the four TM scenes from two separate orbits which span three years, including El Nino and drought dates. Results of the project emphasized the need for further land cover and land use processing and research. Change in vegetation

  3. Extensive transcriptome changes during natural onset and release of vegetative bud dormancy in Populus

    Directory of Open Access Journals (Sweden)

    Glenn Thomas Howe

    2015-12-01

    Full Text Available To survive winter, many perennial plants become endodormant, a state of suspended growth maintained even in favorable growing environments. To understand vegetative bud endodormancy, we collected paradormant, endodormant, and ecodormant axillary buds from Populus trees growing under natural conditions. Of 44,441 Populus gene models analyzed using NimbleGen microarrays, we found that 1,362 (3.1% were differentially expressed among the three dormancy states, and another 429 (1.0% were differentially expressed during only one of the two dormancy transitions (false discovery rate p-value < 0.05. Of all differentially expressed genes, 69% were down-regulated from paradormancy to endodormancy, which was expected given the lower metabolic activity associated with endodormancy. Dormancy transitions were accompanied by changes in multiple genes associated with DNA methylation (via RNA-directed DNA methylation and histone modifications (via Polycomb Repressive Complex 2, confirming and extending knowledge of chromatin modification as major features of dormancy transitions. Among the chromatin-associated genes, we found two genes similar to SPT (SUPPRESSOR OF TY that were strongly up-regulated during endodormancy. Transcription factor genes and gene sets that were atypically up-regulated during endodormancy include a gene that seems to encode a trihelix transcription factor and genes associated with proteins involved in responses to ethylene, cold, and other abiotic stresses. These latter transcription factors include ETHYLENE INSENSITIVE 3 (EIN3, ETHYLENE-RESPONSIVE ELEMENT BINDING PROTEIN (EBP, ETHYLENE RESPONSE FACTOR (ERF, ZINC FINGER PROTEIN 10 (ZAT10, ZAT12, and WRKY DNA-binding domain proteins. Analyses of phytohormone-associated genes suggest important changes in responses to ethylene, auxin, and brassinosteroids occur during endodormancy. We found weaker evidence for changes in genes associated with salicylic acid and jasmonic acid, and little

  4. Approaching to a model for evaluating of the vulnerability of the vegetable covers of Colombia in a possible climatic change using SIG

    International Nuclear Information System (INIS)

    Gutierrez Rey, Hilda Jeanneth

    2002-01-01

    This technical paper summarizes the gradual thesis Approach to a model for evaluating of the vulnerability of the vegetation covers in Colombia in face of a possible global climate change (Gutierrez, 2001). It present the methodologies and results of the construction of a prospective model using GIS (Geographical Information Systems) for evaluating the vulnerability of the vegetation covers of Colombia, in face of a possible global climate chance. The analysis of the vulnerability of the possible impact on vegetation and for identification of its vulnerability as a consequence of climate change was carried out by application of the method of direct function establishing, recommended by IPCC, Intergovernmental Panel on Climate Change (1999). An analysis of the displacement of Life Zones of Holdridge was made under a scenario with duplication of the CO 2 concentration in the atmosphere and identified vegetation affected by displacement. These results were adjusted to the bioclimatic and biogeographic conditions of the country. The Model of Vulnerability of the Vegetation Covers of Colombia was developed in Spatial Modeler Language, of Arc/lnfo and Erdas Imagine. This model is able to generate the spatial distribution of the climatic variables and Bioclimatic Units, under past, present and future climate scenarios, as well as to evaluate the degree of vulnerability of the vegetation covers of Colombia in face a climatic change. For the improvement of the model of Vulnerability, specially the intermediate products, it was subdivided in three Phases or Subsystems: In the First Phase or Present Subsystem, the sub models generate a Bioclimatic Zonification of the Life Zones of Holdridge, under a currently scenario of Climatic Line Base 1961-1990. In the Second Phase or Subsystem of Climate Change, the sub models develop a Bioclimatic Zonification of the Life Zones of Holdridge, under a future climate Scenario with duplication of the contained of the CO 2 in the atmosphere

  5. Studies of land-cover, land-use, and biophysical properties of vegetation in the Large Scale Biosphere Atmosphere experiment in Amazonia.

    Science.gov (United States)

    Dar A. Robertsa; Michael Keller; Joao Vianei Soares

    2003-01-01

    We summarize early research on land-cover, land-use, and biophysical properties of vegetation from the Large Scale Biosphere Atmosphere (LBA) experiment in Amazoˆnia. LBA is an international research program developed to evaluate regional function and to determine how land-use and climate modify biological, chemical and physical processes there. Remote sensing has...

  6. Strontium-90 and plutonium-239/240 accumulation and distribution in soil-vegetative cover of some Semipalatinsk test site areas

    International Nuclear Information System (INIS)

    Tuleubaev, B.A.; Artem'ev, O.I.; Luk'yanova, Yu.A.; Sidorovich, T.V.; Silkina, G.P.; Kurmanbaeva, D.S.

    2001-01-01

    This paper presents results of field and laboratory studies of soil-vegetative cover contamination by 90 Sr and 239/240 Pu. Certain parameters of radionuclide migration in the environment of some former Semipalatinsk Test Site areas were determined. (author)

  7. Effect of land use and land cover changes on carbon sequestration in vegetation and soils between 1956 and 2007 (southern Spain)

    Science.gov (United States)

    Muñoz-Rojas, M.; Jordán, A.; Zavala, L. M.; de la Rosa, D.; Abd-Elmabod, S. K.; Anaya-Romero, M.

    2012-04-01

    Land use has significantly changed during the last decades at global and local scale, while the importance of ecosystems as sources/sinks of C has been highlighted, emphasizing the global impact of land use changes. The aim of this research was to improve and test methodologies to assess land use and land cover change dynamics and temporal and spatial variability in C stored in soils and vegetation at a wide scale. A Mediterranean region (Andalusia, Southern Spain) was selected for this pilot study in the period 1956-2007. Land use changes were detected by comparison of data layers, and soil information was gathered from available spatial databases. Data from land use and land cover change were reclassified according to CORINE Land Cover legend, according to land cover flows reported in Europe. Carbon vegetation stocks for 1956 and 2007 were calculated by multiplying C density for each land cover class and area. Soil carbon stocks were determined for each combination of soil and land use type at different standard depths (0-25, 25-50 and 50-75 cm). Total current carbon stocks (2007) are 156.1 Tg in vegetation and 415 Tg in soils (in the first 75 cm). Southern Spain has supported intense land cover changes affecting more than one third of the study area, with significant consequences for C stocks. Vegetation carbon increased 17.24 Mt since 1956 after afforestation practices and intensification of agriculture. Soil C stock decreased mainly in Cambisols and Regosols (above 80%) after forest areas were transformed into agricultural areas. The methodologies and information generated in this project constitute a basis for modelling of C sequestration and analysis of potential scenarios, as a new component of MicroLEIS DSS. This study highlights the importance of land cover changes for C sequestration in Mediterranean areas, highlighting possible trends for management policies in Europe in order to mitigate climate change.

  8. Assessment of Land Use-Cover Changes and Successional Stages of Vegetation in the Natural Protected Area Altas Cumbres, Northeastern Mexico, Using Landsat Satellite Imagery

    Directory of Open Access Journals (Sweden)

    Uriel Jeshua Sánchez-Reyes

    2017-07-01

    Full Text Available Loss of vegetation cover is a major factor that endangers biodiversity. Therefore, the use of geographic information systems and the analysis of satellite images are important for monitoring these changes in Natural Protected Areas (NPAs. In northeastern Mexico, the Natural Protected Area Altas Cumbres (NPAAC represents a relevant floristic and faunistic patch on which the impact of loss of vegetation cover has not been assessed. This work aimed to analyze changes of land use and coverage (LULCC over the last 42 years on the interior and around the exterior of the area, and also to propose the time of succession for the most important types of vegetation. For the analysis, LANDSAT satellite images from 1973, 1986, 2000, 2005 and 2015 were used, they were classified in seven categories through a segmentation and maximum likelihood analysis. A cross-tabulation analysis was performed to determine the succession gradient. Towards the interior of the area, a significant reduction of tropical vegetation and, to a lesser extent, temperate forests was found, as well as an increase in scrub cover from 1973 to 2015. In addition, urban and vegetation-free areas, as well as modified vegetation, increased to the exterior. Towards the interior of the NPA, the processes of perturbation and recovery were mostly not linear, while in the exterior adjacent area, the presence of secondary vegetation with distinct definite time of succession was evident. The analysis carried out is the first contribution that evaluates LULCC in this important NPA of northeastern Mexico. Results suggest the need to evaluate the effects of these modifications on species.

  9. A Two-Year Study on Mercury Fluxes from the Soil under Different Vegetation Cover in a Subtropical Region, South China

    Directory of Open Access Journals (Sweden)

    Ming Ma

    2018-01-01

    Full Text Available In order to reveal the mercury (Hg emission and exchange characteristics at the soil–air interface under different vegetation cover types, the evergreen broad-leaf forest, shrub forest, grass, and bare lands of Simian Mountain National Nature Reserve were selected as the sampling sites. The gaseous elementary mercury (GEM fluxes at the soil–air interface under the four vegetation covers were continuously monitored for two years, and the effect of temperature and solar radiation on GEM fluxes were also investigated. Results showed that the GEM fluxes at the soil–air interface under different vegetation cover types had significant difference (p < 0.05. The bare land had the maximum GEM flux (15.32 ± 10.44 ng·m−2·h−1, followed by grass land (14.73 ± 18.84 ng·m−2·h−1, and shrub forest (12.83 ± 10.22 ng·m−2·h−1, and the evergreen broad-leaf forest had the lowest value (11.23 ± 11.13 ng·m−2·h−1. The GEM fluxes at the soil–air interface under different vegetation cover types showed similar regularity in seasonal variation, which mean that the GEM fluxes in summer were higher than that in winter. In addition, the GEM fluxes at the soil–air interface under the four vegetation covers in Mt. Simian had obvious diurnal variations.

  10. Representing the effects of alpine grassland vegetation cover on the simulation of soil thermal dynamics by ecosystem models applied to the Qinghai-Tibetan Plateau

    Science.gov (United States)

    Yi, S.; Li, N.; Xiang, B.; Wang, X.; Ye, B.; McGuire, A.D.

    2013-01-01

    Soil surface temperature is a critical boundary condition for the simulation of soil temperature by environmental models. It is influenced by atmospheric and soil conditions and by vegetation cover. In sophisticated land surface models, it is simulated iteratively by solving surface energy budget equations. In ecosystem, permafrost, and hydrology models, the consideration of soil surface temperature is generally simple. In this study, we developed a methodology for representing the effects of vegetation cover and atmospheric factors on the estimation of soil surface temperature for alpine grassland ecosystems on the Qinghai-Tibetan Plateau. Our approach integrated measurements from meteorological stations with simulations from a sophisticated land surface model to develop an equation set for estimating soil surface temperature. After implementing this equation set into an ecosystem model and evaluating the performance of the ecosystem model in simulating soil temperature at different depths in the soil profile, we applied the model to simulate interactions among vegetation cover, freeze-thaw cycles, and soil erosion to demonstrate potential applications made possible through the implementation of the methodology developed in this study. Results showed that (1) to properly estimate daily soil surface temperature, algorithms should use air temperature, downward solar radiation, and vegetation cover as independent variables; (2) the equation set developed in this study performed better than soil surface temperature algorithms used in other models; and (3) the ecosystem model performed well in simulating soil temperature throughout the soil profile using the equation set developed in this study. Our application of the model indicates that the representation in ecosystem models of the effects of vegetation cover on the simulation of soil thermal dynamics has the potential to substantially improve our understanding of the vulnerability of alpine grassland ecosystems to

  11. Land cover and vegetation data from an ecological survey of "key habitat" landscapes in England, 1992-1993

    Science.gov (United States)

    Wood, Claire M.; Bunce, Robert G. H.; Norton, Lisa R.; Smart, Simon M.; Barr, Colin J.

    2018-05-01

    Since 1978, a series of national surveys (Countryside Survey, CS) have been carried out by the Centre for Ecology and Hydrology (CEH) (formerly the Institute of Terrestrial Ecology, ITE) to gather data on the natural environment in Great Britain (GB). As the sampling framework for these surveys is not optimised to yield data on rarer or more localised habitats, a survey was commissioned by the then Department of the Environment (DOE, now the Department for Environment, Food and Rural Affairs, DEFRA) in the 1990s to carry out additional survey work in English landscapes which contained semi-natural habitats that were perceived to be under threat, or which represented areas of concern to the ministry. The landscapes were lowland heath, chalk and limestone (calcareous) grasslands, coasts and uplands. The information recorded allowed an assessment of the extent and quality of a range of habitats defined during the project, which can now be translated into standard UK broad and priority habitat classes. The survey, known as the "Key Habitat Survey", followed a design which was a series of gridded, stratified, randomly selected 1 km squares taken as representative of each of the four landscape types in England, determined from statistical land classification and geological data ("spatial masks"). The definitions of the landscapes are given in the descriptions of the spatial masks, along with definitions of the surveyed habitats. A total of 213 of the 1 km2 square sample sites were surveyed in the summers of 1992 and 1993, with information being collected on vegetation species, land cover, landscape features and land use, applying standardised repeatable methods. The database contributes additional information and value to the long-term monitoring data gathered by the Countryside Survey and provides a valuable baseline against which future ecological changes may be compared, offering the potential for a repeat survey. The data were analysed and described in a series of

  12. Land cover and vegetation data from an ecological survey of "key habitat" landscapes in England, 1992–1993

    Directory of Open Access Journals (Sweden)

    C. M. Wood

    2018-05-01

    Full Text Available Since 1978, a series of national surveys (Countryside Survey, CS have been carried out by the Centre for Ecology and Hydrology (CEH (formerly the Institute of Terrestrial Ecology, ITE to gather data on the natural environment in Great Britain (GB. As the sampling framework for these surveys is not optimised to yield data on rarer or more localised habitats, a survey was commissioned by the then Department of the Environment (DOE, now the Department for Environment, Food and Rural Affairs, DEFRA in the 1990s to carry out additional survey work in English landscapes which contained semi-natural habitats that were perceived to be under threat, or which represented areas of concern to the ministry. The landscapes were lowland heath, chalk and limestone (calcareous grasslands, coasts and uplands. The information recorded allowed an assessment of the extent and quality of a range of habitats defined during the project, which can now be translated into standard UK broad and priority habitat classes. The survey, known as the "Key Habitat Survey", followed a design which was a series of gridded, stratified, randomly selected 1 km squares taken as representative of each of the four landscape types in England, determined from statistical land classification and geological data ("spatial masks". The definitions of the landscapes are given in the descriptions of the spatial masks, along with definitions of the surveyed habitats. A total of 213 of the 1 km2 square sample sites were surveyed in the summers of 1992 and 1993, with information being collected on vegetation species, land cover, landscape features and land use, applying standardised repeatable methods. The database contributes additional information and value to the long-term monitoring data gathered by the Countryside Survey and provides a valuable baseline against which future ecological changes may be compared, offering the potential for a repeat survey. The data were analysed and described

  13. Vegetation cover change detection and assessment in arid environment using multi-temporal remote sensing images and ecosystem management approach

    Science.gov (United States)

    Abdelrahman Aly, Anwar; Mosa Al-Omran, Abdulrasoul; Shahwan Sallam, Abdulazeam; Al-Wabel, Mohammad Ibrahim; Shayaa Al-Shayaa, Mohammad

    2016-04-01

    Vegetation cover (VC) change detection is essential for a better understanding of the interactions and interrelationships between humans and their ecosystem. Remote sensing (RS) technology is one of the most beneficial tools to study spatial and temporal changes of VC. A case study has been conducted in the agro-ecosystem (AE) of Al-Kharj, in the center of Saudi Arabia. Characteristics and dynamics of total VC changes during a period of 26 years (1987-2013) were investigated. A multi-temporal set of images was processed using Landsat images from Landsat4 TM 1987, Landsat7 ETM+2000, and Landsat8 to investigate the drivers responsible for the total VC pattern and changes, which are linked to both natural and social processes. The analyses of the three satellite images concluded that the surface area of the total VC increased by 107.4 % between 1987 and 2000 and decreased by 27.5 % between years 2000 and 2013. The field study, review of secondary data, and community problem diagnosis using the participatory rural appraisal (PRA) method suggested that the drivers for this change are the deterioration and salinization of both soil and water resources. Ground truth data indicated that the deteriorated soils in the eastern part of the Al-Kharj AE are frequently subjected to sand dune encroachment, while the southwestern part is frequently subjected to soil and groundwater salinization. The groundwater in the western part of the ecosystem is highly saline, with a salinity ≥ 6 dS m-1. The ecosystem management approach applied in this study can be used to alike AE worldwide.

  14. Geomorphology and reflectance patterns of vegetation-covered dunes at the Tsodilo Hills, north-west Botswana

    Science.gov (United States)

    Jacobberger, P. A.; Hooper, D. M.

    1991-01-01

    Seasonal reflectance variations in semigrid environments provide a means of assessing vegetation health and density as well as monitoring landform processes. Multitemporal Landsat Thematic Mapper scenes with field measurements are used to map geomorphology and vegetation density in a stabilized dune environment and to measure seasonal reflectance changes for a series of ten geomorphological and vegetation units on the Kalahari-age linear dunes. Units were chosen based on differences in landform and proportion of trees, forbs and bare soil. Reflectance curves and normalized-difference vegetation indices (NDVI) show that dune crests have the strongest seasonal variability in color and brightness. The geomorphological link with reflectance and NDVI values are linked to biomass production and zoning of vegetation with slope, drainage and subtle soil differences.

  15. The influence of vegetation cover and soil physical properties on deflagration of shallow landslides - Nova Friburgo, RJ / Brazil

    Science.gov (United States)

    de Oliveira Marques, Maria Clara; Silva, Roberta; Fraga, Joana; Luiza Coelho Netto, Ana; Mululo Sato, Anderson

    2017-04-01

    In 2011, the mountainous region of the State of Rio de Janeiro (Brazil) suffered enormous social and economic losses due to thousands of landslides caused by an extreme rainfall event. The mapping of the scars of these landslides in an area of 421 km2 in the municipality of Nova Friburgo, RJ - Brazil resulted in a total of 3622, and 89% of these scars were located in areas covered by grasses and forests. Despite the unexpected result (64% of scars in forest areas), field evidence has shown that most of the forest fragments in the municipality are in the initial stages of succession and in different states of degradation, evidencing the need for a better understanding of the role of these forests in the detonation and propagation of landslides. Two slope forest areas with different ages (20 and 50 years) were evaluated in relation to the vegetative aspects that influence the stability of the slopes in each area. Hydrological monitoring, including precipitation, interception by manual and automatic method, soil moisture and subsurface flows were performed in two different areas: forest and grass. Soil moisture was monitored by granular matrix sensors and flows by collecting troughs in trenches at depths of 0 cm, 20 cm, 50 cm, 100 cm, 150 cm and 220 cm, which were also analyzed for biomass and length of thick roots (> 2 mm diameter) and thin roots (particle size, aggregate stability, porosity and hydraulic conductivity in situ). In the grass area, the lower soil structure in relation to the forest areas makes it difficult to transmit the water through the soil matrix. During the monitoring period, that area preserved the moisture in depths of 100 cm, 150 cm and 220 cm. The fasciculate root system of the grasses increased the infiltration of water at the top of the soil, favouring the formation of more superficial saturation zones in the heavy rains, due to the hydraulic discontinuities. In forest areas, infiltration by preferential paths allows the concentration of

  16. Live tree carbon stock equivalence of fire and fuels extension to the Forest Vegetation Simulator and Forest Inventory and Analysis approaches

    Science.gov (United States)

    James E. Smith; Coeli M. Hoover

    2017-01-01

    The carbon reports in the Fire and Fuels Extension (FFE) to the Forest Vegetation Simulator (FVS) provide two alternate approaches to carbon estimates for live trees (Rebain 2010). These are (1) the FFE biomass algorithms, which are volumebased biomass equations, and (2) the Jenkins allometric equations (Jenkins and others 2003), which are diameter based. Here, we...

  17. Influence of Vegetation Structure on Lidar-derived Canopy Height and Fractional Cover in Forested Riparian Buffers During Leaf-Off and Leaf-On Conditions

    Science.gov (United States)

    Wasser, Leah; Day, Rick; Chasmer, Laura; Taylor, Alan

    2013-01-01

    Estimates of canopy height (H) and fractional canopy cover (FC) derived from lidar data collected during leaf-on and leaf-off conditions are compared with field measurements from 80 forested riparian buffer plots. The purpose is to determine if existing lidar data flown in leaf-off conditions for applications such as terrain mapping can effectively estimate forested riparian buffer H and FC within a range of riparian vegetation types. Results illustrate that: 1) leaf-off and leaf-on lidar percentile estimates are similar to measured heights in all plots except those dominated by deciduous compound-leaved trees where lidar underestimates H during leaf off periods; 2) canopy height models (CHMs) underestimate H by a larger margin compared to percentile methods and are influenced by vegetation type (conifer needle, deciduous simple leaf or deciduous compound leaf) and canopy height variability, 3) lidar estimates of FC are within 10% of plot measurements during leaf-on periods, but are underestimated during leaf-off periods except in mixed and conifer plots; and 4) depth of laser pulse penetration lower in the canopy is more variable compared to top of the canopy penetration which may influence within canopy vegetation structure estimates. This study demonstrates that leaf-off lidar data can be used to estimate forested riparian buffer canopy height within diverse vegetation conditions and fractional canopy cover within mixed and conifer forests when leaf-on lidar data are not available. PMID:23382966

  18. Comparison and Validation of Long Time Serial Global GEOV1 and Regional Australian MODIS Fractional Vegetation Cover Products Over the Australian Continent

    Directory of Open Access Journals (Sweden)

    Yanling Ding

    2015-05-01

    Full Text Available Fractional vegetation cover (FVC is one of the most critical parameters in monitoring vegetation status. Comprehensive assessment of the FVC products is critical for their improvement and use in land surface models. This study investigates the performances of two major long time serial FVC products: GEOV1 and Australian MODIS. The spatial and temporal consistencies of these products were compared during the 2000–2012 period over the main biome types across the Australian continent. Their accuracies were validated by 443 FVC in-situ measurements during the 2011–2012 period. Our results show that there are strong correlations between the GEOV1 and Australian MODIS FVC products over the main Australian continent while they exhibit large differences and uncertainties in the coastal regions covered by dense forests. GEOV1 and Australian MODIS describe similar seasonal variations over the main biome types with differences in magnitude, while Australian MODIS exhibit unstable temporal variations over grasslands and shifted seasonal variations over evergreen broadleaf forests. The GEOV1 and Australian MODIS products overestimate FVC values over the biome types with high vegetation density and underestimate FVC in sparsely vegetated areas and grasslands. Overall, the GEOV1 and Australian MODIS FVC products agree with in-situ FVC values with a RMSE around 0.10 over the Australian continent.

  19. Spatial relationship between climatologies and changes in global vegetation activity

    NARCIS (Netherlands)

    Jong, de R.; Schaepman, M.E.; Furrer, R.; Bruin, de S.; Verburg, P.H.

    2013-01-01

    Vegetation forms a main component of the terrestrial biosphere and plays a crucial role in land-cover and climate-related studies. Activity of vegetation systems is commonly quantified using remotely sensed vegetation indices (VI). Extensive reports on temporal trends over the past decades in time

  20. Vegetation Analysis and Land Use Land Cover Classification of Forest in Uttara Kannada District India Using Remote Sensign and GIS Techniques

    Science.gov (United States)

    Koppad, A. G.; Janagoudar, B. S.

    2017-10-01

    The study was conducted in Uttara Kannada districts during the year 2012-2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km) followed by agriculture 12.88 % (1315.31 sq. km), sparse forest 10.59 % (1081.37 sq. km), open land 6.09 % (622.37 sq. km), horticulture plantation and least was forest plantation (1.07 %). Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non- vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.

  1. VEGETATION ANALYSIS AND LAND USE LAND COVER CLASSIFICATION OF FOREST IN UTTARA KANNADA DISTRICT INDIA USING REMOTE SENSIGN AND GIS TECHNIQUES

    Directory of Open Access Journals (Sweden)

    A. G. Koppad

    2017-10-01

    Full Text Available The study was conducted in Uttara Kannada districts during the year 2012–2014. The study area lies between 13.92° N to 15.52° N latitude and 74.08° E to 75.09° E longitude with an area of 10,215 km2. The Indian satellite IRS P6 LISS-III imageries were used to classify the land use land cover classes with ground truth data collected with GPS through supervised classification in ERDAS software. The land use and land cover classes identified were dense forest, horticulture plantation, sparse forest, forest plantation, open land and agriculture land. The dense forest covered an area of 63.32 % (6468.70 sq km followed by agriculture 12.88 % (1315.31 sq. km, sparse forest 10.59 % (1081.37 sq. km, open land 6.09 % (622.37 sq. km, horticulture plantation and least was forest plantation (1.07 %. Settlement, stony land and water body together cover about 4.26 percent of the area. The study indicated that the aspect and altitude influenced the forest types and vegetation pattern. The NDVI map was prepared which indicated that healthy vegetation is represented by high NDVI values between 0.1 and 1. The non- vegetated features such as water bodies, settlement, and stony land indicated less than 0.1 values. The decrease in forest area in some places was due to anthropogenic activities. The thematic map of land use land cover classes was prepared using Arc GIS Software.

  2. Stimulation of methane oxidation potential and effects on vegetation growth by bottom ash addition in a landfill final evapotranspiration cover

    NARCIS (Netherlands)

    Kim, G.W.; Ho, A.; Kim, P.J.; Kim, Sang Yun

    2016-01-01

    The landfilling of municipal solid waste is a significant source of atmospheric methane (CH4), contributing up to 20% of total anthropogenic CH4 emissions. The evapotranspiration (ET) cover system, an alternative final cover system in waste landfills, has been considered to be a promising way to

  3. Comparing vegetation cover in the Santee Experimental Forest, South Carolina (USA), before and after hurricane Hugo: 1989-2011

    Science.gov (United States)

    Giovanni R. Cosentino

    2013-01-01

    Hurricane Hugo struck the coast of South Carolina on September 21, 1989 as a category 4 hurricane on the Saffir-Simpson Scale. Landsat Thematic mapper was utilized to determine the extent of damage experienced at the Santee Experimental Forest (SEF) (a part of Francis Marion National Forest) in South Carolina. Normalized Difference Vegetation Index (NDVI) and the...

  4. Spatiotemporal variations in vegetation cover on the Loess Plateau, China, between 1982 and 2013: possible causes and potential impacts.

    Science.gov (United States)

    Kong, Dongxian; Miao, Chiyuan; Borthwick, Alistair G L; Lei, Xiaohui; Li, Hu

    2018-03-02

    Vegetation is a key component of the ecosystem and plays an important role in water retention and resistance to soil erosion. In this study, we used a multiyear normalized difference vegetation index (NDVI) dataset (1982-2013) and corresponding datasets for observed climatic variables to analyze changes in the NDVI at both temporal and spatial scales. The relationships between NDVI, climate change, and human activities were also investigated. The annual average NDVI showed an upward trend over the 32-year study period, especially in the center of the Loess Plateau. NDVI variations lagged behind monthly temperature changes by approximately 1 month. The contribution of human activities to variations in NDVI has become increasingly significant in recent years, with human activities responsible for 30.4% of the change in NDVI during the period 2001-2013. The increased vegetation coverage has reduced soil erosion on the Loess Plateau in recent years. It is suggested that natural restoration of vegetation is the most effective measure for control of erosion; engineering measures that promote this should feature in the future governance of the Loess Plateau.

  5. Detecting vegetation cover change on the summit of Cadillac Mountain using multi-temporal remote sensing datasets: 1979, 2001, and 2007.

    Science.gov (United States)

    Kim, Min-Kook; Daigle, John J

    2011-09-01

    This study examines the efficacy of management strategies implemented in 2000 to reduce visitor-induced vegetation impact and enhance vegetation recovery at the summit loop trail on Cadillac Mountain at Acadia National Park, Maine. Using single-spectral high-resolution remote sensing datasets captured in 1979, 2001, and 2007, pre-classification change detection analysis techniques were applied to measure fractional vegetation cover changes between the time periods. This popular sub-alpine summit with low-lying vegetation and attractive granite outcroppings experiences dispersed visitor use away from the designated trail, so three pre-defined spatial scales (small, 0-30 m; medium, 0-60 m; and large, 0-90 m) were examined in the vicinity of the summit loop trail with visitor use (experimental site) and a site chosen nearby in a relatively pristine undisturbed area (control site) with similar spatial scales. Results reveal significant changes in terms of rates of vegetation impact between 1979 and 2001 extending out to 90 m from the summit loop trail with no management at the site. No significant differences were detected among three spatial zones (inner, 0-30 m; middle, 30-60 m; and outer, 60-90 m) at the experimental site, but all were significantly higher rates of impact compared to similar spatial scales at the control site (all p time period. In addition, the advantages and some limitations of using remote sensing technologies are discussed in detecting vegetation change in this setting and potential application to other recreation settings.

  6. Computer implemented land cover classification using LANDSAT MSS digital data: A cooperative research project between the National Park Service and NASA. 3: Vegetation and other land cover analysis of Shenandoah National Park

    Science.gov (United States)

    Cibula, W. G.

    1981-01-01

    Four LANDSAT frames, each corresponding to one of the four seasons were spectrally classified and processed using NASA-developed computer programs. One data set was selected or two or more data sets were marged to improve surface cover classifications. Selected areas representing each spectral class were chosen and transferred to USGS 1:62,500 topographic maps for field use. Ground truth data were gathered to verify the accuracy of the classifications. Acreages were computed for each of the land cover types. The application of elevational data to seasonal LANDSAT frames resulted in the separation of high elevation meadows (both with and without recently emergent perennial vegetation) as well as areas in oak forests which have an evergreen understory as opposed to other areas which do not.

  7. Using lidar data to analyse sinkhole characteristics relevant for understory vegetation under forest cover-case study of a high karst area in the dinaric mountains.

    Directory of Open Access Journals (Sweden)

    Milan Kobal

    Full Text Available In this article, we investigate the potential for detection and characterization of sinkholes under dense forest cover by using airborne laser scanning data. Laser pulse returns from the ground provide important data for the estimation of digital elevation model (DEM, which can be used for further processing. The main objectives of this study were to map and determine the geomorphometric characteristics of a large number of sinkholes and to investigate the correlations between geomorphology and vegetation in areas with such characteristics. The selected study area has very low anthropogenic influences and is particularly suitable for studying undisturbed karst sinkholes. The information extracted from this study regarding the shapes and depths of sinkholes show significant directionality for both orientation of sinkholes and their distribution over the area. Furthermore, significant differences in vegetation diversity and composition occur inside and outside the sinkholes, which indicates their presence has important ecological impacts.

  8. Using lidar data to analyse sinkhole characteristics relevant for understory vegetation under forest cover-case study of a high karst area in the dinaric mountains.

    Science.gov (United States)

    Kobal, Milan; Bertoncelj, Irena; Pirotti, Francesco; Dakskobler, Igor; Kutnar, Lado

    2015-01-01

    In this article, we investigate the potential for detection and characterization of sinkholes under dense forest cover by using airborne laser scanning data. Laser pulse returns from the ground provide important data for the estimation of digital elevation model (DEM), which can be used for further processing. The main objectives of this study were to map and determine the geomorphometric characteristics of a large number of sinkholes and to investigate the correlations between geomorphology and vegetation in areas with such characteristics. The selected study area has very low anthropogenic influences and is particularly suitable for studying undisturbed karst sinkholes. The information extracted from this study regarding the shapes and depths of sinkholes show significant directionality for both orientation of sinkholes and their distribution over the area. Furthermore, significant differences in vegetation diversity and composition occur inside and outside the sinkholes, which indicates their presence has important ecological impacts.

  9. Estimating canopy bulk density and canopy base height for conifer stands in the interior Western United States using the Forest Vegetation Simulator Fire and Fuels Extension.

    Science.gov (United States)

    Seth Ex; Frederick Smith; Tara Keyser; Stephanie Rebain

    2017-01-01

    The Forest Vegetation Simulator Fire and Fuels Extension (FFE-FVS) is often used to estimate canopy bulk density (CBD) and canopy base height (CBH), which are key indicators of crown fire hazard for conifer stands in the Western United States. Estimated CBD from FFE-FVS is calculated as the maximum 4 m running mean bulk density of predefined 0.3 m thick canopy layers (...

  10. 78 FR 44922 - Vegetable and Specialty Crop Marketing Orders; Notice of Request for Extension and Revision of a...

    Science.gov (United States)

    2013-07-25

    ... Approved Information Collection AGENCY: Agricultural Marketing Service, USDA. ACTION: Notice and request... assured of consideration. Additional Information or Comments: Contact Andrew Hatch, Supervisory Marketing....regulations.gov . SUPPLEMENTARY INFORMATION: Title: Vegetable and Specialty Crop Marketing Orders. OMB Number...

  11. Monitoring Urbanization-Related Land Cover Change on the U.S. Great Plains and Impacts on Remotely Sensed Vegetation Dynamics

    Science.gov (United States)

    Krehbiel, C. P.; Jackson, T.; Henebry, G. M.

    2014-12-01

    Earth is currently in an era of rapid urban growth with >50% of global population living in urban areas. Urbanization occurs alongside urban population growth, as cities expand to meet the demands of increasing population. Consequently, there is a need for remote sensing research to detect, monitor, and measure urbanization and its impacts on the biosphere. Here we used MODIS and Landsat data products to (1) detect urbanization-related land cover changes, (2) investigate urbanization-related impacts on land surface phenology (LSP) across rural to urban gradients and (3) explore fractional vegetation and impervious surface area regionally across the US Great Plains and within 14 cities in this region. We used the NLCD Percent Impervious Surface Area (%ISA) and Land Cover Type (LCT) products from 2001, 2006, and 2011 for 30m classification of the peri-urban environment. We investigated the impacts of urbanization-related land cover change on urban LSP at 30m resolution using the NDVI product from Web Enabled Landsat Data (http://weld.cr.usgs.gov) with accumulated growing degree-days calculated from first-order weather stations. We fitted convex quadratic LSP models to a decade (2003-2012) of observations to yield these phenometrics: modeled peak NDVI, time (thermal and calendar) to modeled peak, duration of season (DOS), and model fit. We compared our results to NDVI from MODIS NBAR (500m) and we explored the utility of 4 μm radiance (MODIS band 23) at 1 km resolution to characterize fractional vegetation dynamics in and around urbanized areas. Across all 14 cities we found increases in urbanized area (>25 %ISA) exceeding 10% from 2001-2011. Using LSP phenometrics, we were able to detect changes from cropland to suburban LCTs. In general we found negative relationships between DOS and distance from city center. We found a distinct seasonal cycle of MIR radiance over cropland LCTs due to the spectral contrast between bare soils and green vegetation.

  12. Soil erosion and sediment yield and their relationships with vegetation cover in upper stream of the Yellow River

    NARCIS (Netherlands)

    Ouyang, W.; Hao, F.; Skidmore, A.K.; Toxopeus, A.G.

    2010-01-01

    Soil erosion is a significant concern when considering regional environmental protection, especially in the Yellow River Basin in China. This study evaluated the temporal-spatial interaction of land cover status with soil erosion characteristics in the Longliu Catchment of China, using the Soil and

  13. Natural vegetation cover in the landscape and edge effects: differential responses of insect orders in a fragmented forest.

    Science.gov (United States)

    González, Ezequiel; Salvo, Adriana; Valladares, Graciela

    2017-10-01

    Human activities have led to global simplification of ecosystems, among which Neotropical dry forests are some of the most threatened. Habitat loss as well as edge effects may affect insect communities. Here, we analyzed insects sampled with pan traps in 9 landscapes (at 5 scales, in 100-500 m diameter circles) comprising cultivated fields and Chaco Serrano forests, at overall community and taxonomic order level. In total 7043 specimens and 456 species of hexapods were captured, with abundance and richness being directly related to forest cover at 500 m and higher at edges in comparison with forest interior. Community composition also varied with forest cover and edge/interior location. Different responses were detected among the 8 dominant orders. Collembola, Hemiptera, and Orthoptera richness and/or abundance were positively related to forest cover at the larger scale, while Thysanoptera abundance increased with forest cover only at the edge. Hymenoptera abundance and richness were negatively related to forest cover at 100 m. Coleoptera, Diptera, and Hymenoptera were more diverse and abundant at the forest edge. The generally negative influence of forest loss on insect communities could have functional consequences for both natural and cultivated systems, and highlights the relevance of forest conservation. Higher diversity at the edges could result from the simultaneous presence of forest and matrix species, although "resource mapping" might be involved for orders that were richer and more abundant at edges. Adjacent crops could benefit from forest proximity since natural enemies and pollinators are well represented in the orders showing positive edge effects. © 2016 Institute of Zoology, Chinese Academy of Sciences.

  14. Multi-feature machine learning model for automatic segmentation of green fractional vegetation cover for high-throughput field phenotyping.

    Science.gov (United States)

    Sadeghi-Tehran, Pouria; Virlet, Nicolas; Sabermanesh, Kasra; Hawkesford, Malcolm J

    2017-01-01

    Accurately segmenting vegetation from the background within digital images is both a fundamental and a challenging task in phenotyping. The performance of traditional methods is satisfactory in homogeneous environments, however, performance decreases when applied to images acquired in dynamic field environments. In this paper, a multi-feature learning method is proposed to quantify vegetation growth in outdoor field conditions. The introduced technique is compared with the state-of the-art and other learning methods on digital images. All methods are compared and evaluated with different environmental conditions and the following criteria: (1) comparison with ground-truth images, (2) variation along a day with changes in ambient illumination, (3) comparison with manual measurements and (4) an estimation of performance along the full life cycle of a wheat canopy. The method described is capable of coping with the environmental challenges faced in field conditions, with high levels of adaptiveness and without the need for adjusting a threshold for each digital image. The proposed method is also an ideal candidate to process a time series of phenotypic information throughout the crop growth acquired in the field. Moreover, the introduced method has an advantage that it is not limited to growth measurements only but can be applied on other applications such as identifying weeds, diseases, stress, etc.

  15. Multi-feature machine learning model for automatic segmentation of green fractional vegetation cover for high-throughput field phenotyping

    Directory of Open Access Journals (Sweden)

    Pouria Sadeghi-Tehran

    2017-11-01

    Full Text Available Abstract Background Accurately segmenting vegetation from the background within digital images is both a fundamental and a challenging task in phenotyping. The performance of traditional methods is satisfactory in homogeneous environments, however, performance decreases when applied to images acquired in dynamic field environments. Results In this paper, a multi-feature learning method is proposed to quantify vegetation growth in outdoor field conditions. The introduced technique is compared with the state-of the-art and other learning methods on digital images. All methods are compared and evaluated with different environmental conditions and the following criteria: (1 comparison with ground-truth images, (2 variation along a day with changes in ambient illumination, (3 comparison with manual measurements and (4 an estimation of performance along the full life cycle of a wheat canopy. Conclusion The method described is capable of coping with the environmental challenges faced in field conditions, with high levels of adaptiveness and without the need for adjusting a threshold for each digital image. The proposed method is also an ideal candidate to process a time series of phenotypic information throughout the crop growth acquired in the field. Moreover, the introduced method has an advantage that it is not limited to growth measurements only but can be applied on other applications such as identifying weeds, diseases, stress, etc.

  16. Webcam network and image database for studies of phenological changes of vegetation and snow cover in Finland, image time series from 2014 to 2016

    Science.gov (United States)

    Peltoniemi, Mikko; Aurela, Mika; Böttcher, Kristin; Kolari, Pasi; Loehr, John; Karhu, Jouni; Linkosalmi, Maiju; Melih Tanis, Cemal; Tuovinen, Juha-Pekka; Nadir Arslan, Ali

    2018-01-01

    In recent years, monitoring of the status of ecosystems using low-cost web (IP) or time lapse cameras has received wide interest. With broad spatial coverage and high temporal resolution, networked cameras can provide information about snow cover and vegetation status, serve as ground truths to Earth observations and be useful for gap-filling of cloudy areas in Earth observation time series. Networked cameras can also play an important role in supplementing laborious phenological field surveys and citizen science projects, which also suffer from observer-dependent observation bias. We established a network of digital surveillance cameras for automated monitoring of phenological activity of vegetation and snow cover in the boreal ecosystems of Finland. Cameras were mounted at 14 sites, each site having 1-3 cameras. Here, we document the network, basic camera information and access to images in the permanent data repository (http://www.zenodo.org/communities/phenology_camera/). Individual DOI-referenced image time series consist of half-hourly images collected between 2014 and 2016 (https://doi.org/10.5281/zenodo.1066862). Additionally, we present an example of a colour index time series derived from images from two contrasting sites.

  17. Webcam network and image database for studies of phenological changes of vegetation and snow cover in Finland, image time series from 2014 to 2016

    Directory of Open Access Journals (Sweden)

    M. Peltoniemi

    2018-01-01

    Full Text Available In recent years, monitoring of the status of ecosystems using low-cost web (IP or time lapse cameras has received wide interest. With broad spatial coverage and high temporal resolution, networked cameras can provide information about snow cover and vegetation status, serve as ground truths to Earth observations and be useful for gap-filling of cloudy areas in Earth observation time series. Networked cameras can also play an important role in supplementing laborious phenological field surveys and citizen science projects, which also suffer from observer-dependent observation bias. We established a network of digital surveillance cameras for automated monitoring of phenological activity of vegetation and snow cover in the boreal ecosystems of Finland. Cameras were mounted at 14 sites, each site having 1–3 cameras. Here, we document the network, basic camera information and access to images in the permanent data repository (http://www.zenodo.org/communities/phenology_camera/. Individual DOI-referenced image time series consist of half-hourly images collected between 2014 and 2016 (https://doi.org/10.5281/zenodo.1066862. Additionally, we present an example of a colour index time series derived from images from two contrasting sites.

  18. Organization of vegetation cover of aquatic ecosystems at Borodinskiy opencast coal mine dumps (Kansk forest-steppe, Eastern Siberia

    Directory of Open Access Journals (Sweden)

    D. Yu. Efimov

    2016-04-01

    Full Text Available The paper present the results of study of the floristic composition and importance of species of aquatic ecosystems on different types of technogenic surfaces of the Borodino coal mine and assessment of the impact of local factors on the structure and the dynamics of vegetation. The list of plant taxa containing 91 species of higher plants and 3 cha-rophytes. The largest amount of macrophytes species are Elodea canadensis Michx., Eleocharis palustris (L. Roem. & Schult., Hydrocharis morsus-ranae L., Potamogeton alpinus Balb., P. perfoliatus L., Sparganium emersum Rehm., Spirodela polyrhiza (L. Schleid., Typha latifolia L., Warnstorfia fluitans (Hedw. Loeske, Chara contraria A. Braun ex Kutz., the basis (up to 67.6‒70.9 % of vegetation mosaic of aquatic systems and differentiate its structure post-technogenic landscape. Sorensen index (QS = 0.63‒0.71 and Spearman rank correlation coefficient (rs = 0.29‒0.62, p < 0.01 values showed the greatest similarity between the species composition of the aquatic complexes arising on mineral surfaces planned dumps. The low level of similarity (QS = 0.13‒0.45; rs = 0.25‒0.34, p < 0.05 in spe-cies composition is typical fir ponds and wetlands formed around the perimeter of the heaps along the erosion of slopes. Non-parametric analysis of variance showed a statistically significant (p < 0.001 differentiation of the species composition of the variables values of the analyzed environmental factors: the direction of reclamation, type and age of geomorphic surfaces dumps. Aquatic complexes significantly complement and enrich the mosaic of man-made landscape of the Borodino coal mine, the potential of their diversity should be taken into account when developing plans and strategies for reclamation of disturbed areas.

  19. Role of Surface Wind and Vegetation Cover in Multi-decadal Variations of Dust Emission in the Sahara and Sahel

    Science.gov (United States)

    Kim, Dong; Chin, Mian; Remer, Lorraine A.; Diehl, Thomas L.; Bian, Huisheng; Yu, Hongbin; Brown, Molly E.; Stockwell, William R.

    2016-01-01

    North Africa, the world's largest dust source, is non-uniform, consisting of a permanently arid region (Sahara), a semi-arid region (Sahel), and a relatively moist vegetated region (Savanna), each with very different rainfall patterns and surface conditions. This study aims to better understand the controlling factors that determine the variation of dust emission in North Africa over a 27-year period from 1982 to 2008, using observational data and model simulations. The results show that the model-derived Saharan dust emission is only correlated with the 10-m winds (W10m) obtained from reanalysis data, but the model-derived Sahel dust emission is correlated with both W10m and the Normalized Difference Vegetation Index (NDVI) that is obtained from satellite. While the Saharan dust accounts for 82 of the continental North Africa dust emission (1340-1570 Tg year(exp -1) in the 27-year average, the Sahel accounts for 17 with a larger seasonal and inter-annual variation (230-380 Tg year(exp -1), contributing about a quarter of the transatlantic dust transported to the northern part of South America. The decreasing dust emission trend over the 27-year period is highly correlated with W10m over the Sahara (R equals 0.92). Over the Sahel, the dust emission is correlated with W10m (R 0.69) but is also anti-correlated with the trend of NDVI (R equals 0.65). W10m is decreasing over both the Sahara and the Sahel between 1982 and 2008, and the trends are correlated (R equals 0.53), suggesting that Saharan Sahelian surface winds are a coupled system, driving the inter-annual variation of dust emission.

  20. Influence of shrub cover vegetal and slope length on soil bulk density; Influencia de la cubierta vegetal arbustiva y la longitud de la ladera sobre la densidad aparente del suelo

    Energy Technology Data Exchange (ETDEWEB)

    Bienes, R.; Jimenez, R.; Ruiz, M.; Garcia-Estringana, P.; Marques, M. J.

    2009-07-01

    In arid and semiarid environments of the Mediterranean climate, the shrub species play an important role in the revegetation of abandoned lands, which enables to control the soil losses, organic material and water. In this article are compared the results obtained under different revegetation in abandoned lands in the central area of Spain. In these revegetation has been used two native shrubs: A triplex halimus (Ah) and Retama sphaerocarpa (Rs), and were analyzed the influence of these revegetation in the contents of organic material of soil and apparent density in 5 years time after planting. As control, have been considered the pieces of ground with spontaneous vegetation abandoned in the same date that the shrubs revegetation. Atriplex halimus gives to the soil a covering capable to intercept a big amount of water drops absorbing a great amount part of the kinetic energy of the rain, while provides a microclimates as a result of be able to soften the wind, the temperature and the evaporation-transpiration, which makes it efficient to control the erosion and the desertification (Le Houerou, 2000). Retama sphaerocarpa was chosen because it is a native shrub very characteristic, and, due to its symbiosis with the Bradyrhizobium, enriches the soil in nitrogen, which is taken by the nitrophilous species enhancing the spontaneous vegetal covering. (Author) 9 refs.

  1. Landsat 8 and ICESat-2: Performance and potential synergies for quantifying dryland ecosystem vegetation cover and biomass

    Science.gov (United States)

    Glenn, Nancy F.; Neuenschwander, Amy; Vierling, Lee A.; Spaete, Lucas; Li, Aihua; Shinneman, Douglas; Pilliod, David S.; Arkle, Robert; McIlroy, Susan

    2016-01-01

    The Landsat 8 mission provides new opportunities for quantifying the distribution of above-ground carbon at moderate spatial resolution across the globe, and in particular drylands. Furthermore, coupled with structural information from space-based and airborne laser altimetry, Landsat 8 provides powerful capabilities for large-area, long-term studies that quantify temporal and spatial changes in above-ground biomass and cover. With the planned launch of ICESat-2 in 2017 and thus the potential to couple Landsat 8 and ICESat-2 data, we have unprecedented opportunities to address key challenges in drylands, including quantifying fuel loads, habitat quality, biodiversity, carbon cycling, and desertification.

  2. Comparison of Methods for Estimating Fractional Cover of Photosynthetic and Non-Photosynthetic Vegetation in the Otindag Sandy Land Using GF-1 Wide-Field View Data

    Directory of Open Access Journals (Sweden)

    Xiaosong Li

    2016-09-01

    Full Text Available Photosynthetic vegetation (PV and non-photosynthetic vegetation (NPV are important ground cover types for desertification monitoring and land management. Hyperspectral remote sensing has been proven effective for separating NPV from bare soil, but few studies determined fractional cover of PV (fpv and NPV (fnpv using multispectral information. The purpose of this study is to evaluate several spectral unmixing approaches for retrieval of fpv and fnpv in the Otindag Sandy Land using GF-1 wide-field view (WFV data. To deal with endmember variability, pixel-invariant (Spectral Mixture Analysis, SMA and pixel-variable (Multi-Endmember Spectral Mixture Analysis, MESMA, and Automated Monte Carlo Unmixing Analysis, AutoMCU endmember selection approaches were applied. Observed fractional cover data from 104 field sites were used for comparison. For fpv, all methods show statistically significant correlations with observed data, among which AutoMCU had the highest performance (R2 = 0.49, RMSE = 0.17, followed by MESMA (R2 = 0.48, RMSE = 0.21, and SMA (R2 = 0.47, RMSE = 0.27. For fnpv, MESMA had the lowest performance (R2 = 0.11, RMSE = 0.24 because of coupling effects of the NPV and bare soil endmembers, SMA overestimates fnpv (R2 = 0.41, RMSE = 0.20, but is significantly correlated with observed data, and AutoMCU provides the most accurate predictions of fnpv (R2 = 0.49, RMSE = 0.09. Thus, the AutoMCU approach is proven to be more effective than SMA and MESMA, and GF-1 WFV data are capable of distinguishing NPV from bare soil in the Otindag Sandy Land.

  3. Pollen core assemblages as indicator of Polynesian and European impact on the vegetation cover of Auckland Isthmus catchment, New Zealand

    Science.gov (United States)

    Abrahim, Ghada M. S.; Parker, Robin J.; Horrocks, Mark

    2013-10-01

    Tamaki Estuary is an arm of the Hauraki Gulf situated on the eastern side of central Auckland. Over the last 100 years, Tamaki catchment has evolved from a nearly rural landscape to an urbanised and industrialised area. Pollen, 14C and glass shards analyses, were carried out on three cores collected along the estuary with the aim to reconstruct the estuary's history over the last ˜8000 years and trace natural and anthropogenic effects recorded in the sediments. Glass shard analysis was used to establish key tephra time markers such as the peralkaline eruption of Mayor Island, ˜6000 years BP. During the pre-Polynesian period (since at least 8000 years BP), regional vegetation was podocarp/hardwood forest dominated by Dacrydium cupressinun, Prumnopits taxifolia, and Metrosideros. Major Polynesian settler impact (commencing ˜700 yr BP) was associated with forest clearance as indicated by a sharp decline in forest pollen types. This coincided with an increase in bracken (Pteridium esculentum) spores and grass pollen. Continuing landscape disturbance during European settlement (commencing after 1840 AD) was accompanied by the distinctive appearance of exotic pollen taxa such as Pinus.

  4. Utilization of satellite remote sensing data on land surface characteristics in water and heat balance component modeling for vegetation covered territories

    Science.gov (United States)

    Muzylev, Eugene; Uspensky, Alexander; Startseva, Zoya; Volkova, Elena; Kukharsky, Alexander; Uspensky, Sergey

    2010-05-01

    The model of vertical water and heat transfer in the "soil-vegetation-atmosphere" system (SVAT) for vegetation covered territory has been developed, allowing assimilating satellite remote sensing data on land surface condition as well as accounting for heterogeneities of vegetation and meteorological characteristics. The model provides the calculation of water and heat balance components (such as evapotranspiration Ev, soil water content W, sensible and latent heat fluxes and others ) as well as vertical soil moisture and temperature distributions, temperatures of soil surface and foliage, land surface brightness temperature for any time interval within vegetation season. To describe the landscape diversity soil constants and leaf area index LAI, vegetation cover fraction B, and other vegetation characteristics are used. All these values are considered to be the model parameters. Territory of Kursk region with square about 15 thousands km2 situated in the Black Earth zone of Central Russia was chosen for investigation. Satellite-derived estimates of land surface characteristics have been constructed under cloud-free condition basing AVHRR/NOAA, MODIS/EOS Terra and EOS Aqua, SEVIRI/Meteosat-8, -9 data. The developed technologies of AVHRR data thematic processing have been refined providing the retrieval of surface skin brightness temperature Tsg, air foliage temperature Ta, efficient surface temperature Ts.eff and emissivity E, as well as derivation of vegetation index NDVI, B, and LAI. The linear regression estimators for Tsg, Ta and LAI have been built using representative training samples for 2003-2009 vegetation seasons. The updated software package has been applied for AVHRR data thematic processing to generate named remote sensing products for various dates of the above vegetation seasons. The error statistics of Ta, Ts.eff and Тsg derivation has been investigated for various samples using comparison with in-situ measurements that has given RMS errors in the

  5. Vegetation cover and long-term conservation of radioactive waste packages: the case study of the CSM waste disposal facility (Manche District, France).

    Science.gov (United States)

    Petit-Berghem, Yves; Lemperiere, Guy

    2012-03-01

    The CSM is the first French waste disposal facility for radioactive waste. Waste material is buried several meters deep and protected by a multi-layer cover, and equipped with a drainage system. On the surface, the plant cover is a grassland vegetation type. A scientific assessment has been carried out by the Géophen laboratory, University of Caen, in order to better characterize the plant cover (ecological groups and associated soils) and to observe its medium and long term evolution. Field assessments made on 10 plots were complemented by laboratory analyses carried out over a period of 1 year. The results indicate scenarios and alternative solutions which could arise, in order to passively ensure the long-term safety of the waste disposal system. Several proposals for a blanket solution are currently being studied and discussed, under the auspices of international research institutions in order to determine the most appropriate materials for the storage conditions. One proposal is an increased thickness of these materials associated with a geotechnical barrier since it is well adapted to the forest plants which are likely to colonize the site. The current experiments that are carried out will allow to select the best option and could provide feedback for other waste disposal facility sites already being operated in France (CSFMA waste disposal facility, Aube district) or in other countries.

  6. A thick homogeneous vegetated cover design proves cost - and schedule-effective for the reclamation of uranium mills sites near Spokane, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Blacklaw, J.; Robertson, G.; Stoffel, D.; Ahmad, J.; Fordham, E. [Washington State Dept. of Health, Olympia, WA (United States)] [and others

    1997-08-01

    The Washington State Department of Health (WDOH) has licensed two medium sized uranium mills with tailings impoundments covering 28 and 40 hectares (70 and 100 acres), respectively, The uranium mill licensees have submitted closure and reclamation plans to the state, and site-specific conditions have determined the closure design features, Conventional uranium mill cover designs usually incorporate an overall cap of one to three meters, which includes a low-permeability clay barrier layer. A technical evaluation of several uranium mill facilities that used this design was published in the fall of 1994 and reported that unexpected vegetation root damage had occurred in the low-permeability clay (or bentonite amended) barrier layers. The technical report suggested that the low-permeability design feature at some sites could be compromised within a very short time and the regulatory goal of 1,000 years performance might not be achieved. In October 1994, WDOH sponsored a technical forum meeting to consider design alternatives to address these reliability concerns. Representatives from the federal government, nuclear industry, licensees, engineering firms, and state regulatory agencies attended the workshop. Risk factors considered in the evaluation of the uranium mill reclamation plans include: (1) radon gas emanation through the cover (the air pathway), and (2) migration of hazardous and/or radioactive constituents (the groundwater pathway). Additional design considerations include site structural stability, longevity of 1,000 years, and no active (ongoing) maintenance. 9 refs.

  7. Vegetation Cover Dynamics and Resilience to Climatic and Hydrological Disturbances in Seasonal Floodplain: The Effects of Hydrological Connectivity

    Directory of Open Access Journals (Sweden)

    Linlu Shi

    2017-12-01

    Full Text Available Floodplain wetlands are valuable ecosystems for maintaining biodiversity, but are vulnerable to hydrological modification and climatic extremes. The floodplain wetlands in the middle Yangtze region are biodiversity hotspots, particularly important for wintering migratory waterbirds. In recent years, extremely low winter water level events frequently occurred in the middle Yangtze River. The hydrological droughts greatly impacted the development and distribution of the wet meadows, one of the most important ecological components in the floodplains, which is vital for the survival of many migratory waterbirds wintering in the Yangtze region. To effectively manage the wet meadows, it is critical to pinpoint the drivers for their deterioration. In this study, we assessed the effects of hydrological connectivity on the ecological stability of wet meadow in Poyang Lake for the period of 2000 to 2016. We used the time series of MODIS EVI (Enhanced Vegetation Index as a proxy for productivity to infer the ecological stability of wet meadows in terms of resistance and resilience. Our results showed that (1 the wet meadows developed in freely connected lakes had significantly higher resilience; (2 wet meadows colonizing controlled lakes had higher resistance to water level anomalies; (3 there was no difference in the resistance to rainfall anomaly between the two types of lakes; (4 the wet meadow in freely connected lakes might approach a tipping point and a regime shift might be imminent. Our findings suggest that adaptive management at regional- (i.e., operation of Three Gorges Dam and site-scale (e.g., regulating sand mining are needed to safeguard the long-term ecological stability of the system, which in term has strong implications for local, regional and global biodiversity conservation.

  8. Evolução da cobertura vegetal e uso agrícola do solo no município de Lagoa Seca, PB Evolution of vegetation covering and land use in the municipal district of Lagoa Seca, PB

    Directory of Open Access Journals (Sweden)

    Íris do S. Barbosa

    2009-10-01

    Full Text Available O presente estudo consiste no levantamento de informações relacionadas aos aspectos biofísicos, mapeamento e quantificação da vegetação natural e das áreas agricultáveis, mediante interpretação de fotos aéreas de 1984, análise visual de imagem digital do satélite Landsat, canais Tm³, TM4 e TM5, datada de 10 de julho de 1989 e no levantamento de coordenadas através do Sistema de Posicionamento Global (GPS, 2001. Foram elaborados, para a área em estudo, arquivos digitais georreferenciados, referentes aos temas limite municipal, cobertura vegetal natural e uso agrícola do solo, em ambos os períodos, 1984 e 2001, utilizados para a classificação da vegetação secundária dominante, na circunscrição das áreas de uso agrícola, de acordo com a prática agrícola peculiar, na identificação das fisionomias vegetais e avaliação do processo evolutivo das fisionomias no período mencionado.This study comprised of the collection of data on biophysical aspects, the mapping and quantification of natural vegetation and arable areas, through interpretation of aerial pictures taken in 1984, visual analysis of digital images from Landsat satellites, Tm³, TM4 and TM5 channels, carried out on July 10, 1989 and the survey of coordinates through the Global Positioning System (GPS, 2001. Digital geo-referenced files elaborated for the studied area comprising basic data about the municipal limit, natural vegetation covering, land use, in both periods, 1984 and 2001, were used for classification of the dominant secondary vegetation, definition of the agricultural use of soil in agreement with the peculiar agricultural practices, identification of the vegetable physiognomies and evaluation of their evolutionary process in the mentioned period.

  9. Correlation between hydrological drought, climatic factors, reservoir operation, and vegetation cover in the Xijiang Basin, South China

    Science.gov (United States)

    Lin, Qingxia; Wu, Zhiyong; Singh, Vijay P.; Sadeghi, S. H. R.; He, Hai; Lu, Guihua

    2017-06-01

    The Xijiang River is known as the Golden Watercourse because of its role in the development of the Pearl River Delta Regional Economic System in China, which was made possible by its abundant water resources. At present, the hydrological regime of the Xijiang River has now become complicated, the water shortages and successive droughts pose a threat to regional economic development. However, the complexity of hydroclimatological processes with emphasizes on drought has not been comprehended. In order to effectively predict and develop the adaptation strategies to cope with the water scarcity damage caused by hydrological droughts, it is essential to thoroughly analyze the relationship between hydrological droughts and pre/post-dependent hydroclimatological factors. To accomplish this, the extreme-point symmetric mode decomposition method (ESMD) was utilized to reveal the periodic variation in hydrological droughts that is characterized by the Standardized Drought Index (SDI). In addition, the cross-wavelet transform method was applied to investigate the correlation between large-scale climate indices and drought. The results showed that hydrological drought had the most significant response to spring ENSO (El Niño-Southern Oscillation), and the response lags in sub-basins were mostly 8-9 months except that in Yujiang River were mainly 5 or 8 months. Signal reservoir operation in the Yujiang River reduced drought severity by 52-95.8% from January to April over the 2003-2014 time period. Similarly, the cascade reservoir alleviated winter and spring droughts in the Hongshuihe River Basin. However, autumn drought was aggravated with severity increased by 41.9% in September and by 160.9% in October, so that the land surface models without considering human intervention must be used with caution in the hydrological simulation. The response lags of the VCI (Vegetation Condition Index) to hydrological drought were different in the sub-basins. The response lag for the

  10. Comparative Assessment of Two Vegetation Fractional Cover Estimating Methods and Their Impacts on Modeling Urban Latent Heat Flux Using Landsat Imagery

    Directory of Open Access Journals (Sweden)

    Kai Liu

    2017-05-01

    Full Text Available Quantifying vegetation fractional cover (VFC and assessing its role in heat fluxes modeling using medium resolution remotely sensed data has received less attention than it deserves in heterogeneous urban regions. This study examined two approaches (Normalized Difference Vegetation Index (NDVI-derived and Multiple Endmember Spectral Mixture Analysis (MESMA-derived methods that are commonly used to map VFC based on Landsat imagery, in modeling surface heat fluxes in urban landscape. For this purpose, two different heat flux models, Two-source energy balance (TSEB model and Pixel Component Arranging and Comparing Algorithm (PCACA model, were adopted for model evaluation and analysis. A comparative analysis of the NDVI-derived and MESMA-derived VFCs showed that the latter achieved more accurate estimates in complex urban regions. When the two sources of VFCs were used as inputs to both TSEB and PCACA models, MESMA-derived urban VFC produced more accurate urban heat fluxes (Bowen ratio and latent heat flux relative to NDVI-derived urban VFC. Moreover, our study demonstrated that Landsat imagery-retrieved VFC exhibited greater uncertainty in obtaining urban heat fluxes for the TSEB model than for the PCACA model.

  11. Meteorological and air quality impacts of increased urban albedo and vegetative cover in the Greater Toronto Area, Canada; FINAL

    International Nuclear Information System (INIS)

    Taha, Haider; Hammer, Hillel; Akbari, Hashem

    2002-01-01

    The study described in this report is part of a project sponsored by the Toronto Atmospheric Fund, performed at the Lawrence Berkeley National Laboratory, to assess the potential role of surface property modifications on energy, meteorology, and air quality in the Greater Toronto Area (GTA), Canada. Numerical models were used to establish the possible meteorological and ozone air-quality impacts of increased urban albedo and vegetative fraction, i.e., ''cool-city'' strategies that can mitigate the urban heat island (UHI), significantly reduce urban energy consumption, and improve thermal comfort, particularly during periods of hot weather in summer. Mitigation is even more important during critical heat wave periods with possible increased heat-related hospitalization and mortality. The evidence suggests that on an annual basis cool-city strategies are beneficial, and the implementation of such measures is currently being investigated in the U.S. and Canada. We simulated possible scenari os for urban heat-island mitigation in the GTA and investigated consequent meteorological changes, and also performed limited air-quality analysis to assess related impacts. The study was based on a combination of mesoscale meteorological modeling, Lagrangian (trajectory), and photochemical trajectory modeling to assess the potential meteorological and ozone air-quality impacts of cool-city strategies. As available air-quality and emissions data are incompatible with models currently in use at LBNL, our air-quality analysis was based on photochemical trajectory modeling. Because of questions as to the accuracy and appropriateness of this approach, in our opinion this aspect of the study can be improved in the future, and the air-quality results discussed in this report should be viewed as relatively qualitative. The MM5 meteorological model predicts a UHI in the order of 2 to 3 degrees C in locations of maxima, and about 1 degree C as a typical value over most of the urban area

  12. Pyrolysis compound specific isotopic analysis (δ13C and δD Py-CSIA) of soil organic matter size fractions under four vegetation covers.

    Science.gov (United States)

    Jiménez-Morillo, Nicasio T.; González-Vila, Francisco J.; Almendros, Gonzalo; De la Rosa, José M.; González-Pérez, José A.

    2015-04-01

    A chemical characterization of soil organic matter (SOM) under different ground cover from a Mediterranean climate (Doñana National Park, Andalusia, Spain) is approached using bulk δ15N, δ13C, δ18O and δD isotopic analysis (C/TC-IRMS) and δ13C and δD pyrolysis compound specific isotopic analysis (Py-CSIA: Py-GC-C/TC-IRMS). Soil samples were collected in sandy soils, Arenosols (WRB 2006) from the Doñana National Park (SW Spain) under different vegetation cover: cork oak (Quercus suber, QS), eagle fern (Pteridium aquilinum, PA), pine (Pinus pinea, PP) and rockrose (Halimium halimifolium, HH). Two size fractions; coarse (C: 1-2 mm) and fine (F: studied from each soil. A complete conventional analytical pyrolysis (Py-GC/MS) of these samples have been studied in detail (Jiménez-Morillo et al., 2015). Bulk isotopic analysis of stable light elements (δ15N, δ13C, δ18O and δD) revealed particular isotopic signatures showing differences related with the main vegetation cover and the different soil size fraction. All samples had a carbon isotopic signature between -26 and -29 ‰, which indicated that the organic matter in the two fractions of each soil sample derived from C3-type plants. The bulk δD isotopic signature in whole soil sample indicate a lower deuterium fractionation occurs in SOM under arboreal than under no-arboreal vegetation, this can be caused by the occurrence of a higher water evaporation rate under bush vegetation and/or to differences due to leaf morphology as previously described (Leaney et al., 1985). A δ15N vs. δ18O chart may provide some clues about N origin in the soil and particularly about the original source of nitrates (Kendall et al., 1996). In in all sample and size fractions our values are in the chart area corresponding to NO3 in precipitation, with lighter δ18O (c. 20 ‰) values compatible with fertilizers may be from adjacent crops. In addition we were able to assign δ13C and δD values for a number of specific SOM

  13. Spatial-temporal development of the mangrove vegetation cover on a hydraulic landfill (Via Expressa Sul, Florianópolis, SC): mapping and interpretation of digital aerophotographs, and quantitative analysis

    OpenAIRE

    Anderson Tavares de Melo; Eduardo Juan Soriano-Sierra; Luiz Antônio Paulino

    2011-01-01

    The implementation of a hydraulic landfill along the southern expressway (Via Expressa Sul), in the central-south region of Santa Catarina Island, started in 1995 and was completed in 1997. The landfill provided the mangrove vegetation a new environment to colonize, which has developed rapidly during this short period of time. This study mapped the vegetation cover of this region using aerial photographs from five years (1994, 1997, 2002, 2004 and 2007), which demonstrated the spatial-tempora...

  14. Comportamento vegetativo e produtivo de videiras 'Cabernet sauvignon' cultivadas sob cobertura plástica Vegetative growth and yield of 'Cabernet sauvignon' grapevine under overhead plastic covering

    Directory of Open Access Journals (Sweden)

    Clenilso Sehnen Mota

    2008-03-01

    randomized block design, with two treatments (uncovered and covered plants and four replicates of 15 plants (experimental unit. The micro-environmental changes imposed by the cover did not affect grapevines phenology. The grapevines under the cover had higher values for branches growth (length and fresh mass, and leaf expansion (area and dry mass than the uncovered ones. The berries weight and diameter were superior on grapevines under covering plastic only at earlier stages of fruit growth but not at harvest. The other variables assessed were not affected by the cover. The results show that overhead plastic covering can interfere with vegetative growth without affecting yield.

  15. Plant cover and hydrological response in a seasonally dry tropical forest (SDTF = Cobertura vegetal e as respostas hidrológicas em floresta tropical sazonalmente seca (FTSS

    Directory of Open Access Journals (Sweden)

    Eunice Maia de Andrade

    2017-10-01

    Full Text Available The scarcity of information on the processes of rainfall-flow limits understanding of the hydrology of dry regions of the world. In order to minimise the problem, this study was developed to investigate the influence of the characteristics of rainfall events and plant cover on the effective precipitation (Pe in a seasonally dry tropical forest (SDTF in the Northeast of Brazil. The study was carried out in two paired watersheds, one with SDTF under regeneration for 35 years (CR35 and the other under thinned SDTF for 5 years (TC. A historical series of five years (2009-2013 was analysed, with a total of 203 rainfall events, where only those rainfall events that generated a Pe > 1.0 mm were considered. CR35 had a greater number of Pe events (47 than TC (35. Rainfall depth and intensity were the factors that best explained the effective precipitation under both types of vegetation cover. The influence of herbaceous vegetation on the reduction of surface runoff was demonstrated by the smaller runoff depth and the greater potential for soil water storage in the watershed under thinned Caatinga. This fact leads to the conclusion that the technique of thinning is suitable management for Caatinga vegetation, and is capable of promoting the retention of soil water. = A escassez de informações sobre os processos chuva-deflúvio é uma limitação no entendimento da hidrologia das regiões secas do globo terrestre. Buscando minimizar esta problemática, desenvolveuse este estudo objetivando investigar as influências das características dos eventos pluviométricos e da cobertura vegetal na precipitação efetiva (Pe em floresta tropical sazonalmente seca (FTSS, no nordeste do Brasil. O estudo foi realizado em duas microbacias emparelhadas, uma com FTSS em regeneração há 35 anos (CR35 e outra com FTSS raleada há 5 anos (CR. Foi analisada uma série histórica de cinco anos (2009-2013, com um total de 203 eventos pluviométricos, sendo considerados

  16. The role of pore soil solutions in redistribution of 137Cs, 90Sr, 239,240Pu and 241Am within soil-vegetative cover

    International Nuclear Information System (INIS)

    Ovsiannikova, S.V.; Sokolik, G.A.; Kilchitskaya, S.L.; Eismont, E.A.; Zhukovich, N.V.; Kimlenko, I.M.

    1998-01-01

    The role of pore soil solutions in the migration of 137 Cs, 90 Sr, 239,240 Pu and 241 Am within soil-vegetative cover of natural ecosystems was examined. The soil solutions were found to play an important role in the redistribution of 137 Cs, 90 Sr, 239,240 Pu and 241 Am in the soil-plant systems. Obvious relationships between the distribution coefficients of radionuclides between solid and liquid phases (K d ) and the intensity of vertical migration of 137 Cs, 90 Sr, 239,240 Pu and 241 Am along the soil profiles and with intensity of their accumulation by grass vegetation of natural meadows have been obtained. It means that the distribution coefficient may be used as a criterion of the radionuclide mobility in the soil-plant system whatever its level of radioactive contamination is. The influence of the degree of soil moistening, the content of mobile radionuclide forms in the soils and some characteristics of pore soil solutions (pH, content of K + , Ca 2+ , NH 4 + , water soluble organic substances) on the concentration of radionuclide in the soil solutions and on the value of radionuclide distribution coefficient have been analysed. The results of investigation are of great importance in the evaluation of radioecological situation and in solution of problems of radioecological rehabilitation of the contaminated territories. The received data constitute a part of scientific basis for the development of a system of countermeasures to decrease the mobility and biological availability of radionuclides of high and very high radiotoxicity

  17. Macrofauna invertebrada edáfica em cultivo de mandioca sob sistemas de cobertura do solo Edaphic invertebrate macrofauna in cassava cultivation under vegetable cover crops

    Directory of Open Access Journals (Sweden)

    Rogério Ferreira da Silva

    2007-06-01

    Full Text Available O objetivo deste trabalho foi avaliar o efeito do cultivo da mandioca em diferentes sistemas de cobertura do solo na densidade e diversidade da comunidade da macrofauna de invertebrados edáfica. O trabalho foi conduzido no Município de Glória de Dourados, MS, num Argissolo Vermelho, sob sistema convencional (SC, plantio direto sobre palhada de mucuna (PDMu, sorgo (PDSo e milheto (PDMi, além de sistema com vegetação nativa (VN, como referencial para comparação. As avaliações foram realizadas em quatro épocas distintas: abril/2003 (antes do plantio, novembro/2003 (6 meses após o plantio, abril/2004 (11 meses após o plantio e novembro/2004 (18 meses após o plantio. Houve efeito da interação entre os sistemas avaliados e as épocas de amostragens sobre a densidade, riqueza e diversidade da macrofauna invertebrada do solo. Entre os grupos da macrofauna invertebrada do solo, cupins, formigas e coleópteros (imaturo e adulto foram predominantes no ambiente estudado. O uso de plantas de cobertura no pré-cultivo de mandioca no sistema plantio direto proporcionou condições para a recomposição da comunidade de macrofauna invertebrada do solo, o que indica que as espécies utilizadas, mucuna, sorgo e milheto, representam alternativas promissoras para melhor manejo dessa cultura.The objective of this work was to evaluate the effect of cassava cultivation under different vegetable cover crops according to the density and diversity of soil invertebrate macrofauna. Field experiment was carried out at Glória de Dourados, Mato Grosso do Sul State, Brazil, on an Oxisol, under conventional drilling (SC, no-tillage system under Stizolobium cinereum (PDMu, Sorghum bicolor (PDSo and Pennisetum glaucum (PDMi mulching, with comparison of native vegetation system (VN. Evaluations were performed in April/2003 (before sowing, November/2003 (6 months after sowing, April/2004 (11 months after sowing and November/2004 (18 months after sowing. Significant

  18. Efectos de la instalación de un gasoducto sobre algunas propiedades del suelo superficial y la cobertura vegetal en el NE de Chubut Gas-pipeline installation effects on superficial soil properties and vegetation cover in Northeastern Chubut

    Directory of Open Access Journals (Sweden)

    Esteban Kowaljow

    2008-07-01

    , sobre todo, por la baja calidad de los sedimentos extraídos de los horizontes inferiores de la zanja.In this work we describe the impact of a gas-pipeline installation and the replacing of the material removed in part of the clear-cutting, on some physical and chemical properties of the soils and vegetation in three ecological sites of Northeastern Chubut. In these sites we identified four different areas: area 1, clear-cut strip, where the traffic of heavy machinery was intense; area 2, clear-cut strip, with soil and vegetation replaced; and other two areas in the undisturbed adjacent steppe: mounds associated to shrubs and mound interspaces. The highest bulk densities were recorded in area 1 and in the mound interspaces (1.43 Mg m-3. The penetrometer resistance was significantly higher in the areas 1 and 2, recording values higher than 1 MPa. The infiltration rate was much higher in the mound (261 mm h-1 than in the other areas. The infiltration rate of area 2 (85 mm h-1 was higher than that of area 1 (35 mm h-1 and the mound interspaces (50 mm h-1. Total nitrogen and organic carbon content in soils of the areas 1 and 2 were similar to those of the mound interspaces and significantly lower than those of the mound, except in the area 2 of one ecological site. Clear-cut and topsoil removal, and the subsequent traffic of heavy machinery caused by underground gas-pipeline installation produced a strong impact on the physical properties of these soils. The main limitation in the highly disturbed soils was the decrease in the infiltration rate, mainly due to high compaction and low porosity. This may in part explain the slow vegetation cover recovery in the area 1. The replacement of the stripped sediment and vegetation on the disturbed strip did not improve the recovery of the vegetation cover. It was mainly due to the low quality of the sediments extracted from the pipeline ditch.

  19. Studies on the injuries of crops by harmful gases under covering. I. Injuries of vegetables by gaseous nitrogen dioxide and the conditions affecting crop susceptibility. [Eggplant

    Energy Technology Data Exchange (ETDEWEB)

    Kato, T; Tachibana, S; Inden, T

    1974-09-01

    The effects of environmental conditions such as soil-moisture humidity, and light on injuries to crops such as kidney bean, cucumber, tomato, and egg plant as well as the relationships between injury occurrence and plant nutrition, age of seedlings, and leaf position were investigated when the crops were exposed to gaseous nitrogen dioxide under a covering. The injury was severer when the soil moisture was richer and the humidity was higher. Injury was greater under dark conditions as opposed to light conditions before, during, and after NO/sub 2/ exposure. The first leaves of kidney bean plants were more susceptible to the gas when they were younger. Leaves with active metabolism (in the middle position) were the most susceptible to NO/sub 2/. Vegetables grown in fields or cultures poor in nitrogen were apparently susceptible to the gas, and those grown in ammonia-nitrogen rich cultures were more severely injured than those grown on nitrate-nitrogen rich cultures. Those grown in iron-deficient cultures were more susceptible to NO/sub 2/ than controls.

  20. Consumer Perceptions of Fruit and Vegetable Origin, Growing Methods, and Willingness to Pay in Trinidad and Tobago Marketplaces: Implications for Extension Programming

    Directory of Open Access Journals (Sweden)

    M’Randa R. Sandlin

    2017-10-01

    Full Text Available Consumer behavior is a complex phenomenon encompassing internal, external, and situational factors. This study examined perceptions of market consumers about fruits and vegetables in Trinidad and Tobago in terms of produce origin, growing method, and willingness to pay. A stratified purposive sample of consumers at 14 unique market locations was surveyed to measure the three constructs and demographics. Descriptive statistics, correlational analysis, a ttest, and one-way analysis of variance were used to analyze the data. Findings revealed consumers have positive perceptions of locally grown produce and produce grown without chemicals. Findings also revealed a slight willingness to pay more for such characteristics. There were small to moderate correlations among the three constructs. Male and female perceptions of locally grown produce were significantly different, but no differences were found based on age. Extension educators working with producers who sell directly to consumers can utilize results from this study in working with clientele to tailor marketing and production strategies. Further research into social norms and perceived behavior control is recommended to better understand consumer behavior and help Extension better prepare stakeholders for success in the market places.

  1. Spatial-temporal development of the mangrove vegetation cover on a hydraulic landfill (Via Expressa Sul, Florianópolis, SC: mapping and interpretation of digital aerophotographs, and quantitative analysis

    Directory of Open Access Journals (Sweden)

    Anderson Tavares de Melo

    2011-12-01

    Full Text Available The implementation of a hydraulic landfill along the southern expressway (Via Expressa Sul, in the central-south region of Santa Catarina Island, started in 1995 and was completed in 1997. The landfill provided the mangrove vegetation a new environment to colonize, which has developed rapidly during this short period of time. This study mapped the vegetation cover of this region using aerial photographs from five years (1994, 1997, 2002, 2004 and 2007, which demonstrated the spatial-temporal evolution of the vegetation since the year before the implementation of the landfill (1994 to its recent state (2007. The data from this study allowed changes in the surface of three bands of vegetation, a band of trees (Laguncularia racemosa and Avicennia schaueriana, a band of the seagrass praturá (Spartina alterniflora and a transition band (companions of mangrove species and restinga plants, to be quantified.

  2. Evolution of soil and vegetation cover on the bottom of drained thermokarst lake (a case study in the European Northeast of Russia)

    Science.gov (United States)

    Kaverin, Dmitry; Pastukhov, Alexander

    2015-04-01

    The evolution of soils and landscapes has been studied in a lake bed of former thermokarst lake, which was totally drained in 1979. Melioration of thermokarst lakes was conducted experimentally and locally under Soviet economics program during 1970-s. The aim of the program was to increase in biomass productivity of virgin tundra permafrost-thermokarst sites under agricultural activities. The former thermokarst lake "Opytnoe" located in the Bolshezemelskaya Tundra, Russian European Northeast. The lake bed is covered by peat-mineral sediments, which serves as soil-forming sediments favoring subsequent permafrost aggradation and cryogenic processes as well. Initially, after drainage, swampy meadows had been developed almost all over the lake bed. Further on, succession of landscape went diversely, typical and uncommon tundra landscapes formed. When activated, cryogenic processes favored the formation of peat mounds under dwarf shrub - lichen vegetation (7% of the area). Frost cracks and peat circles affected flat mounds all over the former lake bottom. On drained peat sites, with no active cryogenic processes, specific grass meadows on Cryic Sapric Histosols were developed. Totally, permafrost-affected soils occupy 77% of the area (2011). In some part of the lake bed further development of waterlogging leads to the formation of marshy meadows and willow communities where Gleysols prevail. During last twenty years, permafrost degradation has occurred under tall shrub communities, and it will progress in future. Water erosion processes in the drained lake bottom promoted the formation of local hydrographic network. In the stream floodplain grassy willow-stands formed on Fluvisols (3% of the area). The study has been conducted under Clima-East & RFBR 14-05-31111 projects.

  3. Simulation of green roof runoff under different substrate depths and vegetation covers by coupling a simple conceptual and a physically based hydrological model.

    Science.gov (United States)

    Soulis, Konstantinos X; Valiantzas, John D; Ntoulas, Nikolaos; Kargas, George; Nektarios, Panayiotis A

    2017-09-15

    In spite of the well-known green roof benefits, their widespread adoption in the management practices of urban drainage systems requires the use of adequate analytical and modelling tools. In the current study, green roof runoff modeling was accomplished by developing, testing, and jointly using a simple conceptual model and a physically based numerical simulation model utilizing HYDRUS-1D software. The use of such an approach combines the advantages of the conceptual model, namely simplicity, low computational requirements, and ability to be easily integrated in decision support tools with the capacity of the physically based simulation model to be easily transferred in conditions and locations other than those used for calibrating and validating it. The proposed approach was evaluated with an experimental dataset that included various green roof covers (either succulent plants - Sedum sediforme, or xerophytic plants - Origanum onites, or bare substrate without any vegetation) and two substrate depths (either 8 cm or 16 cm). Both the physically based and the conceptual models matched very closely the observed hydrographs. In general, the conceptual model performed better than the physically based simulation model but the overall performance of both models was sufficient in most cases as it is revealed by the Nash-Sutcliffe Efficiency index which was generally greater than 0.70. Finally, it was showcased how a physically based and a simple conceptual model can be jointly used to allow the use of the simple conceptual model for a wider set of conditions than the available experimental data and in order to support green roof design. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Natural islands and habitat islands as refuges of vegetation cover and wild bees. The case of the Lednica Landscape Park in western Poland

    Directory of Open Access Journals (Sweden)

    Banaszak Józef

    2016-03-01

    Full Text Available The study has contributed to the identification of the apifauna of central Wielkopolska. The study identified 161 bee species, accounting for 34.2% of the Polish bee fauna. The highest contribution (28.7% of the fauna comes from four species, namely Andrena haemorrhoa, A. helvola, Evylaeus calceatus and Osmia rufa, while Bombus terrestris and Evylaeus pauxillus are two subdominants. The assemblages of Apiformes in the study area are characterised by a significant contribution of spring-associated species, which is probably an effect of the presence of numerous willow thickets offering abundant host plants (mainly Salix sp. div.. Both the islands and the surroundings of the lake have a unique species composition, and there are differences in the proportions of the individual dominant species. The overall abundance of bees varies greatly, with mean seasonal density figures on Ostrów Lednicki Island being more than twice as high as that on the mainland grassland, with a distinct predominance of bumblebees. The exceptional richness of Apiformes, including bumblebees, on Ostrów Lednicki should be regarded as the basis for treating this island as a life refuge for bumblebees and including it and its environs in the list of sites of Community importance (SCI. A simultaneous study of the vegetation cover contributed significant data on the vascular plant flora and plant communities of the Lednica Landscape Park. For example, it was the first such investigation of Mewia Island. The study revealed the importance of marginal habitats (natural islands and habitat islands for the preservation of protected and endangered plant species and plant communities receding from an agricultural landscape.

  5. O factor de coberto vegetal, para árvores e Arbustos, em modelos de erosão hídrica The vegetation cover factor, for tree and bush canopies, in models of water erosion

    Directory of Open Access Journals (Sweden)

    Carla Rolo Antunes

    2011-07-01

    Full Text Available O objectivo primordial do presente trabalho consiste na análise do comportamento de cobertos arbóreos e arbustivos, em termos do processo de intercepção da precipitação, designadamente, retenção e gotejo, e no estabelecimento de uma componente a incluir em modelos de erosão, que permita quantificar o factor de coberto vegetal em caso de ocupação do solo por estes cobertos, associados a culturas arvenses, em subcoberto, particularmente, na Equação Universal da Perda de Solo Revista (RUSLE. O trabalho experimental utilizou um simulador de chuva, tendo-se obtido valores do diâmetro das gotas (gotejo das folhas de espécies características dos sistemas de uso do solo mais comuns no Sul de Portugal, nomeadamente sobreiro (Quercus suber L., azinheira (Quercus ilex L. ssp. rotundifolia Lam e carrasco (Quercus coccifera L., e quantificado valores de retenção nas folhas. A partir dos resultados obtidos estimou-se a energia cinética para diferentes alturas de queda e, consequentemente, valores correctivos a aplicar aos valores de C tradicionalmente considerados, relativos às culturas agrícolas.The main objective of this work consists on the analyzes of tree and bush canopies behavior, in terms of the rainfall interception process, namely, leave retention, and dripping, and the establishment of a erosion model component to include in to quantify the cover factor (C of the Revised Universal Soil Loss Equation (RUSLE for mixed land covered systems with arable crops, in association with trees and bushes. In the experimental work a rainfall simulator was used and the characteristic values for the diameter of the dripping drops and retention of the leaves from characteristic species of the more common mixed land-use systems in Southern of Portugal, particularly with Cork oak (Quercus suber L., Holm or evergreen oak (Quercus ilex L. ssp. rotundifolia Lam and Kermes or wild oak (Quercus coccifera L., were obtained. From the obtained results

  6. Reconstructing vegetation past: Pre-Euro-American vegetation for the midwest driftless area, USA

    Science.gov (United States)

    Monika E. Shea; Lisa A. Schulte; Brian J. Palik

    2014-01-01

    Historical reference conditions provide important context for creating ecological restoration and management plans. The U.S. 19th Century Public Land Survey (PLS) records provide extensive ecological information for constructing such reference conditions. We used PLS records to reconstruct pre-Euro-American tree species cover class and vegetation structure types for...

  7. Study of the specific activity concentrations of 40K, {sup 226}Ra, {sup 228}Ra and {sup 232}Th in vegetables and their respective covering tissues (peels)

    Energy Technology Data Exchange (ETDEWEB)

    Lopes, J.M.; Garcêz, R.W.D., E-mail: marqueslopez@yahoo.com.br [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Silva, A.X. [Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ (Brazil). Escola Politécnica

    2017-07-01

    This work presents an analysis of specific concentrations of {sup 40}K, {sup 226}Ra, {sup 228}Ra and {sup 232}Th in some vegetables that are part of the diet of the population of the state of Rio de Janeiro. Furthermore, was analyzed the concentrations of radionuclides in the same coating tissue that compose the vegetables. It can notice an increase of the specific concentration of {sup 40}K in the peels of vegetables that have little or no contact with the ground. Among the samples examined, only the pumpkin showed measurable amount of {sup 137}Cs both saves and in the skin. (author)

  8. Study of the specific activity concentrations of 40K, 226Ra, 228Ra and 232Th in vegetables and their respective covering tissues (peels)

    International Nuclear Information System (INIS)

    Lopes, J.M.; Garcêz, R.W.D.; Silva, A.X.

    2017-01-01

    This work presents an analysis of specific concentrations of 40 K, 226 Ra, 228 Ra and 232 Th in some vegetables that are part of the diet of the population of the state of Rio de Janeiro. Furthermore, was analyzed the concentrations of radionuclides in the same coating tissue that compose the vegetables. It can notice an increase of the specific concentration of 40 K in the peels of vegetables that have little or no contact with the ground. Among the samples examined, only the pumpkin showed measurable amount of 137 Cs both saves and in the skin. (author)

  9. C-14 dating and C-13/C-12 isotopic ratio in soils covered by natural vegetation of cerrado-floresta ecosystem at Humaita (AM)/Brazil

    International Nuclear Information System (INIS)

    Gouveia, Susy E.M.; Pessenda, Luiz C.R.; Roveratti, Renato; Cruz, Maria V.L.; Pessin, Glaucia; Aravena, Ramon; Boulet, Rene

    1996-01-01

    The most recent evidences show that in the Amazon region significant climatic changes occurred in the Quaternary, with emphasis to the dry periods during the Pleistocene and increased precipitation in the Holocene. In this region are found areas with characteristics of cerrado, surrounded by tropical rain forest. The evaluations of soil, vegetation and climate interactions for the formation of these areas are important. Carbon isotopes ( 12 C, 13 C, 14 C) have been applied in soil organic matter (SOM) of Humaita region, southern Amazon, to evaluate changes in vegetation communities during the Holocene. Isotopic composition of SOM in the deeper part of the soil profiles, shows that probably in the early Holocene the forest has been in the area today occupied by the cerrado vegetation. The results of SOM in the shallow part of soil profiles characterize perfectly the three types of actual vegetation communities. (author)

  10. Impact of natural climate change and historical land use on vegetation cover and geomorphological process dynamics in the Serra dos Órgãos mountain range in Rio de Janeiro State, Brazil

    Science.gov (United States)

    Nehren, U.; Sattler, D.; Heinrich, J.

    2010-03-01

    The Serra dos Órgãos mountain range in the hinterland of Rio de Janeiro contains extensive remnants of the Atlantic Forest (Mata Atlântica) biome, which once covered about 1.5 million km² from Northeast to South Brazil and further inland to Paraguay and Argentina. As a result of historical deforestation and recent land use intensification processes today only 5 to 8% of the original Atlantic Forest remains. Despite the dramatic habitat loss and a high degree of forest fragmentation, the remnants are among the Earth’s most diverse habitats in terms of species richness. Furthermore, they are characterized by a high level of endemism. Therefore, the biome is considered a "hotspot of biodiversity". In the last years many efforts have been taken to investigate the Mata Atlântica biome in different spatial and time scales and from different scientific perspectives. We are working in the Atlantic Forest of Rio de Janeiro since 2004 and focus in our research particularly on Quaternary landscape evolution and landscape history. By means of landscape and soil archives we reconstruct changes in the landscape system, which are mainly the result of Quaternary climate variability, young tectonic uplift and human impact. The findings throw light on paleoecological conditions in the Late Quaternary and the impact of pre-colonial and colonial land use practices on these landscapes. In this context, a main focus is set on climate and human-driven changes of the vegetation cover and its consequences for the geomorphological process dynamics, in particular erosion and sedimentation processes. Research methods include geomorphological field studies, interpretation of satellite images, physical and chemical sediment and soil analyses as well as relative and absolute dating (Feo/Fed ratio and 14C dating). For the Late Quaternary landscape evolution, the findings are compared with results from paleoclimatic and paloecological investigations in Southeast and South Brazil using other

  11. GAP Land Cover - Image

    Data.gov (United States)

    Minnesota Department of Natural Resources — This raster dataset is a simple image of the original detailed (1-acre minimum), hierarchically organized vegetation cover map produced by computer classification of...

  12. GAP Land Cover - Vector

    Data.gov (United States)

    Minnesota Department of Natural Resources — This vector dataset is a detailed (1-acre minimum), hierarchically organized vegetation cover map produced by computer classification of combined two-season pairs of...

  13. Efeito da cobertura vegetal sobre a pérola-da-terra (Hemiptera: Margarodidae na cultura da videira = Effect of cover crops on brazilian ground pearl (Hemiptera: Margarodidae in vineyards

    Directory of Open Access Journals (Sweden)

    Marcos Botton

    2010-10-01

    Full Text Available O uso da cobertura vegetal em vinhedos é uma prática empregada paraminimizar a erosão e melhorar as qualidades químicas e físicas do solo. Neste trabalho, foi avaliado o efeito de coberturas vegetais sobre a população da pérola-da-terra Eurhizococcus brasiliensis (Hemiptera: Margarodidae na cultura da videira. No primeiro experimento, o vinhedo foi mantido sem cobertura vegetal por meio da aplicação trimestral do herbicida glifosato comparado com o uso de vegetação espontânea, durante o ano, de vegetação espontânea, no verão, e de aveia preta no inverno. No segundo experimento foi avaliado o efeito da mucuna-preta (Stizolobium aterrimum cultivada no vinhedo durante o verão comparado com a vegetação espontânea. No primeiro experimento, a população da pérolada-terra nas raízes de plantas de videira foi maior em áreas mantidas sem cobertura vegetal emostrou-se semelhante em áreas onde se manteve a vegetação espontânea, ao longo do ano, e com aveia preta no inverno e vegetação espontânea no verão. A infestação das plantas de videira em áreas onde foi empregada a mucuna-preta durante o verão foi equivalente à da vegetação espontânea. S. aterrimum foi registrada pela primeira vez como hospedeira de E. brasiliensis. The use of cover crops is an important strategy to reduce erosion and improve chemical and physical soil properties. In this work, we evaluate the effect of cover crops to reduce Brazilian ground pearl Eurhizococcus brasiliensis (Hemiptera: Margarodidae infestation in vineyards. In the first experiment, glyphosate was sprayed each three months to avoid cover crops. This treatment was compared with naturally occurring vegetation during the year and the use of Avena sativa in the winter. In a second experiment, Stizolobium aterrimum was cultivated during the summer compared with naturally occurringvegetation. Brazilian ground pearl population was higher in glyphosate sprayed areas than where cover

  14. The response of lake area and vegetation cover variations to climate change over the Qinghai-Tibetan Plateau during the past 30years.

    Science.gov (United States)

    Zhang, Zengxin; Chang, Juan; Xu, Chong-Yu; Zhou, Yang; Wu, Yanhong; Chen, Xi; Jiang, Shanshan; Duan, Zheng

    2018-09-01

    Lakes and vegetation are important factors of the Earth's hydrological cycle and can be called an "indicator" of climate change. In this study, long-term changes of lakes' area and vegetation coverage in the Qinghai-Tibetan Plateau (QTP) and their relations to the climate change were analyzed by using Mann-Kendall method during the past 30years. Results showed that: 1) the lakes' area of the QTP increased significantly during the past 30years as a whole, and the increasing rates have been dramatically sped up since the year of 2000. Among them, the area of Ayakekumu Lake has the fastest growing rate of 51.35%, which increased from 618km 2 in the 1980s to 983km 2 in the 2010s; 2) overall, the Normalized Difference Vegetation Index (NDVI) increased in the QTP during the past 30years. Above 79% of the area in the QTP showed increasing trend of NDVI before the year of 2000; 3) the air temperature increased significantly, the precipitation increased slightly, and the pan evaporation decreased significantly during the past 30years. The lake area and vegetation coverage changes might be related to the climate change. The shifts in the temporal climate trend occurred around the year 2000 had led the lake area and vegetation coverage increasing. This study is of importance in further understanding the environmental changes under global warming over the QTP. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Preliminary investigations to assess the usefulness of Be-7 as a radiotracer in soil covered by vegetation [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    International Nuclear Information System (INIS)

    Iurian, Andra-Rada; Dercon, Gerd; Adu-Gyamfi, Joseph; Mabit, Lionel; Kis-Benedek, Gyula; Ceccatelli, Alessia; Tarjan, Sandor; Blake, William

    2014-01-01

    Different factors may affect the extent of radionuclides’ interception by plants and therewith their inventories in soil covered areas. In particular, there is interest in assessing the impact of the vegetation factor for different soil coverage conditions, when using 7 Be as radiotracer of soil redistribution in cropped farmland. Our results suggest that 7 Be foliar interception of bean plants is likely to affect the radionuclide inventories and their spatial uniformity in covered soil. Reliable results on short-term erosion using 7 Be can be obtained in cropped farmland with limited cover, but only when taking into account the interception factor. The impact of the interception factor is highly dependent on rainfall intensity and duration, crop species and the growing stage of the plants. Further investigations into these variables are required

  16. Preliminary investigations to assess the usefulness of Be-7 as a radiotracer in soil covered by vegetation [Activities of the Soil and Water Management and Crop Nutrition Laboratory, Seibersdorf

    Energy Technology Data Exchange (ETDEWEB)

    Iurian, Andra-Rada [Faculty of Environmental Science and Engineering, Babes-Bolyai University, Cluj-Napoca (Romania); Dercon, Gerd; Adu-Gyamfi, Joseph; Mabit, Lionel [Soil and Water Management and Crop Nutrition Laboratory, Joint FAO/IAEA Division for Nuclear Techniques in Food and Agriculture, Seibersdorf (Austria); Kis-Benedek, Gyula; Ceccatelli, Alessia; Tarjan, Sandor [3Terrestrial Environment Laboratory, IAEA Environment Laboratories, Department of Nuclear Sciences and Applications, International Atomic Energy Agency, Seibersdorf (Austria); Blake, William [School of Geography, University of Plymouth, Plymouth (United Kingdom); others, and

    2014-07-15

    Different factors may affect the extent of radionuclides’ interception by plants and therewith their inventories in soil covered areas. In particular, there is interest in assessing the impact of the vegetation factor for different soil coverage conditions, when using {sup 7}Be as radiotracer of soil redistribution in cropped farmland. Our results suggest that {sup 7}Be foliar interception of bean plants is likely to affect the radionuclide inventories and their spatial uniformity in covered soil. Reliable results on short-term erosion using {sup 7}Be can be obtained in cropped farmland with limited cover, but only when taking into account the interception factor. The impact of the interception factor is highly dependent on rainfall intensity and duration, crop species and the growing stage of the plants. Further investigations into these variables are required.

  17. Climatological determinants of woody cover in Africa

    OpenAIRE

    Good, Stephen P.; Caylor, Kelly K.

    2011-01-01

    Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent....

  18. Vegetation cover and their functioning in dependence on the reclamation of the Velka podkrusnohorska dump during last 20 years using satellite data analysis

    International Nuclear Information System (INIS)

    Prochazka, J.; Nedbal, V.; Pecharova, E.; Brom, J.

    2010-01-01

    Vegetation plays a significant role in mass retention, solar energy dissipation, water cycle forming and local climate changes on reclamation plots of mining areas. This paper discussed the use of Landsat satellite data in order to evaluate different types of reclamation and their development for the last 20 years in the case of the Velka podkrusnohorska dump. Biophysical parameters which can be indicators of solar energy dissipation that were utilized to analyse changes of temporal development from 1991 to 2009 included land surface temperature, surface moisture expressed as wetness index tasseled cap, and normalized difference vegetation index. From these parameters, a functional index was then developed. The paper discussed the development of these parameters and their relationship to solar energy dissipation. It was concluded that since 1995, the observed parameters significantly changed, gradually converging to the state of the surrounding landscape. 16 refs., 2 tabs., 2 figs.

  19. Vegetation cover and their functioning in dependence on the reclamation of the Velka podkrusnohorska dump during last 20 years using satellite data analysis

    Energy Technology Data Exchange (ETDEWEB)

    Prochazka, J.; Nedbal, V.; Pecharova, E. [South Bohemia Univ., Ceske Budejovice (Czech Republic); Brom, J. [Enki o.p.s., Trebon (Czech Republic)

    2010-07-01

    Vegetation plays a significant role in mass retention, solar energy dissipation, water cycle forming and local climate changes on reclamation plots of mining areas. This paper discussed the use of Landsat satellite data in order to evaluate different types of reclamation and their development for the last 20 years in the case of the Velka podkrusnohorska dump. Biophysical parameters which can be indicators of solar energy dissipation that were utilized to analyse changes of temporal development from 1991 to 2009 included land surface temperature, surface moisture expressed as wetness index tasseled cap, and normalized difference vegetation index. From these parameters, a functional index was then developed. The paper discussed the development of these parameters and their relationship to solar energy dissipation. It was concluded that since 1995, the observed parameters significantly changed, gradually converging to the state of the surrounding landscape. 16 refs., 2 tabs., 2 figs.

  20. Spatio-temporal forest cover characterisation of mascareignite zones of reunion Island; Caracterisation spatio-temporelle du couvert vegetal des zones a mascareignite des hauts de l'Ile de la Reunion

    Energy Technology Data Exchange (ETDEWEB)

    Ouar, S

    1998-07-01

    The endo-soils of the reunion island often present a particularity: the presence of a light soil level on surface, of vegetable composition, the mascareignite. In the framework of this study, mascareignite soils have been localized on the wet face of the island and have been compared with those of the dry face. The floristic past of these soils has been reconstituted with the pedo-anthracology tool (charcoal dating and identification). Ages given by the {sup 14}C measures show that the mascareignite genesis is anterior to the human being presence in the island. The study of the actual vegetable cover distribution has been realized by satellite data. (A.L.B.)

  1. Influence of the height of the vegetation cover in the variation of the kinetic energy of raindrops intercepted; Influencia de la altura de la cubierta vegetal en la variacion de la energia cinetica de las gotas de lluvia interceptadas

    Energy Technology Data Exchange (ETDEWEB)

    Roldan Soriano, M.

    2009-07-01

    The erosive capacity of raindrops is function of mass (size) and terminal velocity. Drop mass and velocity govern the inherent erosivity of rainfall through kinetic energy. Kinetic energy is a very important property of the rainfall because it is one of the sources of energy in the process of water erosion. Vegetative canopy intercepts the raindrops and causes a variation on this rainfall kinetic energy due to modification of diameters and velocities distributions. If the height of canopy is enough, the bigger intercepted drops could achieve high velocities and their kinetic energies can increases. In this paper a quantitative evaluation of the increase of kinetic energy of intercepted drops is obtained and it is showed that this kinetic energy increases exponentially with vegetation height. (Author) 9 refs.

  2. Chapter 3: Status and trends of vegetation

    Science.gov (United States)

    James M. Guldin; Frank R. Thompson; Lynda L. Richards; Kyra C. Harper

    1999-01-01

    This chapter provides information about the vegetation cover of the Assessment area. The types and areal extent of vegetation in the Highlands are of interest for many reasons. Vegetation cover largely determines the availability of habitat for terrestrial animals, plants, and other organisms. Vegetation cover strongly influences what uses {e.g., timber, forage,...

  3. Introducing land-cover and land-use changes in a climate scenario of the 21. century; Prise en compte des changements de vegetation dans un scenario climatique du 21. siecle

    Energy Technology Data Exchange (ETDEWEB)

    Voldoire, A

    2005-03-15

    The main objective of this work has been to run a climate simulation of the 21. century that includes not only greenhouse gases and aerosols emitted by human activity but also land-use and land-cover changes. To achieve this goal, the integrated impact model IMAGE2.2 (developed at RIVM, The Netherlands) was used, which simulates the evolution of greenhouse gases concentrations as well as land-cover changes. This model has been coupled to the general circulation model ARPEGE/OPA provided by the CNRM. Before coupling the models, sensitivity experiments with each model have been performed to test their respective sensitivity to the forcing of the other. Ultimately, a simulation with the two models coupled together has shown that interactions between climate and vegetation are not of primary importance for century scale studies. (author)

  4. Manejos de cobertura vegetal e velocidades de operação em condições de semeadura e produtividade de milho Management of cover vegetation and speed of operation on conditions of sowing and corn yield

    Directory of Open Access Journals (Sweden)

    Emerson Trogello

    2013-07-01

    Full Text Available Objetivou-se, com este trabalho, avaliar parâmetros da qualidade de semeadura e o desenvolvimento e rendimento da cultura do milho semeada no sistema plantio direto sobre diferentes manejos de cobertura vegetal e velocidades de operação da semeadora-adubadora na região sudoeste do estado do Paraná. Utilizou-se esquema de parcelas subdivididas, as quais constituíram os manejos de cobertura vegetal da aveia preta (aveia gradeada, rolada, triturada e dessecada e as subparcelas as velocidades de operação (4,5 e 7,0 km h-1 no delineamento de blocos ao acaso, com quatro repetições. Avaliaram-se o espaçamento entre plantas, a uniformidade de distribuição de sementes, a profundidade de semeadura, o índice de velocidade de emergência, o estande de plantas, a área de solo mobilizada e a produtividade média da cultura. Os dados tabulados foram analisados pelo teste F a 0,05 e, apresentando significância, as médias foram comparadas pelo teste de Tukey a 0,05 de probabilidade. Concluiu-se que a melhor distribuição de sementes foi observada na menor velocidade e a produtividade média da cultura não foi influenciada pelos tratamentos. Os manejos de cobertura vegetal não se mostraram eficientes na melhoria das condições de semeadura.The objective of this study was to evaluate quality parameters of sowing and the development and yield of maize sown in no tillage system under different vegetation managements and operating speeds of the seeder in the southwest region of the S tate of Paraná. A split-plot design was used, where the plots were the vegetation management of the oat (oat latticed, rolled, chopped and desiccated and split plot the operation speeds (4.5 and 7.0 km h-1, in a randomized block design with four replications. The spacing between plants, uniformity distribution of seed, sowing depth, rate of emergence, plant stand, soil area mobilized and yield of the crop were evaluated. The tabulated data were analysed by F test at

  5. A vegetation map for eastern Africa

    DEFF Research Database (Denmark)

    Lillesø, Jens-Peter Barnekow; van Breugel, Paulo; Graudal, Lars

    2015-01-01

    The potential natural vegetation (PNV) map of eastern and southern Africa covers the countries Burundi, Ethiopia, Kenya, Uganda, Rwanda, Tanzania, and Zambia. The first version of the map was developed by various partners in East Africa and Europe in 2010 and has now reached version 2. The map...... is available in different formats and is accompanied by an extensive documentation of the floristic, physiognomic and other characteristics of the different vegetation types and useful woody species in the 8 countries. It is complemented by a species selection tool, which can be used to 'find the right tree...

  6. GREX/COVER-PLASTEX: an experiment to analyze the space-time structure of extensive air showers produced by primary cosmic rays of 1015 eV

    International Nuclear Information System (INIS)

    Agnetta, G.; Ambrosio, M.; Beaman, J.; Barbarino, G.C.; Biondo, B.; Catalano, O.; Colesanti, L.; Dali, G.; Guarino, F.; Lauro, A.; Lloyd-Evans, J.; Mangano, A.; Popova, L.; Watson, A.A.

    1995-01-01

    A novel experimental installation is described in which the traditional method of detecting extensive air showers with scintillation counters is significantly extended by the addition of limited streamer tube hodoscopes (LST) and layers of resistive plate counters (RPC). Runs with the scintillator array, GREX, at Haverah Park have demonstrated the power of the LST hodoscopes to determine the direction of arrival of muons, electrons and photons in air showers while the RPC system permits the relative arrival time of individual particles and the temporal thickness and structure of the shower disc to be obtained. The potential of these technical advances for studying the longitudinal profile of air showers produced by primaries of about 1000 TeV is briefly discussed. First measurements of thickness and time profile of EAS front are also reported. (orig.)

  7. A novel assessment of the role of land-use and land-cover change in the global carbon cycle, using a new Dynamic Global Vegetation Model version of the CABLE land surface model

    Science.gov (United States)

    Haverd, Vanessa; Smith, Benjamin; Nieradzik, Lars; Briggs, Peter; Canadell, Josep

    2017-04-01

    In recent decades, terrestrial ecosystems have sequestered around 1.2 PgC y-1, an amount equivalent to 20% of fossil-fuel emissions. This land carbon flux is the net result of the impact of changing climate and CO2 on ecosystem productivity (CO2-climate driven land sink ) and deforestation, harvest and secondary forest regrowth (the land-use change (LUC) flux). The future trajectory of the land carbon flux is highly dependent upon the contributions of these processes to the net flux. However their contributions are highly uncertain, in part because the CO2-climate driven land sink and LUC components are often estimated independently, when in fact they are coupled. We provide a novel assessment of global land carbon fluxes (1800-2015) that integrates land-use effects with the effects of changing climate and CO2 on ecosystem productivity. For this, we use a new land-use enabled Dynamic Global Vegetation Model (DGVM) version of the CABLE land surface model, suitable for use in attributing changes in terrestrial carbon balance, and in predicting changes in vegetation cover and associated effects on land-atmosphere exchange. In this model, land-use-change is driven by prescribed gross land-use transitions and harvest areas, which are converted to changes in land-use area and transfer of carbon between pools (soil, litter, biomass, harvested wood products and cleared wood pools). A novel aspect is the treatment of secondary woody vegetation via the coupling between the land-use module and the POP (Populations Order Physiology) module for woody demography and disturbance-mediated landscape heterogeneity. Land-use transitions to and from secondary forest tiles modify the patch age distribution within secondary-vegetated tiles, in turn affecting biomass accumulation and turnover rates and hence the magnitude of the secondary forest sink. The resulting secondary forest patch age distribution also influences the magnitude of the secondary forest harvest and clearance fluxes

  8. Effects of prolonged drought on the vegetation cover of sand dunes in the NW Negev Desert: Field survey, remote sensing and conceptual modeling

    Science.gov (United States)

    Siegal, Z.; Tsoar, H.; Karnieli, A.

    2013-06-01

    Luminescence dating of stable sand dunes in the large deserts of the world has shown several episodes of mobility during the last 30 k years. The logical explanation for the mobility of fixed dunes is severe drought. Though drought length can be estimated, the level of precipitation drop is unknown. The stabilized sand dunes of the northwestern Negev Desert, Israel have been under an unprecedented prolonged drought since 1995. This has resulted in a vast decrease of shrubs cover on the fixed sand dunes, which changes along the rainfall gradient. In the north, an average of 27% of the shrubs had wilted by 2009, and in the drier southern area, 68% of the shrubs had withered. This loss of shrubbery is not expected to induce dune remobilization because the existing bio-crust cover is not negatively affected by the drought. Eleven aerial photographs taken over the drier southern area from 1956 to 2005 show the change in shrub cover due to human impact and the recent severe drought.

  9. EFEITO DA COBERTURA VEGETAL DO SOLO SOBRE A ABUNDÂNCIA E DIVERSIDADE DE INIMIGOS NATURAIS DE PRAGAS EM VINHEDOS EFFECTS OF COVER CROPS ON THE ABUNDANCE AND DIVERSITY OF NATURAL ENEMIES OF GRAPEVINE PEST

    Directory of Open Access Journals (Sweden)

    MARCOS ANTÔNIO MATIELLO FADINI

    2001-12-01

    Full Text Available O controle de pragas da videira no Brasil restringe-se basicamente ao uso de inseticidas, devido à inexistência de trabalhos que visem a complementar o manejo de pragas através de controle biológico. Neste trabalho, objetivou-se verificar o efeito de diferentes coberturas vegetais nas entrelinhas de plantio de videira sobre a abundância e diversidade de potenciais inimigos naturais de pragas da videira no município de Caldas, região Sul do Estado de Minas Gerais. Foram testadas sete diferentes coberturas de solo (aveia-preta, aveia-preta e ervilhaca, ervilhaca, cobertura morta, uso de herbicida, capina mecânica e mato roçado. A cobertura vegetal do solo influenciou tanto a diversidade quanto a abundância de inimigos naturais, sendo o consórcio de aveia-preta e ervilhaca, cultivadas simultaneamente, o tratamento que proporcionou maior diversidade e abundância de inimigos naturais. Assim, a cobertura vegetal do solo pode, potencialmente, ser um componente importante em programas de manejo integrado de pragas na cultura da videira.The control of grapevine pests in Brazil is only based in the use of chemical products. It is due to the whole absence of experimental works developed to test and evaluate alternative control systems, like the biological control. The objective of this work was to evaluate the effect of different types of cover crops, placed between the cultivation lines of grapevine, in the abundance and diversity of natural control arthropods of grapevine pests. The experiment was conduced in the EPAMIG, Caldas Research Farm, located in the Minas Gerais State, Brazil. They Were tested seven different systems of soil covering. The presence of vegetal covering was beneficial to improve the diversity as well as the abundance of biological control agents present on the grapevine crop. The cultivation of black oat and pea together, was the treatment that showed the better result to diversity and abundance. Therefore, the cover

  10. Mapeamento da antiga cobertura vegetal de várzea do Baixo Amazonas a partir de imagens históricas (1975-1981 do Sensor MSS-Landsat Mapping ancient vegetation cover of the Amazon floodplain using historical MSS/Landsat images (1975-1981

    Directory of Open Access Journals (Sweden)

    Vivian Fróes Renó

    2011-03-01

    -classification techniques. The resulting map was organized four classes of land cover types: floodplain forest, non-forest floodplain vegetation, bare soil, and open water. Map accuracy was estimated from two types of ground data 1 sample points describing ground cover classes not subjected to major changes, such as permanent water bodies, and identifying indicators of the 30 year old vegetation type landscape (72 points; 2 interviews with community early residents for memory recovery of information on the vegetation cover existing in the 1970 (44 interviews. Altogether, 116 information points was collected along the study area. These points were used to calculate the Kappa Index for agreement between the four field-verified classes and the automatic classification, with value (0.78 indicates the good quality of the floodplain vegetation cover map. The region had 8650 km2 coverage of floodplain forest at the time of image acquisition.

  11. Landscape change in the Holocene transition Development of a predictive model of vegetation cover in the Asón Valley (Cantabria

    Directory of Open Access Journals (Sweden)

    García Moreno, Alejandro

    2007-12-01

    Full Text Available The spatial distribution of prehistoric vegetation, and its evolution during the Pleistocene-Holocene transition, is essential for understanding the changes in the settlement patterns that took place at the end of the Upper Palaeolithic. To calculate this distribution, we have use a predictive model based on the weighted values method, according to the forest vegetation’s ecological requirements, analizing its evolution in the Asón river valley (Cantabria and its relationship with Palaeolithic sites.

    El conocimiento de la distribución espacial de la vegetación prehistórica, y su evolución a lo largo de la transición al Holoceno, es fundamental para entender los cambios en los patrones de explotación del territorio y de asentamiento que se producen en los grupos de cazadores-recolectores del final del Paleolítico Superior. Para calcular dicha distribución, se emplea un modelo predictivo basado en el método de weighted values (valores ponderados, a partir de los requerimientos ecológicos de la vegetación arbórea, analizando su evolución en el Valle del Asón (Cantabria y su relación con los yacimientos paleolíticos que allí existen.

  12. A change detection strategy for monitoring vegetative and land-use cover types using remotely-sensed, satellite-based data

    International Nuclear Information System (INIS)

    Hallum, C.

    1993-01-01

    Changes to the environment are of critical concern in the world today; consequently, monitoring such changes and assessing their impacts are tasks demanding considerably higher priority. The ecological impacts of the natural global cycles of gases and particulates in the earth's atmosphere are highly influenced by the extent of changes to vegetative canopy characteristics which dictates the need for capability to detect and assess the magnitude of such changes. The primary emphasis of this paper is on the determination of the size and configuration of the sampling unit that maximizes the probability of its intersection with a 'change' area. Assessment of the significance of the 'change' in a given locality is also addressed and relies on a statistical approach that compares the number of elemental units exceeding a reflectance threshold when compared to a previous point in time. Consideration is also given to a technical framework that supports quantifying the magnitude of the 'change' over large areas (i.e., the estimated area changing from forest to agricultural land-use). The latter entails a multistage approach which utilizes satellite-based and other related data sources

  13. Exatidão de posicionamento de um receptor GPS, operando sob diferentes coberturas vegetais Evaluation of the accuracy of positioning a GPS receiver operating under different vegetation covers

    Directory of Open Access Journals (Sweden)

    Rubens Angulo Filho

    2002-01-01

    Full Text Available Para avaliar a exatidão de posicionamento planimétrico do receptor GPS Trimble/Pro-XL, operando sob diferentes condições de cobertura vegetal (pastagem, seringueira, eucalipto e pinus, o equipamento foi posicionado alternadamente sobre 6 pontos, locados ao acaso nas áreas de estudo, variando o tempo de permanência (1 , 5 e 10 min mas com a mesma taxa de aquisição de dados (1 s fazendo-se, posteriormente, a correção diferencial (DGPS pós-processada dos dados. Os pontos também tiveram suas coordenadas levantadas pelo método topográfico, segundo a NBR 13133 - Execução de Levantamento Topográfico, para fins de comparação. De acordo com o método empregado e os resultados obtidos, foi possível separar as exatidões de posicionamento planimétrico, conforme o tipo de cobertura vegetal, em dois grupos: sem e com cobertura arbórea confirmando, assim, a interferência do dossel na recepção dos sinais emitidos pelos satélites GPS. O aumento do tempo de permanência melhorou a exatidão de posicionamento planimétrico, o que ratifica a escolha da metodologia de levantamento como sendo fundamental para a obtenção de bons resultados de posicionamento.To evaluate planimetric positioning accuracy of a GPS receiver (Trimble/Pro-XL, operating under different conditions of vegetation cover (pasture, rubber trees, eucalyptus and pine trees, 6 control points were located randomly in the study area. For comparison, their coordinates were first obtained by a conventional surveying method, according to NBR 13133 of Brazilian Surveying Standards. Afterwards, the GPS receiver was positioned on those control points, maintaining the acquisition rate of 1 s while changing the time for 1, 5 and 10 min, the DGPS method was used to correct the positioning coordinate data. According to the methodology applied and the results obtained, it was possible to distinguish planimetric positioning accuracy, according to the vegetation cover, in two groups

  14. Landfill Top Covers

    DEFF Research Database (Denmark)

    Scheutz, Charlotte; Kjeldsen, Peter

    2011-01-01

    The purpose of the final cover of a landfill is to contain the waste and to provide for a physical separation between the waste and the environment for protection of public health. Most landfill covers are designed with the primary goal to reduce or prevent infiltration of precipitation...... into the landfill in order to minimize leachate generation. In addition the cover also has to control the release of gases produced in the landfill so the gas can be ventilated, collected and utilized, or oxidized in situ. The landfill cover should also minimize erosion and support vegetation. Finally the cover...... is landscaped in order to fit into the surrounding area/environment or meet specific plans for the final use of the landfill. To fulfill the above listed requirements landfill covers are often multicomponent systems which are placed directly on top of the waste. The top cover may be placed immediately after...

  15. Paleogene events in Central Eurasia: their role in the flora and vegetation cover evolution, migration of phytochore boundaries, and climate changes

    Science.gov (United States)

    Akhmetiev, M. A.; Zaporozhets, N. I.

    2014-05-01

    The flora and vegetation of Central Eurasia evolved in the Paleogene to a significant extent in line with the scenario similar to the Late Cretaceous one. The position of high-rank phytochores was controlled by the global climatic zonality, while development stages of the flora depended on interaction between the Arctic and Tethyan water masses and direction of atmospheric flows and were determined by principal geological and paleogeographic events in the Paleogene history of Central Eurasia. Five main stages are definable in development of the Paleogene flora: (1) early-middle Danian with the wide distribution of temperate-thermophilic floras in the middle and high latitudes and their westward and southward expansion from the Pacific and Arctic regions of the Boreal realm; (2) Late Paleocene-Early Eocene with the maximal advancement of the Tethyan flora to the high latitudes and northward migration of phytochore boundaries in response to intense water exchange between the Tethys and Atlantic oceans with its trade currents and atmospheric heat transfer directly from the tropical zone in absence of the Alpine-Himalayan orogen; (3) Lutetian with development of subtropical monsoon-type floras under influence of the water mass exchange between the Arctic Basin and Peritethys with the monsoon-induced currents and atmospheric heat transfer from the Peritethys under conditions of the restricted connection between the Central Asia basins and Tethys; (4) (?) late Lutetian-Priabonian reflecting the climate inversion due to isolation of the West Siberian Sea from the Arctic Basin against the background of its continuing connection with the Peritethys; the formation of the semiclosed West Siberian Sea at that time was accompanied by development of a climate with humid winters, hot dry summers, and deficiency of average annual precipitation in the middle latitudes of Central Eurasia, where luxuriant subtropical Quercus-Laurus forests with Castanopsis that prevailed at the

  16. Changes in Vegetation Cover in Reforested Areas in the State of São Paulo, Brazil and the Implication for Landslide Processes

    Directory of Open Access Journals (Sweden)

    Regina Célia dos Santos Alvalá

    2012-09-01

    Full Text Available In Brazil, plantations of exotic species such as Eucalyptus have expanded substantially in recent years, due in large part to the great demand for cellulose and wood. The combination of the steep slopes in some of these regions, such as the municipalities located close to the Serra do Mar and Serra da Mantiqueira, and the soil exposure that occurs in some stages in the Eucalyptus cultivation cycle, can cause landslides. The use of a geographic information system (GIS assists with the identification of areas that are susceptible to landslides, and one of the GIS tools used is the spatial inference technique. In this work, the landslide susceptibility of areas occupied by Eucalyptus plantations in different stages of development in municipalities in the state of São Paulo was examined. Eight thematic maps were used, and, the fuzzy gamma technique was used for data integration and the generation of susceptibility maps, in which scenarios were created with different gamma values for the dry and rainy seasons. The results for areas planted with Eucalyptus were compared with those obtained for other land uses and covers. In the moderate and high susceptibility classes, the pasture is the land use type that presented the greatest susceptibility, followed by new Eucalyptus plantations and urban areas.

  17. Nitrogen fixation in seedlings of sabia and leucena grown in the caatinga soils under different vegetation covers; Fixacao de nitrogenio em mudas de sabia e leucena cultivadas em solos da caatinga sob diferentes coberturas vegetais

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Augusto Cesar de Arruda; Nascimento, Luciana Remigio Santos; Silva, Arthur Jorge da; Freitas, Ana Dolores Santiago de, E-mail: augusto.arruda26@yahoo.com.br, E-mail: lucaremigio@yahoo.com.br, E-mail: arthur.floresta.jorge@gmail.com, E-mail: ana.freitas@depa.ufrpe.br [Universidade Federal Rural de Pernambuco (UFRPE), Recife, PE (Brazil). Departamento de Agronomia

    2013-07-01

    The aim of this study was to evaluate the efficiency differences of populations forming bacteria in legume nodules (BNL) in areas under different vegetation cover in semi-arid Pernambuco state, Brazil, using the methodology of the natural abundance of {sup 15}N to estimate the amount of N fixed symbiotically. The highest levels of nitrogen was found in plants of leucena, and the sabia had levels that did not differ from reference species. The analysis by the technique of 15N showed that in all areas the leucena and the sabia showed signs of 15N different of the average signal of the control plants. The largest nitrogen accumulation was observed for leucena in the Caatinga and Capoeira. The sabia got greater accumulation of N from the Caatinga. The areas of Capoeira and Caatinga has showed the native populations of rhizobia with greater ability to fix nitrogen for the leucena.

  18. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years

    Energy Technology Data Exchange (ETDEWEB)

    Fernández-Fernández, M., E-mail: mariafernandez@iiag.csic.es; Gómez-Rey, M.X., E-mail: mxgomez@iiag.csic.es; González-Prieto, S.J., E-mail: serafin@iiag.csic.es

    2015-05-15

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil–plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS + Fo), Firesorb (BS + Fi) and ammonium polyphosphate (BS + Ap). Soils (0–2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ{sup 15}N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH{sub 4}{sup +}–N and NO{sub 3}{sup −}–N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS + Ap had the highest levels of soil available P, Na and Al. Plants from BS + Ap plots had higher values of δ{sup 15}N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS + Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS + Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS + Fi) or had a distorted trunk. BS + Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil–plant system after 10 years

  19. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years

    International Nuclear Information System (INIS)

    Fernández-Fernández, M.; Gómez-Rey, M.X.; González-Prieto, S.J.

    2015-01-01

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil–plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS + Fo), Firesorb (BS + Fi) and ammonium polyphosphate (BS + Ap). Soils (0–2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ 15 N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH 4 + –N and NO 3 − –N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS + Ap had the highest levels of soil available P, Na and Al. Plants from BS + Ap plots had higher values of δ 15 N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS + Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS + Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS + Fi) or had a distorted trunk. BS + Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil–plant system after 10 years. - Highlights: • We hypothesized

  20. Effects of fire and three fire-fighting chemicals on main soil properties, plant nutrient content and vegetation growth and cover after 10 years.

    Science.gov (United States)

    Fernández-Fernández, M; Gómez-Rey, M X; González-Prieto, S J

    2015-05-15

    The study addresses a knowledge-gap in the long-term ecological consequences of fire and fire-fighting chemicals. Ten years after a prescribed fire and the application of three fire-fighting chemicals, their effects on the soil-plant system were evaluated. Five treatments were established: unburnt soils (US) and burnt soils treated with water alone (BS), foaming agent (BS+Fo), Firesorb (BS+Fi) and ammonium polyphosphate (BS+Ap). Soils (0-2 cm depth) and foliar material of shrubs (Erica umbellata, Pterospartum tridentatum and Ulex micranthus) and trees (Pinus pinaster) were analysed for total N, δ(15)N, and soil-available and plant total macronutrients and trace elements. Soil pH, NH₄(+)-N and NO₃(-)-N; pine basal diameter and height; and shrub cover and height were also measured. Compared with US plots, burnt soils had less nitrates and more Mo. Although differences were not always significant, BS+Ap had the highest levels of soil available P, Na and Al. Plants from BS+Ap plots had higher values of δ(15)N (P. pinaster and E. umbellata), P (all species), Na (P. tridentatum and U. micranthus) and Mg (E. umbellata and P. tridentatum) than other treatments; while K in plants from BS+Ap plots was the highest among treatments for P. pinaster and the lowest for the shrubs. Pines in US plots were higher and wider than in burnt treatments, except for BS+Ap, where the tallest and widest trees were found, although half of them were either dead (the second highest mortality after BS+Fi) or had a distorted trunk. BS+Ap was the treatment with strongest effects on plants, showing E. umbellata the lowest coverage and height, P. tridentatum the highest coverage, U. micranthus one of the lowest coverages and being the only treatment where Genista triacanthos was absent. Consequently, it is concluded that both fire and ammonium polyphosphate application had significant effects on the soil-plant system after 10 years. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Improvement in remote sensing of low vegetation cover in arid regions by correcting vegetation indices for soil ''noise''; Etude des propriétés spectrales des sols arides appliquée à l'amélioration des indices de végétation obtenus par télédétection

    Energy Technology Data Exchange (ETDEWEB)

    Escadafal, R. [Institut Francais de Recherche Scientifique pour le Developpement en Cooperation, Bondy (France); Huete, A.

    1991-05-23

    The variations of near-infrared red reflectance ratios of ten aridic soil samples were correlated with a ''redness index'' computed from red and green spectral bands. These variations have been shown to limit the performances of vegetation indices (NDVI and SAVI) in discriminating low vegetation covers. The redness index is used to adjust for this ''soil noise''. Dala simulated for vegetation densities of 5 to 15% cover showed that the sensitivity of the corrected vegetation indices was significantly improved. Specifically, the ''noise-corrected'' SAVI was able to assess vegetation amounts with an error four times smaller than the uncorrected NDVI. These promising results should lead to a significant improvement in assessing biomass in arid lands from remotely sensed data. (author) [French] Les variations du rapport de la réflectance dans les bandes rouge et infrarouge sont mises en relation avec un (( indice de coloration )) pouf une série de dix sols arides. Ces variations gZnent fortement la détection des faibles taux de couvert végétal avec les indices de végétation (NDVI et SAVI) calculés à partir de ces deux bandes. Il est proposé d’utiliser l’indice de coloration comme facteur de correction de ce (( bruit )) dû au sol. Une simulation de la reflectance des sols avec une couverture végétale variant de O à 15 % en évidence un doublement de la sensibilité des indices de végétation ainsi corrigés. En particulier, le SAVI corrigé permet d’estimer le taux de végétation avec une erreur quatre fois inférieure à celle du NDVI non corrigé. Ces premiers résultats devraient conduire à une amélioration sensible de la mesure de la biomasse végétale des régions arides par télédétection. (author)

  2. Measuring and analyzing urban tree cover

    Science.gov (United States)

    David J. Nowak; Rowan A. Rowntree; E. Gregory McPherson; Susan M. Sisinni; Esther R. Kirkmann; Jack C. Stevens

    1996-01-01

    Measurement of city tree cover can aid in urban vegetation planning, management, and research by revealing characteristics of vegetation across a city. Urban tree cover in the United States ranges from 0.4% in Lancaster, California, to 55% in Baton Rouge, Louisiana. Two important factors that affect the amount of urban tree cover are the natural environment and land...

  3. Fósforo reativo: Arraste superficial sob chuvas simuladas para diferentes coberturas vegetais Reactive phosphorus: Surface transport under simulated rainfall for different vegetation cover

    Directory of Open Access Journals (Sweden)

    Luciano Gebler

    2012-01-01

    Full Text Available O fósforo é um elemento químico chave para a qualidade da água, agindo principalmente como gatilho desencadeador das florações algais. A principal fonte de fósforo nas pequenas bacias rurais advém da agricultura feita nas encostas das bacias, podendo chegar de várias formas ao corpo d’água, porém as formas mais impactantes são o fósforo reativo total e o dissolvido. A forma dissolvida é a que apresenta maiores riscos pois pode percorrer distâncias comparativamente maiores do que o fósforo reativo nos sedimentos em suspensão que podem acabar depositados ao longo do caminho. Portanto, este trabalho visa avaliar se diferentes coberturas do solo por culturas anuais podem interferir no arraste destas formas de fósforo, afetando o risco da degradação dos recursos hídricos das pequenas bacias rurais. Apesar de não ter havido diferença significativa entre os tratamentos, verificou-se sazonalidade ao longo do experimento representando uma estação de cultivo. Isto significa que houve variação do nível de risco, uma vez que, no terço inicial das primeiras chuvas, o risco de arraste de fósforo na enxurrada foi mais elevado em relação a períodos chuvosos mais distantes da época de plantio/fertilização, tornando-se possível avaliar o risco à bacia de forma sazonal e não anual.Phosphorus is a chemical element considered key to water quality, mainly acting as a trigger of algal blooms. The main source of phosphorus in small rural basins is agriculture practiced in the slopes of the basins. This phosphorus can come in various forms to the water body, but the most striking ones are the total and dissolved reactive phosphorus. The dissolved form has higher risks, because it can cover distances comparatively larger than the reactive phosphorus in suspension which can be deposited along the path. This study sought to determine if different coverage of annual crops can interfere in the transport of these forms of phosphorus

  4. Environmental impact of almond crop in strong slope with two vegetable covers: bush and leguminous; Impacto en el medio ambiente del cultivo de almendros en fuertes pendientes con dos cubiertas vegetales: Matorral y Leguminosa

    Energy Technology Data Exchange (ETDEWEB)

    Carceles Rodriguez, B.; Francia Martinez, J. R.; Martinez Raya, A.

    2009-07-01

    Soil erosion is one of the main physical processes of land degradation in Spain. Several studies in the Mediterranean environment have demonstrated the positive effect of vegetation covers on the reduction of water erosion and their indirect improvement of the soil physical and chemical properties, essentially by the incorporation of organic matter. Sol loss and surface runoff patterns over a four-year period were monitors in erosion plots from hill slope with two different cover-crop strips: (1) non-tillage with leguminous (Lens esculenta Moench) and (2) non-tillage with and a mixture of autochthonous thymes (Thymus baeticus Boiss. ex Lacaita, Thymus capitatus (L) Hoffmanns and Link., Thymus vulgaris L.) of 3 m with, in Lanjaron (Granada) on the south flank of the Sierra Nevada of southeast Spain. The erosion plots were located on the hill slope at 35% incline, at 580 m in altitude and with 144 m{sup 2} (24 m x 6 m) in area. the area selected for the experiment is the part of the rainfed orchard given entirely with almond (Prunus amygdalus Basch cv. Desmayo Largueta) trees, the planting gird were 6 x 7 m. (Author) 10 refs.

  5. Qualidade da água em microbacias hidrográficas com diferentes coberturas do solo no sul do Espírito Santo Water quality in watersheds with diferent vegetal cover in southern Espirito Santo state, Brazil

    Directory of Open Access Journals (Sweden)

    Ana Paula Almeida Bertossi

    2013-02-01

    Full Text Available O objetivo deste trabalho foi avaliar a qualidade das águas superficiais e subterrâneas em microbacias hidrográficas caracterizadas por diferentes coberturas do solo: pastagem, floresta e cafeeiro. Foi desenvolvido um índice de qualidade de água utilizando a análise de componentes principais, que proporcionou a redução das 13 características de qualidade em duas componentes, que explicaram 91,2% da variância total. As águas superficiais e subterrâneas das microbacias foram adequadas ao consumo humano, após tratamento convencional, ao longo de todo o período estudado, exceto a água subterrânea da microbacia coberta com pastagem no período de estiagem.The objective of this work was to evaluate the quality of surface water and groundwater in watersheds characterized by different vegetal cover: pasture, forest and coffee crops. It was developed a water quality index by using the analysis of the main components, which provided the reduction of 13 quality features into two components that explained 91.2% of the total variance. Surface water and groundwater of the watersheds were suitable for human consumption after conventional treatment over the studied period, except the groundwater of watershed covered with pasture in the dry season.

  6. Quantifying the Impacts of Environmental Factors on Vegetation Dynamics over Climatic and Management Gradients of Central Asia

    Directory of Open Access Journals (Sweden)

    Olena Dubovyk

    2016-07-01

    Full Text Available Currently there is a lack of quantitative information regarding the driving factors of vegetation dynamics in post-Soviet Central Asia. Insufficient knowledge also exists concerning vegetation variability across sub-humid to arid climatic gradients as well as vegetation response to different land uses, from natural rangelands to intensively irrigated croplands. In this study, we analyzed the environmental drivers of vegetation dynamics in five Central Asian countries by coupling key vegetation parameter “overall greenness” derived from Moderate Resolution Imaging Spectroradiometer (MODIS Normalized Difference Vegetation Index (NDVI time series data, with its possible factors across various management and climatic gradients. We developed nine generalized least-squares random effect (GLS-RE models to analyze the relative impact of environmental factors on vegetation dynamics. The obtained results quantitatively indicated the extensive control of climatic factors on managed and unmanaged vegetation cover across Central Asia. The most diverse vegetation dynamics response to climatic variables was observed for “intensively managed irrigated croplands”. Almost no differences in response to these variables were detected for managed non-irrigated vegetation and unmanaged (natural vegetation across all countries. Natural vegetation and rainfed non-irrigated crop dynamics were principally associated with temperature and precipitation parameters. Variables related to temperature had the greatest relative effect on irrigated croplands and on vegetation cover within the mountainous zone. Further research should focus on incorporating the socio-economic factors discussed here in a similar analysis.

  7. Influência da cobertura vegetal do solo na qualidade dos frutos de videira 'Niagara Rosada' Influence of soil cover with grass and leguminous plants on fruit characteristics of table grape variety Niagara Rosada

    Directory of Open Access Journals (Sweden)

    Elaine Bahia Wutke

    2005-12-01

    Full Text Available Devido ao aumento no custo de produção com a utilização de cobertura morta com capim nas ruas da videira 'Niagara Rosada' e à dificuldade para sua aquisição, objetivou-se a possibilidade de substituí-la por plantas de cobertura intercalares. Em experimentos realizados em Indaiatuba e Jundiaí-SP, de 1999-2000 a 2003-2004, instalaram-se seis tratamentos nas entrelinhas, em blocos ao acaso e quatro repetições, constando de área no limpo; vegetação espontânea roçada; cobertura com capim seco de Brachiaria decumbens; cobertura verde de aveia preta (Avena strigosa; cobertura verde de chícharo (Lathyrus sativus; cobertura verde de tremoço (Lupinus albus, de março a outubro, seguidas de cobertura verde de mucuna anã (Mucuna deeringiana de outubro a março. Determinaram-se massa, comprimento e largura do cacho, engaço e bagas, número total de bagas por cacho e diâmetro do pedicelo de bagas, comparando-se os valores médios pelo teste de Duncan ao nível de 5%. Na média dos anos, os resultados com a cobertura verde foram similares ou mais favoráveis que os da cobertura com braquiária seca, podendo-se substituí-la por coberturas vegetais intercalares com gramínea e leguminosas, o ano todo, sem interferência negativa na qualidade comercial dos frutos.Grape vineyard in Southern Brazil utilize a large amount of mulch during autumn-winter season demanding extra efforts and costs, being its acquisition very difficult nowadays. In order to evaluate the possibility of replacing the tradicionally mulch by green cover species in the inter-row strip, two experiments were carried out in Indaiatuba and Jundiaí, SP, Brazil, from 1999/00 to 2003/04, with the table variety Niagara Rosada. The experimental design was a randomized block with four replications and six treatments: 1 no weeded area; 2 cut spontaneous local vegetation; 3 mulch of Brachiaria decumbens; 4 green cover of Avena strigosa from March to October followed by green cover of

  8. Land Cover

    Data.gov (United States)

    Kansas Data Access and Support Center — The Land Cover database depicts 10 general land cover classes for the State of Kansas. The database was compiled from a digital classification of Landsat Thematic...

  9. Car Covers | Outdoor Covers Canada

    OpenAIRE

    Covers, Outdoor

    2018-01-01

    Protect your car from the elements with Ultimate Touch Car Cover. The multi-layer non-woven fabric is soft on the finish and offers 4 seasons all weather protection.https://outdoorcovers.ca/car-covers/

  10. Cover crop with Teramnus labialis in a citrus orchard: effects on some physical properties of the soil / Cubierta vegetal con Teramnus labialis en plantaciones citrícolas: efectos sobre algunas propiedades físicas del suelo Cubierta vegetal con Teramnus labialis en plantaciones citrícolas: efectos sobre algunas propiedades físicas del suelo

    Directory of Open Access Journals (Sweden)

    Leydis Castellano Rodríguez

    2009-03-01

    Full Text Available The use of leguminous cover crops in citrus orchards constitutes a viable alternative for the improvement of soil properties, whenever they are appropriately managed. In Ciego de Avila University, Cuba, it was evaluated the effect of a leguminous cover crop on some properties of an orchard soil. The work was carried out during four years in an orange plantation of Valencia late (Citrus sinensis L. Osbeck in a 22 years-old orchard, with a plantation frame of 8 X 4 m, planted on a typical red Ferralitic soil, belonging to the CPA ¨José Martí¨, in Ciego de Avila. It was used a random block design with three treatments: one with covering of Teramnus labialis (T1, one with expontaneous vegetation (T2 and the third with no vegetation (T3. The functional structure properties of the soil were determined, and also the composition of macroaggregates expressed in the structure coefficient and the percentage of stable added in water, soil density, humidity and porosity. The increments in the humidity of the soil, the specific volume of pores and air, the structure coefficient, as well as the percentage of stable added in water, in the soil where the covering of Teramnus labialis was stablished, show the efficiency of cover crops in these citrus orchards.El uso de coberturas vivas de leguminosas en plantaciones citrícolas constituye una alternativa viable para el mejoramiento de las propiedades de los suelos, siempre que ellas se manejan adecuadamente en estas áreas. En la universidad de Ciego de Ávila, Cuba se viene trabajando en la evaluación del efecto de coberturas vivas de leguminosas en plantaciones citrícolas en producción, con el objetivo de evaluar el efecto que ejerce la cobertura de leguminosa sobre algunas propiedades del suelo. El trabajo se realizó durante cuatro años (2001-2005 en una plantación de naranja Valencia Late ( Citrus sinensis L. Osbeck en producción de 22 años, con marco de plantación de 8 X 4 m, plantada sobre un

  11. Atributos biológicos do solo sob influência da cobertura vegetal e do sistema de manejo Soil biological attributes influenced by cover crops and management systems

    Directory of Open Access Journals (Sweden)

    Mozaniel Batista da Silva

    2007-12-01

    Full Text Available O objetivo deste trabalho foi avaliar os efeitos de culturas de cobertura e dos sistemas plantio direto (PD e convencional (PC sobre indicadores biológicos do solo, cultivado com feijoeiro-comum, no inverno, sob irrigação. O experimento foi conduzido em Santo Antônio de Goiás, GO, em Latossolo Vermelho distrófico textura argilosa. Culturas de cobertura foram implantadas anualmente no verão, desde 2001, sendo utilizadas a braquiária, guandu, milheto, capim-mombaça, sorgo, estilosantes, braquiária consorciada com milho, e mata nativa, como tratamento referência. Em 2005, 60 dias após o corte das culturas de cobertura foi implantada a cultura do feijoeiro, cultivar BRS Valente, sob irrigação, com semeadura realizada em 16/6/2005 e colheita efetuada em 19/9/2005. Coletaram-se amostras de solo, na profundidade de 0-10 cm, em três épocas: novembro de 2004 (pré-plantio das culturas de coberturas, junho (pré-plantio do feijoeiro e julho (florescimento do feijoeiro de 2005. Avaliaram-se a respiração basal, o carbono e o nitrogênio da biomassa microbiana, a razão carbono da biomassa microbiana/carbono orgânico, a razão nitrogênio da biomassa microbiana/nitrogênio total e o quociente metabólico do solo. Esses atributos biológicos do solo são influenciados pelas culturas de cobertura, manejo do solo e épocas de amostragem.The objective of this work was to evaluate the effects of cover crops and direct and conventional tillage systems on soil biological attributes when cultivated with dry bean in winter under sprinkle irrigation. The experiment was conducted in Santo Antônio de Goiás, GO, Brazil, in a clayey Rhodic Haplustox. Cover crops were cultivated annually in the summer since 2001, using Brachiaria brizantha, Cajanus cajan, Pennisetum glaucum, Panicum maximum, sorghum, Stylosanthes guianensis, brachiaria in association with corn, and native vegetation as reference. In 2005, 60 days after cutting the cover crops, BRS

  12. CLASIFICACIÓN NO SUPERVISADA DE COBERTURAS VEGETALES SOBRE IMÁGENES DIGITALES DE SENSORES REMOTOS: “LANDSAT - ETM+” NONSUPERVISED CLASSIFICATION OF VEGETABLE COVERS ON DIGITAL IMAGES OF REMOTE SENSORS: "LANDSAT - ETM+"

    Directory of Open Access Journals (Sweden)

    Mauricio Arango Gutiérrez

    2005-06-01

    .The plant species diversity in Colombia and the lack of inventories of them suggests the need for a process that facilitates the work of investigators in these disciplines. Remote satellite sensors such as LANDSAT ETM+ and non-supervised artificial intelligence techniques, such as self-organizing maps - SOM, could provide viable alternatives for advancing in the rapid obtaining of information related to zones with different vegetative covers in the national geography. The zone proposed for the study case was classified in a supervised form by the method of maximum likelihood by another investigation in forest sciences and eight types of vegetative covers were discriminated. This information served as a base line to evaluate the performance of the non-supervised sort keys ISODATA and SOM. However, the information that the images provided had to first be purified according to the criteria of use and data quality, so that adequate information for these non-supervised methods were used. For this, several concepts were used; such as, image statistics, spectral behavior of the vegetative communities, sensor characteristics and the average divergence that allowed to define the best bands and their combinations. Principal component analysis was applied to these to reduce to the number of data while conserving a large percentage of the information. The non-supervised techniques were applied to these purified data, modifying some parameters that could yield a better convergence of the methods. The results obtained were compared with the supervised classification via confusion matrices and it was concluded that there was not a good convergence of non-supervised classification methods with this process for the case of vegetative covers.

  13. Climatological determinants of woody cover in Africa.

    Science.gov (United States)

    Good, Stephen P; Caylor, Kelly K

    2011-03-22

    Determining the factors that influence the distribution of woody vegetation cover and resolving the sensitivity of woody vegetation cover to shifts in environmental forcing are critical steps necessary to predict continental-scale responses of dryland ecosystems to climate change. We use a 6-year satellite data record of fractional woody vegetation cover and an 11-year daily precipitation record to investigate the climatological controls on woody vegetation cover across the African continent. We find that-as opposed to a relationship with only mean annual rainfall-the upper limit of fractional woody vegetation cover is strongly influenced by both the quantity and intensity of rainfall events. Using a set of statistics derived from the seasonal distribution of rainfall, we show that areas with similar seasonal rainfall totals have higher fractional woody cover if the local rainfall climatology consists of frequent, less intense precipitation events. Based on these observations, we develop a generalized response surface between rainfall climatology and maximum woody vegetation cover across the African continent. The normalized local gradient of this response surface is used as an estimator of ecosystem vegetation sensitivity to climatological variation. A comparison between predicted climate sensitivity patterns and observed shifts in both rainfall and vegetation during 2009 reveals both the importance of rainfall climatology in governing how ecosystems respond to interannual fluctuations in climate and the utility of our framework as a means to forecast continental-scale patterns of vegetation shifts in response to future climate change.

  14. Evapotranspiration (ET) covers.

    Science.gov (United States)

    Rock, Steve; Myers, Bill; Fiedler, Linda

    2012-01-01

    Evapotranspiration (ET) cover systems are increasingly being used at municipal solid waste (MSW) landfills, hazardous waste landfills, at industrial monofills, and at mine sites. Conventional cover systems use materials with low hydraulic permeability (barrier layers) to minimize the downward migration of water from the surface to the waste (percolation), ET cover systems use water balance components to minimize percolation. These cover systems rely on soil to capture and store precipitation until it is either transpired through vegetation or evaporated from the soil surface. Compared to conventional membrane or compacted clay cover systems, ET cover systems are expected to cost less to construct. They are often aesthetic because they employ naturalized vegetation, require less maintenance once the vegetative system is established, including eliminating mowing, and may require fewer repairs than a barrier system. All cover systems should consider the goals of the cover in terms of protectiveness, including the pathways of risk from contained material, the lifecycle of the containment system. The containment system needs to be protective of direct contact of people and animals with the waste, prevent surface and groundwater water pollution, and minimize release of airborne contaminants. While most containment strategies have been based on the dry tomb strategy of keeping waste dry, there are some sites where adding or allowing moisture to help decompose organic waste is the current plan. ET covers may work well in places where complete exclusion of precipitation is not needed. The U.S. EPA Alternative Cover Assessment Program (ACAP), USDOE, the Nuclear Regulatory Commission, and others have researched ET cover design and efficacy, including the history of their use, general considerations in their design, performance, monitoring, cost, current status, limitations on their use, and project specific examples. An on-line database has been developed with information

  15. Pérdidas de suelo y nutrientes bajo diferentes coberturas vegetales en la zona Andina de Colombia Soil and nutrient loss under different vegetation covers in Colombia's Andean region

    Directory of Open Access Journals (Sweden)

    J. Alexander Rodríguez

    2009-07-01

    Full Text Available El estudio se realizó en la reserva natural El Ciprés, ubicada en la vereda Bellavista, municipio de El Dovio (Valle del Cauca. La vereda se encuentra en la zona Andina de la cordillera occidental, en el departamento del Valle del Cauca, entre 1700 y 1800 m.s.n.m., con una temperatura promedio de 18 °C. Según la clasificación climática de Holdridge, corresponde a una zona de bosque húmedo Montano Bajo, con una precipitación promedio entre 2500 y 2700 mm/año, una humedad relativa de 90% y una pendiente del suelo de 62%. Las mediciones se hicieron en parcelas de escorrentía de 32 m² cada una y siete tipos de coberturas: guadua (Guadua angustifolia Kunth, bosque secundario, pastura (Brachiaria decumbens, café (Coffea arabica; banco de proteína (Trichanthera gigantea, caña forrajera (Saccharum officinarum y cultivo limpio conformado por yuca (Manihot esculenta, maíz (Zea mays y arracacha (Arracacia zanthorrhiza Brancroft. Para la evaluación se midieron las pérdidas de suelo y los nutrientes calcio, magnesio, potasio y fósforo en un periodo de 7 meses. Los resultados mostraron diferencias (P Soil and nutrient (calcium, magnesium, potassium, phosphorus losses were measured over a 7-month period in the El Ciprés Natural Reserve, located in the Bellavista rural community, municipality of El Dovio, in the western cordillera of the Andes of the department of Valle del Cauca, Colombia. At 1700-1800 meters above sea level, the area presents an average temperature of 18 °C, an average annual precipitation of 2500-2700 mm, 90% relative humidity, and a 62% slope. According to the Holdridge climate classification system, it corresponds to a lower montane rain forest. Measurements were taken in runoff plots, each 32 m², with seven types of vegetation cover: giant bamboo (Guadua angustifolia Kunth; secondary forest; pastures (Brachiaria decumbens; coffee (Coffea arabica; protein bank (Trichanthera gigantea; forage cane (Saccharum officinarum

  16. Benthic Cover

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Benthic cover (habitat) maps are derived from aerial imagery, underwater photos, acoustic surveys, and data gathered from sediment samples. Shallow to moderate-depth...

  17. Carbono orgânico e Nitrogênio em agregados de um Latossolo Vermelho distrófico sob duas coberturas vegetais Organic carbon and Nitrogen in aggregates of a Dystrophic Red Latosol under two vegetation covers

    Directory of Open Access Journals (Sweden)

    Renato Ribeiro Passos

    2007-10-01

    tended to present higher contents of COT, NT and NMA. Ratios of C/N, COT/COS and NT/NMA were, on average, higher in aggregates of soils under corn. The NT/NMA ratio was significantly higher in the 15-20 cm layer. However, independent of the soil, the lowest NT/NMA ratios were observed in the smallest aggregate classes, indicating the presence of more labile nitrogen forms. Results showed that vegetation cover type and soil management influenced not only the organic carbon and nitrogen contents, but also organic matter quality. Smaller aggregates are not only responsible for a greater stock of organic matter in the soil but also represent important sites of mineralizable nitrogen. The COS, NMA and the ratios of COT/COS and NT/NMA represent valuable indicators to detect alterations in the lability of organic matter due to management.

  18. Deposição efetiva do produto pulverizado sobre cobertura vegetal de aveia-preta por diferentes pontas de pulverização Effective deposition of product sprayed directly on oat cover using different spray nozzles

    Directory of Open Access Journals (Sweden)

    R.L. Contiero

    2012-12-01

    Full Text Available A cobertura vegetal que permanece no solo após a colheita beneficia as características físicas e químicas do solo. No entanto, essa palha torna-se uma barreira para a aplicação de herbicidas pré-emergentes, pois impede que eles atinjam o alvo. Nesses casos, a escolha ideal da ponta de pulverização, bem como o tamanho da gota, são imprescindíveis para o sucesso da aplicação. O objetivo deste trabalho foi avaliar a eficiência de transposição do líquido pulverizado, dependente do tamanho de gotas, produzido por vários modelos de ponta de pulverização sobre diferentes densidades de palha de aveia-preta. O trabalho foi realizado em Maringá-PR. Foram utilizadas caixas tipo gerbox como unidades coletoras, cobertas por diferentes quantidades de palha de aveia. O delineamento experimental foi inteiramente casualizado, em esquema fatorial 8 x 7, sendo oito pontas de pulverização (leque e cone e sete quantidades crescentes de palha de aveia-preta. O produto retido na superfície coletora foi colhido e mediu-se a absorbância. Os dados foram submetidos à análise de variância, e as médias, comparadas entre si por meio do teste de agrupamento Skott-Knott a 5% de probabilidade. Pode-se concluir que o tamanho das gotas é extremamente importante na transposição da palha de aveia. Gotas muito finas e muito grossas não conseguem transpor a barreira formada pela palha de maneira eficiente. Pontas de pulverização que produzem gotas de tamanho médio (CV-IA 02 e ST 02 apresentam volume de transposição maior do que o das demais, sendo recomendadas em aplicações de herbicidas pré-emergentes em plantio-direto até 4 t ha-1 de cobertura morta.The vegetation that remains in the soil after harvest benefits the physical and chemical properties of soil. However, the straw becomes a barrier to the application of pre-emergence herbicides, preventing it from reaching the target. In these cases, the choice of spray tip and droplet size is

  19. LBA-ECO ND-30 Fractional Cover of Mixed Land Use Ranches, Para and Rondonia, Brazil

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains images of fractional cover estimates of photosynthetic vegetation (PV) canopy, nonphotosynthetic vegetation (NPV), and exposed soils (S)...

  20. Spatial relationship between climatologies and changes in global vegetation activity.

    Science.gov (United States)

    de Jong, Rogier; Schaepman, Michael E; Furrer, Reinhard; de Bruin, Sytze; Verburg, Peter H

    2013-06-01

    Vegetation forms a main component of the terrestrial biosphere and plays a crucial role in land-cover and climate-related studies. Activity of vegetation systems is commonly quantified using remotely sensed vegetation indices (VI). Extensive reports on temporal trends over the past decades in time series of such indices can be found in literature. However, little remains known about the processes underlying these changes at large spatial scales. In this study, we aimed at quantifying the spatial relationship between changes in potential climatic growth constraints (i.e. temperature, precipitation and incident solar radiation) and changes in vegetation activity (1982-2008). We demonstrate an additive spatial model with 0.5° resolution, consisting of a regression component representing climate-associated effects and a spatially correlated field representing the combined influence of other factors, including land-use change. Little over 50% of the spatial variance could be attributed to changes in climatologies; conspicuously, many greening trends and browning hotspots in Argentina and Australia. The nonassociated model component may contain large-scale human interventions, feedback mechanisms or natural effects, which were not captured by the climatologies. Browning hotspots in this component were especially found in subequatorial Africa. On the scale of land-cover types, strongest relationships between climatologies and vegetation activity were found in forests, including indications for browning under warming conditions (analogous to the divergence issue discussed in dendroclimatology). © 2013 Blackwell Publishing Ltd.

  1. Analysis of Post-Fire Vegetation Recovery in the Mediterranean Basin using MODIS Derived Vegetation Indices

    Science.gov (United States)

    Hawtree, Daniel; San Miguel, Jesus; Sedano, Fernando; Kempeneers, Pieter

    2010-05-01

    The Mediterranean basin region is highly susceptible to wildfire, with approximately 60,000 individual fires and half a million ha of natural vegetation burnt per year. Of particular concern in this region is the impact of repeated wildfires on the ability of natural lands to return to a pre-fire state, and of the possibility of desertification of semi-arid areas. Given these concerns, understanding the temporal patterns of vegetation recovery is important for the management of environmental resources in the region. A valuable tool for evaluating these recovery patterns are vegetation indices derived from remote sensing data. Previous research on post-fire vegetation recovery conducted in this region has found significant variability in recovery times across different study sites. It is unclear what the primary variables are affecting the differences in the rates of recovery, and if any geographic patterns of behavior exist across the Mediterranean basin. This research has primarily been conducted using indices derived from Landsat imagery. However, no extensive analysis of vegetation regeneration for large regions has been published, and assessment of vegetation recovery on the basis of medium-spatial resolution imagery such as that of MODIS has not yet been analyzed. This study examines the temporal pattern of vegetation recovery in a number of fire sites in the Mediterranean basin, using data derived from MODIS 16 -day composite vegetation indices. The intent is to develop a more complete picture of the temporal sequence of vegetation recovery, and to evaluate what additional factors impact variations in the recovery sequence. In addition, this study evaluates the utility of using MODIS derived vegetation indices for regeneration studies, and compares the findings to earlier studies which rely on Landsat data. Wildfires occurring between the years 2000 and 2004 were considered as potential study sites for this research. Using the EFFIS dataset, all wildfires

  2. Aspect-related Vegetation Differences Amplify Soil Moisture Variability in Semiarid Landscapes

    Science.gov (United States)

    Yetemen, O.; Srivastava, A.; Kumari, N.; Saco, P. M.

    2017-12-01

    Soil moisture variability (SMV) in semiarid landscapes is affected by vegetation, soil texture, climate, aspect, and topography. The heterogeneity in vegetation cover that results from the effects of microclimate, terrain attributes (slope gradient, aspect, drainage area etc.), soil properties, and spatial variability in precipitation have been reported to act as the dominant factors modulating SMV in semiarid ecosystems. However, the role of hillslope aspect in SMV, though reported in many field studies, has not received the same degree of attention probably due to the lack of extensive large datasets. Numerical simulations can then be used to elucidate the contribution of aspect-driven vegetation patterns to this variability. In this work, we perform a sensitivity analysis to study on variables driving SMV using the CHILD landscape evolution model equipped with a spatially-distributed solar-radiation component that couples vegetation dynamics and surface hydrology. To explore how aspect-driven vegetation heterogeneity contributes to the SMV, CHILD was run using a range of parameters selected to reflect different scenarios (from uniform to heterogeneous vegetation cover). Throughout the simulations, the spatial distribution of soil moisture and vegetation cover are computed to estimate the corresponding coefficients of variation. Under the uniform spatial precipitation forcing and uniform soil properties, the factors affecting the spatial distribution of solar insolation are found to play a key role in the SMV through the emergence of aspect-driven vegetation patterns. Hence, factors such as catchment gradient, aspect, and latitude, define water stress and vegetation growth, and in turn affect the available soil moisture content. Interestingly, changes in soil properties (porosity, root depth, and pore-size distribution) over the domain are not as effective as the other factors. These findings show that the factors associated to aspect-related vegetation

  3. Índice de cobertura vegetal pela cultura do milho no período de chuvas intensas no sul de Minas Gerais Plant cover index in the period of intensive rainfall for corn crop at south of Minas Gerais state, Brazil

    Directory of Open Access Journals (Sweden)

    Fabiana Silva de Souza

    2010-04-01

    Full Text Available A cobertura vegetal é a defesa natural do solo contra a erosão hídrica. Nos modelos de estimativas de perdas de solo, o efeito da cobertura vegetal na interceptação da energia cinética da chuva é a variável chave na modelagem do processo erosivo. Assim sendo, objetivou-se avaliar a eficiência da cobertura vegetal, proporcionada pela cultura do milho, e suas relações com os atributos fitotécnicos desta cultura para alguns híbridos. O estudo foi realizado no campo demonstrativo de híbridos de milho da Universidade Federal de Lavras, localizada no município de Lavras, MG. Para determinação da cobertura vegetal utilizou-se um aparato que consiste em uma estrutura horizontal, contendo orifícios para visualização dos pontos com cobertura e sem cobertura vegetal, sendo as leituras feitas de forma aleatória e transversalmente às linhas da cultura. Os atributos fitotécnicos avaliados foram altura da planta, estande, matéria seca e produção de grãos. Diante dos resultados pode-se concluir que o maior índice de cobertura vegetal foi observado para os híbridos de milho P 30F33, P 30F90, P 3021, STRIKE, FORT, VALENT, UFLA 2001, UFLA 2004, CO 32, D 8480, D 8420 DKB 333B, DKB 440, evidenciando boa qualidade como planta protetora do solo. No período de maior ocorrência de chuvas, na região sul de Minas Gerais, a cultura do milho pode minimizar o efeito do processo erosivo. A produção de matéria seca relacionou-se bem com o índice de cobertura vegetal, podendo ser um indicativo quanto à proteção do solo.The plant cover is a natural protection of soil against water erosion. In estimative models of soil loss, the effect of plant cover in the interception of rainfall kinetic energy is the key variable in the modeling of the erosive process. Thus, the aim of this work is to evaluate the efficiency of the plant cover provided by the corn crop and their relations with the phytotechnical attributes of this crop for its respective

  4. Natural Vegetation of the Flora area

    DEFF Research Database (Denmark)

    Sebsebe, Demissew; Friis, Ib

    2009-01-01

    A review article summarising the recent ideas about the natural vegetation in the area covered by the Flora of Ethiopia and Eritrea......A review article summarising the recent ideas about the natural vegetation in the area covered by the Flora of Ethiopia and Eritrea...

  5. Protection against productivity versus erosion vineyards. Testing of vegetal covers in slope crops; Proteccion contra la erosion versus productividad en venidos. Ensayos de cubiertas vegetales en cultivos en pendiente

    Energy Technology Data Exchange (ETDEWEB)

    Marques, M. J.; Ruiz-Colmenero, M.; Garcia-Munoz, S.; Cabello, F.; Munoz-Organero, G.; Perez-Jimenez, M. A.; Bienes, R.

    2009-07-01

    Temporary and permanent cover crops were used in three rain fed vineyards in the Center of Spain. They were sown in the middle of the strips to assess their ability to control erosion as well as their influence on grape production. Data from the year 2008 are compared with those obtained with traditional tillage treatment. The permanent cover formed by Brachypodium distachyon showed better ability to control erosion but it produced a decrease in production in young vines. barley and rye treatments were temporary covers, mowed in spring. They also reduced the erosion compared with the tillage however they did not appear to affect the vineyard production. (Author)

  6. Sganzerla Cover

    Directory of Open Access Journals (Sweden)

    Victor da Rosa

    2014-06-01

    Full Text Available Neste artigo, realizo uma leitura do cinema de Rogério Sganzerla, desde o clássico O bandido da luz vermelha até os documentários filmados na década de oitenta, a partir de duas noções centrais: cover e over. Para isso, parto de uma controvérsia com o ensaio de Ismail Xavier, Alegorias do subdesenvolvimento, em que o crítico realiza uma leitura do cinema brasileiro da década de sessenta através do conceito de alegoria; depois releio uma série de textos críticos do próprio Sganzerla, publicados em Edifício Sganzerla, procurando repensar as ideias de “herói vazio” ou “cinema impuro” e sugerindo assim uma nova relação do seu cinema com o tempo e a representação; então busco articular tais ideias com certos procedimentos de vanguarda, como a falsificação, a cópia, o clichê e a colagem; e finalmente procuro mostrar que, no cinema de Sganzerla, a partir principalmente de suas reflexões sobre Orson Welles, a voz é usada de maneira a deformar a interpretação naturalista.

  7. Land cover fire proneness in Europe

    Directory of Open Access Journals (Sweden)

    Mario Gonzalez Pereira

    2014-12-01

    Full Text Available Aim of study: This study aims to identify and characterize the spatial and temporal evolution of the types of vegetation that are most affected by forest fires in Europe. The characterization of the fuels is an important issue of the fire regime in each specific ecosystem while, on the other hand, fire is an important disturbance for global vegetation dynamics.Area of study: Southern European countries: Portugal, Spain, France, Italy and Greece.Material and Methods: Corine Land Cover maps for 2000 and 2006 (CLC2000, CLC2006 and burned area (BA perimeters, from 2000 to 2013 in Europe are combined to access the spatial and temporal evolution of the types of vegetation that are most affected by wild fires using descriptive statistics and Geographical Information System (GIS techniques.Main results: The spatial and temporal distribution of BA perimeters, vegetation and burnt vegetation by wild fires was performed and different statistics were obtained for Mediterranean and entire Europe, confirming the usefulness of the proposed land cover system. A fire proneness index is proposed to assess the fire selectivity of land cover classes. The index allowed to quantify and to compare the propensity of vegetation classes and countries to fire.Research highlights: The usefulness and efficiency of the land cover classification scheme and fire proneness index. The differences between northern Europe and southern Europe and among the Mediterranean region in what concerns to vegetation cover, fire incidence, area burnt in land cover classes and fire proneness between classes for the different countries.Keywords: Fire proneness; Mixed forests; Land cover/land use; Fire regime; Europe; GIS; Corine land cover

  8. Ten Years of Land Cover Change on the California Coast Detected using Landsat Satellite Image Analysis

    Science.gov (United States)

    Potter, Christopher S.

    2013-01-01

    Landsat satellite imagery was analyzed to generate a detailed record of 10 years of vegetation disturbance and regrowth for Pacific coastal areas of Marin and San Francisco Counties. The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) methodology, a transformation of Tasseled-Cap data space, was applied to detected changes in perennial coastal shrubland, woodland, and forest cover from 1999 to 2009. Results showed several principal points of interest, within which extensive contiguous areas of similar LEDAPS vegetation change (either disturbed or restored) were detected. Regrowth areas were delineated as burned forest areas in the Point Reyes National Seashore (PRNS) from the 1995 Vision Fire. LEDAPS-detected disturbance patterns on Inverness Ridge, PRNS in areas observed with dieback of tanoak and bay laurel trees was consistent with defoliation by sudden oak death (Phytophthora ramorum). LEDAPS regrowth pixels were detected over much of the predominantly grassland/herbaceous cover of the Olema Valley ranchland near PRNS. Extensive restoration of perennial vegetation cover on Crissy Field, Baker Beach and Lobos Creek dunes in San Francisco was identified. Based on these examples, the LEDAPS methodology will be capable of fulfilling much of the need for continual, low-cost monitoring of emerging changes to coastal ecosystems.

  9. Kuchler Vegetation

    Data.gov (United States)

    California Natural Resource Agency — Digital version of potential natural plant communites as compiled and published on 'Map of the Natural Vegetation of California' by A. W. Kuchler, 1976. Source map...

  10. Wieslander Vegetation

    Data.gov (United States)

    California Natural Resource Agency — Digital version of the 1945 California Vegetation Type Maps by A. E. Wieslander of the U.S. Forest Service. Source scale of maps are 1:100,000. These compiled maps...

  11. Land Use and Land Cover - MO 2015 Silver Land Cover (GDB)

    Data.gov (United States)

    NSGIC State | GIS Inventory — MoRAP produced and integrated data to map land cover and wetlands for the Upper Silver Creek Watershed in Illinois. LiDAR elevation and vegetation height information...

  12. Carbon Assessment of Hawaii Land Cover Map (CAH_LandCover)

    Data.gov (United States)

    Department of the Interior — While there have been many maps produced that depict vegetation for the state of Hawai‘i only a few of these display land cover for all of the main Hawaiian Islands,...

  13. Land Use and Land Cover - MO 2015 Meramec Land Cover (GDB)

    Data.gov (United States)

    NSGIC State | GIS Inventory — MoRAP produced and integrated data to map land cover and wetlands for the Meramec River bottomland in Missouri. LiDAR elevation and vegetation height information and...

  14. Ten Years of Vegetation Change in Northern California Marshlands Detected using Landsat Satellite Image Analysis

    Science.gov (United States)

    Potter, Christopher

    2013-01-01

    The Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) methodology was applied to detected changes in perennial vegetation cover at marshland sites in Northern California reported to have undergone restoration between 1999 and 2009. Results showed extensive contiguous areas of restored marshland plant cover at 10 of the 14 sites selected. Gains in either woody shrub cover and/or from recovery of herbaceous cover that remains productive and evergreen on a year-round basis could be mapped out from the image results. However, LEDAPS may not be highly sensitive changes in wetlands that have been restored mainly with seasonal herbaceous cover (e.g., vernal pools), due to the ephemeral nature of the plant greenness signal. Based on this evaluation, the LEDAPS methodology would be capable of fulfilling a pressing need for consistent, continual, low-cost monitoring of changes in marshland ecosystems of the Pacific Flyway.

  15. Spatiotemporal Change Detection in Forest Cover Dynamics Along Landslide Susceptible Region of Karakoram Highway, Pakistan

    Science.gov (United States)

    Rashid, Barira; Iqbal, Javed

    2018-04-01

    Forest Cover dynamics and its understanding is essential for a country's social, environmental, and political engagements. This research provides a methodical approach for the assessment of forest cover along Karakoram Highway. It has great ecological and economic significance because it's a part of China-Pakistan Economic Corridor. Landsat 4, 5 TM, Landsat 7 ETM and Landsat 8 OLI imagery for the years 1990, 2000, 2010 and 2016 respectively were subjected to supervised classification in ArcMap 10.5 to identify forest change. The study area was categorized into five major land use land cover classes i.e., Forest, vegetation, urban, open land and snow cover. Results from post classification forest cover change maps illustrated notable decrease of almost 26 % forest cover over the time period of 26 years. The accuracy assessment revealed the kappa coefficients 083, 0.78, 0.77 and 0.85, respectively. Major reason for this change is an observed replacement of native forest cover with urban areas (12.5 %) and vegetation (18.6 %) However, there is no significant change in the reserved forests along the study area that contributes only 2.97 % of the total forest cover. The extensive forest degradation and risk prone topography of the region has increased the environmental risk of landslides. Hence, effective policies and forest management is needed to protect not only the environmental and aesthetic benefits of the forest cover but also to manage the disaster risks. Apart from the forest assessment, this research gives an insight of land cover dynamics, along with causes and consequences, thereby showing the forest degradation hotspots.

  16. VEGETATION MAPPING IN WETLANDS

    Directory of Open Access Journals (Sweden)

    F. PEDROTTI

    2004-01-01

    Full Text Available The current work examines the main aspects of wetland vegetation mapping, which can be summarized as analysis of the ecological-vegetational (ecotone gradients; vegetation complexes; relationships between vegetation distribution and geomorphology; vegetation of the hydrographic basin lo which the wetland in question belongs; vegetation monitoring with help of four vegetation maps: phytosociological map of the real and potential vegetation, map of vegetation dynamical tendencies, map of vegetation series.

  17. Quantifying Structural and Compositional Changes in Forest Cover in NW Yunnan, China

    Science.gov (United States)

    Hakkenberg, C.

    2012-12-01

    NW Yunnan, China is a region renowned for high levels of biodiversity, endemism and genetically distinct refugial plant populations. It is also a focal area for China's national reforestation efforts like the Natural Forest Protection Program (NFPP), intended to control erosion in the Upper Yangtze watershed. As part of a larger project to investigate the role of reforestation programs in facilitating the emergence of increasingly species-rich forest communities on a previously degraded and depauperate land mosaic in montane SW China, this study uses a series of Landsat TM images to quantify the spatial pattern and rate of structural and compositional change in forests recovering from medium to large-scale disturbances in the area over the past 25 years. Beyond the fundamental need to assess the outcomes of one of the world's largest reforestation programs, this research offers approaches to confronting two critical methodological issues: (1) techniques for characterizing subtle changes in the nature of vegetation cover, and (2) reducing change detection uncertainty due to persistent cloud cover and shadow. To address difficulties in accurately assessing the structure and composition of vegetative regrowth, a biophysical model was parameterized with over 300 ground-truthed canopy cover assessment points to determine pattern and rate of long-term vegetation changes. To combat pervasive shadow and cloud cover, an interactive generalized additive model (GAM) model based on topographic and spatial predictors was used to overcome some of the constraints of satellite image analysis in Himalayan regions characterized by extreme topography and extensive cloud cover during the summer monsoon. The change detection is assessed for accuracy using ground-truthed observations in a variety of forest cover types and topographic positions. Results indicate effectiveness in reducing the areal extent of unclassified regions and increasing total change detection accuracy. In addition

  18. Vegetative regeneration

    Science.gov (United States)

    George A. Schier; John R. Jones; Robert P. Winokur

    1985-01-01

    Aspen is noted for its ability to regenerate vegetatively by adventitious shoots or suckers that arise on its long lateral roots. It also produces sprouts from stumps and root collars; but they are not common. In a survey of regeneration after clearcutting mature aspen in Utah. Baker (1918b) found that 92% of the shoots originated from roots, 7% from root collars, and...

  19. Understory vegetation

    Science.gov (United States)

    Steve Sutherland; Todd F. Hutchinson; Jennifer L. Windus

    2003-01-01

    This chapter documents patterns of species composition and diversity within the understory vegetation layer and provides a species list for the four study areas in southern Ohio. Within each of 108 plots, we recorded the frequency of all vascular plant species in sixteen 2-m² quadrats. We recorded 297 species, including 187 forbs (176 perennials, 9 annuals, 2...

  20. Land-cover change detection

    Science.gov (United States)

    Chen, Xuexia; Giri, Chandra; Vogelmann, James

    2012-01-01

    Land cover is the biophysical material on the surface of the earth. Land-cover types include grass, shrubs, trees, barren, water, and man-made features. Land cover changes continuously.  The rate of change can be either dramatic and abrupt, such as the changes caused by logging, hurricanes and fire, or subtle and gradual, such as regeneration of forests and damage caused by insects (Verbesselt et al., 2001).  Previous studies have shown that land cover has changed dramatically during the past sevearal centuries and that these changes have severely affected our ecosystems (Foody, 2010; Lambin et al., 2001). Lambin and Strahlers (1994b) summarized five types of cause for land-cover changes: (1) long-term natural changes in climate conditions, (2) geomorphological and ecological processes, (3) human-induced alterations of vegetation cover and landscapes, (4) interannual climate variability, and (5) human-induced greenhouse effect.  Tools and techniques are needed to detect, describe, and predict these changes to facilitate sustainable management of natural resources.

  1. Computer-aided classification of forest cover types from small scale aerial photography

    Science.gov (United States)

    Bliss, John C.; Bonnicksen, Thomas M.; Mace, Thomas H.

    1980-11-01

    The US National Park Service must map forest cover types over extensive areas in order to fulfill its goal of maintaining or reconstructing presettlement vegetation within national parks and monuments. Furthermore, such cover type maps must be updated on a regular basis to document vegetation changes. Computer-aided classification of small scale aerial photography is a promising technique for generating forest cover type maps efficiently and inexpensively. In this study, seven cover types were classified with an overall accuracy of 62 percent from a reproduction of a 1∶120,000 color infrared transparency of a conifer-hardwood forest. The results were encouraging, given the degraded quality of the photograph and the fact that features were not centered, as well as the lack of information on lens vignetting characteristics to make corrections. Suggestions are made for resolving these problems in future research and applications. In addition, it is hypothesized that the overall accuracy is artificially low because the computer-aided classification more accurately portrayed the intermixing of cover types than the hand-drawn maps to which it was compared.

  2. Vegetation composition and structure influences bird species ...

    African Journals Online (AJOL)

    Vegetation composition and structure influences bird species community ... variables on bird species diversity and richness of respective foraging guilds, and ... of the species assessed: (1) increasing closed cover due to woody plant density, ...

  3. Sacramento Vegetation

    Data.gov (United States)

    California Natural Resource Agency — CDF-FRAP compiled the 'best available' land cover data into a single data layer, to support the various analyses required for the 2002 Forest and Range Assessment....

  4. Vegetable Crop Pests. MEP 311.

    Science.gov (United States)

    Kantzes, James G.; And Others

    As part of a cooperative extension service series by the University of Maryland, this publication introduces the identification and control of common agricultural pests of vegetable crops. The first of the five sections defines "pest" and "weed" and generally introduces different kinds of pests in the categories of insects,…

  5. Classification and mapping of rangeland vegetation physiognomic ...

    African Journals Online (AJOL)

    Plot vegetation species growth form, cover and height data were collected from 450 sampling sites based on eight spectral strata generated using unsupervised image classification. Field data were grouped at four levels of seven, six, three and two vegetation physiognomic classes which were subjected to both ML and ...

  6. Análise espaço-temporal da cobertura vegetal e uso da terra na Interbacia do Rio Paraguai Médio-MT, Brasil Spatio-temporal analysis of vegetation cover and land use in the middle Paraguay River Interbasin-MT, Brazil

    Directory of Open Access Journals (Sweden)

    Seyla Poliana Miranda Pessoa

    2013-02-01

    Full Text Available O objetivo deste estudo foi realizar uma análise espaço-temporal da cobertura vegetal e do uso da terra na Interbacia do Rio Paraguai Médio-MT, Brasil, pelo geoprocessamento de imagens Landsat TM, dos anos 1991, 2001 e 2011. As imagens foram georreferenciadas, classificadas e processadas no software Spring e as classes temáticas, quantificadas e editadas no software ArcGis. Foram mapeadas sete classes, sendo as mais expressivas a vegetação nativa, a pastagem e a cana-de-açúcar. Os resultados indicaram alterações em todas as classes durante os últimos 20 anos, com a diminuição de 22,89% da vegetação nativa, relacionada com o aumento de 58,42% da pastagem e 490,26% de monocultura de cana-de-açúcar. Foi verificado o conflito de uso da terra, principalmente em áreas de mata ciliar, fato que pode influenciar negativamente na conservação da interbacia e, consequentemente, do pantanal mato-grossense.This study analyzed spatial and temporal land use changes in the Middle Paraguay River Interbasin-MT, Brazil using Landsat images from 1991, 2001 and 2011. Images were geo-referenced, classified and processed using Spring software, and thematic classes were edited and quantified using ArcGis software. Seven map classes were identified, and native vegetation, pasture and sugarcane were the most significant ones. The results showed changes in all classes during the past 20 years, primarily a 22.89% decrease of native vegetation, a 58.42% increase in pasture and 490.26% increase of sugarcane monoculture. We verified land use conflicts, mostly in riparian areas, which may negatively influence Interbasin and, consequently, Pantanal conservation in the State of Mato Grosso, Brazil.

  7. Erosão hídrica influenciada por condições físicas de superfície e subsuperfície do solo resultantes do seu manejo, na ausência de cobertura vegetal Water erosion influenced by surface and subsurface soil physical conditions resulting from its management, in the absence of vegetal cover

    Directory of Open Access Journals (Sweden)

    L. B. S. Volk

    2004-08-01

    Full Text Available Práticas diferenciadas de manejo resultam em condições físicas de superfície e subsuperfície do solo distintas, as quais, por sua vez, resultam em níveis de erosão hídrica variados. Com isto em mente, realizou-se um estudo a campo com o objetivo de avaliar o efeito de formas de preparo e cultivo do solo e de manejo dos resíduos culturais em algumas de suas condições físicas de superfície e subsuperfície, em relação à erosão hídrica, durante 5,5 anos. Para tal, utilizou-se chuva simulada sobre um Argissolo Vermelho distrófico típico, bastante degradado pelo manejo anterior, com declividade de 0,08 m m-1. Os tratamentos consistiram dos cultivos de milho e aveia preta, em semeadura direta e em preparo convencional de solo (este com incorporação e com remoção dos resíduos culturais, e do sem cultivo, em preparo convencional de solo (testemunha. Tais tratamentos encontravam-se na condição de solo recém-mobilizado, ou consolidado, e desprovido de cobertura vegetal por ocasião dos testes de erosão com chuva simulada. Estes, em número de dez, foram realizados com o simulador de chuva de braços rotativos, na intensidade de 64 mm h-1 e duração de 90 min, logo após a colheita de uma cultura e o preparo do solo, ou não, para o estabelecimento da cultura seguinte. A incorporação sistemática dos resíduos culturais ao solo recuperou sua estrutura e diminuiu a perda de solo praticamente em 3/4, comparada a sua remoção, resultando também na menor perda de solo no estudo. Devido à recém-criada rugosidade superficial do solo, os tratamentos com preparo convencional apresentaram as maiores capacidades de retenção e infiltração de água, resultando em retardamento da enxurrada e, logo, baixa perda de água, comparados à semeadura direta, independentemente do cultivo e da incorporação ou remoção dos resíduos culturais. O preparo convencional sem cultivo, apesar de apresentar rugosidade superficial similar ao

  8. Land Cover - Minnesota Land Cover Classification System

    Data.gov (United States)

    Minnesota Department of Natural Resources — Land cover data set based on the Minnesota Land Cover Classification System (MLCCS) coding scheme. This data was produced using a combination of aerial photograph...

  9. Humid to arid to subhumid vegetation shift on Pilliga Sandstone, Ulungra Springs, New South Wales

    Science.gov (United States)

    Dodson, J. R.; Wright, R. V. S.

    1989-09-01

    The Pilliga Sandstone region of the northwest slope of New South Wales has a natural vegetation cover of sclerophyllous relatively closed to open forests with a largely heathy understorey, and a warm, subhumid and continental climate. Pollen analysis of spring-fed deposits gives a vegetation history extending from at least 30,000 yr B.P. to the late Holocene. Tree pollen became scarce after about 25,000 yr B.P. and an assemblage dominated by Chenopodiaceae, Liguliflorae, Tubuliflorae, and probably Poaceae developed. No similar assemblage is known from present pollen rain studies carried out in Australia. However, it clearly represents a treeless open shrub-steppe formation and therefore an arid or semiarid environment. The site thus provides evidence of an eastward late Pleistocene extension of the arid zone in Australia, and is the first full-glacial vegetation record between 20° and 35° latitude in Australia. The present vegetation cover did not become reestablished until the beginning of the Holocene, which raises questions about the form in which Pilliga Sandstone vegetation survived full-glacial conditions.

  10. componente vegetal

    Directory of Open Access Journals (Sweden)

    Fabio Moscovich

    2005-01-01

    Full Text Available In order to determine environmental impact, indicators based on vegetation characteristics that would generate the forestry monoculture with the adjacent native forest, 32 sample unit were installed in an area of LIPSIA private enterprise, Esperanza Department, Misiones with those characteristics. The plots of 100 m2 were distributed systematically every 25 meters. The vegetation was divided in stratum: superior (DBH ≥ 10 cm, middle (1,6 cm ≤ DBH > 10 cm and inferior (DBH< cm. There were installed 10 plots in a logged native forest, 10 plots in a 18 years old Pinus elliottii Engelm. with approximately 400 trees/ha., 6 plots in a 10 – 25 years old Araucaria angustifolia (Bertd. Kuntze limiting area with approximately 900 trees/ha., and 6 plots located in this plantation. In the studied area were identified 150 vegetation species. In the inferior stratum there were found differences as function of various floristic diversity indexes. In all the cases the native forest showed larger diversity than plantations, followed by Pinus elliottii, Araucaria plantation and Araucaria limiting area. All the studied forest fitted to a logarithmical series of species distributions, that would indicate the incidence of a environmental factor in this distribution.

  11. Weed Identification and Control in Vegetable Crops.

    Science.gov (United States)

    Ferretti, Peter A., Comp.

    This agriculture extension service publication from Pennsylvania State University examines weed control and identification in vegetable crops. Contents include: (1) Types of weeds; (2) Reducing losses caused by weeds, general control methods and home garden weed control; (3) How herbicides are used; (4) Specific weeds in vegetable plantings; and…

  12. Distribución espacial de anomalías del NDVI derivado del sensor VEGETATION SPOT 4/5 ysu relación con las coberturas vegetales, usos de la tierra y características geomorfológicas en la provincia de Santiago del Estero, Argentina / Spatial distribution of anomalies of NDVI derived from sensor VEGETATION SPOT 4/5 and its relation with vegetation cover, uses of ground and geomorphology in Santiago del Estero, Argentina

    Directory of Open Access Journals (Sweden)

    Jose Luis Tiedermann

    2010-12-01

    Full Text Available Se determinaron las anomalías negativas (AN y positivas (AP del NDVI derivado del sensor VEGETATION SPOT 4/5, en la provincia de Santiago del Estero, Argentina. El periodo analizado (1998-2008 tuvo fuertes variaciones en los patrones de precipitación, por efecto del ENSO, por cuanto las anomalías del NDVI fueron evaluadas, mediante tabulación cruzada, en función de dos periodos: húmedo (PH y seco (PS. Las AN, se relacionaron, durante todo el periodo, con vegetación halófila en áreas deprimidas salobres, con vegetación hidrófila en ambientes acuáticos y con suelo rocoso. Durante el PS, las AN se relacionaron con áreas deforestadas con fines agrícolas. Las AP, se relacionaron, durante todo el periodo, con el bosque Chaqueño denso y bosque Chaqueño Serrano denso. La mayor estabilidad y productividad de biomasa verde de los bosques, estaría relacionada, a su mayor biodiversidad, estratificación, al predominio de especies leñosas perennes de raíces profundas y a las estratégicas adaptaciones, morfológicas y fisiológicas, para el uso eficiente del agua. Las regiones geomorfológicas no se relacionan entre si entre periodos.AbstractThe negative (AN and positive (AP anomalies of the NDVI derived from sensor VEGETATION SPOT 4/5 were determined in the province of Santiago del Estero, Argentina. The analyzed period (1998-2008 presented strong variations in rainfall patterns, as a result of the ENSO, inasmuch as the anomalies of the NDVI were evaluated, by means of crossed tabulation, based on two periods: humid (PH and dry (PS. The AN, were related with halophytic species of depressed areas, with vegetation aquatic hydrophilic and rocky ground. During the dry period, the AN were related to deforested areas with agricultural aims. The AP, were related, throughout the period with the forest dense Chaco Semiarid and forest dense Chaco Serrano. The greater stability and productivity of green biomass of forest, would be related, greater

  13. Land Use and Land Cover Change Analysis along the Coastal ...

    African Journals Online (AJOL)

    Agribotix GCS 077

    are carried out on the land usually effect changes in its cover. ... The FAO document on land cover classification systems, (2000) partly answers this ... over the surface land, including water, vegetation, bare soils and or artificial structures. ... diseases may occur more readily in areas exposed by Land Use and Land Cover ...

  14. Escoamento superficial na interação: cobertura vegetal e práticas de controle de erosão Erosion losses from runoff: interaction of soil cover and erosion control practice

    Directory of Open Access Journals (Sweden)

    Marco A. R. de Carvalho

    2012-12-01

    Full Text Available O escoamento da água oriunda das terras agricultadas é o principal fator poluente dos mananciais hídricos nas áreas rurais. Devido a esse fato, faz-se necessário o desenvolvimento e a aplicação de tecnologias que venham a reduzir descargas de resíduos indesejáveis. Nesse sentido, conduziu-se um experimento na área experimental do Departamento de Engenharia Rural - ESALQ/USP, Piracicaba - SP, com o objetivo de avaliar o efeito de diferentes condições de solo, (feijão, gramínea e solo nu e diferentes práticas de controle de erosão (sulco de infiltração, terraço de infiltração e sem práticas de controle de erosão, buscando-se estimar o escoamento superficial. O delineamento estatístico adotado foi o em blocos aleatorizados, em esquema fatorial 3x3, perfazendo 9 tratamentos com 3 repetições. O período de coleta de dados pluviométricos foi de 06 de dezembro de 2007 a 11 de abril de 2008; para isto, utilizou-se de um pluviômetro, com 21,1 cm de diâmetro, instalado na área experimental. Observando-se as perdas de água, em relação às estruturas, tem-se em ordem decrescente de eficiência: Terraço, Sulco e Rampa; e com relação às coberturas, tem-se em ordem decrescente de eficiência: Feijão, Capim e Solo Nu.The flow of sediment from cropped land is the main pollutant of water sources in rural areas. Due to this fact, it is necessary to develop and implement technologies that will reduce water and sediment discharges. Accordingly, an experiment was conducted in the Department of Biosystems Engineering - ESALQ / USP, Piracicaba - SP with the objective to evaluate the effect of different soil cover (bean, grass and bare ground and erosion control practices (wide base terraces and infiltration furrows in slopes (no practices to control erosion while measuring water losses in runoff. The statistical design adopted was randomized blocks in a 3x3 factorial scheme resulting in 9 treatments with 3 replicates (blocks. The

  15. Diagnosis of vegetation recovery within herbaceous sub-systems in the West African Sahel Region

    Science.gov (United States)

    Anchang, J.; Hanan, N. P.; Prihodko, L.; Sathyachandran, S. K.; Ji, W.; Ross, C. W.

    2017-12-01

    The West African Sahel (WAS) region is an extensive water limited environment that features a delicate balance of herbaceous and woody vegetation sub systems. These play an important role in the cycling of carbon while also supporting the dominant agro-pastoral human activities in the region. Quantifying the temporal trends in vegetation with regard to these two systems is therefore very important in assessing resource sustainability and food security. In water limited areas, rainfall is a primary driver of vegetation productivity and past watershed scale studies in the WAS region have shown that increase in the slope of the productivity-to-rainfall relationship is indicative of increasing cover and density of herbaceous plants. Given the importance of grazing resources to the region, we perform a wall-to-wall pixel based analysis of changing short-term vegetation sensitivity to changing annual rainfall (hereafter referred to as dS) to examine temporal trends in herbaceous vegetation health. Results indicate that 43% of the Sahelian region has experienced changes (P Western and Central Mali and South Western Niger. Positive dS is indicative of herbaceous vegetation recovery, in response to changing management and rainfall conditions that promote long-term herbaceous community recovery following degradation during the 1970-1980s droughts.

  16. Vegetation Change in Blue Oak Woodlands in California

    Science.gov (United States)

    Barbara A. Holzman; Barbara H. Allen-Diaz

    1991-01-01

    A preliminary report of a statewide project investigating vegetation change in blue oak (Quercus douglasii) woodlands in California is presented. Vegetation plots taken in the 1930s, as part of a statewide vegetation mapping project, were relocated and surveyed. Species composition, cover and tree stand structure data from the earlier study were...

  17. Monitoring of vegetation dynamics and assessing vegetation response to drought in the Iberian Peninsula

    Energy Technology Data Exchange (ETDEWEB)

    Garcia-Haro, F. J.; Moreno, A.; Perez-Hoyos, A.; Gilabert, M. A.; Melia, J.; Belda, F.; Poquet, D.; Martinez, B.; Verger, A.

    2009-07-01

    Monitoring the vegetation activity over long time-scales is necessary to discern ecosystem response to climate variability. Spatial and temporally consistent estimates of the biophysical variables such as fractional vegetation cover (FVC) and leaf area index (LAI) have been obtained in the context of DULCINEA Project. We used long-term monthly climate statistics to build simple climatic indices (SPI, moisture index) at different time scales. From these indices, we estimated that the climatic disturbances affected both the growing season and the total amount of vegetation. This implies that the anomaly of vegetation cover is a good indicator of moisture condition and can be an important data source when used for detecting an monitoring drought in the Iberian Peninsula. The impact of climate variability on the vegetation dynamics has shown not to be the same for every region. We concluded that the relationships between vegetation anomaly and moisture availability are significant for the arid and semiarid areas. (Author) 6 refs.

  18. Monitoring of vegetation dynamics and assessing vegetation response to drought in the Iberian Peninsula

    International Nuclear Information System (INIS)

    Garcia-Haro, F. J.; Moreno, A.; Perez-Hoyos, A.; Gilabert, M. A.; Melia, J.; Belda, F.; Poquet, D.; Martinez, B.; Verger, A.

    2009-01-01

    Monitoring the vegetation activity over long time-scales is necessary to discern ecosystem response to climate variability. Spatial and temporally consistent estimates of the biophysical variables such as fractional vegetation cover (FVC) and leaf area index (LAI) have been obtained in the context of DULCINEA Project. We used long-term monthly climate statistics to build simple climatic indices (SPI, moisture index) at different time scales. From these indices, we estimated that the climatic disturbances affected both the growing season and the total amount of vegetation. This implies that the anomaly of vegetation cover is a good indicator of moisture condition and can be an important data source when used for detecting an monitoring drought in the Iberian Peninsula. The impact of climate variability on the vegetation dynamics has shown not to be the same for every region. We concluded that the relationships between vegetation anomaly and moisture availability are significant for the arid and semiarid areas. (Author) 6 refs.

  19. East African Cenozoic vegetation history.

    Science.gov (United States)

    Linder, Hans Peter

    2017-11-01

    The modern vegetation of East Africa is a complex mosaic of rainforest patches; small islands of tropic-alpine vegetation; extensive savannas, ranging from almost pure grassland to wooded savannas; thickets; and montane grassland and forest. Here I trace the evolution of these vegetation types through the Cenozoic. Paleogene East Africa was most likely geomorphologically subdued and, as the few Eocene fossil sites suggest, a woodland in a seasonal climate. Woodland rather than rainforest may well have been the regional vegetation. Mountain building started with the Oligocene trap lava flows in Ethiopia, on which rainforest developed, with little evidence of grass and none of montane forests. The uplift of the East African Plateau took place during the middle Miocene. Fossil sites indicate the presence of rainforest, montane forest and thicket, and wooded grassland, often in close juxtaposition, from 17 to 10 Ma. By 10 Ma, marine deposits indicate extensive grassland in the region and isotope analysis indicates that this was a C 3 grassland. In the later Miocene rifting, first of the western Albertine Rift and then of the eastern Gregory Rift, added to the complexity of the environment. The building of the high strato-volcanos during the later Mio-Pliocene added environments suitable for tropic-alpine vegetation. During this time, the C 3 grassland was replaced by C 4 savannas, although overall the extent of grassland was reduced from the mid-Miocene high to the current low level. Lake-level fluctuations during the Quaternary indicate substantial variation in rainfall, presumably as a result of movements in the intertropical convergence zone and the Congo air boundary, but the impact of these fluctuations on the vegetation is still speculative. I argue that, overall, there was an increase in the complexity of East African vegetation complexity during the Neogene, largely as a result of orogeny. The impact of Quaternary climatic fluctuation is still poorly understood

  20. Abrupt vegetation transitions characterise long-term Amazonian peatland development

    Science.gov (United States)

    Roucoux, K. H.; Baker, T. R.; Gosling, W. D.; Honorio Coronado, E.; Jones, T. D.; Lahteenoja, O.; Lawson, I. T.

    2012-04-01

    Recent investigations of wetlands in western Amazonia have revealed the presence of extensive peatlands with peat deposits of up to 8 m-thick developing under a variety of vegetation types (Lähteenoja et al. 2012). Estimated to cover 150,000 km2 (Schulman et al. 1999), these peatlands make a valuable contribution to landscape and biological diversity and represent globally important carbon stores. In order to understand the processes leading to peat formation, and the sensitivity of these environments to future climatic change, it is necessary to understand their long-term history. The extent to which peatland vegetation changes over time, the stability of particular communities, the controls on transitions between vegetation types and how these factors relate to the accumulation of organic matter are not yet known. We report the first attempt to establish the long-term (millennial scale) vegetation history of a recently-described peatland site: Quistococha, a palm swamp, or aguajal, close to Iquitos in northern Peru. The vegetation is dominated by Mauritia flexuosa and Mauritiella armata and occupies a basin which is thought to be an abandoned channel of the River Amazon. We obtained a 4 m-long peat sequence from the deepest part of the basin. AMS-radiocarbon dating yielded a maximum age of 2,212 cal yr BP for the base of the peat, giving an average accumulation rate of 18 cm per century. Below the peat are 2 m of uniform, largely inorganic pale grey clays of lacustrine origin, which are underlain by an unknown thickness of inorganic sandy-silty clay of fluvial origin. Pollen analysis, carried out at c. 88-year intervals, shows the last 2,212 years to be characterised by the development of at least four distinct vegetation communities, with peat accumulating throughout. The main phases were: (1) Formation of Cyperaceae (sedge) fen coincident with peat initiation; (2) A short-lived phase of local Mauritia/Mauritiella development; (3) Development of mixed wet

  1. Large-Scale Variation in Forest Carbon Turnover Rate and its Relation to Climate - Remote Sensing vs. Global Vegetation Models

    Science.gov (United States)

    Carvalhais, N.; Thurner, M.; Beer, C.; Forkel, M.; Rademacher, T. T.; Santoro, M.; Tum, M.; Schmullius, C.

    2015-12-01

    While vegetation productivity is known to be strongly correlated to climate, there is a need for an improved understanding of the underlying processes of vegetation carbon turnover and their importance at a global scale. This shortcoming has been due to the lack of spatially extensive information on vegetation carbon stocks, which we recently have been able to overcome by a biomass dataset covering northern boreal and temperate forests originating from radar remote sensing. Based on state-of-the-art products on biomass and NPP, we are for the first time able to study the relation between carbon turnover rate and a set of climate indices in northern boreal and temperate forests. The implementation of climate-related mortality processes, for instance drought, fire, frost or insect effects, is often lacking or insufficient in current global vegetation models. In contrast to our observation-based findings, investigated models from the Inter-Sectoral Impact Model Intercomparison Project (ISI-MIP), including HYBRID4, JeDi, JULES, LPJml, ORCHIDEE, SDGVM, and VISIT, are able to reproduce spatial climate - turnover rate relationships only to a limited extent. While most of the models compare relatively well to observation-based NPP, simulated vegetation carbon stocks are severely biased compared to our biomass dataset. Current limitations lead to considerable uncertainties in the estimated vegetation carbon turnover, contributing substantially to the forest feedback to climate change. Our results are the basis for improving mortality concepts in global vegetation models and estimating their impact on the land carbon balance.

  2. Effects of vegetation structure on biomass accumulation in a Balanced Optimality Structure Vegetation Model (BOSVM v1.0

    Directory of Open Access Journals (Sweden)

    Z. Yin

    2014-05-01

    Full Text Available A myriad of interactions exist between vegetation and local climate for arid and semi-arid regions. Vegetation function, structure and individual behavior have large impacts on carbon–water–energy balances, which consequently influence local climate variability that, in turn, feeds back to the vegetation. In this study, a conceptual vegetation structure scheme is formulated and tested in the new Balanced Optimality Structure Vegetation Model (BOSVM to explore the importance of vegetation structure and vegetation adaptation to water stress on equilibrium biomass states. Surface energy, water and carbon fluxes are simulated for a range of vegetation structures across a precipitation gradient in West Africa and optimal vegetation structures that maximize biomass for each precipitation regime are determined. Two different strategies of vegetation adaptation to water stress are included. Under dry conditions vegetation tries to maximize the water use efficiency and leaf area index as it tries to maximize carbon gain. However, a negative feedback mechanism in the vegetation–soil water system is found as the vegetation also tries to minimize its cover to optimize the surrounding bare ground area from which water can be extracted, thereby forming patches of vertical vegetation. Under larger precipitation, a positive feedback mechanism is found in which vegetation tries to maximize its cover as it then can reduce water loss from bare soil while having maximum carbon gain due to a large leaf area index. The competition between vegetation and bare soil determines a transition between a "survival" state to a "growing" state.

  3. Microscale vegetation-soil feedback boosts hysteresis in a regional vegetation-climate system

    NARCIS (Netherlands)

    Janssen, R.H.H.; Meinders, M.B.J.; Nes, van E.H.; Scheffer, M.

    2008-01-01

    It has been hypothesized that a positive feedback between vegetation cover and monsoon circulation may lead to the existence of two alternative stable states in the Sahara region: a vegetated state with moderate precipitation and a desert state with low precipitation. This could explain the sudden

  4. Quantitative land-cover change in space and time over the last 11 000 years in the Baltic Sea catchment area and Norway - implications for studies on vegetation-climate interactions and land-use as a forcing of climate change

    Science.gov (United States)

    Trondman, Anna-Kari; Gaillard, Marie-José; Nielsen, Anne Birgitte; Shinya, Sugita; John, Birks; Anne, Bjune; Mihkel, Kangur; Per, Lagerås; Malgorzata, Latalowa; Matts, Lindbladh; Anneli, Poska; Siim, Veski

    2016-04-01

    Quantification of the effect of human-induced land-cover change (land-use) on climate in the past is still a subject of debate. Although we know that both biogeochemical and biogeophysical processes between the land surface and the atmosphere due to anthropogenic land-cover change lead to significant effects on climate, we still know little on the net effect of both types of processes. For instance climate modelling studies have shown that the extent of deforestation in Europe between 6k and 0.2k - as proposed by the KK scenarios of Anthropogenic Land Cover Change (ALCC) of Kaplan et al (2009) - has either warming or cooling biogeophysical effects on the geographical location (Strandberg et al., 2014). Further progress in our understanding of the effects of land-use change on climate greatly depends on the availability of reliable, empirical data on past land-use changes in quantitative terms. We present here pollen-based estimates of regional vegetation cover over the Holocene in the catchment of the Baltic Sea and in Norway. The regional abundance of individual plant species, genus, and groups of taxa were estimated at a 0.5k - to 0.1k - calender year time resolution using 339 pollen records and the REVEALS model (Sugita, 2007). Although there are very large differences between pollen percentages and REVEALS estimates of plant cover in terms of percentage values, the general trends in relative changes of the large landscape units (coniferous trees, deciduous trees, and open land) over time are comparable between the two. However, the ages obtained for the establishment of all tree taxa using a "REVEALS estimate threshold" of 1% are almost all older (by 0.5k years or more) than the ages inferred earlier from pollen percentages, and the times of maximum abundances of the tree taxa, as well as the relationships trees/openland and coniferous/deciduous are different between pollen percentages and plant cover. The pollen-based REVEALS cover of open land confirms the

  5. Rendering Future Vegetation Change across Large Regions of the US

    Science.gov (United States)

    Sant'Anna Dias, Felipe; Gu, Yuting; Agarwalla, Yashika; Cheng, Yiwei; Patil, Sopan; Stieglitz, Marc; Turk, Greg

    2015-04-01

    We use two Machine Learning techniques, Decision Trees (DT) and Neural Networks (NN), to provide classified images and photorealistic renderings of future vegetation cover at three large regions in the US. The training data used to generate current vegetation cover include Landsat surface reflectance images, USGS Land Cover maps, 50 years of mean annual temperature and precipitation for the period 1950 - 2000, elevation, aspect and slope data. Present vegetation cover was generated on a 100m grid. Future vegetation cover for the period 2061- 2080 was predicted using the 1 km resolution bias corrected data from the NASA Goddard Institute for Space Studies Global Climate Model E simulation. The three test regions encompass a wide range of climatic gradients, topographic variation, and vegetation cover. The central Oregon site covers 19,182 square km and includes the Ochoco and Malheur National Forest. Vegetation cover is 50% evergreen forest and 50% shrubs and scrubland. The northwest Washington site covers 14,182 square km. Vegetation cover is 60% evergreen forest, 14% scrubs, 7% grassland, and 7% barren land. The remainder of the area includes deciduous forest, perennial snow cover, and wetlands. The third site, the Jemez mountain region of north central New Mexico, covers 5,500 square km. Vegetation cover is 47% evergreen forest, 31% shrubs, 13% grasses, and 3% deciduous forest. The remainder of the area includes developed and cultivated areas and wetlands. Using the above mentioned data sets we first trained our DT and NN models to reproduce current vegetation. The land cover classified images were compared directly to the USGS land cover data. The photorealistic generated vegetation images were compared directly to the remotely sensed surface reflectance maps. For all three sites, similarity between generated and observed vegetation cover was quite remarkable. The three trained models were then used to explore what the equilibrium vegetation would look like for

  6. Evaluation of burial ground soil covers

    International Nuclear Information System (INIS)

    Fenimore, J.W.

    1976-11-01

    Solid radioactive waste burial at the Savannah River Plant between 1955 and 1972 filled a 76-acre site. Burial operations then were shifted to an adjacent site, and a program was begun to develop a land cover that would: (1) minimize soil erosion; and (2) protect the buried waste from deep-rooted plants, since radionuclides can be recycled by uptake through root systems. In anticipation of the need for a suitable soil cover, five grass species were planted on 20 plots (4 plots of each species) at the burial ground (Facility 643-G) in 1969. The grass plots were planted for evaluation of viability, root depth, and erosion protection existing under conditions of low fertility and minimum care. In addition, 16 different artificial soil covers were installed on 32 plots (each cover on two plots) to evaluate: (1) resistance of cover to deterioration from weathering; (2) resistance of cover to encroachment by deep-rooted plants; and (3) soil erosion protection provided by the cover. All test plots were observed and photographed in 1970 and in 1974. After both grass and artificial soil covers were tested five years, the following results were observed: Pensacola Bahia grass was the best of the five cover grasses tested; and fifteen of the sixteen artificial covers that were tested controlled vegetation growth and soil erosion. Photographs of the test plots will be retaken at five-year intervals for future documentation

  7. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  8. Vegetation survey of Pen Branch and Four Mile Creek wetlands

    Energy Technology Data Exchange (ETDEWEB)

    1992-10-01

    One hundred-fifty plots were recently sampled (vegetational sampling study) at the Savannah River Site (SRS). An extensive characterization of the vascular flora, in four predetermined strata (overstory, Understory, shrub layer, and ground cover), was undertaken to determine dominance, co-dominance, and the importance value (I.V.) of each species. These results will be used by the Savannah River Laboratory (SRL) to evaluate the environmental status of Four Mile Creek, Pen Branch, and two upland pine stands. Objectives of this study were to: Describe in detail the plant communities previously mapped with reference to the topography and drainage, including species of plants present: Examine the successional trends within each sampling area and describe the extent to which current vegetation communities have resulted from specific earlier vegetation disturbances (e.g., logging and grazing); describe in detail the botanical field techniques used to sample the flora; describe the habitat and location of protected and/or rare species of plants; and collect and prepare plant species as herbarium quality specimens. Sampling was conducted at Four Mile Creek and Pen Branch, and in two upland pine plantations of different age growth.

  9. Evaluating derived vegetation indices and cover fraction to estimate ...

    African Journals Online (AJOL)

    This study was conducted to assess satellite data for quantifying and mapping the spatial distribution of rangeland biophysical parameters (aboveground biomass) from different geographic locations in the North West province, South Africa. Two major factors affecting the quality and conditions of the rangelands, namely ...

  10. Vegetation Cover - Spears and Didion Ranches [ds319

    Data.gov (United States)

    California Natural Resource Agency — These data are the summary statistics calculated for components of the herbaceous layers, and shrubs and trees from the three 0.05-ha circular plot habitat samples...

  11. Evaluating derived vegetation indices and cover fraction to estimate ...

    African Journals Online (AJOL)

    Nahom

    This study was conducted to assess satellite data for quantifying and mapping the ... aboveground biomass using regression models of the sample aboveground ... especially in the context of drought, land degradation risk assessment and.

  12. Alteration of arsenopyrite in soils under different vegetation covers

    Czech Academy of Sciences Publication Activity Database

    Mihaljevič, M.; Ettler, V.; Šebek, O.; Drahota, Petr; Strnad, L.; Procházka, R.; Zeman, J.; Šráček, O.

    2010-01-01

    Roč. 408, č. 6 (2010), s. 1286-1294 ISSN 0048-9697 Institutional research plan: CEZ:AV0Z30130516 Keywords : arsenopyrite * arsenic * scorodite * speciation * weathering Subject RIV: DD - Geochemistry Impact factor: 3.190, year: 2010

  13. Effects of land cover change on rangeland vegetation in W ...

    African Journals Online (AJOL)

    Journal of Research in Forestry, Wildlife and Environment. Journal Home · ABOUT THIS JOURNAL · Advanced Search · Current Issue · Archives · Journal Home > Vol 8, No 2 (2016) >. Log in or Register to get access to full text downloads.

  14. Influence of vegetation cover on thermal regime of mountainous catchments

    Czech Academy of Sciences Publication Activity Database

    Tesař, Miroslav; Šír, Miloslav; Lichner, Ľ.; Zelenková, E.

    2006-01-01

    Roč. 61, Suppl. 19 (2006), S311-S314 ISSN 1335-6372 R&D Projects: GA ČR GA205/05/2312 Institutional research plan: CEZ:AV0Z20600510 Keywords : climate * plant transpiration * thermal regime Subject RIV: DA - Hydrology ; Limnology

  15. Deployment of an alternative cover and final closure of the Mixed Waste Landfill, Sandia National Laboratories, Albuquerque, New Mexico.

    Energy Technology Data Exchange (ETDEWEB)

    Peace, Gerald (Jerry) L.; Goering, Timothy James (GRAM, Inc., Albuquerque, NM); McVey, Michael David (GRAM, Inc., Albuquerque, NM); Borns, David James

    2003-06-01

    An alternative cover design consisting of a monolithic layer of native soil is proposed as the closure path for the Mixed Waste Landfill at Sandia National Laboratories, New Mexico. The proposed design would rely upon soil thickness and evapotranspiration to provide long-term performance and stability, and would be inexpensive to build and maintain. The proposed design is a 3-ft-thick, vegetated soil cover. The alternative cover meets the intent of RCRA Subtitle C regulations in that: (a) water migration through the cover is minimized; (b) maintenance is minimized by using a monolithic soil layer; (c) cover erosion is minimized by using erosion control measures; (d) subsidence is accommodated by using a ''soft'' design; and (e) the permeability of the cover is less than or equal to that of natural subsurface soil present. Performance of the proposed cover is integrated with natural site conditions, producing a ''system performance'' that will ensure that the cover is protective of human health and the environment. Natural site conditions that will produce a system performance include: (a) extremely low precipitation and high potential evapotranspiration; (b) negligible recharge to groundwater; (c) an extensive vadose zone; (d) groundwater approximately 500 ft below the surface; and (e) a versatile, native flora that will persist indefinitely as a climax ecological community with little or no maintenance.

  16. Historical land-cover/use in different slope and riparian buffer zones in watersheds of the state of São Paulo, Brazil Cobertura vegetal em diferentes usos do solo e declividades do terreno em bacias hidrográficas do estado de São Paulo, Brasil

    Directory of Open Access Journals (Sweden)

    Alexandre Marco da Silva

    2007-08-01

    Full Text Available Information about the land cover of a region it is a key information for several purposes. This paper aimed to elaborate land-cover maps using digital satellite images obtained in 1997 from seven watersheds (Piracicaba, Moji-Guaçu, Alto Paranapanema, Turvo Aguapeí, Peixe, and São José dos Dourados located in the State of São Paulo, southeastern Brazil. Additionaly, this study evaluated the relationship between land-cover and slopes of the terrain of the seven watersheds. A third objective was to estimate the percentage of riparian vegetation currently remaining along the streams in a 30-meter width buffer zone. Three research questions were posed: i What is the dominant land-cover of these watersheds? ii Is the riparian vegetation well preserved in the 30m width buffer zone? If not, iii what is the dominant land-cover in these areas and what would be the cost of recovering such areas? Pasture was the predominant land-cover, occurring in approximately 50% of the entire study area, while sugar cane (Saccharum officinarum (14% constituted the second most frequent land-cover. Approximately 50% of the area of the seven basins is considered flat (40% or smoothly rolling (10%. The terrain only becomes hillier in the Piracicaba and Alto Paranapanema basins, where a little less than 50% have slopes higher than 8%. The total riparian buffer strip zone occupied an area equivalent to approximately 6,200 km². From this total, only 25% is preserved. Pasture is the main land-cover of the riparian buffer strip zone.Informações sobre mudanças no uso e cobertura do solo são fundamentais para vários propósitos sociais, econômicos e ambientais. O principal objetivo deste estudo foi elaborar mapas de cobertura do solo usando imagens digitais obtidas por satélite no ano de 1997 nas seguintes bacias hidrográficas do Estado de São Paulo: Piracicaba, Moji-Guaçu, Alto Paranapanema, Turvo Aguapeí, Peixe, and São José dos Dourados. Adicionalmente, a

  17. Impacts of Land Cover Changes on Climate over China

    Science.gov (United States)

    Chen, L.; Frauenfeld, O. W.

    2014-12-01

    Land cover changes can influence regional climate through modifying the surface energy balance and water fluxes, and can also affect climate at large scales via changes in atmospheric general circulation. With rapid population growth and economic development, China has experienced significant land cover changes, such as deforestation, grassland degradation, and farmland expansion. In this study, the Community Earth System Model (CESM) is used to investigate the climate impacts of anthropogenic land cover changes over China. To isolate the climatic effects of land cover change, we focus on the CAM and CLM models, with prescribed climatological sea surface temperature and sea ice cover. Two experiments were performed, one with current vegetation and the other with potential vegetation. Current vegetation conditions were derived from Moderate Resolution Imaging Spectroradiometer (MODIS) satellite observations, and potential vegetation over China was obtained from Ramankutty and Foley's global potential vegetation dataset. Impacts of land cover changes on surface air temperature and precipitation are assessed based on the difference of the two experiments. Results suggest that land cover changes have a cold-season cooling effect in a large region of China, but a warming effect in summer. These temperature changes can be reconciled with albedo forcing and evapotranspiration. Moreover, impacts on atmospheric circulation and the Asian Monsoon is also discussed.

  18. Comparison of inversion accuracy of soil copper content from vegetation indices under different spectral resolution

    Science.gov (United States)

    Sun, Zhongqing; Shang, Kun; Jia, Lingjun

    2018-03-01

    Remote sensing inversion of heavy metal in vegetation leaves is generally based on the physiological characteristics of vegetation spectrum under heavy metal stress, and empirical models with vegetation indices are established to inverse the heavy metal content of vegetation leaves. However, the research of inversion of heavy metal content in vegetation-covered soil is still rare. In this study, Pulang is chosen as study area. The regression model of a typical heavy metal element, copper (Cu), is established with vegetation indices. We mainly investigate the inversion accuracies of Cu element in vegetation-covered soil by different vegetation indices according to specific spectral resolutions of ASD (Analytical Spectral Device) and Hyperion data. The inversion results of soil copper content in the vegetation-covered area shows a good accuracy, and the vegetation indices under ASD spectral resolution correspond to better results.

  19. Lake Bathymetric Aquatic Vegetation

    Data.gov (United States)

    Minnesota Department of Natural Resources — Aquatic vegetation represented as polygon features, coded with vegetation type (emergent, submergent, etc.) and field survey date. Polygons were digitized from...

  20. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    1999-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere....

  1. [Effects of road construction on regional vegetation types].

    Science.gov (United States)

    Liu, Shi-Liang; Liu, Qi; Wang, Cong; Yang, Jue-Jie; Deng, Li

    2013-05-01

    As a regional artificial disturbance component, road exerts great effects on vegetation types, and plays a substantial role in defining vegetation distribution to a certain extent. Aiming at the tropical rainforest degradation and artificial forest expansion in Yunnan Province of Southwest China, this paper analyzed the effects of road network extension on regional vegetation types. In the Province, different classes of roads had different effects on the vegetation types, but no obvious regularity was observed in the effects on the patch areas of different vegetation types due to the great variations of road length and affected distance. However, the vegetation patch number was more affected by lower class roads because of their wide distribution. As for different vegetation types, the vegetations on cultivated land were most affected by roads, followed by Castanopsis hystrix and Schima wallichii forests. Road network formation contributed most to the vegetation fragmentation, and there existed significant correlations between the human disturbance factors including village- and road distributions.

  2. Vegetation fire proneness in Europe

    Science.gov (United States)

    Pereira, Mário; Aranha, José; Amraoui, Malik

    2015-04-01

    Fire selectivity has been studied for vegetation classes in terms of fire frequency and fire size in a few European regions. This analysis is often performed along with other landscape variables such as topography, distance to roads and towns. These studies aims to assess the landscape sensitivity to forest fires in peri-urban areas and land cover changes, to define landscape management guidelines and policies based on the relationships between landscape and fires in the Mediterranean region. Therefore, the objectives of this study includes the: (i) analysis of the spatial and temporal variability statistics within Europe; and, (ii) the identification and characterization of the vegetated land cover classes affected by fires; and, (iii) to propose a fire proneness index. The datasets used in the present study comprises: Corine Land Cover (CLC) maps for 2000 and 2006 (CLC2000, CLC2006) and burned area (BA) perimeters, from 2000 to 2013 in Europe, provided by the European Forest Fire Information System (EFFIS). The CLC is a part of the European Commission programme to COoRdinate INformation on the Environment (Corine) and it provides consistent, reliable and comparable information on land cover across Europe. Both the CLC and EFFIS datasets were combined using geostatistics and Geographical Information System (GIS) techniques to access the spatial and temporal evolution of the types of shrubs and forest affected by fires. Obtained results confirms the usefulness and efficiency of the land cover classification scheme and fire proneness index which allows to quantify and to compare the propensity of vegetation classes and countries to fire. As expected, differences between northern and southern Europe are notorious in what concern to land cover distribution, fire incidence and fire proneness of vegetation cover classes. This work was supported by national funds by FCT - Portuguese Foundation for Science and Technology, under the project PEst-OE/AGR/UI4033/2014 and by

  3. Exploring vegetation in the fourth dimension.

    Science.gov (United States)

    Mitchell, Fraser J G

    2011-01-01

    Much ecological research focuses on changes in vegetation on spatial scales from stands to landscapes; however, capturing data on vegetation change over relevant timescales remains a challenge. Pollen analysis offers unrivalled access to data with global coverage over long timescales. Robust techniques have now been developed that enable pollen data to be converted into vegetation data in terms of individual taxa, plant communities or biomes, with the possibility of deriving from those data a range of plant attributes and ecological indicators. In this review, I discuss how coupling pollen with macrofossil, charcoal and genetic data opens up the extensive pollen databases to investigation of the drivers of vegetation change over time and also provides extensive data sets for testing hypotheses with wide ecological relevance. © 2010 Elsevier Ltd. All rights reserved.

  4. Branched polynomial covering maps

    DEFF Research Database (Denmark)

    Hansen, Vagn Lundsgaard

    2002-01-01

    A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch ...... set. Particular studies are made of branched polynomial covering maps arising from Riemann surfaces and from knots in the 3-sphere. (C) 2001 Elsevier Science B.V. All rights reserved.......A Weierstrass polynomial with multiple roots in certain points leads to a branched covering map. With this as the guiding example, we formally define and study the notion of a branched polynomial covering map. We shall prove that many finite covering maps are polynomial outside a discrete branch...

  5. Predictive Mapping of Dwarf Shrub Vegetation in an Arid High Mountain Ecosystem Using Remote Sensing and Random Forests

    Directory of Open Access Journals (Sweden)

    Kim André Vanselow

    2014-07-01

    Full Text Available In many arid mountains, dwarf shrubs represent the most important fodder and firewood resources; therefore, they are intensely used. For the Eastern Pamirs (Tajikistan, they are assumed to be overused. However, empirical evidence on this issue is lacking. We aim to provide a method capable of mapping vegetation in this mountain desert. We used random forest models based on remote sensing data (RapidEye, ASTER GDEM and 359 plots to predictively map total vegetative cover and the distribution of the most important firewood plants, K. ceratoides and A. leucotricha. These species were mapped as present in 33.8% of the study area (accuracy 90.6%. The total cover of the dwarf shrub communities ranged from 0.5% to 51% (per pixel. Areas with very low cover were limited to the vicinity of roads and settlements. The model could explain 80.2% of the total variance. The most important predictor across the models was MSAVI2 (a spectral vegetation index particularly invented for low-cover areas. We conclude that the combination of statistical models and remote sensing data worked well to map vegetation in an arid mountainous environment. With this approach, we were able to provide tangible data on dwarf shrub resources in the Eastern Pamirs and to relativize previous reports about their extensive depletion.

  6. RESPONSE OF RIPARIAN VEGETATION IN AUSTRALIA"S LARGEST RIVER BASIN TO INTER AND INTRA-ANNUAL CLIMATE VARIABILITY AND FLOODING AS QUANTIFIED WITH LANDSAT AND MODIS

    Directory of Open Access Journals (Sweden)

    M. Broich

    2016-06-01

    Full Text Available Australia is a continent subject to high rainfall variability, which has major influences on runoff and vegetation dynamics. However, the resulting spatial-temporal pattern of flooding and its influence on riparian vegetation has not been quantified in a spatially explicit way. Here we focused on the floodplains of the entire Murray-Darling Basin (MDB, an area that covers over 1M km2, as a case study. The MDB is the country’s primary agricultural area with scarce water resources subject to competing demands and impacted by climate change and more recently by the Millennium Drought (1999–2009. Riparian vegetation in the MDB floodplain suffered extensive decline providing a dramatic degradation of riparian vegetation. We quantified the spatial-temporal impact of rainfall, temperature and flooding patters on vegetation dynamics at the subcontinental to local scales and across inter to intra-annual time scales based on three decades of Landsat (25k images, Bureau of Meteorology data and one decade of MODIS data. Vegetation response varied in space and time and with vegetation types, densities and location relative to areas frequently flooded. Vegetation degradation trends were observed over riparian forests and woodlands in areas where flooding regimes have changed to less frequent and smaller inundation extents. Conversely, herbaceous vegetation phenology followed primarily a ‘boom’ and ‘bust’ cycle, related to inter-annual rainfall variability. Spatial patters of vegetation degradation changed along the N-S rainfall gradient but flooding regimes and vegetation degradation patterns also varied at finer scale, highlighting the importance of a spatially explicit, internally consistent analysis and setting the stage for investigating further cross-scale relationships. Results are of interest for land and water management decisions. The approach developed here can be applied to other areas globally such as the Nile river basin and

  7. MODIS/Terra Vegetation Continuous Fields Yearly L3 Global 500m SIN Grid V051

    Data.gov (United States)

    National Aeronautics and Space Administration — The Terra MODIS Vegetation Continuous Fields (VCF) product is a sub-pixel-level representation of surface vegetation cover estimates globally. Designed to...

  8. Where to Combat Shrub Encroachment in Alpine Timberline Ecosystems: Combining Remotely-Sensed Vegetation Information with Species Habitat Modelling.

    Directory of Open Access Journals (Sweden)

    Veronika Braunisch

    Full Text Available In many cultural landscapes, the abandonment of traditional grazing leads to encroachment of pastures by woody plants, which reduces habitat heterogeneity and impacts biodiversity typical of semi-open habitats. We developed a framework of mutually interacting spatial models to locate areas where shrub encroachment in Alpine treeline ecosystems deteriorates vulnerable species' habitat, using black grouse Tetrao tetrix (L. in the Swiss Alps as a study model. Combining field observations and remote-sensing information we 1 identified and located the six predominant treeline vegetation types; 2 modelled current black grouse breeding habitat as a function thereof so as to derive optimal habitat profiles; 3 simulated from these profiles the theoretical spatial extension of breeding habitat when assuming optimal vegetation conditions throughout; and used the discrepancy between (2 and (3 to 4 locate major aggregations of homogeneous shrub vegetation in otherwise suitable breeding habitat as priority sites for habitat restoration. All six vegetation types (alpine pasture, coniferous forest, Alnus viridis (Chaix, Rhododendron-dominated, Juniperus-dominated and mixed heathland were predicted with high accuracy (AUC >0.9. Breeding black grouse preferred a heterogeneous mosaic of vegetation types, with none exceeding 50% cover. While 15% of the timberline belt currently offered suitable breeding habitat, twice that fraction (29% would potentially be suitable when assuming optimal shrub and ground vegetation conditions throughout the study area. Yet, only 10% of this difference was attributed to habitat deterioration by shrub-encroachment of dense heathland (all types 5.2% and Alnus viridis (4.8%. The presented method provides both a general, large-scale assessment of areas covered by dense shrub vegetation as well as specific target values and priority areas for habitat restoration related to a selected target organism. This facilitates optimizing the

  9. Where to Combat Shrub Encroachment in Alpine Timberline Ecosystems: Combining Remotely-Sensed Vegetation Information with Species Habitat Modelling.

    Science.gov (United States)

    Braunisch, Veronika; Patthey, Patrick; Arlettaz, Raphaël

    2016-01-01

    In many cultural landscapes, the abandonment of traditional grazing leads to encroachment of pastures by woody plants, which reduces habitat heterogeneity and impacts biodiversity typical of semi-open habitats. We developed a framework of mutually interacting spatial models to locate areas where shrub encroachment in Alpine treeline ecosystems deteriorates vulnerable species' habitat, using black grouse Tetrao tetrix (L.) in the Swiss Alps as a study model. Combining field observations and remote-sensing information we 1) identified and located the six predominant treeline vegetation types; 2) modelled current black grouse breeding habitat as a function thereof so as to derive optimal habitat profiles; 3) simulated from these profiles the theoretical spatial extension of breeding habitat when assuming optimal vegetation conditions throughout; and used the discrepancy between (2) and (3) to 4) locate major aggregations of homogeneous shrub vegetation in otherwise suitable breeding habitat as priority sites for habitat restoration. All six vegetation types (alpine pasture, coniferous forest, Alnus viridis (Chaix), Rhododendron-dominated, Juniperus-dominated and mixed heathland) were predicted with high accuracy (AUC >0.9). Breeding black grouse preferred a heterogeneous mosaic of vegetation types, with none exceeding 50% cover. While 15% of the timberline belt currently offered suitable breeding habitat, twice that fraction (29%) would potentially be suitable when assuming optimal shrub and ground vegetation conditions throughout the study area. Yet, only 10% of this difference was attributed to habitat deterioration by shrub-encroachment of dense heathland (all types 5.2%) and Alnus viridis (4.8%). The presented method provides both a general, large-scale assessment of areas covered by dense shrub vegetation as well as specific target values and priority areas for habitat restoration related to a selected target organism. This facilitates optimizing the spatial

  10. Vegetation index anomaly response to varying lengths of drought across vegetation and climatic gradients in Hawaii

    Science.gov (United States)

    Lucas, M.; Miura, T.; Trauernicht, C.; Frazier, A. G.

    2017-12-01

    A drought which results in prolonged and extended deficit in naturally available water supply and creates multiple stresses across ecosystems is classified as an ecological drought. Detecting and understanding the dynamics and response of such droughts in tropical systems, specifically across various vegetation and climatic gradients is fairly undetermined, yet increasingly important for better understandings of the ecological effects of drought. To understanding the link between what lengths and intensities of known meteorological drought triggers detectable ecological vegetation responses, a landscape scale regression analysis evaluating the response (slope) and relationship strength (R-squared) of several cumulative SPI (standard precipitation index) lengths(1, 3, 6, 12, 18, 24, 36, 48, and 60 month), to various satellite derived monthly vegetation indices anomalies (NDVI, EVI, EVI2, and LSWI) was performed across a matrix of dominant vegetation covers (grassland, shrubland, and forest) and climatic moisture zones (arid, dry, mesic, and wet). The nine different SPI lags across these climactic and vegetation gradients was suggest that stronger relationships and steeper slopes were found in dryer climates (across all vegetation covers) and finer vegetation types (across all moisture zones). Overall NDVI, EVI and EVI2 showed the best utility in these dryer climatic zones across all vegetation types. Within arid and dry areas "best" fits showed increasing lengths of cumulative SPI were with increasing vegetation coarseness respectively. Overall these findings suggest that rainfall driven drought may have a stronger impact on the ecological condition of vegetation in water limited systems with finer vegetation types ecologically responding more rapidly to meteorological drought events than coarser woody vegetation systems. These results suggest that previously and newly documented trends of decreasing rainfall and increasing drought in Hawaiian drylands may have

  11. SMAP Multi-Temporal Soil Moisture and Vegetation Optical Depth Retrievals in Vegetated Regions Including Higher-Order Soil-Canopy Interactions

    Science.gov (United States)

    Feldman, A.; Akbar, R.; Konings, A. G.; Piles, M.; Entekhabi, D.

    2017-12-01

    The Soil Moisture Active Passive (SMAP) mission utilizes a zeroth order radiative transfer model, known as the tau-omega model, to retrieve soil moisture from microwave brightness temperature observations. This model neglects first order scattering which is significant at L-Band in vegetated regions, or 30% of land cover. Previous higher order algorithms require extensive in-situ measurements and characterization of canopy layer physical properties. We propose a first order retrieval algorithm that approximately characterizes the eight first order emission pathways using rough surface reflectivity, vegetation optical depth (VOD), and scattering albedo terms. The recently developed Multi-Temporal Dual Channel Algorithm (MT-DCA) then retrieves these three parameters in a forward model without ancillary information under the assumption of temporally static albedo and constant vegetation water content between three day SMAP revisits. The approximated scattering terms are determined to be conservative estimates of analytically derived first order scattering terms. In addition, we find the first order algorithm to be more sensitive to surface emission than the tau-omega model. The simultaneously retrieved VOD, previously demonstrated to be proportional to vegetation water content, can provide insight into vegetation dynamics in regions with significant phenology. Specifically, dry tropical forests exhibit an increase in VOD during the dry season in alignment with prior studies that suggest that certain vegetative species green up during the dry season despite limited water availability. VOD retrieved using the first order algorithm and MT-DCA framework can therefore contribute to understanding of tropical forests' role in the carbon, energy, and water cycles, which has yet to be fully explained.

  12. Armored Geomembrane Cover Engineering

    Directory of Open Access Journals (Sweden)

    Kevin Foye

    2011-06-01

    Full Text Available Geomembranes are an important component of modern engineered barriers to prevent the infiltration of stormwater and runoff into contaminated soil and rock as well as waste containment facilities—a function generally described as a geomembrane cover. This paper presents a case history involving a novel implementation of a geomembrane cover system. Due to this novelty, the design engineers needed to assemble from disparate sources the design criteria for the engineering of the cover. This paper discusses the design methodologies assembled by the engineering team. This information will aid engineers designing similar cover systems as well as environmental and public health professionals selecting site improvements that involve infiltration barriers.

  13. Percent Forest Cover (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High percentages of forest cover (FORPCTFuture) generally indicate healthier ecosystems and cleaner surface water....

  14. Percent Forest Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Forests provide economic and ecological value. High percentages of forest cover (FORPCT) generally indicate healthier ecosystems and cleaner surface water. More...

  15. Improving automated disturbance maps using snow-covered landsat time series stacks

    Science.gov (United States)

    Kirk M. Stueve; Ian W. Housman; Patrick L. Zimmerman; Mark D. Nelson; Jeremy Webb; Charles H. Perry; Robert A. Chastain; Dale D. Gormanson; Chengquan Huang; Sean P. Healey; Warren B. Cohen

    2012-01-01

    Snow-covered winter Landsat time series stacks are used to develop a nonforest mask to enhance automated disturbance maps produced by the Vegetation Change Tracker (VCT). This method exploits the enhanced spectral separability between forested and nonforested areas that occurs with sufficient snow cover. This method resulted in significant improvements in Vegetation...

  16. Revegetation/rock cover for stabilization of inactive U-tailings sites

    International Nuclear Information System (INIS)

    Beedlow, P.A.; Cadwell, L.L.

    1982-01-01

    Soil placed over any sealant/barrier system can provide a protective mantle if the soil is not lost by erosion. Vegetation is an attractive choice for controlling erosion because it can provide an economic self-renewing cover that serves to reduce erosion by both wind and water. Vegetation alone, however, may not adequately stabilize the surface in extremely arid areas. In those areas, a properly designed surface treatment of rock cover, perhaps in conjunction with vegetation, may be necessary to stabilize the tailings surfaces. The objective of this program is to establish guidelines for surface stabilization that are compatible with sealant/barrier systems and that are suited to soils and climates at inactive uranium mill tailings sites. These guidelines will provide the means to estimate potential vegetation cover, potential erosion, effects of surface treatments on sealant/barrier systems, and costs of vegetation and rock covers. Methods for establishing vegetation on sealed tailings will also be provided

  17. Forest cover disturbances in the South Taiga of West Siberia

    Energy Technology Data Exchange (ETDEWEB)

    Dyukarev, E A; Pologova, N N; Golovatskaya, E A; Dyukarev, A G, E-mail: egor@imces.ru [Institute of Monitoring of Climatic and Ecological Systems SB RAS, Akademicheskii Prospekt 10/3 (Russian Federation)

    2011-07-15

    Analysis of vegetation cover and tendencies in forest cover changes at a typical site in the south of West Siberia was performed using remote sensing observations from Landsat. The Northern Eurasia Land Cover legend was used for the assessment of unsupervised classification results. The land cover maps constructed have shown that about half of the study area is occupied by wetlands with several distinctively different vegetation types. The area studied is typical for the South Taiga zone (ecoregion) of Western Siberia from the Ob' river to the Irtysh river, where loamy and clayey soil forming rocks are widespread. Similar vegetation structures dominate over 600 000 km{sup 2}, or about 20%, of the West Siberia area. Analyses of the forest cover changes show that the forest cover loss is not very significant. The area of forest disturbed in 1990-9 is equal to 16 008 ha. The area of forest disturbances during the 2000-7 period was about twice as high (30 907 ha). The main reasons for the forest reduction are intensive forest harvesting and strong windthrow. The high sustainability of the region studied against anthropogenic impacts is explained by the high overall wetness of the territory, the small population density, and the prevalence of deciduous forests at different succession stages with rich vegetation cover.

  18. Sociologists in Extension

    Science.gov (United States)

    Christenson, James A.; And Others

    1977-01-01

    The article describes the work activities of the extension sociologist, the relative advantage and disadvantage of extension roles in relation to teaching/research roles, and the relevance of sociological training and research for extension work. (NQ)

  19. Soil and ground cover

    International Nuclear Information System (INIS)

    Wiechen, A.; Heine, K.; Bundesanstalt fuer Milchforschung, Kiel

    1985-01-01

    The monitoring programmes set up in accordance with the directives for the surveillance of effluents from nuclear installations oblige operators of such installations to take samples of vegetation (grass) and soil twice a year at the least favourable place in the industrial plant's environment, and at a reference site, for radioactivity monitoring by gamma spectroscopy. In addition, the samples are to be examined for their Sr-90 content. Data recorded over the years show that nuclear facilities do not significantly contribute to soil and vegetation contamination with Sr-90 or Cs-137. The directives require regular interlaboratory comparisons, which are coordinated by the directing centre at Kiel. (DG) [de

  20. Experimental study and simulations of infiltration in evapotranspiration landfill covers

    Directory of Open Access Journals (Sweden)

    Wen-xian Zhang

    2009-09-01

    Full Text Available Various cover systems have been designed for landfill sites in order to minimize infiltration (percolation into the underlying waste. This study evaluated the soil water balance performance of evapotranspiration covers (ET covers and simulated percolation in the systems using the active region model (ARM. Experiments were conducted to measure water flow processes and water balance components in a bare soil cover and different ET covers. Results showed that vegetation played a critical role in controlling the water balance of the ET covers. In soil profiles of 60-cm depth with and without vegetation cover, the maximum soil water storage capacities were 97.2 mm and 62.8 mm, respectively. The percolation amount in the bare soil was 2.1 times that in the vegetation-covered soil. The ARM simulated percolation more accurately than the continuum model because it considered preferential flow. Numerical simulation results also indicated that using the ET cover system was an effective way of removing water through evapotranspiration, thus reducing percolation.

  1. Moisture content analysis of covered uranium mill tailings

    International Nuclear Information System (INIS)

    Mayer, D.W.; Beedlow, P.A.; Cadwell, L.L.

    1981-12-01

    The use of vegetation and rock covers to stabilize uranium mill tailings cover systems is being investigated by Pacific Northwest Laboratory. A modeling study of moisture movement through the tailings and cover layers was initiated to determine the effect of the stabilizing techniques. The cover system was simulated under climatic conditions occurring at Grand Junction, Colorado. The cover consisted of a layer of wet clay/gravel mix followed by a capillary barrier of washed rock and a surface layer of fill soil. Vegetation and rock were used to stabilize the surface layer. The simulation yielded moisture content and moisture storage values for the tailings and cover system along with information about moisture losses due to evaporation, transpiration, and drainage. The study demonstrates that different surface stabilization treatments lead to different degrees of moisture retention in the covered tailings pile. The evapotranspiration from vegetation can result in a relatively stable moisture content. Rock covers, however, may cause drainage to occur because they reduce evaporation and lead to a subsequent increase in moisture content. It is important to consider these effects when designing a surface stabilization treatment. Drainage may contribute to a groundwater pollution problem. A surface treatment that allows the cover system to dry out can increase the risk of atmospheric contamination through elevated radon emission rates

  2. Covered Bridge Security Manual

    Science.gov (United States)

    Brett Phares; Terry Wipf; Ryan Sievers; Travis Hosteng

    2013-01-01

    The design, construction, and use of covered timber bridges is all but a lost art in these days of pre-stressed concrete, high-performance steel, and the significant growth both in the volume and size of vehicles. Furthermore, many of the existing covered timber bridges are preserved only because of their status on the National Registry of Historic Places or the...

  3. Coastwide Reference Monitoring System (CRMS) Vegetation Volume Index: An assessment tool for marsh habitat focused on the three-dimensional structure at CRMS vegetation monitoring stations

    Science.gov (United States)

    Wood, William B.; Visser, Jenneke M.; Piazza, Sarai C.; Sharp, Leigh A.; Hundy, Laura C.; McGinnis, Tommy E.

    2015-12-04

    A Vegetation Volume (VV) variable and Vegetation Volume Index (VVI) have been developed for the Coastwide Reference Monitoring System (CRMS). The VV is a measure of the amount of three-dimensional vegetative structure present at each CRMS site and is based on vegetation data collected annually. The VV uses 10 stations per CRMS site to quantify four vegetation layers: carpet, herbaceous, shrub, and tree. For each layer an overall live vegetation percent cover and height are collected to create a layer volume; the individual layer volumes are then summed to generate a site vegetation volume profile. The VV uses the two-dimensional area of live vegetative cover (in square meters) multiplied by the height (in meters) of each layer to produce a volume (in cubic meters) for each layer present in a 2-meter by 2-meter station. These layers are additive, yielding a total volume for each of the 10 herbaceous vegetation stations and an overall CRMS marsh site average.

  4. Vegetation dynamics and dynamic vegetation science

    NARCIS (Netherlands)

    Van der Maarel, E

    1996-01-01

    his contribution presents a review of the development of the study of vegetation dynamics since 1979, in the framework of a jubilee meeting on progress in the study of vegetation. However, an exhaustive review is both impossible and unnecessary. It is impossible within the few pages available

  5. Remote sensing analysis of vegetation recovery following short-interval fires in Southern California shrublands.

    Science.gov (United States)

    Meng, Ran; Dennison, Philip E; D'Antonio, Carla M; Moritz, Max A

    2014-01-01

    Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing "type conversion". However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (<8 years) on chaparral recovery were evaluated by comparing areas that burned twice to adjacent areas burned only once. Twelve pairs of once- and twice-burned areas were compared using normalized burn ratio (NBR) distributions. Correlations between measures of recovery and explanatory factors (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery.

  6. Remote Sensing Analysis of Vegetation Recovery following Short-Interval Fires in Southern California Shrublands

    Science.gov (United States)

    Meng, Ran; Dennison, Philip E.; D’Antonio, Carla M.; Moritz, Max A.

    2014-01-01

    Increased fire frequency has been shown to promote alien plant invasions in the western United States, resulting in persistent vegetation type change. Short interval fires are widely considered to be detrimental to reestablishment of shrub species in southern California chaparral, facilitating the invasion of exotic annuals and producing “type conversion”. However, supporting evidence for type conversion has largely been at local, site scales and over short post-fire time scales. Type conversion has not been shown to be persistent or widespread in chaparral, and past range improvement studies present evidence that chaparral type conversion may be difficult and a relatively rare phenomenon across the landscape. With the aid of remote sensing data covering coastal southern California and a historical wildfire dataset, the effects of short interval fires (fire history, climate and elevation) were analyzed by linear regression. Reduced vegetation cover was found in some lower elevation areas that were burned twice in short interval fires, where non-sprouting species are more common. However, extensive type conversion of chaparral to grassland was not evident in this study. Most variables, with the exception of elevation, were moderately or poorly correlated with differences in vegetation recovery. PMID:25337785

  7. Phenolic Compounds in Brassica Vegetables

    Directory of Open Access Journals (Sweden)

    Pablo Velasco

    2010-12-01

    Full Text Available Phenolic compounds are a large group of phytochemicals widespread in the plant kingdom. Depending on their structure they can be classified into simple phenols, phenolic acids, hydroxycinnamic acid derivatives and flavonoids. Phenolic compounds have received considerable attention for being potentially protective factors against cancer and heart diseases, in part because of their potent antioxidative properties and their ubiquity in a wide range of commonly consumed foods of plant origin. The Brassicaceae family includes a wide range of horticultural crops, some of them with economic significance and extensively used in the diet throughout the world. The phenolic composition of Brassica vegetables has been recently investigated and, nowadays, the profile of different Brassica species is well established. Here, we review the significance of phenolic compounds as a source of beneficial compounds for human health and the influence of environmental conditions and processing mechanisms on the phenolic composition of Brassica vegetables.

  8. Pattern solutions of the Klausmeier Model for banded vegetation in semi-arid environments I

    International Nuclear Information System (INIS)

    Sherratt, Jonathan A

    2010-01-01

    In many semi-arid environments, vegetation cover is sparse, and is self-organized into large-scale spatial patterns. In particular, banded vegetation is typical on hillsides. Mathematical modelling is widely used to study these banded patterns, and many models are effectively extensions of a coupled reaction–diffusion–advection system proposed by Klausmeier (1999 Science 284 1826–8). However, there is currently very little mathematical theory on pattern solutions of these equations. This paper is the first in a series whose aim is a comprehensive understanding of these solutions, which can act as a springboard both for future simulation-based studies of the Klausmeier model, and for analysis of model extensions. The author focusses on a particular part of parameter space, and derives expressions for the boundaries of the parameter region in which patterns occur. The calculations are valid to leading order at large values of the 'slope parameter', which reflects a comparison of the rate of water flow downhill with the rate of vegetation dispersal. The form of the corresponding patterns is also studied, and the author shows that the leading order equations change close to one boundary of the parameter region in which there are patterns, leading to a homoclinic solution. Conclusions are drawn on the way in which changes in mean annual rainfall affect pattern properties, including overall biomass productivity

  9. Modeling Linkages Between Effective Impervious Surface and Urban Vegetation Productivity in Semi-arid Environments

    Science.gov (United States)

    Shields, C. A.; Tague, C.

    2010-12-01

    With a majority of the world's population now living in urban areas, the role of vegetation in urban ecosystems warrants increased attention. We address the question of how the fine scale (significantly impact the productivity of vegetation and uptake of C and N. To gain insight into how landscape features influence vegetation productivity, we use a coupled ecohydrogic model to estimate impacts of the amount and arrangement of impervious surfaces on vegetation water use. We use the model to explore how concepts from research in natural semi-arid ecosystems can be applied in the urban context. Ecological research in semi-arid ecosystems has shown that the arrangement of vegetated and bare surfaces plays a key role in regulating both runoff and ecosystem water use and productivity. Systems that include a mixture of bare and vegetated surfaces, for example, tend to show less runoff and more productivity than those with more homogeneous cover. In some instances, patchiness of bare and vegetated surfaces is more important than total vegetated area in determining rates of runoff and vegetation use of rainfall. In an urban context, impervious surfaces can be viewed as analogous to the bare surfaces present in undeveloped ecosystems. We consider not only the total impervious area (TIA), but also the effect of impervious area with a direct hydrologic connection to the stream network, effective impervious area (EIA). While increases in total impervious area (TIA) have been widely shown to impact catchment hydrology, the role of effective impervious area (EIA) has been less extensively studied. A consensus is emerging from the literature that EIA is as important or even more important than TIA as an indicator of catchment response to urbanization. Ecohydrologic models offer a tool to quantify the role of EIA on water availability and plant productivity and demonstrate the potential of urban areas to act as C or N sinks (and minimize the impacts such as increased storm runoff

  10. Engineered soil covers for management of salt impacted sites

    International Nuclear Information System (INIS)

    Sweeney, D.A.; Tratch, D.J.

    2005-01-01

    The use of engineered soil cover systems to mitigate environmental impacts from tailings and waste rock piles is becoming an accepted practice. This paper presented design concepts for soil covers related to reclamation practices in the mining industry as an effective risk management practice at salt impacted sites. Research and field programs have demonstrated that a layered engineered soil cover can reduce or eliminate infiltration. Key components of the system included re-establishing surface vegetation to balance precipitation fluxes with evapotranspiration potential, and design of a capillary break below the rooting zone to minimize deeper seated infiltration. It was anticipated that the incorporation of a vegetation cover and a capillary break would minimize infiltration into the waste rock or tailing pile and reduce the generation of acid rock drainage (ARD). Design of a layered soil cover requires the incorporation of meteorological data, moisture retention characteristics of the impacted soils, and proposed engineered cover materials. Performance of the soil cover was predicted using a finite element model combined with meteorological data from the site area, unsaturated soil properties of the parent sub-surface soils and potential covered materials. The soil cover design consisted of re-vegetation and a loose clay cover overlying a compacted till layer. The design was conducted for an off site release of salt impacted pasture land adjacent to a former highway maintenance yard. The model predicted minimal infiltration during high precipitation events and no infiltration during low precipitation events. Results indicated that the proposed soil cover would enable re-establishment of a productive agricultural ground cover, as well as minimizing the potential for additional salt migration. It was concluded that further research and development is needed to ensure that the cover system is an acceptable method for long-term risk management. 17 refs., 5 figs

  11. Covering folded shapes

    Directory of Open Access Journals (Sweden)

    Oswin Aichholzer

    2014-05-01

    Full Text Available Can folding a piece of paper flat make it larger? We explore whether a shape S must be scaled to cover a flat-folded copy of itself. We consider both single folds and arbitrary folds (continuous piecewise isometries \\(S\\to\\mathbb{R}^2\\. The underlying problem is motivated by computational origami, and is related to other covering and fixturing problems, such as Lebesgue's universal cover problem and force closure grasps. In addition to considering special shapes (squares, equilateral triangles, polygons and disks, we give upper and lower bounds on scale factors for single folds of convex objects and arbitrary folds of simply connected objects.

  12. SMEX02 Watershed Vegetation Sampling Data, Walnut Creek, Iowa

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set contains the vegetation parameters stand density, plant height, phenological stage, ground cover, green and dry biomass, row spacing, stem and leaf...

  13. Fruits and vegetables (image)

    Science.gov (United States)

    A healthy diet includes adding vegetables and fruit every day. Vegetables like broccoli, green beans, leafy greens, zucchini, cauliflower, cabbage, carrots, and tomatoes are low in calories and high in fiber, vitamins, and minerals. ...

  14. Vegetable Production System (Veggie)

    Data.gov (United States)

    National Aeronautics and Space Administration — The Vegetable Production System (Veggie) was developed to be a simple, easily stowed, high growth volume, low resource facility capable of producing fresh vegetables...

  15. Phytostabilization of metals by indigenous riparian vegetation ...

    African Journals Online (AJOL)

    When measured against an ideal hypothetical buffer zone, the buffer zones under investigation varied between intact and severely compromised. Intact riparian zones showed elevated metal concentrations in the soil, yet significantly lower concentrations in the river water compared to areas with insufficient vegetative cover ...

  16. Revegetation/rock cover for stabilization of inactive uranium mill tailings disposal sites

    International Nuclear Information System (INIS)

    Beedlow, P.A.; McShane, M.C.; Cadwell, L.L.

    1982-07-01

    Pacific Northwest Laboratory is developing design and performance guidelines for surface stabilization of inactive uranium mill tailings. In this work, vegetation and rock covers are being evaluated for maintaining long-term integrity of impoundment systems. Methods are being developed to estimate erosion rates associated with rock and/or vegetation covers, and to determine the effects of surface treatments on soil moisture. Interactions between surface treatments and barriers (radon and biological) are being studied as well. The product will be a set of guidelines to aid in designing surface covers. This report presents the status of this program and a discussion of considerations pertinent to the application of surface covers to tailings. Test plots located in Grand Junction, Colorado and Waterflow, New Mexico are being used to study: (1) the interactions between vegetation and radon and biological barriers, (2) the effects of surface covers on soil moisture, and (3) the effects of rock covers on vegetation

  17. Percent of Impervious Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — High amounts of impervious cover (parking lots, rooftops, roads, etc.) can increase water runoff, which may directly enter surface water. Runoff from roads often...

  18. Percent Wetland Cover

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  19. Percent Wetland Cover (Future)

    Data.gov (United States)

    U.S. Environmental Protection Agency — Wetlands act as filters, removing or diminishing the amount of pollutants that enter surface water. Higher values for percent of wetland cover (WETLNDSPCT) may be...

  20. Remote sensing of vegetation dynamics in drylands

    DEFF Research Database (Denmark)

    Tian, Feng; Brandt, Martin Stefan; Liu, Yi Y.

    2016-01-01

    Monitoring long-term biomass dynamics in drylands is of great importance for many environmental applications including land degradation and global carbon cycle modeling. Biomass has extensively been estimated based on the normalized difference vegetation index (NDVI) as a measure of the vegetatio...

  1. Comparing Profitability and Efficiency of Resource Use in Vegetable ...

    African Journals Online (AJOL)

    This study compared resource allocation, yield, net farm income and resource use efficiency under private and government controlled vegetable irrigation schemes. Production data covering three vegetable enterprises were collected from 280 respondents. This consisted of 141 from private and 139 from government ...

  2. European Vegetation Archive (EVA)

    NARCIS (Netherlands)

    Chytrý, Milan; Hennekens, S.M.; Jiménez-Alfaro, Borja; Schaminée, J.H.J.; Haveman, Rense; Janssen, J.A.M.

    2016-01-01

    The European Vegetation Archive (EVA) is a centralized database of European vegetation plots developed by the IAVS Working Group European Vegetation Survey. It has been in development since 2012 and first made available for use in research projects in 2014. It stores copies of national and

  3. Analysis of Vegetation Coverage Change Characteristics in Chongqing Based on MODIS - NDVI Data

    Science.gov (United States)

    Jianfeng, WU; Cao, Guangjie; Zhang, Fengtai; Li, Wei; Wang, Haiqing

    2017-12-01

    In order to study the characteristics of vegetation cover change in Chongqing, MODIS-NDVI is used as data source. In this paper, the change of vegetation coverage in Chongqing from 2000 to 2011 was analyzed by mean value method and difference method from year, spring, summer, autumn and winter respectively. The results showed that the change of vegetation cover was larger than that of the western region on the annual scale. On the seasonal scale, the vegetation in the spring was in the middle with a high and low trend. The higher vegetation area was distributed in the summer area, and the lower area of vegetation was concentrated in the western part of the study area. Vegetation in autumn showed a flaky distribution in space. Winter vegetation to the Yangtze River as the boundary, the south cover is slightly higher than the north.

  4. The dual effect of vegetation green-up date and strong wind on the return period of spring dust storms.

    Science.gov (United States)

    Feng, Jieling; Li, Ning; Zhang, Zhengtao; Chen, Xi

    2017-08-15

    Vegetation phenology changes have been widely applied in the disaster risk assessments of the spring dust storms, and vegetation green-up date shifts have a strong influence on dust storms. However, the effect of earlier vegetation green-up dates due to climate warming on the evaluation of dust storms return periods remains an important, but poorly understood issue. In this study, we evaluate the spring dust storm return period (February to June) in Inner Mongolia, Northern China, using 165 observations of severe spring dust storm events from 16 weather stations, and regional vegetation green-up dates as an integrated factor from NDVI (Normalized Difference Vegetation Index), covering a period from 1982 to 2007, by building the bivariate Copula model. We found that the joint return period showed better fitting results than without considering the integrated factor when the actual dust storm return period is longer than 2years. Also, for extremely severe dust storm events, the gap between simulation result and actual return period can be narrowed up to 0.4888years by using integrated factor. Furthermore, the risk map based on the return period results shows that the Mandula, Zhurihe, Sunitezuoqi, Narenbaolige stations are identified as high risk areas. In this study area, land surface is extensively covered by grasses and shrubs, vegetation green-up date can play a significant role in restraining spring dust storm outbreaks. Therefore, we suggest that Copula method can become a useful tool for joint return period evaluation and risk analysis of severe dust storms. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Comparison of regional and global land cover products and the implications for biogenic emission modeling.

    Science.gov (United States)

    Huang, Ling; McDonald-Buller, Elena; McGaughey, Gary; Kimura, Yosuke; Allen, David T

    2015-10-01

    Accurate estimates of biogenic emissions are required for air quality models that support the development of air quality management plans and attainment demonstrations. Land cover characterization is an essential driving input for most biogenic emissions models. This work contrasted the global Moderate Resolution Imaging Spectroradiometer (MODIS) land cover product against a regional land cover product developed for the Texas Commissions on Environmental Quality (TCEQ) over four climate regions in eastern Texas, where biogenic emissions comprise a large fraction of the total inventory of volatile organic compounds (VOCs) and land cover is highly diverse. The Model of Emissions of Gases and Aerosols from Nature (MEGAN) was utilized to investigate the influences of land cover characterization on modeled isoprene and monoterpene emissions through changes in the standard emission potential and emission activity factor, both separately and simultaneously. In Central Texas, forest coverage was significantly lower in the MODIS land cover product relative to the TCEQ data, which resulted in substantially lower estimates of isoprene and monoterpene emissions by as much as 90%. Differences in predicted isoprene and monoterpene emissions associated with variability in land cover characterization were primarily caused by differences in the standard emission potential, which is dependent on plant functional type. Photochemical modeling was conducted to investigate the effects of differences in estimated biogenic emissions associated with land cover characterization on predicted ozone concentrations using the Comprehensive Air Quality Model with Extensions (CAMx). Mean differences in maximum daily average 8-hour (MDA8) ozone concentrations were 2 to 6 ppb with maximum differences exceeding 20 ppb. Continued focus should be on reducing uncertainties in the representation of land cover through field validation. Uncertainties in the estimation of biogenic emissions associated with

  6. Climate under cover

    CERN Document Server

    Takakura, Tadashi

    2002-01-01

    1.1. INTRODUCTION Plastic covering, either framed or floating, is now used worldwide to protect crops from unfavorable growing conditions, such as severe weather and insects and birds. Protected cultivation in the broad sense, including mulching, has been widely spread by the innovation of plastic films. Paper, straw, and glass were the main materials used before the era of plastics. Utilization of plastics in agriculture started in the developed countries and is now spreading to the developing countries. Early utilization of plastic was in cold regions, and plastic was mainly used for protection from the cold. Now plastic is used also for protection from wind, insects and diseases. The use of covering techniques started with a simple system such as mulching, then row covers and small tunnels were developed, and finally plastic houses. Floating mulch was an exception to this sequence: it was introduced rather recently, although it is a simple structure. New development of functional and inexpensive films trig...

  7. Screening of plant species as ground cover on uranium mill tailings

    International Nuclear Information System (INIS)

    Venu Babu, P.; Eapen, S.

    2012-01-01

    The concept of construction of dams or holding areas for uranium mill tailings is relatively new in India and to date there is only one such facility being maintained by Uranium Corporation of India Limited (UCIL) at Jaduguda in Jharkhand. Due to the residual nature of radionuclides, chiefly uranium and its daughter products, special emphasis is given to the engineering aspects of the mill tailings ponds so as to ensure safety to general public for at least 200 years. Once a mill tailings pond reaches to its full capacity, creation of barrier layers over the mill tailings to prevent seepage of rain water and also erosion of mill tailings due to wind and water are advocated and a number of procedures are followed worldwide. Taking the extraordinary period of public safety to be assured, providing soil covers along with contouring and appropriate slopes over which vegetation is grown is gaining popularity. The vegetation not only reduces the impact of rain water hitting the soil cover, thereby reducing the soil erosion, but also lowers the moisture in the soil cover by extensive evapotranspiration, ensuring long term hydrological separation of the mill tailings underneath. Based on set criteria, applicable to the field scenario of mill tailings, a screening experiment was conducted under pot culture conditions to evaluate the survival and growth of different plant species. The plants after germination and hardening were transplanted into beakers containing mill tailings and periodical measurements on appropriate morphological characteristics such as plant height, length of twiners, number of tillers and number of leaves were recorded and evaluated. Of the twenty species tested in mill tailings, significant differences were noticed in the vigour of growth and several plant species could indeed establish well completing their life cycle including flowering and seed setting. Further, several leguminous species could also produce root nodules. It appears that the

  8. On Covering Approximation Subspaces

    Directory of Open Access Journals (Sweden)

    Xun Ge

    2009-06-01

    Full Text Available Let (U';C' be a subspace of a covering approximation space (U;C and X⊂U'. In this paper, we show that and B'(X⊂B(X∩U'. Also, iff (U;C has Property Multiplication. Furthermore, some connections between outer (resp. inner definable subsets in (U;C and outer (resp. inner definable subsets in (U';C' are established. These results answer a question on covering approximation subspace posed by J. Li, and are helpful to obtain further applications of Pawlak rough set theory in pattern recognition and artificial intelligence.

  9. Land cover mapping of North and Central America—Global Land Cover 2000

    Science.gov (United States)

    Latifovic, Rasim; Zhu, Zhi-Liang

    2004-01-01

    The Land Cover Map of North and Central America for the year 2000 (GLC 2000-NCA), prepared by NRCan/CCRS and USGS/EROS Data Centre (EDC) as a regional component of the Global Land Cover 2000 project, is the subject of this paper. A new mapping approach for transforming satellite observations acquired by the SPOT4/VGTETATION (VGT) sensor into land cover information is outlined. The procedure includes: (1) conversion of daily data into 10-day composite; (2) post-seasonal correction and refinement of apparent surface reflectance in 10-day composite images; and (3) extraction of land cover information from the composite images. The pre-processing and mosaicking techniques developed and used in this study proved to be very effective in removing cloud contamination, BRDF effects, and noise in Short Wave Infra-Red (SWIR). The GLC 2000-NCA land cover map is provided as a regional product with 28 land cover classes based on modified Federal Geographic Data Committee/Vegetation Classification Standard (FGDC NVCS) classification system, and as part of a global product with 22 land cover classes based on Land Cover Classification System (LCCS) of the Food and Agriculture Organisation. The map was compared on both areal and per-pixel bases over North and Central America to the International Geosphere–Biosphere Programme (IGBP) global land cover classification, the University of Maryland global land cover classification (UMd) and the Moderate Resolution Imaging Spectroradiometer (MODIS) Global land cover classification produced by Boston University (BU). There was good agreement (79%) on the spatial distribution and areal extent of forest between GLC 2000-NCA and the other maps, however, GLC 2000-NCA provides additional information on the spatial distribution of forest types. The GLC 2000-NCA map was produced at the continental level incorporating specific needs of the region.

  10. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jian-Ying; Ibragimov, Rashid

    2013-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting ...

  11. The spatial pattern and dominant drivers of woody cover change in Latin America and Caribbean from 2001 to 2010

    Science.gov (United States)

    Clark, M.; Aide, T.; Riner, G.; Redo, D.; Grau, H.; Bonilla-Moheno, M.; Lopez-Carr, D.; Levy, M.

    2011-12-01

    Change in woody vegetation (i.e., forests, shrublands) is a major component of global environmental change: it directly affects biodiversity, the global carbon budget, and ecosystem function. For several decades, remote sensing technology has been used to document deforestation in Latin America and the Caribbean (LAC), although mostly at local to regional scales (e.g., moist forests of the Amazon basin). Most studies have focused on forest loss, some local-scale studies have mapped forest recovery, with contrasting forest dynamics attributed to shifting demographic and socio-economic factors. For example, local population change (rural-urban migration) can stimulate forest recovery on abandoned land, while increasing global food demand may drive regional expansion of mechanized agriculture. However, there are no studies in LAC that simultaneously map both loss and gain in woody vegetation at continental, national, and municipality scales with consistent data sources, methods and accuracy; and thus, we lack a comprehensive assessment of the spatial distribution of woody vegetation change and the relative importance of the multi-scale drivers of this change. We overcame this limitation by producing annual land-cover maps between 2001 and 2010 for each of the >16,000 municipalities in LAC. We focused on mapping municipality-scale trends in three broad classes: woody vegetation, mixed woody/plantations, and agriculture/herbaceous vegetation. Our area estimates show that woody vegetation change during the past decade was dominated by deforestation, or loss (-541,830 km2), particularly in the Amazon basin moist forest and the tropical-subtropical Cerrado and Chaco ecoregions, where large swaths of forest have been transformed to pastures and agricultural lands. Extensive areas (362,431 km2) in LAC also gained woody vegetation, particularly in regions too dry or too steep for modern agriculture, including the desert/xeric shrub biome in NE Brazil and northern Mexico, the

  12. Mapping land cover gradients through analysis of hyper-temporal NDVI imagery

    NARCIS (Netherlands)

    Ali, A.; de Bie, C.A.J.M.; Skidmore, A.K.; Scarrott, R.G.; Hamad, A.A.; Venus, V.; Lymberakis, P.

    2013-01-01

    The green cover of the earth exhibits various spatial gradients that represent gradual changes in space of vegetation density and/or in species composition. To date, land cover mapping methods differentiate at best, mapping units with different cover densities and/or species compositions, but

  13. Determinants of patchiness of woody vegetation in an African savanna

    NARCIS (Netherlands)

    Veldhuis, Michiel P.; Rozen-Rechels, David; le Roux, Elizabeth; Cromsigt, Joris P.G.M.; Berg, Matheus P.; Olff, Han

    2016-01-01

    How is woody vegetation patchiness affected by rainfall, fire and large herbivore biomass? Can we predict woody patchiness and cover over large-scale environmental gradients? We quantified variation in local patchiness as the lacunarity of woody cover on satellite-derived images. Using Random Forest

  14. Mediterranean shrub vegetation: soil protection vs. water availability

    Science.gov (United States)

    García Estringana, Pablo; Nieves Alonso-Blázquez, M.; Alegre, Alegre; Cerdà, Artemi

    2014-05-01

    Soil Erosion and Land Degradation are closely related to the changes in the vegetation cover (Zhao et al., 2013). Although other factors such as rainfall intensiy or slope (Ziadat and Taimeh, 2013) the plant covers is the main factor that controls the soil erosion (Haregeweyn, 2013). Plant cover is the main factor of soil erosion processes as the vegetation control the infiltration and runoff generation (Cerdà, 1998a; Kargar Chigani et al., 2012). Vegetation cover acts in a complex way in influencing on the one hand on runoff and soil loss and on the other hand on the amount and the way that rainfall reaches the soil surface. In arid and semiarid regions, where erosion is one of the main degradation processes and water is a scant resource, a minimum percentage of vegetation coverage is necessary to protect the soil from erosion, but without compromising the availability of water (Belmonte Serrato and Romero Diaz, 1998). This is mainly controlled by the vegetation distribution (Cerdà, 1997a; Cammeraat et al., 2010; Kakembo et al., 2012). Land abandonment is common in Mediterranean region under extensive land use (Cerdà, 1997b; García-Ruiz, 2010). Abandoned lands typically have a rolling landscape with steep slopes, and are dominated by herbaceous communities that grow on pasture land interspersed by shrubs. Land abandonment use to trigger an increase in soil erosion, but the vegetation recovery reduces the impact of the vegetation. The goal of this work is to assess the effects of different Mediterranean shrub species (Dorycnium pentaphyllum Scop., Medicago strasseri, Colutea arborescens L., Retama sphaerocarpa, L., Pistacia Lentiscus L. and Quercus coccifera L.) on soil protection (runoff and soil losses) and on rainfall reaching soil surface (rainfall partitioning fluxes). To characterize the effects of shrub vegetation and to evaluate their effects on soil protection, two field experiments were carried out. The presence of shrub vegetation reduced runoff by

  15. Irradiation of dehydrated vegetables

    International Nuclear Information System (INIS)

    Esterhuyse, A; Esterhuizen, T.

    1985-01-01

    The reason for radurization was to decreased the microbial count of dehydrated vegetables. The average absorbed irradiation dose range between 2kGy and 15kGy. The product catagories include a) Green vegetables b) White vegetables c) Powders of a) and b). The microbiological aspects were: Declining curves for the different products of T.P.C., Coliforms, E. Coli, Stap. areus, Yeast + Mold at different doses. The organoleptical aspects were: change in taste, flavour, texture, colour and moisture. The aim is the marketing of irradiated dehydrated vegetables national and international basis

  16. Using Landsat Vegetation Indices to Estimate Impervious Surface Fractions for European Cities

    DEFF Research Database (Denmark)

    Kaspersen, Per Skougaard; Fensholt, Rasmus; Drews, Martin

    2015-01-01

    and applicability of vegetation indices (VI), from Landsat imagery, to estimate IS fractions for European cities. The accuracy of three different measures of vegetation cover is examined for eight urban areas at different locations in Europe. The Normalized Difference Vegetation Index (NDVI) and Soil Adjusted...... Vegetation Index (SAVI) are converted to IS fractions using a regression modelling approach. Also, NDVI is used to estimate fractional vegetation cover (FR), and consequently IS fractions. All three indices provide fairly accurate estimates (MAEs ≈ 10%, MBE’s

  17. Ecogeomorphology of Sand Dunes Shaped by Vegetation

    Science.gov (United States)

    Tsoar, H.

    2014-12-01

    Two dune types associated with vegetation are known: Parabolic and Vegetated Linear Dunes (VLDs), the latters are the dominant dune type in the world deserts. Parabolic dunes are formed in humid, sub-humid and semi-arid environments (rather than arid) where vegetation is nearby. VLDs are known today in semiarid and arid lands where the average yearly rainfall is ≥100 mm, enough to support sparse cover of vegetation. These two dune types are formed by unidirectional winds although they demonstrate a different form and have a distinct dynamics. Conceptual and mathematical models of dunes mobility and stability, based on three control parameters: wind power (DP), average annual precipitation (p), and the human impact parameter (μ) show that where human impact is negligible the effect of wind power (DP) on vegetative cover is substantial. The average yearly rainfall of 60-80 mm is the threshold of annual average rainfall for vegetation growth on dune sand. The model is shown to follow a hysteresis path, which explains the bistability of active and stabilized dunes under the same climatic conditions with respect to wind power. We have discerned formation of parabolic dunes from barchans and transverse dunes in the coastal plain of Israel where a decrease in human activity during the second half of the 20th century caused establishment of vegetation on the crest of the dunes, a process that changed the dynamics of these barchans and transverse dunes and led to a change in the shape of the windward slope from convex to concave. These dunes gradually became parabolic. It seems that VLDs in Australia or the Kalahari have always been vegetated to some degree, though the shrubs were sparser in colder periods when the aeolian erosion was sizeable. Those ancient conditions are characterized by higher wind power and lower rainfall that can reduce, but not completely destroy, the vegetation cover, leading to the formation of lee (shadow) dunes behind each shrub. Formation of

  18. Tree cover in sub-Saharan Africa: rainfall and fire constrain forest and savanna as alternative stable states

    CSIR Research Space (South Africa)

    Staver, AC

    2011-01-01

    Full Text Available Savannas are known as ecosystems with tree cover below climate-defined equilibrium values. However, a predictive framework for understanding constraints on tree cover is lacking. The authors present a) a spatially extensive analysis of tree cover...

  19. Extensive management of field margins enhances their potential for off-site soil erosion mitigation.

    Science.gov (United States)

    Ali, Hamada E; Reineking, Björn

    2016-03-15

    Soil erosion is a widespread problem in agricultural landscapes, particularly in regions with strong rainfall events. Vegetated field margins can mitigate negative impacts of soil erosion off-site by trapping eroded material. Here we analyse how local management affects the trapping capacity of field margins in a monsoon region of South Korea, contrasting intensively and extensively managed field margins on both steep and shallow slopes. Prior to the beginning of monsoon season, we equipped a total of 12 sites representing three replicates for each of four different types of field margins ("intensive managed flat", "intensive managed steep", "extensive managed flat" and "extensive managed steep") with Astroturf mats. The mats (n = 15/site) were placed before, within and after the field margin. Sediment was collected after each rain event until the end of the monsoon season. The effect of management and slope on sediment trapping was analysed using linear mixed effects models, using as response variable either the sediment collected within the field margin or the difference in sediment collected after and before the field margin. There was no difference in the amount of sediment reaching the different field margin types. In contrast, extensively managed field margins showed a large reduction in collected sediment before and after the field margins. This effect was pronounced in steep field margins, and increased with the size of rainfall events. We conclude that a field margin management promoting a dense vegetation cover is a key to mitigating negative off-site effects of soil erosion in monsoon regions, particularly in field margins with steep slopes. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Alternative cover design

    International Nuclear Information System (INIS)

    1988-11-01

    The special study on Alternative Cover Designs is one of several studies initiated by the US Department of Energy (DOE) in response to the proposed US Environmental Protection Agency (EPA) groundwater standards. The objective of this study is to investigate the possibility of minimizing the infiltration of precipitation through stabilized tailings piles by altering the standard design of covers currently used on the Uranium Mill Tailings Remedial Action (UMTRA) Project. Prior. to the issuance of the proposed standards, UMTRA Project piles had common design elements to meet the required criteria, the most important of which were for radon diffusion, long-term stability, erosion protection, and groundwater protection. The standard pile covers consisted of three distinct layers. From top to bottom they were: rock for erosion protection; a sand bedding layer; and the radon barrier, usually consisting of a clayey sand material, which also functioned to limit infiltration into the tailings. The piles generally had topslopes from 2 to 4 percent and sideslopes of 20 percent

  1. 76 FR 79665 - Agency Information Collection Extension

    Science.gov (United States)

    2011-12-22

    .... ACTION: Submission for Office of Management and Budget (OMB) review; comment request. SUMMARY: The... extension of ``Industrial Relations,'' OMB Control Number 1910-0600. This proposed collection covers major Department contractor Human Resource information necessary for contract management, administration, and cost...

  2. Use of endotrophic mycorhiza and soil microorganisms and vegetation establishment on mineral green roof substrate

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, J. [GeoVerde Inc., Schaffhausen (Switzerland)

    2004-07-01

    Green roofs have the potential to introduce colour and nature into urban and industrial areas. This paper showed how the addition of soil microorganisms into a green roof substrate can help establish vegetation. Microorganisms help the roots exploit essential nutrient and water reserves in the substrate by making them more readily available to the plant. Microorganisms facilitate uniform germination, plant development at the young stage, and prolonged vegetation development on the roof. Soil microorganisms and mycorrhizal fungi can be added directly in to the seed blends. As the products are blended with the seed, they also fulfill the function of a seeding aid. Mycorrhizal and other soil fungi were examined on mineral roof substrates by means of dry and hydroseeding in greenhouse and field tests. Results of this developmental work and experiences from practical applications were presented. It was noted that vegetation on green roof areas must be able to withstand harsh environmental conditions. As such, the challenges include drought that causes water stress, warm and cold temperatures, wind, acid rain and air pollution. This paper also presented details of the following categories of green roof systems. Intensive green roofs are usually referred to as roof gardens. They are constructed over reinforced concrete decks and usually are accessible. Simple intensive green roofs are vegetated with lawns or ground covering plants. Regular maintenance including irrigation, fertilization and mowing is also required. Extensive green roofs are low maintenance and low weight. Growing media is usually composed of purely mineral material or a blend of mineral with a low proportion of organic matter. Substrate is low in nutrient content and the depth . Vegetation usually consists of succulents that require minimal maintenance. The requirements to install each of these types of green roof systems were also presented. 7 refs., 3 tabs.

  3. 'COVER STORY': A STUDY IN lAND MANAGEMENT

    African Journals Online (AJOL)

    The group was concerned with soil ero- sion and the associated effect upon the vegetation cover. The first s~ge of the project was to est- ablish exactly which aspects of soil erosion should be studied. The following points were initially considered: soil types and characteristics different grasses and their carrying capacity.

  4. Detection of land cover changes around Lake Mutirikwi, Zimbabwe ...

    African Journals Online (AJOL)

    Landsat images from 1984, 1995, 2001 and 2011 were used to compute a normalised difference vegetation index (NDVI), which was then used as a proxy for indicating areas infested by surface floating aquatic weeds. Forest and shrubs covered 310.8 km2 in 1984, but had deteriorated by 24.87% to 77.3 km2 in 2011, while ...

  5. Effect of plant cover on presence of Black Francolin (Francolinus ...

    African Journals Online (AJOL)

    STORAGESEVER

    2010-06-21

    Jun 21, 2010 ... factors threatening the populations of these birds in Khouzestan Province, southwestern Iran. Using plot sampling, this study aims to investigate different vegetative factors including plant species, percentage of species presence and dominant plant cover height on francolin presence. Sampling was.

  6. Balkan Vegetation Database

    NARCIS (Netherlands)

    Vassilev, Kiril; Pedashenko, Hristo; Alexandrova, Alexandra; Tashev, Alexandar; Ganeva, Anna; Gavrilova, Anna; Gradevska, Asya; Assenov, Assen; Vitkova, Antonina; Grigorov, Borislav; Gussev, Chavdar; Filipova, Eva; Aneva, Ina; Knollová, Ilona; Nikolov, Ivaylo; Georgiev, Georgi; Gogushev, Georgi; Tinchev, Georgi; Pachedjieva, Kalina; Koev, Koycho; Lyubenova, Mariyana; Dimitrov, Marius; Apostolova-Stoyanova, Nadezhda; Velev, Nikolay; Zhelev, Petar; Glogov, Plamen; Natcheva, Rayna; Tzonev, Rossen; Boch, Steffen; Hennekens, Stephan M.; Georgiev, Stoyan; Stoyanov, Stoyan; Karakiev, Todor; Kalníková, Veronika; Shivarov, Veselin; Russakova, Veska; Vulchev, Vladimir

    2016-01-01

    The Balkan Vegetation Database (BVD; GIVD ID: EU-00-019; http://www.givd.info/ID/EU-00- 019) is a regional database that consists of phytosociological relevés from different vegetation types from six countries on the Balkan Peninsula (Albania, Bosnia and Herzegovina, Bulgaria, Kosovo, Montenegro

  7. Soil and vegetation surveillance

    Energy Technology Data Exchange (ETDEWEB)

    Antonio, E.J.

    1995-06-01

    Soil sampling and analysis evaluates long-term contamination trends and monitors environmental radionuclide inventories. This section of the 1994 Hanford Site Environmental Report summarizes the soil and vegetation surveillance programs which were conducted during 1994. Vegetation surveillance is conducted offsite to monitor atmospheric deposition of radioactive materials in areas not under cultivation and onsite at locations adjacent to potential sources of radioactivity.

  8. CONSIDERATIONS ON ROMANIA’S VEGETABLE MARKET

    Directory of Open Access Journals (Sweden)

    Agatha POPESCU

    2013-12-01

    Full Text Available The paper aimed to present the situation of Romania’s vegetable market in the period 2007-2011 based on the statistical data regarding the main vegetables: tomatoes, onion, garlic, cabbage, green peppers and melons. The vegetable production increased by 33.99 from 3,166.8 tons in 2007 to 4,176.3 tons in 2011.This was due to the yield gain as follows: 58.55 % for melons, 27.62 % for green peppers, 27.05 % for tomatoes, 25.99 % for dry garlic, 24.96 % for dry onion, 12.61 % for white cabbage. In 2011, the contribution of various categories of vegetables to production was: 24.55 % white cabbage, 21.81 % tomatoes, 15.45 % melons, 9.44 % onion, 6.06 % green pepper, 1.59 % garlic and 21.1 % other vegetables. The contribution of the micro regions to vegetable production in 2011 was: 19.46 % South Muntenia, 18.95 % South East Romania, 17.30 % South West Oltenia, 15.92 % North East Romania, 10.43 % West Romania, 8.47 % North West Romania, 6.54 % Central Romania, 2.93 % Bucharest Ilfov. Vegetable production per inhabitant is higher in Romania compared to the average production per capita in the EU. The average consumption increased as a postive aspect reflecting the obtained production and import. Vegetable production should increase in order to cover much better the doestic market needs and support export to the EU market.

  9. Forest Cover Mapping in Iskandar Malaysia Using Satellite Data

    Science.gov (United States)

    Kanniah, K. D.; Mohd Najib, N. E.; Vu, T. T.

    2016-09-01

    Malaysia is the third largest country in the world that had lost forest cover. Therefore, timely information on forest cover is required to help the government to ensure that the remaining forest resources are managed in a sustainable manner. This study aims to map and detect changes of forest cover (deforestation and disturbance) in Iskandar Malaysia region in the south of Peninsular Malaysia between years 1990 and 2010 using Landsat satellite images. The Carnegie Landsat Analysis System-Lite (CLASlite) programme was used to classify forest cover using Landsat images. This software is able to mask out clouds, cloud shadows, terrain shadows, and water bodies and atmospherically correct the images using 6S radiative transfer model. An Automated Monte Carlo Unmixing technique embedded in CLASlite was used to unmix each Landsat pixel into fractions of photosynthetic vegetation (PV), non photosynthetic vegetation (NPV) and soil surface (S). Forest and non-forest areas were produced from the fractional cover images using appropriate threshold values of PV, NPV and S. CLASlite software was found to be able to classify forest cover in Iskandar Malaysia with only a difference between 14% (1990) and 5% (2010) compared to the forest land use map produced by the Department of Agriculture, Malaysia. Nevertheless, the CLASlite automated software used in this study was found not to exclude other vegetation types especially rubber and oil palm that has similar reflectance to forest. Currently rubber and oil palm were discriminated from forest manually using land use maps. Therefore, CLASlite algorithm needs further adjustment to exclude these vegetation and classify only forest cover.

  10. Glacial-interglacial vegetation dynamics in South Eastern Africa coupled to sea surface temperature variations in the Western Indian Ocean

    Directory of Open Access Journals (Sweden)

    L. M. Dupont

    2011-11-01

    Full Text Available Glacial-interglacial fluctuations in the vegetation of South Africa might elucidate the climate system at the edge of the tropics between the Indian and Atlantic Oceans. However, vegetation records covering a full glacial cycle have only been published from the eastern South Atlantic. We present a pollen record of the marine core MD96-2048 retrieved by the Marion Dufresne from the Indian Ocean ∼120 km south of the Limpopo River mouth. The sedimentation at the site is slow and continuous. The upper 6 m (spanning the past 342 Ka have been analysed for pollen and spores at millennial resolution. The terrestrial pollen assemblages indicate that during interglacials, the vegetation of eastern South Africa and southern Mozambique largely consisted of evergreen and deciduous forests. During glacials open mountainous scrubland dominated. Montane forest with Podocarpus extended during humid periods was favoured by strong local insolation. Correlation with the sea surface temperature record of the same core indicates that the extension of mountainous scrubland primarily depends on sea surface temperatures of the Agulhas Current. Our record corroborates terrestrial evidence of the extension of open mountainous scrubland (including fynbos-like species of the high-altitude Grassland biome for the last glacial as well as for other glacial periods of the past 300 Ka.

  11. Method of producing vegetable puree

    DEFF Research Database (Denmark)

    2004-01-01

    A process for producing a vegetable puree, comprising the sequential steps of: a)crushing, chopping or slicing the vegetable into pieces of 1 to 30 mm; b) blanching the vegetable pieces at a temperature of 60 to 90°C; c) contacted the blanched vegetable pieces with a macerating enzyme activity; d......) blending the macerated vegetable pieces and obtaining a puree....

  12. Land cover and water yield: inference problems when comparing catchments with mixed land cover

    Directory of Open Access Journals (Sweden)

    A. I. J. M. van Dijk

    2012-09-01

    Full Text Available Controlled experiments provide strong evidence that changing land cover (e.g. deforestation or afforestation can affect mean catchment streamflow (Q. By contrast, a similarly strong influence has not been found in studies that interpret Q from multiple catchments with mixed land cover. One possible reason is that there are methodological issues with the way in which the Budyko framework was used in the latter type studies. We examined this using Q data observed in 278 Australian catchments and by making inferences from synthetic Q data simulated by a hydrological process model (the Australian Water Resources Assessment system Landscape model. The previous contrasting findings could be reproduced. In the synthetic experiment, the land cover influence was still present but not accurately detected with the Budyko- framework. Likely sources of interpretation bias demonstrated include: (i noise in land cover, precipitation and Q data; (ii additional catchment climate characteristics more important than land cover; and (iii covariance between Q and catchment attributes. These methodological issues caution against the use of a Budyko framework to quantify a land cover influence in Q data from mixed land-cover catchments. Importantly, however, our findings do not rule out that there may also be physical processes that modify the influence of land cover in mixed land-cover catchments. Process model simulations suggested that lateral water redistribution between vegetation types and recirculation of intercepted rainfall may be important.

  13. Vegetation survey: a new focus for Applied Vegetation Science

    NARCIS (Netherlands)

    Chytry, M.; Schaminee, J.H.J.; Schwabe, A.

    2011-01-01

    Vegetation survey is an important research agenda in vegetation science. It defines vegetation types and helps understand differences among them, which is essential for both basic ecological research and applications in biodiversity conservation and environmental monitoring. In this editorial, we

  14. Covering tree with stars

    DEFF Research Database (Denmark)

    Baumbach, Jan; Guo, Jiong; Ibragimov, Rashid

    2015-01-01

    We study the tree edit distance problem with edge deletions and edge insertions as edit operations. We reformulate a special case of this problem as Covering Tree with Stars (CTS): given a tree T and a set of stars, can we connect the stars in by adding edges between them such that the resulting...... tree is isomorphic to T? We prove that in the general setting, CST is NP-complete, which implies that the tree edit distance considered here is also NP-hard, even when both input trees having diameters bounded by 10. We also show that, when the number of distinct stars is bounded by a constant k, CTS...

  15. Alternate cover materials

    International Nuclear Information System (INIS)

    1988-09-01

    As an effort to enhance compliance with the proposed US Environmental Protection Agency (EPA) groundwater standards, several special studies are being performed by the Technical Assistance Contractor (TAC) to identify and evaluate various design features that may reduce groundwater-related releases from tailings piles. The objective of this special study is to assess the suitability of using alternate cover materials (other than geomembranes) as infiltration barriers in Uranium Mill Tailings Remedial Action (UMTRA) Project piles to minimize leachate generation. The materials evaluated in this study include various types of asphalts, concretes, and a sodium bentonite clay/polypropylene liner system

  16. Ecological restoration of groundwater-dependent vegetation in the arid Ejina Delta: evidences from satellite evapotranspiration

    Science.gov (United States)

    Kai, Lu; Garcia, Monica; Yu, Jingjie; Zhang, Yichi; Wang, Ping; Wang, Sheng; Liu, Xiao

    2017-04-01

    The ecological water conveyance project (EWCP) in the Ejina delta, a typical hyper-arid area of China, aimed to restore degraded phreatophytic ecosystems. We assessed the degree of ecosystem recovery using as an ecohydrological indicator a ratio between actual and potential evapotranspiration derived from MODIS since the beginning of the project in 2001. The selected indicator was the Temperature Vegetation Dryness Index (TVDI) which was validated with Eddy covariance (EC) data confirming its applicability to monitor groundwater dependent vegetation. The spatial analyses of the evapotranspiration ratio show drying trends (2000-2015) which are stronger and also cover larger extensions than the wetting trends. Thus, the condition of key riparian areas relying mostly on surface water improved since the project began. However, groundwater dependent ecosystems located in lower river Xihe reaches present drying trends. It seems that despite of the runoff supplemented by the EWCP project, there is nowadays more inequality in the access to water by groundwater dependent ecosystems in the Ejina Delta. The study shows that energy-evaporation indices, relying on radiometric satellite temperature like the TVDI, can detect degradation signals that otherwise might go undetected by NDVI analyses especially in arid regions, where vegetation indices are greatly affected by the soil background signals. Additionally, they can provide timely information to water managers on how much water to allocate for a sustainable restoration program.

  17. Simulations of Vegetation Impacts on Arctic Climate

    Science.gov (United States)

    Bonfils, C.; Phillips, T. J.; Riley, W. J.; Post, W. M.; Torn, M. S.

    2009-12-01

    Because global warming disproportionately influences high-latitude climate, changes in arctic vegetation are in progress. These land-cover changes include redistribution of local vegetation types as well as northward migration of lower-latitude species in response to the increasing warming. The resulting displacement of low-lying tundra vegetation by shrubs and trees darkens the surface, thus accelerating regional warming. As participants in the U.S. Department of Energy IMPACTS Project, we are investigating the potential for abrupt arctic climatic change resulting from such variations in vegetation, among other mechanisms. To estimate the relative magnitudes of effects to be expected from changes in high-latitude land cover, we are conducting several numerical experiments with the Community Climate System Model (CCSM). These experiments include: 1) A “present-day-climate” control experiment with current atmospheric greenhouse-gas concentrations and climatological monthly sea surface temperatures and sea ice extents prescribed, and with “standard” CLM plant functional types (PFTs) specified; 2) A “changed-vegetation-type” experiment that is the same as 1), except that the “standard” PFTs are augmented by additional vegetation types (forbs, sedges, shrubs, mosses, and lichens) that are not presently represented in CLM. This experiment will require information on the location, fractional cover, and physiological parameterizations of these new PFTs. 3) A “changed-vegetation-extent experiment” that is the same as 2), except that the spatial extents of selected PFTs (e.g. shrubs or boreal forest PFTs) are shifted northward from their present locations in the CLM. We will report on the atmospheric climate and land-surface feedbacks associated with these vegetation changes, with emphasis on local and regional surface energy and moisture fluxes and near-surface temperature, humidity, and clouds. Acknowledgments This work was performed under the auspices

  18. Land-cover change and avian diversity in the conterminous United States

    Science.gov (United States)

    Chadwick D. Rittenhouse; Anna M. Pidgeon; Thomas P. Albright; Patrick D. Culbert; Murray K. Clayton; Curtis H. Flather; Jeffrey G. Masek; Volker C. Radeloff

    2012-01-01

    Changes in land use and land cover have affected and will continue to affect biological diversity worldwide. Yet, understanding the spatially extensive effects of land-cover change has been challenging because data that are consistent over space and time are lacking. We used the U.S. National Land Cover Dataset Land Cover Change Retrofit Product and North American...

  19. Assessing land use and cover change effects on hydrological response in the river C

    Science.gov (United States)

    Nunes, A.

    2009-04-01

    runoff plots (8×2 m) that drain to a modified Gerlach trough. Regarding the hydrological analysis at basin scale, a study of the temporal evolution of the monthly and annual discharges (Dam3) was made at two measuring stations, between 1956 and 1999. During this period the river was not subjected to the effects of large reservoir and its data on discharges can be considered representative of the natural functioning under a natural regimen. After 2000, the Côa river functioning was submitted to the effect of a large dam. For the analysis of temperatures and precipitation, the monthly and annual series recorded between 1956 and 1999 were used. To check the degree of significance of the trend with a certain level of confidence and to detect correlations among observed variables, a non-parametric test and Pearson coefficient were applied. The obtained results show that an important increase occurred on plant covers between 1960 and 2000; scrub plant communities became the most extensive land cover and the most important vegetation type. When a permanent vegetated cover is dominant surface runoff are very well controlled at plot scale. The major part of rainfall is infiltrated. On a catchment scale, the temporal evolution of the annual discharges has been negative and statistically significant (p-value < 0.05). The correlation coefficient between rainfall and discharges was quite significant for the studied period, which means that river discharges are very sensitive to rainfall amount. Nevertheless, the relationship between the variables seems to have a significant change throughout the analysed period, which is confirmed by the observation of temporal trend in residuals, the product of the year-by-year correlation between rainfall and discharge, and time. In general, residuals behaviour are clearly positive before the 80`s and negative after this date. This temporal variability could be related with changes occurred in land use and land cover.

  20. Spatially Extensive Ground-Penetrating Radar Observations during NASA's 2017 SnowEx campaign

    Science.gov (United States)

    McGrath, D.; Webb, R.; Marshall, H. P.; Hale, K.; Molotch, N. P.

    2017-12-01

    Quantifying snow water equivalent (SWE) from space remains a significant challenge, particularly in regions of forest cover or complex topography that result in high spatial variability and present difficulties for existing remote sensing techniques. Here we use extensive ground-penetrating radar (GPR) surveys during the NASA SnowEx 2017 campaign to characterize snow depth, density, and SWE across the Grand Mesa field site with a wide range of varying canopy and topographical conditions. GPR surveys, which are sensitive to snow density and microstructure, provide independent information that can effectively constrain leading airborne and spaceborne SWE retrieval approaches. We find good agreement between GPR observations and a suite of supporting in situ measurements, including snowpits, probe lines, and terrestrial LiDAR. Preliminary results illustrate the role of vegetation in controlling SWE variability, with the greatest variability found in dense forests and lowest variability found in open meadows.