WorldWideScience

Sample records for extender ferroelectrics importance

  1. Molecular ferroelectrics: where electronics meet biology.

    Science.gov (United States)

    Li, Jiangyu; Liu, Yuanming; Zhang, Yanhang; Cai, Hong-Ling; Xiong, Ren-Gen

    2013-12-28

    In the last several years, we have witnessed significant advances in molecular ferroelectrics, with the ferroelectric properties of molecular crystals approaching those of barium titanate. In addition, ferroelectricity has been observed in biological systems, filling an important missing link in bioelectric phenomena. In this perspective, we will present short historical notes on ferroelectrics, followed by an overview of the fundamentals of ferroelectricity. The latest developments in molecular ferroelectrics and biological ferroelectricity will then be highlighted, and their implications and potential applications will be discussed. We close by noting molecular ferroelectric as an exciting frontier between electronics and biology, and a number of challenges ahead are also described.

  2. Ferroelectrics principles, structure and applications

    CERN Document Server

    Merchant, Serena

    2014-01-01

    Ferroelectric physics is a theory on ferroelectric phase transition for explaining various related phenomena, which is different from dielectric physics. Ferroelectric materials are important functional materials for various applications such as NVRAMs, high energy density capacitors, actuators, MEMs, sonar sensors, microphones and scanning electron microscopes (SEM). This book investigates the dielectric, ferroelectric and energy storage properties of barium zirconate-titanate/barium calcium-titanate (BZT-BCT) based ceramic for high energy density capacitors. It also compares the energy storage capabilities of ceramic powders with polymer-ceramic nanocomposites; and discusses dielectric properties of ferroelectricity in composition distributions.

  3. Extended evolutionary psychology: the importance of transgenerational developmental plasticity.

    Science.gov (United States)

    Stotz, Karola

    2014-01-01

    What kind mechanisms one deems central for the evolutionary process deeply influences one's understanding of the nature of organisms, including cognition. Reversely, adopting a certain approach to the nature of life and cognition and the relationship between them or between the organism and its environment should affect one's view of evolutionary theory. This paper explores this reciprocal relationship in more detail. In particular it argues that the view of living and cognitive systems, especially humans, as deeply integrated beings embedded in and transformed by their genetic, epigenetic (molecular and cellular), behavioral, ecological, socio-cultural and cognitive-symbolic legacies calls for an extended evolutionary synthesis that goes beyond either a theory of genes juxtaposed against a theory of cultural evolution and or even more sophisticated theories of gene-culture coevolution and niche construction. Environments, particularly in the form of developmental environments, do not just select for variation, they also create new variation by influencing development through the reliable transmission of non-genetic but heritable information. This paper stresses particularly views of embodied, embedded, enacted and extended cognition, and their relationship to those aspects of extended inheritance that lie between genetic and cultural inheritance, the still gray area of epigenetic and behavioral inheritance systems that play a role in parental effect. These are the processes that can be regarded as transgenerational developmental plasticity and that I think can most fruitfully contribute to, and be investigated by, developmental psychology.

  4. Losses in Ferroelectric Materials

    Science.gov (United States)

    Liu, Gang; Zhang, Shujun; Jiang, Wenhua; Cao, Wenwu

    2015-01-01

    Ferroelectric materials are the best dielectric and piezoelectric materials known today. Since the discovery of barium titanate in the 1940s, lead zirconate titanate ceramics in the 1950s and relaxor-PT single crystals (such as lead magnesium niobate-lead titanate and lead zinc niobate-lead titanate) in the 1980s and 1990s, perovskite ferroelectric materials have been the dominating piezoelectric materials for electromechanical devices, and are widely used in sensors, actuators and ultrasonic transducers. Energy losses (or energy dissipation) in ferroelectrics are one of the most critical issues for high power devices, such as therapeutic ultrasonic transducers, large displacement actuators, SONAR projectors, and high frequency medical imaging transducers. The losses of ferroelectric materials have three distinct types, i.e., elastic, piezoelectric and dielectric losses. People have been investigating the mechanisms of these losses and are trying hard to control and minimize them so as to reduce performance degradation in electromechanical devices. There are impressive progresses made in the past several decades on this topic, but some confusions still exist. Therefore, a systematic review to define related concepts and clear up confusions is urgently in need. With this objective in mind, we provide here a comprehensive review on the energy losses in ferroelectrics, including related mechanisms, characterization techniques and collections of published data on many ferroelectric materials to provide a useful resource for interested scientists and engineers to design electromechanical devices and to gain a global perspective on the complex physical phenomena involved. More importantly, based on the analysis of available information, we proposed a general theoretical model to describe the inherent relationships among elastic, dielectric, piezoelectric and mechanical losses. For multi-domain ferroelectric single crystals and ceramics, intrinsic and extrinsic energy

  5. Ferroelectric devices

    CERN Document Server

    Uchino, Kenji

    2009-01-01

    Updating its bestselling predecessor, Ferroelectric Devices, Second Edition assesses the last decade of developments-and setbacks-in the commercialization of ferroelectricity. Field pioneer and esteemed author Uchino provides insight into why this relatively nascent and interdisciplinary process has failed so far without a systematic accumulation of fundamental knowledge regarding materials and device development.Filling the informational void, this collection of information reviews state-of-the-art research and development trends reflecting nano and optical technologies, environmental regulat

  6. Extended Characterization of the Common-Source and Common-Gate Amplifiers using a Metal-Ferroelectric-Semiconductor Field Effect Transistor

    Science.gov (United States)

    Hunt, Mitchell; Sayyah, Rana; Mitchell, Cody; Laws, Crystal; MacLeod, Todd C.; Ho, Fat D.

    2013-01-01

    Collected data for both common-source and common-gate amplifiers is presented in this paper. Characterizations of the two amplifier circuits using metal-ferroelectric-semiconductor field effect transistors (MFSFETs) are developed with wider input frequency ranges and varying device sizes compared to earlier characterizations. The effects of the ferroelectric layer's capacitance and variation load, quiescent point, or input signal on each circuit are discussed. Comparisons between the MFSFET and MOSFET circuit operation and performance are discussed at length as well as applications and advantages for the MFSFETs.

  7. Ferroelectric Thin Film Development

    National Research Council Canada - National Science Library

    Harman, Taran V

    2003-01-01

    The long-term goal of the research project initiated with this thesis is the development of lead-free, fully-transparent ferroelectric devices, such as ferroelectric capacitors or ferroelectric-gate...

  8. Polarisation Dynamics in Ferroelectric Materials

    Science.gov (United States)

    Buchacher, Till

    Ferroelectric materials have established themselves as indispensable in key applications such as piezoelectric transducers and energy storage devices. While the use of ferroelectrics in these fields dates back more than 50 years, little progress has been made to extend applications of ferroelectrics into new fields. To a large extend the observed slow progress is not caused by a lack of potential applications, but to by the inherent complexity associated with a structural phase transition, combined with strong coupling of polarisation, strain and temperature, and the strong modification of the phenomena by material defects. This thesis takes a look at prospective applications in energy storage for pulse power applications, solid state cooling and non-volatile random access memory and identifies key issues that need to be resolved. The thesis delivers time-domain based approaches to determine ferroelectric switching behaviour of bulk materials and thin films down to sub-ns time scales. The approach permitted study of how information written to a ferroelectric memory decays as a result of multiple non-destructive read operations. Furthermore simultaneous direct measurements of temperature and ferroelectric switching established a direct link between the retarded switching phenomenon observed in ferroelectrics and temperature changes brought by the electrocaloric effect. By comparison with analytical models and numerical simulation a large localised temperature change on the scale of individual domains is postulated. It implies a much larger coupling between switching and local temperature than has been previously considered. In extension of the model the frequency dependence of polarisation fatigue under bipolar conditions is explained by the occurrence of large temperature gradients in the material.

  9. Ferroelectric ultrathin perovskite films

    Science.gov (United States)

    Rappe, Andrew M; Kolpak, Alexie Michelle

    2013-12-10

    Disclosed herein are perovskite ferroelectric thin-film. Also disclosed are methods of controlling the properties of ferroelectric thin films. These films can be used in a variety materials and devices, such as catalysts and storage media, respectively.

  10. Non-Resonant Magnetoelectric Energy Harvesting Utilizing Phase Transformation in Relaxor Ferroelectric Single Crystals

    Directory of Open Access Journals (Sweden)

    Peter Finkel

    2015-12-01

    Full Text Available Recent advances in phase transition transduction enabled the design of a non-resonant broadband mechanical energy harvester that is capable of delivering an energy density per cycle up to two orders of magnitude larger than resonant cantilever piezoelectric type generators. This was achieved in a [011] oriented and poled domain engineered relaxor ferroelectric single crystal, mechanically biased to a state just below the ferroelectric rhombohedral (FR-ferroelectric orthorhombic (FO phase transformation. Therefore, a small variation in an input parameter, e.g., electrical, mechanical, or thermal will generate a large output due to the significant polarization change associated with the transition. This idea was extended in the present work to design a non-resonant, multi-domain magnetoelectric composite hybrid harvester comprised of highly magnetostrictive alloy, [Fe81.4Ga18.6 (Galfenol or TbxDy1-xFe2 (Terfenol-D], and lead indium niobate–lead magnesium niobate–lead titanate (PIN-PMN-PT domain engineered relaxor ferroelectric single crystal. A small magnetic field applied to the coupled device causes the magnetostrictive element to expand, and the resulting stress forces the phase change in the relaxor ferroelectric single crystal. We have demonstrated high energy conversion in this magnetoelectric device by triggering the FR-FO transition in the single crystal by a small ac magnetic field in a broad frequency range that is important for multi-domain hybrid energy harvesting devices.

  11. Design of steep-slope negative-capacitance FinFETs for dense integration: Importance of appropriate ferroelectric capacitance and short-channel effects

    Science.gov (United States)

    Ota, Hiroyuki; Hattori, Junichi; Asai, Hidehiro; Ikegami, Tsutomu; Fukuda, Koichi; Migita, Shinji; Toriumi, Akira

    2018-04-01

    In this study, we investigate the feasibility of steep subthreshold swing (SS) operation in highly scaled FinFETs whose gate length reaches up to 20 nm by harnessing the negative capacitance (NC) of a ferroelectric-gate insulating layer. Our two-dimensional technology computer-aided design simulation reveals that a considerable discrepancy exists between the remnant polarization of a substantial ferroelectric material such as HfO2 and a preferable material to attain a steep SS of less than 60 mV/decade. A considerably smaller remnant polarization of approximately 1.5 µC/cm2 is determined to be the key to achieve a steep SS by matching the capacitances of the ferroelectric-gate insulator and the fin channel. The short-channel effects on NC FinFETs with small remnant polarization is also discussed and can be mitigated in the case when the gate length is more than 40 nm by choosing optimum parameters.

  12. Revisiting the Extended Schmidt Law: The Important Role of Existing Stars in Regulating Star Formation

    Science.gov (United States)

    Shi, Yong; Yan, Lin; Armus, Lee; Gu, Qiusheng; Helou, George; Qiu, Keping; Gwyn, Stephen; Stierwalt, Sabrina; Fang, Min; Chen, Yanmei; Zhou, Luwenjia; Wu, Jingwen; Zheng, Xianzhong; Zhang, Zhi-Yu; Gao, Yu; Wang, Junzhi

    2018-02-01

    We revisit the proposed extended Schmidt law, which posits that the star formation efficiency in galaxies depends on the stellar mass surface density, by investigating spatially resolved star formation rates (SFRs), gas masses, and stellar masses of star formation regions in a vast range of galactic environments, from the outer disks of dwarf galaxies, to spiral disks and to merging galaxies, as well as individual molecular clouds in M33. We find that these regions are distributed in a tight power law as {{{Σ }}}{SFR} ∝ {({{{Σ }}}{star}0.5{{{Σ }}}{gas})}1.09, which is also valid for the integrated measurements of disk and merging galaxies at high-z. Interestingly, we show that star formation regions in the outer disks of dwarf galaxies with {{{Σ }}}{SFR} down to 10‑5 {M}ȯ yr‑1 kpc‑2, which are outliers of both the Kennicutt–Schmidt and Silk–Elmegreen laws, also follow the extended Schmidt law. Other outliers in the Kennicutt–Schmidt law, such as extremely metal-poor star formation regions, also show significantly reduced deviation from the extended Schmidt law. These results suggest an important role for existing stars in helping to regulate star formation through the effect of their gravity on the midplane pressure in a wide range of galactic environments.

  13. Two-dimensional ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Blinov, L M; Fridkin, Vladimir M; Palto, Sergei P [A.V. Shubnikov Institute of Crystallography, Russian Academy of Sciences, Moscow, Russian Federaion (Russian Federation); Bune, A V; Dowben, P A; Ducharme, Stephen [Department of Physics and Astronomy, Behlen Laboratory of Physics, Center for Materials Research and Analysis, University of Nebraska-Linkoln, Linkoln, NE (United States)

    2000-03-31

    The investigation of the finite-size effect in ferroelectric crystals and films has been limited by the experimental conditions. The smallest demonstrated ferroelectric crystals had a diameter of {approx}200 A and the thinnest ferroelectric films were {approx}200 A thick, macroscopic sizes on an atomic scale. Langmuir-Blodgett deposition of films one monolayer at a time has produced high quality ferroelectric films as thin as 10 A, made from polyvinylidene fluoride and its copolymers. These ultrathin films permitted the ultimate investigation of finite-size effects on the atomic thickness scale. Langmuir-Blodgett films also revealed the fundamental two-dimensional character of ferroelectricity in these materials by demonstrating that there is no so-called critical thickness; films as thin as two monolayers (1 nm) are ferroelectric, with a transition temperature near that of the bulk material. The films exhibit all the main properties of ferroelectricity with a first-order ferroelectric-paraelectric phase transition: polarization hysteresis (switching); the jump in spontaneous polarization at the phase transition temperature; thermal hysteresis in the polarization; the increase in the transition temperature with applied field; double hysteresis above the phase transition temperature; and the existence of the ferroelectric critical point. The films also exhibit a new phase transition associated with the two-dimensional layers. (reviews of topical problems)

  14. Ferroelectric BaTiO3 thin films on Ti substrate fabricated using pulsed-laser deposition.

    Science.gov (United States)

    He, J; Jiang, J C; Liu, J; Collins, G; Chen, C L; Lin, B; Giurgiutiu, V; Guo, R Y; Bhalla, A; Meletis, E I

    2010-09-01

    We report on the fabrication of ferroelectric BaTiO3 thin films on titanium substrates using pulsed laser deposition and their microstructures and properties. Electron microscopy studies reveal that BaTiO3 films are composed of crystalline assemblage of nanopillars with average cross sections from 100 nm to 200 nm. The BaTiO3 films have good interface structures and strong adhesion with respect to Ti substrates by forming a rutile TiO2 intermediate layer with a gradient microstructure. The room temperature ferroelectric polarization measurements show that the as-deposited BTO films possess nearly the same spontaneous polarization as the bulk BTO ceramics indicating formation of ferroelectric domains in the films. Successful fabrication of such ferroelectric films on Ti has significant importance for the development of new applications such as structural health monitoring spanning from aerospace to civil infrastructure. The work can be extended to integrate other ferroelectric oxide films with various promising properties to monitor the structural health of materials.

  15. Phase transition in triglycine family of hydrogen bonded ferroelectrics

    Indian Academy of Sciences (India)

    Hydrogen bonded ferroelectric crystals form a subclass of ferroelectrics in which hydrogen bonds play an important role in determining the properties. Triglycine family is one such class which includes triglycine sulphate (TGS), triglycine selenate. (TGSe), triglycine fluoroberyllate (TGFBe), mixed crystals like ...

  16. Ferroelectricity at the nanoscale basics and applications

    CERN Document Server

    Fridkin, Vladimir

    2014-01-01

    This book examines a wide range of ferroelectric materials. It explains the theoretical background of ultrathin ferroelectric films,  presents applications of ferroelectric materials, and displays the mechanism of switching of nanosized ferroelectric films.

  17. Synthesis of ferroelectric nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Roervik, Per Martin

    2008-12-15

    The increasing miniaturization of electric and mechanical components makes the synthesis and assembly of nanoscale structures an important step in modern technology. Functional materials, such as the ferroelectric perovskites, are vital to the integration and utility value of nanotechnology in the future. In the present work, chemical methods to synthesize one-dimensional (1D) nanostructures of ferroelectric perovskites have been studied. To successfully and controllably make 1D nanostructures by chemical methods it is very important to understand the growth mechanism of these nanostructures, in order to design the structures for use in various applications. For the integration of 1D nanostructures into devices it is also very important to be able to make arrays and large-area designed structures from the building blocks that single nanostructures constitute. As functional materials, it is of course also vital to study the properties of the nanostructures. The characterization of properties of single nanostructures is challenging, but essential to the use of such structures. The aim of this work has been to synthesize high quality single-crystalline 1D nanostructures of ferroelectric perovskites with emphasis on PbTiO3 , to make arrays or hierarchical nanostructures of 1D nanostructures on substrates, to understand the growth mechanisms of the 1D nanostructures, and to investigate the ferroelectric and piezoelectric properties of the 1D nanostructures. In Paper I, a molten salt synthesis route, previously reported to yield BaTiO3 , PbTiO3 and Na2Ti6O13 nanorods, was re-examined in order to elucidate the role of volatile chlorides. A precursor mixture containing barium (or lead) and titanium was annealed in the presence of NaCl at 760 degrees Celsius or 820 degrees Celsius. The main products were respectively isometric nanocrystalline BaTiO3 and PbTiO3. Nanorods were also detected, but electron diffraction revealed that the composition of the nanorods was

  18. Nanoscale phenomena in ferroelectric thin films

    Science.gov (United States)

    Ganpule, Chandan S.

    Ferroelectric materials are a subject of intense research as potential candidates for applications in non-volatile ferroelectric random access memories (FeRAM), piezoelectric actuators, infrared detectors, optical switches and as high dielectric constant materials for dynamic random access memories (DRAMs). With current trends in miniaturization, it becomes important that the fundamental aspects of scaling of ferroelectric and piezoelectric properties in these devices be studied thoroughly and their impact on the device reliability assessed. In keeping with this spirit of miniaturization, the dissertation has two broad themes: (a) Scaling of ferroelectric and piezoelectric properties and (b) The key reliability issue of retention loss. The thesis begins with a look at results on scaling studies of focused-ion-beam milled submicron ferroelectric capacitors using a variety of scanning probe characterization tools. The technique of piezoresponse microscopy, which is rapidly becoming an accepted form of domain imaging in ferroelectrics, has been used in this work for another very important application: providing reliable, repeatable and quantitative numbers for the electromechanical properties of submicron structures milled in ferroelectric films. This marriage of FIB and SPM based characterization of electromechanical and electrical properties has proven unbeatable in the last few years to characterize nanostructures qualitatively and quantitatively. The second half of this dissertation focuses on polarization relaxation in FeRAMs. In an attempt to understand the nanoscale origins of back-switching of ferroelectric domains, the time dependent relaxation of remnant polarization in epitaxial lead zirconate titanate (PbZr0.2Ti0.8O 3, PZT) ferroelectric thin films (used as a model system), containing a uniform 2-dimensional grid of 90° domains (c-axis in the plane of the film) has been examined using voltage modulated scanning force microscopy. A novel approach of

  19. Two Important Supreme Court Decisions Extending Gay Rights and Their Significance

    DEFF Research Database (Denmark)

    Ashbee, Edward

    2013-01-01

    The US Supreme Court has often and rightly been described as the most powerful court in the world. This is because its rulings have such breadth that they can reshape US society and politics. The cout's June 2013 rulings provided further reminders of this. Two related rulings extended gay rights....

  20. Flexoelectricity in Nanoscale Ferroelectrics

    Science.gov (United States)

    Catalan, Gustau

    2012-02-01

    All ferroelectrics are piezoelectric and thus have an intrinsic coupling between polarization and strain. There exists an additional electromechanical coupling, however, between polarization and strain gradients. Strain gradients are intrinsically vectorial fields and, therefore, they can in principle be used to modify both the orientation and the sign of the polarization, thanks to the coupling known as flexoelectricity. Flexoelectricity is possible even in paraelectric materials, but is generally stronger in ferroelectrics on account of their high permittivity (the flexoelectric coefficient is proportional to the dielectric constant). Moreover, strain gradients can be large at the nanoscale due to the smallness of the relaxation length and, accordingly, strong flexoelectric effects can be expected in nanoscale ferroelectrics. In this talk we will present two recent results that highlight the above features. In the first part, I will show how polarization tilting can be achieved in a nominally tetragonal ferroelectric (PbTiO3) thanks to the internal flexoelectric fields generated in nano-twinned epitaxial thin films. Flexoelectricity thus offers a purely physical means of achieving rotated polarizations, which are thought to be useful for enhanced piezoelectricity. In the second part, we will show how the large strain gradients generated by pushing the sharp tip of an atomic force microscope against the surface of a thin ferroelectric film can be used to actively switch its polarity by 180^o. This enables a new concept for ``multiferroic'' memory operation in which the memory bits are written mechanically and read electrically.

  1. Ferroelectric quantum criticality

    International Nuclear Information System (INIS)

    Rowley, S.; Spalek, L.; Scott, J.F.; Lonzarich, G.G.; Saxena, S.S.

    2007-01-01

    Full text: Materials tuned to the neighbourhood of a zero temperature phase transition often show the emergence of novel quantum phenomena. Much of the effort to study these new emergent effects, like the break down of the conventional Fermi-liquid theory of metals, has been focused in narrow band electronic systems. Ferroelectric crystals provide another class of materials in which to study quantum criticality and its resulting effects. In many cases the ferroelectric phase can be tuned to absolute zero using hydrostatic pressure. Close to such a zero temperature phase transition, the dielectric constant and other quantities change into radically unconventional forms due to the fluctuations experienced in this region. Measurements in pure single crystals of SrTi1 6 O 3 and SrTi1 8 O 3 will be shown and a simple model for describing the Ferroelectric quantum critical point will be outlined. The expected 1/T 2 dependence of the dielectric constant in SrTi1 6 O 3 over a wide temperature range at low temperatures will be highlighted as well as some further novel features. Looking to the future, one might imagine that quantum paraelectric fluctuations could lead to new low temperature states and mediate novel interactions in ferroelectric crystals supporting itinerant electrons.(authors)

  2. Ferroelectric memory based on molybdenum disulfide and ferroelectric hafnium oxide

    Science.gov (United States)

    Yap, Wui Chung; Jiang, Hao; Xia, Qiangfei; Zhu, Wenjuan

    Recently, ferroelectric hafnium oxide (HfO2) was discovered as a new type of ferroelectric material with the advantages of high coercive field, excellent scalability (down to 2.5 nm), and good compatibility with CMOS processing. In this work, we demonstrate, for the first time, 2D ferroelectric memories with molybdenum disulfide (MoS2) as the channel material and aluminum doped HfO2 as the ferroelectric gate dielectric. A 16 nm thick layer of HfO2, doped with 5.26% aluminum, was deposited via atomic layer deposition (ALD), then subjected to rapid thermal annealing (RTA) at 1000 °C, and the polarization-voltage characteristics of the resulting metal-ferroelectric-metal (MFM) capacitors were measured, showing a remnant polarization of 0.6 μC/cm2. Ferroelectric memories with embedded ferroelectric hafnium oxide stacks and monolayer MoS2 were fabricated. The transfer characteristics after program and erase pulses revealed a clear ferroelectric memory window. In addition, endurance (up to 10,000 cycles) of the devices were tested and effects associated with ferroelectric materials, such as the wake-up effect and polarization fatigue, were observed. This research can potentially lead to advances of 2D materials in low-power logic and memory applications.

  3. Photovoltaics with Ferroelectrics: Current Status and Beyond.

    Science.gov (United States)

    Paillard, Charles; Bai, Xiaofei; Infante, Ingrid C; Guennou, Maël; Geneste, Grégory; Alexe, Marin; Kreisel, Jens; Dkhil, Brahim

    2016-07-01

    Ferroelectrics carry a switchable spontaneous electric polarization. This polarization is usually coupled to strain, making ferroelectrics good piezoelectrics. When coupled to magnetism, they become so-called multiferroic systems, a field that has been widely investigated since 2003. While ferroelectrics are birefringent and non-linear optically transparent materials, the coupling of polarization with optical properties has received, since 2009, renewed attention, triggered notably by low-bandgap ferroelectrics suitable for sunlight spectrum absorption and original photovoltaic effects. Consequently, power conversion efficiencies up to 8.1% were recently achieved and values of 19.5% were predicted, making photoferroelectrics promising photovoltaic alternatives. This article aims at providing an up-to-date review on this emerging and rapidly progressing field by highlighting several important issues and parameters, such as the role of domain walls, ways to tune the bandgap, consequences arising from the polarization switchability, and the role of defects and contact electrodes, as well as the downscaling effects. Beyond photovoltaicity, other polarization-related processes are also described, like light-induced deformation (photostriction) or light-assisted chemical reaction (photostriction). It is hoped that this overview will encourage further avenues to be explored and challenged and, as a byproduct, will inspire other research communities in material science, e.g., so-called hybrid halide perovskites. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Ferroelectric Negative Capacitance Domain Dynamics

    OpenAIRE

    Hoffmann, Michael; Khan, Asif Islam; Serrao, Claudy; Lu, Zhongyuan; Salahuddin, Sayeef; Pešić, Milan; Slesazeck, Stefan; Schroeder, Uwe; Mikolajick, Thomas

    2017-01-01

    Transient negative capacitance effects in epitaxial ferroelectric Pb(Zr$_{0.2}$Ti$_{0.8}$)O$_3$ capacitors are investigated with a focus on the dynamical switching behavior governed by domain nucleation and growth. Voltage pulses are applied to a series connection of the ferroelectric capacitor and a resistor to directly measure the ferroelectric negative capacitance during switching. A time-dependent Ginzburg-Landau approach is used to investigate the underlying domain dynamics. The transien...

  5. Ferroelectric materials and their applications

    CERN Document Server

    Xu, Y

    2013-01-01

    This book presents the basic physical properties, structure, fabrication methods and applications of ferroelectric materials. These are widely used in various devices, such as piezoelectric/electrostrictive transducers and actuators, pyroelectric infrared detectors, optical integrated circuits, optical data storage, display devices, etc. The ferroelectric materials described in this book include a relatively complete list of practical and promising ferroelectric single crystals, bulk ceramics and thin films. Included are perovskite-type, lithium niobate, tungsten-bronze-type, water-soluable

  6. Ferroelectricity the fundamentals collection

    CERN Document Server

    Jimenez, Basilio

    2008-01-01

    This indispensable collection of seminal papers on ferroelectricity provides an overview over almost a hundred years of basic and applied research. Containing historic contributions from renowned authors, this book presents developments in an area of science that is still rapidly growing. Although primarily aimed at scientists and academics involved in research, this will also be of use to students as well as newcomers to the field.

  7. Surface modification and effects of organic ferroelectrics with blending hyperbranched polymer

    Science.gov (United States)

    Morimoto, Masahiro; Ito, Genta; Koshiba, Yasuko; Ishida, Kenji

    2018-03-01

    The surface modification of ferroelectric films is expected to improve the properties of fatigue, which is important for application in memory devices. In this study, we fabricated thin insulators at an electrode-ferroelectric interface by the phase separation of a ferroelectric polymer and an insulator. The surface and bulk characterization indicated that the insulators consisting of a hyperbranched polymer spontaneously phase-separated from the organic ferroelectric polymer by thermal annealing. It was revealed that the separated layers were composed of three layers and had a lower surface energy than the ferroelectric films. The annealing time evolution of the surface contact angle and dielectric spectra indicated the phase separation dynamics and structural behavior. The fatigue properties of the surface-modified ferroelectric films improved, but the remanent polarization and coercive electric field value resulted in a trade-off.

  8. Nanoscale organic ferroelectric resistive switches

    NARCIS (Netherlands)

    Khikhlovskyi, V.; Wang, R.; Breemen, A.J.J.M. van; Gelinck, G.H.; Janssen, R.A.J.; Kemerink, M.

    2014-01-01

    Organic ferroelectric resistive switches function by grace of nanoscale phase separation in a blend of a semiconducting and a ferroelectric polymer that is sandwiched between metallic electrodes. In this work, various scanning probe techniques are combined with numerical modeling to unravel their

  9. Glucose Suppresses Biological Ferroelectricity in Aortic Elastin

    Science.gov (United States)

    Liu, Yuanming; Wang, Yunjie; Chow, Ming-Jay; Chen, Nataly Q.; Ma, Feiyue; Zhang, Yanhang; Li, Jiangyu

    2013-04-01

    Elastin is an intriguing extracellular matrix protein present in all connective tissues of vertebrates, rendering essential elasticity to connective tissues subjected to repeated physiological stresses. Using piezoresponse force microscopy, we show that the polarity of aortic elastin is switchable by an electrical field, which may be associated with the recently discovered biological ferroelectricity in the aorta. More interestingly, it is discovered that the switching in aortic elastin is largely suppressed by glucose treatment, which appears to freeze the internal asymmetric polar structures of elastin, making it much harder to switch, or suppressing the switching completely. Such loss of ferroelectricity could have important physiological and pathological implications from aging to arteriosclerosis that are closely related to glycation of elastin.

  10. Characteristics of extended-spectrum cephalosporin-resistant Escherichia coli isolated from Swiss and imported poultry meat.

    Science.gov (United States)

    Abgottspon, H; Stephan, R; Bagutti, C; Brodmann, P; Hächler, H; Zurfluh, K

    2014-01-01

    A worrisome phenomenon is the progressive global spread of Enterobacteriaceae in poultry and chicken meat expressing plasmid-mediated enzymes that inactivate β-lactam antibiotics, suggesting that the food chain might play a role in the epidemiology and the transmission of extended-spectrum cephalosporin-resistant Enterobacteriaceae to humans. The aim of the present study was to further characterize 24 extended-spectrum cephalosporin-resistant Enterobacteriaceae isolated from domestic and imported poultry meat by antibiotic susceptibility testing, identification of the blaESBL/blapAmpC genes, conjugation mating experiments and determination of plasmid incompatibility types, multilocus sequence typing, and analysis of the Escherichia coli phylogenetic groups. On account of their resistance patterns, 21 of the total 24 isolates were classified as multidrug resistant. Eleven isolates carried a blaCMY-2 gene, whereas 13 isolates harbored a blaCTX-M-1 gene. All isolates harbored plasmids that were assigned to 8 of the 18 described plasmid incompatibility groups, the most frequent of which were IncI1, IncFIB, IncB/O, and IncFrepB. The blaESBL/blapAmpC genes were harbored mainly by transferable IncI1 and IncB/O plasmids. Multilocus sequence typing as well as E. coli phylogenetic group typing revealed a high heterogenicity even among different isolates of the same sample.

  11. Theoretical Methods of Domain Structures in Ultrathin Ferroelectric Films: A Review

    Directory of Open Access Journals (Sweden)

    Jianyi Liu

    2014-09-01

    Full Text Available This review covers methods and recent developments of the theoretical study of domain structures in ultrathin ferroelectric films. The review begins with an introduction to some basic concepts and theories (e.g., polarization and its modern theory, ferroelectric phase transition, domain formation, and finite size effects, etc. that are relevant to the study of domain structures in ultrathin ferroelectric films. Basic techniques and recent progress of a variety of important approaches for domain structure simulation, including first-principles calculation, molecular dynamics, Monte Carlo simulation, effective Hamiltonian approach and phase field modeling, as well as multiscale simulation are then elaborated. For each approach, its important features and relative merits over other approaches for modeling domain structures in ultrathin ferroelectric films are discussed. Finally, we review recent theoretical studies on some important issues of domain structures in ultrathin ferroelectric films, with an emphasis on the effects of interfacial electrostatics, boundary conditions and external loads.

  12. Ferroelectric capacitor with reduced imprint

    Science.gov (United States)

    Evans, Jr., Joseph T.; Warren, William L.; Tuttle, Bruce A.; Dimos, Duane B.; Pike, Gordon E.

    1997-01-01

    An improved ferroelectric capacitor exhibiting reduced imprint effects in comparison to prior art capacitors. A capacitor according to the present invention includes top and bottom electrodes and a ferroelectric layer sandwiched between the top and bottom electrodes, the ferroelectric layer comprising a perovskite structure of the chemical composition ABO.sub.3 wherein the B-site comprises first and second elements and a dopant element that has an oxidation state greater than +4. The concentration of the dopant is sufficient to reduce shifts in the coercive voltage of the capacitor with time. In the preferred embodiment of the present invention, the ferroelectric element comprises Pb in the A-site, and the first and second elements are Zr and Ti, respectively. The preferred dopant is chosen from the group consisting of Niobium, Tantalum, and Tungsten. In the preferred embodiment of the present invention, the dopant occupies between 1 and 8% of the B-sites.

  13. Extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella pneumoniae in local and imported poultry meat in Ghana.

    Science.gov (United States)

    Eibach, Daniel; Dekker, Denise; Gyau Boahen, Kennedy; Wiafe Akenten, Charity; Sarpong, Nimako; Belmar Campos, Cristina; Berneking, Laura; Aepfelbacher, Martin; Krumkamp, Ralf; Owusu-Dabo, Ellis; May, Jürgen

    2018-04-01

    Antibiotic use in animal husbandry has raised concerns on the spread of resistant bacteria. Currently animal products are traded globally with unprecedented ease, which has been challenging the control of antimicrobial resistance. This study aims to detect and characterize extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli and Klebsiella pneumoniae from imported and locally produced poultry products sold in Ghana. Local and imported chicken meat was collected from 94 stores and markets throughout Kumasi (Ghana) and cultured on selective ESBL screening agar. Phenotypic ESBL-producing E. coli and K. pneumoniae isolates were confirmed by combined disc test and further characterized by antibiotic susceptibility testing, amplification of the bla CTX-M , bla TEM and bla SHV genes as well as multilocus sequence typing (MLST) and linked to the country of origin. Out of 200 meat samples, 71 (36%) samples revealed 81 ESBL-producing isolates (46 E. coli and 35 K. pneumoniae), with 44% (30/68) of local poultry and 31% (41/132) of imported products being contaminated. Most ESBL-producing isolates harboured the bla CTX-M-15 gene (61/81, 75%) and the dominant Sequence Types (ST) were ST2570 (7/35, 20%) among K. pneumoniae and ST10 (5/46, 11%) among E. coli. High numbers of ESBL-producing bacteria, particularly on local but also imported poultry meat, represent a potential source for human colonization and infection as well as spread within the community. Surveillance along the poultry production-food-consumer chain would be a valuable tool to identify sources of emerging multidrug resistant pathogens in Ghana. Copyright © 2018 Elsevier B.V. All rights reserved.

  14. Nano-scale ferroelectric memories

    International Nuclear Information System (INIS)

    Scott, J.F.

    1998-01-01

    Since 1986 there has been a minor renaissance in the study of ferroelectrics. Studied for a century in the form of single-crystals or bulk ceramics, ferroelectrics are now fully integrated in thin-film (100 nm or less) form in both Si and GaAs chips. Four embodiments have reached large-volume commercial production. A brief review of this field of device physics is given, emphasizing memory applications. (author)

  15. Cosmetics as a feature of the extended human phenotype: modulation of the perception of biologically important facial signals.

    Science.gov (United States)

    Etcoff, Nancy L; Stock, Shannon; Haley, Lauren E; Vickery, Sarah A; House, David M

    2011-01-01

    Research on the perception of faces has focused on the size, shape, and configuration of inherited features or the biological phenotype, and largely ignored the effects of adornment, or the extended phenotype. Research on the evolution of signaling has shown that animals frequently alter visual features, including color cues, to attract, intimidate or protect themselves from conspecifics. Humans engage in conscious manipulation of visual signals using cultural tools in real time rather than genetic changes over evolutionary time. Here, we investigate one tool, the use of color cosmetics. In two studies, we asked viewers to rate the same female faces with or without color cosmetics, and we varied the style of makeup from minimal (natural), to moderate (professional), to dramatic (glamorous). Each look provided increasing luminance contrast between the facial features and surrounding skin. Faces were shown for 250 ms or for unlimited inspection time, and subjects rated them for attractiveness, competence, likeability and trustworthiness. At 250 ms, cosmetics had significant positive effects on all outcomes. Length of inspection time did not change the effect for competence or attractiveness. However, with longer inspection time, the effect of cosmetics on likability and trust varied by specific makeup looks, indicating that cosmetics could impact automatic and deliberative judgments differently. The results suggest that cosmetics can create supernormal facial stimuli, and that one way they may do so is by exaggerating cues to sexual dimorphism. Our results provide evidence that judgments of facial trustworthiness and attractiveness are at least partially separable, that beauty has a significant positive effect on judgment of competence, a universal dimension of social cognition, but has a more nuanced effect on the other universal dimension of social warmth, and that the extended phenotype significantly influences perception of biologically important signals at first

  16. Cosmetics as a feature of the extended human phenotype: modulation of the perception of biologically important facial signals.

    Directory of Open Access Journals (Sweden)

    Nancy L Etcoff

    Full Text Available Research on the perception of faces has focused on the size, shape, and configuration of inherited features or the biological phenotype, and largely ignored the effects of adornment, or the extended phenotype. Research on the evolution of signaling has shown that animals frequently alter visual features, including color cues, to attract, intimidate or protect themselves from conspecifics. Humans engage in conscious manipulation of visual signals using cultural tools in real time rather than genetic changes over evolutionary time. Here, we investigate one tool, the use of color cosmetics. In two studies, we asked viewers to rate the same female faces with or without color cosmetics, and we varied the style of makeup from minimal (natural, to moderate (professional, to dramatic (glamorous. Each look provided increasing luminance contrast between the facial features and surrounding skin. Faces were shown for 250 ms or for unlimited inspection time, and subjects rated them for attractiveness, competence, likeability and trustworthiness. At 250 ms, cosmetics had significant positive effects on all outcomes. Length of inspection time did not change the effect for competence or attractiveness. However, with longer inspection time, the effect of cosmetics on likability and trust varied by specific makeup looks, indicating that cosmetics could impact automatic and deliberative judgments differently. The results suggest that cosmetics can create supernormal facial stimuli, and that one way they may do so is by exaggerating cues to sexual dimorphism. Our results provide evidence that judgments of facial trustworthiness and attractiveness are at least partially separable, that beauty has a significant positive effect on judgment of competence, a universal dimension of social cognition, but has a more nuanced effect on the other universal dimension of social warmth, and that the extended phenotype significantly influences perception of biologically important

  17. Cosmetics as a Feature of the Extended Human Phenotype: Modulation of the Perception of Biologically Important Facial Signals

    Science.gov (United States)

    Etcoff, Nancy L.; Stock, Shannon; Haley, Lauren E.; Vickery, Sarah A.; House, David M.

    2011-01-01

    Research on the perception of faces has focused on the size, shape, and configuration of inherited features or the biological phenotype, and largely ignored the effects of adornment, or the extended phenotype. Research on the evolution of signaling has shown that animals frequently alter visual features, including color cues, to attract, intimidate or protect themselves from conspecifics. Humans engage in conscious manipulation of visual signals using cultural tools in real time rather than genetic changes over evolutionary time. Here, we investigate one tool, the use of color cosmetics. In two studies, we asked viewers to rate the same female faces with or without color cosmetics, and we varied the style of makeup from minimal (natural), to moderate (professional), to dramatic (glamorous). Each look provided increasing luminance contrast between the facial features and surrounding skin. Faces were shown for 250 ms or for unlimited inspection time, and subjects rated them for attractiveness, competence, likeability and trustworthiness. At 250 ms, cosmetics had significant positive effects on all outcomes. Length of inspection time did not change the effect for competence or attractiveness. However, with longer inspection time, the effect of cosmetics on likability and trust varied by specific makeup looks, indicating that cosmetics could impact automatic and deliberative judgments differently. The results suggest that cosmetics can create supernormal facial stimuli, and that one way they may do so is by exaggerating cues to sexual dimorphism. Our results provide evidence that judgments of facial trustworthiness and attractiveness are at least partially separable, that beauty has a significant positive effect on judgment of competence, a universal dimension of social cognition, but has a more nuanced effect on the other universal dimension of social warmth, and that the extended phenotype significantly influences perception of biologically important signals at first

  18. On the persistence of polar domains in ultrathin ferroelectric capacitors

    Science.gov (United States)

    Zubko, Pavlo; Lu, Haidong; Bark, Chung-Wung; Martí, Xavi; Santiso, José; Eom, Chang-Beom; Catalan, Gustau; Gruverman, Alexei

    2017-07-01

    The instability of ferroelectric ordering in ultra-thin films is one of the most important fundamental issues pertaining realization of a number of electronic devices with enhanced functionality, such as ferroelectric and multiferroic tunnel junctions or ferroelectric field effect transistors. In this paper, we investigate the polarization state of archetypal ultrathin (several nanometres) ferroelectric heterostructures: epitaxial single-crystalline BaTiO3 films sandwiched between the most habitual perovskite electrodes, SrRuO3, on top of the most used perovskite substrate, SrTiO3. We use a combination of piezoresponse force microscopy, dielectric measurements and structural characterization to provide conclusive evidence for the ferroelectric nature of the relaxed polarization state in ultrathin BaTiO3 capacitors. We show that even the high screening efficiency of SrRuO3 electrodes is still insufficient to stabilize polarization in SrRuO3/BaTiO3/SrRuO3 heterostructures at room temperature. We identify the key role of domain wall motion in determining the macroscopic electrical properties of ultrathin capacitors and discuss their dielectric response in the light of the recent interest in negative capacitance behaviour.

  19. Characterization of genetic determinants of extended-spectrum cephalosporinases (ESCs) in Escherichia coli isolates from Danish and imported poultry meat

    DEFF Research Database (Denmark)

    Bergenholz, Rikke; Jørgensen, Mikael Skaanning; Hansen, Lars H.

    2009-01-01

    Sir, The predominant cause of resistance towards cephalosporins in Escherichia coli is production of plasmid-encoded extended-spectrum ß-lactamases (ESBLs) and AmpC-type ß-lactamases, also referred to as extended-spectrum cephalosporinases (ESCs). Most studies have focused on description of ESCs ...

  20. Quantum tunnelling and charge accumulation in organic ferroelectric memory diodes

    Science.gov (United States)

    Ghittorelli, Matteo; Lenz, Thomas; Sharifi Dehsari, Hamed; Zhao, Dong; Asadi, Kamal; Blom, Paul W. M.; Kovács-Vajna, Zsolt M.; de Leeuw, Dago M.; Torricelli, Fabrizio

    2017-06-01

    Non-volatile memories--providing the information storage functionality--are crucial circuit components. Solution-processed organic ferroelectric memory diodes are the non-volatile memory candidate for flexible electronics, as witnessed by the industrial demonstration of a 1 kbit reconfigurable memory fabricated on a plastic foil. Further progress, however, is limited owing to the lack of understanding of the device physics, which is required for the technological implementation of high-density arrays. Here we show that ferroelectric diodes operate as vertical field-effect transistors at the pinch-off. The tunnelling injection and charge accumulation are the fundamental mechanisms governing the device operation. Surprisingly, thermionic emission can be disregarded and the on-state current is not space charge limited. The proposed model explains and unifies a wide range of experiments, provides important design rules for the implementation of organic ferroelectric memory diodes and predicts an ultimate theoretical array density of up to 1012 bit cm-2.

  1. Theoretical study of ferroelectric nanoparticles using phase reconstructed electron microscopy

    DEFF Research Database (Denmark)

    Phatak, C.; Petford-Long, A. K.; Beleggia, Marco

    2014-01-01

    Ferroelectric nanostructures are important for a variety of applications in electronic and electro-optical devices, including nonvolatile memories and thin-film capacitors. These applications involve stability and switching of polarization using external stimuli, such as electric fields. We present...... a theoretical model describing how the shape of a nanoparticle affects its polarization in the absence of screening charges, and quantify the electron-optical phase shift for detecting ferroelectric signals with phase-sensitive techniques in a transmission electron microscope. We provide an example phase shift...

  2. Stress effects in ferroelectric perovskite thin-films

    Science.gov (United States)

    Zednik, Ricardo Johann

    The exciting class of ferroelectric materials presents the engineer with an array of unique properties that offer promise in a variety of applications; these applications include infra-red detectors ("night-vision imaging", pyroelectricity), micro-electro-mechanical-systems (MEMS, piezoelectricity), and non-volatile memory (NVM, ferroelectricity). Realizing these modern devices often requires perovskite-based ferroelectric films thinner than 100 nm. Two such technologically important material systems are (Ba,Sr)TiO3 (BST), for tunable dielectric devices employed in wireless communications, and Pb(Zr,Ti)O3 (PZT), for ferroelectric non-volatile memory (FeRAM). In general, the material behavior is strongly influenced by the mechanical boundary conditions imposed by the substrate and surrounding layers and may vary considerably from the known bulk behavior. A better mechanistic understanding of these effects is essential for harnessing the full potential of ferroelectric thin-films and further optimizing existing devices. Both materials share a common crystal structure and similar properties, but face unique challenges due to the design parameters of these different applications. Tunable devices often require very low dielectric loss as well as large dielectric tunability. Present results show that the dielectric response of BST thin-films can either resemble a dipole-relaxor or follow the accepted empirical Universal Relaxation Law (Curie-von Schweidler), depending on temperature. These behaviors in a single ferroelectric thin-film system are often thought to be mutually exclusive. In state-of-the-art high density FeRAM, the ferroelectric polarization is at least as important as the dielectric response. It was found that these properties are significantly affected by moderate biaxial tensile and compressive stresses which reversibly alter the ferroelastic domain populations of PZT at room temperature. The 90-degree domain wall motion observed by high resolution

  3. Mechanical writing of ferroelectric polarization.

    Science.gov (United States)

    Lu, H; Bark, C-W; Esque de los Ojos, D; Alcala, J; Eom, C B; Catalan, G; Gruverman, A

    2012-04-06

    Ferroelectric materials are characterized by a permanent electric dipole that can be reversed through the application of an external voltage, but a strong intrinsic coupling between polarization and deformation also causes all ferroelectrics to be piezoelectric, leading to applications in sensors and high-displacement actuators. A less explored property is flexoelectricity, the coupling between polarization and a strain gradient. We demonstrate that the stress gradient generated by the tip of an atomic force microscope can mechanically switch the polarization in the nanoscale volume of a ferroelectric film. Pure mechanical force can therefore be used as a dynamic tool for polarization control and may enable applications in which memory bits are written mechanically and read electrically.

  4. Ferroelectrics as Smart Mechanical Materials.

    Science.gov (United States)

    Cordero-Edwards, Kumara; Domingo, Neus; Abdollahi, Amir; Sort, Jordi; Catalan, Gustau

    2017-10-01

    The mechanical properties of materials are insensitive to space inversion, even when they are crystallographically asymmetric. In practice, this means that turning a piezoelectric crystal upside down or switching the polarization of a ferroelectric should not change its mechanical response. Strain gradients, however, introduce an additional source of asymmetry that has mechanical consequences. Using nanoindentation and contact-resonance force microscopy, this study demonstrates that the mechanical response to indentation of a uniaxial ferroelectric (LiNbO 3 ) does change when its polarity is switched, and use this mechanical asymmetry both to quantify its flexoelectricity and to mechanically read the sign of its ferroelectric domains. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Strain gradients in epitaxial ferroelectrics

    International Nuclear Information System (INIS)

    Catalan, G.; Noheda, B.; McAneney, J.; Sinnamon, L.J.; Gregg, J.M.

    2005-01-01

    X-ray analysis of ferroelectric thin layers of Ba 1/2 Sr 1/2 TiO 3 with different thicknesses reveals the presence of strain gradients across the films and allows us to propose a functional form for the internal strain profile. We use this to calculate the influence of strain gradient, through flexoelectric coupling, on the degradation of the ferroelectric properties of films with decreasing thickness, in excellent agreement with the observed behavior. This paper shows that strain relaxation can lead to smooth, continuous gradients across hundreds of nanometers, and it highlights the pressing need to avoid such strain gradients in order to obtain ferroelectric films with bulklike properties

  6. Mechanical Writing of Ferroelectric Polarization

    Science.gov (United States)

    Lu, H.; Bark, C.-W.; Esque de los Ojos, D.; Alcala, J.; Eom, C. B.; Catalan, G.; Gruverman, A.

    2012-04-01

    Ferroelectric materials are characterized by a permanent electric dipole that can be reversed through the application of an external voltage, but a strong intrinsic coupling between polarization and deformation also causes all ferroelectrics to be piezoelectric, leading to applications in sensors and high-displacement actuators. A less explored property is flexoelectricity, the coupling between polarization and a strain gradient. We demonstrate that the stress gradient generated by the tip of an atomic force microscope can mechanically switch the polarization in the nanoscale volume of a ferroelectric film. Pure mechanical force can therefore be used as a dynamic tool for polarization control and may enable applications in which memory bits are written mechanically and read electrically.

  7. Ferroelectric Fluid Flow Control Valve

    Science.gov (United States)

    Jalink, Antony, Jr. (Inventor); Hellbaum, Richard F. (Inventor); Rohrbach, Wayne W. (Inventor)

    1999-01-01

    An active valve is controlled and driven by external electrical actuation of a ferroelectric actuator to provide for improved passage of the fluid during certain time periods and to provide positive closure of the valve during other time periods. The valve provides improved passage in the direction of flow and positive closure in the direction against the flow. The actuator is a dome shaped internally prestressed ferroelectric actuator having a curvature, said dome shaped actuator having a rim and an apex. and a dome height measured from a plane through said rim said apex that varies with an electric voltage applied between an inside and an outside surface of said dome shaped actuator.

  8. Phase diagrams of ferroelectric nanocrystals strained by an elastic matrix

    Science.gov (United States)

    Nikitchenko, A. I.; Azovtsev, A. V.; Pertsev, N. A.

    2018-01-01

    Ferroelectric crystallites embedded into a dielectric matrix experience temperature-dependent elastic strains caused by differences in the thermal expansion of the crystallites and the matrix. Owing to the electrostriction, these lattice strains may affect polarization states of ferroelectric inclusions significantly, making them different from those of a stress-free bulk crystal. Here, using a nonlinear thermodynamic theory, we study the mechanical effect of elastic matrix on the phase states of embedded single-domain ferroelectric nanocrystals. Their equilibrium polarization states are determined by minimizing a special thermodynamic potential that describes the energetics of an ellipsoidal ferroelectric inclusion surrounded by a linear elastic medium. To demonstrate the stability ranges of such states for a given material combination, we construct a phase diagram, where the inclusion’s shape anisotropy and temperature are used as two parameters. The ‘shape-temperature’ phase diagrams are calculated numerically for PbTiO3 and BaTiO3 nanocrystals embedded into representative dielectric matrices generating tensile (silica glass) or compressive (potassium silicate glass) thermal stresses inside ferroelectric inclusions. The developed phase maps demonstrate that the joint effect of thermal stresses and matrix-induced elastic clamping of ferroelectric inclusions gives rise to several important features in the polarization behavior of PbTiO3 and BaTiO3 nanocrystals. In particular, the Curie temperature displays a nonmonotonic variation with the ellipsoid’s aspect ratio, being minimal for spherical inclusions. Furthermore, the diagrams show that the polarization orientation with respect to the ellipsoid’s symmetry axis is controlled by the shape anisotropy and the sign of thermal stresses. Under certain conditions, the mechanical inclusion-matrix interaction qualitatively alters the evolution of ferroelectric states on cooling, inducing a structural transition

  9. Graded ferroelectrics, transpacitors and transponents

    CERN Document Server

    Mantese, Joseph V

    2005-01-01

    The text details the experimental and theoretical aspects of newly emerging ferroelectric devices, and their extensions to other ferroic systems such as: ferromagnetics, ferroelastics, piezoelectrics, etc. The theory and experimental results pertaining to non-homogeneous active ferroic devices and structures are presented.

  10. Surface Acoustic Waves in ferroelectrics

    Czech Academy of Sciences Publication Activity Database

    Tarasenko A., Nataliya; Jastrabík, Lubomír; Tarasenko, Alexander

    2004-01-01

    Roč. 298, - (2004), s. 325-333 ISSN 0015-0193 R&D Projects: GA AV ČR IBS1010203 Keywords : Rayleigh waves * ferroelectric films * phase transition Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.517, year: 2004

  11. Domain walls and ferroelectric reversal in corundum derivatives

    Science.gov (United States)

    Ye, Meng; Vanderbilt, David

    2017-01-01

    Domain walls are the topological defects that mediate polarization reversal in ferroelectrics, and they may exhibit quite different geometric and electronic structures compared to the bulk. Therefore, a detailed atomic-scale understanding of the static and dynamic properties of domain walls is of pressing interest. In this work, we use first-principles methods to study the structures of 180∘ domain walls, both in their relaxed state and along the ferroelectric reversal pathway, in ferroelectrics belonging to the family of corundum derivatives. Our calculations predict their orientation, formation energy, and migration energy and also identify important couplings between polarization, magnetization, and chirality at the domain walls. Finally, we point out a strong empirical correlation between the height of the domain-wall-mediated polarization reversal barrier and the local bonding environment of the mobile A cations as measured by bond-valence sums. Our results thus provide both theoretical and empirical guidance for future searches for ferroelectric candidates in materials of the corundum derivative family.

  12. In situ transmission electron microscopy study of the microstructural origins for the electric field-induced phenomena in ferroelectric perovskites

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Hanzheng [Iowa State Univ., Ames, IA (United States)

    2014-12-15

    Ferroelectrics are important materials due to their extensive technological applications, such as non-volatile memories, field-effect transistors, ferroelectric tunneling junctions, dielectric capacitors, piezoelectric transducers, sensors and actuators. As is well known, the outstanding dielectric, piezoelectric, and ferroelectric properties of these functional oxides originate from their ferroelectric domain arrangements and the corresponding evolution under external stimuli (e.g. electric field, stress, and temperature). Electric field has been known as the most efficient stimulus to manipulate the ferroelectric domains through polarization switching and alignment. Therefore, direct observation of the dynamic process of electric field-induced domain evolution and crystal structure transformation is of significant importance to understand the microstructural mechanisms for the functional properties of ferroelectrics. In this dissertation, electric field in situ transmission electron microscopy (TEM) technique was employed to monitor the real-time evolution of the domain morphology and crystal structure during various electrical processes: (1) the initial poling process, (2) the electric field reversal process, and (3) the electrical cycling process. Two types of perovskite-structured ceramics, normal ferroelectrics and relaxor ferroelectrics, were used for this investigation. In addition to providing the microscopic insight for some wellaccepted phase transformation rules, discoveries of some new or even unexpected physical phenomena were also demonstrated.

  13. Piezoelectricity and Ferroelectricity in Amino Acid Glycine =

    Science.gov (United States)

    Seyedhosseini, Ensieh

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and switchable polarization at room temperature. Here we study piezoelectricity and ferroelectricity in the smallest amino acid glycine, representing a broad class of non-centrosymmetric amino acids. Glycine is one of the basic and important elements in biology, as it serves as a building block for proteins. Three polymorphic forms with different physical properties are possible in glycine (alpha, beta and gamma), Of special interest for various applications are non-centrosymmetric polymorphs: beta-glycine and gamma-glycine. The most useful beta-polymorph being ferroelectric took much less attention than the other due to its instability under ambient conditions. In this work, we could grow stable microcrystals of beta-glycine by the evaporation of aqueous solution on a (111)Pt/Ti/SiO2/Si substrate as a template. The effects of the solution concentration and Pt-assisted nucleation on the crystal growth and phase evolution were characterized by X-ray diffraction analysis and Raman spectroscopy. In addition, spin-coating technique was used for the fabrication of highly aligned nano-islands of beta-glycine with regular orientation of the crystallographic axes relative the underlying substrate (Pt). Further we study both as-grown and tip-induced domain structures and polarization switching in the beta-glycine molecular systems by Piezoresponse Force Microscopy (PFM) and compare the results with molecular modeling and computer simulations. We show that beta-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of applied voltage and pulse duration. The domain shape is dictated by

  14. Health or harm? A cohort study of the importance of job quality in extended workforce participation by older adults

    Directory of Open Access Journals (Sweden)

    Jennifer Welsh

    2016-08-01

    Full Text Available Abstract Background As people are living longer, they are being encouraged to work longer. While it is assumed that extended employment will be good for health, the evidence has been mixed. This study considers whether employment and job quality exert an influence on four indicators of health status in older workers. Methods Data for this study came from 836 older workers (440 men and 396 women aged 50–59 years at baseline who participated in the Household, Income and Labour Dynamics in Australia (HILDA Survey. Using linear regression, we examine within-person change in self-rated, physical and mental health and one health behaviour (physical activity at two time points over a nine year follow-up period. Results There were minimal differences in the way health changed for older adults who continued working compared to those who retired voluntarily. However, when we decomposed employment in terms of job quality, health outcomes diverged. Compared to voluntary retirees, older workers who had worked in good quality jobs reported marginally better self-rated health (0.14,−0.02–0.29; but did not differ in their physical (2.31,−1.09–5.72 or mental health (0.51,−1.84–2.87. In contrast, older workers who held poor quality jobs for most of the follow-up period declined in their self-rated (−1.13,−0.28 − –0.02, physical (−4.90, 8.52– − 1.29 and mental health (−4.67, 7.69– − 1.66 relative to voluntary retirees. Older workers who held poor quality jobs for just some of the follow-up period did not differ from voluntary retirees in terms of their health. However there was evidence of a linear relationship between length of exposure to poor quality jobs and decline in health outcomes. Conclusion Extended working lives mean that people will be ‘exposed’ to work for longer, and this exposure will occur at a life stage characterised by declining health for many. Our findings show that ensuring older workers have

  15. Anti-Ferroelectric Ceramics for High Energy Density Capacitors.

    Science.gov (United States)

    Chauhan, Aditya; Patel, Satyanarayan; Vaish, Rahul; Bowen, Chris R

    2015-11-25

    With an ever increasing dependence on electrical energy for powering modern equipment and electronics, research is focused on the development of efficient methods for the generation, storage and distribution of electrical power. In this regard, the development of suitable dielectric based solid-state capacitors will play a key role in revolutionizing modern day electronic and electrical devices. Among the popular dielectric materials, anti-ferroelectrics (AFE) display evidence of being a strong contender for future ceramic capacitors. AFE materials possess low dielectric loss, low coercive field, low remnant polarization, high energy density, high material efficiency, and fast discharge rates; all of these characteristics makes AFE materials a lucrative research direction. However, despite the evident advantages, there have only been limited attempts to develop this area. This article attempts to provide a focus to this area by presenting a timely review on the topic, on the relevant scientific advancements that have been made with respect to utilization and development of anti-ferroelectric materials for electric energy storage applications. The article begins with a general introduction discussing the need for high energy density capacitors, the present solutions being used to address this problem, and a brief discussion of various advantages of anti-ferroelectric materials for high energy storage applications. This is followed by a general description of anti-ferroelectricity and important anti-ferroelectric materials. The remainder of the paper is divided into two subsections, the first of which presents various physical routes for enhancing the energy storage density while the latter section describes chemical routes for enhanced storage density. This is followed by conclusions and future prospects and challenges which need to be addressed in this particular field.

  16. Percolation Magnetism in Ferroelectric Nanoparticles

    Science.gov (United States)

    Golovina, Iryna S.; Lemishko, Serhii V.; Morozovska, Anna N.

    2017-06-01

    Nanoparticles of potassium tantalate (KTaO3) and potassium niobate (KNbO3) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  17. Percolation Magnetism in Ferroelectric Nanoparticles.

    Science.gov (United States)

    Golovina, Iryna S; Lemishko, Serhii V; Morozovska, Anna N

    2017-12-01

    Nanoparticles of potassium tantalate (KTaO 3 ) and potassium niobate (KNbO 3 ) were synthesized by oxidation of metallic tantalum in molten potassium nitrate with the addition of potassium hydroxide. Magnetization curves obtained on these ferroelectric nanoparticles exhibit a weak ferromagnetism, while these compounds are nonmagnetic in a bulk. The experimental data are used as a start point for theoretical calculations. We consider a microscopic mechanism that leads to the emerging of a ferromagnetic ordering in ferroelectric nanoparticles. Our approach is based on the percolation of magnetic polarons assuming the dominant role of the oxygen vacancies. It describes the formation of surface magnetic polarons, in which an exchange interaction between electrons trapped in oxygen vacancies is mediated by magnetic impurity Fe 3+ ions. The dependences of percolation radius on concentration of the oxygen vacancies and magnetic defects are determined in the framework of percolation theory.

  18. Transparent Ferroelectric Capacitors on Glass

    Directory of Open Access Journals (Sweden)

    Daniele Sette

    2017-10-01

    Full Text Available We deposited transparent ferroelectric lead zirconate titanate thin films on fused silica and contacted them via Al-doped zinc oxide (AZO transparent electrodes with an interdigitated electrode (IDE design. These layers, together with a TiO2 buffer layer on the fused silica substrate, are highly transparent (>60% in the visible optical range. Fully crystallized Pb(Zr0.52Ti0.48O3 (PZT films are dielectrically functional and exhibit a typical ferroelectric polarization loop with a remanent polarization of 15 μC/cm2. The permittivity value of 650, obtained with IDE AZO electrodes is equivalent to the one measured with Pt electrodes patterned with the same design, which proves the high quality of the developed transparent structures.

  19. The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films

    Energy Technology Data Exchange (ETDEWEB)

    Catalan, G [Institut Mediterrani d' Estudis Avancats (IMEDEA), C/Miquel Marques 21, Esporles 07190, Mallorca (Spain); Sinnamon, L J [Department of Pure and Applied Physics, Queen' s University of Belfast, University Road, Belfast BT7 1NN (United Kingdom); Gregg, J M [Department of Pure and Applied Physics, Queen' s University of Belfast, University Road, Belfast BT7 1NN (United Kingdom)

    2004-04-07

    Recent experimental measurements of large flexoelectric coefficients in ferroelectric ceramics suggest that strain gradients can affect the polarization and permittivity behaviour of inhomogeneously strained ferroelectrics. Here we present a phenomenological model of the effect of flexoelectricity on the dielectric constant, polarization, Curie temperature (T{sub C}), temperature of maximum dielectric constant (T{sub m}) and temperature of the onset of reversible polarization (T{sub ferro}) for ferroelectric thin films subject to substrate-induced epitaxial strains that are allowed to relax with thickness, and the qualitative and quantitative predictions of the model are compared with experimental results for (Ba{sub 0.5}Sr{sub 0.5})TiO{sub 3} thin films on SrRuO{sub 3} electrodes. It is shown that flexoelectricity can play an important role in decreasing the maximum dielectric constant of ferroelectric thin films under inhomogeneous in-plane strain, regardless of the sign of the strain gradient.

  20. The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films

    International Nuclear Information System (INIS)

    Catalan, G; Sinnamon, L J; Gregg, J M

    2004-01-01

    Recent experimental measurements of large flexoelectric coefficients in ferroelectric ceramics suggest that strain gradients can affect the polarization and permittivity behaviour of inhomogeneously strained ferroelectrics. Here we present a phenomenological model of the effect of flexoelectricity on the dielectric constant, polarization, Curie temperature (T C ), temperature of maximum dielectric constant (T m ) and temperature of the onset of reversible polarization (T ferro ) for ferroelectric thin films subject to substrate-induced epitaxial strains that are allowed to relax with thickness, and the qualitative and quantitative predictions of the model are compared with experimental results for (Ba 0.5 Sr 0.5 )TiO 3 thin films on SrRuO 3 electrodes. It is shown that flexoelectricity can play an important role in decreasing the maximum dielectric constant of ferroelectric thin films under inhomogeneous in-plane strain, regardless of the sign of the strain gradient

  1. Enhancement of ferroelectricity in nanocones

    Czech Academy of Sciences Publication Activity Database

    Bykov, Pavlo; Suchaneck, G.; Jastrabík, Lubomír; Gerlach, G.

    2009-01-01

    Roč. 246, č. 10 (2009), s. 2396-2396 ISSN 0370-1972 R&D Projects: GA AV ČR KAN301370701; GA MŠk(CZ) 1M06002 Institutional research plan: CEZ:AV0Z10100522 Keywords : ferroelectric size effect of cone-shaped nanoparticles * phase transition temperature dependence on nanocone volume Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.150, year: 2009

  2. School-Wide PBIS: Extending the Impact of Applied Behavior Analysis. Why is This Important to Behavior Analysts?

    Science.gov (United States)

    Putnam, Robert F; Kincaid, Donald

    2015-05-01

    Horner and Sugai (2015) recently wrote a manuscript providing an overview of school-wide positive behavioral interventions and supports (PBIS) and why it is an example of applied behavior analysis at the scale of social importance. This paper will describe why school-wide PBIS is important to behavior analysts, how it helps promote applied behavior analysis in schools and other organizations, and how behavior analysts can use this framework to assist them in the promotion and implementation of applied behavior analysis at both at the school and organizational level, as well as, the classroom and individual level.

  3. Polymer Ferroelectric Memory for Flexible Electronics

    KAUST Repository

    Khan, Mohd Adnan

    2013-11-01

    With the projected growth of the flexible and plastic electronics industry, there is renewed interest in the research community to develop high performance all-polymeric memory which will be an essential component of any electronic circuit. Some of the efforts in polymer memories are based on different mechanisms such as filamentary conduction, charge trapping effects, dipole alignment, and reduction-oxidation to name a few. Among these the leading candidate are those based on the mechanism of ferroelectricity. Polymer ferroelectric memory can be used in niche applications like smart cards, RFID tags, sensors etc. This dissertation will focus on novel material and device engineering to fabricate high performance low temperature polymeric ferroelectric memory for flexible electronics. We address and find solutions to some fundamental problems affecting all polymer ferroelectric memory like high coercive fields, fatigue and thermal stability issues, poor breakdown strength and poor p-type hole mobilities. Some of the strategies adopted in this dissertation are: Use of different flexible substrates, electrode engineering to improve charge injection and fatigue properties of ferroelectric polymers, large area ink jet printing of ferroelectric memory devices, use of polymer blends to improve insulating properties of ferroelectric polymers and use of oxide semiconductors to fabricate high mobility p-type ferroelectric memory. During the course of this dissertation we have fabricated: the first all-polymer ferroelectric capacitors with solvent modified highly conducting polymeric poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) [PEDOT:PSS] electrodes on plastic substrates with performance as good as devices with metallic Platinum-Gold electrodes on silicon substrates; the first all-polymer high performance ferroelectric memory on banknotes for security applications; novel ferroelectric capacitors based on blends of ferroelectric poly(vinylidene fluoride

  4. The Importance of Aerobic Fitness in Extending Thermotolerance in Extreme Environments: Connecting Molecular Biology to the Whole Body Response

    Science.gov (United States)

    2009-10-01

    contention that endotoxemia is a key mediator driving the systemic inflammatory response-related progression of EHI at temperatures greater than 41°C [2...that endotoxemia also plays an important role [17]. Thus it is possible that the improved cardiovascular stability associated with aerobic training...Forces NBC protective garment over combat clothing, shorts, and a T-shirt. The intensity of exercise was selected such that the elevated metabolic

  5. Calculation of extended shields in the Monte Carlo method using importance function (BRAND and DD code systems)

    International Nuclear Information System (INIS)

    Androsenko, A.A.; Androsenko, P.A.; Kagalenko, I.Eh.; Mironovich, Yu.N.

    1992-01-01

    Consideration is given of a technique and algorithms of constructing neutron trajectories in the Monte-Carlo method taking into account the data on adjoint transport equation solution. When simulating the transport part of transfer kernel the use is made of piecewise-linear approximation of free path length density along the particle motion direction. The approach has been implemented in programs within the framework of the BRAND code system. The importance is calculated in the multigroup P 1 -approximation within the framework of the DD-30 code system. The efficiency of the developed computation technique is demonstrated by means of solution of two model problems. 4 refs.; 2 tabs

  6. Multilevel information storage in ferroelectric polymer memories

    NARCIS (Netherlands)

    Tripathi, A.K.; Breemen, A.J.J.M. van; Shen, J.; Gao, Q.; Ivan, M.G.; Reimann, K.; Meinders, E.R.; Gelinck, G.H.

    2011-01-01

    Multibit memory devices based on the ferroelectric copolymer P(VDF-TrFE) (poly-(vinylidenefluoride-trifluoroethylene)) are presented. Multilevel microstructures are fabricated by thermal imprinting of spin-coated ferroelectric polymer film using a rigid Si template. Multibit storage in capacitors

  7. A ferroelectric transparent thin-film transistor

    NARCIS (Netherlands)

    Prins, MWJ; GrosseHolz, KO; Muller, G; Cillessen, JFM; Giesbers, JB; Weening, RP; Wolf, RM

    1996-01-01

    Operation is demonstrated of a field-effect transistor made of transparant oxidic thin films, showing an intrinsic memory function due to the usage of a ferroelectric insulator. The device consists of a high mobility Sb-doped n-type SnO2 semiconductor layer, PbZr0.2Ti0.8Os3 as a ferroelectric

  8. Photoelectron spectroscopic and microspectroscopic probes of ferroelectrics

    Science.gov (United States)

    Tǎnase, Liviu C.; Abramiuc, Laura E.; Teodorescu, Cristian M.

    2017-12-01

    This contribution is a review of recent aspects connected with photoelectron spectroscopy of free ferroelectric surfaces, metals interfaced with these surfaces, graphene-like layers together with some exemplifications concerning molecular adsorption, dissociations and desorptions occurring from ferroelectrics. Standard photoelectron spectroscopy is used nowadays in correlation with other characterization techniques, such as piezoresponse force microscopy, high resolution transmission electron spectroscopy, and ferroelectric hysteresis cycles. In this work we will concentrate mainly on photoelectron spectroscopy and spectro-microscopy characterization of ferroelectric thin films, starting from atomically clean ferroelectric surfaces of lead zirco-titanate, then going towards heterostructures using this material in combination with graphene-like carbon layers or with metals. Concepts involving charge accumulation and depolarization near surface will be revisited by taking into account the newest findings in this area.

  9. Local symmetry approach to relaxor ferroelectrics

    Science.gov (United States)

    Nahas, Y.; Kornev, I.

    2013-08-01

    We propose a theoretical framework based on local gauge symmetries and develop a first-principles-derived effective Hamiltonian to study relaxor ferroelectrics. The approach is applied to PLZT relaxor and i) qualitatively reproduces many of its generic features, such as all the characteristic temperatures inherent to relaxor ferroelectrics and their dependence on the La concentration, ii) yields a rich variety of ferroelectric phases, depending on La content, iii) reveals the existence of non-perfectly ordered regions even in the ferroelectric state, iv) allows, for the first time, to compute the critical exponent γ in a relaxor ferroelectric, and v) clearly elucidates how the relaxor behavior, such as a diffusive phase transition, arises due to the disorder-induced non-trivial interplay between local and global scales.

  10. Ferroelectric Electron Emission Principles and Technology

    CERN Document Server

    Riege, H

    1997-01-01

    The spontaneous electrical polarization of ferroelectric materials can be changed either by reversal or by phase transition from a ferroelectric into a non-ferroelectric state or vice versa. If spontaneous polarization changes are induced with fast heat, mechanical pressure, laser or electric field pulses on a submicrosecond time scale, strong uncompensated surface charge densities and related polarization fields are generated, which may lead to the intense self-emission of electrons from the negatively charged free surface areas of the ferroelectric sample. Hence, electron guns can be built with extraction-field-free ferroelectric cathodes, which may be easily separated from the high-field regions of post-accelerating gap structures. The intensity, the energy, the temporal and spatial distribution, and the repetitition rate of the emitted electron beams can be controlled within wide limits via the excitation pulses and external focusing and accelerating electromagnetic fields. The technological advantages an...

  11. Features and Technology of Ferroelectric Electron Emission

    CERN Document Server

    Boscolo, I; Herleb, U; Riege, H

    1998-01-01

    Spontaneous electrical polarization of ferroelectric materials can be changed either by reversal or by phase transition from a ferroelectric into a non-polar state or vice versa. If spontaneous polarization changes are induced at a submicrosecond time-scale, strong uncompensated surface charge densities and related fields are generated, which may lead to the intense self-emission of electrons from the negatively-charged free surface areas of the ferroelectric cathode. The nature of this self-emission differs essentially from other methods of ferroelectric electron emission and from conventional electron emission in that the latter methods are only achieved by extracting electrons with externally applied electric fields. When electron guns are constructed with ferroelectric cathodes, new design criteria have to be taken into account. The intensity, the energy, the temporal and spatial distribution and the repetition rate of the emitted electron beams can be adjusted within wide limits. The advantages of ferroe...

  12. Minimal Clinically Important Difference in Parkinson’s Disease as Assessed in Pivotal Trials of Pramipexole Extended Release

    Directory of Open Access Journals (Sweden)

    Robert A. Hauser

    2014-01-01

    Full Text Available Background. The minimal clinically important difference (MCID is the smallest change in an outcome measure that is meaningful for patients. Objectives. To calculate the MCID for Unified Parkinson’s Disease Rating Scale (UPDRS scores in early Parkinson’s disease (EPD and for UPDRS scores and “OFF” time in advanced Parkinson’s disease (APD. Methods. We analyzed data from two pivotal, double-blind, parallel-group trials of pramipexole ER that included pramipexole immediate release (IR as an active comparator. We calculated MCID as the mean change in subjects who received active treatment and rated themselves “a little better” on patient global impression of improvement (PGI-I minus the mean change in subjects who received placebo and rated themselves unchanged. Results. MCIDs in EPD (pramipexole ER, pramipexole IR for UPDRS II were −1.8 and −2.0, for UPDRS III −6.2 and −6.1, and for UPDRS II + III −8.0 and −8.1. MCIDs in APD for UPDRS II were −1.8 and −2.3, for UPDRS III −5.2 and −6.5, and for UPDRS II + III −7.1 and −8.8. MCID for “OFF” time (pramipexole ER, pramipexole IR was −1.0 and −1.3 hours. Conclusions. A range of MCIDs is emerging in the PD literature that provides the basis for power calculations and interpretation of clinical trials.

  13. Ferroelectric gate tunnel field-effect transistors with low-power steep turn-on

    Directory of Open Access Journals (Sweden)

    M. H. Lee

    2014-10-01

    Full Text Available Using a ferroelectric PbZrTiO3 gate stack, the range of the steep subthreshold swing in tunnel field-effect transistors was extended by 3.5 orders of magnitude demonstrating an improvement in the swing (by approximately double the slope. The drain conductance (gd shows only 16% enhancement with large V DS (∼−1.5V indicates internal voltage amplification with ferroelectric negative capacitance effect beneficial to small lateral drain-source bias voltages (−0.1 V. The concept of coupling the ferroelectric polarization is proposed. The power consumption is also discussed in low-power applications of steep subthreshold slope devices.

  14. Ferroelectric nanoparticle-embedded sponge structure triboelectric generators

    Science.gov (United States)

    Park, Daehoon; Shin, Sung-Ho; Yoon, Ick-Jae; Nah, Junghyo

    2018-05-01

    We report high-performance triboelectric nanogenerators (TENGs) employing ferroelectric nanoparticles (NPs) embedded in a sponge structure. The ferroelectric BaTiO3 NPs inside the sponge structure play an important role in increasing surface charge density by polarized spontaneous dipoles, enabling the packaging of TENGs even with a minimal separation gap. Since the friction surfaces are encapsulated in the packaged device structure, it suffers negligible performance degradation even at a high relative humidity of 80%. The TENGs also demonstrated excellent mechanical durability due to the elasticity and flexibility of the sponge structure. Consequently, the TENGs can reliably harvest energy even under harsh conditions. The approach introduced here is a simple, effective, and reliable way to fabricate compact and packaged TENGs for potential applications in wearable energy-harvesting devices.

  15. Multiferroics: Different ways to combine magnetism and ferroelectricity

    International Nuclear Information System (INIS)

    Khomskii, D.I.

    2006-01-01

    Multiferroics - materials which are simultaneously (ferro)magnetic and ferroelectric, and often also ferroelastic - attract now considerable attention, both because of the interesting physics involved and as they promise important practical applications. In this paper, I give a survey of microscopic factors determining the coexistence of these properties, and discuss different possible routes to combine them in one material. In particular, the role of the occupation of d-states in transition metal perovskites is discussed, possible role of spiral magnetic structures is stressed, and the novel mechanism of ferroelectricity in magnetic systems due to combination of site-centred and bond-centred charge ordering is presented. Microscopic nature of multiferroic behaviour in several particular materials, including magnetite Fe 3 O 4 , is discussed

  16. Negative capacitance in multidomain ferroelectric superlattices.

    Science.gov (United States)

    Zubko, Pavlo; Wojdeł, Jacek C; Hadjimichael, Marios; Fernandez-Pena, Stéphanie; Sené, Anaïs; Luk'yanchuk, Igor; Triscone, Jean-Marc; Íñiguez, Jorge

    2016-06-23

    The stability of spontaneous electrical polarization in ferroelectrics is fundamental to many of their current applications, which range from the simple electric cigarette lighter to non-volatile random access memories. Research on nanoscale ferroelectrics reveals that their behaviour is profoundly different from that in bulk ferroelectrics, which could lead to new phenomena with potential for future devices. As ferroelectrics become thinner, maintaining a stable polarization becomes increasingly challenging. On the other hand, intentionally destabilizing this polarization can cause the effective electric permittivity of a ferroelectric to become negative, enabling it to behave as a negative capacitance when integrated in a heterostructure. Negative capacitance has been proposed as a way of overcoming fundamental limitations on the power consumption of field-effect transistors. However, experimental demonstrations of this phenomenon remain contentious. The prevalent interpretations based on homogeneous polarization models are difficult to reconcile with the expected strong tendency for domain formation, but the effect of domains on negative capacitance has received little attention. Here we report negative capacitance in a model system of multidomain ferroelectric-dielectric superlattices across a wide range of temperatures, in both the ferroelectric and paraelectric phases. Using a phenomenological model, we show that domain-wall motion not only gives rise to negative permittivity, but can also enhance, rather than limit, its temperature range. Our first-principles-based atomistic simulations provide detailed microscopic insight into the origin of this phenomenon, identifying the dominant contribution of near-interface layers and paving the way for its future exploitation.

  17. Structural consequences of ferroelectric nanolithography.

    Science.gov (United States)

    Jo, Ji Young; Chen, Pice; Sichel, Rebecca J; Baek, Seung-Hyub; Smith, Ryan T; Balke, Nina; Kalinin, Sergei V; Holt, Martin V; Maser, Jörg; Evans-Lutterodt, Kenneth; Eom, Chang-Beom; Evans, Paul G

    2011-08-10

    Domains of remnant polarization can be written into ferroelectrics with nanoscale precision using scanning probe nanolithography techniques such as piezoresponse force microscopy (PFM). Understanding the structural effects accompanying this process has been challenging due to the lack of appropriate structural characterization tools. Synchrotron X-ray nanodiffraction provides images of the domain structure written by PFM into an epitaxial Pb(Zr,Ti)O(3) thin film and simultaneously reveals structural effects arising from the writing process. A coherent scattering simulation including the superposition of the beams simultaneously diffracted by multiple mosaic blocks provides an excellent fit to the observed diffraction patterns. Domains in which the polarization is reversed from the as-grown state have a strain of up to 0.1% representing the piezoelectric response to unscreened surface charges. An additional X-ray microdiffraction study of the photon-energy dependence of the difference in diffracted intensity between opposite polarization states shows that this contrast has a crystallographic origin. The sign and magnitude of the intensity contrast between domains of opposite polarization are consistent with the polarization expected from PFM images and with the writing of domains through the entire thickness of the ferroelectric layer. The strain induced by writing provides a significant additional contribution to the increased free energy of the written domain state with respect to a uniformly polarized state.

  18. Differential voltage amplification from ferroelectric negative capacitance

    Science.gov (United States)

    Khan, Asif I.; Hoffmann, Michael; Chatterjee, Korok; Lu, Zhongyuan; Xu, Ruijuan; Serrao, Claudy; Smith, Samuel; Martin, Lane W.; Hu, Chenming; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2017-12-01

    We demonstrate that a ferroelectric can cause a differential voltage amplification without needing an external energy source. As the ferroelectric switches from one polarization state to the other, a transfer of energy takes place from the ferroelectric to the dielectric, determined by the ratio of their capacitances, which, in turn, leads to the differential amplification. This amplification is very different in nature from conventional inductor-capacitor based circuits where an oscillatory amplification can be observed. The demonstration of differential voltage amplification from completely passive capacitor elements only has fundamental ramifications for next generation electronics.

  19. Static Characteristics of the Ferroelectric Transistor Inverter

    Science.gov (United States)

    Mitchell, Cody; Laws, crystal; MacLeond, Todd C.; Ho, Fat D.

    2010-01-01

    The inverter is one of the most fundamental building blocks of digital logic, and it can be used as the foundation for understanding more complex logic gates and circuits. This paper presents the characteristics of an inverter circuit using a ferroelectric field-effect transistor. The voltage transfer characteristics are analyzed with respect to varying parameters such as supply voltage, input voltage, and load resistance. The effects of the ferroelectric layer between the gate and semiconductor are examined, and comparisons are made between the inverters using ferroelectric transistors and those using traditional MOSFETs.

  20. Probing nanoscale ferroelectricity by ultraviolet Raman spectroscopy.

    Science.gov (United States)

    Tenne, D A; Bruchhausen, A; Lanzillotti-Kimura, N D; Fainstein, A; Katiyar, R S; Cantarero, A; Soukiassian, A; Vaithyanathan, V; Haeni, J H; Tian, W; Schlom, D G; Choi, K J; Kim, D M; Eom, C B; Sun, H P; Pan, X Q; Li, Y L; Chen, L Q; Jia, Q X; Nakhmanson, S M; Rabe, K M; Xi, X X

    2006-09-15

    We demonstrated that ultraviolet Raman spectroscopy is an effective technique to measure the transition temperature (Tc) in ferroelectric ultrathin films and superlattices. We showed that one-unit-cell-thick BaTiO3 layers in BaTiO3/SrTiO3 superlattices are not only ferroelectric (with Tc as high as 250 kelvin) but also polarize the quantum paraelectric SrTiO3 layers adjacent to them. Tc was tuned by approximately 500 kelvin by varying the thicknesses of the BaTiO3 and SrTiO3 layers, revealing the essential roles of electrical and mechanical boundary conditions for nanoscale ferroelectricity.

  1. Physical Origin of Transient Negative Capacitance in a Ferroelectric Capacitor

    Science.gov (United States)

    Chang, Sou-Chi; Avci, Uygar E.; Nikonov, Dmitri E.; Manipatruni, Sasikanth; Young, Ian A.

    2018-01-01

    Transient negative differential capacitance, the dynamic reversal of transient capacitance in an electrical circuit, is of highly technological and scientific interest since it probes the foundation of ferroelectricity. We study a resistor-ferroelectric capacitor (R -FEC) network through a series of coupled equations based on Kirchhoff's law, electrostatics, and Landau theory. We show that transient negative capacitance (NC) in a R -FEC circuit originates from the mismatch in switching rate between the free charge on the metal plate and the bound charge in a ferroelectric (FE) capacitor during the polarization switching. This transient free charge-polarization mismatch is driven by the negative curvature of the FE free-energy landscape, and it is also analytically shown that a free-energy profile with a negative curvature is the only physical system that can describe transient NC in a R -FEC circuit. Furthermore, transient NC induced by the free charge-polarization mismatch is justified by its dependence on both external resistance and the intrinsic FE viscosity coefficient. The depolarization effect on FE capacitors emphasizes the importance of negative curvature to transient NC and also implies that transient and steady-state NC cannot be observed in a FE capacitor simultaneously. Finally, using the transient NC measurements, a procedure to experimentally determine the viscosity coefficient is presented to provide more insight into the relation between transient NC and the FE free-energy profile.

  2. Quantum tunnelling and charge accumulation in organic ferroelectric memory diodes.

    Science.gov (United States)

    Ghittorelli, Matteo; Lenz, Thomas; Sharifi Dehsari, Hamed; Zhao, Dong; Asadi, Kamal; Blom, Paul W M; Kovács-Vajna, Zsolt M; de Leeuw, Dago M; Torricelli, Fabrizio

    2017-06-12

    Non-volatile memories-providing the information storage functionality-are crucial circuit components. Solution-processed organic ferroelectric memory diodes are the non-volatile memory candidate for flexible electronics, as witnessed by the industrial demonstration of a 1 kbit reconfigurable memory fabricated on a plastic foil. Further progress, however, is limited owing to the lack of understanding of the device physics, which is required for the technological implementation of high-density arrays. Here we show that ferroelectric diodes operate as vertical field-effect transistors at the pinch-off. The tunnelling injection and charge accumulation are the fundamental mechanisms governing the device operation. Surprisingly, thermionic emission can be disregarded and the on-state current is not space charge limited. The proposed model explains and unifies a wide range of experiments, provides important design rules for the implementation of organic ferroelectric memory diodes and predicts an ultimate theoretical array density of up to 10 12  bit cm -2 .

  3. Negative capacitance in a ferroelectric capacitor.

    Science.gov (United States)

    Khan, Asif Islam; Chatterjee, Korok; Wang, Brian; Drapcho, Steven; You, Long; Serrao, Claudy; Bakaul, Saidur Rahman; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2015-02-01

    The Boltzmann distribution of electrons poses a fundamental barrier to lowering energy dissipation in conventional electronics, often termed as Boltzmann Tyranny. Negative capacitance in ferroelectric materials, which stems from the stored energy of a phase transition, could provide a solution, but a direct measurement of negative capacitance has so far been elusive. Here, we report the observation of negative capacitance in a thin, epitaxial ferroelectric film. When a voltage pulse is applied, the voltage across the ferroelectric capacitor is found to be decreasing with time--in exactly the opposite direction to which voltage for a regular capacitor should change. Analysis of this 'inductance'-like behaviour from a capacitor presents an unprecedented insight into the intrinsic energy profile of the ferroelectric material and could pave the way for completely new applications.

  4. Four-state ferroelectric spin-valve

    Czech Academy of Sciences Publication Activity Database

    Quindeau, A.; Fina, I.; Martí, Xavier; Apachitei, G.; Ferrer, P.; Nicklin, C.; Pippel, E.; Hesse, D.; Alexe, M.

    2015-01-01

    Roč. 5, May (2015), 09749 ISSN 2045-2322 Institutional support: RVO:68378271 Keywords : electronic and spintronic devices * ferroelectrics and multiferroics Subject RIV: BE - Theoretical Physics Impact factor: 5.228, year: 2015

  5. Ferroelectricity in the multiferroic hexagonal manganites

    OpenAIRE

    Lilienblum, Martin; Lottermoser, Thomas; Manz, Sebastian; Selbach, Sverre Magnus; Cano, Andres; Fiebig, Manfred

    2015-01-01

    Since their discovery in 1963 the hexagonal manganites have consolidated their role as exotic ferroelectrics with astonishing functionalities. Their introduction as room-temperature device ferroelectrics was followed by observations of giant flexoelectricity, multiferroicity with magnetoelectric domain and domain-wall coupling, protected vortex domain structures, topological domain-scaling behaviour and domain walls with tunable conductance and magnetism. Even after half a century, however, t...

  6. Ferroelectric Phase Diagram of PVDF:PMMA

    OpenAIRE

    Li, Mengyuan; Stingelin, Natalie; Michels, Jasper J.; Spijkman, Mark-Jan; Asadi, Kamal; Feldman, Kirill; Blom, Paul W. M.; de Leeuw, Dago M.

    2012-01-01

    We have investigated the ferroelectric phase diagram of poly(vinylidene fluoride) (PVDF) and poly(methyl methacrylate) (PMMA). The binary nonequilibrium temperature composition diagram was determined and melting of alpha- and beta-phase PVDF was identified. Ferroelectric beta-PVDF:PMMA blend films were made by melting, ice quenching, and subsequent annealing above the glass transition temperature of PMMA, close to the melting temperature of PVDF. Addition of PMMA suppresses the crystallizatio...

  7. Ferroelectric domain continuity over grain boundaries

    DEFF Research Database (Denmark)

    Mantri, Sukriti; Oddershede, Jette; Damjanovic, Dragan

    2017-01-01

    Formation and mobility of domain walls in ferroelectric materials is responsible for many of their electrical and mechanical properties. Domain wall continuity across grain boundaries has been observed since the 1950's and is speculated to affect the grain boundary-domain interactions, thereby...... techniques in manipulating the micro-structure and domain structure to result in desired interactions between neighbouring grains could prove to be beneficial for future polycrystalline ferroelectric materials....

  8. An epitaxial ferroelectric tunnel junction on silicon.

    Science.gov (United States)

    Li, Zhipeng; Guo, Xiao; Lu, Hui-Bin; Zhang, Zaoli; Song, Dongsheng; Cheng, Shaobo; Bosman, Michel; Zhu, Jing; Dong, Zhili; Zhu, Weiguang

    2014-11-12

    Epitaxially grown functional perovskites on silicon (001) and the ferroelectricity of a 3.2 nm thick BaTiO3 barrier layer are demonstrated. The polarization-switching-induced change in tunneling resistance is measured to be two orders of magnitude. The obtained results suggest the possibility of integrating ferroelectric tunnel junctions as binary data storage media in non-volatile memory cells on a silicon platform. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Inelastic x-ray investigation of the ferroelectric transition in SnTe

    Science.gov (United States)

    O'Neill, Christopher D.; Sokolov, Dmitry A.; Hermann, Andreas; Bossak, Alexei; Stock, Christopher; Huxley, Andrew D.

    2017-04-01

    We report that the lowest energy transverse-optic phonon in metallic SnTe softens to near zero energy at the structural transition at TC=75 K and importantly show that the energy of this mode below TC increases as the temperature decreases. Since the mode is a polar displacement this proves unambiguously that SnTe undergoes a ferroelectric displacement below TC. Concentration gradients and imperfect stoichiometry in large crystals may explain why this was not seen in previous inelastic neutron scattering studies. Despite SnTe being metallic we find that the ferroelectric transition is similar to that in ferroelectric insulators, unmodified by the presence of conduction electrons: we find that (i) the damping of the polar mode is dominated by coupling to acoustic phonons rather than electron-phonon coupling, (ii) the transition is almost an ideal continuous transition, and (iii) comparison with density functional calculations identifies the importance of dipolar-dipolar screening for understanding this behavior.

  10. Negative Thermal Expansion and Ferroelectric Oxides in Electronic Device Composites

    Science.gov (United States)

    Trujillo, Joy Elizabeth

    Electronic devices increasingly pervade our daily lives, driving the need to develop components which have material properties that can be designed to target a specific need. The principle motive of this thesis is to investigate the effects of particle size and composition on three oxides which possess electronic and thermal properties essential to designing improved ceramic composites for more efficient, high energy storage devices. A metal matrix composite project used the negative thermal expansion oxide, ZrW2O 8, to offset the high thermal expansion of the metal matrix without sacrificing high thermal conductivity. Composite preparation employed a powder mixing technique to achieve easy composition control and homogenous phase distribution in order to build composites which target a specific coefficient of thermal expansion (CTE). A tailorable CTE material is desirable for overcoming thermomechanical failure in heat sinks or device casings. This thesis also considers the particle size effect on dielectric properties in a common ferroelectric perovskite, Ba1-xSrxTiO 3. By varying the Ba:Sr ratio, the Curie temperature can be adjusted and by reducing the particle size, the dielectric constant can be increased and hysteresis decreased. These conditions could yield anonymously large dielectric constants near room temperature. However, the ferroelectric behavior has been observed to cease below a minimum size of a few tens of nanometers in bulk or thin film materials. Using a new particle slurry approach, electrochemical impedance spectroscopy allows dielectric properties to be determined for nanoparticles, as opposed to conventional methods which measure only bulk or thin film dielectric properties. In this manner, Ba1-xSrxTiO3 was investigated in a new size regime, extending the theory on the ferroelectric behavior to film heterostructures of STO/YSZ are used in electrochemical energy devices due to their enhanced interfacial ionic conductivity. This work

  11. Characterisation of ferroelectric bulk materials and thin films

    CERN Document Server

    Cain, Markys G

    2014-01-01

    This book presents a comprehensive review of the most important methods used in the characterisation of piezoelectric, ferroelectric and pyroelectric materials. It covers techniques for the analysis of bulk materials and thick and thin film materials and devices. There is a growing demand by industry to adapt and integrate piezoelectric materials into ever smaller devices and structures. Such applications development requires the joint development of reliable, robust, accurate and - most importantly - relevant and applicable measurement and characterisation methods and models. In the past f

  12. First-principles study of magnetoelectric effects and ferroelectricity in complex oxides

    Science.gov (United States)

    Ye, Meng

    This thesis contains several investigations of magnetoelectric effects and ferroelectricity in complex oxides studied via first-principles calculations. We start by reviewing the mechanisms of ferroelectricity and magnetoelectric effects, and then we give a brief introduction to the first-principles computational methods that are involved. Next, our investigations are divided into two parts. The first half focuses on the magnetoelectric effects, while the second half is mainly on ferroelectricity. The first half aims to examine the lattice contribution to the magnetoelectricity by investigating the dynamical magnetic charge tensors induced by different mechanisms. Through the study of Cr2O3 and a fictitious material KITPite, we find that the dynamical magnetic charges driven by exchange striction are more significant than the ones induced by spin-orbit coupling. Since the lattice contribution to the magnetoelectric effect is proportional to the dynamical magnetic charges, we also study the magnetic charges and the magnetoelectric coupling in hexagonal manganite RMnO3 and ferrite RFeO3. Our results further confirm the importance of the exchange-striction mechanism in inducing large magnetic charges, but we also notice that the magnetoelectric contributions from various phonons tend to cancel each other, leading to a great reduction of the total coupling. These investigations not only provide a prediction of the magnetoelectric coupling constant in RMnO3 and RFeO3, but also emphasize the importance of phonons in magnetoelectric coupling. In the second half of the thesis, we focus on predicting new ferroelectrics in the family of corundum derivatives. Many new corundum derivatives have been synthesized recently; these are automatically polar, and many are magnetic as well. However, a polar material is only called ferroelectric if the polarization is reversible by an external field, and it is not yet clear whether or not this is the case for these new materials

  13. Mechanical confinement for tuning ferroelectric response in PMN-PT single crystal

    Science.gov (United States)

    Patel, Satyanarayan; Chauhan, Aditya; Vaish, Rahul

    2015-02-01

    Ferroelectrics form an important class of materials and are employed for a variety of applications. However, specific applications dictate the need of tailored ferroelectric response. This creates a requirement to obtain ferroelectric materials with tunable properties. Generally, chemical modifications or domain engineering are employed to this effect. This study attempts to shed light on the use of compressive pre-stresses for tuning and enhancing the ferroelectric properties. For the purpose, polarization versus electric field hysteresis data for 68Pb(Mn1/3Nb2/3)O3-32PbTiO3 (PMN-PT) single crystals were obtained as a function of uniaxial compressive stresses and operating temperatures. These data were utilized to investigate the effects of mechanical confinement for four individual case studies of electrocaloric effect, electrical energy storage, pyroelectric, and piezoelectric effect. A significant improvement was obtained for all case studies. The adiabatic temperature change was improved by ≈80% (28 MPa, 353 K); energy storage density increased by a factor of five (28 MPa, 353 K); pyroelectric figure of merits improved by an order of magnitude (21 MPa) and the piezoelectric coefficient was tailored (variable stress). The results offer promising insight into the use of directional confinement for improving application specific ferroelectric properties in PMN-PT single crystal.

  14. Magnetically induced ferroelectricity in TbMnO3: inverse Goodenough-Kanamori interaction

    Science.gov (United States)

    Yamauchi, Kunihiko; Picozzi, Silvia

    2009-02-01

    Improper ferroelectricity in magnets, as induced by non-centrosymmetric spin-, charge- or orbital-ordering, is a branch of the field of multiferroics having fascinating physics and a potentially important technological outcome. We focus here on ferroelectricity in orthorhombic TbMnO3, where the magnetic field along the a-axis produces a polar collinear spin-arrangement with a rather large in-plane electric polarization. The mechanism, similar to that occurring in orthorhombic HoMnO3 in the AFM-E phase, is efficiently driven by a large modification of the structural properties (such as MnO bond-lengths and Mn-O-Mn bond-angles) to favor eg electron hopping between Mn with parallel spins. A similar mechanism where the t2g states are involved is examined through a hypothetical collinear spin-structure, resulting in a weaker out-of-plane ferroelectric polarization.

  15. Magnetically induced ferroelectricity in TbMnO(3): inverse Goodenough-Kanamori interaction.

    Science.gov (United States)

    Yamauchi, Kunihiko; Picozzi, Silvia

    2009-02-11

    Improper ferroelectricity in magnets, as induced by non-centrosymmetric spin-, charge- or orbital-ordering, is a branch of the field of multiferroics having fascinating physics and a potentially important technological outcome. We focus here on ferroelectricity in orthorhombic TbMnO(3), where the magnetic field along the a-axis produces a polar collinear spin-arrangement with a rather large in-plane electric polarization. The mechanism, similar to that occurring in orthorhombic HoMnO(3) in the AFM-E phase, is efficiently driven by a large modification of the structural properties (such as MnO bond-lengths and Mn-O-Mn bond-angles) to favor e(g) electron hopping between Mn with parallel spins. A similar mechanism where the t(2g) states are involved is examined through a hypothetical collinear spin-structure, resulting in a weaker out-of-plane ferroelectric polarization.

  16. Effect of ferroelectric nanoparticles on the isotropic-smectic-A phase transition

    Science.gov (United States)

    Mukherjee, Prabir K.

    2016-06-01

    Recent experimental studies have shown that ferroelectric nanoparticles play an important role on smectic liquid crystals. These include the weakly discontinuous nature of the isotropic-smectic-A transition, the decrease of the temperature metric discontinuity, the decrease of the dielectric constant and a slight increase of the transition temperature. We described all these experimental observations within phenomenological theory. The impact of ferroelectric nanoparticles on the isotropic-smectic-A transition temperature, Kerr constant and non-linear dielectric effect is discussed. The theoretical predictions were found to be in good qualitative agreement with the experimental results.

  17. Ferroelectricity in the multiferroic hexagonal manganites

    Science.gov (United States)

    Lilienblum, Martin; Lottermoser, Thomas; Manz, Sebastian; Selbach, Sverre M.; Cano, Andres; Fiebig, Manfred

    2015-12-01

    Since their discovery in 1963 the hexagonal manganites have consolidated their role as exotic ferroelectrics with astonishing functionalities. Their introduction as room-temperature device ferroelectrics was followed by observations of giant flexoelectricity, multiferroicity with magnetoelectric domain and domain-wall coupling, protected vortex domain structures, topological domain-scaling behaviour and domain walls with tunable conductance and magnetism. Even after half a century, however, the emergence of the ferroelectric state has remained the subject of fierce debate. We resolve the interplay of electric polarization, topological trimerization and temperature by direct access to the polarization for temperatures up to 1,400 K. Nonlinear optical experiments and piezoresponse force microscopy, complemented by Monte Carlo simulations, reveal a single phase transition with ferroelectricity determined by topology rather than electrostatics. Fundamental properties of the hexagonal manganites, including an explanation for the two-phase-transition controversy as a finite-size scaling effect, are derived from this and highlight why improper ferroelectrics are an inherent source of novel functionalities.

  18. Flexible graphene–PZT ferroelectric nonvolatile memory

    International Nuclear Information System (INIS)

    Lee, Wonho; Ahn, Jong-Hyun; Kahya, Orhan; Toh, Chee Tat; Özyilmaz, Barbaros

    2013-01-01

    We report the fabrication of a flexible graphene-based nonvolatile memory device using Pb(Zr 0.35 ,Ti 0.65 )O 3 (PZT) as the ferroelectric material. The graphene and PZT ferroelectric layers were deposited using chemical vapor deposition and sol–gel methods, respectively. Such PZT films show a high remnant polarization (P r ) of 30 μC cm −2 and a coercive voltage (V c ) of 3.5 V under a voltage loop over ±11 V. The graphene–PZT ferroelectric nonvolatile memory on a plastic substrate displayed an on/off current ratio of 6.7, a memory window of 6 V and reliable operation. In addition, the device showed one order of magnitude lower operation voltage range than organic-based ferroelectric nonvolatile memory after removing the anti-ferroelectric behavior incorporating an electrolyte solution. The devices showed robust operation in bent states of bending radii up to 9 mm and in cycling tests of 200 times. The devices exhibited remarkable mechanical properties and were readily integrated with plastic substrates for the production of flexible circuits. (paper)

  19. Ferroelectricity in wurtzite structure simple chalcogenide

    Science.gov (United States)

    Moriwake, Hiroki; Konishi, Ayako; Ogawa, Takafumi; Fujimura, Koji; Fisher, Craig A. J.; Kuwabara, Akihide; Shimizu, Takao; Yasui, Shintaro; Itoh, Mitsuru

    2014-06-01

    The possibility of the new class ferroelectric materials of wurtzite structure simple chalcogenide was discussed using modern first-principles calculation technique. Ferroelectricity in the wurtzite structure (P63mc) can be understood by structure distortion from centrosymmetric P63/mmc by relative displacement of cation against anion along c-axis. Calculated potential surface of these compounds shows typical double well between two polar variants. The potential barriers for the ferroelectric polarization switching were estimated to be 0.25 eV/f.u. for ZnO. It is slightly higher energy to the common perovskite ferroelectric compound PbTiO3. Epitaxial tensile strain on the ab-plane (0001) is effective to lower the potential barrier. The potential barrier decreased from 0.25 to 0.15 eV/f.u. by 5% ab-plane expansion in wurtzite structure ZnO. Epitaxial ZnO thin film with donor type defect reduction should be a possible candidate to confirm this ferroelectricity in wurtzite structure simple chalcogenide.

  20. Mechanical switching of ferroelectric domains beyond flexoelectricity

    Science.gov (United States)

    Chen, Weijin; Liu, Jianyi; Ma, Lele; Liu, Linjie; Jiang, G. L.; Zheng, Yue

    2018-02-01

    The resurgence of interest in flexoelectricity has prompted discussions on the feasibility of switching ferroelectric domains 'non-electrically'. In this work, we perform three-dimensional thermodynamic simulations in combination with ab initio calculations and effective Hamiltonian simulations to demonstrate the great effects of surface screening and surface bonding on ferroelectric domain switching triggered by local tip loading. A three-dimensional simulation scheme has been developed to capture the tip-induced domain switching behavior in ferroelectric thin films by adequately taking into account the surface screening effect and surface bonding effect of the ferroelectric film, as well as the finite elastic stiffness of the substrate and the electrode layers. The major findings are as follows. (i) Compared with flexoelectricity, surface effects can be overwhelming and lead to much more efficient mechanical switching caused by tip loading. (ii) The surface-assisted mechanical switching can be bi-directional without the necessity of reversing strain gradients. (iii) A mode transition from local to propagating domain switching occurs when the screening below a critical value. A ripple effect of domain switching appears with the formation of concentric loop domains. (iv) The ripple effect can lead to 'domain interference' and a deterministic writing of confined loop domain patterns by local excitations. Our study reveals the hidden switching mechanisms of ferroelectric domains and the possible roles of surface in mechanical switching. The ripple effect of domain switching, which is believed to be general in dipole systems, broadens our current knowledge of domain engineering.

  1. Magnetic enhancement of ferroelectric polarization in a self-grown ferroelectric-ferromagnetic composite

    Science.gov (United States)

    Kumar, Amit; Narayan, Bastola; Pachat, Rohit; Ranjan, Rajeev

    2018-02-01

    Ferroelectric-ferromagnetic multiferroic composites are of great interest both from the scientific and technological standpoints. The extent of coupling between polarization and magnetization in such two-phase systems depends on how efficiently the magnetostrictive and electrostrictive/piezoelectric strain gets transferred from one phase to the other. This challenge is most profound in the easy to make 0-3 ferroelectric-ferromagnetic particulate composites. Here we report a self-grown ferroelectric-ferromagnetic 0-3 particulate composite through controlled spontaneous precipitation of ferrimagnetic barium hexaferrite phase (BaF e12O19 ) amid ferroelectric grains in the multiferroic alloy system BiFe O3-BaTi O3 . We demonstrate that a composite specimen exhibiting merely ˜1% hexaferrite phase exhibits ˜34% increase in saturation polarization in a dc magnetic field of ˜10 kOe. Using modified Rayleigh analysis of the polarization field loop in the subcoercive field region we argue that the substantial enhancement in the ferroelectric switching is associated with the reduction in the barrier heights of the pinning centers of the ferroelectric-ferroelastic domain walls in the stress field generated by magnetostriction in the hexaferrite grains when the magnetic field is turned on. Our study proves that controlled precipitation of the magnetic phase is a good strategy for synthesis of 0-3 ferroelectric-ferromagnetic particulate multiferroic composite as it not only helps in ensuring a good electrical insulating character of the composite, enabling it to sustain high enough electric field for ferroelectric switching, but also the factors associated with the spontaneity of the precipitation process ensure efficient transfer of the magnetostrictive strain/stress to the surrounding ferroelectric matrix making domain wall motion easy.

  2. Observation of ferroelectricity at room temperature in 1 nm thick conducting BaTiO3'δ

    Science.gov (United States)

    Lee, Seungran; Baasanforj, Lkhagvasuren; Chang, Jungwon; Hwang, Inwoong; Kim, Jungrae; Shim, Seungbo; Song, Jonghyun; Kim, Jinhee

    Requirements of multi-functionalities in thin-film systems have led important findings of unique physical character and degree of freedom which only exist in film forms. As growth technique gets advanced, one can decrease the film thickness even nm scale where its unique physical character still appears. Among those intriguing film systems, ferroelectric has been of interest. As a prototype ferroelectric, electrical properties of ultra-thin BaTiO3 (BTO) films have extensively studied, which is found that ferroelectricity sustains down to nm-thick films as theoretically predicted. However, efforts on determination of the minimum thickness in ferroelectric films was hindered by large leakage current. In this study, we used nm-thick BTO films showing metallic-like behaviour around room temperature (RT). Surprisingly, even the 2 unit-cells-thick metallic-like BTO film shows ferroelectric switching behaviour at RT! Observation of such ultra-thin conducting ferroelectric will enlarge its applicable fields leading realization of new functional devices and investigations of further physical phenomena.

  3. Dimension effect in the layered structures: ferroelectric - normal metal and ferroelectric - HTSC

    International Nuclear Information System (INIS)

    Vendik, O.G.; Ter-Martirosyan, L.T.

    1994-01-01

    Modified form of differential equation describing the dynamic polarization distribution in ferroelectric layer is proposed. Distribution of polarization and electrical field in ferroelectric layer is identified. The expression is obtained for dielectric permittivity for the layer averaged by thickness both in case of normal metal electrodes (zero boundary conditions for polarization) and in case of electrodes of metal-oxide high-temperature super conductor with assumed availability of ferroelectric properties. The dimension effects in the second case seem to be significantly suppressed. 16 refs.; 3 figs

  4. Spin-driven ferroelectricity in ferroaxial crystals

    Science.gov (United States)

    Chapon, Laurent

    2012-02-01

    Spin-driven ferroelectricity in most non-collinear magnets, such as TbMnO3, is induced by the so-called inverse Dzyalonshinskii-Moriya mechanism and requires a cycloidal magnetic structure, an ordered magnetic state that is not truly chiral (or lacks helicity). Conversely, in a truly chiral magnetic state (proper helix), the pseudo-scalar helicity can not couple directly to the electric polarization, and therefore can't induce ferroelectric order. However, in systems of specific crystal symmetry, named here ``ferroaxials,'' the presence of collective structural rotations mediates an indirect coupling between magnetic helicity and ferroelectricity. I will review our recent experimental results for new compounds of this class, obtained by magnetic X-ray and neutron diffraction techniques, including a clear demonstration that the magnetic helicity can be controlled by an electric field.

  5. Flexoelectricity: strain gradient effects in ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Ma Wenhui [Department of Physics, Shantou Unversity, Shantou, Guangdong 515063 (China)

    2007-12-15

    Mechanical strain gradient induced polarization effect or flexoelectricity in perovskite-type ferroelectric and relaxor ferroelectric ceramics was investigated. The flexoelectric coefficients measured at room temperature ranged from about 1 {mu} C m{sup -1} for lead zirconate titanate to 100 {mu} C m{sup -1} for barium strontium titanate. Flexoelectric effects were discovered to be sensitive to chemical makeup, phase symmetry, and domain structures. Based on phenomenological discussion and experimental data on flexoelectricity, the present study proposed that mechanical strain gradient field could influence polarization responses in a way analogous to electric field. Flexoelectric coefficients were found to be nonlinearly enhanced by dielectric permittivity and strain gradient. Interfacial mismatch in epitaxial thin films can give rise to high strain gradients, enabling flexoelectric effects to make a significant impact in properly engineered ferroelectric heterostructure systems.

  6. Flexoelectricity: strain gradient effects in ferroelectrics

    International Nuclear Information System (INIS)

    Ma Wenhui

    2007-01-01

    Mechanical strain gradient induced polarization effect or flexoelectricity in perovskite-type ferroelectric and relaxor ferroelectric ceramics was investigated. The flexoelectric coefficients measured at room temperature ranged from about 1 μ C m -1 for lead zirconate titanate to 100 μ C m -1 for barium strontium titanate. Flexoelectric effects were discovered to be sensitive to chemical makeup, phase symmetry, and domain structures. Based on phenomenological discussion and experimental data on flexoelectricity, the present study proposed that mechanical strain gradient field could influence polarization responses in a way analogous to electric field. Flexoelectric coefficients were found to be nonlinearly enhanced by dielectric permittivity and strain gradient. Interfacial mismatch in epitaxial thin films can give rise to high strain gradients, enabling flexoelectric effects to make a significant impact in properly engineered ferroelectric heterostructure systems

  7. Quantum switching of polarization in mesoscopic ferroelectrics

    International Nuclear Information System (INIS)

    Sa de Melo, C.A.

    1996-01-01

    A single domain of a uniaxial ferroelectric grain may be thought of as a classical permanent memory. At the mesoscopic level this system may experience considerable quantum fluctuations due to tunneling between two possible memory states, thus destroying the classical permanent memory effect. To study these quantum effects the concrete example of a mesoscopic uniaxial ferroelectric grain is discussed, where the orientation of the electric polarization determines two possible memory states. The possibility of quantum switching of the polarization in mesoscopic uniaxial ferroelectric grains is thus proposed. To determine the degree of memory loss, the tunneling rate between the two polarization states is calculated at zero temperature both in the absence and in the presence of an external static electric field. In addition, a discussion of crossover temperature between thermally activated behavior and quantum tunneling behavior is presented. And finally, environmental effects (phonons, defects, and surfaces) are also considered. copyright 1996 The American Physical Society

  8. A two-step annealing process for enhancing the ferroelectric properties of poly(vinylidene fluoride) (PVDF) devices

    KAUST Repository

    Park, Jihoon

    2015-01-01

    We report a simple two-step annealing scheme for the fabrication of stable non-volatile memory devices employing poly(vinylidene fluoride) (PVDF) polymer thin-films. The proposed two-step annealing scheme comprises the crystallization of the ferroelectric gamma-phase during the first step and enhancement of the PVDF film dense morphology during the second step. Moreover, when we extended the processing time of the second step, we obtained good hysteresis curves down to 1 Hz, the first such report for ferroelectric PVDF films. The PVDF films also exhibit a coercive field of 113 MV m-1 and a ferroelectric polarization of 5.4 μC cm-2. © The Royal Society of Chemistry 2015.

  9. The enhanced piezoelectricity in compositionally graded ferroelectric thin films under electric field: A role of flexoelectric effect

    Science.gov (United States)

    Qiu, Ye; Wu, Huaping; Wang, Jie; Lou, Jia; Zhang, Zheng; Liu, Aiping; Chai, Guozhong

    2018-02-01

    Compositionally graded ferroelectric thin films are found to produce large strain gradients, which can be used to tune the physical properties of materials through the flexoelectric effect, i.e., the coupling of polarization and the strain gradient. The influences of the flexoelectric effect on the polarization distribution and the piezoelectric properties in compositionally graded Ba1-xSrxTiO3 ferroelectric thin films are investigated by using an extended thermodynamic theory. The calculation results show that the presence of the flexoelectric effect tends to enhance and stabilize polarization components. The polarization rotation induced by the flexoelectric field has been predicted, which is accompanied by more uniform and orderly polarization components. A remarkable enhancement of piezoelectricity is obtained when the flexoelectric field is considered, suggesting that compositionally graded Ba1-xSrxTiO3 ferroelectric thin films with a large strain gradient are promising candidates for piezoelectric devices.

  10. Composition driven structural instability in perovskite ferroelectrics

    Directory of Open Access Journals (Sweden)

    Chao Xu

    2017-04-01

    Full Text Available Ferroelectric solid solutions usually exhibit enhanced functional properties at the morphotropic phase boundary separating two ferroelectric phases with different orientations of polarization. The underlying mechanism is generally associated with polarization rotational instability and the flattened free energy profile. In this work we show that the polarization extensional instability can also be induced at the morphotropic phase boundary beyond the reported polar-nonpolar phase boundary. The piezoelectricity enhanced by this mechanism exhibits excellent thermal stability, which helps to develop high performance piezoelectric materials with good temperature stability.

  11. Switching Characteristics of Ferroelectric Transistor Inverters

    Science.gov (United States)

    Laws, Crystal; Mitchell, Coey; MacLeod, Todd C.; Ho, Fat D.

    2010-01-01

    This paper presents the switching characteristics of an inverter circuit using a ferroelectric field effect transistor, FeFET. The propagation delay time characteristics, phl and plh are presented along with the output voltage rise and fall times, rise and fall. The propagation delay is the time-delay between the V50% transitions of the input and output voltages. The rise and fall times are the times required for the output voltages to transition between the voltage levels V10% and V90%. Comparisons are made between the MOSFET inverter and the ferroelectric transistor inverter.

  12. Ferroelectric Cathodes in Transverse Magnetic Fields

    International Nuclear Information System (INIS)

    Alexander Dunaevsky; Yevgeny Raitses; Nathaniel J. Fisch

    2002-01-01

    Experimental investigations of a planar ferroelectric cathode in a transverse magnetic field up to 3 kGs are presented. It is shown that the transverse magnetic field affects differently the operation of ferroelectric plasma cathodes in ''bright'' and ''dark'' modes in vacuum. In the ''bright'' mode, when the surface plasma is formed, the application of the transverse magnetic field leads to an increase of the surface plasma density. In the ''dark'' mode, the magnetic field inhibits the development of electron avalanches along the surface, as it does similarly in other kinds of surface discharges in the pre-breakdown mode

  13. Distribution of correlation radii in disordered ferroelectrics

    Czech Academy of Sciences Publication Activity Database

    Glinchuk, M. D.; Eliseev, E. A.; Stepanovich, V. A.; Jastrabík, Lubomír

    2002-01-01

    Roč. 81, č. 25 (2002), s. 4808-4810 ISSN 0003-6951 R&D Projects: GA MŠk LN00A015 Institutional research plan: CEZ:AV0Z1010914 Keywords : disordered ferroelectrics * distribution of correlation radii * polar nanoregions Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.207, year: 2002

  14. Ferroelectrics under the Synchrotron Light: A Review

    Directory of Open Access Journals (Sweden)

    Luis E. Fuentes-Cobas

    2015-12-01

    Full Text Available Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS and X-ray absorption fine structure (XAFS experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described.

  15. Ferroelectrics under the Synchrotron Light: A Review

    Science.gov (United States)

    Fuentes-Cobas, Luis E.; Montero-Cabrera, María E.; Pardo, Lorena; Fuentes-Montero, Luis

    2015-01-01

    Currently, an intensive search for high-performance lead-free ferroelectric materials is taking place. ABO3 perovskites (A = Ba, Bi, Ca, K and Na; B = Fe, Nb, Ti, and Zr) appear as promising candidates. Understanding the structure–function relationship is mandatory, and, in this field, the roles of long- and short-range crystal orders and interactions are decisive. In this review, recent advances in the global and local characterization of ferroelectric materials by synchrotron light diffraction, scattering and absorption are analyzed. Single- and poly-crystal synchrotron diffraction studies allow high-resolution investigations regarding the long-range average position of ions and subtle global symmetry break-downs. Ferroelectric materials, under the action of electric fields, undergo crystal symmetry, crystallite/domain orientation distribution and strain condition transformations. Methodological aspects of monitoring these processes are discussed. Two-dimensional diffraction clarify larger scale ordering: polycrystal texture is measured from the intensities distribution along the Debye rings. Local order is investigated by diffuse scattering (DS) and X-ray absorption fine structure (XAFS) experiments. DS provides information about thermal, chemical and displacive low-dimensional disorders. XAFS investigation of ferroelectrics reveals local B-cation off-centering and oxidation state. This technique has the advantage of being element-selective. Representative reports of the mentioned studies are described. PMID:28787814

  16. Organic nonvolatile memory devices based on ferroelectricity

    NARCIS (Netherlands)

    Naber, R.C.G.; Asadi, K.; Blom, P.W.M.; Leeuw, D.M. de; Boer, B. de

    2010-01-01

    A memory functionality is a prerequisite for many applications of electronic devices. Organic nonvolatile memory devices based on ferroelectricity are a promising approach toward the development of a low-cost memory technology. In this Review Article we discuss the latest developments in this area

  17. Organic ferroelectric opto-electronic memories

    NARCIS (Netherlands)

    Asadi, K.; Li, M.; Blom, P.W.M.; Kemerink, M.; Leeuw, D.M. de

    2011-01-01

    Memory is a prerequisite for many electronic devices. Organic non-volatile memory devices based on ferroelectricity are a promising approach towards the development of a low-cost memory technology based on a simple cross-bar array. In this review article we discuss the latest developments in this

  18. Pyroelectric Ferroelectric and Resistivity Studies on Samarium ...

    African Journals Online (AJOL)

    Barium Strontium Sodium Niobate (Ba1-xSrx)2NaNb5O15 (BSNN) belongs to tungsten bronze ferroelectric morphotrophic phase boundary (MPB) system at x = 0.6, having large spontaneous polarisation, pyroelectric coefficient and low dielectic constant and is expected to be applicable for piezoceramic filter and ...

  19. From antiferroelectricity to ferroelectricity in smectic mesophases ...

    Indian Academy of Sciences (India)

    PRAMANA c Indian Academy of Sciences. Vol. 61, No. 2. — journal of. August 2003 physics pp. 455–481. From antiferroelectricity to ferroelectricity in smectic mesophases formed by bent-core ... Hence, the materials themselves .... nar mesophases there is an energetic and entropic penalty resulting from the unfavourable.

  20. A high performance triboelectric nanogenerator for self-powered non-volatile ferroelectric transistor memory.

    Science.gov (United States)

    Fang, Huajing; Li, Qiang; He, Wenhui; Li, Jing; Xue, Qingtang; Xu, Chao; Zhang, Lijing; Ren, Tianling; Dong, Guifang; Chan, H L W; Dai, Jiyan; Yan, Qingfeng

    2015-11-07

    We demonstrate an integrated module of self-powered ferroelectric transistor memory based on the combination of a ferroelectric FET and a triboelectric nanogenerator (TENG). The novel TENG was made of a self-assembled polystyrene nanosphere array and a poly(vinylidene fluoride) porous film. Owing to this unique structure, it exhibits an outstanding performance with an output voltage as high as 220 V per cycle. Meanwhile, the arch-shaped TENG is shown to be able to pole a bulk ferroelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-PT) single crystal directly. Based on this effect, a bottom gate ferroelectric FET was fabricated using pentacene as the channel material and a PMN-PT single crystal as the gate insulator. Systematic tests illustrate that the ON/OFF current ratio of this transistor memory element is approximately 10(3). More importantly, we demonstrate the feasibility to switch the polarization state of this FET gate insulator, namely the stored information, by finger tapping the TENG with a designed circuit. These results may open up a novel application of TENGs in the field of self-powered memory systems.

  1. Growth and characterization of epitaxial thin films and multiferroic heterostructures of ferromagnetic and ferroelectric materials

    Science.gov (United States)

    Mukherjee, Devajyoti

    Multiferroic materials exhibit unique properties such as simultaneous existence of two or more of coupled ferroic order parameters (ferromagnetism, ferroelectricity, ferroelasticity or their anti-ferroic counterparts) in a single material. Recent years have seen a huge research interest in multiferroic materials for their potential application as high density non-volatile memory devices. However, the scarcity of these materials in single phase and the weak coupling of their ferroic components have directed the research towards multiferroic heterostructures. These systems operate by coupling the magnetic and electric properties of two materials, generally a ferromagnetic material and a ferroelectric material via strain. In this work, horizontal heterostructures of composite multiferroic materials were grown and characterized using pulsed laser ablation technique. Alternate magnetic and ferroelectric layers of cobalt ferrite and lead zirconium titanate, respectively, were fabricated and the coupling effect was studied by X-ray stress analysis. It was observed that the interfacial stress played an important role in the coupling effect between the phases. Doped zinc oxide (ZnO) heterostructures were also studied where the ferromagnetic phase was a layer of manganese doped ZnO and the ferroelectric phase was a layer of vanadium doped ZnO. For the first time, a clear evidence of possible room temperature magneto-elastic coupling was observed in these heterostructures. This work provides new insight into the stress mediated coupling mechanisms in composite multiferroics.

  2. Chemically synthesized metal-oxide-metal segmented nanowires with high ferroelectric response

    Energy Technology Data Exchange (ETDEWEB)

    Herderick, Edward D; Padture, Nitin P [Department of Materials Science and Engineering, Center for Emergent Materials, Ohio State University, Columbus, OH 43210 (United States); Polomoff, Nicholas A; Huey, Bryan D, E-mail: padture.1@osu.edu [Department of Chemical, Materials, and Biomolecular Engineering, Institute of Materials Science, University of Connecticut, Storrs, CT 06269 (United States)

    2010-08-20

    A chemical synthesis method is presented for the fabrication of high-definition segmented metal-oxide-metal (MOM) nanowires in two different ferroelectric oxide systems: Au-BaTiO{sub 3}-Au and Au-PbTiO{sub 3}-Au. This method entails electrodeposition of segmented nanowires of Au-TiO{sub 2}-Au inside anodic aluminum oxide (AAO) templates, followed by topotactic hydrothermal conversion of the TiO{sub 2} segments into BaTiO{sub 3} or PbTiO{sub 3} segments. Two-terminal devices from individual MOM nanowires are fabricated, and their ferroelectric properties are measured directly, without the aid of scanning probe microscopy (SPM) methods. The MOM nanowire architecture provides high-quality end-on electrical contacts to the oxide segments, and allows direct measurement of properties of nanoscale volume, strain-free oxide segments. Unusually high ferroelectric responses, for chemically synthesized oxides, in these MOM nanowires are reported, and are attributed to the lack of residual strain in the oxides. The ability to measure directly the active properties of nanoscale volume, strain-free oxides afforded by the MOM nanowire architecture has important implications for fundamental studies of not only ferroelectric nanostructures but also nanostructures in the emerging field of multiferroics.

  3. Ferroelectric tunnel junctions for information storage and processing.

    Science.gov (United States)

    Garcia, Vincent; Bibes, Manuel

    2014-07-24

    Computer memory that is non-volatile and therefore able to retain its information even when switched off enables computers that do not need to be booted up. One of the technologies for such applications is ferroelectric random access memories, where information is stored as ferroelectric polarization. To miniaturize such devices to the size of a few nanometres, ferroelectric tunnel junctions have seen considerable interest. There, the electric polarization determines the electrical resistance of these thin films, switching the current on and off. With control over other parameters such as magnetism also being possible, ferroelectric tunnel junctions represent a promising and flexible device design.

  4. Ferroelectric nanostructure having switchable multi-stable vortex states

    Science.gov (United States)

    Naumov, Ivan I [Fayetteville, AR; Bellaiche, Laurent M [Fayetteville, AR; Prosandeev, Sergey A [Fayetteville, AR; Ponomareva, Inna V [Fayetteville, AR; Kornev, Igor A [Fayetteville, AR

    2009-09-22

    A ferroelectric nanostructure formed as a low dimensional nano-scale ferroelectric material having at least one vortex ring of polarization generating an ordered toroid moment switchable between multi-stable states. A stress-free ferroelectric nanodot under open-circuit-like electrical boundary conditions maintains such a vortex structure for their local dipoles when subject to a transverse inhomogeneous static electric field controlling the direction of the macroscopic toroidal moment. Stress is also capable of controlling the vortex's chirality, because of the electromechanical coupling that exists in ferroelectric nanodots.

  5. Ferroelectric devices, interconnects, and methods of manufacture thereof

    KAUST Repository

    Alshareef, Husam N.

    2013-12-12

    A doped electroconductive organic polymer is used for forming the electrode of a ferroelectric device or an interconnect. An exemplary ferroelectric device is a ferrelectric capacitor comprising: a substrate (101); a first electrode (106) disposed on the substrate; a ferroelectric layer (112) disposed on and in contact with the first electrode; and a second electrode (116) disposed on and in contact with the ferroelectric layer, wherein at least one of the first electrode and the second electrode is an organic electrode comprising a doped electroconductive organic polymer, for example DMSO-doped PEDOT-PSS.

  6. A Temperature-Dependent Hysteresis Model for Relaxor Ferroelectric Compounds

    National Research Council Canada - National Science Library

    Raye, Julie K; Smith, Ralph C

    2004-01-01

    This paper summarizes the development of a homogenized free energy model which characterizes the temperature-dependent hysteresis and constitutive nonlinearities inherent to relaxor ferroelectric materials...

  7. Fast Ferroelectric L-band Tuner

    International Nuclear Information System (INIS)

    Kazakov, S. Yu.; Yakovlev, V. P.; Hirshfield, J. L.; Kanareykin, A. D.; Nenasheva, E. A.

    2006-01-01

    Description is given of a preliminary conceptual design for a tuner that employs a new ferroelectric ceramic that allows fast changes in coupling between the SRF acceleration structure of a linac and the external RF feeding line. The switching time of this device is in the range of a few microseconds. Utilization of this tuner is predicted to decrease Ohmic losses in the acceleration structure and thereby to reduce the power consumption of the linac. Using parameters of the TESLA-800 collider as an example, it is shown that it may be possible to reduce the ac mains power consumption by 12 MW, or about by 10%. The design of the tuner that is described allows reduced pulsed and average heating of the ferroelectric ceramics

  8. Nanostructure and Defect Chemistry of Relaxor Ferroelectrics

    Science.gov (United States)

    1988-07-31

    Pb(Scl/ 2Ta1 )O3._ (PST), undoped and La/Na-doped Pb(Mg1P3Nb2/3 )O (PMN) and ,yBa(Zn1/3Nb2 )O (BZN), 2) micro -polar domains in normal ferroelectrics...1 /2Ta1/2)03 (PST), undoped and La/Na-doped Pb(Mg 1 /3Nb 2 / 3)03 (PMIN) and Ba(Zn1 /3Nb2/ 3)03 (BZN), 2) micro -polar domains in normal ferroelectrics...meeting of Amer. Cer. Soc., (1987) [18] L. PADEL, P. POIX, and A.MICHEL; Revue de chimie minerale , 337, 9, (1972) [19] E. J. FRESIA, L. KATZ and R

  9. A ferroelectric memory technology for embedded LSI

    CERN Document Server

    Kunio, T

    1999-01-01

    We have developed an FeRAM (Ferroelectric Random Access Memory) embedded smart card LSI by using double metal 0.8- mu m CMOS technology. The smart-card has a 256-byte FeRAM macro and an 8-bit microcontroller. The FeRAM macro has the $9 performance of 10/sup 8/ endurance cycles and is half the size of an EEPROM macro. We have also developed a new CMVP (Capacitor on Meta/Via Stacked Plug) cell for an advanced FeRAM embedded LSI by using 0.25- mu m CMOS technology. $9 The ferroelectric capacitors of this cell are fabricated after the multiple interconnect is formed, and a cell area of 3.2 mu m/sup 2/ is obtained. (8 refs).

  10. Domain switching of fatigued ferroelectric thin films

    International Nuclear Information System (INIS)

    Tak Lim, Yun; Yeog Son, Jong; Shin, Young-Han

    2014-01-01

    We investigate the domain wall speed of a ferroelectric PbZr 0.48 Ti 0.52 O 3 (PZT) thin film using an atomic force microscope incorporated with a mercury-probe system to control the degree of electrical fatigue. The depolarization field in the PZT thin film decreases with increasing the degree of electrical fatigue. We find that the wide-range activation field previously reported in ferroelectric domains result from the change of the depolarization field caused by the electrical fatigue. Domain wall speed exhibits universal behavior to the effective electric field (defined by an applied electric field minus the depolarization field), regardless of the degree of the electrical fatigue

  11. Upper bounds for flexoelectric coefficients in ferroelectrics

    Science.gov (United States)

    Yudin, P. V.; Ahluwalia, R.; Tagantsev, A. K.

    2014-02-01

    Flexoelectric effect is the response of electric polarization to the mechanical strain gradient. At the nano-scale, where large strain gradients are expected, the flexoelectric effect becomes appreciable and may substitute piezoelectric effect in centrosymmetric materials. These features make flexoelectricity of growing interest during the last decade. At the same time, the available theoretical and experimental results are rather contradictory. In particular, experimentally measured flexoelectric coefficients in some ferroelectric materials largely exceed theoretically predicted values. Here, we determine the upper limits for the magnitude of the static bulk contribution to the flexoelectric effect in ferroelectrics, the contribution which was customarily considered as the dominating one. The magnitude of the upper bounds obtained suggests that the anomalously high flexoelectric coupling documented for perovskite ceramics can hardly be attributed to a manifestation of the static bulk effect.

  12. Fracture mechanics of piezoelectric and ferroelectric solids

    CERN Document Server

    Fang, Daining

    2013-01-01

    Fracture Mechanics of Piezoelectric and Ferroelectric Solids presents a systematic and comprehensive coverage of the fracture mechanics of piezoelectric/ferroelectric materials, which includes the theoretical analysis, numerical computations and experimental observations. The main emphasis is placed on the mechanics description of various crack problems such static, dynamic and interface fractures as well as the physical explanations for the mechanism of electrically induced fracture. The book is intended for postgraduate students, researchers and engineers in the fields of solid mechanics, applied physics, material science and mechanical engineering. Dr. Daining Fang is a professor at the School of Aerospace, Tsinghua University, China; Dr. Jinxi Liu is a professor at the Department of Engineering Mechanics, Shijiazhuang Railway Institute, China.

  13. Light-Activated Gigahertz Ferroelectric Domain Dynamics

    Science.gov (United States)

    Akamatsu, Hirofumi; Yuan, Yakun; Stoica, Vladimir A.; Stone, Greg; Yang, Tiannan; Hong, Zijian; Lei, Shiming; Zhu, Yi; Haislmaier, Ryan C.; Freeland, John W.; Chen, Long-Qing; Wen, Haidan; Gopalan, Venkatraman

    2018-03-01

    Using time- and spatially resolved hard x-ray diffraction microscopy, the striking structural and electrical dynamics upon optical excitation of a single crystal of BaTiO3 are simultaneously captured on subnanoseconds and nanoscale within individual ferroelectric domains and across walls. A large emergent photoinduced electric field of up to 20 ×106 V /m is discovered in a surface layer of the crystal, which then drives polarization and lattice dynamics that are dramatically distinct in a surface layer versus bulk regions. A dynamical phase-field modeling method is developed that reveals the microscopic origin of these dynamics, leading to gigahertz polarization and elastic waves traveling in the crystal with sonic speeds and spatially varying frequencies. The advances in spatiotemporal imaging and dynamical modeling tools open up opportunities for disentangling ultrafast processes in complex mesoscale structures such as ferroelectric domains.

  14. Electrically induced mechanical precompression of ferroelectric plates

    Science.gov (United States)

    Chen, P.J.

    1987-03-02

    A method of electrically inducing mechanical precompression of ferroelectric plate covered with electrodes utilizes the change in strains of the plate as functions of applied electric field. A first field polarizes and laterally shrinks the entire plate. An outer portion of the electrodes are removed, and an opposite field partially depolarizes and expands the central portion of the plate against the shrunk outer portion. 2 figs.

  15. Modeling of charge switching in ferroelectric capacitors.

    Science.gov (United States)

    Sun, Shunming; Kalkur, Thottam S

    2004-07-01

    To simulate charge switching in ferroelectric capacitors, a pair of exponential growth and decay currents is mapped to the process of polarization reversal. This is based on the fact that these exponential currents [i.e., i = I(m) e(t/tau) (t or = 0)], are completely specified by two constants I(m) and tau and each accommodates an integral charge Q = I(m) x tau. Equating this charge to the remanent spontaneous polarization allows for the modeling of switching current. For practical circuit simulations for charge switching, this modeling of switching current is simplified to an exponential decay current whose integral charge is set equal to the total reversed spontaneous polarization. This is because an exponential decay current can be conveniently implemented by charging a series resistor and capacitor (RC) circuit with a pulse-voltage source. The voltage transitions of the pulse source are associated with the polarization reversal and can be controlled with a noninverting Schmitt trigger that toggles at the positive and negative coercive voltages of a ferroelectric capacitor. The final circuit model incorporates such electrical and geometrical parameters as capacitance, remanent spontaneous polarization, coercive field, electrode area, and film thickness of a ferroelectric, thin-film capacitor.

  16. Tunable Metallic Conductivity in Ferroelectric Nanodomains

    Science.gov (United States)

    Maksymovych, P.; Morozovska, A. N.; Yu, P.; Eliseev, E. A.; Chu, Y.-H.; Ramesh, R.; Baddorf, A. P.; Kalinin, S. V.

    2012-02-01

    Domain wall conductivity in ferroelectric and multiferroic oxides is an essential example of new electronic properties created by topological defects. So far electron transport through domain walls in canonical BiFeO3 and PbZr0.2Ti0.8O3 (PZT) ferroelectrics has been dominated by thermally activated hopping, concealing the enabling physics and limiting potential applications. We will present a pioneering observation of metallic conductivity in nanoscale ferroelectric domains in PZT, that unambiguously identifies a new conduction channel created through the bulk of the oxide film [1]. From a corollary theoretical analysis, we conclude that metallic conductance is enabled by the interplay of charging and flexoelectric effects at tilted and curved walls of the nanodomain. Furthermore, both type and density of carriers can be tuned by manipulation of the order parameter. Thus, a new family of electronic properties may be found in multiferroic and topologically nanostructured complex oxides. [1] Maksymovych et al, Nano Lett. in review (2011). Research conducted at the Center for Nanophase Materials Sciences, sponsored by BES, U. S. DOE.

  17. Ferroelectricity in Sodium Nitrite Thin Films | Britwum | Journal of the ...

    African Journals Online (AJOL)

    Investigations have been conducted on the ferroelectric property of thin films of NaNO2. The thin films were prepared with the dip coating technique. The phase transition was investigated by observing the change in the dielectric constant with temperature change. The presence of ferro-electricity was investigated with a ...

  18. Effect of domains configuration on crystal structure in ferroelectric ...

    Indian Academy of Sciences (India)

    2017-09-09

    Sep 9, 2017 ... high piezoelectric response of ferroelectrics material can be achieved at the morphotropic phase boundary (MPB) region among two ferroelectric phases in their phase diagrams due to a low polarization anisotropy caused by the phase instabil- ity [6,7]. Nevertheless, the exact structure at MPB region is.

  19. Functional Properties of Polydomain Ferroelectric Oxide Thin Films

    NARCIS (Netherlands)

    Houwman, Evert Pieter; Vergeer, Kurt; Koster, Gertjan; Rijnders, Augustinus J.H.M.; Nishikawa, H.; Iwata, N.; Endo, T.; Takamura, Y.; Lee, G-H.; Mele, P.

    2017-01-01

    The properties of a ferroelectric, (001)-oriented, thin film clamped to a substrate are investigated analytically and numerically. The emphasis is on the tetragonal, polydomain, ferroelectric phase, using a three domain structure, as is observed experimentally, instead of the two-domain structure

  20. The operational mechanism of ferroelectric-driven organic resistive switches

    NARCIS (Netherlands)

    Kemerink, M.; Asadi, K.; Blom, P.W.M.; Leeuw, D.M. de

    2012-01-01

    The availability of a reliable memory element is crucial for the fabrication of 'plastic' logic circuits. We use numerical simulations to show that the switching mechanism of ferroelectric-driven organic resistive switches is the stray field of the polarized ferroelectric phase. The stray field

  1. The operational mechanism of ferroelectric-driven organic resistive switches

    NARCIS (Netherlands)

    Kemerink, Martijn; Asadi, Kamal; Blom, Paul W. M.; de Leeuw, Dago M.

    The availability of a reliable memory element is crucial for the fabrication of 'plastic' logic circuits. We use numerical simulations to show that the switching mechanism of ferroelectric-driven organic resistive switches is the stray field of the polarized ferroelectric phase. The stray field

  2. Organic ferroelectrics based on hydrogen-bonded supermolecules

    International Nuclear Information System (INIS)

    Horiuchi, Sachio; Kumai, Reiji; Tokura, Yoshinori

    2007-01-01

    This article describes a new design strategy and prospective approaches to the fabrication of novel organic ferroelectrics. Ferroelectricity and a significant dielectric response as well as collective proton transfer are demonstrated in the hydrogen-bonded supramolecular chains composed of 2,5-dihydroxy-p-benzoquinone derivatives (acid) and nitrogen-containing aromatic bases. (author)

  3. Temperature dependence of electronic transport property in ferroelectric polymer films

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X.L.; Wang, J.L., E-mail: jlwang@mail.sitp.ac.cn; Tian, B.B.; Liu, B.L.; Zou, Y.H.; Wang, X.D.; Sun, S.; Sun, J.L., E-mail: jlsun@mail.sitp.ac.cn; Meng, X.J.; Chu, J.H.

    2014-10-15

    Highlights: • The ferroelectric polymer was fabricated by Langmuir–Blodgett method. • The electrons as the dominant injected carrier were conformed in the ferroelectric polymer films. • The leakage current conduction mechanisms in ferroelectric polymer were investigated. - Abstract: The leakage current mechanism of ferroelectric copolymer of polyvinylidene fluoride with trifluoroethylene prepared by Langmuir–Blodgett was investigated in the temperature range from 100 K to 350 K. The electron as the dominant injected carrier was observed in the ferroelectric copolymer films. The transport mechanisms in copolymer strongly depend on the temperature and applied voltage. From 100 K to 200 K, Schottky emission dominates the conduction. With temperature increasing, the Frenkel–Poole emission instead of the Schottky emission to conduct the carrier transport. When the temperature gets to 260 K, the leakage current becomes independent of temperature, and the space charge limited current conduction was observed.

  4. An Automated Ab Initio Framework for Identifying New Ferroelectrics

    Science.gov (United States)

    Smidt, Tess; Reyes-Lillo, Sebastian E.; Jain, Anubhav; Neaton, Jeffrey B.

    Ferroelectric materials have a wide-range of technological applications including non-volatile RAM and optoelectronics. In this work, we present an automated first-principles search for ferroelectrics. We integrate density functional theory, crystal structure databases, symmetry tools, workflow software, and a custom analysis toolkit to build a library of known and proposed ferroelectrics. We screen thousands of candidates using symmetry relations between nonpolar and polar structure pairs. We use two search strategies 1) polar-nonpolar pairs with the same composition and 2) polar-nonpolar structure type pairs. Results are automatically parsed, stored in a database, and accessible via a web interface showing distortion animations and plots of polarization and total energy as a function of distortion. We benchmark our results against experimental data, present new ferroelectric candidates found through our search, and discuss future work on expanding this search methodology to other material classes such as anti-ferroelectrics and multiferroics.

  5. Anti-bacterial Efficacy of Bacteriocin Produced by Marine Bacillus subtilis Against Clinically Important Extended Spectrum Beta-Lactamase Strains and Methicillin-Resistant Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Suresh Mickymaray

    2018-02-01

    Full Text Available Objective: To investigate the anti-bacterial efficacy of bacteriocin produced by Bacillus subtilis SM01 (GenBank accession no: KY612347, a Gram-positive marine bacterium, against Extended Spectrum Beta-Lactamase (ESBL producing Gram-negative pathogens Acinetobacter baumannii, Pseudomonas aeruginosa, and Escherichia coli, and Gram-positive pathogen Methicillin-Resistant Staphylococcus aureus (MRSA. Methods: A marine bacterium was isolated from mangrove sediment from the Red Sea coast of Jeddah, Kingdom of Saudi Arabia, and identified based on its morphological, biochemical, and molecular characteristics. The bacteriocin production using this isolate was carried out in brain heart infusion broth (BHIB medium. The Anti-bacterial activity of bacteriocin was evaluated against selected ESBL strains and MRSA by the well agar method. The effects of incubation time, pH, and temperature on the Anti-bacterial activity were studied. Results: The bacteriocin Bac-SM01 produced by B. subtilis SM01 demonstrated broad-spectrum Anti-bacterial activity against both Gram-negative and -positive bacteria. The present study is the first report that the bacteriocin Bac-SM01 inhibits the growth of ESBL producing Gram-negative strains A. baumannii, P. aeruginosa, and E. coli, and a Gram-positive MRSA strain. The optimum incubation time, pH, and temperature for the Anti-bacterial activity of Bac-SM01 was 24 h, 7, and 37°C respectively. Conclusion: The overall investigation can conclude that the bacteriocin Bac-SM01 from the marine isolate Bacillus subtilis SM01 could be used as an alternative Anti-bacterial agent in pharmaceutical products.

  6. Evaluation of Ferroelectric Materials for Memory Applications

    Science.gov (United States)

    1990-06-01

    1014 1-Mev neutrons/cm 2 without performance degradation [Ref. 4: p. 14001 . Basically, the radiation hardness of a ferroelectric memory device is...shows this relationship for PZT thin- films [Ref. 29: p. 790, Fig. 6]. 250 ,5200 , toA (Tc-T)m ..? - Tc- 663K ISO m 1.73 ± 0.21 I- I-s 10I - 0 -50 , o)0 I...decreases as the material is brought toward the transition temperature from below and the ratio of the c axes (shorter axes) to the a axes (longer axes

  7. A Ferroelectric Oxide Made Directly on Silicon

    Science.gov (United States)

    2009-04-17

    study were doped with n-type phosphorus (1 × 1015 to 5 × 1015 phosphorus atoms/cm3) having a resistivity of 1 to 4 ohm·cm. Each layer that was grown...substantially reduced tran- sition temperature, as has been shown for the related ferroelectrics PbTiO3 (28) and BaTiO3 (29). Thus, the observed...1024 1024 pixel image was rebinned to 512 512 pixels. A B C -300 -200 -100 0 100 200 300 In te ns it y (a rb it ra ry u ni ts ) (arc seconds

  8. Influence of UV light and heat on the ferroelectric properties of lithium niobate crystals

    Energy Technology Data Exchange (ETDEWEB)

    Steigerwald, Hendrik

    2011-08-15

    One of the most important non-linear-optical materials is lithium niobate, due to its ease of fabrication, robustness, transparency in the visible-to-infrared and excellent nonlinear properties. In this thesis the issue of tailoring ferroelectric domain structures in lithium niobate crystals is approached from two sides: interaction of defect structures inside the crystal with growing ferroelectric domains is investigated and also actual domain patterning on all crystal faces by different methods is performed. Special emphasis is given to the Mg-doped material. The fundamental understanding and the methods of domain patterning developed in this thesis are then used to obtain tailored domain structures that meet the requirements of their intended application in non-linear optics. (orig.)

  9. Manipulation of charge transfer and transport in plasmonic-ferroelectric hybrids for photoelectrochemical applications

    Science.gov (United States)

    Wang, Zhijie; Cao, Dawei; Wen, Liaoyong; Xu, Rui; Obergfell, Manuel; Mi, Yan; Zhan, Zhibing; Nasori, Nasori; Demsar, Jure; Lei, Yong

    2016-01-01

    Utilizing plasmonic nanostructures for efficient and flexible conversion of solar energy into electricity or fuel presents a new paradigm in photovoltaics and photoelectrochemistry research. In a conventional photoelectrochemical cell, consisting of a plasmonic structure in contact with a semiconductor, the type of photoelectrochemical reaction is determined by the band bending at the semiconductor/electrolyte interface. The nature of the reaction is thus hard to tune. Here instead of using a semiconductor, we employed a ferroelectric material, Pb(Zr,Ti)O3 (PZT). By depositing gold nanoparticle arrays and PZT films on ITO substrates, and studying the photocurrent as well as the femtosecond transient absorbance in different configurations, we demonstrate an effective charge transfer between the nanoparticle array and PZT. Most importantly, we show that the photocurrent can be tuned by nearly an order of magnitude when changing the ferroelectric polarization in PZT, demonstrating a versatile and tunable system for energy harvesting. PMID:26753764

  10. Ferroelectric ferrimagnetic LiFe2F6 : Charge-ordering-mediated magnetoelectricity

    Science.gov (United States)

    Lin, Ling-Fang; Xu, Qiao-Ru; Zhang, Yang; Zhang, Jun-Jie; Liang, Yan-Ping; Dong, Shuai

    2017-12-01

    Trirutile-type LiFe2F6 is a charge-ordered material with an Fe2 +/Fe3 + configuration. Here, its physical properties, including magnetism, electronic structure, phase transition, and charge ordering, are studied theoretically. On one hand, the charge ordering leads to improper ferroelectricity with a large polarization. On the other hand, its magnetic ground state can be tuned from the antiferromagnetic to ferrimagnetic by moderate compressive strain. Thus, LiFe2F6 can be a rare multiferroic with both large magnetization and polarization. Most importantly, since the charge ordering is the common ingredient for both ferroelectricity and magnetization, the net magnetization may be fully switched by flipping the polarization, rendering intrinsically strong magnetoelectric effects and desirable functions.

  11. Large built-in electric fields due to flexoelectricity in compositionally graded ferroelectric thin films

    Science.gov (United States)

    Karthik, J.; Mangalam, R. V. K.; Agar, J. C.; Martin, L. W.

    2013-01-01

    We investigate the origin of large built-in electric fields that have been reported in compositionally graded ferroelectric thin films using PbZr1-xTixO3 (0.2material. Using a Ginzburg-Landau-Devonshire phenomenological formalism that includes the effects of compositional gradients, mechanical strain relaxation, and flexoelectricity, we demonstrate that the flexoelectric coupling between the out-of-plane polarization and the gradient of the epitaxial strain throughout the thickness of the film, not other inhomogeneities (i.e., composition or polarization), is directly responsible for the observed voltage offsets. This work demonstrates the importance of flexoelectricity in influencing the properties of ferroelectric thin films and provides a powerful mechanism to control their properties.

  12. Ferroelectric Polarization Switching Dynamics and Domain Growth of Triglycine Sulfate and Imidazolium Perchlorate

    KAUST Repository

    Ma, He

    2016-04-10

    The weak bond energy and large anisotropic domain wall energy induce many special characteristics of the domain nucleation, growth, and polarization switch in triglycine sulfate (TGS) and imidazolium perchlorate (IM), two typical molecular ferroelectrics. Their domain nucleation and polarization switch are rather slower than those of conventional oxide ferroelectrics, which may be due to the weaker bond energy of hydrogen bond or van der Waals bond than that of ionic bond. These chemical bonds dominate the elastic energy, with the latter being an important component of domain wall energy and playing an important role in domain nucleation and domain growth. The ratio of anisotropic domain wall energy to Gibbs free energy is large in TGS and IM, which allows a favorable domain shape and a special domain evolution under a certain electric field. Therefore, this study not only sheds light on the physical nature but also indicates the application direction for molecular ferroelectrics. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

  13. Ultrahigh piezoelectricity in ferroelectric ceramics by design

    Science.gov (United States)

    Li, Fei; Lin, Dabin; Chen, Zibin; Cheng, Zhenxiang; Wang, Jianli; Li, ChunChun; Xu, Zhuo; Huang, Qianwei; Liao, Xiaozhou; Chen, Long-Qing; Shrout, Thomas R.; Zhang, Shujun

    2018-03-01

    Piezoelectric materials, which respond mechanically to applied electric field and vice versa, are essential for electromechanical transducers. Previous theoretical analyses have shown that high piezoelectricity in perovskite oxides is associated with a flat thermodynamic energy landscape connecting two or more ferroelectric phases. Here, guided by phenomenological theories and phase-field simulations, we propose an alternative design strategy to commonly used morphotropic phase boundaries to further flatten the energy landscape, by judiciously introducing local structural heterogeneity to manipulate interfacial energies (that is, extra interaction energies, such as electrostatic and elastic energies associated with the interfaces). To validate this, we synthesize rare-earth-doped Pb(Mg1/3Nb2/3)O3-PbTiO3 (PMN-PT), as rare-earth dopants tend to change the local structure of Pb-based perovskite ferroelectrics. We achieve ultrahigh piezoelectric coefficients d33 of up to 1,500 pC N-1 and dielectric permittivity ɛ33/ɛ0 above 13,000 in a Sm-doped PMN-PT ceramic with a Curie temperature of 89 °C. Our research provides a new paradigm for designing material properties through engineering local structural heterogeneity, expected to benefit a wide range of functional materials.

  14. Transformable ferroelectric control of dynamic magnetic permeability

    Science.gov (United States)

    Jiang, Changjun; Jia, Chenglong; Wang, Fenglong; Zhou, Cai; Xue, Desheng

    2018-02-01

    Magnetic permeability, which measures the response of a material to an applied magnetic field, is crucial to the performance of magnetic devices and related technologies. Its dynamic value is usually a complex number with real and imaginary parts that describe, respectively, how much magnetic power can be stored and lost in the material. Control of permeability is therefore closely related to energy redistribution within a magnetic system or energy exchange between magnetic and other degrees of freedom via certain spin-dependent interactions. To avoid a high power consumption, direct manipulation of the permeability with an electric field through magnetoelectric coupling leads to high efficiency and simple operation, but remains a big challenge in both the fundamental physics and material science. Here we report unambiguous evidence of ferroelectric control of dynamic magnetic permeability in a Co /Pb (Mg1/3Nb2/3) 0.7Ti0.3O3 (Co/PMN-PT) heterostructure, in which the ferroelectric PMN-PT acts as an energy source for the ferromagnetic Co film via an interfacial linear magnetoelectric interaction. The electric field tuning of the magnitude and line shape of the permeability offers a highly localized means of controlling magnetization with ultralow power consumption. Additionally, the emergence of negative permeability promises a new way of realizing functional nanoscale metamaterials with adjustable refraction index.

  15. Ultrahigh piezoelectricity in ferroelectric ceramics by design.

    Science.gov (United States)

    Li, Fei; Lin, Dabin; Chen, Zibin; Cheng, Zhenxiang; Wang, Jianli; Li, ChunChun; Xu, Zhuo; Huang, Qianwei; Liao, Xiaozhou; Chen, Long-Qing; Shrout, Thomas R; Zhang, Shujun

    2018-04-01

    Piezoelectric materials, which respond mechanically to applied electric field and vice versa, are essential for electromechanical transducers. Previous theoretical analyses have shown that high piezoelectricity in perovskite oxides is associated with a flat thermodynamic energy landscape connecting two or more ferroelectric phases. Here, guided by phenomenological theories and phase-field simulations, we propose an alternative design strategy to commonly used morphotropic phase boundaries to further flatten the energy landscape, by judiciously introducing local structural heterogeneity to manipulate interfacial energies (that is, extra interaction energies, such as electrostatic and elastic energies associated with the interfaces). To validate this, we synthesize rare-earth-doped Pb(Mg 1/3 Nb 2/3 )O 3 -PbTiO 3 (PMN-PT), as rare-earth dopants tend to change the local structure of Pb-based perovskite ferroelectrics. We achieve ultrahigh piezoelectric coefficients d 33 of up to 1,500 pC N -1 and dielectric permittivity ε 33 /ε 0 above 13,000 in a Sm-doped PMN-PT ceramic with a Curie temperature of 89 °C. Our research provides a new paradigm for designing material properties through engineering local structural heterogeneity, expected to benefit a wide range of functional materials.

  16. Ferroelectric Polymer Composite with Enhanced Breakdown Strength

    Science.gov (United States)

    Han, Kuo; Gadinski, Matthew; Wang, Qing

    2013-03-01

    Numerous efforts have been made in the past decades to improve the energy storage capability of dielectric capacitors by incorporating ceramic addictives into polymers. Ferroelectric polymers have been particularly interesting as matrix for dielectric composites because of their highest dielectric permittivity and energy density. However, most polymer composites suffer from significantly reduced breakdown strength, which compromises the potential gain in energy density. In this work, various metallic alkoxide were introduced into the functionalized ferroelectric poly(vinylidene fluoride-co- chlorotrifluoroethylene), P(VDF-CTFE), via covalent bonding. The composite with the optimized composition exhibited the Weibull statistical breakdown strength of 504.8 MV/m, 67.6 % higher than the pristine polymer. The enhanced breakdown strength was mainly ascribed to the cross-linking and the formation of deep traps, which effectively reduced the conduction and further lowered the energy loss. Additionally, the homogeneous dispersion of the inorganic phase and the small contrast in permittivity between the polymer and amorphous oxides also contribute to the improved dielectric strength. The dielectric spectra of the composites have been recorded at varied temperatures and frequencies, which revealed the presence of the interfacial polarization layer in the composites.

  17. Elastic recoil detection analysis of ferroelectric films

    Energy Technology Data Exchange (ETDEWEB)

    Stannard, W.B.; Johnston, P.N.; Walker, S.R.; Bubb, I.F. [Royal Melbourne Inst. of Tech., VIC (Australia); Scott, J.F. [New South Wales Univ., Kensington, NSW (Australia); Cohen, D.D.; Dytlewski, N. [Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW (Australia)

    1996-12-31

    There has been considerable progress in developing SrBi{sub 2}Ta{sub 2}O{sub 9} (SBT) and Ba{sub O.7}Sr{sub O.3}TiO{sub 3} (BST) ferroelectric films for use as nonvolatile memory chips and for capacitors in dynamic random access memories (DRAMs). Ferroelectric materials have a very large dielectric constant ( {approx} 1000), approximately one hundred times greater than that of silicon dioxide. Devices made from these materials have been known to experience breakdown after a repeated voltage pulsing. It has been suggested that this is related to stoichiometric changes within the material. To accurately characterise these materials Elastic Recoil Detection Analysis (ERDA) is being developed. This technique employs a high energy heavy ion beam to eject nuclei from the target and uses a time of flight and energy dispersive (ToF-E) detector telescope to detect these nuclei. The recoil nuclei carry both energy and mass information which enables the determination of separate energy spectra for individual elements or for small groups of elements In this work ERDA employing 77 MeV {sup 127}I ions has been used to analyse Strontium Bismuth Tantalate thin films at the heavy ion recoil facility at ANSTO, Lucas Heights. 9 refs., 5 figs.

  18. Ferroelectric based catalysis: Switchable surface chemistry

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2015-03-01

    We describe a new class of catalysts that uses an epitaxial monolayer of a transition metal oxide on a ferroelectric substrate. The ferroelectric polarization switches the surface chemistry between strongly adsorptive and strongly desorptive regimes, circumventing difficulties encountered on non-switchable catalytic surfaces where the Sabatier principle dictates a moderate surface-molecule interaction strength. This method is general and can, in principle, be applied to many reactions, and for each case the choice of the transition oxide monolayer can be optimized. Here, as a specific example, we show how simultaneous NOx direct decomposition (into N2 and O2) and CO oxidation can be achieved efficiently on CrO2 terminated PbTiO3, while circumventing oxygen (and sulfur) poisoning issues. One should note that NOx direct decomposition has been an open challenge in automotive emission control industry. Our method can expand the range of catalytically active elements to those which are not conventionally considered for catalysis and which are more economical, e.g., Cr (for NOx direct decomposition and CO oxidation) instead of canonical precious metal catalysts. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  19. Non-local domain switching in ferroelectric nanostructures

    Science.gov (United States)

    Jeong, Seuri; Kim, Kwang-Eun; Yang, Chan-Ho

    Nanoscale ferroic materials have attracted considerable interest due to their novel properties including electronic, electromachanical and magnetoelectric properties. Until now, exotic ferroelectric structures have been described theoretically such as flux-closure domains, but experimental studies for ferroelectric multi-domains in nanostructures have been a lack of research due to their large domain wall energy. In this study, we realized the radial-quadrant domain structures using strain relaxation known as flexoelectricity. Moreover, we observed that local electric polarization switching can affect distant domain regions to minimize free energy. Our findings provide basic concepts to demonstrate and understand ferroelectric nano-scale multi-domain structures.

  20. Enhanced flexoelectric effect in a non-ferroelectric composite

    Science.gov (United States)

    Li, Yong; Shu, Longlong; Zhou, Yongcun; Guo, Jing; Xiang, Feng; He, Li; Wang, Hong

    2013-09-01

    Direct flexoelectric effect was investigated in a non-ferroelectric composite (Bi1.5Zn0.5)(Zn0.5Nb1.5)O7/Ag (BZN/Ag) where the structure symmetry permits no macro-piezoelectricity. The flexoelectric coefficient of the BZN/Ag composite approaches 0.17 μC/m at room temperature. This value is 3-4 orders of magnitude higher than those of common dielectrics. Our research confirms the existence of flexoelectric effect in insulated non-ferroelectric materials except for ferroelectric relaxors.

  1. Imported chicken meat as a potential source of quinolone-resistant Escherichia coli producing extended-spectrum beta-lactamases in the UK.

    Science.gov (United States)

    Warren, R E; Ensor, V M; O'Neill, P; Butler, V; Taylor, J; Nye, K; Harvey, M; Livermore, D M; Woodford, N; Hawkey, P M

    2008-03-01

    Escherichia coli producing CTX-M-15 enzyme began to rapidly spread in the UK from around 2003 but other types also occur, notably CTX-M-14. We examined breasts from UK-reared (n = 62) and imported (n = 27) chickens as potential sources of quinolone-resistant E. coli with bla(CTX-M) genes. A further 40 samples for which the country of rearing could not be identified were examined. During 2006, 129 fresh and frozen chicken breast fillets were purchased from retail outlets in the West Midlands. These were cultured for E. coli on CLED agar containing 8 mg/L ciprofloxacin and carrying a 10 microg cefpodoxime disc. Resistant isolates were identified and typed by RAPD fingerprinting; bla(CTX-M) was identified by PCR and genotyped by reverse-line hybridization. The country of rearing was identified from the packaging for 89 of 129 purchased samples. Only one of the 62 UK-reared chicken samples carried E. coli producing a CTX-M-1 enzyme, whereas 10 of 27 samples reared overseas had E. coli with CTX-M enzymes. Specifically, 4/10 Brazilian, 3/4 Brazilian/Polish/French, and 2/2 Dutch samples had E. coli with CTX-M-2 enzymes. Six of 40 samples for which the country of rearing was not known had producers of CTX-M enzymes, 5 of them with CTX-M-14. Quinolone-resistant E. coli with various CTX-M beta-lactamase genes that are common in human infections worldwide were found in imported chicken breasts, indicating a possible source for gut colonization. Samples from Brazil were commonly positive for E. coli with CTX-M-2, the dominant bla(CTX-M) genotype from human infections in South America, which is currently rare in clinical infections in the UK. CTX-M-15, the dominant CTX-M type in human infections in the UK, was not found in chicken isolates, suggesting that the UK-reared chickens are not a reservoir of CTX-M-15.

  2. Room-temperature negative capacitance in a ferroelectric-dielectric superlattice heterostructure.

    Science.gov (United States)

    Gao, Weiwei; Khan, Asif; Marti, Xavi; Nelson, Chris; Serrao, Claudy; Ravichandran, Jayakanth; Ramesh, Ramamoorthy; Salahuddin, Sayeef

    2014-10-08

    We demonstrate room-temperature negative capacitance in a ferroelectric-dielectric superlattice heterostructure. In epitaxially grown superlattice of ferroelectric BSTO (Ba0.8Sr0.2TiO3) and dielectric LAO (LaAlO3), capacitance was found to be larger compared to the constituent LAO (dielectric) capacitance. This enhancement of capacitance in a series combination of two capacitors indicates that the ferroelectric was stabilized in a state of negative capacitance. Negative capacitance was observed for superlattices grown on three different substrates (SrTiO3 (001), DyScO3 (110), and GdScO3 (110)) covering a large range of substrate strain. This demonstrates the robustness of the effect as well as potential for controlling the negative capacitance effect using epitaxial strain. Room-temperature demonstration of negative capacitance is an important step toward lowering the subthreshold swing in a transistor below the intrinsic thermodynamic limit of 60 mV/decade and thereby improving energy efficiency.

  3. Structural, magnetic and ferroelectric properties of Pr doped multiferroics bismuth ferrites

    Energy Technology Data Exchange (ETDEWEB)

    Verma, Vivek, E-mail: vermavivek.neel@gmail.com [Department of Physics, Hindu College, University of Delhi, Delhi (India); Beniwal, Anu [Department of Physics, Hindu College, University of Delhi, Delhi (India); Ohlan, Anil [Department of Physics, M.D. University, Rohtak (India); Tripathi, Rahul [University Institute of Engineering & Technology, M.D. University, Rohtak (India)

    2015-11-15

    Bi{sub 1−x}Pr{sub x}FeO{sub 3} samples (0≤x≤0.25 in step of 0.05) were synthesized by the sol–gel technique to investigate the effect of Pr doping on the structural, magnetic and electrical properties of multiferroic bismuth ferrites (BFO). It is observed that Pr doping induces structural changes in BFO and also decreases the secondary phases noticeably. Frequency dependent dielectric properties of pure and doped BFO samples were measured from 300 K to 675 K in the frequency range from 100 Hz to 1 MHz. Enhanced ferromagnetism and improved ferroelectric properties were observed which may be correlated with the structural transformation and grain morphology. - Highlights: • Pure and Pr doped bismuth ferrite (BFO) samples were synthesized by sol–gel technique. • Kirkendall effect plays the important role for reduction in grain size due to doping. • Ferromagnetic, ferroelectric and dielectric properties enhanced with substitution. • The dielectric dispersion explained on the basis of Koop’s theory. • The P–E loops show modification in ferroelectric properties due Pr doping in BFO.

  4. Ordered arrays of a defect-modified ferroelectric polymer for non-volatile memory with minimized energy consumption.

    Science.gov (United States)

    Chen, Xiang-Zhong; Chen, Xin; Guo, Xu; Cui, Yu-Shuang; Shen, Qun-Dong; Ge, Hai-Xiong

    2014-11-21

    Ferroelectric polymers are among the most promising materials for flexible electronic devices. Highly ordered arrays of the defect-modified ferroelectric polymer P(VDF-TrFE-CFE) (poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)) are fabricated by nanoimprint lithography for nonvolatile memory application. The defective CFE units reduce the coercive field to one-fifth of that of the un-modified P(VDF-TrFE), which can help minimize the energy consumption and extend the lifespan of the device. The nanoimprint process leads to preferable orientation of polymer chains and delicately controlled distribution of the defects, and thus a bi-stable polarization that makes the memory nonvolatile, as revealed by the pulsed polarization experiment.

  5. Extended Emotions

    DEFF Research Database (Denmark)

    Krueger, Joel; Szanto, Thomas

    2016-01-01

    Until recently, philosophers and psychologists conceived of emotions as brain- and body-bound affairs. But researchers have started to challenge this internalist and individualist orthodoxy. A rapidly growing body of work suggests that some emotions incorporate external resources and thus extend...... beyond the neurophysiological confines of organisms; some even argue that emotions can be socially extended and shared by multiple agents. Call this the extended emotions thesis (ExE). In this article, we consider different ways of understanding ExE in philosophy, psychology, and the cognitive sciences....... First, we outline the background of the debate and discuss different argumentative strategies for ExE. In particular, we distinguish ExE from cognate but more moderate claims about the embodied and situated nature of cognition and emotion (Section 1). We then dwell upon two dimensions of ExE: emotions...

  6. Extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1993-01-01

    Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...

  7. Effect of SHI irradiation on NBT-BT ceramics: Transformation of relaxor ferroelectric to ferroelectric nature

    Energy Technology Data Exchange (ETDEWEB)

    Shanmuga Sundari, S. [Crystal Growth Centre, Anna University, Chennai 600 025 (India); Kumar, Binay [Crystal Lab, Department of Physics and Astrophysics, University of Delhi, Delhi 110 007 (India); Asokan, K. [Inter University Accelerator Centre, New Delhi 110 067 (India); Dhanasekaran, R., E-mail: rdcgc@yahoo.com [Crystal Growth Centre, Anna University, Chennai 600 025 (India)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer The NBT-BT ceramics at MPB were synthesized by conventional solid state reaction method. Black-Right-Pointing-Pointer The prepared ceramics were irradiated with 120 MeV Au{sup 9+} ions at different fluencies. Black-Right-Pointing-Pointer The grain size is increased after irradiation due to the increase of local lattice temperature. Black-Right-Pointing-Pointer As the fluence increases the relaxor nature of the material is transformed to the ferroelectric nature. - Abstract: The lead free NBT-BT ceramics prepared by conventional solid state reaction method were irradiated with 120 MeV Au{sup 9+} ions with different fluences. The structural, dielectric and piezoelectric studies were carried out before and after irradiation. The agglomeration and increase of grain size are observed in SEM analysis after the irradiation. The diffuse phase transition disappeared after high fluence of irradiation and the material becomes ferroelectric in nature. The piezoelectric properties were decreased due to the reduced stability of the ferroelectric domains after the irradiation.

  8. Enhanced piezoelectric response in the artificial ferroelectric polymer multilayers

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, X. L.; Wang, J. L., E-mail: jlwang@mail.sitp.ac.cn, E-mail: lin-tie@mail.sitp.ac.cn; Tian, B. B.; Liu, B. L.; Wang, X. D.; Sun, S.; Zou, Y. H.; Lin, T., E-mail: jlwang@mail.sitp.ac.cn, E-mail: lin-tie@mail.sitp.ac.cn; Sun, J. L.; Meng, X. J.; Chu, J. H. [National Laboratory for Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Yu Tian Road 500, Shanghai 200083 (China); University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049 (China)

    2014-12-01

    An actuator with a high piezoelectric response, the ferroelectric polymer multilayer actuator, is described. The ferroelectric polymer multilayers consisting of alternative ferroelectric poly(vinylidene fluoride-trifluoroethylene) (P(VDF-TrFE)) copolymer and relaxor poly(vinylidene fluoride-trifluoroethylene-chlorofloroethylene) (P(VDF-TrFE-CFE)) terpolymer with different periodicities and fixed total thickness are prepared by the Langmuir-Blodgett technique. Both X-ray diffraction and Raman spectroscopic measurements indicate that the structure of the multilayer with thin alternating layer is similar to that of the ferroelectric copolymer. Compared with that of the copolymer, it is found that the piezoelectric coefficient of the multilayer could be improved by 57%. We attributed the enhanced piezoelectric response of the multilayers to the internal electric fields that arises from the electrostatic couplings between different layers.

  9. On the long-time behavior of ferroelectric systems

    Energy Technology Data Exchange (ETDEWEB)

    Greenberg, J. M.; MacCamy, R. C.; Coffman, C. V.

    2003-07-16

    In this note we investigate a new model for the behavior of ferroelectric materials. This model is analogous to one used in [1] to describe the dynamics of elastic materials which exhibit phase changes.

  10. Polarization-coupled tunable resistive behavior in oxide ferroelectric heterostructures

    Energy Technology Data Exchange (ETDEWEB)

    Gruverman, Alexei [Univ. of Nebraska, Lincoln, NE (United States); Tsymbal, Evgeny Y. [Univ. of Nebraska, Lincoln, NE (United States); Eom, Chang-Beom [Univ. of Wisconsin, Madison, WI (United States)

    2017-05-03

    This research focuses on investigation of the physical mechanism of the electrically and mechanically tunable resistive behavior in oxide ferroelectric heterostructures with engineered interfaces realized via a strong coupling of ferroelectric polarization with tunneling electroresistance and metal-insulator (M-I) transitions. This report describes observation of electrically conductive domain walls in semiconducting ferroelectrics, voltage-free control of resistive switching and demonstration of a new mechanism of electrical control of 2D electron gas (2DEG) at oxide interfaces. The research goals are achieved by creating strong synergy between cutting-edge fabrication of epitaxial single-crystalline complex oxides, nanoscale electrical characterization by scanning probe microscopy and theoretical modeling of the observed phenomena. The concept of the ferroelectric devices with electrically and mechanically tunable nonvolatile resistance represents a new paradigm shift in realization of the next-generation of non-volatile memory devices and low-power logic switches.

  11. Performance of thin-film ferroelectric capacitors for EMC decoupling.

    Science.gov (United States)

    Li, Huadong; Subramanyam, Guru

    2008-12-01

    This paper studied the effects of thin-film ferroelectrics as decoupling capacitors for electromagnetic compatibility applications. The impedance and insertion loss of PZT capacitors were measured and compared with the results from commercial off-the-shelf capacitors. An equivalent circuit model was extracted from the experimental results, and a considerable series resistance was found to exist in ferroelectric capacitors. This resistance gives rise to the observed performance difference around series resonance between ferroelectric PZT capacitors and normal capacitors. Measurements on paraelectric (Ba,Sr)TiO(3)-based integrated varactors do not show this significant resistance. Some analyses were made to investigate the mechanisms, and it was found that it can be due to the hysteresis in the ferroelectric thin films.

  12. Ferroelectric molecular films for nanoscopic ultrahigh-density memories.

    Science.gov (United States)

    Matsushige, Kazumi; Yamada, Hirofumi

    2002-04-01

    The formation and visualization of nanometer-scale polarized domains in ultrathin ferroelectric molecular films by scanning-probe microscopy are described. These operations to the ferroelectric domains correspond to the "writing" and the "reading" process, respectively, for the data-storage application. In addition, nanometer-scale structures and the local electrical properties of the local domains, including the interface effect, are discussed. The achieved minimum diameter of the written ferroelectric domains was 30 nm. The size of the "recording" dot corresponds to the recording density of about 230 Gbit/in.(2). The "erasing" process by switching domains was also demonstrated. Furthermore, nanometer-scale ferroelectric domains using VDF oligomer molecular films were successfully formed, which has opened the way to the control of single molecular dipoles.

  13. Field-effect transistor memories based on ferroelectric polymers

    Science.gov (United States)

    Zhang, Yujia; Wang, Haiyang; Zhang, Lei; Chen, Xiaomeng; Guo, Yu; Sun, Huabin; Li, Yun

    2017-11-01

    Field-effect transistors based on ferroelectrics have attracted intensive interests, because of their non-volatile data retention, rewritability, and non-destructive read-out. In particular, polymeric materials that possess ferroelectric properties are promising for the fabrications of memory devices with high performance, low cost, and large-area manufacturing, by virtue of their good solubility, low-temperature processability, and good chemical stability. In this review, we discuss the material characteristics of ferroelectric polymers, providing an update on the current development of ferroelectric field-effect transistors (Fe-FETs) in non-volatile memory applications. Program supported partially by the NSFC (Nos. 61574074, 61774080), NSFJS (No. BK20170075), and the Open Partnership Joint Projects of NSFC-JSPS Bilateral Joint Research Projects (No. 61511140098).

  14. Concurrent transition of ferroelectric and magnetic ordering near room temperature.

    Science.gov (United States)

    Ko, Kyung-Tae; Jung, Min Hwa; He, Qing; Lee, Jin Hong; Woo, Chang Su; Chu, Kanghyun; Seidel, Jan; Jeon, Byung-Gu; Oh, Yoon Seok; Kim, Kee Hoon; Liang, Wen-I; Chen, Hsiang-Jung; Chu, Ying-Hao; Jeong, Yoon Hee; Ramesh, Ramamoorthy; Park, Jae-Hoon; Yang, Chan-Ho

    2011-11-29

    Strong spin-lattice coupling in condensed matter gives rise to intriguing physical phenomena such as colossal magnetoresistance and giant magnetoelectric effects. The phenomenological hallmark of such a strong spin-lattice coupling is the manifestation of a large anomaly in the crystal structure at the magnetic transition temperature. Here we report that the magnetic Néel temperature of the multiferroic compound BiFeO(3) is suppressed to around room temperature by heteroepitaxial misfit strain. Remarkably, the ferroelectric state undergoes a first-order transition to another ferroelectric state simultaneously with the magnetic transition temperature. Our findings provide a unique example of a concurrent magnetic and ferroelectric transition at the same temperature among proper ferroelectrics, taking a step toward room temperature magnetoelectric applications.

  15. Hybrid dual gate ferroelectric memory for multilevel information storage

    KAUST Repository

    Khan, Yasser

    2015-01-01

    Here, we report hybrid organic/inorganic ferroelectric memory with multilevel information storage using transparent p-type SnO semiconductor and ferroelectric P(VDF-TrFE) polymer. The dual gate devices include a top ferroelectric field-effect transistor (FeFET) and a bottom thin-film transistor (TFT). The devices are all fabricated at low temperatures (∼200°C), and demonstrate excellent performance with high hole mobility of 2.7 cm2 V-1 s-1, large memory window of ∼18 V, and a low sub-threshold swing ∼-4 V dec-1. The channel conductance of the bottom-TFT and the top-FeFET can be controlled independently by the bottom and top gates, respectively. The results demonstrate multilevel nonvolatile information storage using ferroelectric memory devices with good retention characteristics.

  16. Role of flexoelectric coupling in polarization rotations at the a-c domain walls in ferroelectric perovskites

    Science.gov (United States)

    Cao, Ye; Chen, Long-Qing; Kalinin, Sergei V.

    2017-05-01

    Ferroelectric and ferroelastic domain walls play important roles in ferroelectric properties. However, their couplings with flexoelectricity have been less understood. In this work, we applied phase-field simulation to investigate the flexoelectric coupling with ferroelectric a/c twin structures in lead ziconate titanate thin films. Local stress gradients were found to exist near twin walls that created both lateral and vertical electric fields through the flexoelectric effect, resulting in polarization inclinations from either horizontal or normal orientation, polarization rotation angles deviated from 90°, and consequently highly asymmetric a/c twin walls. By tuning the flexoelectric strengths in a reasonable range from first-principles calculations, we found that the transverse flexoelectric coefficient has a larger influence on the polarization rotation than longitudinal and shear coefficients. As polar rotations that commonly occur at compositional morphotropic phase boundaries contribute to the piezoelectric enhancement, this work calls for further exploration of alternative strain-engineered polar rotations via flexoelectricity in ferroelectric thin films.

  17. Interplay of Cation Ordering and Ferroelectricity in Perovskite Tin Iodides: Designing a Polar Halide Perovskite for Photovoltaic Applications

    Energy Technology Data Exchange (ETDEWEB)

    Gou, Gaoyang; Young, Joshua; Liu, Xian; Rondinelli, James M.

    2016-09-28

    Owing to its ideal semiconducting band gap and good carrier transport properties, the fully inorganic perovskite CsSnI3 has been proposed as a visible-light absorber for photovoltaic (PV) applications. However, compared to the organic inorganic lead halide perovskite CH3NH3PbI3, CsSnI3 solar cells display very low energy conversion efficiency. In this work, we propose a potential route to improve the PV properties of CsSnI3. Using first-principles calculations, we examine the crystal structures and electronic properties of CsSnI3, including its structural polymorphs. Next, we purposefully order Cs and Rb cations on the A site to create the double perovskite (CsRb)Sn2I6. We find that a stable ferroelectric polarization arises from the nontrivial coupling between polar displacements and octahedral rotations of the SnI6 network. These ferroelectric double perovskites are predicted to have energy band gaps and carrier effective masses similar to those of CsSnI3. More importantly, unlike nonpolar CsSnI3, the electric polarization present in ferroelectric (CsRb)Sn2I6 can effectively separate the photoexcited carriers, leading to novel ferroelectric PV materials with,potentially enhanced energy conversion efficiency.

  18. Differential geometric aspects of the theory of ferroelectricity

    International Nuclear Information System (INIS)

    Khosiainov, V.T.

    1988-11-01

    In connection with the problem of the ferroelectricity a differential formalism is developed as a tool to describe the fine electronic properties in solids. This includes the gauge invariant definition of the differentiation in k-space (position operator), the notion of holonomy group and characteristic gauge field in k-space of electron states. A variational principle and possible solutions of resulting field equations are discussed. A criterion for the appearance of the ferroelectricity is proposed. (author). 5 refs

  19. Effects of Bi doping on dielectric and ferroelectric properties of ...

    Indian Academy of Sciences (India)

    Abstract. [Pb0·95(La1−yBiy)0·05][Zr0·53Ti0·47]O3 (PLBZT) ferroelectric thin films have been synthesized on indium tin oxide (ITO)-coated glass by sol–gel processing. PLBZT thin films were annealed at a relatively low tem- perature of 550 ◦C in oxygen ambient. Effects of Bi doping on structure, dielectric and ferroelectric ...

  20. Investigation of ferroelectric effects in two sulfide deposits1

    Science.gov (United States)

    Corry, Charles E.

    1994-04-01

    Laboratory studies by different investigators using various techniques have expanded the number of known ferroelectric ore minerals to about twenty at present from the first discovery of makedonite (PbTiO 3) in 1950. These include such common ore minerals as bismuthinite (Bi 2S 3), cassiterite (SnO 2), chalcocite (Cu 2S), pyrrhotite (Fe 1- xS), and stibnite (Sb 2S 3). Two field investigations of sulfide ore bodies that contain known ferroelectric minerals were undertaken to investigate possible in-situ effects in these deposits. These deposits, at Mount Emmons (38°53'N, 107°03'W), Colorado, and Three R Canyon (31°28'N, 110°46'W) in the Patagonia Mountains, Arizona, demonstrate ferroelectric effects that include directional polarization and apparent resistivity, electrically-excited resonance, and lack of reciprocity. Other phenomena include history-dependent electrical behavior and inductive effects. Ferroelectrics polarize as a function of applied potential. It is much easier to generate a large potential than the high currents commonly used in IP surveys. Thus, in electrical surveys of deposits known, or suspected, to contain ferroelectric minerals it may be advantageous to maximize the applied potential. It may also be relatively easy to induce electrical resonance in these deposits that could provide an inexpensive reconnaissance technique. In IP and CR surveys, ferroelectric effects can mask the deposit since ϱa may approach zero in the polar direction, or chargeability may be undetectable. Phase relations will most likely be uninterpretable in CR surveys over such deposits. In CSAMT surveys, directional resonance effects may preclude depth interpretation. Frequency-dependent inductive and capacitive effects may be observed in CR and CSAMT surveys over deposits containing significant quantities of ferroelectric minerals. Ferroelectricity may also be useful in exploitation efforts for electrical beneficiation during ore processing.

  1. Tunability response in exponentially graded ferroelectrics: A TIM model approach

    Energy Technology Data Exchange (ETDEWEB)

    Vivas C, H., E-mail: hvivasc@unal.edu.co [Grupo de Propiedades Opticas de los Materiales, Departamento de Fisica, Bloque Y, Universidad Nacional de Colombia, Manizales A.A. 127 (Colombia); Jurado, J.F.; Vargas-Hernandez, C. [Grupo de Propiedades Opticas de los Materiales, Departamento de Fisica, Bloque Y, Universidad Nacional de Colombia, Manizales A.A. 127 (Colombia)

    2012-02-01

    Relative dielectric function response associate to a non-homogeneous layered ferroelectric system is calculated in the framework of the Mean Field Approximation (MFA) for the Transverse Ising Model (TIM). Analytical self-consistent expressions for the average polarization, dielectric susceptibility, and tunability percentage are outlined and solved for different configurations and sizes. It is found that exponentially graded ferroelectrics magnify the tunability response for stronger interlayer coupling and it reaches its saturation value for smaller intensities of the applied electric field.

  2. Electric Control of Spin Helicity in a Magnetic Ferroelectric

    International Nuclear Information System (INIS)

    Yamasaki, Y.; Goto, T.; Sagayama, H.; Matsuura, M.; Hirota, K.; Arima, T.; Tokura, Y.

    2007-01-01

    Magnetic ferroelectrics or multiferroics, which are currently extensively explored, may provide a good arena to realize a novel magnetoelectric function. Here we demonstrate the genuine electric control of the spiral magnetic structure in one such magnetic ferroelectric, TbMnO 3 . A spin-polarized neutron scattering experiment clearly shows that the spin helicity, clockwise or counterclockwise, is controlled by the direction of spontaneous polarization and hence by the polarity of the small electric field applied on cooling

  3. Effects of Bi doping on dielectric and ferroelectric properties

    Indian Academy of Sciences (India)

    [Pb0.95(La1−Bi)0.05][Zr0.53Ti0.47]O3 (PLBZT) ferroelectric thin films have been synthesized on indium tin oxide (ITO)-coated glass by sol–gel processing. PLBZT thin films were annealed at a relatively low temperature of 550 °C in oxygen ambient. Effects of Bi doping on structure, dielectric and ferroelectric properties of ...

  4. Extended ERP

    OpenAIRE

    Müssigmann, Nikolaus

    2005-01-01

    Extended ERP : dynamic strategic supply network development / A. Albani, N. Müssigmann, K. Turowski. - In: ICESAcc 2005 - Second International Conference on Enterprise Systems and Accounting / C. J. Stefanou. - Thessaloniki : Labor. of Enterprise Resources Dep. of Accounting, 2005. - 1 CD-ROM

  5. Removable polytetrafluoroethylene template based epitaxy of ferroelectric copolymer thin films

    Science.gov (United States)

    Xia, Wei; Chen, Qiusong; Zhang, Jian; Wang, Hui; Cheng, Qian; Jiang, Yulong; Zhu, Guodong

    2018-04-01

    In recent years ferroelectric polymers have shown their great potentials in organic and flexible electronics. To meet the requirements of high-performance and low energy consumption of novel electronic devices and systems, structural and electrical properties of ferroelectric polymer thin films are expected to be further optimized. One possible way is to realize epitaxial growth of ferroelectric thin films via removable high-ordered polytetrafluoroethylene (PTFE) templates. Here two key parameters in epitaxy process, annealing temperature and applied pressure, are systematically studied and thus optimized through structural and electrical measurements of ferroelectric copolymer thin films. Experimental results indicate that controlled epitaxial growth is realized via suitable combination of both parameters. Annealing temperature above the melting point of ferroelectric copolymer films is required, and simultaneously moderate pressure (around 2.0 MPa here) should be applied. Over-low pressure (around 1.0 MPa here) usually results in the failure of epitaxy process, while over-high pressure (around 3.0 MPa here) often results in residual of PTFE templates on ferroelectric thin films.

  6. Fork gratings based on ferroelectric liquid crystals.

    Science.gov (United States)

    Ma, Y; Wei, B Y; Shi, L Y; Srivastava, A K; Chigrinov, V G; Kwok, H-S; Hu, W; Lu, Y Q

    2016-03-21

    In this article, we disclose a fork grating (FG) based on the photo-aligned ferroelectric liquid crystal (FLC). The Digital Micro-mirror Device based system is used as a dynamic photomask to generated different holograms. Because of controlled anchoring energy, the photo alignment process offers optimal conditions for the multi-domain FLC alignment. Two different electro-optical modes namely DIFF/TRANS and DIFF/OFF switchable modes have been proposed where the diffraction can be switched either to no diffraction or to a completely black state, respectively. The FLC FG shows high diffraction efficiency and fast response time of 50µs that is relatively faster than existing technologies. Thus, the FLC FG may pave a good foundation toward optical vertices generation and manipulation that could find applications in a variety of devices.

  7. Introduction to the IEEE International Symposium on Applications of Ferroelectrics and International Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials.

    Science.gov (United States)

    Ye, Zuo-Guang; Tan, Xiaoli; Bokov, Alexei A

    2012-09-01

    The 20th IEEE International Symposium on Applications of Ferroelectrics (ISAF) was held on July 24-27, 2011, in Vancouver, British Columbia, Canada, jointly with the International Symposium on Piezoresponse Force Microscopy and Nanoscale Phenomena in Polar Materials (PFM). Over a period of four days, approximately 400 scientists, engineers, and students from around the world presented their work and discussed the latest developments in the field of ferroelectrics, related materials, and their applications. It is particularly encouraging to see that a large number of students (115) were attracted to the joint conference and presented high-quality research works. This trend is not only important to this conference series, but more importantly, it is vital to the future of the ferroelectrics field.

  8. Extending Puppet

    CERN Document Server

    Franceschi, Alessandro

    2014-01-01

    This book is a clear, detailed and practical guide to learn about designing and deploying you puppet architecture, with informative examples to highlight and explain concepts in a focused manner. This book is designed for users who already have good experience with Puppet, and will surprise experienced users with innovative topics that explore how to design, implement, adapt, and deploy a Puppet architecture. The key to extending Puppet is the development of types and providers, for which you must be familiar with Ruby.

  9. Tunable Microwave Filter Design Using Thin-Film Ferroelectric Varactors

    Science.gov (United States)

    Haridasan, Vrinda

    Military, space, and consumer-based communication markets alike are moving towards multi-functional, multi-mode, and portable transceiver units. Ferroelectric-based tunable filter designs in RF front-ends are a relatively new area of research that provides a potential solution to support wideband and compact transceiver units. This work presents design methodologies developed to optimize a tunable filter design for system-level integration, and to improve the performance of a ferroelectric-based tunable bandpass filter. An investigative approach to find the origins of high insertion loss exhibited by these filters is also undertaken. A system-aware design guideline and figure of merit for ferroelectric-based tunable band- pass filters is developed. The guideline does not constrain the filter bandwidth as long as it falls within the range of the analog bandwidth of a system's analog to digital converter. A figure of merit (FOM) that optimizes filter design for a specific application is presented. It considers the worst-case filter performance parameters and a tuning sensitivity term that captures the relation between frequency tunability and the underlying material tunability. A non-tunable parasitic fringe capacitance associated with ferroelectric-based planar capacitors is confirmed by simulated and measured results. The fringe capacitance is an appreciable proportion of the tunable capacitance at frequencies of X-band and higher. As ferroelectric-based tunable capac- itors form tunable resonators in the filter design, a proportionally higher fringe capacitance reduces the capacitance tunability which in turn reduces the frequency tunability of the filter. Methods to reduce the fringe capacitance can thus increase frequency tunability or indirectly reduce the filter insertion-loss by trading off the increased tunability achieved to lower loss. A new two-pole tunable filter topology with high frequency tunability (> 30%), steep filter skirts, wide stopband

  10. Extended family medicine training

    Science.gov (United States)

    Slade, Steve; Ross, Shelley; Lawrence, Kathrine; Archibald, Douglas; Mackay, Maria Palacios; Oandasan, Ivy F.

    2016-01-01

    Abstract Objective To examine trends in family medicine training at a time when substantial pedagogic change is under way, focusing on factors that relate to extended family medicine training. Design Aggregate-level secondary data analysis based on the Canadian Post-MD Education Registry. Setting Canada. Participants All Canadian citizens and permanent residents who were registered in postgraduate family medicine training programs within Canadian faculties of medicine from 1995 to 2013. Main outcome measures Number and proportion of family medicine residents exiting 2-year and extended (third-year and above) family medicine training programs, as well as the types and numbers of extended training programs offered in 2015. Results The proportion of family medicine trainees pursuing extended training almost doubled during the study period, going from 10.9% in 1995 to 21.1% in 2013. Men and Canadian medical graduates were more likely to take extended family medicine training. Among the 5 most recent family medicine exit cohorts (from 2009 to 2013), 25.9% of men completed extended training programs compared with 18.3% of women, and 23.1% of Canadian medical graduates completed extended training compared with 13.6% of international medical graduates. Family medicine programs vary substantially with respect to the proportion of their trainees who undertake extended training, ranging from a low of 12.3% to a high of 35.1% among trainees exiting from 2011 to 2013. Conclusion New initiatives, such as the Triple C Competency-based Curriculum, CanMEDS–Family Medicine, and Certificates of Added Competence, have emerged as part of family medicine education and credentialing. In acknowledgment of the potential effect of these initiatives, it is important that future research examine how pedagogic change and, in particular, extended training shapes the care family physicians offer their patients. As part of that research it will be important to measure the breadth and uptake of

  11. Effect of mechanical loads on stability of nanodomains in ferroelectric ultrathin films: towards flexible erasing of the non-volatile memories.

    Science.gov (United States)

    Chen, W J; Zheng, Yue; Xiong, W M; Feng, Xue; Wang, Biao; Wang, Ying

    2014-06-18

    Intensive investigations have been drawn on nanoscale ferroelectrics for their prospective applications such as developing memory devices. In contrast with the commonly used electrical means to process (i.e., read, write or erase) the information carried by ferroelectric domains, at present, mechanisms of non-electrical processing ferroelectric domains are relatively lacking. Here we make a systematical investigation on the stability of 180° cylindrical domains in ferroelectric nanofilms subjected to macroscopic mechanical loads, and explore the possibility of mechanical erasing. Effects of domain size, film thickness, temperature and different mechanical loads, including uniform strain, cylindrical bending and wavy bending, have been revealed. It is found that the stability of a cylindrical domain depends on its radius, temperature and film thickness. More importantly, mechanical loads have great controllability on the stability of cylindrical domains, with the critical radius nonlinearly sensitive to both strain and strain gradient. This indicates that erasing cylindrical domain can be achieved by changing the strain state of nanofilm. Based on the calculated phase diagrams, we successfully simulate several mechanical erasing processes on 4 × 4 bits memory devices. Our study sheds light on prospective device applications of ferroelectrics involving mechanical loads, such as flexible memory devices and other micro-electromechanical systems.

  12. The effect of flexoelectricity on the dielectric properties of inhomogeneously strained ferroelectric thin films

    NARCIS (Netherlands)

    Catalan, G; Sinnamon, LJ; Gregg, JM

    2004-01-01

    Recent experimental measurements of large flexoelectric coefficients in ferroelectric ceramics suggest that strain gradients can affect the polarization and permittivity behaviour of inhomogeneously strained ferroelectrics. Here we present a phenomenological model of the effect of flexoelectricity

  13. Physical aspects of ferroelectric semiconductors for photovoltaic solar energy conversion

    Energy Technology Data Exchange (ETDEWEB)

    Lopez-Varo, Pilar [Departamento de Electrónica y Tecnología de Computadores, CITIC-UGR, Universidad de Granada, 18071 Granada (Spain); Bertoluzzi, Luca [Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló (Spain); Bisquert, Juan, E-mail: bisquert@uji.es [Institute of Advanced Materials (INAM), Universitat Jaume I, 12006 Castelló (Spain); Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah (Saudi Arabia); Alexe, Marin [Department of Physics, University of Warwick, Coventry CV4 7AL (United Kingdom); Coll, Mariona [Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193, Bellaterra, Catalonia (Spain); Huang, Jinsong [Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 (United States); Jimenez-Tejada, Juan Antonio [Departamento de Electrónica y Tecnología de Computadores, CITIC-UGR, Universidad de Granada, 18071 Granada (Spain); Kirchartz, Thomas [IEK5-Photovoltaik, Forschungszentrum Jülich, 52425 Jülich (Germany); Faculty of Engineering and CENIDE, University of Duisburg–Essen, Carl-Benz-Str. 199, 47057 Duisburg (Germany); Nechache, Riad; Rosei, Federico [INRS—Center Énergie, Matériaux et Télécommunications, Boulevard Lionel-Boulet, Varennes, Québec, J3X 1S2 (Canada); Yuan, Yongbo [Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, Lincoln, NE 68588-0656 (United States)

    2016-10-07

    Solar energy conversion using semiconductors to fabricate photovoltaic devices relies on efficient light absorption, charge separation of electron–hole pair carriers or excitons, and fast transport and charge extraction to counter recombination processes. Ferroelectric materials are able to host a permanent electrical polarization which provides control over electrical field distribution in bulk and interfacial regions. In this review, we provide a critical overview of the physical principles and mechanisms of solar energy conversion using ferroelectric semiconductors and contact layers, as well as the main achievements reported so far. In a ferroelectric semiconductor film with ideal contacts, the polarization charge would be totally screened by the metal layers and no charge collection field would exist. However, real materials show a depolarization field, smooth termination of polarization, and interfacial energy barriers that do provide the control of interface and bulk electric field by switchable spontaneous polarization. We explore different phenomena as the polarization-modulated Schottky-like barriers at metal/ferroelectric interfaces, depolarization fields, vacancy migration, and the switchable rectifying behavior of ferroelectric thin films. Using a basic physical model of a solar cell, our analysis provides a general picture of the influence of ferroelectric effects on the actual power conversion efficiency of the solar cell device, and we are able to assess whether these effects or their combinations are beneficial or counterproductive. We describe in detail the bulk photovoltaic effect and the contact layers that modify the built-in field and the charge injection and separation in bulk heterojunction organic cells as well as in photocatalytic and water splitting devices. We also review the dominant families of ferroelectric materials that have been most extensively investigated and have provided the best photovoltaic performance.

  14. A novel readout integrated circuit for ferroelectric FPA detector

    Science.gov (United States)

    Bai, Piji; Li, Lihua; Ji, Yulong; Zhang, Jia; Li, Min; Liang, Yan; Hu, Yanbo; Li, Songying

    2017-11-01

    Uncooled infrared detectors haves some advantages such as low cost light weight low power consumption, and superior reliability, compared with cryogenically cooled ones Ferroelectric uncooled focal plane array(FPA) are being developed for its AC response and its high reliability As a key part of the ferroelectric assembly the ROIC determines the performance of the assembly. A top-down design model for uncooled ferroelectric readout integrated circuit(ROIC) has been developed. Based on the optical thermal and electrical properties of the ferroelectric detector the RTIA readout integrated circuit is designed. The noise bandwidth of RTIA readout circuit has been developed and analyzed. A novel high gain amplifier, a high pass filter and a low pass filter circuits are designed on the ROIC. In order to improve the ferroelectric FPA package performance and decrease of package cost a temperature sensor is designed on the ROIC chip At last the novel RTIA ROIC is implemented on 0.6μm 2P3M CMOS silicon techniques. According to the experimental chip test results the temporal root mean square(RMS)noise voltage is about 1.4mV the sensitivity of the on chip temperature sensor is 0.6 mV/K from -40°C to 60°C the linearity performance of the ROIC chip is better than 99% Based on the 320×240 RTIA ROIC, a 320×240 infrared ferroelectric FPA is fabricated and tested. Test results shows that the 320×240 RTIA ROIC meets the demand of infrared ferroelectric FPA.

  15. Integration and High-Temperature Characterization of Ferroelectric Vanadium-Doped Bismuth Titanate Thin Films on Silicon Carbide

    Science.gov (United States)

    Ekström, Mattias; Khartsev, Sergiy; Östling, Mikael; Zetterling, Carl-Mikael

    2017-07-01

    4H-SiC electronics can operate at high temperature (HT), e.g., 300°C to 500°C, for extended times. Systems using sensors and amplifiers that operate at HT would benefit from microcontrollers which can also operate at HT. Microcontrollers require nonvolatile memory (NVM) for computer programs. In this work, we demonstrate the possibility of integrating ferroelectric vanadium-doped bismuth titanate (BiTV) thin films on 4H-SiC for HT memory applications, with BiTV ferroelectric capacitors providing memory functionality. Film deposition was achieved by laser ablation on Pt (111)/TiO2/4H-SiC substrates, with magnetron-sputtered Pt used as bottom electrode and thermally evaporated Au as upper contacts. Film characterization by x-ray diffraction analysis revealed predominately (117) orientation. P- E hysteresis loops measured at room temperature showed maximum 2 P r of 48 μC/cm2, large enough for wide read margins. P- E loops were measurable up to 450°C, with losses limiting measurements above 450°C. The phase-transition temperature was determined to be about 660°C from the discontinuity in dielectric permittivity, close to what is achieved for ceramics. These BiTV ferroelectric capacitors demonstrate potential for use in HT NVM applications for SiC digital electronics.

  16. "Negative capacitance" in resistor-ferroelectric and ferroelectric-dielectric networks: Apparent or intrinsic?

    Science.gov (United States)

    Saha, Atanu K.; Datta, Suman; Gupta, Sumeet K.

    2018-03-01

    In this paper, we describe and analytically substantiate an alternate explanation for the negative capacitance (NC) effect in ferroelectrics (FE). We claim that the NC effect previously demonstrated in resistance-ferroelectric (R-FE) networks does not necessarily validate the existence of "S" shaped relation between polarization and voltage (according to Landau theory). In fact, the NC effect can be explained without invoking the "S"-shaped behavior of FE. We employ an analytical model for FE (Miller model) in which the steady state polarization strictly increases with the voltage across the FE and show that despite the inherent positive FE capacitance, reduction in FE voltage with the increase in its charge is possible in a R-FE network as well as in a ferroelectric-dielectric (FE-DE) stack. This can be attributed to a large increase in FE capacitance near the coercive voltage coupled with the polarization lag with respect to the electric field. Under certain conditions, these two factors yield transient NC effect. We analytically derive conditions for NC effect in R-FE and FE-DE networks. We couple our analysis with extensive simulations to explain the evolution of NC effect. We also compare the trends predicted by the aforementioned Miller model with Landau-Khalatnikov (L-K) model (static negative capacitance due to "S"-shape behaviour) and highlight the differences between the two approaches. First, with an increase in external resistance in the R-FE network, NC effect shows a non-monotonic behavior according to Miller model but increases according to L-K model. Second, with the increase in ramp-rate of applied voltage in the FE-DE stack, NC effect increases according to Miller model but decreases according to L-K model. These results unveil a possible way to experimentally validate the actual reason of NC effect in FE.

  17. Electric Field-Induced Phase Transitions in Ferroelectrics at Polymorphic Phase Boundaries

    Science.gov (United States)

    Iamsasri, Thanakorn

    was studied using in situ XRD under electric fields. For the first time, an equation to quantify domain reorientation in orthorhombic lattice was developed and applied to LNKN. In prior studies, equations had only been developed to quantify the degree of domain reorientation for tetragonal and rhombohedral lattices. The results from this work show that the degree of domain reorientation increases as the composition approaches the orthorhombic-tetragonal phase boundary. Moreover, the time and frequency dependence of field-induced phase transition in BTBZT was studied using time-resolved XRD. The field-induced phase transition in BT-BZT strongly depends on the frequency of the applied fields, which corresponds with the relaxor behaviors observed in the macroscopic properties such as polarization and strain as a function of electric field. The kinetics of the field-induced phase transition in BT-BZT were modeled by a modified Kolmogorov-Avrami-Ishibashi (KAI) equation. In contrast to prior works, this study utilized a Bayesian inference method to obtain the distribution of parameters in the modified KAI equation without additional assumptions on the distribution. Bayesian inference allows for more variety in distributions (e.g. asymmetry and multimodality), whereas prior works usually assumed the distribution to be Gaussian. In summary, the results from this research improve the current understanding of fieldinduced phase transition in ferroelectrics and relaxors. Specifically, it explores the structural evolution of ferroelectrics during the application of high electric fields - field amplitudes that are typically seen during the poling process. Since the poling process directly affects the piezoelectric properties, the study of field-induced phase transitions is essential for understanding the origins of enhanced properties at phase boundaries, which are important for engineering devices with desired properties.

  18. Organic non-volatile memories from ferroelectric phase separated blends

    Science.gov (United States)

    Asadi, Kamal; de Leeuw, Dago; de Boer, Bert; Blom, Paul

    2009-03-01

    Ferroelectric polarisation is an attractive physical property for non-volatile binary switching. The functionality of the targeted memory should be based on resistive switching. Conductivity and ferroelectricity however cannot be tuned independently. The challenge is to develop a storage medium in which the favourable properties of ferroelectrics such as bistability and non-volatility can be combined with the beneficial properties provided by semiconductors such as conductivity and rectification. In this contribution we present an integrated solution by blending semiconducting and ferroelectric polymers into phase separated networks. The polarisation field of the ferroelectric modulates the injection barrier at the semiconductor--metal contact. This combination allows for solution-processed non-volatile memory arrays with a simple cross-bar architecture that can be read-out non-destructively. Based on this general concept a non-volatile, reversible switchable Schottky diode with relatively fast programming time of shorter than 100 microseconds, long information retention time of longer than 10^ days, and high programming cycle endurance with non-destructive read-out is demonstrated.

  19. Ferroelectric Nanoparticles in Liquid Crystals: Recent Progress and Current Challenges

    Science.gov (United States)

    Glushchenko, Anatoliy

    2017-01-01

    The dispersion of ferroelectric nanomaterials in liquid crystals has recently emerged as a promising way for the design of advanced and tunable electro-optical materials. The goal of this paper is a broad overview of the current technology, basic physical properties, and applications of ferroelectric nanoparticle/liquid crystal colloids. By compiling a great variety of experimental data and discussing it in the framework of existing theoretical models, both scientific and technological challenges of this rapidly developing field of liquid crystal nanoscience are identified. They can be broadly categorized into the following groups: (i) the control of the size, shape, and the ferroelectricity of nanoparticles; (ii) the production of a stable and aggregate-free dispersion of relatively small (~10 nm) ferroelectric nanoparticles in liquid crystals; (iii) the selection of liquid crystal materials the most suitable for the dispersion of nanoparticles; (iv) the choice of appropriate experimental procedures and control measurements to characterize liquid crystals doped with ferroelectric nanoparticles; and (v) the development and/or modification of theoretical and computational models to account for the complexity of the system under study. Possible ways to overcome the identified challenges along with future research directions are also discussed. PMID:29104276

  20. Hierarchical ferroelectric and ferrotoroidic polarizations coexistent in nano-metamaterials.

    Science.gov (United States)

    Shimada, Takahiro; Lich, Le Van; Nagano, Koyo; Wang, Jie; Kitamura, Takayuki

    2015-10-01

    Tailoring materials to obtain unique, or significantly enhanced material properties through rationally designed structures rather than chemical constituents is principle of metamaterial concept, which leads to the realization of remarkable optical and mechanical properties. Inspired by the recent progress in electromagnetic and mechanical metamaterials, here we introduce the concept of ferroelectric nano-metamaterials, and demonstrate through an experiment in silico with hierarchical nanostructures of ferroelectrics using sophisticated real-space phase-field techniques. This new concept enables variety of unusual and complex yet controllable domain patterns to be achieved, where the coexistence between hierarchical ferroelectric and ferrotoroidic polarizations establishes a new benchmark for exploration of complexity in spontaneous polarization ordering. The concept opens a novel route to effectively tailor domain configurations through the control of internal structure, facilitating access to stabilization and control of complex domain patterns that provide high potential for novel functionalities. A key design parameter to achieve such complex patterns is explored based on the parity of junctions that connect constituent nanostructures. We further highlight the variety of additional functionalities that are potentially obtained from ferroelectric nano-metamaterials, and provide promising perspectives for novel multifunctional devices. This study proposes an entirely new discipline of ferroelectric nano-metamaterials, further driving advances in metamaterials research.

  1. Controlling the properties of ferroelectric-nickelate interfaces

    Science.gov (United States)

    Marshall, Matthew S. J.; Malashevich, Andrei; Disa, Ankit; Han, Myung-Geun; Zhu, Yimei; Ismail-Beigi, Sohrab; Walker, Frederick; Ahn, Charles

    2015-03-01

    Ferroelectrics are a class of materials that exhibit a stable, reversible polarization making them useful for non-volatile electronic devices. In devices consisting of thin film ferroelectric PZT acting as a gate and a thin film of the conductive oxide LaNiO3 grown on LaAlO3(001) acting as a channel, we have realized a large change in room temperature channel resistance by switching the ferroelectric polarization. The effect of switching the polarization of the ferroelectric is to modify the electronic structure of the interface between the gate and channel, resulting in conduction in the otherwise insulating ferroelectric. Here, we discuss how changing the epitaxial strain and interface termination of LaNiO3 can result in larger changes in resistivity. The epitaxial strain is varied by growing the devices on LaAlO3 for tensile strain and SrTiO3 for compressive strain. An interface termination of either an atomic layer of NiO2 or LaO is achieved via atomic layering using oxygen plasma assisted molecular beam epitaxy (MBE).

  2. Ferroelectric Nanoparticles in Liquid Crystals: Recent Progress and Current Challenges.

    Science.gov (United States)

    Garbovskiy, Yuriy; Glushchenko, Anatoliy

    2017-11-01

    The dispersion of ferroelectric nanomaterials in liquid crystals has recently emerged as a promising way for the design of advanced and tunable electro-optical materials. The goal of this paper is a broad overview of the current technology, basic physical properties, and applications of ferroelectric nanoparticle/liquid crystal colloids. By compiling a great variety of experimental data and discussing it in the framework of existing theoretical models, both scientific and technological challenges of this rapidly developing field of liquid crystal nanoscience are identified. They can be broadly categorized into the following groups: (i) the control of the size, shape, and the ferroelectricity of nanoparticles; (ii) the production of a stable and aggregate-free dispersion of relatively small (~10 nm) ferroelectric nanoparticles in liquid crystals; (iii) the selection of liquid crystal materials the most suitable for the dispersion of nanoparticles; (iv) the choice of appropriate experimental procedures and control measurements to characterize liquid crystals doped with ferroelectric nanoparticles; and (v) the development and/or modification of theoretical and computational models to account for the complexity of the system under study. Possible ways to overcome the identified challenges along with future research directions are also discussed.

  3. Hierarchical ferroelectric and ferrotoroidic polarizations coexistent in nano-metamaterials

    Science.gov (United States)

    Shimada, Takahiro; Lich, Le Van; Nagano, Koyo; Wang, Jie; Kitamura, Takayuki

    2015-10-01

    Tailoring materials to obtain unique, or significantly enhanced material properties through rationally designed structures rather than chemical constituents is principle of metamaterial concept, which leads to the realization of remarkable optical and mechanical properties. Inspired by the recent progress in electromagnetic and mechanical metamaterials, here we introduce the concept of ferroelectric nano-metamaterials, and demonstrate through an experiment in silico with hierarchical nanostructures of ferroelectrics using sophisticated real-space phase-field techniques. This new concept enables variety of unusual and complex yet controllable domain patterns to be achieved, where the coexistence between hierarchical ferroelectric and ferrotoroidic polarizations establishes a new benchmark for exploration of complexity in spontaneous polarization ordering. The concept opens a novel route to effectively tailor domain configurations through the control of internal structure, facilitating access to stabilization and control of complex domain patterns that provide high potential for novel functionalities. A key design parameter to achieve such complex patterns is explored based on the parity of junctions that connect constituent nanostructures. We further highlight the variety of additional functionalities that are potentially obtained from ferroelectric nano-metamaterials, and provide promising perspectives for novel multifunctional devices. This study proposes an entirely new discipline of ferroelectric nano-metamaterials, further driving advances in metamaterials research.

  4. Consciousness extended

    DEFF Research Database (Denmark)

    Carrara-Augustenborg, Claudia

    2012-01-01

    There is no consensus yet regarding a conceptualization of consciousness able to accommodate all the features of such complex phenomenon. Different theoretical and empirical models lend strength to both the occurrence of a non-accessible informational broadcast, and to the mobilization of specific...... brain areas responsible for the emergence of the individual´s explicit and variable access to given segments of such broadcast. Rather than advocating one model over others, this chapter proposes to broaden the conceptualization of consciousness by letting it embrace both mechanisms. Within...... such extended framework, I propose conceptual and functional distinctions between consciousness (global broadcast of information), awareness (individual´s ability to access the content of such broadcast) and unconsciousness (focally isolated neural activations). My hypothesis is that a demarcation in terms...

  5. Extending Experiences

    DEFF Research Database (Denmark)

    A computer game's player is experiencing not only the game as a designer-made artefact, but also a multitude of social and cultural practices and contexts of both computer game play and everyday life. As a truly multidisciplinary anthology, Extending Experiences sheds new light on the mesh...... of possibilities and influences the player engages with. Part one, Experiential Structures of Play, considers some of the key concepts commonly used to address the experience of a computer game player. The second part, Bordering Play, discusses conceptual and practical overlaps of games and everyday life...... and the impacts of setting up, crossing and breaking the boundaries of game and non-game. Part three, Interfaces of Play, looks at games as technological and historical artefacts and commodities. The fourth part, Beyond Design, introduces new models for the practical and theoretical dimensions of game design....

  6. Electronic, magnetic and ferroelectric properties of rhombohedral AgFeO2: an ab initio study

    OpenAIRE

    Chakraborty, Jayita; Dasgupta, Indra

    2017-01-01

    Using first principle calculations under the framework of density functional theory we have investigated the electronic structure, magnetism and ferroelectric polarization in the triangular lattice antiferromagnet AgFeO2, and its comparison to the isostructural system CuFeO2. Our calculations reveal that spin orbit interaction plays an important role in determining the magnetic property of AgFeO2 and is possibly responsible for its different magnetic ground state in comparison to CuFeO2. Calc...

  7. Emission from ferroelectric cathodes. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Sampayan, S.E.; Caporaso, G.J.; Holmes, C.L.; Lauer, E.J.; Prosnitz, D.; Trimble, D.O.; Westenskow, G.A.

    1993-05-01

    The authors have recently initiated an investigation of electron emission from ferroelectric cathodes. The experimental apparatus consisted of an electron diode and a 250 kV, 12 ohm, 70 ns pulsed high voltage power source. A planar triode modulator driven by a synthesized waveform generator initiates the polarization inversion and allows inversion pulse tailoring. The pulsed high voltage power source is capable of delivering two high voltage pulses within 50 {mu}s of each other and is capable of operating at a sustained repetition rate of 5 Hz. The initial measurements indicate that emission current densities above the Child-Langmuir Space Charge Limit, J{sub CL}, are possible. They explain this effect to be based on a non-zero initial energy of the emitted electrons. They also determined that this effect is strongly coupled to relative timing between the inversion pulse and application of the main anode-cathode pulse. They also have initiated brightness measurements of the emitted beam and estimate a preliminary lower bound to be on the order of 10{sup 9} A/m{sup 2}-rad{sup 2} for currents close to J{sub CL} and factor of two less at currents over 4J{sub CL}. As in previous measurements at this Laboratory, they performed the measurement using a pepper pot technique. Beamlet profiles are recorded with a fast phosphor and gated cameras. They describe their apparatus and preliminary measurements.

  8. Electrical characterisation of ferroelectric field effect transistors based on ferroelectric HfO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Yurchuk, Ekaterina

    2015-02-06

    Ferroelectric field effect transistor (FeFET) memories based on a new type of ferroelectric material (silicon doped hafnium oxide) were studied within the scope of the present work. Utilisation of silicon doped hafnium oxide (Si:HfO{sub 2}) thin films instead of conventional perovskite ferroelectrics as a functional layer in FeFETs provides compatibility to the CMOS process as well as improved device scalability. The influence of different process parameters on the properties of Si:HfO{sub 2} thin films was analysed in order to gain better insight into the occurrence of ferroelectricity in this system. A subsequent examination of the potential of this material as well as its possible limitations with the respect to the application in non-volatile memories followed. The Si:HfO{sub 2}-based ferroelectric transistors that were fully integrated into the state-of-the-art high-k metal gate CMOS technology were studied in this work for the first time. The memory performance of these devices scaled down to 28 nm gate length was investigated. Special attention was paid to the charge trapping phenomenon shown to significantly affect the device behaviour.

  9. Polarization switching kinetics in ultrathin ferroelectric barium titanate film

    Energy Technology Data Exchange (ETDEWEB)

    Gaynutdinov, R., E-mail: rgaynutdinov@gmail.com [Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation); Minnekaev, M., E-mail: m.minnekaev@gmail.com [NRNU Moscow Engineering Physics Institute, Moscow 115409 (Russian Federation); Mitko, S., E-mail: sergey_m@ntmdt.ru [NT-MDT Co., Moscow 124482 (Russian Federation); Tolstikhina, A., E-mail: alla@ns.crys.ras.ru [Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation); Zenkevich, A., E-mail: avzenkevich@mephi.ru [NRNU Moscow Engineering Physics Institute, Moscow 115409 (Russian Federation); NRC Kurchatov Institute, Moscow 123182 (Russian Federation); Ducharme, S., E-mail: sducharme@unl.edu [Department of Physics and Astronomy and Nebraska Center for Materials and Nanoscience, University of Nebraska-Lincoln, NE 68588-0299 (United States); Fridkin, V., E-mail: fridkin@ns.crys.ras.ru [Institute of Crystallography, Russian Academy of Sciences, Moscow 119333 (Russian Federation)

    2013-09-01

    The investigation of polarization switching kinetics in an ultrathin barium titanate film reveals true threshold switching at a large coercive electric field, evidence that switching is of intrinsic thermodynamic nature, rather than of extrinsic nature initiated by thermal nucleation, which has no true threshold field. The switching speed of a 7 nm thick epitaxial film exhibits a critical slowing as the threshold is approached from above, a key characteristic of intrinsic switching. In contrast, a bulk crystal exhibits nucleation-initiated switching, which has no threshold, and proceeds even at fields well below the nominal coercive field, which was determined independently from the polarization-electric field hysteresis loop. Previously, this phenomenon was only reported for ultrathin ferroelectric polymer Langmuir–Blodgett films. Since both the thermodynamic coercive field and the intrinsic switching kinetics are derived from the mean field theory of ferroelectricity, we expect that these phenomena will be found in other ferroelectric films at the nanoscale.

  10. Static negative capacitance of a ferroelectric nano-domain nucleus

    Science.gov (United States)

    Sluka, Tomas; Mokry, Pavel; Setter, Nava

    2017-10-01

    Miniaturization of conventional field effect transistors (FETs) approaches the fundamental limits beyond which opening and closing the transistor channel require higher gate voltage swing and cause higher power dissipation and heating. This problem could be eliminated by placing a ferroelectric layer between the FET gate electrode and the channel, which effectively amplifies the gate voltage. The original idea of using a bulk ferroelectric negative capacitor suffers however from irreversible multi-domain ferroelectric switching, which does not allow us to stabilize static negative capacitance, while a recent reversible solution with super-lattices may be difficult to integrate onto FET. Here, we introduce a solution which provides static negative capacitance from a nano-domain nucleus. Phase-field simulations confirm the robustness of this concept, the conveniently achievable small effective negative capacitance and the potentially high compatibility of such a negative nano-capacitor with FET technology.

  11. Graphene Dirac point tuned by ferroelectric polarization field.

    Science.gov (United States)

    Wang, Xudong; Chen, Yan; Wu, Guangjian; Wang, Jianlu; Tian, Bobo; Sun, Shuo; Shen, Hong; Lin, Tie; Hu, Weida; Kang, Tingting; Tang, Minghua; Xiao, Yongguang; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao

    2018-04-03

    Graphene has received numerous attention for future nanoelectronics and optoelectronics. The Dirac point is a key parameter of graphene that provides information about its carrier properties. There are lots of methods to tune the Dirac point of graphene, such as chemical doping, impurities, defects, and disorder. In this study, we report a different approach to tune the Dirac point of graphene using a ferroelectric polarization field. The Dirac point can be adjusted to near the ferroelectric coercive voltage regardless its original position. We have ensured this phenomenon by temperature-dependent experiments, and analyzed its mechanism with the theory of impurity correlation in graphene. Additionally, with the modulation of ferroelectric polymer, the current on/off ratio and mobility of graphene transistor both have been improved. This work provides an effective method to tune the Dirac point of graphene, which can be readily used to configure functional devices such as p-n junctions and inverters.

  12. Heterogeneous Ferroelectric Solid Solutions Phases and Domain States

    CERN Document Server

    Topolov, Vitaly

    2012-01-01

    The book deals with perovskite-type ferroelectric solid solutions for modern materials science and applications, solving problems of complicated heterophase/domain structures near the morphotropic phase boundary and applications to various systems with morphotropic phases. In this book domain state–interface diagrams are presented for the interpretation of heterophase states in perovskite-type ferroelectric solid solutions. It allows to describe the stress relief in the presence of polydomain phases, the behavior of unit-cell parameters of coexisting phases and the effect of external electric fields. The novelty of the book consists in (i) the first systematization of data about heterophase states and their evolution in ferroelectric solid solutions (ii) the general interpretation of heterophase and domain structures at changing temperature, composition or electric field (iii) the complete analysis of interconnection domain structures, unit-cell parameters changes, heterophase structures and stress relief.

  13. Equivalent circuit analysis of a PbS/ferroelectric heterostructure

    Science.gov (United States)

    Pintilie, L.; Pintilie, I.; Botila, T.; Petre, D.; Licea, I.

    1997-02-01

    The frequency characteristic of the transverse photoelectric signal of a three electroded PbS/ferroelectric heterostructure is analyzed in this paper. The ferroelectric material is a lead titanate-zirconate ceramic obtained by hot pressing. It was found that the frequency characteristic of this signal is similar to a high-pass filter and depends on the properties of the ferroelectric substrates on which the PbS film was deposited. An equivalent circuit was proposed comparing the studied heterostructure with a metal-oxide semiconductor (MOS) structure. The circuit elements were determined fitting the obtained formula for the output signal with the experimental data. Some of the circuit elements were determined experimentally using various measuring techniques. It was found that the experimentally determined values are close to the theoretically determined values. The studied heterostructure can be changed into a band-pass filter adding some external circuit elements such as resistors and capacitors.

  14. Flexoelectric rotation of polarization in ferroelectric thin films.

    Science.gov (United States)

    Catalan, G; Lubk, A; Vlooswijk, A H G; Snoeck, E; Magen, C; Janssens, A; Rispens, G; Rijnders, G; Blank, D H A; Noheda, B

    2011-10-16

    Strain engineering enables modification of the properties of thin films using the stress from the substrates on which they are grown. Strain may be relaxed, however, and this can also modify the properties thanks to the coupling between strain gradient and polarization known as flexoelectricity. Here we have studied the strain distribution inside epitaxial films of the archetypal ferroelectric PbTiO(3), where the mismatch with the substrate is relaxed through the formation of domains (twins). Synchrotron X-ray diffraction and high-resolution scanning transmission electron microscopy reveal an intricate strain distribution, with gradients in both the vertical and, unexpectedly, the horizontal direction. These gradients generate a horizontal flexoelectricity that forces the spontaneous polarization to rotate away from the normal. Polar rotations are a characteristic of compositionally engineered morphotropic phase boundary ferroelectrics with high piezoelectricity; flexoelectricity provides an alternative route for generating such rotations in standard ferroelectrics using purely physical means.

  15. Controlling the spin-torque efficiency with ferroelectric barriers

    KAUST Repository

    Useinov, A.

    2015-02-11

    Nonequilibrium spin-dependent transport in magnetic tunnel junctions comprising a ferroelectric barrier is theoretically investigated. The exact solutions of the free electron Schrödinger equation for electron tunneling in the presence of interfacial screening are obtained by combining Bessel and Airy functions. We demonstrate that the spin transfer torque efficiency, and more generally the bias dependence of tunneling magneto- and electroresistance, can be controlled by switching the ferroelectric polarization of the barrier. In particular, the critical voltage at which the in-plane torque changes sign can be strongly enhanced or reduced depending on the direction of the ferroelectric polarization of the barrier. This effect provides a supplementary way to electrically control the current-driven dynamic states of the magnetization and related magnetic noise in spin transfer devices.

  16. Ferroelectric Polarization in Nanocrystalline Hydroxyapatite Thin Films on Silicon

    Science.gov (United States)

    Lang, S. B.; Tofail, S. A. M.; Kholkin, A. L.; Wojtaś, M.; Gregor, M.; Gandhi, A. A.; Wang, Y.; Bauer, S.; Krause, M.; Plecenik, A.

    2013-01-01

    Hydroxyapatite nanocrystals in natural form are a major component of bone- a known piezoelectric material. Synthetic hydroxyapatite is widely used in bone grafts and prosthetic pyroelectric coatings as it binds strongly with natural bone. Nanocrystalline synthetic hydroxyapatite films have recently been found to exhibit strong piezoelectricity and pyroelectricity. While a spontaneous polarization in hydroxyapatite has been predicted since 2005, the reversibility of this polarization (i.e. ferroelectricity) requires experimental evidence. Here we use piezoresponse force microscopy to demonstrate that nanocrystalline hydroxyapatite indeed exhibits ferroelectricity: a reversal of polarization under an electrical field. This finding will strengthen investigations on the role of electrical polarization in biomineralization and bone-density related diseases. As hydroxyapatite is one of the most common biocompatible materials, our findings will also stimulate systematic exploration of lead and rare-metal free ferroelectric devices for potential applications in areas as diverse as in vivo and ex vivo energy harvesting, biosensing and electronics. PMID:23884324

  17. Photonic Heterostructures with Properties of Ferroelectrics and Light Polarizers

    Energy Technology Data Exchange (ETDEWEB)

    Palto, S. P., E-mail: palto@online.ru; Draginda, Yu. A. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2010-11-15

    The optical and electro-optical properties of a new type of photonic heterostructure composed of alternating ferroelectric molecular layers and optically anisotropic layers of another material are considered. A numerical simulation of the real prototype of this heterostructure, which can be prepared by the Langmuir-Blodgett method from layers of a ferroelectric copolymer (polyvinylidene fluoride trifluoroethylene) and an azo dye with photoinduced optical anisotropy, has been performed. It is shown that this heterostructure has pronounced polarization optical properties and yields a significant change in the polarization state of light at the photonic band edges in the ranges of the maximum density of photon states. The latter property can be used to obtain an enhanced electro-optic effect at small spectral shifts of the photonic band (the latter can be provided by the piezoelectric effect in ferroelectric layers).

  18. Graphene Dirac point tuned by ferroelectric polarization field

    Science.gov (United States)

    Wang, Xudong; Chen, Yan; Wu, Guangjian; Wang, Jianlu; Tian, Bobo; Sun, Shuo; Shen, Hong; Lin, Tie; Hu, Weida; Kang, Tingting; Tang, Minghua; Xiao, Yongguang; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao

    2018-04-01

    Graphene has received numerous attention for future nanoelectronics and optoelectronics. The Dirac point is a key parameter of graphene that provides information about its carrier properties. There are lots of methods to tune the Dirac point of graphene, such as chemical doping, impurities, defects, and disorder. In this study, we report a different approach to tune the Dirac point of graphene using a ferroelectric polarization field. The Dirac point can be adjusted to near the ferroelectric coercive voltage regardless its original position. We have ensured this phenomenon by temperature-dependent experiments, and analyzed its mechanism with the theory of impurity correlation in graphene. Additionally, with the modulation of ferroelectric polymer, the current on/off ratio and mobility of graphene transistor both have been improved. This work provides an effective method to tune the Dirac point of graphene, which can be readily used to configure functional devices such as p-n junctions and inverters.

  19. Ferroelectric smectic phase formed by achiral straight core mesogens.

    Science.gov (United States)

    Stannarius, Ralf; Li, Jianjun; Weissflog, Wolfgang

    2003-01-17

    We report electro-optic experiments in liquid crystalline freestanding films of achiral hockey stick shaped mesogens with a straight aromatic core. The material forms two smectic mesophases. In the higher temperature phase, a spontaneous polarization exists in the smectic layer plane and the films show polar switching in electric fields. It is the first example of a ferroelectric phase formed by nearly rodlike achiral mesogens. Mirror symmetry of the phase is spontaneously broken. We propose a molecular configuration similar to a synclinic ferroelectric (C(S)P(F)) high temperature phase and an anticlinic, probably antiferroelectric (C(A)P(A)) low temperature phase.

  20. Ferroelectric thin films for future thermonuclear reactor diagnostic applications

    International Nuclear Information System (INIS)

    Zauls, V.; Kundzins, K.; Aulika, I.; Kundzins, M.; Stenbergs, A.

    2006-01-01

    Full text: General overview of active material selection requirements for use in bolometric radiation diagnostics systems of future nuclear fusion reactors in comparison with our results of ferroelectric material based elements will be presented. Under modulated thermal irradiation bolometric sensitivity with the range of few mili-Kelvin temperature resolution at 0,2 s time response constant has been demonstrated by thin ferroelectric film capacitive sensor model on thick substrate. Sample measurement system has been developed to be compatible with Wheatstone bridge type bolometric heads measurement concept of ASDEX or ToreSupra reactor sites for future tests

  1. Engineering ferroelectric tunnel junctions through potential profile shaping

    Directory of Open Access Journals (Sweden)

    S. Boyn

    2015-06-01

    Full Text Available We explore the influence of the top electrode materials (W, Co, Ni, Ir on the electronic band profile in ferroelectric tunnel junctions based on super-tetragonal BiFeO3. Large variations of the transport properties are observed at room temperature. In particular, the analysis of current vs. voltage curves by a direct tunneling model indicates that the metal/ferroelectric interfacial barrier height increases with the top-electrode work function. While larger metal work functions result in larger OFF/ON ratios, they also produce a large internal electric field which results in large and potentially destructive switching voltages.

  2. Nonlinear piezoelectricity in epitaxial ferroelectrics at high electric fields.

    Science.gov (United States)

    Grigoriev, Alexei; Sichel, Rebecca; Lee, Ho Nyung; Landahl, Eric C; Adams, Bernhard; Dufresne, Eric M; Evans, Paul G

    2008-01-18

    Nonlinear effects in the coupling of polarization with elastic strain have been predicted to occur in ferroelectric materials subjected to high electric fields. Such predictions are tested here for a PbZr0.2Ti0.8O3 ferroelectric thin film at electric fields in the range of several hundred MV/m and strains reaching up to 2.7%. The piezoelectric strain exceeds predictions based on constant piezoelectric coefficients at electric fields from approximately 200 to 400 MV/m, which is consistent with a nonlinear effect predicted to occur at corresponding piezoelectric distortions.

  3. Acoustic emission mechanism at switching of ferroelectric crystals

    International Nuclear Information System (INIS)

    Belov, V.V.; Morozova, G.P.; Serdobol'skaya, O.Yu.

    1986-01-01

    Process of acoustic emission (AE) in lead germanate (PGO) representing pure ferroelectric, and gadolinium molybdate (GMO) representing ferroelectric-ferroelastic, for which switching may be conducted both by the field and pressure, were studied. A conclusion has been drawn that piezoelectric excitation of a crystal from the surface by pulses of overpolarization current in the process of domain coalescence is the main AE source in PGO. Not only piezoresponse, but also direct sound generation in the moment of domain penetration and collapse is considered as AE mechanism in GMO

  4. Voltage tunability of thermal conductivity in ferroelectric materials

    Science.gov (United States)

    Ihlefeld, Jon; Hopkins, Patrick Edward

    2016-02-09

    A method to control thermal energy transport uses mobile coherent interfaces in nanoscale ferroelectric films to scatter phonons. The thermal conductivity can be actively tuned, simply by applying an electrical potential across the ferroelectric material and thereby altering the density of these coherent boundaries to directly impact thermal transport at room temperature and above. The invention eliminates the necessity of using moving components or poor efficiency methods to control heat transfer, enabling a means of thermal energy control at the micro- and nano-scales.

  5. Ferroelectric phase transition in Ga2Te3 single crystals

    Science.gov (United States)

    Gamal, G. A.; Abdalrahman, M. M.; Ashraf, M. I.; Eman, H. J.

    2005-01-01

    Measurements of the electrical conductivity and Hall effect were carried out in a wide temperature range (200-500 K) for Ga2Te3 crystals. The crystals were grown in single crystalline form by making a modification of the travelling heater method technique. The measurements revealed unusual observations in the electric conductivity and Hall mobility indicating the presence of some type of phase transitions at about 430 K. So, ferroelectric behavior was examined for confirming the presence of second-order (ferroelectric) phase transition. An energy gap of 1.21 eV and depth of the impurity center of 0.11 eV were found.

  6. Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate

    International Nuclear Information System (INIS)

    Garten, Lauren M.; Trolier-McKinstry, Susan

    2015-01-01

    Residual ferroelectricity is observed in barium strontium titanate ceramics over 30 °C above the global phase transition temperature, in the same temperature range in which anomalously large flexoelectric coefficients are reported. The application of a strain gradient leads to strain gradient-induced poling or flexoelectric poling. This was observed by the development of a remanent polarization in flexoelectric measurements, an induced d 33 piezoelectric response even after the strain gradient was removed, and the production of an internal bias of 9 kV m −1 . It is concluded that residual ferroelectric response considerably enhances the observed flexoelectric response

  7. Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate

    Energy Technology Data Exchange (ETDEWEB)

    Garten, Lauren M., E-mail: lmg309@psu.edu; Trolier-McKinstry, Susan [Department of Materials Science and Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-03-07

    Residual ferroelectricity is observed in barium strontium titanate ceramics over 30 °C above the global phase transition temperature, in the same temperature range in which anomalously large flexoelectric coefficients are reported. The application of a strain gradient leads to strain gradient-induced poling or flexoelectric poling. This was observed by the development of a remanent polarization in flexoelectric measurements, an induced d{sub 33} piezoelectric response even after the strain gradient was removed, and the production of an internal bias of 9 kV m{sup −1}. It is concluded that residual ferroelectric response considerably enhances the observed flexoelectric response.

  8. Enhanced flexoelectricity through residual ferroelectricity in barium strontium titanate

    Science.gov (United States)

    Garten, Lauren M.; Trolier-McKinstry, Susan

    2015-03-01

    Residual ferroelectricity is observed in barium strontium titanate ceramics over 30 °C above the global phase transition temperature, in the same temperature range in which anomalously large flexoelectric coefficients are reported. The application of a strain gradient leads to strain gradient-induced poling or flexoelectric poling. This was observed by the development of a remanent polarization in flexoelectric measurements, an induced d33 piezoelectric response even after the strain gradient was removed, and the production of an internal bias of 9 kV m-1. It is concluded that residual ferroelectric response considerably enhances the observed flexoelectric response.

  9. Giant flexoelectric effect in ferroelectric epitaxial thin films.

    Science.gov (United States)

    Lee, D; Yoon, A; Jang, S Y; Yoon, J-G; Chung, J-S; Kim, M; Scott, J F; Noh, T W

    2011-07-29

    We report on nanoscale strain gradients in ferroelectric HoMnO(3) epitaxial thin films, resulting in a giant flexoelectric effect. Using grazing-incidence in-plane x-ray diffraction, we measured strain gradients in the films, which were 6 or 7 orders of magnitude larger than typical values reported for bulk oxides. The combination of transmission electron microscopy, electrical measurements, and electrostatic calculations showed that flexoelectricity provides a means of tuning the physical properties of ferroelectric epitaxial thin films, such as domain configurations and hysteresis curves. © 2011 American Physical Society

  10. Ferroelectric-antiferroelectric mixed systems. Equation of state, thermodynamic functions

    Directory of Open Access Journals (Sweden)

    N.A.Korynevskii

    2006-01-01

    Full Text Available The problem of equation of state for ferroelectric-antiferroelectric mixed systems in the whole region of a concentration change (0≤n≤1 is discussed. The main peculiarity of the presented model turns out to be the possibility for the site dipole momentum to be oriented ferroelectrically in z-direction and antiferroelectrically in x-direction. Such a situation takes place in mixed compounds of KDP type. The different phases (ferro-, antiferro-, paraelectric, dipole glass and some combinations of them have been found and analyzed.

  11. Characterization of a Common-Source Amplifier Using Ferroelectric Transistors

    Science.gov (United States)

    Hunt, Mitchell; Sayyah, Rana; MacLeond, Todd C.; Ho, Pat D.

    2010-01-01

    This paper presents empirical data that was collected through experiments using a FeFET in the established common-source amplifier circuit. The unique behavior of the FeFET lends itself to interesting and useful operation in this widely used common-source amplifier. The paper examines the effect of using a ferroelectric transistor for the amplifier. It also examines the effects of varying load resistance, biasing, and input voltages on the output signal and gives several examples of the output of the amplifier for a given input. The difference between a commonsource amplifier using a ferroelectric transistor and that using a MOSFET is addressed.

  12. Surface engineering of ferroelectric polymer for the enhanced electrical performance of organic transistor memory

    Science.gov (United States)

    Kim, Do-Kyung; Lee, Gyu-Jeong; Lee, Jae-Hyun; Kim, Min-Hoi; Bae, Jin-Hyuk

    2018-05-01

    We suggest a viable surface control method to improve the electrical properties of organic nonvolatile memory transistors. For viable surface control, the surface of the ferroelectric insulator in the memory field-effect transistors was modified using a smooth-contact-curing process. For the modification of the ferroelectric polymer, during the curing of the ferroelectric insulators, the smooth surface of a soft elastomer contacts intimately with the ferroelectric surface. This smooth-contact-curing process reduced the surface roughness of the ferroelectric insulator without degrading its ferroelectric properties. The reduced roughness of the ferroelectric insulator increases the mobility of the organic field-effect transistor by approximately eight times, which results in a high memory on–off ratio and a low-voltage reading operation.

  13. Ferroelectric and piezoelectric thin films and their applications for integrated capacitors, piezoelectric ultrasound transducers and piezoelectric switches

    International Nuclear Information System (INIS)

    Klee, M; Boots, H; Kumar, B; Heesch, C van; Mauczok, R; Keur, W; Wild, M de; Esch, H van; Roest, A L; Reimann, K; Leuken, L van; Wunnicke, O; Zhao, J; Schmitz, G; Mienkina, M; Mleczko, M; Tiggelman, M

    2010-01-01

    Ferroelectric and piezoelectric thin films are gaining more and more importance for the integration of high performance devices in small modules. High-K 'Integrated Discretes' devices have been developed, which are based on thin film ferroelectric capacitors integrated together with resistors and ESD protection diodes in a small Si-based chip-scale package. Making use of ferroelectric thin films with relative permittivity of 950-1600 and stacking processes of capacitors, extremely high capacitance densities of 20-520 nF/mm 2 , high breakdown voltages up to 140 V and lifetimes of more than 10 years at operating voltages of 5 V and 85 deg. C are achieved. Thin film high-density capacitors play also an important role as tunable capacitors for applications such as tuneable matching circuits for RF sections of mobile phones. The performance of thin film tuneable capacitors at frequencies between 1 MHz and 1 GHz is investigated. Finally thin film piezoelectric ultrasound transducers, processed in Si- related processes, are attractive for medical imaging, since they enable large bandwidth (>100%), high frequency operation and have the potential to integrate electronics. With these piezoelectric thin film ultrasound transducers real time ultrasound images have been realized. Finally, piezoelectric thin films are used to manufacture galvanic MEMS switches. A model for the quasi-static mechanical behaviour is presented and compared with measurements.

  14. Thermodynamic properties of a quasi-harmonic model for ferroelectric transitions

    International Nuclear Information System (INIS)

    Mkam Tchouobiap, S E; Mashiyama, H

    2011-01-01

    Within a framework of a quasi-harmonic model for quantum particles in a local potential of the double Morse type and within the mean-field approximation for interactions between particles, we investigate the thermodynamic properties of ferroelectric materials. A quantum thermodynamic treatment gives analytic expressions for the internal energy, the entropy, the specific heat, and the static susceptibility. The calculated thermodynamic characteristics are studied as a function of temperature and energy barrier, where it is shown that at the proper choice of the theory parameters, particularly the energy barrier, the model system exhibits characteristic features of either second-order tricritical or first-order phase transitions. Our results indicate that the barrier energy seems to be an important criterion for the character of the structural phase transition. The influence of quantum fluctuations manifested on zero-point energy on the phase transition and thermodynamic properties is analyzed and discussed. This leads to several quantum effects, including the existence of a saturation regime at low temperatures, where the order parameter saturates giving thermodynamic saturation of the calculated thermodynamic quantities. It is found that both quantum effects and energy barrier magnitude have an important influence on the thermodynamic properties of the ferroelectric materials and on driving the phase transition at low temperatures. Also, the analytical parameters' effect on the transition temperature is discussed, which seems to give a general insight into the structural phase transition and its nature.

  15. Ising lines: natural topological defects within ferroelectric Bloch walls

    Czech Academy of Sciences Publication Activity Database

    Stepkova, Vilgelmina; Márton, Pavel; Hlinka, Jiří

    2015-01-01

    Roč. 92, č. 9 (2015), "094106-1"-"094106-5" ISSN 1098-0121 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : ferroelectrics * Ginzburg-Landau-Devonshire model * domain structure * topological defects Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.736, year: 2014

  16. Nanocharacterization of the negative stiffness of ferroelectric materials

    Czech Academy of Sciences Publication Activity Database

    Skandani, A.A.; Čtvrtlík, Radim; Al-Haik, M.

    2014-01-01

    Roč. 105, č. 8 (2014), "082906-1"-"082906-5" ISSN 0003-6951 R&D Projects: GA TA ČR TA03010743 Institutional support: RVO:68378271 Keywords : ferroelectric materials * negative stiffness * thermomechanical environments Subject RIV: JJ - Other Materials Impact factor: 3.302, year: 2014

  17. Structure and dynamics of hexatic ferroelectric liquid crystals

    Czech Academy of Sciences Publication Activity Database

    Rychetský, Ivan; Glogarová, Milada; Novotná, Vladimíra

    2004-01-01

    Roč. 301, - (2004), s. 225-228 ISSN 0015-0193 R&D Projects: GA ČR GA202/03/0551; GA ČR GA202/02/0840 Institutional research plan: CEZ:AV0Z1010914 Keywords : hexatic phases * phase transition * ferroelectric Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.517, year: 2004

  18. Reversible spin texture in ferroelectric Hf O2

    Science.gov (United States)

    Tao, L. L.; Paudel, Tula R.; Kovalev, Alexey A.; Tsymbal, Evgeny Y.

    2017-06-01

    Spin-orbit coupling effects occurring in noncentrosymmetric materials are known to be responsible for nontrivial spin configurations and a number of emergent physical phenomena. Ferroelectric materials may be especially interesting in this regard due to reversible spontaneous polarization making possible a nonvolatile electrical control of the spin degrees of freedom. Here, we explore a technologically relevant oxide material, Hf O2 , which has been shown to exhibit robust ferroelectricity in a noncentrosymmetric orthorhombic phase. Using theoretical modelling based on density-functional theory, we investigate the spin-dependent electronic structure of the ferroelectric Hf O2 and demonstrate the appearance of chiral spin textures driven by spin-orbit coupling. We analyze these spin configurations in terms of the Rashba and Dresselhaus effects within the k .p Hamiltonian model and find that the Rashba-type spin texture dominates around the valence-band maximum, while the Dresselhaus-type spin texture prevails around the conduction band minimum. The latter is characterized by a very large Dresselhaus constant λD= 0.578 eV Å, which allows using this material as a tunnel barrier to produce tunneling anomalous and spin Hall effects that are reversible by ferroelectric polarization.

  19. A comparative study regarding effects of interfacial ferroelectric ...

    Indian Academy of Sciences (India)

    A comparative study regarding effects of interfacial ferroelectric. Bi4Ti3O12 (BTO) layer on electrical characteristics of Au/n-Si structures. M YILDIRIM and M GÖKÇEN. ∗. Department of Physics, Faculty of Arts & Science, Düzce University, 81620 Düzce, Turkey. MS received 11 July 2012; revised 7 January 2013. Abstract.

  20. Operation of Ferroelectric Plasma Sources in a Gas Discharge Mode

    International Nuclear Information System (INIS)

    Dunaevsky, A.; Fisch, N.J.

    2004-01-01

    Ferroelectric plasma sources in vacuum are known as sources of ablative plasma, formed due to surface discharge. In this paper, observations of a gas discharge mode of operation of the ferroelectric plasma sources (FPS) are reported. The gas discharge appears at pressures between approximately 20 and approximately 80 Torr. At pressures of 1-20 Torr, there is a transition from vacuum surface discharge to the gas discharge, when both modes coexist and the surface discharges sustain the gas discharge. At pressures between 20 and 80 Torr, the surface discharges are suppressed, and FPS operate in pure gas discharge mode, with the formation of almost uniform plasma along the entire surface of the ceramics between strips. The density of the expanding plasma is estimated to be about 1013 cm-3 at a distance of 5.5 mm from the surface. The power consumption of the discharge is comparatively low, making it useful for various applications. This paper also presents direct measurements of the yield of secondary electron emission from ferroelectric ceramics, which, at low energies of primary electrons, is high and dependent on the polarization of the ferroelectric material

  1. Mechanism of negative ion emission from surfaces of ferroelectrics

    Czech Academy of Sciences Publication Activity Database

    Šroubek, Zdeněk

    2012-01-01

    Roč. 606, 15-16 (2012), s. 1327-1330 ISSN 0039-6028 Institutional support: RVO:67985882 Keywords : Surface of ferroelectrics * Ion emission Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.838, year: 2012 http://www.sciencedirect.com/science/article/pii/S0039602812001525#gts0005

  2. Oxide ferroelectric thin films: synthesis from organometallic compounds and properties

    International Nuclear Information System (INIS)

    Vertoprakhov, Vladimir N; Nikulina, Lyubov' D; Igumenov, Igor K

    2005-01-01

    Chemical methods for the preparation of oxide ferroelectric thin films from organometallic compounds published over the last 10-15 years are considered systematically and generalised. Layers of these films are promising for the creation of non-volatile memory elements and for use in nano- and microelectronic devices.

  3. Quantum tunnelling and charge accumulation in organic ferroelectric memory diodes

    NARCIS (Netherlands)

    Ghittorelli, M.; Lenz, Thomas; Dehsari, H.S.; Zhao (赵冬), Dong; Asadi, Kamal; Blom, Paul W.M.; Kovács-Vajna, Z. M.; de Leeuw, D.M.; Torricelli, F.

    2017-01-01

    Non-volatile memories—providing the information storage functionality—are crucial circuit components. Solution-processed organic ferroelectric memory diodes are the non-volatile memory candidate for flexible electronics, as witnessed by the industrial demonstration of a 1 kbit reconfigurable memory

  4. Concurrent bandgap narrowing and polarization enhancement in epitaxial ferroelectric nanofilms

    Czech Academy of Sciences Publication Activity Database

    Tyunina, Marina; Yao, L.; Chvostová, Dagmar; Dejneka, Alexandr; Kocourek, Tomáš; Jelínek, Miroslav; Trepakov, Vladimír; van Dijken, S.

    2015-01-01

    Roč. 16, č. 2 (2015), 026002 ISSN 1468-6996 R&D Projects: GA ČR GAP108/12/1941 Institutional support: RVO:68378271 Keywords : epitaxial growth * ferroelectric nanofilms Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.433, year: 2015

  5. Single crystal ternary oxide ferroelectric integration with Silicon

    Science.gov (United States)

    Bakaul, Saidur; Serrao, Claudy; Youun, Long; Khan, Asif; Salahuddin, Sayeef

    2015-03-01

    Integrating single crystal, ternary oxide ferroelectric thin film with Silicon or other arbitrary substrates has been a holy grail for the researchers since the inception of microelectronics industry. The key motivation is that adding ferroelectric materials to existing electronic devices could bring into new functionality, physics and performance improvement such as non-volatility of information, negative capacitance effect and lowering sub-threshold swing of field effect transistor (FET) below 60 mV/decade in FET [Salahuddin, S, Datta, S. Nano Lett. 8, 405(2008)]. However, fabrication of single crystal ferroelectric thin film demands stringent conditions such as lattice matched single crystal substrate and high processing temperature which are incompatible with Silicon. Here we report on successful integration of PbZr0.2Ti0.8O3 in single crystal form with by using a layer transfer method. The lattice structure, surface morphology, piezoelectric coefficient d33, dielectric constant, ferroelectric domain switching and spontaneous and remnant polarization of the transferred PZT are as good as these characteristics of the best PZT films grown by pulsed laser deposition on lattice matched oxide substrates. We also demonstrate Si based, FE gate controlled FET devices.

  6. Effect of Zr on dielectric, ferroelectric and impedance properties of ...

    Indian Academy of Sciences (India)

    Administrator

    Abstract. A polycrystalline sample of Zr-doped barium titanate (BaTiO3) was prepared by conventional solid state reaction method. The effect of Zr (0⋅15) on the structural and microstructural properties of BaTiO3 was investigated by XRD and SEM. The electrical properties (dielectric, ferroelectric and impedance spectro-.

  7. Strain-induced structural, magnetic and ferroelectric properties of ...

    Indian Academy of Sciences (India)

    2017-07-25

    Jul 25, 2017 ... deposited on the composite film surface by DC sputtering techniques. The magnetic measurements of these composite films were performed using a vibratory sample magnetometer. (VSM). Ferroelectric properties of films were measured using a Precision multiferroic analyser. All measurements were per-.

  8. Phase transition properties of a cylindrical ferroelectric nanowire

    Indian Academy of Sciences (India)

    and high-density nonvolatile memory devices [1–7]. Finite size and surface effects on the ferroelectric properties of nanowires are reported in [8,9]. ..... tral Universities (ZXH2012N005) and by the 2012 Basic Operational Outlays for the. Research Activities of Centric University, Civil Aviation University of China (Grant No.

  9. Flexible NAND-Like Organic Ferroelectric Memory Array

    NARCIS (Netherlands)

    Kam, B.; Ke, T.H.; Chasin, A.; Tyagi, M.; Cristoferi, C.; Tempelaars, K.; Breemen, A.J.J.M. van; Myny, K.; Schols, S.; Genoe, J.; Gelinck, G.H.; Heremans, P.

    2014-01-01

    We present a memory array of organic ferroelectric field-effect transistors (OFeFETs) on flexible substrates. The OFeFETs are connected serially, similar to the NAND architecture of flash memory, which offers the highest memory density of transistor memories. We demonstrate a reliable addressing

  10. Effect of Zr on dielectric, ferroelectric and impedance properties of ...

    Indian Academy of Sciences (India)

    A polycrystalline sample of Zr-doped barium titanate (BaTiO3) was prepared by conventional solid state reaction method. The effect of Zr (0.15) on the structural and microstructural properties of BaTiO3 was investigated by XRD and SEM. The electrical properties (dielectric, ferroelectric and impedance spectroscopy) were ...

  11. Phase transition properties of a cylindrical ferroelectric nanowire

    Indian Academy of Sciences (India)

    Wang Ying and Yang Xiong cylindrical ferroelectric nanowire, one problem with the ... [25–28]. Wang et al used the effective-field theory with correlations for studying the dynamic properties of phase diagrams in a cylindrical ..... [10] D R Tilly and B Zekš, Solid State Commun. 49, 823 (1984). [11] D Schwenk, F Fishman and F ...

  12. Dielectric properties of KDP-type ferroelectric crystals in the ...

    Indian Academy of Sciences (India)

    Considering external electric field as well as third- and fourth-order phonon anharmonic interaction terms in the pseudospin-lattice coupled mode (PLCM) model Hamiltonian for KDP-type ferroelectrics, expressions for field-dependent shift, width, renormalized soft mode frequency, Curie temperature, dielectric constant and ...

  13. Guest–host interaction in ferroelectric liquid crystal–nanoparticle ...

    Indian Academy of Sciences (India)

    nanoparticle (FLC–NP) composite system. The dielectric, electrical and polarization property of the FLC–NP composite system have been studied as a function of temperature and frequency. Ferroelectric Cu-doped ZnO (Cu–ZnO) ...

  14. Physics of organic ferroelectric field-effect transistors

    NARCIS (Netherlands)

    Brondijk, J.J.; Asadi, K.; Blom, P.W.M.; Leeuw, D.M. de

    2012-01-01

    Most of the envisaged applications of organic electronics require a nonvolatile memory that can be programmed, erased, and read electrically. Ferroelectric field-effect transistors (FeFET) are especially suitable due to the nondestructive read-out and low power consumption. Here, an analytical model

  15. Stabilization of ferroelectric properties in Hafnia and Zirconia

    Energy Technology Data Exchange (ETDEWEB)

    Kersch, Alfred [Univ. of Applied Sciences Munich (Germany). Modeling and Simulation Lab

    2016-11-01

    Experiments by our collaborators show that not only earth alkaline metals but also lanthanides and boron group metals are capable of inducing ferroelectric behavior in Hafnia. These dopants are known to form more complex defect structures due to their 3-valent nature. This requires further simulation. In some cases computationally more expensive density functionals will be required.

  16. Effects of Bi doping on dielectric and ferroelectric properties of ...

    Indian Academy of Sciences (India)

    However, when the Bi-doping content is more than 0·6, the pyrochlore phase appears and the remnant polarization Pr of PLBZT ... cal transparency, outstanding ferroelectric and electro-optic properties (Gaidi et al 2004; Khodorov .... of the pyrochlore phase appear. In addition, a slight shift of characteristic peaks in XRD pa-.

  17. Relaxor ferroelectrics: back to the single-soft-mode picture

    Czech Academy of Sciences Publication Activity Database

    Hehlen, B.; Al-Sabbagh, M.; Al-Zein, A.; Hlinka, Jiří

    2016-01-01

    Roč. 117, č. 15 (2016), 1-6, č. článku 155501. ISSN 0031-9007 R&D Projects: GA ČR GA15-04121S Institutional support: RVO:68378271 Keywords : relaxor * ferroelectrics * light-scattering * hyper-Raman * dielectric permittivity Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 8.462, year: 2016

  18. Photostriction and elasto-optic response in multiferroics and ferroelectrics from first principles

    Science.gov (United States)

    Yang, Yurong; Paillard, Charles; Xu, Bin; Bellaiche, L.

    2018-02-01

    The present work reviews a series of recent first-principles studies devoted to the description of the interaction of light and strain in ferroelectric and multiferroic materials. Specifically, the modelling schemes used in these works to describe the so-called photostriction and elasto-optic effects are presented, in addition to the results and analysis provided by these ab initio calculations. In particular, the large importance of the piezoelectric effect in the polar direction in the photostriction of ferroelectric materials is stressed. Similarly, the occurrence of low-symmetry phases in lead titanate thin films under tensile strain is demonstrated to result in large elasto-optic constants. In addition, first-principle calculations allow to gain microscopic knowledge of subtle effects, for instance in the case of photostriction, where the deformation potential effect in directions perpendicular to the polar axis is shown to be almost as significant as the piezoelectric effect. As a result, the numerical methods presented here could propel the design of efficient opto-mechanical devices.

  19. Tip-induced domain structures and polarization switching in ferroelectric amino acid glycine

    Energy Technology Data Exchange (ETDEWEB)

    Seyedhosseini, E., E-mail: Seyedhosseini@ua.pt; Ivanov, M. [CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Bdikin, I. [TEMA and Department of Mechanical Engineering, University of Aveiro, 3810-193 Aveiro (Portugal); Vasileva, D. [Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation); Kudryavtsev, A. [Moscow State Institute of Radioengineering, Electronics and Automation, 119454 Moscow (Russian Federation); Rodriguez, B. J. [Conway Institute of Biomolecular and Biomedical Research and School of Physics, University College Dublin, Dublin (Ireland); Kholkin, A. L. [CICECO-Aveiro Institute of Materials and Department of Physics, University of Aveiro, 3810-193 Aveiro (Portugal); Institute of Natural Sciences, Ural Federal University, 620000 Ekaterinburg (Russian Federation)

    2015-08-21

    Bioorganic ferroelectrics and piezoelectrics are becoming increasingly important in view of their intrinsic compatibility with biological environment and biofunctionality combined with strong piezoelectric effect and a switchable polarization at room temperature. Here, we study tip-induced domain structures and polarization switching in the smallest amino acid β-glycine, representing a broad class of non-centrosymmetric amino acids. We show that β-glycine is indeed a room-temperature ferroelectric and polarization can be switched by applying a bias to non-polar cuts via a conducting tip of atomic force microscope (AFM). Dynamics of these in-plane domains is studied as a function of an applied voltage and pulse duration. The domain shape is dictated by polarization screening at the domain boundaries and mediated by growth defects. Thermodynamic theory is applied to explain the domain propagation induced by the AFM tip. Our findings suggest that the properties of β-glycine are controlled by the charged domain walls which in turn can be manipulated by an external bias.

  20. Enlarging photovoltaic effect: combination of classic photoelectric and ferroelectric photovoltaic effects.

    Science.gov (United States)

    Zhang, Jingjiao; Su, Xiaodong; Shen, Mingrong; Dai, Zhihua; Zhang, Lingjun; He, Xiyun; Cheng, Wenxiu; Cao, Mengyu; Zou, Guifu

    2013-01-01

    Converting light energy to electrical energy in photovoltaic devices relies on the photogenerated electrons and holes separated by the built-in potential in semiconductors. Photo-excited electrons in metal electrodes are usually not considered in this process. Here, we report an enhanced photovoltaic effect in the ferroelectric lanthanum-modified lead zirconate titanate (PLZT) by using low work function metals as the electrodes. We believe that electrons in the metal with low work function could be photo-emitted into PLZT and form the dominant photocurrent in our devices. Under AM1.5 (100 mW/cm²) illumination, the short-circuit current and open-circuit voltage of Mg/PLZT/ITO are about 150 and 2 times of those of Pt/PLZT/ITO, respectively. The photovoltaic response of PLZT capacitor was expanded from ultraviolet to visible spectra, and it may have important impact on design and fabrication of high performance photovoltaic devices based on ferroelectric materials.

  1. Optical properties of mesoporous photonic crystals, filled with dielectrics, ferroelectrics and piezoelectrics

    Directory of Open Access Journals (Sweden)

    V. S. Gorelik

    2017-12-01

    Full Text Available At present, it is very important to create new types of mirrors, nonlinear light frequency transformers and optical filters with controlled optical properties. In this connection, it is of great interest to study photonic crystals. Their dielectric permittivity varies periodically in space with a period permitting Bragg diffraction of light. In this paper, we have investigated the optical properties of mesoporous three-dimensional (3D opal-type and one-dimensional (1D anodic alumina photonic crystals, filled with different dielectrics, ferroelectrics and piezoelectrics. We have compared the optical properties of initial mesoporous photonic crystals and filled with different substances. The possibility of mesoporous photonic crystals using selective narrow-band light filters in Raman scattering experiments and nonlinear mirrors has been analyzed. The electromagnetic field enhancing in the case of exciting light frequency close to the stop band edges has been established. The optical harmonics and subharmonics generation in mesoporous crystals, filled with ferroelectrics and piezoelectrics was proposed.

  2. Investigations on the effects of electrode materials on the device characteristics of ferroelectric memory thin film transistors fabricated on flexible substrates

    Science.gov (United States)

    Yang, Ji-Hee; Yun, Da-Jeong; Seo, Gi-Ho; Kim, Seong-Min; Yoon, Myung-Han; Yoon, Sung-Min

    2018-03-01

    For flexible memory device applications, we propose memory thin-film transistors using an organic ferroelectric poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] gate insulator and an amorphous In-Ga-Zn-O (a-IGZO) active channel. The effects of electrode materials and their deposition methods on the characteristics of memory devices exploiting the ferroelectric field effect were investigated for the proposed ferroelectric memory thin-film transistors (Fe-MTFTs) at flat and bending states. It was found that the plasma-induced sputtering deposition and mechanical brittleness of the indium-tin oxide (ITO) markedly degraded the ferroelectric-field-effect-driven memory window and bending characteristics of the Fe-MTFTs. The replacement of ITO electrodes with metal aluminum (Al) electrodes prepared by plasma-free thermal evaporation greatly enhanced the memory device characteristics even under bending conditions owing to their mechanical ductility. Furthermore, poly(3,4-ethylenedioxythiophene)-poly(styrene sulfonate) (PEDOT:PSS) was introduced to achieve robust bending performance under extreme mechanical stress. The Fe-MTFTs using PEDOT:PSS source/drain electrodes were successfully fabricated and showed the potential for use as flexible memory devices. The suitable choice of electrode materials employed for the Fe-MTFTs is concluded to be one of the most important control parameters for highly functional flexible Fe-MTFTs.

  3. Enhanced photocatalytic efficiency of C3N4/BiFeO3heterojunctions: the synergistic effects of band alignment and ferroelectricity.

    Science.gov (United States)

    Deng, Xian-Zhu; Song, Chuang; Tong, Yin-Lin; Yuan, Guoliang; Gao, Feng; Liu, Dan-Qing; Zhang, Shan-Tao

    2018-01-31

    As one of the most promising photocatalysts, graphitic carbon nitride (g-C 3 N 4 ) shows a visible light response and great chemical stability. However, its relatively low photocatalytic efficiency is a major obstacle to actual applications. Here an effective and feasible method to dramatically increase the visible light photocatalytic efficiency by forming C 3 N 4 /BiFeO 3 ferroelectric heterojunctions is reported, wherein the band alignment and piezo-/ferroelectricity have synergistic positive effects in accelerating the separation of the photogenerated carriers. At the optimum composition of 10 wt% BiFeO 3 , the heterojunction shows 1.4 times improved photocatalytic efficiency than that of the pure C 3 N 4 . Most importantly, mechanical pressing and electrical poling can also improve the photocatalytic efficiencies by 1.3 times and 1.8 times, respectively. The optimized photocatalytic efficiency is even comparable with that of some noble metal based compounds. These results not only prove the improved photocatalytic activity of the C 3 N 4 -ferroelectric heterojunctions, but also provide a new approach for designing high-performance photocatalysts by taking advantage of ferroelectricity.

  4. Ferroelectric-gate field effect transistor memories device physics and applications

    CERN Document Server

    Ishiwara, Hiroshi; Okuyama, Masanori; Sakai, Shigeki; Yoon, Sung-Min

    2016-01-01

    This book provides comprehensive coverage of the materials characteristics, process technologies, and device operations for memory field-effect transistors employing inorganic or organic ferroelectric thin films. This transistor-type ferroelectric memory has interesting fundamental device physics and potentially large industrial impact. Among the various applications of ferroelectric thin films, the development of nonvolatile ferroelectric random access memory (FeRAM) has progressed most actively since the late 1980s and has achieved modest mass production levels for specific applications since 1995. There are two types of memory cells in ferroelectric nonvolatile memories. One is the capacitor-type FeRAM and the other is the field-effect transistor (FET)-type FeRAM. Although the FET-type FeRAM claims ultimate scalability and nondestructive readout characteristics, the capacitor-type FeRAMs have been the main interest for the major semiconductor memory companies, because the ferroelectric FET has fatal handic...

  5. Switching Kinetics in Nanoscale Hafnium Oxide Based Ferroelectric Field-Effect Transistors.

    Science.gov (United States)

    Mulaosmanovic, Halid; Ocker, Johannes; Müller, Stefan; Schroeder, Uwe; Müller, Johannes; Polakowski, Patrick; Flachowsky, Stefan; van Bentum, Ralf; Mikolajick, Thomas; Slesazeck, Stefan

    2017-02-01

    The recent discovery of ferroelectricity in thin hafnium oxide films has led to a resurgence of interest in ferroelectric memory devices. Although both experimental and theoretical studies on this new ferroelectric system have been undertaken, much remains to be unveiled regarding its domain landscape and switching kinetics. Here we demonstrate that the switching of single domains can be directly observed in ultrascaled ferroelectric field effect transistors. Using models of ferroelectric domain nucleation we explain the time, field and temperature dependence of polarization reversal. A simple stochastic model is proposed as well, relating nucleation processes to the observed statistical switching behavior. Our results suggest novel opportunities for hafnium oxide based ferroelectrics in nonvolatile memory devices.

  6. Nanoscale symmetry fluctuations in ferroelectric barium titanate, BaTiO3.

    Science.gov (United States)

    Shao, Yu Tsun; Zuo, Jian Min

    2017-08-01

    Crystal charge density is a ground-state electronic property. In ferroelectrics, charge is strongly influenced by lattice and vice versa, leading to a range of interesting temperature-dependent physical properties. However, experimental determination of charge in ferroelectrics is challenging because of the formation of ferroelectric domains. Demonstrated here is the scanning convergent-beam electron diffraction (SCBED) technique that can be simultaneously used for imaging ferroelectric domains and identifying crystal symmetry and its fluctuations. Results from SCBED confirm the acentric tetragonal, orthorhombic and rhombohedral symmetry for the ferroelectric phases of BaTiO 3 . However, the symmetry is not homogeneous; regions of a few tens of nanometres retaining almost perfect symmetry are interspersed in regions of lower symmetry. While the observed highest symmetry is consistent with the displacive model of ferroelectric phase transitions in BaTiO 3 , the observed nanoscale symmetry fluctuations are consistent with the predictions of the order-disorder phase-transition mechanism.

  7. Insight into the dynamics of low temperature dielectric relaxation of ordinary perovskite ferroelectrics

    OpenAIRE

    Levit Valenzuela, Rafael; Ochoa Guerrero, Diego A.; Martínez García, Julio Cesar; García García, José Eduardo

    2017-01-01

    The temperature dependence of the dielectric response of ordinary ferroelectric materials exhibits a frequency-independent anomalous peak as a manifestation of the ferroelectric to paraelectric phase transition. A second anomaly in the permittivity has been reported in different ferroelectric perovskite-type systems at low temperatures, often at cryogenic temperatures. This anomaly manifests as a frequency-dependent local maximum, which exhibits similar characteristics to that observed in rel...

  8. Visualization of ferroelectric domain structures in lithium niobate by means of confocal nonlinear microscopy; Visualisierung ferroelektrischer Domaenenstrukturen in Lithiumniobat mittels konfokaler nichtlinearer Mikroskopie

    Energy Technology Data Exchange (ETDEWEB)

    Berth, Gerhard

    2010-07-01

    In the field of integrated optics nonlinear-optical effects play a central role. A typical example for the commercial use of such phenomena is the frequency conversion. A deciding parameter is here the phase matching, which determines the quantity of the constructive interaction range of contributing optical fields. In view of a high efficiency of such processes the dispersion of a crystal must be balanced for the contributing frequencies. In nonlinear components on the base of optical waveguides the principle of the ''quasi-phase matching'' is applied, which uses the microdomain inversion. Phase jumps occuring at the domain boundaries compensate in the mean the different phase velocities. The application range of such periodical structures depends essentially on sharpness, homogeneity, depth extent, and period of the domain structure. The nonlinear confocal laser scanning microscopy makes a mapping of this transferred ferroelectric domain structure possible. Primary aim of this thesis is the characterization and mapping of the transferred ferroelectric domain structure in lithium niobate. A modularly kept confocal microscope makes here a nonlinear analysis in reflection and transmission geometry possible. In both geometries systematic studies as function of important process parameters were performed. It was shown that because of the larger nonlinear coherence length in the transmission modus the SHG ensues above all in forward direction. By depth-resolved studies at Z-cut PPLN structured between the surface region and the volume crystal a flippling of the SHG contrast could be observed. In samples with circular pole structure additionally in the crystal a transition to a hexagonal structure took place. In the Ti:PPLN strip waveguide a strong and specific increasement of the nonlinear signal of the domain walls was discovered. Here also the usual SHG surface contrast between dhe domains and the boundaries is inverted. Also differently processed

  9. Ferroelectric tunneling element and memory applications which utilize the tunneling element

    Science.gov (United States)

    Kalinin, Sergei V [Knoxville, TN; Christen, Hans M [Knoxville, TN; Baddorf, Arthur P [Knoxville, TN; Meunier, Vincent [Knoxville, TN; Lee, Ho Nyung [Oak Ridge, TN

    2010-07-20

    A tunneling element includes a thin film layer of ferroelectric material and a pair of dissimilar electrically-conductive layers disposed on opposite sides of the ferroelectric layer. Because of the dissimilarity in composition or construction between the electrically-conductive layers, the electron transport behavior of the electrically-conductive layers is polarization dependent when the tunneling element is below the Curie temperature of the layer of ferroelectric material. The element can be used as a basis of compact 1R type non-volatile random access memory (RAM). The advantages include extremely simple architecture, ultimate scalability and fast access times generic for all ferroelectric memories.

  10. Critical properties of a ferroelectric superlattice described by a transverse spin-1/2 Ising model

    International Nuclear Information System (INIS)

    Tabyaoui, A; Saber, M; Baerner, K; Ainane, A

    2007-01-01

    The phase transition properties of a ferroelectric superlattice with two alternating layers A and B described by a transverse spin-1/2 Ising model have been investigated using the effective field theory within a probability distribution technique that accounts for the self spin correlation functions. The Curie temperature T c , polarization and susceptibility have been obtained. The effects of the transverse field and the ferroelectric and antiferroelectric interfacial coupling strength between two ferroelectric materials are discussed. They relate to the physical properties of antiferroelectric/ferroelectric superlattices

  11. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals

    Energy Technology Data Exchange (ETDEWEB)

    Li, Fei; Zhang, Shujun; Yang, Tiannan; Xu, Zhuo; Zhang, Nan; Liu, Gang; Wang, Jianjun; Wang, Jianli; Cheng, Zhenxiang; Ye, Zuo-Guang; Luo, Jun; Shrout, Thomas R.; Chen, Long-Qing (Penn); (Xian Jiaotong); (CIW); (Simon); (TRS Techn); (Wollongong)

    2016-12-19

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50–80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

  12. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals.

    Science.gov (United States)

    Li, Fei; Zhang, Shujun; Yang, Tiannan; Xu, Zhuo; Zhang, Nan; Liu, Gang; Wang, Jianjun; Wang, Jianli; Cheng, Zhenxiang; Ye, Zuo-Guang; Luo, Jun; Shrout, Thomas R; Chen, Long-Qing

    2016-12-19

    The discovery of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution single crystals is a breakthrough in ferroelectric materials. A key signature of relaxor-ferroelectric solid solutions is the existence of polar nanoregions, a nanoscale inhomogeneity, that coexist with normal ferroelectric domains. Despite two decades of extensive studies, the contribution of polar nanoregions to the underlying piezoelectric properties of relaxor ferroelectrics has yet to be established. Here we quantitatively characterize the contribution of polar nanoregions to the dielectric/piezoelectric responses of relaxor-ferroelectric crystals using a combination of cryogenic experiments and phase-field simulations. The contribution of polar nanoregions to the room-temperature dielectric and piezoelectric properties is in the range of 50-80%. A mesoscale mechanism is proposed to reveal the origin of the high piezoelectricity in relaxor ferroelectrics, where the polar nanoregions aligned in a ferroelectric matrix can facilitate polarization rotation. This mechanism emphasizes the critical role of local structure on the macroscopic properties of ferroelectric materials.

  13. Depolarization corrections to the coercive field in thin-film ferroelectrics

    CERN Document Server

    Dawber, M; Littlewood, P B; Scott, J F

    2003-01-01

    Empirically, the coercive field needed to reverse the polarization in a ferroelectric increases with decreasing film thickness. For ferroelectric films of 100 mu m to 100 nm in thickness the coercive field has been successfully described by a semi-empirical scaling law. Accounting for depolarization corrections, we show that this scaling behaviour is consistent with field measurements of ultrathin ferroelectric capacitors down to one nanometre in film thickness. Our results also indicate that the minimum film thickness, determined by a polarization instability, can be tuned by the choice of electrodes, and recommendations for next-generation ferroelectric devices are discussed. (letter to the editor)

  14. Interrelationship between flexoelectricity and strain gradient elasticity in ferroelectric nanofilms: A phase field study

    Science.gov (United States)

    Jiang, Limei; Xu, Xiaofei; Zhou, Yichun

    2016-12-01

    With the development of the integrated circuit technology and decreasing of the device size, ferroelectric films used in nano ferroelectric devices become thinner and thinner. Along with the downscaling of the ferroelectric film, there is an increasing influence of two strain gradient related terms. One is the strain gradient elasticity and the other one is flexoelectricity. To investigate the interrelationship between flexoelectricity and strain gradient elasticity and their combined effect on the domain structure in ferroelectric nanofilms, a phase field model of flexoelectricity and strain gradient elasticity on the ferroelectric domain evolution is developed based on Mindlin's theory of strain-gradient elasticity. Weak form is derived and implemented in finite element formulations for numerically solving the model equations. The simulation results show that upper bounds for flexoelectric coefficients can be enhanced by increasing strain gradient elasticity coefficients. While a large flexoelectricity that exceeds the upper bound can induce a transition from a ferroelectric state to a modulated/incommensurate state, a large enough strain gradient elasticity may lead to a conversion from an incommensurate state to a ferroelectric state. Strain gradient elasticity and the flexoelectricity have entirely opposite effects on polarization. The observed interrelationship between the strain gradient elasticity and flexoelectricity is rationalized by an analytical solution of the proposed theoretical model. The model proposed in this paper could help us understand the mechanism of phenomena observed in ferroelectric nanofilms under complex electromechanical loads and provide some guides on the practical application of ferroelectric nanofilms.

  15. Space-charge-mediated anomalous ferroelectric switching in P(VDF-TrEE) polymer films

    KAUST Repository

    Hu, Weijin

    2014-11-12

    We report on the switching dynamics of P(VDF-TrEE) copolymer devices and the realization of additional substable ferroelectric states via modulation of the coupling between polarizations and space charges. The space-charge-limited current is revealed to be the dominant leakage mechanism in such organic ferroelectric devices, and electrostatic interactions due to space charges lead to the emergence of anomalous ferroelectric loops. The reliable control of ferroelectric switching in P(VDF-TrEE) copolymers opens doors toward engineering advanced organic memories with tailored switching characteristics.

  16. Fast Ferroelectric L-Band Tuner for Superconducting Cavities

    Energy Technology Data Exchange (ETDEWEB)

    Jay L. Hirshfield

    2012-07-03

    Design, analysis, and low-power tests are described on a ferroelectric tuner concept that could be used for controlling external coupling to RF cavities for the superconducting Energy Recovery Linac (ERL) in the electron cooler of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). The tuner configuration utilizes several small donut-shaped ferroelectric assemblies, which allow the design to be simpler and more flexible, as compared to previous designs. Design parameters for 704 and 1300 MHz versions of the tuner are given. Simulation results point to efficient performance that could reduce by a factor-of-ten the RF power levels required for driving superconducting cavities in the BNL ERL.

  17. The investigation of the magnetodielectric effect in ferroelectric-ferromagnets

    International Nuclear Information System (INIS)

    Gong, S.J.; Jiang, Q.

    2004-01-01

    In ferroelectromagnets, for the coupling interaction between the ferroelectric and magnetic order, the dielectric and magnetic properties are closely correlated. We define this kind of magnetoelectric correlation as magnetodielectric effect. In this Letter, temperature and magnetic field dependence of the magnetodielectric behavior are given thorough research in ferroelectric-ferromagnets. As a function of temperature, large magnetocapacitance and magnetodielectric response are observed around the magnetic phase transition temperature TN. As a function of the external magnetic field, the magnetocapacitance increases with the increasing magnetic field, while the magnetodielectric response decreases with the increasing magnetic field. When the magnetic field is high enough, the magnetocapacitance get saturated and the magnetodielectric response decreases to zero. We also analyze the origin of the magnetodielectric behavior and find that the fluctuation of the spin-pair correlation plays a critical role. Soft-mode theory based on DIFFOUR model and the mean-field theory are combined to deal with the ferroelectromagnetic system

  18. Ferroelectric power generation in high-speed machinery

    Science.gov (United States)

    Hogan, J. V.

    1983-12-01

    In this generator, a small voltage is applied to a condenser, then the plates are separated by applying mechanical work, and the condenser is discharged at maximum separation and elevated voltage. Initial experiments were done with an electrostatic generator employing a ferroelectric ceramic layer between the moving and stationary capacitor blades to maximize the current of the machine. The power of the machine increases inversely with the width of the air gap between the ferroelectric layer and the moving blades. The minimum air gap in this experiment was found to be 1 micron. Extrapolating this result to a full-scale device, it should be possible to build a 140-kW 2000-V 'ferroelectrostatic' generator with an approximate weight of 120 kg that could be directly coupled to a gas turbine or inertial wheel.

  19. Single event upset immunity of strontium bismuth tantalate ferroelectric memories

    International Nuclear Information System (INIS)

    Benedetto, J.M.; Derbenwick, G.F.; Cuchiaro, J.D.

    1999-01-01

    An embedded 1Kbit non-volatile (NV) serial memory manufactured with strontium bismuth tantalate (SBT) ferroelectric (FE) technology was shown to be immune to effects of heavy ion irradiation. The memories did not lose any data in the non-volatile mode when exposed to xenon (maximum effective LET of 128 MeV-cm 2 /mg and a total fluence of 1.5 x 10 7 ions/cm 2 ). The ferroelectric memories also did not exhibit any loss in the ability to rewrite new data into the memory bits, indicating that no significant degradation of the FE dipoles occurred as a result of the heavy ion exposure. The fast read/write times of FE memories also means that single event gate rupture is unlikely to occur in this technology

  20. Non-volatile memory based on the ferroelectric photovoltaic effect.

    Science.gov (United States)

    Guo, Rui; You, Lu; Zhou, Yang; Lim, Zhi Shiuh; Zou, Xi; Chen, Lang; Ramesh, R; Wang, Junling

    2013-01-01

    The quest for a solid state universal memory with high-storage density, high read/write speed, random access and non-volatility has triggered intense research into new materials and novel device architectures. Though the non-volatile memory market is dominated by flash memory now, it has very low operation speed with ~10 μs programming and ~10 ms erasing time. Furthermore, it can only withstand ~10(5) rewriting cycles, which prevents it from becoming the universal memory. Here we demonstrate that the significant photovoltaic effect of a ferroelectric material, such as BiFeO3 with a band gap in the visible range, can be used to sense the polarization direction non-destructively in a ferroelectric memory. A prototype 16-cell memory based on the cross-bar architecture has been prepared and tested, demonstrating the feasibility of this technique.

  1. Characterization of an Autonomous Non-Volatile Ferroelectric Memory Latch

    Science.gov (United States)

    John, Caroline S.; MacLeod, Todd C.; Evans, Joe; Ho, Fat D.

    2011-01-01

    We present the electrical characterization of an autonomous non-volatile ferroelectric memory latch using the principle that when an electric field is applied to a ferroelectriccapacitor,the positive and negative remnant polarization charge states of the capacitor are denoted as either data 0 or data 1. The properties of the ferroelectric material to store an electric polarization in the absence of an electric field make the device non-volatile. Further the memory latch is autonomous as it operates with the ground, power and output node connections, without any externally clocked control line. The unique quality of this latch circuit is that it can be written when powered off. The advantages of this latch over flash memories are: a) It offers unlimited reads/writes b) works on symmetrical read/write cycles. c) The latch is asynchronous. The circuit was initially developed by Radiant Technologies Inc., Albuquerque, New Mexico.

  2. Tunable multiband ferroelectric devices for reconfigurable RF-frontends

    CERN Document Server

    Zheng, Yuliang

    2013-01-01

    Reconfigurable RF-frontends aim to cope with the continuous pursuit of wider frequency coverage, higher efficiency, further compactness and lower cost of ownership. They are expected to lay the foundations of future software defined or cognitive radios. As a potential enabling technology for the frontends, the tunable ferroelectric devices have shown not only enhanced performance but also new functionalities. This book explores the recent developments in the field. It provides a cross-sectional perspective on the interdisciplinary research. With attention to the devices based on ceramic thick-films and crystal thin-films, the book reviews the adapted technologies of material synthesis, film deposition and multilayer circuitry. Next, it highlights the original classes of thin-film ferroelectric devices, including stratified metal-insulator-metal varactors with suppression of acoustic resonance and programmable bi-stable high frequency capacitors. At the end the book analyzes how the frontends can be reformed b...

  3. Fast Ferroelectric L-Band Tuner for Superconducting Cavities

    International Nuclear Information System (INIS)

    Hirshfield, Jay L.

    2012-01-01

    Design, analysis, and low-power tests are described on a ferroelectric tuner concept that could be used for controlling external coupling to RF cavities for the superconducting Energy Recovery Linac (ERL) in the electron cooler of the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL). The tuner configuration utilizes several small donut-shaped ferroelectric assemblies, which allow the design to be simpler and more flexible, as compared to previous designs. Design parameters for 704 and 1300 MHz versions of the tuner are given. Simulation results point to efficient performance that could reduce by a factor-of-ten the RF power levels required for driving superconducting cavities in the BNL ERL.

  4. LTCC Phase Shifters Based on Tunable Ferroelectric Composite Thick Films

    Science.gov (United States)

    Nikfalazar, M.; Kohler, C.; Heunisch, A.; Wiens, A.; Zheng, Y.; Schulz, B.; Mikolajek, M.; Sohrabi, M.; Rabe, T.; Binder, J. R.; Jakoby, R.

    2015-11-01

    This paper presents, the investigation of tunable components based on LTCC technology, implementing ferroelectric tunable thick-film dielectric. The tunable loaded line phase shifters are fabricated with metal-insulator-metal (MIM) varactors to demonstrate the capabilities of this method for packaging of the tunable components. The MIM varactors consist of one tunable dielectric paste layer that is printed between two silver layers. The tunable ferroelectric paste is optimized for LTCC sintering temperature around 850°C. The phase shifters are fabricated in two different process. They were achieved a figure of merit of 24°/dB (phase shift 192°) at 3 GHz and 18°/dB (phase shift 98°) at 4.4 GHz by using seven unit cells that each unit cell consisting of two MIM varactors.

  5. A finite element model of ferroelectric/ferroelastic polycrystals

    Energy Technology Data Exchange (ETDEWEB)

    HWANG,STEPHEN C.; MCMEEKING,ROBERT M.

    2000-02-17

    A finite element model of polarization switching in a polycrystalline ferroelectric/ferroelastic ceramic is developed. It is assumed that a crystallite switches if the reduction in potential energy of the polycrystal exceeds a critical energy barrier per unit volume of switching material. Each crystallite is represented by a finite element with the possible dipole directions assigned randomly subject to crystallographic constraints. The model accounts for both electric field induced (i.e. ferroelectric) switching and stress induced (i.e. ferroelastic) switching with piezoelectric interactions. Experimentally measured elastic, dielectric, and piezoelectric constants are used consistently, but different effective critical energy barriers are selected phenomenologically. Electric displacement versus electric field, strain versus electric field, stress versus strain, and stress versus electric displacement loops of a ceramic lead lanthanum zirconate titanate (PLZT) are modeled well below the Curie temperature.

  6. Achieving Novel Relaxor Ferroelectric Behavior in a Nylon Terpolymer

    Science.gov (United States)

    Zhang, Zhongbo; Zhu, Lei; Litt, Morton

    Novel ferroelectric polymers, featured by narrow electric displacement-electric (D-E) loops, are attractive for electric energy storage applications due to their high dielectric constant and low loss properties. Currently, only poly(vinylidene fluoride) (PVDF)-based copolymers (e-beamed) and terpolymers show this behavior due to the formation of nanodomains. It is desirable to achieve novel ferroelectricity in other polar polymers such as nylons by modifying the crystal structure. In this presentation, a terpolymer of nylon 11, nylon 12 and N-methylated nylon 11 are synthesized, which show narrow D-E loops. The purpose of copolymerizing nylon 11 and nylon 12 is to introduce chemical defects (i.e., dangling amide groups) in the mesomorphic phase and to achieve nanodomains. The bulky N-methylated nylon 11 comonomers serve for the physical pinning effect. With the help of copolymerization and the pinning effect, the nylon terpolymer exhibits narrow D-E loops at elevated temperatures.

  7. Analysis and Optimization of Thin Film Ferroelectric Phase Shifters

    Science.gov (United States)

    Romanofsky, Robert R.; VanKeuls, Fred W.; Warner, Joseph D.; Mueller, Carl H.; Alterovitz, Samuel A.; Miranda, Felix A.; Qureshi, A. Haq; Romanofsky, Robert R. (Technical Monitor)

    2000-01-01

    Microwave phase shifters have been fabricated from (YBa2Cu3O(7-delta) or Au)/SrTiO3 and Au/Ba(x)Sr(1-x)TiO3 films on LaAlO3 and MgO substrates. These coupled microstrip devices rival the performance of their semiconductor counter-parts parts at Ku- and K-band frequencies. Typical insertion loss for room temperature ferroelectric phase shifters at K-band is approximately equal 5 dB. An experimental and theoretical investigation of these novel devices explains the role of the ferroelectric film in overall device performance. A roadmap to the development of a 3 dB insertion loss phase shifter that would enable a new type of phased array antenna is discussed.

  8. Band gap engineering strategy via polarization rotation in perovskite ferroelectrics

    International Nuclear Information System (INIS)

    Wang, Fenggong; Grinberg, Ilya; Rappe, Andrew M.

    2014-01-01

    We propose a strategy to engineer the band gaps of perovskite oxide ferroelectrics, supported by first principles calculations. We find that the band gaps of perovskites can be substantially reduced by as much as 1.2 eV through local rhombohedral-to-tetragonal structural transition. Furthermore, the strong polarization of the rhombohedral perovskite is largely preserved by its tetragonal counterpart. The B-cation off-center displacements and the resulting enhancement of the antibonding character in the conduction band give rise to the wider band gaps of the rhombohedral perovskites. The correlation between the structure, polarization orientation, and electronic structure lays a good foundation for understanding the physics of more complex perovskite solid solutions and provides a route for the design of photovoltaic perovskite ferroelectrics

  9. Learning through ferroelectric domain dynamics in solid-state synapses

    Science.gov (United States)

    Boyn, Sören; Grollier, Julie; Lecerf, Gwendal; Xu, Bin; Locatelli, Nicolas; Fusil, Stéphane; Girod, Stéphanie; Carrétéro, Cécile; Garcia, Karin; Xavier, Stéphane; Tomas, Jean; Bellaiche, Laurent; Bibes, Manuel; Barthélémy, Agnès; Saïghi, Sylvain; Garcia, Vincent

    2017-04-01

    In the brain, learning is achieved through the ability of synapses to reconfigure the strength by which they connect neurons (synaptic plasticity). In promising solid-state synapses called memristors, conductance can be finely tuned by voltage pulses and set to evolve according to a biological learning rule called spike-timing-dependent plasticity (STDP). Future neuromorphic architectures will comprise billions of such nanosynapses, which require a clear understanding of the physical mechanisms responsible for plasticity. Here we report on synapses based on ferroelectric tunnel junctions and show that STDP can be harnessed from inhomogeneous polarization switching. Through combined scanning probe imaging, electrical transport and atomic-scale molecular dynamics, we demonstrate that conductance variations can be modelled by the nucleation-dominated reversal of domains. Based on this physical model, our simulations show that arrays of ferroelectric nanosynapses can autonomously learn to recognize patterns in a predictable way, opening the path towards unsupervised learning in spiking neural networks.

  10. Non-volatile memory based on the ferroelectric photovoltaic effect

    Science.gov (United States)

    Guo, Rui; You, Lu; Zhou, Yang; Shiuh Lim, Zhi; Zou, Xi; Chen, Lang; Ramesh, R.; Wang, Junling

    2013-01-01

    The quest for a solid state universal memory with high-storage density, high read/write speed, random access and non-volatility has triggered intense research into new materials and novel device architectures. Though the non-volatile memory market is dominated by flash memory now, it has very low operation speed with ~10 μs programming and ~10 ms erasing time. Furthermore, it can only withstand ~105 rewriting cycles, which prevents it from becoming the universal memory. Here we demonstrate that the significant photovoltaic effect of a ferroelectric material, such as BiFeO3 with a band gap in the visible range, can be used to sense the polarization direction non-destructively in a ferroelectric memory. A prototype 16-cell memory based on the cross-bar architecture has been prepared and tested, demonstrating the feasibility of this technique. PMID:23756366

  11. Novel Photovoltaic Devices Using Ferroelectric Material and Colloidal Quantum Dots

    Science.gov (United States)

    Paik, Young Hun

    As the global concern for the financial and environmental costs of traditional energy resources increases, research on renewable energy, most notably solar energy, has taken center stage. Many alternative photovoltaic (PV) technologies for 'the next generation solar cell' have been extensively studied to overcome the Shockley-Queisser 31% efficiency limit as well as tackle the efficiency vs. cost issues. This dissertation focuses on the novel photovoltaic mechanism for the next generation solar cells using two inorganic nanomaterials, nanocrystal quantum dots and ferroelectric nanoparticles. Lead zirconate titanate (PZT) materials are widely studied and easy to synthesize using solution based chemistry. One of the fascinating properties of the PZT material is a Bulk Photovoltaic effect (BPVE). This property has been spotlighted because it can produce very high open circuit voltage regardless of the electrical bandgap of the materials. However, the poor optical absorption of the PZT materials and the required high temperature to form the ferroelectric crystalline structure have been obstacles to fabricate efficient photovoltaic devices. Colloidal quantum dots also have fascinating optical and electrical properties such as tailored absorption spectrum, capability of the bandgap engineering due to the wide range of material selection and quantum confinement, and very efficient carrier dynamics called multiple exciton generations. In order to utilize these properties, many researchers have put numerous efforts in colloidal quantum dot photovoltaic research and there has been remarkable progress in the past decade. However, several drawbacks are still remaining to achieve highly efficient photovoltaic device. Traps created on the large surface area, low carrier mobility, and lower open circuit voltage while increasing the absorption of the solar spectrum is main issues of the nanocrystal based photovoltaic effect. To address these issues and to take the advantages of

  12. Experimental observation of negative capacitance in ferroelectrics at room temperature.

    Science.gov (United States)

    Appleby, Daniel J R; Ponon, Nikhil K; Kwa, Kelvin S K; Zou, Bin; Petrov, Peter K; Wang, Tianle; Alford, Neil M; O'Neill, Anthony

    2014-07-09

    Effective negative capacitance has been postulated in ferroelectrics because there is a hysteresis in plots of polarization-electric field. Compelling experimental evidence of effective negative capacitance is presented here at room temperature in engineered devices, where it is stabilized by the presence of a paraelectric material. In future integrated circuits, the incorporation of such negative capacitance into MOSFET gate stacks would reduce the subthreshold slope, enabling low power operation and reduced self-heating.

  13. Static negative capacitance of a ferroelectric nano-domain nucleus.

    Czech Academy of Sciences Publication Activity Database

    Sluka, T.; Mokrý, Pavel; Setter, N.

    2017-01-01

    Roč. 111, č. 15 (2017), č. článku 152902. ISSN 0003-6951 R&D Projects: GA ČR(CZ) GA14-32228S Institutional support: RVO:61389021 Keywords : Ferroelectric materials * Capacitors * Bipolar transistors * Electrodes * Dielectrics Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics, supercond.) Impact factor: 3.411, year: 2016

  14. Electronic structure and conductivity of ferroelectric hexaferrite: AB INITIO calculations

    Czech Academy of Sciences Publication Activity Database

    Knížek, Karel; Novák, Pavel; Küpferling, M.

    2006-01-01

    Roč. 73, č. 15 (2006), 153103/1-153103/4 ISSN 1098-0121 R&D Projects: GA AV ČR(CZ) IAA1010214 EU Projects: European Commission(XE) HPRN-CT-2002-00293 - SCOOTMO Institutional research plan: CEZ:AV0Z10100521 Keywords : ferroelectric hexaferrite * conductivity * GGA+U method Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 3.107, year: 2006

  15. On the persistence of polar domains in ultrathin ferroelectric capacitors

    Czech Academy of Sciences Publication Activity Database

    Zubko, P.; Lu, H.; Bark, C.-W.; Martí, Xavier; Santiso, J.; Eom, C.-B.; Catalan, G.; Gruverman, A.

    2017-01-01

    Roč. 29, č. 28 (2017), s. 1-8, č. článku 284001. ISSN 1361-648X R&D Projects: GA ČR GB14-37427G Institutional support: RVO:68378271 Keywords : ultrathin barium titanate * tunnel junctions * ferroelectric domains * polarization screening * retention * negative capacitance Subject RIV: BM - Solid Matter Physics ; Magnetism OBOR OECD: Condensed matter physics (including formerly solid state physics , supercond.)

  16. Effects of Nb doping on the microstructure, ferroelectric and ...

    Indian Academy of Sciences (India)

    by a conventional oxide-mixed method and the effects of Nb-doping on microstructure, piezoelectric and ferroelec- tric properties of the ceramics ... introduction of Nb into 0.7BiFeO3–0.3BaTiO3 degrades the piezoelectricity and ferroelectricity of the ceramics. ..... that a diffuse phase transition is induced in the ceramics with ...

  17. A Review of Polymer-Stabilized Ferroelectric Liquid Crystals

    OpenAIRE

    Dierking, Ingo

    2014-01-01

    The polymer stabilized state of ferroelectric liquid crystals (FLC) is reviewed; and the effect of a dispersed polymer network in an FLC outlined and discussed. All fundamental material aspects are demonstrated; such as director tilt angle; spontaneous polarization; response time and viscosity; as well as the dielectric modes. It was found that the data can largely be explained by assuming an elastic interaction between the polymer network strands and the liquid crystal molecules. The elastic...

  18. Flexoelectric control of defect formation in ferroelectric epitaxial thin films.

    Science.gov (United States)

    Lee, Daesu; Jeon, Byung Chul; Yoon, Aram; Shin, Yeong Jae; Lee, Myang Hwan; Song, Tae Kwon; Bu, Sang Don; Kim, Miyoung; Chung, Jin-Seok; Yoon, Jong-Gul; Noh, Tae Won

    2014-08-06

    Flexoelectric control of defect formation and associated electronic function is demonstrated in ferroelectric BiFeO3 thin films. An intriguing, so far never demonstrated, effect of internal electric field (Eint ) on defect formation is explored by a means of flexoelectricity. Our study provides novel insight into defect engineering, as well as allows a pathway to design defect configuration and associated electronic function. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Complex permittivity measurements of ferroelectric employing composite dielectric resonator technique

    Czech Academy of Sciences Publication Activity Database

    Krupka, J.; Zychowicz, T.; Bovtun, Viktor; Veljko, Sergiy

    2006-01-01

    Roč. 53, č. 10 (2006), s. 1883-1888 ISSN 0885-3010 R&D Projects: GA AV ČR(CZ) IAA1010213; GA ČR(CZ) GA202/04/0993; GA ČR(CZ) GA202/06/0403 Institutional research plan: CEZ:AV0Z10100520 Keywords : dielectric resonator * ferroelectrics * microwave measurements Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 1.729, year: 2006

  20. Effect of domains configuration on crystal structure in ferroelectric ...

    Indian Academy of Sciences (India)

    It is well known that domains and crystal structure control the physical properties of ferroelectrics. The ex-situelectric field-dependent structural study, carried out in unpoled/poled crushed powder and bulk samples for (Li 0.5 Nd 0.5 ) 2 + modified 0.95Bi 0.5 Na 0.5 TiO 3 −0.05BaTiO 3 solid solution, established a correlation ...

  1. Ferroelectric materials for piezoelectric actuators by optimal design

    International Nuclear Information System (INIS)

    Jayachandran, K.P.; Guedes, J.M.; Rodrigues, H.C.

    2011-01-01

    Research highlights: → Microstructure optimization of ferroelectric materials by stochastic optimization. → Polycrystalline ferroelectrics possess better piezo actuation than single crystals. → Randomness of the grain orientations would enhance the overall piezoelectricity. - Abstract: Optimization methods provide a systematic means of designing heterogeneous materials with tailored properties and microstructures focussing on a specific objective. An optimization procedure incorporating a continuum modeling is used in this work to identify the ideal orientation distribution of ferroelectrics (FEs) for application in piezoelectric actuators. Piezoelectric actuation is dictated primarily by the piezoelectric strain coefficients d iμ . Crystallographic orientation is inextricably related to the piezoelectric properties of FEs. This suggests that piezoelectric properties can be tailored by a proper choice of the parameters which control the orientation distribution. Nevertheless, this choice is complicated and it is impossible to analyze all possible combinations of the distribution parameters or the angles themselves. Stochastic optimization combined with a generalized Monte Carlo scheme is used to optimize the objective functions, the effective piezoelectric coefficients d 31 and d 15 . The procedure is applied to heterogeneous, polycrystalline, FE ceramics which are essentially an aggregate of variously oriented grains (crystallites). Global piezoelectric properties are calculated using the homogenization method at each grain configuration chosen by the optimization algorithm. Optimal design variables and microstructure that would generate polycrystalline configurations that multiply the macroscopic piezoelectricity are identified.

  2. Unfolding grain size effects in barium titanate ferroelectric ceramics

    Science.gov (United States)

    Tan, Yongqiang; Zhang, Jialiang; Wu, Yanqing; Wang, Chunlei; Koval, Vladimir; Shi, Baogui; Ye, Haitao; McKinnon, Ruth; Viola, Giuseppe; Yan, Haixue

    2015-01-01

    Grain size effects on the physical properties of polycrystalline ferroelectrics have been extensively studied for decades; however there are still major controversies regarding the dependence of the piezoelectric and ferroelectric properties on the grain size. Dense BaTiO3 ceramics with different grain sizes were fabricated by either conventional sintering or spark plasma sintering using micro- and nano-sized powders. The results show that the grain size effect on the dielectric permittivity is nearly independent of the sintering method and starting powder used. A peak in the permittivity is observed in all the ceramics with a grain size near 1 μm and can be attributed to a maximum domain wall density and mobility. The piezoelectric coefficient d33 and remnant polarization Pr show diverse grain size effects depending on the particle size of the starting powder and sintering temperature. This suggests that besides domain wall density, other factors such as back fields and point defects, which influence the domain wall mobility, could be responsible for the different grain size dependence observed in the dielectric and piezoelectric/ferroelectric properties. In cases where point defects are not the dominant contributor, the piezoelectric constant d33 and the remnant polarization Pr increase with increasing grain size. PMID:25951408

  3. Frederiks transition in ferroelectric liquid-crystal nanosuspensions

    Science.gov (United States)

    Shelestiuk, Sergii M.; Reshetnyak, Victor Yu.; Sluckin, Timothy J.

    2011-04-01

    We construct a theoretical model of the dielectric properties of a ferroelectric LC nanosuspension (FLCNS), using a generalized Maxwell-Garnett picture. The theory supposes that an FLCNS may as a first approximation be considered as a complex homogeneous dielectric ceramic, thus neglecting positional correlations of the colloidal particles. The FLCNS then consists of an anisotropic matrix with a very low concentration (<1% by volume) of impurity particles. The impurity particles possess both shape and dielectric anisotropy, as well as a permanent electric polarization and strong liquid-crystal director anchoring on the particle surface. We show that the effective dielectric properties for capacitance properties and for effective liquid-crystal free energies do not coincide. We calculate the effect of doping a liquid crystal with ferroelectric impurities on the Frederiks transition. The theory takes account of inclusion shape, dielectric susceptibility, and local field effects. We neglect the possibility of dielectric particle chaining, which appears experimentally not to occur in general. Our calculations suggest, in qualitative agreement with experiment, that doping a nematic liquid crystal with ferroelectric particles, even at very low particle concentration, can in some cases significantly decrease the electric Frederiks threshold field.

  4. Unfolding grain size effects in barium titanate ferroelectric ceramics.

    Science.gov (United States)

    Tan, Yongqiang; Zhang, Jialiang; Wu, Yanqing; Wang, Chunlei; Koval, Vladimir; Shi, Baogui; Ye, Haitao; McKinnon, Ruth; Viola, Giuseppe; Yan, Haixue

    2015-05-07

    Grain size effects on the physical properties of polycrystalline ferroelectrics have been extensively studied for decades; however there are still major controversies regarding the dependence of the piezoelectric and ferroelectric properties on the grain size. Dense BaTiO3 ceramics with different grain sizes were fabricated by either conventional sintering or spark plasma sintering using micro- and nano-sized powders. The results show that the grain size effect on the dielectric permittivity is nearly independent of the sintering method and starting powder used. A peak in the permittivity is observed in all the ceramics with a grain size near 1 μm and can be attributed to a maximum domain wall density and mobility. The piezoelectric coefficient d33 and remnant polarization Pr show diverse grain size effects depending on the particle size of the starting powder and sintering temperature. This suggests that besides domain wall density, other factors such as back fields and point defects, which influence the domain wall mobility, could be responsible for the different grain size dependence observed in the dielectric and piezoelectric/ferroelectric properties. In cases where point defects are not the dominant contributor, the piezoelectric constant d33 and the remnant polarization Pr increase with increasing grain size.

  5. Photovoltaic properties of low band gap ferroelectric perovskite oxides

    Science.gov (United States)

    Huang, Xin; Paudel, Tula; Dong, Shuai; Tsymbal, Evgeny

    2015-03-01

    Low band gap ferroelectric perovskite oxides are promising for photovoltaic applications due to their high absorption in the visible optical spectrum and a possibility of having large open circuit voltage. Additionally, an intrinsic electric field present in these materials provides a bias for electron-hole separation without requiring p-n junctions as in conventional solar cells. High quality thin films of these compounds can be grown with atomic layer precision allowing control over surface and defect properties. Initial screening based on the electronic band gap and the energy dependent absorption coefficient calculated within density functional theory shows that hexagonal rare-earth manganites and ferrites are promising as photovoltaic absorbers. As a model, we consider hexagonal TbMnO3. This compound has almost ideal band gap of about 1.4 eV, very high ferroelectric Curie temperature, and can be grown epitaxially. Additionally hexagonal TbMnO3 offers possibility of coherent structure with transparent conductor ZnO. We find that the absorption is sufficiently high and dominated by interband transitions between the Mn d-bands. We will present the theoretically calculated photovoltaic efficiency of hexagonal TbMnO3 and explore other ferroelectric perovskite oxides.

  6. Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization

    International Nuclear Information System (INIS)

    Efthimion, Philip C.; Gilson, Erik P.; Grisham, Larry; Davidson, Ronald C.; Yu, Simon; Waldron, William; Logan, B. Grant

    2005-01-01

    Plasmas are employed as a source of unbound electrons for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ∼ 0.1-1 m would be suitable. To produce one-meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being developed. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source utilizes the ferroelectric ceramic BaTiO 3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic, and high voltage (∼ 1-5 kV) applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long has produced plasma densities of 5 x 10 11 cm -3 . The source was integrated into the previous Neutralized Transport Experiment (NTX), and successfully charge neutralized the K + ion beam. Presently, the one-meter source is being fabricated. The source is being characterized and will be integrated into NDCX for charge neutralization experiments

  7. Phonon localization transition in relaxor ferroelectric PZN-5%PT

    International Nuclear Information System (INIS)

    Manley, Michael E.; Christianson, Andrew D.; Abernathy, Douglas L.; Sahul, Raffi

    2017-01-01

    Relaxor ferroelectric behavior occurs in many disordered ferroelectric materials but is not well understood at the atomic level. Recent experiments and theoretical arguments indicate that Anderson localization of phonons instigates relaxor behavior by driving the formation of polar nanoregions (PNRs). Here, we use inelastic neutron scattering to observe phonon localization in relaxor ferroelectric PZN-5%PT (0.95[Pb(Zn 1/3 Nb 2/3 )O 3 ]–0.05PbTiO 3 ) and detect additional features of the localization process. In the lead, up to phonon localization on cooling, the local resonant modes that drive phonon localization increase in number. The increase in resonant scattering centers is attributed to a known increase in the number of locally off centered Pb atoms on cooling. The transition to phonon localization occurs when these random scattering centers increase to a concentration where the Ioffe-Regel criterion is satisfied for localizing the phonon. Finally, we also model the effects of damped mode coupling on the observed phonons and phonon localization structure.

  8. High Temperature Ferroelectrics for Actuators: Recent Developments and Challenges

    Science.gov (United States)

    Sehirlioglu, Alp; Kowalski, Benjamin

    2014-01-01

    A variety of piezoelectric applications have been driving the research in development of new high temperature ferroelectrics; ranging from broader markets such as fuel and gas modulation and deep well oil drilling to very specific applications such as thermoacoustic engines and ultrasonic drilling on the surface of Venus. The focus has been mostly on increasing the Curie temperature. However, greater challenges for high temperature ferroelectrics limit the operating temperature to levels much below the Curie temperature. These include enhanced loss tangent and dc conductivity at high fields as well as depoling due to thermally activated domain rotation. The initial work by Eitel et al. [Jpn. J. Appl. Phys., 40 [10, Part 1] 59996002 (2001)] increased interest in investigation of Bismuth containing perovskites in solid solution with lead titanate. Issues that arise vary from solubility limits to increased tetragonality; the former one prohibits processing of morphotropic phase boundary, while the latter one impedes thorough poling of the polycrystalline ceramics. This talk will summarize recent advances in development of high temperature piezoelectrics and provide information about challenges encountered as well as the approaches taken to improve the high temperature behavior of ferroelectrics with a focus on applications that employ the converse piezoelectric effect.

  9. Ferroelectric Plasma Source for Heavy Ion Beam Charge Neutralization

    CERN Document Server

    Efthimion, Philip; Gilson, Erik P; Grisham, Larry; Logan, B G; Waldron, William; Yu, Simon

    2005-01-01

    Plasmas are employed as a medium for charge neutralizing heavy ion beams to allow them to focus to a small spot size. Calculations suggest that plasma at a density of 1-100 times the ion beam density and at a length ~ 0.1-1 m would be suitable. To produce 1 meter plasma, large-volume plasma sources based upon ferroelectric ceramics are being considered. These sources have the advantage of being able to increase the length of the plasma and operate at low neutral pressures. The source will utilize the ferroelectric ceramic BaTiO3 to form metal plasma. The drift tube inner surface of the Neutralized Drift Compression Experiment (NDCX) will be covered with ceramic. High voltage (~ 1-5 kV) is applied between the drift tube and the front surface of the ceramic by placing a wire grid on the front surface. A prototype ferroelectric source 20 cm long produced plasma densities ~ 5x1011 cm-3. The source was integrated into the experiment and successfully charge neutralized the K ion beam. Presently, the 1 meter source ...

  10. Dimensional scaling of perovskite ferroelectric thin films

    Science.gov (United States)

    Keech, Ryan R.

    Dimensional size reduction has been the cornerstone of the exponential improvement in silicon based logic devices for decades. However, fundamental limits in the device physics were reached ˜2003, halting further reductions in clock speed without significant penalties in power consumption. This has motivated the research into next generation transistors and switching devices to reinstate the scaling laws for clock speed. This dissertation aims to support the scaling of devices that are based on ferroelectricity and piezoelectricity and to provide a roadmap for the corresponding materials performance. First, a scalable growth process to obtain highly {001}-oriented lead magnesium niobate - lead titanate (PMN-PT) thin films was developed, motivated by the high piezoelectric responses observed in bulk single crystals. It was found that deposition of a 2-3 nm thick PbO buffer layer on {111} Pt thin film bottom electrodes, prior to chemical solution deposition of PMN-PT reduces the driving force for Pb diffusion from the PMN-PT to the bottom electrode, and facilitates nucleation of {001}-oriented perovskite grains. Energy dispersive spectroscopy demonstrated that up to 10% of the Pb from a PMN-PT precursor solution may diffuse into the bottom electrode. PMN-PT grains with a mixed {101}/{111} orientation in a matrix of Pb-deficient pyrochlore phase were then promoted near the interface. When this is prevented, phase pure films with {001} orientation with Lotgering factors of 0.98-1.0, can be achieved. The resulting films of only 300 nm in thickness exhibit longitudinal effective d33,f coefficients of ˜90 pm/V and strain values of ˜1% prior to breakdown. 300 nm thick epitaxial and polycrystalline lead magnesium niobate - lead titanate (70PMN-30PT) blanket thin films were studied for the relative contributions to property thickness dependence from interfacial and grain boundary low permittivity layers. Epitaxial PMN-PT films were grown on SrRuO 3 /(001)SrTiO3, while

  11. All-polymer bistable resistive memory device based on nanoscale phase-separated PCBM-ferroelectric blends

    KAUST Repository

    Khan, Yasser

    2012-11-21

    All polymer nonvolatile bistable memory devices are fabricated from blends of ferroelectric poly(vinylidenefluoride-trifluoroethylene (P(VDF-TrFE)) and n-type semiconducting [6,6]-phenyl-C61-butyric acid methyl ester (PCBM). The nanoscale phase separated films consist of PCBM domains that extend from bottom to top electrode, surrounded by a ferroelectric P(VDF-TrFE) matrix. Highly conducting poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) polymer electrodes are used to engineer band offsets at the interfaces. The devices display resistive switching behavior due to modulation of this injection barrier. With careful optimization of the solvent and processing conditions, it is possible to spin cast very smooth blend films (Rrms ≈ 7.94 nm) and with good reproducibility. The devices exhibit high Ion/I off ratios (≈3 × 103), low read voltages (≈5 V), excellent dielectric response at high frequencies (Ïμr ≈ 8.3 at 1 MHz), and excellent retention characteristics up to 10 000 s. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Giant electrocaloric effect in ferroelectric ultrathin films at room temperature mediated by flexoelectric effect and work function

    Science.gov (United States)

    Qiu, Ye; Wu, Huaping; Wang, Jie; Lou, Jia; Zhang, Zheng; Liu, Aiping; Kitamura, Takayuki; Chai, Guozhong

    2017-07-01

    In ferroelectric ultrathin films, built-in electric fields are often present due to the flexoelectric effect and the difference of work functions at asymmetric electrodes, which may change the properties of the materials. In this paper, the influence of build-in electric fields induced by flexoelectric effect and/or work function difference on the misfit strain-temperature phase diagrams, and the electrocaloric properties of epitaxial BaTiO3 ultrathin films are investigated by using an extended nonlinear thermodynamic theory. It is found that the flexoelectric effect, i.e., the coupling of polarization and strain gradient, changes the misfit strain-temperature phase diagrams notably, in which the phases with out-of-plane polarizations increase due to the presence of a built-in field. The electrocaloric properties are remarkably enhanced when the built-in fields induced by both the flexoelectric effect and work function difference are considered. In particular, a giant adiabatic temperature change of 7.89 K in ultrathin Pt/BaTiO3/SrRuO3 capacitors at 460 K is predicted. Moreover, it is demonstrated that the peak of adiabatic temperature change versus working temperature is shifted from a high temperature to room temperature, suggesting that ferroelectric ultrathin films with asymmetric electrodes and strain gradient are promising candidates for room temperature refrigeration.

  13. Stochastic multistep polarization switching in ferroelectrics

    Science.gov (United States)

    Genenko, Y. A.; Khachaturyan, R.; Schultheiß, J.; Ossipov, A.; Daniels, J. E.; Koruza, J.

    2018-04-01

    Consecutive stochastic 90° polarization switching events, clearly resolved in recent experiments, are described by a nucleation and growth multistep model. It extends the classical Kolmogorov-Avrami-Ishibashi approach and includes possible consecutive 90°- and parallel 180° switching events. The model predicts the results of simultaneous time-resolved macroscopic measurements of polarization and strain, performed on a tetragonal Pb (Zr ,Ti ) O3 ceramic in a wide range of electric fields over a time domain of seven orders of magnitude. It allows the determination of the fractions of individual switching processes, their characteristic switching times, activation fields, and respective Avrami indices.

  14. Direct solar energy conversion and storage through coupling between photoelectrochemical and ferroelectric effects

    Directory of Open Access Journals (Sweden)

    Chi-Wei Lo

    2011-12-01

    Full Text Available Harvesting and storing solar energy has become more and more important. Current solid-state photovoltaic cells and conventional photoelectrochemical cells are not capable of directly storing the converted energy, which has to be facilitated by connecting to external storing devices. We demonstrate a device architecture that can convert and store solar energy in the electrical form within an intrinsically single structure. Mobile charge is internally stored, based on the coupling between photoelectrochemical and ferroelectric effects. The tested device architecture can be photo-charged under 1000 W/m2 of white light to an open-circuit voltage of 0.47V with a capacity of 37.62 mC/cm2. After removal of the light source, the mobile charge stored lasts more than 8 hours, and the open-circuit output voltage lasts more than 24 hours.

  15. Observation of room temperature saturated ferroelectric polarization in Dy substituted BiFeO3 ceramics

    KAUST Repository

    Zhang, Shuxia

    2012-04-06

    High quality Bi1− x Dy x FeO3 (0 ≤ x ≤ 0.15) ceramics have been fabricated by sintering Dy-doped BiFeO3 (BFO) precursor powders at a low temperature of 780 °C. The magnetic properties of BFO were improved by the introduction of Dy on the Bi-site. More importantly, well saturated ferroelectric hysteresis loops and polarization switching currents have been observed at room temperature. A large remnant polarization (2P r) value of 62 μC/cm2 is achieved, which is the highest value reported so far for rare-earth-doped BFO ceramics. Moreover, mechanisms for improved multiferroic properties depending on chemical doping-caused structure evolutions have also been discussed.

  16. Synthesis of PVDF/SBT composite thin films by spin coating technology and their ferroelectric properties

    Directory of Open Access Journals (Sweden)

    Chen Changchun

    2016-09-01

    Full Text Available Ferroelectric composite thin films of x-SBT/PVDF with different SBT content (weight ratios of SBT to PVDF, x = 0 %, 5 %, 10 %, 15 %, 20 % were prepared by spin-coating method. The crystal structures of x-SBT/PVDF films were analyzed by X-ray diffraction (XRD measurements and Fourier transform-infrared spectroscopy (FT-IR, respectively. Experimental results demonstrated that both α, β-phases PVDF and the layered perovskite SBT co-existed in the x-SBT/PVDF samples. With an increase of SBT content in the x-SBT/PVDF thin films, both the dielectric constant and the saturated polarization were also increased, compared with those of pure PVDF thin film. More importantly, when the SBT content in the x-SBT/PVDF thin films was larger than 15 %, the coercive field of x-SBT/PVDF thin films was also decreased.

  17. Organic non-volatile memories from ferroelectric phase-separated blends

    Science.gov (United States)

    Asadi, Kamal; de Leeuw, Dago M.; de Boer, Bert; Blom, Paul W. M.

    2008-07-01

    New non-volatile memories are being investigated to keep up with the organic-electronics road map. Ferroelectric polarization is an attractive physical property as the mechanism for non-volatile switching, because the two polarizations can be used as two binary levels. However, in ferroelectric capacitors the read-out of the polarization charge is destructive. The functionality of the targeted memory should be based on resistive switching. In inorganic ferroelectrics conductivity and ferroelectricity cannot be tuned independently. The challenge is to develop a storage medium in which the favourable properties of ferroelectrics such as bistability and non-volatility can be combined with the beneficial properties provided by semiconductors such as conductivity and rectification. Here we present an integrated solution by blending semiconducting and ferroelectric polymers into phase-separated networks. The polarization field of the ferroelectric modulates the injection barrier at the semiconductor-metal contact. The combination of ferroelectric bistability with (semi)conductivity and rectification allows for solution-processed non-volatile memory arrays with a simple cross-bar architecture that can be read out non-destructively. The concept of an electrically tunable injection barrier as presented here is general and can be applied to other electronic devices such as light-emitting diodes with an integrated on/off switch.

  18. Pulse-modulated multilevel data storage in an organic ferroelectric resistive memory diode

    NARCIS (Netherlands)

    Lee, J.; Breemen, A.J.J.M. van; Khikhlovskyi, V.; Kemerink, M.; Janssen, R.A.J.; Gelinck, G.H.

    2016-01-01

    We demonstrate multilevel data storage in organic ferroelectric resistive memory diodes consisting of a phase-separated blend of P(VDF-TrFE) and a semiconducting polymer. The dynamic behaviour of the organic ferroelectric memory diode can be described in terms of the inhomogeneous field mechanism

  19. Ferroelectric transistors with monolayer molybdenum disulfide and ultra-thin aluminum-doped hafnium oxide

    Science.gov (United States)

    Yap, Wui Chung; Jiang, Hao; Liu, Jialun; Xia, Qiangfei; Zhu, Wenjuan

    2017-07-01

    In this letter, we demonstrate ferroelectric memory devices with monolayer molybdenum disulfide (MoS2) as the channel material and aluminum (Al)-doped hafnium oxide (HfO2) as the ferroelectric gate dielectric. Metal-ferroelectric-metal capacitors with 16 nm thick Al-doped HfO2 are fabricated, and a remnant polarization of 3 μC/cm2 under a program/erase voltage of 5 V is observed. The capability of potential 10 years data retention was estimated using extrapolation of the experimental data. Ferroelectric transistors based on embedded ferroelectric HfO2 and MoS2 grown by chemical vapor deposition are fabricated. Clockwise hysteresis is observed at low program/erase voltages due to slow bulk traps located near the 2D/dielectric interface, while counterclockwise hysteresis is observed at high program/erase voltages due to ferroelectric polarization. In addition, the endurances of the devices are tested, and the effects associated with ferroelectric materials, such as the wake-up effect and polarization fatigue, are observed. Reliable writing/reading in MoS2/Al-doped HfO2 ferroelectric transistors over 2 × 104 cycles is achieved. This research can potentially lead to advances of two-dimensional (2D) materials in low-power logic and memory applications.

  20. A thermally robust and thickness independent ferroelectric phase in laminated hafnium zirconium oxide

    Directory of Open Access Journals (Sweden)

    S. Riedel

    2016-09-01

    Full Text Available Ferroelectric properties in hafnium oxide based thin films have recovered the scaling potential for ferroelectric memories due to their ultra-thin-film- and CMOS-compatibility. However, the variety of physical phenomena connected to ferroelectricity allows a wider range of applications for these materials than ferroelectric memory. Especially mixed HfxZr1-xO2 thin films exhibit a broad compositional range of ferroelectric phase stability and provide the possibility to tailor material properties for multiple applications. Here it is shown that the limited thermal stability and thick-film capability of HfxZr1-xO2 can be overcome by a laminated approach using alumina interlayers.

  1. Novel Low Cost High Efficiency Tunable RF Devices and Antenna Arrays Design based on the Ferroelectric Materials and the CTS Technologies

    Science.gov (United States)

    2011-02-14

    Filed in Foreign Countries? (5d-2) Was the assignment forwarded to the contracting officer? (5e) N Foreign Countries of application ( 5g -2): 5 W. Kim and M...important and challenging topic in satellite communication, radar, navigation, remote sensing, and space exploration. Ferroelectric tunable RF devices...PHASED array antennas have and will continue to play crit-ical roles in the development of wireless and satellite com- munications systems. The advancement

  2. Complex Electric-Field Induced Phenomena in Ferroelectric/Antiferroelectric Nanowires

    Science.gov (United States)

    Herchig, Ryan Christopher

    Perovskite ferroelectrics and antiferroelectrics have attracted a lot of attention owing to their potential for device applications including THz sensors, solid state cooling, ultra high density computer memory, and electromechanical actuators to name a few. The discovery of ferroelectricity at the nanoscale provides not only new and exciting possibilities for device miniaturization, but also a way to study the fundamental physics of nanoscale phenomena in these materials. Ferroelectric nanowires show a rich variety of physical characteristics which are advantageous to the design of nanoscale ferroelectric devices such as exotic dipole patterns, a strong dependence of the polarization and phonon frequencies on the electrical and mechanical boundary conditions, as well as a dependence of the transition temperatures on the diameter of the nanowire. Antiferroelectricity also exists at the nanoscale and, due to the proximity in energy of the ferroelectric and antiferroelectric phases, a phase transition from the ferroelectric to the antiferroelectric phase can be facilitated through the application of the appropriate mechanical and electrical boundary conditions. While much progress has been made over the past several decades to understand the nature of ferroelectricity/antiferroelectricity in nanowires, many questions remain unanswered. In particular, little is known about how the truncated dimensions affect the soft mode frequency dynamics or how various electrical and mechanical boundary conditions might change the nature of the phase transitions in these ferroelectric nanowires. Could nanowires offer a distinct advantage for solid state cooling applications? Few studies have been done to elucidate the fundamental physics of antiferroelectric nanowires. How the polarization in ferroelectric nanowires responds to a THz electric field remains relatively underexplored as well. In this work, the aim is to to develop and use computational tools that allow first

  3. Ferroelectric BaTiO3 and LiNbO3 Nanoparticles Dispersed in Ferroelectric Liquid Crystal Mixtures: Electrooptic and Dielectric (Postprint)

    Science.gov (United States)

    2016-10-14

    KEYWORDS Ferroelectric liquid crystals; solid state ferroelectrics; FLC- nanocomposites ; surface phenomena Introduction Nematic Liquid Crystals are...FLC/ BaTiO3 nanocolloids were investigated. Similar results were obtained in [10] and [11] for FLC/BaTiO3 nanocomposites studied on non- harvested...polymer concentrations were spin coated at 3500 rpm for three minutes on the ITO coated glass plates to obtain films of different thick- ness

  4. Class of diatomic ferroelectrics with multifunctional properties: IV-VI compounds in the distorted NiAs-type structure

    Science.gov (United States)

    Zhang, Hu; Deng, Bei; Wang, Wei-Chao; Shi, Xing-Qiang

    2017-12-01

    Ferroelectrics have attracted a great deal of attention, but diatomic ferroelectrics are less common. Here we establish a class of diatomic ferroelectrics in the distorted NiAs-type structure based on state-of-the-art first-principles calculations. These compounds, with giant Rashba effect, possess rich phases, ranging from ferroelectric semiconductors to ferroelectric semimetals. Topological surface states and type-II bulk Dirac fermions are found in the undistorted phases. This class of multifunctional materials has potential applications in spin-orbitronics.

  5. Silicone chain extender

    DEFF Research Database (Denmark)

    2015-01-01

    The present invention relates to a silicone chain extender, more particularly a chain extender for silicone polymers and copolymers, to a chain extended silicone polymer or copolymer and to a functionalized chain extended silicone polymer or copolymer, to a method for the preparation thereof...

  6. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures

    Science.gov (United States)

    Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.; Morozovska, Anna N.

    2018-03-01

    For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomena in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical–electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this. ).

  7. Surface-screening mechanisms in ferroelectric thin films and their effect on polarization dynamics and domain structures

    Energy Technology Data Exchange (ETDEWEB)

    Kalinin, Sergei V.; Kim, Yunseok; Fong, Dillon D.; Morozovska, Anna N.

    2018-01-25

    For over 70 years, ferroelectric materials have been one of the central research topics for condensed matter physics and material science, an interest driven both by fundamental science and applications. However, ferroelectric surfaces, the key component of ferroelectric films and nanostructures, still present a significant theoretical and even conceptual challenge. Indeed, stability of ferroelectric phase per se necessitates screening of polarization charge. At surfaces, this can lead to coupling between ferroelectric and semiconducting properties of material, or with surface (electro) chemistry, going well beyond classical models applicable for ferroelectric interfaces. In this review, we summarize recent studies of surface-screening phenomena in ferroelectrics. We provide a brief overview of the historical understanding of the physics of ferroelectric surfaces, and existing theoretical models that both introduce screening mechanisms and explore the relationship between screening and relevant aspects of ferroelectric functionalities starting from phase stability itself. Given that the majority of ferroelectrics exist in multiple-domain states, we focus on local studies of screening phenomena using scanning probe microscopy techniques. We discuss recent studies of static and dynamic phenomena on ferroelectric surfaces, as well as phenomena observed under lateral transport, light, chemical, and pressure stimuli. We also note that the need for ionic screening renders polarization switching a coupled physical-electrochemical process and discuss the non-trivial phenomena such as chaotic behavior during domain switching that stem from this.

  8. Nanopatterned ferroelectrics for ultrahigh density rad-hard nonvolatile memories.

    Energy Technology Data Exchange (ETDEWEB)

    Brennecka, Geoffrey L.; Stevens, Jeffrey; Scrymgeour, David; Gin, Aaron V.; Tuttle, Bruce Andrew

    2010-09-01

    Radiation hard nonvolatile random access memory (NVRAM) is a crucial component for DOE and DOD surveillance and defense applications. NVRAMs based upon ferroelectric materials (also known as FERAMs) are proven to work in radiation-rich environments and inherently require less power than many other NVRAM technologies. However, fabrication and integration challenges have led to state-of-the-art FERAMs still being fabricated using a 130nm process while competing phase-change memory (PRAM) has been demonstrated with a 20nm process. Use of block copolymer lithography is a promising approach to patterning at the sub-32nm scale, but is currently limited to self-assembly directly on Si or SiO{sub 2} layers. Successful integration of ferroelectrics with discrete and addressable features of {approx}15-20nm would represent a 100-fold improvement in areal memory density and would enable more highly integrated electronic devices required for systems advances. Towards this end, we have developed a technique that allows us to carry out block copolymer self-assembly directly on a huge variety of different materials and have investigated the fabrication, integration, and characterization of electroceramic materials - primarily focused on solution-derived ferroelectrics - with discrete features of {approx}20nm and below. Significant challenges remain before such techniques will be capable of fabricating fully integrated NVRAM devices, but the tools developed for this effort are already finding broader use. This report introduces the nanopatterned NVRAM device concept as a mechanism for motivating the subsequent studies, but the bulk of the document will focus on the platform and technology development.

  9. Development of “fragility” in relaxor ferroelectrics

    International Nuclear Information System (INIS)

    Wang, Yi-zhen; Chen, Lan; Xiong, Xiao-min; Zhang, Jin-xiu; Wang, Hai-yan; Frank Zhang, X.; Fu, Jun

    2014-01-01

    Relaxor ferroelectrics (RFs), a special class of the disordered crystals or ceramics, exhibit a pronounced slowdown of their dynamics upon cooling as glass-forming liquids, called the “Super-Arrhenius (SA)” relaxation. Despite great progress in glass-forming liquids, the “fragility” property of the SA relaxation in RFs remains unclear so far. By measuring the temperature-dependent dielectric relaxation in the typical relaxor Pb(Mg 1/3 Nb 2/3 )O 3 -x%PbTiO 3 (PMN − x%PT) with 0 ≤ x ≤ 20.0, we in-depth study the “fragility” properties of the SA relaxation in PMN − x%PT. Such fascinating issues as the mechanism of the “fragility” at an atomic scale, the roles of the systematic configurational entropy change and interaction among relaxing units (RUs, including polar nanoregions and free dipoles) and the relation between “fragility” and ferroelectric order are investigated. Our results show that both the “fragility” of the temperature-dependent SA relaxation and ferroelectric order in the PMN − x%PT systems investigated arise thermodynamically from the configurational-entropy loss due to the attractive interaction among RUs, and develops as a power law, possibly diverging at the finite critical temperature T c . A reasonable physical scenario, based on our “configurational-entropy-loss” theory and Nowick's “stress-induced-ordering” theory, was proposed

  10. Ferroelectric memories: A possible answer to the hardened nonvolatile question

    International Nuclear Information System (INIS)

    Messenger, G.C.; Coppage, F.N.

    1988-01-01

    Ferroelectric memory cells have been fabricated using a process compatible with semiconductor VLSI (Very Large-Scale Integration) manufacturing techniques which are basically nonvolatile and radiation hard. The memory can be made NDRO (Nondestructive Readout) for strategic systems using several techniques; the most practical is probably a rapid read/restore in combination with EDAC software. This memory can replace plated wire and will have substantial advantages in cost, weight, size, power and speed. It provides a practical cost-competitive solution to the need for nonvolatile RAM in all hardened tactical, avionic, and space systems

  11. Spin-filtering junctions with double ferroelectric barriers

    International Nuclear Information System (INIS)

    Yan, Ju; Ding-Yu, Xing

    2009-01-01

    An FS/FE/NS/FE/FS double tunnel junction is suggested to have the ability to inject, modulate and detect the spin-polarized current electrically in a single device, where FS is the ferromagnetic semiconductor electrode, NS is the nonmagnetic semiconductor, and FE the ferroelectric barrier. The spin polarization of the current injected into the NS region can be switched between a highly spin-polarized state and a spin unpolarized state. The high spin polarization may be detected by measuring the tunneling magnetoresistance ratio of the double tunnel junction

  12. Structural studies of different types of ferroelectric liquid crystalline substances

    Czech Academy of Sciences Publication Activity Database

    Obadović, D.Ž.; Stojanović, M.; Bubnov, Alexej; Éber, N.; Cvetinov, M.; Vajda, A.

    2011-01-01

    Roč. 35, č. 1 (2011), s. 3-13 ISSN 1450-7404 R&D Projects: GA AV ČR IAA100100911; GA AV ČR(CZ) GA202/09/0047; GA ČR(CZ) GAP204/11/0723 Grant - others:RFASI(RU) 02.740.11.5166 Institutional research plan: CEZ:AV0Z10100520 Keywords : ferroelectric liquid crystals * phase transition * structure of liquid crystalline phases * molecular parameters Subject RIV: BM - Solid Matter Physics ; Magnetism

  13. Photoinduced Domain Pattern Transformation in Ferroelectric-Dielectric Superlattices

    Energy Technology Data Exchange (ETDEWEB)

    Ahn, Youngjun; Park, Joonkyu; Pateras, Anastasios; Rich, Matthew B.; Zhang, Qingteng; Chen, Pice; Yusuf, Mohammed H.; Wen, Haidan; Dawber, Matthew; Evans, Paul G.

    2017-07-01

    The nanodomain pattern in ferroelectric/dielectric superlattices transforms to a uniform polarization state under above-bandgap optical excitation. X-ray scattering reveals a disappearance of domain diffuse scattering and an expansion of the lattice. The reappearance of the domain pattern occurs over a period of seconds at room temperature, suggesting a transformation mechanism in which charge carriers in long-lived trap states screen the depolarization field. A Landau-Ginzburg-Devonshire model predicts changes in lattice parameter and a critical carrier concentration for the transformation.

  14. Dynamic Behavior of Helical Structure in Ferroelectric Liquid Crystals

    Science.gov (United States)

    Katayama, Takashi; Uehara, Hiroyuki; Furue, Hirokazu; Hatano, Jun

    2004-09-01

    Ferroelectric liquid crystals (FLCs) take a helical structure which can be unwound by the application of an electric field. Although the static orientational process of FLC molecules is well known, the dynamic modification process of the helical structure is not clearly understood. We formulated equations for simulating the dynamic response in terms of the elastic free-energy density based on the continuum theory, and subsequently was solved the dynamic equations numerically. Furthermore, the conoscopic image was simulated by a 4× 4 matrix method. We investigated the effect of spontaneous polarization and dielectric anisotropy on the dynamic behavior of the helical structure in FLC.

  15. Domain shape instabilities and dendrite domain growth in uniaxial ferroelectrics

    Science.gov (United States)

    Shur, Vladimir Ya.; Akhmatkhanov, Andrey R.

    2018-01-01

    The effects of domain wall shape instabilities and the formation of nanodomains in front of moving walls obtained in various uniaxial ferroelectrics are discussed. Special attention is paid to the formation of self-assembled nanoscale and dendrite domain structures under highly non-equilibrium switching conditions. All obtained results are considered in the framework of the unified kinetic approach to domain structure evolution based on the analogy with first-order phase transformation. This article is part of the theme issue `From atomistic interfaces to dendritic patterns'.

  16. Room-temperature biosynthesis of ferroelectric barium titanate nanoparticles.

    Science.gov (United States)

    Bansal, Vipul; Poddar, Pankaj; Ahmad, Absar; Sastry, Murali

    2006-09-13

    The syntheses of inorganic materials by biological systems is characterized by processes that occur close to ambient temperatures, pressures, and neutral pH, as is exemplified by biosilicification and biomineralization processes in nature. Conversely, laboratory-based syntheses of oxide materials often require extremes of temperature and pressure. We have shown here the extracellular, room-temperature biosynthesis of 4-5 nm ternary oxide nanoparticles such as barium titanate (BT) using a fungus-mediated approach. The tetragonality as well as a lowered Curie transition temperature in sub-10 nm particles was established, and the ferroelectricity in these particles was shown using Kelvin probe microscopy.

  17. A Review of Polymer-Stabilized Ferroelectric Liquid Crystals

    Directory of Open Access Journals (Sweden)

    Ingo Dierking

    2014-05-01

    Full Text Available The polymer stabilized state of ferroelectric liquid crystals (FLC is reviewed; and the effect of a dispersed polymer network in an FLC outlined and discussed. All fundamental material aspects are demonstrated; such as director tilt angle; spontaneous polarization; response time and viscosity; as well as the dielectric modes. It was found that the data can largely be explained by assuming an elastic interaction between the polymer network strands and the liquid crystal molecules. The elastic interaction parameter was determined; and increases linearly with increasing polymer concentration.

  18. A Review of Polymer-Stabilized Ferroelectric Liquid Crystals

    Science.gov (United States)

    Dierking, Ingo

    2014-01-01

    The polymer stabilized state of ferroelectric liquid crystals (FLC) is reviewed; and the effect of a dispersed polymer network in an FLC outlined and discussed. All fundamental material aspects are demonstrated; such as director tilt angle; spontaneous polarization; response time and viscosity; as well as the dielectric modes. It was found that the data can largely be explained by assuming an elastic interaction between the polymer network strands and the liquid crystal molecules. The elastic interaction parameter was determined; and increases linearly with increasing polymer concentration. PMID:28788637

  19. A Review of Polymer-Stabilized Ferroelectric Liquid Crystals.

    Science.gov (United States)

    Dierking, Ingo

    2014-05-06

    The polymer stabilized state of ferroelectric liquid crystals (FLC) is reviewed; and the effect of a dispersed polymer network in an FLC outlined and discussed. All fundamental material aspects are demonstrated; such as director tilt angle; spontaneous polarization; response time and viscosity; as well as the dielectric modes. It was found that the data can largely be explained by assuming an elastic interaction between the polymer network strands and the liquid crystal molecules. The elastic interaction parameter was determined; and increases linearly with increasing polymer concentration.

  20. Ferroelectric fluoride compositions and methods of making and using same

    Science.gov (United States)

    Halasyamani, P Shiv; Chang, Hong-Young

    2015-04-07

    A method for synthesis of a ferroelectric material characterized by the general formula A.sub.xB.sub.yF.sub.z where A is an alkaline earth metal, B is transition metal or a main group metal, x and y each range from about 1 to about 5, and z ranges from about 1 to about 20 comprising contacting an alkaline earth metal fluoride, a difluorometal compound and a fluoroorganic acid in a medium to form a reaction mixture; and subjecting the reaction mixture to conditions suitable for hydrothermal crystal growth.

  1. Strontium titanate resistance modulation by ferroelectric field effect

    CERN Document Server

    Marré, D; Bellingeri, E; Pallecchi, I; Pellegrino, L; Siri, A S

    2003-01-01

    Among perovskite oxides strontium titanate (STO) SrTiO sub 3 undergoes a metal-insulator transition at very low carrier concentration and exhibits high mobility values at low temperature. We exploited such electrical properties and the structural compatibility of perovskite oxide materials in realizing ferroelectric field effect epitaxial heterostructures. By pulsed laser deposition, we grew patterned field effect devices, consisting of lanthanum doped STO and Pb(Zr,Ti)O sub 3. Such devices showed a resistance modulation up to 20%, consistent with geometrical parameters and carrier concentration of the semiconducting channel.

  2. From antiferroelectricity to ferroelectricity in smectic mesophases ...

    Indian Academy of Sciences (India)

    Home; Journals; Pramana – Journal of Physics; Volume 61; Issue 2. From antiferroelectricity to ... In this discussion particular attention will be made to polyphilic bent-core molecules, composed of three incompatible units, a bent aromatic core, alkyl chains and an oligosiloxane unit. The importance of the decoupling of the ...

  3. Quinuclidinium salt ferroelectric thin-film with duodecuple-rotational polarization-directions

    Science.gov (United States)

    You, Yu-Meng; Tang, Yuan-Yuan; Li, Peng-Fei; Zhang, Han-Yue; Zhang, Wan-Ying; Zhang, Yi; Ye, Heng-Yun; Nakamura, Takayoshi; Xiong, Ren-Gen

    2017-04-01

    Ferroelectric thin-films are highly desirable for their applications on energy conversion, data storage and so on. Molecular ferroelectrics had been expected to be a better candidate compared to conventional ferroelectric ceramics, due to its simple and low-cost film-processability. However, most molecular ferroelectrics are mono-polar-axial, and the polar axes of the entire thin-film must be well oriented to a specific direction to realize the macroscopic ferroelectricity. To align the polar axes, an orientation-controlled single-crystalline thin-film growth method must be employed, which is complicated, high-cost and is extremely substrate-dependent. In this work, we discover a new molecular ferroelectric of quinuclidinium periodate, which possesses six-fold rotational polar axes. The multi-axes nature allows the thin-film of quinuclidinium periodate to be simply prepared on various substrates including flexible polymer, transparent glasses and amorphous metal plates, without considering the crystallinity and crystal orientation. With those benefits and excellent ferroelectric properties, quinuclidinium periodate shows great potential in applications like wearable devices, flexible materials, bio-machines and so on.

  4. An Ultrathin Single Crystalline Relaxor Ferroelectric Integrated on a High Mobility Semiconductor

    Energy Technology Data Exchange (ETDEWEB)

    Moghadam, Reza M. [Department; Xiao, Zhiyong [Department; Ahmadi-Majlan, Kamyar [Department; Grimley, Everett D. [Department; Bowden, Mark [Environmental; amp, Biological Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Ong, Phuong-Vu [Physical; amp, Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Chambers, Scott A. [Physical; amp, Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Lebeau, James M. [Department; Hong, Xia [Department; Sushko, Peter V. [Physical; amp, Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, United States; Ngai, Joseph H. [Department

    2017-09-13

    The epitaxial growth of multifunctional oxides on semiconductors has opened a pathway to introduce new functionalities to semiconductor device technologies. In particular, ferroelectric materials integrated on semiconductors could lead to low-power field-effect devices that can be used for logic or memory. Essential to realizing such field-effect devices is the development of ferroelectric metal-oxide-semiconductor (MOS) capacitors, in which the polarization of a ferroelectric gate is coupled to the surface potential of a semiconducting channel. Here we demonstrate that ferroelectric MOS capacitors can be realized using single crystalline SrZrxTi1-xO3 (x= 0.7) that has been epitaxially grown on Ge. We find that the ferroelectric properties of SrZrxTi1-xO3 are exceptionally robust, as gate layers as thin as 5 nm give rise to hysteretic capacitance-voltage characteristics that are 2 V in width. The development of ferroelectric MOS capacitors with gate thicknesses that are technologically relevant opens a pathway to realize scalable ferroelectric field-effect devices.

  5. Proceedings of the 8th International Symposium on Applications of Ferroelectrics

    Science.gov (United States)

    Liu, M.; Safari, A.; Kingon, A.; Haertling, G.

    1993-02-01

    The eighth International Symposium on the Applications of Ferroelectrics was held in Greenville, SC, on August 30 to Sept 2, 1992. It was attended by approximately 260 scientists and engineers who presented nearly 200 oral and poster papers. The three plenary presentations covered ferroelectric materials which are currently moving into commercial exploitation or have strong potential to do so. These were (1) pyroelectric imaging, (2) ferroelectric materials integrated with silicon for use as micromotors and microsensors and (3) research activity in Japan on high permittivity materials for DRAM's. Invited papers covered such subjects as pyroelectric and electrooptic properties of thin films, photorefractive effects, ferroelectric polymers, piezoelectric transducers, processing of ferroelectrics, domain switching in ferroelectrics, thin film memories, thin film vacuum deposition techniques and the fabrication of chemically prepared PZT and PLZT thin films. The papers continued to reflect the large interest in ferroelectric thin films. It was encouraging that there have been substantial strides made in both the processing and understanding of the films in the last two years. It was equally clear, however, that much still remains to be done before reliable thin film devices will be available in the marketplace.

  6. Enhanced electric conductivity at ferroelectric vortex cores in BiFeO3

    Energy Technology Data Exchange (ETDEWEB)

    Balke, Nina [ORNL; Winchester, Ben [Pennsylvania State University; Ren, Wei [University of Arkansas; Chu, Ying-Hao [National Chiao Tung University, Hsinchu, Taiwan; Morozovska, A. N. [National Academy of Science of Ukraine, Kiev, Ukraine; Eliseev, E. A. [National Academy of Science of Ukraine, Kiev, Ukraine; Huijben, Mark [University of Twente, Enschede, Netherlands; Vasudevan, Rama K [ORNL; Maksymovych, Petro [ORNL; Britson, J. [Pennsylvania State University; Jesse, Stephen [ORNL; Kornev, Igor [Ecole Centrale Paris; Ramesh, R. [University of California, Berkeley; Bellaiche, Laurent [University of Arkansas; Chen, Long-Qing [Pennsylvania State University; Kalinin, Sergei V [ORNL

    2012-01-01

    Topological defects in ferroic materials are attracting much attention both as a playground of unique physical phenomena and for potential applications in reconfigurable electronic devices. Here, we explore electronic transport at artificially created ferroelectric vortices in BiFeO{sub 3} thin films. The creation of one-dimensional conductive channels activated at voltages as low as 1 V is demonstrated. We study the electronic as well as the static and dynamic polarization structure of several topological defects using a combination of first-principles and phase-field modelling. The modelling predicts that the core structure can undergo a reversible transformation into a metastable twist structure, extending charged domain walls segments through the film thickness. The vortex core is therefore a dynamic conductor controlled by the coupled response of polarization and electron-mobile-vacancy subsystems with external bias. This controlled creation of conductive one-dimensional channels suggests a pathway for the design and implementation of integrated oxide electronic devices based on domain patterning.

  7. Giant flexoelectric polarization in a micromachined ferroelectric diaphragm

    KAUST Repository

    Wang, Zhihong

    2012-08-14

    The coupling between dielectric polarization and strain gradient, known as flexoelectricity, becomes significantly large on the micro- and nanoscale. Here, it is shown that giant flexoelectric polarization can reverse remnant ferroelectric polarization in a bent Pb(Zr0.52Ti0.48) O3 (PZT) diaphragm fabricated by micromachining. The polarization induced by the strain gradient and the switching behaviors of the polarization in response to an external electric field are investigated by observing the electromechanical coupling of the diaphragm. The method allows determination of the absolute zero polarization state in a PZT film, which is impossible using other existing methods. Based on the observation of the absolute zero polarization state and the assumption that bending of the diaphragm is the only source of the self-polarization, the upper bound of flexoelectric coefficient of PZT film is calculated to be as large as 2.0 × 10-4 C m -1. The strain gradient induced by bending the diaphragm is measured to be on the order of 102 m-1, three orders of magnitude larger than that obtained in the bulk material. Because of this large strain gradient, the estimated giant flexoelectric polarization in the bent diaphragm is on the same order of magnitude as the normal remnant ferroelectric polarization of PZT film. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. First-principles-based Landau energy functionals for perovskite ferroelectrics

    Science.gov (United States)

    Pitike, Krishna Chaitanya; Gadigi, Neha; Mangeri, John; Cooper, Valentino; Nakhmanson, Serge

    ABO3 perovskite-oxide ferroelectrics are well known for their useful functional properties. These materials, as well as their solid solutions, exhibit rich phase diagrams that can be exploited, e.g., to obtain large piezoelectric and dielectric responses. Mesoscale-level investigations of their behavior usually utilize Landau phenomenological theory, where the system energy functional is represented by a polynomial expansion in powers of polarization and strain that is parameterized from experimental data. In this project, we present an approach for fitting the Landau functionals for perovskite ferroelectrics directly from first principles simulations with the help of statistical and machine learning tools. Initial data sets are created by computing the energies for a wide range of possible structural configurations involving polar and elastic distortions with standard density-functional theory (DFT) codes. A small fraction of this data is then processed by supervised machine learning algorithms to train a Landau-style polynomial model that can predict the system energies to within 20 meV of the DFT results. KCP and SMN are thankful to the NSF (DMR 1309114) for partial funding. KCP also acknowledges the support from the ASTRO program at ORNL. VRC was supported by the U.S. DOE, MSED and the Office of Science Early Career Research Program.

  9. Discriminator Stabilized Superconductor/Ferroelectric Thin Film Local Oscillator

    Science.gov (United States)

    Romanofsky, Robert R. (Inventor); Miranda, Felix A. (Inventor)

    2000-01-01

    A tunable local oscillator with a tunable circuit that includes a resonator and a transistor as an active element for oscillation. Tuning of the circuit is achieved with an externally applied dc bias across coupled lines on the resonator. Preferably the resonator is a high temperature superconductor microstrip ring resonator with integral coupled lines formed over a thin film ferroelectric material. A directional coupler samples the output of the oscillator which is fed into a diplexer for determining whether the oscillator is performing at a desired frequency. The high-pass and lowpass outputs of the diplexer are connected to diodes respectively for inputting the sampled signals into a differential operational amplifier. The amplifier compares the sampled signals and emits an output signal if there is a difference between the resonant and crossover frequencies. Based on the sampled signal, a bias supplied to the ring resonator is either increased or decreased for raising or lowering the resonant frequency by decreasing or increasing, respectively, the dielectric constant of the ferroelectric.

  10. Characterization of current transport in ferroelectric polymer devices

    KAUST Repository

    Hanna, Amir

    2014-01-01

    We report the charge injection characteristics in poly(vinylidene fluoride-trifluoroethylene), P(VDF-TrFE), as a function of electrode material in metal/ferroelectric/metal device structures. Symmetric and asymmetric devices with Al, Ag, Au and Pt electrodes were fabricated to determine the dominant carrier type, injection current density, and to propose transport mechanisms in the ferroelectric polymer. Higher work function metals such as Pt are found to inject less charges compared to lower work function metals, implying n-type conduction behavior for P(VDF-TrFE) with electrons as the dominant injected carrier. Two distinct charge transport regimes were identified in the P(VDF-TrFE) devices; a Schottky-limited conduction regime for low to intermediate fields (E < 20 MV/m), and a space-charge limited conduction (SCLC) regime for high fields (20 < E < 120 MV/m). Implication of these results for degradation in P(VDF-TrFE) memory performance are discussed. © 2013 Elsevier B.V. All rights reserved.

  11. Complex Internal Bias Fields in Ferroelectric Hafnium Oxide.

    Science.gov (United States)

    Schenk, Tony; Hoffmann, Michael; Ocker, Johannes; Pešić, Milan; Mikolajick, Thomas; Schroeder, Uwe

    2015-09-16

    For the rather new hafnia- and zirconia-based ferroelectrics, a lot of questions are still unsettled. Among them is the electric field cycling behavior consisting of (1) wake-up, (2) fatigue, and (3) the recently discovered subcycling-induced split-up/merging effect of transient current peaks in a hysteresis measurement. In the present work, first-order reversal curves (FORCs) are applied to study the evolution of the switching and backswitching field distribution within the frame of the Preisach model for three different phenomena: (1) The pristine film contains two oppositely biased regions. These internal bias fields vanish during the wake-up cycling. (2) Fatigue as a decrease in the number of switchable domains is accompanied by a slight increase in the mean absolute value of the switching field. (3) The split-up effect is shown to also be related to local bias fields in a complex situation resulting from both the field cycling treatment and the measurement procedure. Moreover, the role of the wake-up phenomenon is discussed with respect to optimizing low-voltage operation conditions of ferroelectric memories toward reasonably high and stable remanent polarization and highest possible endurance.

  12. Lanthanum-Doped Hafnium Oxide: A Robust Ferroelectric Material.

    Science.gov (United States)

    Schroeder, Uwe; Richter, Claudia; Park, Min Hyuk; Schenk, Tony; Pešić, Milan; Hoffmann, Michael; Fengler, Franz P G; Pohl, Darius; Rellinghaus, Bernd; Zhou, Chuanzhen; Chung, Ching-Chang; Jones, Jacob L; Mikolajick, Thomas

    2018-03-05

    Recently simulation groups have reported the lanthanide series elements as the dopants that have the strongest effect on the stabilization of the ferroelectric non-centrosymmetric orthorhombic phase in hafnium oxide. This finding confirms experimental results for lanthanum and gadolinium showing the highest remanent polarization values of all hafnia-based ferroelectric films until now. However, no comprehensive overview that links structural properties to the electrical performance of the films in detail is available for lanthanide-doped hafnia. La:HfO 2 appears to be a material with a broad window of process parameters, and accordingly, by optimization of the La content in the layer, it is possible to improve the performance of the material significantly. Variations of the La concentration leads to changes in the crystallographic structure in the bulk of the films and at the interfaces to the electrode materials, which impacts the spontaneous polarization, internal bias fields, and with this the field cycling behavior of the capacitor structure. Characterization results are compared to other dopants like Si, Al, and Gd to validate the advantages of the material in applications such as semiconductor memory devices.

  13. Ferroelectricity by Bose-Einstein condensation in a quantum magnet.

    Science.gov (United States)

    Kimura, S; Kakihata, K; Sawada, Y; Watanabe, K; Matsumoto, M; Hagiwara, M; Tanaka, H

    2016-09-26

    The Bose-Einstein condensation is a fascinating phenomenon, which results from quantum statistics for identical particles with an integer spin. Surprising properties, such as superfluidity, vortex quantization or Josephson effect, appear owing to the macroscopic quantum coherence, which spontaneously develops in Bose-Einstein condensates. Realization of Bose-Einstein condensation is not restricted in fluids like liquid helium, a superconducting phase of paired electrons in a metal and laser-cooled dilute alkali atoms. Bosonic quasi-particles like exciton-polariton and magnon in solids-state systems can also undergo Bose-Einstein condensation in certain conditions. Here, we report that the quantum coherence in Bose-Einstein condensate of the magnon quasi particles yields spontaneous electric polarization in the quantum magnet TlCuCl 3 , leading to remarkable magnetoelectric effect. Very soft ferroelectricity is realized as a consequence of the O(2) symmetry breaking by magnon Bose-Einstein condensation. The finding of this ferroelectricity will open a new window to explore multi-functionality of quantum magnets.

  14. Unusual Relaxor Ferroelectric Behavior in Stairlike Aurivillius Phases.

    Science.gov (United States)

    Steciuk, Gwladys; Boullay, Philippe; Pautrat, Alain; Barrier, Nicolas; Caignaert, Vincent; Palatinus, Lukas

    2016-09-06

    New ferroelectric layered materials were found in the pseudobinary system Bi5Nb3O15-ABi2Nb2O9 (A= Ba, Sr and Pb). Preliminary observations made by transmission electron microscopy indicate that these compounds exhibit a complex incommensurately modulated structure. A (3 + 1)D structural model is obtained using ab initio phasing by charge flipping based on the analysis of precession electron diffraction tomography data. The (3 + 1)D structure is further validated by a refinement against neutron powder diffraction. These materials possess a layered structure with discontinuous [Bi2O2] slabs and perovskite blocks. While these structural units are characteristics of Aurivillius phases, the existence of periodic crystallographic shear planes offers strong similarities with collapsed or stairlike structures known in high-Tc superconductors and related compounds. Using dielectric spectroscopy, we study the phase transitions of these new layered materials. For A = Ba and Sr, a Vögel-Fulcher-like behavior characteristic of the so-called relaxor ferroelectrics is observed and compared to "canonical" relaxors. For A = Sr, the absence of a Burns temperature separated from the freezing temperature appears as a rather unusual behavior.

  15. Simulation studies of nucleation of ferroelectric polarization reversal.

    Energy Technology Data Exchange (ETDEWEB)

    Brennecka, Geoffrey L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Winchester, Benjamin Michael [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2014-08-01

    Electric field-induced reversal of spontaneous polarization is the defining characteristic of a ferroelectric material, but the process(es) and mechanism(s) associated with the initial nucleation of reverse-polarity domains are poorly understood. This report describes studies carried out using phase field modeling of LiTaO3, a relatively simple prototype ferroelectric material, in order to explore the effects of either mechanical deformation or optically-induced free charges on nucleation and resulting domain configuration during field-induced polarization reversal. Conditions were selected to approximate as closely as feasible those of accompanying experimental work in order to provide not only support for the experimental work but also ensure that additional experimental validation of the simulations could be carried out in the future. Phase field simulations strongly support surface mechanical damage/deformation as effective for dramatically reducing the overall coercive field (Ec) via local field enhancements. Further, optically-nucleated polarization reversal appears to occur via stabilization of latent nuclei via the charge screening effects of free charges.

  16. Origin of stationary domain wall enhanced ferroelectric susceptibility

    Science.gov (United States)

    Liu, Shi; Cohen, R. E.

    2017-03-01

    Ferroelectrics usually adopt a multidomain state with domain walls separating domains with polarization axes oriented differently. It has long been recognized that domain walls can dramatically impact the properties of ferroelectric materials. The enhancement of low-field susceptibility/permittivity under subswitching conditions is usually attributed to reversible domain wall vibration. Recent experiments highlight the stationary domain wall contribution to the dielectric susceptibility irrespective of any lateral displacements or deformations of the wall. We study the effects of domain walls on the low-field permittivity of PbTiO3 with density functional theory and molecular dynamics simulations. The static dielectric constant is calculated as a function of increasing domain wall density and temperature. We find an increase of dielectric permittivity with increasing domain wall density, which is expected to occur at a low driving field where the lateral motion of domain walls is forbidden. Real-space decomposition of the dielectric response reveals that frustrated dipoles within the finite width of the domain walls are responsible for the enhanced low-field permittivity. We explain the 100 % enhancement of the dielectric susceptibility form domain walls, which arises from the softer potential wells within them.

  17. Modelling of dielectric hysteresis loops in ferroelectric semiconductors with charged defects

    International Nuclear Information System (INIS)

    Morozovska, Anna N; Eliseev, Eugene A

    2004-01-01

    We have proposed the phenomenological description of dielectric hysteresis loops in ferroelectric semiconductors with charged defects and prevailing extrinsic conductivity. We have modified the Landau-Ginsburg approach and shown that the macroscopic state of the aforementioned inhomogeneous system can be described by three coupled equations for three order parameters. Both the experimentally observed coercive field values well below the thermodynamic values and the various hysteresis-loop deformations (constricted and double loops) have been obtained in the framework of our model. The obtained results quantitatively explain the ferroelectric switching in such ferroelectric materials as thick PZT films

  18. Frontiers of ferroelectricity a special issue of the journal of materials science

    CERN Document Server

    Lang, Sidney B

    2007-01-01

    The book presents theory, fundamentals and some applications of ferroelectricy. The 24 chapters comprise reviews and research reports covering the spectrum of ferroelectricity. It is intended to describe the current levels of understanding of various aspects of ferroelectricity as presented by authorities in the field. Topics include relaxors, piezoelectrics, microscale and nanoscale studies, polymers and composites, unusual properties, and techniques and devices. The information in this book is intended for physicists, engineers and materials scientists working with ferroelectric materials including ceramics, single crystals, polymers, composites and even some biological materials.

  19. Self-patterning of arrays of ferroelectric capacitors: description by theory of substrate mediated strain interactions

    International Nuclear Information System (INIS)

    Dawber, M; Szafraniak, I; Alexe, M; Scott, J F

    2003-01-01

    Self-patterning presents an appealing alternative to lithography for the production of arrays of nanoscale ferroelectric capacitors for use in high density non-volatile memory devices. However current levels of registration achieved experimentally are far from adequate for this application. To provide a guide for experiment we have applied the theories developed for self-patterning of semiconductor nanocrystals to two self-patterning systems of potential interest for ferroelectric memory applications, metallic bismuth oxide on bismuth titanate and ferroelectric lead zirconate titanate on strontium titanate. (letter to the editor)

  20. Ferroelectric polymer-gated graphene memory with high speed conductivity modulation

    Science.gov (United States)

    Hwang, Hyeon Jun; Yang, Jin Ho; Lee, Young Gon; Cho, Chunhum; Kang, Chang Goo; Kang, Soo Cheol; Park, Woojin; Lee, Byoung Hun

    2013-05-01

    The feasibility of a high speed ferroelectric graphene memory device using a ferroelectric polymer (PVDF-TrFE)/graphene stack has been demonstrated. The conductivity of this metal-ferroelectric-graphene (MFG) device could be modulated up to 775% with a very fast programming speed down to 10 ns. Also, programmed states were maintained up to 1000 s with endurance over 1000 cycles. In addition to demonstrating a single memory device, the array-level integration and cell write/read functionality of a 4 × 4 MFG array adopting a graphene bit line has also been confirmed to show the feasibility of MFG memory.

  1. Polarization Controlled Ohmic to Schottky Transition at a Metal/Doped Ferroelectric Interface

    OpenAIRE

    Liu, Xiaohui; Wang, Yong; Burton, J. D.; Tsymbal, Evgeny Y.

    2013-01-01

    Ferroelectric polar displacements have recently been observed in conducting electron-doped BaTiO3. The co-existence of a ferroelectric phase and conductivity opens the door to new functionalities which may provide a unique route for novel device applications. Using first-principles methods and electrostatic modeling we explore the effect that the switchable polarization of electron-doped BaTiO3 (n-BaTiO3) has on the electronic properties of the SrRuO3/n-BaTiO3 (001) interface. Ferroelectric p...

  2. A Review of Domain Modelling and Domain Imaging Techniques in Ferroelectric Crystals.

    Science.gov (United States)

    Potnis, Prashant R; Tsou, Nien-Ti; Huber, John E

    2011-02-16

    The present paper reviews models of domain structure in ferroelectric crystals, thin films and bulk materials. Common crystal structures in ferroelectric materials are described and the theory of compatible domain patterns is introduced. Applications to multi-rank laminates are presented. Alternative models employing phase-field and related techniques are reviewed. The paper then presents methods of observing ferroelectric domain structure, including optical, polarized light, scanning electron microscopy, X-ray and neutron diffraction, atomic force microscopy and piezo-force microscopy. Use of more than one technique for unambiguous identification of the domain structure is also described.

  3. A Review of Domain Modelling and Domain Imaging Techniques in Ferroelectric Crystals

    Directory of Open Access Journals (Sweden)

    John E. Huber

    2011-02-01

    Full Text Available The present paper reviews models of domain structure in ferroelectric crystals, thin films and bulk materials. Common crystal structures in ferroelectric materials are described and the theory of compatible domain patterns is introduced. Applications to multi-rank laminates are presented. Alternative models employing phase-field and related techniques are reviewed. The paper then presents methods of observing ferroelectric domain structure, including optical, polarized light, scanning electron microscopy, X-ray and neutron diffraction, atomic force microscopy and piezo-force microscopy. Use of more than one technique for unambiguous identification of the domain structure is also described.

  4. Extended biorthogonal matrix polynomials

    Directory of Open Access Journals (Sweden)

    Ayman Shehata

    2017-01-01

    Full Text Available The pair of biorthogonal matrix polynomials for commutative matrices were first introduced by Varma and Tasdelen in [22]. The main aim of this paper is to extend the properties of the pair of biorthogonal matrix polynomials of Varma and Tasdelen and certain generating matrix functions, finite series, some matrix recurrence relations, several important properties of matrix differential recurrence relations, biorthogonality relations and matrix differential equation for the pair of biorthogonal matrix polynomials J(A,B n (x, k and K(A,B n (x, k are discussed. For the matrix polynomials J(A,B n (x, k, various families of bilinear and bilateral generating matrix functions are constructed in the sequel.

  5. Extended Enterprise performance Management

    NARCIS (Netherlands)

    Bobbink, Maria Lammerdina; Hartmann, Andreas

    2014-01-01

    The allegiance of partnering organisations and their employees to an Extended Enterprise performance is its proverbial sword of Damocles. Literature on Extended Enterprises focuses on collaboration, inter-organizational integration and learning to avoid diminishing or missing allegiance becoming an

  6. Giant Electrocaloric Effect in Ferroelectrics with Tailored Polaw-Nanostructures

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Qiming [Pennsylvania State Univ., University Park, PA (United States)

    2015-06-24

    Electrocaloric effect (ECE) is the temperature and/or entropy change in a dielectric material caused by an electric field induced polarization change. Although ECE has been studied since 1930s, the very small ECE observed in earlier studies in bulk materials before 2007 makes it not attractive for practical cooling applications. The objectives of this DOE program are to carry out a systematical scientific research on the entropy change and ECE in polar-dielectrics, especially ferroelectrics based on several fundamental hypotheses and to search for answers on a few scientific questions. Especially, this research program developed a series of polar-dielectric materials with controlled nano- and meso-structures and carried out studies on how these structures affect the polar-ordering, correlations, energy landscapes, and consequently the entropy states at different phases and ECE. The key hypotheses of the program include: (i) Whether a large ECE can be obtained near the ferroelectric-paraelectric (FE-PE) transition in properly designed ferroelectrics which possess large polarization P and large ß (the coefficient in the thermodynamic Landau theory where the Gibbs free energy G = G = G0+ ½ a P2 +1/4 b P4 + 1/6 c P6 – EP, and a = ß (T-Tc), where b,c,ß and Tc are constants)? (ii) What determines/determine ß? Whether a ferroelectric material with built-in disorders, which disrupt the polar-correlations and enabling a large number of local polar-states, such as a properly designed ferroelectric relaxor, can achieve a large ECE? (iii) How to design a ferroelectric material which has flat energy landscape so that the energy barriers for switching among different phases are vanishingly small? What are the necessary conditions to maximize the number of coexisting phases? (iv) How to design ferroelectric materials with a large tunable dielectric response? That is, at zero electric field, the material possesses very

  7. Syndrome of extended shadow

    International Nuclear Information System (INIS)

    Ginzburg, M.A.

    1987-01-01

    Syndrome of extended shadow is characterized by large (more than one lobe) or total shadow of the lung area. A detailed roentgenological characteristic and intrasyndrome differential diagnosis of extended shadows is given. Ethiology, pathogenesis and pathomorphology as well as clinical picture and methods of investigation of extended shadows are discussed

  8. Perspectives on extended Deterrence

    International Nuclear Information System (INIS)

    Tertrais, Bruno; Yost, David S.; Bunn, Elaine; Lee, Seok-soo; Levite, Ariel e.; Russell, James A.; Hokayem, Emile; Kibaroglu, Mustafa; Schulte, Paul; Thraenert, Oliver; Kulesa, Lukasz

    2010-05-01

    In November 2009, the Foundation for Strategic Research (Fondation pour la recherche strategique, FRS) convened a workshop on 'The Future of extended Deterrence', which included the participation of some of the best experts of this topic, from the United States, Europe, the Middle East and East Asia, as well as French and NATO officials. This document brings together the papers prepared for this seminar. Several of them were updated after the publication in April 2010 of the US Nuclear Posture Review. The seminar was organized with the support of the French Atomic energy Commission (Commissariat a l'energie atomique - CEA). Content: 1 - The future of extended deterrence: a brainstorming paper (Bruno Tertrais); 2 - US extended deterrence in NATO and North-East Asia (David S. Yost); 3 - The future of US extended deterrence (Elaine Bunn); 4 - The future of extended deterrence: a South Korean perspective (Seok-soo Lee); 5 - Reflections on extended deterrence in the Middle East (Ariel e. Levite); 6 - extended deterrence, security guarantees and nuclear weapons: US strategic and policy conundrums in the Gulf (James A. Russell); 7 - extended deterrence in the Gulf: a bridge too far? (Emile Hokayem); 8 - The future of extended deterrence: the case of Turkey (Mustafa Kibaroglu); 9 - The future of extended deterrence: a UK view (Paul Schulte); 10 - NATO and extended deterrence (Oliver Thraenert); 11 - extended deterrence and assurance in Central Europe (Lukasz Kulesa)

  9. Optical temperature sensing by upconversion luminescence of Er doped Bi5TiNbWO15ferroelectric materials

    Directory of Open Access Journals (Sweden)

    Hua Zou

    2014-12-01

    Full Text Available The Er3+ doped Bi5TiNbWO15 ceramics have been synthesized using conventional solid-state reaction techniques. The crystal structure, ferroelectric properties, UC emission properties and especially the temperature sensing behaviors were systematically studied. With increasing Er3+ content, the investigation of XRD pattern, the ferroelectric loop and the UC emission indicated that the Er3+ ions dopants preferentially substituted the A sites of Bi3TiNbO9 and then Bi2WO6. Based on fluorescence intensity ratio (FIR technique, the observed results implied the ceramics were promising candidates for temperature sensors in the temperature range of 175 K −550 K. More importantly, this study provided a contrast of temperature sensitivity between emission from the same part (Bi3TiNbO9 in bismuth layered-structure and emission from the different part (Bi3TiNbO9 and Bi2WO6 in bismuth layered-structure for the first time.

  10. Chemical approach to neutral-ionic valence instability, quantum phase transition, and relaxor ferroelectricity in organic charge-transfer complexes

    International Nuclear Information System (INIS)

    Horiuchi, Sachio; Kumai, Reiji; Okimoto, Yoichi; Tokura, Yoshinori

    2006-01-01

    Neutral-ionic (NI) phase transition is a reversible switching of organic charge-transfer complexes between distinct valence states by external stimuli. This phase transformation in the low-dimensional system is demonstrated to provide a variety of novel dielectric, structural, and electronic properties. Importantly, ionization of the electron donor-acceptor pairs is usually accompanied by a ferroelectric or antiferroelectric order of the molecular lattice, leading to huge dielectric response near the transition point. Although these characteristics are potentially useful for future electronic and optical applications, the thermally accessible NI transition (TINIT) is still an extremely rare case. The TINIT compounds including some new materials are overviewed in order to provide convenient guides to their design and experimental identifications. The phase transition and dielectric properties can be closely controlled in various ways depending on chemical and physical modifications of the crystals. Among them, a quantum phase transition and relaxor ferroelectricity, both of which are currently attracting subjects from both scientific and practical perspectives, are highlighted as the first achievements in organic charge-transfer complexes

  11. Meta-screening and permanence of polar distortion in metallized ferroelectrics

    Science.gov (United States)

    Zhao, Hong Jian; Filippetti, Alessio; Escorihuela-Sayalero, Carlos; Delugas, Pietro; Canadell, Enric; Bellaiche, L.; Fiorentini, Vincenzo; Íñiguez, Jorge

    2018-02-01

    Ferroelectric materials are characterized by a spontaneous polar distortion. The behavior of such distortion in the presence of free charge is the key to the physics of metallized ferroelectrics in particular, and of structurally polar metals more generally. Using first-principles simulations, here we show that a polar distortion resists metallization and the attendant suppression of long-range dipolar interactions in the vast majority of a sample of 11 representative ferroelectrics. We identify a meta-screening effect, occurring in the doped compounds as a consequence of the charge rearrangements associated to electrostatic screening, as the main factor determining the survival of a noncentrosymmetric phase. Our findings advance greatly our understanding of the essentials of structurally polar metals, and offer guidelines on the behavior of ferroelectrics upon field-effect charge injection or proximity to conductive device elements.

  12. Development of inter- and intragranular stresses during switching of ferroelectric polycrystals

    NARCIS (Netherlands)

    Haug, Anja; Onck, Patrick R.; Van der Giessen, Erik

    2007-01-01

    Ferroelectrics are crystalline inorganic materials consisting of domains with different directions of spontaneous polarization. By application of sufficiently high electric fields, these domains can switch into a common direction, thus making the material piezoelectric. Due to ferroelasticity, the

  13. Coexistence of ferroelectric and long-wavelength magnetic ordering in MnWO{sub 4}

    Energy Technology Data Exchange (ETDEWEB)

    Meier, Dennis; Maringer, Michael; Lottermoser, Thomas; Yuan, Gouliang; Fiebig, Manfred [HISKP, Universitaet Bonn (Germany); Becker, Petra; Bohaty, Ladislav [Institut fuer Kristallographie, Universitaet zu Koeln (Germany)

    2008-07-01

    The strong interest in magnetoelectric multiferroics is due to their potential concerning the design of novel multifunctional devices, as well as to their unusual physical properties. Among these, TbMnO{sub 3}, Ni{sub 3}V{sub 2}O{sub 8}, and MnWO{sub 4} form a particularly challenging group: The key factor for ferroelectricity lies in the long-wavelength magnetic order. However, the nature of the ferroelectric (FE) state in such a spiral magnet and its relation to the magnetic ordering is largely unclear. Here we report about the spatial distribution of FE domains in MnWO{sub 4}, revealed by optical second harmonic generation (SHG). Although the spontaneous polarization in this ferroelectric is magnetically induced, 180 domains as in a conventional ferroelectric are observed.

  14. Synthesis, characterization, properties, and applications of nanosized ferroelectric, ferromagnetic, or multiferroic materials

    International Nuclear Information System (INIS)

    Dhak, Debasis; Das, Soma; Communication Engineering.); Dhak, Prasanta

    2015-01-01

    Recently, there has been an enormous increase in research activity in the field of ferroelectrics and ferromagnetics especially in multiferroic materials which possess both ferroelectric and ferromagnetic properties simultaneously. However, the ferroelectric, ferromagnetic, and multiferroic properties should be further improved from the utilitarian and commercial viewpoints. Nanostructural materials are central to the evolution of future electronics and information technologies. Ferroelectrics and ferromagnetics have already been established as a dominant branch in electronics sector because of their diverse applications. The ongoing dimensional downscaling of materials to allow packing of increased numbers of components into integrated circuits provides the momentum for evolution of nanostructural devices. Nanoscaling of the above materials can result in a modification of their functionality. Furthermore, nanoscaling can be used to form high density arrays of nanodomain nanostructures, which is desirable for miniaturization of devices

  15. Incipient ferroelectricity of water molecules confined to nano-channels of beryl

    Science.gov (United States)

    Gorshunov, B. P.; Torgashev, V. I.; Zhukova, E. S.; Thomas, V. G.; Belyanchikov, M. A.; Kadlec, C.; Kadlec, F.; Savinov, M.; Ostapchuk, T.; Petzelt, J.; Prokleška, J.; Tomas, P. V.; Pestrjakov, E. V.; Fursenko, D. A.; Shakurov, G. S.; Prokhorov, A. S.; Gorelik, V. S.; Kadyrov, L. S.; Uskov, V. V.; Kremer, R. K.; Dressel, M.

    2016-09-01

    Water is characterized by large molecular electric dipole moments and strong interactions between molecules; however, hydrogen bonds screen the dipole-dipole coupling and suppress the ferroelectric order. The situation changes drastically when water is confined: in this case ordering of the molecular dipoles has been predicted, but never unambiguously detected experimentally. In the present study we place separate H2O molecules in the structural channels of a beryl single crystal so that they are located far enough to prevent hydrogen bonding, but close enough to keep the dipole-dipole interaction, resulting in incipient ferroelectricity in the water molecular subsystem. We observe a ferroelectric soft mode that causes Curie-Weiss behaviour of the static permittivity, which saturates below 10 K due to quantum fluctuations. The ferroelectricity of water molecules may play a key role in the functioning of biological systems and find applications in fuel and memory cells, light emitters and other nanoscale electronic devices.

  16. Ferroelectricity and piezoelectricity in soft biological tissue: Porcine aortic walls revisited

    NARCIS (Netherlands)

    Lenz, T.; Hummel,R.; Katsouras,I.; Groen, W.A.; Nijemeisland, M.; Ruemmler,R.; Schäfer, M.K.E.; Leeuw, D.M. de

    2017-01-01

    Recently reported piezoresponse force microscopy (PFM) measurements have proposed that porcine aortic walls are ferroelectric. This finding may have great implications for understanding biophysical properties of cardiovascular diseases such as arteriosclerosis. However, the complex anatomical

  17. Ferroelectricity and piezoelectricity in soft biological tissue : Porcine aortic walls revisited

    NARCIS (Netherlands)

    Lenz, Thomas; Hummel, Regina; Katsouras, Ilias; Groen, W.A.; Nijemeisland, M.; Ruemmler, Robert; Schäfer, Michael K.E.; de Leeuw, D.M.

    2017-01-01

    Recently reported piezoresponse force microscopy (PFM) measurements have proposed that porcine aortic walls are ferroelectric. This finding may have great implications for understanding biophysical properties of cardiovascular diseases such as arteriosclerosis. However, the complex anatomical

  18. Ab-initio study of the relation between electric polarization and electric field gradients in ferroelectrics

    CERN Document Server

    Gonçalves, J N; Correia, J G; Butz, T; Picozzi, S; Fenta, A S; Amaral, V S

    2012-01-01

    The hyperfine interaction between the quadrupole moment of atomic nuclei and the electric field gradient (EFG) provides information on the electronic charge distribution close to a given atomic site. In ferroelectric materials, the loss of inversion symmetry of the electronic charge distribution is necessary for the appearance of the electric polarization. We present first-principles density functional theory calculations of ferroelectrics such as BaTiO$_{3}$, KNbO$_{3}$, PbTiO$_{3}$ and other oxides with perovskite structures, by focusing on both EFG tensors and polarization. We analyze the EFG tensor properties such as orientation and correlation between components and their relation with electric polarization. This work supports previous studies of ferroelectric materials where a relation between EFG tensors and polarization was observed, which may be exploited to study the ferroelectric order when standard techniques to measure polarization are not easily applied.

  19. Ferroelectric crystals for photonic applications including nanoscale fabrication and characterization techniques

    CERN Document Server

    Ferraro, Pietro; De Natale, Paolo

    2015-01-01

    This book details the latest achievements in ferroelectric domain engineering and characterization at micro- and nano-scale dimensions and periods. It combines basic research of magnetic materials with device and production orientation.

  20. Investigation of some features of ferroelectric phase transition in a liquid-crystal binary system

    International Nuclear Information System (INIS)

    Sarkissyan, A.Ts.; Baghdasaryan, Z.V.; Vardanyan, K.K.

    2000-01-01

    Investigation of some features of the ferroelectric phase transition in a liquid-crystal binary system is carried out. It is shown that in investigated systems the flexoelectric effects are responsible, in basic, for occurrence of the spontaneous polarization

  1. A Ferroelectric Semiconductor Absorber for Surpassing the Shockley-Queisser Limit, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Physical Sciences Inc. (PSI) proposes to develop new solar cells based on a ferroelectric semiconductor absorber material that can yield a 30% increase in efficiency...

  2. Studies on the high-temperature ferroelectric transition of multiferroic hexagonal manganite RMnO3

    Science.gov (United States)

    Sim, Hasung; Jeong, Jaehong; Kim, Haeri; Cheong, S.-W.; Park, Je-Geun

    2018-03-01

    Hexagonal manganites are multiferroic materials with two highly-dissimilar phase transitions: a ferroelectric transition (from P63/mmc to P63cm) at a temperature higher than 1000 K and an antiferromagnetic transition at T N  =  65–130 K. Despite its critical relevance to the intriguing ferroelectric domain physics, the details of the ferroelectric transition are not well known to date primarily because of the ultra-high transition temperature. Using high-temperature x-ray diffraction experiments, we show that the ferroelectric transition is a single transition of abrupt order and R–Op displacement is the primary order parameter. This structural transition is then simultaneously accompanied by MnO5 tilting and the subsequent development of electric polarization.

  3. Vacuum-evaporated ferroelectric films and heterostructures of vinylidene fluoride/trifluoroethylene copolymer

    Energy Technology Data Exchange (ETDEWEB)

    Draginda, Yu. A., E-mail: lbf@ns.crys.ras.ru; Yudin, S. G.; Lazarev, V. V.; Yablonskii, S. V.; Palto, S. P. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation)

    2012-05-15

    The potential of the vacuum method for preparing ferroelectric films and photonic heterostructures from organic materials is studied. Vacuum-evaporated films of fluoropolymers and heterostructures on their basis are obtained and their ferroelectric and spectral properties are studied. In particular, homogeneous films of the well-known piezoelectric polymer polyvinylidene fluoride and ferroelectric material vinylidene fluoride/trifluoroethylene copolymer (P(VDF/TFE)) are produced. Experimental studies of vacuum-evaporated P(VDF/TFE) films confirmed their ferroelectric properties. The heterostructures composed of alternating layers of P(VDF/TFE) copolymer molecules and azodye molecules are fabricated by vacuum evaporation. Owing to the controlled layer thickness and a significant difference in the refractive indices of the P(VDF/TFE) copolymer and azodyes, these heterostructures exhibit properties of photonic crystals. This finding is confirmed by the occurrence of a photonic band in the absorption spectra of the heterostructures.

  4. Extended unemployment and UI benefits

    OpenAIRE

    Robert G. Valletta; Katherine Kuang

    2010-01-01

    During the current labor market downturn, unemployment duration has reached levels well above its previous highs. Analysis of unemployment data suggests that extended unemployment insurance benefits have not been important factors in the increase in the duration of unemployment or in the elevated unemployment rate.

  5. Improved ferroelectric and photovoltaic properties of BiMnO3 modified lead-free K0.5Na0.5NbO3 solid-solution films

    Science.gov (United States)

    Sun, Yizhu; Guo, Fei; Chen, Jieyu; Zhao, Shifeng

    2017-12-01

    Lead-free K0.5Na0.5NbO3/BiMnO3 solid-solution films were deposited on Pt/Ti/SiO2/Si substrates by solution-gelation methods. The effects of the BiMnO3 addition on the electric, bandgap, and photovoltaic properties were investigated systematically. It is shown that, compared with traditional K0.5Na0.5NbO3 films, BiMnO3 modification obviously enhances the ferroelectric properties due to the depression of the leakage current and the improvement of the domain. More importantly, the ferroelectric photovoltaic effect is observed with a large short-circuit current and open-circuit voltage in the lead-free solution films, which is ascribed to the excellent ferroelectric properties and photovoltaic response in the visible region derived from the narrow bandgap modified by BiMnO3. The present work provides strong candidates to be applied in environmentally friendly lead-free ferroelectric photovoltaic solar cell and information storage devices.

  6. Electric-Field Control of Magnetism in Co40Fe40B20/(1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 Multiferroic Heterostructures with Different Ferroelectric Phases.

    Science.gov (United States)

    Liu, Yan; Zhao, Yonggang; Li, Peisen; Zhang, Sen; Li, Dalai; Wu, Hao; Chen, Aitian; Xu, Yang; Han, X F; Li, Shiyan; Lin, Di; Luo, Haosu

    2016-02-17

    Electric-field control of magnetism in multiferroic heterostructures composed of Co40Fe40B20 (CoFeB) and (1-x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 (PMN-xPT) with different ferroelectric phases via changing composition and temperature is explored. It is demonstrated that the nonvolatile looplike bipolar-electric-field-controlled magnetization, previously found in the CoFeB/PMN-xPT heterostructures with PMN-xPT in the rhombohedral (R) phase around the morphotropic phase boundary (MPB), also occurs for PMN-xPTs with both R phase (far away from MPB) and monoclinic (M) phase, suggesting that the phenomenon is the common feature of CoFeB/PMN-xPT multiferroic heterostructures for PMN-xPT with different phases. The magnitude of the effect changes with increasing temperature and volatile bipolar-electric-field-controlled magnetization with a butterflylike behavior occurs when the ferroelectric phase changes to the tetragonal phase (T). Moreover, for the R-phase sample with x = 0.18, an abrupt and giant increase of magnetization is observed at a characteristic temperature in the temperature dependence of magnetization curve. These results are discussed in terms of coupling between magnetism and ferroelectric domains including macro- and microdomains for different ferroelectric phases. This work is helpful for understanding the phenomena of electric-field control of magnetism in FM/FE multiferroic heterostructures and is also important for applications.

  7. Modeling the influence of the seeding layer on the transition behavior of a ferroelectric thin film

    International Nuclear Information System (INIS)

    Oubelkacem, A.; Essaoudi, I.; Ainane, A.; Saber, M.; Dujardin, F.

    2011-01-01

    The transition properties of a ferroelectric thin film with seeding layers were studied using the effective field theory with a probability distribution technique that accounts for the self-spin correlation functions. The effect of interaction parameters for the seeding layer on the phase diagram was also examined. We calculated the critical temperature and the polarization of the ferroelectric thin film for different seeding layer structures. We found that the seeding layer can greatly increase the Curie temperature and the polarization.

  8. Molecular Catalysis at Polarized Interfaces Created by Ferroelectric BaTiO3 (Postprint)

    Science.gov (United States)

    2017-02-06

    AFRL-RX-WP-JA-2016-0197 MOLECULAR CATALYSIS AT POLARIZED INTERFACES CREATED BY FERROELECTRIC BaTiO3 (POSTPRINT) Eugene S. Beh, Xiaofeng Feng, and...TITLE AND SUBTITLE MOLECULAR CATALYSIS AT POLARIZED INTERFACES CREATED BY FERROELECTRIC BaTiO3 (POSTPRINT) 5a. CONTRACT NUMBER FA8650-09-D-5434...way to inves- tigate and exploit the effects of interfacial polarization on catalysis . Acknowledgements We thank the Air Force Office of Scientic

  9. High Frequency Magneto Dielectric Effects In Self Assembled Ferrite Ferroelectric Core Shell Nanoparticles

    Science.gov (United States)

    2014-09-10

    magneto-electric interactions Appl. Phys. Lett. 105, 072905 (2014); 10.1063/1.4893699 Magnetic field assisted self-assembly of ferrite -ferroelectric...10.1063/1.4795820 Co- ferrite spinel and FeCo alloy core shell nanocomposites and mesoporous systems for multifunctional applications J. Appl. Phys...1. The stress in the ferrite phase is assumed to be produced by applied magnetic field and transferred to ferroelectric shell. Strain and stress

  10. Unusual behaviour of binary mixtures of ferroelectric and antiferroelectric liquid crystals with three chiral centres

    Czech Academy of Sciences Publication Activity Database

    Glogarová, Milada; Novotná, Vladimíra; Kašpar, Miroslav; Hamplová, Věra

    2002-01-01

    Roč. 10, č. 1 (2002), s. 47-52 ISSN 1230-3402 R&D Projects: GA ČR GA202/99/1120 Institutional research plan: CEZ:AV0Z1010914 Keywords : binary mixture * ferroelectric phase * antiferroelectric phase * re-entrant ferroelectric phase * dielectric spectroscopy * soft anti-phase mode Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 0.466, year: 2002

  11. Ferroelectric-Driven Performance Enhancement of Graphene Field-Effect Transistors Based on Vertical Tunneling Heterostructures.

    Science.gov (United States)

    Yuan, Shuoguo; Yang, Zhibin; Xie, Chao; Yan, Feng; Dai, Jiyan; Lau, Shu Ping; Chan, Helen L W; Hao, Jianhua

    2016-12-01

    A vertical graphene heterostructure field-effect transistor (VGHFET) using an ultrathin ferroelectric film as a tunnel barrier is developed. The heterostructure is capable of providing new degrees of tunability and functionality via coupling between the ferroelectricity and the tunnel current of the VGHFET, which results in a high-performance device. The results pave the way for developing novel atomic-scale 2D heterostructures and devices. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Ferroelectric control of magnetization in BiFeO3/CoFe heterostructures.

    Science.gov (United States)

    Gajek, Martin; Martin, Lane; Heron, John; Seidel, Jan; Ramesh, Ramamoorthy

    2009-03-01

    The cross coupling between ferroic order parameters in multiferroics opens an alternative for the control of magnetism in magnetoelectric devices by purely electrical means. We first report on the exchange coupling between BiFeO3, an antiferromagnetic ferroelectric , and CoFe. We then show that the domain structure of the ferromagnet can be changed by poling the ferroelectric layer. Finally, we will discuss the implementation of our findings into possible device schemes.

  13. ORF73 LANA homologs of RRV and MneRV2 contain an extended RGG/RG-rich nuclear and nucleolar localization signal that interacts directly with importin β1 for non-classical nuclear import.

    Science.gov (United States)

    Howard, Kellie; Cherezova, Lidia; DeMaster, Laura K; Rose, Timothy M

    2017-11-01

    The latency-associated nuclear antigens (LANA) of KSHV and macaque RFHVMn, members of the RV1 rhadinovirus lineage, are closely related with conservation of complex nuclear localization signals (NLS) containing bipartite KR-rich motifs and RG-rich domains, which interact distinctly with importins α and ß1 for nuclear import via classical and non-classical pathways, respectively. RV1 LANAs are expressed in the nucleus of latently-infected cells where they inhibit replication and establish a dominant RV1 latency. Here we show that LANA homologs of macaque RRV and MneRV2 from the more distantly-related RV2 lineage, lack the KR-rich NLS, and instead have a large RG-rich NLS with multiple RG dipeptides and a conserved RGG motif. The RG-NLS interacts uniquely with importin β1, which mediates nuclear import and accumulation of RV2 LANA in the nucleolus. The alternative nuclear import and localization of RV2 LANA homologs may contribute to the dominant RV2 lytic replication phenotype. Copyright © 2017. Published by Elsevier Inc.

  14. Structure and Dynamics of Domains in Ferroelectric Nanostructures. In-situ TEM Studies

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Xiaoqing [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-06-30

    The goal of this project was to explore the structure and dynamic behaviors of ferroelectric domains in ferroelectric thin films and nanostructures by advanced transmission electron microscopy (TEM) techniques in close collaboration with phase field modeling. The experimental techniques used include aberration-corrected sub-Å resolution TEM and in-situ TEM using a novel scanning tunneling microscopy (STM) - TEM holder that allows the direct observation of nucleation and dynamic evolution of ferroelectric domains under applied electric field. Specifically, this project was aimed to (1) to study the roles of static electrical boundary conditions and electrical charge in controlling the equilibrium domain structures of BiFeO3 thin films with controlled substrate constraints, (2) to explore the fundamental mechanisms of ferroelectric domain nucleation, growth, and switching under an applied electric field in both uniform thin films and nanostructures, and to understand the roles of crystal defects such as dislocations and interfaces in these processes, (3) to understand the physics of ferroelectric domain walls and the influence of defects on the electrical switching of ferroelectric domains.

  15. PbTiO3-based perovskite ferroelectric and multiferroic thin films.

    Science.gov (United States)

    Wang, Yilin; Zhao, Hanqing; Zhang, Linxing; Chen, Jun; Xing, Xianran

    2017-07-21

    Ferroelectric thin films, especially PbTiO 3 -based perovskite thin films which possess robust spontaneous electrical polarization, are widely investigated and applied in various devices. With the advances in synthesis, characterization and calculation techniques, diverse phenomena and properties are uncovered in ferroelectric thin films. Herein some typical PbTiO 3 -based perovskite thin films through composition control are introduced, which gives more choices with various ferroelectric or other properties. Strain engineering, as well as some other interfacial effects, is also included to show the possibilities of controlling the lattice structure, the electronic structure as well as the domain structure which are closely connected to ferroelectricity. Multiferroic thin films, which could achieve magnetic-field-controlled polarization reversal, expand the novel applications of ferroelectric thin films. Typical and remarkable progress made in the case of multiferroic PbTiO 3 -based perovskite thin films is discussed here. Critical problems such as leakage current and fatigue hinder the practical use of ferroelectric and multiferroic thin films, and are also included in this article.

  16. Polarization-dependent interfacial coupling modulation of ferroelectric photovoltaic effect in PZT-ZnO heterostructures

    Science.gov (United States)

    Pan, Dan-Feng; Bi, Gui-Feng; Chen, Guang-Yi; Zhang, Hao; Liu, Jun-Ming; Wang, Guang-Hou; Wan, Jian-Guo

    2016-03-01

    Recently, ferroelectric perovskite oxides have drawn much attention due to potential applications in the field of solar energy conversion. However, the power conversion efficiency of ferroelectric photovoltaic effect currently reported is far below the expectable value. One of the crucial problems lies in the two back-to-back Schottky barriers, which are formed at the ferroelectric-electrode interfaces and blocking most of photo-generated carriers to reach the outside circuit. Herein, we develop a new approach to enhance the ferroelectric photovoltaic effect by introducing the polarization-dependent interfacial coupling effect. Through inserting a semiconductor ZnO layer with spontaneous polarization into the ferroelectric ITO/PZT/Au film, a p-n junction with strong polarization-dependent interfacial coupling effect is formed. The power conversion efficiency of the heterostructure is improved by nearly two orders of magnitude and the polarization modulation ratio is increased about four times. It is demonstrated that the polarization-dependent interfacial coupling effect can give rise to a great change in band structure of the heterostructure, not only producing an aligned internal electric field but also tuning both depletion layer width and potential barrier height at PZT-ZnO interface. This work provides an efficient way in developing highly efficient ferroelectric-based solar cells and novel optoelectronic memory devices.

  17. Reduction of leakage currents in ferroelectric thin films by flexoelectricity: a phase field study

    Science.gov (United States)

    Xu, Xiaofei; Jiang, Limei; Zhou, Yichun

    2017-11-01

    With the development of integrated circuit technology and the decreasing size of devices, ferroelectric films used in nano ferroelectric devices must become thinner and thinner. Along with the downscaling of the ferroelectric film is the increasing serious leakage current which has seriously hindered the broad application of ferroelectric devices. Here we tuned the leakage currents in Pb(Zr0.1Ti0.9)O3 ferroelectric thin films through flexoelectricity by means of the phase field method with diffusion equations for the electron/hole. It is shown that the strain gradient generated by the local compressive force can raise the hole current but reduce the electron current in ferroelectric film. Pure mechanical force can therefore be used to diminish the leakage current. With the further study of the effects of different flexoelectric coupling types on leakage current, we demonstrate that the flexocoupling type described by the longitudinal flexoelectric coefficient promotes the increase of the hole current but has a side-effect on the increase of the electron current. In contrast, the role of the flexocoupling type described by the transverse flexoelectric coefficient is just the opposite.

  18. Quantum Hall Ferroelectrics and Nematics in Multivalley Systems

    Science.gov (United States)

    Sodemann, Inti; Zhu, Zheng; Fu, Liang

    2017-10-01

    We study broken symmetry states at integer Landau-level fillings in multivalley quantum Hall systems whose low-energy dispersions are anisotropic. When the Fermi surface of individual pockets lacks twofold rotational symmetry, like in bismuth (111) [Feldman et al. , Observation of a Nematic Quantum Hall Liquid on the Surface of Bismuth, Science 354, 316 (2016), 10.1126/science.aag1715] and in Sn1 -xPbxSe (001) [Dziawa et al., Topological Crystalline Insulator States in Pb1 -xSnxSe , Nat. Mater. 11, 1023 (2012), 10.1038/nmat3449] surfaces, interactions tend to drive the formation of quantum Hall ferroelectric states. We demonstrate that the dipole moment in these states has an intimate relation to the Fermi surface geometry of the parent metal. In quantum Hall nematic states, like those arising in AlAs quantum wells, we demonstrate the existence of unusually robust Skyrmion quasiparticles.

  19. Second-harmonic imaging of ferroelectric domain walls

    DEFF Research Database (Denmark)

    Bozhevolnyi, Sergey I.; Hvam, Jørn Märcher; Pedersen, Kjeld

    1998-01-01

    Domain walls in periodically poled ferroelectric KTiOPO4 and LiNbO3 crystals are observed by making use of second-harmonic (SH) generation enhancement in the transition regions between neighboring domains. SH images of domain walls obtained with various samples for different polarization...... configurations are presented. The SH generation enhancement is found especially pronounced for the polarization of the SH radiation being perpendicular to the domain walls. The origin and selection rules for the contrast in SH images of domain walls are discussed. The results obtained suggest that the domain...... walls produce a deteriorating effect on SH generation by quasiphase matching. (C) 1998 American Institute of Physics. [S0003-6951(98)02039-7]....

  20. Soft memory in a ferroelectric nanoparticle-doped liquid crystal

    Science.gov (United States)

    Basu, Rajratan

    2014-02-01

    A small quantity of BaTiO3 ferroelectric nanoparticles (FNP) was doped in a liquid crystal (LC), and the LC + FNP hybrid was found to exhibit a nonvolatile electromechanical memory effect in the isotropic phase. The permanent dipole moment of the FNPs causes the LC molecule to form short-range pseudonematic domains surrounding the FNPs. The FNP-induced short-range orders become more prominent in the isotropic phase when the global nematic order is absent. These short-range domains, being anisotropic in nature, interact with an external electric field, exhibiting a Fréedericksz-type transition. When the field is turned off, these domains stay oriented, showing a hysteresis effect due to the absence of any long-range order and restoring forces in the isotropic phase. The hysteresis graph for this memory effect shows a significant pretransitional behavior on approaching the nematic phase from the isotropic phase.

  1. Scaling issues in ferroelectric barium strontium titanate tunable planar capacitors.

    Science.gov (United States)

    Lam, Peter G; Haridasan, Vrinda; Feng, Zhiping; Steer, Michael B; Kingon, Angus I; Maria, Jon-Paul

    2012-02-01

    We report on the geometric limits associated with tunability of interdigitated capacitors, specifically regarding the impact of a parasitic non-tunable component that necessarily accompanies a ferroelectric surface capacitor, and can dominate the voltage-dependent response as capacitor dimensions are reduced to achieve the small capacitance values required for impedance matching in the X band. We present a case study of simple gap capacitors prepared and characterized as a function of gap width (i.e., the distance between electrodes) and gap length (i.e., the edge-to-edge gap distance). Our series of measurements reveals that for gap widths in the micrometer range, as gap lengths are reduced to meet sub-picofarad capacitance values, the non-tunable parasitic elements limit the effective tunability. These experimental measurements are supported by a companion set of microwave models that clarify the existence of parallel parasitic elements.

  2. Encoding, training and retrieval in ferroelectric tunnel junctions

    Science.gov (United States)

    Xu, Hanni; Xia, Yidong; Xu, Bo; Yin, Jiang; Yuan, Guoliang; Liu, Zhiguo

    2016-05-01

    Ferroelectric tunnel junctions (FTJs) are quantum nanostructures that have great potential in the hardware basis for future neuromorphic applications. Among recently proposed possibilities, the artificial cognition has high hopes, where encoding, training, memory solidification and retrieval constitute a whole chain that is inseparable. However, it is yet envisioned but experimentally unconfirmed. The poor retention or short-term store of tunneling electroresistance, in particular the intermediate states, is still a key challenge in FTJs. Here we report the encoding, training and retrieval in BaTiO3 FTJs, emulating the key features of information processing in terms of cognitive neuroscience. This is implemented and exemplified through processing characters. Using training inputs that are validated by the evolution of both barrier profile and domain configuration, accurate recalling of encoded characters in the retrieval stage is demonstrated.

  3. Theory of nanoparticles doped in ferroelectric liquid crystals

    Science.gov (United States)

    Lahiri, T.; Pal Majumder, T.; Ghosh, N. K.

    2013-02-01

    We developed a theory for the statistical mechanics of nanoparticles doped in ferroelectric liquid crystals (FLC). The presence of nanoparticles in FLC medium creates strong local fields that produce large alignment effects over the distribution of the nanosuspensions. Considering these local field effects, we presented a modified Landau free energy to calculate the electro-optic properties of the system. Then, we investigated the response of the nanoparticles doped FLC to an applied electric field. The variations in the polarization and the tilt angle show marked differences with the pure FLC medium. The rotational viscosity of the system is also calculated with its possible variation in temperature and applied field. Then, we conjectured on the possibility of shift in transition temperature, which is supposed to be induced by an electrostatic interaction between the nanoparticles and the liquid crystal molecules. Finally, strong experimental evidence is presented in favor of our results emerged from this theoretical model.

  4. Piezoelectricity of a ferroelectric liquid crystal with a glass transition.

    Science.gov (United States)

    Jákli, A; Tóth-Katona, T; Scharf, T; Schadt, M; Saupe, A

    2002-07-01

    Pressure-electric (hydrostatic piezoelectric) measurements are reported on bookshelf textures of a ferroelectric smectic-C (Sm C*) liquid crystal with a glass transition. The continuous variation of a partially fluid state to the solid glass enables one to trace how the piezoelectric effect depends on the consistency of the material. It was observed that in the Sm C* samples with poled glass the piezoelectric constants are comparable to conventional piezoelectric crystals and poled piezoelectric polymers. This implies their application possibilities. The magnitude of the piezoelectric constant in the glassy state depends very much on the poling conditions. The studies indicate that there are two counteracting effects, which cancel each other out in the Sm C* phase near the glass transition. Our analysis indicates that the pressure-induced director tilt change has a dominating effect both in the fluid and the glassy Sm C* states.

  5. Ferroelectric thin films using oxides as raw materials

    Directory of Open Access Journals (Sweden)

    E.B. Araújo

    1999-01-01

    Full Text Available This work describes an alternative method for the preparation of ferroelectric thin films based on pre-calcination of oxides, to be used as precursor material for a solution preparation. In order to show the viability of the proposed method, PbZr0.53Ti0.47O3 and Bi4Ti3O12 thin films were prepared on fused quartz and Si substrates. The results were analyzed by X-ray Diffraction (XRD, Scanning Electron Microscopy (SEM, Infrared Spectroscopy (IR and Rutherford Backscattering Spectroscopy (RBS. The films obtained show good quality, homogeneity and the desired stoichiometry. The estimated thickness for one layer deposition was approximately 1000 Å and 1500 Å for Bi4Ti3O12 and PbZr0.53Ti0.47O3 films, respectively.

  6. Polarization mechanism and ferroelectric instability in KH2PO4

    International Nuclear Information System (INIS)

    Koval, S.; Migoni, R.L.; Kohanoff, J.; Bussmann-Holder, A.

    2000-11-01

    The polarization mechanism and the origin of ferroelectricity in KH 2 PO 4 (KDP) are studied by first-principles electronic structure calculations. In the low-temperature phase, the collective off-center ordering of the protons is accompanied by an electronic charge delocalization from the near and localization at the far oxygen within the O-H...0 bonds. Electrostatic forces, then, push the K + ions towards off-center positions, and induce a macroscopic polarization. The analysis of the correlation between different geometrical and electronic quantities, in connection with experimental data, supports the idea that the role of tunnelling in isotopic effects is irrelevant. Instead, geometrical quantum effects appear to play a central role. (author)

  7. Flexible ferroelectric element based on van der Waals heteroepitaxy.

    Science.gov (United States)

    Jiang, Jie; Bitla, Yugandhar; Huang, Chun-Wei; Do, Thi Hien; Liu, Heng-Jui; Hsieh, Ying-Hui; Ma, Chun-Hao; Jang, Chi-Yuan; Lai, Yu-Hong; Chiu, Po-Wen; Wu, Wen-Wei; Chen, Yi-Chun; Zhou, Yi-Chun; Chu, Ying-Hao

    2017-06-01

    We present a promising technology for nonvolatile flexible electronic devices: A direct fabrication of epitaxial lead zirconium titanate (PZT) on flexible mica substrate via van der Waals epitaxy. These single-crystalline flexible ferroelectric PZT films not only retain their performance, reliability, and thermal stability comparable to those on rigid counterparts in tests of nonvolatile memory elements but also exhibit remarkable mechanical properties with robust operation in bent states (bending radii down to 2.5 mm) and cycling tests (1000 times). This study marks the technological advancement toward realizing much-awaited flexible yet single-crystalline nonvolatile electronic devices for the design and development of flexible, lightweight, and next-generation smart devices with potential applications in electronics, robotics, automotive, health care, industrial, and military systems.

  8. Nanoscale mechanical switching of ferroelectric polarization via flexoelectricity

    Energy Technology Data Exchange (ETDEWEB)

    Gu, Yijia; Hong, Zijian; Britson, Jason; Chen, Long-Qing [Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802 (United States)

    2015-01-12

    Flexoelectric coefficient is a fourth-rank tensor arising from the coupling between strain gradient and electric polarization and thus exists in all crystals. It is generally ignored for macroscopic crystals due to its small magnitude. However, at the nanoscale, flexoelectric contributions may become significant and can potentially be utilized for device applications. Using the phase-field method, we study the mechanical switching of electric polarization in ferroelectric thin films by a strain gradient created via an atomic force microscope tip. Our simulation results show good agreement with existing experimental observations. We examine the competition between the piezoelectric and flexoelectric effects and provide an understanding of the role of flexoelectricity in the polarization switching. Also, by changing the pressure and film thickness, we reveal that the flexoelectric field at the film bottom can be used as a criterion to determine whether domain switching may happen under a mechanical force.

  9. Nanoscale mechanical switching of ferroelectric polarization via flexoelectricity

    International Nuclear Information System (INIS)

    Gu, Yijia; Hong, Zijian; Britson, Jason; Chen, Long-Qing

    2015-01-01

    Flexoelectric coefficient is a fourth-rank tensor arising from the coupling between strain gradient and electric polarization and thus exists in all crystals. It is generally ignored for macroscopic crystals due to its small magnitude. However, at the nanoscale, flexoelectric contributions may become significant and can potentially be utilized for device applications. Using the phase-field method, we study the mechanical switching of electric polarization in ferroelectric thin films by a strain gradient created via an atomic force microscope tip. Our simulation results show good agreement with existing experimental observations. We examine the competition between the piezoelectric and flexoelectric effects and provide an understanding of the role of flexoelectricity in the polarization switching. Also, by changing the pressure and film thickness, we reveal that the flexoelectric field at the film bottom can be used as a criterion to determine whether domain switching may happen under a mechanical force

  10. Nanoscale mechanical switching of ferroelectric polarization via flexoelectricity

    Science.gov (United States)

    Gu, Yijia; Hong, Zijian; Britson, Jason; Chen, Long-Qing

    2015-01-01

    Flexoelectric coefficient is a fourth-rank tensor arising from the coupling between strain gradient and electric polarization and thus exists in all crystals. It is generally ignored for macroscopic crystals due to its small magnitude. However, at the nanoscale, flexoelectric contributions may become significant and can potentially be utilized for device applications. Using the phase-field method, we study the mechanical switching of electric polarization in ferroelectric thin films by a strain gradient created via an atomic force microscope tip. Our simulation results show good agreement with existing experimental observations. We examine the competition between the piezoelectric and flexoelectric effects and provide an understanding of the role of flexoelectricity in the polarization switching. Also, by changing the pressure and film thickness, we reveal that the flexoelectric field at the film bottom can be used as a criterion to determine whether domain switching may happen under a mechanical force.

  11. Simulation of inhomogeneous magnetoelastic anisotropy in ferroelectric/ferromagnetic nanocomposites

    Science.gov (United States)

    Aimon, Nicolas M.; Liao, Jiexi; Ross, C. A.

    2012-12-01

    The magnetic response of CoFe2O4/BiFeO3 (CFO/BFO) nanocomposite thin films, in which ferromagnetic CFO nanopillars are embedded in a ferroelectric BFO matrix, has been modeled by including the position-dependent magnetoelastic anisotropy of the CFO. A finite element simulation of the strain state of an arrangement of CFO pillars was performed in which the BFO matrix surrounding one or all of the pillars was subject to a piezoelectric strain. The strain transferred to the CFO pillars was calculated and transformed into a spatially varying magnetoelastic anisotropy in the CFO, and a micromagnetic model was then used to calculate the hysteresis of the pillar, which differed significantly from a macrospin model. The position-dependent anisotropy led to a complex reversal process and to a reorientation of the easy axis to the in-plane direction at sufficient applied electric fields.

  12. Extended icosahedral structures

    CERN Document Server

    Jaric, Marko V

    1989-01-01

    Extended Icosahedral Structures discusses the concepts about crystal structures with extended icosahedral symmetry. This book is organized into six chapters that focus on actual modeling of extended icosahedral crystal structures. This text first presents a tiling approach to the modeling of icosahedral quasiperiodic crystals. It then describes the models for icosahedral alloys based on random connections between icosahedral units, with particular emphasis on diffraction properties. Other chapters examine the glassy structures with only icosahedral orientational order and the extent of tra

  13. Ferroelectric, pyroelectric, and piezoelectric properties of a photovoltaic perovskite oxide

    Science.gov (United States)

    Bai, Yang; Siponkoski, Tuomo; Peräntie, Jani; Jantunen, Heli; Juuti, Jari

    2017-02-01

    A perovskite solid-solution, (1-x)KNbO3-xBaNi1/2Nb1/2O3-δ (KBNNO), has been found to exhibit tunable bandgaps in the visible light energy range, making it suitable for light absorption and conversion applications, e.g., solar energy harvesting and light sensing. Such a common ABO3-type perovskite structure, most widely used for ferroelectrics and piezoelectrics, enables the same solid-solution material to be used for the simultaneous harvesting or sensing of solar, kinetic, and thermal energies. In this letter, the ferroelectric, pyroelectric, and piezoelectric properties of KBNNO with x = 0.1 have been reported above room temperature. The investigation has also identified the optimal bandgap for visible light absorption. The stoichiometric composition and also a composition with potassium deficiency have been investigated, where the latter has shown more balanced properties. As a result, a remanent polarization of 3.4 μC/cm2, a pyroelectric coefficient of 26 μC/m2 K, piezoelectric coefficients d33 ≈ 23 pC/N and g33 ≈ 4.1 × 10-3 Vm/N, and a direct bandgap of 1.48 eV have been measured for the KBNNO ceramics. These results are considered to be a significant improvement compared to those of other compositions (e.g., ZnO and AlN), which could be used for the same applications. The results pave the way for the development of hybrid energy harvesters/sensors, which can convert multiple energy sources into electrical energy simultaneously in the same material.

  14. Bichiral structure of ferroelectric domain walls driven by flexoelectricity

    Science.gov (United States)

    Yudin, P. V.; Tagantsev, A. K.; Eliseev, E. A.; Morozovska, A. N.; Setter, N.

    2012-10-01

    The influence of flexoelectric coupling on the internal structure of neutral domain walls in the tetragonal phase of perovskite ferroelectrics is studied. The effect is shown to lower the symmetry of 180∘ walls which are oblique with respect to the cubic crystallographic axes, while {100} and {110} walls stay “untouched.” Being of the Ising type in the absence of the flexoelectric interaction, the oblique domain walls acquire a new polarization component with a structure qualitatively different from the classical Bloch-wall structure. In contrast to the Bloch-type walls, where the polarization vector draws a helix on passing from one domain to the other, in the flexoeffect-affected wall, the polarization rotates in opposite directions on the two sides of the wall and passes through zero in its center. Since the resulting polarization profile is invariant upon inversion with respect to the wall center, it does not break the wall symmetry, in contrast to the classical Bloch-type walls. The flexoelectric coupling lowers the domain wall energy and gives rise to its additional anisotropy, which is comparable to that conditioned by elastic anisotropy. The atomic order-of-magnitude estimates shows that the new polarization component P2 may be comparable with spontaneous polarization Ps, thus suggesting that, in general, it is mandatory to include the flexoelectric coupling in domain wall simulations in ferroelectrics. Calculations performed for barium titanate yield the maximal value of P2, which is much smaller than that of the spontaneous polarization. This smallness is attributed to an anomalously small value of a component of the “strain-polarization” electrostrictive tensor in this material.

  15. Characterization of the effective electrostriction coefficients in ferroelectric thin films

    Science.gov (United States)

    Kholkin, A. L.; Akdogan, E. K.; Safari, A.; Chauvy, P.-F.; Setter, N.

    2001-06-01

    Electromechanical properties of a number of ferroelectric films including PbZrxTi1-xO3(PZT), 0.9PbMg1/3Nb2/3O3-0.1PbTiO3(PMN-PT), and SrBi2Ta2O9(SBT) are investigated using laser interferometry combined with conventional dielectric measurements. Effective electrostriction coefficients of the films, Qeff, are determined using a linearized electrostriction equation that couples longitudinal piezoelectric coefficient, d33, with the polarization and dielectric constant. It is shown that, in PZT films, electrostriction coefficients slightly increase with applied electric field, reflecting the weak contribution of non-180° domains to piezoelectric properties. In contrast, in PMN-PT and SBT films electrostriction coefficients are field independent, indicating the intrinsic nature of the piezoelectric response. The experimental values of Qeff are significantly smaller than those of corresponding bulk materials due to substrate clamping and possible size effects. Electrostriction coefficients of PZT layers are shown to depend strongly on the composition and preferred orientation of the grains. In particular, Qeff of (100) textured rhombohedral films (x=0.7) is significantly greater than that of (111) layers. Thus large anisotropy of the electrostrictive coefficients is responsible for recently observed large piezoelectric coefficients of (100) textured PZT films. Effective electrostriction coefficients obtained by laser interferometry allow evaluation of the electromechanical properties of ferroelectric films based solely on the dielectric parameters and thus are very useful in the design and fabrication of microsensors and microactuators.

  16. Extending Database Integration Technology

    National Research Council Canada - National Science Library

    Buneman, Peter

    1999-01-01

    Formal approaches to the semantics of databases and database languages can have immediate and practical consequences in extending database integration technologies to include a vastly greater range...

  17. Dipole pinning effect on photovoltaic characteristics of ferroelectric BiFeO3 films

    Science.gov (United States)

    Biswas, P. P.; Thirmal, Ch.; Pal, S.; Murugavel, P.

    2018-01-01

    Ferroelectric bismuth ferrite is an attractive candidate for switchable devices. The effect of dipole pinning due to the oxygen vacancy layer on the switching behavior of the BiFeO3 thin film fabricated by the chemical solution deposition method was studied after annealing under air, O2, and N2 environment. The air annealed film showed well defined and dense grains leading to a lower leakage current and superior electrical properties compared to the other two films. The photovoltage and transient photocurrent measured under positive and negative poling elucidated the switching nature of the films. Though the air and O2 annealed films showed a switchable photovoltaic response, the response was severely affected by oxygen vacancies in the N2 annealed film. In addition, the open circuit voltage was found to be mostly dependent on the polarization of BiFeO3 rather than the Schottky barriers at the interface. This work provides an important insight into the effect of dipole pinning caused by oxygen vacancies on the switchable photovoltaic effect of BiFeO3 thin films along with the importance of stoichiometric, defect free, and phase pure samples to facilitate meaningful practical applications.

  18. Extended Life Coolant Testing

    Science.gov (United States)

    2016-06-06

    military vehicles. Newer vehicles come factory- filled with ELC, while the Army continues to use traditional supplemental coolant additives (SCA)-based...UNCLASSIFIED TABLE OF CONTENTS EXTENDED LIFE COOLANT TESTING INTERIM REPORT TFLRF No. 478 by Gregory A. T. Hansen Edwin A...longer needed. Do not return it to the originator. UNCLASSIFIED UNCLASSIFIED EXTENDED LIFE COOLANT TESTING INTERIM REPORT TFLRF No

  19. Extended Theories of Gravitation

    Directory of Open Access Journals (Sweden)

    Fatibene Lorenzo

    2013-09-01

    Full Text Available Extended theories of gravitation are naturally singled out by an analysis inspired by the Ehelers-Pirani-Schild framework. In this framework the structure of spacetime is described by a Weyl geometry which is enforced by dynamics. Standard General Relativity is just one possible theory within the class of extended theories of gravitation. Also all Palatini f(R theories are shown to be extended theories of gravitation. This more general setting allows a more general interpretation scheme and more general possible couplings between gravity and matter. The definitions and constructions of extended theories will be reviewed. A general interpretation scheme will be considered for extended theories and some examples will be considered.

  20. Probing the ionic dielectric constant contribution in the ferroelectric phase of the Fabre salts

    Science.gov (United States)

    de Souza, Mariano; Squillante, Lucas; Sônego, Cesar; Menegasso, Paulo; Foury-Leylekian, Pascale; Pouget, Jean-Paul

    2018-01-01

    In strongly correlated organic materials it has been pointed out that charge ordering could also achieve electronic ferroelectricity at the same critical temperature Tco. A prototype of such phenomenon are the quasi-one-dimensional (TMTTF)2X Fabre salts. However, the stabilization of a long-range ferroelectric ground state below Tco requires the break of inversion symmetry, which should be accompanied by a lattice deformation. In this paper we investigate the role of the monovalent counteranion X in such mechanism. For this purpose, we measured the quasistatic dielectric constant along the c*-axis direction, where layers formed by donors and anions alternate. Our findings show that the ionic charge contribution is three orders of magnitude lower than the intrastack electronic response. The c* dielectric constant (εc*') probes directly the charge response of the monovalent anion X , since the anion mobility in the structure should help to stabilize the ferroelectric ground state. Furthermore, our εc*' measurements show that the dielectric response is thermally broaden below Tco if the ferroelectric transition occurs in the temperature range where the anion movement begin to freeze in their methyl groups cavity. In the extreme case of the PF6-H12 salt, where Tco occurs at the freezing point, a relaxor-type ferroelectricity is observed. Also, because of the slow kinetics of the anion sublattice, global hysteresis effects and reduction of the charge response upon successive cycling are observed. In this context, we propose that anions control the order-disorder or relaxation character of the ferroelectric transition of the Fabre salts. Yet, our results show that x-ray irradiation damages change the well-defined ferroelectric response of the AsF6 pristine salt into a relaxor.

  1. Performance Enhancement of Tunable Bandpass Filters Using Selective Etched Ferroelectric Thin Films

    Science.gov (United States)

    Miranda, Felix A.; Mueller, Carl H.; VanKeuls, Fred W.; Subramanyam, Guru; Vignesparamoorthy, Sivaruban

    2003-01-01

    The inclusion of voltage-tunable barium strontium titanate (BSTO) thin films into planar band pass filters offers tremendous potential to increase their versatility. The ability to tune the passband so as to correct for minor deviations in manufacturing tolerances, or to completely reconfigure the operating frequencies of a microwave communication system, are highly sought-after goals. However, use of ferroelectric films in these devices results in higher dielectric losses, which in turn increase the insertion loss and decrease the quality factors of the filters. This study explores the use of patterned ferroelectric layers to minimize dielectric losses without degrading tunability. Patterning the ferroelectric layers enables us to constrict the width of the ferroelectric layers between the coupled microstrip lines, and minimize losses due to ferroelectric layers. Coupled one-pole microstrip bandpass filters with fundamental resonances at approx. 7.2 GHz and well defined harmonic resonances at approx. 14.4 and approx. 21.6 GHz, were designed, simulated and tested. For one of the filters, experimental results verified that its center frequency was tunable by 528 MHz at a center frequency of 21.957 GHz, with insertion losses varying from 4.3 to 2.5 dB, at 0 and 3.5 V/micron, respectively. These data demonstrate that the tuning-to-loss figure of merit of tunable microstrip filters can be greatly improved using patterned ferroelectric thin films as the tuning element, and tuning can be controlled by engineering the ferroelectric constriction in the coupled sections.

  2. Effect of Mechanical Loads on Stability of Nanodomains in Ferroelectric Ultrathin Films: Towards Flexible Erasing of the Non-Volatile Memories

    OpenAIRE

    Chen, W. J.; Zheng, Yue; Xiong, W. M.; Feng, Xue; Wang, Biao; Wang, Ying

    2014-01-01

    Intensive investigations have been drawn on nanoscale ferroelectrics for their prospective applications such as developing memory devices. In contrast with the commonly used electrical means to process (i.e., read, write or erase) the information carried by ferroelectric domains, at present, mechanisms of non-electrical processing ferroelectric domains are relatively lacking. Here we make a systematical investigation on the stability of 180° cylindrical domains in ferroelectric nanofilms subj...

  3. The Extended Enterprise concept

    DEFF Research Database (Denmark)

    Larsen, Lars Bjørn; Vesterager, Johan; Gobbi, Chiara

    1999-01-01

    This paper provides an overview of the work that has been done regarding the Extended Enterprise concept in the Common Concept team of Globeman 21 including references to results deliverables concerning the development of the Extended Enterprise concept. The first section presents the basic concept...... picture from Globeman21, which illustrates the Globeman21 way of realising the Extended Enterprise concept. The second section presents the Globeman21 EE concept in a life cycle perspective, which to a large extent is based on the thoughts and ideas behind GERAM (ISO/DIS 15704)....

  4. Remarkable Strontium B-Site Occupancy in FerroelectricPb(Zr1-xTix)O3 Solid Solutions Doped with Cryolite-Type StrontiumNiobate

    Energy Technology Data Exchange (ETDEWEB)

    Feltz, A.; Schmidt-Winkel, P.; Schossman, M.; Booth, C.H.; Albering, J.

    2007-04-26

    New high-performance ferroelectric materials based on Pb(Zr{sub 1-x}Ti{sub x})O{sub 3} (PZT) that are doped with cryolite-type strontium niobate (SNO, Sr{sub 4}(Sr{sub 2-2y/3}Nb{sub 2+2y/3})O{sub 11+y}V{sub 0,1-y} with 0 {le} y {le} 1), hence denoted PZT:SNO, and their microscopic structure are described. The combination of exceptional piezoelectric properties, i.e. a piezoelectric strain constant of d{sub 33} {approx} 760 pm/V, with excellent stability and degradation resistance makes ferroelectric PZT:SNO solid solutions very attractive for use in novel and innovative piezoelectric actuator and transducer applications. Extended X-ray absorption fine-structure (EXAFS) analyses of PZT:SNO samples revealed that {approx}10 % of the Sr cations occupy the nominal B-sites of the perovskite-type PZT host lattice. This result was supported by EXAFS analyses of both a canonical SrTiO{sub 3} perovskite and two SNO model and reference compounds. Fit models that do not account for Sr cations on B-sites were ruled out. A clear Sr-Pb peak in Fourier transformed EXAFS data visually confirmed this structural model. The generation of temporary oxygen vacancies and the intricate defect chemistry induced by SNO-doping of PZT are crucial for the exceptional materials properties exhibited by PZT:SNO materials.

  5. The ambipolar evolution of a high-performance WSe2 transistor assisted by a ferroelectric polymer

    Science.gov (United States)

    Li, Dan; Wang, Xudong; Chen, Yan; Zhu, Sixin; Gong, Fan; Wu, Guangjian; Meng, Caimin; Liu, Lan; Wang, Lin; Lin, Tie; Sun, Shuo; Shen, Hong; Wang, Xingjun; Hu, Weida; Wang, Jianlu; Sun, Jinglan; Meng, Xiangjian; Chu, Junhao

    2018-03-01

    In recent years, the electrical characteristics of WSe2 field-effect transistors (FETs) have been widely investigated with various dielectrics. Among them, being able to perfectly tune the polarity of WSe2 is meaningful and promising work. In this work, we systematically study the electrical properties of bilayer WSe2 FETs modulated by ferroelectric polymer poly(vinylidenefluoride-co-trifluoroethylene) (P(VDF-TrFE)). Compared to traditional gate dielectric SiO2, the P(VDF-TrFE) can not only tune both electron and hole concentrations to the same high level, but also improve the hole mobility of bilayer WSe2 to 265.96 cm2 V‑1 s‑1 under SiO2 gating. Its drain current on/off ratio is also improved to 2 × 105 for p-type and 4 × 105 for n-type driven by P(VDF-TrFE). More importantly, the ambipolar behaviors of bilayer WSe2 are effectively achieved and maintained because of the remnant polarization field of P(VDF-TrFE). This work indicates that WSe2 FETs with P(VDF-TrFE) gating have huge potential for complementary logic transistor applications, and paves an effective way to achieve in-plane p–n junctions.

  6. Positron study of negative charge states in order-disorder ferroelectrics

    Energy Technology Data Exchange (ETDEWEB)

    Troev, T.; Berovsky, K.; Peneva, S. [Bulgarian Academy of Sciences, Sofia (Bulgaria). Inst. for Nuclear Research and Nuclear Energy

    2001-07-01

    The positive positron charge opens the possibility for determining the changes in charge states in technologically important order-disorder ferroelectrics. Here we show that dipole polarization disordering within domains affects the positron annihilation mechanism. The positron lifetime parameters in triglycine sulphate (TGS) (NH{sub 3}CH{sub 2}COOH){sub 3}H{sub 2}SO{sub 4}, Rochelle salt (RS) NaKC{sub 4}H{sub 4}O{sub 6}.4H{sub 2}O and Potassium dihydrogen phosphate (KDP) KH{sub 2}PO{sub 4}, at different temperatures and gamma-irradiation doses depend on the charge point defects. The increase of the positron long lifetime component {tau}{sub 2} is proportional to the temperature and gamma-irradiation dose. In gamma irradiated TGS positrons are trapped in defect electron states of oxigen ions of two radicals CH{sub 2}COO{sup -} and NH{sub 3}CHCOO{sup -}. In RS positrons are trapped also in defect electron states of oxygen ions and OH groups. (orig.)

  7. Preparation of Ferroelectric KNbO3 Based Borate Glass System.

    Science.gov (United States)

    Kruea-In, Chatchai; Intawin, Pratthana; Leenakul, Wilaiwan

    2015-11-01

    The incorporation method was employed to produce ferroelectric glass ceramics from the K2O-Nb2O5-B2O3 glass system. The nanocrystalline potassium niobate (KNbO3) was first prepared using a simple mixed oxide method, where the B2O3 was initially mixed and then melted to form glass. The successfully produced optically transparent glass was then subjected to a heat treatment schedule for further crystallization at temperatures ranging from 500 to 650 degrees C, which resulted in the precipitation of the KNbO3 phase, together with the K3B2Nb3O12 phase. Scanning electron microscopy (SEM) showed the presence of randomly oriented KNbO3 crystals dispersed in a continuous glass matrix. It was found that the glass ceramics subjected to the heat treatment at temperatures higher than 545 degrees C were opaque, while the lower gave a highly transparent glass ceramics. The crystal size and crystallinity were found to increase with increasing heat treatment temperature, which in turn plays an important role in controlling the properties of the glass ceramics, including physical, optical, and dielectric properties.

  8. Enhanced Switchable Ferroelectric Photovoltaic Effects in Hexagonal Ferrite Thin Films via Strain Engineering.

    Science.gov (United States)

    Han, Hyeon; Kim, Donghoon; Chu, Kanghyun; Park, Jucheol; Nam, Sang Yeol; Heo, Seungyang; Yang, Chan-Ho; Jang, Hyun Myung

    2018-01-17

    Ferroelectric photovoltaics (FPVs) are being extensively investigated by virtue of switchable photovoltaic responses and anomalously high photovoltages of ∼10 4 V. However, FPVs suffer from extremely low photocurrents due to their wide band gaps (E g ). Here, we present a promising FPV based on hexagonal YbFeO 3 (h-YbFO) thin-film heterostructure by exploiting its narrow E g . More importantly, we demonstrate enhanced FPV effects by suitably exploiting the substrate-induced film strain in these h-YbFO-based photovoltaics. A compressive-strained h-YbFO/Pt/MgO heterojunction device shows ∼3 times enhanced photovoltaic efficiency than that of a tensile-strained h-YbFO/Pt/Al 2 O 3 device. We have shown that the enhanced photovoltaic efficiency mainly stems from the enhanced photon absorption over a wide range of the photon energy, coupled with the enhanced polarization under a compressive strain. Density functional theory studies indicate that the compressive strain reduces E g substantially and enhances the strength of d-d transitions. This study will set a new standard for determining substrates toward thin-film photovoltaics and optoelectronic devices.

  9. Building Extended Families

    Science.gov (United States)

    McKain, Barbara; McKain, Michael

    1970-01-01

    Discusses need for dissolution of the couple" relationship with substitution of the extended family which would permit each member to maintain individuality and to function on own merit. Suggests group living as preferable alternative. (CJ)

  10. Extending mine life

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Mine layouts, new machines and techniques, research into problem areas of ground control and so on, are highlighted in this report on extending mine life. The main resources taken into account are coal mining, uranium mining, molybdenum and gold mining

  11. Rational extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1998-01-01

    Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high­ frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...

  12. Retention of intermediate polarization states in ferroelectric materials enabling memories for multi-bit data storage

    Science.gov (United States)

    Zhao, Dong; Katsouras, Ilias; Asadi, Kamal; Groen, Wilhelm A.; Blom, Paul W. M.; de Leeuw, Dago M.

    2016-06-01

    A homogeneous ferroelectric single crystal exhibits only two remanent polarization states that are stable over time, whereas intermediate, or unsaturated, polarization states are thermodynamically instable. Commonly used ferroelectric materials however, are inhomogeneous polycrystalline thin films or ceramics. To investigate the stability of intermediate polarization states, formed upon incomplete, or partial, switching, we have systematically studied their retention in capacitors comprising two classic ferroelectric materials, viz. random copolymer of vinylidene fluoride with trifluoroethylene, P(VDF-TrFE), and Pb(Zr,Ti)O3. Each experiment started from a discharged and electrically depolarized ferroelectric capacitor. Voltage pulses were applied to set the given polarization states. The retention was measured as a function of time at various temperatures. The intermediate polarization states are stable over time, up to the Curie temperature. We argue that the remarkable stability originates from the coexistence of effectively independent domains, with different values of polarization and coercive field. A domain growth model is derived quantitatively describing deterministic switching between the intermediate polarization states. We show that by using well-defined voltage pulses, the polarization can be set to any arbitrary value, allowing arithmetic programming. The feasibility of arithmetic programming along with the inherent stability of intermediate polarization states makes ferroelectric materials ideal candidates for multibit data storage.

  13. Prospects and applications near ferroelectric quantum phase transitions: a key issues review

    Science.gov (United States)

    Chandra, P.; Lonzarich, G. G.; Rowley, S. E.; Scott, J. F.

    2017-11-01

    The emergence of complex and fascinating states of quantum matter in the neighborhood of zero temperature phase transitions suggests that such quantum phenomena should be studied in a variety of settings. Advanced technologies of the future may be fabricated from materials where the cooperative behavior of charge, spin and current can be manipulated at cryogenic temperatures. The progagating lattice dynamics of displacive ferroelectrics make them appealing for the study of quantum critical phenomena that is characterized by both space- and time-dependent quantities. In this key issues article we aim to provide a self-contained overview of ferroelectrics near quantum phase transitions. Unlike most magnetic cases, the ferroelectric quantum critical point can be tuned experimentally to reside at, above or below its upper critical dimension; this feature allows for detailed interplay between experiment and theory using both scaling and self-consistent field models. Empirically the sensitivity of the ferroelectric T c’s to external and to chemical pressure gives practical access to a broad range of temperature behavior over several hundreds of Kelvin. Additional degrees of freedom like charge and spin can be added and characterized systematically. Satellite memories, electrocaloric cooling and low-loss phased-array radar are among possible applications of low-temperature ferroelectrics. We end with open questions for future research that include textured polarization states and unusual forms of superconductivity that remain to be understood theoretically.

  14. Evaluation of a ferroelectric tunnel junction by ultraviolet-visible absorption using a removable liquid electrode

    Science.gov (United States)

    Lee, Hong-Sub; Kang, Kyung-Mun; Yeom, Geun Young; Park, Hyung-Ho

    2016-05-01

    Ferroelectric memristors offer a significant alternative to their redox-based analogs in resistive random access memory because a ferroelectric tunnel junction (FTJ) exhibits a memristive effect that induces resistive switching (RS) regardless of the operating current level. This RS results from a change in the ferroelectric polarization direction, allowing the FTJ to overcome the restriction encountered in redox-based memristors. Herein, the memristive effect of an FTJ was investigated by ultraviolet-visible (UV-Vis) absorption spectroscopy using a removable mercury (Hg) top electrode (TE), BaTiO3 (BTO) ferroelectric tunnel layer, La0.7Sr0.3MnO3 (LSMO) semiconductor bottom electrode, and wide-bandgap quartz (100) single-crystal substrate to determine the low-resistance state (LRS) and high-resistance state (HRS) of the FTJ. A BTO (110)/LSMO (110) polycrystal memristor involving a Hg TE showed a small memristive effect (switching ratio). This effect decreased with increasing read voltage because of a small potential barrier height. The LRS and HRS of the FTJ showed quasi-similar UV-Vis absorption spectra, consistent with the small energy difference between the valence-band maximum of BTO and Fermi level of LSMO near the interface between the LRS and HRS. This energy difference stemmed from the ferroelectric polarization and charge-screening effect of LSMO based on an electrostatic model of the FTJ.

  15. Ferroelectricity and Piezoelectricity in Free-Standing Polycrystalline Films of Plastic Crystals.

    Science.gov (United States)

    Harada, Jun; Yoneyama, Naho; Yokokura, Seiya; Takahashi, Yukihiro; Miura, Atsushi; Kitamura, Noboru; Inabe, Tamotsu

    2018-01-10

    Plastic crystals represent a unique compound class that is often encountered in molecules with globular structures. The highly symmetric cubic crystal structure of plastic crystals endows these materials with multiaxial ferroelectricity that allows a three-dimensional realignment of the polarization axes of the crystals, which cannot be achieved using conventional molecular ferroelectric crystals with low crystal symmetry. In this work, we focused our attention on malleability as another characteristic feature of plastic crystals. We have synthesized the new plastic/ferroelectric ionic crystals tetramethylammonium tetrachloroferrate(III) and tetramethylammonium bromotrichloroferrate(III), and discovered that free-standing translucent films can be easily prepared by pressing powdered samples of these compounds. The thus obtained polycrystalline films exhibit ferroelectric polarization switching and a relatively large piezoelectric response at room temperature. The ready availability of functional films demonstrates the practical utility of such plastic/ferroelectric crystals, and considering the vast variety of possible constituent cations and anions, a wide range of applications should be expected for these unique and attractive functional materials.

  16. Microstructure and Properties of the Ferroelectric-Ferromagnetic PLZT-Ferrite Composites

    Directory of Open Access Journals (Sweden)

    Dariusz Bochenek

    2018-03-01

    Full Text Available The paper presents the technology of ferroelectric-ferromagnetic ceramic composites obtained from PLZT powder (the chemical formula Pb0.98La0.02(Zr0.90Ti0.100.995O3 and ferrite powder (Ni0.64Zn0.36Fe2O4, as well as the results of X-ray powder-diffraction data (XRD measurement, microstructure, dielectric, ferroelectric, and magnetic properties of the composite samples. The ferroelectric-ferromagnetic composite (P-F was obtained by mixing and the synthesis of 90% of PLZT and 10% of ferrite powders. The XRD test of the P-F composite shows a two-phase structure derived from the PLZT component (strong peaks and the ferrite component (weak peaks. The symmetry of PLZT was identified as a rhombohedral ferroelectric phase, while the ferrite was identified as a spinel structure. Scanning electron microscope (SEM microstructure analysis of the P-F ceramic composites showed that fine grains of the PLZT component surrounded large ferrite grains. At room temperature P-F composites exhibit both ferroelectric and ferromagnetic properties. The P-F composite samples have lower values of the maximum dielectric permittivity at the Curie temperature and a higher dielectric loss compared to the PLZT ceramics, however, the exhibit overall good multiferroic properties.

  17. Integration of first-principles methods and crystallographic database searches for new ferroelectrics: Strategies and explorations

    International Nuclear Information System (INIS)

    Bennett, Joseph W.; Rabe, Karin M.

    2012-01-01

    In this concept paper, the development of strategies for the integration of first-principles methods with crystallographic database mining for the discovery and design of novel ferroelectric materials is discussed, drawing on the results and experience derived from exploratory investigations on three different systems: (1) the double perovskite Sr(Sb 1/2 Mn 1/2 )O 3 as a candidate semiconducting ferroelectric; (2) polar derivatives of schafarzikite MSb 2 O 4 ; and (3) ferroelectric semiconductors with formula M 2 P 2 (S,Se) 6 . A variety of avenues for further research and investigation are suggested, including automated structure type classification, low-symmetry improper ferroelectrics, and high-throughput first-principles searches for additional representatives of structural families with desirable functional properties. - Graphical abstract: Integration of first-principles methods with crystallographic database mining, for the discovery and design of novel ferroelectric materials, could potentially lead to new classes of multifunctional materials. Highlights: ► Integration of first-principles methods and database mining. ► Minor structural families with desirable functional properties. ► Survey of polar entries in the Inorganic Crystal Structural Database.

  18. Domain topology and domain switching kinetics in a hybrid improper ferroelectric

    Science.gov (United States)

    Huang, F.-T.; Xue, F.; Gao, B.; Wang, L. H.; Luo, X.; Cai, W.; Lu, X.-Z.; Rondinelli, J. M.; Chen, L. Q.; Cheong, S.-W.

    2016-05-01

    Charged polar interfaces such as charged ferroelectric walls or heterostructured interfaces of ZnO/(Zn,Mg)O and LaAlO3/SrTiO3, across which the normal component of electric polarization changes suddenly, can host large two-dimensional conduction. Charged ferroelectric walls, which are energetically unfavourable in general, were found to be mysteriously abundant in hybrid improper ferroelectric (Ca,Sr)3Ti2O7 crystals. From the exploration of antiphase boundaries in bilayer-perovskites, here we discover that each of four polarization-direction states is degenerate with two antiphase domains, and these eight structural variants form a Z4 × Z2 domain structure with Z3 vortices and five distinct types of domain walls, whose topology is directly relevant to the presence of abundant charged walls. We also discover a zipper-like nature of antiphase boundaries, which are the reversible creation/annihilation centres of pairs of two types of ferroelectric walls (and also Z3-vortex pairs) in 90° and 180° polarization switching. Our results demonstrate the unexpectedly rich nature of hybrid improper ferroelectricity.

  19. Comparative first-principles studies of prototypical ferroelectric materials by LDA, GGA, and SCAN meta-GGA

    Science.gov (United States)

    Zhang, Yubo; Sun, Jianwei; Perdew, John P.; Wu, Xifan

    2017-07-01

    Originating from a broken spatial inversion symmetry, ferroelectricity is a functionality of materials with an electric dipole that can be switched by external electric fields. Spontaneous polarization is a crucial ferroelectric property, and its amplitude is determined by the strength of polar structural distortions. Density functional theory (DFT) is one of the most widely used theoretical methods to study ferroelectric properties, yet it is limited by the levels of approximations in electron exchange-correlation. On the one hand, the local density approximation (LDA) is considered to be more accurate for the conventional perovskite ferroelectrics such as BaTi O3 and PbTi O3 than the generalized gradient approximation (GGA), which suffers from the so-called super-tetragonality error. On the other hand, GGA is more suitable for hydrogen-bonded ferroelectrics than LDA, which largely overestimates the strength of hydrogen bonding in general. We show here that the recently developed general-purpose strongly constrained and appropriately normed (SCAN) meta-GGA functional significantly improves over the traditional LDA/GGA for structural, electric, and energetic properties of diversely bonded ferroelectric materials with a comparable computational effort and thus enhances largely the predictive power of DFT in studies of ferroelectric materials. We also address the observed system-dependent performances of LDA and GGA for ferroelectrics from a chemical bonding point of view.

  20. Novel electronic ferroelectricity in an organic charge-order insulator investigated with terahertz-pump optical-probe spectroscopy

    Science.gov (United States)

    Yamakawa, H.; Miyamoto, T.; Morimoto, T.; Yada, H.; Kinoshita, Y.; Sotome, M.; Kida, N.; Yamamoto, K.; Iwano, K.; Matsumoto, Y.; Watanabe, S.; Shimoi, Y.; Suda, M.; Yamamoto, H. M.; Mori, H.; Okamoto, H.

    2016-01-01

    In electronic-type ferroelectrics, where dipole moments produced by the variations of electron configurations are aligned, the polarization is expected to be rapidly controlled by electric fields. Such a feature can be used for high-speed electric-switching and memory devices. Electronic-type ferroelectrics include charge degrees of freedom, so that they are sometimes conductive, complicating dielectric measurements. This makes difficult the exploration of electronic-type ferroelectrics and the understanding of their ferroelectric nature. Here, we show unambiguous evidence for electronic ferroelectricity in the charge-order (CO) phase of a prototypical ET-based molecular compound, α-(ET)2I3 (ET:bis(ethylenedithio)tetrathiafulvalene), using a terahertz pulse as an external electric field. Terahertz-pump second-harmonic-generation(SHG)-probe and optical-reflectivity-probe spectroscopy reveal that the ferroelectric polarization originates from intermolecular charge transfers and is inclined 27° from the horizontal CO stripe. These features are qualitatively reproduced by the density-functional-theory calculation. After sub-picosecond polarization modulation by terahertz fields, prominent oscillations appear in the reflectivity but not in the SHG-probe results, suggesting that the CO is coupled with molecular displacements, while the ferroelectricity is electronic in nature. The results presented here demonstrate that terahertz-pump optical-probe spectroscopy is a powerful tool not only for rapidly controlling polarizations, but also for clarifying the mechanisms of ferroelectricity. PMID:26864779

  1. The Narrowest Band Gap Ever Observed in Molecular Ferroelectrics: Hexane-1,6-diammonium Pentaiodobismuth(III).

    Science.gov (United States)

    Zhang, Han-Yue; Wei, Zhenhong; Li, Peng-Fei; Tang, Yuan-Yuan; Liao, Wei-Qiang; Ye, Heng-Yun; Cai, Hu; Xiong, Ren-Gen

    2018-01-08

    Narrow band gaps and excellent ferroelectricity are intrinsically paradoxical in ferroelectrics as the leakage current caused by an increase in the number of thermally excited carriers will lead to a deterioration of ferroelectricity. A new molecular ferroelectric, hexane-1,6-diammonium pentaiodobismuth (HDA-BiI 5 ), was now developed through band gap engineering of organic-inorganic hybrid materials. It features an intrinsic band gap of 1.89 eV, and thus represents the first molecular ferroelectric with a band gap of less than 2.0 eV. Simultaneously, low-temperature solution processing was successfully applied to fabricate high-quality ferroelectric thin films based on HDA-BiI 5 , for which high-precision controllable domain flips were realized. Owing to its narrow band gap and excellent ferroelectricity, HDA-BiI 5 can be considered as a milestone in the exploitation of molecular ferroelectrics, with promising applications in high-density data storage and photovoltaic conversion. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Writing performance assessments: how important is extended time?

    Science.gov (United States)

    Crawford, Lindy; Helwig, Robert; Tindal, Gerald

    2004-01-01

    Students in Grades 5 and 8 completed a 30-minute writing performance assessment and a writing performance assessment completed over 3 days. Assessments were evaluated on four traits (ideas, organization, conventions, and sentence fluency). A significant interaction was found at Grade 5 between length of time allotted for the assessment and students' educational classification (general or special education). Grade 5 students performed significantly better on the 3-day writing assessment, with students in special education benefiting the most. At Grade 8, there were no differences between scores on the 30-minute and the 3-day assessments. No significant differences were found in students' writing performance across various types of discourse (narrative, imaginative, persuasive, and expository); significant differences were reported across certain writing traits. We shared three hypotheses for reported differences: (a) students' proficiency with the writing process, (b) scoring scale bias, and (c) differences in the revision behaviors of developing and mature writers. Educational implications related to statewide test programs are discussed.

  3. Combined intrinsic elastocaloric and electrocaloric properties of ferroelectrics

    Science.gov (United States)

    Khassaf, H.; Patel, T.; Alpay, S. P.

    2017-04-01

    In multiferroic materials, adiabatic temperature changes can be obtained by the combined application of electric, stress, and magnetic fields. These external stimuli provide additional channels of entropy variations resulting in a multi-caloric response. In ferroelectric (FE) materials, caloric responses can be obtained with the application of electric and mechanical fields. Here, we compute the intrinsic elastocaloric and stress-mediated electrocaloric behavior of prototypical FE materials using the Landau-Devonshire theory of phase transformations with appropriate electrical and electro-mechanical boundary conditions. We show that an elastocaloric adiabatic temperature variation of 12.7 °C can be obtained in PbTiO3 with the application of uniaxial tensile stress of 500 MPa near its Curie point. This is 59% higher than its pure intrinsic electrocaloric response for an electric field difference of 100 kV/cm. Moreover, external stresses allow the maximum electro-elastocaloric response to be tuned towards room temperature. Our calculations show that relaxor FEs should exhibit large adiabatic temperature variations in relatively broad temperature ranges. These findings indicate that caloric responses in ferroic materials can be deterministically controlled and enhanced by utilizing a variety of external stimuli.

  4. Subtractive fabrication of ferroelectric thin films with precisely controlled thickness

    Science.gov (United States)

    Ievlev, Anton V.; Chyasnavichyus, Marius; Leonard, Donovan N.; Agar, Joshua C.; Velarde, Gabriel A.; Martin, Lane W.; Kalinin, Sergei V.; Maksymovych, Petro; Ovchinnikova, Olga S.

    2018-04-01

    The ability to control thin-film growth has led to advances in our understanding of fundamental physics as well as to the emergence of novel technologies. However, common thin-film growth techniques introduce a number of limitations related to the concentration of defects on film interfaces and surfaces that limit the scope of systems that can be produced and studied experimentally. Here, we developed an ion-beam based subtractive fabrication process that enables creation and modification of thin films with pre-defined thicknesses. To accomplish this we transformed a multimodal imaging platform that combines time-of-flight secondary ion mass spectrometry with atomic force microscopy to a unique fabrication tool that allows for precise sputtering of the nanometer-thin layers of material. To demonstrate fabrication of thin-films with in situ feedback and control on film thickness and functionality we systematically studied thickness dependence of ferroelectric switching of lead-zirconate-titanate, within a single epitaxial film. Our results demonstrate that through a subtractive film fabrication process we can control the piezoelectric response as a function of film thickness as well as improve on the overall piezoelectric response versus an untreated film.

  5. Bending-Induced Giant Polarization in Ferroelectric MEMS Diaphragm

    KAUST Repository

    Wang, Zhihong

    2016-09-09

    The polarization induced by the strain gradient, i.e. the flexoelectric effect, has been observed in a micromachined Pb(Zr0.52Ti0.48)O3 (PZT) diaphragms. Applying air pressure to bend a flat diaphragm which initially does not exhibit any electromechanical coupling can induce a resonance peak in its impedance spectrum. This result supposes that bending, thus the strain gradient in the diaphragm causes polarization in PZT film. We also investigated the switching behaviors of the polarization in response to an external electric field in a bent diaphragm and further quantified the polarization induced by the strain gradient. The effective flexoelectric coefficient of the PZT film has been calculated as large as 2.0 × 10−4 C/m. A giant flexoelectric polarization of the order of 1 μC/cm2 was characterized which is of the same order of magnitude as the normal remnant ferroelectric polarization of PZT film. The suggested explanation for the giant polarization is the large strain gradient in the diaphragm and the strain gradient induced reorientation of the polar nanodomains.

  6. Ferroelectric and photocatalytic behavior of bismuth ferrite nano wire

    Science.gov (United States)

    William, R. V.; Marikani, A.; Madhavan, D.

    2016-05-01

    Multiferroic bismuth ferrite nanowires are prepared through polyol method with an average diameter of 35 nm with a narrow size distribution. The band gap was determined to be 2.10 eV, indicating their potential application as visible-light-response photo catalyst. The magnificent photocatalytic behaviors of BiFeO3 nanowires are understood from the methyl violet degradation under visible light irradiation. Moreover, the nano-wire takes only a lesser time for the diffusion of electron-hole pair from the surface of the sample. Further the BiFeO3 nano-wire was characterized using XRD, SEM, and U-V. The ferroelectric studies of BiFeO3 nano-wire show a frequency dependent property and maximum coercivity of 2.7 V/cm were achieved with a remanent polarization at 0.5 µC/cm2 at the frequency 4 kHz. The coercivity of BiFeO3 nano wire changes with variation of frequency from 1 kHz to 4 kHz.

  7. Ferroelectric and photocatalytic behavior of bismuth ferrite nano wire

    Energy Technology Data Exchange (ETDEWEB)

    William, R. V.; Marikani, A., E-mail: amari@mepcoeng.ac.in [Department of Physics, Mepco Schlenk Engineering College, Sivakasi – 626 005, Tamil Nadu (India); Madhavan, D. [Department of Chemistry, Mepco Schlenk Engineering College, Sivakasi – 626 005, Tamil Nadu (India)

    2016-05-23

    Multiferroic bismuth ferrite nanowires are prepared through polyol method with an average diameter of 35 nm with a narrow size distribution. The band gap was determined to be 2.10 eV, indicating their potential application as visible-light-response photo catalyst. The magnificent photocatalytic behaviors of BiFeO{sub 3} nanowires are understood from the methyl violet degradation under visible light irradiation. Moreover, the nano-wire takes only a lesser time for the diffusion of electron-hole pair from the surface of the sample. Further the BiFeO{sub 3} nano-wire was characterized using XRD, SEM, and U-V. The ferroelectric studies of BiFeO{sub 3} nano-wire show a frequency dependent property and maximum coercivity of 2.7 V/cm were achieved with a remanent polarization at 0.5 µC/cm{sup 2} at the frequency 4 kHz. The coercivity of BiFeO{sub 3} nano wire changes with variation of frequency from 1 kHz to 4 kHz.

  8. A quantum informed continuum model for ferroelectric and flexoelectric materials

    Science.gov (United States)

    Oates, William S.

    2013-04-01

    Correlations between quantum mechanics and continuum mechanics are investigated by exploring relations based on the electron density and electrostatic forces within an atomic lattice in ferroelectric materials. Theoretically, it is shown that anisotropic stress is dependent upon electrostatic forces that originate from the quadrupole density. This relation is directly determined if the nuclear charge and electron density are known. The result is an extension of the Hellmann-Feynman theory used to quantify stresses based on electrostatics. Further, flexoelectricity is found to be proportional to the next two higher order poles. These relations are obtained by correlating a nucleus-nucleus potential and nucleus-electron potential with the deformation gradient and second order gradient. An example is given for barium titanate by solving the electron density using density function theory (DFT) calculations. Changes in energy and stress under different lattice geometric constraints are modeled and compared to nonlinear continuum mechanics to understand differences in formulating a model directly from DFT calculations versus a nonlinear continuum model that uses polarization versus the quadrupole density as the order parameter.

  9. Electronic Model of a Ferroelectric Field Effect Transistor

    Science.gov (United States)

    MacLeod, Todd C.; Ho, Fat Duen; Russell, Larry (Technical Monitor)

    2001-01-01

    A pair of electronic models has been developed of a Ferroelectric Field Effect transistor. These models can be used in standard electrical circuit simulation programs to simulate the main characteristics of the FFET. The models use the Schmitt trigger circuit as a basis for their design. One model uses bipolar junction transistors and one uses MOSFET's. Each model has the main characteristics of the FFET, which are the current hysterisis with different gate voltages and decay of the drain current when the gate voltage is off. The drain current from each model has similar values to an actual FFET that was measured experimentally. T'he input and o Output resistance in the models are also similar to that of the FFET. The models are valid for all frequencies below RF levels. No attempt was made to model the high frequency characteristics of the FFET. Each model can be used to design circuits using FFET's with standard electrical simulation packages. These circuits can be used in designing non-volatile memory circuits and logic circuits and is compatible with all SPICE based circuit analysis programs. The models consist of only standard electrical components, such as BJT's, MOSFET's, diodes, resistors, and capacitors. Each model is compared to the experimental data measured from an actual FFET.

  10. Importance measures

    International Nuclear Information System (INIS)

    Gomez Cobo, A.

    1997-01-01

    The presentation discusses the following: general concepts of importance measures; example fault tree, used to illustrate importance measures; Birnbaum's structural importance; criticality importance; Fussel-Vesely importance; upgrading function; risk achievement worth; risk reduction worth

  11. Extended Adjuvant Therapy for Breast Cancer

    Science.gov (United States)

    An NCI Cancer Currents blog on findings from a recent clinical trial which showed that extending adjuvant therapy with an aromatase inhibitor can have important benefits for some women with early-stage cancer.

  12. Ferroelectric and electrical characterization of multiferroic BiFeO3 at the single nanoparticle level

    Science.gov (United States)

    Vasudevan, R. K.; Bogle, K. A.; Kumar, A.; Jesse, S.; Magaraggia, R.; Stamps, R.; Ogale, S. B.; Potdar, H. S.; Nagarajan, V.

    2011-12-01

    Ferroelectric BiFeO3 (BFO) nanoparticles deposited on epitaxial substrates of SrRuO3 (SRO) and La1-xSrxMnO3 (LSMO) were studied using band excitation piezoresponse spectroscopy (BEPS), piezoresponse force microscopy (PFM), and ferromagnetic resonance (FMR). BEPS confirms that the nanoparticles are ferroelectric in nature. Switching behavior of nanoparticle clusters were studied and showed evidence for inhomogeneous switching. The dimensionality of domains within nanoparticles was found to be fractal in nature, with a dimensionality constant of ˜1.4, on par with ferroelectric BFO thin-films under 100 nm in thickness. Ferromagnetic resonance studies indicate BFO nanoparticles only weakly affect the magnetic response of LSMO.

  13. Ferroelectric and electrical characterization of multiferroic BiFeO3 at the single nanoparticle level

    Energy Technology Data Exchange (ETDEWEB)

    Vasudevan, Rama K [ORNL; Bogle, K A [University of New South Wales, Sydney, Australia; Kumar, Amit [ORNL; Jesse, Stephen [ORNL; Magaraggia, R [University of Glasgow; Stamps, R [University of Glasgow; Ogale, S [National Chemical Laboratory, India; Potdar, H S [National Chemical Laboratory, India

    2011-01-01

    Ferroelectric BiFeO3 (BFO) nanoparticles deposited on epitaxial substrates of SrRuO3 (SRO) and La1xSrxMnO3 (LSMO) were studied using band excitation piezoresponse spectroscopy (BEPS), piezoresponse force microscopy (PFM), and ferromagnetic resonance (FMR). BEPS confirms that the nanoparticles are ferroelectric in nature. Switching behavior of nanoparticle clusters were studied and showed evidence for inhomogeneous switching. The dimensionality of domains within nanoparticles was found to be fractal in nature, with a dimensionality constant of 1.4, on par with ferroelectric BFO thin-films under 100 nm in thickness. Ferromagnetic resonance studies indicate BFO nanoparticles only weakly affect the magnetic response of LSMO.

  14. Universal ferroelectric switching dynamics of vinylidene fluoride-trifluoroethylene copolymer films

    KAUST Repository

    Hu, Weijin

    2014-04-24

    In this work, switching dynamics of poly(vinylidene fluoride- trifluoroethylene) [P(VDF-TrFE)] copolymer films are investigated over unprecedentedly wide ranges of temperature and electric field. Remarkably, domain switching of copolymer films obeys well the classical domain nucleation and growth model although the origin of ferroelectricity in organic ferroelectric materials inherently differs from the inorganic counterparts. A lower coercivity limit of 50 ...MV/m and 180 domain wall energy of 60 ...mJ/m 2 are determined for P(VDF-TrFE) films. Furthermore, we discover in copolymer films an anomalous temperature-dependent crossover behavior between two power-law scaling regimes of frequency-dependent coercivity, which is attributed to the transition between flow and creep motions of domain walls. Our observations shed new light on the switching dynamics of semi-crystalline ferroelectric polymers, and such understandings are critical for realizing their reliable applications.

  15. Dielectric relaxation and conductivity behavior in modified lead titanate ferroelectric ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Pelaiz-Barranco, A; Gonzalez Abreu, Y [Facultad de Fisica-Instituto de Ciencia y TecnologIa de Materiales, Universidad de La Habana. San Lazaro y L, Vedado. La Habana 10400 (Cuba); Lopez-Noda, R [Departamento de Fisica Aplicada, Instituto de Cibernetica, Matematica y Fisica, ICIMAF, CITMA 15 no. 551, Vedado. La Habana 10400 (Cuba)], E-mail: pelaiz@fisica.uh.cu

    2008-12-17

    The frequency and temperature dielectric response and the electrical conductivity behavior around the ferroelectric-paraelectric phase transition temperature are studied in the ferroelectric ceramic system (Pb{sub 0.88}Sm{sub 0.08})(Ti{sub 1-x}Mn{sub x})O{sub 3}, with x = 0,1,3 at.%. The contribution of the conductive processes to the dielectric relaxation for the studied frequency range is discussed considering the oxygen vacancies as the most mobile ionic defects in perovskites, whose concentration seems to increase with the manganese content. The relaxation processes below the transition temperature are associated with the decay of the polarization in the oxygen-defect-related dipoles due to their hopping conduction. Above the ferroelectric-paraelectric phase transition temperature, the electrical conduction is governed by the thermal excitation of carriers from oxygen vacancies; the relaxation processes are associated with ionic dipoles distorted by the oxygen vacancies.

  16. Growth and Switching of Ferroelectric Nanocrystals from Ultrathin Film of Copolymer of Vinylidene Fluoride and Trifluoroethylene

    Directory of Open Access Journals (Sweden)

    R. Gaynutdinov

    2011-01-01

    Full Text Available The ferroelectric nanocrystals of the copolymer of vinylidene fluoride and trifluoroethylene P(VDF-TrFE were grown from ultrathin Langmuir-Blodgett (LB films on Si substrate. The annealing of ultrathin LB films with thickness of 3 monolayers (5 nm in air in paraelectric phase at temperature 125∘C was performed. The self-assembly leads to the growth of nanocrystals of ferroelectric copolymer 15–25 nm thick and 100–200 nm in diameter. The nanocrystals presumably belong to orthorhombic space group, where axis 2 is the direction of spontaneous polarization (and normal to substrate. By means of atomic force microscopy (AFM, the kinetics of ferroelectric nanocrystals growth and their switching were investigated. The obtained results confirm the conclusions that copolymer nanocrystals are candidates for high-density nonvolatile storage media devices.

  17. NOx Binding and Dissociation: Enhanced Ferroelectric Surface Chemistry by Catalytic Monolayers

    Science.gov (United States)

    Kakekhani, Arvin; Ismail-Beigi, Sohrab

    2013-03-01

    NOx molecules are regulated air pollutants produced during automotive combustion. As part of an effort to design viable catalysts for NOx decomposition operating at higher temperatures that would allow for improved fuel efficiency, we examine NOx chemistry on ferroelectric perovskite surfaces. Changing the direction of ferroelectric polarization can modify surface electronic properties and may lead to switchable surface chemistry. Here, we describe our recent work on potentially enhanced surface chemistry using catalytic RuO2 monolayers on perovskite ferroelectric substrates. In addition to thermodynamic stabilization of the RuO2 layer, we present results on the polarization-dependent binding of NO, O2, N2, and atomic O and N. We present results showing that one key problem with current catalysts, involving the difficulty of releasing dissociation products (especially oxygen), can be ameliorated by this method. Primary support from Toyota Motor Engineering and Manufacturing, North America, Inc.

  18. Boost up carrier mobility for ferroelectric organic transistor memory via buffering interfacial polarization fluctuation.

    Science.gov (United States)

    Sun, Huabin; Wang, Qijing; Li, Yun; Lin, Yen-Fu; Wang, Yu; Yin, Yao; Xu, Yong; Liu, Chuan; Tsukagoshi, Kazuhito; Pan, Lijia; Wang, Xizhang; Hu, Zheng; Shi, Yi

    2014-11-27

    Ferroelectric organic field-effect transistors (Fe-OFETs) have been attractive for a variety of non-volatile memory device applications. One of the critical issues of Fe-OFETs is the improvement of carrier mobility in semiconducting channels. In this article, we propose a novel interfacial buffering method that inserts an ultrathin poly(methyl methacrylate) (PMMA) between ferroelectric polymer and organic semiconductor layers. A high field-effect mobility (μFET) up to 4.6 cm(2) V(-1) s(-1) is obtained. Subsequently, the programming process in our Fe-OFETs is mainly dominated by the switching between two ferroelectric polarizations rather than by the mobility-determined charge accumulation at the channel. Thus, the "reading" and "programming" speeds are significantly improved. Investigations show that the polarization fluctuation at semiconductor/insulator interfaces, which affect the charge transport in conducting channels, can be suppressed effectively using our method.

  19. Reducing contact resistance in ferroelectric organic transistors by buffering the semiconductor/dielectric interface

    Science.gov (United States)

    Sun, Huabin; Yin, Yao; Wang, Qijing; Jun, Qian; Wang, Yu; Tsukagoshi, Kazuhito; Wang, Xizhang; Hu, Zheng; Pan, Lijia; Zheng, Youdou; Shi, Yi; Li, Yun

    2015-08-01

    The reduction of contact resistance in ferroelectric organic field-effect transistors (Fe-OFETs) by buffering the interfacial polarization fluctuation was reported. An ultrathin poly(methyl methacrylate) layer was inserted between the ferroelectric polymer and organic semiconductor layers. The contact resistance was significantly reduced to 55 kΩ cm. By contrast, Fe-OFETs without buffering exhibited a significantly larger contact resistance of 260 kΩ cm. Results showed that such an enhanced charge injection was attributed to the buffering effect at the semiconductor/ferroelectric interface, which narrowed the trap distribution of the organic semiconductor in the contact region. The presented work provided an efficient method of lowering the contact resistance in Fe-OFETs, which is beneficial for the further development of Fe-OFETs.

  20. Characteristics of electron emission from PZT ferroelectric cathode under strong accelerating field

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Yasushi [Department of Energy Sciences, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama (Japan)]. E-mail: hayashi@es.titech.ac.jp; Hotta, Eiki [Department of Energy Sciences, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama (Japan); Flechtner, Donald [High Voltage Laboratory, Cornell University, Ithaca, NY (United States)

    2002-02-07

    We have studied emission characteristics of a PZT ferroelectric cathode under the influence of a strong accelerating field by varying the triggering conditions. The beam current pulse reveals a rising and a steady phase. In the rising phase, the time variation of the beam current is found to be linearly dependent on both the trigger voltage and the diode voltage at the time when the current starts. In the steady phase, field emission characteristics are observed. The results show that the diode voltage is not only accelerating the emitted electrons but also assisting the electron emission from the ferroelectric cathode. An empirical model is proposed and is found to yield a reasonable beam current pulse when the electric field on the surface of the cathode is uniformly distributed. It also provides us with a new possibility to diagnose the emission process of a ferroelectric electron gun. (author)

  1. Device performance of ferroelectric/correlated oxide heterostructures for non-volatile memory applications

    International Nuclear Information System (INIS)

    Hoffman, J; Ahn, C H; Hong, X

    2011-01-01

    Ferroelectric field effect devices offer the possibility of non-volatile data storage. Attempts to integrate perovskite ferroelectric materials with silicon semiconductors, however, have been largely unsuccessful in creating non-volatile, nondestructive read memory elements because of difficulties in controlling the ferroelectric/semiconductor interface. Correlated oxide systems have been explored as alternative channel materials to form all-perovskite field effect devices. We examine a non-volatile memory using an electric-field-induced metal-insulator transition in PbZr 0.2 Ti 0.8 O 3 /La 1-x Sr x MnO 3 (PZT/LSMO), PZT/La 1-x Ca x MnO 3 (PZT/LCMO) and PZT/La 1-x Sr x CoO 3 (PZT/LSCO) devices. The performance of these devices in the areas of switching time and retention are discussed.

  2. Device performance of ferroelectric/correlated oxide heterostructures for non-volatile memory applications.

    Science.gov (United States)

    Hoffman, J; Hong, X; Ahn, C H

    2011-06-24

    Ferroelectric field effect devices offer the possibility of non-volatile data storage. Attempts to integrate perovskite ferroelectric materials with silicon semiconductors, however, have been largely unsuccessful in creating non-volatile, nondestructive read memory elements because of difficulties in controlling the ferroelectric/semiconductor interface. Correlated oxide systems have been explored as alternative channel materials to form all-perovskite field effect devices. We examine a non-volatile memory using an electric-field-induced metal-insulator transition in PbZr(0.2)Ti(0.8)O(3)/La(1 - x)Sr(x)MnO(3) (PZT/LSMO), PZT/La(1 - x)Ca(x)MnO(3) (PZT/LCMO) and PZT/La(1 - x)Sr(x)CoO(3) (PZT/LSCO) devices. The performance of these devices in the areas of switching time and retention are discussed.

  3. Impact of the electrode material and shape on performance of intrinsically tunable ferroelectric FBARs.

    Science.gov (United States)

    Vorobiev, Andrei; Gevorgian, Spartak

    2014-05-01

    Experiment-based analysis of losses in tunable ferroelectric xBiFeO3-(1-x)BaTiO3 (BF-BT) film bulk acoustic wave resonators (FBARs) is reported. The Q-factors, effective coupling coefficients, and tunabilities are considered as functions of surface roughness of the ferroelectric film, the acoustic impedance and shape of the electrodes/interconnecting strips, leakage of acoustic waves into the substrate via Bragg reflector, and the relative thicknesses of the electrodes and ferroelectric film. Compared with Al, the high acoustic impedance of Pt electrodes provides higher Q-factor, coupling coefficient, and tunability. However, using Pt in the interconnecting strips results in reduction of the Q-factor.

  4. Nanoscale ferroelectrics and multiferroics key processes and characterization issues, and nanoscale effects

    CERN Document Server

    Alguero, Miguel

    2016-01-01

    This book reviews the key issues in processing and characterization of nanoscale ferroelectrics and multiferroics, and provides a comprehensive description of their properties, with an emphasis in differentiating size effects of extrinsic ones like boundary or interface effects. Recently described nanoscale novel phenomena are also addressed. Organized into three parts it addresses key issues in processing (nanostructuring), characterization (of the nanostructured materials) and nanoscale effects. Taking full advantage of the synergies between nanoscale ferroelectrics and multiferroics, it covers materials nanostructured at all levels, from ceramic technologies like ferroelectric nanopowders, bulk nanostructured ceramics and thick films, and magnetoelectric nanocomposites, to thin films, either polycrystalline layer heterostructures or epitaxial systems, and to nanoscale free standing objects with specific geometries, such as nanowires and tubes at different levels of development. The book is developed from t...

  5. Vortex Domain Structure in Ferroelectric Nanoplatelets and Control of its Transformation by Mechanical Load

    Science.gov (United States)

    Chen, W. J.; Zheng, Yue; Wang, Biao

    2012-01-01

    Vortex domain patterns in low-dimensional ferroelectrics and multiferroics have been extensively studied with the aim of developing nanoscale functional devices. However, control of the vortex domain structure has not been investigated systematically. Taking into account effects of inhomogeneous electromechanical fields, ambient temperature, surface and size, we demonstrate significant influence of mechanical load on the vortex domain structure in ferroelectric nanoplatelets. Our analysis shows that the size and number of dipole vortices can be controlled by mechanical load, and yields rich temperature-stress (T-S) phase diagrams. Simulations also reveal that transformations between “vortex states” induced by the mechanical load are possible, which is totally different from the conventional way controlled on the vortex domain by the electric field. These results are relevant to application of vortex domain structures in ferroelectric nanodevices, and suggest a novel route to applications including memories, mechanical sensors and transducers. PMID:23150769

  6. Electric field and temperature scaling of polarization reversal in silicon doped hafnium oxide ferroelectric thin films

    International Nuclear Information System (INIS)

    Zhou, Dayu; Guan, Yan; Vopson, Melvin M.; Xu, Jin; Liang, Hailong; Cao, Fei; Dong, Xianlin; Mueller, Johannes; Schenk, Tony; Schroeder, Uwe

    2015-01-01

    HfO 2 -based binary lead-free ferroelectrics show promising properties for non-volatile memory applications, providing that their polarization reversal behavior is fully understood. In this work, temperature-dependent polarization hysteresis measured over a wide applied field range has been investigated for Si-doped HfO 2 ferroelectric thin films. Our study indicates that in the low and medium electric field regimes (E < twofold coercive field, 2E c ), the reversal process is dominated by the thermal activation on domain wall motion and domain nucleation; while in the high-field regime (E > 2E c ), a non-equilibrium nucleation-limited-switching mechanism dominates the reversal process. The optimum field for ferroelectric random access memory (FeRAM) applications was determined to be around 2.0 MV/cm, which translates into a 2.0 V potential applied across the 10 nm thick films

  7. Domain wall conductivity in semiconducting hexagonal ferroelectric TbMnO3 thin films

    International Nuclear Information System (INIS)

    Kim, D J; Gruverman, A; Connell, J G; Seo, S S A

    2016-01-01

    Although enhanced conductivity of ferroelectric domain boundaries has been found in BiFeO 3 and Pb(Zr,Ti)O 3 films as well as hexagonal rare-earth manganite single crystals, the mechanism of the domain wall conductivity is still under debate. Using conductive atomic force microscopy, we observe enhanced conductance at the electrically-neutral domain walls in semiconducting hexagonal ferroelectric TbMnO 3 thin films where the structure and polarization direction are strongly constrained along the c-axis. This result indicates that domain wall conductivity in ferroelectric rare-earth manganites is not limited to charged domain walls. We show that the observed conductivity in the TbMnO 3 films is governed by a single conduction mechanism, namely, the back-to-back Schottky diodes tuned by the segregation of defects. (paper)

  8. A hysteresis model for ferroelectric ceramics with mechanism for minor loops

    International Nuclear Information System (INIS)

    Wang, Dan; Wang, Linxiang; Melnik, Roderick

    2017-01-01

    In the current paper, the coupled hysteretic behaviors of ferroelectric ceramics subjected to combined electromechanical stimulations are modeled. For a single grain, the polarization orientation switching process is modeled by employing the Euler–Lagrange equations and formulated as a coupled differential equation system. For ferroelectric ceramics, the principle axis orientations of the individual grains are assumed to be distributed in a certain profile, the behaviors of the ceramics are modeled as a weighted combination of the response of each grain. The influence of intergranular interactions is carefully discussed. Numerical results for the minor hysteresis loops in strain and polarization are demonstrated. Comparisons between these results and their experimental counterparts are presented to illustrate the attributes of the proposed model. - Highlights: • Coupled hysteresis in ferroelectric ceramics is efficiently captured. • Intergranular interactions are naturally incorporated into the model. • Mechanism for minor loops generation is well illustrated.

  9. Acoustic Imaging Frequency Dynamics of Ferroelectric Domains by Atomic Force Microscopy

    International Nuclear Information System (INIS)

    Kun-Yu, Zhao; Hua-Rong, Zeng; Hong-Zhang, Song; Sen-Xing, Hui; Guo-Rong, Li; Qing-Rui, Yin; Shimamura, Kiyoshi; Kannan, Chinna Venkadasamy; Villora, Encarnacion Antonia Garcia; Takekawa, Shunji; Kitamura, Kenji

    2008-01-01

    We report the acoustic imaging frequency dynamics of ferroelectric domains by low-frequency acoustic probe microscopy based on the commercial atomic force microscopy It is found that ferroelectric domain could be firstly visualized at lower frequency down to 0.5 kHz by AFM-based acoustic microscopy The frequency-dependent acoustic signal revealed a strong acoustic response in the frequency range from 7kHz to 10kHz, and reached maximum at 8.1kHz. The acoustic contrast mechanism can be ascribed to the different elastic response of ferroelectric microstructures to local elastic stress fields, which is induced by the acoustic wave transmitting in the sample when the piezoelectric transducer is vibrating and exciting acoustic wave under ac electric fields due to normal piezoelectric effects. (condensed matter: electronic structure, electrical, magnetic, and optical properties)

  10. Oxide Thin Films and Nano-heterostructures for Microelectronics (MOS Structures, Ferroelectric Materials and Multiferroic Heterostructures)

    Science.gov (United States)

    Pintilie, I.; Pintilie, L.; Filip, L. D.; Nistor, L. C.; Ghica, C.

    Oxide materials are becoming of increasing interest due to their large variety of physical properties such as dielectric, magnetism, superconductivity, conductivity, ferroelectricity, multiferroism, etc. In addition, interfacing oxides with other materials is conferring new or better device functionalities. The main physical properties of oxides interfaces and their impact on the electrical properties of interest for microelectronic applications are presented. Further on, this subchapter is also devoted to the investigation and understanding of interface effects observed in heterostructures containing linear (SiO2) and non-linear (ferroelectrics) dielectrics in combination with wide-band gap semiconductor materials (e.g. ZnO and SiC) with special emphasis on size effects, interface quality and the opportunity to control the emergent phenomena in Metal-Oxide-Semiconductor (MOS) and Metal-Ferroelectric-Semiconductor (MFS) materials systems.

  11. A hysteresis model for ferroelectric ceramics with mechanism for minor loops

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Dan [State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027 Hangzhou (China); MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, ON N2L 3L5 (Canada); Wang, Linxiang, E-mail: wanglx236@zju.edu.cn [State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, 310027 Hangzhou (China); Melnik, Roderick [MS2Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, ON N2L 3L5 (Canada)

    2017-01-30

    In the current paper, the coupled hysteretic behaviors of ferroelectric ceramics subjected to combined electromechanical stimulations are modeled. For a single grain, the polarization orientation switching process is modeled by employing the Euler–Lagrange equations and formulated as a coupled differential equation system. For ferroelectric ceramics, the principle axis orientations of the individual grains are assumed to be distributed in a certain profile, the behaviors of the ceramics are modeled as a weighted combination of the response of each grain. The influence of intergranular interactions is carefully discussed. Numerical results for the minor hysteresis loops in strain and polarization are demonstrated. Comparisons between these results and their experimental counterparts are presented to illustrate the attributes of the proposed model. - Highlights: • Coupled hysteresis in ferroelectric ceramics is efficiently captured. • Intergranular interactions are naturally incorporated into the model. • Mechanism for minor loops generation is well illustrated.

  12. Flexoelectric piezoelectric metamaterials based on the bending of ferroelectric ceramic wafers

    Science.gov (United States)

    Zhang, Xiaotong; Liu, Jiliang; Chu, Mingjin; Chu, Baojin

    2016-08-01

    Conventional piezoelectric ceramics lose their piezoelectric properties near the Curie temperature (Tc), which limits their application at high temperatures. One approach to resolving this issue is to design flexoelectric piezoelectric composites or piezoelectric metamaterials by exploiting the flexoelectric effect of the ferroelectric materials. In this work, an experimental study on two designs of flexoelectric metamaterials is demonstrated. When a ferroelectric ceramic wafer is placed on a metal ring or has a domed shape, which is produced through the diffusion between two pieces of ferroelectric ceramic of different compositions at high temperatures, an apparent piezoelectric response originating from the flexoelectric effect can be measured under a stress. The apparent piezoelectric response of the materials based on the designs can be sustained well above Tc. This study provides an approach to designing materials for high-temperature electromechanical applications.

  13. Boost Up Carrier Mobility for Ferroelectric Organic Transistor Memory via Buffering Interfacial Polarization Fluctuation

    Science.gov (United States)

    Sun, Huabin; Wang, Qijing; Li, Yun; Lin, Yen-Fu; Wang, Yu; Yin, Yao; Xu, Yong; Liu, Chuan; Tsukagoshi, Kazuhito; Pan, Lijia; Wang, Xizhang; Hu, Zheng; Shi, Yi

    2014-11-01

    Ferroelectric organic field-effect transistors (Fe-OFETs) have been attractive for a variety of non-volatile memory device applications. One of the critical issues of Fe-OFETs is the improvement of carrier mobility in semiconducting channels. In this article, we propose a novel interfacial buffering method that inserts an ultrathin poly(methyl methacrylate) (PMMA) between ferroelectric polymer and organic semiconductor layers. A high field-effect mobility (μFET) up to 4.6 cm2 V-1 s-1 is obtained. Subsequently, the programming process in our Fe-OFETs is mainly dominated by the switching between two ferroelectric polarizations rather than by the mobility-determined charge accumulation at the channel. Thus, the ``reading'' and ``programming'' speeds are significantly improved. Investigations show that the polarization fluctuation at semiconductor/insulator interfaces, which affect the charge transport in conducting channels, can be suppressed effectively using our method.

  14. Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions

    KAUST Repository

    Jin Hu, Wei

    2016-02-29

    Ferroelectric tunnel junctions (FTJs) have recently attracted considerable interest as a promising candidate for applications in the next-generation non-volatile memory technology. In this work, using an ultrathin (3 nm) ferroelectric Sm0.1Bi0.9FeO3 layer as the tunnelling barrier and a semiconducting Nb-doped SrTiO3 single crystal as the bottom electrode, we achieve a tunnelling electroresistance as large as 105. Furthermore, the FTJ memory states could be modulated by light illumination, which is accompanied by a hysteretic photovoltaic effect. These complimentary effects are attributed to the bias- and light-induced modulation of the tunnel barrier, both in height and width, at the semiconductor/ferroelectric interface. Overall, the highly tunable tunnelling electroresistance and the correlated photovoltaic functionalities provide a new route for producing and non-destructively sensing multiple non-volatile electronic states in such FTJs.

  15. Soft tilt and rotational modes in the hybrid improper ferroelectric Ca3Mn2O7

    Science.gov (United States)

    Glamazda, A.; Wulferding, D.; Lemmens, P.; Gao, B.; Cheong, S.-W.; Choi, K.-Y.

    2018-03-01

    Raman spectroscopy is employed to probe directly the soft rotation and tilting modes, which are two primary order parameters predicted in the hybrid improper ferroelectric material Ca3Mn2O7 . We observe a giant softening of the 107 -cm-1 octahedron tilting mode by 26 cm-1 on heating through the structural transition from a ferroelectric to paraelectric orthorhombic phase. This is contrasted by a small softening of the 150 -cm-1 rotational mode by 6 cm-1. In the intermediate phase, the competing soft modes with different symmetries coexist, bringing about many-faceted anomalies in spin excitations and lattice vibrations. Our work demonstrates that the soft rotation and tilt patterns, relying on a phase-transition path, are a key factor in determining ferroelectric, magnetic, and lattice properties of Ca3Mn2O7 .

  16. Long-Range Effects on the Pyroelectric Coefficient of Ferroelectric Superlattice

    Science.gov (United States)

    Dong, Wen; Yao, Dong-Lai; Wu, Yin-Zhong; Li, Zhen-Ya

    2002-12-01

    Long-range effects on the pyroelectric coefficient of a ferroelectric superlattice consisting of two different ferroelectric materials are investigated based on the transverse Ising model. The effects of the interfacial coupling and the thickness of one period on the pyroelectric coefficient of the ferroelectric superlattice are studied by taking into account the long-range interaction. It is found that with the increase of the strength of the long-range interaction, the pyroelectric coefficient decreases when the temperature is lower than the phase transition temperature; the number of the pyroelectric peaks decreases gradually and the phase transition temperature increases. It is also found that with the decrease of the interfacial coupling and the thickness of one period, the phase transition temperature and the number of the pyroelectric peaks decrease. The project supported by National Natural Science Foundation of China under Grant No. 10 174 049 and Natural Science Foundation of Jiangsu Education Committee of China under Grant No. 00KJB140009

  17. Extending quantum mechanics entails extending special relativity

    International Nuclear Information System (INIS)

    Aravinda, S; Srikanth, R

    2016-01-01

    The complementarity between signaling and randomness in any communicated resource that can simulate singlet statistics is generalized by relaxing the assumption of free will in the choice of measurement settings. We show how to construct an ontological extension for quantum mechanics (QMs) through the oblivious embedding of a sound simulation protocol in a Newtonian spacetime. Minkowski or other intermediate spacetimes are ruled out as the locus of the embedding by virtue of hidden influence inequalities. The complementarity transferred from a simulation to the extension unifies a number of results about quantum non-locality, and implies that special relativity has a different significance for the ontological model and for the operational theory it reproduces. Only the latter, being experimentally accessible, is required to be Lorentz covariant. There may be certain Lorentz non-covariant elements at the ontological level, but they will be inaccessible at the operational level in a valid extension. Certain arguments against the extendability of QM, due to Conway and Kochen (2009) and Colbeck and Renner (2012), are attributed to their assumption that the spacetime at the ontological level has Minkowski causal structure. (paper)

  18. Electronic ferroelectricity in carbon-based systems: from reality of organic conductors to promises of polymers and graphene nano-ribbons

    International Nuclear Information System (INIS)

    Kirova, Natasha; Brazovskii, Serguei

    2014-01-01

    Ferroelectricity is a rising demand in fundamental and applied solid state physics. Ferroelectrics are used in microelectronics as active gate materials, in capacitors, electro-optical-acoustic modulators, etc. There is a particular demand for plastic ferroelectrics, e.g. as a sensor for acoustic imaging in medicine and beyond, in shapeable capacitors, etc. Microscopic mechanisms of ferroelectric polarization in traditional materials are typically ionic. In this talk we discuss the electronic ferroelectrics – carbon-based materials: organic crystals, conducting polymers and graphene nano-ribbons. The motion of walls, separating domains with opposite electric polarisation, can be influenced and manipulated by terahertz and infra-red range optics

  19. Giant Magnetoelectric Energy Conversion Utilizing Inter-Ferroelectric Phase Transformations in Ferroics

    Science.gov (United States)

    Finkel, Peter; Staruch, Margo

    Phase transition-based electromechanical transduction permits achieving a non-resonant broadband mechanical energy conversion see (Finkel et al Actuators, 5 [1] 2. (2015)) , the idea is based on generation high energy density per cycle , at least 100x of magnitude larger than linear piezoelectric type generators in stress biased [011]cut relaxor ferroelectric Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 (PIN-PMN-PT) single crystal can generate reversible strain >0.35% at remarkably low fields (0.1 MV/m) for tens of millions of cycles. Recently we demonstrated that large strain and polarization rotation can be generated for over 40 x 106cycles with little fatigue by realization of reversible ferroelectric-ferroelectric phase transition in [011] cut PIN-PMN-PT relaxor ferroelectric single crystal while sweeping through the transition with a low applied electric field hybrid system comprised of highly magnetostrictive alloymFe81.4Ga18.6 (Galfenol), and lead indium niobate-lead magnesium niobate-lead titanate (PIN-PMN-PT) domain engineered relaxor ferroelectric single crystal. A small time-varying magnetic field applied to this system causes the magnetostrictive element to expand, and the resulting stress forces the phase change in the relaxor ferroelectric single crystal. ME coupling coefficient was fond to achieve 80 V/cm Oe near the FR-FO phase transition that is at least 100X of magnitude higher than any currently reported values.

  20. Liquid crystals with novel terminal chains as ferroelectric liquid crystal hosts

    International Nuclear Information System (INIS)

    Cosquer, G.Y.

    2000-02-01

    Changes to the molecular structure of liquid crystals can have a significant effect upon their mesomorphism and ferroelectric properties. Most of the research in liquid crystal for display applications concentrates on the design and synthesis of novel mesogenic cores to which straight terminal alkyl or alkoxy chains are attached. However, little is known about the effects upon the mesomorphism and ferroelectric properties of varying the terminal chains. The compounds prepared in this work have a common core - a 2,3-difluoroterphenyl unit with a nine-atom alkyl (nonyl) or alkoxy (octyloxy) chain at the 4-position, but with an unusual chain at the 4''-position. In some cases the terminal chain contains hetero atoms such as silicon, oxygen, chlorine and bromine or has a bulky end group. In total 46 final materials were synthesised in an attempt to understand the effect of an unusual terminal chains on mesomorphism and for some of these compounds the effect upon the switching times when added to a standard ferroelectric mixture were investigated. It was found that most compounds containing a bulky end group only displayed a smectic C phase, compounds with a halogen substituent as an end unit displayed a smectic A phase and that increasing the chain flexibility by introducing an oxygen atom in the chain reduces the melting and clearing points. The electro-optical measurements carried out on ferroelectric mixtures containing a bulky end group compound showed that shorter switching times were produced than for the ferroelectric mixture containing a straight chain compound. It is suggested that a bulky end group diminishes te extent of interlayer mixing in the chiral smectic C phase and therefore the molecules move more easily with ferroelectric switching. (author)

  1. Restoration of ferroelectricity by pressure in multiferroic HoMn2O5

    International Nuclear Information System (INIS)

    Cruz, C.R. dela; Lorenz, B.; Gospodinov, M.M.; Chu, C.W.

    2007-01-01

    The multiferroic properties of HoMn 2 O 5 have been extensively studied to gain understanding of the magneto-dielectric coupling in this compound. In this work, dielectric measurements as well as polarization measurements in isotropic pressure up to 18kbar are presented. The results indicate that the pressure is able to induce the ferroelectric order at low temperature in multiferroic HoMn 2 O 5 implying the stabilization of the commensurate magnetic structure. The observation reveals that the ferroelectricity and magneto-elastic properties are highly correlated in this system

  2. Characteristics of a Nonvolatile SRAM Memory Cell Utilizing a Ferroelectric Transistor

    Science.gov (United States)

    Mitchell, Cody; Laws, Crystal; MacLeod, Todd C.; Ho, Fat D.

    2011-01-01

    The SRAM cell circuit is a standard for volatile data storage. When utilizing one or more ferroelectric transistors, the hysteresis characteristics give unique properties to the SRAM circuit, providing for investigation into the development of a nonvolatile memory cell. This paper discusses various formations of the SRAM circuit, using ferroelectric transistors, n-channel and p-channel MOSFETs, and resistive loads. With varied source and supply voltages, the effects on the timing and retention characteristics are investigated, including retention times of up to 24 hours.

  3. Phenomenological theory of size effects in ultrafine ferroelectric particles (PbTiO3-type)

    International Nuclear Information System (INIS)

    Jiang, B.; Bursill, L.A.

    1998-01-01

    A new phenomenological model is proposed and discussed to study the size effects on phase transitions in PbTiO 3 -type ferroelectric particles. This model, by taking size effects on the phenomenological Landau-Ginzburg-Devonshire coefficients into consideration, can successfully explain the size effects on Curie temperature, c/a ratio, thermal and dielectric properties of lead-titanate-type ferroelectric particles. Theoretical and experimental results for PbTiO 3 fine particles are also compared and discussed. The relationship between the current model and the model of Zhong et al (Phys. Rev. B 50, 698 (1994)) is also presented. (authors)

  4. Study of the structure of ferroelectric domain walls in barium titanate ceramics

    Energy Technology Data Exchange (ETDEWEB)

    Normand, L.; Thorel, A. [Centre des Materiaux, Evry cedex (France) ; Kilaas, R. [Lawrence Berkeley Lab., CA (United States); Montardi, Y. [Rhone-Poulenc, CRA, Aubervilliers (France)

    1995-02-01

    Structure of 90{degree} ferroelectric domain boundaries in barium titanate ceramics has been studied by means of Transmission Electron Microscopy and High Resolution TEM. Tilts of specific fringes across domain walls are measured on HREM images and Selected Area Diffraction Patterns. They are in a good agreement with the twin model admitted for these domain boundaries. A computerized method has been developed to give access to quantitative information about atomic displacements across these ferroelectric domain walls. The so calculated displacement field is then compared with Landau-Ginzburg based theoretical predictions.

  5. Characterization, Modeling, and Energy Harvesting of Phase Transformations in Ferroelectric Materials

    Science.gov (United States)

    Dong, Wenda

    Solid state phase transformations can be induced through mechanical, electrical, and thermal loading in ferroelectric materials that are compositionally close to morphotropic phase boundaries. Large changes in strain, polarization, compliance, permittivity, and coupling properties are typically observed across the phase transformation regions and are phenomena of interest for energy harvesting and transduction applications where increased coupling behavior is desired. This work characterized and modeled solid state phase transformations in ferroelectric materials and assessed the potential of phase transforming materials for energy harvesting applications. Two types of phase transformations were studied. The first type was ferroelectric rhombohedral to ferroelectric orthorhombic observed in lead indium niobate lead magnesium niobate lead titanate (PIN-PMN-PT) and driven by deviatoric stress, temperature, and electric field. The second type of phase transformation is ferroelectric to antiferroelectric observed in lead zirconate titanate (PZT) and driven by pressure, temperature, and electric field. Experimental characterizations of the phase transformations were conducted in both PIN-PMN-PT and PZT in order to understand the thermodynamic characteristics of the phase transformations and map out the phase stability of both materials. The ferroelectric materials were characterized under combinations of stress, electric field, and temperature. Material models of phase transforming materials were developed using a thermodynamic based variant switching technique and thermodynamic observations of the phase transformations. These models replicate the phase transformation behavior of PIN-PMN-PT and PZT under mechanical and electrical loading conditions. The switching model worked in conjunction with linear piezoelectric equations as ferroelectric/ferroelastic constitutive equations within a finite element framework that solved the mechanical and electrical field equations

  6. Phase coexistence in ferroelectric solid solutions: Formation of monoclinic phase with enhanced piezoelectricity

    Directory of Open Access Journals (Sweden)

    Xiaoyan Lu

    2016-10-01

    Full Text Available Phase morphology and corresponding piezoelectricity in ferroelectric solid solutions were studied by using a phenomenological theory with the consideration of phase coexistence. Results have shown that phases with similar energy potentials can coexist, thus induce interfacial stresses which lead to the formation of adaptive monoclinic phases. A new tetragonal-like monoclinic to rhombohedral-like monoclinic phase transition was predicted in a shear stress state. Enhanced piezoelectricity can be achieved by manipulating the stress state close to a critical stress field. Phase coexistence is universal in ferroelectric solid solutions and may provide a way to optimize ultra-fine structures and proper stress states to achieve ultrahigh piezoelectricity.

  7. The collinear ↑↑↓↓ magnetism driven ferroelectricity in double-perovskite multiferroics

    International Nuclear Information System (INIS)

    Jia, Ting; Zeng, Zhi; Lin, H. Q.

    2017-01-01

    The multiferroics of collinear ↑↑↓↓ magnetism driven ferroelectricity is one type of the magnetically driven ferroelectrics, which attracts much attentions due to their strong magnetoelectric coupling. Here, we summarize the recent progress in this multiferroics with double-perovskite crystal structure, besides Y_2CoMnO_6, Lu_2CoMnO_6, Y_2NiMnO_6 and In_2NiMnO_6 etc.. It is revealed that there are also many uncertainties in present research, making this field fulling of challenges and opportunities. (paper)

  8. Thermostable ferroelectric capacitors based on graded films of barium strontium titanate

    Science.gov (United States)

    Tumarkin, A. V.; Razumov, S. V.; Volpyas, V. A.; Gagarin, A. G.; Odinets, A. A.; Zlygostov, M. V.; Sapego, E. N.

    2017-10-01

    The influence of the pressure of working gas during the ion-plasma sputtering on properties of deposited ferroelectric barium strontium titanate coatings has been experimentally studied. Variations in the of pressure of the working gas during deposition allows the component composition of the deposited layer to be changed, which leads to the diffusion of the phase transition and the improvement of temperature stability of properties of ferroelectric film. The gradation of layers has an impact on the temperature of the dielectric permittivity maximum, the shape of the dependence of the capacity on temperature, and the capacitance-voltage characteristics of the capacitor structures.

  9. Physical aspects of electron emission spectra shape for ferroelectrics-electrets

    International Nuclear Information System (INIS)

    Kolesnikov, V.V.; Kozakov, A.T.

    2002-01-01

    One introduces a theoretical approach establishing a link between the peculiarities of spectrum of electron emission from ferroelectrics-electrets and the behavior of potential at a specimen surface. From these points of view one analyzes physical nature of the key peculiarities in the experimental spectra. One points out strong effect of electret charge relaxation on their shape due to bifurcation (branching) of peculiarities in a spectrum. A complex shape of spectrum of electron emission from ferroelectrics-electrets results from peculiarities of distribution of electrical field and polarization along their surface [ru

  10. Nonvolatile data storage using mechanical force-induced polarization switching in ferroelectric polymer

    International Nuclear Information System (INIS)

    Chen, Xin; Tang, Xin; Chen, Xiang-Zhong; Chen, Yu-Lei; Shen, Qun-Dong; Guo, Xu; Ge, Hai-Xiong

    2015-01-01

    Ferroelectric polymers offer the promise of low-cost and flexible electronic products. They are attractive for information storage due to their spontaneous polarization which is usually switched by electric field. Here, we demonstrate that electrical signals can be readily written on ultra-thin ferroelectric polymer films by strain gradient-induced polarization switching (flexoelectric effect). A force with magnitude as small as 64nN is enough to induce highly localized (40 nm feature size) change in the polarization states. The methodology is capable of realizing nonvolatile memory devices with miniaturized cell size and storage density of tens to hundreds Gbit per square inch

  11. Resistive switching via the converse magnetoelectric effect in ferromagnetic multilayers on ferroelectric substrates.

    Science.gov (United States)

    Pertsev, N A; Kohlstedt, H

    2010-11-26

    A voltage-controlled resistive switching is predicted for ferromagnetic multilayers and spin valves mechanically coupled to a ferroelectric substrate. The switching between low- and high-resistance states results from the strain-driven magnetization reorientations by about 90°, which are shown to occur in ferromagnetic layers with a high magnetostriction and weak cubic magnetocrystalline anisotropy. Such reorientations, not requiring external magnetic fields, can be realized experimentally by applying moderate electric field to a thick substrate (bulk or membrane type) made of a relaxor ferroelectric having ultrahigh piezoelectric coefficients. The proposed multiferroic hybrids exhibiting giant magnetoresistance may be employed as electric-write nonvolatile magnetic memory cells with nondestructive readout.

  12. On the structural origins of ferroelectricity in HfO{sub 2} thin films

    Energy Technology Data Exchange (ETDEWEB)

    Sang, Xiahan; Grimley, Everett D.; LeBeau, James M. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina 27695-7907 (United States); Schenk, Tony; Schroeder, Uwe [NaMLab gGmbH/TU Dresden, Noethnitzer Str. 64, Dresden D-01187 (Germany)

    2015-04-20

    Here, we present a structural study on the origin of ferroelectricity in Gd doped HfO{sub 2} thin films. We apply aberration corrected high-angle annular dark-field scanning transmission electron microscopy to directly determine the underlying lattice type using projected atom positions and measured lattice parameters. Furthermore, we apply nanoscale electron diffraction methods to visualize the crystal symmetry elements. Combined, the experimental results provide unambiguous evidence for the existence of a non-centrosymmetric orthorhombic phase that can support spontaneous polarization, resolving the origin of ferroelectricity in HfO{sub 2} thin films.

  13. Asymmetric Freedericksz transitions from symmetric liquid crystal cells doped with harvested ferroelectric nanoparticles.

    Science.gov (United States)

    Cook, G; Reshetnyak, V Yu; Ziolo, R F; Basun, S A; Banerjee, P P; Evans, D R

    2010-08-02

    The electrical Freedericksz transition characteristics of planar aligned liquid crystal cells doped with harvested single ferroelectric domain 9 nm nanoparticles of BaTiO(3) have been measured. We demonstrate for the first time that the electrical pre-history of the cells imparts significant polarity sensitivity to the Freedericksz characteristics. The presence of harvested single domain ferroelectric nanoparticles enables cells to be programmably semi-permanently polarized. This reduces or increases the Freedericksz transition threshold by 0.8 V, depending on the polarity of the applied voltage, giving a net 1.6 V Freedericksz threshold asymmetry for 8 mum thick cells filled with TL205 liquid crystal.

  14. An Extended Duopoly Game.

    Science.gov (United States)

    Eckalbar, John C.

    2002-01-01

    Illustrates how principles and intermediate microeconomic students can gain an understanding for strategic price setting by playing a relatively large oligopoly game. Explains that the game extends to a continuous price space and outlines appropriate applications. Offers the Mathematica code to instructors so that the assumptions of the game can…

  15. Extending Critical Performativity

    DEFF Research Database (Denmark)

    Spicer, André; Alvesson, Mats; Kärreman, Dan

    2016-01-01

    from an undue focus on intra-academic debates; engage in author-itarian theoretical policing; feign relevance through symbolic radicalism; and repackage common sense. We take these critiques as an opportunity to offer an extended model of critical performativity that involves focusing on issues...

  16. Parameterization of extended systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2006-01-01

    The YJBK parameterization (of all stabilizing controllers) is extended to handle systems with additional sensors and/or actuators. It is shown that the closed loop transfer function is still an affine function in the YJBK parameters in the nominal case. Further, some closed-loop stability results...

  17. Poster Session- Extended Abstracts

    Science.gov (United States)

    Jack D. Alexander III; Jean Findley; Brenda K. Kury; Jan L. Beyers; Douglas S. Cram; Terrell T. Baker; Jon C. Boren; Carl Edminster; Sue A. Ferguson; Steven McKay; David Nagel; Trent Piepho; Miriam Rorig; Casey Anderson; Jeanne Hoadley; Paulette L. Ford; Mark C. Andersen; Ed L. Fredrickson; Joe Truett; Gary W. Roemer; Brenda K. Kury; Jennifer Vollmer; Christine L. May; Danny C. Lee; James P. Menakis; Robert E. Keane; Zhi-Liang Zhu; Carol Miller; Brett Davis; Katharine Gray; Ken Mix; William P. Kuvlesky Jr.; D. Lynn Drawe; Marcia G. Narog; Roger D. Ottmar; Robert E. Vihnanek; Clinton S. Wright; Timothy E. Paysen; Burton K. Pendleton; Rosemary L. Pendleton; Carleton S. White; John Rogan; Doug Stow; Janet Franklin; Jennifer Miller; Lisa Levien; Chris Fischer; Emma Underwood; Robert Klinger; Peggy Moore; Clinton S. Wright

    2008-01-01

    Titles found within Poster Session-Extended Abstracts include:Assessment of emergency fire rehabilitation of four fires from the 2000 fire season on the Vale, Oregon, BLM district: review of the density sampling materials and methods: p. 329 Growth of regreen, seeded for erosion control, in the...

  18. Tensile strain effect in ferroelectric perovskite oxide thin films on spinel magnesium aluminum oxide substrate

    Science.gov (United States)

    Zhou, Xiaolan

    Ferroelectrics are used in FeRAM (Ferroelectric random-access memory). Currently (Pb,Zr)TiO3 is the most common ferroelectric material. To get lead-free and high performance ferroelectric material, we investigated perovskite ferroelectric oxides (Ba,Sr)TiO3 and BiFeO3 films with strain. Compressive strain has been investigated intensively, but the effects of tensile strain on the perovskite films have yet to be explored. We have deposited (Ba,Sr)TiO3, BiFeO3 and related films by pulsed laser deposition (PLD) and analyzed the films by X-ray diffractometry (XRD), atomic force microscopy (AFM), etc. To obtain inherently fully strained films, the selection of the appropriate substrates is crucial. MgAl2O4 matches best with good quality and size, yet the spinel structure has an intrinsic incompatibility to that of perovskite. We introduced a rock-salt structure material (Ni 1-xAlxO1+delta) as a buffer layer to mediate the structural mismatch for (Ba,Sr)TiO3 films. With buffer layer Ni1-xAlxO1+delta, we show that the BST films have high quality crystallization and are coherently epitaxial. AFM images show that the films have smoother surfaces when including the buffer layer, indicating an inherent compatibility between BST-NAO and NAO-MAO. In-plane Ferroelectricity measurement shows double hysteresis loops, indicating an antiferroelectric-like behavior: pinned ferroelectric domains with antiparallel alignments of polarization. The Curie temperatures of the coherent fully strained BST films are also measured. It is higher than 900°C, at least 800°C higher than that of bulk. The improved Curie temperature makes the use of BST as FeRAM feasible. We found that the special behaviors of ferroelectricity including hysteresis loop and Curie temperature are due to inherent fully tensile strain. This might be a clue of physics inside ferroelectric stain engineering. An out-of-plane ferroelectricity measurement would provide a full whole story of the tensile strain. However, a

  19. Electric field effect in superconductor-ferroelectric structures

    Science.gov (United States)

    Lemanov, V. V.

    1995-01-01

    Electric field effect (the E-effect) in superconductors has been studied since 1960 when Glover and Sherill published their results on a shift of the critical temperature T(sub c) about 0.1 mK in Sn and In thin films under the action Off the field E=300 kV/cm. Stadler was the first to study the effect or spontaneous polarization of ferroelectric substrate on the electric properties of superconductors. He observed that the reversal of polarization of TGS substrate under action of external electric field in Sn-TGS structures induced the T(sub c) shift in Sn about 1.3 mK. Since in this case the effect is determined not by the electric field but by the spontaneous polarization, we may call this effect the P-effect. High-T(sub c) superconductors opened the new possibilities to study the E- and P-effects due to low charge carrier density, as compared to conventional superconductors, and to anomalously small coherence length. Experiments in this field began in many laboratories but a breakthrough was made where a shift in T(sub c) by 50 mK was observed in YBCO thin films. Much higher effects were observed in subsequent studies. The first experiments on the P-effect in high-T(sub c) superconductors were reported elsewhere. In this report we shall give a short description of study on the P-effect in high-T(sub c) superconductors.

  20. Ferroelectric Domain Structure and Local Piezoelectric Properties of Lead-Free (Ka0.5Na0.5NbO3 and BiFeO3-Based Piezoelectric Ceramics

    Directory of Open Access Journals (Sweden)

    Denis Alikin

    2017-01-01

    Full Text Available Recent advances in the development of novel methods for the local characterization of ferroelectric domains open up new opportunities not only to image, but also to control and to create desired domain configurations (domain engineering. The morphotropic and polymorphic phase boundaries that are frequently used to increase the electromechanical and dielectric performance of ferroelectric ceramics have a tremendous effect on the domain structure, which can serve as a signature of complex polarization states and link local and macroscopic piezoelectric and dielectric responses. This is especially important for the study of lead-free ferroelectric ceramics, which is currently replacing traditional lead-containing materials, and great efforts are devoted to increasing their performance to match that of lead zirconate titanate (PZT. In this work, we provide a short overview of the recent progress in the imaging of domain structure in two major families of ceramic lead-free systems based on BiFeO3 (BFO and (Ka0.5Na0.5NbO3 (KNN. This can be used as a guideline for the understanding of domain processes in lead-free piezoelectric ceramics and provide further insight into the mechanisms of structure–property relationship in these technologically important material families.