WorldWideScience

Sample records for extended x-ray fine

  1. Synchrotron x-ray fluorescence and extended x-ray absorption fine structure analysis

    International Nuclear Information System (INIS)

    Chen, J.R.; Gordon, B.M.; Hanson, A.L.; Jones, K.W.; Kraner, H.W.; Chao, E.C.T.; Minkin, J.A.

    1984-01-01

    The advent of dedicated synchrotron radiation sources has led to a significant increase in activity in many areas of science dealing with the interaction of x-rays with matter. Synchrotron radiation provides intense, linearly polarized, naturally collimated, continuously tunable photon beams, which are used to determine not only the elemental composition of a complex, polyatomic, dilute material but also the chemical form of the elements with improved accuracy. Examples of the application of synchrotron radiation include experiments in synchrotron x-ray fluorescence (SXRF) analysis and extended x-ray absorption fine structure (EXAFS) analysis. New synchrotron radiation x-ray microprobes for elemental analysis in the parts per billion range are under construction at several laboratories. 76 references, 24 figures

  2. Astrophysical extended X-ray absorption fine-structure analysis

    International Nuclear Information System (INIS)

    Woo, J.W.; Forrey, R.C.; Cho, K.; Department of Physics and Division of Applied Sciences, Harvard University)

    1997-01-01

    We present an astrophysical extended X-ray absorption fine-structure (EXAFS) analysis (AEA) tool. The AEA tool is designed to generate a numerical model of the modification to the X-ray absorption coefficient due to the EXAFS phenomenon. We have constructed a complete database (elements up to the atomic number 92) of EXAFS parameters: central atom phase shift (2δ 1 ), backscattering phase shift (φ b ), and backscattering amplitude (F). Using the EXAFS parameter data base, the AEA tool can generate a numerical model of any compound when the atomic numbers of neighboring atoms and their distances to the central X-ray-absorbing atom are given. copyright 1997 The American Astronomical Society

  3. Extended X-ray absorption fine structure investigation of nitrogen stabilized expanded austenite

    DEFF Research Database (Denmark)

    Oddershede, Jette; Christiansen, Thomas; Ståhl, Kenny

    2010-01-01

    As-delivered austenitic stainless steel and nitrogen stabilized expanded austenite, both fully nitrided and denitrided (in H2), were investigated with Cr, Fe and Ni extended X-ray absorption fine structure. The data shows pronounced short-range ordering of Cr and N. For the denitrided specimen...

  4. Surface extended x-ray absorption fine structure of low-Z absorbates using fluorescence detection

    International Nuclear Information System (INIS)

    Stoehr, J.; Kollin, E.B.; Fischer, D.A.; Hastings, J.B.; Zaera, F.; Sette, F.

    1985-05-01

    Comparison of x-ray fluorescence yield (FY) and electron yield surface extended x-ray absorption fine structure spectra above the S K-edge for c(2 x 2) S on Ni(100) reveals an order of magnitude higher sensitivity of the FY technique. Using FY detection, thiophene (C 4 H 4 S) chemisorption on Ni(100) is studied with S coverages down to 0.08 monolayer. The molecule dissociates at temperatures as low as 100K by interaction with fourfold hollow Ni sites. Blocking of these sites by oxygen leaves the molecule intact

  5. Extended X-ray absorption fine structure (EXAFS) studies of supported catalysts

    International Nuclear Information System (INIS)

    Joyner, R.W.

    1979-01-01

    Since the rebirth of interest in extended X-ray absorption fine structure there have been several studies of systems of catalytic interest. This note is a preliminary account of an investigation of supported platinum catalysts and NiO/Al 2 O 3 catalysts. Experiments were performed on pressed disc samples at the DESY synchrotron, Hamburg, using the EXAFS spectrometer. The synchrotron operated at 7 GeV energy with a circulating current of approximately 4 mA; spectrum accumulation time was typically 45 minutes. (author)

  6. A cell for extended x-ray absorption fine structure studies of oxygen sensitive products of redox reactions

    International Nuclear Information System (INIS)

    Furenlid, L.R.; Renner, M.W.; Fajer, J.

    1990-01-01

    We describe a cell suitable for extended x-ray absorption fine structure (EXAFS) studies of oxygen and/or water sensitive products of redox reactions. The cell utilizes aluminized Mylar windows that are transparent to x rays, provide low gas permeability, and allow vacuum to be maintained in the cell. The windows are attached to the glassware with an epoxy that resists attack by common organic solvents. Additional side arms allow multiple spectroscopic probes of the same sample under anaerobic and anhydrous conditions

  7. Extended x-ray absorption fine structure (EXAFS): a novel probe for local structure of glassy solids

    International Nuclear Information System (INIS)

    Wong, J.

    1979-01-01

    The extended x-ray absorption fine structure (EXAFS) is the oscillation in the absorption coefficient extending a few hundred eVs on the high energy side of an x-ray absorption edge. This mode of spectroscopy has recently been realized to be a powerful tool in probing the local atomic structure of all states of matter, particularly with the advent of intense synchrotron radiation. More importantly is the unique ability of EXAFS to probe the structure and dynamics around individual atomic species in a multi-atomic system. In this paper, the physical processes associated with the EXAFS phenomenon will be discussed. Experimental results obtained at the Stanford Synchrotron Radiation Laboratory on some oxide and metallic glasses will be presented. The local structure in these materials are elucidated using a Fourier transform technique

  8. Surface geometry of BaO on W(100): A surface-extended x-ray-absorption fine-structure study

    International Nuclear Information System (INIS)

    Shih, A.; Hor, C.; Elam, W.; Kirkland, J.; Mueller, D.

    1991-01-01

    A surface-extended x-ray-absorption fine-structure study of ordered monolayers of coadsorbed barium and oxygen on a single-crystal W(100) surface is described. A (√2 x √2 )R45 degree structure with a stoichiometric barium-to-oxygen ratio, and a (2 √2 x √2 )R45 degree structure with a nearly 1:2 barium-to-oxygen atomic ratio both form on W(100). The surface-extended x-ray-absorption fine-structure results indicate that all the barium and oxygen atoms are nearly coplanar in the (√2 x √2 )R45 degree overlayer. The Ba-to-O distance in this overlayer is 3.20 ±0.05 A and β=82 degree ±5 degree, where β is the angle between the Ba-O internuclear axis and the surface normal. For the (2 √2 x √2 )R45 degree overlayer, there are two types of oxygen sites. Oxygen atoms nearly coplanar with the barium atoms are also present in these films with a Ba-to-O distance of 3.27±0.05 A and β=75±4 degree. Additional oxygen atoms lie outside the barium plane at a distance 2.03±0.05 A and β=23±10 degree from the nearest barium atoms

  9. Structural study on Ni nanowires in an anodic alumina membrane by using in situ heating extended x-ray absorption fine structure and x-ray diffraction techniques

    International Nuclear Information System (INIS)

    Cai Quan; Chen Xing; Chen Zhongjun; Wang Wei; Mo Guang; Wu Zhonghua; Zhang Junxi; Zhang Lide; Pan Wei

    2008-01-01

    Polycrystalline Ni nanowires have been prepared by electrochemical deposition in an anodic alumina membrane template with a nanopore size of about 60 nm. In situ heating extended x-ray absorption fine structure and x-ray diffraction techniques are used to probe the atomic structures. The nanowires are identified as being mixtures of nanocrystallites and amorphous phase. The nanocrystallites have the same thermal expansion coefficient, of 1.7 x 10 -5 K -1 , as Ni bulk; however, the amorphous phase has a much larger thermal expansion coefficient of 3.5 x 10 -5 K -1 . Details of the Ni nanowire structures are discussed in this paper

  10. Theoretical approaches to x-ray absorption fine structure

    International Nuclear Information System (INIS)

    Rehr, J. J.; Albers, R. C.

    2000-01-01

    Dramatic advances in the understanding of x-ray absorption fine structure (XAFS) have been made over the past few decades, which have led ultimately to a highly quantitative theory. This review covers these developments from a unified multiple-scattering viewpoint. The authors focus on extended x-ray absorption fine structure (EXAFS) well above an x-ray edge, and, to a lesser extent, on x-ray absorption near-edge structure (XANES) closer to an edge. The discussion includes both formal considerations, derived from a many-electron formulation, and practical computational methods based on independent-electron models, with many-body effects lumped into various inelastic losses and energy shifts. The main conceptual issues in XAFS theory are identified and their relative importance is assessed; these include the convergence of the multiple-scattering expansion, curved-wave effects, the scattering potential, inelastic losses, self-energy shifts, and vibrations and structural disorder. The advantages and limitations of current computational approaches are addressed, with particular regard to quantitative experimental comparisons. (c) 2000 The American Physical Society

  11. X-ray photoemission spectroscopy (XPS) and extended x-ray absorption fine structure (EXAFS) studies of silicate based glasses

    International Nuclear Information System (INIS)

    Karim, D.; Lam, D.J.

    1979-01-01

    The application of the x-ray photoemission spectroscopy (XPS) technique to study the electronic structure and bonding of heavy metal oxides in alkali- and alkali-earth-silicate glasses had been demonstrated. The bonding characteristics of the iron oxide and uranium oxide in sodium silicate glasses were deduced from the changes in the oxygen 1s levels and the heavy metal core levels. It is reasonable to expect that the effect of leaching on the heavy metal ions can be monitored using the appropriate core levels of these ions. To study the effect of leaching on the glass forming network, the valence band structure of the bridging and nonbridging oxygens in sodium silicate glasses were investigated. The measurement of extended x-ray absorption fine-structure (EXAFS) is a relatively new analytical technique for obtaining short range (<5 A) structural information around atoms of a selected species in both solid and fluid systems. Experiments have recently begun to establish the feasibility of using EXAFS to study the bonding of actinides in silicate glasses. Because of the ability of EXAFS to yield specific structural data even in complex multicomponent systems, it could prove to be an invaluable tool in understanding glass structure

  12. Extended x-ray absorption fine structure: Studies of zinc-neutralized sulfonated polystyrene ionomers

    International Nuclear Information System (INIS)

    Ding, Y.S.; Yarusso, D.J.; Pan, H.K.D.; Cooper, S.L.

    1984-01-01

    Extended x-ray absorption fine structure (EXAFS) measurements were performed on a series of zinc-neutralized sulfonated polystyrene ionomers and the local structure around the zinc atom was determined. An interference effect in the EXAFS signal between sulfur and oxygen atoms was found to be significant in these materials. A model for the local structure in the zinc-neutralized sulfonated polystyrene ionomers is proposed which suggests a highly ordered tetrahedral coordination of oxygen around the zinc atoms at a distance of 1.97 +- 0.02 A. In addition there are four sulfur atoms and four oxygen atoms at a distance of 3.15 +- 0.05 A. No zinc-zinc coordination within 5 A was detected in this study

  13. Structure analysis of InN film using extended X-ray absorption fine structure method

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, T.; Kobayashi, T.; Hirata, S. [Core Technology Development Center, Core Technology and Network Company, Sony Corporation, 4-14-1 Asahi-cho, Atsugi, Kanagawa 243-0014 (Japan); Kudo, Y.; Liu, K.L. [Technology Solutions Center, Sony Corporation, 4-16-1 Okata, Atsugi, Kanagawa 243-0021 (Japan); Uruga, T.; Honma, T. [Japan Synchrotron Radiation Research Institute, Mikazuki-cho, Hyogo 679-5198 (Japan); Saito, Y.; Hori, M.; Nanishi, Y. [Department of Photonics, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577 (Japan)

    2002-12-01

    We investigated the local atomic structure around In atoms of MBE-grown InN which has a direct bandgap energy of 0.8 eV, using extended X-ray absorption fine structure (EXAFS) oscillation of In K-edge. The signals from the first-nearest neighbor atoms (N) and second-nearest atoms (In) from In atoms were clearly observed and the atomic bond length of In-N and In-In was estimated to be d{sub In-N}=0.215 nm and d{sub In-In}=0.353 nm, respectively. The In-N bond length of d{sub In-In}=0.353 nm was closed to the a-axis lattice constant of a=0.3536 nm, which was determined using X-ray diffraction measurements. The obtained local atomic structure agreed with the calculated ideal structure. We conclude, therefore, that the InN film with a bandgap energy of 0.8 eV has a high structural symmetry in the range of a few A around In atoms. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  14. Structure analysis of InN film using extended X-ray absorption fine structure method

    International Nuclear Information System (INIS)

    Miyajima, T.; Kobayashi, T.; Hirata, S.; Kudo, Y.; Liu, K.L.; Uruga, T.; Honma, T.; Saito, Y.; Hori, M.; Nanishi, Y.

    2002-01-01

    We investigated the local atomic structure around In atoms of MBE-grown InN which has a direct bandgap energy of 0.8 eV, using extended X-ray absorption fine structure (EXAFS) oscillation of In K-edge. The signals from the first-nearest neighbor atoms (N) and second-nearest atoms (In) from In atoms were clearly observed and the atomic bond length of In-N and In-In was estimated to be d In-N =0.215 nm and d In-In =0.353 nm, respectively. The In-N bond length of d In-In =0.353 nm was closed to the a-axis lattice constant of a=0.3536 nm, which was determined using X-ray diffraction measurements. The obtained local atomic structure agreed with the calculated ideal structure. We conclude, therefore, that the InN film with a bandgap energy of 0.8 eV has a high structural symmetry in the range of a few A around In atoms. (Abstract Copyright [2002], Wiley Periodicals, Inc.)

  15. X-ray absorption fine structure (XAFS) studies of cobalt silicide thin films

    International Nuclear Information System (INIS)

    Naftel, S.J.; Coulthard, I.; Hu, Y.; Sham, T.K.; Zinke-Allmang, M.

    1998-01-01

    Cobalt silicide thin films, prepared on Si(100) wafers, have been studied by X-ray absorption near edge structures (XANES) at the Si K-, L 2,3 - and Co K-edges utilizing both total electron (TEY) and fluorescence yield (FLY) detection as well as extended X-ray absorption fine structure (EXAFS) at the Co K-edge. Samples made using DC sputter deposition on clean Si surfaces and MBE were studied along with a bulk CoSi 2 sample. XANES and EXAFS provide information about the electronic structure and morphology of the films. It was found that the films studied have essentially the same structure as bulk CoSi 2 . Both the spectroscopy and materials characterization aspects of XAFS (X-ray absorption fine structures) are discussed

  16. A study of the Nb3Ge system by Ge K-edge extended x-ray absorption fine structure and x-ray absorption near-edge structure spectroscopy

    International Nuclear Information System (INIS)

    Saini, N L; Filippi, M; Wu Ziyu; Oyanagi, H; Ihara, H; Iyo, A; Agrestini, S; Bianconi, A

    2002-01-01

    The local structure of Nb 3 Ge intermetallic superconductor has been studied by Ge K-edge absorption spectroscopy. Extended x-ray absorption fine structure (EXAFS) experiments show two Ge-Nb distances. In addition to the crystallographic distance of ∼2.87 A, there exists a second Ge-Nb distance, shorter than the first by ∼0.2 A, assigned to a phase with short-range symmetry related to local displacements in the Nb-Nb chains. The x-ray absorption near-edge structure (XANES) spectrum has been simulated by full multiple-scattering calculations considering the local displacements determined by the EXAFS analysis. The XANES spectrum has been well reproduced by considering a cluster of 99 atoms within a radius of about 7 A from the central Ge atom and introducing determined local displacements

  17. Extended x-ray absorption fine structure in Ga1-xMnxN/SiC films with high Mn content

    Science.gov (United States)

    Sancho-Juan, O.; Martínez-Criado, O.; Cantarero, A.; Garro, N.; Salomé, M.; Susini, J.; Olguín, D.; Dhar, S.; Ploog, K.

    2011-05-01

    In this study, the local atomic structure of highly homogeneous Ga1-xMnxN alloy films (0.03<x<0.09) is analyzed by means of Mn and Ga K-edge extended x-ray absorption fine structure measurements. From the curve fitting, the structural parameters corresponding to the first two atomic shells surrounding both Ga and Mn atoms are reported. In the Ga1-xMnxN films, grown by molecular beam epitaxy, the Mn atoms are in tetrahedral configuration, independent of the Mn concentration; that is, they are in a substitutional site, MnGa, in the wurtzite structure. A small increase in the interatomic distances has been found with increasing Mn content. The Debye-Waller factor does not show a significant trend as Mn content increases, which suggests the presence of short-range disorder in the GaN lattice. Ab initio calculations of the structural parameter for two different Mn concentrations are consistent with the experimental results.

  18. Extended X-ray absorption fine structure studies of impulsive-type hardening in the heavily Be-doped ZnSe ternaries

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Shabina; Singh, Pankaja [Barkatullah University, Bhopal (India); Mazher, Javed [Addis Ababa University, Addis Ababa (Ethiopia)

    2014-02-15

    Inherently soft zinc-selenides have been hardened through beryllium doping. High-quality stoichiometric ternaries of Be{sub x}Zn{sub 1-x}Se have been synthesized by using the Bridgeman technique. State-of-art X-ray absorption spectroscopy is performed by varying the concentration of the cationic dopant, Be, from 6% to 55% in the host ZnSe. Extended X-ray absorption fine structure analyses are carried out to study the next-neighbor and next nearest neighbor atomic positions, nature of the substitutional doping, extent of bond length homogeneity, the presence of involuntary contrast among path distances, and the crossover from a soft to a hard character of the ternary with increasing Be concentration. Our results indicate the presence of a non-regular impulsive hardening in the ternary with a disparity at the lower and the higher Be-doping levels, which are discussed vis-a-vis self-accommodation of substitutional dopants in the host lattice.

  19. High pressure study of nanostructured Cu2Sb by X-ray Diffraction, Extended X-ray Absorption fine structure and Raman measurements

    International Nuclear Information System (INIS)

    Souza, Sergio Michielon de; Triches, Daniela Menegon; Lima, Joao Cardoso de; Polian, Alain

    2016-01-01

    Full text: Nanostructured tetragonal Cu 2 Sb was prepared by mechanical alloying and its stability was studied as a function of pressure using synchrotron X-ray diffraction (XRD) Extended X-Ray Absorption Fine Structure (EXAFS) and Raman spectroscopy. The high pressure XRD data were collected at 0.6, 1.1, 2.2, 3.4, 5.0, 7.1, 8.0, 9.9, 14.8, 18.7, 23.2, 29.3 and 40.6 GPa in the ELETTRA synchrotron (Italy) with λ = 0.68881 Å. The high pressure EXAFS measurements were carried out in the Soleil synchrotron (France) in 0.6, 1.8, 3.0, 4.5, 6.1, 8.0, 10.3, 12.7, 15.5, 18.0, 19.0, 20.0, 22.1, 23.9, 26.3 and 29.4 GPa and the high pressure Raman spectroscopy in the Institut de Mineralogie et de Physique des Milieux Condenses (France) collected at 0.1, 1.6, 3.7, 6.7, 11.2, 15.1, 19.4, 24.5, 30.8, 36.3, 41.3 and 44.5 GPa. The results show high structural and optical phase stability. The moduli bulk and its derivatives were obtained by using the Birch-Murnaghan equation of states to the XRD and EXAFS results. The evolution of the Raman modes and the bulk moduli were used to obtain the Grueneisen parameters. (author)

  20. Extended x-ray absorption fine structure spectroscopy and x-ray absorption near edge spectroscopy study of aliovalent doped ceria to correlate local structural changes with oxygen vacancies clustering

    Energy Technology Data Exchange (ETDEWEB)

    Shirbhate, S. C.; Acharya, S. A., E-mail: saha275@yahoo.com [Department of Physics, Rashtrasant Tukadoji Maharaj Nagpur University, Nagpur 440033 (India); Yadav, A. K. [Atomic and molecular Physics Division, Bhabha Atomic Research Centre, Mumbai 400085 (India)

    2016-04-04

    This study provides atomic scale insight to understand the role of aliovalent dopants on oxygen vacancies clustering and dissociation mechanism in ceria system in order to enhance the performance of oxy-ion conductor. Dopants induced microscale changes in ceria are probed by extended X-ray absorption fine structure spectroscopy, X-ray absorption near edge spectra, and Raman spectroscopy. The results are explored to establish a correlation between atomic level structural changes (coordination number, interatomic spacing) → formation of dimer and trimer type cation-oxygen vacancies defect complex (intrinsic and extrinsic) → dissociation of oxygen vacancies from defect cluster → ionic conductivity temperature. It is a strategic approach to understand key physics of ionic conductivity mechanism in order to reduce operating temperature of electrolytes for intermediate temperature (300–450 °C) electrochemical devices for the first time.

  1. 5 K extended X-ray absorption fine structure and 40 K 10-s resolved extended X-ray absorption fine structure studies of photolyzed carboxymyoglobin

    International Nuclear Information System (INIS)

    Teng, T.Y.; Huang, H.W.; Olah, G.A.

    1987-01-01

    A previous extended X-ray absorption fine structure (EXAFS) study of photolyzed carboxymyoglobin (MbCO) has provoked much discussion on the heme structure of the photoproduct (Mb*CO). The EXAFS interpretation that the Fe-Co distance increases by no more than 0.05 A following photodissociation has been regarded as inconsistent with optical, infrared, and magnetic susceptibility studies. The present experiment was performed with well-characterized dry film samples in which MbCO molecules were embedded in a poly(vinyl alcohol) matrix. The sample had a high protein concentration (12 mM) to yield adequate EXAFS signals but was very thin (40 μm) so that complete photolysis could be easily achieved by a single flash from a xenon lamp. Although the electronic state of Mb*CO resembles that of deoxymyoglobin (deoxy-Mb), direct comparison of EXAFS spectra indicates that structurally Mb*CO is much closer to MbCO than to deoxy-Mb. Our EXAFS analysis shows that photolysis of MbCO at 5 K leads to a stable intermediate state in which CO has moved away from iron by a distance of 0.27-0.45 A, but the 5-coordinate heme structure is strained in a form similar to that of MbCO; the resolution of the CO position depends on the structure parameters of MbCO which we use as a reference for the analysis of Mb*CO. At 40 K, from 1 to 10 s after photolysis, 42% of the photoproduct has relaxed to the ground state, and the EXAFS spectrum of the remaining photoproduct is indistinguishable from that of the 5 K photoproduct

  2. Wavelength dispersive X-ray absorption fine structure imaging by parametric X-ray radiation

    International Nuclear Information System (INIS)

    Inagaki, Manabu; Sakai, Takeshi; Sato, Isamu; Hayakawa, Yasushi; Nogami, Kyoko; Tanaka, Toshinari; Hayakawa, Ken; Nakao, Keisuke

    2008-01-01

    The parametric X-ray radiation (PXR) generator system at Laboratory for Electron Beam Research and Application (LEBRA) in Nihon University is a monochromatic and coherent X-ray source with horizontal wavelength dispersion. The energy definition of the X-rays, which depends on the horizontal size of the incident electron beam on the generator target crystal, has been investigated experimentally by measuring the X-ray absorption near edge structure (XANES) spectra on Cu and CuO associated with conventional X-ray absorption imaging technique. The result demonstrated the controllability of the spectrum resolution of XANES by adjusting of the horizontal electron beam size on the target crystal. The XANES spectra were obtained with energy resolution of several eV at the narrowest case, which is in qualitative agreement with the energy definition of the PXR X-rays evaluated from geometrical consideration. The result also suggested that the wavelength dispersive X-ray absorption fine structure measurement associated with imaging technique is one of the promising applications of PXR. (author)

  3. Optical and mechanical design of the extended x-ray absorption fine structure (EXAFS) beam-line at Indus-II synchrotron source

    International Nuclear Information System (INIS)

    Das, N.C.; Jha, S.N.; Bhattacharyya, D.; Sinha, A.K.; Mishra, V.K.; Verma, Vishnu; Ghosh, A.K.

    2002-11-01

    An extended x-ray absorption fine structure (EXAFS) beam line for x-ray absorption studies using energy dispersive geometry and position sensitive detector is being designed for the INDUS-II Synchrotron source. The beam line would be used for doing x-ray absorption experiments involving measurements of fme structures above the absorption edge of different species of atoms in a material The results of the above experiments would lead to the determination of different important structural parameters of materials viz.. inter-atomic distance. co-ordination number, degree of disorder and radial distribution function etc. The optical design of the beam line has been completed based on the working principle that a single crystal bent in the shape of an ellipse by a crystal bender would act as a dispersing as well as focusing element. The mechanical design of the beam line including the crystal bender has also been completed and discussed here. Calculations have been done to detennine the temperature profile on the different components of the beam line under exposure to synchrotron radiation and proper cooling channels have been designed to bring down the heat load on the components. (author)

  4. X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Junko; Yachandra, Vittal K.

    2009-07-09

    This review gives a brief description of the theory and application of X-ray absorption spectroscopy, both X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS), especially, pertaining to photosynthesis. The advantages and limitations of the methods are discussed. Recent advances in extended EXAFS and polarized EXAFS using oriented membranes and single crystals are explained. Developments in theory in understanding the XANES spectra are described. The application of X-ray absorption spectroscopy to the study of the Mn4Ca cluster in Photosystem II is presented.

  5. Extended x-ray absorption fine structure study of MnFeP0.56Si0.44 compound

    International Nuclear Information System (INIS)

    Li Ying-Jie; Haschaolu W; Wurentuya; Song Zhi-Qiang; Ou Zhi-Qiang; Tegus O; Nakai Ikuo

    2015-01-01

    The MnFeP 0.56 Si 0.44 compound is investigated by x-ray diffraction, magnetic measurements, and x-ray absorption fine structure spectroscopy. It crystallizes in Fe 2 P-type structure with the lattice parameters a = b = 5.9823(0) Å and c = 3.4551(1) Å and undergoes a first-order phase transition at the Curie temperature of 255 K. The Fe K edge and Mn K edge x-ray absorption fine structure spectra show that Mn atoms mainly reside at 3g sites, while 3f sites are occupied by Fe atoms. The distances between the absorbing Fe atom and the first and second nearest neighbor Fe atoms in a 3f-layer shift from 2.65 Å and 4.01 Å in the ferromagnetic state to 2.61 Å and 3.96 Å in the paramagnetic phase. On the other hand, the distance between the 3g-layer and 3f-layer changes a little as 2.66 Å–2.73 Å below the Curie temperature and 2.68 Å–2.75 Å above it. (paper)

  6. Fine-pitch glass GEM for high-resolution X-ray imaging

    International Nuclear Information System (INIS)

    Fujiwara, T.; Toyokawa, H.; Mitsuya, Y.

    2016-01-01

    We have developed a fine-pitch glass gas electron multiplier (G-GEM) for high-resolution X-ray imaging. The fine-pitch G-GEM is made of a 400 μm thick photo-etchable glass substrate with 150 μm pitch holes. It is fabricated using the same wet etching technique as that for the standard G-GEM. In this work, we present the experimental results obtained with a single fine-pitch G-GEM with a 50 × 50 mm 2 effective area. We recorded an energy resolution of 16.2% and gas gain up to 5,500 when the detector was irradiated with 5.9 keV X-rays. We present a 50 × 50 mm 2 X-ray radiograph image acquired with a scintillation gas and optical readout system.

  7. Directional fine structure in absorption of white x rays: A tomographic interpretation

    International Nuclear Information System (INIS)

    Korecki, P.; Szymonski, M.; Tolkiehn, M.; Novikov, D. V.; Materlik, G.

    2006-01-01

    We discuss directional fine structure in absorption of white x rays for tomographic imaging of crystal structure at the atomic level. The interference between a direct x-ray beam and the secondary waves coherently scattered inside a specimen modifies the total wave field at the position of the absorbing atoms. For a white x-ray beam, the wave field variations cancel out by energy integration for all directions, except for the near forward scattering components, coinciding with the incident beam. Therefore, two-dimensional patterns of the angular-dependent fine structure in absorption of white x rays can be interpreted as real-space projections of atomic structure. In this work, we present a theory describing the directional fine structure in white x-ray absorption and a tomographic approach for crystal structure retrieval developed on its basis. The tomographic algorithm is applied to the experimental x-ray absorption data recorded for GaP crystals

  8. Extended X-ray absorption fine structure and X-ray diffraction studies on supported Ni catalysts

    International Nuclear Information System (INIS)

    Aldea, N.; Marginean, P.; Yaning, Xie; Tiandou, Hu; Tao, Liu; Wu, Zhongua; ZhenYa, Dai

    1999-01-01

    In the first part of this paper, we present a study based on EXAFS spectroscopy. This method can yield structural information about the local environment around a specific atomic constituent in the amorphous materials, the location and chemical state of any catalytic atom on any support or point defect structures, in alloys and composites. EXAFS is a specific technique of the scattering of X-ray on materials. The present study is aimed toward elucidation of the local structure of Ni atoms and their interaction with oxide support. The second goal of the paper consists in X-ray diffraction on the same samples. X-ray diffraction method that is capable to determine average particle size, microstrains, probability of faults as well as particle size distribution function of supported Ni catalysts is presented. The method is based on the Fourier analysis of a single X-Ray diffraction profile. The results obtained on supported nickel catalysts, which are used in H/D isotopic exchange reactions are reported. The global structure is obtained with a new fitting method based on the Generalised Fermi Function facilities for approximation and Fourier transform of the experimental X-Ray line profiles. Both types of measurements were performed on Beijing Synchrotron Radiation Facilities (BSRF). (authors)

  9. Structure of bimetallic clusters. Extended x-ray absorption fine structure (EXAFS) studies of Rh--Cu clusters

    International Nuclear Information System (INIS)

    Meitzner, G.; Via, G.H.; Lytle, F.W.; Sinfelt, J.H.

    1983-01-01

    An investigation of the structure of the bimetallic clusters present in rhodium--copper catalysts was conducted with the use of extended x-ray absorption fine structure (EXAFS) measurements. Two catalysts were studied, both employing silica as a support for the clusters and both containing 1 wt. % rhodium. In one catalyst the Cu:Rh atomic ratio was 1:2 and in the other 1:1. Studies were made of the EXAFS associated with the K absorption edges of the rhodium and copper. The results of the EXAFS studies indicate that copper concentrates at the surface of the rhodium--copper clusters. In this regard the results are similar to our earlier reported results on ruthenium--copper clusters. However, the extent of surface segregation of the copper appears to be less pronounced for rhodium--copper clusters. This result is reasonable on the basis that rhodium and copper, unlike ruthenium and copper, exhibit at least some miscibility in the bulk

  10. Complementary information on CdSe/ZnSe quantum dot local structure from extended X-ray absorption fine structure and diffraction anomalous fine structure measurements

    International Nuclear Information System (INIS)

    Piskorska-Hommel, E.; Holý, V.; Caha, O.; Wolska, A.; Gust, A.; Kruse, C.; Kröncke, H.; Falta, J.; Hommel, D.

    2012-01-01

    The extended X-ray absorption fine structure (EXAFS) and diffraction anomalous fine structure (DAFS) have been applied to investigate a local structure for the CdSe/ZnSe quantum dots grown by molecular beam epitaxy (MBE) and migration-enhanced epitaxy (MEE). The aim was to study the intermixing of Cd and Zn atoms, chemical compositions and strain induced by cap-layer. The EXAFS at the Cd K-edge and DAFS at the Se K-edge proved the intermixing of Cd and Zn atoms. The distances Cd–Se (2.61 Å) found from EXAFS and DAFS analysis for h 1 region is closer to that in bulk CdSe (2.62 Å). The DAFS analysis revealed the differences in the local structure in two investigated regions (i.e. different iso-strain volumes) on the quantum dots. It was found that the investigated areas differ in the Cd concentration. To explain the experimental results the theoretical calculation based on a full valence-force field (VFF) model was performed. The theoretical VFF model fully explains the experimental data.

  11. An extended X-ray low state from Hercules X-1

    International Nuclear Information System (INIS)

    Parmar, A.N.; White, N.E.; Barr, P.; Pietsch, W.; Truemper, J.; Voges, W.; McKechnie, S.

    1985-01-01

    Hercules X-1 exhibits a 35-day cycle in its X-ray intensity in addition to its pulsar rotational and orbital periodicities of 1.24s and 1.7 days respectively. The authors report here observations made with the EXOSAT Observatory between 1983 June and August that failed to detect the expected 35-day variation in X-ray intensity, although low-level extended X-ray emission was seen. The EXOSAT observations suggest that a temporary change in the disk structure may have occurred such that the disk was in the line of sight throughout. (author)

  12. X-ray absorption fine structure (XAFS) spectroscopy: a tool for structural studies in material sciences (abstract)

    International Nuclear Information System (INIS)

    Akhtar, M.J.

    2011-01-01

    XAFS spectroscopy has revealed itself as a powerful technique for structural characterization of the local atomic environment of individual atomic species, including bond distances, coordination numbers and type of nearest neighbors surrounding the central atom. This technique is particularly useful for materials that show considerable structural and chemical disorder. XAFS spectroscopy has found extensive applications in determining the local atomic and electronic structure of the absorbing centers (atoms) in the materials science, physics, chemistry, biology and geophysics. X-ray absorption edges contain a variety of information on the chemical state and the local structure of the absorbing atom. On the higher energy side of an absorption edge fine structure is observed due to backscattering of the emitted photoelectron. The post-edge region can be divided into two parts. The X-ray Absorption Near Edge Structure (XANES) which extends up to 50 eV of an absorption edge, the spectrum is interpreted in terms of the appropriate components of the local density of states, which would be expected to be sensitive to the valence state of the atom. The intensity, shape and location of the absorption edge features provide information on the valence state, electronic structure and coordination geometry of the absorbing atom.The Extended X-ray Absorption Fine Structure (EXAFS) region is dominated by the single scattering processes and extends up to 1000 eV above the edge and provides information on the radial distribution (coordination number, radial distance and type of neighboring atoms) around the central atom. The results on perovskite based and spinel ferrites systems will be presented, where valence state and cation distributions are determined; the present study will show focus on SrFeO/sub 3/, MnFe/sub 2/O/sub 4/ and Zn/sub 1-x/Ni/sub x/Fe/sub 2/O/sub 4/ materials. (author)

  13. Controlled agglomeration of Tb-doped Y2O3 nanocrystals studied by x-ray absorption fine structure, x-ray excited luminescence, and photoluminescence

    International Nuclear Information System (INIS)

    Soo, Y.L.; Huang, S.W.; Kao, Y.H.; Chhabra, V.; Kulkarni, B.; Veliadis, J.V.; Bhargava, R.N.

    1999-01-01

    Local environment surrounding Y atoms in Y 2 O 3 :Tb nanocrystals under various heat treatment conditions has been investigated by using the extended x-ray absorption fine structure (EXAFS) technique. X-ray excited luminescence (XEL) with the incident x-ray energy near Y K edge and Tb L edges has also been measured to investigate the mechanisms of x-ray-to-visible down conversion in these doped nanoparticles. The observed changes in EXAFS, XEL, and photoluminescent data can be explained on the basis of increased average size of the nanoparticles as confirmed by transmission electron microscopy studies. Our results thus demonstrate that the doped nanoparticles can agglomerate to a controllable degree by varying the heat treatment temperature. At higher temperatures, the local environment surrounding Y atoms in the nanoparticles is found to become similar to that in bulk Y 2 O 3 while the XEL output still shows the characteristics of nanocrystals. These results indicate that appropriate heat treatment can afford an effective means to control the intensity and signal-to-background ratio of green luminescence output of these doped nanocrystal phosphors, potentially useful for some device applications. copyright 1999 American Institute of Physics

  14. Diffraction anomalous fine structure using X-ray anomalous dispersion

    International Nuclear Information System (INIS)

    Soejima, Yuji; Kuwajima, Shuichiro

    1998-01-01

    A use of X-ray anomalous dispersion effects for structure investigation has recently been developed by using synchrotron radiation. One of the interesting method is the observation of anomalous fine structure which arise on diffraction intensity in energy region of incident X-ray at and higher than absorption edge. The phenomenon is so called Diffraction Anomalous Fine Structure (DAFS). DAFS originates in the same physical process an that of EXAFS: namely photoelectric effect at the corresponding atom and the interaction of photoelectron waves between the atom and neighboring atoms. In contrast with EXAFS, the method is available for only the crystalline materials, but shows effective advantages of the structure investigations by a use of diffraction: one is the site selectivity and the other is space selectivity. In the present study, demonstrations of a use of X-ray anomalous dispersion effect for the superstructure determination will be given for the case of PbZrO 3 , then recent trial investigations of DAFS in particular on the superlattice reflections will be introduced. In addition, we discuss about Forbidden Reflection near Edge Diffraction (FRED) which is more recently investigated as a new method of the structure analysis. (author)

  15. Extended x-ray absorption fine structure study of phase transitions in the piezoelectric perovskite K0.5Na0.5NbO3

    Science.gov (United States)

    Kodre, A.; Tellier, J.; Arčon, I.; Malič, B.; Kosec, M.

    2009-06-01

    Following an x-ray diffraction study of phase transitions of the piezoelectric perovskite K0.5Na0.5NbO3 the structural changes of the material are studied using extended x-ray absorption fine structure analysis, whereby the neighborhood of Nb atom is determined in the temperature range of monoclinic, tetragonal, and cubic phases. Within the entire range Nb atom is displaced from the center of the octahedron of its immediate oxygen neighbors, as witnessed by the splitting of Nb-O distance. The model shows high prevalence of the displacement in the (111) crystallographic direction of the simple perovskite cell. The corresponding splitting of the Nb-Nb distance is negligible. There is no observable disalignment of the linear Nb-O-Nb bonds from the ideal cubic arrangement, judging from the intensity of the focusing of the photoelectron wave on the Nb-Nb scattering path by the interposed oxygen atom. As a general result, the phase transitions are found as an effect of the long-range order, while the placement of the atoms in the immediate vicinity remains largely unaffected.

  16. Full-potential theoretical investigations of electron inelastic mean free paths and extended x-ray absorption fine structure in molybdenum

    International Nuclear Information System (INIS)

    Chantler, C T; Bourke, J D

    2014-01-01

    X-ray absorption fine structure (XAFS) spectroscopy is one of the most robust, adaptable, and widely used structural analysis tools available for a range of material classes from bulk solids to aqueous solutions and active catalytic structures. Recent developments in XAFS theory have enabled high-accuracy calculations of spectra over an extended energy range using full-potential cluster modelling, and have demonstrated particular sensitivity in XAFS to a fundamental electron transport property—the electron inelastic mean free path (IMFP). We develop electron IMFP theory using a unique hybrid model that simultaneously incorporates second-order excitation losses, while precisely accounting for optical transitions dictated by the complex band structure of the solid. These advances are coupled with improved XAFS modelling to determine wide energy-range absorption spectra for molybdenum. This represents a critical test case of the theory, as measurements of molybdenum K-edge XAFS represent the most accurate determinations of XAFS spectra for any material. We find that we are able to reproduce an extended range of oscillatory structure in the absorption spectrum, and demonstrate a first-time theoretical determination of the absorption coefficient of molybdenum over the entire extended XAFS range utilizing a full-potential cluster model. (paper)

  17. Extended x-ray absorption fine structure studies of amorphous and crystalline Si-Ge alloys with synchrotron radiation

    International Nuclear Information System (INIS)

    Kajiyama, Hiroshi

    1988-01-01

    Extended X-ray absorption fine structure (EXAFS) is a powerful probe to study the local structure around the atom of a specific element. In conventional EXAFS analysis, it has been known that reliable structures are obtained with the different values of absorption edge energy for different neighboring atoms. It is shown in this study that the Ge-K edge EXAFS resulting from the Ge-Ge and Ge-Si bonds in hydrogenated amorphous Si-Ge alloys was able to be excellently explained by a unique absorption edge energy value, provided that a newly developed formula based on the spherical wave function of photoelectrons is used. The microscopic structures of hydrogenated amorphous Si-Ge alloys and crystalline Si-Ge alloys have been determined using the EXAFS method. The lengths of Ge-Ge and Ge-Si bonds were constant throughout their entire composition range, and it was found that the length of Ge-Si bond was close to the average value of the bond lengths of both Ge and Si crystals. In crystalline Si-Ge alloys, it has been shown that the bonds relaxed completely, while the lattice constant varied monotonously with the composition. (Kako, I.)

  18. (EXAFS) X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1983-01-01

    The technique EXAFS (Extended X-Ray Absorption Fine Structure) is presented and its applications using the synchrotron radiation as an incidente beam in Science of Materials and Biophysics are shown. (L.C.) [pt

  19. Local Structure of Mn in (La1-xHox)2/3Ca1/3MnO3 Studied by X-ray Absorption Fine Structure

    International Nuclear Information System (INIS)

    Pietnoczka, A.; Bacewicz, R.; Antonowicz, J.; Zalewski, W.; Pekala, M.; Drozd, V.; Fagnard, J.F.; Vanderbemden, P.

    2010-01-01

    Results of X-ray absorption fine structure measurements in manganites (La 1-x Ho x ) 2/3 Ca 1/3 MnO 3 with 0.15 3 is doped with a divalent element such as Ca 2+ , substituting for La 3+ , holes are induced in the filled Mn d orbitals. This leads to a strong ferromagnetic coupling between Mn sites. Ca ions in La 1-x Ca x MnO 3 introduce a distortion of the crystal lattice and mixed valence Mn ions (Mn 3+ and Mn 4+ ). On the other hand, in manganites (La 1-x Ho x ) 2/3 Ca 1/3 MnO 3 the substitution of La for Ho causes a lattice distortion and induces a disorder, which reduces a magnetic interaction. The ferromagnetic transition temperature and conductivity decrease very quickly with increasing x. The magnetic and transport properties of compounds depend on the local atomic structure around Mn ions. The information on the bond lengths and Debye-Waller factor are obtained from the extended X-ray absorption fine structure (EXAFS) data analysis. The charge state of Mn is determined from the position of the absorption edge in X-ray absorption near edge structure (XANES) data. XAFS results are in good agreement with magnetic characteristics of the studied materials. (authors)

  20. Techniques for materials research with synchrotron radiation x-rays

    International Nuclear Information System (INIS)

    Bowen, D.K.

    1983-01-01

    A brief introductory survey is presented of the properties and generation of synchrotron radiation and the main techniques developed so far for its application to materials problems. Headings are:synchrotron radiation; X-ray techniques in synchrotron radiation (powder diffraction; X-ray scattering; EXAFS (Extended X-ray Absorption Fine Structure); X-ray fluorescent analysis; microradiography; white radiation topography; double crystal topography); future developments. (U.K.)

  1. Finite difference method calculations of X-ray absorption fine structure for copper

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, J.D. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia); Chantler, C.T. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)]. E-mail: chantler@physics.unimelb.edu.au; Witte, C. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)

    2007-01-15

    The finite difference method is extended to calculate X-ray absorption fine structure (XAFS) for solid state copper. These extensions include the incorporation of a Monte Carlo frozen phonon technique to simulate the effect of thermal vibrations under a correlated Debye-Waller model, and the inclusion of broadening effects from inelastic processes. Spectra are obtained over an energy range in excess of 300 eV above the K absorption edge-more than twice the greatest energy range previously reported for a solid state calculation using this method. We find this method is highly sensitive to values of the photoelectron inelastic mean free path, allowing us to probe the accuracy of current models of this parameter, particularly at low energies. We therefore find that experimental data for the photoelectron inelastic mean free path can be obtained by this method. Our results compare favourably with high precision measurements of the X-ray mass attenuation coefficient for copper, reaching agreement to within 3%, and improving previous results using the finite difference method by an order of magnitude.

  2. Short-range order structures of self-assembled Ge quantum dots probed by multiple-scattering extended x-ray absorption fine structure

    International Nuclear Information System (INIS)

    Sun Zhihu; Wei Shiqiang; Kolobov, A.V.; Oyanagi, H.; Brunner, K.

    2005-01-01

    Multiple-scattering extended x-ray absorption fine structure (MS-EXAFS) has been used to investigate the local structures around Ge atoms in self-assembled Ge-Si quantum dots (QDs) grown on Si(001) substrate. The MS effect of Ge QDs is dominated by the scattering path Ge 0 →B 1 →B 2 →Ge 0 (DS2), which contributes a signal destructively interfering with that of the second shell single-scattering path (SS2). MS-EXAFS analysis reveals that the degree of Ge-Si intermixing for Ge-Si QDs strongly depends on the temperature at which the silicon cap layer is overgrown. It is found that the interatomic distances (R Ge-Ge and R Ge-Si ) within the third nearest-neighbor shells in Ge-Si QDs indicate the compressively strained nature of QDs. The present study demonstrates that the MS-EXAFS provides detailed information on the QDs strain and the Ge-Si mixing beyond the nearest neighbors

  3. Bond length variation in Zn substituted NiO studied from extended X-ray absorption fine structure

    Science.gov (United States)

    Singh, S. D.; Poswal, A. K.; Kamal, C.; Rajput, Parasmani; Chakrabarti, Aparna; Jha, S. N.; Ganguli, Tapas

    2017-06-01

    Bond length behavior for Zn substituted NiO is determined through extended x-ray absorption fine structure (EXAFS) measurements performed at ambient conditions. We report bond length value of 2.11±0.01 Å for Zn-O of rock salt (RS) symmetry, when Zn is doped in RS NiO. Bond length for Zn substituted NiO RS ternary solid solutions shows relaxed behavior for Zn-O bond, while it shows un-relaxed behavior for Ni-O bond. These observations are further supported by first-principles calculations. It is also inferred that Zn sublattice remains nearly unchanged with increase in lattice parameter. On the other hand, Ni sublattice dilates for Zn compositions up to 20% to accommodate increase in the lattice parameter. However, for Zn compositions more than 20%, it does not further dilate. It has been attributed to the large disorder that is incorporated in the system at and beyond 20% of Zn incorporation in the cubic RS lattice of ternary solid solutions. For these large percentages of Zn incorporation, the Ni and the Zn atoms re-arrange themselves microscopically about the same nominal bond length rather than systematically increase in magnitude to minimize the energy of the system. This results in an increase in the Debye-Waller factor with increase in the Zn concentration rather than a systematic increase in the bond lengths.

  4. High-resolution x-ray spectroscopy of coherent bremsstrahlung fine structure

    International Nuclear Information System (INIS)

    Lund, M.W.

    1989-01-01

    The aim of this research was to provide experimental evidence for fine structure due to umklapp by distinct reciprocal lattice vectors in coherent bremsstrahlung spectra. The spontaneous emission of photons by relativistic electrons transversing thin crystals is made possible by recoil of the crystal, which absorbs momentum in multiples of ℎG where G is a reciprocal lattice vector. Previous work in the MeV-GeV beam energy range used detectors whose energy resolution was greater than 10%. By fitting a Johann wavelength dispersive spectrometer to a transmission electron microscope the author obtained coherent bremsstrahlung spectra of very high quality with energy resolution of 1%. Important to this result were also the fine angular collimation, small energy width of the electron beam in the microscope, and the accurate control of crystal orientation possible in a modern goniometer stage. The theory of the design of bent crystal x-ray spectrometers is extended to include effects of defocus and aberrations. The theory for diffraction from a stationary three dimensional grating due to a dipole radiator moving at relativistic speeds is derived as well as several other broadening mechanisms stemming from experimental variables. This dissertation provides the first experimental observations and corresponding theoretical background for the fine structure of coherent bremsstrahlung due to umklapp by different G-vectors in the same reciprocal lattice plane

  5. Fine surface structure of unfixed and hydrated macrophages observed by laser-plasma x-ray contact microscopy

    International Nuclear Information System (INIS)

    Yamamoto, Yoshimasa; Friedman, Herman; Yoshimura, Hideyuki; Kinjo, Yasuhito; Shioda, Seiji; Debari, Kazuhiro; Shinohara, Kunio; Rajyaguru, Jayshree; Richardson, Martin

    2000-01-01

    A compact, high-resolution, laser-plasma, x-ray contact microscope using a table-top Nd:glass laser system has been developed and utilized for the analysis of the surface structure of live macrophages. Fine fluffy surface structures of murine peritoneal macrophages, which were live, hydrolyzed and not sliced and stained, were observed by the x-ray microscope followed by analysis using an atomic force microscopy. In order to compare with other techniques, a scanning electron microscopy (SEM) was utilized to observe the surface structure of the macrophages. The SEM offered a fine whole cell image of the same macrophages, which were fixed and dehydrated, but the surfaces were ruffled and different from that of x-ray images. A standard light microscope was also utilized to observe the shape of live whole macrophages. Light microscopy showed some fluffy surface structures of the macrophages, but the resolution was too low to observe the fine structures. Thus, the findings of fine fluffy surface structures of macrophages by x-ray microscopy provide valuable information for studies of phagocytosis, cell spreading and adherence, which are dependent on the surface structure of macrophages. Furthermore, the present study also demonstrates the usefulness of x-ray microscopy for analysis of structures of living cells

  6. Experimental setup for x-ray absorption spectroscopy at the DESY

    International Nuclear Information System (INIS)

    Rabe, P.; Tolkiehn, G.; Werner, A.

    1979-10-01

    In this paper we describe an apparatus used at the Deutsches Elektronen-Synchrotron (DESY) for the measurement of x-ray absorption spectra, specially designed for the investigation of the extended x-ray absorption fine structure (EXAFS). Performance of the setup is discussed and compared with an apparatus using the bremsstrahlung of a conventional x-ray source. (orig.)

  7. Annealing induced atomic rearrangements on (Ga,In) (N,As) probed by hard X-ray photoelectron spectroscopy and X-ray absorption fine structure.

    Science.gov (United States)

    Ishikawa, Fumitaro; Higashi, Kotaro; Fuyuno, Satoshi; Morifuji, Masato; Kondow, Masahiko; Trampert, Achim

    2018-04-13

    We study the effects of annealing on (Ga 0.64 ,In 0.36 ) (N 0.045 ,As 0.955 ) using hard X-ray photoelectron spectroscopy and X-ray absorption fine structure measurements. We observed surface oxidation and termination of the N-As bond defects caused by the annealing process. Specifically, we observed a characteristic chemical shift towards lower binding energies in the photoelectron spectra related to In. This phenomenon appears to be caused by the atomic arrangement, which produces increased In-N bond configurations within the matrix, as indicated by the X-ray absorption fine structure measurements. The reduction in the binding energies of group-III In, which occurs concomitantly with the atomic rearrangements of the matrix, causes the differences in the electronic properties of the system before and after annealing.

  8. Providing x-rays

    International Nuclear Information System (INIS)

    Mallozzi, P.J.; Epstein, H.M.

    1985-01-01

    This invention provides an apparatus for providing x-rays to an object that may be in an ordinary environment such as air at approximately atmospheric pressure. The apparatus comprises: means (typically a laser beam) for directing energy onto a target to produce x-rays of a selected spectrum and intensity at the target; a fluid-tight enclosure around the target; means for maintaining the pressure in the first enclosure substantially below atmospheric pressure; a fluid-tight second enclosure adjoining the first enclosure, the common wall portion having an opening large enough to permit x-rays to pass through but small enough to allow the pressure reducing means to evacuate gas from the first enclosure at least as fast as it enters through the opening; the second enclosure filled with a gas that is highly transparent to x-rays; the wall of the second enclosure to which the x-rays travel having a portion that is highly transparent to x-rays (usually a beryllium or plastic foil), so that the object to which the x-rays are to be provided may be located outside the second enclosure and adjacent thereto and thus receive the x-rays substantially unimpeded by air or other intervening matter. The apparatus is particularly suited to obtaining EXAFS (extended x-ray fine structure spectroscopy) data on a material

  9. Two different zinc sites in bovine 5-aminolevulinate dehydratase distinguished by extended x-ray absorption fine structure

    International Nuclear Information System (INIS)

    Dent, A.J.; Hasnain, S.S.; Beyersmann, D.; Block, C.

    1990-01-01

    The zinc coordination in 5-aminolevulinate dehydratase was investigated by extended x-ray absorption fine structure (EXAFS) associated with the zinc K-edge. The enzyme binds 8 mol of zinc/mol of octameric protein, but only four zinc ions seem sufficient for full activity. The authors have undertaken a study on four forms of the enzyme: (a) the eight-zinc native enzyme; (b) the enzyme with only the four zinc sites necessary for full activation occupied; (c) the enzyme with the vacant sites of (b) occupied by four lead ions; (d) the product complex between (b) and porphobilinogen. They have shown that two structurally distinct types of zinc sites are available in the enzyme. The site necessary for activity has an average zinc environment best described by two/three histidines and one/zero oxygen from a group such as tyrosine or a solvent molecule at 2.06 ± 0.02 angstrom, one tyrosine or aspartate at 1.91 ± 0.03 angstrom, and one cysteine sulfur at 2.32 ± 0.03 angstrom with a total coordination of five ligands. The unoccupied site in (b) is dominated by a single contribution of four cysteinyl sulfur atoms at 2.28 ± 0.02 angstrom. Spectra from samples (c) and (d) show only small changes from that of (b), reflecting a slight rearrangement of the ligands around the zinc atom

  10. Enhanced Adsorption of p-Arsanilic Acid from Water by Amine-Modified UiO-67 as Examined Using Extended X-ray Absorption Fine Structure, X-ray Photoelectron Spectroscopy, and Density Functional Theory Calculations.

    Science.gov (United States)

    Tian, Chen; Zhao, Jian; Ou, Xinwen; Wan, Jieting; Cai, Yuepeng; Lin, Zhang; Dang, Zhi; Xing, Baoshan

    2018-03-20

    p-Arsanilic acid ( p-ASA) is an emerging organoarsenic pollutant comprising both inorganic and organic moieties. For the efficient removal of p-ASA, adsorbents with high adsorption affinity are urgently needed. Herein, amine-modified UiO-67 (UiO-67-NH 2 ) metal-organic frameworks (MOFs) were synthesized, and their adsorption affinities toward p-ASA were 2 times higher than that of the pristine UiO-67. Extended X-ray absorption fine structure (EXAFS), X-ray photoelectron spectroscopy (XPS), and density functional theory (DFT) calculation results revealed adsorption through a combination of As-O-Zr coordination, hydrogen bonding, and π-π stacking, among which As-O-Zr coordination was the dominant force. Amine groups played a significant role in enhancing the adsorption affinity through strengthening the As-O-Zr coordination and π-π stacking, as well as forming new adsorption sites via hydrogen bonding. UiO-67-NH 2 s could remove p-ASA at low concentrations (<5 mg L -1 ) in simulated natural and wastewaters to an arsenic level lower than that of the drinking water standard of World Health Organization (WHO) and the surface water standard of China, respectively. This work provided an emerging and promising method to increase the adsorption affinity of MOFs toward pollutants containing both organic and inorganic moieties, via modifying functional groups based on the pollutant structure to achieve synergistic adsorption effect.

  11. X-ray absorption fine structure spectroscopic determination of plutonium speciation at the Rocky Flats Environmental Technology Site

    International Nuclear Information System (INIS)

    Lezama-pacheco, Juan S.; Conradson, Steven D.; Clark, David L.

    2008-01-01

    X-ray Absorption Fine Structure spectroscopy was used to probe the speciation of the ppm level Pu in thirteen soil and concrete samples from the Rocky Flats Environmental Technology Site in support of the site remediation effort that has been successfully completed since these measurements. In addition to X-ray Absorption Near Edge Spectra, two of the samples yielded Extended X-ray Absorption Fine Structure spectra that could be analyzed by curve-fits. Most of these spectra exhibited features consistent with PU(IV), and more specificaJly, PuO 2+x -type speciation. Two were ambiguous, possibly indicating that Pu that was originally present in a different form was transforming into PuO 2+x , and one was interpreted as demonstrating the presence of an unusual Pu(VI) compound, consistent with its source being spills from a PUREX purification line onto a concrete floor and the resultant extreme conditions. These experimental results therefore validated models that predicted that insoluble PuO 2+x would be the most stable form of Pu in equilibrium with air and water even when the source terms were most likely Pu metal with organic compounds or a Pu fire. A corollary of these models' predictions and other in situ observations is therefore that the minimal transport of Pu that occurred on the site was via the resuspension and mobilization of colloidal particles. Under these conditions, the small amounts of diffusely distributed Pu that were left on the site after its remediation pose only a negligible hazard.

  12. Chandra Observations of Extended X-Ray Emission in ARP 220

    Science.gov (United States)

    McDowell, J. C.; Clements, D. L.; Lamb, S. A.; Shaked, S.; Hearn, N. C.; Colina, L.; Mundell, C.; Borne, K.; Baker, A. C.; Arribas, S.

    2003-01-01

    We resolve the extended X-ray emission from the prototypical ultraluminous infrared galaxy Arp 220. Extended, faint, edge-brightened, soft X-ray lobes outside the optical galaxy are observed to a distance of 1CL 15 kpc on each side of the nuclear region. Bright plumes inside the optical isophotes coincide with the optical line emission and extend 1 1 kpc from end to end across the nucleus. The data for the plumes cannot be fitted by a single-temperature plasma and display a range of temperatures from 0.2 to 1 keV. The plumes emerge from bright, diffuse circumnuclear emission in the inner 3 kpc centered on the Ha peak, which is displaced from the radio nuclei. There is a close morphological correspondence between the Ha and soft X-ray emission on all spatial scales. We interpret the plumes as a starburst-driven superwind and discuss two interpretations of the emission from the lobes in the context of simulations of the merger dynamics of Arp 220.

  13. The Extended X-ray Nebula of PSR J1420-6048

    Energy Technology Data Exchange (ETDEWEB)

    Van Etten, Adam; Romani, Roger W.; /Stanford U., Phys. Dept.

    2011-08-19

    The vicinity of the unidentified EGRET source 3EG J1420-6038 has undergone extensive study in the search for counterparts, revealing the energetic young pulsar PSR J1420-6048 and its surrounding wind nebula as a likely candidate for at least part of the emission from this bright and extended gamma-ray source. We report on new Suzaku observations of PSR J1420-6048, along with analysis of archival XMM Newton data. The low background of Suzaku permits mapping of the extended X-ray nebula, indicating a tail stretching {approx} 8 minutes north of the pulsar. The X-ray data, along with archival radio and VHE data, hint at a pulsar birthsite to the North, and yield insights into its evolution and the properties of the ambient medium. We further explore such properties by modeling the spectral energy distribution (SED) of the extended nebula.

  14. X-ray absorption spectroscopy (EXAFS)

    International Nuclear Information System (INIS)

    Craievich, A.F.

    1983-01-01

    The experimental technics of Extended X-ray Absorption Fine Structure (EXAFS) is presented and several uses of it in atomic, molecular and bio physics are shown. The recent progresses of this technics, both theoretical and experimental, are discussed and the future perspectives on this subject are commented. (L.C.) [pt

  15. Fluorescence extended X-ray absorption fine structure analysis of half-metallic ferromagnet 'zinc-blende CrAs' grown on GaAs by molecular beam epitaxy

    CERN Document Server

    Ofuchi, H; Ono, K; Oshima, M; Akinaga, H; Manago, T

    2003-01-01

    In this work, geometric structures for a half-metallic ferromagnet 'zinc-blende CrAs', which showed ferromagnetic behavior beyond room temperature, were investigated using fluorescence extended X-ray absorption fine structure (EXAFS) measurement. The EXAFS measurements revealed that As atoms around Cr atoms in the 2 nm CrAs film grown on a GaAs(0 0 1) substrate were coordinated tetrahedrally, indicating formation of zinc-blende CrAs. The Cr-As bond length in the zinc-blende CrAs is 2.49 A. This value is close to that which was estimated from the lattice constant (5.82 A) of ferromagnetic zinc-blende CrAs calculated by full-potential linearized augmented-plane wave method. The EXAFS analysis show that the theoretically predicted zinc-blende CrAs can be fabricated on GaAs(0 0 1) substrate by low-temperature molecular-beam epitaxy.

  16. Fluorescence extended X-ray absorption fine structure analysis of half-metallic ferromagnet 'zinc-blende CrAs' grown on GaAs by molecular beam epitaxy

    International Nuclear Information System (INIS)

    Ofuchi, H.; Mizuguchi, M.; Ono, K.; Oshima, M.; Akinaga, H.; Manago, T.

    2003-01-01

    In this work, geometric structures for a half-metallic ferromagnet 'zinc-blende CrAs', which showed ferromagnetic behavior beyond room temperature, were investigated using fluorescence extended X-ray absorption fine structure (EXAFS) measurement. The EXAFS measurements revealed that As atoms around Cr atoms in the 2 nm CrAs film grown on a GaAs(0 0 1) substrate were coordinated tetrahedrally, indicating formation of zinc-blende CrAs. The Cr-As bond length in the zinc-blende CrAs is 2.49 A. This value is close to that which was estimated from the lattice constant (5.82 A) of ferromagnetic zinc-blende CrAs calculated by full-potential linearized augmented-plane wave method. The EXAFS analysis show that the theoretically predicted zinc-blende CrAs can be fabricated on GaAs(0 0 1) substrate by low-temperature molecular-beam epitaxy

  17. Irregular distribution of metal ions in ferrites prepared by co-precipitation technique structure analysis of Mn-Zn ferrite using extended X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Jeyadevan, B.; Tohji, K.; Nakatsuka, K.; Narayanasamy, A.

    2000-01-01

    The tetrahedral/octahedral site occupancy of non-magnetic zinc ion, added to maximize the net magnetic moment of mixed ferrites has been found to depend on the method of preparation. In this paper, we qualitatively analyze the metal ion distribution in Mn-Zn ferrite particles prepared by co-precipitation and ceramic methods using extended X-ray absorption fine structure (EXAFS) technique. The results suggest that the differences observed in the magnetic properties of the samples prepared by different methods are not only due to the difference in particle size but also due to the difference in cation distribution. The difference in cation distributions between ferrites of similar composition prepared differently has been found to depend on the crystal field stability energies of the metal ion of interest and associated cations

  18. Solution spectroelectrochemical cell for in situ X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Antonio, M.R.; Soderholm, L.

    1995-01-01

    A purpose-built spectroelectrochemical cell for in situ fluorescence XAFS (X-ray Absorption Fine Structure) measurements of bulk solution species during constant-potential electrolysis is described. The cell performance was demonstrated by the collection of europium L 3 -edge XANES (X-ray Absorption Near Edge Structure) throughout the course of electrolysis of an aqueous solution of EuCl 3 ·6H 2 O in 1 M H 2 SO 4 . The europium L 3 -edge resonances reported here for the Eu III and Eu II ions demonstrate that their 2p 3/2 → 5d electronic transition probabilities are not the same

  19. The 16th International Conference on X-ray Absorption Fine Structure (XAFS16)

    Science.gov (United States)

    Grunwaldt, J.-D.; Hagelstein, M.; Rothe, J.

    2016-05-01

    This preface of the proceedings volume of the 16th International Conference on X- ray Absorption Fine Structure (XAFS16) gives a glance on the five days of cutting-edge X-ray science which were held in Karlsruhe, Germany, August 23 - 28, 2015. In addition, several satellite meetings took place in Hamburg, Berlin and Stuttgart, a Sino-German workshop, three data analysis tutorials as well as special symposia on industrial catalysis and XFELs were held at the conference venue.

  20. The method of quantitative X-ray microanalysis of fine inclusions in copper

    International Nuclear Information System (INIS)

    Morawiec, H.; Kubica, L.; Piszczek, J.

    1978-01-01

    The method of correction for the matrix effect in quantitative x-ray microanalysis was presented. The application of the method was discussed on the example of quantitative analysis of fine inclusions of Cu 2 S and Cu 2 O in copper. (author)

  1. Local vibrational dynamics of hematite (α-Fe{sub 2}O{sub 3}) studied by extended x-ray absorption fine structure and molecular dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Sanson, A., E-mail: andrea.sanson@unipd.it [Dipartimento di Fisica e Astronomia - Università di Padova, Padova (Italy); Mathon, O.; Pascarelli, S. [ESRF - European Synchrotron Radiation Facility, Grenoble (France)

    2014-06-14

    The local vibrational dynamics of hematite (α-Fe{sub 2}O{sub 3}) has been investigated by temperature-dependent extended x-ray absorption fine structure spectroscopy and molecular dynamics simulations. The local dynamics of both the short and long nearest-neighbor Fe–O distances has been singled out, i.e., their local thermal expansion and the parallel and perpendicular mean-square relative atomic displacements have been determined, obtaining a partial agreement with molecular dynamics. No evidence of the Morin transition has been observed. More importantly, the strong anisotropy of relative thermal vibrations found for the short Fe–O distance has been related to its negative thermal expansion. The differences between the local dynamics of short and long Fe–O distances are discussed in terms of projection and correlation of atomic motion. As a result, we can conclude that the short Fe–O bond is stiffer to stretching and softer to bending than the long Fe–O bond.

  2. The O2-Evolving Complex of Photosystem II: Recent Insights from Quantum Mechanics/Molecular Mechanics (QM/MM), Extended X-ray Absorption Fine Structure (EXAFS), and Femtosecond X-ray Crystallography Data.

    Science.gov (United States)

    Askerka, Mikhail; Brudvig, Gary W; Batista, Victor S

    2017-01-17

    Efficient photoelectrochemical water oxidation may open a way to produce energy from renewable solar power. In biology, generation of fuel due to water oxidation happens efficiently on an immense scale during the light reactions of photosynthesis. To oxidize water, photosynthetic organisms have evolved a highly conserved protein complex, Photosystem II. Within that complex, water oxidation happens at the CaMn 4 O 5 inorganic catalytic cluster, the so-called oxygen-evolving complex (OEC), which cycles through storage "S" states as it accumulates oxidizing equivalents and produces molecular oxygen. In recent years, there has been significant progress in understanding the OEC as it evolves through the catalytic cycle. Studies have combined conventional and femtosecond X-ray crystallography with extended X-ray absorption fine structure (EXAFS) and quantum mechanics/molecular mechanics (QM/MM) methods and have addressed changes in protonation states of μ-oxo bridges and the coordination of substrate water through the analysis of ammonia binding as a chemical analog of water. These advances are thought to be critical to understanding the catalytic cycle since protonation states regulate the relative stability of different redox states and the geometry of the OEC. Therefore, establishing the mechanism for substrate water binding and the nature of protonation/redox state transitions in the OEC is essential for understanding the catalytic cycle of O 2 evolution. The structure of the dark-stable S 1 state has been a target for X-ray crystallography for the past 15 years. However, traditional X-ray crystallography has been hampered by radiation-induced reduction of the OEC. Very recently, a revolutionary X-ray free electron laser (XFEL) technique was applied to PSII to reveal atomic positions at 1.95 Å without radiation damage, which brought us closer than ever to establishing the ultimate structure of the OEC in the S 1 state. However, the atom positions in this crystal

  3. Laboratory-based recording of holographic fine structure in X-ray absorption anisotropy using polycapillary optics

    Energy Technology Data Exchange (ETDEWEB)

    Dabrowski, K.M. [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland); Korecki, P., E-mail: pawel.korecki@uj.edu.pl [Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Krakow (Poland)

    2012-08-15

    Highlights: Black-Right-Pointing-Pointer Holographic fine structures in X-ray absorption recorded using a tabletop setup. Black-Right-Pointing-Pointer Setup based on polycapillary collimating optics and an HOPG crystal. Black-Right-Pointing-Pointer Demonstration of element sensitivity by detection of X-ray fluorescence. Black-Right-Pointing-Pointer Potential of laboratory-based experiments for heavily doped crystals and thin films. - Abstract: A tabletop setup composed of a collimating polycapillary optics and a highly oriented pyrolytic graphite monochromator (HOPG) was characterized and used for recording two-dimensional maps of X-ray absorption anisotropy (XAA). XAA originates from interference of X-rays directly inside the sample. Depending on experimental conditions, fine structures in XAA can be interpreted in terms of X-ray holograms or X-ray standing waves and can be used for an element selective atomic-resolved structural analysis. The implementation of polycapillary optics resulted in a two-order of magnitude gain in the radiant intensity (photons/s/solid angle) as compared to a system without optics and enabled efficient recording of XAA with a resolution of 0.15 Degree-Sign for Mo K{alpha} radiation. Element sensitivity was demonstrated by acquisition of distinct XAA signals for Ga and As atoms in a GaAs (1 1 1) wafer by using X-ray fluorescence as a secondary signal. These results indicate the possibility of performing laboratory-based XAA experiments for heavily doped single crystals or thin films. So far, because of the weak holographic modulation of XAA, such experiments could be only performed using synchrotron radiation.

  4. Applications of x ray absorption fine structure to the in situ study of the effect of cobalt in nickel hydrous oxide electrodes for fuel cells and rechargeable batteries

    Science.gov (United States)

    Kim, Sunghyun; Tryk, Donald A.; Scherson, Daniel A.; Antonio, Mark R.

    1993-01-01

    Electronic and structural aspects of composite nickel-cobalt hydrous oxides have been examined in alkaline solutions using in situ X-ray absorption fine structure (XAFS). The results obtained have indicated that cobalt in this material is present as cobaltic ions regardless of the oxidation state of nickel in the lattice. Furthermore, careful analysis of the Co K-edge Extended X-ray absorption fine structure data reveals that the co-electrodeposition procedure generates a single phase, mixed metal hydrous oxide, in which cobaltic ions occupy nickel sites in the NiO2 sheet-like layers and not two intermixed phases each consisting of a single metal hydrous oxide.

  5. Invited article: The fast readout low noise camera as a versatile x-ray detector for time resolved dispersive extended x-ray absorption fine structure and diffraction studies of dynamic problems in materials science, chemistry, and catalysis

    International Nuclear Information System (INIS)

    Labiche, Jean-Claude; Mathon, Olivier; Pascarelli, Sakura; Newton, Mark A.; Ferre, Gemma Guilera; Curfs, Caroline; Vaughan, Gavin; Homs, Alejandro; Carreiras, David Fernandez

    2007-01-01

    Originally conceived and developed at the European Synchrotron Radiation Facility (ESRF) as an 'area' detector for rapid x-ray imaging studies, the fast readout low noise (FReLoN) detector of the ESRF [J.-C. Labiche, ESRF Newsletter 25, 41 (1996)] has been demonstrated to be a highly versatile and unique detector. Charge coupled device (CCD) cameras at present available on the public market offer either a high dynamic range or a high readout speed. A compromise between signal dynamic range and readout speed is always sought. The parameters of the commercial cameras can sometimes be tuned, in order to better fulfill the needs of specific experiments, but in general these cameras have a poor duty cycle (i.e., the signal integration time is much smaller than the readout time). In order to address scientific problems such as time resolved experiments at the ESRF, a FReLoN camera has been developed by the Instrument Support Group at ESRF. This camera is a low noise CCD camera that combines high dynamic range, high readout speed, accuracy, and improved duty cycle in a single image. In this paper, we show its application in a quasi-one-dimensional sense to dynamic problems in materials science, catalysis, and chemistry that require data acquisition on a time scale of milliseconds or a few tens of milliseconds. It is demonstrated that in this mode the FReLoN can be applied equally to the investigation of rapid changes in long range order (via diffraction) and local order (via energy dispersive extended x-ray absorption fine structure) and in situations of x-ray hardness and flux beyond the capacity of other detectors

  6. Handbook on simultaneous x-ray and γ-ray ion beam methods for fine particle analysis

    International Nuclear Information System (INIS)

    Cohen, D.D.

    2000-01-01

    Sampling, measurement, characterisation and source appointment of fine atmospheric particles has become increasingly important in recent times. This is due in part to the realisation that the fine particle pollution caused by anthropogenic activities plays a key role in certain aspects of human health, pollution transport and global climate change. This publication discusses accelerator based ion beam analysis (IBA) methods of particle induced X-ray emission (PIXE) and particle induced γ-ray emission (PIGE) as applied to aerosol analysis. These techniques are sensitive, multielemental, mainly non-destructive, require no sample preparation, have short analysis times and can be used to analyse hundreds of filter samples a day in batch processing with minimum operator interaction. The aspects discussed in the publication include: the basics of the techniques; spectrum analysis; system calibration and blank subtraction; quantification; sensitivity; measurement errors

  7. Thermal expansion behavior study of Co nanowire array with in situ x-ray diffraction and x-ray absorption fine structure techniques

    Science.gov (United States)

    Mo, Guang; Cai, Quan; Jiang, Longsheng; Wang, Wei; Zhang, Kunhao; Cheng, Weidong; Xing, Xueqing; Chen, Zhongjun; Wu, Zhonghua

    2008-10-01

    In situ x-ray diffraction and x-ray absorption fine structure techniques were used to study the structural change of ordered Co nanowire array with temperature. The results show that the Co nanowires are polycrystalline with hexagonal close packed structure without phase change up until 700 °C. A nonlinear thermal expansion behavior has been found and can be well described by a quadratic equation with the first-order thermal expansion coefficient of 4.3×10-6/°C and the second-order thermal expansion coefficient of 5.9×10-9/°C. The mechanism of this nonlinear thermal expansion behavior is discussed.

  8. Electronic structure study of Co doped CeO2 nanoparticles using X-ray absorption fine structure spectroscopy

    International Nuclear Information System (INIS)

    Kumar, Shalendra; Gautam, Sanjeev; Song, T.K.; Chae, Keun Hwa; Jang, K.W.; Kim, S.S.

    2014-01-01

    Highlights: • The electronic structural of Co–CeO 2 nanoparticles is investigated using XAFS. • Ce M 5,4 , Ce L 3 and O K edge NEXAFS reveal that the Ce-ions are in +4 valence state. • The NEXAFS spectrum performed at Co L3,2-edge confirms Co-ion in 2+ state. • The EXAFS analysis also show that Co ions are occupying Ce position in doped CeO 2 . • The distances between Ce–O and Ce–Ce/Co in all shells decreases with Co doping. - Abstract: We investigated the electronic structure of well characterized Co doped CeO 2 nanoparticles using X-ray absorption fine structure (XAFS) spectroscopy. Near edge X-ray absorption fine structure (NEXAFS) spectra at Ce M 5,4 , Ce L 3 and O K-edge conclude that the Ce-ions are in +4 valence state in pure as well as in Co doped CeO 2 nanoparticles. The local structure around Ce-atom in Co doped CeO 2 nanoparticles was also determined using extended X-ray absorption fine structure (EXAFS) spectroscopy at Ce L 3 edge. The EXAFS analysis suggest that the inter-atomic distance of Ce–O, Ce–Ce/Co decreases with Co doping, which indicate a contraction of the lattice. The decease in Ce–O distance also reflect that there is a formation of oxygen vacancies in CeO 2 matrix. The Debye–Waller factor also shows the consistent behaviour for all the coordination shells. The atomic multiplet calculations for Co L 3,2 -edge was performed to determine the valence state, symmetry and field splitting, which reflect that Co-ions are in 2+ state and substituted at Ce-site with crystal field splitting of 10Dq=-0.57eV. The XAFS measurements reveal that the Co-ions occupy the Ce position in the CeO 2 host matrix and create a oxygen vacancy

  9. Determining biological fine structure by differential absorption of soft x-rays

    International Nuclear Information System (INIS)

    Panessa-Warren, B.J.; Warren, J.B.

    1979-06-01

    The use of soft x-ray contact microscopy in examining histochemically treated human tissue embedded in plastic and exposed as unstained thin sections is demonstrated. When our preliminary data revealed that we could clearly image not only the histochemical reaction product, but the unstained biological fine structure of the surrounding tissues, we decided to test our hypothesis further and see if we could image unstained biological molecular aggregates as well. For this part of the investigation, we chose to examine hydrated proteoglycan aggregates. Proteoglycans are an essential component of the organic matrix of cartilage, and play a primary role in the retention and maintenance of extracellular water. To avoid any artifacts due to the introduction of exogeneous materials, and examine the proteoglycan aggregates in their hydrated, natural configuration, we made contact x-ray images of isolated proteoglycan aggregates in water

  10. Solar Coronal Events with Extended Hard X-ray and Gamma-ray Emission

    Science.gov (United States)

    Hudson, H. S.

    2017-12-01

    A characteristic pattern of solar hard X-ray emission, first identified in SOL1969-03-31 by Frost & Dennis (1971) now has been linked to prolonged high-energy gamma-ray emission detected by the Fermi/LAT experiment, for example in SOL2014-09-01. The distinctive features of these events include flat hard X-ray spectra extending well above 100 keV, a characteristic pattern of time development, low-frequency gyrosynchrotron peaks, CME association, and gamma-rays identifiable with pion decay originating in GeV ions. The identification of these events with otherwise known solar structures nevertheless remains elusive, in spite of the wealth of imagery available from AIA. The quandary is that these events have a clear association with CMEs in the high corona, and yet the gamma-ray production implicates the photosphere itself. The vanishingly small loss cone in the nominal acceleration region makes this extremely difficult. I propose direct inward advection of a part of the SEP particle population, as created on closed field structures, as a possible resolution of this puzzle, and note that this requires retracting magnetic structures on long time scales following the flare itself.

  11. Effects of proton irradiation on structure of NdFeB permanent magnets studied by X-ray diffraction and X-ray absorption fine structure

    International Nuclear Information System (INIS)

    Yang, L.; Zhen, L.; Xu, C.Y.; Sun, X.Y.; Shao, W.Z.

    2011-01-01

    The effects of proton irradiation on the structure of NdFeB permanent magnet were investigated by X-ray diffraction and X-ray absorption fine structure (XAFS). The results reveal that proton irradiation has no effect on the long-range structure, but significantly affects the atomic local structure of the NdFeB magnet. The alignment degree of the magnet decreases and the internal stress of the lattice increases after proton irradiation. XAFS results show that the coordination number of Fe-Nd in the first neighboring coordination shell of the Fe atoms decreases and the disorder degree increases.

  12. Effects of proton irradiation on structure of NdFeB permanent magnets studied by X-ray diffraction and X-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Yang, L. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Zhen, L., E-mail: lzhen@hit.edu.c [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China); Xu, C.Y.; Sun, X.Y.; Shao, W.Z. [School of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001 (China)

    2011-01-15

    The effects of proton irradiation on the structure of NdFeB permanent magnet were investigated by X-ray diffraction and X-ray absorption fine structure (XAFS). The results reveal that proton irradiation has no effect on the long-range structure, but significantly affects the atomic local structure of the NdFeB magnet. The alignment degree of the magnet decreases and the internal stress of the lattice increases after proton irradiation. XAFS results show that the coordination number of Fe-Nd in the first neighboring coordination shell of the Fe atoms decreases and the disorder degree increases.

  13. Electronic structure and optical properties of CdS{sub x}Se{sub 1−x} solid solution nanostructures from X-ray absorption near edge structure, X-ray excited optical luminescence, and density functional theory investigations

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, M. W. [DESY (Deutsches Elektronen-Synchrotron), FS-PEX, Notkestrasse 85, 22607 Hamburg (Germany); Yiu, Y. M., E-mail: yyiu@uwo.ca; Sham, T. K. [Department of Chemistry, University of Western Ontario, London, ON N6A5B7 (Canada); Ward, M. J. [Cornell High Energy Synchrotron Source (CHESS), Cornell University, Ithaca, NY 14853 (United States); Liu, L. [Institute of Functional Nano and Soft Materials (FUNSOM) and Soochow University-Western University Center for Synchrotron Radiation Research, Soochow University, Suzhou, Jiangsu, 215123 (China); Hu, Y. [Canadian Light Source, University of Saskatchewan, Saskatoon, SK S7N2V3 (Canada); Zapien, J. A. [Center Of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR (China); Liu, Yingkai [Institute of Physics and Electronic Information, Yunnan Normal University, Kunming, Yunnan, 650500 (China)

    2014-11-21

    The electronic structure and optical properties of a series of iso-electronic and iso-structural CdS{sub x}Se{sub 1−x} solid solution nanostructures have been investigated using X-ray absorption near edge structure, extended X-ray absorption fine structure, and X-ray excited optical luminescence at various absorption edges of Cd, S, and Se. It is found that the system exhibits compositions, with variable local structure in-between that of CdS and CdSe accompanied by tunable optical band gap between that of CdS and CdSe. Theoretical calculation using density functional theory has been carried out to elucidate the observations. It is also found that luminescence induced by X-ray excitation shows new optical channels not observed previously with laser excitation. The implications of these observations are discussed.

  14. Utilization of synchrotron radiation in analytical chemistry. Soft X-ray emission and absorption spectroscopy

    International Nuclear Information System (INIS)

    Muramatsu, Yasuji

    2015-01-01

    Synchrotron soft X-ray spectroscopy includes three major types of spectroscopy such as X-ray absorption spectroscopy (XAS), X-ray emission spectroscopy (XES), and X-ray photoelectron spectroscopy (XPS). This paper takes up XAS and XES of soft X-rays, and briefly describes the principle. XAS is roughly classified into XANES (X-ray absorption near-edge structure) and EXAFS (extended X-ray absorption fine structure), and XANES is mainly used in the analysis based on XAS of soft X-rays. As the examples of the latest soft X-ray analyses, the following are introduced: (1) bandgap of boron implantation diamond and the local structure of boron, (2) catalytic sites in solid fuel cell carbon electrode, and (3) soft X-ray analysis under atmospheric pressure. (A.O.)

  15. Extended hard-X-ray emission in the inner few parsecs of the Galaxy

    DEFF Research Database (Denmark)

    Perez, Kerstin; Hailey, Charles J.; Bauer, Franz E.

    2015-01-01

    of objects emitting soft X-rays (less than 10 kiloelectronvolts) within the surrounding hundreds of parsecs, as well as the population responsible for unresolved X-ray emission extending along the Galactic plane, is dominated by accreting white dwarf systems. Observations of diffuse hard-X-ray (more than 10...... kiloelectronvolts) emission in the inner 10 parsecs, however, have been hampered by the limited spatial resolution of previous instruments. Here we report the presence of a distinct hard-X-ray component within the central 4 × 8 parsecs, as revealed by subarcminute-resolution images in the 20-40 kiloelectronvolt...... outflows interacting with the surrounding radiation field, dense molecular material or magnetic fields. However, all these interpretations pose significant challenges to our understanding of stellar evolution, binary formation, and cosmic-ray production in the Galactic Centre....

  16. Extending the methodology of X-ray crystallography to allow X-ray microscopy without X-ray optics

    International Nuclear Information System (INIS)

    Miao Jianwei; Kirz, Janos; Sayre, David; Charalambous, Pambos

    2000-01-01

    We demonstrate that the soft X-ray diffraction pattern from a micron-size noncrystalline specimen can be recorded and inverted to form a high-resolution image. The phase problem is overcome by oversampling the diffraction pattern. The image is obtained using an iterative algorithm. The technique provides a method for X-ray microscopy requiring no high-resolution X-ray optical elements or detectors. In the present work, a resolution of approximately 60 nm was obtained, but we believe that considerably higher resolution can be achieved

  17. A structural study of ceramic oxides by X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Akhtar, M.J.

    1995-01-01

    A detailed structural study of ceramic oxides is presented by employing X-ray Absorption Spectroscopy (XAS). In the present work X-ray Absorption Near Edge Structure (XANES) is used for the investigation of valence state of metal cations; whereas, Extended X-ray Absorption Fine Structure EXAFS) is employed for the determination for bond lengths, coordination numbers and nature of the elements present in the near neighbour shells surrounding the absorbing atom. These results show that local environment of dopant and host cations are different; and this variation in local structure depends on the nature and concentration of the dopant ions. (author)

  18. Novel silica stabilization method for the analysis of fine nanocrystals using coherent X-ray diffraction imaging

    Energy Technology Data Exchange (ETDEWEB)

    Monteforte, Marianne; Estandarte, Ana K.; Chen, Bo; Harder, Ross; Huang, Michael H.; Robinson, Ian K.

    2016-06-23

    High-energy X-ray Bragg coherent diffraction imaging (BCDI) is a well established synchrotron-based technique used to quantitatively reconstruct the three-dimensional morphology and strain distribution in nanocrystals. The BCDI technique has become a powerful analytical tool for quantitative investigations of nanocrystals, nanotubes, nanorods and more recently biological systems. BCDI has however typically failed for fine nanocrystals in sub-100?nm size regimes ? a size routinely achievable by chemical synthesis ? despite the spatial resolution of the BCDI technique being 20?30?nm. The limitations of this technique arise from the movement of nanocrystals under illumination by the highly coherent beam, which prevents full diffraction data sets from being acquired. A solution is provided here to overcome this problem and extend the size limit of the BCDI technique, through the design of a novel stabilization method by embedding the fine nanocrystals into a silica matrix. Chemically synthesized FePt nanocrystals of maximum dimension 20?nm and AuPd nanocrystals in the size range 60?65?nm were investigated with BCDI measurement at beamline 34-ID-C of the APS, Argonne National Laboratory. Novel experimental methodologies to elucidate the presence of strain in fine nanocrystals are a necessary pre-requisite in order to better understand strain profiles in engineered nanocrystals for novel device development.

  19. Magnetic and structural properties of Fe/Pd multilayers studied by magnetic x-ray dichroism and x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Mini, S.M.; Fullerton, E.E.; Sowers, C.H.; Fontaine, A.; Pizzini, S.; Bommannavar, A.S.; Traverse, A.; Baudelet, F.

    1994-12-01

    The results of magnetic circular x-ray dichroism (MCXD) measurements and extended x-ray absorption fine structure measurements (EXAFS) of the Fe K-edges of textured Fe(110)/Pd(111) multilayers are reported. The EXAFS results indicates that the iron in the system goes from bcc to a more densely packed system as the thickness of the iron layer is decreased. The magnetic properties were measured by SQUID magnetometry from 5-350 K. For all the samples, the saturation magnetization was significantly enhanced over the bulk values indicating the interface Pd atoms are polarized by the Fe layer. The enhancement corresponds to a moment of ∼2.5μ B per interface Pd atom

  20. Effect of BSO addition on Cu-O bond of GdBa{sub 2}Cu{sub 3}O{sub 7-x} films with varying thickness probed by extended x-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Jeon, H. K.; Lee, J. K.; Yang, D. S.; Kang, B. [Chungbuk National University, Cheongju (Korea, Republic of); Kang, W. N. [Dept. of Physics, Sungkyunkwan University, Suwon (Korea, Republic of)

    2016-12-15

    We investigated the relation between the Cu-O bond length and the superconducting properties of BaSnO{sub 3} (BSO)-added GdBa{sub 2}Cu{sub 3}O{sub 7-x} (GdBCO) thin films by using extended x-ray absorption fine structure (EXAFS) spectroscopy. 4 wt.% BaSnO{sub 3} (BSO) added GdBa{sub 2}Cu{sub 3}O{sub 7-x} (GdBCO) thin films with varying thickness from 0.2 μm to 1.0 μm were fabricated by using pulsed laser deposition (PLD) method. The transition temperature (T{sub c}) and the residual resistance ratio (RRR) of the GdBCO films increased with increasing thickness up to 0.8 μm, where the crystalline BSO has the highest peak intensity, and then decreased. This uncommon behaviors of T{sub c} and RRR are likely to be created by the addition of BSO, which may change the ordering of GdBCO atomic bonds. Analysis from the Cu K-edge EXAFS spectroscopy showed an interesting thickness dependence of ordering behavior of BSO-added GdBCO films. It is noticeable that the ordering of Cu-O bond and the transition temperature are found to show opposite behaviors in the thickness dependence. Based on these results, the growth of BSO seemingly have evident effect on the alteration of the local structure of GdBCO film.

  1. Near edge x-ray spectroscopy theory

    International Nuclear Information System (INIS)

    1994-01-01

    We propose to develop a quantitative theory of x-ray spectroscopies in the near edge region, within about 100 eV of threshold. These spectroscopies include XAFS (X-ray absorption fine structure), photoelectron diffraction (PD), and diffraction anomalous fine structure (DAFS), all of which are important tools for structural studies using synchrotron radiation x-ray sources. Of primary importance in these studies are many-body effects, such as the photoelectron self-energy, and inelastic losses. A better understanding of these quantities is needed to obtain theories without adjustable parameters. We propose both analytical and numerical calculations, the latter based on our x-ray spectroscopy codes FEFF

  2. X-ray methods for the chemical characterization of atmospheric aerosols

    International Nuclear Information System (INIS)

    Jaklevic, J.M.; Thompson, A.C.

    1981-05-01

    The development and use of several x-ray methods for the chemical characterization of atmospherical aerosol particulate samples are described. These methods are based on the emission, absorption, and scattering of x-ray photons with emphasis on the optimization for the non-destructive analysis of dilute specimens. Techniques discussed include photon induced energy dispersive x-ray fluorescence, extended x-ray absorption fine structure spectroscopy using synchrotron radiation and high-rate x-ray powder diffractometry using a position-sensitive gas proportional counter. These x-ray analysis methods were applied to the measurement of the chemical compositions of size-segregated aerosol particulate samples obtained with dichotomous samplers. The advantages of the various methods for use in such measurements are described and results are presented. In many cases, the complementary nature of the analytical information obtained from the various measurements is an important factor in the characterization of the sample. For example, the multiple elemental analyses obtained from x-ray fluorescence can be used as a cross check on the major compounds observed by powder diffraction

  3. Solvation structure determination of nickel(II) ion in six nitriles using extended X-ray absorption fine structure spectroscopy

    International Nuclear Information System (INIS)

    Inada, Yasuhiro; Funahashi, Shigenobu

    1997-01-01

    The solvation structures of the nickel(II) ion in six nitriles have been determined using X-ray absorption fine structure spectroscopy. The coordination number and the Ni-N bond length are 6 and 206.9 ± 0.6 pm in acetonitrile, 5.9 ± 0.2 and 206.9 ± 0.6 pm in propionitrile, 6.0 ± 0.2 and 206.8 ± 0.6 pm in butyronitrile, 6.0 ± 0.2 and 206.8 ± 0.6 pm in isobutyronitrile, 6.0 ± 0.2 and 206.8 ± 0.6 pm in valeronitrile, and 6.0 ± 0.2 and 206.5 ± 0.7 pm in benzonitrile, respectively. The structure parameters around the nickel(II) ion in all the nitriles are not affected by the bulkiness of the nitrile molecules. On the basis of the obtained structure parameters, we have discussed the structural characteristics around the nickel(II) ion with nitrogen and oxygen donor solvents and the reaction mechanisms for nitrile exchange on the nickel(II) ion. (author)

  4. The X-ray energy response of silicon. Part A. Theory

    International Nuclear Information System (INIS)

    Fraser, G.W.; Abbey, A.F.; Holland, A.; McCarthy, K.; Owens, A.; Wells, A.

    1994-01-01

    In this, the first part of a two-part study of the interaction of soft X-rays with silicon, motivated by the calibration requirements of CCD imaging spectrometers in astronomy, we describe a Monte Carlo model of X-ray energy loss whose products are the energy- and temperature-dependences of (i) W, the average energy required to create an electron-hole pair, and (ii) the Fano factor F. W and F have invariably been treated as material constants in previous analyses of Si X-ray detector performance. We show that in fact, at constant detector temperature T, W is an increasing function of X-ray energy for E -4 K -1 at a typical CCD operating temperature of 170 K. We discuss the practical implications of these results. Finally, we describe our separate calculations of the near-edge variation of CCD quantum detection efficiency arising from silicon K-shell Extended X-ray Absorption Fine Structure (EXAFS). ((orig.))

  5. Finite difference method calculations of long-range X-ray absorption fine structure for copper over k∼20A-1

    International Nuclear Information System (INIS)

    Bourke, J.D.; Chantler, C.T.

    2010-01-01

    X-ray Absorption Fine Structure (XAFS) is calculated for copper using the cluster based Finite Difference Method for Near-Edge Structure (FDMNES). This approach is conventionally used to produce high accuracy XAFS theory in the near edge region, however, we demonstrate that it can be readily extended to encompass an energy range of more than 1.5 keV (k∼20A -1 ) from the K absorption edge. Such calculations require extensions to FDMNES to account for thermal effects, in addition to broadening effects due to inelastic processes. Extended calculations beyond the range of near-edge structure also require consideration of technical constraints such as cluster sizes and densities. We find that with our approach, we are able to produce accurate theory ranging from the absorption edge to the smooth atom-like region at high energies, with a single consistent model that is free from any fitting parameters.

  6. Traditional x-ray imaging

    International Nuclear Information System (INIS)

    Hay, G.A.

    1982-01-01

    Methods of imaging x-rays, with particular reference to medicine, are reviewed. The history and nature of x-rays, their production and spectra, contrast, shapes and fine structure, image transducers, including fluorescent screens, radiography, fluoroscopy, and image intensifiers, image detection, perception and enhancement and clinical applications are considered. (U.K.)

  7. Joint European x-ray monitor (JEM-X): x-ray monitor for ESA's

    DEFF Research Database (Denmark)

    Schnopper, H.W.; Budtz-Joergensen, C.; Westergaard, Niels Jørgen Stenfeldt

    1996-01-01

    JEM-X will extend the energy range of the gamma ray instruments on ESA's INTEGRAL mission (SPI, IBIS) to include the x-ray band. JEM-X will provide images with arcminute angular resolution in the 2 - 60 keV band. The baseline photon detection system consists of two identical, high pressure, imagi...

  8. Lattice distortions in TlInSe{sub 2} thermoelectric material studied by X-ray absorption fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Hosokawa, Shinya; Stellhorn, Jens Ruediger [Department of Physics, Kumamoto University, Kumamoto (Japan); Ikemoto, Hiroyuki [Department of Physics, University of Toyama, Toyama (Japan); Mimura, Kojiro [Department of Mathematical Sciences, Graduate School of Engineering, Osaka Prefecture University, Sakai (Japan); Wakita, Kazuki [Faculty of Engineering, Chiba Institute of Technology, Narashino (Japan); Mamedov, Nazim [Institute of Physics, Azerbaijan National Academy of Sciences, Baku (Azerbaijan)

    2018-01-15

    Tl L{sub II} and In K X-ray absorption fine structure (XAFS) measurements were performed on a TlInSe{sub 2} thermoelectric material in the temperature range of 25-300 K including the incommensurate-commensurate phase transition temperature of about 135 K. Most of the bond lengths obtained from the present XAFS measurements are in good agreement with existing X-ray diffraction data at room temperature, while only the Tl-Tl correlation shows inconsistent values indicating the commensurate properties of the Tl chains expected from the thermodynamic properties. The present XAFS data clearly support positional fluctuations of the Tl atoms found in three-dimensional atomic images reconstructed from X-ray fluorescence holography. (copyright 2017 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  9. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... drawer under the table holds the x-ray film or image recording plate . Sometimes the x-ray ... extended over the patient while an x-ray film holder or image recording plate is placed beneath ...

  10. Stabilization of high-temperature antimony oxide with molybdenum incorporation. Structure of Mo-doped Sb2O4 by powder neutron diffraction and extended X-ray absorption fine structure spectroscopy

    International Nuclear Information System (INIS)

    Teller, R.G.; Antonio, M.R.; Brazdil, J.F.; Mehicic, M.; Grasselli, R.K.

    1985-01-01

    It has been discovered that the presence of MoO 3 lowers the α-β transition in Sb 2 O 4 from 935 to 850 0 C with concurrent dissolution of Mo in the high-temperature (β) form. The structure of Mo-doped β-Sb 2 O 4 has been investigated by powder neutron diffraction, extended X-ray absorption fine structure (EXAFS) and Raman spectroscopies, and scanning-electron microscopy (SEM). Cell parameters: a = 12.0571 (12) A, b = 4.8335 (1) A, c = 5.3838 (6) A, β = 105.579 (5) 0 , monoclinic, space group C2/c, Z = 4. Combining the results of these techniques leads to the hypothesis that Mo is located interstitially within channels of electron density in the Sb 2 O 4 structure with concurrent vacancy of two Sb/sup III/ atoms. There is no apparent oxygen deficiency in the resulting structure. 25 references, 6 figures, 3 tables

  11. X-ray generator for radiographs of seeds

    International Nuclear Information System (INIS)

    Suarez Canner, E.

    1996-01-01

    It is presented an X-ray generator which is destined to obtaining X-ray radiographs of seeds. It utilizes a low power X-ray tube with fine focal point. It consist of an electronic block and an irradiation chamber

  12. CHANDRA DETECTION OF X-RAY EMISSION FROM ULTRACOMPACT DWARF GALAXIES AND EXTENDED STAR CLUSTERS

    International Nuclear Information System (INIS)

    Hou, Meicun; Li, Zhiyuan

    2016-01-01

    We have conducted a systematic study of X-ray emission from ultracompact dwarf (UCD) galaxies and extended star clusters (ESCs), based on archival Chandra observations. Among a sample of 511 UCDs and ESCs complied from the literature, 17 X-ray counterparts with 0.5–8 keV luminosities above ∼5 × 10 36 erg s −1 are identified, which are distributed in eight early-type host galaxies. To facilitate comparison, we also identify X-ray counterparts of 360 globular clusters (GCs) distributed in four of the eight galaxies. The X-ray properties of the UCDs and ESCs are found to be broadly similar to those of the GCs. The incidence rate of X-ray-detected UCDs and ESCs, 3.3% ± 0.8%, while lower than that of the X-ray-detected GCs (7.0% ± 0.4%), is substantially higher than expected from the field populations of external galaxies. A stacking analysis of the individually undetected UCDs/ESCs further reveals significant X-ray signals, which corresponds to an equivalent 0.5–8 keV luminosity of ∼4 × 10 35 erg s −1 per source. Taken together, these provide strong evidence that the X-ray emission from UCDs and ESCs is dominated by low-mass X-ray binaries having formed from stellar dynamical interactions, consistent with the stellar populations in these dense systems being predominantly old. For the most massive UCDs, there remains the possibility that a putative central massive black hole gives rise to the observed X-ray emission

  13. CHANDRA DETECTION OF X-RAY EMISSION FROM ULTRACOMPACT DWARF GALAXIES AND EXTENDED STAR CLUSTERS

    Energy Technology Data Exchange (ETDEWEB)

    Hou, Meicun; Li, Zhiyuan, E-mail: lizy@nju.edu.cn [School of Astronomy and Space Science, Nanjing University, Nanjing 210046 (China)

    2016-03-10

    We have conducted a systematic study of X-ray emission from ultracompact dwarf (UCD) galaxies and extended star clusters (ESCs), based on archival Chandra observations. Among a sample of 511 UCDs and ESCs complied from the literature, 17 X-ray counterparts with 0.5–8 keV luminosities above ∼5 × 10{sup 36} erg s{sup −1} are identified, which are distributed in eight early-type host galaxies. To facilitate comparison, we also identify X-ray counterparts of 360 globular clusters (GCs) distributed in four of the eight galaxies. The X-ray properties of the UCDs and ESCs are found to be broadly similar to those of the GCs. The incidence rate of X-ray-detected UCDs and ESCs, 3.3% ± 0.8%, while lower than that of the X-ray-detected GCs (7.0% ± 0.4%), is substantially higher than expected from the field populations of external galaxies. A stacking analysis of the individually undetected UCDs/ESCs further reveals significant X-ray signals, which corresponds to an equivalent 0.5–8 keV luminosity of ∼4 × 10{sup 35} erg s{sup −1} per source. Taken together, these provide strong evidence that the X-ray emission from UCDs and ESCs is dominated by low-mass X-ray binaries having formed from stellar dynamical interactions, consistent with the stellar populations in these dense systems being predominantly old. For the most massive UCDs, there remains the possibility that a putative central massive black hole gives rise to the observed X-ray emission.

  14. Si(Li) X-ray detector

    International Nuclear Information System (INIS)

    Yuan Xianglin; Li Zhiyong; Hong Xiuse

    1990-08-01

    The fabrication technology of the 10∼80 mm 2 Si(Li) X-ray detectors are described and some problems concerning technology and measurement are discussed. The specifications of the detectors are shown as well. The Si(Li) X-ray detector is a kind of low energy X-ray detectors. Owing to very high energy resolution, fine linearity and high detection efficiency in the range of low energy X-rays, it is widely used in the fields of nuclear physics, medicine, geology and environmental protection, etc,. It is also a kernel component for the scanning electron microscope and X-ray fluorescence analysis systems

  15. A structural study of bone changes in knee osteoarthritis by synchrotron-based X-ray fluorescence and X-ray absorption spectroscopy techniques

    Science.gov (United States)

    Sindhupakorn, Bura; Thienpratharn, Suwittaya; Kidkhunthod, Pinit

    2017-10-01

    Osteoarthritis (OA) is characterized by degeneration of articular cartilage and thickening of subchondral bone. The present study investigated the changing of biochemical components of cartilage and bone compared between normal and OA people. Using Synchrotron-based X-ray fluorescence (SR-XRF) and X-ray absorption spectroscopy (XAS) techniquesincluding X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) were employed for the bone changes in kneeosteoarthritisstudies. The bone samples were collected from various osteoarthritis patients with both male and female in the ages range between 20 and 74 years old. SR-XRF results excited at 4240 eV for Ca elements show a majority three main groups, based on their XRF intensities, 20-36 years, 40-60 years and over 70 years, respectively. By employing XAS techniques, XANES features can be used to clearly explain in term of electronic transitions occurring in bone samples which are affected from osteoarthritis symptoms. Moreover, a structural change around Ca ions in bone samples is obviously obtained by EXAFS results indicating an increase of Ca-amorphous phase when the ages increase.

  16. X-ray spectroscopy of solids under pressure. Annual progress report, August 1983-July 1984

    International Nuclear Information System (INIS)

    Ingalls, R.L.

    1984-01-01

    X-ray absorption studies of several materials as a function of pressure have been performed. Of particular interest has been the EXAFS (extended x-ray absorption fine structure) and XANES (x-ray absorption near edge structure). Materials studied include the alkali halides, NaBr and RbCl, zinc blend semiconductors ZnSe and CuBr and mixed-valence materials SmS and SmSe. In the former, the volume dependence of bond lengths and their mean square fluctuations were determined from the EXAFS. In the latter materials the XANES exhibited the pressure induced change from the Sm 2+ configuration to Sm 3+

  17. Guides for intraoral x-rays

    International Nuclear Information System (INIS)

    Ogunsunlade, O.A.

    1988-01-01

    An h-shaped exterior guide for use in combination with a SNAP-A-RAY film holder for accurately aligning a beam from an X-ray cone with an X-ray film during the process of taking intraoral periapical dental X-rays of the maxillary and mandibular teeth is described comprising: a first guide arm laterally and detachably connectable through a housing means; a traverse arm extending from the midpoint of the first guide arm and parallel to the X-ray film; and a second guide arm extending perpendicularly from an end of the traverse arm toward a plane of the X-ray film and in parallel relation up to an end point of the first guide arm

  18. Rockets for Extended Source Soft X-ray Spectroscopy

    Science.gov (United States)

    McEntaffer, Randall

    The soft X-ray background surrounds our local galactic environment yet very little is known about the physical characteristics of this plasma. A high-resolution spectrum could unlock the properties of this million degree gas but the diffuse, low intensity nature of the background have made it difficult to observe, especially with a dispersive spectrograph. Previous observations have relied on X-ray detector energy resolution which produces poorly defined spectra that are poorly fit by complex plasma models. Here we propose a series of suborbital rocket flights that will begin the characterization of this elusive source through high-resolution X-ray grating spectroscopy. The rocket-based spectrograph can resolve individual emission lines over the soft X-ray band and place tight constraints on the temperature, density, abundance, ionization state and age of the plasma. These payloads will draw heavily from the heritage gained from previous rocket missions, while also benefiting from related NASA technology development programs. The Pennsylvania State University (PSU) team has a history of designing and flying spectrometer components onboard rockets while also being scientific leaders in the field of diffuse soft X-ray astronomy. The PSU program will provide hands-on training of young scientists in the techniques of instrumental and observational X-ray astronomy. The proposed rocket program will also expose these researchers to a full experiment cycle: design, fabrication, tolerance analysis, assembly, flight-qualification, calibration, integration, launch, and data analysis; using a combination of technologies suitable for adaptation to NASA's major missions. The PSU program in suborbital X-ray astronomy represents an exciting mix of compelling science, heritage, cutting-edge technology development, and training of future scientists.

  19. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... The x-ray tube is connected to a flexible arm that is extended over the patient while an x-ray film holder or image recording plate is placed beneath the patient. top of page How does the procedure work? X-rays are a form of radiation like ...

  20. Interpretation of a correlation between the flux densities of extended hard x-rays and microwave solar bursts

    International Nuclear Information System (INIS)

    Nelson, G.J.; Stewart, R.T.

    1979-01-01

    In a previous paper the authors showed that for extended bursts a good correlation exists between the observed 100 keV X-ray flux density and the 3.75 or 9.4 GHz microwave flux density. They now propose a source model for the extended bursts in which the microwave emission comes from thin shells at increasing heights for decreasing frequencies. This model with reasonable parameter values gives the observed microwave spectral characteristics and also explains why the X-ray and microwave flux densities are so well correlated

  1. Finite difference method calculations of long-range X-ray absorption fine structure for copper over k{approx}20A{sup -1}

    Energy Technology Data Exchange (ETDEWEB)

    Bourke, J.D. [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia); Chantler, C.T., E-mail: chantler@physics.unimelb.edu.a [School of Physics, University of Melbourne, Parkville, Vic 3010 (Australia)

    2010-07-21

    X-ray Absorption Fine Structure (XAFS) is calculated for copper using the cluster based Finite Difference Method for Near-Edge Structure (FDMNES). This approach is conventionally used to produce high accuracy XAFS theory in the near edge region, however, we demonstrate that it can be readily extended to encompass an energy range of more than 1.5 keV (k{approx}20A{sup -1}) from the K absorption edge. Such calculations require extensions to FDMNES to account for thermal effects, in addition to broadening effects due to inelastic processes. Extended calculations beyond the range of near-edge structure also require consideration of technical constraints such as cluster sizes and densities. We find that with our approach, we are able to produce accurate theory ranging from the absorption edge to the smooth atom-like region at high energies, with a single consistent model that is free from any fitting parameters.

  2. In situ X-ray probing reveals fingerprints of surface platinum oxide.

    Science.gov (United States)

    Friebel, Daniel; Miller, Daniel J; O'Grady, Christopher P; Anniyev, Toyli; Bargar, John; Bergmann, Uwe; Ogasawara, Hirohito; Wikfeldt, Kjartan Thor; Pettersson, Lars G M; Nilsson, Anders

    2011-01-07

    In situ X-ray absorption spectroscopy (XAS) at the Pt L(3) edge is a useful probe for Pt-O interactions at polymer electrolyte membrane fuel cell (PEMFC) cathodes. We show that XAS using the high energy resolution fluorescence detection (HERFD) mode, applied to a well-defined monolayer Pt/Rh(111) sample where the bulk penetrating hard X-rays probe only surface Pt atoms, provides a unique sensitivity to structure and chemical bonding at the Pt-electrolyte interface. Ab initio multiple-scattering calculations using the FEFF code and complementary extended X-ray absorption fine structure (EXAFS) results indicate that the commonly observed large increase of the white-line at high electrochemical potentials on PEMFC cathodes originates from platinum oxide formation, whereas previously proposed chemisorbed oxygen-containing species merely give rise to subtle spectral changes.

  3. Imaging of exploding wire plasmas by high-luminosity monochromatic X-ray backlighting using an X-pinch radiation source

    Energy Technology Data Exchange (ETDEWEB)

    Pikuz, S A; Shelkovenko, T A; Romanova, V M [Russian Academy of Sciences, Moscow (Russian Federation). P.N. Lebedev Physical Inst.; Hammer, D A [Cornell Univ., Ithaca, NY (United States). Laboratory of Plasma Studies; Faenov, A Ya; Pikuz, T A [VNIIFTRI, Mendeleevo (Russian Federation). Multicharged Ions Spectral Data Center

    1997-12-31

    A new diagnostic method for dense plasmas, monochromatic x-ray backlighting, is described. In this method, shadow images of a bright, dense plasma can be obtained with high spatial resolution using monochromatic radiation from a separate plasma, permitting a major reduction in the required backlighting source power. The object plasma is imaged utilizing spherically bent mica crystals as the x-ray optical elements. Images of test objects obtained using x-ray radiation having different photon energies are presented. Shadow images of exploding Al wire plasmas in the ls{sup 2}-1s3p line radiation of He-like Al XII are also shown. Spatial resolution as fine as 4 {mu}m is demonstrated. The scheme described is useful for backlighting extended high density plasmas, and could be a less costly alternative to using X-ray lasers for such purposes. (author). 7 figs., 10 refs.

  4. Near-edge X-ray absorption fine structure studies of Cr{sub 1−x}M{sub x}N coatings

    Energy Technology Data Exchange (ETDEWEB)

    Mahbubur Rahman, M. [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia); Department of Physics, Jahangirnagar University, Savar, Dhaka 1342 (Bangladesh); Duan, Alex [School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia); Jiang, Zhong-Tao, E-mail: Z.Jiang@murdoch.edu.au [School of Engineering and Information Technology, Murdoch University, Murdoch, WA 6150 (Australia); Xie, Zonghan [School of Mechanical Engineering, University of Adelaide, SA 5005 (Australia); School of Engineering, Edith Cowan University, WA 6027 (Australia); Wu, Alex [School of Chemistry, The University of Melbourne, Parkville, VIC 3010 (Australia); Amri, Amun [Department of Chemical Engineering, Riau University, Pekanbaru (Indonesia); Cowie, Bruce [Australian Synchrotron, 800 Blackburn Rd., Clayton, VIC 3168 (Australia); Yin, Chun-Yang [Chemical and Analytical Sciences, Murdoch University, Murdoch, WA 6150 (Australia)

    2013-11-25

    Highlights: •Al or Si is doped on CrN and AlN coatings using magnetron sputtering system. •NEXAFS analysis is conducted to measure the Al and Si K-edges, and chromium L-edge. •Structural evolution of CrN matrix with addition of Al or Si element is investigated. -- Abstract: Cr{sub 1−x}M{sub x}N coatings, with doping concentrations (Si or Al) varying from 14.3 to 28.5 at.%, were prepared on AISI M2 tool steel substrates using a TEER UDP 650/4 closed field unbalanced magnetron sputtering system. Near-edge X-ray absorption fine structure (NEXAFS) characterization was carried out to measure the aluminum and silicon K-edges, as well as chromium L-edge, in the coatings. Two soft X-ray techniques, Auger electron yield (AEY) and total fluorescence yield (TFY), were employed to investigate the surface and inner structural properties of the materials in order to understand the structural evolution of CrN matrix with addition of Al (or Si) elements. Investigations on the local bonding states and grain boundaries of the coatings, using NEXAFS technique, provide significant information which facilitates understanding of the local electronic structure of the atoms and shed light on the origins of the high mechanical strength and oxidation resistance of these technologically important coatings.

  5. The CfA Einstein Observatory extended deep X-ray survey

    Science.gov (United States)

    Primini, F. A.; Murray, S. S.; Huchra, J.; Schild, R.; Burg, R.

    1991-01-01

    All IPC exposures in the Einstein Extended Deep X-ray Survey program have been reanalyzed. The current survey covers about 2.3 sq deg with a typical limiting sensitivity of about 5 x 10 to the -14th ergs/sq cm/s in the energy range from 0.8-3.5 keV. A total of 25 IPC sources are detected above a threshold of 4.5 sigma. A total of 18 are detected independently in the HRI, leading to the identification of six with stars and 11 with extragalactic objects. The remaining sources are classified as extragalactic. The population of identified extragalactic objects is dominated by QSOs, with one or two possible clusters. The basic conclusions of the original survey remain unchanged.

  6. X-ray extended-range technique for precision measurement of the x-ray mass attenuation coefficient and IM(F) for copper using synchrotron radiation

    International Nuclear Information System (INIS)

    Tran, C.Q.; Paterson, D.; Barnea, Z.; Cookson, D.J.; Chantler, C.T.

    2000-01-01

    Full text: Complex X-ray form factors are used in crystallography, material science, medical diagnosis refractive index studies and XAFS. We introduce the X-ray Extended-Range Technique for measurements of the imaginary component of the atomic form factor. We achieve accuracies of 0.27%-0.5% for copper from 8.84 keV to 20 keV. Discrepancies between measurements using earlier experimental techniques are 10%. We achieve reproducibility of 0.02%. New methods of computation are required to approach the accuracy of our data. Results probe the transform of atomic orbital wavefunctions and long-range order. Discrepancies of order 10% between current theory and experiments can be addressed

  7. X-ray astronomy

    International Nuclear Information System (INIS)

    Culhane, J.L.; Sanford, P.W.

    1981-01-01

    X-ray astronomy has been established as a powerful means of observing matter in its most extreme form. The energy liberated by sources discovered in our Galaxy has confirmed that collapsed stars of great density, and with intense gravitational fields, can be studied by making observations in the X-ray part of the electromagnetic spectrum. The astronomical objects which emit detectable X-rays include our own Sun and extend to quasars at the edge of the Universe. This book describes the history, techniques and results obtained in the first twenty-five years of exploration. Space rockets and satellites are essential for carrying the instruments above the Earth's atmosphere where it becomes possible to view the X-rays from stars and nebulae. The subject is covered in chapters, entitled: the birth of X-ray astronomy; the nature of X-radiation; X-rays from the Sun; solar-flare X-rays; X-rays from beyond the solar system; supernovae and their remnants; X-rays from binary stars; white dwarfs and neutron stars; black holes; X-rays from galaxies and quasars; clusters of galaxies; the observatories of the future. (author)

  8. Development of x-ray laminography under an x-ray microscopic condition

    International Nuclear Information System (INIS)

    Hoshino, Masato; Uesugi, Kentaro; Takeuchi, Akihisa; Suzuki, Yoshio; Yagi, Naoto

    2011-01-01

    An x-ray laminography system under an x-ray microscopic condition was developed to obtain a three-dimensional structure of laterally-extended planar objects which were difficult to observe by x-ray tomography. An x-ray laminography technique was introduced to an x-ray transmission microscope with zone plate optics. Three prototype sample holders were evaluated for x-ray imaging laminography. Layered copper grid sheets were imaged as a laminated sample. Diatomite powder on a silicon nitride membrane was measured to confirm the applicability of this method to non-planar micro-specimens placed on the membrane. The three-dimensional information of diatom shells on the membrane was obtained at a spatial resolution of sub-micron. Images of biological cells on the membrane were also obtained by using a Zernike phase contrast technique.

  9. Diffraction anomalous fine-structure study of strained Ga1-xInxAs on GaAs(001)

    International Nuclear Information System (INIS)

    Woicik, J.C.; Cross, J.O.; Bouldin, C.E.; Ravel, B.; Pellegrino, J.G.; Steiner, B.; Bompadre, S.G.; Sorensen, L.B.; Miyano, K.E.; Kirkland, J.P.

    1998-01-01

    Diffraction anomalous fine-structure measurements performed at both the Ga and As K edges have determined the Ga-As bond length to be 2.442±0.005thinsp Angstrom in a buried, 213-Angstrom-thick Ga 0.785 In 0.215 As layer grown coherently on GaAs(001). This bond length corresponds to a strain-induced contraction of 0.013±0.005thinsp Angstrom relative to the Ga-As bond length in bulk Ga 1-x In x As of the same composition. Together with recent extended x-ray-absorption fine-structure measurements performed at the In K edge [Woicik et al., Phys. Rev. Lett. 79, 5026 (1997)], excellent agreement is found with the uniform bond-length distortion model for strained-layer semiconductors on (001) substrates. copyright 1998 The American Physical Society

  10. X-ray guided biopsy

    International Nuclear Information System (INIS)

    Casanova, R.; Lezana, A.H.; Pedrosa, C.S.

    1980-01-01

    Fine needle aspiration biopsy (FNAB) is now a routine procedure in many X-ray Departments. This paper presents the authors' experience with this technique in chest, abdominal and skeletal lesions. (Auth.)

  11. X-ray coherent scattering tomography of textured material (Conference Presentation)

    Science.gov (United States)

    Zhu, Zheyuan; Pang, Shuo

    2017-05-01

    Small-angle X-ray scattering (SAXS) measures the signature of angular-dependent coherently scattered X-rays, which contains richer information in material composition and structure compared to conventional absorption-based computed tomography. SAXS image reconstruction method of a 2 or 3 dimensional object based on computed tomography, termed as coherent scattering computed tomography (CSCT), enables the detection of spatially-resolved, material-specific isotropic scattering signature inside an extended object, and provides improved contrast for medical diagnosis, security screening, and material characterization applications. However, traditional CSCT methods assumes materials are fine powders or amorphous, and possess isotropic scattering profiles, which is not generally true for all materials. Anisotropic scatters cannot be captured using conventional CSCT method and result in reconstruction errors. To obtain correct information from the sample, we designed new imaging strategy which incorporates extra degree of detector motion into X-ray scattering tomography for the detection of anisotropic scattered photons from a series of two-dimensional intensity measurements. Using a table-top, narrow-band X-ray source and a panel detector, we demonstrate the anisotropic scattering profile captured from an extended object and the reconstruction of a three-dimensional object. For materials possessing a well-organized crystalline structure with certain symmetry, the scatter texture is more predictable. We will also discuss the compressive schemes and implementation of data acquisition to improve the collection efficiency and accelerate the imaging process.

  12. Extending synchrotron-based atomic physics experiments into the hard X-ray region

    International Nuclear Information System (INIS)

    LeBrun, T.

    1996-01-01

    The high-brightness, hard x-ray beams available from third-generation synchrotron sources are opening new opportunities to study the deepest inner shells of atoms, an area where little work has been done and phenomena not observed in less tightly bound inner-shells are manifested. In addition scattering processes which are weak at lower energies become important, providing another tool to investigate atomic structure as well as an opportunity to study photon/atom interactions beyond photoabsorption. In this contribution the authors discuss some of the issues related to extending synchrotron-based atomic physics experiments into the hard x-ray region from the physical and the experimental point of view. They close with a discussion of a technique, resonant Raman scattering, that may prove invaluable in determining the spectra of the very highly-excited states resulting from the excitation of deep inner shells

  13. Adjustable Grazing-Incidence X-Ray Optics

    Science.gov (United States)

    O'Dell, Stephen L.; Reid, Paul B.

    2015-01-01

    With its unique subarcsecond imaging performance, NASA's Chandra X-ray Observatory illustrates the importance of fine angular resolution for x-ray astronomy. Indeed, the future of x-ray astronomy relies upon x-ray telescopes with comparable angular resolution but larger aperture areas. Combined with the special requirements of nested grazing-incidence optics, mass, and envelope constraints of space-borne telescopes render such advances technologically and programmatically challenging. The goal of this technology research is to enable the cost-effective fabrication of large-area, lightweight grazing-incidence x-ray optics with subarcsecond resolution. Toward this end, the project is developing active x-ray optics using slumped-glass mirrors with thin-film piezoelectric arrays for correction of intrinsic or mount-induced distortions.

  14. Time-resolved pump and probe x-ray absorption fine structure spectroscopy at beamline P11 at PETRA III

    Energy Technology Data Exchange (ETDEWEB)

    Göries, D., E-mail: dennis.goeries@desy.de; Roedig, P.; Stübe, N.; Meyer, J.; Warmer, M.; Weckert, E.; Meents, A., E-mail: alke.meents@desy.de [DESY Photon Science, Deutsches Elektronen-Synchrotron (DESY), Notkestraße 85, 22607 Hamburg (Germany); Dicke, B.; Naumova, M.; Rübhausen, M. [Center for Free-Electron Laser Science (CFEL), Luruper Chaussee 149, 22761 Hamburg (Germany); Galler, A.; Gawelda, W.; Geßler, P.; Sotoudi Namin, H.; Beckmann, A. [European XFEL, Albert-Einstein Ring 19, 22761 Hamburg (Germany); Britz, A.; Bressler, C. [European XFEL, Albert-Einstein Ring 19, 22761 Hamburg (Germany); The Hamburg Centre for Ultrafast Imaging, Luruper Chaussee 149, 22761 Hamburg (Germany); Schlie, M. [Institut für Experimentalphysik, University of Hamburg, Luruper Chaussee 149, 22761 Hamburg (Germany)

    2016-05-15

    We report about the development and implementation of a new setup for time-resolved X-ray absorption fine structure spectroscopy at beamline P11 utilizing the outstanding source properties of the low-emittance PETRA III synchrotron storage ring in Hamburg. Using a high intensity micrometer-sized X-ray beam in combination with two positional feedback systems, measurements were performed on the transition metal complex fac-Tris[2-phenylpyridinato-C2,N]iridium(III) also referred to as fac-Ir(ppy){sub 3}. This compound is a representative of the phosphorescent iridium(III) complexes, which play an important role in organic light emitting diode (OLED) technology. The experiment could directly prove the anticipated photoinduced charge transfer reaction. Our results further reveal that the temporal resolution of the experiment is limited by the PETRA III X-ray bunch length of ∼103 ps full width at half maximum (FWHM).

  15. The Einstein Observatory Extended Medium-Sensitivity Survey. I - X-ray data and analysis

    Science.gov (United States)

    Gioia, I. M.; Maccacaro, T.; Schild, R. E.; Wolter, A.; Stocke, J. T.

    1990-01-01

    This paper presents the results of the analysis of the X-ray data and the optical identification for the Einstein Observatory Extended Medium-Sensitivity Survey (EMSS). The survey consists of 835 serendipitous sources detected at or above 4 times the rms level in 1435 imaging proportional counter fields with centers located away from the Galactic plane. Their limiting sensitivities are about (5-300) x 10 to the -14th ergs/sq cm sec in the 0.3-3.5-keV energy band. A total area of 778 square deg of the high-Galactic-latitude sky has been covered. The data have been analyzed using the REV1 processing system, which takes into account the nonuniformities of the detector. The resulting EMSS catalog of X-ray sources is a flux-limited and homogeneous sample of astronomical objects that can be used for statistical studies.

  16. X-ray optics and X-ray microscopes: new challenges

    International Nuclear Information System (INIS)

    Susini, J.

    2004-01-01

    Soon after the discovery of X-rays in 1895 by W. Roentgen, it became rapidly clear that the methods traditionally used in the visible light regime, namely refraction, diffraction and reflection were difficult to apply for X-ray optics. The physical origins of these difficulties are closely linked to the very nature of interaction of X-rays with matter. The small deviation δ of the refractive index of condensed matter from unity makes it difficult to extend refraction-based optics from the optical spectral region to the X-ray region because the refraction angle is proportional to δ. Similarly it is very challenging to extend diffraction-based focusing techniques to X-rays because the diffraction angle scales inversely with wavelength. Finally, the use of reflection-based optics is also limited by the very small critical angle for total reflection. All those fundamental limitations prevented for almost one century, the development of X-ray microscopy whereas electron microscopy became a standard tool. In the past twenty years, interests for X-ray microscopy revived, mainly because of several major advances in X-ray sources and X-ray optics. X-ray microscopy techniques are now emerging as powerful and complementary tools for submicron investigations. Soft X-ray microscopes offer traditionally the possibility to form direct images of thick hydrated biological material in near-native environment, at a spatial resolution well beyond that achievable with visible light microscopy. Natural contrast is available in the soft X-ray region, in the so-called ''water-window'', due to the presence of absorption edges of the major constituents (C,N,O). Recent advances in manufacturing techniques have enlarged the accessible energy range of micro-focussing optics and offer new applications in a broad range of disciplines. X-ray microscopy in the 1 - 30 keV energy range is better suited for fluorescence to map trace elements, tomography for 3D imaging and micro-diffraction. The

  17. X-ray spectroscopic studies of uranium transformations in microbial cultures

    International Nuclear Information System (INIS)

    Dodge, C.J.; Francis, A.J.; Clayton, C.R.

    1995-01-01

    Microbial transformations of uranyl nitrate, U:citric acid, and mixed metal U:Fe:citric acid complex were investigated. X-ray photoelectron spectroscopy (XPS) and X-ray absorption near edge structure (XANES) analyses showed that soluble U 6+ was reduced to insoluble U 4+ by Clostridium sp. and was associated with the bacterial surface, whereas U 3+ was observed within the biomass. Uranium forms a binuclear complex with citric acid involving two carboxylic acid groups and the hydroxyl group. Biodegradation studies of U:citric acid and U:Fe:citric acid complexes using Pseudomonas fluorescens showed they were recalcitrant. The lack of biodegradation was due to the nature of the metal-citrate complex species and not due to toxicity. Characterization of the mixed metal U:Fe:citric acid complex by extended X-ray absorption fine structure (EXAFS) indicated that Fe was associated with the U and citric acid, resulting in formation of a bionuclear mixed metal citrate complex

  18. Anomalous X-ray scattering studies of short-, intermediate- and extended-range order in glasses

    International Nuclear Information System (INIS)

    Price, D.L.; Saboungi, M.L.; Armand, P.; Cox, D.E.

    1998-01-01

    The authors present the formalism of anomalous x-ray scattering as applied to partial structure analysis of disordered materials, and give an example of how the technique has been applied, together with that of neutron diffraction, to investigate short-, intermediate- and extended-range order in vitreous germania and rubidium germanate

  19. X-ray refractometer

    International Nuclear Information System (INIS)

    Tur'yanskij, A.G.; Pirshin, I.V.

    2001-01-01

    Paper introduces a new circuit of X-ray refractometer to study angular and spectral features of refracted radiation within hard X-ray range. Refractometer incorporates two goniometers, two crystal-analyzers and three radiation detectors. The maximum distance between radiation source focal point and a receiving slit of the second goniometer is equal to 1.4 m. For the first time one obtained refraction patterns of fine-film specimens including C/Si stressed structure. Paper describes a new technique of refractometry via specimen oscillation at fixed position of a detecting device. Paper presents the measurement results of oscillation refraction patterns for specimens of melted quartz and ZnSe single crystal [ru

  20. Characterization of cryogenic materials by x-ray absorption methods

    International Nuclear Information System (INIS)

    Heald, S.M.; Tranquada, J.M.

    1985-01-01

    X-ray absorption techniques have in recent years been developed into powerful probes of the electronic and structural properties of materials difficult to study by other techniques. In particular, the extended x-ray absorption fine structure (EXAFS) technique can be applied to a variety of cryogenic materials. Three examples are used to demonstrate the power of the technique. The first is the determination of the lattice location of dilute alloying additions such as Ta and Zr in Nb 3 Sn. The Ta additions are shown to reside predominately in Nb lattice sites, while Zr is not uniquely located at either Nb or Sn sites. In addition to structural information, temperature dependent EXAFS studies can be used to determine the rms deviations of atomic bond lengths, providing information about the temperature dependence of interatomic force constants. For Nb 3 Sn deviations are found from simple harmonic behavior at low temperatures which indicate a softening of the Nb-Sn bond strength. The final example is the study of interfacial properties in thin film systems. This is accomplished by making x-ray absorption measurements under conditions of total external reflection of the incident x-rays. As some examples show, this technique has great potential for studying interfacial reactions, a process used in the fabrication of many superconducting materials

  1. X-ray absorption spectroscopic studies of mononuclear non-heme iron enzymes

    Energy Technology Data Exchange (ETDEWEB)

    Westre, Tami E. [Stanford Univ., CA (United States)

    1996-01-01

    Fe-K-edge X-ray absorption spectroscopy (XAS) has been used to investigate the electronic and geometric structure of the iron active site in non-heme iron enzymes. A new theoretical extended X-ray absorption fine structure (EXAFS) analysis approach, called GNXAS, has been tested on data for iron model complexes to evaluate the utility and reliability of this new technique, especially with respect to the effects of multiple-scattering. In addition, a detailed analysis of the 1s→3d pre-edge feature has been developed as a tool for investigating the oxidation state, spin state, and geometry of iron sites. Edge and EXAFS analyses have then been applied to the study of non-heme iron enzyme active sites.

  2. High resolution projection X-ray microscope equipped with fluorescent X-ray analyzer and its applications

    International Nuclear Information System (INIS)

    Minami, K; Saito, Y; Kai, H; Shirota, K; Yada, K

    2009-01-01

    We have newly developed an open type fine-focus X-ray tube 'TX-510' to realize a spatial resolution of 50nm and to radiate low energy characteristic X-rays for giving high absorption contrast to images of microscopic organisms. The 'TX-510' employs a ZrO/W(100) Schottky emitter and an 'In-Lens Field Emission Gun'. The key points of the improvements are (1) reduced spherical aberration coefficient of magnetic objective lens, (2) easy and accurate focusing, (3) newly designed astigmatism compensator, (4) segmented thin film target for interchanging the target materials by electron beam shift and (5) fluorescent X-ray analysis system.

  3. Design and fabrication of soft x-ray mirrors

    Energy Technology Data Exchange (ETDEWEB)

    Kawata, Masaru; Sasai, Hiroyuki; Sano, Kazuo [Shimadzu Corp., Production Engineering Laboratory, Kyoto (Japan)

    2000-03-01

    Soft x-ray photoelectron spectroscopic technology is important for measuring the chemical status of material surface in the LSI manufacturing process. We report on non-spherical mirrors focusing laser-induced plasma soft x-ray to fine sample surface. We designed toric and ellipsoidal mirror as soft x-ray condensing means, simulated focusing image, manufactured mirror surface on fused quartz substrate, and measured form accuracy. (author)

  4. Low Mass X-ray Binary 4U1705-44 Exiting an Extended High X-ray State

    Science.gov (United States)

    Phillipson, Rebecca; Boyd, Patricia T.; Smale, Alan P.

    2017-09-01

    The neutron-star low-mass X-ray binary 4U1705-44, which exhibited high amplitude long-term X-ray variability on the order of hundreds of days during the 16-year continuous monitoring by the RXTE ASM (1995-2012), entered an anomalously long high state in July 2012 as observed by MAXI (2009-present).

  5. Molybdenum reduction in a sulfidic lake: Evidence from X-ray absorption fine-structure spectroscopy and implications for the Mo paleoproxy

    DEFF Research Database (Denmark)

    Dahl, T. W.; Chappaz, A.; Fitts, J. P.

    2013-01-01

    and the ultimate Mo host in euxinic sediments are not well understood. We used X-ray absorption fine structure (XAFS) spectroscopy to determine the oxidation state and the molecular coordination environment of pristine, solid phase Mo in sediments from permanently euxinic Lake Cadagno, Switzerland. Samples were...

  6. Dense X-pinch plasmas for x-ray microlithography

    International Nuclear Information System (INIS)

    Kalantar, D.H.; Hammer, D.A.; Qi, N.; Mittal, K.C.

    1990-01-01

    The authors report experimental results from a study of the radiation emission from aluminum and magnesium x-pinch experiments. The single cross x-pinch, driven by the 0.5 TW, 40ns pulse width Lion accelerator, consists of 2-8 fine wires stretched between the output electrodes of Lion so as to touch at a single point. The wires were twisted up to 360 degrees at the crossing point. The number and size of Al and Mg wires were varied in order to optimize the K-shell line radiation. Diagnostics used for the experiments included pinhole photography, streak imaging, filtered photoconducting diodes and x-ray crystal spectroscopy. The source size and distribution are determined through x-ray pinhole photographs. The radiation energy spectrum is determined by x-ray spectroscopy and attenuation through filters. Energy intensities were obtained from the filtered photoconducting diodes

  7. X-ray imaging characterization of active edge silicon pixel sensors

    International Nuclear Information System (INIS)

    Ponchut, C; Ruat, M; Kalliopuska, J

    2014-01-01

    The aim of this work was the experimental characterization of edge effects in active-edge silicon pixel sensors, in the frame of X-ray pixel detectors developments for synchrotron experiments. We produced a set of active edge pixel sensors with 300 to 500 μm thickness, edge widths ranging from 100 μm to 150 μm, and n or p pixel contact types. The sensors with 256 × 256 pixels and 55 × 55 μm 2 pixel pitch were then bump-bonded to Timepix readout chips for X-ray imaging measurements. The reduced edge widths makes the edge pixels more sensitive to the electrical field distribution at the sensor boundaries. We characterized this effect by mapping the spatial response of the sensor edges with a finely focused X-ray synchrotron beam. One of the samples showed a distortion-free response on all four edges, whereas others showed variable degrees of distortions extending at maximum to 300 micron from the sensor edge. An application of active edge pixel sensors to coherent diffraction imaging with synchrotron beams is described

  8. A hard X-ray study of the ultraluminous X-ray source NGC 5204 X-1 with NuSTAR and XMM-Newton

    DEFF Research Database (Denmark)

    Mukherjee, E. S.; Walton, D. J.; Bachetti, M.

    2015-01-01

    We present the results from coordinated X-ray observations of the ultraluminous X-ray source NGC 5204 X-1 performed by the Nuclear Spectroscopic Telescope Array and XMM-Newton in early 2013. These observations provide the first detection of NGC 5204 X-1 above 10 keV, extending the broadband cover...

  9. Improvements in X-ray detectors

    International Nuclear Information System (INIS)

    Whetten, N.R.; Houston, J.M.

    1979-01-01

    Multicellular, spatially separate, gaseous ionization detectors for use in computerized tomography are described. They have high sensitivity, short recovery time, fine spatial resolution and are relatively insensitive to the adverse effects of k shell x-ray fluoresecence.(UK)

  10. Structural investigations of LiFePO4 electrodes and in situ studies by Fe X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Deb, Aniruddha; Bergmann, Uwe; Cramer, S.P.; Cairns, Elton J.

    2005-01-01

    Fe K-edge X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) have been performed on electrodes containing LiFePO 4 to determine the local atomic and electronic structure and their stability with electrochemical cycling. A versatile electrochemical in situ cell has been constructed for long-term soft and hard X-ray experiments for the structural investigation on battery electrodes during the lithium-insertion/extraction processes. The device is used here for an X-ray absorption spectroscopic study of lithium insertion/extraction in a LiFePO 4 electrode, where the electrode contained about 7.7 mg of LiFePO 4 on a 20 μm thick Al-foil. Fe K-edge X-ray absorption near edge spectroscopy (XANES) and extended X-ray absorption fine structure (EXAFS) have been performed on this electrode to determine the local atomic and electronic structure and their stability with electrochemical cycling. The initial state (LiFePO 4 ) showed iron to be in the Fe 2+ state corresponding to the initial state (0.0 mAh) of the cell, whereas in the delithiated state (FePO 4 ) iron was found to be in the Fe 3+ state corresponding to the final charged state (3 mAh). XANES region of the XAS spectra revealed a high spin configuration for the two states (Fe (II), d 6 and Fe (III), d 5 ). The results confirm that the olivine structure of the LiFePO 4 and FePO 4 is retained by the electrodes in agreement with the XRD observations reported previously. These results confirm that LiFePO 4 cathode material retains good structural short-range order leading to superior cycling capability

  11. Extended x-ray absorption fine structure study of arsenic in HgCdTe: p-type doping linked to nonsubstitutional As incorporation in an unknown AsHg8 structure

    International Nuclear Information System (INIS)

    Biquard, X.; Alliot, I.; Ballet, P.

    2009-01-01

    An extended x-ray absorption fine structure (EXAFS) investigation has been carried out on arsenic-doped Hg 70 Cd 30 Te samples. The incorporation of atomic arsenic has been achieved using a nonconventional radio-frequency plasma source in a molecular beam epitaxy reactor. Two samples from the same epitaxial wafer have been studied. One underwent a 400 deg. C activation annealing under Hg pressure, leading to n to p-type conversion. In the commonly admitted scenario, this conversion is associated with the annealing-induced migration of As from a Hg site to a Te site. This study shows that this is not the case. Before annealing, As is found to be involved in noncrystalline structures: 50% inside an As 2 Te 3 chalcogenide glass and 50% inside a new AsHg 8 compact structure. After annealing, the As 2 Te 3 chalcogenide glass disappears, 31% of As occupies Hg sites and 69% incorporates inside this new AsHg 8 compact structure that occupies Te sites. The EXAFS results are in excellent agreement with 77 K Hall-effect measurements. The new AsHg 8 structure is found to have an acceptor behavior. Overall, this study provides an entirely new vision of extrinsic p-type doping of HgCdTe as well as the first experimental evidence of As site transfer induced by annealing.

  12. Parameter study of self-absorption effects in Total Reflection X-ray Fluorescence-X-ray Absorption Near Edge Structure analysis of arsenic

    International Nuclear Information System (INIS)

    Meirer, F.; Pepponi, G.; Streli, C.; Wobrauschek, P.; Kregsamer, P.; Zoeger, N.; Falkenberg, G.

    2008-01-01

    Total reflection X-ray Fluorescence (TXRF) analysis in combination with X-ray Absorption Near Edge Structure (XANES) analysis is a powerful method to perform chemical speciation studies at trace element levels. However, when measuring samples with higher concentrations and in particular standards, damping of the oscillations is observed. In this study the influence of self-absorption effects on TXRF-XANES measurements was investigated by comparing measurements with theoretical calculations. As(V) standard solutions were prepared at various concentrations and dried on flat substrates. The measurements showed a correlation between the damping of the oscillations and the As mass deposited. A Monte-Carlo simulation was developed using data of the samples shapes obtained from confocal white light microscopy. The results showed good agreement with the measurements; they confirmed that the key parameters are the density of the investigated atom in the dried residues and the shape of the residue, parameters that combined define the total mass crossed by a certain portion of the incident beam. The study presents a simple approach for an a priori evaluation of the self-absorption in TXRF X-ray absorption studies. The consequences for Extended X-ray Absorption Fine Structure (EXAFS) and XANES measurements under grazing incidence conditions are discussed, leading to the conclusion that the damping of the oscillations seems to make EXAFS of concentrated samples non feasible. For XANES 'fingerprint' analysis samples should be prepared with a deposited mass and sample shape leading to an acceptable absorption for the actual investigation

  13. X-ray absorption spectroscopy and neutron diffraction study of the perovskite-type rare-earth cobaltites

    Science.gov (United States)

    Sikolenko, V.; Efimova, E.; Franz, A.; Ritter, C.; Troyanchuk, I. O.; Karpinsky, D.; Zubavichus, Y.; Veligzhanin, A.; Tiutiunnikov, S. I.; Sazonov, A.; Efimov, V.

    2018-05-01

    Correlations between local and long-range structure distortions in the perovskite-type RE1-xSrxCoO3-δ (RE = La, Pr, Nd; x = 0.0 and 0.5) compounds have been studied at room temperature by extended X-ray absorption fine structure (EXAFS) at the Co K-edge and high-resolution neutron powder diffraction (NPD). The use of two complementary experimental techniques allowed us to explore the influence of the type of rare-earth element and strontium substitution on unusual behavior of static and dynamic features of both the Co-O bond lengths.

  14. X-ray fluorescence and the study of microcirculation

    International Nuclear Information System (INIS)

    Muthuvelu, P.; Hugtenburg, R.P.; Bradley, D.A.; Winlove, C.P.

    2004-01-01

    The feasibility of using K-shell X-ray fluorescence (XRF) technique for study of subchondral bone microcirculation in ex vivo samples is examined. Studies have been carried out at the Daresbury Laboratory Synchrotron Radiation Source (SRS) ultra-dilute extended X-ray absorption fine structure beamline. Initial investigations were made on fine-bore capillaries with diameters of either 500 or 200 μm, attenuated by up to 2 mm of Perspex and containing dilute iodine-based contrast media. This allowed comparison to be made with the capabilities of angiographic imaging systems, also allowing definition of suitable XRF set-up parameters for subsequent microcirculation studies. Measurements were obtained in 30 s run times, for concentrations of iodine (K ab 33.164 keV) down to 2 /(ml saline). Intensities were linear up to 3.7 mg/ml, self-absorption becoming significant for concentrations beyond this. To determine detection limits, preliminary studies of subchondral bone microcirculation were made on bone sections which were known to be poorly infused with silver-coated (K ab 25.517 keV) 30 μm diameter microspheres. For a 2 mm slice of bone, the presence of small numbers of silver-coated microspheres were detected in the first 2 mm layer from the surface, at a level equivalent to ∼1 ppm of silver solution

  15. Handbook Of X-ray Astronomy

    Science.gov (United States)

    Arnaud, Keith A.; Smith, R. K.; Siemiginowska, A.; Edgar, R. J.; Grant, C. E.; Kuntz, K. D.; Schwartz, D. A.

    2011-09-01

    This poster advertises a book to be published in September 2011 by Cambridge University Press. Written for graduate students, professional astronomers and researchers who want to start working in this field, this book is a practical guide to x-ray astronomy. The handbook begins with x-ray optics, basic detector physics and CCDs, before focussing on data analysis. It introduces the reduction and calibration of x-ray data, scientific analysis, archives, statistical issues and the particular problems of highly extended sources. The book describes the main hardware used in x-ray astronomy, emphasizing the implications for data analysis. The concepts behind common x-ray astronomy data analysis software are explained. The appendices present reference material often required during data analysis.

  16. The Viking X ray fluorescence experiment - Sampling strategies and laboratory simulations. [Mars soil sampling

    Science.gov (United States)

    Baird, A. K.; Castro, A. J.; Clark, B. C.; Toulmin, P., III; Rose, H., Jr.; Keil, K.; Gooding, J. L.

    1977-01-01

    Ten samples of Mars regolith material (six on Viking Lander 1 and four on Viking Lander 2) have been delivered to the X ray fluorescence spectrometers as of March 31, 1977. An additional six samples at least are planned for acquisition in the remaining Extended Mission (to January 1979) for each lander. All samples acquired are Martian fines from the near surface (less than 6-cm depth) of the landing sites except the latest on Viking Lander 1, which is fine material from the bottom of a trench dug to a depth of 25 cm. Several attempts on each lander to acquire fresh rock material (in pebble sizes) for analysis have yielded only cemented surface crustal material (duricrust). Laboratory simulation and experimentation are required both for mission planning of sampling and for interpretation of data returned from Mars. This paper is concerned with the rationale for sample site selections, surface sampler operations, and the supportive laboratory studies needed to interpret X ray results from Mars.

  17. Broadband X-ray spectra of the ultraluminous x-ray source Holmberg IX X-1 observed with NuSTAR, XMM-Newton, and Suzaku

    DEFF Research Database (Denmark)

    Walton, D. J.; Harrison, F. A.; Grefenstette, B. W.

    2014-01-01

    We present results from the coordinated broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 performed by NuSTAR, XMM-Newton, and Suzaku in late 2012. These observations provide the first high-quality spectra of Holmberg IX X-1 above 10 keV to date, extending the...

  18. X-ray fluorescence analyzer arrangement

    International Nuclear Information System (INIS)

    Vatai, Endre; Ando, Laszlo; Gal, Janos.

    1981-01-01

    An x-ray fluorescence analyzer for the quantitative determination of one or more elements of complex samples is reported. The novelties of the invention are the excitation of the samples by x-rays or γ-radiation, the application of a balanced filter pair as energy selector, and the measurement of the current or ion charge of ionization detectors used as sensors. Due to the increased sensitivity and accuracy, the novel design can extend the application fields of x-ray fluorescence analyzers. (A.L.)

  19. X-ray fluorescence holography.

    Science.gov (United States)

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu, Wen; Matsushita, Tomohiro

    2012-03-07

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy.

  20. X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Hayashi, Kouichi; Happo, Naohisa; Hosokawa, Shinya; Hu Wen; Matsushita, Tomohiro

    2012-01-01

    X-ray fluorescence holography (XFH) is a method of atomic resolution holography which utilizes fluorescing atoms as a wave source or a monitor of the interference field within a crystal sample. It provides three-dimensional atomic images around a specified element and has a range of up to a few nm in real space. Because of this feature, XFH is expected to be used for medium-range local structural analysis, which cannot be performed by x-ray diffraction or x-ray absorption fine structure analysis. In this article, we explain the theory of XFH including solutions to the twin-image problem, an advanced measuring system, and data processing for the reconstruction of atomic images. Then, we briefly introduce our recent applications of this technique to the analysis of local lattice distortions in mixed crystals and nanometer-size clusters appearing in the low-temperature phase of a shape-memory alloy. (topical review)

  1. Molecular characterization of copper in soils using X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Strawn, Daniel G.; Baker, Leslie L.

    2009-01-01

    Bioavailability of Cu in the soil is a function of its speciation. In this paper we investigated Cu speciation in six soils using X-ray absorption near edge structure (XANES), extended X-ray absorption fine structure (EXAFS), and synchrotron-based micro X-ray fluorescence (μ-XRF). The XANES and EXAFS spectra in all of the soils were the same. μ-XRF results indicated that the majority of the Cu particles in the soils were not associated with calcium carbonates, Fe oxides, or Cu sulfates. Principal component analysis and target transform of the XANES and EXAFS spectra suggested that Cu adsorbed on humic acid (HA) was an acceptable match. Thus it appears that Cu in all of the soils is primarily associated with soil organic matter (SOM). Theoretical fitting of the molecular structure in the soil EXAFS spectra revealed that the Cu in the soils existed as Cu atoms bound in a bidentate complex to O or N functional groups. - Copper speciation in six soils was investigated using XANES, EXAFS, and μ-XRF.

  2. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic dental radiography is described in detail. It comprises an electron gun having an elongated tubular target carrier extending into the patient's mouth. The carrier supports an inclined target for direction of an X-ray pattern towards a film positioned externally of the patient's mouth. Image definition is improved by a focusing anode which focuses the electron beam into a sharp spot (0.05 to 0.10 mm diameter) on the target. The potential on the focusing anode is adjustable to vary the size of the spot. An X-ray transmitting ceramic (oxides of Be, Al and Si) window is positioned adjacent to the front face of the target. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  3. Fluorescence x-ray absorption fine structure studies of Fe-Ni-S and Fe-Ni-Si melts to 1600 K

    Science.gov (United States)

    Manghnani, M. H.; Hong, X.; Balogh, J.; Amulele, G.; Sekar, M.; Newville, M.

    2008-04-01

    We report NiK -edge fluorescence x-ray absorption fine structure spectra (XAFS) for Fe0.75Ni0.05S0.20 and Fe0.75Ni0.05Si0.20 ternary alloys from room temperature up to 1600 K. A high-temperature furnace designed for these studies incorporates two x-ray transparent windows and enables both a vertical orientation of the molten sample and a wide opening angle, so that XAFS can be measured in the fluorescence mode with a detector at 90° with respect to the incident x-ray beam. An analysis of the Ni XAFS data for these two alloys indicates different local structural environments for Ni in Fe0.75Ni0.05S0.20 and Fe0.75Ni0.05Si0.20 melts, with more Ni-Si coordination than Ni-S coordination persisting from room temperature through melting. These results suggest that light elements such as S and Si may impact the structural and chemical properties of Fe-Ni alloys with a composition similar to the earth’s core.

  4. Adsorption site and structure determination of c(2x2) N{sub 2}/Ni(100) using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors have determined the atomic spatial structure of c(2x2) N2Ni(100) with Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the nitrogen 1s core level using monochromatized x-rays from beamline 6.1 at SSRL and beamline 9.3.2 at the ALS. The chemically shifted N 1s peak intensities were summed together to obtain ARPEFS curves for both nitrogen atoms in the molecule. They used a new, highly-optimized program based on the Rehr-Albers scattering matrix formalism to find the adsorption site and to quantitatively determine the bond-lengths. The nitrogen molecule stands upright at an atop site, with a N-Ni bond length of 2.25(1) {angstrom}, a N-N bond length of 1.10(7) {angstrom}, and a first layer Ni-Ni spacing of 1.76(4) {angstrom}. The shake-up peak shows an identical ARPEFS diffraction pattern, confirming its intrinsic nature and supporting a previous use of this feature to decompose the peak into contributions from the chemically inequivalent nitrogen atoms. Comparison to a previously published theoretical treatment of N-N-Ni and experimental structures of analogous adsorbate systems demonstrates the importance of adsorbate-adsorbate interactions in weakly chemisorbed systems.

  5. Practical Aspects of X-ray Imaging Polarimetry of Supernova Remnants and Other Extended Sources

    Directory of Open Access Journals (Sweden)

    Jacco Vink

    2018-04-01

    Full Text Available The new generation of X-ray polarisation detectors, the gas pixel detectors, which will be employed by the future space missions IXPE and eXTP, allows for spatially resolved X-ray polarisation studies. This will be of particular interest for X-ray synchrotron emission from extended sources like young supernova remnants and pulsar wind nebulae. Here we report on employing a polarisation statistic that can be used to makes maps in the Stokes I, Q, and U parameters, a method that we expand by correcting for the energy-dependent instrumental modulation factor, using optimal weighting of the signal. In order to explore the types of Stokes maps that can be obtained, we present a Monte Carlo simulation program called xpolim, with which different polarisation weighting schemes are explored. We illustrate its use with simulations of polarisation maps of young supernova remnants, after having described the general science case for polarisation studies of supernova remnants, and its connection to magnetic-field turbulence. We use xpolim simulations to show that in general deep, ~2 Ms observations are needed to recover polarisation signals, in particular for Cas A, for which in the polarisation fraction may be as low as 5%.

  6. Grazing incidence x-ray diffraction at free-standing nanoscale islands: fine structure of diffuse scattering

    International Nuclear Information System (INIS)

    Grigoriev, D; Hanke, M; Schmidbauer, M; Schaefer, P; Konovalov, O; Koehler, R

    2003-01-01

    We have investigated the x-ray intensity distribution around 220 reciprocal lattice point in case of grazing incidence diffraction at SiGe nanoscale free-standing islands grown on Si(001) substrate by LPE. Experiments and computer simulations based on the distorted wave Born approximation utilizing the results of elasticity theory obtained by FEM modelling have been carried out. The data reveal fine structure in the distribution of scattered radiation with well-pronounced maxima and complicated fringe pattern. Explanation of the observed diffraction phenomena in their relation to structure and morphology of the island is given. An optimal island model including its shape, size and Ge spatial distribution was elaborated

  7. An extended range soft X-ray beam line for the 1 GeV storage ring Aladdin

    International Nuclear Information System (INIS)

    Hulbert, S.L.; Stott, J.P.; Brown, F.C.

    1983-01-01

    The design and implementation of a soft X-ray beam line on the new 1 GeV storage ring Aladdin in Stoughton, Wisconsin is discussed. The beam line consists of a long horizontally focussing collection mirror, an extended range (50-1500 eV) grasshopper monochromator, an ellipsoidal refocussing mirror, and a photoemission chamber. Also discussed are the factors considered in matching the monochromator to the storage ring, flux and performance expectations, and the results of a ray tracing analysis. (orig.)

  8. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Ohsuka, Shinji, E-mail: ohsuka@crl.hpk.co.jp [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); The Graduate School for the Creation of New Photonics Industries, 1955-1 Kurematsu-cho, Nishi-ku, Hamamatsu-City, 431-1202 (Japan); Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Nakano, Tomoyasu [Hamamatsu Photonics K.K., 5000 Hirakuchi, Hamakita-ku, Hamamatsu-City, 434-8601 (Japan); Ray-Focus Co. Ltd., 6009 Shinpara, Hamakita-ku, Hamamatsu-City, 434-0003 (Japan); Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao [Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904 (Japan)

    2014-09-15

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  9. Laboratory-size three-dimensional x-ray microscope with Wolter type I mirror optics and an electron-impact water window x-ray source.

    Science.gov (United States)

    Ohsuka, Shinji; Ohba, Akira; Onoda, Shinobu; Nakamoto, Katsuhiro; Nakano, Tomoyasu; Miyoshi, Motosuke; Soda, Keita; Hamakubo, Takao

    2014-09-01

    We constructed a laboratory-size three-dimensional water window x-ray microscope that combines wide-field transmission x-ray microscopy with tomographic reconstruction techniques, and observed bio-medical samples to evaluate its applicability to life science research fields. It consists of a condenser and an objective grazing incidence Wolter type I mirror, an electron-impact type oxygen Kα x-ray source, and a back-illuminated CCD for x-ray imaging. A spatial resolution limit of around 1.0 line pairs per micrometer was obtained for two-dimensional transmission images, and 1-μm scale three-dimensional fine structures were resolved.

  10. High Resolution Energetic X-ray Imager (HREXI)

    Science.gov (United States)

    Grindlay, Jonathan

    We propose to design and build the first imaging hard X-ray detector system that incorporates 3D stacking of closely packed detector readouts in finely-spaced imaging arrays with their required data processing and control electronics. In virtually all imaging astronomical detectors, detector readout is done with flex connectors or connections that are not vertical but rather horizontal , requiring loss of focal plane area. For high resolution pixel detectors needed for high speed event-based X-ray imaging, from low energy applications (CMOS) with focusing X-ray telescopes, to hard X-ray applications with pixelated CZT for large area coded aperture telescopes, this new detector development offers great promise. We propose to extend our previous and current APRA supported ProtoEXIST program that has developed the first large area imaging CZT detectors and demonstrated their astrophysical capabilities on two successful balloon flight to a next generation High Resolution Energetic X-ray Imager (HREXI), which would incorporate microvia technology for the first time to connect the readout ASIC on each CZT crystal directly to its control and data processing system. This 3-dimensional stacking of detector and readout/control system means that large area (>2m2) imaging detector planes for a High Resolution Wide-field hard X-ray telescope can be built with initially greatly reduced detector gaps and ultimately with no gaps. This increases detector area, efficiency, and simplicity of detector integration. Thus higher sensitivity wide-field imagers will be possible at lower cost. HREXI will enable a post-Swift NASA mission such as the EREXS concept proposed to PCOS to be conducted as a future MIDEX mission. This mission would conduct a high resolution (<2 arcmin) , broad band (5 200 keV) hard X-ray survey of black holes on all scales with ~10X higher sensitivity than Swift. In the current era of Time Domain Astrophysics, such a survey capability, in conjunction with a n

  11. X-ray tubes

    International Nuclear Information System (INIS)

    Young, R.W.

    1979-01-01

    A form of x-ray tube is described which provides satisfactory focussing of the electron beam when the beam extends for several feet from gun to target. Such a tube can be used for computerised tomographic scanning. (UK)

  12. Analysis of the local structure of AlN:Mn using X-ray absorption fine structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Takao [Materials Laboratories, Sony Corporation, 4-14-1 Asahi-cho, Atsugi-shi, Kanagawa 243-0014 (Japan); Kudo, Yoshihiro [Materials Analysis Lab., Sony Corporation, 4-18-1 Okada, Atsugi-shi, Kanagawa 243-0021 (Japan); Uruga, Tomoya [Japan Synchrotron Radiation Institute, 1-1-1 Kouto, Mikazuki-cho, Sayo-gun, Hyogo 679-5198 (Japan); Hara, Kazuhiko [Research Inst. of Electronics, Shizuoka Univ., 3-5-1 Johoku, Hamamatsu, Shizuoka 432-8011 (Japan)

    2006-06-15

    The local structure around the Mn atoms in MOCVD-grown AlN:Mn films which show Mn-related red-orange photoluminescence with a 600nm-peak at room temperature was investigated using the X-ray absorption fine structure (XAFS) measurements. We found that Mn atoms occupy Al lattice sites in the AlN film and that the Mn ions have a charge between +2 and +3. From these results, we think that the red-orange luminescence is caused by the transition of d-electrons in the Mn ions. (copyright 2006 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  13. X-ray fluorescence - a non-destructive tool in investigation of Czech fine and applied art objects

    Science.gov (United States)

    Trojek, T.; Musílek, L.

    2017-08-01

    A brief review of application of X-ray fluorescence analysis (XRFA) to fine and applied arts related to Czech cultural heritage is presented. The Department of Dosimetry and Application of Ionising Radiation of CTU-FNSPE has used XRFA in collaboration with various Czech institutions dealing with cultural history for many kinds of artefacts, (e.g., Roman and medieval brass, gemstones and noble metals from the sceptre of one of the faculties of the Charles University in Prague, millefiori beads, etc.). In some cases, a combination of various other techniques alongside XRFA was used for enhancing our knowledge of a measured object.

  14. Tomographic image reconstruction using x-ray phase information

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Itai, Yuji; Hirano, Keiichi

    1996-04-01

    We have been developing phase-contrast x-ray computed tomography (CT) to make possible the observation of biological soft tissues without contrast enhancement. Phase-contrast x-ray CT requires for its input data the x-ray phase-shift distributions or phase-mapping images caused by an object. These were measured with newly developed fringe-scanning x-ray interferometry. Phase-mapping images at different projection directions were obtained by rotating the object in an x-ray interferometer, and were processed with a standard CT algorithm. A phase-contrast x-ray CT image of a nonstained cancerous tissue was obtained using 17.7 keV synchrotron x rays with 12 micrometer voxel size, although the size of the observation area was at most 5 mm. The cancerous lesions were readily distinguishable from normal tissues. Moreover, fine structures corresponding to cancerous degeneration and fibrous tissues were clearly depicted. It is estimated that the present system is sensitive down to a density deviation of 4 mg/cm3.

  15. Sulfur X-ray absorption fine structure in porous Li–S cathode films measured under argon atmospheric conditions

    International Nuclear Information System (INIS)

    Müller, Matthias; Choudhury, Soumyadip; Gruber, Katharina; Cruz, Valene B.; Fuchsbichler, Bernd; Jacob, Timo; Koller, Stefan; Stamm, Manfred; Ionov, Leonid; Beckhoff, Burkhard

    2014-01-01

    In this paper we present the first results for the characterization of highly porous cathode materials with pore sizes below 1 μm for Lithium Sulfur (Li–S) batteries by Near Edge X-ray Absorption Fine Structure (NEXAFS) spectroscopy. A novel cathode material of porous carbon films fabricated with colloidal array templates has been investigated. In addition, an electrochemical characterization has been performed aiming on an improved correlation of physical and chemical parameters with the electrochemical performance. The performed NEXAFS measurements of cathode materials allowed for a chemical speciation of the sulfur content inside the cathode material. The aim of the presented investigation was to evaluate the potential of the NEXAFS technique to characterize sulfur in novel battery material. The long term goal for the characterization of the battery materials is the sensitive identification of undesired side reactions, such as the polysulfide shuttle, which takes place during charging and discharging of the battery. The main drawback associated with the investigation of these materials is the fact that NEXAFS measurements can usually only be performed ex situ due to the limited in situ instrumentation being available. For Li–S batteries this problem is more pronounced because of the low photon energies needed to study the sulfur K absorption edge at 2472 eV. We employed 1 μm thick Si 3 N 4 windows to construct sealed argon cells for NEXAFS measurements under ultra high vacuum (UHV) conditions as a first step towards in situ measurements. The cells keep the sample under argon atmosphere at any time and the X-ray beam passes mainly through vacuum which enables the detection of the low energy X-ray emission of sulfur. Using these argon cells we found indications for the presence of lithium polysulfides in the cathode films whereas the correlations to the offline electrochemical results remain somewhat ambiguous. As a consequence of these findings one may

  16. X-ray absorption anisotropy for polychromatic illumination-Crystal views from inside

    International Nuclear Information System (INIS)

    Korecki, P.; Tolkiehn, M.; Novikov, D.V.

    2009-01-01

    We review an atomic resolution imaging method based on the analysis of the fine structure in X-ray absorption anisotropy, which results from incident beam diffraction. For a polychromatic X-ray beam, due to the suppression of higher order diffraction fringes, X-ray absorption anisotropy patterns can be interpreted as distorted real-space projections of the atomic structure around absorbing atoms. A qualitative method for analysis of X-ray absorption anisotropy patterns is presented, based on modeling of X-ray patterns with ray-traced images calculated for clusters around absorbing atoms.

  17. Near-Edge X-ray Absorption Fine Structure Spectroscopy of Diamondoid Thiol Monolayers on Gold

    Energy Technology Data Exchange (ETDEWEB)

    Willey, T M; Fabbri, J; Lee, J I; Schreiner, P; Fokin, A A; Tkachenko, B A; Fokina, N A; Dahl, J; Carlson, B; Vance, A L; Yang, W; Terminello, L J; van Buuren, T; Melosh, N

    2007-11-27

    Diamondoids, hydrocarbon molecules with cubic-diamond-cage structures, have unique properties with potential value for nanotechnology. The availability and ability to selectively functionalize this special class of nanodiamond materials opens new possibilities for surface-modification, for high-efficiency field emitters in molecular electronics, as seed crystals for diamond growth, or as robust mechanical coatings. The properties of self-assembled monolayers (SAMs) of diamondoids are thus of fundamental interest for a variety of emerging applications. This paper presents the effects of thiol substitution position and polymantane order on diamondoid SAMs on gold using near-edge X-ray absorption fine structure spectroscopy (NEXAFS) and X-ray photoelectron spectroscopy (XPS). A framework to determine both molecular tilt and twist through NEXAFS is presented and reveals highly ordered diamondoid SAMs, with the molecular orientation controlled by the thiol location. C 1s and S 2p binding energies are lower in adamantane thiol than alkane thiols on gold by 0.67 {+-} 0.05 eV and 0.16 {+-} 0.04 eV respectively. These binding energies vary with diamondoid monolayer structure and thiol substitution position, consistent with different amounts of steric strain and electronic interaction with the substrate. This work demonstrates control over the assembly, in particular the orientational and electronic structure, providing a flexible design of surface properties with this exciting new class of diamond clusters.

  18. Theory of pump–probe ultrafast photoemission and X-ray absorption spectra

    Energy Technology Data Exchange (ETDEWEB)

    Fujikawa, Takashi, E-mail: tfujikawa@faculty.chiba-u.jp; Niki, Kaori

    2016-01-15

    Highlights: • Pump–probe ultrafast XAFS and XPS spectra are theoretically studied. • Keldysh Green's function theory is applied. • Important many-body effects are explicitly included. - Abstract: Keldysh Green's function approach is extensively used in order to derive practical formulas to analyze pump–probe ultrafast photoemission and X-ray absorption spectra. Here the pump pulse is strong enough whereas the probe X-ray pulse can be treated by use of a perturbation theory. We expand full Green's function in terms of renormalized Green's function without the interaction between electrons and probe pulse. The present theoretical formulas allow us to handle the intrinsic and extrinsic losses, and furthermore resonant effects in X-ray Absorption Fine Structures (XAFS). To understand the radiation field screening in XPS spectra, we have to use more sophisticated theoretical approach. In the ultrafast XPS and XAFS analyses the intrinsic and extrinsic loss effects can interfere as well. In the XAFS studies careful analyses are necessary to handle extrinsic losses in terms of damped photoelectron propagation. The nonequilibrium dynamics after the pump pulse irradiation is well described by use of the time-dependent Dyson orbitals. Well above the edge threshold, ultrafast photoelectron diffraction and extended X-ray absorption fine structure (EXAFS) provide us with transient structural change after the laser pump excitations. In addition to these slow processes, the rapid oscillation in time plays an important role related to pump electronic excitations. Near threshold detailed information could be obtained for the combined electronic and structural dynamics. In particular high-energy photoemission and EXAFS are not so influenced by the details of excited states by pump pulse. Random-Phase Approximation (RPA)-boson approach is introduced to derive some practical formulas for time-dependent intrinsic amplitudes.

  19. Size-dependent structural disorder in nanocrystalline Cu probed by synchrotron-based X-ray techniques

    International Nuclear Information System (INIS)

    Johannessen, B.; Kluth, P.; Cookson, D.J.; Foran, G.J.; Ridgway, M.C.

    2006-01-01

    Elemental Cu nanocrystals were synthesized in thin film SiO 2 by ion implantation and thermal annealing. The local atomic structure and nanocrystal size distribution were investigated by means of extended X-ray absorption fine structure (EXAFS) spectroscopy and small angle X-ray scattering (SAXS), respectively. We quantify the bondlength contraction and increased structural disorder in the nanocrystals as compared to a bulk Cu reference. Both are proportional to the inverse of the nanocrystal diameter, which in turn is proportional to the surface-area-to-volume ratio. In particular we show that a simple liquid-drop model can explain the bondlength contraction and estimate the surface tension of nanocrystalline Cu to be 3.8 ± 0.4 J/m 2

  20. X-ray absorption spectroscopy: EXAFS and XANES - A versatile tool to study the atomic and electronic structure of materials

    International Nuclear Information System (INIS)

    Alp, E.E.; Mini, S.M.; Ramanathan, M.

    1990-01-01

    X-ray absorption spectroscopy (XAS) had been an essential tool to gather spectroscopic information about atomic energy level structure in the early decades of this century. The correct interpretation of the oscillatory structure in the x-ray absorption cross-section above the absorption edge has transformed XAS from a spectroscopic tool to a structural technique. EXAFS (Extended X-ray Absorption Fine Structure) yields information about the interatomic distances, near neighbor coordination numbers, and lattice dynamics. XANES (X-ray Absorption Near Edge Structure), on the other hand, gives information about the valence state, energy bandwidth and bond angles. Today, there are about 50 experimental stations in various synchrotrons around the world dedicated to collecting x-ray absorption data from the bulk and surfaces of solids and liquids. In this chapter, they will give the basic principles of XAS, explain the information content of essentially two different aspects of the absorption process leading to EXAFS and XANES, and discuss the source and sample limitations

  1. X-ray microscopy using grazing-incidence reflections optics

    International Nuclear Information System (INIS)

    Price, R.H.

    1983-01-01

    The role of Kirkpatrick-Baez microscopes as the workhorse of the x-ray imaging devices is discussed. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics

  2. Angle-resolved photoemission extended fine structure

    International Nuclear Information System (INIS)

    Barton, J.J.

    1985-03-01

    Measurements of the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) from the S(1s) core level of a c(2 x 2)S/Ni(001) are analyzed to determine the spacing between the S overlayer and the first and second Ni layers. ARPEFS is a type of photoelectron diffraction measurement in which the photoelectron kinetic energy is swept typically from 100 to 600 eV. By using this wide range of intermediate energies we add high precision and theoretical simplification to the advantages of the photoelectron diffraction technique for determining surface structures. We report developments in the theory of photoelectron scattering in the intermediate energy range, measurement of the experimental photoemission spectra, their reduction to ARPEFS, and the surface structure determination from the ARPEFS by combined Fourier and multiple-scattering analyses. 202 refs., 67 figs., 2 tabs

  3. Soft x-ray streak cameras

    International Nuclear Information System (INIS)

    Stradling, G.L.

    1988-01-01

    This paper is a discussion of the development and of the current state of the art in picosecond soft x-ray streak camera technology. Accomplishments from a number of institutions are discussed. X-ray streak cameras vary from standard visible streak camera designs in the use of an x-ray transmitting window and an x-ray sensitive photocathode. The spectral sensitivity range of these instruments includes portions of the near UV and extends from the subkilovolt x- ray region to several tens of kilovolts. Attendant challenges encountered in the design and use of x-ray streak cameras include the accommodation of high-voltage and vacuum requirements, as well as manipulation of a photocathode structure which is often fragile. The x-ray transmitting window is generally too fragile to withstand atmospheric pressure, necessitating active vacuum pumping and a vacuum line of sight to the x-ray signal source. Because of the difficulty of manipulating x-ray beams with conventional optics, as is done with visible light, the size of the photocathode sensing area, access to the front of the tube, the ability to insert the streak tube into a vacuum chamber and the capability to trigger the sweep with very short internal delay times are issues uniquely relevant to x-ray streak camera use. The physics of electron imaging may place more stringent limitations on the temporal and spatial resolution obtainable with x-ray photocathodes than with the visible counterpart. Other issues which are common to the entire streak camera community also concern the x-ray streak camera users and manufacturers

  4. System of an analysis of a fine time structure of X-ray solar flares in the RGS-1M spectrometer

    International Nuclear Information System (INIS)

    Lazutkov, V.P.

    1980-01-01

    The possibilities of RGS-1M spectral equipment intended for determination of more detailed data on the solar flare structure are discussed. Spectrometer modernization permits to record the fine time structure of solar events in the hard X-ray range (50-90 keV). The main requirement for fine time analysis of nonstationary processes is determination of the maximum possible resolution at the maximum available length of the signal under investigation. The scheme of the time analyzer of splash events with the time resolution Δt=62.5 ms and the length of the range processed T=27.6 s is given and described. Operation of the spectrometer telemetric apparatus is considered in detail. The fine solar flare structure occurred on 14.04.79 with visually chosen periodic structure is shown as an example [ru

  5. X-ray Absorption Study of Graphene Oxide and Transition Metal Oxide Nanocomposites.

    Science.gov (United States)

    Gandhiraman, Ram P; Nordlund, Dennis; Javier, Cristina; Koehne, Jessica E; Chen, Bin; Meyyappan, M

    2014-08-14

    The surface properties of the electrode materials play a crucial role in determining the performance and efficiency of energy storage devices. Graphene oxide and nanostructures of 3d transition metal oxides were synthesized for construction of electrodes in supercapacitors, and the electronic structure and oxidation states were probed using near-edge X-ray absorption fine structure. Understanding the chemistry of graphene oxide would provide valuable insight into its reactivity and properties as the graphene oxide transformation to reduced-graphene oxide is a key step in the synthesis of the electrode materials. Polarized behavior of the synchrotron X-rays and the angular dependency of the near-edge X-ray absorption fine structures (NEXAFS) have been utilized to study the orientation of the σ and π bonds of the graphene oxide and graphene oxide-metal oxide nanocomposites. The core-level transitions of individual metal oxides and that of the graphene oxide nanocomposite showed that the interaction of graphene oxide with the metal oxide nanostructures has not altered the electronic structure of either of them. As the restoration of the π network is important for good electrical conductivity, the C K edge NEXAFS spectra of reduced graphene oxide nanocomposites confirms the same through increased intensity of the sp 2 -derived unoccupied states π* band. A pronounced angular dependency of the reduced sample and the formation of excitonic peaks confirmed the formation of extended conjugated network.

  6. X-ray absorption in atomic potassium

    International Nuclear Information System (INIS)

    Gomilsek, Jana Padeznik; Kodre, Alojz; Arcon, Iztok; Nemanic, Vincenc

    2008-01-01

    A new high-temperature absorption cell for potassium vapor is described. X-ray absorption coefficient of atomic potassium is determined in the energy interval of 600 eV above the K edge where thresholds for simultaneous excitations of 1s and outer electrons, down to [1s2p] excitation, appear. The result represents also the atomic absorption background for XAFS (X-ray absorption fine structure) structure analysis. The K ionization energy in the potassium vapor is determined and compared with theoretical data and with the value for the metal

  7. Time-resolved pump-probe X-ray absorption fine structure spectroscopy of Gaq3

    International Nuclear Information System (INIS)

    Dicke, Benjamin

    2013-01-01

    Gallium(tris-8-hydroxyquinoline) (Gaq 3 ) belongs to a class of metal organic compounds, used as electron transport layer and emissive layer in organic light emitting diodes. Many research activities have concentrated on the optical and electronic properties, especially of the homologue molecule aluminum(tris-8-hydroxyquinoline) (Alq 3 ). Knowledge of the first excited state S 1 structure of these molecules could provide deeper insight into the processes involved into the operation of electronic devices, such as OLEDs and, hence, it could further improve their efficiency and optical properties. Until now the excited state structure could not be determined experimentally. Most of the information about this structure mainly arises from theoretical calculations. X-ray absorption fine structure (XAFS) spectroscopy is a well developed technique to determine both, the electronic and the geometric properties of a sample. The connection of ultrashort pulsed X-ray sources with a pulsed laser system offers the possibility to use XAFS as a tool for studying the transient changes of a sample induced by a laser pulse. In the framework of this thesis a new setup for time-resolved pump-probe X-ray absorption spectroscopy at PETRA III beamline P11 was developed for measuring samples in liquid form. In this setup the sample is pumped into its photo-excited state by a femtosecond laser pump pulse with 343 nm wavelength and after a certain time delay probed by an X-ray probe pulse. In this way the first excited singlet state S 1 of Gaq 3 dissolved in benzyl alcohol was analyzed. A structural model for the excited state structure of the Gaq 3 molecule based on the several times reproduced results of the XAFS experiments is proposed. According to this model it was found that the Ga-N A bond length is elongated, while the Ga-O A bond length is shortened upon photoexcitation. The dynamics of the structural changes were not the focus of this thesis. Nevertheless the excited state lifetime

  8. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Keith W.

    1999-09-01

    and increase in scientific use can be maintained for the synchrotron x-ray source. A short summary of the present state of the synchrotron radiation-induced x-ray emission (SRIXE) method is presented here. Basically, SRIXE experiments can include any that depend on the detection. of characteristic x-rays produced by the incident x-ray beam born the synchrotron source as they interact with a sample. Thus, experiments done to measure elemental composition, chemical state, crystal, structure, and other sample parameters can be considered in a discussion of SRIXE. It is also clear that the experimentalist may well wish to use a variety of complementary techniques for study of a given sample. For this reason, discussion of computed microtomography (CMT) and x-ray diffraction is included here. It is hoped that this present discussion will serve as a succinct introduction to the basic ideas of SRIXE for those not working in the field and possibly help to stimulate new types of work by those starting in the field as well as by experienced practitioners of the art. The topics covered include short descriptions of (1) the properties of synchrotron radiation, (2) a description of facilities used for its production, (3) collimated microprobe, (4) focused microprobes, (5) continuum and monoenergetic excitation, (6) detection limits, (7) quantitation, (8) applications of SRIXE, (9) computed microtomography (CMT), and (10)chemical speciation using x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS). An effort has been made to cite a wide variety of work from different laboratories to show the vital nature of the field.

  9. Synchrotron-Radiation Induced X-Ray Emission (SRIXE)

    International Nuclear Information System (INIS)

    Jones, Keith W.

    1999-01-01

    and increase in scientific use can be maintained for the synchrotron x-ray source. A short summary of the present state of the synchrotron radiation-induced x-ray emission (SRIXE) method is presented here. Basically, SRIXE experiments can include any that depend on the detection. of characteristic x-rays produced by the incident x-ray beam born the synchrotron source as they interact with a sample. Thus, experiments done to measure elemental composition, chemical state, crystal, structure, and other sample parameters can be considered in a discussion of SRIXE. It is also clear that the experimentalist may well wish to use a variety of complementary techniques for study of a given sample. For this reason, discussion of computed microtomography (CMT) and x-ray diffraction is included here. It is hoped that this present discussion will serve as a succinct introduction to the basic ideas of SRIXE for those not working in the field and possibly help to stimulate new types of work by those starting in the field as well as by experienced practitioners of the art. The topics covered include short descriptions of (1) the properties of synchrotron radiation, (2) a description of facilities used for its production, (3) collimated microprobe, (4) focused microprobes, (5) continuum and monoenergetic excitation, (6) detection limits, (7) quantitation, (8) applications of SRIXE, (9) computed microtomography (CMT), and (10)chemical speciation using x-ray absorption near-edge structure (XANES) and extended x-ray absorption fine structure (EXAFS). An effort has been made to cite a wide variety of work from different laboratories to show the vital nature of the field

  10. Simulation of Near-Edge X-ray Absorption Fine Structure with Time-Dependent Equation-of-Motion Coupled-Cluster Theory.

    Science.gov (United States)

    Nascimento, Daniel R; DePrince, A Eugene

    2017-07-06

    An explicitly time-dependent (TD) approach to equation-of-motion (EOM) coupled-cluster theory with single and double excitations (CCSD) is implemented for simulating near-edge X-ray absorption fine structure in molecular systems. The TD-EOM-CCSD absorption line shape function is given by the Fourier transform of the CCSD dipole autocorrelation function. We represent this transform by its Padé approximant, which provides converged spectra in much shorter simulation times than are required by the Fourier form. The result is a powerful framework for the blackbox simulation of broadband absorption spectra. K-edge X-ray absorption spectra for carbon, nitrogen, and oxygen in several small molecules are obtained from the real part of the absorption line shape function and are compared with experiment. The computed and experimentally obtained spectra are in good agreement; the mean unsigned error in the predicted peak positions is only 1.2 eV. We also explore the spectral signatures of protonation in these molecules.

  11. What Can Simbol-X Do for Gamma-ray Binaries?

    Science.gov (United States)

    Cerutti, B.; Dubus, G.; Henri, G.; Hill, A. B.; Szostek, A.

    2009-05-01

    Gamma-ray binaries have been uncovered as a new class of Galactic objects in the very high energy sky (>100 GeV). The three systems known today have hard X-ray spectra (photon index ~1.5), extended radio emission and a high luminosity in gamma-rays. Recent monitoring campaigns of LSI +61°303 in X-rays have confirmed variability in these systems and revealed a spectral hardening with increasing flux. In a generic one-zone leptonic model, the cooling of relativistic electrons accounts for the main spectral and temporal features observed at high energy. Persistent hard X-ray emission is expected to extend well beyond 10 keV. We explain how Simbol-X will constrain the existing models in connection with Fermi Space Telescope measurements. Because of its unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the discovery of new gamma-ray binaries, giving new insights into the evolution of compact binaries.

  12. What Can Simbol-X Do for Gamma-ray Binaries?

    International Nuclear Information System (INIS)

    Cerutti, B.; Dubus, G.; Henri, G.; Hill, A. B.; Szostek, A.

    2009-01-01

    Gamma-ray binaries have been uncovered as a new class of Galactic objects in the very high energy sky (>100 GeV). The three systems known today have hard X-ray spectra (photon index ∼1.5), extended radio emission and a high luminosity in gamma-rays. Recent monitoring campaigns of LSI +61 deg. 303 in X-rays have confirmed variability in these systems and revealed a spectral hardening with increasing flux. In a generic one-zone leptonic model, the cooling of relativistic electrons accounts for the main spectral and temporal features observed at high energy. Persistent hard X-ray emission is expected to extend well beyond 10 keV. We explain how Simbol-X will constrain the existing models in connection with Fermi Space Telescope measurements. Because of its unprecedented sensitivity in hard X-rays, Simbol-X will also play a role in the discovery of new gamma-ray binaries, giving new insights into the evolution of compact binaries.

  13. X-ray microscopy using grazing-incidence reflection optics

    International Nuclear Information System (INIS)

    Price, R.H.

    1981-01-01

    The Kirkpatrick-Baez microscopes are described along with their role as the workhorse of the x-ray imaging devices. This role is being extended with the development of a 22X magnification Kirkpatrick-Baez x-ray microscope with multilayer x-ray mirrors. These mirrors can operate at large angles, high x-ray energies, and have a narrow, well defined x-ray energy bandpass. This will make them useful for numerous experiments. However, where a large solid angle is needed, the Woelter microscope will still be necessary and the technology needed to build them will be useful for many other types of x-ray optics

  14. Transport Measurements and Synchrotron-Based X-Ray Absorption Spectroscopy of Iron Silicon Germanide Grown by Molecular Beam Epitaxy

    Science.gov (United States)

    Elmarhoumi, Nader; Cottier, Ryan; Merchan, Greg; Roy, Amitava; Lohn, Chris; Geisler, Heike; Ventrice, Carl, Jr.; Golding, Terry

    2009-03-01

    Some of the iron-based metal silicide and germanide phases have been predicted to be direct band gap semiconductors. Therefore, they show promise for use as optoelectronic materials. We have used synchrotron-based x-ray absorption spectroscopy to study the structure of iron silicon germanide films grown by molecular beam epitaxy. A series of Fe(Si1-xGex)2 thin films (2000 -- 8000å) with a nominal Ge concentration of up to x = 0.04 have been grown. X-ray absorption near edge structure (XANES) and extended x-ray absorption fine structure (EXAFS) measurements have been performed on the films. The nearest neighbor co-ordination corresponding to the β-FeSi2 phase of iron silicide provides the best fit with the EXAFS data. Temperature dependent (20 coefficient was calculated. Results suggest semiconducting behavior of the films which is consistent with the EXAFS results.

  15. Broad-band hard X-ray reflectors

    DEFF Research Database (Denmark)

    Joensen, K.D.; Gorenstein, P.; Hoghoj, P.

    1997-01-01

    Interest in optics for hard X-ray broad-band application is growing. In this paper, we compare the hard X-ray (20-100 keV) reflectivity obtained with an energy-dispersive reflectometer, of a standard commercial gold thin-film with that of a 600 bilayer W/Si X-ray supermirror. The reflectivity...... of the multilayer is found to agree extraordinarily well with theory (assuming an interface roughness of 4.5 Angstrom), while the agreement for the gold film is less, The overall performance of the supermirror is superior to that of gold, extending the band of reflection at least a factor of 2.8 beyond...... that of the gold, Various other design options are discussed, and we conclude that continued interest in the X-ray supermirror for broad-band hard X-ray applications is warranted....

  16. X-ray absorption spectroscopy of diluted system by undulator photon source and multi-element solid-state detector

    CERN Document Server

    Tanida, H

    2001-01-01

    In order to measure the extended X-ray absorption fine structure (EXAFS) spectrum of an ultra-diluted system, an optics and detector control system for a synchrotron radiation beamline is developed. The undulator gap width is continuously tuned to obtain the maximum X-ray photon flux during the energy scan for the EXAFS measurement. A piezoelectric translator optimizes the parallelism of the double crystal in a monochromator at each measurement point to compensate for mechanical errors of the monochromator, resulting in a smooth and intense X-ray photon flux during the measurement. For a detection of a weak fluorescence signal from diluted samples, a 19-element solid-state detector and digital signal processor are used. A K-edge EXAFS spectrum of iron in a myoglobin aqueous solution with a concentration of 5.58 parts per million was obtained by this system.

  17. Anomalous x-ray attenuation coefficients around the absorption edges using Mn Ksub(α) and Cu Ksub(α) x-rays

    International Nuclear Information System (INIS)

    Kerur, B.R.; Thontadarya, S.R.; Hanumaiah, B.

    1994-01-01

    The x-ray attenuation coefficients for three elements and for eight compounds are determined, adopting the method developed by employing a proportional counter, with a view to study the effect of fine structure on the mass attenuation coefficient values using Mn K α and Cu K α x-rays derived from K x-ray emitters, 55 Fe and 65 Zn radioactive sources, by a differential absorption technique. It is experimentally established that a small difference in energy between K α1 and K α2 (11 eV in the case of Mn K α and 24 eV in the case of the Cu K α x-ray) is inconsequential by comparing the measured and theoretical values of μ/ρ for standard elements, aluminium, copper and tantalum. The effect of fine structure on μ/ρ values is studied using the compounds containing one element with its absorption edge close to the incident photon energy. Results obtained in the present investigation show the nonvalidity of the mixture rule above the edge and also below the edge, ranging from about 600 eV below the edge to about 1500 eV about the edge. The contribution of resonance Raman scattering to the attenuation coefficient and indications to the presence of pre-edge structure similar to EXAFS are discussed. (author)

  18. Redox Chemisty of Tantalum Clusters on Silica Characterized by X-ray Absorption Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Nemana,S.; Gates, B.

    2006-01-01

    SiO{sub 2}-supported clusters of tantalum were synthesized from adsorbed Ta(CH{sub 2}Ph){sub 5} by treatment in H{sub 2} at 523 K. The surface species were characterized by X-ray absorption spectroscopy (extended X-ray absorption fine structure (EXAFS) spectroscopy and X-ray absorption near edge spectroscopy (XANES)) and ultraviolet-visible spectroscopy. The EXAFS data show that SiOO{sub 2}-supported tantalum clusters were characterized by a Ta-Ta coordination number of approximately 2, consistent with the presence of tritantalum clusters, on average. When these were reduced in H{sub 2} and reoxidized in O{sub 2}, the cluster nuclearity remained essentially unchanged, although reduction and oxidation occurred, respectively, as shown by XANES and UV-vis spectra; in the reoxidation, the tantalum oxidation state change was approximately two electronic charges per tritantalum cluster. The data demonstrate an analogy between the chemistry of group 5 metals on the SiO{sub 2} support and their chemistry in solution, as determined by the group of Cotton.

  19. Extended asymmetric-cut multilayer X-ray gratings.

    Science.gov (United States)

    Prasciolu, Mauro; Haase, Anton; Scholze, Frank; Chapman, Henry N; Bajt, Saša

    2015-06-15

    The fabrication and characterization of a large-area high-dispersion blazed grating for soft X-rays based on an asymmetric-cut multilayer structure is reported. An asymmetric-cut multilayer structure acts as a perfect blazed grating of high efficiency that exhibits a single diffracted order, as described by dynamical diffraction throughout the depth of the layered structure. The maximum number of grating periods created by cutting a multilayer deposited on a flat substrate is equal to the number of layers deposited, which limits the size of the grating. The size limitation was overcome by depositing the multilayer onto a substrate which itself is a coarse blazed grating and then polish it flat to reveal the uniformly spaced layers of the multilayer. The number of deposited layers required is such that the multilayer thickness exceeds the step height of the substrate structure. The method is demonstrated by fabricating a 27,060 line pairs per mm blazed grating (36.95 nm period) that is repeated every 3,200 periods by the 120-μm period substrate structure. This preparation technique also relaxes the requirements on stress control and interface roughness of the multilayer film. The dispersion and efficiency of the grating is demonstrated for soft X-rays of 13.2 nm wavelength.

  20. Capacity of X-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Wobrauschek, P.; Kregsamer, P.

    1997-01-01

    X-Ray fluorescence analysis (XRF) is a powerful analytical tool for the qualitative and quantitative determination of chemical elements in a sample. Two different detection principles are accepted widely: wavelength dispersive and energy dispersive. Various sources for XRF are discussed: X-ray tubes, accelerators for particle induced XRF, radioactive isotopes, and the use of synchrotron radiation. Applications include environmental, technical, medical, fine art, and forensic studies. Due to the demands of research and application special techniques like total reflection XRF (TXRF) were developed with ultimately achievable detection limits in the femtogram region. The elements detectable by XRF range from Be to U. (author)

  1. Extending the possibilities in phase space analysis of synchrotron radiation x-ray optics.

    Science.gov (United States)

    Ferrero, Claudio; Smilgies, Detlef-Matthias; Riekel, Christian; Gatta, Gilles; Daly, Peter

    2008-08-01

    A simple analytical approach to phase space analysis of the performance of x-ray optical setups (beamlines) combining several elements in position-angle-wavelength space is presented. The mathematical description of a large class of optical elements commonly used on synchrotron beamlines has been reviewed and extended with respect to the existing literature and is reported in a revised form. Novel features are introduced, in particular, the possibility to account for imperfections on mirror surfaces and to incorporate nanofocusing devices like refractive lenses in advanced beamline setups using the same analytical framework. Phase space analysis results of the simulation of an undulator beamline with focusing optics at the European Synchrotron Radiation Facility compare favorably with results obtained by geometric ray-tracing methods and, more importantly, with experimental measurements. This approach has been implemented into a simple and easy-to-use program toolkit for optical calculations based on the Mathematica software package.

  2. Flexible digital x-ray technology for far-forward remote diagnostic and conformal x-ray imaging applications

    Science.gov (United States)

    Smith, Joseph; Marrs, Michael; Strnad, Mark; Apte, Raj B.; Bert, Julie; Allee, David; Colaneri, Nicholas; Forsythe, Eric; Morton, David

    2013-05-01

    Today's flat panel digital x-ray image sensors, which have been in production since the mid-1990s, are produced exclusively on glass substrates. While acceptable for use in a hospital or doctor's office, conventional glass substrate digital x-ray sensors are too fragile for use outside these controlled environments without extensive reinforcement. Reinforcement, however, significantly increases weight, bulk, and cost, making them impractical for far-forward remote diagnostic applications, which demand rugged and lightweight x-ray detectors. Additionally, glass substrate x-ray detectors are inherently rigid. This limits their use in curved or bendable, conformal x-ray imaging applications such as the non-destructive testing (NDT) of oil pipelines. However, by extending low-temperature thin-film transistor (TFT) technology previously demonstrated on plastic substrate- based electrophoretic and organic light emitting diode (OLED) flexible displays, it is now possible to manufacture durable, lightweight, as well as flexible digital x-ray detectors. In this paper, we discuss the principal technical approaches used to apply flexible display technology to two new large-area flexible digital x-ray sensors for defense, security, and industrial applications and demonstrate their imaging capabilities. Our results include a 4.8″ diagonal, 353 x 463 resolution, flexible digital x-ray detector, fabricated on a 6″ polyethylene naphthalate (PEN) plastic substrate; and a larger, 7.9″ diagonal, 720 x 640 resolution, flexible digital x-ray detector also fabricated on PEN and manufactured on a gen 2 (370 x 470 mm) substrate.

  3. Linear accelerator with x-ray absorbing insulators

    International Nuclear Information System (INIS)

    Rose, P.H.

    1975-01-01

    Annular insulators for supporting successive annular electrodes in a linear accelerator have embedded x-ray absorbing shield structures extending around the accelerating path. The shield members are disposed to intercept x-ray radiation without disrupting the insulative effect of the insulator members. In preferred forms, the structure comprises a plurality of annular members of heavy metal disposed in an x-ray blocking array, spaced from each other by the insulating substance of the insulator member. (auth)

  4. X-ray generator

    Energy Technology Data Exchange (ETDEWEB)

    Zucarias, A; Shepherd, J W

    1982-09-08

    An X-ray tube has a tubular envelope with a cathode for directing an electron beam onto a focal spot area of a spaced anode target to generate X-rays. The target is mounted for axial rotation on one end of a rotor disposed in an end portion of the envelope and encircled by a stator of an alternating current induction motor. An annular shield of high permeability magnetic material extends transversely between the electron beam and the stator of the induction motor for shunting stray or fringe electromagnetic fields established by the stator away from the electron beam to avoid consequent lateral deflections of the electron and corresponding lateral movements of the focal spot area.

  5. The X-ray properties of normal galaxies

    Science.gov (United States)

    Fabbiano, G.

    1986-01-01

    X-ray observations with the Einstein satellite have shown that normal galaxies of all morphological types are spatially extended sources of X-ray emission with luminosities in the range of L(x) of about 10 to the 39th to 10 to the 41st erg/s. Although this is only a small fraction of the total energy output of a normal galaxy, X-ray observations are uniquely suited to study phenomena that are otherwise elusive. In X-rays one can study directly the end products of stellar evolution (SNRs and compact remnants). X-ray observations have led to the discovery of gaseous outflows linked to starburst nuclear activity in spiral galaxies and to the detection of a hot interstellar medium in early-type galaxies. Through X-ray observations it is possible to set constraints on structural galaxy parameters, such as the mass of elliptical galaxies, and perhaps get new insight on the origin of cosmic rays and the properties of the magnetic fields of spiral galaxies.

  6. X-ray phase-contrast imaging

    Science.gov (United States)

    Endrizzi, Marco

    2018-01-01

    X-ray imaging is a standard tool for the non-destructive inspection of the internal structure of samples. It finds application in a vast diversity of fields: medicine, biology, many engineering disciplines, palaeontology and earth sciences are just few examples. The fundamental principle underpinning the image formation have remained the same for over a century: the X-rays traversing the sample are subjected to different amount of absorption in different parts of the sample. By means of phase-sensitive techniques it is possible to generate contrast also in relation to the phase shifts imparted by the sample and to extend the capabilities of X-ray imaging to those details that lack enough absorption contrast to be visualised in conventional radiography. A general overview of X-ray phase contrast imaging techniques is presented in this review, along with more recent advances in this fast evolving field and some examples of applications.

  7. Observation of parametric X-ray radiation by an imaging plate

    International Nuclear Information System (INIS)

    Takabayashi, Y.; Shchagin, A.V.

    2012-01-01

    We have demonstrated experimentally the application of an imaging plate for registering the angular distribution of parametric X-ray radiation. The imaging plate was used as a two-dimensional position-sensitive X-ray detector. High-quality images of the fine structure in the angular distributions of the yield around the reflection of the parametric X-ray radiation produced in a silicon crystal by a 255-MeV electron beam from a linear accelerator have been observed in the Laue geometry. A fairly good agreement between results of measurements and calculations by the kinematic theory of parametric X-ray radiation is shown. Applications of the imaging plates for the observation of the angular distribution of X-rays produced by accelerated particles in a crystal are also discussed.

  8. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral X-ray apparatus which reduces the number of exposures necessary to obtain panoramic dental radiographs is described in detail. It comprises an electron gun, a tubular target carrier projecting from the gun along the beam axis and carrying at its distal end a target surrounded by a shield of X-ray opaque material. This shield extends forward and laterally of the target and has surfaces which define a wedge or cone-shaped radiation pattern delimited vertically by the root tips of the patient's teeth. A film holder is located externally of the patient's mouth. A disposable member can fit on the target carrier to depress the patient's tongue out of the radiation pattern and to further shield the roof of the mouth. The electron beam can be magnetically deflected to change the X-ray beam direction. (author)

  9. AN EXTENDED AND MORE SENSITIVE SEARCH FOR PERIODICITIES IN ROSSI X-RAY TIMING EXPLORER/ALL-SKY MONITOR X-RAY LIGHT CURVES

    International Nuclear Information System (INIS)

    Levine, Alan M.; Bradt, Hale V.; Chakrabarty, Deepto; Corbet, Robin H. D.; Harris, Robert J.

    2011-01-01

    We present the results of a systematic search in ∼14 years of Rossi X-ray Timing Explorer All-Sky Monitor (ASM) data for evidence of periodicities. Two variations of the commonly used Fourier analysis search method have been employed to significantly improve upon the sensitivity achieved by Wen et al. in 2006, who also searched for periodicities in ASM data. In addition, the present search is comprehensive in terms of sources studied and frequency range covered, and has yielded the detection of the signatures of the orbital periods of eight low-mass X-ray binary systems and of ten high-mass X-ray binaries not listed in the tables of Wen et al. Orbital periods, epochs, signal amplitudes, modulation fractions, and folded light curves are given for each of these systems. Seven of the orbital periods are the most precise reported to date. In the course of this work, the 18.545 day orbital period of IGR J18483-0311 was co-discovered, and the first detections in X-rays were made of the ∼3.9 day orbital period of LMC X-1 and the ∼3.79 hr orbital period of 4U 1636-536. The results inform future searches for orbital and other periodicities in X-ray binaries.

  10. Substitution behavior of x(Na0.5K0.5)NbO3-(1 - x)BaTiO3 ceramics for multilayer ceramic capacitors by a near edge x-ray absorption fine structure analysis

    Science.gov (United States)

    Ha, Jooyeon; Ryu, Jiseung; Lee, Heesoo

    2014-06-01

    The doping effect of (Na0.5K0.5)NbO3 (NKN) as alternatives for rare-earth elements on the electrical properties of BaTiO3 has been investigated, in terms of their substitution behavior. The dielectric constant of a specimen with x = 0.05 was about 79% higher than that of pure BaTiO3, and the temperature coefficient of capacitance was satisfied by the X7R specification. The specimen with x = 0.05 showed the lowest tetragonality among the four compositions and had a fine grain size of x-ray absorption fine structure spectroscopy, the practical substitution behavior was defined by the change in Ti 3d orbital states. The energy separation of the Ti 3d orbitals was more apparent with the specimen of x = 0.05, which is related to the donor level from the donor substitution of Nb5+ ion for Ti-sites. Therefore, the simultaneous substitution of Na+/K+ and Nb5+ ions into BaTiO3 can improve dielectric properties, based on the charge-transfer process.

  11. The feasibility of independent observations/detections of GRBs in X-rays

    International Nuclear Information System (INIS)

    Hudec, R.; Skulinova, M.; Pina, L.; Sveda, L.; Semencova, V.; Inneman, A.

    2009-01-01

    According to the observational statistics a large majority of all GRBs exhibit X-ray emission. In addition, a dedicated separate group of GRB, the XRFs, exists which emission dominates in the X-ray spectral range. And the third group of GRB related objects (yet hypothetical) are the group of off-axis observed GRBs (orphan afterglows). These facts justify the consideration of an independent experiment for monitoring, detection and analyses of GRBs and others fast X-ray transients in X-rays. We will present and discuss such experiment based on wide-field X-ray telescopes of Lobster Eye type. The wide field and fine sensitivity of Lobster Eye X-ray All-Sky Monitor make such instruments important tools in study of GRBs and related objects.

  12. Study of X-rays and nuclear gamma -rays in muonic thallium

    CERN Document Server

    Backe, H; Jahnke, U; Kankeleit, E; Pearce, R M; Petitjean, C; Schellenberg, L; Schneuwly, H; Schröder, W U; Walter, H K; Zehnder, A

    1972-01-01

    Energies and intensities of muonic X-rays, nuclear gamma -rays and mu -capture gamma -rays were measured in natural muonic thallium with Ge (Li) detectors. The absolute intensities of higher mu X-rays were reproduced by a cascade calculation starting with a statistical population at n=20 including K-, L- and M-conversion. The electron screening effect was deduced from energies of higher mu X-rays. Eight prompt nuclear gamma -rays were found. This excitation explains the anomalous intensity ratios of the 2p-1s and 3d-2p fine structure components. From the nuclear gamma -rays of the first excited states were deduced: the magnetic h.f. splittings, muonic isomer shifts E2/M1 mixing ratios and the half-life in the presence of the muon in /sup 205/Tl. Evidence for a magnetic nuclear polarization was found. An isotope shift of Delta E=10.35+or-0.25 keV was measured for the 1s/sub 1/2/ state which is compared with data from optical spectroscopy. From an analysis of the time distribution of delayed gamma -rays from mu...

  13. The X-ray eclipse geometry of the super-soft X-ray source CAL 87

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, T.; Lopes de Oliveira, R. [Departamento de Física, Universidade Federal de Sergipe, Av. Marechal Rondon s/n, 49100-000 São Cristóvão, SE (Brazil); Borges, B. W., E-mail: tribeiro@ufs.br, E-mail: rlopes@ufs.br, E-mail: bernardo@astro.ufsc.br [Universidade Federal de Santa Catarina, Campus Araranguá, 88905-120 Araranguá, SC (Brazil)

    2014-09-01

    We explore XMM-Newton observations of the eclipsing super-soft X-ray source CAL 87 in order to map the accretion structures of the system. Indirect imaging techniques were applied in X-ray light curves to provide eclipse maps. The surface brightness distribution exhibits an extended and symmetric emission, and a feature is revealed from the hardest X-rays that is likely due to a bright spot. A rate of P-dot =(+6±2)×10{sup −10} for changes in the orbital period of the system was derived from the eclipses. There is no significant variation of the emission lines even during eclipses, arguing that the lines are formed in an extended region. The continuum emission dominates the decrease in flux that is observed during eclipses. The O VIII Lyα line reveals a broadening velocity that is estimated to be 365{sub −69}{sup +65} km s{sup –1} (at 1σ), marginal evidence for asymmetry in its profile, and sometimes shows evidence of double-peaked emission. Together, the results support that the wind-driven mass transfer scenario is running in CAL 87.

  14. The color of X-rays Spectral X-ray computed tomography using energy sensitive pixel detectors

    CERN Document Server

    Schioppa, Enrico Junior

    Energy sensitive X-ray imaging detectors are produced by connecting a semiconductor sensor to a spectroscopic pixel readout chip. In this thesis, the applicability of such detectors to X-ray Computed Tomography (CT) is studied. A prototype Medipix based silicon detector is calibrated using X-ray fluorescence. The charge transport properties of the sensor are characterized using a high energy beam of charged particles at the Super Proton Synchrotron (SPS) at the European Center for Nuclear Research (CERN). Monochromatic X-rays at the European Synchrotron Radiation Facility (ESRF) are used to determined the energy response function. These data are used to implement a physics-based CT projection operator that accounts for the transmission of the source spectrum through the sample and detector effects. Based on this projection operator, an iterative spectral CT reconstruction algorithm is developed by extending an Ordered Subset Expectation Maximization (OSEM) method. Subsequently, a maximum likelihood based algo...

  15. Measurement of X-ray attenuation coefficients around K-absorption edges using Fe Kα X-rays

    International Nuclear Information System (INIS)

    Kerur, B.R.; Thontadarya, S.R.; Hanumaiah, B.

    1993-01-01

    The x-ray mass attenuation coefficients were measured around the K-absorption edges of elements in the range 16 ≤ Z ≤ 30 using Fe Kα x-rays of energy 6.400 keV, which is the weighted average energy of Kα 1 and Kα 2 x-ray components from the 57 Co radioactive source. Kβ x-rays were almost eliminated by the differential absorption technique. The small difference in energy between Kα 1 and Kα 2 , 13 eV, was shown to be inconsequential by comparing the measured and theoretical values of μ/ρ for standard materials such as Al, Cu, Mo and Ta. The effect of fine structure of the K-absorption edge on μ/ρ was elucidated by using the compounds of elements in the range 16 ≤ X ≤ 30, containing one element with its K-absorption edge energy (E k ) close to the incident photon energy (E x ). The results clearly indicate the validity of the theoretical mixture rule for all those compounds whose K edge is far away from the incident energy but show deviations of as much as 10% for the manganese compound whose K edge is 140 eV above E x and about 12% for the chromium compound whose K edge is 410 eV below E x . These deviations are attributed to the possible influence of resonance Raman scattering when the incident photon energy E x is less than the edge and to the influence of EXAFS when E x is more than the edge energy. (Author)

  16. X-ray absorption spectroscopy and EPR studies of oriented spinach thylakoid preparations

    Energy Technology Data Exchange (ETDEWEB)

    Andrews, J.C. [Univ. of California, Berkeley, CA (United States). Dept. of Chemistry]|[Lawrence Berkeley Lab., CA (United States). Structural Biology Div.

    1995-08-01

    In this study, oriented Photosystem II (PS II) particles from spinach chloroplasts are studied with electron paramagnetic resonance (EPR) and x-ray absorption spectroscopy (XAS) to determine more details of the structure of the oxygen evolving complex (OEC). The nature of halide binding to Mn is also studied with Cl K-edge and Mn EXAFS (extended x-ray absorption fine structure) of Mn-Cl model compounds, and with Mn EXAFS of oriented PS II in which Br has replaced Cl. Attention is focused on the following: photosynthesis and the oxygen evolving complex; determination of mosaic spread in oriented photosystem II particles from signal II EPR measurement; oriented EXAFS--studies of PS II in the S{sub 2} state; structural changes in PS II as a result of treatment with ammonia: EPR and XAS studies; studies of halide binding to Mn: Cl K-edge and Mn EXAFS of Mn-Cl model compounds and Mn EXAFS of oriented Br-treated photosystem II.

  17. X-ray source array

    International Nuclear Information System (INIS)

    Cooperstein, G.; Lanza, R.C.; Sohval, A.R.

    1983-01-01

    A circular array of cold cathode diode X-ray sources, for radiation imaging applications, such as computed tomography includes electrically conductive cathode plates each of which cooperates with at least two anodes to form at least two diode sources. In one arrangement, two annular cathodes are separated by radially extending, rod-like anodes. Field enhancement blades may be provided on the cathodes. In an alternative arrangement, the cathode plates extend radially and each pair is separated by an anode plate also extending radially. (author)

  18. Semi-automated x-ray gauging process control system

    International Nuclear Information System (INIS)

    Draut, C.F.; Homan, D.A.

    1976-01-01

    An x-ray gauging method was developed and a production gauging system was subsequently fabricated to control the quality of precision manufactured components. The gauging system measures via x-ray absorption the density of pressed finely divided solids held in a dissimilar container. The two dissimilar materials condition necessitated a ''two scan'' technique: first, the x-ray attenuation (absorption) of the empty container prior to loading and then, the attenuation of the loaded container are measured; that is, four variables. The system provided greatly improved product control via timely data feedback and increased product quality assurance via 100 percent inspection of product. In addition, it reduced labor costs, product cost, and possibilities for human errors

  19. Dissecting Diffuse X-ray Emission in 30 Doradus with T-ReX

    Science.gov (United States)

    Townsley, Leisa K.; Broos, Patrick

    2017-08-01

    30 Doradus (the Tarantula Nebula) offers us a microscope on starburst astrophysics, having endured 25 Myrs of the birth and death of the most massive stars known. Across 30 Dor's 250-pc extent, stellar winds and supernovae have carved its ISM into an amazing display of arcs, pillars, and bubbles. For over 40 years, we have also known that 30 Dor is a bright X-ray emitter, so its familiar stars and cold ISM structures suffer irradiation by multi-million-degree plasmas. The 2-Ms Chandra X-ray Visionary Project ``The Tarantula -- Revealed by X-rays'' (T-ReX) exploits Chandra's fine spatial resolution and the ACIS-I field of view to study ISM interfaces on 1--10 pc scales across the entire 30 Dor complex. Here we give preliminary results from ongoing analyses of these data, focusing on the diffuse X-ray emission. Massive star winds and cavity supernovae over the millenia have contributed to a broad mix of X-ray-emitting plasmas and absorbing columns, showing that 30 Dor's hot ISM is just as complex and confusing as that seen at colder temperatures.

  20. Alternative difference analysis scheme combining R-space EXAFS fit with global optimization XANES fit for X-ray transient absorption spectroscopy.

    Science.gov (United States)

    Zhan, Fei; Tao, Ye; Zhao, Haifeng

    2017-07-01

    Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3 spin crossover complex and yielded reliable distance change and excitation population.

  1. X-ray and {Gamma}-ray spectroscopy of solids under pressure. Annual technical progress report, November 1996--October 1997

    Energy Technology Data Exchange (ETDEWEB)

    Ingalls, R.L.

    1997-04-30

    This report describes our recent synchrotron x-ray absorption fine structure (XAFS) measurements on a number of systems that undergo pressure induced changes in local structure at high pressure. Our general technique is based upon a pressure cell which utilizes scintered boron carbide anvils, since diamond anvils generally produce Bragg glitches which spoil the high quality EXAFS necessary for precision structural measurements. Sample pressure is determined at the beam-line by measuring and analyzing, via XAFS, the compression of some cubic material contained within the sample chamber. Recently we have extended this work to 77 K using helium gas for the applied force, rather than hydraulic oil.

  2. Symbiotic Stars in X-rays

    Science.gov (United States)

    Luna, G. J. M.; Sokoloski, J. L.; Mukai, K.; Nelson, T.

    2014-01-01

    Until recently, symbiotic binary systems in which a white dwarf accretes from a red giant were thought to be mainly a soft X-ray population. Here we describe the detection with the X-ray Telescope (XRT) on the Swift satellite of 9 white dwarf symbiotics that were not previously known to be X-ray sources and one that was previously detected as a supersoft X-ray source. The 9 new X-ray detections were the result of a survey of 41 symbiotic stars, and they increase the number of symbiotic stars known to be X-ray sources by approximately 30%. Swift/XRT detected all of the new X-ray sources at energies greater than 2 keV. Their X-ray spectra are consistent with thermal emission and fall naturally into three distinct groups. The first group contains those sources with a single, highly absorbed hard component, which we identify as probably coming from an accretion-disk boundary layer. The second group is composed of those sources with a single, soft X-ray spectral component, which likely arises in a region where low-velocity shocks produce X-ray emission, i.e. a colliding-wind region. The third group consists of those sources with both hard and soft X-ray spectral components. We also find that unlike in the optical, where rapid, stochastic brightness variations from the accretion disk typically are not seen, detectable UV flickering is a common property of symbiotic stars. Supporting our physical interpretation of the two X-ray spectral components, simultaneous Swift UV photometry shows that symbiotic stars with harder X-ray emission tend to have stronger UV flickering, which is usually associated with accretion through a disk. To place these new observations in the context of previous work on X-ray emission from symbiotic stars, we modified and extended the alpha/beta/gamma classification scheme for symbiotic-star X-ray spectra that was introduced by Muerset et al. based upon observations with the ROSAT satellite, to include a new sigma classification for sources with

  3. High-temperature x-ray camera

    Energy Technology Data Exchange (ETDEWEB)

    Il' inskii, A G; Romanova, A V; Prikhod' ko, N P

    1974-03-25

    A high-temperature x-ray chamber for taking x-ray photographs of flat horizontally set samples in a vacuum or gas medium is described. The chamber is fitted out with a water-cooled vacuum closed hull with a window letting the x-rays pass, a centering mechanism and a device for heating the samples. To widen its functional abilities the chamber is provided with a goniometric device, fixed immovably to the body foundation by means of two stands. Bearings are mounted to the stands; one of them is equipped with a screw wheel and an endless screw with a limb in the ring; a traverse to which a counter for the x-ray radiation is installed is attached to the shafts of both the bearings. The centering mechanism has a cooled metalic rod, which is connected through a spiral screw thread with the limb fixable by a fork. The position of the shaft of rotation of the counter is adjusted with the help of a nit, extended through the plug openings, positioned on the stands. The chamber can be applied for x-ray structural analyses.

  4. Shining X-rays on catalysts at work

    DEFF Research Database (Denmark)

    Grunwaldt, Jan-Dierk

    2009-01-01

    excitation spectroscopy). In order to obtain spectroscopic information on the oxidation state inside a microreactor, scanning and full field X-ray microscopy with X-ray absorption spectroscopic contrast were achieved under reaction conditions. If a microbeam is applied, fast scanning techniques like QEXAFS...... are required. In this way, even X-ray absorption spectroscopic tomographic images of a slice of a microreactor were obtained. The studies were recently extended to spatiotemporal studies that give important insight into the dynamics of the catalyst structure in a spatial manner with subsecond time-resolution....

  5. Pt and Ru X-ray absorption spectroscopy of PtRu anode catalysts in operating direct methanol fuel cells.

    Science.gov (United States)

    Stoupin, Stanislav; Chung, Eun-Hyuk; Chattopadhyay, Soma; Segre, Carlo U; Smotkin, Eugene S

    2006-05-25

    In situ X-ray absorption spectroscopy, ex situ X-ray fluorescence, and X-ray powder diffraction enabled detailed core analysis of phase segregated nanostructured PtRu anode catalysts in an operating direct methanol fuel cell (DMFC). No change in the core structures of the phase segregated catalyst was observed as the potential traversed the current onset potential of the DMFC. The methodology was exemplified using a Johnson Matthey unsupported PtRu (1:1) anode catalyst incorporated into a DMFC membrane electrode assembly. During DMFC operation the catalyst is essentially metallic with half of the Ru incorporated into a face-centered cubic (FCC) Pt alloy lattice and the remaining half in an amorphous phase. The extended X-ray absorption fine structure (EXAFS) analysis suggests that the FCC lattice is not fully disordered. The EXAFS indicates that the Ru-O bond lengths were significantly shorter than those reported for Ru-O of ruthenium oxides, suggesting that the phases in which the Ru resides in the catalysts are not similar to oxides.

  6. X-ray and synchrotron studies of porous silicon

    Energy Technology Data Exchange (ETDEWEB)

    Sivkov, V. N., E-mail: svn@dm.komisc.ru [Russian Academy of Sciences, Komi Scientific Center, Ural Branch (Russian Federation); Lomov, A. A. [Russian Academy of Sciences, Physical-Technological Institute (Russian Federation); Vasil' ev, A. L. [Russian Academy of Sciences, Shubnikov Institute of Crystallography (Russian Federation); Nekipelov, S. V. [Komi State Pedagogical Institute (Russian Federation); Petrova, O. V. [Russian Academy of Sciences, Komi Scientific Center, Ural Branch (Russian Federation)

    2013-08-15

    The results of comprehensive studies of layers of porous silicon of different conductivity types, grown by anodizing standard Si(111) substrates in an electrolyte based on fluoric acid and ethanol with the addition of 5% of iodine and kept in air for a long time, are discussed. Measurements are performed by scanning electron microscopy, high-resolution X-ray diffraction, and ultrasoft X-ray spectroscopy using synchrotron radiation. The structural parameters of the layers (thickness, strain, and porosity) and atomic and chemical composition of the porous-silicon surface are determined. It is found that an oxide layer 1.5-2.3-nm thick is formed on the surface of the silicon skeleton. The near-edge fine structure of the Si 2p absorption spectrum of this layer corresponds to the fine structure of the 2p spectrum of well coordinated SiO{sub 2}. In this case, the fine structure in the Si 2p-edge absorption region of the silicon skeleton is identical to that of the 2p absorption spectrum of crystalline silicon.

  7. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    International Nuclear Information System (INIS)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). The spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of Kα and Kβ emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS

  8. Measuring the black hole mass in ultraluminous X-ray sources with the X-ray scaling method

    Science.gov (United States)

    Jang, I.; Gliozzi, M.; Satyapal, S.; Titarchuk, L.

    2018-01-01

    In our recent work, we demonstrated that a novel X-ray scaling method, originally introduced for Galactic black holes (BH), could be reliably extended to estimate the mass of supermassive black holes accreting at moderate to high level. Here, we apply this X-ray scaling method to ultraluminous X-ray sources (ULXs) to constrain their MBH. Using 49 ULXs with multiple XMM-Newton observations, we infer that ULXs host both stellar mass BHs and intermediate mass BHs. The majority of the sources of our sample seem to be consistent with the hypothesis of highly accreting massive stellar BHs with MBH ∼ 100 M⊙. Our results are in general agreement with the MBH values obtained with alternative methods, including model-independent variability methods. This suggests that the X-ray scaling method is an actual scale-independent method that can be applied to all BH systems accreting at moderate-high rate.

  9. Structural studies using X-ray absorption and scattering techniques

    International Nuclear Information System (INIS)

    Ericson, Agneta.

    1989-01-01

    The thesis presents extended X-ray absorption fine structure, EXAFS, and large angle X-ray scattering, LAXS, techniques; instrumentation, data collection and reduction, and applications. These techniques have been used to determine the structures of magnesium halides and organomagnesium halides in diethyl ether and tetrahydrofuran solution. The iodides were used for the LAXS measurements and Br K edge EXAFS data were collected for the corresponding bromides. Two different complexes are present in the diethyl ether solution of magnesium iodide; a polymeric chain-type structure where magnesium is tetrahedrally coordinated, as well as dimeric complex with octahedrally coordinated magnesium. Solvated MgI + is the dominating species in tetrahydrofuran solution. The organomagnesium halides are present in diethyl ether solution as both solvated monomeric and dimeric complexes. Magnesium coordinates a halide ion, an alkyl or aryl group and four solvent molecules octahedrally in the monomeric complex. In the dimeric complex magnesium is octahedrally coordinated by two bridging halide ions, an alkyl or aryl group and three solvent molecules. The distribution of monomeric and dimeric complexes in various solutions are given by a dimerisation constant, K dl . The results indicate that the Schlenk equilibrium is present in these solutions, however, in an extended form. In diethyl ether solution, where MgX 2 does not dissociate, no MgX 2 complex and thereby no Schlenk equilibrium has been observed. In tetrahydrofuran solution MgI 2 has dissociated into mainly MgI + and I - . This indicates that the concentration of MgI 2 is low and that the Schlenk equilibrium should be expanded even further to include the dissociation equilibrium of the magnesium halide. In the thesis Fe K edge EXAFS data collected for the semireduced form of protein A of methane monooxygenase from Methylococcus capsulatus, are also presented. (139 refs.)

  10. Direct comparison of soft x-ray images of organelles with optical fluorescence images

    International Nuclear Information System (INIS)

    Ishino, Masahiko; Kado, Masataka; Kishimoto, Maki; Nishikino, Masaharu; Ohba, Toshiyuki; Kaihori, Takeshi; Kawachi, Tetsuya; Tamotsu, Satoshi; Yasuda, Keiko; Mikata, Yuji; Shinohara, Kunio

    2011-01-01

    Soft x-ray microscopes operating in the water window region are capable of imaging living hydrated cells. Up to now, we have been able to take some soft x-ray images of living cells by the use of a contact x-ray microscope system with laser produced plasma soft x-ray source. Since the soft x-ray images are different from the optical images obtained with an ordinary microscope, it is very important to identify what is seen in the x-ray images. Hence, we have demonstrated the direct comparison between the images of organelles obtained with a fluorescence microscope and those with a soft x-ray microscope. Comparing the soft x-ray images to the fluorescence images, the fine structures of the organelles could be identified and observed. (author)

  11. Soft X-ray scanning transmission X-ray microscopy (STXM) of actinide particles.

    Science.gov (United States)

    Nilsson, Hans J; Tyliszczak, Tolek; Wilson, Richard E; Werme, Lars; Shuh, David K

    2005-09-01

    A descriptive account is given of our most recent research on the actinide dioxides with the Advanced Light Source Molecular Environmental Science (ALS-MES) Beamline 11.0.2 soft X-ray scanning transmission X-ray microscope (STXM) at the Lawrence Berkeley National Laboratory (LBNL). The ALS-MES STXM permits near-edge X-ray absorption fine structure (NEXAFS) and imaging with 30-nm spatial resolution. The first STXM spectromicroscopy NEXAFS spectra at the actinide 4d5/2 edges of the imaged transuranic particles, NpO2 and PuO2, have been obtained. Radiation damage induced by the STXM was observed in the investigation of a mixed oxidation state particle (Np(V,VI)) and was minimized during collection of the actual spectra at the 4d5/2 edge of the Np(V,VI) solid. A plutonium elemental map was obtained from an irregular PuO2 particle with the dimensions of 650 x 650 nm. The Pu 4d5/2 NEXAFS spectra were collected at several different locations from the PuO2 particle and were identical. A representative oxygen K-edge spectrum from UO2 was collected and resembles the oxygen K-edge from the bulk material. The unique and current performance of the ALS-MES STXM at extremely low energies (ca. 100 eV) that may permit the successful measurement of the actinide 5d edge is documented. Finally, the potential of STXM as a tool for actinide investigations is briefly discussed.

  12. Study of non stoichiometric pure and Zr-Doped yttria surfaces by X-Ray photoelectron spectroscopy and scanning electron microscopy

    International Nuclear Information System (INIS)

    Gautier, M.; Duraud, J.P.; Jollet, F.; Thromat, N.; Maire, P.; Le Gressus, C.

    1988-01-01

    Surfaces of oxygen-deficient yttrium oxide, pure or Zr-doped, have been studied by means of X-ray photoelectron spectroscopy and scanning electron microscopy. The bulk local geometric structure of these non-stoichiometric compounds was previously determined around the Y atom by an EXAFS (Extended X-ray absorption fine structure) study. The local electronic structure around both Y and O, at the surface, was investigated by X-ray photoelectron spectroscopy. The partial transfer of the electronic distribution between the anion and the cation was probed using the Auger parameter. Coupling of these experiments with microscopic observations show that: - In the pure oxygen-deficient sample, the concentration of oxygen vacancies appears to be increased at the grain boundaries. - The Auger parameter shows upon reduction an evolution of the Y-O bond towards a more covalent one, this evolution being modulated with the presence of Zr0 2

  13. X-ray absorption spectroscopic studies of the active sites of nickel- and copper-containing metalloproteins

    International Nuclear Information System (INIS)

    Tan, G.O.

    1993-06-01

    X-ray absorption spectroscopy (XAS) is a useful tool for obtaining structural and chemical information about the active sites of metalloproteins and metalloenzymes. Information may be obtained from both the edge region and the extended X-ray absorption fine structure (EXAFS) or post-edge region of the K-edge X-ray absorption spectrum of a metal center in a compound. The edge contains information about the valence electronic structure of the atom that absorbs the X-rays. It is possible in some systems to infer the redox state of the metal atom in question, as well as the geometry and nature of ligands connected to it, from the features in the edge in a straightforward manner. The EXAFS modulations, being produced by the backscattering of the ejected photoelectron from the atoms surrounding the metal atom, provide, when analyzed, information about the number and type of neighbouring atoms, and the distances at which they occur. In this thesis, analysis of both the edge and EXAFS regions has been used to gain information about the active sites of various metalloproteins. The metalloproteins studied were plastocyanin (Pc), laccase and nickel carbon monoxide dehydrogenase (Ni CODH). Studies of Cu(I)-imidazole compounds, related to the protein hemocyanin, are also reported here

  14. X-ray filter for x-ray powder diffraction

    Science.gov (United States)

    Sinsheimer, John Jay; Conley, Raymond P.; Bouet, Nathalie C. D.; Dooryhee, Eric; Ghose, Sanjit

    2018-01-23

    Technologies are described for apparatus, methods and systems effective for filtering. The filters may comprise a first plate. The first plate may include an x-ray absorbing material and walls defining first slits. The first slits may include arc shaped openings through the first plate. The walls of the first plate may be configured to absorb at least some of first x-rays when the first x-rays are incident on the x-ray absorbing material, and to output second x-rays. The filters may comprise a second plate spaced from the first plate. The second plate may include the x-ray absorbing material and walls defining second slits. The second slits may include arc shaped openings through the second plate. The walls of the second plate may be configured to absorb at least some of second x-rays and to output third x-rays.

  15. Behavior of heptavalent technetium in concentrated triflic acid under alpha-irradiation. Technetium-triflate complex characterized by X-ray absorption fine structure spectroscopy and DFT

    Energy Technology Data Exchange (ETDEWEB)

    Denden, Ibtihel; Blain, Guillaume; Fattahi, Massoud [SUBATECH Laboratory, Nantes (France); Roques, Jerome [Paris Sud Univ., Orsay (France). IPN Orsay; Poineau, Frederic [Nevada Univ., Las Vegas, NV (United States). Dept. of Chemistry and Biochemistry; Solari, Pier Lorenzo [CEA, Gif-sur-Yvette (France). DEN/DPC/SEARS; Schlegel, Michel L. [Synchrotron SOLEIL, Gif-sur-Yvette (France)

    2017-04-01

    The nature of the Tc species produced after the alpha-irradiation of Tc(VII) in concentrated triflic acid has been investigated by X-ray absorption fine structure (XAFS) spectroscopy and first principles calculations. Experimental and theoretical results are consistent with the formation of Tc{sup (V)}O(F{sub 3}CSO{sub 3}){sub 2}(H{sub 2}O){sub 2}{sup +}.

  16. Simulating and optimizing compound refractive lens-based X-ray microscopes

    DEFF Research Database (Denmark)

    Simons, Hugh; Ahl, Sonja Rosenlund; Poulsen, Henning Friis

    2017-01-01

    A comprehensive optical description of compound refractive lenses (CRLs) in condensing and full-field X-ray microscopy applications is presented. The formalism extends ray-transfer matrix analysis by accounting for X-ray attenuation by the lens material. Closed analytical expressions for critical......-lens limit. This limit may be satisfied by a range of CRL geometries, suggesting alternative approaches to improving the resolution and efficiency of CRLs and X-ray microscopes....

  17. X-ray fluorescence imaging with polycapillary X-ray optics

    International Nuclear Information System (INIS)

    Yonehara, Tasuku; Yamaguchi, Makoto; Tsuji, Kouichi

    2010-01-01

    X-ray fluorescence spectrometry imaging is a powerful tool to provide information about the chemical composition and elemental distribution of a specimen. X-ray fluorescence spectrometry images were conventionally obtained by using a μ-X-ray fluorescence spectrometry spectrometer, which requires scanning a sample. Faster X-ray fluorescence spectrometry imaging would be achieved by eliminating the process of sample scanning. Thus, we developed an X-ray fluorescence spectrometry imaging instrument without sample scanning by using polycapillary X-ray optics, which had energy filter characteristics caused by the energy dependence of the total reflection phenomenon. In the present paper, we show that two independent straight polycapillary X-ray optics could be used as an energy filter of X-rays for X-ray fluorescence. Only low energy X-rays were detected when the angle between the two optical axes was increased slightly. Energy-selective X-ray fluorescence spectrometry images with projection mode were taken by using an X-ray CCD camera equipped with two polycapillary optics. It was shown that Fe Kα (6.40 keV) and Cu Kα (8.04 keV) could be discriminated for Fe and Cu foils.

  18. Development of high-resolution x-ray CT system using parallel beam geometry

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio, E-mail: akio.yoneyama.bu@hitachi.com; Baba, Rika [Central Research Laboratory, Hitachi Ltd., Hatoyama, Saitama (Japan); Hyodo, Kazuyuki [Institute of Materials Science, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Takeda, Tohoru [School of Allied Health Sciences, Kitasato University, Sagamihara, Kanagawa (Japan); Nakano, Haruhisa; Maki, Koutaro [Department of Orthodontics, School of Dentistry Showa University, Ota-ku, Tokyo (Japan); Sumitani, Kazushi; Hirai, Yasuharu [Kyushu Synchrotron Light Research Center, Tosu, Saga (Japan)

    2016-01-28

    For fine three-dimensional observations of large biomedical and organic material samples, we developed a high-resolution X-ray CT system. The system consists of a sample positioner, a 5-μm scintillator, microscopy lenses, and a water-cooled sCMOS detector. Parallel beam geometry was adopted to attain a field of view of a few mm square. A fine three-dimensional image of birch branch was obtained using a 9-keV X-ray at BL16XU of SPring-8 in Japan. The spatial resolution estimated from the line profile of a sectional image was about 3 μm.

  19. Sub-atomic dimensional metrology: developments in the control of x-ray interferometers

    Science.gov (United States)

    Yacoot, Andrew; Kuetgens, Ulrich

    2012-07-01

    Within the European Metrology Research Programme funded project NANOTRACE, the nonlinearity of the next generation of optical interferometers has been measured using x-ray interferometry. The x-ray interferometer can be regarded as a ruler or translation stage whose graduations or displacement steps are based on the lattice spacing of the crystallographic planes from which the x-rays are diffracted: in this case the graduations are every 192 pm corresponding to the spacing between the (2 2 0) planes in silicon. Precise displacement of the x-ray interferometer's monolithic translation stage in steps corresponding to discrete numbers of x-ray fringes requires servo positioning capability at the picometre level. To achieve this very fine control, a digital control system has been developed which has opened up the potential for advances in metrology using x-ray interferometry that include quadrature counting of x-ray fringes.

  20. Sub-atomic dimensional metrology: developments in the control of x-ray interferometers

    International Nuclear Information System (INIS)

    Yacoot, Andrew; Kuetgens, Ulrich

    2012-01-01

    Within the European Metrology Research Programme funded project NANOTRACE, the nonlinearity of the next generation of optical interferometers has been measured using x-ray interferometry. The x-ray interferometer can be regarded as a ruler or translation stage whose graduations or displacement steps are based on the lattice spacing of the crystallographic planes from which the x-rays are diffracted: in this case the graduations are every 192 pm corresponding to the spacing between the (2 2 0) planes in silicon. Precise displacement of the x-ray interferometer's monolithic translation stage in steps corresponding to discrete numbers of x-ray fringes requires servo positioning capability at the picometre level. To achieve this very fine control, a digital control system has been developed which has opened up the potential for advances in metrology using x-ray interferometry that include quadrature counting of x-ray fringes. (paper)

  1. Constraints on a Proton Synchrotron Origin of VHE Gamma Rays from the Extended Jet of AP Librae

    Energy Technology Data Exchange (ETDEWEB)

    Basumallick, Partha Pratim; Gupta, Nayantara, E-mail: basuparth314@gmail.com [Raman Research Institute, C. V. Raman Avenue, Sadashivanagar, Bangalore 560080 (India)

    2017-07-20

    The multiwavelength photon spectrum from the BL Lac object AP Librae extends from radio to TeV gamma rays. The X-ray to very high-energy gamma-ray emission from the extended jet of this source has been modeled with inverse Compton (IC) scattering of relativistic electrons off the cosmic microwave background (CMB) photons. The IC/CMB model requires the kpc-scale extended jet to be highly collimated with a bulk Lorentz factor close to 10. Here we discuss the possibility of a proton synchrotron origin of X-rays and gamma rays from the extended jet with a bulk Lorentz factor of 3. This scenario requires an extreme proton energy of 3.98 × 10{sup 21} eV and a high magnetic field of 1 mG of the extended jet with jet power ∼5 × 10{sup 48} erg s{sup −1} in particles and the magnetic field (which is more than 100 times the Eddington luminosity of AP Librae) to explain the very high-energy gamma-ray emission. Moreover, we have shown that X-ray emission from the extended jets of 3C 273 and PKS 0637-752 could be possible by proton synchrotron emission with jet power comparable to the Eddington luminosities.

  2. Measurement of the x-ray mass attenuation coefficient and determination of the imaginary component of the atomic form factor of molybdenum over the 13.5-41.5-keV energy range

    International Nuclear Information System (INIS)

    Jonge, Martin D. de; Tran, Chanh Q.; Chantler, Christopher T.; Barnea, Zwi; Dhal, Bipin B.; Cookson, David J.; Lee, Wah-Keat; Mashayekhi, Ali

    2005-01-01

    We use the x-ray extended-range technique (XERT) [Chantler et al., Phys. Rev. A 64, 062506 (2001)] to measure the mass attenuation coefficients of molybdenum in the x-ray energy range of 13.5-41.5 keV to 0.02-0.15 % accuracy. Measurements made over an extended range of the measurement parameter space are critically examined to identify, quantify, and correct where necessary a number of experimental systematic errors. These results represent the most extensive experimental data set for molybdenum and include absolute mass attenuation coefficients in the regions of the x-ray absorption fine structure (XAFS) and x-ray-absorption near-edge structure (XANES). The imaginary component of the atomic form-factor f 2 is derived from the photoelectric absorption after subtracting calculated Rayleigh and Compton scattering cross sections from the total attenuation. Comparison of the result with tabulations of calculated photoelectric absorption coefficients indicates that differences of 1-15 % persist between the calculated and observed values

  3. Fine Synchronization of the CMS Muon Drift-Tube Local Trigger using Cosmic Rays

    CERN Document Server

    Chatrchyan, S; Sirunyan, A M; Adam, W; Arnold, B; Bergauer, H; Bergauer, T; Dragicevic, M; Eichberger, M; Erö, J; Friedl, M; Frühwirth, R; Ghete, V M; Hammer, J; Hänsel, S; Hoch, M; Hörmann, N; Hrubec, J; Jeitler, M; Kasieczka, G; Kastner, K; Krammer, M; Liko, D; Magrans de Abril, I; Mikulec, I; Mittermayr, F; Neuherz, B; Oberegger, M; Padrta, M; Pernicka, M; Rohringer, H; Schmid, S; Schöfbeck, R; Schreiner, T; Stark, R; Steininger, H; Strauss, J; Taurok, A; Teischinger, F; Themel, T; Uhl, D; Wagner, P; Waltenberger, W; Walzel, G; Widl, E; Wulz, C E; Chekhovsky, V; Dvornikov, O; Emeliantchik, I; Litomin, A; Makarenko, V; Marfin, I; Mossolov, V; Shumeiko, N; Solin, A; Stefanovitch, R; Suarez Gonzalez, J; Tikhonov, A; Fedorov, A; Karneyeu, A; Korzhik, M; Panov, V; Zuyeuski, R; Kuchinsky, P; Beaumont, W; Benucci, L; Cardaci, M; De Wolf, E A; Delmeire, E; Druzhkin, D; Hashemi, M; Janssen, X; Maes, T; Mucibello, L; Ochesanu, S; Rougny, R; Selvaggi, M; Van Haevermaet, H; Van Mechelen, P; Van Remortel, N; Adler, V; Beauceron, S; Blyweert, S; D'Hondt, J; De Weirdt, S; Devroede, O; Heyninck, J; Kalogeropoulos, A; Maes, J; Maes, M; Mozer, M U; Tavernier, S; Van Doninck, W; Van Mulders, P; Villella, I; Bouhali, O; Chabert, E C; Charaf, O; Clerbaux, B; De Lentdecker, G; Dero, V; Elgammal, S; Gay, A P R; Hammad, G H; Marage, P E; Rugovac, S; Vander Velde, C; Vanlaer, P; Wickens, J; Grunewald, M; Klein, B; Marinov, A; Ryckbosch, D; Thyssen, F; Tytgat, M; Vanelderen, L; Verwilligen, P; Basegmez, S; Bruno, G; Caudron, J; Delaere, C; Demin, P; Favart, D; Giammanco, A; Grégoire, G; Lemaitre, V; Militaru, O; Ovyn, S; Piotrzkowski, K; Quertenmont, L; Schul, N; Beliy, N; Daubie, E; Alves, G A; Pol, M E; Souza, M H G; Carvalho, W; De Jesus Damiao, D; De Oliveira Martins, C; Fonseca De Souza, S; Mundim, L; Oguri, V; Santoro, A; Silva Do Amaral, S M; Sznajder, A; Fernandez Perez Tomei, T R; Ferreira Dias, M A; Gregores, E M; Novaes, S F; Abadjiev, K; Anguelov, T; Damgov, J; Darmenov, N; Dimitrov, L; Genchev, V; Iaydjiev, P; Piperov, S; Stoykova, S; Sultanov, G; Trayanov, R; Vankov, I; Dimitrov, A; Dyulendarova, M; Kozhuharov, V; Litov, L; Marinova, E; Mateev, M; Pavlov, B; Petkov, P; Toteva, Z; Chen, G M; Chen, H S; Guan, W; Jiang, C H; Liang, D; Liu, B; Meng, X; Tao, J; Wang, J; Wang, Z; Xue, Z; Zhang, Z; Ban, Y; Cai, J; Ge, Y; Guo, S; Hu, Z; Mao, Y; Qian, S J; Teng, H; Zhu, B; Avila, C; Baquero Ruiz, M; Carrillo Montoya, C A; Gomez, A; Gomez Moreno, B; Ocampo Rios, A A; Osorio Oliveros, A F; Reyes Romero, D; Sanabria, J C; Godinovic, N; Lelas, K; Plestina, R; Polic, D; Puljak, I; Antunovic, Z; Dzelalija, M; Brigljevic, V; Duric, S; Kadija, K; Morovic, S; Fereos, R; Galanti, M; Mousa, J; Papadakis, A; Ptochos, F; Razis, P A; Tsiakkouri, D; Zinonos, Z; Hektor, A; Kadastik, M; Kannike, K; Müntel, M; Raidal, M; Rebane, L; Anttila, E; Czellar, S; Härkönen, J; Heikkinen, A; Karimäki, V; Kinnunen, R; Klem, J; Kortelainen, M J; Lampén, T; Lassila-Perini, K; Lehti, S; Lindén, T; Luukka, P; Mäenpää, T; Nysten, J; Tuominen, E; Tuominiemi, J; Ungaro, D; Wendland, L; Banzuzi, K; Korpela, A; Tuuva, T; Nedelec, P; Sillou, D; Besancon, M; Chipaux, R; Dejardin, M; Denegri, D; Descamps, J; Fabbro, B; Faure, J L; Ferri, F; Ganjour, S; Gentit, F X; Givernaud, A; Gras, P; Hamel de Monchenault, G; Jarry, P; Lemaire, M C; Locci, E; Malcles, J; Marionneau, M; Millischer, L; Rander, J; Rosowsky, A; Rousseau, D; Titov, M; Verrecchia, P; Baffioni, S; Bianchini, L; Bluj, M; Busson, P; Charlot, C; Dobrzynski, L; Granier de Cassagnac, R; Haguenauer, M; Miné, P; Paganini, P; Sirois, Y; Thiebaux, C; Zabi, A; Agram, J L; Besson, A; Bloch, D; Bodin, D; Brom, J M; Conte, E; Drouhin, F; Fontaine, J C; Gelé, D; Goerlach, U; Gross, L; Juillot, P; Le Bihan, A C; Patois, Y; Speck, J; Van Hove, P; Baty, C; Bedjidian, M; Blaha, J; Boudoul, G; Brun, H; Chanon, N; Chierici, R; Contardo, D; Depasse, P; Dupasquier, T; El Mamouni, H; Fassi, F; Fay, J; Gascon, S; Ille, B; Kurca, T; Le Grand, T; Lethuillier, M; Lumb, N; Mirabito, L; Perries, S; Vander Donckt, M; Verdier, P; Djaoshvili, N; Roinishvili, N; Roinishvili, V; Amaglobeli, N; Adolphi, R; Anagnostou, G; Brauer, R; Braunschweig, W; Edelhoff, M; Esser, H; Feld, L; Karpinski, W; Khomich, A; Klein, K; Mohr, N; Ostaptchouk, A; Pandoulas, D; Pierschel, G; Raupach, F; Schael, S; Schultz von Dratzig, A; Schwering, G; Sprenger, D; Thomas, M; Weber, M; Wittmer, B; Wlochal, M; Actis, O; Altenhöfer, G; Bender, W; Biallass, P; Erdmann, M; Fetchenhauer, G; Frangenheim, J; Hebbeker, T; Hilgers, G; Hinzmann, A; Hoepfner, K; Hof, C; Kirsch, M; Klimkovich, T; Kreuzer, P; Lanske, D; Merschmeyer, M; Meyer, A; Philipps, B; Pieta, H; Reithler, H; Schmitz, S A; Sonnenschein, L; Sowa, M; Steggemann, J; Szczesny, H; Teyssier, D; Zeidler, C; Bontenackels, M; Davids, M; Duda, M; Flügge, G; Geenen, H; Giffels, M; Haj Ahmad, W; Hermanns, T; Heydhausen, D; Kalinin, S; Kress, T; Linn, A; Nowack, A; Perchalla, L; Poettgens, M; Pooth, O; Sauerland, P; Stahl, A; Tornier, D; Zoeller, M H; Aldaya Martin, M; Behrens, U; Borras, K; Campbell, A; Castro, E; Dammann, D; Eckerlin, G; Flossdorf, A; Flucke, G; Geiser, A; Hatton, D; Hauk, J; Jung, H; Kasemann, M; Katkov, I; Kleinwort, C; Kluge, H; Knutsson, A; Kuznetsova, E; Lange, W; Lohmann, W; Mankel, R; Marienfeld, M; Meyer, A B; Miglioranzi, S; Mnich, J; Ohlerich, M; Olzem, J; Parenti, A; Rosemann, C; Schmidt, R; Schoerner-Sadenius, T; Volyanskyy, D; Wissing, C; Zeuner, W D; Autermann, C; Bechtel, F; Draeger, J; Eckstein, D; Gebbert, U; Kaschube, K; Kaussen, G; Klanner, R; Mura, B; Naumann-Emme, S; Nowak, F; Pein, U; Sander, C; Schleper, P; Schum, T; Stadie, H; Steinbrück, G; Thomsen, J; Wolf, R; Bauer, J; Blüm, P; Buege, V; Cakir, A; Chwalek, T; De Boer, W; Dierlamm, A; Dirkes, G; Feindt, M; Felzmann, U; Frey, M; Furgeri, A; Gruschke, J; Hackstein, C; Hartmann, F; Heier, S; Heinrich, M; Held, H; Hirschbuehl, D; Hoffmann, K H; Honc, S; Jung, C; Kuhr, T; Liamsuwan, T; Martschei, D; Mueller, S; Müller, Th; Neuland, M B; Niegel, M; Oberst, O; Oehler, A; Ott, J; Peiffer, T; Piparo, D; Quast, G; Rabbertz, K; Ratnikov, F; Ratnikova, N; Renz, M; Saout, C; Sartisohn, G; Scheurer, A; Schieferdecker, P; Schilling, F P; Schott, G; Simonis, H J; Stober, F M; Sturm, P; Troendle, D; Trunov, A; Wagner, W; Wagner-Kuhr, J; Zeise, M; Zhukov, V; Ziebarth, E B; Daskalakis, G; Geralis, T; Karafasoulis, K; Kyriakis, A; Loukas, D; Markou, A; Markou, C; Mavrommatis, C; Petrakou, E; Zachariadou, A; Gouskos, L; Katsas, P; Panagiotou, A; Evangelou, I; Kokkas, P; Manthos, N; Papadopoulos, I; Patras, V; Triantis, F A; Bencze, G; Boldizsar, L; Debreczeni, G; Hajdu, C; Hernath, S; Hidas, P; Horvath, D; Krajczar, K; Laszlo, A; Patay, G; Sikler, F; Toth, N; Vesztergombi, G; Beni, N; Christian, G; Imrek, J; Molnar, J; Novak, D; Palinkas, J; Szekely, G; Szillasi, Z; Tokesi, K; Veszpremi, V; Kapusi, A; Marian, G; Raics, P; Szabo, Z; Trocsanyi, Z L; Ujvari, B; Zilizi, G; Bansal, S; Bawa, H S; Beri, S B; Bhatnagar, V; Jindal, M; Kaur, M; Kaur, R; Kohli, J M; Mehta, M Z; Nishu, N; Saini, L K; Sharma, A; Singh, A; Singh, J B; Singh, S P; Ahuja, S; Arora, S; Bhattacharya, S; Chauhan, S; Choudhary, B C; Gupta, P; Jain, S; Jha, M; Kumar, A; Ranjan, K; Shivpuri, R K; Srivastava, A K; Choudhury, R K; Dutta, D; Kailas, S; Kataria, S K; Mohanty, A K; Pant, L M; Shukla, P; Topkar, A; Aziz, T; Guchait, M; Gurtu, A; Maity, M; Majumder, D; Majumder, G; Mazumdar, K; Nayak, A; Saha, A; Sudhakar, K; Banerjee, S; Dugad, S; Mondal, N K; Arfaei, H; Bakhshiansohi, H; Fahim, A; Jafari, A; Mohammadi Najafabadi, M; Moshaii, A; Paktinat Mehdiabadi, S; Rouhani, S; Safarzadeh, B; Zeinali, M; Felcini, M; Abbrescia, M; Barbone, L; Chiumarulo, F; Clemente, A; Colaleo, A; Creanza, D; Cuscela, G; De Filippis, N; De Palma, M; De Robertis, G; Donvito, G; Fedele, F; Fiore, L; Franco, M; Iaselli, G; Lacalamita, N; Loddo, F; Lusito, L; Maggi, G; Maggi, M; Manna, N; Marangelli, B; My, S; Natali, S; Nuzzo, S; Papagni, G; Piccolomo, S; Pierro, G A; Pinto, C; Pompili, A; Pugliese, G; Rajan, R; Ranieri, A; Romano, F; Roselli, G; Selvaggi, G; Shinde, Y; Silvestris, L; Tupputi, S; Zito, G; Abbiendi, G; Bacchi, W; Benvenuti, A C; Boldini, M; Bonacorsi, D; Braibant-Giacomelli, S; Cafaro, V D; Caiazza, S S; Capiluppi, P; Castro, A; Cavallo, F R; Codispoti, G; Cuffiani, M; D'Antone, I; Dallavalle, G M; Fabbri, F; Fanfani, A; Fasanella, D; Giacomelli, P; Giordano, V; Giunta, M; Grandi, C; Guerzoni, M; Marcellini, S; Masetti, G; Montanari, A; Navarria, F L; Odorici, F; Pellegrini, G; Perrotta, A; Rossi, A M; Rovelli, T; Siroli, G; Torromeo, G; Travaglini, R; Albergo, S; Costa, S; Potenza, R; Tricomi, A; Tuve, C; Barbagli, G; Broccolo, G; Ciulli, V; Civinini, C; D'Alessandro, R; Focardi, E; Frosali, S; Gallo, E; Genta, C; Landi, G; Lenzi, P; Meschini, M; Paoletti, S; Sguazzoni, G; Tropiano, A; Benussi, L; Bertani, M; Bianco, S; Colafranceschi, S; Colonna, D; Fabbri, F; Giardoni, M; Passamonti, L; Piccolo, D; Pierluigi, D; Ponzio, B; Russo, A; Fabbricatore, P; Musenich, R; Benaglia, A; Calloni, M; Cerati, G B; D'Angelo, P; De Guio, F; Farina, F M; Ghezzi, A; Govoni, P; Malberti, M; Malvezzi, S; Martelli, A; Menasce, D; Miccio, V; Moroni, L; Negri, P; Paganoni, M; Pedrini, D; Pullia, A; Ragazzi, S; Redaelli, N; Sala, S; Salerno, R; Tabarelli de Fatis, T; Tancini, V; Taroni, S; Buontempo, S; Cavallo, N; Cimmino, A; De Gruttola, M; Fabozzi, F; Iorio, A O M; Lista, L; Lomidze, D; Noli, P; Paolucci, P; Sciacca, C; Azzi, P; Bacchetta, N; Barcellan, L; Bellan, P; Bellato, M; Benettoni, M; Biasotto, M; Bisello, D; Borsato, E; Branca, A; Carlin, R; Castellani, L; Checchia, P; Conti, E; Dal Corso, F; De Mattia, M; Dorigo, T; Dosselli, U; Fanzago, F; Gasparini, F; Gasparini, U; Giubilato, P; Gonella, F; Gresele, A; Gulmini, M; Kaminskiy, A; Lacaprara, S; Lazzizzera, I; Margoni, M; Maron, G; Mattiazzo, S; Mazzucato, M; Meneghelli, M; Meneguzzo, A T; Michelotto, M; Montecassiano, F; Nespolo, M; Passaseo, M; Pegoraro, M; Perrozzi, L; Pozzobon, N; Ronchese, P; Simonetto, F; Toniolo, N; Torassa, E; Tosi, M; Triossi, A; Vanini, S; Ventura, S; Zotto, P; Zumerle, G; Baesso, P; Berzano, U; Bricola, S; Necchi, M M; Pagano, D; Ratti, S P; Riccardi, C; Torre, P; Vicini, A; Vitulo, P; Viviani, C; Aisa, D; Aisa, S; Babucci, E; Biasini, M; Bilei, G M; Caponeri, B; Checcucci, B; Dinu, N; Fanò, L; Farnesini, L; Lariccia, P; Lucaroni, A; Mantovani, G; Nappi, A; Piluso, A; Postolache, V; Santocchia, A; Servoli, L; Tonoiu, D; Vedaee, A; Volpe, R; Azzurri, P; Bagliesi, G; Bernardini, J; Berretta, L; Boccali, T; Bocci, A; Borrello, L; Bosi, F; Calzolari, F; Castaldi, R; Dell'Orso, R; Fiori, F; Foà, L; Gennai, S; Giassi, A; Kraan, A; Ligabue, F; Lomtadze, T; Mariani, F; Martini, L; Massa, M; Messineo, A; Moggi, A; Palla, F; Palmonari, F; Petragnani, G; Petrucciani, G; Raffaelli, F; Sarkar, S; Segneri, G; Serban, A T; Spagnolo, P; Tenchini, R; Tolaini, S; Tonelli, G; Venturi, A; Verdini, P G; Baccaro, S; Barone, L; Bartoloni, A; Cavallari, F; Dafinei, I; Del Re, D; Di Marco, E; Diemoz, M; Franci, D; Longo, E; Organtini, G; Palma, A; Pandolfi, F; Paramatti, R; Pellegrino, F; Rahatlou, S; Rovelli, C; Alampi, G; Amapane, N; Arcidiacono, R; Argiro, S; Arneodo, M; Biino, C; Borgia, M A; Botta, C; Cartiglia, N; Castello, R; Cerminara, G; Costa, M; Dattola, D; Dellacasa, G; Demaria, N; Dughera, G; Dumitrache, F; Graziano, A; Mariotti, C; Marone, M; Maselli, S; Migliore, E; Mila, G; Monaco, V; Musich, M; Nervo, M; Obertino, M M; Oggero, S; Panero, R; Pastrone, N; Pelliccioni, M; Romero, A; Ruspa, M; Sacchi, R; Solano, A; Staiano, A; Trapani, P P; Trocino, D; Vilela Pereira, A; Visca, L; Zampieri, A; Ambroglini, F; Belforte, S; Cossutti, F; Della Ricca, G; Gobbo, B; Penzo, A; Chang, S; Chung, J; Kim, D H; Kim, G N; Kong, D J; Park, H; Son, D C; Bahk, S Y; Song, S; Jung, S Y; Hong, B; Kim, H; Kim, J H; Lee, K S; Moon, D H; Park, S K; Rhee, H B; Sim, K S; Kim, J; Choi, M; Hahn, G; Park, I C; Choi, S; Choi, Y; Goh, J; Jeong, H; Kim, T J; Lee, J; Lee, S; Janulis, M; Martisiute, D; Petrov, P; Sabonis, T; Castilla Valdez, H; Sánchez Hernández, A; Carrillo Moreno, S; Morelos Pineda, A; Allfrey, P; Gray, R N C; Krofcheck, D; Bernardino Rodrigues, N; Butler, P H; Signal, T; Williams, J C; Ahmad, M; Ahmed, I; Ahmed, W; Asghar, M I; Awan, M I M; Hoorani, H R; Hussain, I; Khan, W A; Khurshid, T; Muhammad, S; Qazi, S; Shahzad, H; Cwiok, M; Dabrowski, R; Dominik, W; Doroba, K; Konecki, M; Krolikowski, J; Pozniak, K; Romaniuk, Ryszard; Zabolotny, W; Zych, P; Frueboes, T; Gokieli, R; Goscilo, L; Górski, M; Kazana, M; Nawrocki, K; Szleper, M; Wrochna, G; Zalewski, P; Almeida, N; Antunes Pedro, L; Bargassa, P; David, A; Faccioli, P; Ferreira Parracho, P G; Freitas Ferreira, M; Gallinaro, M; Guerra Jordao, M; Martins, P; Mini, G; Musella, P; Pela, J; Raposo, L; Ribeiro, P Q; Sampaio, S; Seixas, J; Silva, J; Silva, P; Soares, D; Sousa, M; Varela, J; Wöhri, H K; Altsybeev, I; Belotelov, I; Bunin, P; Ershov, Y; Filozova, I; Finger, M; Finger, M., Jr.; Golunov, A; Golutvin, I; Gorbounov, N; Kalagin, V; Kamenev, A; Karjavin, V; Konoplyanikov, V; Korenkov, V; Kozlov, G; Kurenkov, A; Lanev, A; Makankin, A; Mitsyn, V V; Moisenz, P; Nikonov, E; Oleynik, D; Palichik, V; Perelygin, V; Petrosyan, A; Semenov, R; Shmatov, S; Smirnov, V; Smolin, D; Tikhonenko, E; Vasil'ev, S; Vishnevskiy, A; Volodko, A; Zarubin, A; Zhiltsov, V; Bondar, N; Chtchipounov, L; Denisov, A; Gavrikov, Y; Gavrilov, G; Golovtsov, V; Ivanov, Y; Kim, V; Kozlov, V; Levchenko, P; Obrant, G; Orishchin, E; Petrunin, A; Shcheglov, Y; Shchetkovskiy, A; Sknar, V; Smirnov, I; Sulimov, V; Tarakanov, V; Uvarov, L; Vavilov, S; Velichko, G; Volkov, S; Vorobyev, A; Andreev, Yu; Anisimov, A; Antipov, P; Dermenev, A; Gninenko, S; Golubev, N; Kirsanov, M; Krasnikov, N; Matveev, V; Pashenkov, A; Postoev, V E; Solovey, A; Toropin, A; Troitsky, S; Baud, A; Epshteyn, V; Gavrilov, V; Ilina, N; Kaftanov, V; Kolosov, V; Kossov, M; Krokhotin, A; Kuleshov, S; Oulianov, A; Safronov, G; Semenov, S; Shreyber, I; Stolin, V; Vlasov, E; Zhokin, A; Boos, E; Dubinin, M; Dudko, L; Ershov, A; Gribushin, A; Klyukhin, V; Kodolova, O; Lokhtin, I; Petrushanko, S; Sarycheva, L; Savrin, V; Snigirev, A; Vardanyan, I; Dremin, I; Kirakosyan, M; Konovalova, N; Rusakov, S V; Vinogradov, A; Akimenko, S; Artamonov, A; Azhgirey, I; Bitioukov, S; Burtovoy, V; Grishin, V; Kachanov, V; Konstantinov, D; Krychkine, V; Levine, A; Lobov, I; Lukanin, V; Mel'nik, Y; Petrov, V; Ryutin, R; Slabospitsky, S; Sobol, A; Sytine, A; Tourtchanovitch, L; Troshin, S; Tyurin, N; Uzunian, A; Volkov, A; Adzic, P; Djordjevic, M; Jovanovic, D; Krpic, D; Maletic, D; Puzovic, J; Smiljkovic, N; Aguilar-Benitez, M; Alberdi, J; Alcaraz Maestre, J; Arce, P; Barcala, J M; Battilana, C; Burgos Lazaro, C; Caballero Bejar, J; Calvo, E; Cardenas Montes, M; Cepeda, M; Cerrada, M; Chamizo Llatas, M; Clemente, F; Colino, N; Daniel, M; De La Cruz, B; Delgado Peris, A; Diez Pardos, C; Fernandez Bedoya, C; Fernández Ramos, J P; Ferrando, A; Flix, J; Fouz, M C; Garcia-Abia, P; Garcia-Bonilla, A C; Gonzalez Lopez, O; Goy Lopez, S; Hernandez, J M; Josa, M I; Marin, J; Merino, G; Molina, J; Molinero, A; Navarrete, J J; Oller, J C; Puerta Pelayo, J; Romero, L; Santaolalla, J; Villanueva Munoz, C; Willmott, C; Yuste, C; Albajar, C; Blanco Otano, M; de Trocóniz, J F; Garcia Raboso, A; Lopez Berengueres, J O; Cuevas, J; Fernandez Menendez, J; Gonzalez Caballero, I; Lloret Iglesias, L; Naves Sordo, H; Vizan Garcia, J M; Cabrillo, I J; Calderon, A; Chuang, S H; Diaz Merino, I; Diez Gonzalez, C; Duarte Campderros, J; Fernandez, M; Gomez, G; Gonzalez Sanchez, J; Gonzalez Suarez, R; Jorda, C; Lobelle Pardo, P; Lopez Virto, A; Marco, J; Marco, R; Martinez Rivero, C; Martinez Ruiz del Arbol, P; Matorras, F; Rodrigo, T; Ruiz Jimeno, A; Scodellaro, L; Sobron Sanudo, M; Vila, I; Vilar Cortabitarte, R; Abbaneo, D; Albert, E; Alidra, M; Ashby, S; Auffray, E; Baechler, J; Baillon, P; Ball, A H; Bally, S L; Barney, D; Beaudette, F; Bellan, R; Benedetti, D; Benelli, G; Bernet, C; Bloch, P; Bolognesi, S; Bona, M; Bos, J; Bourgeois, N; Bourrel, T; Breuker, H; Bunkowski, K; Campi, D; Camporesi, T; Cano, E; Cattai, A; Chatelain, J P; Chauvey, M; Christiansen, T; Coarasa Perez, J A; Conde Garcia, A; Covarelli, R; Curé, B; De Roeck, A; Delachenal, V; Deyrail, D; Di Vincenzo, S; Dos Santos, S; Dupont, T; Edera, L M; Elliott-Peisert, A; Eppard, M; Favre, M; Frank, N; Funk, W; Gaddi, A; Gastal, M; Gateau, M; Gerwig, H; Gigi, D; Gill, K; Giordano, D; Girod, J P; Glege, F; Gomez-Reino Garrido, R; Goudard, R; Gowdy, S; Guida, R; Guiducci, L; Gutleber, J; Hansen, M; Hartl, C; Harvey, J; Hegner, B; Hoffmann, H F; Holzner, A; Honma, A; Huhtinen, M; Innocente, V; Janot, P; Le Godec, G; Lecoq, P; Leonidopoulos, C; Loos, R; Lourenço, C; Lyonnet, A; Macpherson, A; Magini, N; Maillefaud, J D; Maire, G; Mäki, T; Malgeri, L; Mannelli, M; Masetti, L; Meijers, F; Meridiani, P; Mersi, S; Meschi, E; Meynet Cordonnier, A; Moser, R; Mulders, M; Mulon, J; Noy, M; Oh, A; Olesen, G; Onnela, A; Orimoto, T; Orsini, L; Perez, E; Perinic, G; Pernot, J F; Petagna, P; Petiot, P; Petrilli, A; Pfeiffer, A; Pierini, M; Pimiä, M; Pintus, R; Pirollet, B; Postema, H; Racz, A; Ravat, S; Rew, S B; Rodrigues Antunes, J; Rolandi, G; Rovere, M; Ryjov, V; Sakulin, H; Samyn, D; Sauce, H; Schäfer, C; Schlatter, W D; Schröder, M; Schwick, C; Sciaba, A; Segoni, I; Sharma, A; Siegrist, N; Siegrist, P; Sinanis, N; Sobrier, T; Sphicas, P; Spiga, D; Spiropulu, M; Stöckli, F; Traczyk, P; Tropea, P; Troska, J; Tsirou, A; Veillet, L; Veres, G I; Voutilainen, M; Wertelaers, P; Zanetti, M; Bertl, W; Deiters, K; Erdmann, W; Gabathuler, K; Horisberger, R; Ingram, Q; Kaestli, H C; König, S; Kotlinski, D; Langenegger, U; Meier, F; Renker, D; Rohe, T; Sibille, J; Starodumov, A; Betev, B; Caminada, L; Chen, Z; Cittolin, S; Da Silva Di Calafiori, D R; Dambach, S; Dissertori, G; Dittmar, M; Eggel, C; Eugster, J; Faber, G; Freudenreich, K; Grab, C; Hervé, A; Hintz, W; Lecomte, P; Luckey, P D; Lustermann, W; Marchica, C; Milenovic, P; Moortgat, F; Nardulli, A; Nessi-Tedaldi, F; Pape, L; Pauss, F; Punz, T; Rizzi, A; Ronga, F J; Sala, L; Sanchez, A K; Sawley, M C; Sordini, V; Stieger, B; Tauscher, L; Thea, A; Theofilatos, K; Treille, D; Trüb, P; Weber, M; Wehrli, L; Weng, J; Zelepoukine, S; Amsler, C; Chiochia, V; De Visscher, S; Regenfus, C; Robmann, P; Rommerskirchen, T; Schmidt, A; Tsirigkas, D; Wilke, L; Chang, Y H; Chen, E A; Chen, W T; Go, A; Kuo, C M; Li, S W; Lin, W; Bartalini, P; Chang, P; Chao, Y; Chen, K F; Hou, W S; Hsiung, Y; Lei, Y J; Lin, S W; Lu, R S; Schümann, J; Shiu, J G; Tzeng, Y M; Ueno, K; Velikzhanin, Y; Wang, C C; Wang, M; Adiguzel, A; Ayhan, A; Azman Gokce, A; Bakirci, M N; Cerci, S; Dumanoglu, I; Eskut, E; Girgis, S; Gurpinar, E; Hos, I; Karaman, T; Kayis Topaksu, A; Kurt, P; Önengüt, G; Önengüt Gökbulut, G; Ozdemir, K; Ozturk, S; Polatöz, A; Sogut, K; Tali, B; Topakli, H; Uzun, D; Vergili, L N; Vergili, M; Akin, I V; Aliev, T; Bilmis, S; Deniz, M; Gamsizkan, H; Guler, A M; Öcalan, K; Serin, M; Sever, R; Surat, U E; Zeyrek, M; Deliomeroglu, M; Demir, D; Gülmez, E; Halu, A; Isildak, B; Kaya, M; Kaya, O; Ozkorucuklu, S; Sonmez, N; Levchuk, L; Lukyanenko, S; Soroka, D; Zub, S; Bostock, F; Brooke, J J; Cheng, T L; Cussans, D; Frazier, R; Goldstein, J; Grant, N; Hansen, M; Heath, G P; Heath, H F; Hill, C; Huckvale, B; Jackson, J; Mackay, C K; Metson, S; Newbold, D M; Nirunpong, K; Smith, V J; Velthuis, J; Walton, R; Bell, K W; Brew, C; Brown, R M; Camanzi, B; Cockerill, D J A; Coughlan, J A; Geddes, N I; Harder, K; Harper, S; Kennedy, B W; Murray, P; Shepherd-Themistocleous, C H; Tomalin, I R; Williams, J H; Womersley, W J; Worm, S D; Bainbridge, R; Ball, G; Ballin, J; Beuselinck, R; Buchmuller, O; Colling, D; Cripps, N; Davies, G; Della Negra, M; Foudas, C; Fulcher, J; Futyan, D; Hall, G; Hays, J; Iles, G; Karapostoli, G; MacEvoy, B C; Magnan, A M; Marrouche, J; Nash, J; Nikitenko, A; Papageorgiou, A; Pesaresi, M; Petridis, K; Pioppi, M; Raymond, D M; Rompotis, N; Rose, A; Ryan, M J; Seez, C; Sharp, P; Sidiropoulos, G; Stettler, M; Stoye, M; Takahashi, M; Tapper, A; Timlin, C; Tourneur, S; Vazquez Acosta, M; Virdee, T; Wakefield, S; Wardrope, D; Whyntie, T; Wingham, M; Cole, J E; Goitom, I; Hobson, P R; Khan, A; Kyberd, P; Leslie, D; Munro, C; Reid, I D; Siamitros, C; Taylor, R; Teodorescu, L; Yaselli, I; Bose, T; Carleton, M; Hazen, E; Heering, A H; Heister, A; John, J St; Lawson, P; Lazic, D; Osborne, D; Rohlf, J; Sulak, L; Wu, S; Andrea, J; Avetisyan, A; Bhattacharya, S; Chou, J P; Cutts, D; Esen, S; Kukartsev, G; Landsberg, G; Narain, M; Nguyen, D; Speer, T; Tsang, K V; Breedon, R; Calderon De La Barca Sanchez, M; Case, M; Cebra, D; Chertok, M; Conway, J; Cox, P T; Dolen, J; Erbacher, R; Friis, E; Ko, W; Kopecky, A; Lander, R; Lister, A; Liu, H; Maruyama, S; Miceli, T; Nikolic, M; Pellett, D; Robles, J; Searle, M; Smith, J; Squires, M; Stilley, J; Tripathi, M; Vasquez Sierra, R; Veelken, C; Andreev, V; Arisaka, K; Cline, D; Cousins, R; Erhan, S; Hauser, J; Ignatenko, M; Jarvis, C; Mumford, J; Plager, C; Rakness, G; Schlein, P; Tucker, J; Valuev, V; Wallny, R; Yang, X; Babb, J; Bose, M; Chandra, A; Clare, R; Ellison, J A; Gary, J W; Hanson, G; Jeng, G Y; Kao, S C; Liu, F; Liu, H; Luthra, A; Nguyen, H; Pasztor, G; Satpathy, A; Shen, B C; Stringer, R; Sturdy, J; Sytnik, V; Wilken, R; Wimpenny, S; Branson, J G; Dusinberre, E; Evans, D; Golf, F; Kelley, R; Lebourgeois, M; Letts, J; Lipeles, E; Mangano, B; Muelmenstaedt, J; Norman, M; Padhi, S; Petrucci, A; Pi, H; Pieri, M; Ranieri, R; Sani, M; Sharma, V; Simon, S; Würthwein, F; Yagil, A; Campagnari, C; D'Alfonso, M; Danielson, T; Garberson, J; Incandela, J; Justus, C; Kalavase, P; Koay, S A; Kovalskyi, D; Krutelyov, V; Lamb, J; Lowette, S; Pavlunin, V; Rebassoo, F; Ribnik, J; Richman, J; Rossin, R; Stuart, D; To, W; Vlimant, J R; Witherell, M; Apresyan, A; Bornheim, A; Bunn, J; Chiorboli, M; Gataullin, M; Kcira, D; Litvine, V; Ma, Y; Newman, H B; Rogan, C; Timciuc, V; Veverka, J; Wilkinson, R; Yang, Y; Zhang, L; Zhu, K; Zhu, R Y; Akgun, B; Carroll, R; Ferguson, T; Jang, D W; Jun, S Y; Paulini, M; Russ, J; Terentyev, N; Vogel, H; Vorobiev, I; Cumalat, J P; Dinardo, M E; Drell, B R; Ford, W T; Heyburn, B; Luiggi Lopez, E; Nauenberg, U; Stenson, K; Ulmer, K; Wagner, S R; Zang, S L; Agostino, L; Alexander, J; Blekman, F; Cassel, D; Chatterjee, A; Das, S; Gibbons, L K; Heltsley, B; Hopkins, W; Khukhunaishvili, A; Kreis, B; Kuznetsov, V; Patterson, J R; Puigh, D; Ryd, A; Shi, X; Stroiney, S; Sun, W; Teo, W D; Thom, J; Vaughan, J; Weng, Y; Wittich, P; Beetz, C P; Cirino, G; Sanzeni, C; Winn, D; Abdullin, S; Afaq, M A; Albrow, M; Ananthan, B; Apollinari, G; Atac, M; Badgett, W; Bagby, L; Bakken, J A; Baldin, B; Banerjee, S; Banicz, K; Bauerdick, L A T; Beretvas, A; Berryhill, J; Bhat, P C; Biery, K; Binkley, M; Bloch, I; Borcherding, F; Brett, A M; Burkett, K; Butler, J N; Chetluru, V; Cheung, H W K; Chlebana, F; Churin, I; Cihangir, S; Crawford, M; Dagenhart, W; Demarteau, M; Derylo, G; Dykstra, D; Eartly, D P; Elias, J E; Elvira, V D; Evans, D; Feng, L; Fischler, M; Fisk, I; Foulkes, S; Freeman, J; Gartung, P; Gottschalk, E; Grassi, T; Green, D; Guo, Y; Gutsche, O; Hahn, A; Hanlon, J; Harris, R M; Holzman, B; Howell, J; Hufnagel, D; James, E; Jensen, H; Johnson, M; Jones, C D; Joshi, U; Juska, E; Kaiser, J; Klima, B; Kossiakov, S; Kousouris, K; Kwan, S; Lei, C M; Limon, P; Lopez Perez, J A; Los, S; Lueking, L; Lukhanin, G; Lusin, S; Lykken, J; Maeshima, K; Marraffino, J M; Mason, D; McBride, P; Miao, T; Mishra, K; Moccia, S; Mommsen, R; Mrenna, S; Muhammad, A S; Newman-Holmes, C; Noeding, C; O'Dell, V; Prokofyev, O; Rivera, R; Rivetta, C H; Ronzhin, A; Rossman, P; Ryu, S; Sekhri, V; Sexton-Kennedy, E; Sfiligoi, I; Sharma, S; Shaw, T M; Shpakov, D; Skup, E; Smith, R P; Soha, A; Spalding, W J; Spiegel, L; Suzuki, I; Tan, P; Tanenbaum, W; Tkaczyk, S; Trentadue, R; Uplegger, L; Vaandering, E W; Vidal, R; Whitmore, J; Wicklund, E; Wu, W; Yarba, J; Yumiceva, F; Yun, J C; Acosta, D; Avery, P; Barashko, V; Bourilkov, D; Chen, M; Di Giovanni, G P; Dobur, D; Drozdetskiy, A; Field, R D; Fu, Y; Furic, I K; Gartner, J; Holmes, D; Kim, B; Klimenko, S; Konigsberg, J; Korytov, A; Kotov, K; Kropivnitskaya, A; Kypreos, T; Madorsky, A; Matchev, K; Mitselmakher, G; Pakhotin, Y; Piedra Gomez, J; Prescott, C; Rapsevicius, V; Remington, R; Schmitt, M; Scurlock, B; Wang, D; Yelton, J; Ceron, C; Gaultney, V; Kramer, L; Lebolo, L M; Linn, S; Markowitz, P; Martinez, G; Rodriguez, J L; Adams, T; Askew, A; Baer, H; Bertoldi, M; Chen, J; Dharmaratna, W G D; Gleyzer, S V; Haas, J; Hagopian, S; Hagopian, V; Jenkins, M; Johnson, K F; Prettner, E; Prosper, H; Sekmen, S; Baarmand, M M; Guragain, S; Hohlmann, M; Kalakhety, H; Mermerkaya, H; Ralich, R; Vodopiyanov, I; Abelev, B; Adams, M R; Anghel, I M; Apanasevich, L; Bazterra, V E; Betts, R R; Callner, J; Castro, M A; Cavanaugh, R; Dragoiu, C; Garcia-Solis, E J; Gerber, C E; Hofman, D J; Khalatian, S; Mironov, C; Shabalina, E; Smoron, A; Varelas, N; Akgun, U; Albayrak, E A; Ayan, A S; Bilki, B; Briggs, R; Cankocak, K; Chung, K; Clarida, W; Debbins, P; Duru, F; Ingram, F D; Lae, C K; McCliment, E; Merlo, J P; Mestvirishvili, A; Miller, M J; Moeller, A; Nachtman, J; Newsom, C R; Norbeck, E; Olson, J; Onel, Y; Ozok, F; Parsons, J; Schmidt, I; Sen, S; Wetzel, J; Yetkin, T; Yi, K; Barnett, B A; Blumenfeld, B; Bonato, A; Chien, C Y; Fehling, D; Giurgiu, G; Gritsan, A V; Guo, Z J; Maksimovic, P; Rappoccio, S; Swartz, M; Tran, N V; Zhang, Y; Baringer, P; Bean, A; Grachov, O; Murray, M; Radicci, V; Sanders, S; Wood, J S; Zhukova, V; Bandurin, D; Bolton, T; Kaadze, K; Liu, A; Maravin, Y; Onoprienko, D; Svintradze, I; Wan, Z; Gronberg, J; Hollar, J; Lange, D; Wright, D; Baden, D; Bard, R; Boutemeur, M; Eno, S C; Ferencek, D; Hadley, N J; Kellogg, R G; Kirn, M; Kunori, S; Rossato, K; Rumerio, P; Santanastasio, F; Skuja, A; Temple, J; Tonjes, M B; Tonwar, S C; Toole, T; Twedt, E; Alver, B; Bauer, G; Bendavid, J; Busza, W; Butz, E; Cali, I A; Chan, M; D'Enterria, D; Everaerts, P; Gomez Ceballos, G; Hahn, K A; Harris, P; Jaditz, S; Kim, Y; Klute, M; Lee, Y J; Li, W; Loizides, C; Ma, T; Miller, M; Nahn, S; Paus, C; Roland, C; Roland, G; Rudolph, M; Stephans, G; Sumorok, K; Sung, K; Vaurynovich, S; Wenger, E A; Wyslouch, B; Xie, S; Yilmaz, Y; Yoon, A S; Bailleux, D; Cooper, S I; Cushman, P; Dahmes, B; De Benedetti, A; Dolgopolov, A; Dudero, P R; Egeland, R; Franzoni, G; Haupt, J; Inyakin, A; Klapoetke, K; Kubota, Y; Mans, J; Mirman, N; Petyt, D; Rekovic, V; Rusack, R; Schroeder, M; Singovsky, A; Zhang, J; Cremaldi, L M; Godang, R; Kroeger, R; Perera, L; Rahmat, R; Sanders, D A; Sonnek, P; Summers, D; Bloom, K; Bockelman, B; Bose, S; Butt, J; Claes, D R; Dominguez, A; Eads, M; Keller, J; Kelly, T; Kravchenko, I; Lazo-Flores, J; Lundstedt, C; Malbouisson, H; Malik, S; Snow, G R; Baur, U; Iashvili, I; Kharchilava, A; Kumar, A; Smith, K; Strang, M; Alverson, G; Barberis, E; Boeriu, O; Eulisse, G; Govi, G; McCauley, T; Musienko, Y; Muzaffar, S; Osborne, I; Paul, T; Reucroft, S; Swain, J; Taylor, L; Tuura, L; Anastassov, A; Gobbi, B; Kubik, A; Ofierzynski, R A; Pozdnyakov, A; Schmitt, M; Stoynev, S; Velasco, M; Won, S; Antonelli, L; Berry, D; Hildreth, M; Jessop, C; Karmgard, D J; Kolberg, T; Lannon, K; Lynch, S; Marinelli, N; Morse, D M; Ruchti, R; Slaunwhite, J; Warchol, J; Wayne, M; Bylsma, B; Durkin, L S; Gilmore, J; Gu, J; Killewald, P; Ling, T Y; Williams, G; Adam, N; Berry, E; Elmer, P; Garmash, A; Gerbaudo, D; Halyo, V; Hunt, A; Jones, J; Laird, E; Marlow, D; Medvedeva, T; Mooney, M; Olsen, J; Piroué, P; Stickland, D; Tully, C; Werner, J S; Wildish, T; Xie, Z; Zuranski, A; Acosta, J G; Bonnett Del Alamo, M; Huang, X T; Lopez, A; Mendez, H; Oliveros, S; Ramirez Vargas, J E; Santacruz, N; Zatzerklyany, A; Alagoz, E; Antillon, E; Barnes, V E; Bolla, G; Bortoletto, D; Everett, A; Garfinkel, A F; Gecse, Z; Gutay, L; Ippolito, N; Jones, M; Koybasi, O; Laasanen, A T; Leonardo, N; Liu, C; Maroussov, V; Merkel, P; Miller, D H; Neumeister, N; Sedov, A; Shipsey, I; Yoo, H D; Zheng, Y; Jindal, P; Parashar, N; Cuplov, V; Ecklund, K M; Geurts, F J M; Liu, J H; Maronde, D; Matveev, M; Padley, B P; Redjimi, R; Roberts, J; Sabbatini, L; Tumanov, A; Betchart, B; Bodek, A; Budd, H; Chung, Y S; de Barbaro, P; Demina, R; Flacher, H; Gotra, Y; Harel, A; Korjenevski, S; Miner, D C; Orbaker, D; Petrillo, G; Vishnevskiy, D; Zielinski, M; Bhatti, A; Demortier, L; Goulianos, K; Hatakeyama, K; Lungu, G; Mesropian, C; Yan, M; Atramentov, O; Bartz, E; Gershtein, Y; Halkiadakis, E; Hits, D; Lath, A; Rose, K; Schnetzer, S; Somalwar, S; Stone, R; Thomas, S; Watts, T L; Cerizza, G; Hollingsworth, M; Spanier, S; Yang, Z C; York, A; Asaadi, J; Aurisano, A; Eusebi, R; Golyash, A; Gurrola, A; Kamon, T; Nguyen, C N; Pivarski, J; Safonov, A; Sengupta, S; Toback, D; Weinberger, M; Akchurin, N; Berntzon, L; Gumus, K; Jeong, C; Kim, H; Lee, S W; Popescu, S; Roh, Y; Sill, A; Volobouev, I; Washington, E; Wigmans, R; Yazgan, E; Engh, D; Florez, C; Johns, W; Pathak, S; Sheldon, P; Andelin, D; Arenton, M W; Balazs, M; Boutle, S; Buehler, M; Conetti, S; Cox, B; Hirosky, R; Ledovskoy, A; Neu, C; Phillips II, D; Ronquest, M; Yohay, R; Gollapinni, S; Gunthoti, K; Harr, R; Karchin, P E; Mattson, M; Sakharov, A; Anderson, M; Bachtis, M; Bellinger, J N; Carlsmith, D; Crotty, I; Dasu, S; Dutta, S; Efron, J; Feyzi, F; Flood, K; Gray, L; Grogg, K S; Grothe, M; Hall-Wilton, R; Jaworski, M; Klabbers, P; Klukas, J; Lanaro, A; Lazaridis, C; Leonard, J; Loveless, R; Magrans de Abril, M; Mohapatra, A; Ott, G; Polese, G; Reeder, D; Savin, A; Smith, W H; Sourkov, A; Swanson, J; Weinberg, M; Wenman, D; Wensveen, M; White, A

    2010-01-01

    The CMS experiment uses self-triggering arrays of drift tubes in the barrel muon trigger to perform the identification of the correct bunch crossing. The identification is unique only if the trigger chain is correctly synchronized. In this paper, the synchronization performed during an extended cosmic ray run is described and the results are reported. The random arrival time of cosmic ray muons allowed several synchronization aspects to be studied and a simple method for the fine synchronization of the Drift Tube Local Trigger at LHC to be developed.

  4. Weak hard X-ray emission from broad absorption line quasars: evidence for intrinsic X-ray weakness

    International Nuclear Information System (INIS)

    Luo, B.; Brandt, W. N.; Scott, A. E.; Alexander, D. M.; Gandhi, P.; Stern, D.; Teng, S. H.; Arévalo, P.; Bauer, F. E.; Boggs, S. E.; Craig, W. W.; Christensen, F. E.; Comastri, A.; Farrah, D.; Hailey, C. J.; Harrison, F. A.; Koss, M.; Ogle, P.; Puccetti, S.; Saez, C.

    2014-01-01

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z < 1.3. However, their rest-frame ≈2 keV luminosities are 14 to >330 times weaker than expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three are not detected. The hard X-ray (8-24 keV) weakness observed by NuSTAR requires Compton-thick absorption if these objects have nominal underlying X-ray emission. However, a soft stacked effective photon index (Γ eff ≈ 1.8) for this sample disfavors Compton-thick absorption in general. The uniform hard X-ray weakness observed by NuSTAR for this and the pilot samples selected with <10 keV weakness also suggests that the X-ray weakness is intrinsic in at least some of the targets. We conclude that the NuSTAR observations have likely discovered a significant population (≳ 33%) of intrinsically X-ray weak objects among the BAL quasars with significantly weak <10 keV emission. We suggest that intrinsically X-ray weak quasars might be preferentially observed as BAL quasars.

  5. The X-ray Telescope for the SWIFT Gamma-Ray Burst Mission

    International Nuclear Information System (INIS)

    Wells, A.; Abbey, A.F.; Beardmore, A.; Mukerjee, K.; Osborne, J.P.; Watson, D.J.; Willingale, R.; Burrows, D. N.; Hill, J. E.; Nousek, J.A.; Miles, B.J.; Mori, K.; Morris, D.C.; Zugger, M.; Chincarini, G.; Campana, S.; Citterio, O.; Moretti, A.; Tagliaferri, G.; Bosworth, J.

    2004-01-01

    The X-ray Telescope (XRT) for the SWIFT mission, built by the international consortium from Pennsylvania State University (United States), University of Leicester (UK) and Osservatorio Astronomico di Brera (Italy), is already installed on the SWIFT spacecraft. The XRT has two key functions on SWIFT; to determine locations of GRBs to better than 5 arc seconds within 100 seconds of initial detection of a burst and to measure spectra and light curves of the X-ray afterglow over around four orders of magnitude of decay in the afterglow intensity. This paper summarises the XRT performance, operating modes and sensitivity for the detection of prompt and extended X-ray afterglows from gamma-ray bursts. The performance characteristics have been determined from data taken during the ground calibration campaign at MPE's Panter facility in September 2002

  6. X-ray energy-dispersive diffractometry using synchrotron radiation

    International Nuclear Information System (INIS)

    Buras, B.; Staun Olsen, J.; Gerward, L.

    1977-03-01

    In contrast to bremsstrahlung from X-ray tubes, synchrotron radiation is very intense, has a smooth spectrum, its polarization is well defined, and at DESY the range of useful photon energies can be extended to about 70 keV and higher. In addition the X-ray beam is very well collimated. Thus synchrotron radiation seems to be an ideal X-ray source for energy-dispersive diffractometry. This note briefly describes the experimental set up at DESY, shows examples of results, and presents the underlying 'philosophy' of the research programme. (Auth.)

  7. Particle identification by means of fine sampling dE/dX measurements

    Energy Technology Data Exchange (ETDEWEB)

    Imanishi, A; Ishii, T; Ohshima, T; Okuno, H; Shiino, K [Tokyo Univ., Tanashi (Japan). Inst. for Nuclear Study; Naito, F [Tokyo Univ. of Agriculture and Technology, Koganei (Japan). Faculty of Technology; Matsuda, T [Osaka Univ., Toyonaka (Japan). Faculty of Engineering Science

    1983-04-01

    Identification of relativistic charged particles by means of fine sampling d E/d X measurements with a longitudinal drift chamber has been studied. Using a fast-sampling ADC (25 MHz), dE/dX was measured in a 1.4 mm gas thickness over an electron drift space of 51 mm. For the simulated 1 m long tracks of pions and electrons of 500 MeV/c, a particle separation of 10sigma - 12sigma has been obtained, where sigma is the r.m.s. resolution of the dE/dX measurement. This result with fine sampling is better by a factor of 1.7 compared to the dE/dX measurement, with 21 mm sampling thickness. Further improvement achievable by reducing the correlation between neighbouring samples and simplification of electronics by use of the delta-ray clipping method are also discussed.

  8. Investigation of annealed and metamict pyrochlore minerals by x-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Greegor, R.B.; Lytle, F.W.; Ewing, R.C.; Chakoumakos, B.C.; Lumpkin, G.R.

    1984-01-01

    Materials of the pyrochlore structure type exhibit a variety of interesting properties including phases capable of acting as hosts for actinides in radioactive wastes. Studies of curium doped gadolinium titanate phases (Gd 2 Ti 2 O 7 ) have been made which showed that the radiation damage ingrowth followed an exponential relationship. For the study reported here a series of synthetic pyrochlores were produced having the titanate phase with the general formula (RE) 2 Ti 2 O 7 , RE = Er, Y 2 , Gd 2 , Dy, La. Additionally a set of metamict (radiation damaged) pyrochlores was examined in both a natural and post temperature annealed state. Experiments were conducted on these samples using the Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Structure (XANES) techniques. In summary, these studies show that in pyrochlore structure types the Ti-O cage undergoes changes due to radiation damage. The individual Ti-O bonds become more disordered which leads to a loss of short and long range order and, ultimately, to expansion of the bulk material. 2 refs., 2 figs

  9. ACCURATE MODELING OF X-RAY EXTINCTION BY INTERSTELLAR GRAINS

    International Nuclear Information System (INIS)

    Hoffman, John; Draine, B. T.

    2016-01-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition

  10. ACCURATE MODELING OF X-RAY EXTINCTION BY INTERSTELLAR GRAINS

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, John; Draine, B. T., E-mail: jah5@astro.princeton.edu, E-mail: draine@astro.princeton.edu [Princeton University Observatory, Peyton Hall, Princeton, NJ 08544-1001 (United States)

    2016-02-01

    Interstellar abundance determinations from fits to X-ray absorption edges often rely on the incorrect assumption that scattering is insignificant and can be ignored. We show instead that scattering contributes significantly to the attenuation of X-rays for realistic dust grain size distributions and substantially modifies the spectrum near absorption edges of elements present in grains. The dust attenuation modules used in major X-ray spectral fitting programs do not take this into account. We show that the consequences of neglecting scattering on the determination of interstellar elemental abundances are modest; however, scattering (along with uncertainties in the grain size distribution) must be taken into account when near-edge extinction fine structure is used to infer dust mineralogy. We advertise the benefits and accuracy of anomalous diffraction theory for both X-ray halo analysis and near edge absorption studies. We present an open source Fortran suite, General Geometry Anomalous Diffraction Theory (GGADT), that calculates X-ray absorption, scattering, and differential scattering cross sections for grains of arbitrary geometry and composition.

  11. Enormous mass of the elliptical galaxy M87: A model for the extended X-ray source

    International Nuclear Information System (INIS)

    Mathews, W.G.

    1978-01-01

    An analysis of the X-ray data from the Virgo cluster indicates that the mass of the giant elliptical galaxy M87 exceeds 10 13 M/sub sun/ or greater. This large mass is required in order to confine the extended thermal X-ray source to its observed projected size - provided that the gas which radiates X-rays is essentially isothermal (T=3 x 10 7 K) and in hydrostatic equilibrium. Isothermality follows from the efficiency of heat conduction and the suggested origin of the gas. If these assumptions are correct, the bulk of the mass in M87 must be distributed in a low-density, low luminosity component quite unlike the distribution of luminous matter. The mass of this component could account for the ''missing mass'' in the Virgo cluster. Observations of polarized radio emission from the core source in M87 provide further indirect support for the existence of a massive, low-luminosity halo. The hot gas (Tapprox. =3 x 10 7 K), trapped in the potential well of the dark halo, and the magnetic field associated with the M87 radio halo account for the Faraday depolarization and rotation measure observed in the radio core source (jet and nucleus).The gas at Tapprox. =3 x 10 7 K which surrounds M87 cools at its center in less than a Hubble time, and produces the H II region which is observed there. Observations of the Balmer decrement could be useful in verifying the origin of the nuclear H II gas. This gas, which falls as clouds into the nucleus at a rate of approx.10 M/sub sun/ yr -1 , may be responsible for maintaining the nonthermal activity there. The total mass of hot gas in M87 is, very approximately, 5 x 10 12 M/sub sun/. A likely source for the hot gas surrounding M87 would be the interaction of galactic winds among the cluster members, followed by infall into the potential well of M87

  12. Fine features of parametric X-ray radiation by relativistic electrons and ions

    Directory of Open Access Journals (Sweden)

    K.B. Korotchenko

    2017-11-01

    Full Text Available In present work within the frame of dynamic theory for parametric X-ray radiation in two-beam approximation we have presented detailed studies on parametric radiation emitted by relativistic both electrons and ions at channeling in crystals that is highly requested at planned experiments. The analysis done has shown that the intensity of radiation at relativistic electron channeling in Si (110 with respect to the conventional parametric radiation intensity has up to 5% uncertainty, while the error of approximate formulas for calculating parametric X-ray radiation maxima does not exceed 1.2%. We have demonstrated that simple expressions for the Fourier components of Si crystal susceptibility χ0 and χgσ could be reduced, as well as the temperature dependence for radiation maxima in Si crystal (diffraction plane (110 within Debye model. Moreover, for any types of channeled ions it is shown that the parametric X-ray radiation intensity is proportional to z2−b(Z,z/z with the function b(Z,z depending on the screening parameter and the ion charge number z=Z−Ze.

  13. New trends in space x-ray optics

    Science.gov (United States)

    Hudec, R.; Maršíková, V.; Pína, L.; Inneman, A.; Skulinová, M.

    2017-11-01

    The X-ray optics is a key element of various X-ray telescopes, X-ray microscopes, as well as other X-ray imaging instruments. The grazing incidence X-ray lenses represent the important class of X-ray optics. Most of grazing incidence (reflective) X-ray imaging systems used in astronomy but also in other (laboratory) applications are based on the Wolter 1 (or modified) arrangement. But there are also other designs and configurations proposed, used and considered for future applications both in space and in laboratory. The Kirkpatrick-Baez (K-B) lenses as well as various types of Lobster-Eye optics and MCP/Micropore optics serve as an example. Analogously to Wolter lenses, the X-rays are mostly reflected twice in these systems to create focal images. Various future projects in X-ray astronomy and astrophysics will require large segments with multiple thin shells or foils. The large Kirkpatrick-Baez modules, as well as the large Lobster-Eye X-ray telescope modules in Schmidt arrangement may serve as examples. All these space projects will require high quality and light segmented shells (bent or flat foils) with high X-ray reflectivity and excellent mechanical stability. The Multi Foil Optics (MFO) approach represent a promising alternative for both LE and K-B X-ray optical modules. Several types of reflecting substrates may be considered for these applications, with emphasis on thin float glass sheets and, more recently, high quality silicon wafers. This confirms the importance of non- Wolter X-ray optics designs for the future. Future large space X-ray telescopes (such as IXO) require precise and light-weight X-ray optics based on numerous thin reflecting shells. Novel approaches and advanced technologies are to be exploited and developed. In this contribution, we refer on results of tested X-ray mirror shells produced by glass thermal forming (GTF) and by shaping Si wafers. Both glass foils and Si wafers are commercially available, have excellent surface

  14. X-Ray Absorption with Transmission X-Ray Microscopes

    NARCIS (Netherlands)

    de Groot, F.M.F.

    2016-01-01

    In this section we focus on the use of transmission X-ray microscopy (TXM) to measure the XAS spectra. In the last decade a range of soft X-ray and hard X-ray TXM microscopes have been developed, allowing the measurement of XAS spectra with 10–100 nm resolution. In the hard X-ray range the TXM

  15. X-ray spectroscopy for high energy-density X pinch density and temperature measurements (invited)

    International Nuclear Information System (INIS)

    Pikuz, S.A.; Shelkovenko, T.A.; Chandler, K.M.; Mitchell, M.D.; Hammer, D.A.; Skobelev, I.Y.; Shlyaptseva, A.S.; Hansen, S.B.

    2004-01-01

    X pinch plasmas produced from fine metal wires can reach near solid densities and temperatures of 1 keV or even more. Plasma conditions change on time scales as short as 5-10 ps as determined using an x-ray streak camera viewing a focusing crystal spectrograph or directly viewing the plasma through multiple filters on a single test. As a result, it is possible to determine plasma conditions from spectra with ∼10 ps time resolution. Experiments and theory are now coming together to give a consistent picture of the dynamics and kinetics of these high energy density plasmas with very high temporal and spatial precision. A set of diagnostic techniques used in experiments for spectrally, temporally, and spatially resolved measurements of X pinch plasmas is described. Results of plasma parameter determination from these measurements are presented. X ray backlighting of one x-pinch by another with ∼30 ps x-ray pulses enables the dynamics and kinetics to be correlated in time

  16. Electronic and atomic structures of Ti1-xAlxN thin films related to their damage behavior

    International Nuclear Information System (INIS)

    Tuilier, M.-H.; Pac, M.-J.; Girleanu, M.; Covarel, G.; Arnold, G.; Louis, P.; Rousselot, C.; Flank, A.-M.

    2008-01-01

    Ti and Al K-edge x-ray absorption spectroscopy is used to investigate the electronic structure of Ti 1-x Al x N thin films deposited by reactive magnetron sputtering. The experimental near edge spectra of TiN and AlN are interpreted in the light of unoccupied density of state band structure calculations. The comparison of the structural parameters derived from x-ray absorption fine structure and x-ray diffraction reveals segregation between Al-rich and Ti-rich domains within the Ti 1-x Al x N films. Whereas x-ray diffraction probes only the crystallized domains, the structural information derived from extended x-ray absorption fine structure analysis turns on both crystalline and grain boundaries. The results are discussed by considering the damage behavior of the films depending on the composition

  17. Structural Modification of Cobalt Catalysts: Effect of Wetting Studied by X-Ray and Infrared Techniques

    Directory of Open Access Journals (Sweden)

    Khodakov A.

    1999-07-01

    Full Text Available The effect of wetting on the structure and localisation of cobalt species on various supports (Al2O3, SiO2, TiO2, HZSM-5 zeolite was studied using X-ray diffraction, Fourier transform infrared spectroscopy with CO as a molecular probe, X-ray photoelectron spectroscopy and extended X-ray absorption fine structure analysis. Aqueous impregnation to incipient wetness of reduced and passivated cobalt catalysts results, even in the absence of any promoter, in a considerable decrease in the concentration of Co crystalline phases and modifies the surface sites. The decrease in the concentration of Co3O4 crystallites was especially pronounced on silica supported catalysts prepared via impregnation of cobalt and on a mixture of Co3O4 and HZSM-5 zeolite. Saturation with water of the passivated Co/SiO2 sample results in an amorphous solid with a local structure close to that of Co2SiO4. For Co/Al2O3 and Co/TiO2 catalysts, the effect of wetting on the concentration of Co3O4 crystalline phase was considerably smaller.

  18. X-ray absorption spectroscopic study of trivalent and tetravalent actinides in solution at varying pH values

    Energy Technology Data Exchange (ETDEWEB)

    Brendebach, B.; Banik, N.L.; Marquardt, C.M.; Rothe, J.; Denecke, M.A.; Geckeis, H. [Forschungszentrum Karlsruhe (Germany). Inst. fuer Nukleare Entsorgung

    2009-07-01

    We perform X-ray absorption spectroscopy (XAS) investigations to monitor the stabilization of redox sensitive trivalent and tetravalent actinide ions in solution at acidic conditions in a pH range from 0 to 3 after treatment with holding reductants, hydroxylamine hydrochloride (NH{sub 2}OHHCl) and Rongalite (sodium hydroxymethanesulfinate, CH{sub 3}NaO{sub 3}S). X-ray absorption near edge structure (XANES) measurements clearly demonstrate the stability of the actinide species for several hours under the given experimental conditions. Hence, structural parameters can be accurately derived by extended X-ray absorption fine structure (EXAFS) investigations. The coordination structure of oxygen atoms belonging to water ligands surrounding the actinide ions does not change with increasing pH value (approximately 11 O atoms at 2.42 A in the case of U(IV) at pH 1, 9 0 atoms at 2.52 A for Np(III) at pH 1.5, and 10 O atoms at 2.49 A for Pu(III) up to pH 3), indicating that hydrolysis reactions are suppressed under the given chemical conditions. (orig.)

  19. XIPE, the X-ray imaging polarimetry explorer: Opening a new window in the X-ray sky

    Science.gov (United States)

    Soffitta, Paolo; XIPE Collaboration

    2017-11-01

    XIPE, the X-ray Imaging Polarimetry Explorer, is a candidate ESA fourth medium size mission, now in competitive phase A, aimed at time-spectrally-spatially-resolved X-ray polarimetry of a large number of celestial sources as a breakthrough in high energy astrophysics and fundamental physics. Its payload consists of three X-ray optics with a total effective area larger than one XMM mirror but with a low mass and of three Gas Pixel Detectors at their focus. The focal length is 4 m and the whole satellite fits within the fairing of the Vega launcher without the need of an extendable bench. XIPE will be an observatory with 75% of the time devoted to a competitive guest observer program. Its consortium across Europe comprises Italy, Germany, Spain, United Kingdom, Switzerland, Poland, Sweden Until today, thanks to a dedicated experiment that dates back to the '70, only the Crab Nebula showed a non-zero polarization with large significance [1] in X-rays. XIPE, with its innovative detector, promises to make significative measurements on hundreds of celestial sources.

  20. Soft X-ray Emission from Large-Scale Galactic Outflows in Seyfert Galaxies

    Science.gov (United States)

    Colbert, E. J. M.; Baum, S.; O'Dea, C.; Veilleux, S.

    1998-01-01

    Kiloparsec-scale soft X-ray nebulae extend along the galaxy minor axes in several Seyfert galaxies, including NGC 2992, NGC 4388 and NGC 5506. In these three galaxies, the extended X-ray emission observed in ROSAT HRI images has 0.2-2.4 keV X-ray luminosities of 0.4-3.5 x 10(40) erg s(-1) . The X-ray nebulae are roughly co-spatial with the large-scale radio emission, suggesting that both are produced by large-scale galactic outflows. Assuming pressure balance between the radio and X-ray plasmas, the X-ray filling factor is >~ 10(4) times as large as the radio plasma filling factor, suggesting that large-scale outflows in Seyfert galaxies are predominantly winds of thermal X-ray emitting gas. We favor an interpretation in which large-scale outflows originate as AGN-driven jets that entrain and heat gas on kpc scales as they make their way out of the galaxy. AGN- and starburst-driven winds are also possible explanations if the winds are oriented along the rotation axis of the galaxy disk. Since large-scale outflows are present in at least 50 percent of Seyfert galaxies, the soft X-ray emission from the outflowing gas may, in many cases, explain the ``soft excess" X-ray feature observed below 2 keV in X-ray spectra of many Seyfert 2 galaxies.

  1. Local Fine Structural Insight into Mechanism of Electrochemical Passivation of Titanium.

    Science.gov (United States)

    Wang, Lu; Yu, Hongying; Wang, Ke; Xu, Haisong; Wang, Shaoyang; Sun, Dongbai

    2016-07-20

    Electrochemically formed passive film on titanium in 1.0 M H2SO4 solution and its thickness, composition, chemical state, and local fine structure are examined by Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS), and X-ray absorption fine structure. AES analysis reveals that the thickness and composition of oxide film are proportional to the reciprocal of current density in potentiodynamic polarization. XPS depth profiles of the chemical states of titanium exhibit the coexistence of various valences cations in the surface. Quantitative X-ray absorption near edge structure analysis of the local electronic structure of the topmost surface (∼5.0 nm) shows that the ratio of [TiO2]/[Ti2O3] is consistent with that of passivation/dissolution of electrochemical activity. Theoretical calculation and analysis of extended X-ray absorption fine structure spectra at Ti K-edge indicate that both the structures of passivation and dissolution are distorted caused by the appearance of two different sites of Ti-O and Ti-Ti. And the bound water in the topmost surface plays a vital role in structural disorder confirmed by XPS. Overall, the increase of average Ti-O coordination causes the electrochemical passivation, and the dissolution is due to the decrease of average Ti-Ti coordination. The structural variations of passivation in coordination number and interatomic distance are in good agreement with the prediction of point defect model.

  2. Measurement of the X-ray mass attenuation coefficients of silver in the 5-20 keV range.

    Science.gov (United States)

    Islam, M Tauhidul; Tantau, Lachlan J; Rae, Nicholas A; Barnea, Zwi; Tran, Chanh Q; Chantler, Christopher T

    2014-03-01

    The X-ray mass attenuation coefficients of silver were measured in the energy range 5-20 keV with an accuracy of 0.01-0.2% on a relative scale down to 5.3 keV, and of 0.09-1.22% on an absolute scale to 5.0 keV. This analysis confirms that with careful choice of foil thickness and careful correction for systematics, especially including harmonic contents at lower energies, the X-ray attenuation of high-Z elements can be measured with high accuracy even at low X-ray energies (silver in the low energy range, indicating the possibility of obtaining high-accuracy X-ray absorption fine structure down to the L1 edge (3.8 keV) of silver. Comparison of results reported here with an earlier data set optimized for higher energies confirms accuracy to within one standard error of each data set collected and analysed using the principles of the X-ray extended-range technique (XERT). Comparison with theory shows a slow divergence towards lower energies in this region away from absorption edges. The methodology developed can be used for the XAFS analysis of compounds and solutions to investigate structural features, bonding and coordination chemistry.

  3. Hard X-ray Optics Technology Development for Astronomy at the Marshall Space Flight Center

    Science.gov (United States)

    Gubarev, Mikhail; Ramsey, Brian; Kilaru, Kiranmayee

    2009-01-01

    Grazing-incidence telescopes based on Wolter 1 geometry have delivered impressive advances in astrophysics at soft-x-ray wavelengths, while the hard xray region remains relatively unexplored at fine angular resolution and high sensitivities. The ability to perform ground-breaking science in the hard-x-ray energy range had been the motivation for technology developments aimed at fabricating low-cost, light-weight, high-quality x-ray mirrors. Grazing-incidence x-ray optics for high-energy astrophysical applications is being developed at MSFC using the electroform-nickel replication process.

  4. Low-Energy Microfocus X-Ray Source for Enhanced Testing Capability in the Stray Light Facility

    Science.gov (United States)

    Gaskin, Jessica; O'Dell, Stephen; Kolodziejczak, Jeff

    2015-01-01

    Research toward high-resolution, soft x-ray optics (mirrors and gratings) necessary for the next generation large x-ray observatories requires x-ray testing using a low-energy x-ray source with fine angular size (energy microfocus (approximately 0.1 mm spot) x-ray source from TruFocus Corporation that mates directly to the Stray Light Facility (SLF). MSFC X-ray Astronomy team members are internationally recognized for their expertise in the development, fabrication, and testing of grazing-incidence optics for x-ray telescopes. One of the key MSFC facilities for testing novel x-ray instrumentation is the SLF. This facility is an approximately 100-m-long beam line equipped with multiple x-ray sources and detectors. This new source adds to the already robust compliment of instrumentation, allowing MSFC to support additional internal and community x-ray testing needs.

  5. Moving the Frontier of Quantum Control into the Soft X-Ray Spectrum

    Directory of Open Access Journals (Sweden)

    A. Aquila

    2011-01-01

    Full Text Available The femtosecond nature of X-ray free electron laser (FEL pulses opens up exciting research possibilities in time-resolved studies including femtosecond photoemission and diffraction. The recent developments of seeding X-ray FELs extend their capabilities by creating stable, temporally coherent, and repeatable pulses. This in turn opens the possibility of spectral engineering soft X-ray pulses to use as a probe for the control of quantum dynamics. We propose a method for extending coherent control pulse-shaping techniques to the soft X-ray spectral range by using a reflective geometry 4f pulse shaper. This method is based on recent developments in asymmetrically cut multilayer optic technology and piezoelectric substrates.

  6. Spatially resolved single crystal x-ray spectropolarimetry of wire array z-pinch plasmas.

    Science.gov (United States)

    Wallace, M S; Haque, S; Neill, P; Pereira, N R; Presura, R

    2018-01-01

    A recently developed single-crystal x-ray spectropolarimeter has been used to record paired sets of polarization-dependent and axially resolved x-ray spectra emitted by wire array z-pinches. In this measurement, two internal planes inside a suitable crystal diffract the x-rays into two perpendicular directions that are normal to each other, thereby separating incident x-rays into their linearly polarized components. This paper gives considerations for fielding the instrument on extended sources. Results from extended sources are difficult to interpret because generally the incident x-rays are not separated properly by the crystal. This difficulty is mitigated by using a series of collimating slits to select incident x-rays that propagate in a plane of symmetry between the polarization-splitting planes. The resulting instrument and some of the spatially resolved polarized x-ray spectra recorded for a 1-MA aluminum wire array z-pinch at the Nevada Terawatt Facility at the University of Nevada, Reno will be presented.

  7. Coherent hard x-ray focusing optics and applications

    Energy Technology Data Exchange (ETDEWEB)

    Yun, W.B.; Viccaro, P.J.; Chrzas, J.; Lai, B.

    1991-01-01

    Coherent hard x-ray beams with a flux exceeding 10{sup 9} photons/second with a bandwidth of 0.1% will be provided by the undulator at the third generation synchrotron radiation sources such as APS, ESRF, and Spring-8. The availability of such high flux coherent x-ray beams offers excellent opportunities for extending the coherence-based techniques developed in the visible and soft x-ray part of the electromagnetic spectrum to the hard x-rays. These x-ray techniques (e.g., diffraction limited microfocusing, holography, interferometry, phase contrast imaging and signal enhancement), may offer substantial advantages over non-coherence-based x-ray techniques currently used. For example, the signal enhancement technique may be used to enhance an anomalous x-ray or magnetic x-ray scattering signal by several orders of magnitude. Coherent x-rays can be focused to a very small (diffraction-limited) spot size, thus allowing high spatial resolution microprobes to be constructed. The paper will discuss the feasibility of the extension of some coherence-based techniques to the hard x-ray range and the significant progress that has been made in the development of diffraction-limited focusing optics. Specific experimental results for a transmission Fresnel phase zone plate that can focus 8.2 keV x-rays to a spot size of about 2 microns will be briefly discussed. The comparison of measured focusing efficiency of the zone plate with that calculated will be made. Some specific applications of zone plates as coherent x-ray optics will be discussed. 17 refs., 4 figs.

  8. Reactor for tracking catalyst nanoparticles in liquid at high temperature under a high-pressure gas phase with X-ray absorption spectroscopy.

    Science.gov (United States)

    Nguyen, Luan; Tao, Franklin Feng

    2018-02-01

    Structure of catalyst nanoparticles dispersed in liquid phase at high temperature under gas phase of reactant(s) at higher pressure (≥5 bars) is important for fundamental understanding of catalytic reactions performed on these catalyst nanoparticles. Most structural characterizations of a catalyst performing catalysis in liquid at high temperature under gas phase at high pressure were performed in an ex situ condition in terms of characterizations before or after catalysis since, from technical point of view, access to the catalyst nanoparticles during catalysis in liquid phase at high temperature under high pressure reactant gas is challenging. Here we designed a reactor which allows us to perform structural characterization using X-ray absorption spectroscopy including X-ray absorption near edge structure spectroscopy and extended X-ray absorption fine structure spectroscopy to study catalyst nanoparticles under harsh catalysis conditions in terms of liquid up to 350 °C under gas phase with a pressure up to 50 bars. This reactor remains nanoparticles of a catalyst homogeneously dispersed in liquid during catalysis and X-ray absorption spectroscopy characterization.

  9. X-ray cluster Abell 744

    International Nuclear Information System (INIS)

    Kurtz, M.J.; Huchra, J.P.; Beers, T.C.; Geller, M.J.; Gioia, I.M.

    1985-01-01

    X-ray and optical observations of the cluster of galaxies Abell 744 are presented. The X-ray flux (assuming H(0) = 100 km/s per Mpc) is about 9 x 10 to the 42nd erg/s. The X-ray source is extended, but shows no other structure. Photographic photometry (in Kron-Cousins R), calibrated by deep CCD frames, is presented for all galaxies brighter than 19th magnitude within 0.75 Mpc of the cluster center. The luminosity function is normal, and the isopleths show little evidence of substructure near the cluster center. The cluster has a dominant central galaxy, which is classified as a normal brightest-cluster elliptical on the basis of its luminosity profile. New redshifts were obtained for 26 galaxies in the vicinity of the cluster center; 20 appear to be cluster members. The spatial distribution of redshifts is peculiar; the dispersion within the 150 kpc core radius is much greater than outside. Abell 744 is similar to the nearby cluster Abell 1060. 31 references

  10. Diode for providing X-rays

    International Nuclear Information System (INIS)

    Rix, W.H.; Shannon, J.P.

    1991-01-01

    This patent describes a diode for generating X-rays and adapted for connection to a source of high electrical energy having a source of high energy electrons and a ground, the diode having a first end from which the X-rays are emitted, a second end and an axis extending between the ends. It comprises: a ring cathode connected to the electron source; an intermediate anode spaced from the ring cathode and with at least a portion of the intermediate anode being disposed between the ring cathode and the diode first end, the intermediate anode hiving means for decelerating electrons to cause the generation of X-rays emitted from the first end; an intermediate cathode disposed radially outwardly of the intermediate anode and connected thereto; and an inverse anode spaced from the intermediate cathode, the inverse and anode being disposed radially outwardly of the intermediate cathode and the inverse anode being positioned between the intermediate cathode and the diode second end

  11. Polarized-x-ray-absorption studies of graphite intercalated-bromine compounds

    International Nuclear Information System (INIS)

    Feldman, J.L.; Elam, W.T.; Ehrlich, A.C.; Skelton, E.F.; Dominguez, D.D.; Chung, D.D.L.; Lytle, F.W.

    1986-01-01

    Details of both results and data analysis are given in the case of our polarized-x-ray-absorption experiments, using synchrotron radiation, on highly oriented pyrolytic graphite (HOPG)--based and graphite-fiber-based residual-bromine intercalation compounds. The effective angle which nearest-neighbor Br pairs make with crystallite graphite planes in some of these compounds, which was stated to be approx.20 0 in an earlier article, is shown to be 16X(de +- 4X(de: both Br-Br extended x-ray-absorption fine structure (EXAFS) and white-line features of the data are the basis of this result. We have also found that, whereas spherical averages of the areas under white-line spectra are independent of the choice of the material among all samples studied (including Br 2 vapor), differences in similarly spherically averaged Br-Br EXAFS amplitudes are evident, especially between Br 2 vapor and Br-graphite samples. We show that the latter differences which correspond to a coordination number less than one in Br-graphite are not due to either Gaussian or non-Gaussian (up to k 4 terms) Debye-Waller effects. In addition, we discuss the extraction of Br-C EXAFS and present results of model calculations of Br-C EXAFS, where several different structural models for the Br sites are considered. We also discuss thermal effects and their relation to known Br sublattice phase-transition behavior, based on our measurements at room temperature, 360 K, and 400 K

  12. High resolution x-ray lensless imaging by differential holographic encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, D.; Guizar-Sicairos, M.; Wu, B.; Scherz, A.; Acremann, Y.; Tylisczcak, T.; Fischer, P.; Friedenberger, N.; Ollefs, K.; Farle, M.; Fienup, J. R.; Stohr, J.

    2009-11-02

    X-ray free electron lasers (X-FEL{sub s}) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by splitand-delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with stateof- the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  13. High-Resolution X-Ray Lensless Imaging by Differential Holographic Encoding

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Diling [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Guizar-Sicairos, Manuel [Univ. of Rochester, NY (United States). Inst. of Optics; Wu, Benny [Stanford Univ., CA (United States). Dept. of Applied Physics; SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Scherz, Andreas [SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Inst. for Material and Energy Science; Acremann, Yves [SLAC National Accelerator Lab., Menlo Park, CA (United States). Photon Ultrafast Laser Science and Engineering Inst. (PULSE); Tyliszczak, Tolek [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Advanced Light Source (ALS); Fischer, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Center for X-ray Optics; Friedenberger, Nina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Ollefs, Katharina [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Farle, Michael [Universitat Duisburg-Essen (Germany). Dept. of Physics and Center for Nanointegration Duisburg-Essen (CeNIDE); Fienup, James R. [Univ. of Rochester, NY (United States). Inst. of Optics; Stöhr, Joachim [SLAC National Accelerator Lab., Menlo Park, CA (United States). Linac Coherent Light Source (LCLS)

    2010-07-01

    X-ray free electron lasers (X-FELs) will soon offer femtosecond pulses of laterally coherent x-rays with sufficient intensity to record single-shot coherent scattering patterns for nanoscale imaging. Pulse trains created by split and- delay techniques even open the door for cinematography on unprecedented nanometer length and femtosecond time scales. A key to real space ultrafast motion pictures is fast and reliable inversion of the recorded reciprocal space scattering patterns. Here we for the first time demonstrate in the x-ray regime the power of a novel technique for lensless high resolution imaging, previously suggested by Guizar-Sicairos and Fienup termed holography with extended reference by autocorrelation linear differential operation, HERALD0. We have achieved superior resolution over conventional x-ray Fourier transform holography (FTH) without sacrifices in SNR or significant increase in algorithmic complexity. By combining images obtained from individual sharp features on an extended reference, we further show that the resolution can be even extended beyond the reference fabrication limits. Direct comparison to iterative phase retrieval image reconstruction and images recorded with state of-the-art zone plate microscopes is presented. Our results demonstrate the power of HERALDO as a favorable candidate for robust inversion of single-shot coherent scattering patterns.

  14. Determination of copper binding in Pseudomonas putida CZ1 by chemical modifications and X-ray absorption spectroscopy.

    Science.gov (United States)

    Chen, XinCai; Shi, JiYan; Chen, YingXu; Xu, XiangHua; Chen, LiTao; Wang, Hui; Hu, TianDou

    2007-03-01

    Previously performed studies have shown that Pseudomonas putida CZ1 biomass can bind an appreciable amount of Cu(II) and Zn(II) ions from aqueous solutions. The mechanisms of Cu- and Zn-binding by P. putida CZ1 were ascertained by chemical modifications of the biomass followed by Fourier transform infrared and X-ray absorption spectroscopic analyses of the living or nonliving cells. A dramatic decrease in Cu(II)- and Zn(II)-binding resulted after acidic methanol esterification of the nonliving cells, indicating that carboxyl functional groups play an important role in the binding of metal to the biomaterial. X-ray absorption spectroscopy was used to determine the speciation of Cu ions bound by living and nonliving cells, as well as to elucidate which functional groups were involved in binding of the Cu ions. The X-ray absorption near-edge structure spectra analysis showed that the majority of the Cu was bound in both samples as Cu(II). The fitting results of Cu K-edge extended X-ray absorption fine structure spectra showed that N/O ligands dominated in living and nonliving cells. Therefore, by combining different techniques, our results indicate that carboxyl functional groups are the major ligands responsible for the metal binding in P. putida CZ1.

  15. The MAXIM Pathfinder Mission: X-Ray Imaging at 100 Micro-Arcseconds

    Science.gov (United States)

    Cash, Webster; White, Nick; Joy, Marshall

    2000-01-01

    We present the results of a study to show how it is possible to build a super high resolution x-ray imaging mission based on the principles of x-ray interferometry. The mission concept uses today's technology to specify a 1.4 meter baseline interferometer that will resolve features as fine as 100 micro-arcsecond imaging at 1keV. This resolution is sufficient to produce high quality images of the coronae of other stars.

  16. Measurement of X-ray mass attenuation coefficient of nickel around the K-edge using synchrotron radiation based X-ray absorption study

    International Nuclear Information System (INIS)

    Roy, Bunty Rani; Rajput, Parasmani; Jha, S.N.; Nageswara Rao, A.S.

    2015-01-01

    The work presents the X-ray absorption fine structure (XAFS) technique for measuring the X-ray mass attenuation coefficient of nickel metal foil in the X-ray energy range of 8271.2–8849.4 eV using scanning XAFS beam line (BL-09) at Indus-2 synchrotron radiation source facility, Raja Ramanna Centre for Advanced Technology (RRCAT) at Indore, India. The result represents the X-ray mass attenuation coefficient data for 0.02 mm thick Ni metal foil in the XAFS region of Ni K-edge. However, the results are compared to theoretical values using X-COM. There is a maximum deviation which is found exactly near the K-edge jump and decreases as we move away from the absorption edge. Oscillatory structure appears just above the observed absorption edge i.e., 8348.7 eV and is confined to around 250 eV above the edge. - Highlights: • Mass attenuation coefficient measurements of nickel using synchrotron radiation. • The measurements were taken exactly near the Ni K-edge at an energy step of 1 eV. • A maximum deviation is found near the K-edge

  17. X-ray observations of the starburst galaxy M82

    International Nuclear Information System (INIS)

    Schaaf, R.; Pietsch, W.; Biermann, P.L.; Kronberg, P.P.; Schmutzler, T.

    1989-01-01

    Long X-ray observations of the starburst galaxy M82 with the European X-ray satellite EXOSAT are reported. The observations with the low-energy imaging instrument confirm that there is extended X-ray emission from above and below the disk, with an overall extent perpendicular to the disk of almost 6 arcmin corresponding to 6 kpc. One of the best defined X-ray spectra yet of a starburst galaxy is presented. The medium energy instrument measurements can be fitted with a power-law spectrum, consistent with inverse Compton emission, or with thermal emission from optically thin hot gas of a temperature of 9 + 9 or -4 keV. Using, in addition, the earlier Einstein HRI and MPC observations, the possible origin of the X-ray emission is discussed. 31 references

  18. X-ray astronomy

    International Nuclear Information System (INIS)

    Giacconi, R.; Gursky, H.

    1974-01-01

    This text contains ten chapters and three appendices. Following an introduction, chapters two through five deal with observational techniques, mechanisms for the production of x rays in a cosmic setting, the x-ray sky and solar x-ray emission. Chapters six through ten include compact x-ray sources, supernova remnants, the interstellar medium, extragalactic x-ray sources and the cosmic x-ray background. Interactions of x rays with matter, units and conversion factors and a catalog of x-ray sources comprise the three appendices. (U.S.)

  19. Cranial x-ray CT and MRI in congenital muscular dystrophy

    International Nuclear Information System (INIS)

    Horikawa, Hirosei; Konishi, Toshihiko; Konagaya, Masaaki; Mano, Yukio; Takayanagi, Tetsuya

    1988-01-01

    The involvements of central nervous system in those cases of congenital muscular dystrophy (CMD), especially in Fukuyama type CMD, have been observed both radiologically and pathologically. The recent development of MRI made it easier to detect fine structural changes in brain matter than the X-ray CT. Then, we tried to evaluate the central nervous system abnormalities of six cases of CMD by both X-ray CT and MRI. In one case, X-ray CT revealed diffuse hypodensity of cerebral white matter, and MRI showed high intensity on long spin-echo image and low intensity on inversion-recovery image. In another case, X-ray CT showed no abnormal findings, but long spin-echo image revealed two high intensity spots in cerebral white matter. In other four cases, brain atrophy was demonstrated by X-ray CT and/or MRI, one case of these patients had bilateral congenital arachnoid cysts in the middle cranial fossa and hypogenesis of temporal lobes. Although we could not demonstrate polymicrogyria and agyria in all cases by MRI, white matter changes and structural changes were revealed more clearly than X-ray CT. The combination of X-ray CT and MRI seems to make a noteworthy contribution to estimate the central nervous system abnormalities in CMD. (author)

  20. Photodiode array for position-sensitive detection using high X-ray flux provided by synchrotron radiation

    Science.gov (United States)

    Jucha, A.; Bonin, D.; Dartyge, E.; Flank, A. M.; Fontaine, A.; Raoux, D.

    1984-09-01

    Synchrotron radiation provides a high intensity source over a large range of wavelengths. This is the prominent quality that has laid the foundations of the EXAFS development (Extended X-ray Absorption Fine Structure). EXAFS data can be collected in different ways. A full scan requires 5 to 10 min, compared to the one-day data collection of a conventional Bremsstrahlung X-ray tube. Recently, by using the new photodiode array (R 1024 SFX) manufactured by Reticon, it has been possible to reduce the data collection time to less than 100 ms. The key elements of this new EXAFS method are a dispersive optics combined with a position sensitive detector able to work under very high flux conditions. The total aperture of 2500 μm × 25 μm for each pixel is well suited to spectroscopic applications. Besides its high dynamic range (> 10 4) and its linearity, the rapidity of the readout allows a flux of 10 9-10 10 photons/s over the 1024 sensing elements.

  1. High-Resolution X-ray Emission and X-ray Absorption Spectroscopy

    NARCIS (Netherlands)

    Groot, F.M.F. de

    2000-01-01

    In this review, high-resolution X-ray emission and X-ray absorption spectroscopy will be discussed. The focus is on the 3d transition-metal systems. To understand high-resolution X-ray emission and reso-nant X-ray emission, it is first necessary to spend some time discussing the X-ray absorption

  2. A study of the reactivity of elemental Cr/Se/Te thin multilayers using X-ray reflectometry, in situ X-ray diffraction and X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Behrens, Malte; Tomforde, Jan; May, Enno; Kiebach, Ragnar; Bensch, Wolfgang; Haeussler, Dietrich; Jaeger, Wolfgang

    2006-01-01

    The reactivity of [Cr/Se/Te] multilayers under annealing was investigated using X-ray reflectometry, in situ X-ray diffraction, X-ray absorption fine structure (XAFS) measurements and transmission electron microscopy. For all samples, interdiffusion was complete at temperatures between 100 and 300 deg. C, depending on the repeating tri-layer thickness. A crystalline phase nucleated approximately 20 deg. C above the temperature where interdiffusion was finished. The first crystalline phase in a binary Cr/Te sample was layered CrTe 3 nucleating at 230 deg. C. In ternary samples (Se:Te=0.6-1.2), the low-temperature nucleation of such a layered CrQ 3 (Q=Se, Te) phase is suppressed and instead the phase Cr 2 Q 3 nucleates first. Interestingly, this phase decomposes around 500 deg. C into layered CrQ 3 . In contrast, binary Cr/Se samples form stable amorphous alloys after interdiffusion and Cr 3 Se 4 nucleates around 500 deg. C as the only crystalline phase. Evaluation of the XAFS data of annealed samples yield Se-Cr distances of 2.568(1) and 2.552(1) A for Cr 2 Q 3 and CrQ 3 , respectively. In the latter sample, higher coordination shells around Se are seen accounting for the Se-Te contacts in the structure. - Graphical abstract: The first step of the reaction of elemental Cr/Te/Se-multilayers is the interdiffusion of the elements as evidenced by the decay of the modulation peaks in the low-angle region of the X-ray diffraction patterns. The subsequent growth of Bragg peaks at higher scattering angles indicates crystallization of chromium chalcogenide Cr 2 Te 3- x Se x

  3. Structure of Co-Doped Alq3 thin films investigated by grazing incidence X-ray absorption fine structure and Fourier transform infrared spectroscopy.

    Science.gov (United States)

    Lin, Liang; Pang, Zhiyong; Fang, Shaojie; Wang, Fenggong; Song, Shumei; Huang, Yuying; Wei, Xiangjun; Yu, Haisheng; Han, Shenghao

    2011-02-10

    The structural properties of Co-doped tris(8-hydroxyquinoline)aluminum (Alq(3)) have been studied by grazing incidence X-ray absorption fine structure (GIXAFS) and Fourier transform infrared spectroscopy (FTIR). GIXAFS analysis suggests that there are multivalent Co-Alq(3) complexes and the doped Co atoms tend to locate at the attraction center with respect to N and O atoms and bond with them. The FTIR spectra indicate that the Co atoms interact with the meridional (mer) isomer of Alq(3) rather than forming inorganic compounds.

  4. Transmission X-ray microscopy for full-field nano-imaging of biomaterials

    Science.gov (United States)

    ANDREWS, JOY C; MEIRER, FLORIAN; LIU, YIJIN; MESTER, ZOLTAN; PIANETTA, PIERO

    2010-01-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure (XANES) imaging. These techniques are discussed and compared in light of results from imaging of biological materials including microorganisms, bone and mineralized tissue and plants, with a focus on hard X-ray TXM at ≤ 40 nm resolution. PMID:20734414

  5. Transmission X-ray microscopy for full-field nano imaging of biomaterials.

    Science.gov (United States)

    Andrews, Joy C; Meirer, Florian; Liu, Yijin; Mester, Zoltan; Pianetta, Piero

    2011-07-01

    Imaging of cellular structure and extended tissue in biological materials requires nanometer resolution and good sample penetration, which can be provided by current full-field transmission X-ray microscopic techniques in the soft and hard X-ray regions. The various capabilities of full-field transmission X-ray microscopy (TXM) include 3D tomography, Zernike phase contrast, quantification of absorption, and chemical identification via X-ray fluorescence and X-ray absorption near edge structure imaging. These techniques are discussed and compared in light of results from the imaging of biological materials including microorganisms, bone and mineralized tissue, and plants, with a focus on hard X-ray TXM at ≤ 40-nm resolution. Copyright © 2010 Wiley-Liss, Inc.

  6. X-Ray Spectral Characteristics of Ginga Gamma-Ray Bursts

    International Nuclear Information System (INIS)

    Strohmayer, T.E.; Fenimore, E.E.; Murakami, T.; Yoshida, A.

    1998-01-01

    We have investigated the spectral characteristics of a sample of bright gamma-ray bursts detected with the gamma-ray burst sensors aboard the satellite Ginga. This instrument employed a proportional and scintillation counter to provide sensitivity to photons in the 2 endash 400 keV region and as such provided a unique opportunity to characterize the largely unexplored X-ray properties of gamma-ray bursts. The photon spectra of the Ginga bursts are well described by a low-energy slope, a bend energy, and a high-energy slope. In the energy range where they can be compared, this result is consistent with burst spectral analyses obtained from the BATSE experiment aboard the Compton Gamma-Ray Observatory. However, below 20 keV we find evidence for a positive spectral number index in approximately 40% of our burst sample, with some evidence for a strong rolloff at lower energies in a few events. There is a correlation (Pearson's r = -0.62) between the low-energy slope and the bend energy. We find that the distribution of spectral bend energies extends below 10 keV. There has been some concern in cosmological models of gamma-ray bursts (GRBs) that the bend energy covers only a small dynamic range. Our result extends the observed dynamic range, and, since we observe bend energies down to the limit of our instrument, perhaps observations have not yet limited the range. The Ginga trigger range was virtually the same as that of BATSE, yet we find a different range of fit parameters. One possible explanation might be that GRBs have two break energies, one often in the 50 endash 500 keV range and the other near 5 keV. Both BATSE and Ginga fit with only a single break energy, so BATSE tends to find breaks near the center of its energy range, and we tend to find breaks in our energy range. The observed ratio of energy emitted in the X-rays relative to the gamma rays can be much larger than a few percent and, in fact, is sometimes larger than unity. The average for our 22 bursts

  7. EXTENDED X-RAY EMISSION IN THE H I CAVITY OF NGC 4151: GALAXY-SCALE ACTIVE GALACTIC NUCLEUS FEEDBACK?

    International Nuclear Information System (INIS)

    Wang Junfeng; Fabbiano, Giuseppina; Risaliti, Guido; Elvis, Martin; Zezas, Andreas; Mundell, Carole G.; Dumas, Gaelle; Schinnerer, Eva

    2010-01-01

    We present the Chandra discovery of soft diffuse X-ray emission in NGC 4151 (L 0.5-2 k eV ∼ 10 39 erg s -1 ), extending ∼2 kpc from the active nucleus and filling in the cavity of the H I material. The best fit to the X-ray spectrum requires either a kT ∼ 0.25 keV thermal plasma or a photoionized component. In the thermal scenario, hot gas heated by the nuclear outflow would be confined by the thermal pressure of the H I gas and the dynamic pressure of inflowing neutral material in the galactic disk. In the case of photoionization, the nucleus must have experienced an Eddington limit outburst. For both scenarios, the active galactic nucleus (AGN)-host interaction in NGC 4151 must have occurred relatively recently (some 10 4 yr ago). This very short timescale to the last episode of high activity phase may imply such outbursts occupy ∼>1% of AGN lifetime.

  8. Flash X-ray

    International Nuclear Information System (INIS)

    Sato, Eiichi

    2003-01-01

    Generation of quasi-monochromatic X-ray by production of weakly ionized line plasma (flash X-ray), high-speed imaging by the X-ray and high-contrast imaging by the characteristic X-ray absorption are described. The equipment for the X-ray is consisted from the high-voltage power supply and condenser, turbo molecular pump, and plasma X-ray tube. The tube has a long linear anticathode to produce the line plasma and flash X-ray at 20 kA current at maximum. X-ray spectrum is measured by the imaging plate equipped in the computed radiography system after diffracted by a LiF single crystal bender. Cu anticathode generates sharp peaks of K X-ray series. The tissue images are presented for vertebra, rabbit ear and heart, and dog heart by X-ray fluoroscopy with Ce anticathode. Generation of K-orbit characteristic X-ray with extremely low bremsstrahung is to be attempted for medical use. (N.I.)

  9. Overview of nanoscale NEXAFS performed with soft X-ray microscopes

    Directory of Open Access Journals (Sweden)

    Peter Guttmann

    2015-02-01

    Full Text Available Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM as well as full-field transmission X-ray microscopes (TXM allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples.

  10. Overview of nanoscale NEXAFS performed with soft X-ray microscopes.

    Science.gov (United States)

    Guttmann, Peter; Bittencourt, Carla

    2015-01-01

    Today, in material science nanoscale structures are becoming more and more important. Not only for the further miniaturization of semiconductor devices like carbon nanotube based transistors, but also for newly developed efficient energy storage devices, gas sensors or catalytic systems nanoscale and functionalized materials have to be analysed. Therefore, analytical tools like near-edge X-ray absorption fine structure (NEXAFS) spectroscopy has to be applied on single nanostructures. Scanning transmission X-ray microscopes (STXM) as well as full-field transmission X-ray microscopes (TXM) allow the required spatial resolution to study individual nanostructures. In the soft X-ray energy range only STXM was used so far for NEXAFS studies. Due to its unique setup, the TXM operated by the Helmholtz-Zentrum Berlin (HZB) at the electron storage ring BESSY II is the first one in the soft X-ray range which can be used for NEXAFS spectroscopy studies which will be shown in this review. Here we will give an overview of the different microscopes used for NEXAFS studies and describe their advantages and disadvantages for different samples.

  11. CHANDRA ACIS SURVEY OF X-RAY POINT SOURCES IN NEARBY GALAXIES. II. X-RAY LUMINOSITY FUNCTIONS AND ULTRALUMINOUS X-RAY SOURCES

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Song; Qiu, Yanli; Liu, Jifeng [Key Laboratory of Optical Astronomy, National Astronomical Observatories, Chinese Academy of Sciences, Beijing 100012 (China); Bregman, Joel N., E-mail: songw@bao.ac.cn, E-mail: jfliu@bao.ac.cn [University of Michigan, Ann Arbor, MI 48109 (United States)

    2016-09-20

    Based on the recently completed Chandra /ACIS survey of X-ray point sources in nearby galaxies, we study the X-ray luminosity functions (XLFs) for X-ray point sources in different types of galaxies and the statistical properties of ultraluminous X-ray sources (ULXs). Uniform procedures are developed to compute the detection threshold, to estimate the foreground/background contamination, and to calculate the XLFs for individual galaxies and groups of galaxies, resulting in an XLF library of 343 galaxies of different types. With the large number of surveyed galaxies, we have studied the XLFs and ULX properties across different host galaxy types, and confirm with good statistics that the XLF slope flattens from lenticular ( α ∼ 1.50 ± 0.07) to elliptical (∼1.21 ± 0.02), to spirals (∼0.80 ± 0.02), to peculiars (∼0.55 ± 0.30), and to irregulars (∼0.26 ± 0.10). The XLF break dividing the neutron star and black hole binaries is also confirmed, albeit at quite different break luminosities for different types of galaxies. A radial dependency is found for ellipticals, with a flatter XLF slope for sources located between D {sub 25} and 2 D {sub 25}, suggesting the XLF slopes in the outer region of early-type galaxies are dominated by low-mass X-ray binaries in globular clusters. This study shows that the ULX rate in early-type galaxies is 0.24 ± 0.05 ULXs per surveyed galaxy, on a 5 σ confidence level. The XLF for ULXs in late-type galaxies extends smoothly until it drops abruptly around 4 × 10{sup 40} erg s{sup −1}, and this break may suggest a mild boundary between the stellar black hole population possibly including 30 M {sub ⊙} black holes with super-Eddington radiation and intermediate mass black holes.

  12. In situ X-ray absorption fine structure studies on the structure of nickel phosphide catalyst supported on K-USY

    CERN Document Server

    Kawai, T; Suzuki, S

    2003-01-01

    Local structure around Ni in a nickel phosphide catalyst supported on K-USY was investigated by an situ X-ray absorption fine structure (XAFS) method during the reduction process of the catalyst and the hydrodesulfurization (HDS) reaction of thiophene. In the passivated sample, Ni phosphide was partially oxidized but after the reduction, 1.1 nm diameter Ni sub 2 P particles were formed with Ni-P and Ni-Ni distances at 0.218 and 0.261 nm, respectively, corresponding to those of bulk Ni sub 2 P. In situ XAFS cleary revealed that the Ni sub 2 P structure was stable under reaction conditions and was an active structure for the HDS process.

  13. Picosecond x-ray measurements from 100 eV to 30 keV

    International Nuclear Information System (INIS)

    Attwood, D.T.; Kauffman, R.L.; Stradling, G.L.

    1980-01-01

    Picosecond x-ray measurements relevant to the Livermore Laser Fusion Program are reviewed. Resolved to 15 picoseconds, streak camera detection capabilities extend from 100 eV to higher than 30 keV, with synchronous capabilities in the visible, near infrared, and ultraviolet. Capabilities include automated data retrieval using charge coupled devices (CCD's), absolute x-ray intensity levels, novel cathodes, x-ray mirror/reflector combinations, and a variety of x-ray imaging devices

  14. Simulation of high-resolution X-ray microscopic images for improved alignment

    International Nuclear Information System (INIS)

    Song Xiangxia; Zhang Xiaobo; Liu Gang; Cheng Xianchao; Li Wenjie; Guan Yong; Liu Ying; Xiong Ying; Tian Yangchao

    2011-01-01

    The introduction of precision optical elements to X-ray microscopes necessitates fine realignment to achieve optimal high-resolution imaging. In this paper, we demonstrate a numerical method for simulating image formation that facilitates alignment of the source, condenser, objective lens, and CCD camera. This algorithm, based on ray-tracing and Rayleigh-Sommerfeld diffraction theory, is applied to simulate the X-ray microscope beamline U7A of National Synchrotron Radiation Laboratory (NSRL). The simulations and imaging experiments show that the algorithm is useful for guiding experimental adjustments. Our alignment simulation method is an essential tool for the transmission X-ray microscope (TXM) with optical elements and may also be useful for the alignment of optical components in other modes of microscopy.

  15. Enhanced renal image contrast by ethanol fixation in phase-contrast X-ray computed tomography.

    Science.gov (United States)

    Shirai, Ryota; Kunii, Takuya; Yoneyama, Akio; Ooizumi, Takahito; Maruyama, Hiroko; Lwin, Thet Thet; Hyodo, Kazuyuki; Takeda, Tohoru

    2014-07-01

    Phase-contrast X-ray imaging using a crystal X-ray interferometer can depict the fine structures of biological objects without the use of a contrast agent. To obtain higher image contrast, fixation techniques have been examined with 100% ethanol and the commonly used 10% formalin, since ethanol causes increased density differences against background due to its physical properties and greater dehydration of soft tissue. Histological comparison was also performed. A phase-contrast X-ray system was used, fitted with a two-crystal X-ray interferometer at 35 keV X-ray energy. Fine structures, including cortex, tubules in the medulla, and the vessels of ethanol-fixed kidney could be visualized more clearly than that of formalin-fixed tissues. In the optical microscopic images, shrinkage of soft tissue and decreased luminal space were observed in ethanol-fixed kidney; and this change was significantly shown in the cortex and outer stripe of the outer medulla. The ethanol fixation technique enhances image contrast by approximately 2.7-3.2 times in the cortex and the outer stripe of the outer medulla; the effect of shrinkage and the physical effect of ethanol cause an increment of approximately 78% and 22%, respectively. Thus, the ethanol-fixation technique enables the image contrast to be enhanced in phase-contrast X-ray imaging.

  16. X-Ray

    Science.gov (United States)

    ... enema. What you can expect During the X-ray X-rays are performed at doctors' offices, dentists' offices, ... as those using a contrast medium. Your child's X-ray Restraints or other techniques may be used to ...

  17. Gamma detector for use with luggage X-ray systems

    International Nuclear Information System (INIS)

    McHugh, H.; Quam, W.

    1998-01-01

    A new gamma radiation sensor has been designed for installation on several types of luggage x-ray machines and mobile x-ray vans operated by the U.S. Customs Service and the U.S. Department of State. The use of gamma detectors on x-ray machines imposed difficulties not usually encountered in the design of gamma detectors because the spectrum of scattered x-rays, which varied from machine to machine, extended to energies significantly higher than those of the low-energy isotopic emissions. In the original design, the lower level discriminator was raised above the x-ray end point energy resulting in the loss of the americium line associated with plutonium. This reduced the overall sensitivity to unshielded plutonium by a factor of approximately 100. An improved method was subsequently developed wherein collimation was utilized in conjunction with a variable counting threshold to permit accommodation of differing conditions of x-ray scattering. This design has been shown to eliminate most of the problems due to x-ray scattering while still capturing the americium emissions. The overall sensitivity has remained quite high, though varying slightly from one model of x-ray machine to another, depending upon the x-ray scattering characteristics of each model. (author)

  18. Diffracted X-ray tracking for monitoring intramolecular motion in individual protein molecules using broad band X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Ichiyanagi, Kouhei; Sasaki, Yuji C. [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 609 Kiban Building 5-1-5 Kashiwanoha, Kahiwashi, Chiba 277-8561 (Japan); Japan Science and Technology Agency, CREST, CREST, Sasaki-Team, 609 Kiban Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Sekiguchi, Hiroshi; Hoshino, Masato; Kajiwara, Kentaro; Senba, Yasunori; Ohashi, Haruhiko; Ohta, Noboru [Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan); Hoshisashi, Kentaro; Jae-won, Chang; Tokue, Maki; Matsushita, Yufuku [Department of Advanced Materials Science, Graduate School of Frontier Sciences, The University of Tokyo, 609 Kiban Building 5-1-5 Kashiwanoha, Kahiwashi, Chiba 277-8561 (Japan); Nishijima, Masaki; Inoue, Yoshihisa [Department of Applied Chemistry and Office for University-Industry Collaboration, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871 (Japan); Yagi, Naoto [Japan Science and Technology Agency, CREST, CREST, Sasaki-Team, 609 Kiban Building, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561 (Japan); Japan Synchrotron Radiation Research Institute, SPring-8, 1-1-1 Kouto, Sayo, Hyogo 679-5198 (Japan)

    2013-10-15

    Diffracted X-ray tracking (DXT) enables the tilting and twisting motions of single protein molecules to be monitored with micro- to milliradian resolution using a highly brilliant X-ray source with a wide energy bandwidth. We have developed a technique to monitor single molecules using gold nanocrystals attached to individual protein molecules using the BL28B2 beamline at SPring-8. In this paper we present the installation of a single toroidal X-ray mirror at BL28B2 to focus X-rays in an energy range of 10–20 keV (△E/E = 82% for an X-ray with a wide energy bandwidth). With this beamline we tracked diffraction spots from gold nanocrystals over a wide angle range than that using quasi-monochromatic X-rays. Application of the wide angle DXT technique to biological systems enabled us to observe the on-site motions of single protein molecules that have been functionalized in vivo. We further extend the capability of DXT by observing the fractional tilting and twisting motions of inner proteins under various conditions. As a proof of this methodology and to determine instrumental performance the intramolecular motions of a human serum albumin complex with 2-anthracenecarboxylic acid was investigated using the BL28B2 beamline. The random tilting and twisting intramolecular motions are shown to be directly linked to the movement of individual protein molecules in the buffer solution.

  19. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, W. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Chu, W.S.; Yang, F.F.; Yu, M.J.; Chen, D.L.; Guo, X.Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Zhou, D.W.; Shi, N. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Marcelli, A. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy); Niu, L.W.; Teng, M.K. [Hefei National Laboratory for Physical Sciences at Microscale and School of Life Sciences, University of Science and Technology of China, Hefei, Anhui 230027 (China); Gong, W.M. [Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101 (China); Benfatto, M. [Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy); Wu, Z.Y. [Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049 (China); Istituto Nazionale di Fisica Nucleare, Laboratori Nazionali di Frascati, P.O. Box 13, Frascati 00044 (Italy)], E-mail: wuzy@ihep.ac.cn

    2007-09-21

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase (LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations.

  20. Quantitative investigation of two metallohydrolases by X-ray absorption spectroscopy near-edge spectroscopy

    International Nuclear Information System (INIS)

    Zhao, W.; Chu, W.S.; Yang, F.F.; Yu, M.J.; Chen, D.L.; Guo, X.Y.; Zhou, D.W.; Shi, N.; Marcelli, A.; Niu, L.W.; Teng, M.K.; Gong, W.M.; Benfatto, M.; Wu, Z.Y.

    2007-01-01

    The last several years have witnessed a tremendous increase in biological applications using X-ray absorption spectroscopy (BioXAS), thanks to continuous advancements in synchrotron radiation (SR) sources and detector technology. However, XAS applications in many biological systems have been limited by the intrinsic limitations of the Extended X-ray Absorption Fine Structure (EXAFS) technique e.g., the lack of sensitivity to bond angles. As a consequence, the application of the X-ray absorption near-edge structure (XANES) spectroscopy changed this scenario that is now continuously changing with the introduction of the first quantitative XANES packages such as Minut XANES (MXAN). Here we present and discuss the XANES code MXAN, a novel XANES-fitting package that allows a quantitative analysis of experimental data applied to Zn K-edge spectra of two metalloproteins: Leptospira interrogans Peptide deformylase (LiPDF) and acutolysin-C, a representative of snake venom metalloproteinases (SVMPs) from Agkistrodon acutus venom. The analysis on these two metallohydrolases reveals that proteolytic activities are correlated to subtle conformation changes around the zinc ion. In particular, this quantitative study clarifies the occurrence of the LiPDF catalytic mechanism via a two-water-molecules model, whereas in the acutolysin-C we have observed a different proteolytic activity correlated to structural changes around the zinc ion induced by pH variations

  1. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    Energy Technology Data Exchange (ETDEWEB)

    Rizzo, G., E-mail: giuliana.rizzo@pi.infn.it [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Batignani, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Benkechkache, M.A. [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); University Constantine 1, Department of Electronics in the Science and Technology Faculty, I-25017, Constantine (Algeria); Bettarini, S.; Casarosa, G. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Comotti, D. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Dalla Betta, G.-F. [Università di Trento, Dipartimento di Ingegneria Industriale, I-38123 Trento (Italy); TIFPA INFN, I-38123 Trento (Italy); Fabris, L. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); Forti, F. [Università di Pisa, Dipartimento di Fisica, I-56127 Pisa (Italy); INFN, Sezione di Pisa, I-56127 Pisa (Italy); Grassi, M.; Lodola, L.; Malcovati, P. [Università di Pavia, Dipartimento di Ingegneria Industriale e dell' Informazione, I-27100 Pavia (Italy); INFN Sezione di Pavia, I-27100 Pavia (Italy); Manghisoni, M. [INFN Sezione di Pavia, I-27100 Pavia (Italy); Università di Bergamo, Dipartimento di Ingegneria e Scienze Applicate, I-24044 Dalmine (Italy); and others

    2016-07-11

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 10{sup 4} photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  2. The PixFEL project: Progress towards a fine pitch X-ray imaging camera for next generation FEL facilities

    International Nuclear Information System (INIS)

    Rizzo, G.; Batignani, G.; Benkechkache, M.A.; Bettarini, S.; Casarosa, G.; Comotti, D.; Dalla Betta, G.-F.; Fabris, L.; Forti, F.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.

    2016-01-01

    The INFN PixFEL project is developing the fundamental building blocks for a large area X-ray imaging camera to be deployed at next generation free electron laser (FEL) facilities with unprecedented intensity. Improvement in performance beyond the state of art in imaging instrumentation will be explored adopting advanced technologies like active edge sensors, a 65 nm node CMOS process and vertical integration. These are the key ingredients of the PixFEL project to realize a seamless large area focal plane instrument composed by a matrix of multilayer four-side buttable tiles. In order to minimize the dead area and reduce ambiguities in image reconstruction, a fine pitch active edge thick sensor is being optimized to cope with very high intensity photon flux, up to 10"4 photons per pixel, in the range from 1 to 10 keV. A low noise analog front-end channel with this wide dynamic range and a novel dynamic compression feature, together with a low power 10 bit analog to digital conversion up to 5 MHz, has been realized in a 110 μm pitch with a 65 nm CMOS process. Vertical interconnection of two CMOS tiers will be also explored in the future to build a four-side buttable readout chip with high density memories. In the long run the objective of the PixFEL project is to build a flexible X-ray imaging camera for operation both in burst mode, like at the European X-FEL, or in continuous mode with the high frame rates anticipated for future FEL facilities.

  3. X-ray backscatter radiography. Intrusive instead of penetrating, X-ray shadow phenomenon

    International Nuclear Information System (INIS)

    Wrobel, Norma; Kolkoori, Sanjeevareddy; Osterloh, Kurt; European Federation for Non-Destructive Testing

    2013-01-01

    Generally, the primary practical advantage of X-ray backscattering radiography is that there is no need to place a detector on the side of the specimen opposite to the source. Such a situation usually is encountered whenever the specimen is not only standing right in front of a wall or even inside a wall but also if the specimen is such big that radiography is not possible because of the layer thickness to be penetrated. The method used here differs fundamentally from the conventional method to interrogate the object with a scanning beam ('pencil beam') and to collect the whole backscattered radiation from the area. The object is fully illuminated by a (uncollimated) cone beam. Here, the image is recorded with a camera of absorbent material (tungsten, lead), which contains a matrix detector as the image receiver. The optical effect is generated by a special twisted slit collimator which operates according to an extended pinhole camera. The independent positioning of source and camera allows a variable irradiation geometry which causes different images as a result. As a consequence, a complex object in front of a backscattering wall appears completely different than standing alone. So X-ray backscatter images have to be interpreted according to their illumination with X-rays and their surroundings. (orig.)

  4. Insight into the biological effects of acupuncture points by X-ray absorption fine structure.

    Science.gov (United States)

    Liu, Chenglin; Liu, Qinghua; Zhang, Dongming; Liu, Wei; Yan, Xiaohui; Zhang, Xinyi; Oyanagi, Hiroyuki; Pan, Zhiyun; Hu, Fengchun; Wei, Shiqiang

    2018-06-02

    Exploration of the biological effects of transition metal ions in acupuncture points is essential to clarify the functional mechanism of acupuncture treatment. Here we show that in the SP6 acupuncture point (Sanyinjiao) the Fe ions are in a high-spin state of approximately t 2g 4.5 e g 1.5 in an Fe-N(O) octahedral crystal field. The Fe K-edge synchrotron radiation X-ray absorption fine structure results reveal that the Fe-N and Fe-O bond lengths in the SP6 acupuncture point are 2.05 and 2.13 Å, respectively, and are 0.05-0.10 Å longer than those in the surrounding tissue. The distorted atomic structure reduces the octahedral symmetry and weakens the crystal field around the Fe ions by approximately 0.3 eV, leading to the high-spin configuration of the Fe ions, which is favorable for strengthening the magnetotransport and oxygen transportation properties in the acupuncture point by the enhanced spin coherence. This finding might provide some insight into the microscopic effect of the atomic and electronic interactions of transition metal ions in the acupuncture point. Graphical Abstract ᅟ.

  5. X-Ray Absorption Near-Edge Structure (XANES) of Calcium L3,2 Edges of Various Calcium Compounds and X-Ray Excited Optical Luminescence (XEOL) Studies of Luminescent Calcium Compounds

    International Nuclear Information System (INIS)

    Ko, J. Y. Peter; Zhou Xingtai; Sham, T.-K.; Heigl, Franziskus; Regier, Tom; Blyth, Robert

    2007-01-01

    X-ray absorption at calcium L3,2 edges of various calcium compounds were measured using a high resolution Spherical Grating Monochromator (SGM) at the Canadian Light Source (CLS). We observe that each compound has its unique fine structure of L3,2 edges. This uniqueness is due to differences in local structure of compounds. We also performed (X-ray Excited Optical Luminescence) XEOL of selected luminescent calcium compounds to investigate their optical properties. XEOL is a photon-in-photon-out technique in which the optical luminescence that is excited by tunable x-rays from a synchrotron light source is monitored. Depending on excitation energy of the x-ray, relative intensities of luminescence peaks vary. Recent findings of the results will be presented here

  6. X-Ray Calorimeter Arrays for Astrophysics

    Science.gov (United States)

    Kilbourne, Caroline A.

    2009-01-01

    High-resolution x-ray spectroscopy is a powerful tool for studying the evolving universe. The grating spectrometers on the XMM and Chandra satellites started a new era in x-ray astronomy, but there remains a need for instrumentation that can provide higher spectral resolution with high throughput in the Fe-K band (around 6 keV) and can enable imaging spectroscopy of extended sources, such as supernova remnants and galaxy clusters. The instrumentation needed is a broad-band imaging spectrometer - basically an x-ray camera that can distinguish tens of thousands of x-ray colors. The potential benefits to astrophysics of using a low-temperature calorimeter to determine the energy of an incident x-ray photon via measurement of a small change in temperature was first articulated by S. H. Moseley over two decades ago. In the time since, technological progress has been steady, though full realization in an orbiting x-ray telescope is still awaited. A low-temperature calorimeter can be characterized by the type of thermometer it uses, and three types presently dominate the field. The first two types are temperature-sensitive resistors - semiconductors in the metal-insulator transition and superconductors operated in the superconducting-normal transition. The third type uses a paramagnetic thermometer. These types can be considered the three generations of x-ray calorimeters; by now each has demonstrated a resolving power of 2000 at 6 keV, but only a semiconductor calorimeter system has been developed to spaceflight readiness. The Soft X-ray Spectrometer on Astro-H, expected to launch in 2013, will use an array of silicon thermistors with I-IgTe x-ray absorbers that will operate at 50 mK. Both the semiconductor and superconductor calorimeters have been implemented in small arrays, kilo-pixel arrays of the superconducting calorimeters are just now being produced, and it is anticipated that much larger arrays will require the non-dissipative advantage of magnetic thermometers.

  7. The radio-X-ray relation as a star formation indicator: results from the Very Large Array-Extended Chandra Deep Field-South

    Science.gov (United States)

    Vattakunnel, S.; Tozzi, P.; Matteucci, F.; Padovani, P.; Miller, N.; Bonzini, M.; Mainieri, V.; Paolillo, M.; Vincoletto, L.; Brandt, W. N.; Luo, B.; Kellermann, K. I.; Xue, Y. Q.

    2012-03-01

    In order to trace the instantaneous star formation rate (SFR) at high redshift, and thus help in understanding the relation between the different emission mechanisms related to star formation, we combine the recent 4-Ms Chandra X-ray data and the deep Very Large Array radio data in the Extended Chandra Deep Field-South region. We find 268 sources detected both in the X-ray and radio bands. The availability of redshifts for ˜95 per cent of the sources in our sample allows us to derive reliable luminosity estimates and the intrinsic properties from X-ray analysis for the majority of the objects. With the aim of selecting sources powered by star formation in both bands, we adopt classification criteria based on X-ray and radio data, exploiting the X-ray spectral features and time variability, taking advantage of observations scattered across more than 10 years. We identify 43 objects consistent with being powered by star formation. We also add another 111 and 70 star-forming candidates detected only in the radio and X-ray bands, respectively. We find a clear linear correlation between radio and X-ray luminosity in star-forming galaxies over three orders of magnitude and up to z˜ 1.5. We also measure a significant scatter of the order of 0.4 dex, higher than that observed at low redshift, implying an intrinsic scatter component. The correlation is consistent with that measured locally, and no evolution with redshift is observed. Using a locally calibrated relation between the SFR and the radio luminosity, we investigate the LX(2-10 keV)-SFR relation at high redshift. The comparison of the SFR measured in our sample with some theoretical models for the Milky Way and M31, two typical spiral galaxies, indicates that, with current data, we can trace typical spirals only at z≤ 0.2, and strong starburst galaxies with SFRs as high as ˜100 M⊙ yr-1, up to z˜ 1.5.

  8. Calculation of near-edge x-ray-absorption fine structure at finite temperatures: Spectral signatures of hydrogen bond breaking in liquid water

    International Nuclear Information System (INIS)

    Hetenyi, Balazs; De Angelis, Filippo; Giannozzi, Paolo; Car, Roberto

    2004-01-01

    We calculate the near-edge x-ray-absorption fine structure of H 2 O in the gas, hexagonal ice, and liquid phases using heuristic density-functional based methods. We present a detailed comparison of our results with experiment. The differences between the ice and water spectra can be rationalized in terms of the breaking of hydrogen bonds around the absorbing molecule. In particular the increase in the pre-edge absorption feature from ice to water is shown to be due to the breaking of a donor hydrogen bond. We also find that in water approximately 19% of hydrogen bonds are broken

  9. Identification of Hard X-ray Sources in Galactic Globular Clusters: Simbol-X Simulations

    Science.gov (United States)

    Servillat, M.

    2009-05-01

    Globular clusters harbour an excess of X-ray sources compared to the number of X-ray sources in the Galactic plane. It has been proposed that many of these X-ray sources are cataclysmic variables that have an intermediate magnetic field, i.e. intermediate polars, which remains to be confirmed and understood. We present here several methods to identify intermediate polars in globular clusters from multiwavelength analysis. First, we report on XMM-Newton, Chandra and HST observations of the very dense Galactic globular cluster NGC 2808. By comparing UV and X-ray properties of the cataclysmic variable candidates, the fraction of intermediate polars in this cluster can be estimated. We also present the optical spectra of two cataclysmic variables in the globular cluster M 22. The HeII (4868 Å) emission line in these spectra could be related to the presence of a magnetic field in these objects. Simulations of Simbol-X observations indicate that the angular resolution is sufficient to study X-ray sources in the core of close, less dense globular clusters, such as M 22. The sensitivity of Simbol-X in an extended energy band up to 80 keV will allow us to discriminate between hard X-ray sources (such as magnetic cataclysmic variables) and soft X-ray sources (such as chromospherically active binaries).

  10. Imaging escape gated MPWC for hard X-ray astronomy

    Energy Technology Data Exchange (ETDEWEB)

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; La Padula, C.; Mastropietro, M.; Patriarca, R.; Polcaro, V.F.; Barbareschi, L.; Perotti, F.; Villa, G.

    1983-11-15

    A scientific forward step in the hard X-ray and soft gamma-ray astronomy will only be possible with the use of a new generation of space borne instruments. Their main characteristics have to be the two-dimensional imaging capability over a large collecting area and the fine spectral resolution in order to discriminate between the weak signal coming from cosmic sources to be detected and the strong background induced by cosmic rays, in the space environment, on the detector. To reach this goal we have developed a new hard X-ray position sensitive proportional counter operating with the escape gate technique in the range 15-150 keV, to be used together with a pseudo-random coded mask in order to obtain sky images. The detector is a high pressure (5 bar) xenon-argon-isobutane filled chamber with a spatial resolution of 30x2 mm and a spectral resolution of 5% at 60 keV on the sensitive area of 3000 cm/sup 2/.

  11. Resonant X-ray emission spectroscopy in Dy compounds

    International Nuclear Information System (INIS)

    Tanaka, Satoshi; Okada, Kozo; Kotani, Akio.

    1994-01-01

    The excitation spectrum of the L 3 -M 5 X-ray emission of Dy compounds in the pre-edge region of Dy L 3 X-ray absorption near edge structure (L 3 -XANES) is theoretically investigated based upon the coherent second order optical formula with multiplet coupling effects. The spectral broadening of the excitation spectrum is determined by the M 5 core hole lifetime, being free from the L 3 core hole lifetime. The fine pre-edge structure of the L 3 edge due to the 2p→4f quadrupole transition can be seen in the excitation spectrum, while this structure is invisible in the conventional XANES, in agreement with the recent experimental results. We clarify the conditions for the excitation spectrum to be regarded as the absorption spectrum with a smaller width. The resonant X-ray emission spectra for various incident photon energies around the L 3 edge are also calculated. (author)

  12. Synchrotron x-ray microbeam characteristics for x-ray fluorescence analysis

    International Nuclear Information System (INIS)

    Iida, Atsuo; Noma, Takashi

    1995-01-01

    X-ray fluorescence analysis using a synchrotron x-ray microprobe has become an indispensable technique for non-destructive micro-analysis. One of the most important parameters that characterize the x-ray microbeam system for x-ray fluorescence analysis is the beam size. For practical analysis, however, the photon flux, the energy resolution and the available energy range are also crucial. Three types of x-ray microbeam systems, including monochromatic and continuum excitation systems, were compared with reference to the sensitivity, the minimum detection limit and the applicability to various types of x-ray spectroscopic analysis. 16 refs., 5 figs

  13. Weak Hard X-Ray Emission from Broad Absorption Line Quasars: Evidence for Intrinsic X-Ray Weakness

    DEFF Research Database (Denmark)

    Luo, B.; Brandt, W. N.; Alexander, D. M.

    2014-01-01

    We report NuSTAR observations of a sample of six X-ray weak broad absorption line (BAL) quasars. These targets, at z = 0.148-1.223, are among the optically brightest and most luminous BAL quasars known at z 330 times weaker than...... expected for typical quasars. Our results from a pilot NuSTAR study of two low-redshift BAL quasars, a Chandra stacking analysis of a sample of high-redshift BAL quasars, and a NuSTAR spectral analysis of the local BAL quasar Mrk 231 have already suggested the existence of intrinsically X-ray weak BAL...... quasars, i.e., quasars not emitting X-rays at the level expected from their optical/UV emission. The aim of the current program is to extend the search for such extraordinary objects. Three of the six new targets are weakly detected by NuSTAR with ≲ 45 counts in the 3-24 keV band, and the other three...

  14. X-ray sky

    International Nuclear Information System (INIS)

    Gruen, M.; Koubsky, P.

    1977-01-01

    The history is described of the discoveries of X-ray sources in the sky. The individual X-ray detectors are described in more detail, i.e., gas counters, scintillation detectors, semiconductor detectors, and the principles of X-ray spectrometry and of radiation collimation aimed at increased resolution are discussed. Currently, over 200 celestial X-ray sources are known. Some were identified as nebulae, in some pulsations were found or the source was identified as a binary star. X-ray bursts of novae were also observed. The X-ray radiation is briefly mentioned of spherical star clusters and of extragalactic X-ray sources. (Oy)

  15. Observation of γ rays > 1015 eV from Cygnus X-3

    International Nuclear Information System (INIS)

    Lloyd-Evans, J.; Coy, R.N.; Lambert, A.; Lapikens, J.; Patel, M.; Reid, R.J.O.; Watson, A.A.

    1983-01-01

    The X-ray binary system Cygnus X-3 is a source of particular interest. As well as emitting X-rays which are modulated with a 4.8-h period, it has been observed in 30-100 MeV γ rays by the SAS II satellite and several groups have detected γ rays in the TeV range showing the same period. Most recently, using the small extensive air shower array at Kiel, workers have found that the γ-ray spectrum of Cygnus X-3 extends above 2 x 10 15 eV, with an integral flux of (7.4 +- 3.2) x 10 -14 cm -2 s -1 . This paper confirms the Kiel observations and presents evidence that the γ-ray spectrum of Cygnus X-3 steepens above 10 16 eV. (author)

  16. Portable ultrahigh-vacuum sample storage system for polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Watanabe, Yoshihide, E-mail: e0827@mosk.tytlabs.co.jp; Nishimura, Yusaku F.; Suzuki, Ryo; Beniya, Atsushi; Isomura, Noritake [Toyota Central R& D Labs., Inc., Yokomichi 41-1, Nagakute, Aichi 480-1192 (Japan); Uehara, Hiromitsu; Asakura, Kiyotaka; Takakusagi, Satoru [Catalysis Research Center, Hokkaido University, Kita 21-10, Sapporo, Hokkaido 001-0021 (Japan); Nimura, Tomoyuki [AVC Co., Ltd., Inada 1450-6, Hitachinaka, Ibaraki 312-0061 (Japan)

    2016-03-15

    A portable ultrahigh-vacuum sample storage system was designed and built to investigate the detailed geometric structures of mass-selected metal clusters on oxide substrates by polarization-dependent total-reflection fluorescence x-ray absorption fine structure spectroscopy (PTRF-XAFS). This ultrahigh-vacuum (UHV) sample storage system provides the handover of samples between two different sample manipulating systems. The sample storage system is adaptable for public transportation, facilitating experiments using air-sensitive samples in synchrotron radiation or other quantum beam facilities. The samples were transferred by the developed portable UHV transfer system via a public transportation at a distance over 400 km. The performance of the transfer system was demonstrated by a successful PTRF-XAFS study of Pt{sub 4} clusters deposited on a TiO{sub 2}(110) surface.

  17. Synchrotron radiation microbeam X-ray fluorescence analysis of zinc concentration in remineralized enamel in situ.

    Science.gov (United States)

    Matsunaga, Tsunenori; Ishizaki, Hidetaka; Tanabe, Shuji; Hayashi, Yoshihiko

    2009-05-01

    Remineralization is an indispensable phenomenon during the natural healing process of enamel decay. The incorporation of zinc (Zn) into enamel crystal could accelerate this remineralization. The present study was designed to investigate the concentration and distribution of Zn in remineralized enamel after gum chewing. The experiment was performed at the Photon Factory. Synchrotron radiation was monochromatized and X-rays were focused into a small beam spot. The X-ray fluorescence (XRF) from the sample was detected with a silicon (Si) (lithium (Li)) detector. X-ray beam energy was tuned to detect Zn. The examined samples were small enamel fragments remineralized after chewing calcium phosphate-containing gum in situ. The incorporation of Zn atom into hydroxyapatite (OHAP), the main component of enamel, was measured using Zn K-edge extended X-ray absorption fine structure (EXAFS) with fluorescence mode at the SPring-8. A high concentration of Zn was detected in a superficial area 10-microm deep of the sectioned enamel after gum chewing. This concentration increased over that in the intact enamel. The atomic distance between Zn and O in the enamel was calculated using the EXAFS data. The analyzed atomic distances between Zn and O in two sections were 0.237 and 0.240 nm. The present experiments suggest that Zn is effectively incorporated into remineralized enamel through the physiological processes of mineral deposition in the oral cavity through gum-chewing and that Zn substitution probably occurred at the calcium position in enamel hydroxyapatite.

  18. Molecular environment of iodine in naturally iodinated humic substances: Insight from X-ray absorption spectroscopy

    International Nuclear Information System (INIS)

    Schlegel, Michel L.; Mercier-Bion, Florence; Barre, Nicole; Reiller, Pascal; Moulin, Valerie

    2006-01-01

    The molecular environment of iodine in reference inorganic and organic compounds, and in dry humic and fulvic acids (HAs and FAs) extracted from subsurface and deep aquifers was probed by iodine L-3-edge X-ray absorption spectroscopy. The X-ray absorption near-edge structure (XANES) of iodine spectra from HAs and FAs resembled those of organic references and displayed structural features consistent with iodine forming covalent bonds with organic molecules. Simulation of XANES spectra by linear combination of reference spectra suggested the predominance of iodine forming covalent bonds to aromatic rings (aromatic-bound iodine). Comparison of extended X-ray absorption fine structure (EXAFS) spectra of reference and samples further showed that iodine was surrounded by carbon shells at distances comparable to those for references containing aromatic-bound iodine. Quantitative analysis of EXAFS spectra indicated that iodine was bound to about one carbon at a distance d(I-C) of 2.01(4)-2.04(9) angstrom, which was comparable to the distances observed for aromatic-bound iodine in references (1.99(1)-2.07(6) angstrom), and significantly shorter than that observed for aliphatic-bound iodine (2.15(2)-2.16(2) angstrom). These results are in agreement with previous conclusions from X-ray photoelectron spectroscopy and from electro-spray ionization mass spectrometry. These results collectively suggest that the aromatic-bound iodine is stable in the various aquifers of this study. (authors)

  19. Solution Structures of Highly Active Molecular Ir Water-Oxidation Catalysts from Density Functional Theory Combined with High-Energy X-ray Scattering and EXAFS Spectroscopy.

    Science.gov (United States)

    Yang, Ke R; Matula, Adam J; Kwon, Gihan; Hong, Jiyun; Sheehan, Stafford W; Thomsen, Julianne M; Brudvig, Gary W; Crabtree, Robert H; Tiede, David M; Chen, Lin X; Batista, Victor S

    2016-05-04

    The solution structures of highly active Ir water-oxidation catalysts are elucidated by combining density functional theory, high-energy X-ray scattering (HEXS), and extended X-ray absorption fine structure (EXAFS) spectroscopy. We find that the catalysts are Ir dimers with mono-μ-O cores and terminal anionic ligands, generated in situ through partial oxidation of a common catalyst precursor. The proposed structures are supported by (1)H and (17)O NMR, EPR, resonance Raman and UV-vis spectra, electrophoresis, etc. Our findings are particularly valuable to understand the mechanism of water oxidation by highly reactive Ir catalysts. Importantly, our DFT-EXAFS-HEXS methodology provides a new in situ technique for characterization of active species in catalytic systems.

  20. Lasers, extreme UV and soft X-ray

    Energy Technology Data Exchange (ETDEWEB)

    Nilsen, Joseph [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-09-20

    Three decades ago, large ICF lasers that occupied entire buildings were used as the energy sources to drive the first X-ray lasers. Today X-ray lasers are tabletop, spatially coherent, high-repetition rate lasers that enable many of the standard optical techniques such as interferometry to be extended to the soft X-ray regime between wavelengths of 10 and 50 nm. Over the last decade X-ray laser performance has been improved by the use of the grazing incidence geometry, diode-pumped solid-state lasers, and seeding techniques. The dominant X-ray laser schemes are the monopole collisional excitation lasers either driven by chirped pulse amplification (CPA) laser systems or capillary discharge. The CPA systems drive lasing in neon-like or nickel-like ions, typically in the 10 – 30 nm range, while the capillary system works best for neon-like argon at 46.9 nm. Most researchers use nickel-like ion lasers near 14 nm because they are well matched to the Mo:Si multilayer mirrors that have peak reflectivity near 13 nm and are used in many applications. As a result, the last decade has seen the birth of the X-ray free electron laser (XFEL) that can reach wavelengths down to 0.15 nm and the inner-shell Ne laser at 1.46 nm.

  1. Composition and source apportionment of fine particulate matter during extended calm periods in the city of Rijeka, Croatia

    Science.gov (United States)

    Ivošević, T.; Orlić, I.; Bogdanović Radović, I.; Čargonja, M.; Stelcer, E.

    2017-09-01

    In the city of Rijeka, Croatia, an extended, two-year aerosol pollution monitoring campaign was recently completed. During that period, 345 samples of fine fraction of aerosols were collected on stretched Teflon filters. All samples were analyzed by Ion Beam Analysis techniques Proton Induced X-ray Emission and Proton Induced γ-Ray Emission and concentrations of 22 elements were determined. Concentrations of black carbon were determined by Laser Integrated Plate Method. For the Bay of Kvarner, where the city of Rijeka is located, long periods of calm weather are common. As a consequence, during these periods, air pollution is steadily increasing. To pin-point and characterize local, mostly anthropogenic, air pollution sources, only samples collected during the extended calm periods were used in this work. As a cut-off wind speed, speed of 1.5 m/s was used. In that way, out of all 345 samples, only 188 were selected. Those samples were statistically evaluated by means of positive matrix factorization. Results show that from all anthropogenic sources (vehicles, secondary sulphates, smoke, heavy oil combustion, road dust, industry Fe and port activities) only secondary sulphates and heavy oil combustion were significantly higher (40% and 50%, respectively) during calm periods. On the other hand, natural components of aerosol pollution such as soil and sea salts, (typically present in concentrations of 1.4% and 9%, respectively) are practically non-existent for calm weather conditions.

  2. X-ray Point Source Populations in Spiral and Elliptical Galaxies

    Science.gov (United States)

    Colbert, E.; Heckman, T.; Weaver, K.; Strickland, D.

    2002-01-01

    The hard-X-ray luminosity of non-active galaxies has been known to be fairly well correlated with the total blue luminosity since the days of the Einstein satellite. However, the origin of this hard component was not well understood. Some possibilities that were considered included X-ray binaries, extended upscattered far-infrared light via the inverse-Compton process, extended hot 107 K gas (especially in ellipitical galaxies), or even an active nucleus. Chandra images of normal, elliptical and starburst galaxies now show that a significant amount of the total hard X-ray emission comes from individual point sources. We present here spatial and spectral analyses of the point sources in a small sample of Chandra obervations of starburst galaxies, and compare with Chandra point source analyses from comparison galaxies (elliptical, Seyfert and normal galaxies). We discuss possible relationships between the number and total hard luminosity of the X-ray point sources and various measures of the galaxy star formation rate, and discuss possible options for the numerous compact sources that are observed.

  3. Polarisation resonance in X-ray diffraction

    International Nuclear Information System (INIS)

    Goodman, P.; Paterson, D.; Matheson, S.

    1994-01-01

    The study of crystal structures by means of dynamic X-ray diffraction has placed a challenge to theoreticians to revise the X-ray diffraction theory based on Maxwell's equation. In this paper the feasibility of using 'polarisation resonance' as a tool in the determination of absolute configuration for asymmetric structures is investigated. Two (left- and right-handed), σ + and σ- , circular polarization states for 3-beam conditions are considered. Moreover, extending interaction into the 3 rd. dimension (normal to the beam) opens the possibility of absolute configuration determination of asymmetric structures in 3 dimensions. The computational scheme used is shown in terms of scattering diagrams. 7 refs., 1 tab., 6 figs

  4. Skull x-ray

    Science.gov (United States)

    X-ray - head; X-ray - skull; Skull radiography; Head x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  5. Neck x-ray

    Science.gov (United States)

    X-ray - neck; Cervical spine x-ray; Lateral neck x-ray ... There is low radiation exposure. X-rays are monitored so that the lowest amount of radiation is used to produce the image. Pregnant women and ...

  6. X-ray dichroism of rare earth materials

    International Nuclear Information System (INIS)

    Goedkoop, J.B.

    1989-01-01

    The theme of this thesis is the investigation of the strong polarization dependende, or dichroism, that occur in the X-ray absorption spectra of rare earth materials. The rare earth elements distinguish themselves from the other elements through the behaviour of the 4f electrons which form the valence shell. This shell lies deep inside the atom, with the result that influences from the surrounding solid are well screened off by the outer electrons, so that even in the solid the 4f shell behaves very much like a in free atom or ion, and is almost completely spherically symmetric. Perturbations from the solid environment however always disturb this symmetry to some extend, with the result that the absorption spectrum becomes dependent on the mutual orientation of the polarization vector of the radiation and the ion. Earlier the existence of a strong magnetic X-ray dichroism (MXD) in the 3d→4f transitions of rare earths. In this thesis this work is extended, to a small degree theoretically but mainly experimentally. MXD is used in experiments on bulk sample, terbium iron garnet, and on rare earth overlayers on a ferromagnetic surface, Ni(110). The results of the latter study show unequivocally the potential of the MXD technique. The second theme of the thesis concerns experimental developments in soft X-ray spectroscopy. A description is given of a double crystal monochromator beamline that was constructed by our group at LURE, France. Results of the use of an organic crystal - multilayer comination in such a monochromator is described. Also a method is described for the characterization of the resolution of soft X-ray monochromators. Finally a contribution to the characterization of the electron yield technique in the soft X-ray range is given. (author). 296 refs.; 64 figs.; 59 schemes; 9 tabs

  7. X-ray filter for chest X-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    A description is given of an X-ray filter comprised of a sheet of radiation absorbing material with an opening corresponding to the spine and central portion of the heart. The upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter. This filter will permit an acceptable density level of x-ray exposure for the lungs while allowing a higher level of x-ray exposure for the mediastinum areas of the body. (author)

  8. Scanning Transmission X-ray Microscopy: Applications in Atmospheric Aerosol Research

    Energy Technology Data Exchange (ETDEWEB)

    Moffet, Ryan C.; Tivanski, Alexei V.; Gilles, Mary K.

    2011-01-20

    Scanning transmission x-ray microscopy (STXM) combines x-ray microscopy and near edge x-ray absorption fine structure spectroscopy (NEXAFS). This combination provides spatially resolved bonding and oxidation state information. While there are reviews relevant to STXM/NEXAFS applications in other environmental fields (and magnetic materials) this chapter focuses on atmospheric aerosols. It provides an introduction to this technique in a manner approachable to non-experts. It begins with relevant background information on synchrotron radiation sources and a description of NEXAFS spectroscopy. The bulk of the chapter provides a survey of STXM/NEXAFS aerosol studies and is organized according to the type of aerosol investigated. The purpose is to illustrate the current range and recent growth of scientific investigations employing STXM-NEXAFS to probe atmospheric aerosol morphology, surface coatings, mixing states, and atmospheric processing.

  9. X-ray laser interferometry: A new tool for AGEX

    International Nuclear Information System (INIS)

    Wan, A.S.; Moreno, J.C.; Libby, S.B.

    1995-10-01

    Collisionally pumped soft x-ray lasers now operate over a wavelength range extending from 4--40 nm. With the recent advances in the development of multilayer mirrors and beamsplitters in the soft x-ray regime, we can utilize the unique properties of x-ray lasers to study large, rapidly evolving laser-driven plasmas with high electron densities. By employing a shorter wavelength x-ray laser, as compared to using conventional optical laser as the probe source, we can access a much higher density regime while reducing refractive effects which limit the spatial resolution and data interpretation. Using a neon-like yttrium x-ray laser which operates at a wavelength of 15.5 mn, we have performed a series of soft x-ray laser interferometry experiments, operated in the skewed Mach-Zehnder configuration, to characterize plasmas relevant to both weapons and inertial confinement fusion. The two-dimensional density profiles obtained from the interferograms allow us to validate and benchmark our numerical models used to study the physics in the high-energy density regime, relevant to both weapons and inertial confinement fusion

  10. Spatial structure determination of (√3 x √3)R30 degrees and (1.5 x 1.5)R18 degrees CO on Cu(111) using angle-resolved photoemission extended fine structure

    International Nuclear Information System (INIS)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A.

    1997-01-01

    The authors report a study of the spatial structure of (√3 x √3)R30 degrees (low coverage) and (1.5 x 1.5)R18 degrees (intermediate coverage) CO adsorbed on Cu(111), using the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) technique at beamline 9.3.2 at the Advanced Light Source. The CO molecule adsorbs on an atop site for both adsorption phases. Full multiple-scattering spherical-wave (MSSW) calculations were used to extract the C-Cu. bond length and the first Cu-Cu layer spacing for each adsorption phase. The authors find that the C-Cu bond length remains unchanged with increasing coverage, but the 1st Cu-Cu layer spacing contracts at the intermediate coverage. They calculate the bending mode force constant in the (1.5 x 1.5)R18 degrees phase to be K δ = 2.2 (1) x 10 -12 dyne-cm/rad from their experimentally determined bond lengths combined with previously published infra-red absorption frequencies

  11. X-ray magnification studies in biology and some other applications. Chapter 6

    International Nuclear Information System (INIS)

    Van Emden, H.F.; Ely, R.V.

    1980-01-01

    The facilities of X-ray mirofocal equipment of particular value in biological research are outlined. The applications of X-ray magnification techniques in various entomological studies is described particularly for observing plant pests. The value of these techniques in miscellaneous botanical studies is also described, e.g. in seed quality analysis, the monitoring of the early stages of reproductive development in seeds, the distribution of crystals in plant tissues and the X-ray absorption of cell constituents. Reference is also made to the use of transmission target techniques which permit higher direct X-ray magnifications of small selected specimen areas, e.g. penetration of paints and resins into timber. Further miscellaneous research applications of X-ray magnification techniques are described, e.g. in geological studies of fossils and sedimentary rocks, in archaeological studies of metal objects, excavated human bones etc. and in Fine Art studying the technique of past artists and detecting art forgeries. Finally it is pointed out that another important application of microfocal X-rays could be in the study of radiation damage in living animals or plants. (U.K.)

  12. Quantitative X-ray analysis of pigments

    International Nuclear Information System (INIS)

    Araujo, M. Marrocos de

    1987-01-01

    The 'matrix-flushing' and the 'adiabatic principle' methods have been applied for the quantitative analysis through X-ray diffraction patterns of pigments and extenders mixtures, frequently used in paint industry. The results obtained have shown the usefulness of these methods, but still ask for improving their accuracy. (Author) [pt

  13. Development of synchrotron x-ray micro-spectroscopic techniques and application to problems in low temperature geochemistry. Progress report

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    The focus of the technical development effort has been the development of apparatus and techniques for the utilization of X-ray Fluorescence (XRF), Extended X-ray Absorption Fine Structure (EXAFS) and X-ray Absorption Near Edge Structure (XANES) spectroscopies in a microprobe mode. The present XRM uses white synchrotron radiation (3 to 30 keV) from a bending magnet for trace element analyses using the x-ray fluorescence technique Two significant improvements to this device have been recently implemented. Focusing Mirror: An 8:1 ellipsoidal mirror was installed in the X26A beamline to focus the incident synchrotron radiation and thereby increase the flux on the sample by about a factor of 30. Incident Beam Monochromator: The monochromator has been successfully installed and commissioned in the X26A beamline upstream of the mirror to permit analyses with focused monochromatic radiation. The monochromator consists of a channel-cut silicon (111) crystal driven by a Klinger stepping motor translator. We have demonstrated the operating range of this instrument is 4 and 20 keV with 0.01 eV steps and produces a beam with a {approximately}10{sup {minus}4} energy bandwidth. The primary purpose of the monochromator is for x-ray absorption spectroscopy (XAS) measurements but it is also used for selective excitation in trace element microanalysis. To date, we have conducted XANES studies on Ti, Cr, Fe, Ce and U, spanning the entire accessible energy range and including both K and L edge spectra. Practical detection limits for microXANES are 10--100 ppM for 100 {mu}m spots.

  14. X-ray filter for chest x-rays

    International Nuclear Information System (INIS)

    Ferlic, D.J.

    1984-01-01

    Filter for use in medical x-ray apparatus to permit higher intensity x-ray exposure in the heart and mediastinum area while maintaining a normal level of x-ray exposure in other areas of the body, particlarly in the lung area. The filter comprises a sheet of radiation absorbing material having an opening therein, said opening corresponding to the spine and central portion of the heart. Accordingly, the upper portion of the filter exhibits a relatively narrow opening which becomes gradually wider toward the lower portion of the filter

  15. Design and performance of the 2-ID-B scanning x-ray microscope

    International Nuclear Information System (INIS)

    McNulty, I.

    1998-01-01

    We have constructed a high resolution scanning x-ray microscope at the 2-ID-B beamline at the Advanced Photon Source for 1-4 keV x-ray imaging and microspectroscopy experiments. The microscope uses a Fresnel zone plate to focus coherent x-ray undulator radiation to a 150 nm focal spot on a sample. The spectral flux in the focus is 10 8 ph/s/0.1% BW. X-ray photons transmitted by the sample are detected by an avalanche photodiode as the sample is scanned to form an absorption image. The sample stage has both coarse and fine translation axes for raster scanning and a rotation axis for microtomography experiments. The incident x-ray beam energy can also be scanned via the 2-ID-B monochromator while the sample is kept in focus to record spatially resolved absorption spectra. We have measured the performance of the instrument with various test objects. The microscope hardware, software, and performance are discussed in this paper

  16. A compact scanning soft X-ray microscope

    International Nuclear Information System (INIS)

    Trail, J.A.

    1989-01-01

    Soft x-ray microscopes operating at wavelengths between 2.3 nm and 4.4 nm are capable of imaging wet biological cells with a resolution many times that of a visible light microscope. Several such soft x-ray microscopes have been constructed. However, with the exception of contact microscopes, all use synchrotrons as the source of soft x-ray radiation and Fresnel zone plates as the focusing optics. These synchrotron based microscopes are very successful but have the disadvantage of limited access. This dissertation reviews the construction and performance of a compact scanning soft x-ray microscope whose size and accessibility is comparable to that of an electron microscope. The microscope uses a high-brightness laser-produced plasma as the soft x-ray source and normal incidence multilayer-coated mirrors in a Schwarzschild configuration as the focusing optics. The microscope operates at a wavelength of 14 nm, has a spatial resolution of 0.5 μm, and has a soft x-ray photon flux through the focus of 10 4 -10 5 s -1 when operated with only 170 mW of average laser power. The complete system, including the laser, fits on a single 4' x 8' optical table. The significant components of the compact microscope are the laser-produced plasma (LPP) source, the multilayer coatings, and the Schwarzschild objective. These components are reviewed, both with regard to their particular use in the current microscope and with regard to extending the microscope performance to higher resolution, higher speed, and operation at shorter wavelengths. Measurements of soft x-ray emission and debris emission from our present LPP source are presented and considerations given for an optimal LPP source. The LPP source was also used as a broadband soft x-ray source for measurement of normal incidence multilayer mirror reflectance in the 10-25 nm spectral region

  17. Spherical grating based x-ray Talbot interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Cong, Wenxiang, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Xi, Yan, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu; Wang, Ge, E-mail: congw@rpi.edu, E-mail: xiy2@rpi.edu, E-mail: wangg6@rpi.edu [Biomedical Imaging Center, Rensselaer Polytechnic Institute, Troy, New York 12180 (United States)

    2015-11-15

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  18. Spherical grating based x-ray Talbot interferometry

    International Nuclear Information System (INIS)

    Cong, Wenxiang; Xi, Yan; Wang, Ge

    2015-01-01

    Purpose: Grating interferometry is a state-of-the-art x-ray imaging approach, which can acquire information on x-ray attenuation, phase shift, and small-angle scattering simultaneously. Phase-contrast imaging and dark-field imaging are very sensitive to microstructural variation and offers superior contrast resolution for biological soft tissues. However, a common x-ray tube is a point-like source. As a result, the popular planar grating imaging configuration seriously restricts the flux of photons and decreases the visibility of signals, yielding a limited field of view. The purpose of this study is to extend the planar x-ray grating imaging theory and methods to a spherical grating scheme for a wider range of preclinical and clinical applications. Methods: A spherical grating matches the wave front of a point x-ray source very well, allowing the perpendicular incidence of x-rays on the grating to achieve a higher visibility over a larger field of view than the planer grating counterpart. A theoretical analysis of the Talbot effect for spherical grating imaging is proposed to establish a basic foundation for x-ray spherical gratings interferometry. An efficient method of spherical grating imaging is also presented to extract attenuation, differential phase, and dark-field images in the x-ray spherical grating interferometer. Results: Talbot self-imaging with spherical gratings is analyzed based on the Rayleigh–Sommerfeld diffraction formula, featuring a periodic angular distribution in a polar coordinate system. The Talbot distance is derived to reveal the Talbot self-imaging pattern. Numerical simulation results show the self-imaging phenomenon of a spherical grating interferometer, which is in agreement with the theoretical prediction. Conclusions: X-ray Talbot interferometry with spherical gratings has a significant practical promise. Relative to planar grating imaging, spherical grating based x-ray Talbot interferometry has a larger field of view and

  19. X-ray geometrical smoothing effect in indirect x-ray-drive implosion

    International Nuclear Information System (INIS)

    Mochizuki, Takayasu; Sakabe, Shuji; Yamanaka, Chiyoe

    1983-01-01

    X-ray geometrical smoothing effect in indirect X-ray drive pellet implosion for inertial confinement fusion has been numerically analyzed. Attainable X-ray driven ablation pressure has been found to be coupled with X-ray irradiation uniformity. (author)

  20. Low-energy gamma rays from Cygnus X-1

    International Nuclear Information System (INIS)

    Roques, J.P.; Mandrou, P.; Lebrun, F.; Paul, J.

    1985-08-01

    Cyg X-1 was observed by the CESR balloon borne telescope OPALE, in June 1976. The high-energy spectrum of the source, which was in its ''superlow state'', was seen to extend well beyond 1 MeV. In this paper, the observed low-energy γ-ray component of Cyg X-1 is compared with the predictions of recent models involving accretion onto a stellar black hole, and including a possible contribution from the pair-annihilation 511 keV γ-ray line

  1. Fine-Pitch CdTe Detector for Hard X-Ray Imaging and Spectroscopy of the Sun with the FOXSI Rocket Experiment

    Science.gov (United States)

    Ishikawa, Shin-nosuke; Katsuragawa, Miho; Watanabe, Shin; Uchida, Yuusuke; Takeda, Shin'lchiro; Takahashi, Tadayuki; Saito, Shinya; Glesener, Lindsay; Bultrago-Casas, Juan Camilo; Krucker, Sam; hide

    2016-01-01

    We have developed a fine-pitch hard X-ray (HXR) detector using a cadmium telluride (CdTe) semiconductor for imaging and spectroscopy for the second launch of the Focusing Optics Solar X-ray Imager (FOXSI). FOXSI is a rocket experiment to perform high sensitivity HXR observations from 4 to 15 keV using the new technique of HXR focusing optics. The focal plane detector requires less than 100 micrometers position resolution (to take advantage of the angular resolution of the optics) and approximately equals 1 keV energy resolution (full width at half maximum (FWHM)) for spectroscopy down to 4 keV, with moderate cooling (greater than -30 C). Double-sided silicon strip detectors were used for the first FOXSI flight in 2012 to meet these criteria. To improve the detectors' efficiency (66% at 15 keV for the silicon detectors) and position resolution of 75 micrometers for the second launch, we fabricated double-sided CdTe strip detectors with a position resolution of 60 micrometers and almost 100% efficiency for the FOXSI energy range. The sensitive area is 7.67 mm x 7.67 mm, corresponding to the field of view of 791'' x 791''. An energy resolution of 1 keV (FWHM) and low-energy threshold of approximately equals 4 keV were achieved in laboratory calibrations. The second launch of FOXSI was performed on 11 December 2014, and images from the Sun were successfully obtained with the CdTe detector. Therefore, we successfully demonstrated the detector concept and the usefulness of this technique for future HXR observations of the Sun.

  2. Different X-ray spectral evolution for black hole X-ray binaries in dual tracks of radio-X-ray correlation

    International Nuclear Information System (INIS)

    Cao, Xiao-Feng; Wu, Qingwen; Dong, Ai-Jun

    2014-01-01

    Recently, an 'outlier' track of radio-X-ray correlation was found, which is much steeper than the former universal correlation, where dual tracks were speculated to be triggered by different accretion processes. In this work, we test this issue by exploring hard X-ray spectral evolution in four black-hole X-ray binaries with multiple, quasi-simultaneous radio and X-ray observations. First, we find that hard X-ray photon indices, Γ, are negatively and positively correlated with X-ray fluxes when the X-ray flux, F 3-9 keV , is below and above a critical flux, F X, crit , which are consistent with predictions of the advection-dominated accretion flow and the disk-corona model, respectively. Second, and most importantly, we find that the radio-X-ray correlations are also clearly different when the X-ray fluxes are higher and lower than the critical flux as defined by X-ray spectral evolution. The data points with F 3-9 keV ≳ F X, crit have a steeper radio-X-ray correlation (F X ∝F R b and b ∼ 1.1-1.4), which roughly forms the ''outlier'' track. However, the data points with anti-correlation of Γ – F 3-9 keV either stay in the universal track with b ∼ 0.61 or stay in the transition track (from the universal to 'outlier' tracks or vice versa). Therefore, our results support that the universal and ''outlier'' tracks of radio-X-ray correlations are regulated by radiatively inefficient and radiatively efficient accretion model, respectively.

  3. Comparison of x-ray output of inverter-type x-ray equipment

    International Nuclear Information System (INIS)

    Asano, Hiroshi; Miyake, Hiroyuki; Yamamoto, Keiichi

    2000-01-01

    The x-ray output of 54 inverter-type x-ray apparatuses used at 18 institutions was investigated. The reproducibility and linearity of x-ray output and variations among the x-ray equipment were evaluated using the same fluorescence meter. In addition, the x-ray apparatuses were re-measured using the same non-invasive instrument to check for variations in tube voltage, tube current, and irradiation time. The non-invasive instrument was calibrated by simultaneously obtaining measurements with an invasive instrument, employing the tube voltage and current used for the invasive instrument, and the difference was calculated. Reproducibility of x-ray output was satisfactory for all x-ray apparatuses. The coefficient of variation was 0.04 or less for irradiation times of 5 ms or longer. In 84.3% of all x-ray equipment, variation in the linearity of x-ray output was 15% or less for an irradiation time of 5 ms. However, for all the apparatuses, the figure was 50% when irradiation time was the shortest (1 to 3 ms). Variation in x-ray output increased as irradiation time decreased. Variation in x-ray output ranged between 1.8 and 2.5 compared with the maximum and minimum values, excluding those obtained at the shortest irradiation time. The relative standard deviation ranged from ±15.5% to ±21.0%. The largest variation in x-ray output was confirmed in regions irradiated for the shortest time, with smaller variations observed for longer irradiation times. The major factor responsible for variation in x-ray output in regions irradiated for 10 ms or longer, which is a relatively long irradiation time, was variation in tube current. Variation in tube current was slightly greater than 30% at maximum, with an average value of 7% compared with the preset tube current. Variations in x-ray output in regions irradiated for the shortest time were due to photographic effects related to the rise and fall times of the tube voltage waveform. Accordingly, in order to obtain constant x-ray

  4. Application of synchrotron radiation to x-ray fluorescence analysis of trace elements

    International Nuclear Information System (INIS)

    Gordon, B.M.; Jones, K.W.; Hanson, A.L.

    1986-08-01

    The development of synchrotron radiation x-ray sources has provided the means to greatly extend the capabilities of x-ray fluorescence analysis for determinations of trace element concentrations. A brief description of synchrotron radiation properties provides a background for a discussion of the improved detection limits compared to existing x-ray fluorescence techniques. Calculated detection limits for x-ray microprobes with micrometer spatial resolutions are described and compared with experimental results beginning to appear from a number of laboratories. The current activities and future plans for a dedicated x-ray microprobe beam line at the National Synchrotron Light Source (NSLS) of Brookhaven National Laboratory are presented

  5. Chest X-Ray

    Medline Plus

    Full Text Available ... about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed x-ray exams and use a very small dose of ... of the inside of the chest. A chest x-ray is used to evaluate the lungs, heart and ...

  6. Exploratory X-ray Monitoring of z>4 Radio-Quiet Quasars

    Science.gov (United States)

    Shemmer, Ohad

    2017-09-01

    We propose to extend our exploratory X-ray monitoring project of some of the most distant radio-quiet quasars by obtaining one snapshot observation per Cycle for each of four sources at z>4. Combining these observations with six available X-ray epochs per source will provide basic temporal information over rest-frame timescales of 3-5 yr. We are supporting this project with Swift monitoring of luminous radio-quiet quasars at z=1.3-2.7 to break the L-z degeneracy and test evolutionary scenarios of the central engine in active galactic nuclei. Our ultimate goal is to provide a basic assessment of the X-ray variability properties of luminous quasars at the highest accessible redshifts that will serve as the benchmark for X-ray variability studies of such sources with future X-ray missions.

  7. A phase-contrast X-ray imaging system--with a 60x30 mm field of view--based on a skew-symmetric two-crystal X-ray interferometer

    Energy Technology Data Exchange (ETDEWEB)

    Yoneyama, Akio E-mail: a-yoneya@rd.hitachi.co.jp; Takeda, Tohoru; Tsuchiya, Yoshinori; Wu Jin; Lwin, T.-T.; Koizumi, Aritaka; Hyodo, Kazuyuki; Itai, Yuji

    2004-05-01

    A phase-contrast X-ray imaging system - with a 60x30 mm field of view - for biomedical observations was developed. To extend the observation field of view, the system is fitted with a skew-symmetric two-crystal X-ray interferometer. To attain the required sub-nanoradian mechanical stability between the crystal blocks for precise operation, the interferometer was mounted on two extremely rigid positioning tables (one with a sleeve bearings) and was controlled by a feedback positioning system using phase-lock interferometry. The imaging system produced a 60x30 mm interference pattern with 60% visibility using 17.7 keV monochromatic synchrotron X-rays at the Photon Factory. It was then used to perform radiographic observation (i.e., phase mapping) of rat liver vessels. These results indicate that this imaging system can be used to perform observations of large and in vivo biological samples.

  8. A phase-contrast X-ray imaging system--with a 60x30 mm field of view--based on a skew-symmetric two-crystal X-ray interferometer

    International Nuclear Information System (INIS)

    Yoneyama, Akio; Takeda, Tohoru; Tsuchiya, Yoshinori; Wu Jin; Lwin, T.-T.; Koizumi, Aritaka; Hyodo, Kazuyuki; Itai, Yuji

    2004-01-01

    A phase-contrast X-ray imaging system - with a 60x30 mm field of view - for biomedical observations was developed. To extend the observation field of view, the system is fitted with a skew-symmetric two-crystal X-ray interferometer. To attain the required sub-nanoradian mechanical stability between the crystal blocks for precise operation, the interferometer was mounted on two extremely rigid positioning tables (one with a sleeve bearings) and was controlled by a feedback positioning system using phase-lock interferometry. The imaging system produced a 60x30 mm interference pattern with 60% visibility using 17.7 keV monochromatic synchrotron X-rays at the Photon Factory. It was then used to perform radiographic observation (i.e., phase mapping) of rat liver vessels. These results indicate that this imaging system can be used to perform observations of large and in vivo biological samples

  9. Structure and nature of the metal-support interface: characterization of iridium clusters on magnesium oxide by extended x-ray absorption fine structure spectroscopy

    NARCIS (Netherlands)

    Zon, van F.B.M.; Maloney, S.D.; Gates, B.C.; Koningsberger, D.C.

    1993-01-01

    X-ray absorption spectroscopy was used to characterize the metal-support interface in catalysts consisting of very small Ir clusters of nearly uniform nuclearity on the surface of MgO powder. [Ir4(CO)12] on MgO was converted in high yield into [HIr4(CO)11]- and sep. into [Ir6(CO)15]2-. EXAFS data

  10. X-ray Absorption Fine Structure (XAFS) Studies of Oxide Glasses—A 45-Year Overview

    Science.gov (United States)

    Zanotto, Edgar Dutra

    2018-01-01

    X-ray Absorption Fine Structure (XAFS) spectroscopy has been widely used to characterize the short-range order of glassy materials since the theoretical basis was established 45 years ago. Soon after the technique became accessible, mainly due to the existence of Synchrotron laboratories, a wide range of glassy materials was characterized. Silicate glasses have been the most studied because they are easy to prepare, they have commercial value and are similar to natural glasses, but borate, germanate, phosphate, tellurite and other less frequent oxide glasses have also been studied. In this manuscript, we review reported advances in the structural characterization of oxide-based glasses using this technique. A focus is on structural characterization of transition metal ions, especially Ti, Fe, and Ni, and their role in different properties of synthetic oxide-based glasses, as well as their important function in the formation of natural glasses and magmas, and in nucleation and crystallization. We also give some examples of XAFS applications for structural characterization of glasses submitted to high pressure, glasses used to store radioactive waste and medieval glasses. This updated, comprehensive review will likely serve as a useful guide to clarify the details of the short-range structure of oxide glasses. PMID:29382102

  11. Wide field X-ray telescopes: Detecting X-ray transients/afterglows related to gamma ray bursts

    International Nuclear Information System (INIS)

    Hudec, Rene; Pina, Ladislav; Inneman, Adolf; Gorenstein, Paul; Rezek, Tomas

    1999-01-01

    The recent discovery of X-ray afterglows of GRBs opens the possibility of analyses of GRBs by their X-ray detections. However, imaging X-ray telescopes in current use mostly have limited field of view. Alternative X-ray optics geometries achieving very large fields of view have been theoretically suggested in the 70ies but not constructed and used so far. We review the geometries and basic properties of the wide-field X-ray optical systems based on one- and two-dimensional lobster-eye geometry and suggest technologies for their development and construction. First results of the development of double replicated X-ray reflecting flats for use in one-dimensional X-ray optics of lobster eye type are presented and discussed. Optimum strategy for locating GRBs upon their X-ray counterparts is also presented and discussed

  12. X-ray Spectroscopy of Hot Dense Plasmas: Experimental Limits, Line Shifts and Field Effects

    International Nuclear Information System (INIS)

    Renner, Oldrich; Sauvan, Patrick; Dalimier, Elisabeth; Riconda, Caterina; Rosmej, Frank B.; Weber, Stefan; Nicolai, Philippe; Peyrusse, Olivier; Uschmann, Ingo; Hoefer, Sebastian; Kaempfer, Tino; Loetzsch, Robert; Zastrau, Ulf; Foerster, Eckhart; Oks, Eugene

    2008-01-01

    High-resolution x-ray spectroscopy is capable of providing complex information on environmental conditions in hot dense plasmas. Benefiting from application of modern spectroscopic methods, we report experiments aiming at identification of different phenomena occurring in laser-produced plasma. Fine features observed in broadened profiles of the emitted x-ray lines and their satellites are interpreted using theoretical models predicting spectra modification under diverse experimental situations.

  13. X ray absorption fine structure of systems in the anharmonic limit

    Science.gov (United States)

    Mustredeleon, J.; Conradson, S. D.; Batistic, I.; Bishop, A. R.; Raistrick, I.; Jackson, W. E.; Brown, G. E.

    A new approach to the analysis of x-ray absorption fine structure (XAFS) data is presented. It is based on the use of radial distribution functions directly calculated from a single-particle ion Hamiltonian containing model potentials. The starting point of this approach is the statistical average of the XAFS for an atomic pair. This average can be computed using a radial distribution function (RDF), which can be expressed in terms of the eigenvalues and wavefunctions associated with the model potential. The pair potential describing the ionic motion is then expressed in terms of parameters that are determined by fitting this statistical average to the experimental XAFS spectrum. This approach allows the use of XAFS as a tool for mapping near-neighbor interatomic potentials, and allows the treatment of systems which exhibit strongly anharmonic potentials which can be treated by perturbative methods. Using this method we have analyzed the high temperature behavior of the oxygen contributions to the Fe K-edge XAFS in the ferrosilicate minerals andradite (Ca3Fe2Si3O12) and magnesiowustite (Mg(0.9)Fe(0.1)O). Using a temperature dependent anharmonic correction derived from these model compounds, we have found evidence for a local structural change in the Fe-O coordination environment upon melting of the geologically important mineral fayalite (Fe2SiO4). We have also employed this method to the study of the axial oxygen contributions to the polarized Cu K-edge XAFS on oriented samples of YBa2Cu3O7 and related compounds. From this study we find evidence for an axial oxygen-centered lattice distortion accompanying the superconducting phase transition and a correlation between this distortion and Tc. The relation of the observed lattice distortion to mechanisms of superconductivity is discussed.

  14. X-ray absorption fine structure of systems in the anharmonic limit

    International Nuclear Information System (INIS)

    Mustre de Leon, J.; Conradson, S.D.; Batistic, I.; Bishop, A.R.; Raistrick, I.; Jackson, W.E.; Brown, G.E.

    1991-01-01

    A new approach to the analysis of x-ray absorption fine structure (XAFS) data is presented. It is based on the use of radial distribution functions directly calculated from a single-particle ion hamiltonian containing model potentials. The starting point of this approach is the statistical average of the XAFS for an atomic pair. This average can be computed using a radial distribution function (RDF), which can be expressed in terms of the eigenvalues and wavefunctions associated with the model potential. The pair potential describing the ionic motion is then expressed in terms of parameters that are determined by fitting this statistical average to the experimental XAFS spectrum. This approach allow the use of XAFS as a tool for mapping near-neighbor interatomic potentials, and allows the treatment of systems which exhibit strongly anharmonic potentials which can be treated by perturbative methods. Using this method we have analyzed the high temperature behavior of the oxygen contributions to the Fe K-edge XAFS in the ferrosilicate minerals andradite (Ca 3 Fe 2 Si 3 O 12 ) and magnesiowustite (Mg 0.9 Fe 0.1 O). Using a temperature dependent anharmonic correction derived from these model compounds, we have found evidence for a local structural change in the Fe-O coordination environment upon melting of the geologically important mineral fayalite (Fe 2 SiO 4 ). We have also employed this method to the study of the axial oxygen contributions to the polarized Cu K-edge XAFS on oriented samples of YBa 2 Cu 3 O 7 and related compounds. From this study we find evidence for an axial oxygen-centered lattice distortion accompanying the superconducting phase transition and a correlation between this distortion and T c . The relation of the observed lattice distortion to mechanisms of superconductivity is discussed. 33 refs., 6 figs

  15. Thin Film Structure of Tetraceno(2,3-B)thiophene Characterized By Grazing Incidence X-Ray Scattering And Near-Edge X-Ray Absorption Fine Structure Analysis

    International Nuclear Information System (INIS)

    Yuan, Q.; Mannsfeld, S.C.B.; Tang, M.L.; Toney, M.F.; Luening, J.; Bao, Z.A.

    2008-01-01

    Understanding the structure-property relationship for organic semiconductors is crucial in rational molecular design and organic thin film process control. Charge carrier transport in organic field-effect transistors predominantly occurs in a few semiconductor layers close to the interface in contact with the dielectric layer, and the transport properties depend sensitively on the precise molecular packing. Therefore, a better understanding of the impact of molecular packing and thin film morphology in the first few monolayers above the dielectric layer on charge transport is needed to improve the transistor performance. In this Article, we show that the detailed molecular packing in thin organic semiconductor films can be solved through a combination of grazing incidence X-ray diffraction (GIXD), near-edge X-ray absorption spectra fine structure (NEXAFS) spectroscopy, energy minimization packing calculations, and structure refinement of the diffraction data. We solve the thin film structure for 2 and 20 nm thick films of tetraceno(2,3-b)thiophene and detect only a single phase for these thicknesses. The GIXD yields accurate unit cell dimensions, while the precise molecular arrangement in the unit cell was found from the energy minimization and structure refinement; the NEXAFS yields a consistent molecular tilt. For the 20 nm film, the unit cell is triclinic with a = 5.96 A, b = 7.71 A, c = 15.16 A, alpha = 97.30 degrees, beta = 95.63 degrees, gamma = 90 degrees; there are two molecules per unit cell with herringbone packing (49-59 degree angle) and tilted about 7 degrees from the substrate normal. The thin film structure is significantly different from the bulk single-crystal structure, indicating the importance of characterizing thin film to correlate with thin film device performance. The results are compared to the corresponding data for the chemically similar and widely used pentacene. Possible effects of the observed thin film structure and morphology on

  16. GPU-accelerated depth map generation for X-ray simulations of complex CAD geometries

    Science.gov (United States)

    Grandin, Robert J.; Young, Gavin; Holland, Stephen D.; Krishnamurthy, Adarsh

    2018-04-01

    Interactive x-ray simulations of complex computer-aided design (CAD) models can provide valuable insights for better interpretation of the defect signatures such as porosity from x-ray CT images. Generating the depth map along a particular direction for the given CAD geometry is the most compute-intensive step in x-ray simulations. We have developed a GPU-accelerated method for real-time generation of depth maps of complex CAD geometries. We preprocess complex components designed using commercial CAD systems using a custom CAD module and convert them into a fine user-defined surface tessellation. Our CAD module can be used by different simulators as well as handle complex geometries, including those that arise from complex castings and composite structures. We then make use of a parallel algorithm that runs on a graphics processing unit (GPU) to convert the finely-tessellated CAD model to a voxelized representation. The voxelized representation can enable heterogeneous modeling of the volume enclosed by the CAD model by assigning heterogeneous material properties in specific regions. The depth maps are generated from this voxelized representation with the help of a GPU-accelerated ray-casting algorithm. The GPU-accelerated ray-casting method enables interactive (> 60 frames-per-second) generation of the depth maps of complex CAD geometries. This enables arbitrarily rotation and slicing of the CAD model, leading to better interpretation of the x-ray images by the user. In addition, the depth maps can be used to aid directly in CT reconstruction algorithms.

  17. X-ray Absorption Spectroscopy Characterization of Electrochemical Processes in Renewable Energy Storage and Conversion Devices

    Energy Technology Data Exchange (ETDEWEB)

    Farmand, Maryam [George Washington Univ., Washington, DC (United States)

    2013-05-19

    The development of better energy conversion and storage devices, such as fuel cells and batteries, is crucial for reduction of our global carbon footprint and improving the quality of the air we breathe. However, both of these technologies face important challenges. The development of lower cost and better electrode materials, which are more durable and allow more control over the electrochemical reactions occurring at the electrode/electrolyte interface, is perhaps most important for meeting these challenges. Hence, full characterization of the electrochemical processes that occur at the electrodes is vital for intelligent design of more energy efficient electrodes. X-ray absorption spectroscopy (XAS) is a short-range order, element specific technique that can be utilized to probe the processes occurring at operating electrode surfaces, as well for studying the amorphous materials and nano-particles making up the electrodes. It has been increasingly used in recent years to study fuel cell catalysts through application of the and #916; and mgr; XANES technique, in combination with the more traditional X-ray Absorption Near Edge Structure (XANES) and Extended X-ray Absorption Fine Structure (EXAFS) techniques. The and #916; and mgr; XANES data analysis technique, previously developed and applied to heterogeneous catalysts and fuel cell electrocatalysts by the GWU group, was extended in this work to provide for the first time space resolved adsorbate coverages on both electrodes of a direct methanol fuel cell. Even more importantly, the and #916; and mgr; technique was applied for the first time to battery relevant materials, where bulk properties such as the oxidation state and local geometry of a cathode are followed.

  18. An imaging escape gated MPWC for hard X-ray astronomy

    International Nuclear Information System (INIS)

    Ubertini, P.; Bazzano, A.; Boccaccini, L.; La Padula, C.; Mastropietro, M.; Patriarca, R.; Polcaro, V.F.; Barbareschi, L.; Perotti, F.; Villa, G.; Butler, R.C.; Di Cocco, G.; Spada, G.; Charalambous, P.; Dean, A.J.; Stephen, J.B.

    1983-01-01

    A scientific forward step in the hard X-ray and soft gamma-ray astronomy will only be possible with the use of a new generation of space borne instruments. Their main characteristics have to be the two-dimensional imaging capability over a large collecting area and the fine spectral resolution in order to discriminate between the weak signal coming from cosmic sources to be detected and the strong background induced by cosmic rays, in the space environment, on the detector. To reach this goal we have developed a new hard X-ray position sensitive proportional counter operating with the escape gate technique in the range 15-150 keV, to be used together with a pseudo-random coded mask in order to obtain sky images. The detector is a high pressure (5 bar) xenon-argon-isobutane filled chamber with a spatial resolution of 30x2 mm and a spectral resolution of 5% at 60 keV on the sensitive area of 3000 cm 2 . (orig.)

  19. Healing X-ray scattering images

    Directory of Open Access Journals (Sweden)

    Jiliang Liu

    2017-07-01

    Full Text Available X-ray scattering images contain numerous gaps and defects arising from detector limitations and experimental configuration. We present a method to heal X-ray scattering images, filling gaps in the data and removing defects in a physically meaningful manner. Unlike generic inpainting methods, this method is closely tuned to the expected structure of reciprocal-space data. In particular, we exploit statistical tests and symmetry analysis to identify the structure of an image; we then copy, average and interpolate measured data into gaps in a way that respects the identified structure and symmetry. Importantly, the underlying analysis methods provide useful characterization of structures present in the image, including the identification of diffuse versus sharp features, anisotropy and symmetry. The presented method leverages known characteristics of reciprocal space, enabling physically reasonable reconstruction even with large image gaps. The method will correspondingly fail for images that violate these underlying assumptions. The method assumes point symmetry and is thus applicable to small-angle X-ray scattering (SAXS data, but only to a subset of wide-angle data. Our method succeeds in filling gaps and healing defects in experimental images, including extending data beyond the original detector borders.

  20. Pixel detectors for x-ray imaging spectroscopy in space

    International Nuclear Information System (INIS)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L

    2009-01-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  1. Pixel detectors for x-ray imaging spectroscopy in space

    Energy Technology Data Exchange (ETDEWEB)

    Treis, J; Andritschke, R; Hartmann, R; Herrmann, S; Holl, P; Lauf, T; Lechner, P; Lutz, G; Meidinger, N; Porro, M; Richter, R H; Schopper, F; Soltau, H; Strueder, L [MPI Semiconductor Laboratory, Otto-Hahn-Ring 6, D-81739 Munich (Germany)], E-mail: jft@hll.mpg.de

    2009-03-15

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 x 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  2. The importance of conventional X-ray thorax examination for heart diagnoses

    International Nuclear Information System (INIS)

    Kuhn, H.M.

    1982-01-01

    In the case that a deseased heart changes its shape or size, typical X-ray signs are generated that can be monitored with conventional X-ray diagnostic like: thorax-overview, images, cymography, tomography. They allow a conclusion towards the pathoanatomy of the particular heart-chambers and the corresponding change in hemodynamics with respect to usual topography. The large vessels and the lungs usually offer additional X-ray signs that extend those of the heart and this way help to assure diagnoses. The usual X-ray findings at the heart, the coronary vessels and the lungs are represented comprehensively and traced back to their origins. (orig.) [de

  3. X-ray bursts observed with JEM-X

    DEFF Research Database (Denmark)

    Brandt, Søren Kristian; Chenevez, Jérôme; Lund, Niels

    2006-01-01

    We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found.......We report on the search for X-ray bursts in the JEM-X X-ray monitor on INTEGRAL during the first two years of operations. More than 350 bursts from 25 different type-I X-ray burst sources were found....

  4. A Chandra High-Resolution X-ray Image of Centaurus A.

    Science.gov (United States)

    Kraft; Forman; Jones; Kenter; Murray; Aldcroft; Elvis; Evans; Fabbiano; Isobe; Jerius; Karovska; Kim; Prestwich; Primini; Schwartz; Schreier; Vikhlinin

    2000-03-01

    We present first results from a Chandra X-Ray Observatory observation of the radio galaxy Centaurus A with the High-Resolution Camera. All previously reported major sources of X-ray emission including the bright nucleus, the jet, individual point sources, and diffuse emission are resolved or detected. The spatial resolution of this observation is better than 1&arcsec; in the center of the field of view and allows us to resolve X-ray features of this galaxy not previously seen. In particular, we resolve individual knots of emission in the inner jet and diffuse emission between the knots. All of the knots are diffuse at the 1&arcsec; level, and several exhibit complex spatial structure. We find the nucleus to be extended by a few tenths of an arcsecond. Our image also suggests the presence of an X-ray counterjet. Weak X-ray emission from the southwest radio lobe is also seen, and we detect 63 pointlike galactic sources (probably X-ray binaries and supernova remnants) above a luminosity limit of approximately 1.7x1037 ergs s-1.

  5. X-Ray and Near-Infrared Spectroscopy of Dim X-Ray Point Sources Constituting the Galactic Ridge X-Ray Emission

    Directory of Open Access Journals (Sweden)

    Kumiko Morihana

    2014-12-01

    Full Text Available We present the results of X-ray and Near-Infrared observations of the Galactic Ridge X-ray Emission (GRXE. We extracted 2,002 X-ray point sources in the Chandra Bulge Field (l =0°.113, b = 1°.424 down to ~10-14.8 ergscm-2s-1 in 2-8 keV band with the longest observation (900 ks of the GRXE. Based on X-ray brightness and hardness, we classied the X-ray point sources into three groups: A (hard, B (soft and broad spectrum, and C (soft and peaked spectrum. In order to know populations of the X-ray point sources, we carried out NIR imaging and spectroscopy observation. We identied 11% of X-ray point sources with NIR and extracted NIR spectra for some of them. Based on X-ray and NIR properties, we concluded that non-thermal sources in the group A are mostly active galactic nuclei and the thermal sources are mostly white dwarf binaries such as cataclysmic variables (CVs and Pre-CVs. We concluded that the group B and C sources are X-ray active stars in flare and quiescence, respectively.

  6. Deep Chandra Observations of ESO 428-G014. II. Spectral Properties and Morphology of the Large-scale Extended X-Ray Emission

    Science.gov (United States)

    Fabbiano, G.; Paggi, A.; Karovska, M.; Elvis, M.; Maksym, W. P.; Risaliti, G.; Wang, Junfeng

    2018-03-01

    We present a deep Chandra spectral and spatial study of the kpc-scale diffuse X-ray emission of the Compton-thick (CT) active galactic nucleus (AGN) ESO 428-G014. The entire spectrum is best fit with composite photoionization + thermal models. The diffuse emission is more extended at lower energies (<3 keV). The smaller extent of the hard continuum and Fe Kα profiles implies that the optically thicker clouds responsible for this scattering may be relatively more prevalent closer to the nucleus. These clouds must not prevent soft ionizing X-rays from the AGN escaping to larger radii, in order to have photoionized ISM at larger radii. This suggests that at smaller radii, there may be a larger population of molecular clouds to scatter the hard X-rays, as in the Milky Way. The diffuse emission is also significantly extended in the cross-cone direction, where the AGN emission would be mostly obscured by the torus in the standard AGN model. Our results suggest that the transmission of the obscuring region in the cross-cone direction is ∼10% of that in the cone direction. In the 0.3–1.5 keV band, the ratio of cross-cone to cone photons increases to ∼84%, suggesting an additional soft diffuse emission component disjoint from the AGN. This could be due to hot ISM trapped in the potential of the galaxy. The luminosity of this component, ∼5 × 1038 erg s‑1, is roughly consistent with the thermal component suggested by the spectral fits in the 170–900 pc annulus.

  7. Review of soft x-ray lasers and their applications

    International Nuclear Information System (INIS)

    Skinner, C.H.

    1991-03-01

    The emerging technology of soft x-ray lasers is in a transition phase between the first laboratory demonstrations of gain and the acceptance of soft x-ray lasers as practical tools for novel applications. Current research is focused on several fronts. The operational wavelength range has been extended to the ''water window'', important for applications in the life sciences. Gain has also been generated with substantially simpler technology (such as a 6J laser) and this augurs well for the commercially availability in the near future of soft x-ray lasers for a variety of applications. Advanced soft x-ray laser concepts are being developed from investigations into ultra-high intensity laser/matter interactions. The first paper a brief historical perspective of x-ray microscopy and holography have begun. In this paper a brief historical perspective of x-ray laser development will be followed by a review of recent advances in recombination, collisional and photo-pumped systems and applications. A summary of current gain-length performance achieved in laboratories worldwide is presented. Near term prospects for applications to novel fields are discussed. 81 refs., 9 figs., 1 tab

  8. Soft X-Ray Observations of a Complete Sample of X-Ray--selected BL Lacertae Objects

    Science.gov (United States)

    Perlman, Eric S.; Stocke, John T.; Wang, Q. Daniel; Morris, Simon L.

    1996-01-01

    We present the results of ROSAT PSPC observations of the X-ray selected BL Lacertae objects (XBLs) in the complete Einstein Extended Medium Sensitivity Survey (EM MS) sample. None of the objects is resolved in their respective PSPC images, but all are easily detected. All BL Lac objects in this sample are well-fitted by single power laws. Their X-ray spectra exhibit a variety of spectral slopes, with best-fit energy power-law spectral indices between α = 0.5-2.3. The PSPC spectra of this sample are slightly steeper than those typical of flat ratio-spectrum quasars. Because almost all of the individual PSPC spectral indices are equal to or slightly steeper than the overall optical to X-ray spectral indices for these same objects, we infer that BL Lac soft X-ray continua are dominated by steep-spectrum synchrotron radiation from a broad X-ray jet, rather than flat-spectrum inverse Compton radiation linked to the narrower radio/millimeter jet. The softness of the X-ray spectra of these XBLs revives the possibility proposed by Guilbert, Fabian, & McCray (1983) that BL Lac objects are lineless because the circumnuclear gas cannot be heated sufficiently to permit two stable gas phases, the cooler of which would comprise the broad emission-line clouds. Because unified schemes predict that hard self-Compton radiation is beamed only into a small solid angle in BL Lac objects, the steep-spectrum synchrotron tail controls the temperature of the circumnuclear gas at r ≤ 1018 cm and prevents broad-line cloud formation. We use these new ROSAT data to recalculate the X-ray luminosity function and cosmological evolution of the complete EMSS sample by determining accurate K-corrections for the sample and estimating the effects of variability and the possibility of incompleteness in the sample. Our analysis confirms that XBLs are evolving "negatively," opposite in sense to quasars, with Ve/Va = 0.331±0.060. The statistically significant difference between the values for X-ray

  9. The Polarimeter for Relativistic Astrophysical X-ray Sources

    Science.gov (United States)

    Jahoda, Keith; Kallman, Timothy R.; Kouveliotou, Chryssa; Angelini, Lorella; Black, J. Kevin; Hill, Joanne E.; Jaeger, Theodore; Kaaret, Philip E.; Markwardt, Craig B.; Okajima, Takashi; Petre, Robert; Schnittman, Jeremy; Soong, Yang; Strohmayer, Tod E.; Tamagawa, Toru; Tawara, Yuzuru

    2016-07-01

    The Polarimeter for Relativistic Astrophysical X-ray Sources (PRAXyS) is one of three Small Explorer (SMEX) missions selected by NASA for Phase A study, with a launch date in 2020. The PRAXyS Observatory exploits grazing incidence X-ray mirrors and Time Projection Chamber Polarimeters capable of measuring the linear polarization of cosmic X-ray sources in the 2-10 keV band. PRAXyS combines well-characterized instruments with spacecraft rotation to ensure low systematic errors. The PRAXyS payload is developed at the Goddard Space Flight Center with the Johns Hopkins University Applied Physics Laboratory, University of Iowa, and RIKEN (JAXA) collaborating on the Polarimeter Assembly. The LEOStar-2 spacecraft bus is developed by Orbital ATK, which also supplies the extendable optical bench that enables the Observatory to be compatible with a Pegasus class launch vehicle. A nine month primary mission will provide sensitive observations of multiple black hole and neutron star sources, where theory predicts polarization is a strong diagnostic, as well as exploratory observations of other high energy sources. The primary mission data will be released to the community rapidly and a Guest Observer extended mission will be vigorously proposed.

  10. Metal induced crystallization of amorphous silicon thin films studied by x-ray absorption fine structure spectroscopy

    International Nuclear Information System (INIS)

    Naidu, K Lakshun; Mohiddon, Md Ahamad; Dalba, G; Krishna, M Ghanashyam; Rocca, F

    2013-01-01

    The role of thin metallic layer (Chromium or Nickel) in the crystallization of a-Si film has been studied using X-ray absorption fine structure spectroscopy (XAFS). The films were grown at different substrate temperatures in two different geometrical structures : (a) a 200 nm metal layer (Cr or Ni) was deposited on fused silica (FS) followed by 400 nm of a-Si and (b) the 400 nm a-Si layer was deposited on FS followed by 200 nm of metal layer. XAFS measurements at Cr K-edge and Ni K-edge were done at BM08 – GILDA beamline of the European Synchrotron Research Facility (ESRF, Grenoble, F) in fluorescence mode. To understand the evolution of the local structure of Cr/Ni diffusing from bottom to top and from top to bottom, total reflection and higher incidence angles were employed. The relative content of metal, metal oxide and metal silicides compounds on the upper surface and/or in the bulk of different films has been evaluated as a function of thermal treatment.

  11. X-ray-absorption fine structure determination of pressure-induced bond-angle changes in ReO3

    International Nuclear Information System (INIS)

    Houser, B.; Ingalls, R.

    2000-01-01

    We report here on a Marquardt-type method to fit the x-ray absorption fine structure (XAFS) of ReO 3 . We find that, when the ambient-pressure structure of ReO 3 is used as a starting point, the pressure dependence of the angle of the Re-O-Re bond in ReO 3 is fairly straightforwardly and robustly determined using FEFF curved-wave, multiple-scattering programs and is accurate to about ±1.5 degree sign or better. We present an argument that XAFS and scattering experiments fundamentally differ in what they measure in the case of nearly linear atomic bridges. Focussed multiple-scattering paths involving the Re-O-Re bridge make a contribution to the XAFS spectrum that is sensitive to the rms deviation of oxygen from the [100]-type directions. Fits to simulated spectra back up our contention that for XAFS experiments the effective position of the oxygen atom is its rms displacement whether the average displacement is zero or not. (c) 2000 The American Physical Society

  12. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive medical ...

  13. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small dose ... limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is ...

  14. Bone X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  15. Abdomen X-Ray (Radiography)

    Science.gov (United States)

    ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Abdomen Abdominal x-ray uses a very small ... of an abdominal x-ray? What is abdominal x-ray? An x-ray (radiograph) is a noninvasive medical ...

  16. CRL X-ray tube

    International Nuclear Information System (INIS)

    Kolchevsky, N.N.; Petrov, P.V.

    2015-01-01

    A novel types of X-ray tubes with refractive lenses are proposed. CRL-R X-ray tube consists of Compound Refractive Lens- CRL and Reflection X-ray tube. CRL acts as X-ray window. CRL-T X-ray consists of CRL and Transmission X-ray tube. CRL acts as target for electron beam. CRL refractive lens acts as filter, collimator, waveguide and focusing lens. Properties and construction of the CRL X-ray tube are discussed. (authors)

  17. X-ray microscopy resource center at the Advanced Light Source

    International Nuclear Information System (INIS)

    Meyer-Ilse, W.; Koike, M.; Beguiristain, R.; Maser, J.; Attwood, D.

    1992-07-01

    An x-ray microscopy resource center for biological x-ray imaging vvill be built at the Advanced Light Source (ALS) in Berkeley. The unique high brightness of the ALS allows short exposure times and high image quality. Two microscopes, an x-ray microscope (XM) and a scanning x-ray microscope (SXM) are planned. These microscopes serve complementary needs. The XM gives images in parallel at comparable short exposure times, and the SXM is optimized for low radiation doses applied to the sample. The microscopes extend visible light microscopy towards significantly higher resolution and permit images of objects in an aqueous medium. High resolution is accomplished by the use of Fresnel zone plates. Design considerations to serve the needs of biological x-ray microscopy are given. Also the preliminary design of the microscopes is presented. Multiple wavelength and multiple view images will provide elemental contrast and some degree of 3D information

  18. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  19. Novel X-ray telescopes for wide-field X-ray monitoring

    International Nuclear Information System (INIS)

    Hudec, R.; Inneman, A.; Pina, L.; Sveda, L.

    2005-01-01

    We report on fully innovative very wide-field of view X-ray telescopes with high sensitivity as well as large field of view. The prototypes are very promising, allowing the proposals for space projects with very wide-field Lobster-eye X-ray optics to be considered. The novel telescopes will monitor the sky with unprecedented sensitivity and angular resolution of order of 1 arcmin. They are expected to contribute essentially to study and to understand various astrophysical objects such as AGN, SNe, Gamma-ray bursts (GRBs), X-ray flashes (XRFs), galactic binary sources, stars, CVs, X-ray novae, various transient sources, etc. The Lobster optics based X-ray All Sky Monitor is capable to detect around 20 GRBs and 8 XRFs yearly and this will surely significantly contribute to the related science

  20. Pixel detectors for x-ray imaging spectroscopy in space

    Science.gov (United States)

    Treis, J.; Andritschke, R.; Hartmann, R.; Herrmann, S.; Holl, P.; Lauf, T.; Lechner, P.; Lutz, G.; Meidinger, N.; Porro, M.; Richter, R. H.; Schopper, F.; Soltau, H.; Strüder, L.

    2009-03-01

    Pixelated semiconductor detectors for X-ray imaging spectroscopy are foreseen as key components of the payload of various future space missions exploring the x-ray sky. Located on the platform of the new Spectrum-Roentgen-Gamma satellite, the eROSITA (extended Roentgen Survey with an Imaging Telescope Array) instrument will perform an imaging all-sky survey up to an X-ray energy of 10 keV with unprecedented spectral and angular resolution. The instrument will consist of seven parallel oriented mirror modules each having its own pnCCD camera in the focus. The satellite born X-ray observatory SIMBOL-X will be the first mission to use formation-flying techniques to implement an X-ray telescope with an unprecedented focal length of around 20 m. The detector instrumentation consists of separate high- and low energy detectors, a monolithic 128 × 128 DEPFET macropixel array and a pixellated CdZTe detector respectively, making energy band between 0.5 to 80 keV accessible. A similar concept is proposed for the next generation X-ray observatory IXO. Finally, the MIXS (Mercury Imaging X-ray Spectrometer) instrument on the European Mercury exploration mission BepiColombo will use DEPFET macropixel arrays together with a small X-ray telescope to perform a spatially resolved planetary XRF analysis of Mercury's crust. Here, the mission concepts and their scientific targets are briefly discussed, and the resulting requirements on the detector devices together with the implementation strategies are shown.

  1. X-ray imaging diagnostics for the inertial confinement fusion experiments

    International Nuclear Information System (INIS)

    Aglitskiy, Y.; Lehecka, T.; Obenschain, S.; Pawley, C.; Sethian, J.; Koch, J.A.; Holland, G.

    2000-01-01

    We report on our continued development of the advanced x-ray plasma diagnostics based on spherically curved crystals. The diagnostics include x-ray spectroscopy with 1-D spatial resolution, 2-D monochromatic self-imaging and back-lighting, and can be extended to the x-ray collimating and 2-D absorption and emission spectroscopy. The system is currently used, but not limited to the diagnostics of the targets ablatively accelerated by the NRL Nike KrF laser. In cooperation with LLNL a comprehensive test of the NIF prototype spherically curved crystal assembly has been performed on the Nova laser. (authors)

  2. X-ray imaging diagnostics for the inertial confinement fusion experiments

    Energy Technology Data Exchange (ETDEWEB)

    Aglitskiy, Y.; Lehecka, T. [Science Applications International Corp., McLean, VA (United States); Obenschain, S.; Pawley, C.; Sethian, J. [Naval Research Lab., Washington, DC (United States). Plasma Physics Div; Brown, C.M.; Seely, J. [Naval Research Lab., Space Sciences Div, Washington, DC (United States); Koch, J.A. [Lawrence Livermore National Lab., CA (United States); Holland, G. [SFA, Landover MD (United States)

    2000-07-01

    We report on our continued development of the advanced x-ray plasma diagnostics based on spherically curved crystals. The diagnostics include x-ray spectroscopy with 1-D spatial resolution, 2-D monochromatic self-imaging and back-lighting, and can be extended to the x-ray collimating and 2-D absorption and emission spectroscopy. The system is currently used, but not limited to the diagnostics of the targets ablatively accelerated by the NRL Nike KrF laser. In cooperation with LLNL a comprehensive test of the NIF prototype spherically curved crystal assembly has been performed on the Nova laser. (authors)

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... News Physician Resources Professions Site Index A-Z X-ray (Radiography) - Bone Bone x-ray uses a very small ... of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray (radiograph) is a noninvasive ...

  4. Perfect-crystal x-ray optics to treat x-ray coherence

    International Nuclear Information System (INIS)

    Yamazaki, Hiroshi; Ishikawa, Tetsuya

    2007-01-01

    X-ray diffraction of perfect crystals, which serve as x-ray monochromator and collimator, modifies coherence properties of x-ray beams. From the time-dependent Takagi-Taupin equations that x-ray wavefields obey in crystals, the reflected wavefield is formulated as an integral transform of a general incident wavefield with temporal and spatial inhomogeneity. A reformulation of rocking-curve profiles from the field solution of the Takagi-Taupin equations allows experimental evaluation of the mutual coherence function of x-ray beam. The rigorous relationship of the coherence functions between before and after reflection clarifies how the coherence is transferred by a crystal. These results will be beneficial to developers of beamline optics for the next generation synchrotron sources. (author)

  5. X-ray scattering in X-ray fluorescence spectra with X-ray tube excitation - Modelling, experiment, and Monte-Carlo simulation

    International Nuclear Information System (INIS)

    Hodoroaba, V.-D.; Radtke, M.; Vincze, L.; Rackwitz, V.; Reuter, D.

    2010-01-01

    X-ray scattering may contribute significantly to the spectral background of X-ray fluorescence (XRF) spectra. Based on metrological measurements carried out with a scanning electron microscope (SEM) having attached a well characterised X-ray source (polychromatic X-ray tube) and a calibrated energy dispersive X-ray spectrometer (EDS) the accuracy of a physical model for X-ray scattering is systematically evaluated for representative samples. The knowledge of the X-ray spectrometer efficiency, but also of the spectrometer response functions makes it possible to define a physical spectral background of XRF spectra. Background subtraction relying on purely mathematical procedures is state-of-the-art. The results produced by the analytical model are at least as reliable as those obtained by Monte-Carlo simulations, even without considering the very challenging contribution of multiple scattering. Special attention has been paid to Compton broadening. Relevant applications of the implementation of the analytical model presented in this paper are the prediction of the limits of detection for particular cases or the determination of the transmission of X-ray polycapillary lenses.

  6. X-Ray Scattering Applications Using Pulsed X-Ray Sources

    Energy Technology Data Exchange (ETDEWEB)

    Larson, B.C.

    1999-05-23

    Pulsed x-ray sources have been used in transient structural phenomena investigations for over fifty years; however, until the advent of synchrotrons sources and the development of table-top picosecond lasers, general access to ligh temporal resolution x-ray diffraction was relatively limited. Advances in diffraction techniques, sample excitation schemes, and detector systems, in addition to IncEased access to pulsed sources, have ld tO what is now a diverse and growing array of pulsed-source measurement applications. A survey of time-resolved investigations using pulsed x-ray sources is presented and research opportunities using both present and planned pulsed x-ray sources are discussed.

  7. X-ray diagnostic installation for X-ray tomographic images

    International Nuclear Information System (INIS)

    Haendle, J.; Sklebitz, H.

    1984-01-01

    An exemplary embodiment includes at least one x-ray tube for the generation of an x-ray beam, a patient support, an image detector, and a control generator-connected with the x-ray tube and the image detector-for the purpose of moving the x-ray beam, and in opposition thereto, the image field of the image detector. There is connected to the control generator a layer height computer which calculates the enlargement from the geometric data for the tomogram. The image detector has a circuit-connected with the layer height computer-for the purpose of fading-in a marking for the dimensions in the layer plane

  8. Image enhancement of x-ray microscope using frequency spectrum analysis

    International Nuclear Information System (INIS)

    Li Wenjie; Chen Jie; Tian Jinping; Zhang Xiaobo; Liu Gang; Tian Yangchao; Liu Yijin; Wu Ziyu

    2009-01-01

    We demonstrate a new method for x-ray microscope image enhancement using frequency spectrum analysis. Fine sample characteristics are well enhanced with homogeneous visibility and better contrast from single image. This method is easy to implement and really helps to improve the quality of image taken by our imaging system.

  9. Image enhancement of x-ray microscope using frequency spectrum analysis

    Energy Technology Data Exchange (ETDEWEB)

    Li Wenjie; Chen Jie; Tian Jinping; Zhang Xiaobo; Liu Gang; Tian Yangchao [National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230029 (China); Liu Yijin; Wu Ziyu, E-mail: wuzy@ihep.ac.c, E-mail: ychtian@ustc.edu.c [Institute of High Energy Physics, Chinese Academy of Science, Beijing 100049 (China)

    2009-09-01

    We demonstrate a new method for x-ray microscope image enhancement using frequency spectrum analysis. Fine sample characteristics are well enhanced with homogeneous visibility and better contrast from single image. This method is easy to implement and really helps to improve the quality of image taken by our imaging system.

  10. X-ray emission spectroscopy. X-ray fluorescence

    International Nuclear Information System (INIS)

    Despujols, J.

    1992-01-01

    Principles of X-ray emission spectrometry are first recalled, then wave-length dispersive and energy dispersive X-ray fluorescence spectrometer are described. They are essentially designed for qualitative and quantitative analysis of elements (Z>10). Sample preparation, calibration, corrections, interferences, accuracy are reviewed. Examples of use in different industries are given. (71 refs.)

  11. Nanostructure of protective rust layer on weathering steel examined using synchrotron radiation x-rays

    International Nuclear Information System (INIS)

    Yamashita, Masato; Uchida, Hitoshi; Konishi, Hiroyuki; Mizuki, Jun'ichiro

    2004-01-01

    The X-ray absorption fine structure (XAFS) spectrum of pure goethite around the Fe K absorption edge and that of the protective rust layer formed on weathering steel exposed for 17 years in an atmospheric environment around the Cr K edge, have been examined using synchrotron radiation X-rays. It was found that the rust layer on the weathering steel mainly consisted of Cr-goethite. By examining the fine structure at the Cr K edge and the Fe K edge, we concluded that Cr 3+ in the rust layer is coordinated with O 2- and is positioned in the double chains of vacant sites in the network of FeO 3 (OH) 3 octahedra in the goethite crystal. This Cr 3+ site indicates that the protective effect of the rust layer is due to the dense aggregation of fine crystals of Cr-goethite with cation selectivity. (author)

  12. X-ray detector for a panoramic X-ray unit

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, D; Ensslin, F H

    1976-01-15

    The discovery deals with an X-ray detector suitable for the controlling of panoramic X-ray systems. It consists of a fluorescent image screen and a semiconductor photo cell. The output signal of the detector is proportional to the intensity of the X-radiation and the response time is large enough to follow the change of amplitude of the contours of the modulated X radiation. The detector with band-pass filter regulates, via a control system, the moving rate of the X-ray source and of the film opposite it in dependence of the intensity, so that a uniform exposure is ensured.

  13. X-ray imaging with compound refractive lens and microfocus X-ray tube

    OpenAIRE

    Pina, Ladislav; Dudchik, Yury; Jelinek, Vaclav; Sveda, Libor; Marsik, Jiri; Horvath, Martin; Petr, Ondrej

    2008-01-01

    Compound refractive lenses (CRL), consisting of a lot number in-line concave microlenses made of low-Z material were studied. Lenses with focal length 109 mm and 41 mm for 8-keV X-rays, microfocus X-ray tube and X-ray CCD camera were used in experiments. Obtained images show intensity distribution of magnified microfocus X-ray source focal spot. Within the experiments, one lens was also used as an objective lens of the X-ray microscope, where the copper anode X-ray microfocus tube served as a...

  14. Abdominal x-ray

    Science.gov (United States)

    Abdominal film; X-ray - abdomen; Flat plate; KUB x-ray ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  15. Formation Mechanism of Ge Nanocrystals Embedded in SiO2 Studied by Fluorescence X-Ray Absorption Fine Structure

    International Nuclear Information System (INIS)

    Yan Wensheng; Li Zhongrui; Sun Zhihu; Wei Shiqiang; Kolobov, A. V.

    2007-01-01

    The formation mechanism of Ge nanocrystals for Ge (60 mol%) embedded in a SiO2 matrix grown on Si(001) and quartz-glass substrates was studied by fluorescence x-ray absorption fine structure (XAFS). It was found that the formation of Ge nanocrystals strongly depends on the properties of the substrate materials. In the as-prepared samples, Ge atoms exist in amorphous Ge and GeO2 phases. At the annealing temperature of 1073 K, on the quartz-glass substrate, Ge nanocrystals are only formed predominantly from the amorphous Ge phase in the as-prepared sample. However, on the Si(100) substrate the Ge nanocrystals are generated partly from amorphous Ge, and partly from GeO2 phases through the permutation reaction with Si substrate. Quantitative analysis revealed that about 10% of GeO2 in as-prepared sample permutated with Si in the wafer and formed Ge nanocrystals

  16. Peculiarities Of The Chemical Bond In Thorium Compounds And Fine X-Ray Photoelectron And O4,5(Th) Emission Spectral Structure

    International Nuclear Information System (INIS)

    Teterin, Yu.A.; Teterin, A.Yu.; Utkin, I.O.; Ivanov, K.E.; Terehov, V.A.; Ryzhkovc, M.V.; Vukchevich, L.J.

    2002-01-01

    On the basis of the XPS (0 - -1000 eV), x-ray 04 5(Th) low-energy (0 - 50eV) emission fine spectral structure parameters, and theoretical calculations results for electronic structure of Th, ThO 2 , and ThF 4 , the study of the Th6p-,5f- electronic states was carried out. As a result, despite the absence of the Th5f electrons in atomic Th, the Th5f atomic orbitals were established to be able to participate in the molecular orbital formation in thorium dioxide and tetrafluoride. In the MOLCAO approximation it enabled to suggest that the filled Th5f states exist in thorium compounds

  17. NuSTAR HARD X-RAY SURVEY OF THE GALACTIC CENTER REGION. I. HARD X-RAY MORPHOLOGY AND SPECTROSCOPY OF THE DIFFUSE EMISSION

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Kaya; Hailey, Charles J.; Perez, Kerstin; Nynka, Melania; Zhang, Shuo; Canipe, Alicia M. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Krivonos, Roman; Tomsick, John A.; Barrière, Nicolas; Boggs, Steven E.; Craig, William W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Hong, Jaesub [Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138 (United States); Ponti, Gabriele [Max-Planck-Institut f. extraterrestrische Physik, HEG, Garching (Germany); Bauer, Franz [Instituto de Astrofísica, Facultad de Física, Pontificia Universidad Católica de Chile, 306, Santiago 22 (Chile); Alexander, David M. [Department of Physics, Durham University, Durham DH1 3LE (United Kingdom); Baganoff, Frederick K. [Kavli Institute for Astrophysics and Space Research, Massachusets Institute of Technology, Cambridge, MA 02139 (United States); Barret, Didier [Université de Toulouse, UPS-OMP, IRAP, Toulouse (France); Christensen, Finn E. [DTU Space—National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Forster, Karl [Cahill Center for Astronomy and Astrophysics, California Institute of Technology, Pasadena, CA 91125 (United States); Giommi, Paolo, E-mail: kaya@astro.columbia.edu [ASI Science Data Center, Via del Politecnico snc I-00133, Roma (Italy); and others

    2015-12-01

    We present the first sub-arcminute images of the Galactic Center above 10 keV, obtained with NuSTAR. NuSTAR resolves the hard X-ray source IGR J17456–2901 into non-thermal X-ray filaments, molecular clouds, point sources, and a previously unknown central component of hard X-ray emission (CHXE). NuSTAR detects four non-thermal X-ray filaments, extending the detection of their power-law spectra with Γ ∼ 1.3–2.3 up to ∼50 keV. A morphological and spectral study of the filaments suggests that their origin may be heterogeneous, where previous studies suggested a common origin in young pulsar wind nebulae (PWNe). NuSTAR detects non-thermal X-ray continuum emission spatially correlated with the 6.4 keV Fe Kα fluorescence line emission associated with two Sgr A molecular clouds: MC1 and the Bridge. Broadband X-ray spectral analysis with a Monte-Carlo based X-ray reflection model self-consistently determined their intrinsic column density (∼10{sup 23} cm{sup −2}), primary X-ray spectra (power-laws with Γ ∼ 2) and set a lower limit of the X-ray luminosity of Sgr A* flare illuminating the Sgr A clouds to L{sub X} ≳ 10{sup 38} erg s{sup −1}. Above ∼20 keV, hard X-ray emission in the central 10 pc region around Sgr A* consists of the candidate PWN G359.95–0.04 and the CHXE, possibly resulting from an unresolved population of massive CVs with white dwarf masses M{sub WD} ∼ 0.9 M{sub ⊙}. Spectral energy distribution analysis suggests that G359.95–0.04 is likely the hard X-ray counterpart of the ultra-high gamma-ray source HESS J1745–290, strongly favoring a leptonic origin of the GC TeV emission.

  18. X-ray spectroscopy and X-ray crystallography of metalloenzymes at XFELs

    International Nuclear Information System (INIS)

    Yano, Junko

    2016-01-01

    The ultra-bright femtosecond X-ray pulses provided by X-ray Free Electron Lasers (XFELs) open capabilities for studying the structure and dynamics of a wide variety of biological and inorganic systems beyond what is possible at synchrotron sources. Although the structure and chemistry at the catalytic sites have been studied intensively in both biological and inorganic systems, a full understanding of the atomic-scale chemistry requires new approaches beyond the steady state X-ray crystallography and X-ray spectroscopy at cryogenic temperatures. Following the dynamic changes in the geometric and electronic structure at ambient conditions, while overcoming X-ray damage to the redox active catalytic center, is key for deriving reaction mechanisms. Such studies become possible by using the intense and ultra-short femtosecond X-ray pulses from an XFEL, where sample is probed before it is damaged. We have developed methodology for simultaneously collecting crystallography data and X-ray emission spectra, using an energy dispersive spectrometer at ambient conditions. In addition, we have developed a way to collect metal L-edge data of dilute samples using soft X-rays at XFELs. The advantages and challenges of these methods will be described in this review. (author)

  19. Spatial structure determination of ({radical}3 x {radical}3)R30{degrees} and (1.5 x 1.5)R18{degrees}CO on Cu(111) using angle-resolved photoemission extended fine structure

    Energy Technology Data Exchange (ETDEWEB)

    Moler, E.J.; Kellar, S.A.; Huff, W.R.A. [Lawrence Berkeley National Lab., CA (United States)] [and others

    1997-04-01

    The authors report a study of the spatial structure of ({radical}3 x {radical}3)R30{degrees} (low coverage) and (1.5 x 1.5)R18{degrees} (intermediate coverage) CO adsorbed on Cu(111), using the Angle-Resolved Photoemission Extended Fine Structure (ARPEFS) technique at beamline 9.3.2 at the Advanced Light Source. The CO molecule adsorbs on an atop site for both adsorption phases. Full multiple-scattering spherical-wave (MSSW) calculations were used to extract the C-Cu. bond length and the first Cu-Cu layer spacing for each adsorption phase. The authors find that the C-Cu bond length remains unchanged with increasing coverage, but the 1st Cu-Cu layer spacing contracts at the intermediate coverage. They calculate the bending mode force constant in the (1.5 x 1.5)R18{degrees} phase to be K{sub {delta}} = 2.2 (1) x 10{sup {minus}12} dyne-cm/rad from their experimentally determined bond lengths combined with previously published infra-red absorption frequencies.

  20. Time-resolved X-ray diffraction with accelerator- and laser-plasma-based X-ray sources

    International Nuclear Information System (INIS)

    Nicoul, Matthieu

    2010-01-01

    Femtosecond X-ray pulses are a powerful tool to investigate atomic motions triggered by femtosecond pump pulses. This thesis is dedicated to the production of such pulses and their use in optical pump - X-ray probe measurement. This thesis describes the laser-plasma-based sources available at the University of Duisburg-Essen. Part of it consists of the description of the design, built-up and characterization of a new ''modular'' X-ray source dedicated to optimize the X-ray flux onto the sample under investigation. The acoustic wave generation in femtosecond optically excited semiconductor (gallium arsenide) and metal (gold) was performed using the sources of the University of Duisburg-Essen. The physical answer of the material was modeled by a simple strain model for the semiconductor, pressure model for the metal, in order to gain information on the interplay of the electronic and thermal pressures rising after excitation. Whereas no reliable information could be obtain in gallium arsenide (principally due to the use of a bulk), the model for gold achieved very good agreement, providing useful information. The relaxation time of the electron to lattice energy was found to be (5.0±0.3) ps, and the ratio of the Grueneisen parameters was found to be γ e / γ i = (0.5±0.1). This thesis also describes the Sub-Picosecond Pulse Source (SPPS) which existed at the (formally) Stanford Linear Accelerator Center, an accelerator-based X-ray source, and two measurements performed with it. The first one is the detailed investigation of the phonon softening of the A 1g mode launch in bismuth upon fluence excitation. Detailed information concerning the new equilibrium position and phonon frequency were obtained over extended laser pump fluences. The second measurement concerned the study of the liquid phase dynamics in a newly formed liquid phase following ultrafast melting in indium antimonide. The formation of the liquid phase and its development for excitations close to the

  1. Time-resolved X-ray diffraction with accelerator- and laser-plasma-based X-ray sources

    Energy Technology Data Exchange (ETDEWEB)

    Nicoul, Matthieu

    2010-09-01

    Femtosecond X-ray pulses are a powerful tool to investigate atomic motions triggered by femtosecond pump pulses. This thesis is dedicated to the production of such pulses and their use in optical pump - X-ray probe measurement. This thesis describes the laser-plasma-based sources available at the University of Duisburg-Essen. Part of it consists of the description of the design, built-up and characterization of a new ''modular'' X-ray source dedicated to optimize the X-ray flux onto the sample under investigation. The acoustic wave generation in femtosecond optically excited semiconductor (gallium arsenide) and metal (gold) was performed using the sources of the University of Duisburg-Essen. The physical answer of the material was modeled by a simple strain model for the semiconductor, pressure model for the metal, in order to gain information on the interplay of the electronic and thermal pressures rising after excitation. Whereas no reliable information could be obtain in gallium arsenide (principally due to the use of a bulk), the model for gold achieved very good agreement, providing useful information. The relaxation time of the electron to lattice energy was found to be (5.0{+-}0.3) ps, and the ratio of the Grueneisen parameters was found to be {gamma}{sub e} / {gamma}{sub i} = (0.5{+-}0.1). This thesis also describes the Sub-Picosecond Pulse Source (SPPS) which existed at the (formally) Stanford Linear Accelerator Center, an accelerator-based X-ray source, and two measurements performed with it. The first one is the detailed investigation of the phonon softening of the A{sub 1g} mode launch in bismuth upon fluence excitation. Detailed information concerning the new equilibrium position and phonon frequency were obtained over extended laser pump fluences. The second measurement concerned the study of the liquid phase dynamics in a newly formed liquid phase following ultrafast melting in indium antimonide. The formation of the liquid phase

  2. Chest X-Ray

    Medline Plus

    Full Text Available ... talk with you about chest radiography also known as chest x-rays. Chest x-rays are the ... treatment for a variety of lung conditions such as pneumonia, emphysema and cancer. A chest x-ray ...

  3. Modern X-ray spectroscopy 3. X-ray fluorescence holography

    International Nuclear Information System (INIS)

    Hayashi, Kouichi

    2008-01-01

    X-ray fluorescence holography (XFH) provides three dimensional atomic images around specified elements. The XFH uses atoms as a wave source or monitor of interference field within a crystal sample, and therefore it can record both intensity and phase of scattered X-rays. Its current performance makes it possible to apply to ultra thin film, impurity and quasicrystal. In this article, I show the theory including solutions for twin image problem, advanced measuring system, data processing for reconstruction of the atomic images and for obtaining accurate atomic positions, applications using resonant X-ray scattering and X-ray excited optical luminescence, and an example of XFH result on the local structure around copper in silicon steal. (author)

  4. X-ray holography: X-ray interactions and their effects

    International Nuclear Information System (INIS)

    London, R.A.; Trebes, J.E.; Rosen, M.D.

    1988-01-01

    The authors summarize a theoretical study of the interactions of x-rays with a biological sample during the creation of a hologram. The choice of an optimal wavelength for x-ray holography is discussed, based on a description of scattering by objects within an aqueous environment. The problem of the motion resulting from the absorption of x-rays during a short exposure is described. The possibility of using very short exposures in order to capture the image before motion can compromise the resolution is explored. The impact of these calculation on the question of the feasibility of using an x-ray laser for holography of biological structures is discussed. 12 refs., 2 figs

  5. THE SWIFT/BAT HARD X-RAY TRANSIENT MONITOR

    Energy Technology Data Exchange (ETDEWEB)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Baumgartner, W. H.; Cummings, J. R. [Center for Research and Exploration in Space Science and Technology (CRESST) and NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Romano, P. [INAF, Istituto di Astrofisica Spaziale e Fisica Cosmica, Via U. La Malfa 153, I-90146 Palermo (Italy); Kennea, J. A. [Department of Astronomy and Astrophysics, Pennsylvania State University, University Park, PA 16802 (United States); Bloom, J. S. [Department of Astronomy, University of California, Berkeley, Berkeley, CA 94720-3411 (United States); Barthelmy, S. D.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Ukwatta, T. N. [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Palmer, D. M. [Los Alamos National Laboratory, B244, Los Alamos, NM 87545 (United States); Sakamoto, T. [Department of Physics and Mathematics, College of Science and Engineering, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara-shi, Kanagawa 252-5258 (Japan); Stamatikos, M. [Department of Physics and Center for Cosmology and Astro-Particle Physics, Ohio State University, Columbus, OH 43210 (United States)

    2013-11-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  6. The Swift-BAT Hard X-Ray Transient Monitor

    Science.gov (United States)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Baumgartner, W. H.; Cummings, J. R.; hide

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure.We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations.

  7. THE SWIFT/BAT HARD X-RAY TRANSIENT MONITOR

    International Nuclear Information System (INIS)

    Krimm, H. A.; Holland, S. T.; Corbet, R. H. D.; Pearlman, A. B.; Baumgartner, W. H.; Cummings, J. R.; Romano, P.; Kennea, J. A.; Bloom, J. S.; Barthelmy, S. D.; Gehrels, N.; Lien, A. Y.; Markwardt, C. B.; Ukwatta, T. N.; Palmer, D. M.; Sakamoto, T.; Stamatikos, M.

    2013-01-01

    The Swift/Burst Alert Telescope (BAT) hard X-ray transient monitor provides near real-time coverage of the X-ray sky in the energy range 15-50 keV. The BAT observes 88% of the sky each day with a detection sensitivity of 5.3 mCrab for a full-day observation and a time resolution as fine as 64 s. The three main purposes of the monitor are (1) the discovery of new transient X-ray sources, (2) the detection of outbursts or other changes in the flux of known X-ray sources, and (3) the generation of light curves of more than 900 sources spanning over eight years. The primary interface for the BAT transient monitor is a public Web site. Between 2005 February 12 and 2013 April 30, 245 sources have been detected in the monitor, 146 of them persistent and 99 detected only in outburst. Among these sources, 17 were previously unknown and were discovered in the transient monitor. In this paper, we discuss the methodology and the data processing and filtering for the BAT transient monitor and review its sensitivity and exposure. We provide a summary of the source detections and classify them according to the variability of their light curves. Finally, we review all new BAT monitor discoveries. For the new sources that are previously unpublished, we present basic data analysis and interpretations

  8. Digital computed radiography in industrial X-ray testing

    International Nuclear Information System (INIS)

    Osterloh, K.; Onel, Y.; Zscherpel, U.; Ewert, U.

    2001-01-01

    Computed radiography is used for X-ray testing in many industrial applications. There are different systems depending on the application, e.g. fast systems for detection of material inhomogeneities and slower systems with higher local resolution for detection of cracks and fine details, e.g. in highly stressed areas or in welded seams. The method is more dynamic than film methods, and digital image processing is possible during testing [de

  9. Corrections of residual fluorescence distortions for a glancing-emergence-angle x-ray-absorption technique

    International Nuclear Information System (INIS)

    Brewe, D.L.; Pease, D.M.; Budnick, J.I.

    1994-01-01

    Distortions appear in x-ray-absorption spectra obtained by monitoring the fluorescence from thick samples with concentrated absorbing species. The glancing-emergence-angle technique for obtaining spectra from this type of sample eliminates distortions from the measured spectra by monitoring the fluorescence leaving the sample at a small angle relative to the sample surface. This technique is limited by the small signal available from the inherently limited detector solid angle. In addition, no precise estimate of the required restriction on maximum emergent angle θ max has been available. We have calculated residual extended x-ray-absorption fine structure distortions as a function of θ max , and performed experimental tests of the calculations. These calculations provide a means to estimate the required detector geometry for negligible distortions, or alternatively, allow the use of a larger θ max , increasing the available signal, with the remaining residual distortions removed by application of the calculations. The calculations are also applicable to other detector geometries, and account for detectors subtending a large solid angle by an integration over the subtended angle. This represents an improvement over previous calculations. The application to more general detector configurations is also discussed

  10. Development of confocal micro X-ray fluorescence instrument using two X-ray beams

    International Nuclear Information System (INIS)

    Tsuji, Kouichi; Nakano, Kazuhiko; Ding Xunliang

    2007-01-01

    A new confocal micro X-ray fluorescence instrument was developed. This instrument has two independent micro X-ray tubes with Mo targets. A full polycapillary X-ray lens was attached to each X-ray tube. Another half polycapillary lens was attached to a silicon drift X-ray detector (SDD). The focal spots of the three lenses were adjusted to a common position. The effects of the excitation of two X-ray beams were investigated. The instrument enabled highly sensitive three-dimensional X-ray fluorescence analysis. We confirmed that the X-ray fluorescence intensity from the sample increased by applying the two independent X-ray tubes in confocal configuration. Elemental depth profiling of black wheat was demonstrated with the result that each element in the surface coat of a wheat grain showed unique distribution

  11. Modern X-ray difraction. X-ray diffractometry for material scientists, physicists, and chemicists

    International Nuclear Information System (INIS)

    Spiess, L.; Schwarzer, R.; Behnken, H.; Teichert, G.

    2005-01-01

    The book yields a comprehensive survey over the applications of X-ray diffraction in fields like material techniques, metallurgy, electrotechniques, machine engineering, as well as micro- and nanotechniques. The necessary fundamental knowledge on X-ray diffraction are mediated foundedly and illustratively. Thereby new techniques and evaluation procedures are presented as well as well known methods. The content: Production and properties of X radiation, diffraction of X radiation, hardware for X-ray diffraction, methods of X-ray diffraction, lattice-constant determination, phase analysis, X-ray profile analysis, crystal structure analysis, X-ray radiographic stress analysis, X-ray radiographic texture analysis, crystal orientation determination, pecularities at thin films, small angle scattering

  12. X-Ray Exam: Pelvis

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Pelvis KidsHealth / For Parents / X-Ray Exam: ... Ray Exam: Hip Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  13. X-ray scattering measurements from thin-foil x-ray mirrors

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; BYRNAK, BP; Hornstrup, Allan

    1992-01-01

    Thin foil X-ray mirrors are to be used as the reflecting elements in the telescopes of the X-ray satellites Spectrum-X-Gamma (SRG) and ASTRO-D. High resolution X-ray scattering measurements from the Au coated and dip-lacquered Al foils are presented. These were obtained from SRG mirrors positioned...... in a test quadrant of the telescope structure and from ASTRO-D foils held in a simple fixture. The X-ray data is compared with laser data and other surface structure data such as STM, atomic force microscopy (AFM), TEM, and electron micrography. The data obtained at Cu K-alpha(1), (8.05 keV) from all...

  14. X-ray examination apparatus

    NARCIS (Netherlands)

    2000-01-01

    The invention relates to an X-ray apparatus which includes an adjustable X-ray filter. In order to adjust an intensity profile of the X-ray beam, an X-ray absorbing liquid is transported to filter elements of the X-ray filter. Such transport is susceptible to gravitational forces which lead to an

  15. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... you about chest radiography also known as chest x-rays. Chest x-rays are the most commonly performed ...

  16. A filter based analyzer for studies of X-ray Raman scattering

    CERN Document Server

    Seidler, G T

    2001-01-01

    Non-resonant X-ray Raman scattering (XRS) with hard X-rays holds the potential for measuring local structure and local electronic properties around low-Z atoms in environments where traditional soft X-ray techniques are inapplicable. However, the small cross-section for XRS requires that experiments must simultaneously achieve high detection efficiency, large collection solid angles, and good energy resolution. We report here that a simple X-ray analyzer consisting of an absorber and a point-focusing spatial filter can be used to study some X-ray Raman near-edge features. This apparatus has greater than 10% detection efficiency, has an energy resolution of 8 eV, and can be readily extended to collection angles of more than 1 sr. We present preliminary measurements of the XRS from the nitrogen 1 s shell in pyrolitic boron nitride.

  17. Microfocussing of synchrotron X-rays using X-ray refractive lens

    Indian Academy of Sciences (India)

    X-ray lenses are fabricated in polymethyl methacrylate using deep X-ray lithography beamline of Indus-2. The focussing performance of these lenses is evaluated using Indus-2 and Diamond Light Source Ltd. The process steps for the fabrication of X-ray lenses and microfocussing at 10 keV at moderate and low emittance ...

  18. Local hydrated structure of an Fe2+/Fe3+ aqueous solution: an investigation using a combination of molecular dynamics and X-ray absorption fine structure methods

    International Nuclear Information System (INIS)

    Ye Qing; Zhou Jing; Zhao Haifeng; Chen Xing; Chu Wangsheng; Zheng Xusheng; Marcelli, Augusto; Wu Ziyu

    2013-01-01

    The hydrated shell of both Fe 2+ and Fe 3+ aqueous solutions are investigated by using the molecular dynamics (MD) and X-ray absorption structure (XAS) methods. The MD simulations show that the first hydrated shells of both Fe 2+ and Fe 3+ are characterized by a regular octahedron with an Fe-O distance of 2.08Å for Fe 2+ and 1.96Å for Fe 3+ , and rule out the occurrence of a Jahn-Teller distortion in the hydrated shell of an Fe 2+ aqueous solution. The corresponding X-ray absorption near edge fine structure (XANES) calculation successfully reproduces all features in the XANES spectra in Fe 2+ and Fe 3+ aqueous solution. A feature that is located at energy 1 eV higher than the white line (WL) in an Fe 3+ aqueous solution may be assigned to the contribution of the charge transfer. (authors)

  19. Development and application of sub-nanosecond pulse-repeatable hard X-ray source

    International Nuclear Information System (INIS)

    Quan Lin; Fan Yajun; Tu Jing

    2013-01-01

    A multipurpose X-ray source was developed to meet the needs of multitask application such as radiation detection, radiation imaging and so on. The multipurpose X-ray source has characteristic of adjustable width and energy, pulse-repetition operation, ultra-short pulse and fine stability. Its rising time is close to 98.6 ps, the operation voltage reaches 425 kV, and the peak fluence rate exceeds 2.07 × 10 18 cm -2 · s -1 at 10 cm, which provides an ideal radiation environment for relevant application. (authors)

  20. Cylindrical Crystal Imaging Spectrometer (CCIS) for cosmic X-ray spectroscopy

    Science.gov (United States)

    Schnopper, H. W.; Taylor, P. O.

    1981-01-01

    A "stigmatic" focusing, Bragg crystal spectrometer was developed and used for high spectral resolution X-ray emission line diagnostics on hot laboratory plasmas. The concept be applied at the focal plane of an orbiting X-ray telescope where it offers several advantages over conventional spectrometers, i.e., mechanical simplicity, high resolving power and sensitivity, simultaneous measurement of an extended segment of spectrum, and good imaging properties. The instrument features a simple, unambiguous, non-scanning spectrum readout that is not adversely affected by either spacecraft pointing error or source extent. The performance of the instrument is estimated in the context of the Advanced X-Ray Astrophysical Facility mission.

  1. Directional x-ray dark-field imaging of strongly ordered systems

    Science.gov (United States)

    Jensen, Torben Haugaard; Bech, Martin; Zanette, Irene; Weitkamp, Timm; David, Christian; Deyhle, Hans; Rutishauser, Simon; Reznikova, Elena; Mohr, Jürgen; Feidenhans'L, Robert; Pfeiffer, Franz

    2010-12-01

    Recently a novel grating based x-ray imaging approach called directional x-ray dark-field imaging was introduced. Directional x-ray dark-field imaging yields information about the local texture of structures smaller than the pixel size of the imaging system. In this work we extend the theoretical description and data processing schemes for directional dark-field imaging to strongly scattering systems, which could not be described previously. We develop a simple scattering model to account for these recent observations and subsequently demonstrate the model using experimental data. The experimental data includes directional dark-field images of polypropylene fibers and a human tooth slice.

  2. X-ray detector array

    International Nuclear Information System (INIS)

    Houston, J.M.

    1980-01-01

    The object of the invention (an ionization chamber X-ray detector array for use with high speed computerised tomographic imaging apparatus) is to reduce the time required to produce a tomographic image. The detector array described determines the distribution of X-ray intensities in one or more flat, coplanar X-ray beams. It comprises three flat anode sheets parallel to the X-ray beam, a plurality of rod-like cathodes between the anodes, a detector gas between the electrodes and a means for applying a potential between the electrodes. Each of the X-ray sources is collimated to give a narrow, planar section of X-ray photons. Sets of X-ray sources in the array are pulsed simultaneously to obtain X-ray transmission data for tomographic image reconstruction. (U.K.)

  3. Stimulated X-Ray Emission Spectroscopy in Transition Metal Complexes

    Science.gov (United States)

    Kroll, Thomas; Weninger, Clemens; Alonso-Mori, Roberto; Sokaras, Dimosthenis; Zhu, Diling; Mercadier, Laurent; Majety, Vinay P.; Marinelli, Agostino; Lutman, Alberto; Guetg, Marc W.; Decker, Franz-Josef; Boutet, Sébastien; Aquila, Andy; Koglin, Jason; Koralek, Jake; DePonte, Daniel P.; Kern, Jan; Fuller, Franklin D.; Pastor, Ernest; Fransson, Thomas; Zhang, Yu; Yano, Junko; Yachandra, Vittal K.; Rohringer, Nina; Bergmann, Uwe

    2018-03-01

    We report the observation and analysis of the gain curve of amplified K α x-ray emission from solutions of Mn(II) and Mn(VII) complexes using an x-ray free electron laser to create the 1 s core-hole population inversion. We find spectra at amplification levels extending over 4 orders of magnitude until saturation. We observe bandwidths below the Mn 1 s core-hole lifetime broadening in the onset of the stimulated emission. In the exponential amplification regime the resolution corrected spectral width of ˜1.7 eV FWHM is constant over 3 orders of magnitude, pointing to the buildup of transform limited pulses of ˜1 fs duration. Driving the amplification into saturation leads to broadening and a shift of the line. Importantly, the chemical sensitivity of the stimulated x-ray emission to the Mn oxidation state is preserved at power densities of ˜1020 W /cm2 for the incoming x-ray pulses. Differences in signal sensitivity and spectral information compared to conventional (spontaneous) x-ray emission spectroscopy are discussed. Our findings build a baseline for nonlinear x-ray spectroscopy for a wide range of transition metal complexes in inorganic chemistry, catalysis, and materials science.

  4. Laser plasma x-ray source for ultrafast time-resolved x-ray absorption spectroscopy

    Directory of Open Access Journals (Sweden)

    L. Miaja-Avila

    2015-03-01

    Full Text Available We describe a laser-driven x-ray plasma source designed for ultrafast x-ray absorption spectroscopy. The source is comprised of a 1 kHz, 20 W, femtosecond pulsed infrared laser and a water target. We present the x-ray spectra as a function of laser energy and pulse duration. Additionally, we investigate the plasma temperature and photon flux as we vary the laser energy. We obtain a 75 μm FWHM x-ray spot size, containing ∼106 photons/s, by focusing the produced x-rays with a polycapillary optic. Since the acquisition of x-ray absorption spectra requires the averaging of measurements from >107 laser pulses, we also present data on the source stability, including single pulse measurements of the x-ray yield and the x-ray spectral shape. In single pulse measurements, the x-ray flux has a measured standard deviation of 8%, where the laser pointing is the main cause of variability. Further, we show that the variability in x-ray spectral shape from single pulses is low, thus justifying the combining of x-rays obtained from different laser pulses into a single spectrum. Finally, we show a static x-ray absorption spectrum of a ferrioxalate solution as detected by a microcalorimeter array. Altogether, our results demonstrate that this water-jet based plasma source is a suitable candidate for laboratory-based time-resolved x-ray absorption spectroscopy experiments.

  5. X-ray instrumentation in astronomy

    International Nuclear Information System (INIS)

    Cuhlane, J.L.

    1985-01-01

    This book presents the proceedings of a conference devoted to x-ray instrumentation in astronomy. Special sections are: AXAF X-Ray Optical Systems; Specialized X-Ray Systems; X-Ray Optical Systems I; X-Ray Optical Systems II; Gas Filled X-Ray Detectors II; The NASA Advanced X-Ray Astrophysics Facility; X-Ray and EUV Spectrometers; Microchannel Plates; and Solid State Detectors

  6. Analytical device for X-ray tomography by transmission

    International Nuclear Information System (INIS)

    Allemand, Robert.

    1975-01-01

    The invention concerns an analytical system for X ray tomography by transmission. The principle of these appliances is based on measuring the absorption of an X ray beam in terms of the density of the tissue being examined. In the apparatus marketed by E.M.I. (Electric and Musical Industries Ltd) of Great Britain, one hundred absorption determinations are performed during a scan lasting around one second; with this apparatus the number of scans is 180. In order to extend this examination to organs other than the brain, it is necessary to use shorter examination times. To do so, the detection cells employed are ionization chambers and they are associated with instrumentation for determining the charge collected in each chamber over a given time under the effect of the X rays which have passed through the organ being examined [fr

  7. Noninvasive 3D Structural Analysis of Arthropod by Synchrotron X-Ray Phase Contrast Tomography

    International Nuclear Information System (INIS)

    Yao, S.; Zong, Y.; Fan, J.; Sun, Z.; Jiang, H.

    2015-01-01

    X-ray imaging techniques significantly advanced our understanding of materials and biology, among which phase contrast X-ray microscopy has obvious advantages in imaging biological specimens which have low contrast by conventional absorption contrast microscopy. In this paper, three-dimensional microstructure of arthropod with high contrast has been demonstrated by synchrotron X-ray in-line phase contrast tomography. The external morphology and internal structures of an earthworm were analyzed based upon tomographic reconstructions with and without phase retrieval. We also identified and characterized various fine structural details such as the musculature system, the digestive system, the nervous system, and the circulatory system. This work exhibited the high efficiency, high precision, and wide potential applications of synchrotron X-ray phase contrast tomography in nondestructive investigation of low-density materials and biology.

  8. Panoramic Dental X-Ray

    Science.gov (United States)

    ... Physician Resources Professions Site Index A-Z Panoramic Dental X-ray Panoramic dental x-ray uses a very small dose of ... x-ray , is a two-dimensional (2-D) dental x-ray examination that captures the entire mouth ...

  9. Chest X-Ray

    Medline Plus

    Full Text Available ... I’d like to talk with you about chest radiography also known as chest x-rays. Chest x-rays are the most ... far outweighs any risk. For more information about chest x-rays, visit Radiology Info dot org. Thank you for your time! ...

  10. Miniature x-ray point source for alignment and calibration of x-ray optics

    International Nuclear Information System (INIS)

    Price, R.H.; Boyle, M.J.; Glaros, S.S.

    1977-01-01

    A miniature x-ray point source of high brightness similar to that of Rovinsky, et al. is described. One version of the x-ray source is used to align the x-ray optics on the Argus and Shiva laser systems. A second version is used to determine the spatial and spectral transmission functions of the x-ray optics. The spatial and spectral characteristics of the x-ray emission from the x-ray point source are described. The physical constraints including size, intensity and thermal limitations, and useful lifetime are discussed. The alignment and calibration techniques for various x-ray optics and detector combinations are described

  11. X-ray absorption spectroscopy in the keV range with laser generated high harmonic radiation

    International Nuclear Information System (INIS)

    Seres, Enikoe; Seres, Jozsef; Spielmann, Christian

    2006-01-01

    By irradiating He and Ne atoms with 3 mJ, 12 fs, near infrared laser pulses from a tabletop laser system, the authors generated spatially and temporally coherent x rays up to a photon energy of 3.5 keV. With this source it is possible to use high-harmonic radiation for x-ray absorption spectroscopy in the keV range. They were able to clearly resolve the L absorption edges of titanium and copper and the K edges of aluminum and silicon. From the fine structure of the x-ray absorption they estimated the interatomic distances

  12. Subluminous X-ray binaries

    NARCIS (Netherlands)

    Armas Padilla, M.

    2013-01-01

    The discovery of the first X-ray binary, Scorpius X-1, by Giacconi et al. (1962), marked the birth of X-ray astronomy. Following that discovery, many additional X-ray sources where found with the first generation of X-ray rockets and observatories (e.g., UHURU and Einstein). The short-timescale

  13. X-Ray Exam: Forearm

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Forearm KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  14. X-Ray Exam: Foot

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Foot KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  15. X-Ray Exam: Wrist

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Wrist KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  16. Thoracic spine x-ray

    Science.gov (United States)

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... There is low radiation exposure. X-rays are monitored and regulated to provide the minimum amount of radiation exposure needed to produce the image. Most ...

  17. X-Ray Exam: Finger

    Science.gov (United States)

    ... Staying Safe Videos for Educators Search English Español X-Ray Exam: Finger KidsHealth / For Parents / X-Ray Exam: ... Muscles, and Joints Broken Bones Getting an X-ray (Video) X-Ray (Video) View more Partner Message About Us ...

  18. Soft x-ray lasers

    International Nuclear Information System (INIS)

    Matthews, D.L.; Rosen, M.D.

    1988-01-01

    One of the elusive dreams of laser physicists has been the development of an x-ray laser. After 25 years of waiting, the x-ray laser has at last entered the scientific scene, although those now in operation are still laboratory prototypes. They produce soft x rays down to about five nanometers. X-ray lasers retain the usual characteristics of their optical counterparts: a very tight beam, spatial and temporal coherence, and extreme brightness. Present x-ray lasers are nearly 100 times brighter that the next most powerful x-ray source in the world: the electron synchrotron. Although Lawrence Livermore National Laboratory (LLNL) is widely known for its hard-x-ray laser program which has potential applications in the Strategic Defense Initiative, the soft x-ray lasers have no direct military applications. These lasers, and the scientific tools that result from their development, may one day have a place in the design and diagnosis of both laser fusion and hard x-ray lasers. The soft x-ray lasers now in operation at the LLNL have shown great promise but are still in the primitive state. Once x-ray lasers become reliable, efficient, and economical, they will have several important applications. Chief among them might be the creation of holograms of microscopic biological structures too small to be investigated with visible light. 5 figs

  19. Automatic film loader for X-ray spot film device

    International Nuclear Information System (INIS)

    1975-01-01

    A light tight tunnel extends over the top of a diagnostic X-ray table. A film cassette is mounted for reciprocating in the tunnel between an X-ray exposure position and a position in which the cassette is unloaded or loaded with film automatically. Unexposed films are dispensed one at a time into the cassette from a feed magazine at one end of the tunnel. After exposure, the film is ejected from the cassette into a receiving magazine at the same end of the tunnel. (Auth.)

  20. Soft x-ray absorption spectra of ilmenite family.

    Science.gov (United States)

    Agui, A; Mizumaki, M; Saitoh, Y; Matsushita, T; Nakatani, T; Fukaya, A; Torikai, E

    2001-03-01

    We have carried out soft x-ray absorption spectroscopy to study the electronic structure of ilmenite family, such as MnTiO3, FeTiO3, and CoTiO3 at the soft x-ray beamline, BL23SU, at the SPring-8. The Ti and M L2,3 absorption spectra of MTiO3 (M=Mn, Fe, and Co) show spectra of Ti4+ and M2+ electron configurations, respectively. Except the Fe L2,3 spectrum, those spectra were understood within the O(h) symmetry around the transition metal ions. The Fe L3-edge spectrum clearly shows a doublet peak at the L3 edge, which is attributed to Fe2+ state, moreover the very high-resolution the L-edge spectra of transition metals show fine structures. The spectra of those ilmenites are compared.

  1. An X-ray photoelectron spectroscopy study of the products of the interaction of gaseous IrF6 with fine UO2F2

    Directory of Open Access Journals (Sweden)

    Prusakov Vladimir N.

    2007-01-01

    Full Text Available Nuclear fuel reprocessing by fluorination, a dry method of regeneration of spent nuclear fuel, uses UO2F2 for the separation of plutonium from gaseous mixtures. Since plutonium requires special treatment, IrF6 was used as a thermodynamic model of PuF6. The model reaction of the interaction of gaseous IrF6 with fine UO2F2 in the sorption column revealed a change of color of the sorption column contents from pale-yellow to gray and black, indicating the formation of products of such an interaction. The X-ray photoelectron spectroscopy study showed that the interaction of gaseous IrF6 with fine UO2F2 at 125 °C results in the formation of stable iridium compounds where the iridium oxidation state is close to Ir3+. The dependence of the elemental compositions of the layers in the sorption column on the penetration depth of IrF6 was established.

  2. X-ray spectroscopic study of high-temperature plasmas by curved crystal spectrometer

    International Nuclear Information System (INIS)

    Morita, Shigeru.

    1983-07-01

    Extensive studies have been carried out on the structure of X-ray spectra from the highly stripped ions of first transition elements and their behavior in high temperature plasma, using a high resolution crystal spectrometer. Calculation was made on the design and the use of a curved crystal spectrometer for plasma diagnostics. A Johann type crystal spectrometer for measuring X-ray lines was constructed on the basis of the calculation. The characteristics of curved crystals of LiF, Ge and quartz used for the measurement of Kα lines from first transition elements were investigated. Vacuum sparks have been formed for producing high temperature plasma which emits X-ray lines from highly stripped ions. Two different structures of vacuum spark plasma were shown, that is, thermalized point plasma and extended plasma associated with non-thermal electrons. The X-ray lines from the extended plasma, those associated with the K shell from the point plasma and the Kα lines of Ti through Zn from the point plasma have been observed. (Kako, I.)

  3. Feasibility study for PTV measurement using x-ray holography

    International Nuclear Information System (INIS)

    Uemura, Tomomasa; Yamamoto, Yasufumi; Murata, Shigeru; Nishio, Shigeru; Iguchi, Manabu; Uesugi, Kentaro

    2005-01-01

    Some X-ray imaging techniques are examined for a feasibility study for micro-PIV in this study. There are three X-ray imaging method, the absorption contrast method, the refraction contrast method, and the phase contrast method. The first one is a common method but its spatial resolution is rather poor. The 2nd method corresponds to the Schlieren method that utilizes refraction of parallel light. The characteristics of the method, edge enhancement, can be effective in extracting tracer images. The third method is a kind of holography methods, and this method can record fine tracer particles. Among the three methods, the second and the third method are seemed to be applicable to PIV imaging, and those methods need a parallel X-ray. The SPring-8, the synchrotron radiation facility in Harima, is utilized. There are some methods to realize phase contrast image, most of them requires ultra-high precision in optical alignment. In the present study, though a coherent source is indispensable, the simplest and robust holography method, the inline holography, is used to take phase contrast pictures. (author)

  4. X-ray beam size measurements on the Advanced Test Accelerator

    International Nuclear Information System (INIS)

    Struve, K.W.; Chambers, F.W.; Lauer, E.J.; Slaughter, D.R.

    1986-01-01

    The electron beam size has been determined on the Advanced Test Accelerator (ATA) by intercepting the beam with a target and measuring the resulting x-ray intensity as a function of time as the target is moved through the beam. Several types of targets have been used. One is a tantalum rod which extends completely across the drift chamber. Another is a tungsten powder filled carbon crucible. Both of these probes are moved from shot to shot so that the x-ray signal intensity varies with probe position. A third is a larger tantalum disk which is inserted on beam axis to allow determining beam size on a one shot basis. The x-ray signals are detected with an MCP photomultiplier tube located at 90 0 to the beamline. It is sufficiently shielded to reject background x-rays and neutrons. The signals were digitized, recorded and later unfolded to produce plots of x-ray intensity versus probe position for several times during the pulse. The presumption that the x-ray intensity is proportional to beam current density is checked computationally. Details of the probe construction and PMT shielding, as well as sample measurements are given

  5. Frequency filter of seed x-ray by use of x-ray laser medium. Toward the generation of the temporally coherent x-ray laser

    International Nuclear Information System (INIS)

    Hasegawa, Noboru; Kawachi, Tetsuya; Kishimoto, Maki; Sukegawa, Kouta; Tanaka, Momoko; Ochi, Yoshihiro; Nishikino, Masaharu; Nagashima, Keisuke; Kato, Yoshiaki; Renzhong, Tai

    2009-01-01

    We evaluate the characteristics of a higher-order harmonics light as a seed X-ray amplified through a laser-produced X-ray amplifier. The narrow spectral bandwidth of the X-ray amplifier works as the frequency filter of the seed X-ray, resulting in that only the temporally coherent X-ray is amplified. Experimental investigation using the 29th-order harmonic light of the Ti:sapphire laser at a wavelength of 26.9 nm together with a neon-like manganese X-ray laser medium shows evident spectral narrowing of the seed X-ray and amplification without serious diffraction effects on the propagation of the amplified X-ray beam. This implies that the present combination is potential to realize temporally coherent X-ray lasers, with an expected duration of approximately 400 fs. (author)

  6. Wide field x-ray telescopes: Detecting x-ray transients/afterglows related to GRBs

    International Nuclear Information System (INIS)

    Hudec, Rene; Pina, Ladislav; Inneman, Adolf; Gorenstein, Paul

    1998-01-01

    The recent discovery of X-ray afterglows of GRBs opens the possibility of analyses of GRBs by their X-ray detections. However, imaging X-ray telescopes in current use mostly have limited fields of view. Alternative X-ray optics geometries achieving very large fields of view have been theoretically suggested in the 70's but not constructed and used so far. We review the geometries and basic properties of the wide-field X-ray optical systems based on one- and two-dimensional lobster-eye geometry and suggest technologies for their development and construction. First results of the development of double replicated X-ray reflecting flats for use in one-dimensional X-ray optics of lobster-eye type are presented and discussed. The optimum strategy for locating GRBs upon their X-ray counterparts is also presented and discussed

  7. X-ray mosaic nanotomography of large microorganisms.

    Science.gov (United States)

    Mokso, R; Quaroni, L; Marone, F; Irvine, S; Vila-Comamala, J; Blanke, A; Stampanoni, M

    2012-02-01

    Full-field X-ray microscopy is a valuable tool for 3D observation of biological systems. In the soft X-ray domain organelles can be visualized in individual cells while hard X-ray microscopes excel in imaging of larger complex biological tissue. The field of view of these instruments is typically 10(3) times the spatial resolution. We exploit the assets of the hard X-ray sub-micrometer imaging and extend the standard approach by widening the effective field of view to match the size of the sample. We show that global tomography of biological systems exceeding several times the field of view is feasible also at the nanoscale with moderate radiation dose. We address the performance issues and limitations of the TOMCAT full-field microscope and more generally for Zernike phase contrast imaging. Two biologically relevant systems were investigated. The first being the largest known bacteria (Thiomargarita namibiensis), the second is a small myriapod species (Pauropoda sp.). Both examples illustrate the capacity of the unique, structured condenser based broad-band full-field microscope to access the 3D structural details of biological systems at the nanoscale while avoiding complicated sample preparation, or even keeping the sample environment close to the natural state. Copyright © 2012 Elsevier Inc. All rights reserved.

  8. Measured reflectance of graded multilayer mirrors designed for astronomical hard X-ray telescopes

    DEFF Research Database (Denmark)

    Christensen, Finn Erland; Craig, W.W.; Windt, D.L.

    2000-01-01

    Future astronomical X-ray telescopes, including the balloon-borne High-Energy Focusing Telescope (HEFT) and the Constellation-X Hard X-ray Telescope (Con-X HXT) plan to incorporate depth-graded multilayer coatings in order to extend sensitivity into the hard X-ray (10 less than or similar to E less......-graded W/Si multilayers optimized for broadband performance up to 69.5 keV (WK-edge). These designs are ideal for both the HEFT and Con-X HXT applications. We compare the measurements to model calculations to demonstrate that the reflectivity can be well described by the intended power law distribution...

  9. X rays and condensed matter

    International Nuclear Information System (INIS)

    Daillant, J.

    1997-01-01

    After a historical review of the discovery and study of X rays, the various interaction processes between X rays and matter are described: Thomson scattering, Compton scattering, X-photon absorption through photoelectric effect, and magnetic scattering. X ray sources such as the European Synchrotron Radiation Facility (ESRF) are described. The various X-ray applications are presented: imagery such as X tomography, X microscopy, phase contrast; X-ray photoelectron spectroscopy and X-ray absorption spectroscopy; X-ray scattering and diffraction techniques

  10. Dental X-ray apparatus

    International Nuclear Information System (INIS)

    Weiss, M.E.

    1980-01-01

    Intra-oral dental X-ray apparatus for panoramic radiography is described in detail. It comprises a tubular target carrier supporting at its distal end a target with an inclined forward face. Image definition is improved by positioning in the path of the X-rays a window of X-ray transmitting ceramic material, e.g. 90% oxide of Be, or Al, 7% Si0 2 . The target carrier forms a probe which can be positioned in the patient's mouth. X-rays are directed forwardly and laterally of the target to an X-ray film positioned externally. The probe is provided with a detachable sleeve having V-form arms of X-ray opaque material which serve to depress the tongue out of the radiation path and also shield the roof of the mouth and other regions of the head from the X-ray pattern. A cylindrical lead shield defines the X-ray beam angle. (author)

  11. X-ray diagnostics for TFTR

    International Nuclear Information System (INIS)

    von Goeler, S.; Hill, K.W.; Bitter, M.

    1982-12-01

    A short description of the x-ray diagnostic preparation for the TFTR tokamak is given. The x-ray equipment consists of the limiter x-ray monitoring system, the soft x-ray pulse-height-analysis-system, the soft x-ray imaging system and the x-ray crystal spectrometer. Particular attention is given to the radiation protection of the x-ray systems from the neutron environment

  12. A search for X-ray bright distant clusters of galaxies

    Science.gov (United States)

    Nichol, R. C.; Ulmer, M. P.; Kron, R. G.; Wirth, G. D.; Koo, D. C.

    1994-01-01

    We present the results of a search for X-ray luminous distant clusters of galaxies. We found extended X-ray emission characteristic of a cluster toward two of our candidate clusters of galaxies. They both have a luminosity in the ROSAT bandpass of approximately equals 10(exp 44) ergs/s and a redshift greater than 0.5; thus making them two of the most distant X-ray clusters ever observed. Furthermore, we show that both clusters are optically rich and have a known radio source associated with them. We compare our result with other recent searches for distant X-ray luminous clusters and present a lower limit of 1.2 x 10(exp -7)/cu Mpc for the number density of such high-redshift clusters. This limit is consistent with the expected abundance of such clusters in a standard (b = 2) cold dark matter universe. Finally, our clusters provide important high-redshift targets for further study into the origin and evolution of massive clusters of galaxies.

  13. Grating-based X-ray phase contrast for biomedical imaging applications

    International Nuclear Information System (INIS)

    Pfeiffer, Franz; Willner, Marian; Chabior, Michael; Herzen, Julia; Helmholtz-Zentrum Geesthacht, Geesthacht; Auweter, Sigrid; Reiser, Maximilian; Bamberg, Fabian

    2013-01-01

    In this review article we describe the development of grating-based X-ray phase-contrast imaging, with particular emphasis on potential biomedical applications of the technology. We review the basics of image formation in grating-based phase-contrast and dark-field radiography and present some exemplary multimodal radiography results obtained with laboratory X-ray sources. Furthermore, we discuss the theoretical concepts to extend grating-based multimodal radiography to quantitative transmission, phase-contrast, and dark-field scattering computed tomography. (orig.)

  14. Broadband X-ray spectra of the ultraluminous X-ray source Holmberg IX X-1 observed with NuSTAR, XMM-Newton, and Suzaku

    Energy Technology Data Exchange (ETDEWEB)

    Walton, D. J.; Harrison, F. A.; Grefenstette, B. W.; Fuerst, F.; Madsen, K. K.; Rana, V.; Stern, D. [Space Radiation Laboratory, California Institute of Technology, Pasadena, CA 91125 (United States); Miller, J. M. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); Bachetti, M.; Barret, D.; Webb, N. [Universite de Toulouse, UPS-OMP, IRAP, Toulouse (France); Boggs, S. E.; Craig, W. W. [Space Sciences Laboratory, University of California, Berkeley, CA 94720 (United States); Christensen, F. E. [DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Lyngby (Denmark); Fabian, A. C.; Parker, M. L. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA (United Kingdom); Hailey, C. J. [Columbia Astrophysics Laboratory, Columbia University, New York, NY 10027 (United States); Ptak, A.; Zhang, W. W., E-mail: dwalton@srl.caltech.edu [NASA Goddard Space Flight Center, Greenbelt, MD 20771 (United States)

    2014-09-20

    We present results from the coordinated broadband X-ray observations of the extreme ultraluminous X-ray source Holmberg IX X-1 performed by NuSTAR, XMM-Newton, and Suzaku in late 2012. These observations provide the first high-quality spectra of Holmberg IX X-1 above 10 keV to date, extending the X-ray coverage of this remarkable source up to ∼30 keV. Broadband observations were undertaken at two epochs, between which Holmberg IX X-1 exhibited both flux and strong spectral variability, increasing in luminosity from L {sub X} = (1.90 ± 0.03) × 10{sup 40} erg s{sup –1} to L {sub X} = (3.35 ± 0.03) × 10{sup 40} erg s{sup –1}. Neither epoch exhibits a spectrum consistent with emission from the standard low/hard accretion state seen in Galactic black hole binaries, which would have been expected if Holmberg IX X-1 harbors a truly massive black hole accreting at substantially sub-Eddington accretion rates. The NuSTAR data confirm that the curvature observed previously in the 3-10 keV bandpass does represent a true spectral cutoff. During each epoch, the spectrum appears to be dominated by two optically thick thermal components, likely associated with an accretion disk. The spectrum also shows some evidence for a nonthermal tail at the highest energies, which may further support this scenario. The available data allow for either of the two thermal components to dominate the spectral evolution, although both scenarios require highly nonstandard behavior for thermal accretion disk emission.

  15. Determination of the Mg occupation site in MOCVD- and MBE-grown Mg-doped InN using X-ray absorption fine-structure measurements

    Energy Technology Data Exchange (ETDEWEB)

    Miyajima, Takao; Uemura, Shigeaki; Kudo, Yoshihiro [Materials Laboratories, Sony Corporation, Atsugi, Kanagawa (Japan); Kitajima, Yoshinori [Photon Factory, High Energy Accelerator Research Organization, Tsukuba, Ibaraki (Japan); Yamamoto, Akio [Graduate School of Engineering, University of Fukui, Fukui (Japan); Muto, Daisuke; Nanishi, Yasushi [Department of Photonics, Ritsumeikan University, 1-1-1 Noji-Higashi, Kusatsu, Shiga 525-8577 (Japan)

    2008-07-01

    We analyzed the atomic structure around Mg atoms in MOCVD- and MBE-grown Mg-doped InN using Mg K-edge X-ray absorption fine-structure (XAFS) measurements. Our experimental data closely fit to the simulated data in which Mg atoms occupy the substitutional sites of In atoms. From this result, we conclude that Mg atoms essentially occupy not N atoms sites but In atoms sites, meaning that Mg atoms can act as acceptors in InN. We believe that observations of p-type conductivity are prevented by problems such as carrier compensation and electron accumulation at the surface. (copyright 2008 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  16. X-ray beam generator

    International Nuclear Information System (INIS)

    Koller, T.J.; Randmer, J.A.

    1977-01-01

    A method of minimizing the preferential angular absorption of the divergent beam from an X-ray generator is described. The generator consists of an X-ray shielded housing with an X-ray transmissive window symmetrically placed in radial alignment with a focal spot area on a sloped target surface of an X-ray tube in the housing. The X-ray tube may be of the stationary anode type or of the rotating anode type. (U.K.)

  17. The 2014 X-Ray Minimum of η Carinae as Seen by Swift

    Energy Technology Data Exchange (ETDEWEB)

    Corcoran, M. F.; Hamaguchi, K. [CRESST and X-Ray Astrophysics Laboratory, NASA/Goddard Space Flight Center, Greenbelt, MD 20771 (United States); Liburd, J.; Morris, D. [University of the Virgin Islands, College of Science and Mathematics, John Brewers Bay, St. Thomas, USVI 00802-9990 (United States); Russell, C. M. P. [NASA Goddard Space Flight Center, Code 662, Greenbelt, MD 20771 (United States); Gull, T. R. [NASA Goddard Space Flight Center, Code 667, Greenbelt, MD 20771 (United States); Madura, T. I. [Department of Physics and Astronomy, San Jose State University, One Washington Square, San Jose, CA 95192 (United States); Teodoro, M. [Universities Space Research Association, 7178 Columbia Gateway Drive, Columbia, MD 21044 (United States); Moffat, A. F. J. [Département de physique and Centre de Recherche en Astrophysique du Québec (CRAQ), Université de Montréal, C.P. 6128, Succ. Centre-Ville, Montréal, Québec, H3C 3J7 (Canada); Richardson, N. D. [Ritter Observatory, Department of Physics and Astronomy, The University of Toledo, Toledo, OH 43606 (United States); Hillier, D. J. [Department of Physics and Astronomy and Pittsburgh Particle Physics, Astrophysics, and Cosmology Center (PITT PACC), University of Pittsburgh, 3941 O’Hara Street, Pittsburgh, PA 15260 (United States); Damineli, A. [Instituto de Astronomia, Geofísica e Ciências Atmosféricas, Universidade de São Paulo, Rua do Matão 1226, Cidade Universitária, São Paulo, 05508-900 (Brazil); Groh, J. H. [School of Physics, Trinity College Dublin, Dublin 2 (Ireland)

    2017-03-20

    We report on Swift X-ray Telescope observations of Eta Carinae ( η Car), an extremely massive, long-period, highly eccentric binary obtained during the 2014.6 X-ray minimum/periastron passage. These observations show that η Car may have been particularly bright in X-rays going into the X-ray minimum state, while the duration of the 2014 X-ray minimum was intermediate between the extended minima seen in 1998.0 and 2003.5 by Rossi X-Ray Timing Explorer ( RXTE ), and the shorter minimum in 2009.0. The hardness ratios derived from the Swift observations showed a relatively smooth increase to a peak value occurring 40.5 days after the start of the X-ray minimum, though these observations cannot reliably measure the X-ray hardness during the deepest part of the X-ray minimum when contamination by the “central constant emission” component is significant. By comparing the timings of the RXTE and Swift observations near the X-ray minima, we derive an updated X-ray period of P {sub X} = 2023.7 ± 0.7 days, in good agreement with periods derived from observations at other wavelengths, and we compare the X-ray changes with variations in the He ii 4686 emission. The middle of the “Deep Minimum” interval, as defined by the Swift column density variations, is in good agreement with the time of periastron passage derived from the He ii λ 4686 line variations.

  18. Detailed Characterization of a Nanosecond-Lived Excited State: X-ray and Theoretical Investigation of the Quintet State in Photoexcited [Fe(terpy) 2 ] 2+

    International Nuclear Information System (INIS)

    Vanko, Gyorgy; Bordage, Amelie; Papai, Matyas; Haldrup, Kristoffer; March, Anne Marie; Galler, Andreas; Assefa, Tadesse; Cabaret, Delphine; Juhin, Amelie; Driel, Tim B. van; Gallo, Erik; Rovezzi, Mauro; Nemeth, Zoltan; Rozsalyi, Emese; Rozgonyi, Tamas; Uhlig, Jens; Gawelda, Wojciech

    2015-01-01

    Theoretical predictions show that depending on the populations of the Fe 3d xy , 3d xz , and 3d yz orbitals two possible quintet states can exist for the high-spin state of the photoswitchable model system [Fe(terpy) 2 ] 2+ . The differences in the structure and molecular properties of these 5B2 and 5E quintets are very small and pose a substantial challenge for experiments to resolve them. Yet for a better understanding of the physics of this system, which can lead to the design of novel molecules with enhanced photoswitching performance, it is vital to determine which high-spin state is reached in the transitions that follow the light excitation. The quintet state can be prepared with a short laser pulse and can be studied with cutting-edge time-resolved X-ray techniques. Here we report on the application of an extended set of X-ray spectroscopy and scattering techniques applied to investigate the quintet state of [Fe(terpy) 2 ] 2+ 80 ps after light excitation. High-quality X-ray absorption, nonresonant emission, and resonant emission spectra as well as X-ray diffuse scattering data clearly reflect the formation of the high-spin state of the [Fe(terpy) 2 ] 2+ molecule; moreover, extended X-ray absorption fine structure spectroscopy resolves the Fe-ligand bond-length variations with unprecedented bond-length accuracy in time-resolved experiments. With ab initio calculations we determine why, in contrast to most related systems, one configurational mode is insufficient for the description of the low-spin (LS)-high-spin (HS) transition. We identify the electronic structure origin of the differences between the two possible quintet modes, and finally, we unambiguously identify the formed quintet state as 5E, in agreement with our theoretical expectations

  19. Simplified techniques of cerebral angiography using a mobile X-ray unit and computed radiography

    International Nuclear Information System (INIS)

    Gondo, Gakuji; Ishiwata, Yusuke; Yamashita, Toshinori; Iida, Takashi; Moro, Yutaka

    1989-01-01

    Simplified techniques of cerebral angiography using a mobile X-ray unit and computed radiography (CR) are discussed. Computed radiography is a digital radiography system in which an imaging plate is used as an X-ray detector and a final image is displayed on the film. In the angiograms performed with CR, the spatial frequency components can be enhanced for the easy analysis of fine blood vessels. Computed radiography has an automatic sensitivity and a latitude-setting mechanism, thus serving as an 'automatic camera.' This mechanism is useful for radiography with a mobile X-ray unit in hospital wards, intensive care units, or operating rooms where the appropriate setting of exposure conditions is difficult. We applied this mechanism to direct percutaneous carotid angiography and intravenous digital subtraction angiography with a mobile X-ray unit. Direct percutaneous carotid angiography using CR and a mobile X-ray unit were taken after the manual injection of a small amount of a contrast material through a fine needle. We performed direct percutaneous carotid angiography with this method 68 times on 25 cases from August 1986 to December 1987. Of the 68 angiograms, 61 were evaluated as good, compared with conventional angiography. Though the remaining seven were evaluated as poor, they were still diagnostically effective. This method is found useful for carotid angiography in emergency rooms, intensive care units, or operating rooms. Cerebral venography using CR and a mobile X-ray unit was done after the manual injection of a contrast material through the bilateral cubital veins. The cerebral venous system could be visualized from 16 to 24 seconds after the beginning of the injection of the contrast material. We performed cerebral venography with this method 14 times on six cases. These venograms were better than conventional angiograms in all cases. This method may be useful in managing patients suffering from cerebral venous thrombosis. (J.P.N.)

  20. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... ray examination. X-rays usually have no side effects in the typical diagnostic range for this exam. ... x-rays. A Word About Minimizing Radiation Exposure Special care is taken during x-ray examinations to ...

  1. Neutron and X-ray Spectroscopy

    CERN Document Server

    Hippert, Françoise; Hodeau, Jean Louis; Lelièvre-Berna, Eddy; Regnard, Jean-René

    2006-01-01

    Neutron and X-Ray Spectroscopy delivers an up-to-date account of the principles and practice of inelastic and spectroscopic methods available at neutron and synchrotron sources, including recent developments. The chapters are based on a course of lectures and practicals (the HERCULES course) delivered to young scientists who require these methods in their professional careers. Each chapter, written by a leading specialist in the field, introduces the basic concepts of the technique and provides an overview of recent work. This volume, which focuses on spectroscopic techniques in synchrotron radiation and inelastic neutron scattering, will be a primary source of information for physicists, chemists and materials scientists who wish to acquire a basic understanding of these techniques and to discover the possibilities offered by them. Emphasizing the complementarity of the neutron and X-ray methods, this tutorial will also be invaluable to scientists already working in neighboring fields who seek to extend thei...

  2. Study of Cr/Sc-based multilayer reflecting mirrors using soft x-ray reflectivity and standing wave-enhanced x-ray fluorescence

    Science.gov (United States)

    Wu, Meiyi; Burcklen, Catherine; André, Jean-Michel; Guen, Karine Le; Giglia, Angelo; Koshmak, Konstantin; Nannarone, Stefano; Bridou, Françoise; Meltchakov, Evgueni; Rossi, Sébastien de; Delmotte, Franck; Jonnard, Philippe

    2017-11-01

    We study Cr/Sc-based multilayer mirrors designed to work in the water window range using hard and soft x-ray reflectivity as well as x-ray fluorescence enhanced by standing waves. Samples differ by the elemental composition of the stack, the thickness of each layer, and the order of deposition. This paper mainly consists of two parts. In the first part, the optical performances of different Cr/Sc-based multilayers are reported, and in the second part, we extend further the characterization of the structural parameters of the multilayers, which can be extracted by comparing the experimental data with simulations. The methodology is detailed in the case of Cr/B4C/Sc sample for which a three-layer model is used. Structural parameters determined by fitting reflectivity curve are then introduced as fixed parameters to plot the x-ray standing wave curve, to compare with the experiment, and confirm the determined structure of the stack.

  3. PixFEL: developing a fine pitch, fast 2D X-ray imager for the next generation X-FELs

    International Nuclear Information System (INIS)

    Ratti, L.; Comotti, D.; Fabris, L.; Grassi, M.; Lodola, L.; Malcovati, P.; Manghisoni, M.; Re, V.; Traversi, G.; Vacchi, C.; Bettarini, S.; Casarosa, G.; Forti, F.; Morsani, F.; Paladino, A.; Paoloni, E.; Rizzo, G.; Benkechkache, M.A.; Dalla Betta, G.-F.; Mendicino, R.

    2015-01-01

    The PixFEL project is conceived as the first stage of a long term research program aiming at the development of advanced X-ray imaging instrumentation for applications at the free electron laser (FEL) facilities. The project aims at substantially advancing the state-of-the-art in the field of 2D X-ray imaging by exploring cutting-edge solutions for sensor development, for integration processes and for readout channel architectures. The main focus is on the development of the fundamental microelectronic building blocks for detector readout and on the technologies for the assembly of a multilayer module with minimum dead area. This work serves the purpose of introducing the main features of the project, together with the simulation results leading to the first prototyping run

  4. Semiconductor X-ray detectors

    CERN Document Server

    Lowe, Barrie Glyn

    2014-01-01

    Identifying and measuring the elemental x-rays released when materials are examined with particles (electrons, protons, alpha particles, etc.) or photons (x-rays and gamma rays) is still considered to be the primary analytical technique for routine and non-destructive materials analysis. The Lithium Drifted Silicon (Si(Li)) X-Ray Detector, with its good resolution and peak to background, pioneered this type of analysis on electron microscopes, x-ray fluorescence instruments, and radioactive source- and accelerator-based excitation systems. Although rapid progress in Silicon Drift Detectors (SDDs), Charge Coupled Devices (CCDs), and Compound Semiconductor Detectors, including renewed interest in alternative materials such as CdZnTe and diamond, has made the Si(Li) X-Ray Detector nearly obsolete, the device serves as a useful benchmark and still is used in special instances where its large, sensitive depth is essential. Semiconductor X-Ray Detectors focuses on the history and development of Si(Li) X-Ray Detect...

  5. On the Absence of Non-thermal X-Ray Emission around Runaway O Stars

    Energy Technology Data Exchange (ETDEWEB)

    Toalá, J. A. [Institute of Astronomy and Astrophysics, Academia Sinica (ASIAA), Taipei 10617, Taiwan (China); Oskinova, L. M. [Institute for Physics and Astronomy, University of Potsdam, D-14476 Potsdam (Germany); Ignace, R. [Department of Physics and Astronomy, East Tennessee State University, Johnson City, TN 37614 (United States)

    2017-04-01

    Theoretical models predict that the compressed interstellar medium around runaway O stars can produce high-energy non-thermal diffuse emission, in particular, non-thermal X-ray and γ -ray emission. So far, detection of non-thermal X-ray emission was claimed for only one runaway star, AE Aur. We present a search for non-thermal diffuse X-ray emission from bow shocks using archived XMM-Newton observations for a clean sample of six well-determined runaway O stars. We find that none of these objects present diffuse X-ray emission associated with their bow shocks, similarly to previous X-ray studies toward ζ Oph and BD+43°3654. We carefully investigated multi-wavelength observations of AE Aur and could not confirm previous findings of non-thermal X-rays. We conclude that so far there is no clear evidence of non-thermal extended emission in bow shocks around runaway O stars.

  6. X-ray study of surface layers of tungsten monocrystals after electroerosion machining

    International Nuclear Information System (INIS)

    Aleshina, S.A.; Baranov, Yu.V.; Smirnov, I.S.; Marchuk, A.I.

    1981-01-01

    The presence of polycrystal surface layer, approximately 10 μm thick in subjacent layers and the presence of highly developed block structure which is the result of high-temperature effect of electroerosion machining are detected. Angles of disorientation between blocks, which constitute tens of angular minutes, are evaluated using the method of X-ray topography. According to broadening of profile of X-ray diffraction lines analysis of fine crystal structure of the surface layers is conducted. It is shown that the broadening of diffraction lines is mainly connected with the presence of coherent scat-- tering regions

  7. X-ray absorption spectroscopy study on SiC-side interface structure of SiO2–SiC formed by thermal oxidation in dry oxygen

    Science.gov (United States)

    Isomura, Noritake; Kosaka, Satoru; Kataoka, Keita; Watanabe, Yukihiko; Kimoto, Yasuji

    2018-06-01

    Extended X-ray absorption fine structure (EXAFS) spectroscopy is demonstrated to measure the fine atomic structure of SiO2–SiC interfaces. The SiC-side of the interface can be measured by fabricating thin SiO2 films and using SiC-selective EXAFS measurements. Fourier transforms of the oscillations of the EXAFS spectra correspond to radial-structure functions and reveal a new peak of the first nearest neighbor of Si for m-face SiC, which does not appear in measurements of the Si-face. This finding suggests that the m-face interface could include a structure with shorter Si–C distances. Numerical calculations provide additional support for this finding.

  8. Characterizing transverse coherence of an ultra-intense focused X-ray free-electron laser by an extended Young's experiment

    Directory of Open Access Journals (Sweden)

    Ichiro Inoue

    2015-11-01

    Full Text Available Characterization of transverse coherence is one of the most critical themes for advanced X-ray sources and their applications in many fields of science. However, for hard X-ray free-electron laser (XFEL sources there is very little knowledge available on their transverse coherence characteristics, despite their extreme importance. This is because the unique characteristics of the sources, such as the ultra-intense nature of XFEL radiation and the shot-by-shot fluctuations in the intensity distribution, make it difficult to apply conventional techniques. Here, an extended Young's interference experiment using a stream of bimodal gold particles is shown to achieve a direct measurement of the modulus of the complex degree of coherence of XFEL pulses. The use of interference patterns from two differently sized particles enables analysis of the transverse coherence on a single-shot basis without a priori knowledge of the instantaneous intensity ratio at the particles. For a focused X-ray spot as small as 1.8 µm (horizontal × 1.3 µm (vertical with an ultrahigh intensity that exceeds 1018 W cm−2 from the SPring-8 Ångstrom Compact free-electron LAser (SACLA, the coherence lengths were estimated to be 1.7 ± 0.2 µm (horizontal and 1.3 ± 0.1 µm (vertical. The ratios between the coherence lengths and the focused beam sizes are almost the same in the horizontal and vertical directions, indicating that the transverse coherence properties of unfocused XFEL pulses are isotropic. The experiment presented here enables measurements free from radiation damage and will be readily applicable to the analysis of the transverse coherence of ultra-intense nanometre-sized focused XFEL beams.

  9. X-ray apparatus

    International Nuclear Information System (INIS)

    Grady, J.K.

    1985-01-01

    X-ray apparatus is described which has a shutter between the X-ray source and the patient. The shutter controls the level of radiation to which the patient is exposed instead of merely discontinuing the electric power supplied to the source. When the shutter is opened a radiation sensor senses the level of X-radiation. When a preset quantity of X-radiation has been measured an exposure control closes the shutter. Instead of using the radiation sensor, the integrated power supplied to the anode of the X-ray source may be measured. (author)

  10. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    International Nuclear Information System (INIS)

    Vink, Jacco

    2009-01-01

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and γ-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification.The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations.Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  11. Hard X-ray Emission and Efficient Particle Acceleration by Supernova Remnants

    Science.gov (United States)

    Vink, Jacco

    2009-05-01

    I discuss the non-thermal X-ray emission from young supernova remnants. Over the last decade it has become clear from both X-ray and γ-ray observations that young supernovae accelerate particles up to 100 TeV. In soft X-rays the accelerated >10 TeV electrons produce synchrotron radiation, coming from narrow filaments located at the shock fronts. The width of these filaments shows that the magnetic fields are relatively high, thus providing evidence for magnetic field amplification. The synchrotron radiation of several remnants is known to extend into the hard X-ray regime. In particular Cas A, has a spectrum that appears as a power law up to almost 100 TeV. This is very surprising, as a steepening is expected going from the soft to the hard X-ray band. The spectrum is likely a result of many superimposed individual spectra, each steepening at different energies. This implies considerable spatial variation in hard X-rays, an obvious target for Simbol-X. The variations will be important to infer local shock acceleration properties, but also magnetic field fluctuations may cause spatial and temporal variations. Finally, I draw the attention to super bubbles and supernovae as sources of cosmic rays. As such they may be sources of hard X-ray emission. In particular, supernovae exploding inside the dense red supergiants winds of their progenitors ares promising candidates for hard X-ray emission.

  12. Method for spatially modulating X-ray pulses using MEMS-based X-ray optics

    Science.gov (United States)

    Lopez, Daniel; Shenoy, Gopal; Wang, Jin; Walko, Donald A.; Jung, Il-Woong; Mukhopadhyay, Deepkishore

    2015-03-10

    A method and apparatus are provided for spatially modulating X-rays or X-ray pulses using microelectromechanical systems (MEMS) based X-ray optics. A torsionally-oscillating MEMS micromirror and a method of leveraging the grazing-angle reflection property are provided to modulate X-ray pulses with a high-degree of controllability.

  13. X-ray emission lines from photoionized plasmas

    International Nuclear Information System (INIS)

    Liedahl, D.A.

    1992-11-01

    Plasma emission codes have become a standard tool for the analysis of spectroscopic data from cosmic X-ray sources. However, the assumption of collisional equilibrium, typically invoked in these codes, renders them inapplicable to many important astrophysical situations, particularly those involving X-ray photoionized nebulae, which are likely to exist in the circumsource environments of compact X-ray sources. X-ray line production in a photoionized plasma is primarily the result of radiative cascades following recombination. Through the development of atomic models of several highly-charged ions, this work extends the range of applicability of discrete spectral models to plasmas dominated by recombination. Assuming that ambient plasma conditions lie in the temperature range 10 5 --10 6 K and the density range 10 11 --10 16 cm -3 , X-ray line spectra are calculated over the wavelength range 5--45 angstrom using the HULLAC atomic physics package. Most of the work focuses on the Fe L-shell ions. Line ratios of the form (3s-2p)/(3d-2p) are shown to characterize the principal mode of line excitation, thereby providing a simple signature of photoionization. At electron densities exceeding 10 12 cm -3 , metastable state populations in the ground configurations approach their LTE value, resulting in the enrichment of the Fe L-shell recombination spectrum and a set of density-sensitive X-ray line ratios. Radiative recombination continua and emission lines produced selectively by Δn = 0 dielectronic recombination are shown to provide two classes of temperature diagnostics. Because of the extreme overionization, the recombination continua are expected to be narrow (ΔE/E much-lt 1), with ΔE = kT. Dielectronic recombination selectively drives radiative transitions that originate on states with vacancies in the 2s subshell, states that are inaccessible under pure RR population kinetics

  14. Optical and X-ray studies of Compact X-ray Binaries in NGC 5904

    Science.gov (United States)

    Bhalotia, Vanshree; Beck-Winchatz, Bernhard

    2018-06-01

    Due to their high stellar densities, globular cluster systems trigger various dynamical interactions, such as the formation of compact X-ray binaries. Stellar collisional frequencies have been correlated to the number of X-ray sources detected in various clusters and we hope to measure this correlation for NGC 5904. Optical fluxes of sources from archival HST images of NGC 5904 have been measured using a DOLPHOT PSF photometry in the UV, optical and near-infrared. We developed a data analysis pipeline to process the fluxes of tens of thousands of objects using awk, python and DOLPHOT. We plot color magnitude diagrams in different photometric bands in order to identify outliers that could be X-ray binaries, since they do not evolve the same way as singular stars. Aligning previously measured astrometric data for X-ray sources in NGC 5904 from Chandra with archival astrometric data from HST will filter out the outlier objects that are not X-ray producing, and provide a sample of compact binary systems that are responsible for X-ray emission in NGC 5904. Furthermore, previously measured X-ray fluxes of NGC 5904 from Chandra have also been used to measure the X-ray to optical flux ratio and identify the types of compact X-ray binaries responsible for the X-ray emissions in NGC 5904. We gratefully acknowledge the support from the Illinois Space Grant Consortium.

  15. CCD-based X-ray detectors for X-ray diffraction studies

    International Nuclear Information System (INIS)

    Ito, K.; Amemiya, Y.

    1999-01-01

    CCD-based X-ray detectors are getting to be used for X-ray diffraction studies especially in the studies where real time (automated) measurements and time-resolved measurements are required. Principles and designs of two typical types of CCD-based detectors are described; one is ths system in which x-ray image intensifiers are coupled to maximize the detective quantum efficiency for time-resolved measurements, and the other is the system in which tapered optical fibers are coupled for the reduction of the image into the CCD, which is optimized for automated measurements for protein crystallography. These CCD-based X-ray detectors have an image distortion and non-uniformity of response to be corrected by software. Correction schemes which we have developed are also described. (author)

  16. Combining X-ray Absorption and X-ray Diffraction Techniques for in Situ Studies of Chemical Transformations in Heterogeneous Catalysis: Advantages and Limitations

    International Nuclear Information System (INIS)

    Frenkel, A.I.; Hanson, J.; Wang, Q.; Marinkovic, N.; Chen, J.G.; Barrio, L.; Si, R.; Lopez Camara, A.; Estrella, A.M.; Rodriguez, J.A.

    2011-01-01

    Recent advances in catalysis instrumentations include synchrotron-based facilities where time-resolved X-ray scattering and absorption techniques are combined in the same in situ or operando experiment to study catalysts at work. To evaluate the advances and limitations of this method, we performed a series of experiments at the new XAFS/XRD instrument in the National Synchrotron Light Source. Nearly simultaneous X-ray diffraction (XRD) and X-ray absorption fine-structure (XAFS) measurements of structure and kinetics of several catalysts under reducing or oxidizing conditions have been performed and carefully analyzed. For CuFe 2 O 4 under reducing conditions, the combined use of the two techniques allowed us to obtain accurate data on kinetics of nucleation and growth of metallic Cu. For the inverse catalyst CuO/CeO 2 that underwent isothermal reduction (with CO) and oxidation (with O 2 ), the XAFS data measured in the same experiment with XRD revealed strongly disordered Cu species that went undetected by diffraction. These and other examples emphasize the unique sensitivity of these two complementary methods to follow catalytic processes in the broad ranges of length and time scales.

  17. X-ray radiography for container inspection

    Science.gov (United States)

    Katz, Jonathan I [Clayton, MO; Morris, Christopher L [Los Alamos, NM

    2011-06-07

    Arrangements of X-ray inspection systems are described for inspecting high-z materials in voluminous objects such as containers. Inspection methods may involve generating a radiographic image based on detected attenuation corresponding to a pulsed beams of radiation transmitted through a voluminous object. The pulsed beams of radiation are generated by a high-energy source and transmitted substantially downward along an incident angle, of approximately 1.degree. to 30.degree., to a vertical axis extending through the voluminous object. The generated radiographic image may be analyzed to detect on localized high attenuation representative of high-z materials and to discriminate high-z materials from lower and intermediate-z materials on the basis of the high density and greater attenuation of high-z material for higher energy (3-10 MeV) X-rays, and the compact nature of threatening masses of fissionable materials.

  18. Simulation of transmitted X-rays in a polycapillary X-ray lens

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Shiqi [The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Liu, Zhiguo, E-mail: liuzhiguo512@126.com [The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi; Wang, Kai; Yi, Longtao; Yang, Kui; Chen, Man; Wang, Jinbang [The Key Laboratory of Beam Technology and Material Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-09-21

    The geometrical description of capillary systems adjusted for the controlled guiding of X-rays and the basic theory of the transmission of X-rays are presented. A method of numerical calculation, based on Ray-Tracing theory, is developed to simulate the transmission efficiency of an X-ray parallel lens and the shape and size of the light spot gain from it. The simulation results for two half-lenses are in good agreement with the experimental results.

  19. Microfocussing of synchrotron X-rays using X-ray refractive lens developed at Indus-2 deep X-ray lithography beamline

    International Nuclear Information System (INIS)

    Dhamgaye, V.P.; Tiwari, M.K.; Lodha, G.S.; Sawhney, K.J.S.

    2014-01-01

    X-ray lenses are fabricated in polymethyl methacrylate using deep X-ray lithography beamline of Indus-2. The focussing performance of these lenses is evaluated using Indus-2 and Diamond Light Source Ltd. The process steps for the fabrication of X-ray lenses and microfocussing at 10 keV at moderate and low emittance sources are compared. (author)

  20. X pinch a point x-ray source

    International Nuclear Information System (INIS)

    Garg, A.B.; Rout, R.K.; Shyam, A.; Srinivasan, M.

    1993-01-01

    X ray emission from an X pinch, a point x-ray source has been studied using a pin-hole camera by a 30 kV, 7.2 μ F capacitor bank. The wires of different material like W, Mo, Cu, S.S.(stainless steel) and Ti were used. Molybdenum pinch gives the most intense x-rays and stainless steel gives the minimum intensity x-rays for same bank energy (∼ 3.2 kJ). Point x-ray source of size (≤ 0.5 mm) was observed using pin hole camera. The size of the source is limited by the size of the pin hole camera. The peak current in the load is approximately 150 kA. The point x-ray source could be useful in many fields like micro lithography, medicine and to study the basic physics of high Z plasmas. (author). 4 refs., 3 figs

  1. Developing fine-pixel CdTe detectors for the next generation of high-resolution hard x-ray telescopes

    Science.gov (United States)

    Christe, Steven

    Over the past decade, the NASA Marshall Space Flight Center (MSFC) has been improving the angular resolution of hard X-ray (HXR; 20 "70 keV) optics to the point that we now routinely manufacture optics modules with an angular resolution of 20 arcsec Half Power Diameter (HDP), almost three times the performance of NuSTAR optics (Ramsey et al. 2013; Gubarev et al. 2013a; Atkins et al. 2013). New techniques are currently being developed to provide even higher angular resolution. High angular resolution HXR optics require detectors with a large number of fine pixels in order to adequately sample the telescope point spread function (PSF) over the entire field of view. Excessively over-sampling the PSF will increase readout noise and require more processing with no appreciable increase in image quality. An appropriate level of over-sampling is to have 3 pixels within the HPD. For the HERO mirrors, where the HPD is 26 arcsec over a 6-m focal length converts to 750 μm, the optimum pixel size is around 250 μm. At a 10-m focal length these detectors can support a 16 arcsec HPD. Of course, the detectors must also have high efficiency in the HXR region, good energy resolution, low background, low power requirements, and low sensitivity to radiation damage (Ramsey 2001). The ability to handle high counting rates is also desirable for efficient calibration. A collaboration between Goddard Space Flight Center (GSFC), MSFC, and Rutherford Appleton Laboratory (RAL) in the UK is developing precisely such detectors under an ongoing, funded APRA program (FY2015 to FY2017). The detectors use the RALdeveloped Application Specific Integrated Circuit (ASIC) dubbed HEXITEC, for High Energy X-Ray Imaging Technology. These HEXITEC ASICs can be bonded to 1- or 2- mm-thick Cadmium Telluride (CdTe) or Cadmium-Zinc-Telluride (CZT) to create a fine (250 μm pitch) HXR detector (Jones et al. 2009; Seller et al. 2011). The objectives of this funded effort are to develop and test a HEXITEC

  2. Chest X-Ray

    Medline Plus

    Full Text Available ... by Image/Video Gallery Your Radiologist Explains Chest X-ray Transcript Welcome to Radiology Info dot org! Hello, ... d like to talk with you about chest radiography also known as chest x-rays. Chest x- ...

  3. Compact X-ray sources: X-rays from self-reflection

    Science.gov (United States)

    Mangles, Stuart P. D.

    2012-05-01

    Laser-based particle acceleration offers a way to reduce the size of hard-X-ray sources. Scientists have now developed a simple scheme that produces a bright flash of hard X-rays by using a single laser pulse both to generate and to scatter an electron beam.

  4. High-energy x-ray microscopy with multilayer reflectors (invited)

    International Nuclear Information System (INIS)

    Underwood, J.H.

    1986-01-01

    A knowledge of the spatial distribution of the x rays emitted by the hot plasma region is a key element in the study of the physical processes occurring in laser-produced plasmas and complements other diagnostics such as spectroscopy and temporal studies. X-ray microscopy with reflection microscopes offers the most direct means of obtaining this information. Until recently, the two types of microscopes that had been developed for this purpose, the Kirkpatrick--Baez and the Wolter, operated at relatively low energies (about 4--5 keV) and had very little spectral selectivity, relying on filters for coarse spectral resolution. With the development of x-ray reflecting multilayer mirrors, the energy response of such microscopes can be extended to 10 keV or higher, with good spectral selectivity. In addition, it is possible to reduce some of the optical aberrations to obtain improved spatial resolution. This paper describes some of the recent progress in making and evaluating x-ray reflectors, and outlines the optical design considerations for multilayer-coated microscopes. Results from a prototype multilayer K--B microscope are presented

  5. Phase-contrast X-ray imaging using an X-ray interferometer for biological imaging

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi; Koyama, Ichiro [Tokyo Univ., Dept. of Applied Physics, Tokyo (Japan); Takeda, Tohoru; Itai, Yuji [Tsukuba Univ., Inst. of Clinical Medicine, Tsukuba, Ibaraki (Japan); Yoneyama, Akio [Hitachi Ltd., Advanced Research Laboratory, Saitama (Japan)

    2002-04-01

    The potential of phase-contrast X-ray imaging using an X-ray interferometer is discussed comparing with other phase-contrast X-ray imaging methods, and its principle of contrast generation is presented including the case of phase-contrast X-ray computed tomography. The status of current instrumentation is described and perspectives for practical applications are discussed. (author)

  6. X-ray crystallography

    Science.gov (United States)

    2001-01-01

    X-rays diffracted from a well-ordered protein crystal create sharp patterns of scattered light on film. A computer can use these patterns to generate a model of a protein molecule. To analyze the selected crystal, an X-ray crystallographer shines X-rays through the crystal. Unlike a single dental X-ray, which produces a shadow image of a tooth, these X-rays have to be taken many times from different angles to produce a pattern from the scattered light, a map of the intensity of the X-rays after they diffract through the crystal. The X-rays bounce off the electron clouds that form the outer structure of each atom. A flawed crystal will yield a blurry pattern; a well-ordered protein crystal yields a series of sharp diffraction patterns. From these patterns, researchers build an electron density map. With powerful computers and a lot of calculations, scientists can use the electron density patterns to determine the structure of the protein and make a computer-generated model of the structure. The models let researchers improve their understanding of how the protein functions. They also allow scientists to look for receptor sites and active areas that control a protein's function and role in the progress of diseases. From there, pharmaceutical researchers can design molecules that fit the active site, much like a key and lock, so that the protein is locked without affecting the rest of the body. This is called structure-based drug design.

  7. Development of X-ray excitable luminescent probes for scanning X-ray microscopy

    International Nuclear Information System (INIS)

    Moronne, M.M.

    1999-01-01

    Transmission soft X-ray microscopy is now capable of achieving resolutions that are typically 5 times better than the best-visible light microscopes. With expected improvements in zone plate optics, an additional factor of two may be realized within the next few years. Despite the high resolution now available with X-ray microscopes and the high X-ray contrast provided by biological molecules in the soft X-ray region (λ=2-5 nm), molecular probes for localizing specific biological targets have been lacking. To circumvent this problem, X-ray excitable molecular probes are needed that can target unique biological features. In this paper we report our initial results on the development of lanthanide-based fluorescent probes for biological labeling. Using scanning luminescence X-ray microscopy (SLXM, Jacobsen et al., J. Microscopy 172 (1993) 121-129), we show that lanthanide organo-polychelate complexes are sufficiently bright and radiation resistant to be the basis of a new class of X-ray excitable molecular probes capable of providing at least a fivefold improvement in resolution over visible light microscopy. Lanthanide probes, able to bind 80-100 metal ions per molecule, were found to give strong luminescent signals with X-ray doses exceeding 10 8 Gy, and were used to label actin stress fibers and in vitro preparations of polymerized tubulin. (Copyright (c) 1999 Elsevier Science B.V., Amsterdam. All rights reserved.)

  8. Silicon pore optics for future x-ray telescopes

    Science.gov (United States)

    Wille, Eric; Bavdaz, Marcos; Wallace, Kotska; Shortt, Brian; Collon, Maximilien; Ackermann, Marcelo; Günther, Ramses; Olde Riekerink, Mark; Koelewijn, Arenda; Haneveld, Jeroen; van Baren, Coen; Erhard, Markus; Kampf, Dirk; Christensen, Finn; Krumrey, Michael; Freyberg, Michael; Burwitz, Vadim

    2017-11-01

    Lightweight X-ray Wolter optics with a high angular resolution will enable the next generation of X-ray telescopes in space. The candidate mission ATHENA (Advanced Telescope for High Energy Astrophysics) required a mirror assembly of 1 m2 effective area (at 1 keV) and an angular resolution of 10 arcsec or better. These specifications can only be achieved with a novel technology like Silicon Pore Optics, which is being developed by ESA together with a consortium of European industry. Silicon Pore Optics are made of commercial Si wafers using process technology adapted from the semiconductor industry. We present the recent upgrades made to the manufacturing processes and equipment, ranging from the manufacture of single mirror plates towards complete focusing mirror modules mounted in flight configuration, and results from first vibration tests. The performance of the mirror modules is tested at X-ray facilities that were recently extended to measure optics at a focal distance up to 20 m.

  9. INTEGRAL monitoring of unusually long X-ray bursts

    DEFF Research Database (Denmark)

    of the accreted material, these bursts may be explained by either the unstable burning of a large pile of mixed hydrogen and helium, or the ignition of a thick pure helium layer. Long duration bursts are particularly expected at very low accretion rates and make possible to study the transition from a hydrogen......Thermonuclear bursts on the surface of accreting neutron stars in low mass X-ray binaries have been studied for many years and have in a few cases confirmed theoretical models of nuclear ignition and burning mechanisms. The large majority of X-ray bursts last less than 100s. A good number......-rich bursting regime to a pure helium regime. Moreover, a handful of long bursts have shown, before the extended decay phase, an initial spike similar to a normal short X-ray burst. Such twofold bursts might be a sort of link between short and super-bursts, where the premature ignition of a carbon layer could...

  10. NuSTAR reveals an intrinsically x-ray weak broad absorption line quasar in the ultraluminous infrared galaxy Markarian 231

    DEFF Research Database (Denmark)

    Teng, Stacy H.; Brandt, W. N.; Harrison, F. A.

    2014-01-01

    -ionization broad absorption line quasar that is intrinsically X-ray weak. The weak ionizing continuum may explain the lack of mid-infrared [O IV], [Ne V], and [Ne VI] fine-structure emission lines which are present in sources with otherwise similar AGN properties. We argue that the intrinsic X-ray weakness may...

  11. Projection-type X-ray microscope based on a spherical compound refractive X-ray lens

    OpenAIRE

    Dudchik, Yu. I.; Gary, C. K.; Park, H.; Pantell, R. H.; Piestrup, M. A.

    2007-01-01

    New projection- type X-ray microscope with a compound refractive lens as the optical element is presented. The microscope consists of an X-ray source that is 1-2 mm in diameter, compound X-ray lens and X-ray camera that are placed in-line to satisfy the lens formula. The lens forms an image of the X-ray source at camera sensitive plate. An object is placed between the X-ray source and the lens as close as possible to the source, and the camera shows a shadow image of the object. Spatial resol...

  12. Development and present status of the Russian-German soft X-ray beamline at BESSY II

    International Nuclear Information System (INIS)

    Fedoseenko, S.I.; Iossifov, I.E.; Gorovikov, S.A.; Schmidt, J.-S.; Follath, R.; Molodtsov, S.L.; Adamchuk, V.K.; Kaindl, G.

    2001-01-01

    We report on further developments of the optical design of the Russian-German soft X-ray beamline at BESSY II. Ray-tracing calculations reveal state-of-the-art characteristics of the modified layout. Resolving power up to 25 000 and photon flux up to 3x10 10 photons/s/100 mA will be available for spectroscopic experiments. Technical details of operation of the precision mechanics used for fine adjustment of the first mirror are presented

  13. Hard X-ray phase-contrast microscope for observing transparent specimens

    Energy Technology Data Exchange (ETDEWEB)

    Kagoshima, Y.; Yokoyama, Y.; Niimi, T.; Koyama, T.; Tsusaka, Y.; Matsui, J. [Himeji Institute of Technology, Graduate School of Science, Hyogo (Japan); Takai, K. [Japan synchrotron Radiation Research Institute, Mikazuki, Hyogo (Japan)

    2002-08-01

    A hard X-ray transmission imaging microscope has been in use at the beamline BL24XU of Spring-8. It makes use of a phase zone plate made of tantalum as its X-ray lens, and is capable of imaging the structure as fine as 125-nm line-and-space pattern. The Zernike's phase-contrast method has been implemented to the microscope with phase plates made of gold. The photon energy was tuned to 12 keV just above the L{sub 3} absorption edge of gold (11.9 keV) in order to increase the image contrast. Polystyrene micro particles as transparent specimens were imaged clearly in the opposite image contrast with phase plates to shift the phase of the central order spectra in the back focal plane of the objective by one-quarter and three-quarters of a period, while the absorption contrast image showed little image contrast. Performance of the newly developed phase zone plate has been tested and it was confirmed that the structure as fine as 60-mm line-and-space pattern was able to be imaged. (authors)

  14. X-Ray Lasers 2016

    CERN Document Server

    Bulanov, Sergei; Daido, Hiroyuki; Kato, Yoshiaki

    2018-01-01

    These proceedings comprise a selection of invited and contributed papers presented at the 15th International Conference on X-Ray Lasers (ICXRL 2016), held at the Nara Kasugano International Forum, Japan, from May 22 to 27, 2016. This conference was part of an ongoing series dedicated to recent developments in the science and technology of x-ray lasers and other coherent x-ray sources with additional focus on supporting technologies, instrumentation and applications.   The book showcases recent advances in the generation of intense, coherent x-rays, the development of practical devices and their applications across a wide variety of fields. It also discusses emerging topics such as plasma-based x-ray lasers, 4th generation accelerator-based sources and higher harmonic generations, as well as other x-ray generation schemes.

  15. The Mapping X-ray Fluorescence Spectrometer (MapX)

    Science.gov (United States)

    Sarrazin, P.; Blake, D. F.; Marchis, F.; Bristow, T.; Thompson, K.

    2017-12-01

    Many planetary surface processes leave traces of their actions as features in the size range 10s to 100s of microns. The Mapping X-ray Fluorescence Spectrometer (MapX) will provide elemental imaging at 100 micron spatial resolution, yielding elemental chemistry at a scale where many relict physical, chemical, or biological features can be imaged and interpreted in ancient rocks on planetary bodies and planetesimals. MapX is an arm-based instrument positioned on a rock or regolith with touch sensors. During an analysis, an X-ray source (tube or radioisotope) bombards the sample with X-rays or alpha-particles / gamma-rays, resulting in sample X-ray Fluorescence (XRF). X-rays emitted in the direction of an X-ray sensitive CCD imager pass through a 1:1 focusing lens (X-ray micro-pore Optic (MPO)) that projects a spatially resolved image of the X-rays onto the CCD. The CCD is operated in single photon counting mode so that the energies and positions of individual X-ray photons are recorded. In a single analysis, several thousand frames are both stored and processed in real-time. Higher level data products include single-element maps with a lateral spatial resolution of 100 microns and quantitative XRF spectra from ground- or instrument- selected Regions of Interest (ROI). XRF spectra from ROI are compared with known rock and mineral compositions to extrapolate the data to rock types and putative mineralogies. When applied to airless bodies and implemented with an appropriate radioisotope source for alpha-particle excitation, MapX will be able to analyze biogenic elements C, N, O, P, S, in addition to the cations of the rock-forming elements >Na, accessible with either X-ray or gamma-ray excitation. The MapX concept has been demonstrated with a series of lab-based prototypes and is currently under refinement and TRL maturation.

  16. Spectroscopic study of site selective DNA damage induced by intense soft X-rays

    CERN Document Server

    Fujii, K

    2003-01-01

    To investigate the mechanisms of DNA damage induced by direct photon impact, we observed the near edge X-ray absorption fine structures (NEXAFS) of DNA nucleobases using monochromatic synchrotron soft X-rays around nitrogen and oxygen K-shell excitation regions. Each spectrum obtained has unique structure corresponding to pi* excitation of oxygen or nitrogen 1s electron. These aspects open a way of nucleobase-selective photo-excitation in a DNA molecule using high resolution monochromatized soft X-rays. From the analysis of polarization-dependent intensities of the pi* resonance peak, it is clarified that adenine, guanine an uracil form orientated surface structure. Furthermore from the direct measurement of positive ions desorbed from photon irradiated DNA components, it is revealed that the sugar moiety is a fragile site in a DNA molecule. (author)

  17. Levels of 2-dodecylcyclobutanone in ground beef patties irradiated by low-energy X-ray and gamma rays.

    Science.gov (United States)

    Hijaz, Faraj M; Smith, J Scott

    2010-01-01

    Food irradiation improves food safety and maintains food quality by controlling microorganisms and extending shelf life. However, acceptance and commercial adoption of food irradiation is still low. Consumer groups such as Public Citizen and the Food and Water Watch have opposed irradiation because of the formation of 2-alkylcyclobutanones (2-ACBs) in irradiated, lipid-containing foods. The objectives of this study were to measure and to compare the level of 2-dodecylcyclobutanone (2-DCB) in ground beef irradiated by low-energy X-rays and gamma rays. Beef patties were irradiated by low-energy X-rays and gamma rays (Cs-137) at 3 targeted absorbed doses of 1.5, 3.0, and 5.0 kGy. The samples were extracted with n-hexane using a Soxhlet apparatus, and the 2-DCB concentration was determined with gas chromatography-mass spectrometry. The 2-DCB concentration increased linearly (P irradiation dose for gamma-ray and low-energy X-ray irradiated patties. There was no significant difference in 2-DCB concentration between gamma-ray and low-energy X-ray irradiated patties (P > 0.05) at all targeted doses. © 2010 Institute of Food Technologists®

  18. Combined optic system based on polycapillary X-ray optics and single-bounce monocapillary optics for focusing X-rays from a conventional laboratory X-ray source

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Xuepeng; Liu, Zhiguo [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Sun, Tianxi, E-mail: stx@bnu.edu.cn [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Yi, Longtao; Sun, Weiyuan; Li, Fangzuo; Jiang, Bowen [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China); Ma, Yongzhong [Center for Disease Control and Prevention of Beijing, Beijing 100013 (China); Ding, Xunliang [The Key Laboratory of Beam Technology and Materials Modification of the Ministry of Education, Beijing Normal University, Beijing 100875 (China); College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875 (China); Beijing Radiation Center, Beijing 100875 (China)

    2015-12-01

    Two combined optic systems based on polycapillary X-ray optics and single-bounce monocapillary optics (SBMO) were designed for focusing the X-rays from a conventional laboratory X-ray source. One was based on a polycapillary focusing X-ray lens (PFXRL) and a single-bounce ellipsoidal capillary (SBEC), in which the output focal spot with the size of tens of micrometers of the PFXRL was used as the “virtual” X-ray source for the SBEC. The other system was based on a polycapillary parallel X-ray lens (PPXRL) and a single-bounce parabolic capillary (SBPC), in which the PPXRL transformed the divergent X-ray beam from an X-ray source into a quasi-parallel X-ray beam with the divergence of sever milliradians as the incident illumination of the SBPC. The experiment results showed that the combined optic systems based on PFXRL and SBEC with a Mo rotating anode X-ray generator with the focal spot with a diameter of 300 μm could obtain a focal spot with the total gain of 14,300 and focal spot size of 37.4 μm, and the combined optic systems based on PPXRL and SBPC with the same X-ray source mentioned above could acquire a focal spot with the total gain of 580 and focal spot size of 58.3 μm, respectively. The two combined optic systems have potential applications in micro X-ray diffraction, micro X-ray fluorescence, micro X-ray absorption near edge structure, full field X-ray microscopes and so on.

  19. Quantum many-body effects in x-ray spectra efficiently computed using a basic graph algorithm

    Science.gov (United States)

    Liang, Yufeng; Prendergast, David

    2018-05-01

    The growing interest in using x-ray spectroscopy for refined materials characterization calls for an accurate electronic-structure theory to interpret the x-ray near-edge fine structure. In this work, we propose an efficient and unified framework to describe all the many-electron processes in a Fermi liquid after a sudden perturbation (such as a core hole). This problem has been visited by the Mahan-Noziéres-De Dominicis (MND) theory, but it is intractable to implement various Feynman diagrams within first-principles calculations. Here, we adopt a nondiagrammatic approach and treat all the many-electron processes in the MND theory on an equal footing. Starting from a recently introduced determinant formalism [Phys. Rev. Lett. 118, 096402 (2017), 10.1103/PhysRevLett.118.096402], we exploit the linear dependence of determinants describing different final states involved in the spectral calculations. An elementary graph algorithm, breadth-first search, can be used to quickly identify the important determinants for shaping the spectrum, which avoids the need to evaluate a great number of vanishingly small terms. This search algorithm is performed over the tree-structure of the many-body expansion, which mimics a path-finding process. We demonstrate that the determinantal approach is computationally inexpensive even for obtaining x-ray spectra of extended systems. Using Kohn-Sham orbitals from two self-consistent fields (ground and core-excited state) as input for constructing the determinants, the calculated x-ray spectra for a number of transition metal oxides are in good agreement with experiments. Many-electron aspects beyond the Bethe-Salpeter equation, as captured by this approach, are also discussed, such as shakeup excitations and many-body wave function overlap considered in Anderson's orthogonality catastrophe.

  20. 2 years of integral monitoring of GRS 1915+105. II. X-ray spectro-temporal analysis

    DEFF Research Database (Denmark)

    Rodriguez, J.; Shaw, S.E.; Hannikainen, D.C.

    2008-01-01

    -ray emission. In the steady state observation, the X-ray spectrum is indicative of the hard-intermediate state, with the presence of a relatively strong emission at 15 GHz. The X-ray spectrum is the sum of a Comptonized component and an extra power law extending to energies > 200 keV without any evidence...

  1. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... are the limitations of Bone X-ray (Radiography)? What is Bone X-ray (Radiography)? An x-ray ( ... leg (shin), ankle or foot. top of page What are some common uses of the procedure? A ...

  2. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... current x-ray images for diagnosis and disease management. top of page How is the procedure performed? ... standards used by radiology professionals. Modern x-ray systems have very controlled x-ray beams and dose ...

  3. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... that might interfere with the x-ray images. Women should always inform their physician and x-ray ... Safety page for more information about radiation dose. Women should always inform their physician or x-ray ...

  4. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... of knee x-rays. A portable x-ray machine is a compact apparatus that can be taken ... of the body being examined, an x-ray machine produces a small burst of radiation that passes ...

  5. X-ray holography

    International Nuclear Information System (INIS)

    Faigel, G.; Tegze, M.; Belakhovsky, M.; Marchesini, S.; Bortel, G.

    2003-01-01

    In the last decade holographic methods using hard X-rays were developed. They are able to resolve atomic distances, and can give the 3D arrangement of atoms around a selected element. Therefore, hard X-ray holography has potential applications in chemistry, biology and physics. In this article we give a general description of these methods and discuss the developments in the experimental technique. The capabilities of hard X-ray holography are demonstrated by examples

  6. Local structure around Sn in CeCoIn5-xSnx

    International Nuclear Information System (INIS)

    Daniel, M.; Han, S.-W.; Booth, C.H.; Cornelius, A.L.; Bauer, E.D.; Sarrao, J.L.

    2004-01-01

    The local structure around Sn dopants in CeCoIn 5-x Sn z has been probed by extended x-ray absorption fine structure (EXAFS) technique. The fit results for both x = 0.12 and x = 0.18 clearly indicate the dopant Sn atoms predominantly occupying the planar In(1) site. These results are consistent with the quasi-two-dimensional electronic properties of CeCoIn 5 and is discussed in relation to the observed bulk properties

  7. Harmonic lasing in X-ray FELs

    Energy Technology Data Exchange (ETDEWEB)

    Schneidmiller, E.A.; Yurkov, M.V.

    2012-05-15

    Harmonic lasing in a free electron laser with a planar undulator (under the condition that the fundamental frequency is suppressed) might be a cheap and efficient way of extension of wavelength ranges of existing and planned X-ray FEL facilities. Contrary to nonlinear harmonic generation, harmonic lasing can provide much more intense, stable, and narrow-band FEL beam which is easier to handle due to the suppressed fundamental frequency. In this paper we perform a parametrization of the solution of the eigenvalue equation for lasing at odd harmonics, and present an explicit expression for FEL gain length, taking into account all essential effects. We propose and discuss methods for suppression of the fundamental harmonic. We also suggest a combined use of harmonic lasing and lasing at the retuned fundamental wavelength in order to reduce bandwidth and to increase brilliance of X-ray beam at saturation. Considering 3rd harmonic lasing as a practical example, we come to the conclusion that it is much more robust than usually thought, and can be widely used in the existing or planned X-ray FEL facilities. In particular, LCLS after a minor modification can lase to saturation at the 3rd harmonic up to the photon energy of 25-30 keV providing multi-gigawatt power level and narrow bandwidth. As for the European XFEL, harmonic lasing would allow to extend operating range (ultimately up to 100 keV), to reduce FEL bandwidth and to increase brilliance, to enable two-color operation for pump-probe experiments, and to provide more flexible operation at different electron energies. Similar improvements can be realized in other X-ray FEL facilities with gap-tunable undulators like FLASH II, SACLA, LCLS II, etc. Harmonic lasing can be an attractive option for compact X-ray FELs (driven by electron beams with a relatively low energy), allowing the use of the standard undulator technology instead of small-gap in-vacuum devices. Finally, in this paper we discover that in a part of the

  8. Cr/B{sub 4}C multilayer mirrors: Study of interfaces and X-ray reflectance

    Energy Technology Data Exchange (ETDEWEB)

    Burcklen, C.; Meltchakov, E.; Jérome, A.; Rossi, S. de; Delmotte, F. [Laboratoire Charles Fabry, Institut d' Optique Graduate School, CNRS, Université Paris-Saclay, 91127 Palaiseau Cedex (France); Soufli, R. [Laboratoire Charles Fabry, Institut d' Optique Graduate School, CNRS, Université Paris-Saclay, 91127 Palaiseau Cedex (France); Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, California 94550 (United States); Dennetiere, D.; Polack, F.; Capitanio, B.; Thomasset, M. [Synchrotron SOLEIL, L' Orme des Merisiers, Saint Aubin, BP 48F-91192 Gif sur Yvette Cedex (France); Gullikson, E. [Center for X-ray Optics, Lawrence Berkeley National Laboratory, 1 Cyclotron Rd., Berkeley, California 94720 (United States)

    2016-03-28

    We present an experimental study of the effect of layer interfaces on the x-ray reflectance in Cr/B{sub 4}C multilayer interference coatings with layer thicknesses ranging from 0.7 nm to 5.4 nm. The multilayers were deposited by magnetron sputtering and by ion beam sputtering. Grazing incidence x-ray reflectometry, soft x-ray reflectometry, and transmission electron microscopy reveal asymmetric multilayer structures with a larger B{sub 4}C-on-Cr interface, which we modeled with a 1–1.5 nm thick interfacial layer. Reflectance measurements in the vicinity of the Cr L{sub 2,3} absorption edge demonstrate fine structure that is not predicted by simulations using the currently tabulated refractive index (optical constants) values for Cr.

  9. Ultrashort X-ray pulse science

    Energy Technology Data Exchange (ETDEWEB)

    Chin, Alan Hap [Univ. of California, Berkeley, CA (US). Dept. of Physics; Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    1998-05-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90° Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ~ 300 fs, 30 keV (0.4 Å) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been demonstrated as a

  10. Ultrashort X-ray pulse science

    International Nuclear Information System (INIS)

    Chin, A.H.; Lawrence Berkeley National Lab., CA

    1998-01-01

    A variety of phenomena involves atomic motion on the femtosecond time-scale. These phenomena have been studied using ultrashort optical pulses, which indirectly probe atomic positions through changes in optical properties. Because x-rays can more directly probe atomic positions, ultrashort x-ray pulses are better suited for the study of ultrafast structural dynamics. One approach towards generating ultrashort x-ray pulses is by 90 o Thomson scattering between terawatt laser pulses and relativistic electrons. Using this technique, the author generated ∼ 300 fs, 30 keV (0.4 (angstrom)) x-ray pulses. These x-ray pulses are absolutely synchronized with ultrashort laser pulses, allowing femtosecond optical pump/x-ray probe experiments to be performed. Using the right-angle Thomson scattering x-ray source, the author performed time-resolved x-ray diffraction studies of laser-perturbated InSb. These experiments revealed a delayed onset of lattice expansion. This delay is due to the energy relaxation from a dense electron-hole plasma to the lattice. The dense electron-hole plasma first undergoes Auger recombination, which reduces the carrier concentration while maintaining energy content. Longitudinal-optic (LO) phonon emission then couples energy to the lattice. LO phonon decay into acoustic phonons, and acoustic phonon propagation then causes the growth of a thermally expanded layer. Source characterization is instrumental in utilizing ultrashort x-ray pulses in time-resolved x-ray spectroscopies. By measurement of the electron beam diameter at the generation point, the pulse duration of the Thomson scattered x-rays is determined. Analysis of the Thomson scattered x-ray beam properties also provides a novel means of electron bunch characterization. Although the pulse duration is inferred for the Thomson scattering x-ray source, direct measurement is required for other x-ray pulse sources. A method based on the laser-assisted photoelectric effect (LAPE) has been

  11. X-ray study of a sample of FR0 radio galaxies: unveiling the nature of the central engine

    Science.gov (United States)

    Torresi, E.; Grandi, P.; Capetti, A.; Baldi, R. D.; Giovannini, G.

    2018-06-01

    Fanaroff-Riley type 0 radio galaxies (FR0s) are compact radio sources that represent the bulk of the radio-loud active galactic nuclei (AGN) population, but they are still poorly understood. Pilot studies on these sources have been already performed at radio and optical wavelengths: here we present the first X-ray study of a sample of 19 FR0 radio galaxies selected from the Sloan Digital Sky Survey/NRAO VLA Sky Survey/Faint Images of the Radio Sky at Twenty-cm sample of Best & Heckman, with redshift ≤0.15, radio size ≤10 kpc, and optically classified as low-excitation galaxies. The X-ray spectra are modelled with a power-law component absorbed by Galactic column density with, in some cases, a contribution from thermal extended gas. The X-ray photons are likely produced by the jet as attested by the observed correlation between X-ray (2-10 keV) and radio (5 GHz) luminosities, similar to Fanaroff-Riley type I radio galaxies (FRIs). The estimated Eddington-scaled luminosities indicate a low accretion rate. Overall, we find that the X-ray properties of FR0s are indistinguishable from those of FRIs, thus adding another similarity between AGN associated with compact and extended radio sources. A comparison between FR0s and low-luminosity BL Lacs rules out important beaming effects in the X-ray emission of the compact radio galaxies. FR0s have different X-ray properties with respect to young radio sources (e.g. gigahertz-peaked spectrum/compact steep spectrum sources), generally characterized by higher X-ray luminosities and more complex spectra. In conclusion, the paucity of extended radio emission in FR0s is probably related to the intrinsic properties of their jets that prevent the formation of extended structures, and/or to intermittent activity of their engines.

  12. Analysis on breast X-ray of chronic schizophrenia and Iiterature review

    International Nuclear Information System (INIS)

    Dang Lianrong; Wang Xuqiang; Xie Junwei; Pei Genxiang

    2008-01-01

    Objective: To research the symptom of breast X-ray of chronic schizophrenia and the influence of its clinical features. Methods: Take 50 patients who have been under treatment in our hospital for over 5 years as sample of psychotic group and same number of healthy people as control group. Analyze their X-ray films, using statistics to deal with their lung area of both before and after 5 years. Evaluation Criteria of X-ray: (1) Double layer rise; (2)Single or double lung base subsegmental atelectasis; (3)Heart drown; (4)Heart turing with the heart apex extending to the left; (5)The double lung bottom have gathering stripes; (6)The upper layer have wider shadow. Results: The lung lobes of the patient group become smaller than they were 5 years ago. Data show great difference between two years (t=6.7099, P<0.01). The lung lobes of psychotic group become bigger than the control group in the first X-ray films (t=2.025, P<0.05), but smaller in the last X-ray films (t=5.512, P<0.01). Among them, 37 cases show double layer rise; 19 cases show single or double lung base subsegmental atelectasis; 24 cases show heart drown; 19 cases show heart turing and heart apex extending to the left; 37 cases show double lung bottom gathering stripes; 17 cases show wider shadow. Conclusion: Morphology and pathology changes of schizophrenia patients are related to the side effect of anti-schizophrenia medicine and endocrine disorders. (authors)

  13. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    Energy Technology Data Exchange (ETDEWEB)

    Momose, Atsushi E-mail: momose@exp.t.u-tokyo.ac.jp; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-21

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mmx20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  14. Wide-area phase-contrast X-ray imaging using large X-ray interferometers

    Science.gov (United States)

    Momose, Atsushi; Takeda, Tohoru; Yoneyama, Akio; Koyama, Ichiro; Itai, Yuji

    2001-07-01

    Large X-ray interferometers are developed for phase-contrast X-ray imaging aiming at medical applications. A monolithic X-ray interferometer and a separate one are studied, and currently a 25 mm×20 mm view area can be generated. This paper describes the strategy of our research program and some recent developments.

  15. Bone X-Ray (Radiography)

    Medline Plus

    Full Text Available ... x-rays. top of page What does the equipment look like? The equipment typically used for bone x-rays consists of ... and joint abnormalities, such as arthritis. X-ray equipment is relatively inexpensive and widely available in emergency ...

  16. Material Discriminated X-Ray CT System by Using New X-Ray Imager with Energy Discriminate Function

    Directory of Open Access Journals (Sweden)

    Toru Aoki

    2008-04-01

    Full Text Available Material discriminated X-ray CT system has been constructed by using conventional X-ray tube (white X-ray source and photon-counting X-ray imager as an application with energy band detection. We have already reported material identify X-ray CT using K-shell edge method elsewhere. In this report the principle of material discrimination was adapted the separation of electron-density and atomic number from attenuation coefficient mapping in X-ray CT reconstructed image in two wavelength X-ray CT method using white X-ray source and energy discriminated X-ray imager by using two monochrome X-ray source method. The measurement phantom was prepared as four kinds material rods (Carbon(C, Iron(Fe, Copper(Cu, Titanium(Ti rods of 3mm-diameter inside an aluminum(Al rod of 20mm-diameter. We could observed material discriminated X-ray CT reconstructed image, however, the discrimination properties were not good than two monochrome X-ray CT method. This results was could be explained because X-ray scattering, beam-hardening and so on based on white X-ray source, which could not observe in two monochrome X-ray CT method. However, since our developed CdTe imager can be detect five energy-bands at the same time, we can use multi-band analysis to decrease the least square error margin. We will be able to obtain more high separation in atomic number mapping in X-ray CT reconstructed image by using this system.

  17. Ge and As x-ray absorption fine structure spectroscopic study of homopolar bonding, chemical order, and topology in Ge-As-S chalcogenide glasses

    International Nuclear Information System (INIS)

    Sen, S.; Ponader, C.W.; Aitken, B.G.

    2001-01-01

    The coordination environments of Ge and As atoms in Ge x As y S 1-x-y glasses with x:y=1:2, 1:1, and 2.5:1 and with wide-ranging S contents have been studied with Ge and As K-edge x-ray absorption fine structure spectroscopy. The coordination numbers of Ge and As atoms are found to be 4 and 3, respectively, in all glasses. The first coordination shells of Ge and As atoms in the stoichiometric and S-excess glasses consist of S atoms only, implying the preservation of chemical order at least over the length scale of the first coordination shell. As-As homopolar bonds are found to appear at low and intermediate levels of S deficiency, whereas Ge-Ge bonds are formed only in strongly S-deficient glasses indicating clustering of metal atoms and violation of chemical order in S-deficient glasses. The composition-dependent variation in chemical order in chalcogenide glasses has been hypothesized to result in topological changes in the intermediate-range structural units. The role of such topological transitions in controlling the structure-property relationships in chalcogenide glasses is discussed

  18. Fast solar hard X-ray bursts and large scale coronal structures

    International Nuclear Information System (INIS)

    Simnett, G.M.

    1982-01-01

    The conditions at the Sun at the times corresponding to a selected set 22 fast impulsive hard X-ray bursts reported by Crannell et al. are examined. It is suggested that one of the bursts must arise from a precipitating beam of subrelativistic electrons; the source of the electrons is postulated to be in a region very remote from the X-ray site on the basis of type III and other radio data. The connection is via a coronal magnetic loop extending to approx.3 R/sub sun/ above the photosphere. The energy in the electron beam is estimated at 3 x 10 27 ergs. Intense soft X-ray and/or microwave radio storms at times corresponding to many of the impulsive X-ray bursts lead the conclusion that 14, and possibly 18, of the 22 bursts could have the same interpretation. The energy in such an electron beam could be important when considering the trigger phase of some flares

  19. X-Pinch And Its Applications In X-ray Radiograph

    International Nuclear Information System (INIS)

    Zou Xiaobing; Wang Xinxin; Liu Rui; Zhao Tong; Zeng Naigong; Zhao Yongchao; Du Yanqiang

    2009-01-01

    An X-pinch device and the related diagnostics of x-ray emission from X-pinch were briefly described. The time-resolved x-ray measurements with photoconducting diodes show that the x-ray pulse usually consists of two subnanosecond peaks with a time interval of about 0.5 ns. Being consistent with these two peaks of the x-ray pulse, two point x-ray sources of size ranging from 100 μm to 5 μm and depending on cut-off x-ray photon energy were usually observed on the pinhole pictures. The x-pinch was used as x-ray source for backlighting of the electrical explosion of single wire and the evolution of X-pinch, and for phase-contrast imaging of soft biological objects such as a small shrimp and a mosquito.

  20. Chest X-Ray (Chest Radiography)

    Science.gov (United States)

    ... Resources Professions Site Index A-Z X-ray (Radiography) - Chest Chest x-ray uses a very small dose ... Radiography? What is a Chest X-ray (Chest Radiography)? The chest x-ray is the most commonly performed diagnostic ...