WorldWideScience

Sample records for extended skyrme interaction

  1. An effective Skyrme-type interaction for the calculation of nuclear structures of the whole mass table

    International Nuclear Information System (INIS)

    Waroquier, M.E.L.

    1982-01-01

    The Hartree-Fock-Bogolyubov formalism is extended for 3 body interactions and applied to spherical nuclei. The structure of the proposed extension of the Skyrme-type interaction is given, together with the analytical expression of the corresponding Hartree-Fock differential equation. The Skyrme-force parameters are modified in order to be able to reproduce the ground state properties. The problem of the spin-stability of the proposed interaction is treated. The Skyrme-interaction is applied as particle-hole interaction and saturation properties are studied. Structure of the charge, neutron density distributions and changes introduced by adding protons or neutrons are treated. (MDC)

  2. Proton radioactivity lifetimes using Skyrme interactions

    International Nuclear Information System (INIS)

    Routray, T.R.; Tripathy, S.K.; Mishra, Abhishek; Basu, D.N.

    2011-01-01

    The phenomena of proton radioactivity is recent and has been possible with the advent of the radioactive ion beams facilities. The neutron deficient nuclei lying above the proton drip line has positive Q values for protons and are spontaneous proton emitters. This limits the possibilities of the creation of ever more exotic nuclei in the proton rich side of the β stability valley. Limited number of works have been done in calculating the half lives of proton emitting nuclei using different models. But calculation of lifetimes of the proton emitting nuclei using Skyrme interaction has not yet been reported. More than 110 Skyrme sets are available, constructed for different purposes, all having the common feature of giving finite nuclei ground state properties and saturation conditions in nuclear matter. Skyrme sets constructed in the late 90's, particularly the construction of SLy sets and others Skyrme sets developed thereafter, have additional care in constraining the parameters for applications to nuclear matter under extreme conditions. Stone et al. have analyzed the Skyrme sets on the basis of available constraints and have sorted out finally 27 Skyrmes sets which can be admitted for calculation of isospin rich dense nuclear matter. The objective of the work is to examine the predictions of the Skyrme sets on the half lives of the proton emitters

  3. Magnetic moments and the Skyrme interaction

    Energy Technology Data Exchange (ETDEWEB)

    Lipparini, E; Stringari, S; Traini, M [Trento Univ. (Italy). Dipartmento di Matematica e Fisica

    1977-12-12

    The magnetic properties of the Skyrme interaction have been studied by performing a restricted Hartree-Fock calculation in order to evaluate the magnetic polarizability and the corrections to the Schmidt moments in nuclei with closed jj shells plus or minus one nucleon. Different corrections to the Schmidt values have been evaluated and discussed: the M1 core polarization and the renormalization of the gyromagnetic factors due to exchange and spin-orbit forces. Several variants of the Skyrme interaction have been studied and discussed in detail.

  4. Symmetric nuclear matter with Skyrme interaction

    International Nuclear Information System (INIS)

    Manisa, K.; Bicer, A.; Atav, U.

    2010-01-01

    The equation of state (EOS) and some properties of symmetric nuclear matter, such as the saturation density, saturation energy and incompressibility, are obtained by using Skyrme's density-dependent effective nucleon-nucleon interaction.

  5. Microscopic optical potential calculations of finite nuclei with extended skyrme forces

    International Nuclear Information System (INIS)

    Yuan Haiji; Ye Weilei; Gao Qin; Shen Qingbiao

    1986-01-01

    Microscopic optical potential calculations in the Hartree-Fock (HF) approximation with Extended Skyrme forces are investigated. The HF equation is derived from the variation principle and the potential formula of spherical nuclei is obtained by two different ways. Then the calculations for symmetrid nuclei 16 O, 40 Ca and asymmetric nucleus 90 Zr with eight sets of Skyrme force parameters are presented. Our results show that the potential form and variating tendency with incident energy are reasonable and there apparently appears a 'wine-bottle-bottom' shape in the intermediate energy region. Furthermore, our calculations reflect shell effects clearly

  6. Influence of Skyrme-type interaction on HICs observables

    Directory of Open Access Journals (Sweden)

    Zhang Yingxun

    2016-01-01

    Full Text Available A new version of the improved quantum molecular dynamics model has been developed by including Skyrme type momentum dependent interaction. 12 Skyrme like parameter sets {K0, S0, L, m*s, m*v} are adopted in the transport model code to calculate the isospin diffusion, single and double ratios of transverse emitted nucleons, neutron proton isoscaling ratios. The calculations and correlation analysis evidence that isospin diffusion observable at lower beam energy is sensitive to the slope of symmetry energy and m*s. The high energy neutrons and protons yield ratios from reactions at different incident energies provide a sensitive observable to study the nucleon effective mass splitting, at higher beam energy.

  7. Gamow-Teller resonances and a separable approximation for Skyrme tensor interactions

    Directory of Open Access Journals (Sweden)

    Severyukhin A. P.

    2012-12-01

    Full Text Available A finite rank separable approximation for the quasiparticle random phase approximation (QRPA with Skyrme interactions is applied to study properties of the Gamow-Teller (GT resonances in the neutron-rich Cd isotopes. This approximation enables one to reduce considerably the dimension of matrix that must be diagonalized to perform QRPA calculations in a very large configuration space. Our results from the SGII Skyrme interaction with the tensor interactions and the density-dependent zero-range pairing interaction show that the GT distribution is noticeably modified when the tensor correlations are taken into account. In particular, for 130Cd the dominant peak is moved 3.6 MeV downward and 10% of the GT distribution is shifted to the high excitation energy region near E=50MeV.

  8. Skyrme interaction and the properties of cold and hot neutron matter

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Hassan, M.Y.M.; Ramadan, S.

    1986-08-01

    The binding energy per particle, effective mass, magnetic susceptibility, etc for neutron matter are calculated using the Skyrme interaction SKII. Relativistic corrections to the non-relativistic Skyrme effective interaction to order 1/C 2 are also used to calculate the corrections for the binding energy of neutron matter. The correction is very small for small values of k h and increases as k n is increased. The thermal properties of neutron matter are calculated also using SKII force. The temperature dependences of the volume and spin pressure are determined. The results obtained show a similar trend as previous theoretical estimates by different methods of calculation. (author)

  9. Skyrme interaction to second order in nuclear matter

    Science.gov (United States)

    Kaiser, N.

    2015-09-01

    Based on the phenomenological Skyrme interaction various density-dependent nuclear matter quantities are calculated up to second order in many-body perturbation theory. The spin-orbit term as well as two tensor terms contribute at second order to the energy per particle. The simultaneous calculation of the isotropic Fermi-liquid parameters provides a rigorous check through the validity of the Landau relations. It is found that published results for these second order contributions are incorrect in most cases. In particular, interference terms between s-wave and p-wave components of the interaction can contribute only to (isospin or spin) asymmetry energies. Even with nine adjustable parameters, one does not obtain a good description of the empirical nuclear matter saturation curve in the low density region 0\\lt ρ \\lt 2{ρ }0. The reason for this feature is the too strong density-dependence {ρ }8/3 of several second-order contributions. The inclusion of the density-dependent term \\frac{1}{6}{t}3{ρ }1/6 is therefore indispensable for a realistic description of nuclear matter in the Skyrme framework.

  10. Temperature-dependent optical potential and mean free path based on Skyrme interactions

    International Nuclear Information System (INIS)

    Ge Lingxiao; Zhuo Yizhong; Noerenberg, W.; Technische Hochschule Darmstadt

    1986-03-01

    Optical potentials and mean free paths of nucleons at finite temperatures are studied by utilizing effective Skyrme interactions which yield 'good' optical potentials at zero temperature. The results for nuclear matter (symmetric and asymmetric) are applied within the local density approximation of finite nuclei at various temperatures. Because of the limitation due to zero-range forces used and the assumptions of temperature independent nuclear densities and effective Skyrme interactions made, the calculations are expected to be limited to nucleon energies between 10 and 50 MeV above the Fermi energy and to nuclear temperatures of less than 8 MeV. (orig.)

  11. Goldberger-treiman relation and nucleon's mean square radius of strong interaction in the Skyrme model

    International Nuclear Information System (INIS)

    Li Bingan

    1988-01-01

    In this letter it is shown that even in m π ≠ 0 case the Goldberger-Treiman relation is still hold in the Skyrme model. The mean square radius of strong interaction of nucleon 2 > s 1/2 is computed in the Skyrme model

  12. Skyrme-model πNN form factor and nucleon-nucleon interaction

    International Nuclear Information System (INIS)

    Holzwarth, G.; Machleidt, R.

    1997-01-01

    We apply the strong πNN form factor, which emerges from the Skyrme model, in the two-nucleon system using a one-boson-exchange (OBE) model for the nucleon-nucleon (NN) interaction. Deuteron properties and phase parameters of NN scattering are reproduced well. In contrast to the form factor of monopole shape that is traditionally used in OBE models, the Skyrme form factor leaves low-momentum transfers essentially unaffected while it suppresses the high-momentum region strongly. It turns out that this behavior is very appropriate for models of the NN interaction and makes it possible to use a soft pion form factor in the NN system. As a consequence, the πN and the NN systems can be described using the same πNN form factor, which is impossible with the monopole. copyright 1997 The American Physical Society

  13. Fusion reaction cross-sections using the Wong model within Skyrme energy density based semiclassical extended Thomas Fermi approach

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Raj, E-mail: rajkumarfzr@gmail.com [Department of Physics, Panjab University, Chandigarh-160014 (India); School of Physics and Material Science, Thapar University, Patiala-147004 (India); Sharma, Manoj K. [School of Physics and Material Science, Thapar University, Patiala-147004 (India); Gupta, Raj K. [Department of Physics, Panjab University, Chandigarh-160014 (India)

    2011-11-15

    First, the nuclear proximity potential, obtained by using the semiclassical extended Thomas Fermi (ETF) approach in Skyrme energy density formalism (SEDF), is shown to give more realistic barriers in frozen density approximation, as compared to the sudden approximation. Then, taking advantage of the fact that, in ETF method, different Skyrme forces give different barriers (height, position and curvature), we use the l-summed extended-Wong model of Gupta and collaborators (2009) under frozen densities approximation for calculating the cross-sections, where the Skyrme force is chosen with proper barrier characteristics, not-requiring additional 'barrier modification' effects (lowering or narrowing, etc.), for a best fit to data at sub-barrier energies. The method is applied to capture cross-section data from {sup 48}Ca + {sup 238}U, {sup 244}Pu, and {sup 248}Cm reactions and to fusion-evaporation cross-sections from {sup 58}Ni + {sup 58}Ni, {sup 64}Ni + {sup 64}Ni, and {sup 64}Ni + {sup 100}Mo reactions, with effects of deformations and orientations of nuclei included, wherever required. Interestingly, whereas the capture cross-sections in Ca-induced reactions could be fitted to any force, such as SIII, SV and GSkI, by allowing a small change of couple of units in deduced l{sub max}-values at below-barrier energies, the near-barrier data point of {sup 48}Ca + {sup 248}Cm reaction could not be fitted to l{sub max}-values deduced for below-barrier energies, calling for a check of data. On the other hand, the fusion-evaporation cross-sections in Ni-induced reactions at sub-barrier energies required different Skyrme forces, representing 'modifications of the barrier', for the best fit to data at all incident center-of-mass energies E{sub c.m.}'s, displaying a kind of fusion hindrance at sub-barrier energies. This barrier modification effect is taken into care here by using different Skyrme forces for reactions belonging to different regions of

  14. Comparison of different Skyrme forces: Fusion barriers and fusion cross sections

    International Nuclear Information System (INIS)

    Puri, R.K.; Gupta, R.K.

    1995-01-01

    Fusion barriers and fusion cross sections are calculated using the Skyrme energy-density formalism. To study the role of different parametrizations of the Skyrme interaction, we use two typical forces, i.e., the original Skyrme force S and the widely used Skyrme force SIII. Our calculations show that, in the reactions considered here, the Skyrme force S gives higher fusion cross sections compared to that of the Skyrme force SIII. The main part of this difference can be associated with the presence of the spin-density contribution in the Skyrme force SIII

  15. Constraining the surface properties of effective Skyrme interactions

    Science.gov (United States)

    Jodon, R.; Bender, M.; Bennaceur, K.; Meyer, J.

    2016-08-01

    Background: Deformation energy surfaces map how the total binding energy of a nuclear system depends on the geometrical properties of intrinsic configurations, thereby providing a powerful tool to interpret nuclear spectroscopy and large-amplitude collective-motion phenomena such as fission. The global behavior of the deformation energy is known to be directly connected to the surface properties of the effective interaction used for its calculation. Purpose: The precise control of surface properties during the parameter adjustment of an effective interaction is key to obtain a reliable and predictive description of nuclear properties. The most relevant indicator is the surface-energy coefficient asurf. There are several possibilities for its definition and estimation, which are not fully equivalent and require a computational effort that can differ by orders of magnitude. The purpose of this study is threefold: first, to identify a scheme for the determination of asurf that offers the best compromise between robustness, precision, and numerical efficiency; second, to analyze the correlation between values for asurf and the characteristic energies of the fission barrier of 240Pu; and third, to lay out an efficient and robust procedure for how the deformation properties of the Skyrme energy density functional (EDF) can be constrained during the parameter fit. Methods: There are several frequently used possibilities to define and calculate the surface energy coefficient asurf of effective interactions built for the purpose of self-consistent mean-field calculations. The most direct access is provided by the model system of semi-infinite nuclear matter, but asurf can also be extracted from the systematics of binding energies of finite nuclei. Calculations can be carried out either self-consistently [Hartree-Fock (HF)], which incorporates quantal shell effects, or in one of the semiclassical extended Thomas-Fermi (ETF) or modified Thomas-Fermi (MTF) approximations. The

  16. Multi-skyrmion solutions of a sixth order Skyrme model

    International Nuclear Information System (INIS)

    Floratos, I.

    2001-08-01

    In this thesis, we study some of the classical properties of an extension of the Skyrme model defined by adding a sixth order derivative term to the Lagrangian. In chapter 1, we review the physical as well as the mathematical motivation behind the study of the Skyrme model and in chapter 2, we give a brief summary of various extended Skyrme models that have been proposed over the last few years. We then define a new sixth order Skyrme model by introducing a dimensionless parameter λ that denotes the mixing between the two higher order terms, the Skyrme term and the sixth order term. In chapter 3 we compute numerically the multi-skyrmion solutions of this extended model and show that they have the same symmetries with the usual skyrmion solutions. In addition, we analyse the dependence of the energy and radius of these classical solutions with respect to the coupling constant λ. We compare our results with experimental data and determine whether this modified model can provide us with better theoretical predictions than the original one. In chapter 4, we use the rational map ansatz, introduced by Houghton, Manton and Sutcliffe, to approximate minimum energy multi-skyrmion solutions with B ≤ 9 of the SU(2) model and with B ≤ 6 of the SU(3) model. We compare our results with the ones obtained numerically and show that the rational map ansatz works just as well for the generalised model as for the pure Skyrme model, at least for B ≤ 5. In chapter 5, we use a generalisation of the rational map ansatz, introduced by loannidou, Piette and Zakrzewski, to construct analytically some topologically non-trivial solutions of the extended model in SU(3). These solutions are spherically symmetric and some of them can be interpreted as bound states of skyrmions. Finally, we use the same ansatz to construct low energy configurations of the SU(N) sixth order Skyrme model. (author)

  17. The nucleon-nucleon spin-orbit interaction in the Skyrme model

    International Nuclear Information System (INIS)

    Riska, D.O.; Dannbom, K.

    1987-01-01

    The spin-orbit and quadratic spin-orbit components of the nucleon-nucleon interaction are derived in the Skyrme model at the classical level. These interaction components arise from the orbital and rotational motion of the soliton fields that form the nucleons. The isospin dependent part of the spin-orbit interaction is similar to the corresponding component obtained from boson exchange mechanisms at long distances although at short distances it is weaker. The isospin independent spin-orbit component is however different from the prediction of boson exchange mechanisms and has the opposite sign. The quadratic spin-orbit interaction is weak and has only an isospin dependent component

  18. Skyrme's interaction beyond the mean-field. The DGCM+GOA Hamiltonian of nuclear quadrupole motion

    International Nuclear Information System (INIS)

    Kluepfel, Peter

    2008-01-01

    This work focuses on the microscopic description of nuclear collective quadrupole motion within the framework of the dynamic Generator-Coordinate-Method(DGCM)+Gaussian-Overlap-Approximation(GOA). Skyrme-type effective interactions are used as the fundamental many-particle interaction. Starting from a rotational invariant, polynomial and topologic consistent formulation of the GCM+GOA Hamiltonian an interpolation scheme for the collective masses and potential is developed. It allows to define the collective Hamiltonian of fully triaxial collective quadrupole dynamics from a purely axial symmetric configuration space. The substantial gain in performance allows the self-consistent evaluation of the dynamic quadrupole mass within the ATDHF-cranking model. This work presents the first large-scale analysis of quadrupole correlation energies and lowlying collective states within the DGCM+GOA model. Different Skyrme- and pairing interactions are compared from old standards up to more recent parameterizations. After checking the validity of several approximations to the DGCM+GOA model - both on the mean-field and the collective level - we proceed with a detailed investigation of correlation effects along the chains of semi-magic isotopes and isotones. This finally allows to define a set of observables which are hardly affected by collective correlations. Those observables were used for a refit of a Skyrme-type effective interaction which is expected to cure most of the problems of the recent parameterizations. Preparing further work, estimates for the correlated ground state energy are proposed which can be evaluated directly from the mean-field model. (orig.)

  19. Skyrme's interaction beyond the mean-field. The DGCM+GOA Hamiltonian of nuclear quadrupole motion

    Energy Technology Data Exchange (ETDEWEB)

    Kluepfel, Peter

    2008-07-29

    This work focuses on the microscopic description of nuclear collective quadrupole motion within the framework of the dynamic Generator-Coordinate-Method(DGCM)+Gaussian-Overlap-Approximation(GOA). Skyrme-type effective interactions are used as the fundamental many-particle interaction. Starting from a rotational invariant, polynomial and topologic consistent formulation of the GCM+GOA Hamiltonian an interpolation scheme for the collective masses and potential is developed. It allows to define the collective Hamiltonian of fully triaxial collective quadrupole dynamics from a purely axial symmetric configuration space. The substantial gain in performance allows the self-consistent evaluation of the dynamic quadrupole mass within the ATDHF-cranking model. This work presents the first large-scale analysis of quadrupole correlation energies and lowlying collective states within the DGCM+GOA model. Different Skyrme- and pairing interactions are compared from old standards up to more recent parameterizations. After checking the validity of several approximations to the DGCM+GOA model - both on the mean-field and the collective level - we proceed with a detailed investigation of correlation effects along the chains of semi-magic isotopes and isotones. This finally allows to define a set of observables which are hardly affected by collective correlations. Those observables were used for a refit of a Skyrme-type effective interaction which is expected to cure most of the problems of the recent parameterizations. Preparing further work, estimates for the correlated ground state energy are proposed which can be evaluated directly from the mean-field model. (orig.)

  20. Self-consistent RPA calculations with Skyrme-type interactions: The skyrme_rpa program

    Science.gov (United States)

    Colò, Gianluca; Cao, Ligang; Van Giai, Nguyen; Capelli, Luigi

    2013-01-01

    Random Phase Approximation (RPA) calculations are nowadays an indispensable tool in nuclear physics studies. We present here a complete version implemented with Skyrme-type interactions, with the spherical symmetry assumption, that can be used in cases where the effects of pairing correlations and of deformation can be ignored. The full self-consistency between the Hartree-Fock mean field and the RPA excitations is enforced, and it is numerically controlled by comparison with energy-weighted sum rules. The main limitations are that charge-exchange excitations and transitions involving spin operators are not included in this version. Program summaryProgram title: skyrme_rpa (v 1.00) Catalogue identifier: AENF_v1_0 Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AENF_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 5531 No. of bytes in distributed program, including test data, etc.: 39435 Distribution format: tar.gz Programming language: FORTRAN-90/95; easily downgradable to FORTRAN-77. Computer: PC with Intel Celeron, Intel Pentium, AMD Athlon and Intel Core Duo processors. Operating system: Linux, Windows. RAM: From 4 MBytes to 150 MBytes, depending on the size of the nucleus and of the model space for RPA. Word size: The code is written with a prevalent use of double precision or REAL(8) variables; this assures 15 significant digits. Classification: 17.24. Nature of problem: Systematic observations of excitation properties in finite nuclear systems can lead to improved knowledge of the nuclear matter equation of state as well as a better understanding of the effective interaction in the medium. This is the case of the nuclear giant resonances and low-lying collective excitations, which can be described as small amplitude collective motions in the framework of

  1. Finite rank separable approximation for Skyrme interactions: spin-isospin excitations

    International Nuclear Information System (INIS)

    Severyukhin, A.P.; Voronov, V.V.; Borzov, I.N.; Nguyen Van Giai

    2012-01-01

    A finite rank separable approximation for the quasiparticle random phase approximation with the Skyrme interactions is applied for the case of charge-exchange nuclear modes. The coupling between one- and two-phonon terms in the wave functions is taken into account. It has been shown that the approximation reproduces reasonably well the full charge-exchange RPA results for the spin-dipole resonances in 132 Sn. As an illustration of the method, the phonon-phonon coupling effect on the β-decay half-life of 78 Ni is considered

  2. Skyrme's interaction beyond the mean-field. The DGCM+GOA Hamiltonian of nuclear quadrupole motion

    Energy Technology Data Exchange (ETDEWEB)

    Kluepfel, Peter

    2008-07-29

    This work focuses on the microscopic description of nuclear collective quadrupole motion within the framework of the dynamic Generator-Coordinate-Method(DGCM)+Gaussian-Overlap-Approximation(GOA). Skyrme-type effective interactions are used as the fundamental many-particle interaction. Starting from a rotational invariant, polynomial and topologic consistent formulation of the GCM+GOA Hamiltonian an interpolation scheme for the collective masses and potential is developed. It allows to define the collective Hamiltonian of fully triaxial collective quadrupole dynamics from a purely axial symmetric configuration space. The substantial gain in performance allows the self-consistent evaluation of the dynamic quadrupole mass within the ATDHF-cranking model. This work presents the first large-scale analysis of quadrupole correlation energies and lowlying collective states within the DGCM+GOA model. Different Skyrme- and pairing interactions are compared from old standards up to more recent parameterizations. After checking the validity of several approximations to the DGCM+GOA model - both on the mean-field and the collective level - we proceed with a detailed investigation of correlation effects along the chains of semi-magic isotopes and isotones. This finally allows to define a set of observables which are hardly affected by collective correlations. Those observables were used for a refit of a Skyrme-type effective interaction which is expected to cure most of the problems of the recent parameterizations. Preparing further work, estimates for the correlated ground state energy are proposed which can be evaluated directly from the mean-field model. (orig.)

  3. Further investigations of the NN interaction in the Skyrme model

    International Nuclear Information System (INIS)

    Kaelbermann, G.; Eisenberg, J.M.

    1989-01-01

    We examine the influence of the coupling to NΔ and ΔΔ degrees of freedom for the NN interaction as derived in the Skyrme model, carrying out an extensive search for parameters in the basic Lagrangian that will yield both reasonable single-baryon results and appreciable attraction. Separately the free one-body skyrmeon solution and an improved two-body solution are inserted in the product ansatz for the two-body system both with and without time-dependent dynamical terms. No appreciable central attraction between nucleons is found with either of these approaches. (author)

  4. Sum rules for nuclear excitations with the Skyrme-Landau interaction

    International Nuclear Information System (INIS)

    Liu Kehfei; Luo Hongde; Ma Zhongyu; Feng Man; Shen Qingbiao

    1991-01-01

    The energy-weighted sum rules for electric, magnetic, Fermi and Gamow-Teller transitions with the Skyrme-Landau interaction are derived from the double commutators and numerically calculated in a HF + RPA formalism. As a numerical check of the Thouless theorem, our self-consistent calculations show that the calculated RPA strengths exhaust more than 85% of the sum rules in most cases. The well known non-energy-weighted sum rules for Fermi and Gamow-Teller transitions are also checked numerically. The sum rules are exhausted by more than 94% in these cases. (orig.)

  5. Attractive component in the nucleon-nucleon interaction in the Skyrme model

    International Nuclear Information System (INIS)

    Nyman, E.M.; Riska, D.O.

    1986-01-01

    The spin- and isospin-independent part of the nulceon-nucleon interaction in the Skyrme model is shown to contain a weak attractive intermediate-range term in addition to the well-known short-range repulsion. The attraction is a consequence of the rotational degree of freedom of a skyrmion in the presence of the field of another one, and can be thought of as an enhancement of the moment of inertia of each skyrmion. While the attractive term is dominant at large distances it is not sufficiently strong for nuclear binding. (orig.)

  6. Λ hypernuclei in the Skyrme-Hartree-Fock treatment with G-matrix motivated interactions

    International Nuclear Information System (INIS)

    Lanskoy, D.E.; Yamamoto, Y.

    1997-01-01

    Skyrme-like hyperon-nucleon potentials are derived from G-matrix calculations and shown to reproduce well the Λ single-particle spectra of hypernuclei measured in BNL and KEK. Fit of the spectra can restrict p-wave ΛN interaction, radii of Λ orbits in hypernuclear ground states, Λ well depth and effective mass in nuclear matter rather tightly. Implications of ΛN spin-orbit force to the spectra are considered. (author)

  7. A supersymmetric Skyrme model

    International Nuclear Information System (INIS)

    Gudnason, Sven Bjarke; Nitta, Muneto; Sasaki, Shin

    2016-01-01

    Construction of a supersymmetric extension of the Skyrme term was a long-standing problem because of the auxiliary field problem; that is, the auxiliary field may propagate and cannot be eliminated, and the problem of having fourth-order time derivative terms. In this paper, we construct for the first time a supersymmetric extension of the Skyrme term in four spacetime dimensions, in the manifestly supersymmetric superfield formalism that does not suffer from the auxiliary field problem. Chiral symmetry breaking in supersymmetric theories results not only in Nambu-Goldstone (NG) bosons (pions) but also in the same number of quasi-NG bosons so that the low-energy theory is described by an SL(N,ℂ)-valued matrix field instead of SU(N) for NG bosons. The solution of auxiliary fields is trivial on the canonical branch of the auxiliary field equation, in which case our model results in a fourth-order derivative term that is not the Skyrme term. For the case of SL(2,ℂ), we find explicitly a nontrivial solution to the algebraic auxiliary field equations that we call a non-canonical branch, which when substituted back into the Lagrangian gives a Skyrme-like model. If we restrict to a submanifold, where quasi-NG bosons are turned off, which is tantamount to restricting the Skyrme field to SU(2), then the fourth-order derivative term reduces exactly to the standard Skyrme term. Our model is the first example of a nontrivial auxiliary field solution in a multi-component model.

  8. Inflating baby-Skyrme branes in six dimensions

    International Nuclear Information System (INIS)

    Brihaye, Yves; Delsate, Terence; Kodama, Yuta; Sawado, Nobuyuki

    2010-01-01

    We consider a six-dimensional brane world model, where the brane is described by a localized solution to the baby-Skyrme model extending in the extra dimensions. The branes have a cosmological constant modeled by inflating four-dimensional slices, and we further consider a bulk cosmological constant. We construct solutions numerically and present evidence that the solutions cease to exist for large values of the brane cosmological constant in some particular case. Then we study the stability of the model by considering perturbation of the gravitational part (resp. baby Skyrmion) with fixed matter fields (resp. gravitational background). Our results indicate that the perturbation equations do not admit localized solutions for certain type of perturbation. The stability analysis can be alternatively seen as leading to a particle spectrum; we give mass estimations for the baby-Skyrme perturbation and for the graviton.

  9. On the properties of nuclear matter with an excess of neutrons, of spin-up neutrons and of spin-up protons using the Skyrme interaction

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Ramadan, S.

    1983-11-01

    The binding energy of nuclear matter with an excess of neutrons, of spin-up neutrons, and of spin-up protons (characterized by the corresponding parameters, αsub(tau)=(N-Z/A), αsub(n)=(Nup-Ndown)/A, and αsub(rho)=(Zup-Zdown)/A), contains three symmetry energies: the isospin symmetry energy Esub(tau), the spin symmetry energy Esub(σ), and spin-isospin symmetry energy Esub(σtau). General expressions for Esub(σ), Esub(tau) and Esub(σtau) are given in the case of the Skyrme interaction. These values are compared with previous results obtained by Dabrowski and Haensel (DH) with Brueckner-Gammel-Thaler, the Hamada-Johnston, and the Reid soft core nucleon-nucleon potentials. The spin, isospin and spin-isospin dependent parts of the single-particle potential in nuclear matter are also calculated using the Skyrme interaction. The spin, isospin and spin-isospin incompressibility are calculated using the Skyrme interaction. The spin-spin part of the optical model potential is estimated. The results are compared with those of Dabrowski and Haensel (DH) and Hassan and Ramadan. (author)

  10. Selected papers, with commentary, of Tony Hilton Royle Skyrme

    CERN Document Server

    Skyrme, T H R

    1994-01-01

    The most important papers of Tony Hilton Royle Skyrme are collected in this volume which also includes commentaries by G Brown and other articles relating to the life and work of Tony Skryme, R Dalitz, E Witten and others. Skyrme's work was brilliant, profound and surprisingly useful. He provided an original solution to the problem of constructing fermions from bosons, formulating the topological soliton model of the nucleon. His two-parameter model of effective interactions in nuclei has yielded a remarkably accurate description of nuclear structure. His a-particle model of nuclei gave deep i

  11. Higher-order Skyrme hair of black holes

    Science.gov (United States)

    Gudnason, Sven Bjarke; Nitta, Muneto

    2018-05-01

    Higher-order derivative terms are considered as replacement for the Skyrme term in an Einstein-Skyrme-like model in order to pinpoint which properties are necessary for a black hole to possess stable static scalar hair. We find two new models able to support stable black hole hair in the limit of the Skyrme term being turned off. They contain 8 and 12 derivatives, respectively, and are roughly the Skyrme-term squared and the so-called BPS-Skyrme-term squared. In the twelfth-order model we find that the lower branches, which are normally unstable, become stable in the limit where the Skyrme term is turned off. We check this claim with a linear stability analysis. Finally, we find for a certain range of the gravitational coupling and horizon radius, that the twelfth-order model contains 4 solutions as opposed to 2. More surprisingly, the lowest part of the would-be unstable branch turns out to be the stable one of the 4 solutions.

  12. Second RPA with Skyrme Interaction

    International Nuclear Information System (INIS)

    Gambacurta, D; Catara, F; Grasso, M

    2011-01-01

    The Second Random Phase Approximation (RPA) is a natural extension of RPA obtained by introducing more general excitation operators where two particle-two hole configurations, in addition to the one particle-one hole ones, are considered. Some Second RPA results with Skyrme force in 16 O are presented. Different levels of approximation are compared and in particular the quality of the diagonal approximation is tested. The issue of the rearrangement terms to be used in the matrix elements beyond the standard RPA ones, when density-dependent force are used, is briefly discussed. Two approximated, and generally used, schemes are used: the rearrangement terms are neglected in the matrix elements beyond RPA or evaluated with the RPA prescription. As a general feature of Second RPA results, a several-MeV shift of the strength distribution to lower energies is systematically found with respect to RPA distributions.

  13. Second RPA calculations with the Skyrme and Gogny interactions

    Energy Technology Data Exchange (ETDEWEB)

    Gambacurta, Danilo [Horia Hulubei National Institute for Physics and Nuclear Engineering, Extreme Light Infrastructure - Nuclear Physics (ELI-NP), Magurele, Jud. Ilfov (Romania); Grasso, Marcella [Universite Paris-Sud, IN2P3-CNRS, Institut de Physique Nucleaire, Orsay Cedex (France)

    2016-07-15

    The Second Random Phase Approximation (SRPA) is a natural extension of RPA where more general excitation operators are introduced. These operators contain, in addition to the one particle-one hole configurations already considered in RPA, also two particle-two hole excitations. Only in the last years, large-scale SRPA calculations have been performed, showing the merits and limits of this approach. In the first part of this paper, we present an overview of recent applications of the SRPA based on the Skyrme and Gogny interactions. Giant resonances in {sup 16}O will be studied and their properties discussed by using different models. In particular, we will present the first applications of the SRPA model with the finite-range Gogny interaction, discussing the advantages and drawbacks of using such an interaction in this type of calculations. After that, some more recent results, obtained by using a subtraction procedure to overcome double-counting in the SRPA, will be discussed. We will show that this procedure leads to results that are weakly cutoff dependent and that a strong reduction of the SRPA downwards shift with respect to the RPA spectra is found. Moreover, applying this procedure for the first time in the Gogny-SRPA framework, we will show that this method is able to reduce the anomalous shift found in previous calculations and related to some proton-neutron matrix elements of the residual interaction. (orig.)

  14. The Skyrme-TQRPA calculations of electron capture on hot nuclei in pre-supernova environment

    Energy Technology Data Exchange (ETDEWEB)

    Dzhioev, Alan A., E-mail: dzhioev@theor.jinr.ru; Vdovin, A. I., E-mail: vdovin@theor.jinr.ru [JINR, Bogoliubov Laboratory of Theoretical Physics (Russian Federation); Stoyanov, Ch., E-mail: stoyanov@inrne.bas.bg [Bulgarian Academy of Sciences, Institute for Nuclear Research and Nuclear Energy (Bulgaria)

    2016-11-15

    We combine the thermal QRPA approach with the Skyrme energy density functional theory (Skyrme–TQRPA) for modelling the process of electron capture on nuclei in supernova environment. For a sample nucleus, {sup 56}Fe, the Skyrme–TQRPA approach is applied to analyze thermal effects on the strength function of GT{sub +} transitions which dominate electron capture at E{sub e} ≤ 30 MeV. Several Skyrme interactions are used in order to verify the sensitivity of the obtained results to the Skyrme force parameters. Finite-temperature cross sections are calculated and the results are comparedwith those of the other model calculations.

  15. Nuclear ground state properties and self-consistent calculations with the Skyrme interaction. II. S-D shell nuclei

    International Nuclear Information System (INIS)

    Flocard, H.

    1975-04-01

    Hartree-Fock results concerning the ground state properties of some S-D shell nuclei are discussed. Two different Skyrme interactions have been used. They both lead to good agreement with the experimental total binding energies, charge radii and multipole moments. In particular the observed prolate-oblate transitions occuring in the S-D shell are reproduced. The calculated spectroscopic factors are also shown to be consistent with experimental data [fr

  16. Hyperon puzzle of neutron stars with Skyrme force models

    International Nuclear Information System (INIS)

    Lim, Yeunhwan; Hyun, Chang Ho; Kwak, Kyujin; Lee, Chang-Hwan

    2015-01-01

    We consider the so-called hyperon puzzle of neutron star (NS). We employ Skyrme force models for the description of in-medium nucleon–nucleon (NN), nucleon–Lambda hyperon (NΛ) and Lambda–Lambda (ΛΛ) interactions. A phenomenological finite-range force (FRF) for the ΛΛ interaction is considered as well. Equation of state (EoS) of NS matter is obtained in the framework of density functional theory, and Tolman–Oppenheimer–Volkoff (TOV) equations are solved to obtain the mass-radius relations of NSs. It has been generally known that the existence of hyperons in the NS matter is not well supported by the recent discovery of large-mass NSs (M ≃ 2M⊙) since hyperons make the EoS softer than the one without them. For the selected interaction models, NΛ interactions reduce the maximum mass of NS by about 30%, while ΛΛ interactions can give about 10% enhancement. Consequently, we find that some Skyrme force models predict the maximum mass of NS consistent with the observation of 2M ⊙ NSs, and at the same time satisfy observationally constrained mass-radius relations. (author)

  17. Investigation of restricted baby Skyrme models

    International Nuclear Information System (INIS)

    Adam, C.; Romanczukiewicz, T.; Wereszczynski, A.; Sanchez-Guillen, J.

    2010-01-01

    A restriction of the baby Skyrme model consisting of the quartic and potential terms only is investigated in detail for a wide range of potentials. Further, its properties are compared with those of the corresponding full baby Skyrme models. We find that topological (charge) as well as geometrical (nucleus/shell shape) features of baby Skyrmions are captured already by the soliton solutions of the restricted model. Further, we find a coincidence between the compact or noncompact nature of solitons in the restricted model, on the one hand, and the existence or nonexistence of multi-Skyrmions in the full baby Skyrme model, on the other hand.

  18. Probing the role of Skyrme interactions on the fission dynamics of the {sup 6}Li + {sup 238}U reaction

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Ishita; Kumar, Raj; Sharma, Manoj K. [Thapar University, School of Physics and Materials Science, Patiala (India)

    2017-06-15

    The performance of selected five Skyrme forces (out of a set of 240), tested by Dutra et al., is analyzed in view of fusion-fission dynamics. These forces are assumed to perform better for neutron-rich systems, so the choice of the reaction is accordingly made by opting for a neutron-rich target in {sup 6}Li + {sup 238}U reaction. This reaction is diagnosed further in reference to fusion hindrance within the dynamical approach of the cluster-decay model (DCM). In order to reduce the computational time, three Skyrme forces are figured out with the criteria that these forces cover the barrier characteristics of the remaining two forces as well. The fission cross-sections are successfully addressed at low energies for the {sup 6}Li + {sup 238}U reaction. However, at relatively higher energies, the excitation functions show theoretical suppression with respect to experimental data, which may be associated with the possible existence of incomplete fusion (ICF). For ICF, we have considered that the {sup 6}Li broke into {sup 4}He + {sup 2}H, as mentioned in the experimental work. The calculations of ICF are carried out for the {sup 4}He + {sup 238}U reaction with the selected Skyrme forces at E{sub c.m.} = 26.20 and 27.51 MeV. These forces address the data nicely for the compound nucleus (CN) as well as ICF processes. Here, the NRAPR force seems to require lesser barrier modification as compared to the other forces, therefore it can be used as an alternate choice for calculating the interaction potential. Additionally, the prediction of cross-sections at lower energies has been done with DCM using the NRAPR force. The l-dependent % barrier modification of the Skyrme forces undertaken is also worked out in reference to fusion hindrance at below barrier energies. (orig.)

  19. Static properties of nucleons in a modified Skyrme model

    International Nuclear Information System (INIS)

    Nguyen Ai Viet; Pham Thuc Tuyen

    1989-02-01

    A modified Skyrme type model is proposed by neglecting non-linearly non-invariant terms from the Skyrme's Lagrangian. It turns out that beside some additional advantages a hedgehog configuration of this model can quantitatively describe nucleons the same way as the skyrmion does in the usual Skyrme model. (author) 8 refs.; 2 figs

  20. Baby Skyrme models without a potential term

    Science.gov (United States)

    Ashcroft, Jennifer; Haberichter, Mareike; Krusch, Steffen

    2015-05-01

    We develop a one-parameter family of static baby Skyrme models that do not require a potential term to admit topological solitons. This is a novel property as the standard baby Skyrme model must contain a potential term in order to have stable soliton solutions, though the Skyrme model does not require this. Our new models satisfy an energy bound that is linear in terms of the topological charge and can be saturated in an extreme limit. They also satisfy a virial theorem that is shared by the Skyrme model. We calculate the solitons of our new models numerically and observe that their form depends significantly on the choice of parameter. In one extreme, we find compactons while at the other there is a scale invariant model in which solitons can be obtained exactly as solutions to a Bogomolny equation. We provide an initial investigation into these solitons and compare them with the baby Skyrmions of other models.

  1. The phonon-coupling model for Skyrme forces

    Energy Technology Data Exchange (ETDEWEB)

    Lyutorovich, N.; Tselyaev, V. [St. Petersburg State University (Russian Federation); Speth, J., E-mail: J.Speth@fz-juelich.de; Krewald, S. [Forschungszentrum Jülich, Institut für Kernphysik (Germany); Reinhard, P.-G. [Universität Erlangen-Nürnberg, Institut für Theoretische Physik II (Germany)

    2016-11-15

    A short review on the self-consistent RPA based on the energy-density functional of the Skyrme type is given. We also present an extension of the RPA where the coupling of phonons to the single-particle states is considered. Within this approach we present numerical results which are compared with data. The self-consistent approach is compared with the Landau–Migdal theory. Here we derive from the self-consistent ph interaction, the Landau–Migdal parameters as well as their density dependence. In the Appendix a new derivation of the reduced matrix elements of the ph interaction is presented.

  2. N=1 supersymmetric extension of the baby Skyrme model

    International Nuclear Information System (INIS)

    Adam, C.; Queiruga, J. M.; Sanchez-Guillen, J.; Wereszczynski, A.

    2011-01-01

    We construct a method to supersymmetrize higher kinetic terms and apply it to the baby Skyrme model. We find that there exist N=1 supersymmetric extensions for baby Skyrme models with arbitrary potential.

  3. Genesis and evolution of the Skyrme model from 1954 to the present

    International Nuclear Information System (INIS)

    Sanyuk, V.I.

    1994-01-01

    Not widely known facts on the genesis of the Skyrme model are presented in a historical survey, based on Skyrme's earliest papers and on his own published remembrance. We consider the evolution of Skyrme's model description of nuclear matter from the ''Mesonic Fluid'' model up to its final version, known as the baryon model. We pay special tribute to some well-known ideas in contemporary particle physics which one can find in Skyrme's earlier papers, such as: Nuclear Democracy, the Solitonic Mechanism, the Nonlinear Realization of Chiral Symmetry, Topological Charges, Fermi-Bose Transmutation, etc. It is curious to note in the final version of the Skyrme model gleams of Kelvin's ''Vortex Atoms'' theory. In conclusion we make a brief analysis of the validity of Skyrme's conjectures in view of recent results and pinpoint some questions which still remain. (author). 93 refs, 4 figs

  4. Applications of Skyrme energy-density functional to fusion reactions spanning the fusion barriers

    International Nuclear Information System (INIS)

    Liu Min; Wang, Ning; Li Zhuxia; Wu Xizhen; Zhao Enguang

    2006-01-01

    The Skyrme energy density functional has been applied to the study of heavy-ion fusion reactions. The barriers for fusion reactions are calculated by the Skyrme energy density functional with proton and neutron density distributions determined by using restricted density variational (RDV) method within the same energy density functional together with semi-classical approach known as the extended semi-classical Thomas-Fermi method. Based on the fusion barrier obtained, we propose a parametrization of the empirical barrier distribution to take into account the multi-dimensional character of real barrier and then apply it to calculate the fusion excitation functions in terms of barrier penetration concept. A large number of measured fusion excitation functions spanning the fusion barriers can be reproduced well. The competition between suppression and enhancement effects on sub-barrier fusion caused by neutron-shell-closure and excess neutron effects is studied

  5. Topological solitons in the supersymmetric Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Gudnason, Sven Bjarke [Institute of Modern Physics, Chinese Academy of Sciences,Lanzhou 730000 (China); Nitta, Muneto [Department of Physics, and Research and Education Center for Natural Sciences,Keio University, Hiyoshi 4-1-1, Yokohama, Kanagawa 223-8521 (Japan); Sasaki, Shin [Department of Physics, Kitasato University,Sagamihara 252-0373 (Japan)

    2017-01-04

    A supersymmetric extension of the Skyrme model was obtained recently, which consists of only the Skyrme term in the Nambu-Goldstone (pion) sector complemented by the same number of quasi-Nambu-Goldstone bosons. Scherk-Schwarz dimensional reduction yields a kinetic term in three or lower dimensions and a potential term in two dimensions, preserving supersymmetry. Euclidean solitons (instantons) are constructed in the supersymmetric Skyrme model. In four dimensions, the soliton is an instanton first found by Speight. Scherk-Schwarz dimensional reduction is then performed once to get a 3-dimensional theory in which a 3d Skyrmion-instanton is found and then once more to get a 2d theory in which a 2d vortex-instanton is obtained. Although the last one is a global vortex it has finite action in contrast to conventional theory. All of them are non-BPS states breaking all supersymmetries.

  6. Rotational-vibrational coupling in the BPS Skyrme model of baryons

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C.; Naya, C.; Sanchez-Guillen, J. [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Reymonta 4, Kraków (Poland)

    2013-11-04

    We calculate the rotational-vibrational spectrum in the BPS Skyrme model for the hedgehog skyrmion with baryon number one. The resulting excitation energies for the nucleon and delta Roper resonances are slightly above their experimental values. Together with the fact that in the standard Skyrme model these excitation energies are significantly lower than the experimental ones, this provides strong evidence for the conjecture that the inclusion of the BPS Skyrme model is required for a successful quantitative description of physical properties of baryons and nuclei.

  7. Description of nuclear structure and cross sections for nucleon-nucleus scattering on the basis of effective Skyrme forces

    International Nuclear Information System (INIS)

    Kuprikov, V. I.; Pilipenko, V. V.; Soznik, A. P.; Tarasov, V. N.; Shlyakhov, N. A.

    2009-01-01

    The possibility of constructing such new versions of effective nucleon-nucleon forces that would make it possible to describe simultaneously the cross sections for nucleon-nucleus scattering and quantities characterizing nuclear matter and the structure of finite even-even nuclei is investigated on the basis of a microscopic nucleon-nucleus optical potential that is calculated by using effective Skyrme interaction. A procedure for optimizing the parameters of Skyrme forces by employing fits to specific angular distributions for neutron-nucleus scattering and by simultaneously testing the features of nuclear matter, the binding energy of the target nucleus, and its proton root-mean-square radius is proposed. A number of versions of modified Skyrme forces that ensure a reasonable description of both nucleon-nucleus scattering and the properties of nuclear structure are found on the basis of this procedure.

  8. A gauged baby Skyrme model and a novel BPS bound

    International Nuclear Information System (INIS)

    Adam, C; Naya, C; Sanchez-Guillen, J; Wereszczynski, A

    2013-01-01

    The baby Skyrme model is a well-known nonlinear field theory supporting topological solitons in two space dimensions. Its action functional consist of a potential term, a kinetic term quadratic in derivatives (the 'nonlinear sigma model term') and the Skyrme term quartic in first derivatives. The limiting case of vanishing sigma model term (the so-called BPS baby Skyrme model) is known to support exact soliton solutions saturating a BPS bound which exists for this model. Further, the BPS model has infinitely many symmetries and conservation laws. Recently it was found that the gauged version of the BPS baby Skyrme model with gauge group U(1) and the usual Maxwell term, too, has a BPS bound and BPS solutions saturating this bound. This BPS bound is determined by a superpotential which has to obey a superpotential equation, in close analogy to the situation in supergravity. Further, the BPS bound and the corresponding BPS solitons only may exist for potentials such that the superpotential equation has a global solution. We also briefly describe some properties of soliton solutions.

  9. Structure of neutron star crusts from new Skyrme effective interactions constrained by chiral effective field theory

    Science.gov (United States)

    Lim, Yeunhwan; Holt, Jeremy W.

    2017-06-01

    We investigate the structure of neutron star crusts, including the crust-core boundary, based on new Skyrme mean field models constrained by the bulk-matter equation of state from chiral effective field theory and the ground-state energies of doubly-magic nuclei. Nuclear pasta phases are studied using both the liquid drop model as well as the Thomas-Fermi approximation. We compare the energy per nucleon for each geometry (spherical nuclei, cylindrical nuclei, nuclear slabs, cylindrical holes, and spherical holes) to obtain the ground state phase as a function of density. We find that the size of the Wigner-Seitz cell depends strongly on the model parameters, especially the coefficients of the density gradient interaction terms. We employ also the thermodynamic instability method to check the validity of the numerical solutions based on energy comparisons.

  10. “Half a proton” in the Bogomol’nyi-Prasad-Sommerfield Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Lukács, Árpád [MTA Wigner RCP, RMI, P.O. Box 49, Budapest H1525 (Hungary)

    2016-07-15

    The BPS Skyrme model is a model containing an SU(2)-valued scalar field, in which a Bogomol’nyi-type inequality can be satisfied by soliton solutions (skyrmions). In this model, the energy density of static configurations is the sum of the square of the topological charge density plus a potential. The topological charge density is nothing else but the pull-back of the Haar measure of the group SU(2) on the physical space by the field configuration. As a consequence, this energy expression has a high degree of symmetry: it is invariant to volume preserving diffeomorphisms both on physical space and on the target space. We demonstrate here that in the BPS Skyrme model such solutions exist that a fraction of its charge and energy densities is localised, and the remaining part can be far away, not interacting with the localised part.

  11. Gauged multisoliton baby Skyrme model

    Science.gov (United States)

    Samoilenka, A.; Shnir, Ya.

    2016-03-01

    We present a study of U (1 ) gauged modification of the 2 +1 -dimensional planar Skyrme model with a particular choice of the symmetry breaking potential term which combines a short-range repulsion and a long-range attraction. In the absence of the gauge interaction, the multisolitons of the model are aloof, as they consist of the individual constituents which are well separated. A peculiar feature of the model is that there are usually several different stable static multisoliton solutions of rather similar energy in a topological sector of given degree. We investigate the pattern of the solutions and find new previously unknown local minima. It is shown that coupling of the aloof planar multi-Skyrmions to the magnetic field strongly affects the pattern of interaction between the constituents. We analyze the dependency of the structure of the solutions, their energies, and magnetic fluxes on the strength of the gauge coupling. It is found that, generically, in the strong coupling limit, the coupling to the gauge field results in effective recovery of the rotational invariance of the configuration.

  12. Selected papers, with commentary, of Tony Hilton Royle Skyrme

    International Nuclear Information System (INIS)

    1994-01-01

    This book contains 13 selected papers of T.H.R. Skyrme covering work on the alpha-particle and shell models of the nucleus and, primarily, on the Skyrme model of the nucleus. The present collection of articles also includes a re-publication of articles, by others and of a later date, as evidence of the significant impact, eventually, of the concept of Skyrmions on nuclear theory. However, these articles had previously already been submitted to the INIS Data Base. Refs, figs, tabs

  13. Solution of the Skyrme-Hartree–Fock–Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (VIII) HFODD (v2.73y): A new version of the program

    International Nuclear Information System (INIS)

    Schunck, N.; Dobaczewski, J.

    2017-01-01

    Here, we describe the new version (v2.73y) of the code hfodd which solves the nuclear Skyrme Hartree–Fock or Skyrme Hartree–Fock–Bogolyubov problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following new features: (i) full proton–neutron mixing in the particle–hole channel for Skyrme functionals, (ii) the Gogny force in both particle–hole and particle–particle channels, (iii) linear multi-constraint method at finite temperature, (iv) fission toolkit including the constraint on the number of particles in the neck between two fragments, calculation of the interaction energy between fragments, and calculation of the nuclear and Coulomb energy of each fragment, (v) the new version 200d of the code hfbtho, together with an enhanced interface between HFBTHO and HFODD, (vi) parallel capabilities, significantly extended by adding several restart options for large-scale jobs, (vii) the Lipkin translational energy correction method with pairing, (viii) higher-order Lipkin particle-number corrections, (ix) interface to a program plotting single-particle energies or Routhians, (x) strong-force isospin-symmetry-breaking terms, and (xi) the Augmented Lagrangian Method for calculations with 3D constraints on angular momentum and isospin. Finally, an important bug related to the calculation of the entropy at finite temperature and several other little significant errors of the previous published version were corrected.

  14. Hyperspherical calculations with Skyrme-like forces

    International Nuclear Information System (INIS)

    Navarro, J.

    1975-11-01

    The first approximation of the hyperspherical harmonic method is used to describe in a unified way the ground state and the breathing mode of several doubly-magic nuclei with Skyrme-like forces. A comparison is made with other methods [fr

  15. Solitons in topologically trivial and nontrivial sectors of the Skyrme model

    International Nuclear Information System (INIS)

    Nikolaev, V.A.; Tkachev, O.G.

    1989-01-01

    Using of the new predictions of form of solitons in the Skyrme model new series of baryon and meson-like configurations are obtained. Some of the obtained configurations are classically stable objects. It is shown that proposed ansatz is the generalization of the Skyrme-Witten ansatz and k Φ one. The origin and approximate character of the last ansatz was demonstrated. 5 refs.; 3 figs.; 2 tabs

  16. Δ-decay in the Skyrme model

    International Nuclear Information System (INIS)

    Verschelde, H.

    1988-01-01

    The Δ-decay matrix element is calculated while carefully paying attention to ordering problems. The decay width obtained is too large by a factor of four. Arguments are given that this discrepancy is not a defect of the Skyrme model but a consequence of the rigid rotor quantization. (orig.)

  17. New topological structures of Skyrme theory: baryon number and monopole number

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Y.M. [Chinese Academy of Science, Institute of Modern Physics, Lanzhou (China); Konkuk University, Seoul (Korea, Republic of); Seoul National University, School of Physics and Astronomy, Seoul (Korea, Republic of); Kimm, Kyoungtae [Seoul National University, Faculty of Liberal Education, Seoul (Korea, Republic of); Yoon, J.H. [Konkuk University, Department of Physics, Seoul (Korea, Republic of); Zhang, Pengming [Chinese Academy of Science, Institute of Modern Physics, Lanzhou (China)

    2017-02-15

    Based on the observation that the skyrmion in Skyrme theory can be viewed as a dressed monopole, we show that the skyrmions have two independent topology, the baryon topology π{sub 3}(S{sup 3}) and the monopole topology π{sub 2}(S{sup 2}). With this we propose to classify the skyrmions by two topological numbers (m, n), the monopole number m and the shell (radial) number n. In this scheme the popular (non spherically symmetric) skyrmions are classified as the (m, 1) skyrmions but the spherically symmetric skyrmions are classified as the (1, n) skyrmions, and the baryon number B is given by B = mn. Moreover, we show that the vacuum of the Skyrme theory has the structure of the vacuum of the Sine-Gordon theory and QCD combined together, which can also be classified by two topological numbers (p, q). This puts the Skyrme theory in a totally new perspective. (orig.)

  18. Baby Skyrme models for a class of potentials

    International Nuclear Information System (INIS)

    Eslami, P.; Zakrzewski, W.; Sarbishaei, M.

    2000-01-01

    We consider a class of (2+1)- dimensional baby Skyrme models with potentials that have more than one vacuum. These potentials are generalizations of old and new baby Skyrme models; they involve more complicated dependence on φ 3 . We find that when the potential is invariant under φ 3 → -φ 3 the configurations corresponding to the baby Skyrmions lying 'on top of each other' are the minima of the energy. However, when the potential breaks this symmetry the lowest field configurations correspond to separated baby skyrmions. We compute the energy distributions for skyrmions of degrees between one and eight and discuss their geometrical shapes and binding energies. We also compare the 2-skyrmion states for these potentials. Most of our work has been performed numerically with the model being formulated in terms of three real scalar fields (satisfying one constraint)

  19. Generalized Skyrme model with the loosely bound potential

    Science.gov (United States)

    Gudnason, Sven Bjarke; Zhang, Baiyang; Ma, Nana

    2016-12-01

    We study a generalization of the loosely bound Skyrme model which consists of the Skyrme model with a sixth-order derivative term—motivated by its fluidlike properties—and the second-order loosely bound potential—motivated by lowering the classical binding energies of higher-charged Skyrmions. We use the rational map approximation for the Skyrmion of topological charge B =4 , calculate the binding energy of the latter, and estimate the systematic error in using this approximation. In the parameter space that we can explore within the rational map approximation, we find classical binding energies as low as 1.8%, and once taking into account the contribution from spin-isospin quantization, we obtain binding energies as low as 5.3%. We also calculate the contribution from the sixth-order derivative term to the electric charge density and axial coupling.

  20. Generator coordinate calculations of 4He and 16O nuclei with Skyrme-like forces and square-well construction potential

    International Nuclear Information System (INIS)

    Antonov, A.N.; Petkov, I.Zh.; Christov, C.V.

    1984-11-01

    The generator coordinate method with a square-well construction potential and Skyrme-like interactions is applied to calculate characteristics of 4 He and 16 O nuclei. The corresponding nucleon momentum distributions have a high momentum component, which differs from the results obtained with a harmonic oscillator potential. (author)

  1. The tensor part of the Skyrme energy density functional. I. Spherical nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Lesinski, T.; Meyer, J. [Universite de Lyon, F-69003 Lyon (France)]|[Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Universite Lyon 1, F-69622 Villeurbanne (France); Bender, M. [DSM/DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France)]|[Universite Bordeaux, CNRS/IN2P3, Centre d' Etudes Nucleaires de Bordeaux Gradignan, UMR5797, Chemin du Solarium, BP120, F-33175 Gradignan (France); Bennaceur, K. [Universite de Lyon, F-69003 Lyon (France)]|[Institut de Physique Nucleaire de Lyon, CNRS/IN2P3, Universite Lyon 1, F-69622 Villeurbanne (France)]|[DSM/DAPNIA/SPhN, CEA Saclay, F-91191 Gif-sur-Yvette Cedex (France); Duguet, T. [National Superconducting Cyclotron Laboratory and Department of Physics and Astronomy, Michigan State University, East Lansing, MI 48824 (United States)

    2007-04-15

    We perform a systematic study of the impact of the J-vector{sup 2} tensor term in the Skyrme energy functional on properties of spherical nuclei. In the Skyrme energy functional, the tensor terms originate both from zero-range central and tensor forces. We build a set of 36 parameterizations which cover a wide range of the parameter space of the isoscalar and isovector tensor term coupling constants with a fit protocol very similar to that of the successful SLy parameterizations. We analyze the impact of the tensor terms on a large variety of observables in spherical mean-field calculations, such as the spin-orbit splittings and single-particle spectra of doubly-magic nuclei, the evolution of spin-orbit splittings along chains of semi-magic nuclei, mass residuals of spherical nuclei, and known anomalies of radii. The major findings of our study are (i) tensor terms should not be added perturbatively to existing parameterizations, a complete refit of the entire parameter set is imperative. (ii) The free variation of the tensor terms does not lower the {chi}{sup 2} within a standard Skyrme energy functional. (iii) For certain regions of the parameter space of their coupling constants, the tensor terms lead to instabilities of the spherical shell structure, or even the coexistence of two configurations with different spherical shell structure. (iv) The standard spin-orbit interaction does not scale properly with the principal quantum number, such that single-particle states with one or several nodes have too large spin-orbit splittings, while those of node-less intruder levels are tentatively too small. Tensor terms with realistic coupling constants cannot cure this problem. (v) Positive values of the coupling constants of proton-neutron and like-particle tensor terms allow for a qualitative description of the evolution of spin-orbit splittings in chains of Ca, Ni and Sn isotopes. (vi) For the same values of the tensor term coupling constants, however, the overall

  2. Skyrme RPA description of γ-vibrational states in rare-earth nuclei

    Directory of Open Access Journals (Sweden)

    Nesterenko V.O.

    2016-01-01

    Full Text Available The lowest γ-vibrational states with Kπ = 2+γ in well-deformed Dy, Er and Yb isotopes are investigated within the self-consistent separable quasiparticle random-phase-approximation (QRPA approach based on the Skyrme functional. The energies Eγ and reduced transition probabilities B(E2γ of the states are calculated with the Skyrme force SV-mas10. We demonstrate the strong effect of the pairing blocking on the energies of γ-vibrational states. It is also shown that collectivity of γ-vibrational states is strictly determined by keeping the Nilsson selection rules in the corresponding lowest 2qp configurations.

  3. Thermal modified Thomas-Fermi approximation with the Skyrme interaction for the 208Pb + 208Pb system

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Ismail, M.; Osman, M.; Ramadan, Kh.A.

    1988-01-01

    A generalization of the modified Thomas-Fermi (MTF) approximation to finite temperatures is used to calculate the optical potential for the 208 Pb + 208 Pb system using the energy density formalism derived from different effective forces of Skyrme type. The nuclear optical potential becomes more attractive when the temperature is increased. Pockets are also predicted in the total potential (Nuclear + Coulomb) wich depths are dependent on both the type of effective force and the temperature. 23 refs., 7 figs. (author)

  4. Energy Levels and B(E2) transition rates in the Hartree-Fock approximation with the Skyrme force

    International Nuclear Information System (INIS)

    Oliveira, D.R. de; Mizrahi, S.S.

    1976-11-01

    The Hartree-Fock approximation with the Skyrme force is applied to the A = 4n type of nuclei in the s-d shell. Energy levels and electric quadrupole transition probabilities within the ground states band are calculated from the projected states of good angular momentum. Strong approximations are made but the results concerning the spectra are better than those obtained with more sophisticated density independent two-body interactions. The transition rates are less sensitive to the interaction, as previously verified

  5. Crustal moment of inertia of glitching pulsars with the KDE0v1 Skyrme interaction

    Energy Technology Data Exchange (ETDEWEB)

    Madhuri, K.; Routray, T.R.; Pattnaik, S.P. [Sambalpur University, School of Physics, Jyotivihar (India); Basu, D.N. [Variable Energy Cyclotron Center, Kolkata (India)

    2017-07-15

    The mass, radius and crustal fraction of moment of inertia in neutron stars are calculated using β-equilibrated nuclear matter obtained from the Skyrme effective interaction. The transition density, pressure and proton fraction at the inner edge separating the liquid core from the solid crust of the neutron stars are determined from the thermodynamic stability conditions using the KDE0v1 set. The neutron star masses obtained by solving the Tolman-Oppenheimer-Volkoff equations using neutron star matter obtained from this set are able to describe highly massive compact stars ∝ 2M {sub CircleDot}. The crustal fraction of the moment of inertia can be extracted from studying pulsar glitches. This fraction is highly dependent on the core-crust transition pressure and corresponding density. These results for pressure and density at core-crust transition together with the observed minimum crustal fraction of the total moment of inertia provide a limit for the radius of the Vela pulsar, R ≥ 3.69 + 3.44M/M {sub CircleDot}. Present calculations suggest that the crustal fraction of the total moment of inertia can be ∝ 6.3% due to crustal entrainment caused by the Bragg reflection of unbound neutrons by lattice ions. (orig.)

  6. Pion photoproduction in the Skyrme model and low-energy theorem

    International Nuclear Information System (INIS)

    Saito, Sakae; Takeuchi, Fuminaka; Uehara, Masayuki

    1993-01-01

    We investigate pion photoproduction on the nucleon in the Skyrme model. We employ the formulation, which was recently developed by Hayashi et al., that the full pion field is treated as an interpolating field between asymptotic in and out fields. It is shown that the amplitude of the pion photoproduction is correctly given by the direct and the crossed baryon-pole terms, and the equal-time commutator terms between the axial-vector current and the electromagnetic current and between the pion field and the latter. We show that the lowest-order Kroll-Ruderman and the pion pole terms are reproduced, and that the seagull terms inherent to the Skyrme model are present. Further, the threshold behavior of the amplitude is discussed. (orig.)

  7. BPS submodels of the Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C., E-mail: adam@fpaxp1.usc.es [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Sanchez-Guillen, J. [Departamento de Física de Partículas, Universidad de Santiago de Compostela and Instituto Galego de Física de Altas Enerxias (IGFAE), E-15782 Santiago de Compostela (Spain); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Lojasiewicza 11, Kraków (Poland)

    2017-06-10

    We show that the standard Skyrme model without pion mass term can be expressed as a sum of two BPS submodels, i.e., of two models whose static field equations, independently, can be reduced to first order equations. Further, these first order (BPS) equations have nontrivial solutions, at least locally. These two submodels, however, cannot have common solutions. Our findings also shed some light on the rational map approximation. Finally, we consider certain generalisations of the BPS submodels.

  8. ΔS=1 weak transitions in the Skyrme model

    International Nuclear Information System (INIS)

    Praszalowicz; Trampetic, J.

    1985-01-01

    We calculate the octet matrix elements of the operator (anti du)sub(L)(anti us)sub(L) in the Skyrme model and compare them with the quark model predictions. We find that the agreement between the two models is quite satisfactory. (orig.)

  9. BPS submodels of the Skyrme model

    Directory of Open Access Journals (Sweden)

    C. Adam

    2017-06-01

    Full Text Available We show that the standard Skyrme model without pion mass term can be expressed as a sum of two BPS submodels, i.e., of two models whose static field equations, independently, can be reduced to first order equations. Further, these first order (BPS equations have nontrivial solutions, at least locally. These two submodels, however, cannot have common solutions. Our findings also shed some light on the rational map approximation. Finally, we consider certain generalisations of the BPS submodels.

  10. Rotational Symmetry Breaking in Baby Skyrme Models

    Science.gov (United States)

    Karliner, Marek; Hen, Itay

    We discuss one of the most interesting phenomena exhibited by baby skyrmions - breaking of rotational symmetry. The topics we will deal with here include the appearance of rotational symmetry breaking in the static solutions of baby Skyrme models, both in flat as well as in curved spaces, the zero-temperature crystalline structure of baby skyrmions, and finally, the appearance of spontaneous breaking of rotational symmetry in rotating baby skyrmions.

  11. Neutron matter properties using generalized Skyrme force

    International Nuclear Information System (INIS)

    Mansour, H.M.M.; Ramadan, Kh.A.

    2002-01-01

    The generalized Skyrme potential is used to calculate the properties of neutron matter in the form of the Thomas–Fermi model. The binding energy per particle, spin symmetry energy, free energy, pressure, entropy, sound velocity and magnetic susceptibility are calculated as a function of density ρ. The results are comparable with those obtained by Friedman and Pandharipande, who used the Urbana v 14 potential plus an effective repulsive three-body force. (author)

  12. Exotic B=2 states in the SU(2) Skyrme model and other recent results in the B=1 sector

    International Nuclear Information System (INIS)

    Schwesinger, B.

    1986-01-01

    Effective theories with surprising phenomenological success immediatly prompt the suspicion that they are intimately connected to a more fundamental theory. In the case of the Skyrme model things have gone the other way round: first there was the finding that the large N c -limit of QCD results in an effective theory of free mesons where baryons emerge as solitons from meson fields. Subsequently the long forgotten Skyrme model was unearthed by Witten as a possible candidate for such a theory. Examined in the light of its phenomenological capabilities the Skyrme model lead to the surprising success it enjoys till now. (orig./BBOE)

  13. Two-current nucleon observables in Skyrme model

    International Nuclear Information System (INIS)

    Chemtob, M.

    1987-01-01

    Three independent two-current nucleon observables are studied within the two-flavor Skyrme model for the πρω system. The effecive lagrangian is that of the gauged chiral symmetry approach, consistent with the vector meson dominance, in the linear realization (for the vector mesons) of the global chiral symmetry. The first application deals with the nucleon electric polarizability and magnetic susceptibility. Both seagull and dispersive contributions appear and we evaluate the latter in terms of the sums over intermediate states. The results are compared with existing quark model results as well as with empirical determinations. The second application concerns the zero-point quantum correction to the skyrmion mass. We apply a chiral perturbation theory approach to evaluate the ion loop contribution to the nucleon mass. The comparison with the conventional Skyrme model result reveals an important sensitivity to the stabilization mechanism. The third application is to lepton-nucleon deep inelastic scattering in the Bjorken scaling limit. The structure tensor is calculated in terms of the representation as a commutator product of two currents. Numerical results are presented for the scaling function F 2 (x). An essential use is made of the large N c (number of colors) approximation in all these applications. In the numerical computations we ignore the distortion effects, relative to the free plane wave limit, on the pionic fluctuations. (orig.)

  14. Recent Results From Skyrme-TDHF: Giant Resonances and Collisions

    International Nuclear Information System (INIS)

    Stevenson, Paul D.

    2007-01-01

    Using fully three-dimensional Time-Dependent Hartree-Fock with Skyrme forces allows one to explore small and large amplitude collective motion in nuclei using only an effective interaction fitted to ground state and nuclear matter properties as input. In this talk, results are presented for TDHF calculations of giant resonances and nuclear collisions. We examine deformation splitting of the giant dipole resonance on ground and excited intrinsic superdeformed states, showing the interplay between Landau splitting and deformation splitting, including effects of triaxiality[1]. In the case of giant monopole resonances, isospin-mixing is examined, showing that the isovector and isoscalar parts of strength functions are strongly coupled [2]. The role of absorption in the TDHF approach to linear and nonlinear regimes is examined[3]. Calculations of nuclear collisions are also explored, showing that the effects of fully relaxed symmetry produce new modes of energy loss not found in previous calculations [4]. (Author)

  15. Towards the establishment of nonlinear hidden symmetries of the Skyrme model

    International Nuclear Information System (INIS)

    Herrera-Aguilar, A.; Kanakoglou, K.; Paschalis, J. E.

    2006-01-01

    We present a preliminary attempt to establish the existence of hidden nonlinear symmetries of the SU(N) Skyrme model which could, in principle, lead to the further integration of the system. An explicit illustration is given for the SU(2) symmetry group

  16. Baby Skyrme model and fermionic zero modes

    Science.gov (United States)

    Queiruga, J. M.

    2016-09-01

    In this work we investigate some features of the fermionic sector of the supersymmetric version of the baby Skyrme model. We find that, in the background of Bogomol'nyi-Prasad-Sommerfield compact baby Skyrmions, fermionic zero modes are confined to the defect core. Further, we show that, while three Supersymmetry (SUSY) generators are broken in the defect core, SUSY is completely restored outside. We study also the effect of a D-term deformation of the model. Such a deformation allows for the existence of fermionic zero modes and broken SUSY outside the compact defect.

  17. Coincidence: Fortran code for calculation of (e, e'x) differential cross-sections, nuclear structure functions and polarization asymmetry in self-consistent random phase approximation with Skyrme interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cavinato, M.; Marangoni, M.; Saruis, A.M.

    1990-10-01

    This report describes the COINCIDENCE code written for the IBM 3090/300E computer in Fortran 77 language. The output data of this code are the (e, e'x) threefold differential cross-sections, the nuclear structure functions, the polarization asymmetry and the angular correlation coefficients. In the real photon limit, the output data are the angular distributions for plane polarized incident photons. The code reads from tape the transition matrix elements previously calculated, by in continuum self-consistent RPA (random phase approximation) theory with Skyrme interactions. This code has been used to perform a numerical analysis of coincidence (e, e'x) reactions with polarized electrons on the /sup 16/O nucleous.

  18. Yukawa couplings and the nature of zero modes in the Skyrme model

    International Nuclear Information System (INIS)

    Kawarabayashi, K.

    1989-01-01

    Several issues related, directly or indirectly, to the Yukawa coupling in the Skyrme model are discussed. The authors try to shed a new light on the physical nature of the zero modes associated with translation (rotation) invariance of the model

  19. Static properties of baryons in the SU(3) Skyrme model

    International Nuclear Information System (INIS)

    Sriram, M.S.; Mani, H.S.; Ramachandran, R.

    1984-01-01

    We study the SU(3) x SU(3) Skyrme model with explicit chiral- and flavor-symmetry-breaking terms. We evaluate the SU(3)-symmetric meson-baryon coupling-constant ratio α, SU(3) mass breaking in the octet and decuplet, and the ΔI = 1 part of the electromagnetic mass splitting in baryons. The theoretical numbers are in reasonable agreement with the experimental values

  20. Microscopically-constrained Fock energy density functionals from chiral effective field theory. I. Two-nucleon interactions

    International Nuclear Information System (INIS)

    Gebremariam, B.; Bogner, S.K.; Duguet, T.

    2011-01-01

    The density matrix expansion (DME) of Negele and Vautherin is a convenient tool to map finite-range physics associated with vacuum two- and three-nucleon interactions into the form of a Skyrme-like energy density functional (EDF) with density-dependent couplings. In this work, we apply the improved formulation of the DME proposed recently in (arXiv:0910.4979) by Gebremariam et al. to the non-local Fock energy obtained from chiral effective field theory (EFT) two-nucleon (NN) interactions at next-to-next-to-leading-order (N 2 LO). The structure of the chiral interactions is such that each coupling in the DME Fock functional can be decomposed into a coupling constant arising from zero-range contact interactions and a coupling function of the density arising from the universal long-range pion exchanges. This motivates a new microscopically-guided Skyrme phenomenology where the density-dependent couplings associated with the underlying pion-exchange interactions are added to standard empirical Skyrme functionals, and the density-independent Skyrme parameters subsequently refit to data. A link to a downloadable Mathematica notebook containing the novel density-dependent couplings is provided.

  1. β-decay in the Skyrme-Witten representation of QCD

    International Nuclear Information System (INIS)

    Snyderman, N.J.

    1991-01-01

    The renormalized coupling strength of the β-decay axial vector current is related to π ± p cross sections through the Adler-Weisberger sum rule, that follows from chiral symmetry. We attempt to understand the Adler-Weisberger sum rule in the 1/N c expansion in QCD, and in Skyrme-Witten model that realizes the 1/N c expansion in the low energy limit, using it to explicitly calculate both g A and the π ± p cross sections

  2. Bogomolny equations in certain generalized baby BPS Skyrme models

    Science.gov (United States)

    Stępień, Ł. T.

    2018-01-01

    By using the concept of strong necessary conditions (CSNCs), we derive Bogomolny equations and Bogomol’nyi-Prasad-Sommerfield (BPS) bounds for two certain modifications of the baby BPS Skyrme model: the nonminimal coupling to the gauge field and the k-deformed ungauged model. In particular, we study how the Bogomolny equations and the equation for the potential reflect these two modifications. In both examples, the CSNC method appears to be a very useful tool. We also find certain localized solutions of these Bogomolny equations.

  3. Physical Origin of Density Dependent Force of the Skyrme Type within the Quark Meson Coupling Model

    International Nuclear Information System (INIS)

    Pierre Guichon; Hrayr Matevosyan; N. Sandulescu; Anthony Thomas

    2006-01-01

    A density dependent, effective nucleon-nucleon force of the Skyrme type is derived from the quark-meson coupling model--a self-consistent, relativistic quark level description of nuclear matter. This new formulation requires no assumption that the mean scalar field is small and hence constitutes a significant advance over earlier work. The similarity of the effective interaction to the widely used SkM* force encourages us to apply it to a wide range of nuclear problems, beginning with the binding energies and charge distributions of doubly magic nuclei. Finding impressive results in this conventional arena, we apply the same effective interaction, within the Hartree-Fock-Bogoliubov approach, to the properties of nuclei far from stability. The resulting two neutron drip lines and shell quenching are quite satisfactory. Finally, we apply the relativistic formulation to the properties of dense nuclear matter in anticipation of future application to the properties of neutron stars

  4. Nuclear collective vibrations in extended mean-field theory

    Energy Technology Data Exchange (ETDEWEB)

    Lacroix, D. [Lab. de Physique Corpusculaire/ ENSICAEN, 14 - Caen (France); Ayik, S. [Tennessee Technological Univ., Cookeville, TN (United States); Chomaz, Ph. [Grand Accelerateur National d' Ions Lourds (GANIL), 14 - Caen (France)

    2003-07-01

    The extended mean-field theory, which includes both the incoherent dissipation mechanism due to nucleon-nucleon collisions and the coherent dissipation mechanism due to coupling to low-lying surface vibrations, is briefly reviewed. Expressions of the strength functions for the collective excitations are presented in the small amplitude limit of this approach. This fully microscopic theory is applied by employing effective Skyrme forces to various giant resonance excitations at zero and finite temperature. The theory is able to describe the gross properties of giant resonance excitations, the fragmentation of the strength distributions as well as their fine structure. At finite temperature, the success and limitations of this extended mean-field description are discussed. (authors)

  5. Collective nuclear excitations with Skyrme-second random-phase approximation

    International Nuclear Information System (INIS)

    Gambacurta, D.; Catara, F.; Grasso, M.

    2010-01-01

    Second random-phase approximation (RPA) calculations with a Skyrme force are performed to describe both high- and low-lying excited states in 16 O. The coupling between one particle-one hole and two particle-two hole as well as that between two particle-two hole configurations among themselves are fully taken into account, and the residual interaction is never neglected; we do not resort therefore to a generally used approximate scheme where only the first kind of coupling is considered. The issue of the rearrangement terms in the matrix elements beyond the standard RPA will be considered in detail in a forthcoming paper. Two approximations are employed here for these rearrangement terms: they are either neglected or evaluated with the RPA procedure. As a general feature of second RPA results, a several-MeV shift of the strength distribution to lower energies is systematically found with respect to RPA distributions. A much more important fragmentation of the strength is also naturally provided by the second RPA owing to the huge number of two particle-two hole configurations. A better description of the excitation energies of the low-lying 0 + and 2 + states is obtained with the second RPA than with the RPA.

  6. Novel baryon resonances in the Skyrme model

    International Nuclear Information System (INIS)

    Hussain, F.; Sri Ram, M.S.

    1985-01-01

    We predict a novel family of baryons with or without the charm quantum number by quantizing the ''maximal solitons'' in the SU(4) Skyrme model. The baryon number B of these solitons can take any integer value. The low-lying states with B = 1 belong to 4( with spin (3/2), 20( with spin (1/2), (3/2), (5/2), or (7/2), and 20('' with spin (3/2), (5/2), or (9/2). The charm-zero states among them could correspond to some of the observed resonances in meson-baryon scattering between 1.5--2 GeV. The lowest among the dibaryon states is an SU(3) singlet contained in the 10( of SU(4) with spin 1, with mass in the range 2.5--3 GeV

  7. Toroidal Superheavy Nuclei in Skyrme-Hartree-Fock Approach

    International Nuclear Information System (INIS)

    Staszczak, A.; Wong, Cheuk-Yin

    2009-01-01

    Within the self-consistent constraint Skyrme-Hartree-Fock+BCS model (SHF+BCS), we found equilibrium toroidal nuclear density distributions in the region of superheavy elements. For nuclei with a sufficient oblate deformation (Q 20 < -200 b), it becomes energetically favorable to change the genus of nuclear surface from 0 to 1, i.e., to switch the shape from a biconcave disc to a torus. The energy of the toroidal (genus=1) SHF+BCS solution relative to the compact (genus=0) ground state energy is strongly dependent both on the atomic number Z and the mass number A. We discuss the region of Z and A where the toroidal SHF+BCS total energy begins to be a global minimum

  8. Few-baryon systems in the SU(2)-Skyrme model

    International Nuclear Information System (INIS)

    Nikolaev, V.A.; Tkachev, O.G.

    1989-01-01

    The classically stable solitons with baryon number 1, 2, 3, 4 have been investigated in the framework of the very general assumption about the form of the solutions for the Skyrme model equations. Some of the solitons have the toroidal structure and some of them are more complicated. The effective quantum-mechanical Hamiltonian and its spectrum are obtained by using the collective variable method. All the states with quantum numbers of light nuclei have the binding energy greater than the experimental one. Some of the calculated states containing antibaryons as substructure units should appear in the experiments with stopped antibaryons as compound nuclear states. 16 refs.; 7 figs.; 5 tabs

  9. Sum rules, asymptotic behaviour and (multi)baryon states in the Skyrme model

    International Nuclear Information System (INIS)

    Mignaco, J.A.; Wulck, S.

    1990-01-01

    We obtain sum roles that should be satisfied by the solutions of the Euler-Lagrange equation for the chiral angle in the Skyrme model in the hedgehog representation. The sum rules allow to determine the existence of solutions with integer baryon number for well determined values of a relevant dimensionless parameter Φ only. For all other values, there are no solutions with integer baryon number, in particular for the pure non-linear sigma model. (author)

  10. Effective interactions and mean field theory: from nuclear matter to nuclei

    International Nuclear Information System (INIS)

    Cochet, B.

    2005-07-01

    The Skyrme force is a zero-range force that allows the construction of the mean field inside the nucleus in a simple way. Skyrme forces are reasonably predictive but some features of the infinite nuclear matter or the mass of heavy nuclei are not well computed. The aim of this work is to propose an expanded parametrization of the Skyrme force in order to improve its predictive power. The first part is dedicated to the construction of the expansion of the parametrization. We recall how the effective forces are linked to the nucleon-nucleon interaction then we show the limits of the standard Skyrme forces and we propose a relatively natural improvements based on the integration of spin and isospin instabilities. The second part deals with the validation of the model, first by describing infinite nuclear matter then by studying β-balanced nuclear matter which has enabled us to reproduce some features of neutron stars like mass and radius. The computation of properties of nuclei like binding energy, mass, radii depends strongly on the adjustment procedure. (A.C.)

  11. Densities, form factors, transitions and multipole moments in the s-d shell, with the Skyrme force

    International Nuclear Information System (INIS)

    Oliveira, D.R. de; Mizrahi, S.S.

    1977-09-01

    The nuclear densities, radii, multipole moments, form-factors and transition probabilities obtained for the A = 4n type of nuclei in the s-d shell are reported, using the Hartree-Fock wave functions calculated with the Skyrme force. Experimental data and theoretical values derived by others are shown for comparison [pt

  12. Extended sequence diagram for human system interaction

    International Nuclear Information System (INIS)

    Hwang, Jong Rok; Choi, Sun Woo; Ko, Hee Ran; Kim, Jong Hyun

    2012-01-01

    Unified Modeling Language (UML) is a modeling language in the field of object oriented software engineering. The sequence diagram is a kind of interaction diagram that shows how processes operate with one another and in what order. It is a construct of a message sequence chart. It depicts the objects and classes involved in the scenario and the sequence of messages exchanged between the objects needed to carry out the functionality of the scenario. This paper proposes the Extended Sequence Diagram (ESD), which is capable of depicting human system interaction for nuclear power plants, as well as cognitive process of operators analysis. In the conventional sequence diagram, there is a limit to only identify the activities of human and systems interactions. The ESD is extended to describe operators' cognitive process in more detail. The ESD is expected to be used as a task analysis method for describing human system interaction. The ESD can also present key steps causing abnormal operations or failures and diverse human errors based on cognitive condition

  13. Exploration of (super-)heavy elements using the Skyrme-Hartree-Fock model

    International Nuclear Information System (INIS)

    Erler, Jochen

    2011-01-01

    Motivated by the steadily increasing number of known nuclei and nuclear properties, theories of nuclear structure are presently a field of intense research. This work concentrates on the self-consistent description of nuclei in terms of the Skyrme-Hartree-Fock (SHF) approach. The extrapolation of nuclear shell structure to the region of super-heavy elements (SHE) using the SHF model, the dependence on different parameterization and the influence of collective correlation will be studied. The general scope of this work are large scale calculation for a global survey of properties of SHE like binding energies, separation energies and decay characteristics and lifetimes. These calculations were done in a collaboration with the theory group of the GSI in Darmstadt and have the aim to develop a database of lifetimes and reaction rates for α, β-decay and spontaneous fission in a very wide range with proton numbers 86 ≤ Z ≤ 120 and neutron numbers up to N ∼ 260 relevant for the astrophysical r-process. The results of this study for example predictions of a possible islands of very stable nuclei and information of favored decay mode for each nuclei are also applicable in the recent experimental synthesis of exotic SHE. For these calculation a framework to calculate β-decay half-lives within the SHF model has been developed and the existing axial SHF code has been extended to compute β-transition matrix elements and so to provide an estimation of half-lives. (orig.)

  14. Exploration of (super-)heavy elements using the Skyrme-Hartree-Fock model

    Energy Technology Data Exchange (ETDEWEB)

    Erler, Jochen

    2011-01-31

    Motivated by the steadily increasing number of known nuclei and nuclear properties, theories of nuclear structure are presently a field of intense research. This work concentrates on the self-consistent description of nuclei in terms of the Skyrme-Hartree-Fock (SHF) approach. The extrapolation of nuclear shell structure to the region of super-heavy elements (SHE) using the SHF model, the dependence on different parameterization and the influence of collective correlation will be studied. The general scope of this work are large scale calculation for a global survey of properties of SHE like binding energies, separation energies and decay characteristics and lifetimes. These calculations were done in a collaboration with the theory group of the GSI in Darmstadt and have the aim to develop a database of lifetimes and reaction rates for {alpha}, {beta}-decay and spontaneous fission in a very wide range with proton numbers 86 {<=} Z {<=} 120 and neutron numbers up to N {approx} 260 relevant for the astrophysical r-process. The results of this study for example predictions of a possible islands of very stable nuclei and information of favored decay mode for each nuclei are also applicable in the recent experimental synthesis of exotic SHE. For these calculation a framework to calculate {beta}-decay half-lives within the SHF model has been developed and the existing axial SHF code has been extended to compute {beta}-transition matrix elements and so to provide an estimation of half-lives. (orig.)

  15. Ground-state properties of axially deformed Sr isotopes in Skyrme-Hartree-Fock-Bogolyubov method

    International Nuclear Information System (INIS)

    Yilmaz, A.H.; Bayram, T.; Demirci, M.; Engin, B.; Bayram, T.

    2010-01-01

    Binding energies, the mean-square nuclear radii, neutron radii, quadrupole moments and deformation parameters to axially deformed Strontium isotopes were evaluated using Hartree-Fock-Bogolyubov method. Shape coexistence was also discussed. The results were compared with experimental data and some estimates obtained within some nuclear models. The calculations were performed for SIy4 set of Skyrme forces and for wide range of the neutron numbers of Sr isotopes

  16. Structure of the lowest excited 0/sup +/ rotational band of /sup 16/O

    Energy Technology Data Exchange (ETDEWEB)

    Ikebata, Yasuhiko; Suekane, Shota

    1983-10-01

    The structure of the lowest excited 0/sup +/ rotational band is investigated by using the extended Nilsson model wave functions with angular momentum projection and the B1 interaction, two-body LS-force of the Skyrme type and the Coulomb interaction. The results obtained show good agreement with energy interval in this band.

  17. Hamiltonian formalism of the Skyrme model with ω mesons

    International Nuclear Information System (INIS)

    Adami, C.

    1988-07-01

    We have in this thesis presented the semiclassical quantum theory of the Skyrme model with coupling to an isoscalar gauge field. For the quantization of the classical theory we used the Hamiltonian formalism. Furthermore we have studied the consequences of the canonical treatment, whereby we found the explicite πN vertex of the theory, as well as presented the correct treatment of the spatial contribution of the ω field. Furthermore we indicated that a consistent treatment requires the summation of all tree diagrams of the theory with internal π and ω lines. Such a calculation contains the explicite construction of solutions for the coupled πω field equations. A further result of this thesis concerns the application of the linear πN vertex to the calculation of the Δ decay width via the process Δ→Nπ. (orig./HSI) [de

  18. Two-photon contributions to the elastic electron-nucleon scattering in the Skyrme model; Zwei-Photon-Beitraege zur elastischen Elektron-Nukleon-Streuung im Skyrme-Modell

    Energy Technology Data Exchange (ETDEWEB)

    Kuhn, Markus

    2008-09-23

    The electromagnetic form factors are crucial for our understanding of the inner structure of the proton. Recently it has become feasible to measure them by the use of polarisation transfer techniques in addition to the traditional Rosenbluth separation method. Thereby emerged an incompatibility of the results obtained by these two different experimental methods. It is commonly assumed that the discrepance is induced by higher order corrections to the cross section, especially through two-photon exchange processes. Unfortunately these processes cannot be calculated in a model independent manner because off-shell photon nucleon vertices arise. Effective chiral lagrangians contain already local two-photon couplings and therefore seem exceptionally well suited to study the anomaly contribution to the two-photon exchange. These couplings give two-photon exchange contributions that can be understood as the coupling of the nucleon to pions, decaying into two virtual photons. A particular contribution emerges from the chiral anomaly of QCD, that describes the two-photon decay of the neutral pion. The most important goal of this work is the calculation of the contribution arising from the anomaly to the elastic electron-proton scattering. The results are expected to be widely model independent since the anomaly directly reflects a QCD property. Based on the Skyrme model the protons are realized as soliton solutions in effective chiral theories. The next to leading order contribution to the cross section is given by the interference between the one- and two-photon exchange. The latter contains an ultraviolet divergence, which is renormalized by a local effective counterterm. This counterterm contributes to the width of the neutral pion decay which determines the finite part of the counterterm coefficient. The affect of the anomaly to the Rosenbluth separation of the electromagnetic form factors as well as the discrepance regarding the polarization measurements is extensively

  19. Study of superdeformation at zero spin with Skyrme-Hartree-Fock method

    Energy Technology Data Exchange (ETDEWEB)

    Takahara, S; Tajima, N; Onishi, N [Tokyo Univ. (Japan)

    1998-03-01

    Superdeformed (SD) bands have been studied extensively both experimentally and theoretically in the last decade. Since the first observation in {sup 152}Dy in 1986, SD bands have been found in four mass regions, i.e., A {approx} 80, 130, 150 and 190. While these SD bands have been observed only at high spins so far, they may also be present at zero spin like fission isomers in actinide nuclei: The familiar generic argument on the strong shell effect at axis ratio 2:1 does not assume rotations. If non-fissile SD isomers exist at zero spin, they may be utilized to develop new experimental methods to study exotic states, in a similar manner as short-lived high-spin isomers are planned to be utilized as projectiles of fusion reactions in order to populate very high-spin near-yrast states. They will also be useful to test theoretical models whether the models can describe correctly the large deformations of rare-earth nuclei without further complications due to rotations. In this report, we employ the Skyrme-Hartree-Fock method to study the SD states at zero spin. First, we compare various Skyrme force parameter sets to test whether they can reproduce the extrapolated excitation energy of the SD band head of {sup 194}Hg. Second, we systematically search large-deformation solutions with the SkM{sup *} force. The feature of our calculations is that the single-particle wavefunctions are expressed in a three-dimensional-Cartesian-mesh representation. This representation enables one to obtain solutions of various shapes (including SD) without preparing a basis specific to each shape. Solving the mean-field equations in this representation requires, however, a large amount of computation which can be accomplished only with present supercomputers. (author)

  20. Response functions for infinite fermion systems with velocity dependent interactions

    International Nuclear Information System (INIS)

    Garcia-Recio, C.; Salcedo, L.L.; Navarro, J.; Nguyen Van Giai

    1991-01-01

    Response functions of infinite Fermi systems are studied in the framework of the self-consistent Random Phase Approximation. Starting from an effective interaction with velocity and density dependence, or equivalently from a local energy density functional, algebraic expressions for the RPA response function are derived. Simple formulae for the energy-weighted and polarizability sum rules are obtained. The method is illustrated by applications to nuclear matter and liquid 3 He. In nuclear matter, it is shown that existing Skyrme interactions give spin-isospin response functions close to those calculated with finite range interactions. The different renormalization of longitudinal and transverse Coulomb sum rules in nuclear matter is discussed. In 3 He, the low-lying collective spin oscillation can be well described in a wide range of momenta with a Skyrme-type interaction if the relevant Landau parameters are fitted. For the high-lying density oscillation, the introduction of a finite range term in the energy functional improves considerably the agreement with the data. (author) 54 refs., 19 figs., 4 tabs

  1. Hartree-Fock calculations for strongly deformed and highly excited nuclei using the Skyrme force

    International Nuclear Information System (INIS)

    Zint, P.G.

    1975-01-01

    It has been shown that in CHF-calculations the Skyrme-force is usefull to describe strongly deformed nuclei with even proton and neutron number till separation. Thereby the eigenfunctions of the two-centre Hamiltonian form an adequate basis. With this procedure, we obtain the correct deformation of the 32 S-system. Induding the spurious energy of relative motion between the 16 O-fragments, the energy curve is a good approximation for the real potential, extracted form scattering experiments. (orig./WL) [de

  2. Systematic study of even-even nuclei with Hartree-Fock+BCS method using Skyrme SIII force

    Energy Technology Data Exchange (ETDEWEB)

    Tajima, Naoki; Takahara, Satoshi; Onishi, Naoki [Tokyo Univ. (Japan). Coll. of Arts and Sciences

    1997-03-01

    We have applied the Hartree-Fock+BCS method with Skyrme SIII force formulated in a three-dimensional Cartesian-mesh representation to even-even nuclei with 2 {<=} Z {<=} 114. We discuss the results concerning the atomic masses, the quadrupole (m=0, 2) and hexadecapole (m=0, 2, 4) deformations, the skin thicknesses, and the halo radii. We also discuss the energy difference between oblate and prolate solutions and the shape difference between protons and neutrons. (author)

  3. Hartree-Fock+BCS approach to unstable nuclei with the Skyrme force

    International Nuclear Information System (INIS)

    Tajima, Naoki

    2001-01-01

    We reanalyze the results of our extensive Hartree-Fock+BCS calculation from new points of view paying attention to the properties of unstable nuclei. The calculation has been done with the Skyrme SIII force for the ground and shape isomeric states of 1029 even-even nuclei ranging 2≤Z≤114. We also discuss the advantages of the employed three-dimensional Cartesian-mesh representation, especially on its remarkably high precision with apparently coarse meshes when applied to atomic nuclei. In Appendices we give the coefficients of finite-point numerical differentiation and integration formulae suitable for Cartesian mesh representation and elucidate the features of each formula and the differences from a method based on the Fourier transformation. (author)

  4. Topological phase transitions in the gauged BPS baby Skyrme model

    International Nuclear Information System (INIS)

    Adam, C.; Naya, C.; Romanczukiewicz, T.; Sanchez-Guillen, J.; Wereszczynski, A.

    2015-01-01

    We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P,H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V=V(P,H) at zero temperature, where V is the “volume”, i.e., area of the solitons.

  5. Topological phase transitions in the gauged BPS baby Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Adam, C.; Naya, C. [Departamento de Física de Partículas, Universidad de Santiago de Compostela andInstituto Galego de Física de Altas Enerxias (IGFAE), Santiago de Compostela, E-15782 (Spain); Romanczukiewicz, T. [Institute of Physics, Jagiellonian University, Lojasiecza 11, Kraków, 30-348 (Poland); Sanchez-Guillen, J. [Departamento de Física de Partículas, Universidad de Santiago de Compostela andInstituto Galego de Física de Altas Enerxias (IGFAE), Santiago de Compostela, E-15782 (Spain); Wereszczynski, A. [Institute of Physics, Jagiellonian University, Lojasiecza 11, Kraków, 30-348 (Poland)

    2015-05-29

    We demonstrate that the gauged BPS baby Skyrme model with a double vacuum potential allows for phase transitions from a non-solitonic to a solitonic phase, where the latter corresponds to a ferromagnetic liquid. Such a transition can be generated by increasing the external pressure P or by turning on an external magnetic field H. As a consequence, the topological phase where gauged BPS baby skyrmions exist, is a higher density phase. For smaller densities, obtained for smaller values of P and H, a phase without solitons is reached. We find the critical line in the P,H parameter space. Furthermore, in the soliton phase, we find the equation of state for the baby skyrmion matter V=V(P,H) at zero temperature, where V is the “volume”, i.e., area of the solitons.

  6. Skyrme-Hartree-Fock in the realm of nuclear mean field models

    International Nuclear Information System (INIS)

    Reinhard, P.G.; Reiss, C.; Maruhn, J.; Bender, M.; Buervenich, T.; Greiner, W.

    2000-01-01

    We discuss and compare two brands of nuclear mean field models, the Skyrme-Hartree-Fock scheme (SHF) and the relativistic mean field model (RMF). Similarities and differences are worked out on a formal basis and with respect to the models performance in describing nuclear data. The bulk observables of stable nuclei are all described very well. Differences come up when extrapolating to exotic nuclei. The typically larger asymmetry energy in RMF leads to a larger neutron skin. Superheavy nuclei are found to be very sensitive on the single particle levels particularly on the spin orbit splitting. Ground state correlations from collective surface vibrations can have a significant effect on difference observables, as two-nucleon separation energy and two-nucleon shell gap. (author)

  7. Extended Lipkin-type models with residual proton-neutron interaction

    International Nuclear Information System (INIS)

    Stoica, S.

    1999-01-01

    Extended Lipkin-Meshkov-Glick (LMG) models for testing the Random Phase Approximation (RPA) and proton-neutron Random Phase Approximation (pnRPA) methods are developed taking into account explicitly the proton and neutron degrees of freedom. First, an extended LMG model for testing RPA is developed. The proton and neutron Hamiltonians are taken to be of the LMG form and, in addition, a residual proton-neutron interaction is included. Exact solutions in a SU(2) x SU(2) basis as well as the RPA solutions for the energy spectrum of the model Hamiltonian are obtained. Then, the behaviour of the first collective excited state is studied as a function of the interaction parameters of the model using the exact and RPA methods. Secondly, an extended LMG model for testing pnRPA method is developed. Besides the proton and neutron single particle terms two types of residual proton-neutron interactions, one simulating a particle-particle and the other a particle-hole interaction, are included in the model Hamiltonian, so that the model is exactly solvable in an isospin SU(2) x SU(2) basis. The exact and pnRPA spectra of the model Hamiltonian are calculated as a function of the model parameters and compared to each other. Furthermore, charge-changing operators simulating a nuclear beta decay and their action on eigenfunctions of the model Hamiltonian are defined, and transition amplitude of them are calculated using exact and pnRPA wave functions. The best agreement between the exact RPA-type calculations for spectra and transitions, was obtained when the correlated RPA ground state, instead of the uncorrelated HF ground state was employed and when both kinds of residual interactions (i.e. like- and unlike-particle two-body interactions) are included in the model Hamiltonians. (author)

  8. The low-energy theorem of pion photoproduction using the Skyrme model

    International Nuclear Information System (INIS)

    Ikehashi, T.; Ohta, K.

    1995-01-01

    We reassess the validity of the current-algebra based low-energy theorem of pion photoproduction on the nucleon using the Skyrme model. We find that one of the off-shell electromagnetic form factors of the nucleon exhibits infrared divergence in the chiral limit. This contribution introduces an additional term to the threshold amplitude predicted by the low-energy theorem. The emergence of the additional term indicates an unavoidable necessity of off-shell form factors in deriving the low-energy theorem. In the case of neutral pion production, the new contribution to the threshold amplitude is found to be comparable in magnitude to the low-energy theorem's prediction and has the opposite sign. In the charged pion production channels, the correction to the theorem is shown to be relatively small. (orig.)

  9. Effective interactions

    International Nuclear Information System (INIS)

    Elliott, J.P.

    1981-01-01

    This chapter attempts to describe and compare some of the more important nucleon-nucleon interactions that have been used in nuclear structure calculations, and to relate them where possible to the real nucleon-nucleon interaction. Explains that different interactions have been used depending on whether one is fitting to total binding energies and densities with a Hartree Fock (HF) calculation or fitting to spectra and spectroscopic data in a shell model calculation. Examines both types of calculation after two preliminary sections concerned with notation and with the philosophy underlying the use of model spaces and effective interactions. Discusses Skyrme interactions, finite range interactions, small model space, large model space, and the Sussex potential matrix elements. Focuses on the more empirical approaches in which a simple form is chosen for the effective interaction in a given model space and the parameters are deduced from fitting many-body data

  10. Time dependent density matrix theory and effective interaction

    Energy Technology Data Exchange (ETDEWEB)

    Tohyama, Mitsuru [Kyorin Univ., Mitaka, Tokyo (Japan). School of Medicine

    1998-07-01

    A correlated ground state of {sup 16}O and an E2 giant resonance built on it are calculated using an extended version of the time-dependent Hartree-Fock theory called the time-dependent density-matrix theory (TDDM). The Skyrme force is used in the calculation of both a mean field and two-body correlations. It is found that TDDM gives reasonable ground-state correlations and a large spreading width of the E2 giant resonance when single-particle states in the continuum are treated appropriately. (author)

  11. Cubic interaction in extended theories of massless higher-spin fields

    Energy Technology Data Exchange (ETDEWEB)

    Fradkin, E S; Vasiliev, M A

    1987-08-17

    A cubic interaction of all massless higher-spin fields with s greater than or equal to 1 is constructed, based on the extended higher-spin superalgebras suggested previously by one of us (M.V.). This interaction incorporates gravitational and Yang-Mills interactions of massless higher-spin fields, which turn out to be consistent in the cubic order. An essential novel feature of the gravitational higher-spin interaction is its non-analyticity in the cosmological constant. An explicit form is found for deformed higher-spin gauge transformations leaving the action invariant.

  12. Effective lagrangian for strong interactions

    International Nuclear Information System (INIS)

    Jain, P.

    1988-01-01

    We attempt to construct a realistic phenomenological Lagrangian in order to describe strong interactions. This is in general a very complicated problem and we shall explore its various aspects. We first include the vector mesons by writing down the most general chiral invariant terms proportional to the Levi-Civita symbol ε μναβ . These terms involve three unknown coefficients, which are calculated by using the experimental results of strong interaction processes. We then calculate the static nucleon properties by finding the solitonic excitations of this model. The results turn out to be, as is also the case for most other vector-pseudoscalar Lagrangians, better than the Skyrme model but are still somewhat different from the experiments. Another aspect that we shall study is the incorporation of scale anomaly of QCD into the Skyrme model. We thus introduce a scalar glueball in our Lagrangian. Here we find an interesting result that the effective glue field dynamically forms a bag for the soliton. Depending on the values of the parameters, we get either a deep bag or a shallow bag. However by including the scalar meson, we find that to get realistic scalar sector we must have the shallow bag. Finally we show some intriguing connections between the chiral quark model, in which the nucleon is described as a solitonic excitation, and the ordinary potential binding quark model

  13. Combining the modified Skyrme-like model and the local density approximation to determine the symmetry energy of nuclear matter

    Science.gov (United States)

    Liu, Jian; Ren, Zhongzhou; Xu, Chang

    2018-07-01

    Combining the modified Skyrme-like model and the local density approximation model, the slope parameter L of symmetry energy is extracted from the properties of finite nuclei with an improved iterative method. The calculations of the iterative method are performed within the framework of the spherical symmetry. By choosing 200 neutron rich nuclei on 25 isotopic chains as candidates, the slope parameter is constrained to be 50 MeV nuclear matter can be obtained together.

  14. Towards a Game-Chatbot: Extending the Interaction in Serious Games

    NARCIS (Netherlands)

    Van Rosmalen, Peter; Eikelboom, Johan; Bloemers, Erik; Van Winzum, Kees; Spronck, Pieter

    2012-01-01

    Van Rosmalen, P., Eikelboom, J., Bloemers, E., Van Winzum, K., & Spronck, P. (2012, 4-5 October). Towards a Game-Chatbot: Extending the Interaction in Serious Games. Presentation at the 6th European Conference on Games Based Learning, Cork, Ireland.

  15. Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis. (VII) HFODD (v2.49t): A new version of the program

    International Nuclear Information System (INIS)

    Schunck, Nicolas F.; McDonnell, J.; Sheikh, J.A.; Staszczak, A.; Stoitsov, Mario; Dobaczewski, J.; Toivanen, P.

    2012-01-01

    We describe the new version (v2.49t) of the code HFODD which solves the nuclear Skyrme Hartree-Fock (HF) or Skyrme Hartree-Fock-Bogolyubov (HFB) problem by using the Cartesian deformed harmonic-oscillator basis. In the new version, we have implemented the following physics features: (i) the isospin mixing and projection, (ii) the finite temperature formalism for the HFB and HF+BCS methods, (iii) the Lipkin translational energy correction method, (iv) the calculation of the shell correction. A number of specific numerical methods have also been implemented in order to deal with large-scale multi-constraint calculations and hardware limitations: (i) the two-basis method for the HFB method, (ii) the Augmented Lagrangian Method (ALM) for multi-constraint calculations, (iii) the linear constraint method based on the approximation of the RPA matrix for multi-constraint calculations, (iv) an interface with the axial and parity-conserving Skyrme-HFB code HFBTHO, (v) the mixing of the HF or HFB matrix elements instead of the HF fields. Special care has been paid to using the code on massively parallel leadership class computers. For this purpose, the following features are now available with this version: (i) the Message Passing Interface (MPI) framework, (ii) scalable input data routines, (iii) multi-threading via OpenMP pragmas, (iv) parallel diagonalization of the HFB matrix in the simplex breaking case using the ScaLAPACK library. Finally, several little significant errors of the previous published version were corrected.

  16. Isolate extended state in the DNA molecular transistor with surface interaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Le, E-mail: wang_le917@gs.zzu.edu.cn; Qin, Zhi-Jie

    2016-02-01

    The field effect characteristic of a DNA molecular device is investigated in a tight binding model with binary disorder and side site correlation. Using the transfer-matrix method and Landauer–Büttiker theory, we find that the system has isolated extended state that is irrespective of the DNA sequence and can be modulated by the gate voltage. When the gate voltage reaches some proper value, the isolated extended state appears at the Fermi level of the system and the long range charge transport is greatly enhanced. We attribute this phenomenon to the combination of the external field, the surface interaction, and the intrinsic disorder of DNA. The result is a generic feature of the nanowire with binary disorder and surface interaction.

  17. The Extended Role of the Communication Partner in AAC interaction

    DEFF Research Database (Denmark)

    Pilesjö, Maja Sigurd

    in the field.FindingsThe findings demonstrate that the speaking co-participant is sensitive to the actions of the person with impairments’ display of attention and actions within the local ‘contextual configuration’ (Goodwin, 2000). Due to differing resources, the relevant options for the next move......The Extended Role of the Communication Partner in AAC interactionIntroductionThe speaking communication partner in AAC interaction has a unique role (Blackstone et al., 2007). Interactional research in the field of AAC has, for instance, found that the interaction is characterized by a great deal......-analyses on naturally occurring social interaction, this session will demonstrate tasks that the speaking communication partner can undertake in AAC- interaction.Method and dataThe method of Conversation analysis (CA) is used in the current study (Higginbotham & Engelke, 2013). The general aim of CA is at getting...

  18. Towards a Game-Chatbot: Extending the Interaction in Serious Games

    NARCIS (Netherlands)

    Van Rosmalen, Peter; Eikelboom, Johan; Bloemers, Erik; Van Winzum, Kees; Spronck, Pieter

    2012-01-01

    Van Rosmalen, P., Eikelboom, J., Bloemers, E., Van Winzum, K., & Spronck, P. (2012). Towards a Game-Chatbot: Extending the Interaction in Serious Games. In P. Felicia (Ed.), Proceedings of the 6th European Conference on Games Based Learning (pp. 525-532). October, 4-5, 2012, Cork, Ireland. Academic

  19. Solution of the Skyrme-Hartree-Fock-Bogolyubov equations in the Cartesian deformed harmonic-oscillator basis.. (VII) HFODD (v2.49t): A new version of the program

    Science.gov (United States)

    Schunck, N.; Dobaczewski, J.; McDonnell, J.; Satuła, W.; Sheikh, J. A.; Staszczak, A.; Stoitsov, M.; Toivanen, P.

    2012-01-01

    format: tar.gz Programming language: FORTRAN-90 Computer: Intel Pentium-III, Intel Xeon, AMD-Athlon, AMD-Opteron, Cray XT4, Cray XT5 Operating system: UNIX, LINUX, Windows XP Has the code been vectorized or parallelized?: Yes, parallelized using MPI RAM: 10 Mwords Word size: The code is written in single-precision for the use on a 64-bit processor. The compiler option -r8 or +autodblpad (or equivalent) has to be used to promote all real and complex single-precision floating-point items to double precision when the code is used on a 32-bit machine. Classification: 17.22 Catalogue identifier of previous version: ADFL_v2_2 Journal reference of previous version: Comput. Phys. Comm. 180 (2009) 2361 External routines: The user must have access to the NAGLIB subroutine f02axe, or LAPACK subroutines zhpev, zhpevx, zheevr, or zheevd, which diagonalize complex hermitian matrices, the LAPACK subroutines dgetri and dgetrf which invert arbitrary real matrices, the LAPACK subroutines dsyevd, dsytrf and dsytri which compute eigenvalues and eigenfunctions of real symmetric matrices, the LINPACK subroutines zgedi and zgeco, which invert arbitrary complex matrices and calculate determinants, the BLAS routines dcopy, dscal, dgeem and dgemv for double-precision linear algebra and zcopy, zdscal, zgeem and zgemv for complex linear algebra, or provide another set of subroutines that can perform such tasks. The BLAS and LAPACK subroutines can be obtained from the Netlib Repository at the University of Tennessee, Knoxville: http://netlib2.cs.utk.edu/. Does the new version supersede the previous version?: Yes Nature of problem: The nuclear mean field and an analysis of its symmetries in realistic cases are the main ingredients of a description of nuclear states. Within the Local Density Approximation, or for a zero-range velocity-dependent Skyrme interaction, the nuclear mean field is local and velocity dependent. The locality allows for an effective and fast solution of the self

  20. Towards a Game-Chatbot: Extending the Interaction in Serious Games

    OpenAIRE

    Van Rosmalen, Peter; Eikelboom, Johan; Bloemers, Erik; Van Winzum, Kees; Spronck, Pieter

    2012-01-01

    Van Rosmalen, P., Eikelboom, J., Bloemers, E., Van Winzum, K., & Spronck, P. (2012). Towards a Game-Chatbot: Extending the Interaction in Serious Games. In P. Felicia (Ed.), Proceedings of the 6th European Conference on Games Based Learning (pp. 525-532). October, 4-5, 2012, Cork, Ireland. Academic Publishing International Limited, Reading, UK.

  1. Liquid drop parameters for hot nuclei

    International Nuclear Information System (INIS)

    Guet, C.; Strumberger, E.; Brack, M.

    1988-01-01

    Using the semiclassical extended Thomas-FERMI (ETF) density variational method, we derived selfconsistently the liquid drop model (LDM) coefficients for the free energy of hot nuclear systems from a realistic effective interaction (Skyrme SkM*). We expand the temperature (T) dependence of these coefficients up to the second order in T and test their application to the calculation of the fission barriers of the nuclei 208 Pb and 240 Pu

  2. A density variational approach to nuclear giant resonances at zero and finite temperature

    International Nuclear Information System (INIS)

    Gleissl, P.; Brack, M.; Quentin, P.; Meyer, J.

    1989-02-01

    We present a density functional approach to the description of nuclear giant resonances (GR), using Skyrme type effective interactions. We exploit hereby the theorems of Thouless and others, relating RPA sum rules to static (constrained) Hartree-Fock expectation values. The latter are calculated both microscopically and, where shell effects are small enough to allow it, semiclassically by a density variational method employing the gradient-expanded density functionals of the extended Thomas-Fermi model. We obtain an excellent overall description of both systematics and detailed isotopic dependence of GR energies, in particular with the Skyrme force SkM. For the breathing modes (isoscalar and isovector giant monopole modes), and to some extent also for the isovector dipole mode, the A-dependence of the experimental peak energies is better described by coupling two different modes (corresponding to two different excitation operators) of the same spin and parity and evaluating the eigenmodes of the coupled system. Our calculations are also extended to highly excited nuclei (without angular momentum) and the temperature dependence of the various GR energies is discussed

  3. Extending Face-to-Face Interactions: Understanding and Developing an Online Teacher and Family Community

    Science.gov (United States)

    Zhang, Chun; Du, Jianxia; Sun, Li; Ding, Yi

    2018-01-01

    Technology has been quickly changing human interactions, traditional practices, and almost every aspect of our lives. It is important to maintain effective face-to-face communication and interactions between teachers and families. Nonetheless, technology and its tools can also extend and enhance family-teacher relationships and partnerships. This…

  4. The impact of the tensor interaction on the β-delayed neutron emission of the neutron-rich Ni isotopes

    Directory of Open Access Journals (Sweden)

    Sushenok E.O.

    2018-01-01

    Full Text Available The neutron emission of the β-decay of 74;76;78;80Ni are studied within the quasiparticle random phase approximation with the Skyrme interaction. The coupling between one- and two-phonon terms in the wave functions of the low-energy 1+ states of the daughter nuclei is taken into account. It is shown that the strength decrease of the neutronproton tensor interaction leads to the increase of the half-life and the neutron-emission probability.

  5. The contribution of Skyrme Hartree-Fock calculations to the understanding of the shell model

    International Nuclear Information System (INIS)

    Zamick, L.

    1984-01-01

    The authors present a detailed comparison of Skyrme Hartree-Fock and the shell model. The H-F calculations are sensitive to the parameters that are chosen. The H-F results justify the use of effective charges in restricted model space calculations by showing that the core contribution can be large. Further, the H-F results roughly justify the use of a constant E2 effective charge, but seem to yield nucleus dependent E4 effective charges. The H-F can yield results for E6 and higher multipoles, which would be zero in s-d model space calculations. On the other side of the coin in H-F the authors can easily consider only the lowest rotational band, whereas in the shell model one can calculate the energies and properties of many more states. In the comparison some apparent problems remain, in particular E4 transitions in the upper half of the s-d shell

  6. Quantitative analysis of the fusion cross sections using different microscopic nucleus-nucleus interactions

    Energy Technology Data Exchange (ETDEWEB)

    Adel, A. [Cairo University, Physics Department, Faculty of Science, Giza (Egypt); Majmaah University, Physics Department, College of Science, Al-Zulfi (Saudi Arabia); Alharbi, T. [Majmaah University, Physics Department, College of Science, Al-Zulfi (Saudi Arabia)

    2017-01-15

    The fusion cross sections for reactions involving medium and heavy nucleus-nucleus systems are investigated near and above the Coulomb barrier using the one-dimensional barrier penetration model. The microscopic nuclear interaction potential is computed by four methods, namely: the double-folding model based on a realistic density-dependent M3Y NN interaction with a finite-range exchange part, the Skyrme energy density functional in the semiclassical extended Thomas-Fermi approximation, the generalized Proximity potential, and the Akyuez-Winther interaction. The comparison between the calculated and the measured values of the fusion excitation functions indicates that the calculations of the DFM give quite satisfactory agreement with the experimental data, being much better than the other methods. New parameterized forms for the fusion barrier heights and positions are presented. Furthermore, the effects of deformation and orientation degrees of freedom on the distribution of the Coulomb barrier characteristics as well as the fusion cross sections are studied for the reactions {sup 16}O + {sup 70}Ge and {sup 28}Si + {sup 100}Mo. The calculated values of the total fusion cross sections are compared with coupled channel calculations using the code CCFULL and compared with the experimental data. Our results reveal that the inclusion of deformations and orientation degrees of freedom improves the comparison with the experimental data. (orig.)

  7. Extended functions of the database machine FREND for interactive systems

    International Nuclear Information System (INIS)

    Hikita, S.; Kawakami, S.; Sano, K.

    1984-01-01

    Well-designed visual interfaces encourage non-expert users to use relational database systems. In those systems such as office automation systems or engineering database systems, non-expert users interactively access to database from visual terminals. Some users may want to occupy database or other users may share database according to various situations. Because, those jobs need a lot of time to be completed, concurrency control must be well designed to enhance the concurrency. The extended method of concurrency control of FREND is presented in this paper. The authors assume that systems are composed of workstations, a local area network and the database machine FREND. This paper also stresses that those workstations and FREND must cooperate to complete concurrency control for interactive applications

  8. Dynamical theory of hadron interactions based upon extended particle picture, 2

    International Nuclear Information System (INIS)

    Hara, Osamu

    1977-01-01

    The interaction of hadron is discussed on the basis of an extended particle model. We assume that the interaction between hadrons is due to the coupling between currents carried by excitons excited in the particles, which is mediated by some intermediate field. This picture enables us to write down all hadron interactions once this original interaction between excitons is given -- thus leading to a more unified and a dynamical understanding of the hadron interactions. As examples π-π, anti K-N and π-N interactions are discussed. As far as the comparison is possible, the resulting meson-meson interactions and the meson-baryon interactions are in agreement with those obtained by SU 6 or its relativistic generalization. But a great advantage of our model is that it gives furthermore new relations between these meson-meson interactions and meson-baryon interactions because of its unified structure. For example, we find that in our model the coupling constant for the rho ππ interaction g sub(rhoππ) is related to the (pseudo-scalar) π-N coupling constant g by g sub(rhoππ)sup(2)/4π = (6/5) 2 (m sub(rho) m sub(π)/M 2 )(G 2 /4π), where m sub(rho), m sub(π) and M denote respectively the mass for rho, π and the nucleon. This relation is satisfied very well experimentally. (auth.)

  9. Application of foam-extend on turbulent fluid-structure interaction

    Science.gov (United States)

    Rege, K.; Hjertager, B. H.

    2017-12-01

    Turbulent flow around flexible structures is likely to induce structural vibrations which may eventually lead to fatigue failure. In order to assess the fatigue life of these structures, it is necessary to take the action of the flow on the structure into account, but also the influence of the vibrating structure on the fluid flow. This is achieved by performing fluid-structure interaction (FSI) simulations. In this work, we have investigated the capability of a FSI toolkit for the finite volume computational fluid dynamics software foam-extend to simulate turbulence-induced vibrations of a flexible structure. A large-eddy simulation (LES) turbulence model has been implemented to a basic FSI problem of a flexible wall which is placed in a confined, turbulent flow. This problem was simulated for 2.32 seconds. This short simulation required over 200 computation hours, using 20 processor cores. Thereby, it has been shown that the simulation of FSI with LES is possible, but also computationally demanding. In order to make turbulent FSI simulations with foam-extend more applicable, more sophisticated turbulence models and/or faster FSI iteration schemes should be applied.

  10. Baryon-Baryon Interactions ---Nijmegen Extended-Soft-Core Models---

    Science.gov (United States)

    Rijken, T. A.; Nagels, M. M.; Yamamoto, Y.

    We review the Nijmegen extended-soft-core (ESC) models for the baryon-baryon (BB) interactions of the SU(3) flavor-octet of baryons (N, Lambda, Sigma, and Xi). The interactions are basically studied from the meson-exchange point of view, in the spirit of the Yukawa-approach to the nuclear force problem [H. Yukawa, ``On the interaction of Elementary Particles I'', Proceedings of the Physico-Mathematical Society of Japan 17 (1935), 48], using generalized soft-core Yukawa-functions. These interactions are supplemented with (i) multiple-gluon-exchange, and (ii) structural effects due to the quark-core of the baryons. We present in some detail the most recent extended-soft-core model, henceforth referred to as ESC08, which is the most complete, sophisticated, and successful interaction-model. Furthermore, we discuss briefly its predecessor the ESC04-model [Th. A. Rijken and Y. Yamamoto, Phys. Rev. C 73 (2006), 044007; Th. A. Rijken and Y. Yamamoto, Ph ys. Rev. C 73 (2006), 044008; Th. A. Rijken and Y. Yamamoto, nucl-th/0608074]. For the soft-core one-boson-exchange (OBE) models we refer to the literature [Th. A. Rijken, in Proceedings of the International Conference on Few-Body Problems in Nuclear and Particle Physics, Quebec, 1974, ed. R. J. Slobodrian, B. Cuec and R. Ramavataram (Presses Universitè Laval, Quebec, 1975), p. 136; Th. A. Rijken, Ph. D. thesis, University of Nijmegen, 1975; M. M. Nagels, Th. A. Rijken and J. J. de Swart, Phys. Rev. D 17 (1978), 768; P. M. M. Maessen, Th. A. Rijken and J. J. de Swart, Phys. Rev. C 40 (1989), 2226; Th. A. Rijken, V. G. J. Stoks and Y. Yamamoto, Phys. Rev. C 59 (1999), 21; V. G. J. Stoks and Th. A. Rijken, Phys. Rev. C 59 (1999), 3009]. All ingredients of these latter models are also part of ESC08, and so a description of ESC08 comprises all models so far in principle. The extended-soft-core (ESC) interactions consist of local- and non-local-potentials due to (i) one-boson-exchanges (OBE), which are the members of nonets of

  11. Study on interaction between induced and natural fractures by extended finite element method

    Science.gov (United States)

    Xu, DanDan; Liu, ZhanLi; Zhuang, Zhuo; Zeng, QingLei; Wang, Tao

    2017-02-01

    Fracking is one of the kernel technologies in the remarkable shale gas revolution. The extended finite element method is used in this paper to numerically investigate the interaction between hydraulic and natural fractures, which is an important issue of the enigmatic fracture network formation in fracking. The criteria which control the opening of natural fracture and crossing of hydraulic fracture are tentatively presented. Influence factors on the interaction process are systematically analyzed, which include the approach angle, anisotropy of in-situ stress and fluid pressure profile.

  12. Cross-sections for neutrino-nucleus interactions on $^{12}C$ and $^{16}O$

    CERN Document Server

    Jachowicz, N; Heyde, Kris L G

    1998-01-01

    We calculate cross sections for neutral current quasi-elastic neutrino-nucleus scattering within a continuum RPA model, based on a Green's function approach. As residual interaction a Skyrme force is used. The unperturbed single particle wave functions are generated using either a Woods-Saxon potential or a Hartree-Fock calculation. These calculations have interesting applications. Neutrinos play an important role in supernova nucleosynthesis. To obtain more information about these processes, cross sections are folded with a Fermi-Dirac distribution with temperatures of approximately 10 9 K.

  13. An outline of the life and work of Tony Hilton Royle Skyrme (1922-1987)

    International Nuclear Information System (INIS)

    Dalitz, R.H.

    1988-01-01

    Tony Hilton Royle Skyrme was born on 5 December 1922 at 7 Blessington Road, Lewisham (Kent), London. Tony's maternal grandfather was Herbert William Thomson Roberts, a tidal computer for the Admiralty by profession. The inclusion of Lord Kelvin's baptismal name (William Thomson) among his forenames reflects the professional contact which Tony's great-grandfather had with Lord Kelvin and the high regard in which he held the latter. This great-grandfather of Tony's on the maternal side was Edward Roberts. He was appointed Secretary to the Tidal Committee of the British Association for the Advancement of Science, being made responsible later for the construction of the first Tidal Predicter, which had been designed by Lord Kelvin. He played a large part in the design and construction of the Universal Tide-predicting Machines used by the Indian and Colonial Government and by the Admiralty Hydrographic Office. It was his house which held the Tidal Predicter, the first model of the machine, which made such a strong impression on the young Tony and influenced so greatly the development of his later ideas, as Tony himself recounted in a lecture given at a Workshop on Skyrmions in 1984

  14. Spatially Extended Habitat Modification by Intertidal Reef-Building Bivalves has Implications for Consumer-Resource Interactions

    NARCIS (Netherlands)

    van der Zee, E.M.; van der Heide, T.; Donadi, S.; Eklöf, J.S.; Eriksson, B.K.; Olff, H.; van der Veer, H.W.; Piersma, T.

    2012-01-01

    Ecosystem engineers can strongly modify habitat structure and resource availability across space. In theory, this should alter the spatial distributions of trophically interacting species. In this article, we empirically investigated the importance of spatially extended habitat modification by

  15. Spatially extended habitat modification by intertidal reef-building bivalves has implications for consumer-resource interactions

    NARCIS (Netherlands)

    van der Zee, Els M.; van der Heide, Tjisse; Donadi, Serena; Eklöf, Johan S.; Eriksson, Britas Klemens; Olff, Han; van der Veer, Henk W.; Piersma, Theunis

    Ecosystem engineers can strongly modify habitat structure and resource availability across space. In theory, this should alter the spatial distributions of trophically interacting species. In this article, we empirically investigated the importance of spatially extended habitat modification by

  16. Extending NGOMSL Model for Human-Humanoid Robot Interaction in the Soccer Robotics Domain

    Directory of Open Access Journals (Sweden)

    Rajesh Elara Mohan

    2008-01-01

    Full Text Available In the field of human-computer interaction, the Natural Goals, Operators, Methods, and Selection rules Language (NGOMSL model is one of the most popular methods for modelling knowledge and cognitive processes for rapid usability evaluation. The NGOMSL model is a description of the knowledge that a user must possess to operate the system represented as elementary actions for effective usability evaluations. In the last few years, mobile robots have been exhibiting a stronger presence in commercial markets and very little work has been done with NGOMSL modelling for usability evaluations in the human-robot interaction discipline. This paper focuses on extending the NGOMSL model for usability evaluation of human-humanoid robot interaction in the soccer robotics domain. The NGOMSL modelled human-humanoid interaction design of Robo-Erectus Junior was evaluated and the results of the experiments showed that the interaction design was able to find faults in an average time of 23.84 s. Also, the interaction design was able to detect the fault within the 60 s in 100% of the cases. The Evaluated Interaction design was adopted by our Robo-Erectus Junior version of humanoid robots in the RoboCup 2007 humanoid soccer league.

  17. Off-site interaction effect in the Extended Hubbard Model with the SCRPA method

    International Nuclear Information System (INIS)

    Harir, S; Bennai, M; Boughaleb, Y

    2007-01-01

    The self consistent random phase approximation (SCRPA) and a direct analytical (DA) method are proposed to solve the Extended Hubbard Model (EHM) in one dimension (1D). We have considered an EHM including on-site and off-site interactions for closed chains in 1D with periodic boundary conditions. The comparison of the SCRPA results with the ones obtained by a DA approach shows that the SCRPA treats the problem of these closed chains in a rigorous manner. The analysis of the nearest-neighbour repulsion effect on the dynamics of our closed chains shows that this repulsive interaction between the electrons of the neighbouring atoms induces supplementary conductivity, since, the SCRPA energygap vanishes when these closed chains are governed by a strong repulsive on-site interaction and intermediate nearest-neighbour repulsion

  18. Weak-interaction rates in stellar conditions

    Science.gov (United States)

    Sarriguren, Pedro

    2018-05-01

    Weak-interaction rates, including β-decay and electron captures, are studied in several mass regions at various densities and temperatures of astrophysical interest. In particular, we study odd-A nuclei in the pf-shell region, which are involved in presupernova formations. Weak rates are relevant to understand the late stages of the stellar evolution, as well as the nucleosynthesis of heavy nuclei. The nuclear structure involved in the weak processes is studied within a quasiparticle proton-neutron random-phase approximation with residual interactions in both particle-hole and particle-particle channels on top of a deformed Skyrme Hartree-Fock mean field with pairing correlations. First, the energy distributions of the Gamow-Teller strength are discussed and compared with the available experimental information, measured under terrestrial conditions from charge-exchange reactions. Then, the sensitivity of the weak-interaction rates to both astrophysical densities and temperatures is studied. Special attention is paid to the relative contribution to these rates of thermally populated excited states in the decaying nucleus and to the electron captures from the degenerate electron plasma.

  19. Cross-sections for neutral-current neutrino-nucleus interactions applications for $^{12}$C and $^{16}$O

    CERN Document Server

    Jachowicz, N; Heyde, Kris L G; Ryckebusch, J

    1999-01-01

    We calculate cross sections for neutral current quasi-elastic neutrino-nucleus scattering within a continuum RPA model, based on a Green's function approach. As residual interaction a Skyrme force is used. The unperturbed single particle wave functions are generated using either a Woods-Saxon potential or a Hartree-Fock calculation. These calculations have interesting applications. Neutrinos play an important role in supernova nucleosynthesis. To obtain more information about these processes, cross sections are folded with a Fermi-Dirac distribution with temperatures of approximately 10$^9$ K.

  20. Computer simulation of the interaction between an extended dislocation and radiation defects in the fcc lattice

    International Nuclear Information System (INIS)

    Kuramoto, E.; Nakamura, Y.; Tsutsumi, T.

    1993-01-01

    The interaction between an extended dislocation and a radiation-induced defect, especially, a self-interstitial atom (SIA), has been investigated in the model fcc lattice by computer simulation technique. An SIA was absorbed into the core of one of the two partial dislocations of the extended screw dislocation as a crowdion which extends along the dislocation line. Under the applied shear stress this crowdion acted as a pinning point, resulting in irradiation hardening. On the other hand, an SIA was absorbed at the jog site of the extended edge dislocation (at one of the two jog sites on two partial dislocations) and after some relaxation the total jog was shifted to one atomic distance through the spreading out of the strain due to an SIA from one partial side to the other side. (orig.)

  1. Transport with three-particle interaction

    International Nuclear Information System (INIS)

    Morawetz, K.

    2000-01-01

    Starting from a point - like two - and three - particle interaction the kinetic equation is derived. While the drift term of the kinetic equation turns out to be determined by the known Skyrme mean field the collision integral appears in two - and three - particle parts. The cross section results from the same microscopic footing and is naturally density dependent due to the three - particle force. By this way no hybrid model for drift and cross section is needed for nuclear transport. The resulting equation of state has besides the mean field correlation energy also a two - and three - particle correlation energy which both are calculated analytically for the ground state. These energies contribute to the equation of state and lead to an occurrence of a maximum at 3 times nuclear density in the total energy. (author)

  2. Joint inhibition of TOR and JNK pathways interacts to extend the lifespan of Brachionus manjavacas (Rotifera).

    Science.gov (United States)

    Snell, Terry W; Johnston, Rachel K; Rabeneck, Brett; Zipperer, Cody; Teat, Stephanie

    2014-04-01

    The TOR kinase pathway is central in modulating aging in a variety of animal models. The target of rapamycin (TOR) integrates a complex network of signals from growth conditions, nutrient availability, energy status, and physiological stresses and matches an organism's growth rate to the resource environment. Important remaining problems are the identification of the pathways that interact with TOR and their characterization as additive or synergistic. One of the most versatile stress sensors in metazoans is the Jun-N-terminal kinase (JNK) signaling pathway. JNK is an evolutionarily conserved stress-activated protein kinase that is induced by a range of stressors, including UV irradiation, reactive oxygen species, DNA damage, heat, and bacterial antigens. JNK is thought to interact with the TOR pathway, but its effects on TOR are poorly understood. We used the rotifer Brachionus manjavacas as a model animal to probe the regulation of TOR and JNK pathways and explore their interaction. The effect of various chemical inhibitors was examined in life table and stressor challenge experiments. A survey of 12 inhibitors revealed two, rapamycin and JNK inhibitor, that significantly extended lifespan of B. manjavacas. At 1 μM concentration, exposure to rapamycin or JNK inhibitor extended mean rotifer lifespan by 35% and maximum lifespan by 37%. Exposure to both rapamycin and JNK inhibitor simultaneously extended mean rotifer lifespan by 65% more than either alone. Exposure to a combination of rapamycin and JNK inhibitors conveyed greater protection to starvation, UV and osmotic stress than either inhibitor alone. RNAi knockdown of TOR and JNK gene expression was investigated for its ability to extend rotifer lifespan. RNAi knockdown of the TOR gene resulted in 29% extension of the mean lifespan compared to control and knockdown of the JNK gene resulted in 51% mean lifespan extension. In addition to the lifespan, we quantified mitochondria activity using the fluorescent

  3. Higher-order terms in the nuclear-energy-density functional

    International Nuclear Information System (INIS)

    Carlsson, B. G.; Borucki, M.; Dobaczewski, J.

    2009-01-01

    One of the current projects at the Department of Physics in the University of Jyvaeskylae is to explore more general forms of the Skyrme energy-density functional (EDF). The aim is to find new phenomenological terms which are sensitive to experimental data. In this context we have extended the Skyrme functional by including terms which contain higher orders of derivatives allowing for a better description of finite range effects. This was done by employing an expansion in derivatives in a spherical-tensor formalism [1] motivated by ideas of the density-matrix expansion. The resulting functionals have different number of free parameters depending on the order in derivatives and assumed symmetries, see Fig. 1. The usual Skyrme EDF is obtained as a second order expansion while we keep terms up to sixth order.(author)

  4. Baryons and baryonic matter in four-fermion interaction models

    International Nuclear Information System (INIS)

    Urlichs, K.

    2007-01-01

    In this work we discuss baryons and baryonic matter in simple four-fermion interaction theories, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time dimensions. These models are designed as toy models for dynamical symmetry breaking in strong interaction physics. Pointlike interactions (''four-fermion'' interactions) between quarks replace the full gluon mediated interaction of quantum chromodynamics. We consider the limit of a large number of fermion flavors, where a mean field approach becomes exact. This method is formulated in the language of relativistic many particle theory and is equivalent to the Hartree-Fock approximation. In 1+1 dimensions, we generalize known results on the ground state to the case where chiral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we derive an exact self-consistent solution for the finite density ground state, consisting of a one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu- Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear physics, the baryon emerges as a topological soliton. The solution for both the single baryon and dense baryonic matter is given in a systematic expansion in powers of the pion mass. The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the massless Gross-Neveu model we derive an exact self-consistent solution by extending the baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one spatial direction. This one-dimensional configuration is energetically degenerate to the translationally invariant solution, a hint in favor of a possible translational symmetry breakdown by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soliton configurations induce a finite baryon number. In contrast

  5. Baryons and baryonic matter in four-fermion interaction models

    Energy Technology Data Exchange (ETDEWEB)

    Urlichs, K.

    2007-02-23

    In this work we discuss baryons and baryonic matter in simple four-fermion interaction theories, the Gross-Neveu model and the Nambu-Jona-Lasinio model in 1+1 and 2+1 space-time dimensions. These models are designed as toy models for dynamical symmetry breaking in strong interaction physics. Pointlike interactions (''four-fermion'' interactions) between quarks replace the full gluon mediated interaction of quantum chromodynamics. We consider the limit of a large number of fermion flavors, where a mean field approach becomes exact. This method is formulated in the language of relativistic many particle theory and is equivalent to the Hartree-Fock approximation. In 1+1 dimensions, we generalize known results on the ground state to the case where chiral symmetry is broken explicitly by a bare mass term. For the Gross-Neveu model, we derive an exact self-consistent solution for the finite density ground state, consisting of a one-dimensional array of equally spaced potential wells, a baryon crystal. For the Nambu- Jona-Lasinio model we apply the derivative expansion technique to calculate the total energy in powers of derivatives of the mean field. In a picture akin to the Skyrme model of nuclear physics, the baryon emerges as a topological soliton. The solution for both the single baryon and dense baryonic matter is given in a systematic expansion in powers of the pion mass. The solution of the Hartree-Fock problem is more complicated in 2+1 dimensions. In the massless Gross-Neveu model we derive an exact self-consistent solution by extending the baryon crystal of the 1+1 dimensional model, maintaining translational invariance in one spatial direction. This one-dimensional configuration is energetically degenerate to the translationally invariant solution, a hint in favor of a possible translational symmetry breakdown by more general geometrical structures. In the Nambu-Jona-Lasinio model, topological soliton configurations induce a finite baryon

  6. New Gogny interaction suitable for astrophysical applications

    Science.gov (United States)

    Gonzalez-Boquera, C.; Centelles, M.; Viñas, X.; Robledo, L. M.

    2018-04-01

    The D1 family of parametrizations of the Gogny interaction commonly suffers from a rather soft neutron matter equation of state that leads to maximal masses of neutron stars well below the observational value of two solar masses. We propose a reparametrization scheme that preserves the good properties of the Gogny force but allows one to tune the density dependence of the symmetry energy, which, in turn, modifies the predictions for the maximum stellar mass. The scheme works well for D1M, and leads to a new parameter set, dubbed D1M*. In the neutron-star domain, D1M* predicts a maximal mass of two solar masses and global properties of the star in harmony with those obtained with the SLy4 Skyrme interaction. By means of a set of selected calculations in finite nuclei, we check that D1M* performs comparably well to D1M in several aspects of nuclear structure in nuclei.

  7. New particle-hole symmetries and the extended interacting boson model

    CERN Document Server

    De Coster, C; Decroix, B; Heyde, Kris L G; Oros, A M

    1998-01-01

    We describe shape coexistence and intruder many-particle-hole (mp-nh)excitations in the extended interacting boson model EIBM and EIBM-2,combining both the particle-hole and the charge degree of freedom.Besides the concept of I-spin multiplets and subsequently $SU(4)$ multiplets, we touch upon the existence of particle-hole mixed symmetry states. We furthermore describe regular and intrudermany-particle-hole excitations in one nucleus on an equal footing, creating (annihilating) particle-hole pairs using the K-spin operatorand studying possible mixing between these states. As a limiting case,we treat the coupling of two IBM-1 Hamiltonians, each decribing the regular and intruder excitations respectively, in particular lookingat the $U(5)$-$SU(3)$ dynamical symmetry coupling. We apply such coupling scheme to the Po isotopes.

  8. Hadron properties in nuclear matter and the phase structure of a skyrmionic system

    International Nuclear Information System (INIS)

    Yakhshiev, Ulugbek; Kim, Hyun-Chul

    2010-01-01

    Hadron properties and their interactions in a nuclear environment are considered in the framework of the in-medium modified Skyrme model. Furthermore, the influence of the medium modifications of the single hadron properties and their interactions to the stability of the whole system is considered by using the variational method of the Hartree-Fock type. In addition to previous studies, we discuss the possible in-medium modifications of the stabilizing Skyrme term which can be related to the modifications of vector meson properties in a nuclear environment. (author)

  9. Microscopic approach to the generator coordinate method

    International Nuclear Information System (INIS)

    Haider, Q.; Gogny, D.; Weiss, M.S.

    1989-01-01

    In this paper, we solve different theoretical problems associated with the calculation of the kernel occurring in the Hill-Wheeler integral equations within the framework of generator coordinate method. In particular, we extend the Wick's theorem to nonorthogonal Bogoliubov states. Expressions for the overlap between Bogoliubov states and for the generalized density matrix are also derived. These expressions are valid even when using an incomplete basis, as in the case of actual calculations. Finally, the Hill-Wheeler formalism is developed for a finite range interaction and the Skyrme force, and evaluated for the latter. 20 refs., 1 fig., 4 tabs

  10. A model of the extended electron and its nonlocal electromagnetic interaction: Gauge invariance of the nonlocal theory

    International Nuclear Information System (INIS)

    Namsrai, Kh.; Nyamtseren, N.

    1994-09-01

    A model of the extended electron is constructed by using definition of the d-operation. Gauge invariance of the nonlocal theory is proved. We use the Efimov approach to describe the nonlocal interaction of quantized fields. (author). 4 refs

  11. Effective interactions for extreme isospin conditions; Interactions effectives pour des conditions extremes d`isospin

    Energy Technology Data Exchange (ETDEWEB)

    Chabanat, E.

    1995-01-01

    One of the main goal in nuclear physics research is the study of nuclei in extreme conditions of spin and isospin. The more performing tools for theoretical predictions in this field are microscopic methods such as the Hartree-Fock one based on independent particle approximation. The main ingredient for such an approach is the effective nucleon-nucleon interaction. The actual trend being the study of nuclei more and more far from the stability valley, it is necessary to cast doubt over the validity of usual effective interaction. This work constitute a study on the way one can construct a new interaction allowing some theoretical predictions on nuclei far from the stability. We have thus made a complete study of symmetric infinite nuclear matter and asymmetric one up to pure neutron matter. One shows that the asymmetry coefficient, which was considered until now as fixing isospin properties, is not sufficient to have a correct description of very exotic isospin states. A new type of constraint is shown for fixing this degree of freedom: the neutron matter equation of state. One include this equation of state, taken from a theoretical model giving a good description of radii and masses of neutron stars. One can thus expect to build up new Skyrme interaction with realistic properties of ground state of very neutron-rich nuclei. (author). 63 refs., 68 figs., 15 tabs.

  12. Unified approach to dense matter

    International Nuclear Information System (INIS)

    Park, Byung-Yoon; Lee, Hee-Jung; Vento, Vicente; Kim, Joon-Il; Min, Dong-Pil; Rho, Mannque

    2005-01-01

    We apply the Skyrme model to dense hadronic matter, which provides a unified approach to high density, valid in the large N c limit. In our picture, dense hadronic matter is described by the classical soliton configuration with minimum energy for the given baryon number density. By incorporating the meson fluctuations on such ground state we obtain an effective Lagrangian for meson dynamics in a dense medium. Our starting point has been the Skyrme model defined in terms of pions, thereafter we have extended and improved the model by incorporating other degrees of freedom such as dilaton, kaons and vector mesons

  13. Microscopically Based Nuclear Energy Functionals

    International Nuclear Information System (INIS)

    Bogner, S. K.

    2009-01-01

    A major goal of the SciDAC project 'Building a Universal Nuclear Energy Density Functional' is to develop next-generation nuclear energy density functionals that give controlled extrapolations away from stability with improved performance across the mass table. One strategy is to identify missing physics in phenomenological Skyrme functionals based on our understanding of the underlying internucleon interactions and microscopic many-body theory. In this contribution, I describe ongoing efforts to use the density matrix expansion of Negele and Vautherin to incorporate missing finite-range effects from the underlying two- and three-nucleon interactions into phenomenological Skyrme functionals.

  14. Research program in elementary particle theory

    International Nuclear Information System (INIS)

    Balachandran, A.P.; Rosenzweig, C.; Schechter, J.; Wali, K.C.

    1990-01-01

    Discussed in this paper is a brief account of the research work of the principal investigators and their co-workers during the past few years. The topics covered include: Topology in Physics; Skyrme Model; High Temperature Superconductivity; fractional statistics, and generalized spin statistics theorem; QCD as a dual chromomagnetic superconductor; confinement and string picture in QCD; quark gluon plasmas; cosmic strings; effective Lagrangians for QCD; ''proton spin,'' ''strange content'' and related topics; physical basis of the Skyrme model; gauge theories and weak interactions; grand unification; Universal ''see saw mechanism''; abelian and non-abelian interactions of a test string

  15. Effects of a multi-quark interaction on color superconducting phase transition in an extended NJL model

    International Nuclear Information System (INIS)

    Kashiwa, Kouji; Matsuzaki, Masayuki; Kouno, Hiroaki; Yahiro, Masanobu

    2007-01-01

    We study the interplay of the chiral and the color superconducting phase transition in an extended Nambu-Jona-Lasinio model with a multi-quark interaction that produces the nonlinear chiral-diquark coupling. We observe that this nonlinear coupling adds up coherently with the ω 2 interaction to either produce the chiral-color superconductivity coexistence phase or cancel each other depending on its sign. We discuss that a large coexistence region in the phase diagram is consistent with the quark-diquark picture for the nucleon whereas its smallness is the prerequisite for the applicability of the Ginzburg-Landau approach

  16. The two-potential approach to one-proton emission

    International Nuclear Information System (INIS)

    Al-Khalili, J. S.; Cannon, A. J.; Stevenson, P. D.

    2007-01-01

    Proton decay half-lives can be calculated reliably using the idea of simple tunnelling probabilities within a WKB model. Just as simple, but much more intuitive is the approach of Gurvitz and Kalbermann of splitting the tunnelling potential into internal (bound state) and external (scattering state) parts. This is referred to as the Two-Potential approach to the tunnelling problem. For spherical nuclei there is not much to choose between TPA and WKB, but to extract reliable spectroscopic information from the dripline nuclei of interest, these methods must be extended to deformed potentials. We outline our approach for the case of spherical nuclei starting from a mean field HF potential using the Skyrme interaction and outline a programme of work leading to an extended 3-D TPA model

  17. Thomas-Fermi theory for atomic nuclei revisited

    International Nuclear Information System (INIS)

    Centelles, M.; Schuck, P.; Vinas, X.

    2007-01-01

    The recently developed semiclassical variational Wigner-Kirkwood (VWK) approach is applied to finite nuclei using external potentials and self-consistent mean fields derived from Skyrme interactions and from relativistic mean field theory. VWK consists of the Thomas-Fermi part plus a pure, perturbative h 2 correction. In external potentials, VWK passes through the average of the quantal values of the accumulated level density and total energy as a function of the Fermi energy. However, there is a problem of overbinding when the energy per particle is displayed as a function of the particle number. The situation is analyzed comparing spherical and deformed harmonic oscillator potentials. In the self-consistent case, we show for Skyrme forces that VWK binding energies are very close to those obtained from extended Thomas-Fermi functionals of h 4 order, pointing to the rapid convergence of the VWK theory. This satisfying result, however, does not cure the overbinding problem, i.e., the semiclassical energies show more binding than they should. This feature is more pronounced in the case of Skyrme forces than with the relativistic mean field approach. However, even in the latter case the shell correction energy for e.g., 208 Pb turns out to be only ∼-6 MeV what is about a factor two or three off the generally accepted value. As an ad hoc remedy, increasing the kinetic energy by 2.5%, leads to shell correction energies well acceptable throughout the periodic table. The general importance of the present studies for other finite Fermi systems, self-bound or in external potentials, is pointed out

  18. Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach

    Energy Technology Data Exchange (ETDEWEB)

    Lyutorovich, N.; Tselyaev, V. [Physical Faculty, St. Petersburg State University, RU-198504 St. Petersburg (Russian Federation); Speth, J., E-mail: J.Speth@fz-juelich.de [Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich (Germany); Krewald, S.; Grümmer, F. [Institut für Kernphysik, Forschungszentrum Jülich, D-52425 Jülich (Germany); Reinhard, P.-G. [Institut für Theoretische Physik II, Universität Erlangen-Nürnberg, D-91058 Erlangen (Germany)

    2015-10-07

    We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree–Fock ground state and the excitation spectra within random-phase approximation (RPA) and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA). All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.

  19. Postcards And Supasigns: Extending Integrationist Theory Through The Creation Of Interactive Digital Artworks

    Directory of Open Access Journals (Sweden)

    Sally Pryor

    2007-01-01

    Full Text Available Integrationism is a post-structuralist theory of language and communication. The theory has been applied to a groundbreaking analysis of writing as a form of communication where writing is teased apart from speech and realigned with spatial configurations in general. Although it has many practical applications, this view can be extremely difficult to comprehend when expressed as a very specific form of writing, that is, as written words on paper. A solution to this problem is offered by the creative interaction design of two digital artworks, Postcard From Tunis and Postcards From Writing. The works are interactive multimedia pieces that creatively express the integrationist theory of writing and extend it into the transformations of writing that are possible in the human-computer interface. More generally, the unique rollover-based interfaces of these works both express the integrationist theory of communication and suggest that it is necessary in order to explain the creation of communicative signs that they demonstrate are possible.

  20. Effects of air-sea interaction on extended-range prediction of geopotential height at 500 hPa over the northern extratropical region

    Science.gov (United States)

    Wang, Xujia; Zheng, Zhihai; Feng, Guolin

    2018-04-01

    The contribution of air-sea interaction on the extended-range prediction of geopotential height at 500 hPa in the northern extratropical region has been analyzed with a coupled model form Beijing Climate Center and its atmospheric components. Under the assumption of the perfect model, the extended-range prediction skill was evaluated by anomaly correlation coefficient (ACC), root mean square error (RMSE), and signal-to-noise ratio (SNR). The coupled model has a better prediction skill than its atmospheric model, especially, the air-sea interaction in July made a greater contribution for the improvement of prediction skill than other months. The prediction skill of the extratropical region in the coupled model reaches 16-18 days in all months, while the atmospheric model reaches 10-11 days in January, April, and July and only 7-8 days in October, indicating that the air-sea interaction can extend the prediction skill of the atmospheric model by about 1 week. The errors of both the coupled model and the atmospheric model reach saturation in about 20 days, suggesting that the predictable range is less than 3 weeks.

  1. The nuclear N-body problem and the effective interaction in self-consistent mean-field methods

    International Nuclear Information System (INIS)

    Duguet, Thomas

    2002-01-01

    local approximation, the first theoretically motivated prescription of the density dependence of phenomenological forces to be used in configuration mixing calculations is proposed. Dealing with another origin of the density dependence of the interaction, the renormalization of multi-body forces effects through a dependence of the interaction on the mixed density is demonstrated. Thus, the extended Skyrme force deduced from these formal results is tested through configuration mixing calculations in 186 Pb. The difficult reproduction of data illustrating the shape coexistence phenomenon in this nucleus is addressed. (author)

  2. Design and simulation of a sub-terahertz folded-waveguide extended interaction oscillator

    Science.gov (United States)

    Liu, Wenxin; Zhang, Zhaochuan; Zhao, Chao; Guo, Xin; Liao, Suying

    2017-06-01

    In this paper, an interesting type of a two-section folded wave-guide (TSFW) slow wave structure (SWS) for the development of sub-Terahertz (sub-THz) extended interaction oscillator (EIO) is proposed. In this sub-THz device, the prebunching electron beam is produced by the TSFW SWS, which results in the enhancement of the output power. To verify this concept, the TSFW for sub-THz EIO is developed, which includes the design, simulation, and some fabrications. A small size of electron optics system (EOS), the TSFW SWS for beam-wave interactions, and the output structure are studied with simulations. Through the codes Egun and Superfish, the EOS is designed and optimized. With a help of CST studio and 3D particle-in-cell (PIC) simulation CHIPIC, the characteristics of beam-wave interaction generated by the TSFW are studied. The results of PIC simulation show that the output power is remarkably enhanced by a factor of 3, which exceeds 200 W at the frequency of 108 GHz. Based on the optimum parameters, the TSFW is manufactured with a high speed numerical mill, and the test transmission characteristic |S21| is 13 dB. At last, the output structure with a pill-box window is optimized, fabricated, integrated, and tested, and the result shows that the voltage standing-wave ratio of the window is about 2.2 at an operating frequency of 108 GHz. This design and simulation can provide an effective method to develop high power THz sources.

  3. The surface compression of nuclei in relativistic mean-field approach

    International Nuclear Information System (INIS)

    Sharma, M.M.

    1991-01-01

    The surface compression properties of nuclei have been studied in the framework of the relativistic non-linear σ-ω model. Using the Thomas-Fermi approximation for semi-infinite nuclear matter, it is shown that by varying the σ-meson mass one can change the surface compression as relative to the bulk compression. This fact is in contrast with the known properties of the phenomenological Skyrme interactions, where the ratio of the surface to the bulk incompressibility (-K S /K V ) is nearly 1 in the scaling mode of compression. The results suggest that the relativistic mean-field model may provide an interaction with the essential ingredients different from those of the Skyrme interactions. (author) 23 refs., 2 figs., 1 tab

  4. Extending the Body for Interaction with Reality

    DEFF Research Database (Denmark)

    Feuchtner, Tiare; Müller, Jörg

    2017-01-01

    In this paper, we explore how users can control remote devices with a virtual long arm, while preserving the perception that the artificial arm is actually part of their own body. Instead of using pointing, speech, or a remote control, the users’ arm is extended in augmented reality, allowing...

  5. Noncommutative baby Skyrmions

    International Nuclear Information System (INIS)

    Ioannidou, Theodora; Lechtenfeld, Olaf

    2009-01-01

    We subject the baby Skyrme model to a Moyal deformation, for unitary or Grassmannian target spaces and without a potential term. In the Abelian case, the radial BPS configurations of the ordinary noncommutative sigma model also solve the baby Skyrme equation of motion. This gives a class of exact analytic noncommutative baby Skyrmions, which have a singular commutative limit but are stable against scaling due to the noncommutativity. We compute their energies, investigate their stability and determine the asymptotic two-Skyrmion interaction.

  6. A high-order mode extended interaction klystron at 0.34 THz

    Science.gov (United States)

    Wang, Dongyang; Wang, Guangqiang; Wang, Jianguo; Li, Shuang; Zeng, Peng; Teng, Yan

    2017-02-01

    We propose the concept of high-order mode extended interaction klystron (EIK) at the terahertz band. Compared to the conventional fundamental mode EIK, it operates at the TM31-2π mode, and its remarkable advantage is to obtain a large structure and good performance. The proposed EIK consists of five identical cavities with five gaps in each cavity. The method is discussed to suppress the mode competition and self-oscillation in the high-order mode cavity. Particle-in-cell simulation demonstrates that the EIK indeed operates at TM31-2π mode without self-oscillation while other modes are well suppressed. Driven by the electron beam with a voltage of 15 kV and a current of 0.3 A, the saturation gain of 43 dB and the output power of 60 W are achieved at the center frequency of 342.4 GHz. The EIK operating at high-order mode seems a promising approach to generate high power terahertz waves.

  7. On a low energy, strong interaction model, unifying mesons and baryons

    International Nuclear Information System (INIS)

    Kalafatis, D.

    1993-03-01

    This thesis is concerned with the study of a unified theory of mesons and baryons. An effective Lagrangian with the low mass mesons, generalizing the Skyrme model, is constructed. The vector meson fields are introduced as gauge fields in the linear sigma model instead of the non linear sigma model. Topological soliton solutions of the model are examined and the nucleon-nucleon interaction in the product approximation is investigated. The leading correction to the classical skyrmion mass, the Casimir energy, is evaluated. The problem of the stability of topological solitons when vector fields enter the chiral Lagrangian is also studied. It is shown that the soliton is stable in very much the same way as with the ωmeson and that peculiar classical doublet solutions do not exist

  8. Isoscalar and isovector giant resonances in a self-consistent phonon coupling approach

    Directory of Open Access Journals (Sweden)

    N. Lyutorovich

    2015-10-01

    Full Text Available We present fully self-consistent calculations of isoscalar giant monopole and quadrupole as well as isovector giant dipole resonances in heavy and light nuclei. The description is based on Skyrme energy-density functionals determining the static Hartree–Fock ground state and the excitation spectra within random-phase approximation (RPA and RPA extended by including the quasiparticle-phonon coupling at the level of the time-blocking approximation (TBA. All matrix elements were derived consistently from the given energy-density functional and calculated without any approximation. As a new feature in these calculations, the single-particle continuum was included thus avoiding the artificial discretization usually implied in RPA and TBA. The step to include phonon coupling in TBA leads to small, but systematic, down shifts of the centroid energies of the giant resonances. These shifts are similar in size for all Skyrme parametrizations investigated here. After all, we demonstrate that one can find Skyrme parametrizations which deliver a good simultaneous reproduction of all three giant resonances within TBA.

  9. Preliminary design and optimization of a G-band extended interaction oscillator based on a pseudospark-sourced electron beam

    Energy Technology Data Exchange (ETDEWEB)

    Yin, Y., E-mail: yong.yin@strath.ac.uk, E-mail: yinyong@uestc.edu.cn [School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054 (China); Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom); He, W.; Zhang, L.; Yin, H.; Cross, A. W. [Department of Physics, Scottish Universities Physics Alliance, University of Strathclyde, Glasgow G4 0NG (United Kingdom)

    2015-07-15

    The design and simulation of a G-band extended interaction oscillator (EIO) driven by a pseudospark-sourced electron beam is presented. The characteristic of the EIO and the pseudospark-based electron beam were studied to enhance the performance of the newly proposed device. The beam-wave interaction of the EIO can be optimized by choosing a suitable pseudospark discharging voltage and by widening the operating voltage region of the EIO circuit. Simulation results show that a peak power of over 240 W can be achieved at G-band using a pseudospark discharge voltage of 41 kV.

  10. Two-way pharmacokinetic interaction studies between saxagliptin and cytochrome P450 substrates or inhibitors: simvastatin, diltiazem extended-release, and ketoconazole

    Directory of Open Access Journals (Sweden)

    Patel C

    2011-06-01

    Full Text Available Chirag G Patel, Li Li, Suzette Girgis, David M Kornhauser, Ernest U Frevert, David W BoultonBristol-Myers Squibb, Princeton, NJ, USABackground: Many medicines, including several cholesterol-lowering agents (eg, lovastatin, simvastatin, antihypertensives (eg, diltiazem, nifedipine, verapamil, and antifungals (eg, ketoconazole are metabolized by and/or inhibit the cytochrome P450 (CYP 3A4 metabolic pathway. These types of medicines are commonly coprescribed to treat comorbidities in patients with type 2 diabetes mellitus (T2DM and the potential for drug-drug interactions of these medicines with new medicines for T2DM must be carefully evaluated.Objective: To investigate the effects of CYP3A4 substrates or inhibitors, simvastatin (substrate, diltiazem (moderate inhibitor, and ketoconazole (strong inhibitor on the pharmacokinetics and safety of saxagliptin, a CYP3A4/5 substrate; and the effects of saxagliptin on these agents in three separate studies.Methods: Healthy subjects were administered saxagliptin 10 mg or 100 mg. Simvastatin, diltiazem extended-release, and ketoconazole doses of 40 mg once daily, 360 mg once daily, and 200 mg twice daily, respectively, were used to determine two-way pharmacokinetic interactions.Results: Coadministration of simvastatin, diltiazem extended-release, or ketoconazole increased mean area under the concentration-time curve values (AUC of saxagliptin by 12%, 109%, and 145%, respectively, versus saxagliptin alone. Mean exposure (AUC of the CYP3A4-generated active metabolite of saxagliptin, 5-hydroxy saxagliptin, decreased with coadministration of simvastatin, diltiazem, and ketoconazole by 2%, 34%, and 88%, respectively. All adverse events were considered mild or moderate in all three studies; there were no serious adverse events or deaths.Conclusion: Saxagliptin, when coadministered with simvastatin, diltiazem extended-release, or ketoconazole, was safe and generally well tolerated in healthy subjects. Clinically

  11. Self-consistent Hartree-Fock RPA calculations in 208Pb

    Science.gov (United States)

    Taqi, Ali H.; Ali, Mohammed S.

    2018-01-01

    The nuclear structure of 208Pb is studied in the framework of the self-consistent random phase approximation (SCRPA). The Hartree-Fock mean field and single particle states are used to implement a completely SCRPA with Skyrme-type interactions. The Hamiltonian is diagonalised within a model space using five Skyrme parameter sets, namely LNS, SkI3, SkO, SkP and SLy4. In view of the huge number of the existing Skyrme-force parameterizations, the question remains which of them provide the best description of data. The approach attempts to accurately describe the structure of the spherical even-even nucleus 208Pb. To illustrate our approach, we compared the binding energy, charge density distribution, excitation energy levels scheme with the available experimental data. Moreover, we calculated isoscalar and isovector monopole, dipole, and quadrupole transition densities and strength functions.

  12. Spin transport in intermediate-energy heavy-ion collisions as a probe of in-medium spin–orbit interactions

    Energy Technology Data Exchange (ETDEWEB)

    Xia, Yin [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); University of Chinese Academy of Sciences, Beijing 100049 (China); Xu, Jun, E-mail: xujun@sinap.ac.cn [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China); Li, Bao-An [Department of Physics and Astronomy, Texas A& M University-Commerce, Commerce, TX 75429-3011 (United States); Department of Applied Physics, Xi' an Jiao Tong University, Xi' an 710049 (China); Shen, Wen-Qing [Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800 (China)

    2016-11-15

    The spin up-down splitting of collective flows in intermediate-energy heavy-ion collisions as a result of the nuclear spin–orbit interaction is investigated within a spin- and isospin-dependent Boltzmann–Uehling–Uhlenbeck transport model SIBUU12. Using a Skyrme-type spin–orbit coupling quadratic in momentum, we found that the spin splittings of the directed flow and elliptic flow are largest in peripheral Au+Au collisions at beam energies of about 100–200 MeV/nucleon, and the effect is considerable even in smaller systems especially for nucleons with high transverse momenta. The collective flows of light clusters of different spin states are also investigated using an improved dynamical coalescence model with spin. Our study can be important in understanding the properties of in-medium nuclear spin–orbit interactions once the spin-dependent observables proposed in this work can be measured.

  13. Time-reversal-violating Schiff moment of 199Hg

    International Nuclear Information System (INIS)

    Jesus, J.H. de; Engel, J.

    2005-01-01

    We calculate the Schiff moment of the nucleus 199 Hg, created by πNN vertices that are odd under parity (P) and time-reversal (T). Our approach, formulated in diagrammatic perturbation theory with important core-polarization diagrams summed to all orders, gives a close approximation to the expectation value of the Schiff operator in the odd-A Hartree-Fock-Bogoliubov ground state generated by a Skyrme interaction and a weak P- and T-odd pion-exchange potential. To assess the uncertainty in the results, we carry out the calculation with several Skyrme interactions, the quality of which we test by checking predictions for the isoscalar-E1 strength distribution in 208 Pb, and estimate most of the important diagrams we omit

  14. Beyond the relativistic mean-field approximation. II. Configuration mixing of mean-field wave functions projected on angular momentum and particle number

    International Nuclear Information System (INIS)

    Niksic, T.; Vretenar, D.; Ring, P.

    2006-01-01

    The framework of relativistic self-consistent mean-field models is extended to include correlations related to the restoration of broken symmetries and to fluctuations of collective variables. The generator coordinate method is used to perform configuration mixing of angular-momentum and particle-number projected relativistic wave functions. The geometry is restricted to axially symmetric shapes, and the intrinsic wave functions are generated from the solutions of the relativistic mean-field+Lipkin-Nogami BCS equations, with a constraint on the mass quadrupole moment. The model employs a relativistic point-coupling (contact) nucleon-nucleon effective interaction in the particle-hole channel, and a density-independent δ-interaction in the pairing channel. Illustrative calculations are performed for 24 Mg, 32 S, and 36 Ar, and compared with results obtained employing the model developed in the first part of this work, i.e., without particle-number projection, as well as with the corresponding nonrelativistic models based on Skyrme and Gogny effective interactions

  15. Skyrmions, dense matter and nuclear forces

    International Nuclear Information System (INIS)

    Pethick, C.J.

    1984-12-01

    A simple introduction to a number of properties of Skyrme's chiral soliton model of baryons is given. Some implications of the model for dense matter and for nuclear interactions are discussed. (orig.)

  16. An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems

    Science.gov (United States)

    Xu, Xin; Zhang, Qingsong; Muller, Richard P.; Goddard, William A.

    2005-01-01

    We derive here the form for the exact exchange energy density for a density that decays with Gaussian-type behavior at long range. This functional is intermediate between the B88 and the PW91 exchange functionals. Using this modified functional to match the form expected for Gaussian densities, we propose the X3LYP extended functional. We find that X3LYP significantly outperforms Becke three parameter Lee-Yang-Parr (B3LYP) for describing van der Waals and hydrogen bond interactions, while performing slightly better than B3LYP for predicting heats of formation, ionization potentials, electron affinities, proton affinities, and total atomic energies as validated with the extended G2 set of atoms and molecules. Thus X3LYP greatly enlarges the field of applications for density functional theory. In particular the success of X3LYP in describing the water dimer (with Re and De within the error bars of the most accurate determinations) makes it an excellent candidate for predicting accurate ligand-protein and ligand-DNA interactions.

  17. Isovector giant monopole resonances: A sum-rule approach

    International Nuclear Information System (INIS)

    Goeke, K.; Bonn Univ.; Castel, B.

    1980-01-01

    Several useful sum rules associated with isovector giant monopole resonances are calculated for doubly closed shell nuclei. The calculation is based on techniques known from constrained and adiabatic time-dependent Hartree-Fock theories and assume various Skyrme interactions. The results obtained form, together with the compiled literature, the basis for a quantitative description of the RPA strength distribution in terms of energy-weighted moments. These, together with strength distribution properties, are determined by a hierarchy of determinantal relations between moments. The isovector giant monopole resonance turns out to be a rather broad resonance centered at E = 46 Asup(-1/10) MeV with an extended width of more than 16 MeV. The consequences regarding isospin impurities in the nuclear ground state are discussed. (orig.)

  18. Research in theoretical nuclear physics. Progress report, August 1, 1982-January 31, 1984

    International Nuclear Information System (INIS)

    Liu, K.F.

    1984-01-01

    The short-range NN deformation potential is calculated in the MIT bag model with several corrections. The color van der Waals force is derived in the coupled channel formalism. The baryon spectrum is studied with the potentials fitted to meson masses. The production of multi-quark hadrons which decay to vector-meson pairs are studied in γγ reactions, hadronic collisions, J/psi radiative decays and relativistic heavy ion collisions. The feasibility of 81 Br as a solar neutrino detector is studied by estimating the solar neutrino capture rate using information from the charge exchange reactions. Landau sum rules are applied to examine the Landau-Migdal parameters. An extended Skyrme-Landau interaction is being developed. Landau damping in the nuclear matter is being calculated. 14 references

  19. The {{\\rm{D}}\\bar{{\\rm{D}}}}^{{\\rm{* }}} interaction with isospin zero in an extended hidden gauge symmetry approach

    Science.gov (United States)

    Sun, Bao-Xi; Wan, Da-Ming; Zhao, Si-Yu

    2018-05-01

    The {{{D}}\\bar{{{D}}}}{{* }} interaction via a ρ or ω exchange is constructed within an extended hidden gauge symmetry approach, where the strange quark is replaced by the charm quark in the SU(3) flavor space. With this {{{D}}\\bar{{{D}}}}{{* }} interaction, a bound state slightly lower than the {{{D}}\\bar{{{D}}}}{{* }} threshold is generated dynamically in the isospin zero sector by solving the Bethe-Salpeter equation in the coupled-channel approximation, which might correspond to the X(3872) particle announced by many collaborations. This formulism is also used to study the {{{B}}\\bar{{{B}}}}{{* }} interaction, and a {{{B}}\\bar{{{B}}}}{{* }} bound state with isospin zero is generated dynamically, which has no counterpart listed in the review of the Particle Data Group. Furthermore, the one-pion exchange between the D meson and the {\\bar{{{D}}}}{{* }} is analyzed precisely, and we do not think the one-pion exchange potential need be considered when the Bethe-Salpeter equation is solved.

  20. Social phenotype extended to communities: expanded multilevel social selection analysis reveals fitness consequences of interspecific interactions.

    Science.gov (United States)

    Campobello, Daniela; Hare, James F; Sarà, Maurizio

    2015-04-01

    In social species, fitness consequences are associated with both individual and social phenotypes. Social selection analysis has quantified the contribution of conspecific social traits to individual fitness. There has been no attempt, however, to apply a social selection approach to quantify the fitness implications of heterospecific social phenotypes. Here, we propose a novel social selection based approach integrating the role of all social interactions at the community level. We extended multilevel selection analysis by including a term accounting for the group phenotype of heterospecifics. We analyzed nest activity as a model social trait common to two species, the lesser kestrel (Falco naumanni) and jackdaw (Corvus monedula), nesting in either single- or mixed-species colonies. By recording reproductive outcome as a measure of relative fitness, our results reveal an asymmetric system wherein only jackdaw breeding performance was affected by the activity phenotypes of both conspecific and heterospecific neighbors. Our model incorporating heterospecific social phenotypes is applicable to animal communities where interacting species share a common social trait, thus allowing an assessment of the selection pressure imposed by interspecific interactions in nature. Finally, we discuss the potential role of ecological limitations accounting for random or preferential assortments among interspecific social phenotypes, and the implications of such processes to community evolution. © 2015 The Author(s).

  1. Self-consistent description of static properties of nuclear deformation from nucleon-nucleon effective interactions

    International Nuclear Information System (INIS)

    Quentin, Philippe.

    1975-01-01

    A self-consistent description of deformed nuclei is presented in the Hartree-Fock approximation after correcting in an approximate but variational way for pairing correlations. Density dependent phenomenological effective interactions have been used, mainly according to the Skyrme's parametrization. Methods in use and various related approximations are reviewed in an extensive way. Calculated nuclei belong to the s-d shell, to the rare earth region, to the two transitional regions before and after the latter region, and to the actinide region. For all these nuclei, calculated deformation properties agree remarkably well with experimental data. Such results are extensively compared with those obtained in the more phenomenological approach due to Strutinsky. Finally the hypotheses formulated by Strutinsky are checked numerically in a systematic way, thus leading to the conclusion of the validity of the Strutinsky method [fr

  2. Bosonization of free Weyl fermions

    Science.gov (United States)

    Marino, E. C.

    2017-03-01

    We generalize the method of bosonization, in its complete form, to a spacetime with 3  +  1 dimensions, and apply it to free Weyl fermion fields, which thereby, can be expressed in terms of a boson field, namely the Kalb-Ramond anti-symmetric tensor gauge field. The result may have interesting consequences both in condensed matter and in particle physics. In the former, the bosonized form of the Weyl chiral currents provides a simple explanation for the angle-dependent magneto-conductance recently observed in materials known as Weyl semimetals. In the latter, conversely, since electrons can be thought of as a combination of left and right Weyl fermions, our result suggests the possibility of a unified description of the elementary particles, which undergo the fundamental interactions, with the mediators of such interactions, namely, the gauge fields. This would fulfill the pioneering attempt of Skyrme, to unify the particles with their interaction mediators (Skyrme 1962 Nucl. Phys. 31 556).

  3. The giant resonances in hot nuclei. Linear response calculations

    International Nuclear Information System (INIS)

    Braghin, F.L.; Vautherin, D.; Abada, A.

    1995-01-01

    The isovector response function of hot nuclear matter is calculated using various effective Skyrme interactions. For Skyrme forces with a small effective mass the strength distribution is found to be nearly independent of temperature, and shows little collective effects. In contrast effective forces with an effective mass close to unity produce at zero temperature sizeable collective effects which disappear at temperatures of a few MeV. The relevance of these results for the saturation of the multiplicity of photons emitted by the giant dipole resonance in hot nuclei observed in recent experiments beyond T = 3 MeV is discussed. (authors). 12 refs., 3 figs

  4. Extended mind and after: socially extended mind and actor-network.

    Science.gov (United States)

    Kono, Tetsuya

    2014-03-01

    The concept of extended mind has been impressively developed over the last 10 years by many philosophers and cognitive scientists. The extended mind thesis (EM) affirms that the mind is not simply ensconced inside the head, but extends to the whole system of brain-body-environment. Recently, some philosophers and psychologists try to adapt the idea of EM to the domain of social cognition research. Mind is socially extended (SEM). However, EM/SEM theory has problems to analyze the interactions among a subject and its surroundings with opposition, antagonism, or conflict; it also tends to think that the environment surrounding the subject is passive or static, and to neglect the power of non-human actants to direct and regulate the human subject. In these points, actor-network theory (ANT) proposed by Latour and Callon is more persuasive, while sharing some important ideas with EM/SEM theory. Actor-network is a hybrid community which is composed of a series of heterogeneous elements, animate and inanimate for a certain period of time. I shall conclude that EM/SEM could be best analyzed as a special case of actor-network. EM/SEM is a system which can be controlled by a human agent alone. In order to understand collective behavior, philosophy and psychology have to study the actor-network in which human individuals are situated.

  5. I. Surface properties of neutron-rich nuclei. II. Pion condensation at finite temperature

    International Nuclear Information System (INIS)

    Kolehmainen, K.A.

    1983-01-01

    In part I, the energy density formalism, the Thomas-Fermi approximation, and Skyrme-type interactions were used to describe the energy density of a semi-infinite slab of neturon-rich nuclear matter at zero temperature. The existence of a drip phase at low proton fractions is allowed in addition to the more dense nuclear phase, and various bulk properties of both phases are found when the system is in equilibrium. The usual definition of the surface energy is extended to apply to the case where drip is present. Assuming a Fermi function type density profile, a constrained variational calculation is performed to determine the neutron and proton surface diffuseness parameters, the thickness of the neutron skin, and the surface energy. Results are obtained for proton fractions reanging from 0.5 (symmetric nuclear matter) to zero (pure neutron matter) for most Skyrme-type interactions in common use. The results are in close agreement with the predictions of the droplet model, as well as with the results of more exact calculations in those cases where the more exact results exist (only for symmetric or nearly symmetric matter in most cases). Significantly different asymmetry dependences for different interactions are found. In part II, several simple but increasingly complex models are used to calculate the threshold for charged pion condensation in neutron-rich nuclear matter at finite temperature. Unlike in mean field theory descriptions of pion condensation, the effects of thermal excitations of the pion field are included. The thermal pion excitations have two important effects: first, to modify the phase diagram qualitatively from that predicted by mean field theory, and second, to make the phase transition to a spatially nonuniform condensed state at finite temperature always first, rather than second, order

  6. Axially deformed solution of the Skyrme-Hartree-Fock-Bogolyubov equations using the transformed harmonic oscillator basis (III) HFBTHO (v3.00): A new version of the program

    Science.gov (United States)

    Perez, R. Navarro; Schunck, N.; Lasseri, R.-D.; Zhang, C.; Sarich, J.

    2017-11-01

    intrinsic densities. In the present version of HFBTHO, the energy density derives either from the zero-range Skyrme or the finite-range Gogny effective two-body interaction between nucleons. Nuclear super-fluidity is treated at the Hartree-Fock-Bogolyubov (HFB) approximation. Constraints on the nuclear shape allows probing the potential energy surface of the nucleus as needed e.g., for the description of shape isomers or fission. The implementation of a local scale transformation of the single-particle basis in which the HFB solutions are expanded provide a tool to properly compute the structure of weakly-bound nuclei. Solution method: The program uses the axial Transformed Harmonic Oscillator (THO) single-particle basis to expand quasiparticle wave functions. It iteratively diagonalizes the Hartree-Fock-Bogolyubov Hamiltonian based on generalized Skyrme-like energy densities and zero-range pairing interactions or the finite-range Gogny force until a self-consistent solution is found. A previous version of the program was presented in M.V. Stoitsov, N. Schunck, M. Kortelainen, N. Michel, H. Nam, E. Olsen, J. Sarich, and S. Wild, Comput. Phys. Commun. 184 (2013) 1592-1604 with much of the formalism presented in the original paper M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring, Comput. Phys. Commun. 167 (2005) 43-63. Additional comments: The user must have access to (i) the LAPACK subroutines DSYEEVR, DSYEVD, DSYTRF and DSYTRI, and their dependencies, which compute eigenvalues and eigenfunctions of real symmetric matrices, (ii) the LAPACK subroutines DGETRI and DGETRF, which invert arbitrary real matrices, and (iii) the BLAS routines DCOPY, DSCAL, DGEMM and DGEMV for double-precision linear algebra (or provide another set of subroutines that can perform such tasks). The BLAS and LAPACK subroutines can be obtained from the Netlib Repository at the University of Tennessee, Knoxville: http://netlib2.cs.utk.edu/.

  7. Exclusion Bounds for Extended Anyons

    Science.gov (United States)

    Larson, Simon; Lundholm, Douglas

    2018-01-01

    We introduce a rigorous approach to the many-body spectral theory of extended anyons, that is quantum particles confined to two dimensions that interact via attached magnetic fluxes of finite extent. Our main results are many-body magnetic Hardy inequalities and local exclusion principles for these particles, leading to estimates for the ground-state energy of the anyon gas over the full range of the parameters. This brings out further non-trivial aspects in the dependence on the anyonic statistics parameter, and also gives improvements in the ideal (non-extended) case.

  8. to view fulltext PDF

    Indian Academy of Sciences (India)

    An accurate determination of the NM incompressibility coefficient, KТС, is needed ... out self-consistent HF calculations with a Skyrme type interaction, the ... On the theoretical side, the experimental data pose a challenge to theory [12] to under ...

  9. Intrinsic-density functionals

    International Nuclear Information System (INIS)

    Engel, J.

    2007-01-01

    The Hohenberg-Kohn theorem and Kohn-Sham procedure are extended to functionals of the localized intrinsic density of a self-bound system such as a nucleus. After defining the intrinsic-density functional, we modify the usual Kohn-Sham procedure slightly to evaluate the mean-field approximation to the functional, and carefully describe the construction of the leading corrections for a system of fermions in one dimension with a spin-degeneracy equal to the number of particles N. Despite the fact that the corrections are complicated and nonlocal, we are able to construct a local Skyrme-like intrinsic-density functional that, while different from the exact functional, shares with it a minimum value equal to the exact ground-state energy at the exact ground-state intrinsic density, to next-to-leading order in 1/N. We briefly discuss implications for real Skyrme functionals

  10. Axially deformed solution of the Skyrme-Hartree-Fock-Bogoliubov equations using the transformed harmonic oscillator basis (II) HFBTHO v2.00d: A new version of the program

    Science.gov (United States)

    Stoitsov, M. V.; Schunck, N.; Kortelainen, M.; Michel, N.; Nam, H.; Olsen, E.; Sarich, J.; Wild, S.

    2013-06-01

    of the transformed harmonic oscillator, which allows for an accurate description of deformation effects and pairing correlations in nuclei arbitrarily close to the particle drip lines. Solution method: The program uses the axial Transformed Harmonic Oscillator (THO) single- particle basis to expand quasi-particle wave functions. It iteratively diagonalizes the Hartree-Fock-Bogoliubov Hamiltonian based on generalized Skyrme-like energy densities and zero-range pairing interactions until a self-consistent solution is found. A previous version of the program was presented in: M.V. Stoitsov, J. Dobaczewski, W. Nazarewicz, P. Ring, Comput. Phys. Commun. 167 (2005) 43-63. Reasons for new version: Version 2.00d of HFBTHO provides a number of new options such as the optional breaking of reflection symmetry, the calculation of axial multipole moments, the finite temperature formalism for the HFB method, optimized multi-constraint calculations, the treatment of odd-even and odd-odd nuclei in the blocking approximation, and the framework for generalized energy density with arbitrary density-dependences. It is also the first version of HFBTHO to contain threading capabilities. Summary of revisions: The modified Broyden method has been implemented, Optional breaking of reflection symmetry has been implemented, The calculation of all axial multipole moments up to λ=8 has been implemented, The finite temperature formalism for the HFB method has been implemented, The linear constraint method based on the approximation of the Random Phase Approximation (RPA) matrix for multi-constraint calculations has been implemented, The blocking of quasi-particles in the Equal Filling Approximation (EFA) has been implemented, The framework for generalized energy density functionals with arbitrary density-dependence has been implemented, Shared memory parallelism via OpenMP pragmas has been implemented. Restrictions: Axial- and time-reversal symmetries are assumed. Unusual features: The user must

  11. Properties of nuclear matter from macroscopic–microscopic mass formulas

    Directory of Open Access Journals (Sweden)

    Ning Wang

    2015-12-01

    Full Text Available Based on the standard Skyrme energy density functionals together with the extended Thomas–Fermi approach, the properties of symmetric and asymmetric nuclear matter represented in two macroscopic–microscopic mass formulas: Lublin–Strasbourg nuclear drop energy (LSD formula and Weizsäcker–Skyrme (WS* formula, are extracted through matching the energy per particle of finite nuclei. For LSD and WS*, the obtained incompressibility coefficients of symmetric nuclear matter are K∞=230±11 MeV and 235±11 MeV, respectively. The slope parameter of symmetry energy at saturation density is L=41.6±7.6 MeV for LSD and 51.5±9.6 MeV for WS*, respectively, which is compatible with the liquid-drop analysis of Lattimer and Lim [4]. The density dependence of the mean-field isoscalar and isovector effective mass, and the neutron–proton effective masses splitting for neutron matter are simultaneously investigated. The results are generally consistent with those from the Skyrme Hartree–Fock–Bogoliubov calculations and nucleon optical potentials, and the standard deviations are large and increase rapidly with density. A better constraint for the effective mass is helpful to reduce uncertainties of the depth of the mean-field potential.

  12. Magnetic interaction between spatially extended superconducting tunnel junctions

    DEFF Research Database (Denmark)

    Grønbech-Jensen, Niels; Samuelsen, Mogens Rugholm

    2002-01-01

    A general description of magnetic interactions between superconducting tunnel junctions is given. The description covers a wide range of possible experimental systems, and we explicitly explore two experimentally relevant limits of coupled junctions. One is the limit of junctions with tunneling...... been considered through arrays of superconducting weak links based on semiconductor quantum wells with superconducting electrodes. We use the model to make direct interpretations of the published experiments and thereby propose that long-range magnetic interactions are responsible for the reported...

  13. On the role of deformed Coulomb potential in fusion using energy ...

    Indian Academy of Sciences (India)

    Fusion probabilities; quadrupole deformation; Skyrme energy density formalism ... interaction time between the colliding nuclei is large and therefore, various features of ... parameters t0, t1, t2, t3 and W0, the values of which can be adjusted for ...

  14. Optical absorption in compact and extended dendrimers

    International Nuclear Information System (INIS)

    Supritz, C.; Engelmann, A.; Reineker, P.

    2005-01-01

    Dendrimers are highly branched molecules, which are expected to be useful, for example, as efficient artificial light harvesting systems, in nano-technological or in medical applications. There are two different classes of dendrimers: compact dendrimers with constant distance between neighboring branching points throughout the macromolecule and extended dendrimers, where this distance increases from the system periphery to the center. We investigate the linear optical absorption spectra of these dendrimer types using the Frenkel exciton concept. The electron-phonon interaction is taken into account by introducing a heat bath that interacts with the exciton in a stochastic manner. We discuss compact dendrimers with equal excitation energies at all molecules, dendrimers with a functionalized core as well as with a whole branch functionalized. Furthermore the line shape of a compact dendrimer is discussed when neighboring molecules at the periphery interact and when all molecules have randomly distributed excitation energies due to disorder. Finally, we discuss two models for extended dendrimers

  15. Extended RPA study of nuclear collective phenomena

    International Nuclear Information System (INIS)

    Drozdz, S.

    1987-01-01

    A fully microscopic study of nuclear collective phenomena is presented within the framework of an extended RPA which includes 1p-1h and 2p-2h excitations in a consistent way. This theory allows us to obtain a very realistic description of various excitation spectra. As a result, a strong evidence of correlation effects beyond mean-field theory emerges. The effective interaction used is a G-matrix derived from the meson-exchange potential. The extended theory introduces also additional correlations which screen the long-large part of the effective interaction. This effect significantly enhances the stability of the ground state against density fluctuations. In this connection a possible importance of relativistic effects is also discussed. 99 refs., 19 figs., 5 tabs. (author)

  16. Extended family and friendship support and suicidality among African Americans.

    Science.gov (United States)

    Nguyen, Ann W; Taylor, Robert Joseph; Chatters, Linda M; Taylor, Harry Owen; Lincoln, Karen D; Mitchell, Uchechi A

    2017-03-01

    This study examined the relationship between informal social support from extended family and friends and suicidality among African Americans. Logistic regression analysis was based on a nationally representative sample of African Americans from the National Survey of American Life (N = 3263). Subjective closeness and frequency of contact with extended family and friends and negative family interaction were examined in relation to lifetime suicide ideation and attempts. Subjective closeness to family and frequency of contact with friends were negatively associated with suicide ideation and attempts. Subjective closeness to friends and negative family interaction were positively associated with suicide ideation and attempts. Significant interactions between social support and negative interaction showed that social support buffers against the harmful effects of negative interaction on suicidality. Findings are discussed in relation to the functions of positive and negative social ties in suicidality.

  17. An Extended Ambient Intelligence Implementation for Enhanced Human-Space Interaction

    NARCIS (Netherlands)

    Liu Cheng, A.; Bier, H.H.

    2016-01-01

    This paper proposes an extended Ambient Intelligence (AmI) solution that expresses intelligence with respect to both Information and Communications Technologies (ICTs) and spatial reconfiguration in the built-environment. With respect to the former, a solution based on a decentralized yet unified

  18. Extended Soliton Solutions in an Effective Action for SU(2 Yang-Mills Theory

    Directory of Open Access Journals (Sweden)

    Nobuyuki Sawado

    2006-01-01

    Full Text Available The Skyrme-Faddeev-Niemi (SFN model which is an O(3 σ model in three dimensional space up to fourth-order in the first derivative is regarded as a low-energy effective theory of SU(2 Yang-Mills theory. One can show from the Wilsonian renormalization group argument that the effective action of Yang-Mills theory recovers the SFN in the infrared region. However, the theory contains an additional fourth-order term which destabilizes the soliton solution. We apply the perturbative treatment to the second derivative term in order to exclude (or reduce the ill behavior of the original action and show that the SFN model with the second derivative term possesses soliton solutions.

  19. Symbolic computation of the Hartree-Fock energy from a chiral EFT three-nucleon interaction at N2LO

    International Nuclear Information System (INIS)

    Gebremariam, B.; Bogner, S.K.; Duguet, T.

    2010-01-01

    We present the first of a two-part Mathematica notebook collection that implements a symbolic approach for the application of the density matrix expansion (DME) to the Hartree-Fock (HF) energy from a chiral effective field theory (EFT) three-nucleon interaction at N 2 LO. The final output from the notebooks is a Skyrme-like energy density functional that provides a quasi-local approximation to the non-local HF energy. In this paper, we discuss the derivation of the HF energy and its simplification in terms of the scalar/vector-isoscalar/isovector parts of the one-body density matrix. Furthermore, a set of steps is described and illustrated on how to extend the approach to other three-nucleon interactions. Program summary: Program title: SymbHFNNN; Catalogue identifier: AEGC v 1 0 ; Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AEGC_v1_0.html; Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland; Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html; No. of lines in distributed program, including test data, etc.: 96 666; No. of bytes in distributed program, including test data, etc.: 378 083; Distribution format: tar.gz; Programming language: Mathematica 7.1; Computer: Any computer running Mathematica 6.0 and later versions; Operating system: Windows Xp, Linux/Unix; RAM: 256 Mb; Classification: 5, 17.16, 17.22; Nature of problem: The calculation of the HF energy from the chiral EFT three-nucleon interaction at N 2 LO involves tremendous spin-isospin algebra. The problem is compounded by the need to eventually obtain a quasi-local approximation to the HF energy, which requires the HF energy to be expressed in terms of scalar/vector-isoscalar/isovector parts of the one-body density matrix. The Mathematica notebooks discussed in this paper solve the latter issue. Solution method: The HF energy from the chiral EFT three-nucleon interaction at N 2 LO is cast into a form suitable for an automatic

  20. Extended Hubbard models for ultracold atoms in optical lattices

    International Nuclear Information System (INIS)

    Juergensen, Ole

    2015-01-01

    In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.

  1. Extended Hubbard models for ultracold atoms in optical lattices

    Energy Technology Data Exchange (ETDEWEB)

    Juergensen, Ole

    2015-06-05

    In this thesis, the phase diagrams and dynamics of various extended Hubbard models for ultracold atoms in optical lattices are studied. Hubbard models are the primary description for many interacting particles in periodic potentials with the paramount example of the electrons in solids. The very same models describe the behavior of ultracold quantum gases trapped in the periodic potentials generated by interfering beams of laser light. These optical lattices provide an unprecedented access to the fundamentals of the many-particle physics that govern the properties of solid-state materials. They can be used to simulate solid-state systems and validate the approximations and simplifications made in theoretical models. This thesis revisits the numerous approximations underlying the standard Hubbard models with special regard to optical lattice experiments. The incorporation of the interaction between particles on adjacent lattice sites leads to extended Hubbard models. Offsite interactions have a strong influence on the phase boundaries and can give rise to novel correlated quantum phases. The extended models are studied with the numerical methods of exact diagonalization and time evolution, a cluster Gutzwiller approximation, as well as with the strong-coupling expansion approach. In total, this thesis demonstrates the high relevance of beyond-Hubbard processes for ultracold atoms in optical lattices. Extended Hubbard models can be employed to tackle unexplained problems of solid-state physics as well as enter previously inaccessible regimes.

  2. Third-order particle-hole ring diagrams with contact-interactions and one-pion exchange

    Energy Technology Data Exchange (ETDEWEB)

    Kaiser, N. [Technische Universitaet Muenchen, Physik-Department T39, Garching (Germany)

    2017-05-15

    The third-order particle-hole ring diagrams are evaluated for a NN-contact interaction of the Skyrme type. The pertinent four-loop coefficients in the energy per particle anti E(k{sub f}) ∝ k{sub f}{sup 5+2n} are reduced to double integrals over cubic expressions in Euclidean polarization functions. Dimensional regularization of divergent integrals is performed by subtracting power divergences and the validity of this method is checked against the known analytical results at second order. The complete O(p{sup 2}) NN-contact interaction is obtained by adding two tensor terms and their third-order ring contributions are also calculated in detail. The third-order ring energy arising from long-range 1π-exchange is computed and it is found that direct and exchange contributions are all attractive. The very large size of the three-ring energy due to point-like 1π-exchange, anti E(k{sub f0}) ≅ -92 MeV at saturation density, is however in no way representative for that of realistic chiral NN-potentials. Moreover, the third-order (particle-particle and hole-hole) ladder diagrams are evaluated with the full O(p{sup 2}) contact interaction, and the simplest three-ring contributions to the isospin-asymmetry energy A(k{sub f}) ∝ k{sub f}{sup 5} are studied. (orig.)

  3. Theoretical estimates of supernova-neutrino cross sections for the stable even-even lead isotopes: Charged-current reactions

    Science.gov (United States)

    Almosly, W.; Carlsson, B. G.; Suhonen, J.; Toivanen, J.; Ydrefors, E.

    2016-10-01

    A detailed study of the charged-current supernova electron neutrino and electron antineutrino scattering off the stable even-mass lead isotopes A =204 , 206, and 208 is reported in this work. The proton-neutron quasiparticle random-phase approximation (pnQRPA) is adopted to construct the nuclear final and initial states. Three different Skyrme interactions are tested for their isospin and spin-isospin properties and then applied to produce (anti)neutrino-nucleus scattering cross sections for (anti)neutrino energies below 80 MeV. Realistic estimates of the nuclear responses to supernova (anti)neutrinos are computed by folding the computed cross sections with a two-parameter Fermi-Dirac distribution of the electron (anti)neutrino energies. The computed cross sections are compared with earlier calculations and the analyses are extended to take into account the effects coming from the neutrino oscillations.

  4. An extended hybrid density functional (X3LYP) with improved descriptions of nonbond interactions and thermodynamic properties of molecular systems

    OpenAIRE

    Xu, Xin; Zhang, Qingsong; Muller, Richard P.; Goddard, William A., III

    2005-01-01

    We derive here the form for the exact exchange energy density for a density that decays with Gaussian-type behavior at long range. This functional is intermediate between the B88 and the PW91 exchange functionals. Using this modified functional to match the form expected for Gaussian densities, we propose the X3LYP extended functional. We find that X3LYP significantly outperforms Becke three parameter Lee–Yang–Parr (B3LYP) for describing van der Waals and hydrogen bond interactions, while per...

  5. Top quark rare decays via loop-induced FCNC interactions in extended mirror fermion model

    Science.gov (United States)

    Hung, P. Q.; Lin, Yu-Xiang; Nugroho, Chrisna Setyo; Yuan, Tzu-Chiang

    2018-02-01

    Flavor changing neutral current (FCNC) interactions for a top quark t decays into Xq with X represents a neutral gauge or Higgs boson, and q a up- or charm-quark are highly suppressed in the Standard Model (SM) due to the Glashow-Iliopoulos-Miami mechanism. Whilst current limits on the branching ratios of these processes have been established at the order of 10-4 from the Large Hadron Collider experiments, SM predictions are at least nine orders of magnitude below. In this work, we study some of these FCNC processes in the context of an extended mirror fermion model, originally proposed to implement the electroweak scale seesaw mechanism for non-sterile right-handed neutrinos. We show that one can probe the process t → Zc for a wide range of parameter space with branching ratios varying from 10-6 to 10-8, comparable with various new physics models including the general two Higgs doublet model with or without flavor violations at tree level, minimal supersymmetric standard model with or without R-parity, and extra dimension model.

  6. Extended emission-line regions in active galaxies

    International Nuclear Information System (INIS)

    Hutchings, J.B.; Hickson, P.

    1988-01-01

    Long-slit spectra of four active galaxies in the redshift range 0.06-0.10 are presented. Two have interacting companions. Spectra of the galaxies show extended narrow emission lines in all cases. Continuum color changes, emision-line ratio changes, and velocity changes with 1 arcsec resolution can be detected. Relative velocities between AGN and companion galaxies are also given. These objects appear to lie in galaxies in which there is considerable star-formation activity, and very extended line emision. 20 references

  7. Research in theoretical nuclear physics

    International Nuclear Information System (INIS)

    Liu, Keh-Fei.

    1989-01-01

    This paper discusses: the role of nuclear binding in EMC effect; skyrmion quantization and phenomenology; lattice gauge Monte Carlo calculations; identification of tensor glueball; evidence of mesoniums in bar pm annihilation and γγ reactions; Skyrme-Landau parameterization of effective NN interactions; and quark-gluon plamsa

  8. Pellet Cladding Mechanical Interaction Modeling Using the Extended Finite Element Method

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, Benjamin W.; Jiang, Wen; Dolbow, John E.; Peco, Christian

    2016-09-01

    As a brittle material, the ceramic UO2 used as light water reactor fuel experiences significant fracturing throughout its life, beginning with the first rise to power of fresh fuel. This has multiple effects on the thermal and mechanical response of the fuel/cladding system. One such effect that is particularly important is that when there is mechanical contact between the fuel and cladding, cracks that extending from the outer surface of the fuel into the volume of the fuel cause elevated stresses in the adjacent cladding, which can potentially lead to cladding failure. Modeling the thermal and mechanical response of the cladding in the vicinity of these surface-breaking cracks in the fuel can provide important insights into this behavior to help avoid operating conditions that could lead to cladding failure. Such modeling has traditionally been done in the context of finite-element-based fuel performance analysis by modifying the fuel mesh to introduce discrete cracks. While this approach is effective in capturing the important behavior at the fuel/cladding interface, there are multiple drawbacks to explicitly incorporating the cracks in the finite element mesh. Because the cracks are incorporated in the original mesh, the mesh must be modified for cracks of specified location and depth, so it is difficult to account for crack propagation and the formation of new cracks at other locations. The extended finite element method (XFEM) has emerged in recent years as a powerful method to represent arbitrary, evolving, discrete discontinuities within the context of the finite element method. Development work is underway by the authors to implement XFEM in the BISON fuel performance code, and this capability has previously been demonstrated in simulations of fracture propagation in ceramic nuclear fuel. These preliminary demonstrations have included only the fuel, and excluded the cladding for simplicity. This paper presents initial results of efforts to apply XFEM to

  9. Extended defects and hydrogen interactions in ion implanted silicon

    Science.gov (United States)

    Rangan, Sanjay

    The structural and electrical properties of extended defects generated because of ion implantation and the interaction of hydrogen with these defects have been studied in this work. Two distinct themes have been studied, the first where defects are a detrimental and the second where they are useful. In the first scenario, transient enhanced diffusion of boron has been studied and correlated with defect evolution studies due to silicon and argon ion implants. Spreading resistance profiles (SRP) correlated with deep level transient spectroscopy (DLTS) measurements, reveal that a low anneal temperatures (TED at low anneal temperatures (550°C, the effect of hydrogen is lost, due to its out-diffusion. Moreover, due to catastrophic out-diffusion of hydrogen, additional damage is created resulting in deeper junctions in hydrogenated samples, compared to the non-hydrogenated ones. Comparing defect evolution due to Si and Ar ion implants at different anneal temperatures, while the type of defects is the same in the two cases, their (defect) dissolution occurs at lower anneal temperatures (˜850°C) for Si implants. Dissolution for Ar implants seems to occur at higher anneal temperatures. The difference has been attributed to the increased number of vacancies created by Ar to that of silicon implant. In second aspect, nano-cavity formation due to vacancy agglomeration has been studied by helium ion implantation and furnace anneal, where the effect of He dose, implant energy and anneal time have been processing parameters that have been varied. Cavities are formed only when the localized concentration of He is greater than 3 x 1020 cm-3. While at high implant doses, a continuous cavity layer is formed, at low implant doses a discontinuous layer is observed. The formation of cavities at low doses has been observed for the first time. Variation of anneal times reveal that cavities are initially facetted (for short anneal times) and tend to become spherical when annealed for

  10. Skyrmions and nuclear forces

    International Nuclear Information System (INIS)

    Saito, Sakae

    1987-01-01

    It is shown that the Skyrme model underlied by the large-N c limit of the QCD has a qualitative success in describing the static properties of nucleon and the NN and the πN interactions. Despite this, no medium-range attraction in the central NN potential and no Yukawa πN interaction term are serious. I will talk about how they are. (orig.)

  11. Spectroscopy of heavy nuclei by configuration mixing of symmetry restored mean-field states: shape coexistence in neutron-deficient Pb isotopes

    International Nuclear Information System (INIS)

    Bender, M.; Heenen, P.H.; Bonche, P.; Duguet, T.

    2003-01-01

    We study shape coexistence and low-energy excitation spectra in neutron-deficient Pb isotopes using configuration mixing of angular-momentum and particle-number projected self-consistent mean-field states. The same Skyrme interaction SLy6 is used everywhere in connection with a density-dependent zero-range pairing force. (orig.)

  12. Extended Bose Hubbard model of interacting bosonic atoms in optical lattices: From superfluidity to density waves

    International Nuclear Information System (INIS)

    Mazzarella, G.; Giampaolo, S. M.; Illuminati, F.

    2006-01-01

    For systems of interacting, ultracold spin-zero neutral bosonic atoms, harmonically trapped and subject to an optical lattice potential, we derive an Extended Bose Hubbard (EBH) model by developing a systematic expansion for the Hamiltonian of the system in powers of the lattice parameters and of a scale parameter, the lattice attenuation factor. We identify the dominant terms that need to be retained in realistic experimental conditions, up to nearest-neighbor interactions and nearest-neighbor hoppings conditioned by the on-site occupation numbers. In the mean field approximation, we determine the free energy of the system and study the phase diagram both at zero and at finite temperature. At variance with the standard on site Bose Hubbard model, the zero-temperature phase diagram of the EBH model possesses a dual structure in the Mott insulating regime. Namely, for specific ranges of the lattice parameters, a density wave phase characterizes the system at integer fillings, with domains of alternating mean occupation numbers that are the atomic counterparts of the domains of staggered magnetizations in an antiferromagnetic phase. We show as well that in the EBH model, a zero-temperature quantum phase transition to pair superfluidity is, in principle, possible, but completely suppressed at the lowest order in the lattice attenuation factor. Finally, we determine the possible occurrence of the different phases as a function of the experimentally controllable lattice parameters

  13. Dynamical theory of hadrons based upon extended particle picture

    International Nuclear Information System (INIS)

    Hara, Osamu

    1980-01-01

    An extended particle model of hadrons is discussed on the basis of the assumption that the hadrons correspond to the respective eigenstates of the internal motion of extended bodies which are considered as deformable spheres for simplicity. Such three-dimensionally extended bodies have several remarkable features. The first point is that it is allowed to make half-integer spin. The internal motion of the bodies can be described in terms of quark-like excitons. But the great difference is that these quark-like excitons obey Bose statistics. Therefore in this model, there is no positive reason to introduce the degree of freedom of color at least from the symmetry reason. The second point is that the triality must be restricted to zero. Therefore, the particles with fractional charge do not appear, and the confinement is automatic. It is assumed that the interaction among hadrons takes place due to the coupling of current carried by excited quark-like excitons. All hadron interactions are described in terms of a single coupling constant characterizing the coupling between current and intermediate field. Once the interaction Hamiltonian is given, it is straight forward to calculate scattering amplitude. High energy charge exchange scattering and the decay width of higher resonances can be understood. (Kako, I.)

  14. Tuning thermal conduction via extended defects in graphene

    Science.gov (United States)

    Huang, Huaqing; Xu, Yong; Zou, Xiaolong; Wu, Jian; Duan, Wenhui

    2013-05-01

    Designing materials for desired thermal conduction can be achieved via extended defects. We theoretically demonstrate the concept by investigating thermal transport in graphene nanoribbons (GNRs) with the extended line defects observed by recent experiments. Our nonequilibrium Green's function study excluding phonon-phonon interactions finds that thermal conductance can be tuned over wide ranges (more than 50% at room temperature), by controlling the orientation and the bond configuration of the embedded extended defect. Further transmission analysis reveals that the thermal-conduction tuning is attributed to two fundamentally different mechanisms, via modifying the phonon dispersion and/or tailoring the strength of defect scattering. The finding, applicable to other materials, provides useful guidance for designing materials with desired thermal conduction.

  15. [Theoretical studies in high energy physics]: Final technical report

    International Nuclear Information System (INIS)

    Braaten, E.

    1988-01-01

    The research activities that were supported by this grant were focused primarily on low energy quantum chromodynamics. Significant progress was made in the Skyrme model for baryons, string models for color flux tubes, hadronic decays of the /tau/ lepton, technicolor models of the electroweak interactions, and meson form factors in perturbative QCD

  16. On the thermal properties of polarized nuclear matter

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Montasser, S.S.; Ramadan, S.

    1979-08-01

    The thermal properties of polarized nuclear matter are calculated using Skyrme III interaction modified by Dabrowski for polarized nuclear matter. The temperature dependence of the volume, isospin, spin and spin isospin pressure and energies are determined. The temperature, isospin, spin and spin isospin dependence of the equilibrium Fermi momentum is also discussed. (author)

  17. Root-root interactions: extending our perspective to be more inclusive of the range of theories in ecology and agriculture using in-vivo analyses.

    Science.gov (United States)

    Faget, Marc; Nagel, Kerstin A; Walter, Achim; Herrera, Juan M; Jahnke, Siegfried; Schurr, Ulrich; Temperton, Vicky M

    2013-07-01

    There is a large body of literature on competitive interactions among plants, but many studies have only focused on above-ground interactions and little is known about root-root dynamics between interacting plants. The perspective on possible mechanisms that explain the outcome of root-root interactions has recently been extended to include non-resource-driven mechanisms (as well as resource-driven mechanisms) of root competition and positive interactions such as facilitation. These approaches have often suffered from being static, partly due to the lack of appropriate methodologies for in-situ non-destructive root characterization. Recent studies show that interactive effects of plant neighbourhood interactions follow non-linear and non-additive paths that are hard to explain. Common outcomes such as accumulation of roots mainly in the topsoil cannot be explained solely by competition theory but require a more inclusive theoretical, as well as an improved methodological framework. This will include the question of whether we can apply the same conceptual framework to crop versus natural species. The development of non-invasive methods to dynamically study root-root interactions in vivo will provide the necessary tools to study a more inclusive conceptual framework for root-root interactions. By following the dynamics of root-root interactions through time in a whole range of scenarios and systems, using a wide variety of non-invasive methods, (such as fluorescent protein which now allows us to separately identify the roots of several individuals within soil), we will be much better equipped to answer some of the key questions in root physiology, ecology and agronomy.

  18. Three-dimensional TDHF calculation for reactions of unstable nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ka-Hae; Otsuka, Takaharu [Tokyo Univ. (Japan). Dept. of Physics; Bonche, P.

    1998-07-01

    The fusion is studied for reactions between a stable and an unstable nuclei with neutron skin. The reactions {sup 16,28}O+{sup 40}Ca and {sup 16}O+{sup 16,28}O are taken as examples, and the three-dimensional time-dependent Hartree-Fock method with the full Skyrme interaction is used. It is confirmed that the fusion cross section in low-energy region is sensitive to the interaction used in the calculation. (author)

  19. Fidelity study of superconductivity in extended Hubbard models

    Science.gov (United States)

    Plonka, N.; Jia, C. J.; Wang, Y.; Moritz, B.; Devereaux, T. P.

    2015-07-01

    The Hubbard model with local on-site repulsion is generally thought to possess a superconducting ground state for appropriate parameters, but the effects of more realistic long-range Coulomb interactions have not been studied extensively. We study the influence of these interactions on superconductivity by including nearest- and next-nearest-neighbor extended Hubbard interactions in addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signatures of superconductivity in the ground states through the fidelity metric of quantum information theory. We find that nearest and next-nearest neighbor interactions have thresholds above which they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly due to competing charge fluctuations.

  20. Extended Deterministic Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.

    2016-04-21

    In this paper, we consider mean-field games where the interaction of each player with the mean field takes into account not only the states of the players but also their collective behavior. To do so, we develop a random variable framework that is particularly convenient for these problems. We prove an existence result for extended mean-field games and establish uniqueness conditions. In the last section, we consider the Master Equation and discuss properties of its solutions.

  1. Extended Deterministic Mean-Field Games

    KAUST Repository

    Gomes, Diogo A.; Voskanyan, Vardan K.

    2016-01-01

    In this paper, we consider mean-field games where the interaction of each player with the mean field takes into account not only the states of the players but also their collective behavior. To do so, we develop a random variable framework that is particularly convenient for these problems. We prove an existence result for extended mean-field games and establish uniqueness conditions. In the last section, we consider the Master Equation and discuss properties of its solutions.

  2. Root–root interactions: extending our perspective to be more inclusive of the range of theories in ecology and agriculture using in-vivo analyses

    Science.gov (United States)

    Faget, Marc; Nagel, Kerstin A.; Walter, Achim; Herrera, Juan M.; Jahnke, Siegfried; Schurr, Ulrich; Temperton, Vicky M.

    2013-01-01

    Background There is a large body of literature on competitive interactions among plants, but many studies have only focused on above-ground interactions and little is known about root–root dynamics between interacting plants. The perspective on possible mechanisms that explain the outcome of root–root interactions has recently been extended to include non-resource-driven mechanisms (as well as resource-driven mechanisms) of root competition and positive interactions such as facilitation. These approaches have often suffered from being static, partly due to the lack of appropriate methodologies for in-situ non-destructive root characterization. Scope Recent studies show that interactive effects of plant neighbourhood interactions follow non-linear and non-additive paths that are hard to explain. Common outcomes such as accumulation of roots mainly in the topsoil cannot be explained solely by competition theory but require a more inclusive theoretical, as well as an improved methodological framework. This will include the question of whether we can apply the same conceptual framework to crop versus natural species. Conclusions The development of non-invasive methods to dynamically study root–root interactions in vivo will provide the necessary tools to study a more inclusive conceptual framework for root–root interactions. By following the dynamics of root–root interactions through time in a whole range of scenarios and systems, using a wide variety of non-invasive methods, (such as fluorescent protein which now allows us to separately identify the roots of several individuals within soil), we will be much better equipped to answer some of the key questions in root physiology, ecology and agronomy. PMID:23378521

  3. Dynamical quantum phase transitions in extended transverse Ising models

    Science.gov (United States)

    Bhattacharjee, Sourav; Dutta, Amit

    2018-04-01

    We study the dynamical quantum phase transitions (DQPTs) manifested in the subsequent unitary dynamics of an extended Ising model with an additional three spin interactions following a sudden quench. Revisiting the equilibrium phase diagram of the model, where different quantum phases are characterized by different winding numbers, we show that in some situations the winding number may not change across a gap closing point in the energy spectrum. Although, usually there exists a one-to-one correspondence between the change in winding number and the number of critical time scales associated with DQPTs, we show that the extended nature of interactions may lead to unusual situations. Importantly, we show that in the limit of the cluster Ising model, three critical modes associated with DQPTs become degenerate, thereby leading to a single critical time scale for a given sector of Fisher zeros.

  4. Studying generalised dark matter interactions with extended halo-independent methods

    Energy Technology Data Exchange (ETDEWEB)

    Kahlhoefer, Felix [DESY, Notkestraße 85,D-22607 Hamburg (Germany); Wild, Sebastian [Physik-Department T30d, Technische Universität München,James-Franck-Straße 1, D-85748 Garching (Germany)

    2016-10-20

    The interpretation of dark matter direct detection experiments is complicated by the fact that neither the astrophysical distribution of dark matter nor the properties of its particle physics interactions with nuclei are known in detail. To address both of these issues in a very general way we develop a new framework that combines the full formalism of non-relativistic effective interactions with state-of-the-art halo-independent methods. This approach makes it possible to analyse direct detection experiments for arbitrary dark matter interactions and quantify the goodness-of-fit independent of astrophysical uncertainties. We employ this method in order to demonstrate that the degeneracy between astrophysical uncertainties and particle physics unknowns is not complete. Certain models can be distinguished in a halo-independent way using a single ton-scale experiment based on liquid xenon, while other models are indistinguishable with a single experiment but can be separated using combined information from several target elements.

  5. Studying generalised dark matter interactions with extended halo-independent methods

    International Nuclear Information System (INIS)

    Kahlhoefer, Felix; Wild, Sebastian

    2016-07-01

    The interpretation of dark matter direct detection experiments is complicated by the fact that neither the astrophysical distribution of dark matter nor the properties of its particle physics interactions with nuclei are known in detail. To address both of these issues in a very general way we develop a new framework that combines the full formalism of non-relativistic effective interactions with state-of-the-art halo-independent methods. This approach makes it possible to analyse direct detection experiments for arbitrary dark matter interactions and quantify the goodness-of-fit independent of astrophysical uncertainties. We employ this method in order to demonstrate that the degeneracy between astrophysical uncertainties and particle physics unknowns is not complete. Certain models can be distinguished in a halo-independent way using a single ton-scale experiment based on liquid xenon, while other models are indistinguishable with a single experiment but can be separated using combined information from several target elements.

  6. Electroweak form factors of the Skyrmion

    International Nuclear Information System (INIS)

    Braaten, E.; Sze-Man Tse; Willcox, C.

    1986-01-01

    The electroweak form factors of baryons are studied in the semiclassical approximation to the Skyrme model. General expressions for the form factors are given for arbitrary choices of the Skyrme-model Lagrangian. They are applied to the original two-parameter Skyrme model to compute the electric, magnetic, and axial-vector form factors of the nucleon and the electromagnetic nucleon-Δ transition form factors. The dependence of the form factors on the momentum transfer is compared with phenomenological dipole parametrizations

  7. Theoretical Predictions of Giant Resonances in 94Mo

    Science.gov (United States)

    Golden, Matthew; Bonasera, Giacomo; Shlomo, Shalom

    2016-09-01

    We perform Hartree-Fock based Random Phase Approximation using thirty-three common Skyrme interactions found in the literature for 94Mo. We calculate the strength functions and the Centroid Energies of the Isoscalar Giant Resonances for all multipolarities L0, L1, L2, L3. We compare the calculated Centroid Energies with the experimental value; we also study the Centroid Energy and any correlation it may have with the Nuclear Matter properties of each interaction.

  8. The 132Sn giant dipole resonance as a constraint on nuclear matter properties

    Science.gov (United States)

    Roach, Brandon; Bonasera, Giacomo; Shlomo, Shalom

    2015-10-01

    Nuclear giant resonances provide a sensitive method for constraining the properties of nuclear matter (NM) - many of which have large uncertainties - and thereby improve the nuclear energy-density functional. In this work, self-consistent Hartree-Fock random-phase approximation (HF-RPA) theory was employed to calculate the strength function and energy of the isovector giant dipole resonance (IVGDR) in the doubly-magic 132Sn nucleus. Several (17) commonly-used Skyrme-type interactions were employed. The correlations between the IVGDR centroid energy and each nuclear matter property were explored, as were correlations between the nuclear matter properties and the 132Sn neutron skin thickness rn -rp . Experimental data for the IVGDR centroid energy was used to constrain the symmetry energy density, the symmetry energy, and its first and second derivatives, respectively, of NM. Further investigation, particularly of nuclides far from stability, will be needed to extend the nuclear energy-density functional to the extremes of density and neutron abundance found in neutron stars and astrophysical nucleosynthesis environments.

  9. RKKY interaction between extended magnetic defect lines in graphene

    DEFF Research Database (Denmark)

    Gorman, P. D.; Duffy, J. M.; Power, Stephen

    2014-01-01

    referred to as the Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction. Recent theoretical studies on the RKKY in graphene have been motivated by possible spintronic applications of magnetically doped graphene systems. In this paper a combination of analytic and numerical techniques are used to examine...

  10. Off-shell representations of maximally-extended supersymmetry

    International Nuclear Information System (INIS)

    Cox, P.H.

    1985-01-01

    A general theorem on the necessity of off-shell central charges in representations of maximally-extended supersymmetry (number of spinor charges - 4 x largest spin) is presented. A procedure for building larger and higher-N representations is also explored; a (noninteracting) N=8, maximum spin 2, off-shell representation is achieved. Difficulties in adding interactions for this representation are discussed

  11. Multi baryons with flavors in the Skyrme model

    Energy Technology Data Exchange (ETDEWEB)

    Schat, Carlos L. [Centro Brasileiro de Pesquisas Fisicas (CBPF), Rio de Janeiro, RJ (Brazil); Scoccola, Norberto N. [Comision Nacional de Energia Atomica, Buenos Aires (Argentina). Dept. of Physics

    1999-07-01

    We investigate the possible existence of multi baryons with heavy flavor quantum numbers using the bound state approach to the topological soliton model and the recently proposed approximation for multi skyrmion fields based on rational maps. We use an effective interaction Lagrangian which consistently incorporates both chiral symmetry and the heavy quark symmetry including the corrections up to order {omicron}(1/m{sub Q}). The model predicts some narrow heavy flavored multi baryon states with baryon number four and seven. (author)

  12. Multi baryons with flavors in the Skyrme model

    International Nuclear Information System (INIS)

    Schat, Carlos L.; Scoccola, Norberto N.

    1999-07-01

    We investigate the possible existence of multi baryons with heavy flavor quantum numbers using the bound state approach to the topological soliton model and the recently proposed approximation for multi skyrmion fields based on rational maps. We use an effective interaction Lagrangian which consistently incorporates both chiral symmetry and the heavy quark symmetry including the corrections up to order ο(1/m Q ). The model predicts some narrow heavy flavored multi baryon states with baryon number four and seven. (author)

  13. Extended data acquisition support at GSI

    International Nuclear Information System (INIS)

    Marinescu, D.C.; Busch, F.; Hultzsch, H.; Lowsky, J.; Richter, M.

    1984-01-01

    The Experiment Data Acquisition and Analysis System (EDAS) of GSI, designed to support the data processing associated with nuclear physics experiments, provides three modes of operation: real-time, interactive replay and batch replay. The real-time mode is used for data acquisition and data analysis during an experiment performed at the heavy ion accelerator at GSI. An experiment may be performed either in Stand Alone Mode, using only the Experiment Computers, or in Extended Mode using all computing resources available. The Extended Mode combines the advantages of the real-time response of a dedicated minicomputer with the availability of computing resources in a large computing environment. This paper first gives an overview of EDAS and presents the GSI High Speed Data Acquisition Network. Data Acquisition Modes and the Extended Mode are then introduced. The structure of the system components, their implementation and the functions pertinent to the Extended Mode are presented. The control functions of the Experiment Computer sub-system are discussed in detail. Two aspects of the design of the sub-system running on the mainframe are stressed, namely the use of a multi-user installation for real-time processing and the use of a high level programming language, PL/I, as an implementation language for a system which uses parallel processing. The experience accumulated is summarized in a number of conclusions

  14. Laser-Plasma Modeling Using PERSEUS Extended-MHD Simulation Code for HED Plasmas

    Science.gov (United States)

    Hamlin, Nathaniel; Seyler, Charles

    2017-10-01

    We discuss the use of the PERSEUS extended-MHD simulation code for high-energy-density (HED) plasmas in modeling the influence of Hall and electron inertial physics on laser-plasma interactions. By formulating the extended-MHD equations as a relaxation system in which the current is semi-implicitly time-advanced using the Generalized Ohm's Law, PERSEUS enables modeling of extended-MHD phenomena (Hall and electron inertial physics) without the need to resolve the smallest electron time scales, which would otherwise be computationally prohibitive in HED plasma simulations. We first consider a laser-produced plasma plume pinched by an applied magnetic field parallel to the laser axis in axisymmetric cylindrical geometry, forming a conical shock structure and a jet above the flow convergence. The Hall term produces low-density outer plasma, a helical field structure, flow rotation, and field-aligned current, rendering the shock structure dispersive. We then model a laser-foil interaction by explicitly driving the oscillating laser fields, and examine the essential physics governing the interaction. This work is supported by the National Nuclear Security Administration stewardship sciences academic program under Department of Energy cooperative agreements DE-FOA-0001153 and DE-NA0001836.

  15. Theoretical research in intermediate-energy nuclear physics

    International Nuclear Information System (INIS)

    Seki, R.

    1991-01-01

    This report discusses progress that has been made on the following six problems: (1) final state interactions in (e,e'p) at high momentum transfer; (2) a numerical calculation of skyrmion-antiskyrmion annihilation; (3) pion-nucleus interactions above 0.5 GeV/c; (4) pionic atom anomaly; (5) baryon interactions in Skyrme model; and (6) large N c quantum hydrodynamics. The problems deal with various topics in intermediate-energy nuclear physics. Since we plan to continue the investigation of these problems in the third year, we describe the plan of the investigation together

  16. On the spin saturation and thermal properties of nuclear matter

    International Nuclear Information System (INIS)

    Hassan, M.Y.M.; Ramadan, S.

    1983-12-01

    The binding energy and the incompressibility of nuclear matter with degree of spin saturation D is calculated using the Skyrme interaction and two forms of a velocity dependent effective potential. The effect of the degree of spin saturation D on the thermal properties of nuclear matter is also discussed. It is found that generally the pressure decreases with increasing D. (author)

  17. Deformed nuclear state as a quasiparticle-pair

    International Nuclear Information System (INIS)

    Dobaczewski, J.; Skalski, J.

    1988-01-01

    The deformed nuclear states, obtained in terms of the Hartree-Fock plus BCS method with the Skyrme SIII interaction, are approximated by condensates of the low-angular-momentum quasiparticle and particle pairs. The optimal pairs are determined by the variation after truncation method. The influence of the truncation on the deformation energy and the importance of the core-polarization effects are investigated

  18. Axelrod Model with Extended Conservativeness

    Science.gov (United States)

    Dybiec, Bartłomiej

    2012-11-01

    Similarity of opinions and memory about recent interactions are two main factors determining likelihood of social contacts. Here, we explore the Axelrod model with an extended conservativeness which incorporates not only similarity between individuals but also a preference to the last source of accepted information. The additional preference given to the last source of information increases the initial decay of the number of ideas in the system, changes the character of the phase transition between homogeneous and heterogeneous final states and could increase the number of stable regions (clusters) in the final state.

  19. Density slope of the nuclear symmetry energy from the neutron skin thickness of heavy nuclei

    International Nuclear Information System (INIS)

    Chen Liewen; Ko Che Ming; Xu Jun; Li Baoan

    2010-01-01

    Expressing explicitly the parameters of the standard Skyrme interaction in terms of the macroscopic properties of asymmetric nuclear matter, we show in the Skyrme-Hartree-Fock approach that unambiguous correlations exist between observables of finite nuclei and nuclear matter properties. We find that existing data on neutron skin thickness Δr np of Sn isotopes give an important constraint on the symmetry energy E sym (ρ 0 ) and its density slope L at saturation density ρ 0 . Combining these constraints with those from recent analyses of isospin diffusion and the double neutron/proton ratio in heavy-ion collisions at intermediate energies leads to a more stringent limit on L approximately independent of E sym (ρ 0 ). The implication of these new constraints on the Δr np of 208 Pb as well as the core-crust transition density and pressure in neutron stars is discussed.

  20. The radial shapes of intermediate energy microscopic optical potentials

    International Nuclear Information System (INIS)

    Shen Qingbiao; Wang Chang; Tian Ye; Zhuo Yizhong

    1984-01-01

    The radial shapes of intermediate energy proton microscopic optical potentials of 40 Ca are calculated with nuclear matter approach by Skyrme interactions. The calculated results show that the real central potential in central region of nucleus changes from attractive to repulsive when the energy of incident nucleon is above 150 MeV and appears apparently a 'wine-bottle-bottom' shape in the transition energy region (from 150 MeV to 300 MeV). This tendency is consistent with empirical optical potential obtained through fitting experiments and microscopic optical potential calculated with relativistic mean field theory as well as with the BHF theory. The calculated imaginary part of the microscopic optical potential changes from the dominant surface absorption into the volume absorption and its absolute value become larger as energy increases. The effects of Skyrme force parameters to the radial shape of the calculated microscopic optical potential are analysed in detail

  1. Oscillons in a perturbed signum-Gordon model

    Science.gov (United States)

    Klimas, P.; Streibel, J. S.; Wereszczynski, A.; Zakrzewski, W. J.

    2018-04-01

    We study various properties of a perturbed signum-Gordon model, which has been obtained through the dimensional reduction of the called `first BPS submodel of the Skyrme model'. This study is motivated by the observation that the first BPS submodel of the Skyrme model may be partially responsible for the good qualities of the rational map ansatz approximation to the solutions of the Skyrme model. We investigate the existence, stability and various properties of oscillons and other time-dependent states in this perturbed signum-Gordon model.

  2. Coulomb displacement energies in relativistic and non-relativistic self-consistent models

    International Nuclear Information System (INIS)

    Marcos, S.; Savushkin, L.N.; Giai, N. van.

    1992-03-01

    Coulomb displacement energies in mirror nuclei are comparatively analyzed in Dirac-Hartree and Skyrme-Hartree-Fock models. Using a non-linear effective Lagrangian fitted on ground state properties of finite nuclei, it is found that the predictions of relativistic models are lower than those of Hartree-Fock calculations with Skyrme force. The main sources of reduction are the kinetic energy and the Coulomb-nuclear interference potential. The discrepancy with the data is larger than in the Skyrme-Hartree-Fock case. (author) 24 refs., 3 tabs

  3. Investigation of the properties of the nuclei using on the new generation reactor technology systems

    International Nuclear Information System (INIS)

    Tel, E.; Sahin, H. M.; Yalcin, S.; Altinok, T.; Kaplan, A.; Aydin, A.

    2007-01-01

    The application fields of the fast neutron are Accelerator-Driven subcritical Systems (ADS) for fission energy production and hybrid reactor systems. The technical design hybrid reactor and ADS systems potentialities require the knowledge of a wide range of better data and much effort. Thorium (Th) and Uranium (U) are nuclear fuels in these reactor systems. Lead (Pb), Bismuth (Bi) and Tungsten (W) are the target nuclei in the ADS reactor systems. The Hartree-Fock (H-F) method with an effective interaction with Skyrme forces is widely used for studying the properties of nuclei such as binding energy, Root Mean Square (RMS) charge radii, mass radii, neutron density, proton density, electromagnetic multipole moments, etc. In this study, by using H-F method with interaction Skyrme RMS charge radii, RMS mass radii, neutron density and proton density were calculated for the 2 32Th, 2 38U, 2 07Pb, 2 09Bi and 1 84W isotopes used on the new generation reactor systems. The calculation results of charge radii have been compared with experimental data and obtained other results have been discussed for hybrid and ADS reactor systems

  4. Skyrmions with low binding energies

    Energy Technology Data Exchange (ETDEWEB)

    Gillard, Mike, E-mail: m.n.gillard@leeds.ac.uk; Harland, Derek, E-mail: d.g.harland@leeds.ac.uk; Speight, Martin, E-mail: speight@maths.leeds.ac.uk

    2015-06-15

    Nuclear binding energies are investigated in two variants of the Skyrme model: the first replaces the usual Skyrme term with a term that is sixth order in derivatives, and the second includes a potential that is quartic in the pion fields. Solitons in the first model are shown to deviate significantly from ansätze previously assumed in the literature. The binding energies obtained in both models are lower than those obtained from the standard Skyrme model, and those obtained in the second model are close to the experimental values.

  5. Skyrmions with low binding energies

    International Nuclear Information System (INIS)

    Gillard, Mike; Harland, Derek; Speight, Martin

    2015-01-01

    Nuclear binding energies are investigated in two variants of the Skyrme model: the first replaces the usual Skyrme term with a term that is sixth order in derivatives, and the second includes a potential that is quartic in the pion fields. Solitons in the first model are shown to deviate significantly from ansätze previously assumed in the literature. The binding energies obtained in both models are lower than those obtained from the standard Skyrme model, and those obtained in the second model are close to the experimental values

  6. Skyrmions with low binding energies

    Directory of Open Access Journals (Sweden)

    Mike Gillard

    2015-06-01

    Full Text Available Nuclear binding energies are investigated in two variants of the Skyrme model: the first replaces the usual Skyrme term with a term that is sixth order in derivatives, and the second includes a potential that is quartic in the pion fields. Solitons in the first model are shown to deviate significantly from ansätze previously assumed in the literature. The binding energies obtained in both models are lower than those obtained from the standard Skyrme model, and those obtained in the second model are close to the experimental values.

  7. Theoretical status of weak and electromagnetic interactions

    Energy Technology Data Exchange (ETDEWEB)

    Pandit, L. K.

    1980-07-01

    An extended simple version of the Weinberg gauge model is proposed to bring together weak and electromagnetic interactions under one theory. The essential features of the standard SU/sub 2/ (operating on)U/sub 1/ gauge scheme with four leptons and four quark flavours is recalled. Charged-current and neutral current interactions are described. Non-leptonic decays of strange particles are studied. The treatment is extended to 6-leptons and 6-quark flavours. The short comings of this model are discussed. Speculations on the unification of strong, weak and electromagnetic interactions are made.

  8. The deuteron microscopic optical potential

    International Nuclear Information System (INIS)

    Lu Congshan; Zhang Jingshang; Shen Qingbiao

    1991-01-01

    The two particle Green's function is introduced. When the direct interaction between two nucleons is neglected, the first and second order mass operators of two particles are the sum of those for each particle. The nucleon microscopic optical potential is calculated by applying nuclear matter approximation and effective Skyrme interaction. Then the deuteron microscopic optical potential (DMOP) is calculated by using fold formula. For improvement of the theory, the two particle polarization diagram contribution to the imaginary part of the deuteron microscopic optical potential is studied

  9. Design and optimization of G-band extended interaction klystron with high output power

    Science.gov (United States)

    Li, Renjie; Ruan, Cunjun; Zhang, Huafeng

    2018-03-01

    A ladder-type Extended Interaction Klystron (EIK) with unequal-length slots in the G-band is proposed and designed. The key parameters of resonance cavities working in the π mode are obtained based on the theoretical analysis and 3D simulation. The influence of the device fabrication tolerance on the high-frequency performance is analyzed in detail, and it is found that at least 5 μm of machining precision is required. Thus, the dynamic tuning is required to compensate for the frequency shift and increase the bandwidth. The input and output coupling hole dimensions are carefully designed to achieve high output power along with a broad bandwidth. The effect of surface roughness of the metallic material on the output power has been investigated, and it is proposed that lower surface roughness leads to higher output power. The focusing magnetic field is also optimized to 0.75 T in order to maintain the beam transportation and achieve high output power. With 16.5 kV operating voltage and 0.30 A beam current, the output power of 360 W, the efficiency of 7.27%, the gain of 38.6 dB, and the 3 dB bandwidth of 500 MHz are predicted. The output properties of the EIK show great stability with the effective suppression of oscillation and mode competition. Moreover, small-signal theory analysis and 1D code AJDISK calculations are carried out to verify the results of 3D PIC simulations. A close agreement among the three methods proves the relative validity and the reliability of the designed EIK. Thus, it is indicated that the EIK with unequal-length slots has potential for power improvement and bandwidth extension.

  10. Extended Lagrangian Excited State Molecular Dynamics.

    Science.gov (United States)

    Bjorgaard, J A; Sheppard, D; Tretiak, S; Niklasson, A M N

    2018-02-13

    An extended Lagrangian framework for excited state molecular dynamics (XL-ESMD) using time-dependent self-consistent field theory is proposed. The formulation is a generalization of the extended Lagrangian formulations for ground state Born-Oppenheimer molecular dynamics [Phys. Rev. Lett. 2008 100, 123004]. The theory is implemented, demonstrated, and evaluated using a time-dependent semiempirical model, though it should be generally applicable to ab initio theory. The simulations show enhanced energy stability and a significantly reduced computational cost associated with the iterative solutions of both the ground state and the electronically excited states. Relaxed convergence criteria can therefore be used both for the self-consistent ground state optimization and for the iterative subspace diagonalization of the random phase approximation matrix used to calculate the excited state transitions. The XL-ESMD approach is expected to enable numerically efficient excited state molecular dynamics for such methods as time-dependent Hartree-Fock (TD-HF), Configuration Interactions Singles (CIS), and time-dependent density functional theory (TD-DFT).

  11. The Role of Coulomb Interactions for Spin Crossover Behaviors and Crystal Structural Transformation in Novel Anionic Fe(III Complexes from a π-Extended ONO Ligand

    Directory of Open Access Journals (Sweden)

    Suguru Murata

    2016-05-01

    Full Text Available To investigate the π-extension effect on an unusual negative-charged spin crossover (SCO FeIII complex with a weak N2O4 first coordination sphere, we designed and synthesized a series of anionic FeIII complexes from a π-extended naphthalene derivative ligand. Acetonitrile-solvate tetramethylammonium (TMA salt 1 exhibited an SCO conversion, while acetone-solvate TMA salt 2 was in a high-spin state. The crystal structural analysis for 2 revealed that two-leg ladder-like cation-anion arrays derived from π-stacking interactions between π-ligands of the FeIII complex anion and Coulomb interactions were found and the solvated acetone molecules were in one-dimensional channels between the cation-anion arrays. A desolvation-induced single-crystal-to-single-crystal transformation to desolvate compound 2’ may be driven by Coulomb energy gain. Furthermore, the structural comparison between quasi-polymorphic compounds 1 and 2 revealed that the synergy between Coulomb and π-stacking interactions induces a significant distortion of coordination structure of 2.

  12. Nuclear energy density functional from chiral pion-nucleon dynamics revisited

    Science.gov (United States)

    Kaiser, N.; Weise, W.

    2010-05-01

    We use a recently improved density-matrix expansion to calculate the nuclear energy density functional in the framework of in-medium chiral perturbation theory. Our calculation treats systematically the effects from 1 π-exchange, iterated 1 π-exchange, and irreducible 2 π-exchange with intermediate Δ-isobar excitations, including Pauli-blocking corrections up to three-loop order. We find that the effective nucleon mass M(ρ) entering the energy density functional is identical to the one of Fermi-liquid theory when employing the improved density-matrix expansion. The strength F(ρ) of the ( surface-term as provided by the pion-exchange dynamics is in good agreement with that of phenomenological Skyrme forces in the density region ρ/2short-range spin-orbit interaction. The strength function F(ρ) multiplying the square of the spin-orbit density comes out much larger than in phenomenological Skyrme forces and it has a pronounced density dependence.

  13. Localized-to-extended-states transition below the Fermi level

    Science.gov (United States)

    Tito, M. A.; Pusep, Yu. A.

    2018-05-01

    Time-resolved photoluminescence is employed to examine a transition from localized to extended electron states below the Fermi level in multiple narrow quantum well GaAs/AlGaAs heterostructures, where disorder was generated by interface roughness. Such a transition resembles the metal-insulator transition profoundly investigated by electric transport measurements. An important distinction distinguishes the localized-to-extended-states transition studied here: it takes place below the Fermi level in an electron system with a constant concentration, which implies unchanging Coulomb correlations. Moreover, for such a localized-to-extended-states transition the temperature is shown to be irrelevant. In the insulating regime the magnetic field was found to cause an additional momentum relaxation which considerably enhanced the recombination rate. Thus, we propose a method to explore the evolution of the localized electron states in a system with a fixed disorder and Coulomb interaction.

  14. How Far Can Extended Knowledge Be Extended?

    DEFF Research Database (Denmark)

    Wray, K. Brad

    2018-01-01

    by an artifact, like a notebook or telescope. The chapter illustrates this by applying Pritchard’s account of extended knowledge to collaborating scientists. The beliefs acquired through collaborative research cannot satisfy both of Pritchard’s conditions of creditability. Further, there is evidence......Duncan Pritchard (2010) has developed a theory of extended knowledge based on the notion of extended cognition initially developed by Clark and Chalmers (1998). Pritchard’s account gives a central role to the notion of creditability, which requires the following two conditions to be met: (i...... that scientists are not prepared to take responsibility for the actions of the scientists with whom they collaborate....

  15. Extended Ladder-Type Benzo[ k ]tetraphene-Derived Oligomers

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jongbok [Department of Chemistry, Texas A& M University, 3255 TAMU College Station TX 77843-3255 USA; Li, Huanbin [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Rd Hangzhou 310027 China; Kalin, Alexander J. [Department of Chemistry, Texas A& M University, 3255 TAMU College Station TX 77843-3255 USA; Yuan, Tianyu [Department of Materials Science and Engineering, Texas A& M University, 3003 TAMU College Station TX 77843-3003 USA; Wang, Chenxu [Department of Materials Science and Engineering, Texas A& M University, 3003 TAMU College Station TX 77843-3003 USA; Olson, Troy [Department of Chemistry, Texas A& M University, 3255 TAMU College Station TX 77843-3255 USA; Li, Hanying [MOE Key Laboratory of Macromolecular Synthesis and Functionalization, State Key Laboratory of Silicon Materials, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Rd Hangzhou 310027 China; Fang, Lei [Department of Chemistry, Texas A& M University, 3255 TAMU College Station TX 77843-3255 USA; Department of Materials Science and Engineering, Texas A& M University, 3003 TAMU College Station TX 77843-3003 USA

    2017-10-02

    Well-defined, fused-ring aromatic oligomers represent promising candidates for the fundamental understanding and application of advanced carbon-rich materials, though bottom-up synthesis and structure–property correlation of these compounds remain challenging. In this work, an efficient synthetic route was employed to construct extended benzo[k]tetraphene-derived oligomers with up to 13 fused rings. The molecular and electronic structures of these compounds were clearly elucidated. Precise correlation of molecular sizes and crystallization dynamics was established, thus demonstrating the pivotal balance between intermolecular interaction and molecular mobility for optimized processing of highly ordered solids of these extended conjugated molecules.

  16. Fitting theories of nuclear binding energies

    International Nuclear Information System (INIS)

    Bertsch, G.F.; Sabbey, B.; Uusnaekki, M.

    2005-01-01

    In developing theories of nuclear binding energy such as density-functional theory, the effort required to make a fit can be daunting because of the large number of parameters that may be in the theory and the large number of nuclei in the mass table. For theories based on the Skyrme interaction, the effort can be reduced considerably by using the singular value decomposition to reduce the size of the parameter space. We find that the sensitive parameters define a space of dimension four or so, and within this space a linear refit is adequate for a number of Skyrme parameters sets from the literature. We find no marked differences in the quality of the fit among the SLy4, the BSk4, and SkP parameter sets. The root-mean-square residual error in even-even nuclei is about 1.5 MeV, half the value of the liquid drop model. We also discuss an alternative norm for evaluating mass fits, the Chebyshev norm. It focuses attention on the cases with the largest discrepancies between theory and experiment. We show how it works with the liquid drop model and make some applications to models based on Skyrme energy functionals. The Chebyshev norm seems to be more sensitive to new experimental data than the root-mean-square norm. The method also has the advantage that candidate improvements to the theories can be assessed with computations on smaller sets of nuclei

  17. Covariant Density Functionals: time-odd channel investigated

    International Nuclear Information System (INIS)

    Afanasjev, A. V.; Abusara, H.

    2009-01-01

    The description of exotic nuclear systems and phenomena requires a detailed understanding of all channels of density functional theories. The role of time-odd mean fields, their evidence in experiment, and an accurate description of these fields are subject of current interest. Recent studies advanced the understanding of these fields in energy density functional theories based on the Skyrme force [1,2]. Time-odd mean fields are related to nuclear magnetism in covariant density functional (CDF) theories [3]. They arise from space-like components of vector mesons and Lorentz invariance requires that their coupling strengths are identical to that of time-like components. There were only few limited efforts to understand the role of time-odd mean fields in covariant density functional theory [4,5]. For example, the microscopic role of nuclear magnetism and its impact on rotational properties of nuclei has been studied in Ref. [5]. It is known that time-odd mean fields modify the angular momentum content of the single-particle orbitals and thus the moments of inertia, effective alignments, alignment gains at the band crossings and other physical observables. We aim on more detailed and systematic understanding of the role of time-odd mean fields in covariant density functional theory. This investigation covers both rotating and non-rotating systems. It is shown that contrary to the Skyrme energy density functionals time-odd mean fields of CDF theory always provide additional binding in the systems with broken time-reversal symmetry (rotating nuclei, odd mass nuclei). This additional binding increases with spin and has its maximum exactly at the terminating state [6], where it can reach several MeV. The impact of time-odd mean fields on the properties of rotating systems has been studied in a systematic way (as a function of particle number and deformation) across the nuclear chart [7]. In addition, this contribution extends these studies to non-rotating systems such as

  18. Charge-changing transitions in an extended Lipkin-type model

    International Nuclear Information System (INIS)

    Mihut, I.; Stoica, S.; Suhonen, J.

    1997-01-01

    Charge-changing transition are considered in an extended Lipkin-Meshkov-Glick (LMG) model taking into account explicitly the proton and neutron degrees of freedom. The proton and neutron Hamiltonians are taken to be of the LMG form and in addition, a residual proton-neutron interaction is included. Model charge-changing operators and their action on eigenfunctions of the model Hamiltonian are defined. Transition amplitudes of these operators are calculated using exact eigenfunctions and then the RPA approximation. The best agreement between the two kinds of calculations was obtained when the correlated RPA ground state, instead of the uncorrelated HF ground state, is employed and when the proton-neutron residual interaction besides the proton-proton and neutron-neutron residual interactions is taken into account in the model Hamiltonian

  19. Interaction and Mindreading

    DEFF Research Database (Denmark)

    Michael, John Andrew

    2011-01-01

    In recent years, a number of theorists have developed approaches to social cognition that highlight the centrality of social interaction as opposed to mindreading (e.g. Gallagher and Zahavi 2008; Gallagher 2001, 2007, 2008; Hobson 2002; Reddy 2008; Hutto 2004; De Jaegher 2009; De Jaegher and Di...... Paolo 2007; Fuchs and De Jaegher 2009; De Jaegher, Di Paolo and Gallagher 2010). There are important differences among these approaches, as I will discuss, but they are united by their commitment to the claim that various embodied and extended processes sustain social understanding and interaction...... will give reasons for being skeptical about. I will then present an alternative and moderate version of interactionism, according to which the embodied and extended processes that interactionists emphasize actually complement mindreading and may even contribute as an input to mindreading....

  20. Structure of 2{sub 1,2}{sup +} states in {sup 132,134,136}Te

    Energy Technology Data Exchange (ETDEWEB)

    Severyukhin, A. P., E-mail: sever@theor.jinr.ru; Arsenyev, N. N. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics (Russian Federation); Pietralla, N.; Werner, V. [Technische Universität Darmstadt, Institut für Kernphysik (Germany)

    2016-07-15

    Starting fromthe Skyrme interaction f- together with the volume pairing interaction, we study the g factors for the 2{sub 1,2}{sup +} excitations of {sup 132,134,136}Te. The coupling between one- and two-phonon terms in the wave functions of excited states is taken into account within the finite-rank separable approximation. Using the same set of parameters we describe the available experimental data and give the prediction for {sup 136}Te, g(2{sub 1}{sup +}) = −0.18 in comparison to +0.32 in the case of {sup 132}Te.

  1. Time characteristics for the spinodal decomposition in nuclear matter

    Energy Technology Data Exchange (ETDEWEB)

    Idier, D.; Farine, M.; Benhassine, B.; Remaud, B.; Sebille, F.

    1992-12-31

    Dynamics of the fluctuation growth are studied. Time characteristics are key quantities to determine the conditions under which spinodal decomposition could be observed. Dynamical instabilities arising from fluctuations in spinodal zone for nuclear matter are studied using Skyrme type interactions within a pseudo-particle model. Typical times for cluster formation are extracted. The numerical treatment is based on the Vlasov phase space transport equation. (K.A.) 11 refs.; 7 figs.

  2. Time characteristics for the spinodal decomposition in nuclear matter

    International Nuclear Information System (INIS)

    Idier, D.; Farine, M.; Benhassine, B.; Remaud, B.; Sebille, F.

    1992-01-01

    Dynamics of the fluctuation growth are studied. Time characteristics are key quantities to determine the conditions under which spinodal decomposition could be observed. Dynamical instabilities arising from fluctuations in spinodal zone for nuclear matter are studied using Skyrme type interactions within a pseudo-particle model. Typical times for cluster formation are extracted. The numerical treatment is based on the Vlasov phase space transport equation. (K.A.) 11 refs.; 7 figs

  3. The "extended mind" approach for a new paradigm of psychology.

    Science.gov (United States)

    Kono, Tetsuya

    2010-12-01

    In this paper, I would like to propose the idea of "extended mind" for a new paradigm of psychology. Kohler (Integrative Psychology & Behavioral Science 44:39-57, 2010) correctly pointed out the serious problems of the machine paradigm, and proposed the "organic" view as a new paradigm. But the term "organic" signifying the processes inside the body, is inadequate to express the characteristic of human mind. The recent philosophy of mind suggests that the mind is realized neither only in the brain nor only in the body, but in the whole system of brain-body-environment, namely, in the "extended mind". The characteristic of human mind resides in the interaction with the mediating tools, artifacts, and the humanized environment. We should propose an "extended mind approach" or an "ecological approach to humanized environment" as a new paradigm for a psychology.

  4. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling

    Directory of Open Access Journals (Sweden)

    Miguel Aguilera

    2016-09-01

    Full Text Available The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioural metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioural preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioural flexibility with an equivalent model from the point of view of 'internalist neuroscience'. A statistical characterization of our model and tools from information theory allows us to show how (1 the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2 the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioural patterns that sustain sensorimotor metastable states, and (3 these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling

  5. Extended Neural Metastability in an Embodied Model of Sensorimotor Coupling.

    Science.gov (United States)

    Aguilera, Miguel; Bedia, Manuel G; Barandiaran, Xabier E

    2016-01-01

    The hypothesis that brain organization is based on mechanisms of metastable synchronization in neural assemblies has been popularized during the last decades of neuroscientific research. Nevertheless, the role of body and environment for understanding the functioning of metastable assemblies is frequently dismissed. The main goal of this paper is to investigate the contribution of sensorimotor coupling to neural and behavioral metastability using a minimal computational model of plastic neural ensembles embedded in a robotic agent in a behavioral preference task. Our hypothesis is that, under some conditions, the metastability of the system is not restricted to the brain but extends to the system composed by the interaction of brain, body and environment. We test this idea, comparing an agent in continuous interaction with its environment in a task demanding behavioral flexibility with an equivalent model from the point of view of "internalist neuroscience." A statistical characterization of our model and tools from information theory allow us to show how (1) the bidirectional coupling between agent and environment brings the system closer to a regime of criticality and triggers the emergence of additional metastable states which are not found in the brain in isolation but extended to the whole system of sensorimotor interaction, (2) the synaptic plasticity of the agent is fundamental to sustain open structures in the neural controller of the agent flexibly engaging and disengaging different behavioral patterns that sustain sensorimotor metastable states, and (3) these extended metastable states emerge when the agent generates an asymmetrical circular loop of causal interaction with its environment, in which the agent responds to variability of the environment at fast timescales while acting over the environment at slow timescales, suggesting the constitution of the agent as an autonomous entity actively modulating its sensorimotor coupling with the world. We

  6. Extended objects

    International Nuclear Information System (INIS)

    Creutz, M.

    1976-01-01

    After some disconnected comments on the MIT bag and string models for extended hadrons, I review current understanding of extended objects in classical conventional relativistic field theories and their quantum mechanical interpretation

  7. Extended Moment Formation in Monolayer WS2 Doped with 3d Transition-Metals

    KAUST Repository

    Singh, Nirpendra

    2016-08-30

    First-principles calculations with onsite Coulomb interaction and spin-orbit coupling are used to investigate the electronic structure of monolayer WS2 doped substitutionally with 3d transition-metals. While neither W vacancies nor strain induce spin polarization, we demonstrate an unprecedented tendency to extended moment formation under doping. The extended magnetic moments are characterized by dopant-specific spin density patterns with rich structural features involving the nearest neighbor W and S atoms.

  8. Gauged BPS baby Skyrmions with quantized magnetic flux

    Science.gov (United States)

    Adam, C.; Wereszczynski, A.

    2017-06-01

    A new type of gauged BPS baby Skyrme model is presented, where the derivative term is just the Schroers current (i.e., gauge invariant and conserved version of the topological current) squared. This class of models has a topological bound saturated for solutions of the pertinent Bogomolnyi equations supplemented by a so-called superpotential equation. In contrast to the gauged BPS baby Skyrme models considered previously, the superpotential equation is linear and, hence, completely solvable. Furthermore, the magnetic flux is quantized in units of 2 π , which allows, in principle, to define this theory on a compact manifold without boundary, unlike all gauged baby Skyrme models considered so far.

  9. Improving intermolecular interactions in DFTB3 using extended polarization from chemical-potential equalization

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, Anders S., E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu; Cui, Qiang, E-mail: andersx@chem.wisc.edu, E-mail: cui@chem.wisc.edu [Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706 (United States); Elstner, Marcus [Theoretische Chemische Biologie, Universität Karlsruhe, Kaiserstr. 12, 76131 Karlsruhe (Germany)

    2015-08-28

    Semi-empirical quantum mechanical methods traditionally expand the electron density in a minimal, valence-only electron basis set. The minimal-basis approximation causes molecular polarization to be underestimated, and hence intermolecular interaction energies are also underestimated, especially for intermolecular interactions involving charged species. In this work, the third-order self-consistent charge density functional tight-binding method (DFTB3) is augmented with an auxiliary response density using the chemical-potential equalization (CPE) method and an empirical dispersion correction (D3). The parameters in the CPE and D3 models are fitted to high-level CCSD(T) reference interaction energies for a broad range of chemical species, as well as dipole moments calculated at the DFT level; the impact of including polarizabilities of molecules in the parameterization is also considered. Parameters for the elements H, C, N, O, and S are presented. The Root Mean Square Deviation (RMSD) interaction energy is improved from 6.07 kcal/mol to 1.49 kcal/mol for interactions with one charged species, whereas the RMSD is improved from 5.60 kcal/mol to 1.73 for a set of 9 salt bridges, compared to uncorrected DFTB3. For large water clusters and complexes that are dominated by dispersion interactions, the already satisfactory performance of the DFTB3-D3 model is retained; polarizabilities of neutral molecules are also notably improved. Overall, the CPE extension of DFTB3-D3 provides a more balanced description of different types of non-covalent interactions than Neglect of Diatomic Differential Overlap type of semi-empirical methods (e.g., PM6-D3H4) and PBE-D3 with modest basis sets.

  10. Phase separation and d-wave superconductivity induced by extended electron-exciton interaction

    Energy Technology Data Exchange (ETDEWEB)

    Cheng Ming [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204 (United States)], E-mail: cheng896@hotmail.com; Su Wupei [Department of Physics and Texas Center for Superconductivity, University of Houston, 4800 Calhoun Road, Houston, Texas 77204 (United States)

    2008-12-15

    Using an auxiliary-field quantum Monte Carlo (AFQMC) method, we have studied a two-dimensional tight-binding model in which the conduction electrons can polarize an adjacent layer of molecules through electron-electron repulsion. Calculated average conduction electron density as a function of chemical potential exhibits a clear break characteristic of phase separation. Compared to the noninteracting system, the d-wave pair-field correlation function shows significant enhancement. The simultaneous presence of phase separation and d-wave superconductivity suggests that an effective extended pairing force is induced by the electron-exciton coupling.

  11. Phase separation and d-wave superconductivity induced by extended electron-exciton interaction

    International Nuclear Information System (INIS)

    Cheng Ming; Su Wupei

    2008-01-01

    Using an auxiliary-field quantum Monte Carlo (AFQMC) method, we have studied a two-dimensional tight-binding model in which the conduction electrons can polarize an adjacent layer of molecules through electron-electron repulsion. Calculated average conduction electron density as a function of chemical potential exhibits a clear break characteristic of phase separation. Compared to the noninteracting system, the d-wave pair-field correlation function shows significant enhancement. The simultaneous presence of phase separation and d-wave superconductivity suggests that an effective extended pairing force is induced by the electron-exciton coupling

  12. Propagation of neutrinos in nuclear matter; Effets du milieu sur la propagation des neutrinos dans la matiere nucleaire

    Energy Technology Data Exchange (ETDEWEB)

    Margueron, J

    2001-07-01

    We study the elementary interactions between neutrinos and dense matter in a proto-neutron star. Equations of state obtained with different nuclear effective interactions (Skyrme, Gogny, Relativistic Lagrangians) are first discussed. Then, we characterize their stability in spin and isospin. We derive magnetic susceptibilities for all isospin asymmetry values as a function of Landau parameters G{sup {pi}}{sup {pi}}{sup '}{sub 0} (where {pi}, {pi}' = proton or neutron). From this work, we select a parametrization for each of the 3 effective forces: Sly230b,D1P,NL3. We calculate the pure neutron matter and asymmetric nuclear matter response functions with and without charge exchange, describing nuclear correlations in both approaches: non-relativistic (Hartree-Fock with Skyrme forces, then complete RPA) and relativistic (in the Hartree approximation). At the end, we calculate neutrino mean free paths neutral current and charged current reactions. Comparisons between relativistic and non-relativistic approaches allow us to identify relativistic effects in nuclear matter at densities as low as twice the saturation density. RPA correlations make the medium more transparent to neutrinos compared to free Fermi gas. The importance of the effective mass in mean free path calculations is also shown. (author)

  13. Profiling the extended phenotype of plant pathogens: Challenges in Bacterial Molecular Plant Pathology.

    Science.gov (United States)

    Preston, Gail M

    2017-04-01

    One of the most fundamental questions in plant pathology is what determines whether a pathogen grows within a plant? This question is frequently studied in terms of the role of elicitors and pathogenicity factors in the triggering or overcoming of host defences. However, this focus fails to address the basic question of how the environment in host tissues acts to support or restrict pathogen growth. Efforts to understand this aspect of host-pathogen interactions are commonly confounded by several issues, including the complexity of the plant environment, the artificial nature of many experimental infection systems and the fact that the physiological properties of a pathogen growing in association with a plant can be very different from the properties of the pathogen in culture. It is also important to recognize that the phenotype and evolution of pathogen and host are inextricably linked through their interactions, such that the environment experienced by a pathogen within a host, and its phenotype within the host, is a product of both its interaction with its host and its evolutionary history, including its co-evolution with host plants. As the phenotypic properties of a pathogen within a host cannot be defined in isolation from the host, it may be appropriate to think of pathogens as having an 'extended phenotype' that is the product of their genotype, host interactions and population structure within the host environment. This article reflects on the challenge of defining and studying this extended phenotype, in relation to the questions posed below, and considers how knowledge of the phenotype of pathogens in the host environment could be used to improve disease control. What determines whether a pathogen grows within a plant? What aspects of pathogen biology should be considered in describing the extended phenotype of a pathogen within a host? How can we study the extended phenotype in ways that provide insights into the phenotypic properties of pathogens

  14. Model Predictive Control for Linear Complementarity and Extended Linear Complementarity Systems

    Directory of Open Access Journals (Sweden)

    Bambang Riyanto

    2005-11-01

    Full Text Available In this paper, we propose model predictive control method for linear complementarity and extended linear complementarity systems by formulating optimization along prediction horizon as mixed integer quadratic program. Such systems contain interaction between continuous dynamics and discrete event systems, and therefore, can be categorized as hybrid systems. As linear complementarity and extended linear complementarity systems finds applications in different research areas, such as impact mechanical systems, traffic control and process control, this work will contribute to the development of control design method for those areas as well, as shown by three given examples.

  15. Stochastic population dynamics in spatially extended predator-prey systems

    Science.gov (United States)

    Dobramysl, Ulrich; Mobilia, Mauro; Pleimling, Michel; Täuber, Uwe C.

    2018-02-01

    Spatially extended population dynamics models that incorporate demographic noise serve as case studies for the crucial role of fluctuations and correlations in biological systems. Numerical and analytic tools from non-equilibrium statistical physics capture the stochastic kinetics of these complex interacting many-particle systems beyond rate equation approximations. Including spatial structure and stochastic noise in models for predator-prey competition invalidates the neutral Lotka-Volterra population cycles. Stochastic models yield long-lived erratic oscillations stemming from a resonant amplification mechanism. Spatially extended predator-prey systems display noise-stabilized activity fronts that generate persistent correlations. Fluctuation-induced renormalizations of the oscillation parameters can be analyzed perturbatively via a Doi-Peliti field theory mapping of the master equation; related tools allow detailed characterization of extinction pathways. The critical steady-state and non-equilibrium relaxation dynamics at the predator extinction threshold are governed by the directed percolation universality class. Spatial predation rate variability results in more localized clusters, enhancing both competing species’ population densities. Affixing variable interaction rates to individual particles and allowing for trait inheritance subject to mutations induces fast evolutionary dynamics for the rate distributions. Stochastic spatial variants of three-species competition with ‘rock-paper-scissors’ interactions metaphorically describe cyclic dominance. These models illustrate intimate connections between population dynamics and evolutionary game theory, underscore the role of fluctuations to drive populations toward extinction, and demonstrate how space can support species diversity. Two-dimensional cyclic three-species May-Leonard models are characterized by the emergence of spiraling patterns whose properties are elucidated by a mapping onto a complex

  16. Neutrino propagation in neutron matter and the nuclear equation of state

    CERN Document Server

    Margueron, J; Nguyen Van Giai; Jiang, W

    2001-01-01

    We study the propagation of neutrinos inside dense matter under the conditions prevailing in a proto-neutron star. Equations of state obtained with different nuclear effective interactions (Skyrme type and Gogny type) are first discussed. It is found that for many interactions, spin and/or isospin instabilities occur at densities larger than the saturation density of nuclear matter. From this study we select two representative interactions, SLy230b and D1P. We calculate the response functions in pure neutron matter where nuclear correlations are described at the Hartree-Fock plus RPA level. These response functions allow us to evaluate neutrino mean free paths corresponding to neutral current processes.

  17. Extended causal modeling to assess Partial Directed Coherence in multiple time series with significant instantaneous interactions.

    Science.gov (United States)

    Faes, Luca; Nollo, Giandomenico

    2010-11-01

    The Partial Directed Coherence (PDC) and its generalized formulation (gPDC) are popular tools for investigating, in the frequency domain, the concept of Granger causality among multivariate (MV) time series. PDC and gPDC are formalized in terms of the coefficients of an MV autoregressive (MVAR) model which describes only the lagged effects among the time series and forsakes instantaneous effects. However, instantaneous effects are known to affect linear parametric modeling, and are likely to occur in experimental time series. In this study, we investigate the impact on the assessment of frequency domain causality of excluding instantaneous effects from the model underlying PDC evaluation. Moreover, we propose the utilization of an extended MVAR model including both instantaneous and lagged effects. This model is used to assess PDC either in accordance with the definition of Granger causality when considering only lagged effects (iPDC), or with an extended form of causality, when we consider both instantaneous and lagged effects (ePDC). The approach is first evaluated on three theoretical examples of MVAR processes, which show that the presence of instantaneous correlations may produce misleading profiles of PDC and gPDC, while ePDC and iPDC derived from the extended model provide here a correct interpretation of extended and lagged causality. It is then applied to representative examples of cardiorespiratory and EEG MV time series. They suggest that ePDC and iPDC are better interpretable than PDC and gPDC in terms of the known cardiovascular and neural physiologies.

  18. Quantized TDHF for isoscalar giant quadrupole resonances in spherical nuclei

    International Nuclear Information System (INIS)

    Drozdz, S.; Okolowicz, J.; Ploszajczak, M.; Caurier, E.

    1988-01-01

    The time-dependent Hartree-Fock theory supplemented with the regularity and single-valuedness quantization condition for the gauge invariant component of the wavefunction is applied to the description of the centroid energy and escape width of isoscalar giant quadrupole resonances in 16 O, 40 Ca and 110 Zr. Calculations are performed using the Skyrme SIII effective interaction. An important role of the finite oscillation amplitude in the mean-field dynamics is emphasized. (orig.)

  19. Formation of halo-structures in oxygen isotopes through change of occupancy of levels near Fermi surface

    International Nuclear Information System (INIS)

    Bhattacharya, Rupayan

    2000-01-01

    Recently a new parametrisation of Skyrme interaction has been formulated in order to study the level inversions of A=9 isobars. The role of occupancy of 2s 1/2 level in determining the halo structures of O, N, C, B and Be nuclei was shown. A thorough investigation on the binding energies, rms charge, neutron and matter distribution and occupation probabilities of levels near the Fermi surface has been done in the present work

  20. Perspectives on extended Deterrence

    International Nuclear Information System (INIS)

    Tertrais, Bruno; Yost, David S.; Bunn, Elaine; Lee, Seok-soo; Levite, Ariel e.; Russell, James A.; Hokayem, Emile; Kibaroglu, Mustafa; Schulte, Paul; Thraenert, Oliver; Kulesa, Lukasz

    2010-05-01

    In November 2009, the Foundation for Strategic Research (Fondation pour la recherche strategique, FRS) convened a workshop on 'The Future of extended Deterrence', which included the participation of some of the best experts of this topic, from the United States, Europe, the Middle East and East Asia, as well as French and NATO officials. This document brings together the papers prepared for this seminar. Several of them were updated after the publication in April 2010 of the US Nuclear Posture Review. The seminar was organized with the support of the French Atomic energy Commission (Commissariat a l'energie atomique - CEA). Content: 1 - The future of extended deterrence: a brainstorming paper (Bruno Tertrais); 2 - US extended deterrence in NATO and North-East Asia (David S. Yost); 3 - The future of US extended deterrence (Elaine Bunn); 4 - The future of extended deterrence: a South Korean perspective (Seok-soo Lee); 5 - Reflections on extended deterrence in the Middle East (Ariel e. Levite); 6 - extended deterrence, security guarantees and nuclear weapons: US strategic and policy conundrums in the Gulf (James A. Russell); 7 - extended deterrence in the Gulf: a bridge too far? (Emile Hokayem); 8 - The future of extended deterrence: the case of Turkey (Mustafa Kibaroglu); 9 - The future of extended deterrence: a UK view (Paul Schulte); 10 - NATO and extended deterrence (Oliver Thraenert); 11 - extended deterrence and assurance in Central Europe (Lukasz Kulesa)

  1. Extended Emotions

    DEFF Research Database (Denmark)

    Krueger, Joel; Szanto, Thomas

    2016-01-01

    beyond the neurophysiological confines of organisms; some even argue that emotions can be socially extended and shared by multiple agents. Call this the extended emotions thesis (ExE). In this article, we consider different ways of understanding ExE in philosophy, psychology, and the cognitive sciences...

  2. The dynamics of aloof baby Skyrmions

    Energy Technology Data Exchange (ETDEWEB)

    Salmi, Petja; Sutcliffe, Paul [Department of Mathematical Sciences, Durham University,Durham DH1 3LE (United Kingdom)

    2016-01-25

    The aloof baby Skyrme model is a (2+1)-dimensional theory with solitons that are lightly bound. It is a low-dimensional analogue of a similar Skyrme model in (3+1)-dimensions, where the lightly bound solitons have binding energies comparable to nuclei. A previous study of static solitons in the aloof baby Skyrme model revealed that multi-soliton bound states have a cluster structure, with constituents that preserve their individual identities due to the short-range repulsion and long-range attraction between solitons. Furthermore, there are many different local energy minima that are all well-described by a simple binary species particle model. In this paper we present the first results on soliton dynamics in the aloof baby Skyrme model. Numerical field theory simulations reveal that the lightly bound cluster structure results in a variety of exotic soliton scattering events that are novel in comparison to standard Skyrmion scattering. A dynamical version of the binary species point particle model is shown to provide a good qualitative description of the dynamics.

  3. The dynamics of aloof baby Skyrmions

    Science.gov (United States)

    Salmi, Petja; Sutcliffe, Paul

    2016-01-01

    The aloof baby Skyrme model is a (2+1)-dimensional theory with solitons that are lightly bound. It is a low-dimensional analogue of a similar Skyrme model in (3+1)-dimensions, where the lightly bound solitons have binding energies comparable to nuclei. A previous study of static solitons in the aloof baby Skyrme model revealed that multi-soliton bound states have a cluster structure, with constituents that preserve their individual identities due to the short-range repulsion and long-range attraction between solitons. Furthermore, there are many different local energy minima that are all well-described by a simple binary species particle model. In this paper we present the first results on soliton dynamics in the aloof baby Skyrme model. Numerical field theory simulations reveal that the lightly bound cluster structure results in a variety of exotic soliton scattering events that are novel in comparison to standard Skyrmion scattering. A dynamical version of the binary species point particle model is shown to provide a good qualitative description of the dynamics.

  4. Unified theory of effective interaction

    Energy Technology Data Exchange (ETDEWEB)

    Takayanagi, Kazuo, E-mail: k-takaya@sophia.ac.jp

    2016-09-15

    We present a unified description of effective interaction theories in both algebraic and graphic representations. In our previous work, we have presented the Rayleigh–Schrödinger and Bloch perturbation theories in a unified fashion by introducing the main frame expansion of the effective interaction. In this work, we start also from the main frame expansion, and present various nonperturbative theories in a coherent manner, which include generalizations of the Brandow, Brillouin–Wigner, and Bloch–Horowitz theories on the formal side, and the extended Krenciglowa–Kuo and the extended Lee–Suzuki methods on the practical side. We thus establish a coherent and comprehensive description of both perturbative and nonperturbative theories on the basis of the main frame expansion.

  5. EXTENDED WARRANTY STRATEGIES FOR ONLINE SHOPPING SUPPLY CHAIN WITH COMPETING SUPPLIERS CONSIDERING COMPONENT RELIABILITY

    Institute of Scientific and Technical Information of China (English)

    Xinghong Qin; Qiang Su; Samuel H.Huang

    2017-01-01

    This article presents the issue of extended warranty and management strategies in a three-echelon competing online shopping supply chain with price-and base warranty period-dependent demand.We employ game theory to develop decision models to explore the interactions between component suppliers and the manufacturer,as well as competition between two component suppliers.Products and extended warranty are sold by an online store,which is the leader in the Stackelberg game.Two scenarios are considered:either the manufacturer offers a prepaid extended warranty to customers or doses not.In each scenario,base warranties are assumed to be bundled with products.Our results show that when the manufacturer's repair costs change in a proper range,providing extended warranty can benefit both the manufacturer and the online store;otherwise,the manufacturer has no incentive to offer the extended warranty.Reducing repair costs,improving component reliability,or shortening the base warranty period allows the manufacturer to realize significantly better value of the extended warranty.High component reliability benefits both the manufacturer and the online store,with the manufacturer reaping more benefit.Extending the length of the base warranty adversely affects profit of the manufacturer and the value of the extended warranty.

  6. Strain mediated interaction of adatom dimers

    OpenAIRE

    Kappus, Wolfgang

    2013-01-01

    An earlier model for substrate strain mediated interactions between monomer adatoms is extended to the interaction of monomers with dimers and the interaction of dimers. While monomers (sitting on high symmetric sites) are supposed to create isotropic stress on the substrate, dimers would create anisotropic stress caused by stretching their bond. Resulting interactions are strongly angle dependent and also reflect the elastic anisotropy of the substrate. The applicability of a continuum elast...

  7. BioC-compatible full-text passage detection for protein-protein interactions using extended dependency graph.

    Science.gov (United States)

    Peng, Yifan; Arighi, Cecilia; Wu, Cathy H; Vijay-Shanker, K

    2016-01-01

    There has been a large growth in the number of biomedical publications that report experimental results. Many of these results concern detection of protein-protein interactions (PPI). In BioCreative V, we participated in the BioC task and developed a PPI system to detect text passages with PPIs in the full-text articles. By adopting the BioC format, the output of the system can be seamlessly added to the biocuration pipeline with little effort required for the system integration. A distinctive feature of our PPI system is that it utilizes extended dependency graph, an intermediate level of representation that attempts to abstract away syntactic variations in text. As a result, we are able to use only a limited set of rules to extract PPI pairs in the sentences, and additional rules to detect additional passages for PPI pairs. For evaluation, we used the 95 articles that were provided for the BioC annotation task. We retrieved the unique PPIs from the BioGRID database for these articles and show that our system achieves a recall of 83.5%. In order to evaluate the detection of passages with PPIs, we further annotated Abstract and Results sections of 20 documents from the dataset and show that an f-value of 80.5% was obtained. To evaluate the generalizability of the system, we also conducted experiments on AIMed, a well-known PPI corpus. We achieved an f-value of 76.1% for sentence detection and an f-value of 64.7% for unique PPI detection.Database URL: http://proteininformationresource.org/iprolink/corpora. © The Author(s) 2016. Published by Oxford University Press.

  8. The two-proton shell gap in Sn isotopes

    International Nuclear Information System (INIS)

    Fleischer, P.; Kluepfel, P.; Reinhard, P.-G.; Cornelius, T.; Schramm, S.; Maruhn, J.A.; Buervenich, T.J.

    2004-01-01

    We present an analysis of two-proton shell gaps in Sn isotopes. As theoretical tool we use self-consistent mean-field models, namely the relativistic mean-field model and the Skyrme-Hartree-Fock approach, both with two different pairing forces, a delta interaction (DI) model and a density-dependent delta interaction (DDDI). We investigate the influence of nuclear deformation as well as collective correlations and find that both effects contribute significantly. Moreover, we find a further significant dependence on the pairing force used. The inclusion of deformation plus correlation effects and the use of DDDI pairing provides agreement with the data. (orig.)

  9. Proton-neutron structure of first and second quadrupole excitations of {sup 90}Sr

    Energy Technology Data Exchange (ETDEWEB)

    Severyukhin, A.P. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Dubna State University, Dubna (Russian Federation); Arsenyev, N.N. [Joint Institute for Nuclear Research, Bogoliubov Laboratory of Theoretical Physics, Dubna (Russian Federation); Pietralla, N.; Werner, V. [Technische Universitaet Darmstadt, Institut fuer Kernphysik, Darmstadt (Germany)

    2018-01-15

    Starting from the Skyrme interaction f{sub -} together with the density-dependent pairing interaction, we study the g factors for the 2{sub 1,2}{sup +} excitations of {sup 88,90}Sr and {sup 90,92}Zr. The coupling between one- and two-phonon terms in the wave functions of excited states is taken into account within the finite-rank separable approximation. Using the same set of parameters we describe available experimental data and give the prediction for {sup 90}Sr, g(2{sub 2}{sup +}) = +0.03 in comparison to +0.31 in the case of {sup 92}Zr. (orig.)

  10. Low-energy coupling of individual and collective degrees of freedom: a general microscopic approach

    International Nuclear Information System (INIS)

    Quentin, P.; Meyer, M.

    1988-01-01

    A general microscopic approach of low energy coupling of individual and collective degrees of freedom is presented. The ingredients of a Bohr-Mottelson unified model description are determined consistently from the Skyrme SIII effective interaction, through the adiabatic limit of the time-dependent Hartree-Fock-Bogoliubov approximation. Three specific aspects will be mostly developed: i) the effect of pairing correlations on adiabatic mass parameters and collective dynamics; ii) a consistent coupling of collective and individual degrees of freedom to describe odd nuclei; iii) a study of spectroscopic data in odd-odd nuclei as a test of effective nucleon-nucleon interactions. (author)

  11. Theoretical studies of molecular interactions

    Energy Technology Data Exchange (ETDEWEB)

    Lester, W.A. Jr. [Univ. of California, Berkeley (United States)

    1993-12-01

    This research program is directed at extending fundamental knowledge of atoms and molecules including their electronic structure, mutual interaction, collision dynamics, and interaction with radiation. The approach combines the use of ab initio methods--Hartree-Fock (HF) multiconfiguration HF, configuration interaction, and the recently developed quantum Monte Carlo (MC)--to describe electronic structure, intermolecular interactions, and other properties, with various methods of characterizing inelastic and reaction collision processes, and photodissociation dynamics. Present activity is focused on the development and application of the QMC method, surface catalyzed reactions, and reorientation cross sections.

  12. Deuteron microscopic optical model potential

    International Nuclear Information System (INIS)

    Guo Hairui; Han Yinlu; Shen Qingbiao; Xu Yongli

    2010-01-01

    A deuteron microscopic optical model potential is obtained by the Green function method through nuclear-matter approximation and local-density approximation based on the effective Skyrme interaction. The microscopic optical model potential is used to calculate the deuteron reaction cross sections and the elastic scattering angular distributions for some target nuclei in the mass range 6≤A≤208 with incident deuteron energies up to 200 MeV. The calculated results are compared with the experimental data.

  13. $A$--Dependence of $\\Lambda\\Lambda$ Bond Energies in Double---$\\Lambda$ Hypernuclei

    OpenAIRE

    Lanskoy, D. E.; Lurie, Yu. A.; Shirokov, A. M.

    1995-01-01

    The $A$-dependence of the bond energy $\\Delta B_{\\Lambda\\Lambda}$ of the ${\\Lambda\\Lambda}$ hypernuclear ground states is calculated in a three-body ${\\Lambda + \\Lambda + {^{A}Z}}$ model and in the Skyrme-Hartree-Fock approach. Various ${\\Lambda\\Lambda}$ and $\\Lambda$-nucleus or ${\\Lambda N}$ potentials are used and the sensitivity of $\\Delta B_{\\Lambda\\Lambda}$ to the interactions is discussed. It is shown that in medium and heavy ${\\Lambda\\Lambda}$ hypernuclei, $\\Delta B_{\\Lambda\\Lambda}$ i...

  14. Mobile Collocated Interactions

    DEFF Research Database (Denmark)

    Lucero, Andrés; Clawson, James; Lyons, Kent

    2015-01-01

    Mobile devices such as smartphones and tablets were originally conceived and have traditionally been utilized for individual use. Research on mobile collocated interactions has been looking at situations in which collocated users engage in collaborative activities using their mobile devices, thus...... going from personal/individual toward shared/multiuser experiences and interactions. However, computers are getting smaller, more powerful, and closer to our bodies. Therefore, mobile collocated interactions research, which originally looked at smartphones and tablets, will inevitably include ever......-smaller computers, ones that can be worn on our wrists or other parts of the body. The focus of this workshop is to bring together a community of researchers, designers and practitioners to explore the potential of extending mobile collocated interactions to the use of wearable devices....

  15. Interacting Agegraphic Dark Energy

    OpenAIRE

    Wei, Hao; Cai, Rong-Gen

    2007-01-01

    A new dark energy model, named "agegraphic dark energy", has been proposed recently, based on the so-called K\\'{a}rolyh\\'{a}zy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegrap...

  16. Momentum Distribution Functions in a One-Dimensional Extended Periodic Anderson Model

    Directory of Open Access Journals (Sweden)

    I. Hagymási

    2015-01-01

    Full Text Available We study the momentum distribution of the electrons in an extended periodic Anderson model, where the interaction, Ucf, between itinerant and localized electrons is taken into account. In the symmetric half-filled model, due to the increase of the interorbital interaction, the f electrons become more and more delocalized, while the itinerancy of conduction electrons decreases. Above a certain value of Ucf the f electrons become again localized together with the conduction electrons. In the less than half-filled case, we observe that Ucf causes strong correlations between the f electrons in the mixed valence regime.

  17. Evolutionary reprograming of protein-protein interaction specificity.

    Science.gov (United States)

    Akiva, Eyal; Babbitt, Patricia C

    2015-10-22

    Using mutation libraries and deep sequencing, Aakre et al. study the evolution of protein-protein interactions using a toxin-antitoxin model. The results indicate probable trajectories via "intermediate" proteins that are promiscuous, thus avoiding transitions via non-interactions. These results extend observations about other biological interactions and enzyme evolution, suggesting broadly general principles. Copyright © 2015 Elsevier Inc. All rights reserved.

  18. Adaptive switching of interaction potentials in the time domain: an extended Lagrangian approach tailored to transmute force field to QM/MM simulations and back.

    Science.gov (United States)

    Böckmann, Marcus; Doltsinis, Nikos L; Marx, Dominik

    2015-06-09

    An extended Lagrangian formalism that allows for a smooth transition between two different descriptions of interactions during a molecular dynamics simulation is presented. This time-adaptive method is particularly useful in the context of multiscale simulation as it provides a sound recipe to switch on demand between different hierarchical levels of theory, for instance between ab initio ("QM") and force field ("MM") descriptions of a given (sub)system in the course of a molecular dynamics simulation. The equations of motion can be integrated straightforwardly using the usual propagators, such as the Verlet algorithm. First test cases include a bath of harmonic oscillators, of which a subset is switched to a different force constant and/or equilibrium position, as well as an all-MM to QM/MM transition in a hydrogen-bonded water dimer. The method is then applied to a smectic 8AB8 liquid crystal and is shown to be able to switch dynamically a preselected 8AB8 molecule from an all-MM to a QM/MM description which involves partition boundaries through covalent bonds. These examples show that the extended Lagrangian approach is not only easy to implement into existing code but that it is also efficient and robust. The technique moreover provides easy access to a conserved energy quantity, also in cases when Nosé-Hoover chain thermostatting is used throughout dynamical switching. A simple quadratic driving potential proves to be sufficient to guarantee a smooth transition whose time scale can be easily tuned by varying the fictitious mass parameter associated with the auxiliary variable used to extend the Lagrangian. The method is general and can be applied to time-adaptive switching on demand between two different levels of theory within the framework of hybrid scale-bridging simulations.

  19. Extended icosahedral structures

    CERN Document Server

    Jaric, Marko V

    1989-01-01

    Extended Icosahedral Structures discusses the concepts about crystal structures with extended icosahedral symmetry. This book is organized into six chapters that focus on actual modeling of extended icosahedral crystal structures. This text first presents a tiling approach to the modeling of icosahedral quasiperiodic crystals. It then describes the models for icosahedral alloys based on random connections between icosahedral units, with particular emphasis on diffraction properties. Other chapters examine the glassy structures with only icosahedral orientational order and the extent of tra

  20. Sectoral patterns of interactive learning : an empirical exploration using an extended resource based model

    NARCIS (Netherlands)

    Meeus, M.T.H.; Oerlemans, L.A.G.; Hage, J.

    1999-01-01

    This paper pursues the development of a theoretical framework that explains interactive learning between innovating firms and external actors in the knowledge infrastructure and the production chain. The research question is: what kinds of factors explain interactive learning of innovating firms

  1. Fission barriers of two odd-neutron heavy nuclei

    International Nuclear Information System (INIS)

    Koh, Meng-Hock; Bonneau, L.; Nhan Hao, T. V.; Duc, Dao Duy; Quentin, P.

    2015-01-01

    The fission barriers of two odd-neutron heavy odd nuclei,namely the 235 U and 239 Pu isotopes have been calculated within a self-consistent Hartree-Fock-plus-BCS approach with blocking. A Skyrme nucleon-nucleon effective interaction has been used together with a seniority force to describe pairing correlations. A full account of the genuine time-reversal symmetry breaking due to the presence of an unpaired nucleon has been incorporated at the mean field level. The SIII and SkM* parametrizations of the Skyrme interaction have been retained as well as for a part a newer parametrization, SLy5*. The seniority force parameters have been fitted to reproduce experimental odd-even mass differences in the actinide region. To assess the relevance of our calculated fission barrier distribution (as a function of the quantum numbers), we have studied the quality of our results with respect to the spectroscopy of band heads (for configurations deemed to be a pure single particle character) in the ground and fission isomeric states. Fission barriers of the considered odd nuclei have been compared with what is obtained for their even-even neighbouring isotopes (namely 234 U and 236 U, 238 Pu and 240 Pu respectively) to determine the so-called specialization energies. Various corrections and associated uncertainties have been discussed in order to compare our results with available data

  2. Low-lying electric-dipole strengths of Ca, Ni, and Sn isotopes imprinted on total reaction cross sections

    Science.gov (United States)

    Horiuchi, W.; Hatakeyama, S.; Ebata, S.; Suzuki, Y.

    2017-08-01

    Low-lying electric-dipole (E 1 ) strength of a neutron-rich nucleus contains information on neutron-skin thickness, deformation, and shell evolution. We discuss the possibility of making use of total reaction cross sections on 40Ca, 120Sn, and 208Pb targets to probe the E 1 strength of neutron-rich Ca, Ni, and Sn isotopes. They exhibit large enhancement of the E 1 strength at neutron number N >28 , 50, and 82, respectively, due to a change of the single-particle orbits near the Fermi surface participating in the transitions. The density distributions and the electric-multipole strength functions of those isotopes are calculated by the Hartree-Fock+BCS and the canonical-basis-time-dependent-Hartree-Fock-Bogoliubov methods, respectively, using three kinds of Skyrme-type effective interaction. The nuclear and Coulomb breakup processes are respectively described with the Glauber model and the equivalent photon method in which the effect of finite-charge distribution is taken into account. The three Skyrme interactions give different results for the total reaction cross sections because of different Coulomb breakup contributions. The contribution of the low-lying E 1 strength is amplified when the low-incident energy is chosen. With an appropriate choice of the incident energy and target nucleus, the total reaction cross section can be complementary to the Coulomb excitation for analyzing the low-lying E 1 strength of unstable nuclei.

  3. Influence of Elastic Anisotropy on Extended Dislocation Nodes

    Energy Technology Data Exchange (ETDEWEB)

    Pettersson, B

    1971-09-15

    The interaction forces between the partial dislocations forming an extended dislocation node are calculated using elasticity theory for anisotropic media.s are carried out for nodes of screw, edge and mixed character in Ag, which has an anisotropy ratio A equal to 3, and in a hypothetic material with A = 1 and the same shear modulus as Ag. The results are compared with three previous theories using isotropic elasticity theory. As expected, in Ag the influence of anisotropy is of the same order as the uncertainty due to the dislocation core energy

  4. Analytical mass formula and nuclear surface properties in the ETF approximation. Part II: asymmetric nuclei

    Science.gov (United States)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2016-08-01

    We have recently addressed the problem of the determination of the nuclear surface energy for symmetric nuclei in the framework of the extended Thomas-Fermi (ETF) approximation using Skyrme functionals. We presently extend this formalism to the case of asymmetric nuclei and the question of the surface symmetry energy. We propose an approximate expression for the diffuseness and the surface energy. These quantities are analytically related to the parameters of the energy functional. In particular, the influence of the different equation of state parameters can be explicitly quantified. Detailed analyses of the different energy components (local/non-local, isoscalar/isovector, surface/curvature and higher order) are also performed. Our analytical solution of the ETF integral improves previous models and leads to a precision of better than 200 keV per nucleon in the determination of the nuclear binding energy for dripline nuclei.

  5. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties

    OpenAIRE

    Xu, Xin; Goddard, William A., III

    2004-01-01

    We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee-Yang-Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energ...

  6. Extended-gate organic field-effect transistor for the detection of histamine in water

    Science.gov (United States)

    Minamiki, Tsukuru; Minami, Tsuyoshi; Yokoyama, Daisuke; Fukuda, Kenjiro; Kumaki, Daisuke; Tokito, Shizuo

    2015-04-01

    As part of our ongoing research program to develop health care sensors based on organic field-effect transistor (OFET) devices, we have attempted to detect histamine using an extended-gate OFET. Histamine is found in spoiled or decayed fish, and causes foodborne illness known as scombroid food poisoning. The new OFET device possesses an extended gate functionalized by carboxyalkanethiol that can interact with histamine. As a result, we have succeeded in detecting histamine in water through a shift in OFET threshold voltage. This result indicates the potential utility of the designed OFET devices in food freshness sensing.

  7. Non-Fermi liquid behaviour in an extended Anderson model

    International Nuclear Information System (INIS)

    Liu Yuliang; Su Zhaobin; Yu Lu.

    1996-08-01

    An extended Anderson model, including screening channels (non-hybridizing, but interacting with the local orbit), is studied within the Anderson-Yuval approach, originally devised for the single-chanell Kondo problem. By comparing the perturbation expansions of this model and a generalized resonant level model, the spin-spin correlation functions are calculated which show non-Fermi liquid exponent depending on the strength of the scattering potential. The relevance of this result to experiments in some heavy fermion systems is briefly discussed. (author). 31 refs

  8. Analytical mass formula and nuclear surface properties in the ETF approximation. Part I: symmetric nuclei

    Science.gov (United States)

    Aymard, François; Gulminelli, Francesca; Margueron, Jérôme

    2016-08-01

    The problem of determination of nuclear surface energy is addressed within the framework of the extended Thomas Fermi (ETF) approximation using Skyrme functionals. We propose an analytical model for the density profiles with variationally determined diffuseness parameters. In this first paper, we consider the case of symmetric nuclei. In this situation, the ETF functional can be exactly integrated, leading to an analytical formula expressing the surface energy as a function of the couplings of the energy functional. The importance of non-local terms is stressed and it is shown that they cannot be deduced simply from the local part of the functional, as it was suggested in previous works.

  9. The Vitamin B12-Dependent Photoreceptor AerR Relieves Photosystem Gene Repression by Extending the Interaction of CrtJ with Photosystem Promoters

    Directory of Open Access Journals (Sweden)

    Mingxu Fang

    2017-03-01

    Full Text Available Purple nonsulfur bacteria adapt their physiology to a wide variety of environmental conditions often through the control of transcription. One of the main transcription factors involved in controlling expression of the Rhodobacter capsulatus photosystem is CrtJ, which functions as an aerobic repressor of photosystem genes. Recently, we reported that a vitamin B12 binding antirepressor of CrtJ called AerR is required for anaerobic expression of the photosystem. However, the mechanism whereby AerR regulates CrtJ activity is unclear. In this study, we used a combination of next-generation sequencing and biochemical methods to globally identify genes under control of CrtJ and the role of AerR in controlling this regulation. Our results indicate that CrtJ has a much larger regulon than previously known, with a surprising regulatory function under both aerobic and anaerobic photosynthetic growth conditions. A combination of in vivo chromatin immunoprecipitation-DNA sequencing (ChIP-seq and ChIP-seq and exonuclease digestion (ChIP-exo studies and in vitro biochemical studies demonstrate that AerR forms a 1:2 complex with CrtJ (AerR-CrtJ2 and that this complex binds to many promoters under photosynthetic conditions. The results of in vitro and in vivo DNA binding studies indicate that AerR-CrtJ2 anaerobically forms an extended interaction with the bacteriochlorophyll bchC promoter to relieve repression by CrtJ. This is contrasted by aerobic growth conditions where CrtJ alone functions as an aerobic repressor of bchC expression. These results indicate that the DNA binding activity of CrtJ is modified by interacting with AerR in a redox-regulated manner and that this interaction alters CrtJ’s function.

  10. The eighth national electromagnetics meeting. Extended abstracts

    Energy Technology Data Exchange (ETDEWEB)

    Eloranta, E.; Jokela, K. [eds.

    1998-09-01

    The National Electromagnetics Meeting has been arranged annually since 1991 in Finland. The purpose of the meeting is to convene the persons working with problems of electromagnetics and to enhance the interaction between different research groups in different disciplines. The eighth meeting was held at the Radiation and Nuclear Safety Authority (STUK) August 27, 1998. The meeting is also the national meeting of the URSI (L`Union Radio-Scientifique Internationals)(Commission B: Fields and Waves) and the IEEE MTT/AP/ED Finland Chapter (Institute of Electrical and Electronics Engineers, Inc.). The report includes the extended abstracts of the presentations given in the National Electromagnetics Meeting at STUK. (orig.)

  11. The eighth national electromagnetics meeting. Extended abstracts

    International Nuclear Information System (INIS)

    Eloranta, E.; Jokela, K.

    1998-01-01

    The National Electromagnetics Meeting has been arranged annually since 1991 in Finland. The purpose of the meeting is to convene the persons working with problems of electromagnetics and to enhance the interaction between different research groups in different disciplines. The eighth meeting was held at the Radiation and Nuclear Safety Authority (STUK) August 27, 1998. The meeting is also the national meeting of the URSI (L'Union Radio-Scientifique Internationals)(Commission B: Fields and Waves) and the IEEE MTT/AP/ED Finland Chapter (Institute of Electrical and Electronics Engineers, Inc.). The report includes the extended abstracts of the presentations given in the National Electromagnetics Meeting at STUK. (orig.)

  12. Extended micro objects as dark matter particles

    Science.gov (United States)

    Belotsky, K.; Rubin, S.; Svadkovsky, I.

    2017-05-01

    Models of various forms of composite dark matter (DM) predicted by particle theory and the DM constituents formed by gravity that are not reduced to new elementary particle candidates are discussed. Main attention is paid to a gravitational origin of the DM. The influence of extended mass spectrum of primordial black holes on observational limits is considered. It is shown that non-uniformly deformed extra space can be considered as point-like masses which possess only gravitational interaction with each other and with the ordinary particles. The recently discussed six-dimensional stable wormholes could contribute to the DM. The contribution of dark atoms is also considered.

  13. Extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1993-01-01

    Physicists firmly believe that the differential equations of nature should be hyperbolic so as to exclude action at a distance; yet the equations of irreversible thermodynamics - those of Navier-Stokes and Fourier - are parabolic. This incompatibility between the expectation of physicists and the classical laws of thermodynamics has prompted the formulation of extended thermodynamics. After describing the motifs and early evolution of this new branch of irreversible thermodynamics, the authors apply the theory to mon-atomic gases, mixtures of gases, relativistic gases, and "gases" of phonons and photons. The discussion brings into perspective the various phenomena called second sound, such as heat propagation, propagation of shear stress and concentration, and the second sound in liquid helium. The formal mathematical structure of extended thermodynamics is exposed and the theory is shown to be fully compatible with the kinetic theory of gases. The study closes with the testing of extended thermodynamics thro...

  14. An extended protocol for usability validation of medical devices : Research design and reference model

    NARCIS (Netherlands)

    Schmettow, M.; Schnittker, R.; Schraagen, J.M.

    2017-01-01

    This paper proposes and demonstrates an extended protocol for usability validation testing of medical devices. A review of currently used methods for the usability evaluation of medical devices revealed two main shortcomings. Firstly, the lack of methods to closely trace the interaction sequences

  15. Extended family medicine training

    Science.gov (United States)

    Slade, Steve; Ross, Shelley; Lawrence, Kathrine; Archibald, Douglas; Mackay, Maria Palacios; Oandasan, Ivy F.

    2016-01-01

    Abstract Objective To examine trends in family medicine training at a time when substantial pedagogic change is under way, focusing on factors that relate to extended family medicine training. Design Aggregate-level secondary data analysis based on the Canadian Post-MD Education Registry. Setting Canada. Participants All Canadian citizens and permanent residents who were registered in postgraduate family medicine training programs within Canadian faculties of medicine from 1995 to 2013. Main outcome measures Number and proportion of family medicine residents exiting 2-year and extended (third-year and above) family medicine training programs, as well as the types and numbers of extended training programs offered in 2015. Results The proportion of family medicine trainees pursuing extended training almost doubled during the study period, going from 10.9% in 1995 to 21.1% in 2013. Men and Canadian medical graduates were more likely to take extended family medicine training. Among the 5 most recent family medicine exit cohorts (from 2009 to 2013), 25.9% of men completed extended training programs compared with 18.3% of women, and 23.1% of Canadian medical graduates completed extended training compared with 13.6% of international medical graduates. Family medicine programs vary substantially with respect to the proportion of their trainees who undertake extended training, ranging from a low of 12.3% to a high of 35.1% among trainees exiting from 2011 to 2013. Conclusion New initiatives, such as the Triple C Competency-based Curriculum, CanMEDS–Family Medicine, and Certificates of Added Competence, have emerged as part of family medicine education and credentialing. In acknowledgment of the potential effect of these initiatives, it is important that future research examine how pedagogic change and, in particular, extended training shapes the care family physicians offer their patients. As part of that research it will be important to measure the breadth and uptake of

  16. Scale-invariant extended inflation

    International Nuclear Information System (INIS)

    Holman, R.; Kolb, E.W.; Vadas, S.L.; Wang, Y.

    1991-01-01

    We propose a model of extended inflation which makes use of the nonlinear realization of scale invariance involving the dilaton coupled to an inflaton field whose potential admits a metastable ground state. The resulting theory resembles the Jordan-Brans-Dicke version of extended inflation. However, quantum effects, in the form of the conformal anomaly, generate a mass for the dilaton, thus allowing our model to evade the problems of the original version of extended inflation. We show that extended inflation can occur for a wide range of inflaton potentials with no fine-tuning of dimensionless parameters required. Furthermore, we also find that it is quite natural for the extended-inflation period to be followed by an epoch of slow-rollover inflation as the dilaton settles down to the minimum of its induced potential

  17. The spin-orbit interaction in nuclei

    International Nuclear Information System (INIS)

    Skyrme, T.H.R.

    1994-01-01

    The analysis previously made of the average nuclear potential has been extended to consideration of the spin-orbit interactions. It has not been possible to find a satisfactory two-body interaction consistent with all the data; that suggested by the phase-shift analysis of nucleon-nucleon scattering is just within the region of possible forms. (author). 13 refs, 1 fig

  18. Rational extended thermodynamics

    CERN Document Server

    Müller, Ingo

    1998-01-01

    Ordinary thermodynamics provides reliable results when the thermodynamic fields are smooth, in the sense that there are no steep gradients and no rapid changes. In fluids and gases this is the domain of the equations of Navier-Stokes and Fourier. Extended thermodynamics becomes relevant for rapidly varying and strongly inhomogeneous processes. Thus the propagation of high­ frequency waves, and the shape of shock waves, and the regression of small-scale fluctuation are governed by extended thermodynamics. The field equations of ordinary thermodynamics are parabolic while extended thermodynamics is governed by hyperbolic systems. The main ingredients of extended thermodynamics are • field equations of balance type, • constitutive quantities depending on the present local state and • entropy as a concave function of the state variables. This set of assumptions leads to first order quasi-linear symmetric hyperbolic systems of field equations; it guarantees the well-posedness of initial value problems and f...

  19. Extended higher-spin superalgebras and their realizations in terms of quantum operators

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, M A

    1988-01-01

    The realization of the N = 1 higher-spin superalgebra, proposed earlier by E.S. Fradkin and the author, is found in terms of bosonic quantum operators. The extended higher-spin superalgebras, generalizing ordinary extended supersymmetry with arbitrary N > 1, are constructed by adding fermion quantum operators. Automorphisms, real forms, subalgebras, contractions and invariant forms of these infinite-dimensional superalgebras are studied. The formulation of the higher-spin superalgebras is described in terms of symbols of operators by Berezin. We hope that this formulation will provide in future the powerful tool for constructing the complete solution of the higher-spin problem, the problem of introducing a consistent gravitational interaction for massless higher-spin fields (s > 2).

  20. The circumnuclear environment of nearby non-interacting Seyfert galaxies

    International Nuclear Information System (INIS)

    Pogge, R.W.

    1988-01-01

    An investigation into the physical conditions prevailing in the regions immediately surrounding the active nuclei in 20 nearby, non-interacting Seyfert galaxies is reported. CCD interference-band images isolating the bright emission lines of Hα + [N II] λλ6548, 6583 and [O III] λ5007 have been obtained to search for spatially extended circumnuclear emission regions. Long-slit, low resolution spectrophotometry of interesting cases was used to probe the ionization state of the extended emission regions. For comparison, a CCD Hα + [N II] interference-band imaging survey of a statistically significant sample of 91 bright non-Seyfert spiral galaxies meeting the same non-interaction criteria has been carried out. Only three out of nine Seyfert 1s have spatially extended ionized gas regions compared with eight out of eleven Seyfert 2s. Enhanced circumnuclear star formation is uncommon to both Seyfert 1s and 2s. Extended emission in Seyfert 1s has essentially the same morphology in both Hα + [N II] and [O III] emission. In the Seyfert 2s, the Hα + [N II] and [O III] images show different extended emission morphologies. The [O III] emission regions appear as either one- or two-sided structures, four of which are resolved into two distinct cones of high-ionization gas emanating from the active nucleus. The morphology and ionization of these regions suggest collimation of the nuclear ionizing radiation field. The 91 non-interacting non-Seyfert spiral galaxies exhibit a rich variety of nuclear and circumnuclear emission-line structures ranging from no emission detected to bright stellar nuclei with complicated circumnuclear emission regions extending for many kiloparsecs

  1. Marginal and Interaction Effects in Ordered Response Models

    OpenAIRE

    Debdulal Mallick

    2009-01-01

    In discrete choice models the marginal effect of a variable of interest that is interacted with another variable differs from the marginal effect of a variable that is not interacted with any variable. The magnitude of the interaction effect is also not equal to the marginal effect of the interaction term. I present consistent estimators of both marginal and interaction effects in ordered response models. This procedure is general and can easily be extended to other discrete choice models. I ...

  2. Magnetization plateaux in an extended Shastry-Sutherland model

    International Nuclear Information System (INIS)

    Schmidt, Kai Phillip; Dorier, Julien; Mila, Frederic

    2009-01-01

    We study an extended two-dimensional Shastry-Sutherland model in a magnetic field where besides the usual Heisenberg exchanges of the Shastry-Sutherland model two additional SU(2) invariant couplings are included. Perturbative continous unitary transformations are used to determine the leading order effects of the additional couplings on the pure hopping and on the long-range interactions between the triplons which are the most relevant terms for small magnetization. We then compare the energy of various magnetization plateaux in the classical limit and we discuss the implications for the two-dimensional quantum magnet SrCu 2 (BO 3 ) 2 .

  3. Extended trigonometric Cherednik algebras and nonstationary Schrödinger equations with delta-potentials

    International Nuclear Information System (INIS)

    Hartwig, J. T.; Stokman, J. V.

    2013-01-01

    We realize an extended version of the trigonometric Cherednik algebra as affine Dunkl operators involving Heaviside functions. We use the quadratic Casimir element of the extended trigonometric Cherednik algebra to define an explicit nonstationary Schrödinger equation with delta-potential. We use coordinate Bethe ansatz methods to construct solutions of the nonstationary Schrödinger equation in terms of generalized Bethe wave functions. It is shown that the generalized Bethe wave functions satisfy affine difference Knizhnik-Zamolodchikov equations as functions of the momenta. The relation to the vector valued root system analogs of the quantum Bose gas on the circle with delta-function interactions is indicated.

  4. Self-consistency corrections in effective-interaction calculations

    International Nuclear Information System (INIS)

    Starkand, Y.; Kirson, M.W.

    1975-01-01

    Large-matrix extended-shell-model calculations are used to compute self-consistency corrections to the effective interaction and to the linked-cluster effective interaction. The corrections are found to be numerically significant and to affect the rate of convergence of the corresponding perturbation series. The influence of various partial corrections is tested. It is concluded that self-consistency is an important effect in determining the effective interaction and improving the rate of convergence. (author)

  5. Between brains, bodies and things: tectonoetic awareness and the extended self.

    Science.gov (United States)

    Malafouris, Lambros

    2008-06-12

    This paper presents the possible outline of a framework that will enable the incorporation of material culture into the study of the human self. To this end, I introduce the notions of extended self and tectonoetic awareness. Focusing on the complex interactions between brains, bodies and things and drawing a number of different and usually unconnected threads of evidence from archaeology, philosophy and neuroscience together, I present a view of selfhood as an extended and distributed phenomenon that is enacted across the skin barrier and which thus comprises both neural and extra-neural resources. Finally, I use the example of a gold Mycenaean signet ring to explore how a piece of inanimate matter can be seen (sometimes) as a constitutive and efficacious part of the human self-system.

  6. Microscopical description of isovector collective Osup(+) states in atomic nuclei

    International Nuclear Information System (INIS)

    Chekanov, N.A.

    1983-01-01

    A microscopical consistent description of isobar-analogue states and isovector monopole giant resonances is given in framework of the random-phase theory. The necessary one-particle basis, including the continuous spectrum, is determined by solution of the Hartree-Fock equations with the effective Skyrme-type interaction. An important feature of such a description is an automatical fulfilment of the consistency conditions relating the shell potential, nuclear density and the residual interaction. Effects due to Coulomb interaction in nuclei are investigated, such as the Coulomb shift energies, isospin admixtures to the ground state of the parent nucleus. Transition densities for the analogue states are obtained. Numerical calculations have been performed in the coordinate space for a number of neutron-rich nuclei

  7. Creating robust vocabulary frequently asked questions and extended examples

    CERN Document Server

    Beck, Isabel L

    2008-01-01

    Bringing Words to Life has enlivened the classrooms of hundreds of thousands of teachers. Responding to readers' success stories, practical questions, and requests for extended examples, this ideal volume builds on the groundbreaking work of Bringing Words to Life. The authors present additional tools, tips, and detailed explanations of such questions as which words to teach, when and how to teach them, and how to adapt instruction for English language learners. They provide specific instructional sequences, including assessments, for grades K-2, 3-5, 6-8, and 9-12, as well as interactive less

  8. Properties of sulfur-extended asphalt concrete

    Directory of Open Access Journals (Sweden)

    Gladkikh Vitaliy

    2016-01-01

    Full Text Available Currently, increased functional reliability of asphalt concrete coatings associated with various modifying additives that improve the durability of pavements. Promising builder is a technical sulfur. Asphalt concrete, made using a complex binder consisting of petroleum bitumen and technical sulfur, were calledsSulfur-Extended Asphalt Concrete. Such asphalt concrete, due to changes in the chemical composition of particulate and bitumen, changes the intensity of the interaction at the interface have increased rates of physical and mechanical properties. There was a lack of essential knowledge concerning mechanical properties of the sulfur-bituminous concrete with such an admixture; therefore, we had carried out the necessary examination. It is revealed that a new material satisfies local regulations in terms of compressive and tensile strength, shear resistance, and internal friction.

  9. Exploiting Child-Robot Aesthetic Interaction for a Social Robot

    OpenAIRE

    Lee, Jae-Joon; Kim, Dae-Won; Kang, Bo-Yeong

    2012-01-01

    A social robot interacts and communicates with humans by using the embodied knowledge gained from interactions with its social environment. In recent years, emotion has emerged as a popular concept for designing social robots. Several studies on social robots reported an increase in robot sociability through emotional imitative interactions between the robot and humans. In this paper conventional emotional interactions are extended by exploiting the aesthetic theories that the sociability of ...

  10. Interacting agegraphic dark energy

    International Nuclear Information System (INIS)

    Wei, Hao; Cai, Rong-Gen

    2009-01-01

    A new dark energy model, named ''agegraphic dark energy'', has been proposed recently, based on the so-called Karolyhazy uncertainty relation, which arises from quantum mechanics together with general relativity. In this note, we extend the original agegraphic dark energy model by including the interaction between agegraphic dark energy and pressureless (dark) matter. In the interacting agegraphic dark energy model, there are many interesting features different from the original agegraphic dark energy model and holographic dark energy model. The similarity and difference between agegraphic dark energy and holographic dark energy are also discussed. (orig.)

  11. Phase diagram of an extended Agassi model

    Science.gov (United States)

    García-Ramos, J. E.; Dukelsky, J.; Pérez-Fernández, P.; Arias, J. M.

    2018-05-01

    Background: The Agassi model [D. Agassi, Nucl. Phys. A 116, 49 (1968), 10.1016/0375-9474(68)90482-X] is an extension of the Lipkin-Meshkov-Glick (LMG) model [H. J. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188 (1965), 10.1016/0029-5582(65)90862-X] that incorporates the pairing interaction. It is a schematic model that describes the interplay between particle-hole and pair correlations. It was proposed in the 1960s by D. Agassi as a model to simulate the properties of the quadrupole plus pairing model. Purpose: The aim of this work is to extend a previous study by Davis and Heiss [J. Phys. G: Nucl. Phys. 12, 805 (1986), 10.1088/0305-4616/12/9/006] generalizing the Agassi model and analyze in detail the phase diagram of the model as well as the different regions with coexistence of several phases. Method: We solve the model Hamiltonian through the Hartree-Fock-Bogoliubov (HFB) approximation, introducing two variational parameters that play the role of order parameters. We also compare the HFB calculations with the exact ones. Results: We obtain the phase diagram of the model and classify the order of the different quantum phase transitions appearing in the diagram. The phase diagram presents broad regions where several phases, up to three, coexist. Moreover, there is also a line and a point where four and five phases are degenerated, respectively. Conclusions: The phase diagram of the extended Agassi model presents a rich variety of phases. Phase coexistence is present in extended areas of the parameter space. The model could be an important tool for benchmarking novel many-body approximations.

  12. Microscopic and self-consistent description of nuclear properties by extended generator-coordinate method

    International Nuclear Information System (INIS)

    Didong, M.

    1976-01-01

    The extend generator-coordinated method is discussed and a procedure is given for the solution of the Hill-Wheeler equation. The HFB-theory, the particle-number and angular-momentum projections necessary for symmetry, and the modified surprice delta interaction are discussed. The described procedures are used to calculate 72 Ge, 70 Zn and 74 Ge properties. (BJ) [de

  13. Strong-interaction nonuniversality

    International Nuclear Information System (INIS)

    Volkas, R.R.; Foot, R.; He, X.; Joshi, G.C.

    1989-01-01

    The universal QCD color theory is extended to an SU(3) 1 direct product SU(3) 2 direct product SU(3) 3 gauge theory, where quarks of the ith generation transform as triplets under SU(3)/sub i/ and singlets under the other two factors. The usual color group is then identified with the diagonal subgroup, which remains exact after symmetry breaking. The gauge bosons associated with the 16 broken generators then form two massive octets under ordinary color. The interactions between quarks and these heavy gluonlike particles are explicitly nonuniversal and thus an exploration of their physical implications allows us to shed light on the fundamental issue of strong-interaction universality. Nonuniversality and weak flavor mixing are shown to generate heavy-gluon-induced flavor-changing neutral currents. The phenomenology of these processes is studied, as they provide the major experimental constraint on the extended theory. Three symmetry-breaking scenarios are presented. The first has color breaking occurring at the weak scale, while the second and third divorce the two scales. The third model has the interesting feature of radiatively induced off-diagonal Kobayashi-Maskawa matrix elements

  14. Optimization of parameters for the extended Hueckel method starting from ab-initio atomic calculations

    International Nuclear Information System (INIS)

    Branda, M.M.; Ferullo, R.; Castellani, N.J.

    1990-01-01

    The application of an atomic Hartree-Fock-Slater method is exposed in the present work for the simultaneous obtainment of all parameters used in the extended Hueckel method with charge interaction (IEH): The diagonal elements of the Hamiltonian, the constants of the quadratic relation between. (Author). 16 refs., 3 tabs

  15. Game Mechanics and Bodily Interactions: Designing Interactive Technologies for Sports Training

    DEFF Research Database (Denmark)

    Jensen, Mads Møller

    and enjoyment. Thus, despite being two coexisting research areas, they do not extend or contribute to one another per se. However, bridging this gap by combining skill acquisition knowledge from sports training technologies with motivational game mechanics from bodily games holds great potential for designing...... and developing relevant and engaging training experiences. I term this combination interactive sports training games. This dissertation bridges this gap by exploring how to design and develop bodily interactions that leverage the quality and engagement of sports training by using game mechanics, but also how...... to identify and avoid the pitfalls and challenges that emerge in the process. It further explores how competition can be facilitated in bodily games and how it affects players. These explorations are done by designing, developing and evaluating innovative interactive sports training games. The results...

  16. Extended spider cognition.

    Science.gov (United States)

    Japyassú, Hilton F; Laland, Kevin N

    2017-05-01

    There is a tension between the conception of cognition as a central nervous system (CNS) process and a view of cognition as extending towards the body or the contiguous environment. The centralised conception requires large or complex nervous systems to cope with complex environments. Conversely, the extended conception involves the outsourcing of information processing to the body or environment, thus making fewer demands on the processing power of the CNS. The evolution of extended cognition should be particularly favoured among small, generalist predators such as spiders, and here, we review the literature to evaluate the fit of empirical data with these contrasting models of cognition. Spiders do not seem to be cognitively limited, displaying a large diversity of learning processes, from habituation to contextual learning, including a sense of numerosity. To tease apart the central from the extended cognition, we apply the mutual manipulability criterion, testing the existence of reciprocal causal links between the putative elements of the system. We conclude that the web threads and configurations are integral parts of the cognitive systems. The extension of cognition to the web helps to explain some puzzling features of spider behaviour and seems to promote evolvability within the group, enhancing innovation through cognitive connectivity to variable habitat features. Graded changes in relative brain size could also be explained by outsourcing information processing to environmental features. More generally, niche-constructed structures emerge as prime candidates for extending animal cognition, generating the selective pressures that help to shape the evolving cognitive system.

  17. Urban Interaction and Affective Experience

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Brynskov, Martin

    2008-01-01

    As interactive digital technologies become a still more integrated and complex part of the everyday physical, social and cultural spaces we inhabit, research into these spaces’ dynamics and struc-tures needs to formulate adequate methods of analysis and dis-course. In this position paper we argue...... approach holds potential to address important aspects of the design of such blended digital spaces, extending beyond traditional interaction design. And finally we argue for the importance of construction, i.e. actual interventions of consider-able scale....

  18. Strong enhancement of transport by interaction on contact links

    DEFF Research Database (Denmark)

    Bohr, Dan; Schmitteckert, P.

    2007-01-01

    Strong repulsive interactions within a one-dimensional Fermi system in a two-probe configuration normally lead to a reduced off-resonance conductance. We show that if the repulsive interaction extends to the contact regions, a strong increase of the conductance may occur, even for systems where o...

  19. Exact BPS bound for noncommutative baby Skyrmions

    International Nuclear Information System (INIS)

    Domrin, Andrei; Lechtenfeld, Olaf; Linares, Román; Maceda, Marco

    2013-01-01

    The noncommutative baby Skyrme model is a Moyal deformation of the two-dimensional sigma model plus a Skyrme term, with a group-valued or Grassmannian target. Exact abelian solitonic solutions have been identified analytically in this model, with a singular commutative limit. Inside any given Grassmannian, we establish a BPS bound for the energy functional, which is saturated by these baby Skyrmions. This asserts their stability for unit charge, as we also test in second-order perturbation theory

  20. The rotationally improved Skyrmion, or RISKY

    International Nuclear Information System (INIS)

    Dorey, N.

    1995-01-01

    The perceived inability of the Skyrme model to reproduce pseudovector pion-baryon coupling has come to be known as the ''Yukawa problem.'' In this talk, we review the complete solution to this problem. The solution involves a new configuration known as the rotationally improved Skyrmion, or ''RISKY,'' in which the hedgehog structure is modified by a small quadrupole distortion. We illustrate our ideas both in the Skyrme model and in a simpler model with a global U(l) symmetry

  1. Improving the Performance of Interactive Configuration with Regular String Constraints

    DEFF Research Database (Denmark)

    Hansen, Esben Rune; Tiedemann, Peter

    2008-01-01

    A generalization of the problem of interactive configuration has previously been presented in [1]. This generalization utilized decomposition to extend the standard finite domain interactive configuration framework to deal with unbounded string variables and provided features such as prefix auto...

  2. The interaction between smoking and HLA genes in multiple sclerosis

    DEFF Research Database (Denmark)

    Hedström, Anna Karin; Katsoulis, Michail; Hössjer, Ola

    2017-01-01

    Interactions between environment and genetics may contribute to multiple sclerosis (MS) development. We investigated whether the previously observed interaction between smoking and HLA genotype in the Swedish population could be replicated, refined and extended to include other populations. We us...

  3. Communicative interactions improve visual detection of biological motion.

    Directory of Open Access Journals (Sweden)

    Valeria Manera

    Full Text Available BACKGROUND: In the context of interacting activities requiring close-body contact such as fighting or dancing, the actions of one agent can be used to predict the actions of the second agent. In the present study, we investigated whether interpersonal predictive coding extends to interactive activities--such as communicative interactions--in which no physical contingency is implied between the movements of the interacting individuals. METHODOLOGY/PRINCIPAL FINDINGS: Participants observed point-light displays of two agents (A and B performing separate actions. In the communicative condition, the action performed by agent B responded to a communicative gesture performed by agent A. In the individual condition, agent A's communicative action was substituted with a non-communicative action. Using a simultaneous masking detection task, we demonstrate that observing the communicative gesture performed by agent A enhanced visual discrimination of agent B. CONCLUSIONS/SIGNIFICANCE: Our finding complements and extends previous evidence for interpersonal predictive coding, suggesting that the communicative gestures of one agent can serve as a predictor for the expected actions of the respondent, even if no physical contact between agents is implied.

  4. Extending the robustness and efficiency of artificial compressibility for partitioned fluid-structure interactions

    CSIR Research Space (South Africa)

    Bogaers, Alfred EJ

    2015-01-01

    Full Text Available In this paper we introduce the idea of combining artificial compressibility (AC) with quasi-Newton (QN) methods to solve strongly coupled, fully/quasi-enclosed fluid-structure interaction (FSI) problems. Partitioned, incompressible, FSI based...

  5. Virtual Field and Internal Structure of Half-Dressed Extended Particles

    International Nuclear Information System (INIS)

    Compagno, G.; Persico, F.

    1988-01-01

    A new method is proposed to investigate the internal geometrical structure of an extended particle surrounded by an incomplete virtual dressing field. This method involves analysing the time-dependent virtual field at large distances from the particle, without any direct interaction with the latter. As an example, the pulselike, time-dependent virtual field of an extended QED source is investigated using a model which has a well-known counterpart in meson theory. In the framework of nonrelativistic QED it is shown that, contrary to the case of a point source, the pulse has finite width and height. For the case of a spherically symmetric source, it is explicitly shown that the width and shape of the pulse at distance r from the particle depend on the parameters determining the space structure of the source. It is concluded that the study of the field of half-dressed particles may provide a new method to investigate their internal structure

  6. Strain mediated tri- and quattro- interactions of adatoms

    OpenAIRE

    Kappus, Wolfgang

    2016-01-01

    Lateral interactions of oxygen adatoms derived from first-principles calculations of the O-Pd(100) system had been claimed to include trio- and quattro terms beside pair interactions. This paper is dedicated to extend an earlier model for substrate strain mediated interactions between adatom pairs to include trio- and quattro terms. While monomers (sitting on high symmetric sites) are supposed to create isotropic stress on the substrate, dimers would create anisotropic stress. The requirement...

  7. The Extended Enterprise concept

    DEFF Research Database (Denmark)

    Larsen, Lars Bjørn; Vesterager, Johan; Gobbi, Chiara

    1999-01-01

    This paper provides an overview of the work that has been done regarding the Extended Enterprise concept in the Common Concept team of Globeman 21 including references to results deliverables concerning the development of the Extended Enterprise concept. The first section presents the basic concept...... picture from Globeman21, which illustrates the Globeman21 way of realising the Extended Enterprise concept. The second section presents the Globeman21 EE concept in a life cycle perspective, which to a large extent is based on the thoughts and ideas behind GERAM (ISO/DIS 15704)....

  8. Extended Enterprise performance Management

    NARCIS (Netherlands)

    Bobbink, Maria Lammerdina; Hartmann, Andreas

    2014-01-01

    The allegiance of partnering organisations and their employees to an Extended Enterprise performance is its proverbial sword of Damocles. Literature on Extended Enterprises focuses on collaboration, inter-organizational integration and learning to avoid diminishing or missing allegiance becoming an

  9. Resonances and reactions from mean-field dynamics

    Directory of Open Access Journals (Sweden)

    Stevenson P. D.

    2016-01-01

    Full Text Available The time-dependent version of nuclear density functional theory, using functionals derived from Skyrme interactions, is able to approximately describe nuclear dynamics. We present time-dependent results of calculations of dipole resonances, concentrating on excitations of valence neutrons against a proton plus neutron core in the neutron-rich doubly-magic 132Sn nucleus, and results of collision dynamics, highlighting potential routes to ternary fusion, with the example of a collision of 48Ca+48Ca+208Pb resulting in a compound nucleus of element 120 stable against immediate fission.

  10. Spin ordered phase transitions in neutron matter under the presence of a strong magnetic field

    International Nuclear Information System (INIS)

    Isayev, A.A.; Yang, J.

    2011-01-01

    In dense neutron matter under the presence of a strong magnetic field, considered in the model with the Skyrme effective interaction, there are possible two types of spin ordered states. In one of them the majority of neutron spins are aligned opposite to magnetic field (thermodynamically preferable state), and in other one the majority of spins are aligned along the field (metastable state). The equation of state, incompressibility modulus and velocity of sound are determined in each case with the aim to find the peculiarities allowing to distinguish between two spin ordered phases.

  11. A microscopic study of giant resonances in nuclei near drip lines

    CERN Document Server

    Sagawa, H; Zhang, X Z

    1999-01-01

    We study giant resonances using the self-consistent Hartree-Fock calculation plus the random phase approximation with Skyrme interactions. Including simultaneously both the isoscalar and the isovector correlation the RPA response function is calculated in the coordinate space so as to take properly into account the continuum effect. Giant monopole states are discussed in relation with the nuclear compression modulus of the nuclear matter K sub n sub m. The core polarization charges are also discussed in comparison with recent empirical data in sup 1 sup 0 sup 0 Sn region.

  12. The new isotope 270110 and its decay products 266Hs and 262Sg

    International Nuclear Information System (INIS)

    Hofmann, S.; Hessberger, F.P.; Ackermann, D.

    2000-11-01

    The even-even nucleus 270 110 was synthesized using the reaction 64 Ni + 207 Pb. A total of eight α-decay chains was measured during an irradiation time of seven days. Decay data were obtained for the ground-state and a high spin K isomer. The new nuclei 266 Hs and 262 Sg were identified as daughter products after α decay. Spontaneous fission of 262 Sg terminates the decay chain. The measured data are in agreement with calculations using the macroscopic-microscopic model and with self-consistent HFB calculations with Skyrme-Sly4 interaction. (orig.)

  13. Exponential convergence and acceleration of Hartree-Fock calculations

    International Nuclear Information System (INIS)

    Bonaccorso, A.; Di Toro, M.; Lomnitz-Adler, J.

    1979-01-01

    It is shown that one can expect an exponential behaviour for the convergence of the Hartree-Fock solution during the HF iteration procedure. This property is used to extrapolate some collective degrees of freedom, in this case the shape, in order to speed up the self-consistent calculation. For axially deformed nuclei the method is applied to the quadrupole moment which corresponds to a simple scaling transformation on the single particle wave functions. Results are shown for the deformed nuclei 20 Ne and 28 Si with a Skyrme interaction. (Auth.)

  14. Particle-hole calculation of the isobaric analog and isovector monopole resonances

    International Nuclear Information System (INIS)

    Auerbach, N.; Nguyen Van Giai

    1977-06-01

    The correlated proton particle-neutron hole spectrum is calculated for N>Z nuclei using a Skyrme type interaction and the response function method. The basis of the calculation is a complete one particle-one hole space with the continuum included. As a result the distribution of the isovector monopole strength in the analog nucleus is obtained. This distribution has a narrow peak which corresponds to the isobaric analog resonance and at higher energies a broad peak which is the isovector monopole resonance. The coupling between these two states is inherent in the calculation

  15. Collective 0+, 1+ and 2+ excitations in rotating nuclei

    International Nuclear Information System (INIS)

    Balbutsev, E.B.; Piperova, J.

    1988-01-01

    The energies and B(Eγ) factors of the isoscalar and isovector 0 + and 2 + resonances are calculated with Skyrme interaction. A satisfactory agreement with experimental data is obtained. It is shown that in rotating nuclei the 2 + excitations split into five branches and also 5 low-lying excitations appear. Two of these low-lying modes are angular resonances and the theory reproduces their energies and B(M1) factors. The experimentally observed splitting of giant monopole resonance in deformed nuclei is confirmed. 34 refs.; 10 figs.; 1 tab

  16. A particle-number conserving microscopic approach to octupole deformation of normal deformed and superdeformed states in 194Pb

    International Nuclear Information System (INIS)

    Nhan Hao, T.V.; Phu Dat, D.H.; Hoang Tung, N.; Tran, H.N.

    2015-01-01

    The left–right asymmetric deformation of normal deformed (ND) and superdeformed (SD) states of 194 Pb has been investigated in the framework of the parity-symmetry projection of the highly truncated diagonalization approach (HTDA), which is suited to treat the correlations in an explicitly particle-number conserving microscopic approach. A Skyrme energy density functional using the SIII and SkM* interactions has been considered to treat the particle–hole channel, whereas a density-independent δ force has been adopted for the residual interaction. The obtained results are compared with previous approaches. The calculated octupole phonon excitation energy is found to be in good qualitative agreement with available data in the ND state. (author)

  17. Impact of spin-orbit density dependent potential in heavy ion reactions forming Se nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Rajni; Sharma, Ishita; Sharma, Manoj K. [Thapar University, School of Physics and Materials Science, Patiala (India); Jain, Deepika [Mata Gujri College, Department of Physics, Fatehgarh Sahib (India)

    2017-10-15

    The Skyrme energy density formalism is employed to explore the effect of spin-orbit interaction potential by considering a two nucleon transfer process via various entrance channels such as {sup 23}Na + {sup 49}V, {sup 25}Mg + {sup 47}Ti, {sup 27}Al + {sup 45}Sc, {sup 29}Si + {sup 43}Ca and {sup 31}P + {sup 41}K, all forming the same compound system {sup 72}Se*, using both spherical as well as quadrupole deformed (β{sub 2}) nuclei. For spherical nuclei, the spin-orbit density part V{sub J} of nuclear potential remains unaffected with the transfer of two nucleons from the target to the projectile, however, show notable variation in magnitude after inclusion of deformation effects. Likewise, deformations play an important role in the spin-orbit density independent part V{sub P}, as the fusion pocket start appears, which otherwise diminish for the spherical nuclei. Further, the effect of an increase in the N/Z ratio of Se is explored on V{sub J} as well as V{sub P} and results are compared with transfer channels. In addition to this, the role of double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}) with relative contribution of the isoscalar and isovector parts of spin-orbit strength is explored in view of SkI2, SkI3 and SkI4 Skyrme forces. Beside this, the decay path of {sup 72}Se* nucleus formed in {sup 27}Al + {sup 45}Sc reaction is investigated within the framework of dynamical cluster decay model (DCM), where the nuclear proximity potential is obtained by both Skyrme energy density formalism (SEDF) and proximity pocket formula. The fusion hindrance in the {sup 27}Al + {sup 45}Sc reaction is also addressed via the barrier lowering parameter ΔV{sub B}. Finally, the contribution of spin-orbit density dependent interaction potential is estimated for the {sup 27}Al + {sup 45}Sc reaction using single (W{sub 0} or W{sub 0}{sup '}) and double spin-orbit parameters (W{sub 0} and W{sub 0}{sup '}). (orig.)

  18. Different aspects of nuclear physics from low energies up to intermediate energies

    International Nuclear Information System (INIS)

    Lallouet, Y.

    2011-12-01

    This study focuses on different aspects of nuclear physics from low energies to intermediate ones. For the low energies, the nuclear matter is essentially constituted from interacting nucleons. Part I is on the fusion-fission of super-heavy elements, while Part II is on the Skyrme interactions associated sum rules. In the case of the intermediate energies, where the nuclear matter is considered as being an hadronic phase mainly constituted from pions, Part III is focused on nuclear matter relativistic hydrodynamics with spontaneous chiral symmetry breaking. In Part I, the formation and the deexcitation of super-heavy nuclei are being studied. The memory effect must be taken into consideration within the super-heavy nuclei formation dynamics. Therefore we analyzed the formation of compound nuclei including the memory effects. As for the intermediate memory effects some oscillations appear, which is very different from the Markovian dynamics. For super-heavy nuclei deexcitation, the existence of isomeric state within the potential barrier cannot explain the results of experiments performed at GANIL with the crystal blocking technique, and this despite of the fact that it modifies the deexcitation dynamics and increases the fission time. However, this latter study could be useful for the study of the actinides fission. In Part II, the phenomenological Skyrme effective interactions-associated M 1 and M 3 sum rules are being calculated based on their intrinsic definitions. We identify then M 1 up to the tensorial level and M 3 with central potential. In Part III, as for the hadronic matter hydrodynamics being applied to heavy ions collisions, and as a first approach only, we can neglect spontaneous chiral symmetry but certainly not the dissipative impact. (author)

  19. Extended radio sources in the cluster environment

    International Nuclear Information System (INIS)

    Burns, J.O. Jr.

    1979-01-01

    Extended radio galaxies that lie in rich and poor clusters were studied. A sample of 3CR and 4C radio sources that spatially coincide with poor Zwicky clusters of galaxies was observed to obtain accurate positions and flux densities. Then interferometer observations at a resolution of approx. = 10 arcsec were performed on the sample. The resulting maps were used to determine the nature of the extended source structure, to make secure optical identifications, and to eliminate possible background sources. The results suggest that the environments around both classical double and head-tail radio sources are similar in rich and poor clusters. The majority of the poor cluster sources exhibit some signs of morphological distortion (i.e., head-tails) indicative of dynamic interaction with a relatively dense intracluster medium. A large fraction (60 to 100%) of all radio sources appear to be members of clusters of galaxies if one includes both poor and rich cluster sources. Detailed total intensity and polarization observations for a more restricted sample of two classical double sources and nine head-tail galaxies were also performed. The purpose was to examine the spatial distributions of spectral index and polarization. Thin streams of radio emission appear to connect the nuclear radio-point components to the more extended structures in the head-tail galaxies. It is suggested that a non-relativistic plasma beam can explain both the appearance of the thin streams and larger-scale structure as well as the energy needed to generate the observed radio emission. The rich and poor radio cluster samples are combined to investigate the relationship between source morphology and the scale sizes of clustering. There is some indication that a large fraction of radio sources, including those in these samples, are in superclusters of galaxies

  20. The effect of extender, method of thawing, and duration of storage on in vitro fertility measures of frozen-thawed boar sperm.

    Science.gov (United States)

    Knox, R V; Ringwelski, J M; McNamara, K A; Aardsma, M; Bojko, M

    2015-08-01

    Frozen-thawed boar sperm (FTS) has reduced in vitro and in vivo life span compared to liquid semen. Experiments tested whether extenders, thawing procedures, and storage temperatures could extend the fertile life span of FTS. Experiment 1 tested the effect of six extenders on postthaw motility (MOT) and viability (VIA). Straws from boars (n = 6) were thawed, diluted into each extender, and evaluated at 20, 60, and 120 minutes. There was a trend (P = 0.08) for an extender-by-time interaction for MOT and effect of extender and time for MOT (P extender (P = 0.10) and time (P boar ejaculates (n = 15) were thawed at 50 °C for 10, 20, or 30 seconds or at 70 °C for 5, 10, or 20 seconds and evaluated at 5, 30, and 60 minutes. There was an effect of thawing treatment on MOT, VIA, and ACR (viable sperm with intact acrosomes, P extenders, thawing, and storage. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Study of nuclear reactions with the Skyrme interaction; static properties by the self-consistent method; dynamic properties by the generator-coordinate method

    International Nuclear Information System (INIS)

    Flocard, Hubert.

    1975-01-01

    Using the same effective interaction depending only on 6 parameters a large number of nuclear properties are calculated, and the results are compared with experiment. Total binding energies of all nuclei of the chart table are reproduced within 5MeV. It is shown that the remaining discrepancy is coherent with the increase of total binding energy that can be expected from the further inclusion of collective motion correlations. Monopole, quadrupole and hexadecupole part of the charge densities are also reproduced with good accuracy. The deformation energy curves of many nuclei ranging from carbon to superheavy elements are calculated, and the different features of these curves are discussed. It should be noted that the fission barrier of actinide nuclei has been obtained and the results exhibit the well known two-bump shape. In addition the fusion energy curve of two 16 O merging in one nucleus 32 S has been completed. Results concerning monopole, dipole and quadrupole giant resonances of light nuclei obtained within the frame of the generator coordinate method are also presented. The calculated position of these resonances agree well with present available data [fr

  2. Characteristics of sperm motility in boar semen diluted in different extenders and stored for seven days at 18 degrees C.

    Science.gov (United States)

    Estienne, Mark J; Harper, Allen F; Day, Jennifer L

    2007-11-01

    Although numerous extenders exist for diluting boar semen, little research has been conducted comparing commercial extenders with regard to maintaining sperm motility during storage. The objective was to use a computer- assisted sperm analysis system to assess motility of boar spermatozoa diluted in Beltsville Thawing Solution, Merck-III, Androhep-lite, Sperm Aid, MR-A, Modena, X-Cell, VSP, and Vital. Ejaculates from boars (n=10) were collected and sub-samples were diluted (35x10(6) spermatozoa/ml) in the different extenders and stored for seven days at 18 degrees. Extender by day interactions were detected (pextenders. For example, on day 7, the percentages of motile and progressively motile spermatozoa were highest (pextender utilized, but with the exception of Sperm Aid, all extenders maintained a high degree of sperm motility through 7 days of storage.

  3. Interactions of Teen Parents and Trained Caregivers with Young Children.

    Science.gov (United States)

    Carlson, Helen L.

    To extend research on adult/child interactions, attitudes and behaviors of teenage parents and trained "educarers" were compared, and the relationship between adults' and children's interactive styles was investigated. Two groups of questions were addressed: (1) Are there significant statistical differences as well as qualitative…

  4. Shape Displays: Spatial Interaction with Dynamic Physical Form.

    Science.gov (United States)

    Leithinger, Daniel; Follmer, Sean; Olwal, Alex; Ishii, Hiroshi

    2015-01-01

    Shape displays are an emerging class of devices that emphasize actuation to enable rich physical interaction, complementing concepts in virtual and augmented reality. The ability to render form introduces new opportunities to touch, grasp, and manipulate dynamic physical content and tangible objects, in both nearby and remote environments. This article presents novel hardware, interaction techniques, and applications, which point to the potential for extending the ways that we traditionally interact with the physical world, empowered by digital computation.

  5. Microscopic study of superdeformation in the A = 150 mass region

    Energy Technology Data Exchange (ETDEWEB)

    Rigollet, C.; Gall, B. [CNRS, Strasbourg (France); Bonche, P. [CEN Saclay, Gif sur Yvette (France)] [and others

    1996-12-31

    The authors are presently investigating the properties of superdeformed (SD) nuclear states in the A=150 mass region. For that purpose, they use the cranked HFB method in which pairing correlations are treated dynamically by means of the Lipkin-Nogami prescription. Their goal is to take advantage of the large amount of experimental data to test the predictive power of their microscopic approach and of the effective interaction. In the present communication, they focus on {sup 152}Dy and {sup 153}Dy for which there are recent experimental data. In particular lifetime measurements have allowed to extract electric quadrupole moments. The new Skyrme effective force SLy4 is used to describe the nucleon-nucleon interaction, while for the pairing channel the authors use a density-dependent zero-range interaction.

  6. Urban Interaction and Affective Experience

    DEFF Research Database (Denmark)

    Fritsch, Jonas; Brynskov, Martin

    2008-01-01

    As interactive digital technologies become a still more integrated and complex part of the everyday physical, social and cultural spaces we inhabit, research into these spaces’ dynamics and struc-tures needs to formulate adequate methods of analysis and dis-course. In this position paper we argue...... in favor of three points in that direction: First we argue that interaction – and the definition of interaction – is central to unfold the potential of digital urban media, from big, shared screens and media facades to small pri-vate, networked mobile and embedded platforms. Then we argue that an affective...... approach holds potential to address important aspects of the design of such blended digital spaces, extending beyond traditional interaction design. And finally we argue for the importance of construction, i.e. actual interventions of consider-able scale....

  7. Extended Narrow-Line Region in Seyfert Galaxies

    Energy Technology Data Exchange (ETDEWEB)

    Congiu, Enrico [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy); Astronomical Observatory of Brera, National Institute for Astrophysics, Milan (Italy); Contini, Marcella [School of Physics and Astronomy, Tel Aviv University, Tel Aviv (Israel); Ciroi, Stefano; Cracco, Valentina [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy); Di Mille, Francesco [Las Campanas Observatory, La Serena (Chile); Berton, Marco [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy); Astronomical Observatory of Brera, National Institute for Astrophysics, Milan (Italy); Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero, E-mail: enrico.congiu@phd.unipd.it [Dipartimento di Fisica e Astronomia “G. Galilei”, Università di Padova, Padova (Italy)

    2017-10-24

    We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modeling the observed line profiles and spectra with composite models (photoionization+shocks) in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as (a) the contribution of shocks in ionizing the high velocity gas, (b) the complex kinematics showed by the profile of the emission lines, (c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  8. Extended Narrow-Line Region in Seyfert Galaxies

    International Nuclear Information System (INIS)

    Congiu, Enrico; Contini, Marcella; Ciroi, Stefano; Cracco, Valentina; Di Mille, Francesco; Berton, Marco; Frezzato, Michele; La Mura, Giovanni; Rafanelli, Piero

    2017-01-01

    We present our recent results about the extended narrow-line region (ENLR) of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212) obtained by modeling the observed line profiles and spectra with composite models (photoionization+shocks) in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1) galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as (a) the contribution of shocks in ionizing the high velocity gas, (b) the complex kinematics showed by the profile of the emission lines, (c) the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  9. A Label-Free Immunosensor for IgG Based on an Extended-Gate Type Organic Field Effect Transistor

    Directory of Open Access Journals (Sweden)

    Tsukuru Minamiki

    2014-09-01

    Full Text Available A novel biosensor for immunoglobulin G (IgG detection based on an extended-gate type organic field effect transistor (OFET has been developed that possesses an anti-IgG antibody on its extended-gate electrode and can be operated below 3 V. The titration results from the target IgG in the presence of a bovine serum albumin interferent, clearly exhibiting a negative shift in the OFET transfer curve with increasing IgG concentration. This is presumed to be due an interaction between target IgG and the immobilized anti-IgG antibody on the extended-gate electrode. As a result, a linear range from 0 to 10 µg/mL was achieved with a relatively low detection limit of 0.62 µg/mL (=4 nM. We believe that these results open up opportunities for applying extended-gate-type OFETs to immunosensing.

  10. The quintic interaction vertex in light-cone gravity

    International Nuclear Information System (INIS)

    Ananth, Sudarshan

    2008-01-01

    We consider pure gravity in light-cone gauge and derive the complete quintic interaction vertex. Up to quartic order, the Kawai-Lewellen-Tye (KLT) relations can be made manifest at the level of the Einstein-Hilbert Lagrangian. The quintic interaction vertex represents an essential first step in further extending the off-shell validity of the KLT relations to higher order vertices

  11. Lepton-photon interactions in external background fields

    Energy Technology Data Exchange (ETDEWEB)

    Akal, Ibrahim [Theory Group, Deutsches Elektronen-Synchrotron (DESY), Notkestrasse 85, D-22607 Hamburg (Germany); Moortgat-Pick, Gudrid [II. Institute for Theoretical Physics, University of Hamburg, Luruper Chaussee 149, D-22761 Hamburg (Germany)

    2016-07-01

    We investigate lepton-photon interactions in a class of generalized external background fields with periodic plane-wave character. Considering the full interaction with the background, S-matrix elements are calculated exactly. We apply those general expressions to interaction schemes like Compton scattering in specific field configurations, as for instance provided in modern laser facilities, or in high intense regions of future linear colliders. Results are extended to the case of frontal colliding high-energy field photons with leptons such that new insights beyond the usual soft terms become accessible.

  12. Dynamic Nuclear Polarization enhanced NMR at 187 GHz/284 MHz using an Extended Interaction Klystron amplifier.

    Science.gov (United States)

    Kemp, Thomas F; Dannatt, Hugh R W; Barrow, Nathan S; Watts, Anthony; Brown, Steven P; Newton, Mark E; Dupree, Ray

    2016-04-01

    A Dynamic Nuclear Polarisation (DNP) enhanced solid-state Magic Angle Spinning (MAS) NMR spectrometer which uses a 187 GHz (corresponding to (1)H NMR frequency of 284 MHz) Extended Interaction Klystron (EIK) amplifier as the microwave source is briefly described. Its performance is demonstrated for a biomolecule (bacteriorhodopsin), a pharmaceutical, and surface functionalised silica. The EIK is very compact and easily incorporated into an existing spectrometer. The bandwidth of the amplifier is sufficient that it obviates the need for a sweepable magnetic field, once set, for all commonly used radicals. The variable power (CW or pulsed) output from the EIK is transmitted to the DNP-NMR probe using a quasi-optic system with a high power isolator and a corrugated waveguide which feeds the microwaves into the DNP-NMR probe. Curved mirrors inside the probe project the microwaves down the axis of the MAS rotor, giving a very efficient system such that maximum DNP enhancement is achieved with less than 3 W output from the microwave source. The DNP-NMR probe operates with a sample temperature down to 90K whilst spinning at 8 kHz. Significant enhancements, in excess of 100 for bacteriorhodopsin in purple membrane (bR in PM), are shown along with spectra which are enhanced by ≈25 with respect to room temperature, for both the pharmaceutical furosemide and surface functionalised silica. These enhancements allow hitherto prohibitively time consuming experiments to be undertaken. The power at which the DNP enhancement in bR in PM saturates does not change significantly between 90K and 170 K even though the enhancement drops by a factor of ≈11. As the DNP build up time decreases by a factor 3 over this temperature range, the reduction in T1n is presumably a significant contribution to the drop in enhancement. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  13. The symmetric extendibility of quantum states

    International Nuclear Information System (INIS)

    Nowakowski, Marcin L

    2016-01-01

    Studies on the symmetric extendibility of quantum states have become particularly important in the context of the analysis of one-way quantum measures of entanglement, and the distillability and security of quantum protocols. In this paper we analyze composite systems containing a symmetric extendible part, with particular attention devoted to the one-way security of such systems. Further, we introduce a new one-way entanglement monotone based on the best symmetric approximation of a quantum state and the extendible number of a quantum state. We underpin these results with geometric observations about the structures of multi-party settings which posses substantial symmetric extendible components in their subspaces. The impossibility of reducing the maximal symmetric extendibility by means of the one-way local operations and classical communication method is pointed out on multiple copies. Finally, we state a conjecture linking symmetric extendibility with the one-way distillability and security of all quantum states, analyzing the behavior of a private key in the neighborhood of symmetric extendible states. (paper)

  14. Spontaneously broken extended supersymmetry: Full superfield formulation

    International Nuclear Information System (INIS)

    Kandelakis, E.S.

    1984-01-01

    The superfield description, given by Samuel and Wess, of the non-linear Akulov-Volkov realization of (broken) supersymmetry, is generalized for the interesting cases of N=2 and 4 extended supersymmetry. The generalization, in terms of the full-superfield formulation, is straightforward. For the proof we first define the corresponding THETA-algebras; we then present explicitly many of the calculations. The schematic explanation makes the generalization manifest. We perform, for N=2, the coupling of the A-V field to standard-matter, in the way introduced by S-W, and schematically we make manifest the generalization for every N. The importance of our results consists in a complete, calculable description of the A-V fields (goldstinos) and of their interactions, easily applied to the tasks of today's phenomenology. (orig.) [de

  15. Light-matter interaction physics and engineering at the nanoscale

    CERN Document Server

    Weiner, John

    2017-01-01

    Light–matter interaction is pervasive throughout the disciplines of optical and atomic physics, condensedmatter physics, and electrical engineering with frequency and length scales extending over many orders of magnitude. The frequency range extends from a few tens of Hz for sea communications to hundreds of petaHz (1015 s–1) for X-ray imaging systems. Length scales range from thousands of kilometres to a few hundred picometres. Although the present work does not offer an exhaustive treatise on this vast subject, it does aim to provide advanced undergraduates, graduate students, and researchers from these diverse disciplines the principal tools required to understand and contribute to rapidly advancing developments in light–matter interaction centred at optical frequencies and length scales. Classical electrodynamics, with an emphasis on the macroscopic expressions of Maxwell’s equations, physical optics, and quantum mechanics provide unique perspectives to the interaction of light and matter at these...

  16. Hadron-nucleus interactions in the nucleon resonance region

    Energy Technology Data Exchange (ETDEWEB)

    Gessler, Stefanie

    2017-06-15

    Experiments with high-energy hadron beams have found renewed attention. In the near future nuclear studies with hadron beams are planned at least at two facilities, namely J-PARC in Japan and GSI/FAIR. The aim of this work is an exploratory investigation of interactions of mesons and baryons with nuclei at energies of interest for future research with antiprotons at FAIR. The theoretical discussion is started with an introductory presentation of the optical model and Eikonal theory as appropriate tools for the description of scattering processes at high energies. In antiproton interactions with nucleons and nuclei, annihilation processes into pions are playing the major role for the reaction dynamics. Therefore, we consider first the interactions of pions with nuclei by deriving an extended selfenergy scheme for a large range of incident pion energies. In order to have a uniform description over a broad energy interval, the existing approaches had to be reconsidered and in essential parts reformulated and extended. A central result is the treatment of pion-nucleus self-energies from high lying N{sup *} resonances. Only by including those channels in a proper manner into the extended pion optical potential, pion-nucleus scattering could be described over the required large energy range. At low energies the well known Kisslinger potential is recapped. Next, the same type of reaction theory is used to analyze antiproton-nucleon and nucleus scattering from low to highly relativistic energies. The reaction dynamics of antiproton interactions with nuclear targets is discussed. We start with a new approach to antiproton-nucleon scattering. A free-space antiproton-nucleon T-matrix is derived, covering an energy range as wide as from 100 MeV up to 15 GeV. Eikonal theory is used to describe the antiproton scattering amplitudes in momentum and in coordinate space. We consider, in particular, interactions with nuclei at energies around and well above 1 GeV. The antiproton

  17. Hadron-nucleus interactions in the nucleon resonance region

    International Nuclear Information System (INIS)

    Gessler, Stefanie

    2017-06-01

    Experiments with high-energy hadron beams have found renewed attention. In the near future nuclear studies with hadron beams are planned at least at two facilities, namely J-PARC in Japan and GSI/FAIR. The aim of this work is an exploratory investigation of interactions of mesons and baryons with nuclei at energies of interest for future research with antiprotons at FAIR. The theoretical discussion is started with an introductory presentation of the optical model and Eikonal theory as appropriate tools for the description of scattering processes at high energies. In antiproton interactions with nucleons and nuclei, annihilation processes into pions are playing the major role for the reaction dynamics. Therefore, we consider first the interactions of pions with nuclei by deriving an extended selfenergy scheme for a large range of incident pion energies. In order to have a uniform description over a broad energy interval, the existing approaches had to be reconsidered and in essential parts reformulated and extended. A central result is the treatment of pion-nucleus self-energies from high lying N * resonances. Only by including those channels in a proper manner into the extended pion optical potential, pion-nucleus scattering could be described over the required large energy range. At low energies the well known Kisslinger potential is recapped. Next, the same type of reaction theory is used to analyze antiproton-nucleon and nucleus scattering from low to highly relativistic energies. The reaction dynamics of antiproton interactions with nuclear targets is discussed. We start with a new approach to antiproton-nucleon scattering. A free-space antiproton-nucleon T-matrix is derived, covering an energy range as wide as from 100 MeV up to 15 GeV. Eikonal theory is used to describe the antiproton scattering amplitudes in momentum and in coordinate space. We consider, in particular, interactions with nuclei at energies around and well above 1 GeV. The antiproton

  18. Strengthening Purity: Moral Purity as a Mediator of Direct and Extended Cross-Group Friendships on Sexual Prejudice.

    Science.gov (United States)

    Vezzali, Loris; Brambilla, Marco; Giovannini, Dino; Paolo Colucci, Francesco

    2017-01-01

    The present research investigated whether enhanced perceptions of moral purity drive the effects of intergroup cross-group friendships on the intentions to interact with homosexuals. High-school students (N = 639) reported their direct and extended cross-group friendships with homosexuals as well as their beliefs regarding the moral character of the sexual minority. Participants further reported their desire to interact with homosexuals in the future. Results showed that both face-to-face encounters and extended contact with homosexuals increased their perceived moral purity, which in turn fostered more positive behavioral intentions. Results further revealed the specific role of moral purity in this sense, as differential perceptions along other moral domains (autonomy and community) had no mediation effects on behavioral tendencies toward homosexuals. The importance of these findings for improving intergroup relations is discussed, together with the importance of integrating research on intergroup contact and morality.

  19. Deformation-induced splitting of the monopole giant resonance in 24Mg

    Directory of Open Access Journals (Sweden)

    Kvasil J.

    2016-01-01

    Full Text Available The strong deformation splitting of the isoscalar giant monopole resonance (ISGMR, recently observed in (α, α′ reaction in prolate 24Mg, is analyzed in the framework of the Skyrme quasiparticle randomphase-approximation (QRPA approach with the Skyrme forces SkM*, SVbas and SkPδ. The calculations with these forces give close results and confirm that the low-energy E0-peak is caused by the deformation-induced coupling of ISGMR with the K = 0 branch of the isoscalar giant quadrupole resonance.

  20. Nuclear structure for the crust of neutron stars and exotic nuclei

    International Nuclear Information System (INIS)

    Goegelein, Peter

    2007-01-01

    In this work the Skyrme Hartree-Fock and Relativistic Hartree--Fock approaches have been considered to describe the structure of nuclear systems ranging from finite nuclei, structures in the crust of neutron stars to homogeneous matter. Effects of pairing correlations and finite temperature are also taken into account. The numerical procedure in the cubic box is described for the Skyrme Hartree-Fock as well as the relativistic Hartree-Fock approach. And finally, results for the crust of neutron stars and exotic nuclei are presented and discussed. (orig.)

  1. Nuclear structure for the crust of neutron stars and exotic nuclei

    Energy Technology Data Exchange (ETDEWEB)

    Goegelein, Peter

    2007-07-01

    In this work the Skyrme Hartree-Fock and Relativistic Hartree--Fock approaches have been considered to describe the structure of nuclear systems ranging from finite nuclei, structures in the crust of neutron stars to homogeneous matter. Effects of pairing correlations and finite temperature are also taken into account. The numerical procedure in the cubic box is described for the Skyrme Hartree-Fock as well as the relativistic Hartree-Fock approach. And finally, results for the crust of neutron stars and exotic nuclei are presented and discussed. (orig.)

  2. Extended likelihood inference in reliability

    International Nuclear Information System (INIS)

    Martz, H.F. Jr.; Beckman, R.J.; Waller, R.A.

    1978-10-01

    Extended likelihood methods of inference are developed in which subjective information in the form of a prior distribution is combined with sampling results by means of an extended likelihood function. The extended likelihood function is standardized for use in obtaining extended likelihood intervals. Extended likelihood intervals are derived for the mean of a normal distribution with known variance, the failure-rate of an exponential distribution, and the parameter of a binomial distribution. Extended second-order likelihood methods are developed and used to solve several prediction problems associated with the exponential and binomial distributions. In particular, such quantities as the next failure-time, the number of failures in a given time period, and the time required to observe a given number of failures are predicted for the exponential model with a gamma prior distribution on the failure-rate. In addition, six types of life testing experiments are considered. For the binomial model with a beta prior distribution on the probability of nonsurvival, methods are obtained for predicting the number of nonsurvivors in a given sample size and for predicting the required sample size for observing a specified number of nonsurvivors. Examples illustrate each of the methods developed. Finally, comparisons are made with Bayesian intervals in those cases where these are known to exist

  3. Self-interaction and charge transfer in organic semiconductors

    Energy Technology Data Exchange (ETDEWEB)

    Koerzdoerfer, Thomas

    2009-12-18

    This work concentrates on the problem of self-interaction, which is one of the most serious problems of commonly used approximative density functionals. As a major result of this work, it is demonstrated that self-interaction plays a decisive role for the performance of different approximative functionals in predicting accurate electronic properties of organic molecular semiconductors. In search for a solution to the self-interaction problem, a new concept for correcting commonly used density functionals for self-interaction is introduced and applied to a variety of systems, spanning small molecules, extended molecular chains, and organic molecular semiconductors. It is further shown that the performance of functionals that are not free from self-interaction can vary strongly for different systems and observables of interest, thus entailing the danger of misinterpretation of the results obtained from those functionals. The underlying reasons for the varying performance of commonly used density functionals are discussed thoroughly in this work. Finally, this thesis provides strategies that allow to analyze the reliability of commonly used approximations to the exchange-correlation functional for particular systems of interest. This cumulative dissertation is divided into three parts. Part I gives a short introduction into DFT and its time-dependent extension (TDDFT). Part II provides further insights into the self-interaction problem, presents a newly developed concept for the correction of self-interaction, gives an introduction into the publications, and discusses their basic results. Finally, the four publications on self-interaction and charge-transfer in extended molecular systems and organic molecular semiconductors are collected in Part III. (orig.)

  4. Extended Year, Extended Contracts: Increasing Teacher Salary Options.

    Science.gov (United States)

    Gandara, Patricia

    1992-01-01

    Reports on an attempt to raise teacher salaries through an extended contract made possible through year-round school schedules. Teacher satisfaction with the 1987 experiment in three California schools (the Orchard Plan) has been high. Elements that have contributed to job satisfaction are discussed. (SLD)

  5. A Novel Biped Pattern Generator Based on Extended ZMP and Extended Cart-Table Model

    Directory of Open Access Journals (Sweden)

    Guangbin Sun

    2015-07-01

    Full Text Available This paper focuses on planning patterns for biped walking on complex terrains. Two problems are solved: ZMP (zero moment point cannot be used on uneven terrain, and the conventional cart-table model does not allow vertical CM (centre of mass motion. For the ZMP definition problem, we propose the extended ZMP (EZMP concept as an extension of ZMP to uneven terrains. It can be used to judge dynamic balance on universal terrains. We achieve a deeper insight into the connection and difference between ZMP and EZMP by adding different constraints. For the model problem, we extend the cart-table model by using a dynamic constraint instead of constant height constraint, which results in a mathematically symmetric set of three equations. In this way, the vertical motion is enabled and the resultant equations are still linear. Based on the extended ZMP concept and extended cart-table model, a biped pattern generator using triple preview controllers is constructed and implemented simultaneously to three dimensions. Using the proposed pattern generator, the Atlas robot is simulated. The simulation results show the robot can walk stably on rather complex terrains by accurately tracking extended ZMP.

  6. Wildland fire emissions, carbon, and climate: Wildfire–climate interactions

    Science.gov (United States)

    Yongqiang Liu; Scott Goodrick; Warren Heilman

    2014-01-01

    Increasing wildfire activity in recent decades, partially related to extended droughts, along with concern over potential impacts of future climate change on fire activity has resulted in increased attention on fire–climate interactions. Findings from studies published in recent years have remarkably increased our understanding of fire–climate interactions and improved...

  7. Extended KN algebras and extended conformal field theories over higher genus Riemann surfaces

    International Nuclear Information System (INIS)

    Ceresole, A.; Huang Chaoshang

    1990-01-01

    A global operator formalism for extended conformal field theories over higher genus Riemann surfaces is introduced and extended KN algebra are obtained by means of the KN bases. The BBSS construction of the spin-3 operator is carried out for Kac-Moody algebra A 2 over a Riemann surface of arbitrary genus. (orig.)

  8. Range extender module. Enabler for electric mobility; Range-Extender-Modul. Wegbereiter fuer elektrische Mobilitaet

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Robert; Fraidl, Guenter Karl; Hubmann, Christian; Kapus, Paul Ernst; Kunzemann, Ralf; Sifferlinger, Bernhard; Beste, Frank [AVL List GmbH, Graz (Austria)

    2009-10-15

    The Range Extender as an auxiliary power supply for extended driving ranges is of significant importance in achieving a high level of customer acceptance for electric vehicles. The AVL concept is optimized for electric power generation in single-point operation and allows a compactly integrated, cost-efficient and weight-efficient module design. The internal combustion engine requirements of the Pure Range Extender from AVL permit not only the use of simplified four-stroke concepts but also the application of emission-optimized and fuel consumption-optimized two-stroke and rotary piston engines. (orig.)

  9. Extended pure Yang-Mills gauge theories with scalar and tensor gauge fields

    International Nuclear Information System (INIS)

    Gabrielli, E.

    1991-01-01

    The usual abelian gauge theory is extended to an interacting Yang-Mills-like theory containing vector, scalar and tensor gauge fields. These gauge fields are seen as components along the Clifford algebra basis of a gauge vector-spinorial field. Scalar fields φ naturally coupled to vector and tensor fields have been found, leading to a natural φ 4 coupling in the lagrangian. The full expression of the lagrangian for the euclidean version of the theory is given. (orig.)

  10. Nuclear response in an extended RPA formalism; an application to 48Ca

    International Nuclear Information System (INIS)

    Brand, M.G.E.; Allaart, K.; Dickhoff, W.H.

    1990-01-01

    An extension of the standard (1p1h) Random Phase Approximation (RPA) is derived, by considering the Feynman diagram expansion of the polarization propagator and the relationship between the self-energy and the particle-hole interaction that must be fulfilled in order to obey conservation laws. The resulting Extended RPA (ERPA) equations include the dynamic coupling of 1p1h states to 2p2h states, which leads to a fragmentation of single-particle and single-hole strength and screening of the interaction by the medium. The method has been applied to 48 Ca using a realistic G-matrix interaction based on meson-exchange. The results show an improved description of the response over the whole energy range up to 100 MeV. Remaining discrepancies point in the direction of further strength reduction due to short-range correlations as well as a stronger coupling to 2p2h states at low energy. (author)

  11. International conference on the study of environmental change using isotope techniques. Book of extended synopses

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    This publication contains extended synopses of the oral and poster presentations delivered at the meeting. The main topics of the meeting included: Isotopes in the atmosphere and the hydrosphere; Interaction between the atmosphere and the hydrosphere; Isotope indicators of past climatic and environmental changes; and Advances in isotope and other analytical techniques. The individual papers have been indexed separately.

  12. International conference on the study of environmental change using isotope techniques. Book of extended synopses

    International Nuclear Information System (INIS)

    2001-04-01

    This publication contains extended synopses of the oral and poster presentations delivered at the meeting. The main topics of the meeting included: Isotopes in the atmosphere and the hydrosphere; Interaction between the atmosphere and the hydrosphere; Isotope indicators of past climatic and environmental changes; and Advances in isotope and other analytical techniques. The individual papers have been indexed separately

  13. Physically based arc-circuit interaction

    International Nuclear Information System (INIS)

    Zhong-Lie, L.

    1984-01-01

    An integral arc model is extended to study the interaction of the gas blast arc with the test circuit in this paper. The deformation in the waveshapes of arc current and voltage around the current zero has been formulated to first approximation by using a simple model of arc voltage based on the arc core energy conservation. By supplementing with the time scale for the radiation, the time rates of arc processes were amended. Both the contributions of various arc processes and the influence of circuit parameters to the arc-circuit interaction have been estimated by this theory. Analysis generated a new method of calculating test circuit parameters which improves the accurate simulation of arc-circuit interaction. The new method agrees with the published experimental results

  14. Viability of bull semen extended with commercial semen extender ...

    African Journals Online (AJOL)

    Andrea Raseona

    stored at 24 °C. Sperm motility parameters, morphology, and viability were analysed ... body size, slow average daily weight gain, decreased fertility, extended .... were determined by counting a total of 200 spermatozoa per each stained slide.

  15. The X3LYP extended density functional for accurate descriptions of nonbond interactions, spin states, and thermochemical properties

    Science.gov (United States)

    Xu, Xin; Goddard, William A.

    2004-01-01

    We derive the form for an exact exchange energy density for a density decaying with Gaussian-like behavior at long range. Based on this, we develop the X3LYP (extended hybrid functional combined with Lee–Yang–Parr correlation functional) extended functional for density functional theory to significantly improve the accuracy for hydrogen-bonded and van der Waals complexes while also improving the accuracy in heats of formation, ionization potentials, electron affinities, and total atomic energies [over the most popular and accurate method, B3LYP (Becke three-parameter hybrid functional combined with Lee–Yang–Parr correlation functional)]. X3LYP also leads to a good description of dipole moments, polarizabilities, and accurate excitation energies from s to d orbitals for transition metal atoms and ions. We suggest that X3LYP will be useful for predicting ligand binding in proteins and DNA. PMID:14981235

  16. Effect of extended photoperiod during winter on growth and onset of puberty in Murrah buffalo heifers

    Directory of Open Access Journals (Sweden)

    Ashwani Kumar Roy

    2016-02-01

    Full Text Available Aim: To investigate the effect of extended photoperiod on growth rate, hormonal levels, and puberty in Murrah heifers. Materials and Methods: About 14 Murrah buffalo heifers were divided into normal day photoperiod (NDP; n=7 and extended NDP (ENDP; n=7 groups. The ENDP group was exposed to 4 h of extended photoperiod with artificial light (160 lux after sunset for 3 months during winter. Results: Group, age and group-by-age interaction effects on plasma glucose concentrations were non-significant (p>0.05. A significant effect of age on non-esterified fatty acids (p0.05 while significant (p0.05. Average daily gain and dry matter intake of heifers were nonsignificant between the NDP and ENDP groups but were comparatively higher in ENDP group. By the end of the experiment, 6 out of 7 heifers attained puberty in ENDP group in comparison to 4 out of 7 in NDP group. Conclusion: Extending the photoperiod by artificial light for 4 h during winter season resulted in better growth rate and early onset of puberty in Murrah buffalo heifers.

  17. CLASSROOM INTERACTION STRATEGIES EMPLOYED BY ENGLISH TEACHERS AT LOWER SECONDARY SCHOOLS

    Directory of Open Access Journals (Sweden)

    Nunung Suryati

    2015-07-01

    Full Text Available This article reports a study on teachers’ use of interaction strategies in English Language Teaching (ELT in lower secondary level of education. The study involved eighteen teachers from Lower Secondary Schools in Malang, East Java. Classroom observation was selected as a method in this study by utilizing Self Evaluation Teacher Talk (SETT as the instrument. SETT, developed by Walsh (2006, was adopted as the observation protocol as it characterises teacher-student interaction. Thirty lessons taught by 18 teachers were observed. The findings revealed that much of the teacher student interaction in Lower Secondary Schools centred on the material mode, skill and system mode. The most frequent strategies were initiation response feedback (IRF patterns, display questions, teacher echo, and extended teacher turns, while students’ extended turns were rare. It is argued that in order to improve the Indonesian ELT, there is a need to provide an alternative to ELT classroom interaction. The article concludes by highlighting the importance of adopting some classroom interaction strategies that are more facilitative to students’ oral communicative competence.

  18. Dynamics of baby Skyrmions

    International Nuclear Information System (INIS)

    Piette, B.M.A.G.; Schroers, B.J.; Zakrzewski, W.J.

    1995-01-01

    Baby Skyrmions are topological solitons in a (2+1)-dimensional field theory which resembles the Skyrme model in important respects. We apply some of the techniques and approximations commonly used in discussions of the Skyrme model to the dynamics of baby Skyrmions and directly test them against numerical simulations. Specifically we study the effect of spin on the shape of a single baby Skyrmion, the dependence of the forces between two baby Skyrmions on the baby Skyrmions' relative orientation and the forces between two baby Skyrmions when one of them is spinning. ((orig.))

  19. Fermions, Skyrmions and the 3-sphere

    International Nuclear Information System (INIS)

    Goatham, Stephen W; Krusch, Steffen

    2010-01-01

    This paper investigates a background charge one Skyrme field chirally coupled to light fermions on the 3-sphere. The Dirac equation for the system commutes with a generalized angular momentum or grand spin. It can be solved explicitly for a Skyrme configuration given by the hedgehog form. The energy spectrum and degeneracies are derived for all values of the grand spin. Solutions for non-zero grand spin are each characterized by a set of four polynomials. The paper also discusses the energy of the Dirac sea using zeta-function regularization.

  20. Human Birth Weight and Reproductive Immunology: Testing for Interactions between Maternal and Offspring KIR and HLA-C Genes.

    Science.gov (United States)

    Clark, Michelle M; Chazara, Olympe; Sobel, Eric M; Gjessing, Håkon K; Magnus, Per; Moffett, Ashley; Sinsheimer, Janet S

    2016-01-01

    Maternal and offspring cell contact at the site of placentation presents a plausible setting for maternal-fetal genotype (MFG) interactions affecting fetal growth. We test hypotheses regarding killer cell immunoglobulin-like receptor (KIR) and HLA-C MFG effects on human birth weight by extending the quantitative MFG (QMFG) test. Until recently, association testing for MFG interactions had limited applications. To improve the ability to test for these interactions, we developed the extended QMFG test, a linear mixed-effect model that can use multi-locus genotype data from families. We demonstrate the extended QMFG test's statistical properties. We also show that if an offspring-only model is fit when MFG effects exist, associations can be missed or misattributed. Furthermore, imprecisely modeling the effects of both KIR and HLA-C could result in a failure to replicate if these loci's allele frequencies differ among populations. To further illustrate the extended QMFG test's advantages, we apply the extended QMFG test to a UK cohort study and the Norwegian Mother and Child Cohort (MoBa) study. We find a significant KIR-HLA-C interaction effect on birth weight. More generally, the QMFG test can detect genetic associations that may be missed by standard genome-wide association studies for quantitative traits. © 2017 S. Karger AG, Basel.

  1. Teacher’s Interaction Styles during Sociodramatic Play that Promote Reading and Writing among Preschoolers

    Directory of Open Access Journals (Sweden)

    Excelsa C. Tongson

    2014-12-01

    Full Text Available This study was conducted to help understand a teacher’s facilitation of reading and writing during sociodramatic play among Filipino preschoolers. It describes how Filipino preschool teachers demonstrate redirecting and extending style interactions as they participate during sociodramatic play. It also identifies the ways by which the teacher provided print-rich environments in the dramatic play area to promote early reading and writing among Filipino children with ages ranging from four years old to f ive years old and 11 months. Five female teachers from four schools in Quezon City that adopt the play curriculum based on a set of criteria were studied. Each teacher was interviewed regarding play, her role, and how she prepares the dramatic play area. She was observed for 10 consecutive school days. The teachers’ interaction styles were classified as either extending or redirecting. Four of the f ive teachers demonstrated at varying degrees both extending and redirecting styles as they participated in the children’s sociodramatic play. The interaction style of the teacher revealed her ability to perform within the context of the play and the ways she assisted children in performing reading and writing activities. The considerable increase in the frequency of children’s literacy activities during sociodramatic play could be attributed to the combination of extending style interaction and the integration of literacy materials in the dramatic play area.

  2. On isospin excitation energy

    International Nuclear Information System (INIS)

    Li Wenfei; Zhang Fengshou; Chen Liewen

    2001-01-01

    Within the framework of Hartree-Fock theory using the extended Skyrme effective interaction, the isospin excitation energy as a function of relative neutron excess δ was investigated at different temperatures and densities. It was found that the isospin excitation energy decreased with the increment of temperature and/or the decrement of density. The authors pointed out that the decrement of isospin excitation energy was resulted from the weakening of quantum effect with increment of temperature and/or decrement of density. Meanwhile, the relationship between the isospin excitation energy and the symmetry energy was discussed and found that the symmetry energy was just a part of the isospin excitation energy. With increasing temperature and decreasing density, the contribution of the symmetry energy to the isospin excitation energy becomes more and more important. The isospin excitation energy as a function of relative neutron excess was also investigated using different potential parameters. The results shows that the isospin excitation energy is almost independent of the incompressibility and the effective mass, but strongly depends on the symmetry energy strength coefficient, which indicates that it is possible to extract the symmetry energy of the nuclear equation of state by investigating the isospin excitation energy in experiments

  3. An Empirical Comparison of Joint and Stratified Frameworks for Studying G × E Interactions: Systolic Blood Pressure and Smoking in the CHARGE Gene-Lifestyle Interactions Working Group

    NARCIS (Netherlands)

    Sung, Y.J. (Yun Ju); T.W. Winkler (Thomas W.); A.K. Manning (Alisa); H. Aschard (Hugues); V. Gudnason (Vilmundur); T.B. Harris (Tamara); A.V. Smith (Albert Vernon); E.A. Boerwinkle (Eric); M.R. Brown; A.C. Morrison (Alanna); M. Fornage (Myriam); L.-A. Lin (Li-An); Richard, M. (Melissa); T.M. Bartz (Traci M.); B.M. Psaty (Bruce); C. Hayward (Caroline); O. Polasek (Ozren); J. Marten (Jonathan); I. Rudan (Igor); M.F. Feitosa (Mary Furlan); A. Kraja (Aldi); M.A. Province (Mike); Deng, X. (Xuan); Fisher, V.A. (Virginia A.); Y. Zhou (Yanhua); L.F. Bielak (Lawrence F.); J.A. Smith (Jennifer A); J.E. Huffman (Jennifer); S. Padmanabhan (Sandosh); B.H. Smith (Blair); Ding, J. (Jingzhong); Y. Liu (YongMei); Lohman, K. (Kurt); C. Bouchard (Claude); T. Rankinen (Tuomo); Rice, T.K. (Treva K.); D.K. Arnett (Donna); K. Schwander; X. Guo (Xiuqing); W. Palmas (Walter); Rotter, J.I. (Jerome I.); Alfred, T. (Tamuno); E.P. Bottinger (Erwin); R.J.F. Loos (Ruth); N. Amin (Najaf); O.H. Franco (Oscar); C.M. van Duijn (Cornelia); D. Vojinovic (Dina); D.I. Chasman (Daniel); P.M. Ridker (Paul); L.M. Rose (Lynda); S.L.R. Kardia (Sharon); X. Zhu (Xiaofeng); K.M. Rice (Kenneth); I.B. Borecki (Ingrid); D.C. Rao (Dabeeru C.); Gauderman, W.J. (W. James); L.A. Cupples (Adrienne)

    2016-01-01

    textabstractStudying gene-environment (G × E) interactions is important, as they extend our knowledge of the genetic architecture of complex traits and may help to identify novel variants not detected via analysis of main effects alone. The main statistical framework for studying G × E interactions

  4. Extended Narrow-Line Region in Seyfert Galaxies

    Directory of Open Access Journals (Sweden)

    Enrico Congiu

    2017-10-01

    Full Text Available We present our recent results about the extended narrow-line region (ENLR of two nearby Seyfert 2 galaxies (IC 5063 and NGC 7212 obtained by modeling the observed line profiles and spectra with composite models (photoionization+shocks in the different regions surrounding the AGN. Then, we compare the Seyfert 2 ENLRs with the very extended one recently discovered in the narrow-line Seyfert 1 (NLS1 galaxy Mrk 783. We have found several evidences of interaction between the ISM of the galaxies and their radio jets, such as (a the contribution of shocks in ionizing the high velocity gas, (b the complex kinematics showed by the profile of the emission lines, (c the high fragmentation of matter, etc. The results suggest that the ENLR of IC 5063 have a hollow bi-conical shape, with one edge aligned to the galaxy disk, which may cause some kind of dependence on velocity of the ionization parameter. Regarding the Mrk 783 properties, it is found that the extension of the optical emission is almost twice the size of the radio one and it seems due to the AGN activity, although there is contamination by star formation around 12 arcsec from the nucleus. Diagnostic diagrams excluded the contribution of star formation in IC 5063 and NGC 7212, while the shock contribution was used to explain the spectra emitted by their high velocity gas.

  5. Structure of single-particle nuclear densities from Hartree-Fock theory and model independent analysis

    International Nuclear Information System (INIS)

    Starodubskij, V.E.; Shaginyan, V.R.

    1979-01-01

    Friar-Negele method is applied to determine the static densities of neutrons and nuclear matter from the fast proton-nuclei elastic scattering data. This model-independent analysis (MIA) has been carried out for 28 Si, sup(32,34)S, sup(40,42,44,48)Ca, 48 Ti, sup(58,60)Ni, 90 Zr, 208 Pb nuclei. The binding energies, rms radii, densities and scattering cross sections of 1 GeV-proton are calculated in the framework of the Hartree-Fock theory (HF) with Skyrme's interaction. The HF and MIA densities and cross sections have been compared to draw a conclusion on the quality of the HF densities. Calculation of the cross sections has included the spin-orbit interaction with parameters taken from the polarization data

  6. A study of nuclear structure for 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery

    Science.gov (United States)

    Artun, Ozan

    2017-07-01

    In this paper, we intend to extend the nuclear data of 244Cm, 241Am, 238Pu, 210Po, 147Pm, 137Cs, 90Sr and 63Ni nuclei used in nuclear battery technology, because, these nuclei are quite important for space investigations in radioisotope thermoelectric generator (RTG) and for microelectronic technologies in betavoltaic batteries. Therefore, the nuclear structure properties of nuclei such as separation energies, neutron skin thicknesses, proton, charge and neutron density distributions as a function of radius, the root mean square (rms) proton, charge and neutron radii, binding energies per particle, have been investigated by Hartree-Fock with eight different Skyrme forces. The obtained results have been compared with the experimental data in literature and relativistic mean field theory (RMFT) results.

  7. LBQ2D, Extending the Line Broadened Quasilinear Model to TAE-EP Interaction

    Science.gov (United States)

    Ghantous, Katy; Gorelenkov, Nikolai; Berk, Herbert

    2012-10-01

    The line broadened quasilinear model was proposed and tested on the one dimensional electrostatic case of the bump on tailfootnotetextH.L Berk, B. Breizman and J. Fitzpatrick, Nucl. Fusion, 35:1661, 1995 to study the wave particle interaction. In conventional quasilinear theory, the sea of overlapping modes evolve with time as the particle distribution function self consistently undergo diffusion in phase space. The line broadened quasilinear model is an extension to the conventional theory in a way that allows treatment of isolated modes as well as overlapping modes by broadening the resonant line in phase space. This makes it possible to treat the evolution of modes self consistently from onset to saturation in either case. We describe here the model denoted by LBQ2D which is an extension of the proposed one dimensional line broadened quasilinear model to the case of TAEs interacting with energetic particles in two dimensional phase space, energy as well as canonical angular momentum. We study the saturation of isolated modes in various regimes and present the analytical derivation and numerical results. Finally, we present, using ITER parameters, the case where multiple modes overlap and describe the techniques used for the numerical treatment.

  8. On spinor geometry: A genesis of extended supersymmetry

    International Nuclear Information System (INIS)

    Budini, P.

    1980-08-01

    It is conjectured that euclidean geometry should be derived from spinor geometry through the equivalence of simple semispinor with isotropic semi n-vectors. The only tensors of complex 2n dimensional Euclidean space Esub(c)sup(2n) should then be: isotropic n - vectors and their intersections. Esub(c) 4 spinor geometry generates two isotropic semi bivectors equivalent to the semispinors of Esub(c) 4 (their geometrical properties are those of light propagating in vacuum), and their intersection: an isotropic vector (possibly representing momenta of massless particle and/or light rays); but no scalar, pseudoscalar or pseudovector is generated. In order to generate vectors outside the light cone in Msup(3.1) one needs not less than Esub(c) 6 spinor geometry which also generates Lorentz pseudoscalars and non isotropic pseudovectors and tensors. Besides, Dirac spinor should then always appear in doublets in Msup(3.1). Furthermore the mere geometrical structure of Esub(c) 6 spinor geometry seems to suggest formally, both Poincare (extended) and conformal supersymmetry. The suggested spinor-geometrical approach privileges the elementary role of semispinors. Its relevance for the real world should be manifested by the privileged role of semispinors in elementary interactions as in fact seems to be the case with Lorentz semispinors in weak interactions (and could perhaps also be the case for strong ones where conformal semispinors (or twistors) could be the interacting spinor fields). (author)

  9. The dialogically extended mind

    DEFF Research Database (Denmark)

    Fusaroli, Riccardo; Gangopadhyay, Nivedita; Tylén, Kristian

    2014-01-01

    A growing conceptual and empirical literature is advancing the idea that language extends our cognitive skills. One of the most influential positions holds that language – qua material symbols – facilitates individual thought processes by virtue of its material properties. Extending upon this model...... relate our approach to other ideas about collective minds and review a number of empirical studies to identify the mechanisms enabling the constitution of interpersonal cognitive systems....

  10. Quasi-extended asymptotic functions

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1979-01-01

    The class F of ''quasi-extended asymptotic functions'' is introduced. It contains all extended asymptotic functions as well as some new asymptotic functions very similar to the Schwartz distributions. On the other hand, every two quasiextended asymptotic functions can be multiplied as opposed to the Schwartz distributions; in particular, the square delta 2 of an asymptotic function delta similar to Dirac's delta-function, is constructed as an example

  11. Joining-Splitting Interaction of Noncritical String

    Science.gov (United States)

    Hadasz, Leszek; Jaskólski, Zbigniew

    The joining-splitting interaction of noncritical bosonic string is analyzed in the light-cone formulation. The Mandelstam method of constructing tree string amplitudes is extended to the bosonic massive string models of the discrete series. The general properties of the Liouville longitudinal excitations which are necessary and sufficient for the Lorentz covariance of the light-cone amplitudes are derived. The results suggest that the covariant and the light-cone approach are equivalent also in the noncritical dimensions. Some aspects of unitarity of interacting noncritical massive string theory are discussed.

  12. Grain Interactions in Crystal Plasticity

    International Nuclear Information System (INIS)

    Boyle, K.P.; Curtin, W.A.

    2005-01-01

    The plastic response of a sheet metal is governed by the collective response of the underlying grains. Intragranular plasticity depends on intrinsic variables such as crystallographic orientation and on extrinsic variables such as grain interactions; however, the role of the latter is not well understood. A finite element crystal plasticity formulation is used to investigate the importance of grain interactions on intragranular plastic deformation in initially untextured polycrystalline aggregates. A statistical analysis reveals that grain interactions are of equal (or more) importance for determining the average intragranular deviations from the applied strain as compared to the orientation of the grain itself. Furthermore, the influence of the surrounding grains is found to extend past nearest neighbor interactions. It is concluded that the stochastic nature of the mesoscale environment must be considered for a proper understanding of the plastic response of sheet metals at the grain-scale

  13. Effects of 2p-2h configurations on low-energy dipole states in neutron-rich N=80, 82 and 84 isotones

    Directory of Open Access Journals (Sweden)

    Arsenyev N. N.

    2016-01-01

    Full Text Available Starting from the Skyrme interaction SLy4 we study the effects of phonon-phonon coupling on the low-energy electric dipole response in 130−134Sn, 132−136Te and 134−138Xe. Our calculations are performed within the finite-rank separable approximation, which enables one to perform quasiparticle random phase approximation calculations in very large two-quasiparticle configuration spaces. A dependence of the pygmy dipole resonance strengths on the neutron skin thickness is found. The inclusion of the two-phonon configurations gives a considerable contribution to the low-lying strength.

  14. Coulomb displacement energies in nuclei: a new approach

    International Nuclear Information System (INIS)

    Auerbach, N.; Tel Aviv Univ.; Bernard, V.; Nguyen, V.G.

    1978-04-01

    The neutron core polarization gives rise to an important correction to the direct Coulomb contribution when one calculates the Coulomb displacement energies. In the Hartree-Fock model it is shown that this correction is about 2% to 4.5% in medium and heavy nuclei. The core polarization as well as other higher order effects can be included by using a selfconsistent description of the analog state in a complete proton particle-neutron hole space. The Coulomb displacement energies in 48 Ca, 88 Sr and 208 Pb have been calculated using Skyrme interactions SIII and SIV. A good agreement with experiment is obtained

  15. Self-consistent velocity dependent effective interactions

    International Nuclear Information System (INIS)

    Kubo, Takayuki; Sakamoto, Hideo; Kammuri, Tetsuo; Kishimoto, Teruo.

    1993-09-01

    The field coupling method is extended to a system with a velocity dependent mean potential. By means of this method, we can derive the effective interactions which are consistent with the mean potential. The self-consistent velocity dependent effective interactions are applied to the microscopic analysis of the structures of giant dipole resonances (GDR) of 148,154 Sm, of the first excited 2 + states of Sn isotopes and of the first excited 3 - states of Mo isotopes. It is clarified that the interactions play crucial roles in describing the splitting of the resonant structure of GDR peaks, in restoring the energy weighted sum rule values, and in reducing B (Eλ) values. (author)

  16. Functional theory of extended Coulomb systems

    International Nuclear Information System (INIS)

    Martin, R.M.; Ortiz, G.

    1997-01-01

    A consistent formulation is presented for a functional theory of extended quantum many-particle systems with long-range Coulomb interactions, which extends the density-functional theory of Hohenberg and Kohn to encompass the theory of dielectrics formulated in terms of electric fields and polarization. We show that a complete description of insulators in the thermodynamic limit requires a functional of density and macroscopic polarization; nevertheless, for any insulator the state with zero macroscopic electric field can be considered a reference state that is a functional of the density alone. Dielectric phenomena involve the behavior of the material in the presence of macroscopic electric fields that induce changes of the macroscopic polarization from its equilibrium value in the reference state. In the thermodynamic limit there is strictly no ground state and constraints must be placed upon the electronic wave functions in order to have a well-defined energy functional; within these constrained subspaces the Hohenberg-Kohn theorems can be generalized in terms of the density and the change in the macroscopic polarization. The essential role of the polarization is shown by an explicit example of two potentials that lead to the same periodic density in a crystal, but different macroscopic electric fields and polarization. In the Kohn-Sham approach both the kinetic and the exchange-correlation energy are shown to depend upon the changes in polarization; this leads to generalized Kohn-Sham equations with a nonlocal operator. The effect can be traced to the polarization of the average exchange-correlation hole itself in the presence of macroscopic fields, which is essential for an exact description of static dielectric phenomena. copyright 1997 The American Physical Society

  17. EAES: Extended Advanced Encryption Standard with Extended Security

    Directory of Open Access Journals (Sweden)

    Abul Kalam Azad

    2018-05-01

    Full Text Available Though AES is the highest secure symmetric cipher at present, many attacks are now effective against AES too which is seen from the review of recent attacks of AES. This paper describes an extended AES algorithm with key sizes of 256, 384 and 512 bits with round numbers of 10, 12 and 14 respectively. Data block length is 128 bits, same as AES. But unlike AES each round of encryption and decryption of this proposed algorithm consists of five stages except the last one which consists of four stages. Unlike AES, this algorithm uses two different key expansion algorithms with two different round constants that ensure higher security than AES. Basically, this algorithm takes one cipher key and divides the selected key of two separate sub-keys: FirstKey and SecondKey. Then expand them through two different key expansion schedules. Performance analysis shows that the proposed extended AES algorithm takes almost same amount of time to encrypt and decrypt the same amount of data as AES but with higher security than AES.

  18. An Integrative Analysis of Preeclampsia Based on the Construction of an Extended Composite Network Featuring Protein-Protein Physical Interactions and Transcriptional Relationships.

    Directory of Open Access Journals (Sweden)

    Daniel Vaiman

    Full Text Available Preeclampsia (PE is a pregnancy disorder defined by hypertension and proteinuria. This disease remains a major cause of maternal and fetal morbidity and mortality. Defective placentation is generally described as being at the root of the disease. The characterization of the transcriptome signature of the preeclamptic placenta has allowed to identify differentially expressed genes (DEGs. However, we still lack a detailed knowledge on how these DEGs impact the function of the placenta. The tools of network biology offer a methodology to explore complex diseases at a systems level. In this study we performed a cross-platform meta-analysis of seven publically available gene expression datasets comparing non-pathological and preeclamptic placentas. Using the rank product algorithm we identified a total of 369 DEGs consistently modified in PE. The DEGs were used as seeds to build both an extended physical protein-protein interactions network and a transcription factors regulatory network. Topological and clustering analysis was conducted to analyze the connectivity properties of the networks. Finally both networks were merged into a composite network which presents an integrated view of the regulatory pathways involved in preeclampsia and the crosstalk between them. This network is a useful tool to explore the relationship between the DEGs and enable hypothesis generation for functional experimentation.

  19. Amino-terminal domain of classic cadherins determines the specificity of the adhesive interactions

    DEFF Research Database (Denmark)

    Klingelhöfer, Jörg; Troyanovsky, R B; Laur, O Y

    2000-01-01

    Classic cadherins are transmembrane receptors involved in cell type-specific calcium-dependent intercellular adhesion. The specificity of adhesion is mediated by homophilic interactions between cadherins extending from opposing cell surfaces. In addition, classic cadherins can self-associate form......Classic cadherins are transmembrane receptors involved in cell type-specific calcium-dependent intercellular adhesion. The specificity of adhesion is mediated by homophilic interactions between cadherins extending from opposing cell surfaces. In addition, classic cadherins can self....... To study lateral and adhesive intercadherin interactions, we examined interactions between two classic cadherins, E- and P-cadherins, in epithelial A-431 cells co-producing both proteins. We showed that these cells exhibited heterocomplexes consisting of laterally assembled E- and P....... The specificity of adhesive interaction was localized to the amino-terminal (EC1) domain of both cadherins. Thus, EC1 domain of classic cadherins exposes two determinants responsible for nonspecific lateral and cadherin type-specific adhesive dimerization....

  20. Extending cosmology: the metric approach

    OpenAIRE

    Mendoza, S.

    2012-01-01

    Comment: 2012, Extending Cosmology: The Metric Approach, Open Questions in Cosmology; Review article for an Intech "Open questions in cosmology" book chapter (19 pages, 3 figures). Available from: http://www.intechopen.com/books/open-questions-in-cosmology/extending-cosmology-the-metric-approach

  1. Extended cognition and epistemic luck

    NARCIS (Netherlands)

    Carter, J.A.

    2013-01-01

    When extended cognition is extended into mainstream epistemology, an awkward tension arises when considering cases of environmental epistemic luck. Surprisingly, it is not at all clear how the mainstream verdict that agents lack knowledge in cases of environmental luck can be reconciled with

  2. Extended Rindler spacetime and a new multiverse structure

    Science.gov (United States)

    Araya, Ignacio J.; Bars, Itzhak

    2018-04-01

    This is the first of a series of papers in which we use analyticity properties of quantum fields propagating on a spacetime to uncover a new multiverse geometry when the classical geometry has horizons and/or singularities. The nature and origin of the "multiverse" idea presented in this paper, that is shared by the fields in the standard model coupled to gravity, are different from other notions of a multiverse. Via analyticity we are able to establish definite relations among the universes. In this paper we illustrate these properties for the extended Rindler space, while black hole spacetime and the cosmological geometry of mini-superspace (see Appendix B) will appear in later papers. In classical general relativity, extended Rindler space is equivalent to flat Minkowski space; it consists of the union of the four wedges in (u ,v ) light-cone coordinates as in Fig. 1. In quantum mechanics, the wavefunction is an analytic function of (u ,v ) that is sensitive to branch points at the horizons u =0 or v =0 , with branch cuts attached to them. The wave function is uniquely defined by analyticity on an infinite number of sheets in the cut analytic (u ,v ) spacetime. This structure is naturally interpreted as an infinite stack of identical Minkowski geometries, or "universes", connected to each other by analyticity across branch cuts, such that each sheet represents a different Minkowski universe when (u ,v ) are analytically continued to the real axis on any sheet. We show in this paper that, in the absence of interactions, information does not flow from one Rindler sheet to another. By contrast, for an eternal black hole spacetime, which may be viewed as a modification of Rindler that includes gravitational interactions, analyticity shows how information is "lost" due to a flow to other universes, enabled by an additional branch point and cut due to the black hole singularity.

  3. Extending Mondrian Memory Protection

    Science.gov (United States)

    2010-11-01

    a kernel semaphore is locked or unlocked. In addition, we extended the system call interface to receive notifications about user-land locking...operations (such as calls to the mutex and semaphore code provided by the C library). By patching the dynamically loadable GLibC5, we are able to test... semaphores , and spinlocks. RTO-MP-IST-091 10- 9 Extending Mondrian Memory Protection to loading extension plugins. This prevents any untrusted code

  4. Extended Cognitive System and Epistemic Subject

    Directory of Open Access Journals (Sweden)

    Trybulec Barbara

    2015-03-01

    Full Text Available The concept of an extended cognitive system is central to contemporary studies of cognition. In the paper I analyze the place of the epistemic subject within the extended cognitive system. Is it extended as well? In answering this question I focus on the differences between the first and the second wave of arguments for the extended mind thesis. I argue that the position of Cognitive Integration represented by Richard Menary is much more intuitive and fruitful in analyses of cognition and knowledge than the early argument formulated by Andy Clark and David Chalmers. Cognitive Integration is compatible with virtue epistemology of John Greco’s agent reliabilism. The epistemic subject is constituted by its cognitive character composed of an integrated set of cognitive abilities and processes. Some of these processes are extended, they are a manipulation of external informational structures and, as such, they constitute epistemic practices. Epistemic practices are normative; to conduct them correctly the epistemic subject needs to obey epistemic norms embedded in the cultural context. The epistemic subject is not extended because of the casual coupling with external informational artifacts which extend his mind from inside the head and into the world. Rather, cognitive practices constitute the subject’s mind, they transform his cognitive abilities, and this is what makes the mind and epistemic subject “extended”.

  5. Extended asymptotic functions - some examples

    International Nuclear Information System (INIS)

    Todorov, T.D.

    1981-01-01

    Several examples of extended asymptotic functions of two variables are given. This type of asymptotic functions has been introduced as an extension of continuous ordinary functions. The presented examples are realizations of some Schwartz distributions delta(x), THETA(x), P(1/xsup(n)) and can be multiplied in the class of the asymptotic functions as opposed to the theory of Schwartz distributions. The examples illustrate the method of construction of extended asymptotic functions similar to the distributions. The set formed by the extended asymptotic functions is also considered. It is shown, that this set is not closed with respect to addition and multiplication

  6. On the Cλ-extended w∞-symmetry

    International Nuclear Information System (INIS)

    Douari, J.; El Kinani, E.H.

    2003-08-01

    Starting from the C λ -extended oscillator algebras, we obtain a new deformed w ∞ -algebra. More precisely, we show that the C λ -extended w ∞ -algebra generators may be expressed via the annihilation and creation operators of the C λ -extended oscillator algebras a and a † as an infinite-dimensional extension of the realization of sp(2) algebra. (author)

  7. Extended recency effect extended: blocking, presentation mode, and retention interval.

    Science.gov (United States)

    Glidden, L M; Pawelski, C; Mar, H; Zigman, W

    1979-07-01

    The effect of blocking of stimulus items on the free recall of EMR adolescents was examined. In Experiment 1 a multitrial free-recall list of 15 pictures was presented either simultaneously in groups of 3, or sequentially, one at a time. Consistent ordering was used in both conditions, so that on each trial, each item in each set of 3 pictures was presented contiguously with the other 2 items from that set. In addition, recall came immediately or after a filled or unfilled delay of 24.5 seconds. Results showed that simultaneous presentation led to higher recall, subjective organization, and clustering than did sequential presentation, but analysis of serial-position curves showed a much reduced extended recency effect in comparison with previous studies. Experiment 2 was designed to determine whether the cause of the reduced extended recency was the use of pictures rather than words as stimuli. Stimuli were presented either as pictures, as pictures with auditory labels, or as words with auditory labels, with both simultaneous and consistent ordering for all conditions. Results indicated a strong extended recency effect for all groups, eliminating presentation mode as a causal factor in the data of Experiment 1. We concluded that blocking leads to increased organization and recall over a variety of presentation modes, rates, and block sizes.

  8. Bacteriospermia in extended porcine semen.

    Science.gov (United States)

    Althouse, Gary C; Lu, Kristina G

    2005-01-15

    Bacteriospermia is a frequent finding in freshly extended porcine semen and can result in detrimental effects on semen quality and longevity if left uncontrolled. The primary source of bacterial contamination is the boar. Other sources that have been identified include environment, personnel, and the water used for extender preparation. A 1-year retrospective study was performed on submissions of extended porcine semen for routine quality control bacteriological screening at the University of Pennsylvania. Out of 250 sample submissions, 78 (31.2%) tested positive for bacterial contamination. The most popular contaminants included Enterococcus spp. (20.5%), Stenotrophomonas maltophilia (15.4%), Alcaligenes xylosoxidans (10.3%), Serratia marcescens (10.3%), Acinetobacter lwoffi (7.7%), Escherichia coli (6.4%), Pseudomonas spp. (6.4%), and others (23.0%). Prudent individual hygiene, good overall sanitation, and regular monitoring can contribute greatly in controlling bacterial load. Strategies that incorporate temperature-dependent bacterial growth and hyperthermic augmentation of antimicrobial activity are valuable for effective control of susceptible bacterial loads. Aminoglycosides remain the most popular antimicrobial class used in porcine semen extenders, with beta-lactam and lincosamide use increasing. With the advent of more novel antimicrobial selection and semen extender compositions in swine, prudent application and understanding of in vitro pharmacodynamics are becoming paramount to industry success in the use of this breeding modality.

  9. Estimating spatial accessibility to facilities on the regional scale: an extended commuting-based interaction potential model

    Directory of Open Access Journals (Sweden)

    Charreire Hélène

    2011-01-01

    Full Text Available Abstract Background There is growing interest in the study of the relationships between individual health-related behaviours (e.g. food intake and physical activity and measurements of spatial accessibility to the associated facilities (e.g. food outlets and sport facilities. The aim of this study is to propose measurements of spatial accessibility to facilities on the regional scale, using aggregated data. We first used a potential accessibility model that partly makes it possible to overcome the limitations of the most frequently used indices such as the count of opportunities within a given neighbourhood. We then propose an extended model in order to take into account both home and work-based accessibility for a commuting population. Results Potential accessibility estimation provides a very different picture of the accessibility levels experienced by the population than the more classical "number of opportunities per census tract" index. The extended model for commuters increases the overall accessibility levels but this increase differs according to the urbanisation level. Strongest increases are observed in some rural municipalities with initial low accessibility levels. Distance to major urban poles seems to play an essential role. Conclusions Accessibility is a multi-dimensional concept that should integrate some aspects of travel behaviour. Our work supports the evidence that the choice of appropriate accessibility indices including both residential and non-residential environmental features is necessary. Such models have potential implications for providing relevant information to policy-makers in the field of public health.

  10. Reprogramming Acyl Carrier Protein Interactions of an Acyl-CoA Promiscuous trans-Acyltransferase

    DEFF Research Database (Denmark)

    Ye, Zhixia; Musiol-Kroll, Ewa Maria; Weber, Tilmann

    2014-01-01

    Protein interactions between acyl carrier proteins (ACPs) and trans-acting acyltransferase domains (trans-ATs) are critical for regioselective extender unit installation by many polyketide synthases, yet little is known regarding the specificity of these interactions, particularly for trans-ATs w...

  11. First-order metal-insulator transitions in the extended Hubbard model due to self-consistent screening of the effective interaction

    Science.gov (United States)

    Schüler, M.; van Loon, E. G. C. P.; Katsnelson, M. I.; Wehling, T. O.

    2018-04-01

    While the Hubbard model is the standard model to study Mott metal-insulator transitions, it is still unclear to what extent it can describe metal-insulator transitions in real solids, where nonlocal Coulomb interactions are always present. By using a variational principle, we clarify this issue for short- and long-range nonlocal Coulomb interactions for half-filled systems on bipartite lattices. We find that repulsive nonlocal interactions generally stabilize the Fermi-liquid regime. The metal-insulator phase boundary is shifted to larger interaction strengths to leading order linearly with nonlocal interactions. Importantly, nonlocal interactions can raise the order of the metal-insulator transition. We present a detailed analysis of how the dimension and geometry of the lattice as well as the temperature determine the critical nonlocal interaction leading to a first-order transition: for systems in more than two dimensions with nonzero density of states at the Fermi energy the critical nonlocal interaction is arbitrarily small; otherwise, it is finite.

  12. Extended quantum mechanics

    International Nuclear Information System (INIS)

    Pavel Bona

    2000-01-01

    The work can be considered as an essay on mathematical and conceptual structure of nonrelativistic quantum mechanics which is related here to some other (more general, but also to more special and 'approximative') theories. Quantum mechanics is here primarily reformulated in an equivalent form of a Poisson system on the phase space consisting of density matrices, where the 'observables', as well as 'symmetry generators' are represented by a specific type of real valued (densely defined) functions, namely the usual quantum expectations of corresponding selfjoint operators. It is shown in this paper that inclusion of additional ('nonlinear') symmetry generators (i. e. 'Hamiltonians') into this reformulation of (linear) quantum mechanics leads to a considerable extension of the theory: two kinds of quantum 'mixed states' should be distinguished, and operator - valued functions of density matrices should be used in the role of 'nonlinear observables'. A general framework for physical theories is obtained in this way: By different choices of the sets of 'nonlinear observables' we obtain, as special cases, e.g. classical mechanics on homogeneous spaces of kinematical symmetry groups, standard (linear) quantum mechanics, or nonlinear extensions of quantum mechanics; also various 'quasiclassical approximations' to quantum mechanics are all sub theories of the presented extension of quantum mechanics - a version of the extended quantum mechanics. A general interpretation scheme of extended quantum mechanics extending the usual statistical interpretation of quantum mechanics is also proposed. Eventually, extended quantum mechanics is shown to be (included into) a C * -algebraic (hence linear) quantum theory. Mathematical formulation of these theories is presented. The presentation includes an analysis of problems connected with differentiation on infinite-dimensional manifolds, as well as a solution of some problems connected with the work with only densely defined unbounded

  13. Extended analysis of Mo VI

    International Nuclear Information System (INIS)

    Edlen, B.; Rahimullah, K.; Tauheed, A.; Chaghtai, M.S.Z.

    1985-01-01

    The analysis of the RbI-like spectrum Mo VI has been extended to include a total of some 110 classified lines and 44 energy levels belonging to the one-electron configurations 4s 2 4p 6 ( 1 S)nl with n ranging up to 9 and l up to 7. The analysis is based on recordings of vacuum spark spectra made at Lund in the region 230-2350 A, complemented by a list of lines from 2193 to 6336 A observed and identified by Romanov and Striganov in a Penning type arc discharge. The one-electron level system is partly mixed with core-excited configurations, not treated in the present paper. Especially the nf series is strongly perturbed by 4s 2 4p 5 4d 2 , and an anomalous behaviour of the ng series is explained by interaction with the 2 G term of 4s4p 6 4d 2 . The ionization limit, derived from 6h, 7i and 8k by means of the polarization formula, is found to be 555 132+-2 cm -1 . (orig.)

  14. Extended Life Coolant Testing

    Science.gov (United States)

    2016-06-06

    number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 06-06-2016 2. REPORT TYPE Interim Report 3. DATES COVERED ... Corrosion Testing of Traditional and Extended Life Coolants 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Hansen, Gregory A. T...providing vehicle specific coolants. Several laboratory corrosion tests were performed according to ASTM D1384 and D2570, but with a 2.5x extended time

  15. Projecting ADME Behavior and Drug-Drug Interactions in Early Discovery and Development: Application of the Extended Clearance Classification System.

    Science.gov (United States)

    El-Kattan, Ayman F; Varma, Manthena V; Steyn, Stefan J; Scott, Dennis O; Maurer, Tristan S; Bergman, Arthur

    2016-12-01

    To assess the utility of Extended Clearance Classification System (ECCS) in understanding absorption, distribution, metabolism, and elimination (ADME) attributes and enabling victim drug-drug interaction (DDI) predictions. A database of 368 drugs with relevant ADME parameters, main metabolizing enzymes, uptake transporters, efflux transporters, and highest change in exposure (%AUC) in presence of inhibitors was developed using published literature. Drugs were characterized according to ECCS using ionization, molecular weight and estimated permeability. Analyses suggested that ECCS class 1A drugs are well absorbed and systemic clearance is determined by metabolism mediated by CYP2C, esterases, and UGTs. For class 1B drugs, oral absorption is high and the predominant clearance mechanism is hepatic uptake mediated by OATP transporters. High permeability neutral/basic drugs (class 2) showed high oral absorption, with metabolism mediated generally by CYP3A, CYP2D6 and UGTs as the predominant clearance mechanism. Class 3A/4 drugs showed moderate absorption with dominant renal clearance involving OAT/OCT2 transporters. Class 3B drugs showed low to moderate absorption with hepatic uptake (OATPs) and/or renal clearance as primary clearance mechanisms. The highest DDI risk is typically seen with class 2/1B/3B compounds manifested by inhibition of either CYP metabolism or active hepatic uptake. Class 2 showed a wider range in AUC change likely due to a variety of enzymes involved. DDI risk for class 3A/4 is small and associated with inhibition of renal transporters. ECCS provides a framework to project ADME profiles and further enables prediction of victim DDI liabilities in drug discovery and development.

  16. A quadratic form of the Coulomb operator and an optimization scheme for the extended Kohn-Sham models

    International Nuclear Information System (INIS)

    Kusakabe, Koichi

    2009-01-01

    To construct an optimization scheme for an extension of the Kohn-Sham approach, I introduce an operator form of the Coulomb interaction. This form is the sum of quadratic form pairs, which can be redefined in a self-consistent calculation of a multi-reference density functional theory. A detailed derivation of the form is given. A fluctuation term introduced in the extended Kohn-Sham scheme is expressed in this form for regularization. The present procedure also provides an exact derivation of effective negative interactions in charge fluctuation channels. Relevance to high-temperature superconductors is discussed.

  17. The low-energy constants of the extended linear sigma model

    Energy Technology Data Exchange (ETDEWEB)

    Divotgey, Florian; Giacosa, Francesco; Kovacs, Peter; Rischke, Dirk H. [Institut fuer Theoretische Physik, Goethe-Universitaet Frankfurt am Main (Germany)

    2016-07-01

    The low-energy dynamics of Quantum Chromodynamics (QCD) is fully determined by the interactions of the (pseudo-) Nambu-Goldstone bosons of spontaneous chiral symmetry breaking, i.e., for two quark flavors, the pions. Pion dynamics is described by the low-energy effective theory of QCD, chiral perturbation theory (ChPT), which is based on the nonlinear realization of chiral symmetry. An alternative description is provided by the Linear Sigma Model, where chiral symmetry is linearly realized. An extended version of this model, the so-called extended Linear Sigma Model (eLSM) was recently developed which incorporates all J{sup P}=0{sup ±}, 1{sup ±} anti qq mesons up to 2 GeV in mass. A fit of the coupling constants of this model to experimentally measured masses and decay widths has a surprisingly good quality. In this talk, it is demonstrated that the low-energy limit of the eLSM, obtained by integrating out all fields which are heavier than the pions, assumes the same form as ChPT. Moreover, the low-energy constants (LECs) of the eLSM agree with those of ChPT.

  18. Interactions between Food Additive Silica Nanoparticles and Food Matrices

    Directory of Open Access Journals (Sweden)

    Mi-Ran Go

    2017-06-01

    Full Text Available Nanoparticles (NPs have been widely utilized in the food industry as additives with their beneficial characteristics, such as improving sensory property and processing suitability, enhancing functional and nutritional values, and extending shelf-life of foods. Silica is used as an anti-caking agent to improve flow property of powered ingredients and as a carrier for flavors or active compounds in food. Along with the rapid development of nanotechnology, the sizes of silica fall into nanoscale, thereby raising concerns about the potential toxicity of nano-sized silica materials. There have been a number of studies carried out to investigate possible adverse effects of NPs on the gastrointestinal tract. The interactions between NPs and surrounding food matrices should be also taken into account since the interactions can affect their bioavailability, efficacy, and toxicity. In the present study, we investigated the interactions between food additive silica NPs and food matrices, such as saccharides, proteins, lipids, and minerals. Quantitative analysis was performed to determine food component-NP corona using HPLC, fluorescence quenching, GC-MS, and ICP-AES. The results demonstrate that zeta potential and hydrodynamic radius of silica NPs changed in the presence of all food matrices, but their solubility was not affected. However, quantitative analysis on the interactions revealed that a small portion of food matrices interacted with silica NPs and the interactions were highly dependent on the type of food component. Moreover, minor nutrients could also affect the interactions, as evidenced by higher NP interaction with honey rather than with a simple sugar mixture containing an equivalent amount of fructose, glucose, sucrose, and maltose. These findings provide fundamental information to extend our understanding about the interactions between silica NPs and food components and to predict the interaction effect on the safety aspects of food

  19. Editorial: Expressive Interactive Systems That Tell a Story

    NARCIS (Netherlands)

    Reidsma, Dennis; Volpe, Gualtiero; Volpe, G; Camurri, A.; Camurri, Antonio; Nijholt, Antinus

    2015-01-01

    This special issue brings together selected, extended contributions from the Fourth Conference on Intelligent Technologies for Interactive Entertainment (INTETAIN 2011), with a special focus on research concerning the application of new technologies in the field of arts and culture. Since 2005, the

  20. Cosmological dynamics of extended chameleons

    International Nuclear Information System (INIS)

    Tamanini, Nicola; Wright, Matthew

    2016-01-01

    We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from ΛCDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.

  1. Cosmological dynamics of extended chameleons

    Energy Technology Data Exchange (ETDEWEB)

    Tamanini, Nicola [Institut de Physique Théorique, CEA-Saclay, CNRS UMR 3681, Université Paris-Saclay, F-91191 Gif-sur-Yvette (France); Wright, Matthew, E-mail: nicola.tamanini@cea.fr, E-mail: matthew.wright.13@ucl.ac.uk [Department of Mathematics, University College London, Gower Street, London, WC1E 6BT (United Kingdom)

    2016-04-01

    We investigate the cosmological dynamics of the recently proposed extended chameleon models at both background and linear perturbation levels. Dynamical systems techniques are employed to fully characterize the evolution of the universe at the largest distances, while structure formation is analysed at sub-horizon scales within the quasi-static approximation. The late time dynamical transition from dark matter to dark energy domination can be well described by almost all extended chameleon models considered, with no deviations from ΛCDM results at both background and perturbation levels. The results obtained in this work confirm the cosmological viability of extended chameleons as alternative dark energy models.

  2. Extended two-temperature model for ultrafast thermal response of band gap materials upon impulsive optical excitation

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Taeho [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Samsung Advanced Institute of Technology, Suwon 443-803 (Korea, Republic of); Teitelbaum, Samuel W.; Wolfson, Johanna; Nelson, Keith A., E-mail: kanelson@mit.edu [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Kandyla, Maria [Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307 (United States); Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens 116-35 (Greece)

    2015-11-21

    Thermal modeling and numerical simulations have been performed to describe the ultrafast thermal response of band gap materials upon optical excitation. A model was established by extending the conventional two-temperature model that is adequate for metals, but not for semiconductors. It considers the time- and space-dependent density of electrons photoexcited to the conduction band and accordingly allows a more accurate description of the transient thermal equilibration between the hot electrons and lattice. Ultrafast thermal behaviors of bismuth, as a model system, were demonstrated using the extended two-temperature model with a view to elucidating the thermal effects of excitation laser pulse fluence, electron diffusivity, electron-hole recombination kinetics, and electron-phonon interactions, focusing on high-density excitation.

  3. Reconsidering Schumpeterian opportunities: The contribution of interaction ritual chain theory

    OpenAIRE

    Goss, David

    2007-01-01

    Purpose The purpose of this article is to develop a conceptual framework that recognises the significance of emotional and interactional factors in shaping the development and enactment of entrepreneurial opportunities. Design/methodology/approach Provides a theory development illustrated through a case study based on secondary sources. Findings Demonstrates how emotion and interaction ritual chains can extend the scope of entrepreneurial theorising. Research limitations/...

  4. Inter-atomic interaction between electrons, 2

    International Nuclear Information System (INIS)

    Haga, Eijiro; Kato, Tomohiko; Aisaka, Tsuyoshi.

    1978-01-01

    Intra- and inter-atomic interactions in the exchange process are defined with respect to the Wannier function rather than the atomic function. In relation to the neutron scattering data for nickel, the behavior for the effective exchange parameter I(q) in the q-dependent susceptibility is, in RPA, investigated by taking into account the main types of the nearest neighbor interactions and by extending our previous treatment. The different types of interactions lead to different behavior for the q-dependence of I(q). The contribution to I(q) from inter-atomic interactions other than the exchange type decreases as the surface area of the Fermi surface becomes large. For the exchange type, the l-th neighbor interaction with l<=4 is taken into account, and, from the comparison with the empirical result for I(q), it is found that the inter-atomic contribution to I(0) is about thirty percent with a reasonable decrease against l. (author)

  5. Structural characteristics of the shock-induced boundary layer separation extended to the leading edge

    Science.gov (United States)

    Tao, Y.; Liu, W. D.; Fan, X. Q.; Zhao, Y. L.

    2017-07-01

    For a better understanding of the local unstart of supersonic/hypersonic inlet, a series of experiments has been conducted to investigate the shock-induced boundary layer separation extended to the leading edge. Using the nanoparticle-based planar laser scattering, we recorded the fine structures of these interactions under different conditions and paid more attention to their structural characteristics. According to their features, these interactions could be divided into four types. Specifically, Type A wave pattern is similar to the classic shock wave/turbulent boundary layer interaction, and Type B wave configuration consists of an overall Mach reflection above the large scale separation bubble. Due to the gradual decrease in the size of the separation bubble, the separation bubble was replaced by several vortices (Type C wave pattern). Besides, for Type D wave configuration which exists in the local unstart inlet, there appears to be some flow spillage around the leading edge.

  6. Use of integrin-linked kinase to extend function of encapsulated pancreatic tissue

    International Nuclear Information System (INIS)

    Blanchette, James O; Langer, Steven J; Leinwand, Leslie L; Sahai, Suchit; Topiwala, Pritesh S; Anseth, Kristi S

    2010-01-01

    We have studied the impact of overexpression of an intracellular signaling protein, integrin-linked kinase (ILK), on the survival and function of encapsulated islet tissue used for the treatment of type 1 diabetes. The dimensions of the encapsulated tissue can impact the stresses placed on the tissue and ILK overexpression shows the ability to extend function of dissociated cells as well as intact islets. These results suggest that lost cell-extracellular matrix interactions in cell encapsulation systems can lead to decreased insulin secretion and ILK signaling is a target to overcome this phenomenon. (communication)

  7. Use of integrin-linked kinase to extend function of encapsulated pancreatic tissue

    Energy Technology Data Exchange (ETDEWEB)

    Blanchette, James O [Department of Chemical Engineering, University of South Carolina, Columbia, SC (United States); Langer, Steven J; Leinwand, Leslie L [Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO (United States); Sahai, Suchit; Topiwala, Pritesh S [Biomedical Engineering Program, University of South Carolina, Columbia, SC (United States); Anseth, Kristi S, E-mail: blanchej@cec.sc.ed [Howard Hughes Medical Institute, Boulder, CO (United States)

    2010-12-15

    We have studied the impact of overexpression of an intracellular signaling protein, integrin-linked kinase (ILK), on the survival and function of encapsulated islet tissue used for the treatment of type 1 diabetes. The dimensions of the encapsulated tissue can impact the stresses placed on the tissue and ILK overexpression shows the ability to extend function of dissociated cells as well as intact islets. These results suggest that lost cell-extracellular matrix interactions in cell encapsulation systems can lead to decreased insulin secretion and ILK signaling is a target to overcome this phenomenon. (communication)

  8. Systematic analysis of hot Yb{sup *} isotopes using the energy density formalism

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Deepika; Sharma, Manoj K.; Rajni [Thapar University, School of Physics and Materials Science, Patiala (India); Kumar, Raj [University of Padova, Department of Physics and Astronomy, Padova (Italy); Gupta, Raj K. [Panjab University, Department of Physics, Chandigarh (India)

    2014-10-15

    A systematic study of the spin-orbit density interaction potential is carried out, with spherical as well as deformed choices of nuclei, for a variety of near-symmetric and asymmetric colliding nuclei leading to various isotopes of the compound nucleus Yb{sup *}, using the semiclassical extended Thomas-Fermi formulation (ETF) of the Skyrme energy density formalism (SEDF). We observe that the spin-orbit density interaction barrier height (V{sub JB}) and barrier position (R{sub JB}) increase systematically with the increase in number of neutrons in both the projectile and target, for spherical systems. On allowing deformation effects with optimum orientations, the barrier-height increases by a large order of magnitude, as compared to the spherical case, in going from {sup 156}Yb{sup *} to {sup 172}Yb{sup *} nuclear systems formed via near-symmetric Ni+Mo or asymmetric O+Sm colliding nuclei, except that for the oblate-shaped nuclei, the V{sub JB} is the highest and R{sub JB} shifts towards a smaller (compact) interaction radius. The temperature does not change the behavior of spin-orbit density dependent (V{sub J}) and independent (V{sub P}) interaction potentials, except for some minor changes in the magnitude. The orientation degree of freedom also plays an important role in modifying the barrier characteristics and hence produces a large effect on the fusion cross section. The fusion excitation function of the compound nuclei {sup 160,} {sup 164}Yb{sup *} formed in different incoming channels, show clearly that the new forces GSkI and KDE0v1 respond better than the old SIII force. Among the first two, KDE0v1 seems to perform better. The fusion cross-sections are also predicted for a few other isotopes of Yb{sup *}. (orig.)

  9. Technological Packages Extended To Farmers by Non ...

    African Journals Online (AJOL)

    Global Approaches to Extension Practice: A Journal of Agricultural Extension ... extended to farmers by Non Governmental Organizations in the Niger Delta area of Nigeria. ... Modern snailery was the only identified agro forestry technology extended, ... technologies were the significant soil management practices extended.

  10. Nuclear structure theory. Annual technical progress report, July 1, 1975--September 30, 1976

    International Nuclear Information System (INIS)

    French, J.B.; Koltun, D.S.

    1976-01-01

    This report summarizes progress during the past year in the following areas of nuclear structure and reaction theory: Meson interactions with nucleons and nuclei, including elastic and inelastic scattering of pions, three-body theories of scattering and absorption of pions by deuterons, π-p bremsstrahlung, and multiple-excitation models for meson absorption by heavier nuclei. Studies of the inverse scattering problem including 1 S 0 nucleon-nucleon scattering; the relativistic two-body problem, particularly for relativistic effects at low energies: the unitary-pole expansion in nucleon-nucleon scattering with hard-core interactions. Statistical spectroscopy including: strength distributions and sum rules(both energy weighted and inverse energy weighted) for nuclear excitations; fluctuations and correlations in spectra, strengths and expectation values; studies of Garvey-Kelson and similar mass relationships; spectroscopy in huge spaces including spectral methods for renormalization of the interaction and for using (two + three)-body Skyrme interactions; technical aspects of operator averaging

  11. Temporally extended self-awareness and affective engagement in three-year-olds.

    Science.gov (United States)

    Zocchi, Silvia; Borasio, Francesca; Rivolta, Davide; Rositano, Luana; Scotti, Ilaria; Liccione, Davide

    2018-01-01

    The aim of the current study was to analyze the role of affective engagement during social interaction on the emergence of a temporally extended self (TES). A Delayed Self Recognition task was administered in two different social contexts: in presence of the mother ("Mother condition") or in presence of an unfamiliar person ("Experimenter condition"). The same sample of 71 tree-year-olds was tested twice in these two treatment conditions. Results showed higher self-recognition scores in the "Mother condition". These findings are consistent with developing-self theories that emphasize the impact of reciprocal social interaction on the emergence of self-awareness, and support a conception of the Self as a dialogic entity. We interpreted this link as a evidence that, when completing the procedure with their mother, children are aware of her attention, which corresponds to a familiar mode of self-perception, as well as to a peculiar affective consciousness of Self. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. A covariant open bosonic string field theory including the endpoint and middlepoint interaction

    International Nuclear Information System (INIS)

    Liu, B.G.; Northwest Univ., Xian; Chen, Y.X.

    1988-01-01

    Extending the usual endpoint and midpoint interactions, we introduce numerous kinds of interactions, labelled by a parameter λ and obtain a non-commutative and associative string field algebra by adding up all interactions. With this algebra we develop a covariant open bosonic string field theory, which reduces to Witten's open bosonic string field theory under a special string length choice. (orig.)

  13. Cynophobic fear adaptively extends peri-personal space

    Directory of Open Access Journals (Sweden)

    Marine eTaffou

    2014-09-01

    Full Text Available Peri-personal space (PPS is defined as the space immediately surrounding our bodies, which is critical in the adaptation of our social behavior. As a space of interaction with the external world, PPS is involved in the control of motor action as well as in the protection of the body. The boundaries of this PPS are known to be flexible but so far, little is known about how PPS boundaries are influenced by unreasonable fear. We hypothesized that unreasonable fear extends the neural representation of the multisensory space immediately surrounding the body in the presence of a feared object, with the aim of expanding the space of protection around the body. To test this hypothesis, we explored the impact of unreasonable fear on the size of PPS in two groups of non-clinical participants: dog-fearful and non-fearful participants. The sensitivity to cynophobia was assessed with a questionnaire. We measured participants’ PPS extent in the presence of threatening (dog growling and non-threatening (sheep bleating auditory stimuli. The sound stimuli were processed through binaural rendering so that the virtual sound sources were looming towards participants from their rear hemi-field. We found that, when in the presence of the auditory dog stimulus, the PPS of dog-fearful participants is larger than that of non-fearful participants. Our results demonstrate that PPS size is adaptively modulated by cynophobia and suggest that anxiety tailors PPS boundaries when exposed to fear-relevant features. Anxiety, with the exception of social phobia, has rarely been studied as a disorder of social interaction. These findings could help develop new treatment strategies for anxious disorders, by involving the link between space and interpersonal interaction in the approach of the disorder.

  14. Four-particle scattering with three-particle interactions

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1979-01-01

    The four-particle scattering formalism proposed independently by Alessandrini, by Mitra et al., by Rosenberg, and by Takahashi and Mishima is extended to include a possible three-particle interaction. The kernel of the new equations we get contain both two- and three-body connected parts and gets four-body connected after one iteration. On the other hand, the kernel of the original equations in the absence of three-particle interactions does not have a two-body connected part. We also write scattering equations for the transition operators connecting the two-body fragmentation channels. They are generalization of the Sloan equations in the presence of three-particle interactions. We indicate how to include approximately the effect of a weak three-particle interaction in a practical four-particle scattering calculation

  15. Nonlocal excitonic–mechanical interaction in a nanosystem

    Energy Technology Data Exchange (ETDEWEB)

    Zabolotskii, A. A., E-mail: zabolotskii@iae.nsk.su [Russian Academy of Sciences, Institute of Automatics and Electrometry, Siberian Branch (Russian Federation)

    2016-11-15

    The dynamics of a nanoparticle during its dipole interaction with an excitonic excitation in an extended quasi-one-dimensional polarizable medium is investigated. Bundles of J-aggregates of dye molecules are considered as an example of the latter. The nonlocal excitonic–mechanical interaction between the field of an amplifying or absorbing nanoparticle and excitons in a bundle has been simulated numerically. It has been found that the interaction between the field of the induced nanoparticle dipole and the fields of the molecular dipoles in an aggregate can lead to a change in the particle trajectory and excitonic pulse shape. The possibility of controlling the nanoparticle by excitonic pulses and the reverse effect of the nanoparticle field on the dynamics of excitons due to the nonlocal excitonic–mechanical interaction has been demonstrated.

  16. Gene-based testing of interactions in association studies of quantitative traits.

    Directory of Open Access Journals (Sweden)

    Li Ma

    Full Text Available Various methods have been developed for identifying gene-gene interactions in genome-wide association studies (GWAS. However, most methods focus on individual markers as the testing unit, and the large number of such tests drastically erodes statistical power. In this study, we propose novel interaction tests of quantitative traits that are gene-based and that confer advantage in both statistical power and biological interpretation. The framework of gene-based gene-gene interaction (GGG tests combine marker-based interaction tests between all pairs of markers in two genes to produce a gene-level test for interaction between the two. The tests are based on an analytical formula we derive for the correlation between marker-based interaction tests due to linkage disequilibrium. We propose four GGG tests that extend the following P value combining methods: minimum P value, extended Simes procedure, truncated tail strength, and truncated P value product. Extensive simulations point to correct type I error rates of all tests and show that the two truncated tests are more powerful than the other tests in cases of markers involved in the underlying interaction not being directly genotyped and in cases of multiple underlying interactions. We applied our tests to pairs of genes that exhibit a protein-protein interaction to test for gene-level interactions underlying lipid levels using genotype data from the Atherosclerosis Risk in Communities study. We identified five novel interactions that are not evident from marker-based interaction testing and successfully replicated one of these interactions, between SMAD3 and NEDD9, in an independent sample from the Multi-Ethnic Study of Atherosclerosis. We conclude that our GGG tests show improved power to identify gene-level interactions in existing, as well as emerging, association studies.

  17. Computation of Casimir interactions between arbitrary three-dimensional objects with arbitrary material properties

    International Nuclear Information System (INIS)

    Reid, M. T. Homer; White, Jacob; Johnson, Steven G.

    2011-01-01

    We extend a recently introduced method for computing Casimir forces between arbitrarily shaped metallic objects [M. T. H. Reid et al., Phys. Rev. Lett. 103 040401 (2009)] to allow treatment of objects with arbitrary material properties, including imperfect conductors, dielectrics, and magnetic materials. Our original method considered electric currents on the surfaces of the interacting objects; the extended method considers both electric and magnetic surface current distributions, and obtains the Casimir energy of a configuration of objects in terms of the interactions of these effective surface currents. Using this new technique, we present the first predictions of Casimir interactions in several experimentally relevant geometries that would be difficult to treat with any existing method. In particular, we investigate Casimir interactions between dielectric nanodisks embedded in a dielectric fluid; we identify the threshold surface-surface separation at which finite-size effects become relevant, and we map the rotational energy landscape of bound nanoparticle diclusters.

  18. The Extended Likeability Framework: A Theoretical Framework for and a Practical Case of Designing Likeable Media Applications for Preschoolers

    Directory of Open Access Journals (Sweden)

    Vero vanden Abeele

    2008-01-01

    Full Text Available A theoretical framework and practical case for designing likeable interactive media applications for preschoolers in the home environment are introduced. First, we elaborate on the theoretical framework. We introduce the uses and gratifications paradigm (U&G. We argue that U&G is a good approach to researching likeability of media applications. Next, we complete the U&G framework with expectancy-value (EV theory. EV theory helps us move from theoretical insights to concrete design guidelines. Together, the U&G framework and the EV model form the foundation of our extended likeability framework for the design and evaluation of interactive media applications, for preschoolers in the home environment. Finally, we demonstrate a practical case of our extended likeability framework via the research project CuTI. The CuTI project aims at revealing those particular user gratifications and design attributes that are important to support playful behaviour and fun activities of preschoolers in the home environment.

  19. The hydrophobic effect: Molecular dynamics simulations of water confined between extended hydrophobic and hydrophilic surfaces

    DEFF Research Database (Denmark)

    Jensen, Morten Østergaard; Mouritsen, Ole G.; Peters, Günther H.J.

    2004-01-01

    Structural and dynamic properties of water confined between two parallel, extended, either hydrophobic or hydrophilic crystalline surfaces of n-alkane C36H74 or n-alcohol C35H71OH, are studied by molecular dynamics simulations. Electron density profiles, directly compared with corresponding......-correlation functions reveal that water molecules have characteristic diffusive behavior and orientational ordering due to the lack of hydrogen bonding interactions with the surface. These observations suggest that the altered dynamical properties of water in contact with extended hydrophobic surfaces together...... at both surfaces. The ordering is characteristically different between the surfaces and of longer range at the hydrophilic surface. Furthermore, the dynamic properties of water are different at the two surfaces and different from the bulk behavior. In particular, at the hydrophobic surface, time...

  20. Extending lactation in pasture-based dairy cows. II: Effect of genetic strain and diet on plasma hormone and metabolite concentrations.

    Science.gov (United States)

    Kay, J K; Phyn, C V C; Roche, J R; Kolver, E S

    2009-08-01

    Fifty-six genetically divergent New Zealand and North American Holstein-Friesian (HF) cows grazed pasture, and were offered 0, 3, or 6 kg of concentrate DM/cow per day for an extended lactation (605 +/- 8.3 d in milk; mean +/- standard error of the mean). Weekly blood samples collected from individual cows from wk 1 to 10 postpartum (early lactation), and from wk 47 to 63 postpartum (extended lactation) were analyzed for nonesterified fatty acids (NEFA), glucose, insulin, leptin, growth hormone (GH), insulin-like growth factor-I (IGF-I), calcium, and urea. During early lactation, NEFA and GH concentrations were greater and IGF-I concentrations were less, and increased at a slower rate in North American HF. During this 10-wk period, there were no strain effects on plasma glucose, leptin, insulin, or calcium. During the extended lactation period, North American HF had greater NEFA and GH concentrations; there were strain x diet interactions for insulin and leptin, and a tendency for a strain x diet interaction for glucose. These interactions were primarily due to greater plasma insulin, leptin, and glucose concentrations in the New Zealand HF fed 6 kg of concentrate DM/cow per day, a result of excessive body condition in this treatment. In this period, there was no strain effect on plasma IGF-I, calcium, or urea concentration. During early lactation, there was a linear increase in glucose and IGF-I, and a linear decrease in GH and urea with increasing concentrate in the diet. However, plasma calcium, NEFA, insulin, and leptin remained unchanged. During the extended lactation period, there was an effect of feed supplementation on GH and urea, which decreased linearly with increasing concentrate in the diet. There was, however, no supplementation effect on NEFA, calcium, or IGF-I. These data indicate potential strain differences in recoupling of the somatotropic axis, insulin resistance, and energy partitioning, and may help explain the physiology behind the previously

  1. Construction of acylhydrazidate-extended metal-organic frameworks.

    Science.gov (United States)

    Wang, Yan-Ning; Yang, Qing-Feng; Li, Guang-Hua; Zhang, Ping; Yu, Jie-Hui; Xu, Ji-Qing

    2014-08-14

    Under hydrothermal conditions, the reactions of Ba(2+)/Zn(2+), aromatic polycarboxylic acids and N2H4 with or without oxalic acid were carried out, affording four new acylhydrazidate-extended metal-organic frameworks (MOFs) [Ba(pmdh)] (pmdh = pyromellitdihydrazidate) 1, [Ba(sdpth)(H2O)2]·0.5H2O (sdpth = 4,4'-sulfoyldiphthalhydrazidate) 2, [Ba2(cpth)2(H2O)2] (cpth = 4-carboxylphthalhydrazidate) 3 and [Zn2(pdh)2(ox)]·H2O (ox = oxalate, pdh = pyridine-2,3-dicarboxylhydrazidate) 4. The acylhydrazidate molecules pmdh, sdpth, cpth and pdh in compounds 1-4 derived from the hydrothermal in situ acylation of N2H4 with aromatic polycarboxylic acids. X-ray single-crystal diffraction analysis revealed that (i) in compound 1, the pmdh I molecules link the Ba(2+) ions into a two-dimensional (2D) layer with a (4,4) topology, and then the pmdh II molecules extend these layers into a three-dimensional (3D) network; (ii) in compound 2, the sdpth molecules link the Ba(2+) ions to form a one-dimensional (1D) square tube. Interestingly, the tubes are further linked into a 3D supramolecular network via the N-H···O interactions, creating synchronously big channels; (iii) in compound 3, the cpth I molecules link the Ba1 ions into a 3D network with a (10,3) topology. Ba2 and cpth II are distributed on the channels; (iv) in compound 4, Zn(2+) and pdh aggregate to form two types of Zn4(pdh)4 clusters. The ox molecules act as the secondary linkers, extending the Zn4(pdh)4 secondary building units (SBUs) into a 3D network with a 6(6) topology. The photoluminescence analysis indicates that compounds 3 and 4 emit green light with maxima at 495 nm for 3 (λ(ex) = 397 nm), and 522 nm for 4 (λ(ex) = 395 nm), respectively. At 77 K, the activated 2 and 4 can adsorb N2 in amounts of 58.31 cm(3) g(-1) for 2 and 38.38 cm(3) g(-1) for 4, respectively.

  2. Nonlinear mean field theory for nuclear matter and surface properties

    International Nuclear Information System (INIS)

    Boguta, J.; Moszkowski, S.A.

    1983-01-01

    Nuclear matter properties are studied in a nonlinear relativistic mean field theory. We determine the parameters of the model from bulk properties of symmetric nuclear matter and a reasonable value of the effective mass. In this work, we stress the nonrelativistic limit of the theory which is essentially equivalent to a Skyrme hamiltonian, and we show that most of the results can be obtained, to a good approximation, analytically. The strength of the required parameters is determined from the binding energy and density of nuclear matter and the effective nucleon mass. For realistic values of the parameters, the nonrelativistic approximation turns out to be quite satisfactory. Using reasonable values of the parameters, we can account for other key properties of nuclei, such as the spin-orbit coupling, surface energy, and diffuseness of the nuclear surface. Also the energy dependence of the nucleon-nucleus optical model is accounted for reasonably well except near the Fermi surface. It is found, in agreement with empirical results, that the Landau parameter F 0 is quite small in normal nuclear matter. Both density dependence and momentum dependence of the NN interaction, but especially the former, are important for nuclear saturation. The required scalar and vector coupling constants agree fairly well with those obtained from analyses of NN scattering phase shifts with one-boson-exchange models. The mean field theory provides a semiquantitative justification for the weak Skyrme interaction in odd states. The strength of the required nonlinear term is roughly consistent with that derived using a new version of the chiral mean field theory in which the vector mass as well as the nucleon mass is generated by the sigma-field. (orig.)

  3. Extended wave-packet model to calculate energy-loss moments of protons in matter

    Science.gov (United States)

    Archubi, C. D.; Arista, N. R.

    2017-12-01

    In this work we introduce modifications to the wave-packet method proposed by Kaneko to calculate the energy-loss moments of a projectile traversing a target which is represented in terms of Gaussian functions for the momentum distributions of electrons in the atomic shells. These modifications are introduced using the Levine and Louie technique to take into account the energy gaps corresponding to the different atomic levels of the target. We use the extended wave-packet model to evaluate the stopping power, the energy straggling, the inverse mean free path, and the ionization cross sections for protons in several targets, obtaining good agreements for all these quantities on an extensive energy range that covers low-, intermediate-, and high-energy regions. The extended wave-packet model proposed here provides a method to calculate in a very straightforward way all the significant terms of the inelastic interaction of light ions with any element of the periodic table.

  4. Single-step reinitialization and extending algorithms for level-set based multi-phase flow simulations

    Science.gov (United States)

    Fu, Lin; Hu, Xiangyu Y.; Adams, Nikolaus A.

    2017-12-01

    We propose efficient single-step formulations for reinitialization and extending algorithms, which are critical components of level-set based interface-tracking methods. The level-set field is reinitialized with a single-step (non iterative) "forward tracing" algorithm. A minimum set of cells is defined that describes the interface, and reinitialization employs only data from these cells. Fluid states are extrapolated or extended across the interface by a single-step "backward tracing" algorithm. Both algorithms, which are motivated by analogy to ray-tracing, avoid multiple block-boundary data exchanges that are inevitable for iterative reinitialization and extending approaches within a parallel-computing environment. The single-step algorithms are combined with a multi-resolution conservative sharp-interface method and validated by a wide range of benchmark test cases. We demonstrate that the proposed reinitialization method achieves second-order accuracy in conserving the volume of each phase. The interface location is invariant to reapplication of the single-step reinitialization. Generally, we observe smaller absolute errors than for standard iterative reinitialization on the same grid. The computational efficiency is higher than for the standard and typical high-order iterative reinitialization methods. We observe a 2- to 6-times efficiency improvement over the standard method for serial execution. The proposed single-step extending algorithm, which is commonly employed for assigning data to ghost cells with ghost-fluid or conservative interface interaction methods, shows about 10-times efficiency improvement over the standard method while maintaining same accuracy. Despite their simplicity, the proposed algorithms offer an efficient and robust alternative to iterative reinitialization and extending methods for level-set based multi-phase simulations.

  5. The effect of extending high-frequency bandwidth on the acceptable noise level (ANL) of hearing-impaired listeners.

    Science.gov (United States)

    Johnson, Earl; Ricketts, Todd; Hornsby, Benjamin

    2009-01-01

    This study examined the effects of extending high-frequency bandwidth, for both a speech signal and a background noise, on the acceptable signal-to-noise ratio (SNR) of listeners with mild sensorineural hearing loss through utilization of the Acceptable Noise Level (ANL) procedure. In addition to extending high-frequency bandwidth, the effects of reverberation time and background noise type and shape were also examined. The study results showed a significant increase in the mean ANL (i.e. participants requested a better SNR for an acceptable listening situation) when high-frequency bandwidth was extended from 3 to 9 kHz and from 6 to 9 kHz. No change in the ANL of study participants was observed as a result of isolated modification to reverberation time or background noise stimulus. An interaction effect, however, of reverberation time and background noise stimulus was demonstrated. These findings may have implications for future design of hearing aid memory programs for listening to speech in the presence of broadband background noise.

  6. The role of CH/π interactions in the high affinity binding of streptavidin and biotin.

    Science.gov (United States)

    Ozawa, Motoyasu; Ozawa, Tomonaga; Nishio, Motohiro; Ueda, Kazuyoshi

    2017-08-01

    The streptavidin-biotin complex has an extraordinarily high affinity (Ka: 10 15 mol -1 ) and contains one of the strongest non-covalent interactions known. This strong interaction is widely used in biological tools, including for affinity tags, detection, and immobilization of proteins. Although hydrogen bond networks and hydrophobic interactions have been proposed to explain this high affinity, the reasons for it remain poorly understood. Inspired by the deceased affinity of biotin observed for point mutations of streptavidin at tryptophan residues, we hypothesized that a CH/π interaction may also contribute to the strong interaction between streptavidin and biotin. CH/π interactions were explored and analyzed at the biotin-binding site and at the interface of the subunits by the fragment molecular orbital method (FMO) and extended applications: PIEDA and FMO4. The results show that CH/π interactions are involved in the high affinity for biotin at the binding site of streptavidin. We further suggest that the involvement of CH/π interactions at the subunit interfaces and an extended CH/π network play more critical roles in determining the high affinity, rather than involvement at the binding site. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Situated interactions between audiovisual media and African herbal lore

    CSIR Research Space (South Africa)

    Bidwell, NJ

    2011-01-01

    Full Text Available The authors describe a rural African community’s interactions in recording and interpreting video on herb lore in our endeavours to design digital systems that extend sharing knowledge in a system of traditional medicine (TM). Designing for such a...

  8. Robust Numerical Methods for Nonlinear Wave-Structure Interaction in a Moving Frame of Reference

    DEFF Research Database (Denmark)

    Kontos, Stavros; Lindberg, Ole

    This project is focused on improving the state of the art for predicting the interaction between nonlinear ocean waves and marine structures. To achieve this goal, a flexible order finite difference potential flow solver has been extended to calculate for fully nonlinear wave-structure interaction...

  9. Astrocytic mitochondrial membrane hyperpolarization following extended oxygen and glucose deprivation.

    Directory of Open Access Journals (Sweden)

    Andrej Korenić

    Full Text Available Astrocytes can tolerate longer periods of oxygen and glucose deprivation (OGD as compared to neurons. The reasons for this reduced vulnerability are not well understood. Particularly, changes in mitochondrial membrane potential (Δψ(m in astrocytes, an indicator of the cellular redox state, have not been investigated during reperfusion after extended OGD exposure. Here, we subjected primary mouse astrocytes to glucose deprivation (GD, OGD and combinations of both conditions varying in duration and sequence. Changes in Δψ(m, visualized by change in the fluorescence of JC-1, were investigated within one hour after reconstitution of oxygen and glucose supply, intended to model in vivo reperfusion. In all experiments, astrocytes showed resilience to extended periods of OGD, which had little effect on Δψ(m during reperfusion, whereas GD caused a robust Δψ(m negativation. In case no Δψ(m negativation was observed after OGD, subsequent chemical oxygen deprivation (OD induced by sodium azide caused depolarization, which, however, was significantly delayed as compared to normoxic group. When GD preceded OD for 12 h, Δψ(m hyperpolarization was induced by both GD and subsequent OD, but significant interaction between these conditions was not detected. However, when GD was extended to 48 h preceding OGD, hyperpolarization enhanced during reperfusion. This implicates synergistic effects of both conditions in that sequence. These findings provide novel information regarding the role of the two main substrates of electron transport chain (glucose and oxygen and their hyperpolarizing effect on Δψ(m during substrate deprivation, thus shedding new light on mechanisms of astrocyte resilience to prolonged ischemic injury.

  10. Extended cognition in science communication.

    Science.gov (United States)

    Ludwig, David

    2014-11-01

    The aim of this article is to propose a methodological externalism that takes knowledge about science to be partly constituted by the environment. My starting point is the debate about extended cognition in contemporary philosophy and cognitive science. Externalists claim that human cognition extends beyond the brain and can be partly constituted by external devices. First, I show that most studies of public knowledge about science are based on an internalist framework that excludes the environment we usually utilize to make sense of science and does not allow the possibility of extended knowledge. In a second step, I argue that science communication studies should adopt a methodological externalism and accept that knowledge about science can be partly realized by external information resources such as Wikipedia. © The Author(s) 2013.

  11. Baryon states with hidden charm in the extended local hidden gauge approach

    International Nuclear Information System (INIS)

    Uchino, T.; Oset, E.; Liang, Wei-Hong

    2016-01-01

    The s-wave interaction of anti DΛ c , anti DΣ c , anti D * Λ c , anti D * Σ c and anti DΣ c * , anti D * Σ c * , is studied within a unitary coupled channels scheme with the extended local hidden gauge approach. In addition to the Weinberg-Tomozawa term, several additional diagrams via the pion exchange are also taken into account as box potentials. Furthermore, in order to implement the full coupled channels calculation, some of the box potentials which mix the vector-baryon and pseudoscalar-baryon sectors are extended to construct the effective transition potentials. As a result, we have observed six possible states in several angular momenta. Four of them correspond to two pairs of admixture states, two of anti DΣ c - anti D * Σ c with J = 1/2, and two of anti DΣ c * - anti D * Σ c * with J = 3/2. Moreover, we find a anti D * Σ c resonance which couples to the anti DΛ c channel and one spin degenerated bound state of anti D * Σ c * with J = 1/2,5/2. (orig.)

  12. Alpha Decay of Even-Even Superheavy Nuclei

    International Nuclear Information System (INIS)

    Oudih, M.R.; Hamza, Y.; Fellah, M.; Allal, N.H.; Fellah, M.; Allal, N.H.

    2011-01-01

    Alpha decay properties of even-even superheavy nuclei with 112.Z.120 have been investigated using the Hartree-Fock-Bogoliubov approach. The method is based on the SkP Skyrme interaction and the Lipkin-Nogami prescription for treating the pairing correlations. The alpha decay energies are extracted from the binding energies and then used for the calculation of the decay half-lives using a formula similar to that of Viola-Seaborg. The parameters of the formula were obtained through a least square fit to even-even heavy nuclei taken from the tables of Audi- Wapstra and some more recent references. The results are compared with other theoretical evaluations.

  13. Microscopic optical potential for 208Pb in the nuclear structure approach

    International Nuclear Information System (INIS)

    Bernard, V.; Nguyen Van Gai.

    1979-04-01

    The optical potential for nucleon- 208 Pb scattering below 30 MeV is calculated microscopically as the sum of a real Hartree-Fock term and a complex correction term arising from the coupling to excited states of the target. The Skyrme effective interaction is used to generate the Hartree-Fock field, the RPA excited states and the coupling. A complex local equivalent potential is defined and used to calculate scattering and absorption cross-sections. The real part of the optical potential is reasonably well described in this approach while the imaginary part is too weak. Inclusion of rearrangement processes could improve the agreement with experiment

  14. Low-lying dipole response in the stable 40,48Ca nuclei within the second random-phase approximation

    International Nuclear Information System (INIS)

    Gambacurta, D.; Grasso, M.; Catara, F.

    2012-01-01

    The low-lying dipole strength distributions of 40 CaCa and 48 Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle −2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle −1 hole nature and its transition densities.

  15. Low-lying dipole response in the stable 40,48Ca nuclei within the second random-phase approximation

    Science.gov (United States)

    Gambacurta, D.; Grasso, M.; Catara, F.

    2012-10-01

    The low-lying dipole strength distributions of 40CaCa and 48Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transition densities.

  16. Low-lying dipole response in the stable {sup 40,48}Ca nuclei within the second random-phase approximation

    Energy Technology Data Exchange (ETDEWEB)

    Gambacurta, D.; Grasso, M.; Catara, F. [GANIL,CEA/DSM-CNRS/IN2P3, Caen (France); Institut de Physique Nucleaire, Universite Paris-Sud, IN2P3-CNRS, F-91406 Orsay Cedex (France); Dipartimento di Fisica e Astronomia dell' Universita di and INFN Catania (Italy)

    2012-10-20

    The low-lying dipole strength distributions of {sup 40}CaCa and {sup 48}Ca, in the energy region between 5 and 10 MeV, are studied within the second random phase approximation (RPA) with Skyrme interaction. Standard RPA models do not usually predict any presence of strength in this energy region, while experimentally a significant amount of strength is found. The inclusion of the 2 particle -2 hole configurations allows to obtain a description in a rather good agreement with the experimental data. The properties of the most collective state are analyzed in terms of its 1 particle -1 hole nature and its transition densities.

  17. Do glycine-extended hormone precursors have clinical significance?

    DEFF Research Database (Denmark)

    Rehfeld, Jens Frederik

    2014-01-01

    Half of the known peptide hormones are C-terminally amidated. Subsequent biogenesis studies have shown that the immediate precursor is a glycine-extended peptide. The clinical interest in glycine-extended hormones began in 1994, when it was suggested that glycine-extended gastrin stimulated cancer...... and clinical effects of glycine-extended precursors for most other amidated hormones than gastrin and cholecystokinin (CCK). The idea of glycine-extended peptides as independent messengers was interesting. But clinical science has to move ahead from ideas that cannot be supported at key points after decades...

  18. Verification of Open Interactive Markov Chains

    OpenAIRE

    Brazdil, Tomas; Hermanns, Holger; Krcal, Jan; Kretinsky, Jan; Rehak, Vojtech

    2012-01-01

    Interactive Markov chains (IMC) are compositional behavioral models extending both labeled transition systems and continuous-time Markov chains. IMC pair modeling convenience - owed to compositionality properties - with effective verification algorithms and tools - owed to Markov properties. Thus far however, IMC verification did not consider compositionality properties, but considered closed systems. This paper discusses the evaluation of IMC in an open and thus compositional interpretation....

  19. Extending mine life

    International Nuclear Information System (INIS)

    Anon.

    1984-01-01

    Mine layouts, new machines and techniques, research into problem areas of ground control and so on, are highlighted in this report on extending mine life. The main resources taken into account are coal mining, uranium mining, molybdenum and gold mining

  20. Meditope-Fab interaction: threading the hole.

    Science.gov (United States)

    Bzymek, Krzysztof P; Ma, Yuelong; Avery, Kendra N; Horne, David A; Williams, John C

    2017-12-01

    Meditope, a cyclic 12-residue peptide, binds to a unique binding side between the light and heavy chains of the cetuximab Fab. In an effort to improve the affinity of the interaction, it was sought to extend the side chain of Arg8 in the meditope, a residue that is accessible from the other side of the meditope binding site, in order to increase the number of interactions. These modifications included an n-butyl and n-octyl extension as well as hydroxyl, amine and carboxyl substitutions. The atomic structures of the complexes and the binding kinetics for each modified meditope indicated that each extension threaded through the Fab `hole' and that the carboxyethylarginine substitution makes a favorable interaction with the Fab, increasing the half-life of the complex by threefold compared with the unmodified meditope. Taken together, these studies provide a basis for the design of additional modifications to enhance the overall affinity of this unique interaction.

  1. An exact solution to the extended Hubbard model in 2D for finite size system

    Science.gov (United States)

    Harir, S.; Bennai, M.; Boughaleb, Y.

    2008-08-01

    An exact analytical diagonalization is used to solve the two-dimensional extended Hubbard model (EHM) for a system with finite size. We have considered an EHM including on-site and off-site interactions with interaction energies U and V, respectively, for a square lattice containing 4×4 sites at one-eighth filling with periodic boundary conditions, recently treated by Kovacs and Gulacsi (2006 Phil. Mag. 86 2073). Taking into account the symmetric properties of this square lattice and using a translation linear operator, we have constructed a r-space basis only with 85 state-vectors which describe all possible distributions for four electrons in the 4×4 square lattice. The diagonalization of the 85×85 matrix energy allows us to study the local properties of the above system as a function of the on-site and off-site interactions energies, where we have shown that the off-site interaction encourages the existence of the double occupancies at the first excited state and induces a supplementary conductivity of the system.

  2. Extended UTAUT to Examine the Acceptance of Web Based Training System by Public Sector

    Directory of Open Access Journals (Sweden)

    Thamer A Alrawashdeh

    2013-01-01

    Full Text Available With the development of information technology, organizations have applied e-learning system to train their employees in order to enhance the its performance. In this respect, applying web based training will enable the organization to train their employees quickly, efficiently and effectively anywhere at any time. This research aims to extend Unified Theory of Acceptance and Use Technology (UTAUT using some factors such flexibility of web based training system, system interactivity and system enjoyment, in order to explain the employees

  3. Interaction between genotype and climates for Holstein milk ...

    African Journals Online (AJOL)

    This study was designed to investigate the interaction between genotype and climate for milk and fat production traits of Iranian Holstein dairy herds. Milk and fat production data were grouped in 5 climates, on the basis of Extended De Martonne method. (Co)Variance components and genetic parameters of first lactation ...

  4. THE CONTRIBUTIONS OF INTERACTIVE BINARY STARS TO DOUBLE MAIN-SEQUENCE TURNOFFS AND DUAL RED CLUMP OF INTERMEDIATE-AGE STAR CLUSTERS

    International Nuclear Information System (INIS)

    Yang Wuming; Bi Shaolan; Tian Zhijia; Li Tanda; Liu Kang; Meng Xiangcun

    2011-01-01

    Double or extended main-sequence turnoffs (DMSTOs) and dual red clump (RC) were observed in intermediate-age clusters, such as in NGC 1846 and 419. The DMSTOs are interpreted as that the cluster has two distinct stellar populations with differences in age of about 200-300 Myr but with the same metallicity. The dual RC is interpreted as a result of a prolonged star formation. Using a stellar population-synthesis method, we calculated the evolution of a binary-star stellar population. We found that binary interactions and merging can reproduce the dual RC in the color-magnitude diagrams of an intermediate-age cluster, whereas in actuality only a single population exists. Moreover, the binary interactions can lead to an extended main-sequence turnoff (MSTO) rather than DMSTOs. However, the rest of the main sequence, subgiant branch, and first giant branch are hardly spread by the binary interactions. Part of the observed dual RC and extended MSTO may be the results of binary interactions and mergers.

  5. Interactive floating windows: a new technique for stereoscopic video games

    Science.gov (United States)

    Zerebecki, Chris; Stanfield, Brodie; Tawadrous, Mina; Buckstein, Daniel; Hogue, Andrew; Kapralos, Bill

    2012-03-01

    The film industry has a long history of creating compelling experiences in stereoscopic 3D. Recently, the video game as an artistic medium has matured into an effective way to tell engaging and immersive stories. Given the current push to bring stereoscopic 3D technology into the consumer market there is considerable interest to develop stereoscopic 3D video games. Game developers have largely ignored the need to design their games specifically for stereoscopic 3D and have thus relied on automatic conversion and driver technology. Game developers need to evaluate solutions used in other media, such as film, to correct perceptual problems such as window violations, and modify or create new solutions to work within an interactive framework. In this paper we extend the dynamic floating window technique into the interactive domain enabling the player to position a virtual window in space. Interactively changing the position, size, and the 3D rotation of the virtual window, objects can be made to 'break the mask' dramatically enhancing the stereoscopic effect. By demonstrating that solutions from the film industry can be extended into the interactive space, it is our hope that this initiates further discussion in the game development community to strengthen their story-telling mechanisms in stereoscopic 3D games.

  6. Socially Extended Cognition and Shared Intentionality

    Directory of Open Access Journals (Sweden)

    Holger Lyre

    2018-05-01

    Full Text Available The paper looks at the intersection of extended cognition and social cognition. The central claim is that the mechanisms of shared intentionality can equally be considered as coupling mechanisms of cognitive extension into the social domain. This claim will be demonstrated by investigating a detailed example of cooperative action, and it will be argued that such cases imply that socially extended cognition is not only about cognitive vehicles, but that content must additionally be taken into account. It is finally outlined how social content externalism can in principle be grounded in socially extended cognition.

  7. Transversally extended string

    International Nuclear Information System (INIS)

    Akama, Keiichi

    1988-01-01

    Starting with the space-time action of the transversally extended string, we derive its world-sheet action, which is that of a gravitational and gauge theory with matter fields on the world-sheet, with additional effects of the second fundamental quantity. (author)

  8. Extended Irreversible Thermodynamics

    CERN Document Server

    Jou, David

    2010-01-01

    This is the 4th edition of the highly acclaimed monograph on Extended Irreversible Thermodynamics, a theory that goes beyond the classical theory of irreversible processes. In contrast to the classical approach, the basic variables describing the system are complemented by non-equilibrium quantities. The claims made for extended thermodynamics are confirmed by the kinetic theory of gases and statistical mechanics. The book covers a wide spectrum of applications, and also contains a thorough discussion of the foundations and the scope of the current theories on non-equilibrium thermodynamics. For this new edition, the authors critically revised existing material while taking into account the most recent developments in fast moving fields such as heat transport in micro- and nanosystems or fast solidification fronts in materials sciences. Several fundamental chapters have been revisited emphasizing physics and applications over mathematical derivations. Also, fundamental questions on the definition of non-equil...

  9. Soil-structure interaction effects on the reliability evaluation of reactor containments

    International Nuclear Information System (INIS)

    Pires, J.; Hwang, H.; Reich, M.

    1986-01-01

    The probability-based method for the seismic reliability assessment of nuclear structures, which has been developed at Brookhaven National Laboratory (BNL), is extended to include the effects of soil-structure interaction. A reinforced concrete containment building is analyzed in order to examine soil-structure interaction effects on: (1) structural fragilities; (2) floor response spectra statistics; and (3) correlation coefficients for total acceleration responses at specified structural locations

  10. Symmetric extendibility of quantum states

    OpenAIRE

    Nowakowski, Marcin L.

    2015-01-01

    Studies on symmetric extendibility of quantum states become especially important in a context of analysis of one-way quantum measures of entanglement, distilabillity and security of quantum protocols. In this paper we analyse composite systems containing a symmetric extendible part with a particular attention devoted to one-way security of such systems. Further, we introduce a new one-way monotone based on the best symmetric approximation of quantum state. We underpin those results with geome...

  11. Controlling Correlated Tunneling and Superexchange Interactions with ac-Driven Optical Lattices

    International Nuclear Information System (INIS)

    Chen, Yu-Ao; Nascimbene, Sylvain; Aidelsburger, Monika; Atala, Marcos; Trotzky, Stefan; Bloch, Immanuel

    2011-01-01

    The dynamical control of tunneling processes of single particles plays a major role in science ranging from Shapiro steps in Josephson junctions to the control of chemical reactions via light in molecules. Here we show how such control can be extended to the regime of correlated tunneling of strongly interacting particles. Through a periodic modulation of a biased tunnel contact, we have been able to coherently control single-particle and correlated two-particle hopping processes. We have furthermore been able to extend this control to superexchange spin interactions in the presence of a magnetic-field gradient. Such photon-assisted superexchange processes constitute a novel approach to realize arbitrary XXZ spin models in ultracold quantum gases, where transverse and Ising-type spin couplings can be fully controlled in magnitude and sign.

  12. Separable expansions for local potentials with Coulomb interactions

    International Nuclear Information System (INIS)

    Adhikari, S.K.

    1976-01-01

    If two particles are interacting via a short range potential and a repulsive Coulomb potential the t matrix can be written as a sum of the Coulomb and the ''nuclear'' t matrices. In order to solve the three-nucleon problem with Coulomb interactions usually we need a separable representation of this ''nuclear'' t matrix. A recently proposed method for finding a separable expansion for local potentials is here extended to find a rapidly convergent separable expansion, with analytic form factors, for the ''nuclear'' part of the t matrix of a local potential, in the presence of Coulomb interactions. The method is illustrated for a two-term Malfliet-Tjon potential. In each rank the ''nuclear'' phase shift is close to the corresponding phase shift when the Coulomb interaction is switched off

  13. The interaction between schema matching and record matching in data integration (extended abstract)

    KAUST Repository

    Gu, Binbin; Li, Zhixu; Zhang, Xiangliang; Liu, An; Liu, Guanfeng; Zheng, Kai; Zhao, Lei; Zhou, Xiaofang

    2017-01-01

    Schema Matching (SM) and Record Matching (RM) are two necessary steps in integrating multiple relational tables of different schemas, where SM unifies the schemas and RM detects records referring to the same real-world entity. The two processes have been thoroughly studied separately, but few attention has been paid to the interaction of SM and RM. In this work we find that, even alternating them in a simple manner, SM and RM can benefit from each other to reach a better integration performance (i.e., in terms of precision and recall). Therefore, combining SM and RM is a promising solution for improving data integration.

  14. The interaction between schema matching and record matching in data integration (extended abstract)

    KAUST Repository

    Gu, Binbin

    2017-05-18

    Schema Matching (SM) and Record Matching (RM) are two necessary steps in integrating multiple relational tables of different schemas, where SM unifies the schemas and RM detects records referring to the same real-world entity. The two processes have been thoroughly studied separately, but few attention has been paid to the interaction of SM and RM. In this work we find that, even alternating them in a simple manner, SM and RM can benefit from each other to reach a better integration performance (i.e., in terms of precision and recall). Therefore, combining SM and RM is a promising solution for improving data integration.

  15. The design implications of social interaction in a workplace setting

    OpenAIRE

    A Backhouse; P Drew

    1992-01-01

    Space has been traditionally conceptualised as a passive host to its user activities. Increasingly, however, it is recognised that patterns of human interaction are derivative of the spatial configuration of which they are an integral part. This work is almost wholly confined to computational statistics of undifferentiated interactional encounters. In this paper specifically qualitative techniques will be used to extend and refine this model in order to demonstrate empirically that user behav...

  16. CUSTOMER INTERACTION ON DIGITAL ECONOMY: A CASE STUDY

    Directory of Open Access Journals (Sweden)

    Mateus Tavares da Silva Cozer

    2007-10-01

    Full Text Available On a digital economy context, customer interaction is fundamental to any company to provide competitive advantage. This research intends to give concrete answers for the sea of information complexity which is the Internet. The main case is to build a model of digital customer interaction. Customization extends beyond targeted media to include the design and delivery of the product itself. Venkatraman (1998 defines dynamic customization based on three principles: modularity, intelligence and organization. The research is based on Interaction Model and its variables are: Products, Modularity, Artificial Intelligence, Market driven organization, and virtual communities. Two organizations were studied, one with physical product and another with virtual product, and the results were shown from a qualitative research.

  17. Population aging and the extended family in Taiwan

    Directory of Open Access Journals (Sweden)

    2004-05-01

    Full Text Available Population aging produces changes in the availability of kin with uncertain implications for extended living arrangements. We propose a highly stylized model that can be used to analyze and project age-specific proportions of adults living in extended and nuclear households. The model is applied to Taiwan using annual data from 1978-1998. We estimate cohort and age effects showing that more recently born cohorts of seniors are less likely to live in extended households, but that as seniors age the proportion living in extended households increases. The effect of individual aging has diminished over time, however. The proportion of non-senior adults living in extended households has increased steadily because changes in the age structure have increased the availability of older kin. The model is used to project living arrangements and we conclude that the proportion living in extended households will begin to decline gradually for both seniors and non-seniors. The extended family is becoming less important in Taiwan, but it is not on the way out.

  18. N-Oxide-N-oxide interactions and Cl...Cl halogen bonds in pentachloropyridine N-oxide: the many-body approach to interactions in the crystal state.

    Science.gov (United States)

    Wzgarda-Raj, Kinga; Rybarczyk-Pirek, Agnieszka J; Wojtulewski, Sławomir; Palusiak, Marcin

    2018-02-01

    Pentachloropyridine N-oxide, C 5 Cl 5 NO, crystallizes in the monoclinic space group P2 1 /c. In the crystal structure, molecules are linked by C-Cl...Cl halogen bonds into infinite ribbons extending along the crystallographic [100] direction. These molecular aggregates are further stabilized by very short intermolecular N-oxide-N-oxide interactions into herringbone motifs. Computations based on quantum chemistry methods allowed for a more detailed description of the N-oxide-N-oxide interactions and Cl...Cl halogen bonds. For this purpose, Hirshfeld surface analysis and the many-body approach to interaction energy were applied.

  19. Topological defects in extended inflation

    International Nuclear Information System (INIS)

    Copeland, E.J.; Kolb, E.W.; Chicago Univ., IL; Liddle, A.R.

    1990-04-01

    We consider the production of topological defects, especially cosmic strings, in extended inflation models. In extended inflation, the Universe passes through a first-order phase transition via bubble percolation, which naturally allows defects to form at the end of inflation. The correlation length, which determines the number density of the defects, is related to the mean size of bubbles when they collide. This mechanism allows a natural combination of inflation and large-scale structure via cosmic strings. 18 refs

  20. Some problems with extended inflation

    International Nuclear Information System (INIS)

    Weinberg, E.J.

    1989-01-01

    The recently proposed extended inflation scenario is examined. Upper bounds on the Brans-Dicke parameter ω are obtained by requiring that the recovery from the supercooled regime be such that the presently observed Universe could have emerged. These bounds are well below the present-day experimental limits, implying that one must use models which have a potential to fix the present value of the Brans-Dicke-like scalar field. The implications for extended inflation in such models are discussed