WorldWideScience

Sample records for expression ratio-optimized yeast

  1. A vaccine grade of yeast Saccharomyces cerevisiae expressing mammalian myostatin

    Directory of Open Access Journals (Sweden)

    Zhang Tingting

    2012-12-01

    Full Text Available Abstract Background Yeast Saccharomyces cerevisiae is a widely-used system for protein expression. We previously showed that heat-killed whole recombinant yeast vaccine expressing mammalian myostatin can modulate myostatin function in mice, resulting in increase of body weight and muscle composition in these animals. Foreign DNA introduced into yeast cells can be lost soon unless cells are continuously cultured in selection media, which usually contain antibiotics. For cost and safety concerns, it is essential to optimize conditions to produce quality food and pharmaceutical products. Results We developed a simple but effective method to engineer a yeast strain stably expressing mammalian myostatin. This method utilized high-copy-number integration of myostatin gene into the ribosomal DNA of Saccharomyces cerevisiae. In the final step, antibiotic selection marker was removed using the Cre-LoxP system to minimize any possible side-effects for animals. The resulting yeast strain can be maintained in rich culture media and stably express mammalian myostatin for two years. Oral administration of the recombinant yeast was able to induce immune response to myostatin and modulated the body weight of mice. Conclusions Establishment of such yeast strain is a step further toward transformation of yeast cells into edible vaccine to improve meat production in farm animals and treat human muscle-wasting diseases in the future.

  2. Comparative gene expression between two yeast species

    Directory of Open Access Journals (Sweden)

    Guan Yuanfang

    2013-01-01

    Full Text Available Abstract Background Comparative genomics brings insight into sequence evolution, but even more may be learned by coupling sequence analyses with experimental tests of gene function and regulation. However, the reliability of such comparisons is often limited by biased sampling of expression conditions and incomplete knowledge of gene functions across species. To address these challenges, we previously systematically generated expression profiles in Saccharomyces bayanus to maximize functional coverage as compared to an existing Saccharomyces cerevisiae data repository. Results In this paper, we take advantage of these two data repositories to compare patterns of ortholog expression in a wide variety of conditions. First, we developed a scalable metric for expression divergence that enabled us to detect a significant correlation between sequence and expression conservation on the global level, which previous smaller-scale expression studies failed to detect. Despite this global conservation trend, between-species gene expression neighborhoods were less well-conserved than within-species comparisons across different environmental perturbations, and approximately 4% of orthologs exhibited a significant change in co-expression partners. Furthermore, our analysis of matched perturbations collected in both species (such as diauxic shift and cell cycle synchrony demonstrated that approximately a quarter of orthologs exhibit condition-specific expression pattern differences. Conclusions Taken together, these analyses provide a global view of gene expression patterns between two species, both in terms of the conditions and timing of a gene's expression as well as co-expression partners. Our results provide testable hypotheses that will direct future experiments to determine how these changes may be specified in the genome.

  3. Expression of human α-fetoprotein in yeast

    International Nuclear Information System (INIS)

    Yamamoto, Ritsu; Sakamoto, Takashi; Nishi, Shinzo; Sakai, Masaharu; Morinaga, Tomonori; Tamaoki, Taiki

    1990-01-01

    Human α-fetoprotein (AFP) was expressed in Saccharomyces cerevisiae, with a plasmid containing the cDNA sequence for human AFP fused with the rat AFP signal peptide. The recombinant AFP was purified from the yeast lysate by DEAE-cellulose and immunoaffinity chromatography. The amino acid composition and the molecular weight of the recombinant AFP were similar to those of hepatoma AFP. N-terminal amino acids sequence analysis indicated that the signal peptide had been processed. The recombinant and hepatoma AFP reacted identically in Ouchterlony immunodiffusion and radioimmunoassay tests. These observations indicated that the yeast recombinant protein had the properties of native AFP

  4. Heterologous transporter expression for improved fatty alcohol secretion in yeast

    DEFF Research Database (Denmark)

    Hu, Yating; Zhu, Zhiwei; Nielsen, Jens

    2017-01-01

    The yeast Saccharomyces cerevisiae is an attractive host for industrial scale production of biofuels including fatty alcohols due to its robustness and tolerance towards harsh fermentation conditions. Many metabolic engineering strategies have been applied to generate high fatty alcohol production...... transporters tested, human FATP1 was shown to mediate fatty alcohol export in a high fatty alcohol production yeast strain. An approximately five-fold increase of fatty alcohol secretion was achieved. The results indicate that the overall cell fitness benefited from fatty alcohol secretion and that the acyl......-CoA synthase activity of FATP1 contributed to increased cell growth as well. This is the first study that enabled an increased cell fitness for fatty alcohol production by heterologous transporter expression in yeast, and this investigation indicates a new potential function of FATP1, which has been known...

  5. Antigenic characterisation of yeast-expressed lyssavirus nucleoproteins.

    Science.gov (United States)

    Kucinskaite, Indre; Juozapaitis, Mindaugas; Serva, Andrius; Zvirbliene, Aurelija; Johnson, Nicholas; Staniulis, Juozas; Fooks, Anthony R; Müller, Thomas; Sasnauskas, Kestutis; Ulrich, Rainer G

    2007-12-01

    In Europe, three genotypes of the genus Lyssavirus, family Rhabdoviridae, are present, classical rabies virus (RABV, genotype 1), European bat lyssavirus type 1 (EBLV-1, genotype 5) and European bat lyssavirus type 2 (EBLV-2, genotype 6). The entire authentic nucleoprotein (N protein) encoding sequences of RABV (challenge virus standard, CVS, strain), EBLV-1 and EBLV-2 were expressed in yeast Saccharomyces cerevisiae at high level. Purification of recombinant N proteins by caesium chloride gradient centrifugation resulted in yields between 14-17, 25-29 and 18-20 mg/l of induced yeast culture for RABV-CVS, EBLV-1 and EBLV-2, respectively. The purified N proteins were evaluated by negative staining electron microscopy, which revealed the formation of nucleocapsid-like structures. The antigenic conformation of the N proteins was investigated for their reactivity with monoclonal antibodies (mAbs) directed against different lyssaviruses. The reactivity pattern of each mAb was virtually identical between immunofluorescence assay with virus-infected cells, and ELISA and dot blot assay using the corresponding recombinant N proteins. These observations lead us to conclude that yeast-expressed lyssavirus N proteins share antigenic properties with naturally expressed virus protein. These recombinant proteins have the potential for use as components of serological assays for lyssaviruses.

  6. Expression of enzymes in yeast for lignocellulose derived oligomer CBP

    Science.gov (United States)

    McBride, John E.; Wiswall, Erin; Shikhare, Indraneel; Xu, Haowen; Thorngren, Naomi; Hau, Heidi H.; Stonehouse, Emily

    2017-08-29

    The present invention provides a multi-component enzyme system that hydrolyzes hemicellulose oligomers from hardwood which can be expressed, for example, in yeast such as Saccharomyces cerevisiae. In some embodiments, this invention provides for the engineering of a series of biocatalysts combining the expression and secretion of components of this enzymatic system with robust, rapid xylose utilization, and ethanol fermentation under industrially relevant process conditions for consolidated bioprocessing. In some embodiments, the invention utilizes co-cultures of strains that can achieve significantly improved performance due to the incorporation of additional enzymes in the fermentation system.

  7. Expression and function of the human estrogen receptor in yeast

    International Nuclear Information System (INIS)

    White, J.H.; Metzger, D.; Chambon, P.

    1988-01-01

    Gene expression in eukaryotes is regulated at many levels. Moreover, there is increasing evidence that the basic control mechanisms of transcription initiation have been conserved across the range of eukaryotes from yeast to man. In vertebrates, the nuclear receptors, whose activity is dependent on the binding of specific ligands, stimulate transcription by interacting with specific cis-acting sequences and display all of the hallmarks of inducible enhancer factors. Alignment of their amino acid sequences indicates that they are composed of a series of conserved domains. The domain structure of the human estrogen receptor (hER) is typical of receptor proteins. Region C, containing two putative zinc fingers, comprises the DNA-binding domain responsible for specific recognition of estrogen response elements (ERE). Region E contains the hormone-binding domain and domain(s) responsible for transcription activation. A mutant of the hER, called HE15, which lacks the hormone-binding domain, binds DNA in vivo and in vitro but activates transcription only poorly in a constitutive manner in vivo in HeLa cells. A series of studies have demonstrated that the hormone- and DNA-binding domains of the nuclear receptors function independently. Chimeric proteins consisting of the DNA-binding domain of yeast GAL4 coupled to the hormone-binding domains of either the hER or glucocorticoid receptor element (GRE) will stimulate transcription in HeLa cells when bound to a UAS. Taken together, these results demonstrate that the hER and other nuclear receptors, as well as GAL4 and GCN4 proteins of yeast, consist of discrete and separable DNA-binding and transcription-activation functions. To investigate these striking parallels further, the authors have expressed the hER in the yeast Saccharomyces cerevisiae and have analyzed its hormone- and DNA-binding properties in vitro and its ability to stimulate transcription in vivo

  8. Expression of a fatty acid-binding protein in yeast

    International Nuclear Information System (INIS)

    Scholz, H.

    1991-06-01

    The unicellular eukaryotic microorganism, Saccharomyces cerevisiae, transformed with a plasmid containing a cDNA fragment encoding bovine heart fatty acid-binding protein (H-FABP C ) under the control of the inducible yeast GAL10 promoter, expressed FABP during growth on galactose. The maximum level of immunoreactive FABP, identical in size and isoelectric point to native protein, was reached after approximately 16 hours of induction. In contrast, transcription of the gene was induced within half an hour. Both, protein and mRNA were unstable and degraded within 1 h after repression of transcription. Analysis of subcellular fractions showed that FABP was exclusively associated with the cytosol. FABP expressed in yeast cells was functional as was demonstrated by its capacity to bind long chain fatty acids in an in vitro assay. Growth of all transformants on galactose as the carbon source showed no phenotype at temperatures up to 37 deg C, but the growth of FABP-expressing cells at 37 deg C was significantly retarded. Among the biochemical effects of FABP expression on lipid metabolism is a marked reduction of chain elongation and desaturation of exogenously added 14 C-palmitic acid. This effect is most pronounced in triacylglycerols and phospholipids when cells grow at 30 deg C and 37 deg C, respectively. In an in vitro assay determining the desaturation of palmitoyl CoA by microsomal membranes cytosol with or without exo- or endogenous FABP showed the same stimulation of the reaction. The desaturation of exogenously added 14 C-stearic acid, the pattern of unlabelled fatty acids (saturated vs. unsaturated) and the distribution of exogenously added radioactive fatty acids (palmitic, stearic or oleic acid) among lipid classes was not significantly affected. Using high concentrations (1 mM) the uptake of fatty acids was first stimulated and then inhibited when FABP was expressed. (author)

  9. Expression of recombinant staphylokinase in the methylotrophic yeast Hansenula polymorpha

    Directory of Open Access Journals (Sweden)

    Moussa Manal

    2012-12-01

    Full Text Available Abstract Background Currently, the two most commonly used fibrinolytic agents in thrombolytic therapy are recombinant tissue plasminogen activator (rt-PA and streptokinase (SK. Whereas SK has the advantage of substantially lower costs when compared to other agents, it is less effective than either rt-PA or related variants, has significant allergenic potential, lacks fibrin selectivity and causes transient hypotensive effects in high dosing schedules. Therefore, development of an alternative fibrinolytic agent having superior efficacy to SK, approaching that of rt-PA, together with a similar or enhanced safety profile and advantageous cost-benefit ratio, would be of substantial importance. Pre-clinical data suggest that the novel fibrinolytic recombinant staphylokinase (rSAK, or related rSAK variants, could be candidates for such development. However, since an efficient expression system for rSAK is still lacking, it has not yet been fully developed or evaluated for clinical purposes. This study’s goal was development of an efficient fermentation process for the production of a modified, non-glycosylated, biologically active rSAK, namely rSAK-2, using the well-established single cell yeast Hansenula polymorpha expression system. Results The development of an efficient large scale (80 L Hansenula polymorpha fermentation process of short duration for rSAK-2 production is described. It evolved from an initial 1mL HTP methodology by successive scale-up over almost 5 orders of magnitude and improvement steps, including the optimization of critical process parameters (e.g. temperature, pH, feeding strategy, medium composition, etc.. Potential glycosylation of rSAK-2 was successfully suppressed through amino acid substitution within its only N-acetyl glycosylation motif. Expression at high yields (≥ 1g rSAK-2/L cell culture broth of biologically active rSAK-2 of expected molecular weight was achieved. Conclusion The optimized production process

  10. Global Gene Expression Analysis of Yeast Cells during Sake Brewing▿ †

    Science.gov (United States)

    Wu, Hong; Zheng, Xiaohong; Araki, Yoshio; Sahara, Hiroshi; Takagi, Hiroshi; Shimoi, Hitoshi

    2006-01-01

    During the brewing of Japanese sake, Saccharomyces cerevisiae cells produce a high concentration of ethanol compared with other ethanol fermentation methods. We analyzed the gene expression profiles of yeast cells during sake brewing using DNA microarray analysis. This analysis revealed some characteristics of yeast gene expression during sake brewing and provided a scaffold for a molecular level understanding of the sake brewing process. PMID:16997994

  11. Expression profiles of mRNA after exposure yeast and rice to heavy-ion radiation

    International Nuclear Information System (INIS)

    Iwahashi, Hitoshi; Mizukami, Satomi; Nojima, Kumie

    2005-01-01

    We have studied expression profiles of mRNA after exposure yeast cells to heavy-ion radiation. Yeast cells was exposed by heavy-ion radiation with the levels of 6, 12, 25, 50, and 100 Gy. We could confirm the reproducibility of physiological state of yeast cells under the experimental conditions by DNA microarray. We could also confirm the reproducibility of viability of yeast cells after exposure to heavy-ion radiation. We thus applied yeast cells exposed with 25 Gy was applied to DNA microarray analysis. The strongly induced genes were HUG1 RAR4 RNR2 for DNA repairing genes and GLC3 GSY1 for energy metabolism genes. (author)

  12. Yeast expression proteomics by high-resolution mass spectrometry

    DEFF Research Database (Denmark)

    Walther, Tobias C; Olsen, Jesper Velgaard; Mann, Matthias

    2010-01-01

    -translational controls contribute majorly to regulation of protein abundance, for example in heat shock stress response. The development of new sample preparation methods, high-resolution mass spectrometry and novel bioinfomatic tools close this gap and allow the global quantitation of the yeast proteome under different...

  13. Functional expression of parasite drug targets and their human orthologs in yeast.

    Directory of Open Access Journals (Sweden)

    Elizabeth Bilsland

    2011-10-01

    Full Text Available The exacting nutritional requirements and complicated life cycles of parasites mean that they are not always amenable to high-throughput drug screening using automated procedures. Therefore, we have engineered the yeast Saccharomyces cerevisiae to act as a surrogate for expressing anti-parasitic targets from a range of biomedically important pathogens, to facilitate the rapid identification of new therapeutic agents.Using pyrimethamine/dihydrofolate reductase (DHFR as a model parasite drug/drug target system, we explore the potential of engineered yeast strains (expressing DHFR enzymes from Plasmodium falciparum, P. vivax, Homo sapiens, Schistosoma mansoni, Leishmania major, Trypanosoma brucei and T. cruzi to exhibit appropriate differential sensitivity to pyrimethamine. Here, we demonstrate that yeast strains (lacking the major drug efflux pump, Pdr5p expressing yeast ((ScDFR1, human ((HsDHFR, Schistosoma ((SmDHFR, and Trypanosoma ((TbDHFR and (TcDHFR DHFRs are insensitive to pyrimethamine treatment, whereas yeast strains producing Plasmodium ((PfDHFR and (PvDHFR DHFRs are hypersensitive. Reassuringly, yeast strains expressing field-verified, drug-resistant mutants of P. falciparum DHFR ((Pfdhfr(51I,59R,108N are completely insensitive to pyrimethamine, further validating our approach to drug screening. We further show the versatility of the approach by replacing yeast essential genes with other potential drug targets, namely phosphoglycerate kinases (PGKs and N-myristoyl transferases (NMTs.We have generated a number of yeast strains that can be successfully harnessed for the rapid and selective identification of urgently needed anti-parasitic agents.

  14. Assessing phagotrophy in the mixotrophic ciliate Paramecium bursaria using GFP-expressing yeast cells.

    Science.gov (United States)

    Miura, Takashi; Moriya, Hisao; Iwai, Sosuke

    2017-07-03

    We used cells of the yeast Saccharomyces cerevisiae expressing green fluorescent protein (GFP) as fluorescently labelled prey to assess the phagocytic activities of the mixotrophic ciliate Paramecium bursaria, which harbours symbiotic Chlorella-like algae. Because of different fluorescence spectra of GFP and algal chlorophyll, ingested GFP-expressing yeast cells can be distinguished from endosymbiotic algal cells and directly counted in individual P. bursaria cells using fluorescence microscopy. By using GFP-expressing yeast cells, we found that P. bursaria altered ingestion activities under different physiological conditions, such as different growth phases or the presence/absence of endosymbionts. Use of GFP-expressing yeast cells allowed us to estimate the digestion rates of live prey of the ciliate. In contrast to the ingestion activities, the digestion rate within food vacuoles was not affected by the presence of endosymbionts, consistent with previous findings that food and perialgal vacuoles are spatially and functionally separated in P. bursaria. Thus, GFP-expressing yeast may provide a valuable tool to assess both ingestion and digestion activities of ciliates that feed on eukaryotic organisms. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  15. Plant-Derived Transcription Factors for Orthologous Regulation of Gene Expression in the Yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Naseri, Gita; Balazadeh, Salma; Machens, Fabian; Kamranfar, Iman; Messerschmidt, Katrin; Mueller-Roeber, Bernd

    2017-09-15

    Control of gene expression by transcription factors (TFs) is central in many synthetic biology projects for which a tailored expression of one or multiple genes is often needed. As TFs from evolutionary distant organisms are unlikely to affect gene expression in a host of choice, they represent excellent candidates for establishing orthogonal control systems. To establish orthogonal regulators for use in yeast (Saccharomyces cerevisiae), we chose TFs from the plant Arabidopsis thaliana. We established a library of 106 different combinations of chromosomally integrated TFs, activation domains (yeast GAL4 AD, herpes simplex virus VP64, and plant EDLL) and synthetic promoters harboring cognate cis-regulatory motifs driving a yEGFP reporter. Transcriptional output of the different driver/reporter combinations varied over a wide spectrum, with EDLL being a considerably stronger transcription activation domain in yeast than the GAL4 activation domain, in particular when fused to Arabidopsis NAC TFs. Notably, the strength of several NAC-EDLL fusions exceeded that of the strong yeast TDH3 promoter by 6- to 10-fold. We furthermore show that plant TFs can be used to build regulatory systems encoded by centromeric or episomal plasmids. Our library of TF-DNA binding site combinations offers an excellent tool for diverse synthetic biology applications in yeast.

  16. Expression of death receptor 4 induces caspase-independent cell death in MMS-treated yeast.

    Science.gov (United States)

    Kang, Mi-Sun; Lee, Sung-Keun; Park, Chang-Shin; Kang, Ju-Hee; Bae, Sung-Ho; Yu, Sung-Lim

    2008-11-14

    DR4, a tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor, is a key element in the extrinsic pathway of TRAIL/TRAIL receptor-related apoptosis that exerts a preferential toxic effect against tumor cells. However, TRAIL and DR4 are expressed in various normal cells, and recent studies indicate that DR4 has a number of non-apoptotic functions. In this study, we evaluated the effects of human DR4 expression in yeast to determine the function of DR4 in normal cells. The expression of DR4 in yeast caused G1 arrest, which resulted in transient growth inhibition. Moreover, treatment of DR4-expressing yeast with a DNA damaging agent, MMS, elicited drastic, and sustained cell growth inhibition accompanied with massive apoptotic cell death. Further analysis revealed that cell death in the presence of DNA damage and DR4 expression was not dependent on the yeast caspase, YCA1. Taken together, these results indicate that DR4 triggers caspase-independent programmed cell death during the response of normal cells to DNA damage.

  17. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System.

    Directory of Open Access Journals (Sweden)

    Yoichiro Ito

    Full Text Available Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering.

  18. Combinatorial Screening for Transgenic Yeasts with High Cellulase Activities in Combination with a Tunable Expression System

    Science.gov (United States)

    Ito, Yoichiro; Yamanishi, Mamoru; Ikeuchi, Akinori; Imamura, Chie; Matsuyama, Takashi

    2015-01-01

    Combinatorial screening used together with a broad library of gene expression cassettes is expected to produce a powerful tool for the optimization of the simultaneous expression of multiple enzymes. Recently, we proposed a highly tunable protein expression system that utilized multiple genome-integrated target genes to fine-tune enzyme expression in yeast cells. This tunable system included a library of expression cassettes each composed of three gene-expression control elements that in different combinations produced a wide range of protein expression levels. In this study, four gene expression cassettes with graded protein expression levels were applied to the expression of three cellulases: cellobiohydrolase 1, cellobiohydrolase 2, and endoglucanase 2. After combinatorial screening for transgenic yeasts simultaneously secreting these three cellulases, we obtained strains with higher cellulase expressions than a strain harboring three cellulase-expression constructs within one high-performance gene expression cassette. These results show that our method will be of broad use throughout the field of metabolic engineering. PMID:26692026

  19. Development of a rapid yeast estrogen bioassay, based on the expression of green fluorescent protein

    NARCIS (Netherlands)

    Bovee, T.F.H.; Helsdingen, R.J.R.; Koks, P.D.; Kuiper, H.A.; Hoogenboom, L.A.P.; Keijer, J.

    2004-01-01

    The aim of this study was to develop an estrogen transcription activation assay that is sensitive, fast and easy to use in the routine screening of estrogen activity in complex matrices such as agricultural products. Recombinant yeast cells were constructed that express the human estrogen receptor ¿

  20. Cloning of a yeast alpha-amylase promoter and its regulated heterologous expression

    Science.gov (United States)

    Gao, Johnway [Richland, WA; Skeen, Rodney S [Pendleton, OR; Hooker, Brian S [Kennewick, WA; Anderson, Daniel B [Pasco, WA

    2003-04-01

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  1. Heterologous expression of the Crassostrea gigas (Pacific oyster) alternative oxidase in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Robertson, Aaron; Schaltz, Kyle; Neimanis, Karina; Staples, James F; McDonald, Allison E

    2016-10-01

    Alternative oxidase (AOX) is a terminal oxidase within the inner mitochondrial membrane (IMM) present in many organisms where it functions in the electron transport system (ETS). AOX directly accepts electrons from ubiquinol and is therefore capable of bypassing ETS Complexes III and IV. The human genome does not contain a gene coding for AOX, so AOX expression has been suggested as a gene therapy for a range of human mitochondrial diseases caused by genetic mutations that render Complex III and/or IV dysfunctional. An effective means of screening mutations amenable to AOX treatment remains to be devised. We have generated such a tool by heterologously expressing AOX from the Pacific oyster (Crassostrea gigas) in the yeast Saccharomyces cerevisiae under the control of a galactose promoter. Our results show that this animal AOX is monomeric and is correctly targeted to yeast mitochondria. Moreover, when expressed in yeast, Pacific oyster AOX is a functional quinol oxidase, conferring cyanide-resistant growth and myxothiazol-resistant oxygen consumption to yeast cells and isolated mitochondria. This system represents a high-throughput screening tool for determining which Complex III and IV genetic mutations in yeast will be amenable to AOX gene therapy. As many human genes are orthologous to those found in yeast, our invention represents an efficient and cost-effective way to evaluate viable research avenues. In addition, this system provides the opportunity to learn more about the localization, structure, and regulation of AOXs from animals that are not easily reared or manipulated in the lab.

  2. Hordeum vulgare cysteine protease heterologous expressed in yeast

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben Bach

    , (Hordeum vulgare) endoprotease B2 (HvEPB2) was cloned with and without the 5 amino acid C-terminal sequence into the Pichia pastoris expression vector pPICZ Aα and electrotransformed into Pichia pastoris strain SDM1163. Heterologous protein production was induced with 2% MeOH and the protein expression...

  3. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Directory of Open Access Journals (Sweden)

    Lauren E Hudson

    Full Text Available Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  4. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Science.gov (United States)

    Hudson, Lauren E; Fasken, Milo B; McDermott, Courtney D; McBride, Shonna M; Kuiper, Emily G; Guiliano, David B; Corbett, Anita H; Lamb, Tracey J

    2014-01-01

    Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  5. Isolation and expression of a pea vicilin cDNA in the yeast Saccharomyces cerevisiae.

    OpenAIRE

    Watson, M D; Lambert, N; Delauney, A; Yarwood, J N; Croy, R R; Gatehouse, J A; Wright, D J; Boulter, D

    1988-01-01

    A cDNA clone containing the complete coding sequence for vicilin from pea (Pisum sativum L.) was isolated. It specifies a 50,000-Mr protein that in pea is neither post-translationally processed nor glycosylated. The cDNA clone was expressed in yeast from a 2 micron plasmid by using the yeast phosphoglycerate kinase promoter and initiator codon. The resultant fusion protein, which contains the first 16 amino acid residues of phosphoglycerate kinase in addition to the vicilin sequence, was puri...

  6. [Clone, construct, expression and verification of lactoferricin B gene and several sequence mutations in yeast].

    Science.gov (United States)

    Feng, Yong-qian; Zha, Xiao-jun; Zhai, Chao-yang

    2007-07-01

    To construct the eucaryotic recombinant plasmid of pYES2/LactoferricinB expressing in yeast of S. cerevisiae, of which the expressed protein antibacterial activity was verified in preliminary. By self-template PCR method, the gene of Lactoferricin B and its several sequence mutations were amplified with the parts of the pre-synthesized single chains. And then Lactoferricin B gene and its mutants were cloned into the vector of pYES2 to construct the recombined expression plasmid pYES2/Lactoferricin B etc. extracted and used to transform the yeast S. cerevisiae. The expressions of proteins were determined after induced by galactose. The expression proteins were collected and purified by hydronium-exchange column, and the bacterial inhibited test was applied to identify the protein antibacterial activities. The PCR amplifying and DNA sequencing tests indicated that the purpose plasmid contained the Lactoferricin B gene and several mutations. The induced target proteins were confirmed by SDS-PAGE electrophoresis and mass spectrum test. The protein antibacterial activities of mutations were verified in preliminary. The recombined plasmid pYES2/Lactoferricin B etc. are successfully constructed and induced to express in yeast cell of S. cerevisiae; the obtained recombined protein of Lactoferricin B provides a basis for further research work on the biological function and antibacterial activity.

  7. Over-expressed maltose transporters in laboratory and lager yeasts: localization and competition with endogenous transporters.

    Science.gov (United States)

    Vidgren, Virve; Londesborough, John

    2018-05-31

    Plain and fluorescently tagged versions of Agt1, Mtt1 and Malx1 maltose transporters were over-expressed in two laboratory yeasts and one lager yeast. The plain and tagged versions of each transporter supported similar transport activities, indicating that they are similarly trafficked and have similar catalytic activities. When they were expressed under the control of the strong constitutive PGK1 promoter only minor proportions of the fluorescent transporters were associated with the plasma membrane, the rest being found in intracellular structures. Transport activity of each tagged transporter in each host was roughly proportional to the plasma membrane-associated fluorescence. All three transporters were subject to glucose-triggered inactivation when the medium glucose concentration was abruptly raised. Results also suggest competition between endogenous and over-expressed transporters for access to the plasma membrane. This article is protected by copyright. All rights reserved.

  8. Heterologous expression of xylanase enzymes in lipogenic yeast Yarrowia lipolytica.

    Directory of Open Access Journals (Sweden)

    Wei Wang

    Full Text Available To develop a direct microbial sugar conversion platform for the production of lipids, drop-in fuels and chemicals from cellulosic biomass substrate, we chose Yarrowia lipolytica as a viable demonstration strain. Y. lipolytica is known to accumulate lipids intracellularly and is capable of metabolizing sugars to produce lipids; however, it lacks the lignocellulose-degrading enzymes needed to break down biomass directly. While research is continuing on the development of a Y. lipolytica strain able to degrade cellulose, in this study, we present successful expression of several xylanases in Y. lipolytica. The XynII and XlnD expressing Yarrowia strains exhibited an ability to grow on xylan mineral plates. This was shown by Congo Red staining of halo zones on xylan mineral plates. Enzymatic activity tests further demonstrated active expression of XynII and XlnD in Y. lipolytica. Furthermore, synergistic action in converting xylan to xylose was observed when XlnD acted in concert with XynII. The successful expression of these xylanases in Yarrowia further advances us toward our goal to develop a direct microbial conversion process using this organism.

  9. Production of novel antioxidative phenolic amides through heterologous expression of the plant’s chlorogenic acid biosynthesis genes in yeast

    NARCIS (Netherlands)

    Moglia, A.; Comino, C.; Lanteri, S.; Vos, de C.H.; Waard, de P.; Beek, van T.A.; Goitre, L.; Retta, S.F.; Beekwilder, M.J.

    2010-01-01

    Phenolic esters like chlorogenic acid play an important role in therapeutic properties of many plant extracts. We aimed to produce phenolic esters in baker’s yeast, by expressing tobacco 4CL and globe artichoke HCT. Indeed yeast produced phenolic esters. However, the primary product was identified

  10. Heterologous expression of a deuterated membrane-integrated receptor and partial deuteration in methylotrophic yeasts

    International Nuclear Information System (INIS)

    Massou, S.; Puech, V.; Talmont, F.; Demange, P.; Lindley, N.D.; Tropis, M.; Milon, A.

    1999-01-01

    Methylotrophic yeast has previously been shown to be an excellent system for the cost-effective production of perdeuterated biomass and for the heterologous expression of membrane receptors. A protocol for the expression of 85% deuterated, functional human μ-opiate receptor was established. For partially deuterated biomass, deuteration level and distribution were determined for fatty acids, amino acids and carbohydrates. It was shown that prior to biosynthesis of lipids and amino acids (and of carbohydrates, to a lower extent), exchange occurs between water and methanol hydrogen atoms, so that 80%-90% randomly deuterated biomass and over-expressed proteins may be obtained using only deuterated water

  11. The protein expression landscape of mitosis and meiosis in diploid budding yeast.

    Science.gov (United States)

    Becker, Emmanuelle; Com, Emmanuelle; Lavigne, Régis; Guilleux, Marie-Hélène; Evrard, Bertrand; Pineau, Charles; Primig, Michael

    2017-03-06

    Saccharomyces cerevisiae is an established model organism for the molecular analysis of fundamental biological processes. The genomes of numerous strains have been sequenced, and the transcriptome and proteome ofmajor phases during the haploid and diploid yeast life cycle have been determined. However, much less is known about dynamic changes of the proteome when cells switch from mitotic growth to meiotic development. We report a quantitative protein profiling analysis of yeast cell division and differentiation based on mass spectrometry. Information about protein levels was integrated with strand-specific tiling array expression data. We identified a total of 2366 proteins in at least one condition, including 175 proteins showing a statistically significant>5-fold change across the sample set, and 136 proteins detectable in sporulating but not respiring cells. We correlate protein expression patterns with biological processes and molecular function by Gene Ontology term enrichment, chemoprofiling, transcription interference and the formation of double stranded RNAs by overlapping sense/antisense transcripts. Our work provides initial quantitative insight into protein expression in diploid respiring and differentiating yeast cells. Critically, it associates developmentally regulated induction of antisense long noncoding RNAs and double stranded RNAs with fluctuating protein concentrations during growth and development. This integrated genomics analysis helps better understand how the transcriptome and the proteome correlate in diploid yeast cells undergoing mitotic growth in the presence of acetate (respiration) versus meiotic differentiation (Meiosis I and II). The study (i) provides quantitative expression data for 2366 proteins and their cognate mRNAs in at least one sample, (ii) shows strongly fluctuating protein levels during growth and differentiation for 175 cases, and (iii) identifies 136 proteins absent in mitotic but present in meiotic yeast cells. We

  12. Four inducible promoters for controlled gene expression in the oleaginous yeast Rhodotorula toruloides

    Directory of Open Access Journals (Sweden)

    Alexander Michael Bedford Johns

    2016-10-01

    Full Text Available Rhodotorula (Rhodosporidium toruloides is an oleaginous yeast with great biotechnological potential, capable of accumulating lipid up to 70 % of its dry biomass, and of carotenoid biosynthesis. However, few molecular genetic tools are available for manipulation of this basidiomycete yeast and its high genomic GC content can make routine cloning difficult. We have developed plasmid vectors for transformation of R. toruloides which include elements for Saccharomyces cerevisiae in-yeast assembly; this method is robust to the assembly of GC-rich DNA and of large plasmids. Using such vectors we screened for controllable promoters, and identified inducible promoters from the genes NAR1, ICL1, CTR3 and MET16. These four promoters have independent induction/repression conditions and exhibit different levels and rates of induction in R. toruloides, making them appropriate for controllable transgene expression in different experimental situations. Nested deletions were used to identify regulatory regions in the four promoters, and to delimit the minimal inducible promoters, which are as small as 200 bp for the NAR1 promoter. The NAR1 promoter shows very tight regulation under repressed conditions as determined both by an EGFP reporter gene and by conditional rescue of a leu2 mutant. These new tools facilitate molecular genetic manipulation and controllable gene expression in R. toruloides.

  13. Expression of Leishmania major LmSTI1 in Yeast Pichia Pastoris

    Directory of Open Access Journals (Sweden)

    Mehdi Shokri

    2017-01-01

    Full Text Available Background: Leishmania major LmSTI1 is a conserved protein among different species of leishmania, and expressed in both amastigote and promastigote forms of L. major life cycle. It has previously been expressed in bacterial systems.Materials and Methods: To express LmSTI1 in the methylotrophic yeast         Pichia pastoris (P. pastoris, the shuttle vector pPICZA containing gene lmsti1 was constructed under the control of the AOX1 promoter. The recombinant vector was electro-transformed into P. pastoris, and induced by 0.5% methanol in the buffered medium. The expression of the LmSTI1 protein was visualized in the total soluble protein of P. pastoris by 12% SDS-PAGE, and further confirmed by Western blotting with L.major-infected mouse sera and HRP-conjugated goat anti-mouse IgG as the first and secondary antibodies, respectively.Results: The expression level was 0.2% of total soluble proteins.Conclusion: It might be possible to use this formulation as a whole yeast candidate vaccine against cutaneous leishmanization.

  14. Effects of intense magnetic fields on sedimentation pattern and gene expression profile in budding yeast

    Science.gov (United States)

    Ikehata, Masateru; Iwasaka, Masakazu; Miyakoshi, Junji; Ueno, Shoogo; Koana, Takao

    2003-05-01

    Effects of magnetic fields (MFs) on biological systems are usually investigated using biological indices such as gene expression profiles. However, to precisely evaluate the biological effects of MF, the effects of intense MFs on systematic material transport processes including experimental environment must be seriously taken into consideration. In this study, a culture of the budding yeast, Saccharomyces cerevisiae, was used as a model for an in vitro biological test system. After exposure to 5 T static vertical MF, we found a difference in the sedimentation pattern of cells depending on the location of the dish in the magnet bore. Sedimented cells were localized in the center of the dish when they were placed in the lower part of the magnet bore while the sedimentation of the cells was uniform in dishes placed in the upper part of the bore because of the diamagnetic force. Genome wide gene expression profile of the yeast cells after exposure to 5 T static MF for 2 h suggested that the MF did not affect the expression level of any gene in yeast cells although the sedimentation pattern was altered. In addition, exposure to 10 T for 1 h and 5 T for 24 h also did not affect the gene expression. On the other hand, a slight change in expressions of several genes which are related to respiration was observed by exposure to a 14 T static MF for 24 h. The necessity of estimating the indirect effects of MFs on a study of its biological effect of MF in vitro will be discussed.

  15. Expression of yeast lipid phosphatase Sac1p is regulated by phosphatidylinositol-4-phosphate

    Directory of Open Access Journals (Sweden)

    Mayinger Peter

    2008-01-01

    Full Text Available Abstract Background Phosphoinositides play a central role in regulating processes at intracellular membranes. In yeast, a large number of phospholipid biosynthetic enzymes use a common mechanism for transcriptional regulation. Yet, how the expression of genes encoding lipid kinases and phosphatases is regulated remains unknown. Results Here we show that the expression of lipid phosphatase Sac1p in the yeast Saccharomyces cerevisiae is regulated in response to changes in phosphatidylinositol-4-phosphate (PI(4P concentrations. Unlike genes encoding enzymes involved in phospholipid biosynthesis, expression of the SAC1 gene is independent of inositol levels. We identified a novel 9-bp motif within the 5' untranslated region (5'-UTR of SAC1 that is responsible for PI(4P-mediated regulation. Upregulation of SAC1 promoter activity correlates with elevated levels of Sac1 protein levels. Conclusion Regulation of Sac1p expression via the concentration of its major substrate PI(4P ensures proper maintenance of compartment-specific pools of PI(4P.

  16. The expression of glycerol facilitators from various yeast species improves growth on glycerol of Saccharomyces cerevisiae

    Directory of Open Access Journals (Sweden)

    Mathias Klein

    2016-12-01

    Full Text Available Glycerol is an abundant by-product during biodiesel production and additionally has several assets compared to sugars when used as a carbon source for growing microorganisms in the context of biotechnological applications. However, most strains of the platform production organism Saccharomyces cerevisiae grow poorly in synthetic glycerol medium. It has been hypothesized that the uptake of glycerol could be a major bottleneck for the utilization of glycerol in S. cerevisiae. This species exclusively relies on an active transport system for glycerol uptake. This work demonstrates that the expression of predicted glycerol facilitators (Fps1 homologues from superior glycerol-utilizing yeast species such as Pachysolen tannophilus, Komagataella pastoris, Yarrowia lipolytica and Cyberlindnera jadinii significantly improves the growth performance on glycerol of the previously selected glycerol-consuming S. cerevisiae wild-type strain (CBS 6412-13A. The maximum specific growth rate increased from 0.13 up to 0.18 h−1 and a biomass yield coefficient of 0.56 gDW/gglycerol was observed. These results pave the way for exploiting the assets of glycerol in the production of fuels, chemicals and pharmaceuticals based on baker's yeast. Keywords: Yeast, Saccharomyces cerevisiae, Glycerol, Transport, Glycerol facilitator, Fps1, Stl1

  17. Bet hedging in yeast by heterogeneous, age-correlated expression of a stress protectant.

    Directory of Open Access Journals (Sweden)

    Sasha F Levy

    Full Text Available Genetically identical cells grown in the same culture display striking cell-to-cell heterogeneity in gene expression and other traits. A crucial challenge is to understand how much of this heterogeneity reflects the noise tolerance of a robust system and how much serves a biological function. In bacteria, stochastic gene expression results in cell-to-cell heterogeneity that might serve as a bet-hedging mechanism, allowing a few cells to survive through an antimicrobial treatment while others perish. Despite its clinical importance, the molecular mechanisms underlying bet hedging remain unclear. Here, we investigate the mechanisms of bet hedging in Saccharomyces cerevisiae using a new high-throughput microscopy assay that monitors variable protein expression, morphology, growth rate, and survival outcomes of tens of thousands of yeast microcolonies simultaneously. We find that clonal populations display broad distributions of growth rates and that slow growth predicts resistance to heat killing in a probabalistic manner. We identify several gene products that are likely to play a role in bet hedging and confirm that Tsl1, a trehalose-synthesis regulator, is an important component of this resistance. Tsl1 abundance correlates with growth rate and replicative age and predicts survival. Our results suggest that yeast bet hedging results from multiple epigenetic growth states determined by a combination of stochastic and deterministic factors.

  18. Changes in oil content of transgenic soybeans expressing the yeast SLC1 gene.

    Science.gov (United States)

    Rao, Suryadevara S; Hildebrand, David

    2009-10-01

    The wild type (Wt) and mutant form of yeast (sphingolipid compensation) genes, SLC1 and SLC1-1, have been shown to have lysophosphatidic acid acyltransferase (LPAT) activities (Nageic et al. in J Biol Chem 269:22156-22163, 1993). Expression of these LPAT genes was reported to increase oil content in transgenic Arabidopsis and Brassica napus. It is of interest to determine if the TAG content increase would also be seen in soybeans. Therefore, the wild type SLC1 was expressed in soybean somatic embryos under the control of seed specific phaseolin promoter. Some transgenic somatic embryos and in both T2 and T3 transgenic seeds showed higher oil contents. Compared to controls, the average increase in triglyceride values went up by 1.5% in transgenic somatic embryos. A maximum of 3.2% increase in seed oil content was observed in a T3 line. Expression of the yeast Wt LPAT gene did not alter the fatty acid composition of the seed oil.

  19. Improvement of fermentation ability under baking-associated stress conditions by altering the POG1 gene expression in baker's yeast.

    Science.gov (United States)

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Oshiro, Satoshi; Shima, Jun; Takagi, Hiroshi

    2013-08-01

    During the bread-making process, yeast cells are exposed to many types of baking-associated stress. There is thus a demand within the baking industry for yeast strains with high fermentation abilities under these stress conditions. The POG1 gene, encoding a putative transcription factor involved in cell cycle regulation, is a multicopy suppressor of the yeast Saccharomyces cerevisiae E3 ubiquitin ligase Rsp5 mutant. The pog1 mutant is sensitive to various stresses. Our results suggested that the POG1 gene is involved in stress tolerance in yeast cells. In this study, we showed that overexpression of the POG1 gene in baker's yeast conferred increased fermentation ability in high-sucrose-containing dough, which is used for sweet dough baking. Furthermore, deletion of the POG1 gene drastically increased the fermentation ability in bread dough after freeze-thaw stress, which would be a useful characteristic for frozen dough baking. Thus, the engineering of yeast strains to control the POG1 gene expression level would be a novel method for molecular breeding of baker's yeast. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Gene expression dynamics in the oxidative stress response of fission yeast

    DEFF Research Database (Denmark)

    Papadakis, Emmanouil

    Changes in the environment continuously challenge living organisms during their lifetime. A cell’s survival depends on its ability to coordinate a rapid and successful stress response when exposed to acute doses of damaging agents. Oxidative stress caused by an excess of reactive oxygen species......, especially using model organisms. The fission yeast Schizosaccharomyces pombe is a unicellular eukaryotic organism that possesses genome features and molecular pathways that are highly conserved in humans. Moreover, the limited redundancy of its genome make S. pombe well suited for phenotypic studies...... (HP, 0.5 mM). The applied experimental design allowed us to measure both the activation and recovery phases of the response at a sufficiently high time resolution to model transcription and translation dynamics. Absolute expression levels (copies per cell) and time-resolved expression profiles for 4...

  1. Fab is the most efficient format to express functional antibodies by yeast surface display.

    Science.gov (United States)

    Sivelle, Coline; Sierocki, Raphaël; Ferreira-Pinto, Kelly; Simon, Stéphanie; Maillere, Bernard; Nozach, Hervé

    2018-04-30

    Multiple formats are available for engineering of monoclonal antibodies (mAbs) by yeast surface display, but they do not all lead to efficient expression of functional molecules. We therefore expressed four anti-tumor necrosis factor and two anti-IpaD mAbs as single-chain variable fragment (scFv), antigen-binding fragment (Fab) or single-chain Fabs and compared their expression levels and antigen-binding efficiency. Although the scFv and scFab formats are widely used in the literature, 2 of 6 antibodies were either not or weakly expressed. In contrast, all 6 antibodies expressed as Fab revealed strong binding and high affinity, comparable to that of the soluble form. We also demonstrated that the variations in expression did not affect Fab functionality and were due to variations in light chain display and not to misfolded dimers. Our results suggest that Fab is the most versatile format for the engineering of mAbs.

  2. Decoherence in yeast cell populations and its implications for genome-wide expression noise.

    Science.gov (United States)

    Briones, M R S; Bosco, F

    2009-01-20

    Gene expression "noise" is commonly defined as the stochastic variation of gene expression levels in different cells of the same population under identical growth conditions. Here, we tested whether this "noise" is amplified with time, as a consequence of decoherence in global gene expression profiles (genome-wide microarrays) of synchronized cells. The stochastic component of transcription causes fluctuations that tend to be amplified as time progresses, leading to a decay of correlations of expression profiles, in perfect analogy with elementary relaxation processes. Measuring decoherence, defined here as a decay in the auto-correlation function of yeast genome-wide expression profiles, we found a slowdown in the decay of correlations, opposite to what would be expected if, as in mixing systems, correlations decay exponentially as the equilibrium state is reached. Our results indicate that the populational variation in gene expression (noise) is a consequence of temporal decoherence, in which the slow decay of correlations is a signature of strong interdependence of the transcription dynamics of different genes.

  3. UV-dependent production of 25-hydroxyvitamin D2 in the recombinant yeast cells expressing human CYP2R1

    International Nuclear Information System (INIS)

    Yasuda, Kaori; Endo, Mariko; Ikushiro, Shinichi; Kamakura, Masaki; Ohta, Miho; Sakaki, Toshiyuki

    2013-01-01

    Highlights: •We produce 25-hydroxyvitamin D in the recombinant yeast expressing human CYP2R1. •Vitamin D2 is produced in yeast from endogenous ergosterol with UV irradiation. •We produce 25-hydroxyvitamin D2 in the recombinant yeast without added substrate. -- Abstract: CYP2R1 is known to be a physiologically important vitamin D 25-hydroxylase. We have successfully expressed human CYP2R1 in Saccharomyces cerevisiae to reveal its enzymatic properties. In this study, we examined production of 25-hydroxylated vitamin D using whole recombinant yeast cells that expressed CYP2R1. When vitamin D 3 or vitamin D 2 was added to the cell suspension of CYP2R1-expressing yeast cells in a buffer containing glucose and β-cyclodextrin, the vitamins were converted into their 25-hydroxylated products. Next, we irradiated the cell suspension with UVB and incubated at 37 °C. Surprisingly, the 25-hydroxy vitamin D 2 was produced without additional vitamin D 2 . Endogenous ergosterol was likely converted into vitamin D 2 by UV irradiation and thermal isomerization, and then the resulting vitamin D 2 was converted to 25-hydroxyvitamin D 2 by CYP2R1. This novel method for producing 25-hydroxyvitamin D 2 without a substrate could be useful for practical purposes

  4. Construction and evaluation of yeast expression networks by database-guided predictions

    Directory of Open Access Journals (Sweden)

    Katharina Papsdorf

    2016-05-01

    Full Text Available DNA-Microarrays are powerful tools to obtain expression data on the genome-wide scale. We performed microarray experiments to elucidate the transcriptional networks, which are up- or down-regulated in response to the expression of toxic polyglutamine proteins in yeast. Such experiments initially generate hit lists containing differentially expressed genes. To look into transcriptional responses, we constructed networks from these genes. We therefore developed an algorithm, which is capable of dealing with very small numbers of microarrays by clustering the hits based on co-regulatory relationships obtained from the SPELL database. Here, we evaluate this algorithm according to several criteria and further develop its statistical capabilities. Initially, we define how the number of SPELL-derived co-regulated genes and the number of input hits influences the quality of the networks. We then show the ability of our networks to accurately predict further differentially expressed genes. Including these predicted genes into the networks improves the network quality and allows quantifying the predictive strength of the networks based on a newly implemented scoring method. We find that this approach is useful for our own experimental data sets and also for many other data sets which we tested from the SPELL microarray database. Furthermore, the clusters obtained by the described algorithm greatly improve the assignment to biological processes and transcription factors for the individual clusters. Thus, the described clustering approach, which will be available through the ClusterEx web interface, and the evaluation parameters derived from it represent valuable tools for the fast and informative analysis of yeast microarray data.

  5. Temporal Expression of a Master Regulator Drives Synchronous Sporulation in Budding Yeast

    Directory of Open Access Journals (Sweden)

    Minghao Chia

    2016-11-01

    Full Text Available Yeast cells enter and undergo gametogenesis relatively asynchronously, making it technically challenging to perform stage-specific genomic and biochemical analyses. Cell-to-cell variation in the expression of the master regulator of entry into sporulation, IME1, has been implicated to be the underlying cause of asynchronous sporulation. Here, we find that timing of IME1 expression is of critical importance for inducing cells to undergo sporulation synchronously. When we force expression of IME1 from an inducible promoter in cells incubated in sporulation medium for 2 hr, the vast majority of cells exhibit synchrony during premeiotic DNA replication and meiotic divisions. Inducing IME1 expression too early or too late affects the synchrony of sporulation. Surprisingly, our approach for synchronous sporulation does not require growth in acetate-containing medium, but can be achieved in cells grown in rich medium until saturation. Our system requires solely IME1, because the expression of the N6-methyladenosine methyltransferase IME4, another key regulator of early sporulation, is controlled by IME1 itself. The approach described here can be combined easily with other stage-specific synchronization methods, and thereby applied to study specific stages of sporulation, or the complete sporulation program.

  6. Temporal Expression of a Master Regulator Drives Synchronous Sporulation in Budding Yeast.

    Science.gov (United States)

    Chia, Minghao; van Werven, Folkert J

    2016-09-07

    Yeast cells enter and undergo gametogenesis relatively asynchronously, making it technically challenging to perform stage-specific genomic and biochemical analyses. Cell-to-cell variation in the expression of the master regulator of entry into sporulation IME1, has been implicated to be the underlying cause of asynchronous sporulation. Here we find that timing of IME1 expression is of critical importance for inducing cells to undergo sporulation synchronously. When we force expression of IME1 from an inducible promoter in cells incubated in sporulation medium for two hours, the vast majority of cells exhibit synchrony during pre-meiotic DNA replication and meiotic divisions. Inducing IME1 expression too early or too late affects the synchrony of sporulation. Surprisingly, our approach for synchronous sporulation does not require growth in acetate containing medium, but can be achieved in cells grown in rich medium until saturation. Our system solely requires IME1 because the expression of the N6-methyladenosine methyltransferase IME4, another key regulator of early sporulation, is controlled by IME1 itself. The approach described here can be easily combined with other stage specific synchronization methods, and thereby applied to study specific stages of sporulation or the complete sporulation program. Copyright © 2016 Author et al.

  7. RNAi mediates post-transcriptional repression of gene expression in fission yeast Schizosaccharomyces pombe

    International Nuclear Information System (INIS)

    Smialowska, Agata; Djupedal, Ingela; Wang, Jingwen; Kylsten, Per; Swoboda, Peter; Ekwall, Karl

    2014-01-01

    Highlights: • Protein coding genes accumulate anti-sense sRNAs in fission yeast S. pombe. • RNAi represses protein-coding genes in S. pombe. • RNAi-mediated gene repression is post-transcriptional. - Abstract: RNA interference (RNAi) is a gene silencing mechanism conserved from fungi to mammals. Small interfering RNAs are products and mediators of the RNAi pathway and act as specificity factors in recruiting effector complexes. The Schizosaccharomyces pombe genome encodes one of each of the core RNAi proteins, Dicer, Argonaute and RNA-dependent RNA polymerase (dcr1, ago1, rdp1). Even though the function of RNAi in heterochromatin assembly in S. pombe is established, its role in controlling gene expression is elusive. Here, we report the identification of small RNAs mapped anti-sense to protein coding genes in fission yeast. We demonstrate that these genes are up-regulated at the protein level in RNAi mutants, while their mRNA levels are not significantly changed. We show that the repression by RNAi is not a result of heterochromatin formation. Thus, we conclude that RNAi is involved in post-transcriptional gene silencing in S. pombe

  8. In vivo unnatural amino acid expression in the methylotrophic yeast Pichia pastoris

    Energy Technology Data Exchange (ETDEWEB)

    Young, Travis; Schultz, Peter G.

    2017-08-15

    The invention provides orthogonal translation systems for the production of polypeptides comprising unnatural amino acids in methylotrophic yeast such as Pichia pastoris. Methods for producing polypeptides comprising unnatural amino acids in methylotrophic yeast such as Pichia pastoris are also provided.

  9. In vivo unnatural amino acid expression in the methylotrophic yeast Pichia pastoris

    Science.gov (United States)

    Young, Travis [San Diego, CA; Schultz, Peter G [La Jolla, CA

    2014-02-11

    The invention provides orthogonal translation systems for the production of polypeptides comprising unnatural amino acids in methyltrophic yeast such as Pichia pastoris. Methods for producing polypeptides comprising unnatural amino acids in methyltrophic yeast such as Pichia pastoris are also provided.

  10. Studies of the expression of human poly(ADP-ribose) polymerase-1 in Saccharomyces cerevisiae and identification of PARP-1 substrates by yeast proteome microarray screening.

    Science.gov (United States)

    Tao, Zhihua; Gao, Peng; Liu, Hung-Wen

    2009-12-15

    Poly(ADP-ribosyl)ation of various nuclear proteins catalyzed by a family of NAD(+)-dependent enzymes, poly(ADP-ribose) polymerases (PARPs), is an important posttranslational modification reaction. PARP activity has been demonstrated in all types of eukaryotic cells with the exception of yeast, in which the expression of human PARP-1 was shown to lead to retarded cell growth. We investigated the yeast growth inhibition caused by human PARP-1 expression in Saccharomyces cerevisiae. Flow cytometry analysis reveals that PARP-1-expressing yeast cells accumulate in the G(2)/M stage of the cell cycle. Confocal microscopy analysis shows that human PARP-1 is distributed throughout the nucleus of yeast cells but is enriched in the nucleolus. Utilizing yeast proteome microarray screening, we identified 33 putative PARP-1 substrates, six of which are known to be involved in ribosome biogenesis. The poly(ADP-ribosyl)ation of three of these yeast proteins, together with two human homologues, was confirmed by an in vitro PARP-1 assay. Finally, a polysome profile analysis using sucrose gradient ultracentrifugation demonstrated that the ribosome levels in yeast cells expressing PARP-1 are lower than those in control yeast cells. Overall, our data suggest that human PARP-1 may affect ribosome biogenesis by modifying certain nucleolar proteins in yeast. The artificial PARP-1 pathway in yeast may be used as a simple platform to identify substrates and verify function of this important enzyme.

  11. Investigating the effects of statins on cellular lipid metabolism using a yeast expression system.

    Directory of Open Access Journals (Sweden)

    Agata Leszczynska

    Full Text Available In humans, defects in lipid metabolism are associated with a number of severe diseases such as atherosclerosis, obesity and type II diabetes. Hypercholesterolemia is a primary risk factor for coronary artery disease, the major cause of premature deaths in developed countries. Statins are inhibitors of 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR, the key enzyme of the sterol synthesis pathway. Since yeast Saccharomyces cerevisiae harbours many counterparts of mammalian enzymes involved in lipid-synthesizing pathways, conclusions drawn from research with this single cell eukaryotic organism can be readily applied to higher eukaryotes. Using a yeast strain with deletions of both HMG1 and HMG2 genes (i.e. completely devoid of HMGR activity with introduced wild-type or mutant form of human HMGR (hHMGR gene we investigated the effects of statins on the lipid metabolism of the cell. The relative quantification of mRNA demonstrated a different effect of simvastatin on the expression of the wild-type and mutated hHMGR gene. GC/MS analyses showed a significant decrease of sterols and enhanced conversion of squalene and sterol precursors into ergosterol. This was accompanied by the mobilization of ergosterol precursors localized in lipid particles in the form of steryl esters visualized by confocal microscopy. Changes in the level of ergosterol and its precursors in cells treated with simvastatin depend on the mutation in the hHMGR gene. HPLC/MS analyses indicated a reduced level of phospholipids not connected with the mevalonic acid pathway. We detected two significant phenomena. First, cells treated with simvastatin develop an adaptive response compensating the lower activity of HMGR. This includes enhanced conversion of sterol precursors into ergosterol, mobilization of steryl esters and increased expression of the hHMGR gene. Second, statins cause a substantial drop in the level of glycerophospholipids.

  12. Transgenic Mice Expressing Yeast CUP1 Exhibit Increased Copper Utilization from Feeds

    Science.gov (United States)

    Chen, Zhenliang; Liao, Rongrong; Zhang, Xiangzhe; Wang, Qishan; Pan, Yuchun

    2014-01-01

    Copper is required for structural and catalytic properties of a variety of enzymes participating in many vital biological processes for growth and development. Feeds provide most of the copper as an essential micronutrient consumed by animals, but inorganic copper could not be utilized effectively. In the present study, we aimed to develop transgenic mouse models to test if copper utilization will be increased by providing the animals with an exogenous gene for generation of copper chelatin in saliva. Considering that the S. cerevisiae CUP1 gene encodes a Cys-rich protein that can bind copper as specifically as copper chelatin in yeast, we therefore constructed a transgene plasmid containing the CUP1 gene regulated for specific expression in the salivary glands by a promoter of gene coding pig parotid secretory protein. Transgenic CUP1 was highly expressed in the parotid and submandibular salivary glands and secreted in saliva as a 9-kDa copper-chelating protein. Expression of salivary copper-chelating proteins reduced fecal copper contents by 21.61% and increased body-weight by 12.97%, suggesting that chelating proteins improve the utilization and absorbed efficacy of copper. No negative effects on the health of the transgenic mice were found by blood biochemistry and histology analysis. These results demonstrate that the introduction of the salivary CUP1 transgene into animals offers a possible approach to increase the utilization efficiency of copper and decrease the fecal copper contents. PMID:25265503

  13. Assessing pathogenicity of MLH1 variants by co-expression of human MLH1 and PMS2 genes in yeast

    Energy Technology Data Exchange (ETDEWEB)

    Vogelsang, Matjaz; Comino, Aleksandra; Zupanec, Neja [Department for Biosynthesis and Biotransformation, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana (Slovenia); Hudler, Petra [Medical Center for Molecular Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana (Slovenia); Komel, Radovan [Department for Biosynthesis and Biotransformation, National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana (Slovenia); Medical Center for Molecular Biology, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, SI-1000 Ljubljana (Slovenia)

    2009-10-28

    Loss of DNA mismatch repair (MMR) in humans, mainly due to mutations in the hMLH1 gene, is linked to hereditary nonpolyposis colorectal cancer (HNPCC). Because not all MLH1 alterations result in loss of MMR function, accurate characterization of variants and their classification in terms of their effect on MMR function is essential for reliable genetic testing and effective treatment. To date, in vivo assays for functional characterization of MLH1 mutations performed in various model systems have used episomal expression of the modified MMR genes. We describe here a novel approach to determine accurately the functional significance of hMLH1 mutations in vivo, based on co-expression of human MLH1 and PMS2 in yeast cells. Yeast MLH1 and PMS1 genes, whose protein products form the MutLα complex, were replaced by human orthologs directly on yeast chromosomes by homologous recombination, and the resulting MMR activity was tested. The yeast strain co-expressing hMLH1 and hPMS2 exhibited the same mutation rate as the wild-type. Eight cancer-related MLH1 variants were introduced, using the same approach, into the prepared yeast model, and their effect on MMR function was determined. Five variants (A92P, S93G, I219V, K618R and K618T) were classified as non-pathogenic, whereas variants T117M, Y646C and R659Q were characterized as pathogenic. Results of our in vivo yeast-based approach correlate well with clinical data in five out of seven hMLH1 variants and the described model was thus shown to be useful for functional characterization of MLH1 variants in cancer patients found throughout the entire coding region of the gene.

  14. Assessing pathogenicity of MLH1 variants by co-expression of human MLH1 and PMS2 genes in yeast

    Directory of Open Access Journals (Sweden)

    Hudler Petra

    2009-10-01

    Full Text Available Abstract Background Loss of DNA mismatch repair (MMR in humans, mainly due to mutations in the hMLH1 gene, is linked to hereditary nonpolyposis colorectal cancer (HNPCC. Because not all MLH1 alterations result in loss of MMR function, accurate characterization of variants and their classification in terms of their effect on MMR function is essential for reliable genetic testing and effective treatment. To date, in vivo assays for functional characterization of MLH1 mutations performed in various model systems have used episomal expression of the modified MMR genes. We describe here a novel approach to determine accurately the functional significance of hMLH1 mutations in vivo, based on co-expression of human MLH1 and PMS2 in yeast cells. Methods Yeast MLH1 and PMS1 genes, whose protein products form the MutLα complex, were replaced by human orthologs directly on yeast chromosomes by homologous recombination, and the resulting MMR activity was tested. Results The yeast strain co-expressing hMLH1 and hPMS2 exhibited the same mutation rate as the wild-type. Eight cancer-related MLH1 variants were introduced, using the same approach, into the prepared yeast model, and their effect on MMR function was determined. Five variants (A92P, S93G, I219V, K618R and K618T were classified as non-pathogenic, whereas variants T117M, Y646C and R659Q were characterized as pathogenic. Conclusion Results of our in vivo yeast-based approach correlate well with clinical data in five out of seven hMLH1 variants and the described model was thus shown to be useful for functional characterization of MLH1 variants in cancer patients found throughout the entire coding region of the gene.

  15. Assessing pathogenicity of MLH1 variants by co-expression of human MLH1 and PMS2 genes in yeast

    International Nuclear Information System (INIS)

    Vogelsang, Matjaz; Comino, Aleksandra; Zupanec, Neja; Hudler, Petra; Komel, Radovan

    2009-01-01

    Loss of DNA mismatch repair (MMR) in humans, mainly due to mutations in the hMLH1 gene, is linked to hereditary nonpolyposis colorectal cancer (HNPCC). Because not all MLH1 alterations result in loss of MMR function, accurate characterization of variants and their classification in terms of their effect on MMR function is essential for reliable genetic testing and effective treatment. To date, in vivo assays for functional characterization of MLH1 mutations performed in various model systems have used episomal expression of the modified MMR genes. We describe here a novel approach to determine accurately the functional significance of hMLH1 mutations in vivo, based on co-expression of human MLH1 and PMS2 in yeast cells. Yeast MLH1 and PMS1 genes, whose protein products form the MutLα complex, were replaced by human orthologs directly on yeast chromosomes by homologous recombination, and the resulting MMR activity was tested. The yeast strain co-expressing hMLH1 and hPMS2 exhibited the same mutation rate as the wild-type. Eight cancer-related MLH1 variants were introduced, using the same approach, into the prepared yeast model, and their effect on MMR function was determined. Five variants (A92P, S93G, I219V, K618R and K618T) were classified as non-pathogenic, whereas variants T117M, Y646C and R659Q were characterized as pathogenic. Results of our in vivo yeast-based approach correlate well with clinical data in five out of seven hMLH1 variants and the described model was thus shown to be useful for functional characterization of MLH1 variants in cancer patients found throughout the entire coding region of the gene

  16. Cell organisation, sulphur metabolism and ion transport-related genes are differentially expressed in Paracoccidioides brasiliensis mycelium and yeast cells

    Directory of Open Access Journals (Sweden)

    Passos Geraldo AS

    2006-08-01

    Full Text Available Abstract Background Mycelium-to-yeast transition in the human host is essential for pathogenicity by the fungus Paracoccidioides brasiliensis and both cell types are therefore critical to the establishment of paracoccidioidomycosis (PCM, a systemic mycosis endemic to Latin America. The infected population is of about 10 million individuals, 2% of whom will eventually develop the disease. Previously, transcriptome analysis of mycelium and yeast cells resulted in the assembly of 6,022 sequence groups. Gene expression analysis, using both in silico EST subtraction and cDNA microarray, revealed genes that were differential to yeast or mycelium, and we discussed those involved in sugar metabolism. To advance our understanding of molecular mechanisms of dimorphic transition, we performed an extended analysis of gene expression profiles using the methods mentioned above. Results In this work, continuous data mining revealed 66 new differentially expressed sequences that were MIPS(Munich Information Center for Protein Sequences-categorised according to the cellular process in which they are presumably involved. Two well represented classes were chosen for further analysis: (i control of cell organisation – cell wall, membrane and cytoskeleton, whose representatives were hex (encoding for a hexagonal peroxisome protein, bgl (encoding for a 1,3-β-glucosidase in mycelium cells; and ags (an α-1,3-glucan synthase, cda (a chitin deacetylase and vrp (a verprolin in yeast cells; (ii ion metabolism and transport – two genes putatively implicated in ion transport were confirmed to be highly expressed in mycelium cells – isc and ktp, respectively an iron-sulphur cluster-like protein and a cation transporter; and a putative P-type cation pump (pct in yeast. Also, several enzymes from the cysteine de novo biosynthesis pathway were shown to be up regulated in the yeast form, including ATP sulphurylase, APS kinase and also PAPS reductase. Conclusion Taken

  17. Triosephosphate isomerase: energetics of the reaction catalyzed by the yeast enzyme expressed in Escherichia coli

    International Nuclear Information System (INIS)

    Nickbarg, E.B.; Knowles, J.R.

    1988-01-01

    Triosephosphate isomerase from bakers' yeast, expressed in Escherichia coli strain DF502(p12), has been purified to homogeneity. The kinetics of the reaction in each direction have been determined at pH 7.5 and 30 degrees C. Deuterium substitution at the C-2 position of substrate (R)-glyceraldehyde phosphate and at the 1-pro-R position of substrate dihydroxyacetone phosphate results in kinetic isotope effects on kcat of 1.6 and 3.4, respectively. The extent of transfer of tritium from [1(R)- 3 H]dihydroxyacetone phosphate to product (R)-glyceraldehyde phosphate during the catalyzed reaction is only 3% after 66% conversion to product, indicating that the enzymic base that mediates proton transfer is in rapid exchange with solvent protons. When the isomerase-catalyzed reaction is run in tritiated water in each direction, radioactivity is incorporated both into the remaining substrate and into the product. In the exchange-conversion experiment with dihydroxyacetone phosphate as substrate, the specific radioactivity of remaining dihydroxyacetone phosphate rises as a function of the extent of reaction with a slope of about 0.3, while the specific radioactivity of the products is 54% that of the solvent. In the reverse direction with (R)-glyceraldehyde phosphate as substrate, the specific radioactivity of the product formed is only 11% that of the solvent, while the radioactivity incorporated into the remaining substrate (R)-glyceraldehyde phosphate also rises as a function of the extent of reaction with a slope of 0.3. These results have been analyzed according to the protocol described earlier to yield the free energy profile of the reaction catalyzed by the yeast isomerase

  18. Anethole potentiates dodecanol's fungicidal activity by reducing PDR5 expression in budding yeast.

    Science.gov (United States)

    Fujita, Ken-Ichi; Ishikura, Takayuki; Jono, Yui; Yamaguchi, Yoshihiro; Ogita, Akira; Kubo, Isao; Tanaka, Toshio

    2017-02-01

    trans-Anethole (anethole), a major component of anise oil, has a broad antimicrobial spectrum and a weaker antimicrobial potency than other available antibiotics. When combined with polygodial, nagilactone E, and n-dodecanol, anethole has been shown to exhibit synergistic antifungal activity against a budding yeast, Saccharomyces cerevisiae, and a human opportunistic pathogenic yeast, Candida albicans. However, the mechanism underlying this synergistic effect of anethole has not been characterized. We studied this mechanism using dodecanol-treated S. cerevisiae cells and focusing on genes related to multidrug efflux. Although dodecanol transiently reduced the number of colony forming units, this recovered to levels similar to those of untreated cells with continued incubation beyond 24h. Reverse transcription polymerase chain reaction analysis revealed overexpression of an ATP-binding cassette (ABC) transporter gene, PDR5, in addition to a slight increase in PDR11, PDR12, and PDR15 transcriptions in dodecanol-treated cells. In the presence of anethole, these effects were attenuated and the fungicidal activity of dodecanol was extended. Dodecanol showed longer lasting fungicidal activity against a Δpdr5. In addition, Δpdr3 and Δlge1, lack transcription factors of PDR5 and PDR3, were partly and completely susceptible to dodecanol, respectively. Furthermore, combination of anethole with fluconazole was also found to exhibit synergy on C. albicans. These results indicated that although anethole reduced the transcription of several transporters, PDR5 expression was particularly relevant to dodecanol efflux. Anethole is expected to be a promising candidate drug for the inhibition of efflux by reducing the transcription of several ABC transporters. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Diversity and regulation of plant Ca2+ pumps: insights from expression in yeast

    Science.gov (United States)

    Sze, H.; Liang, F.; Hwang, I.; Curran, A. C.; Harper, J. F.; Evans, M. L. (Principal Investigator)

    2000-01-01

    The spatial and temporal regulation of calcium concentration in plant cells depends on the coordinate activities of channels and active transporters located on different organelles and membranes. Several Ca2+ pumps have been identified and characterized by functional expression of plant genes in a yeast mutant (K616). This expression system has opened the way to a genetic and biochemical characterization of the regulatory and catalytic features of diverse Ca2+ pumps. Plant Ca(2+)-ATPases fall into two major types: AtECA1 represents one of four or more members of the type IIA (ER-type) Ca(2+)-ATPases in Arabidopsis, and AtACA2 is one of seven or more members of the type IIB (PM-type) Ca(2+)-ATPases that are regulated by a novel amino terminal domain. Type IIB pumps are widely distributed on membranes, including the PM (plasma membrane), vacuole, and ER (endoplasmic reticulum). The regulatory domain serves multiple functions, including autoinhibition, calmodulin binding, and sites for modification by phosphorylation. This domain, however, is considerably diverse among several type IIB ATPases, suggesting that the pumps are differentially regulated. Understanding of Ca2+ transporters at the molecular level is providing insights into their roles in signaling networks and in regulating fundamental processes of cell biology.

  20. A yeast expression system for functional and pharmacological studies of the malaria parasite Ca2+/H+ antiporter

    Directory of Open Access Journals (Sweden)

    Salcedo-Sora J

    2012-08-01

    Full Text Available Abstract Background Calcium (Ca2+ signalling is fundamental for host cell invasion, motility, in vivo synchronicity and sexual differentiation of the malaria parasite. Consequently, cytoplasmic free Ca2+ is tightly regulated through the co-ordinated action of primary and secondary Ca2+ transporters. Identifying selective inhibitors of Ca2+ transporters is key towards understanding their physiological role as well as having therapeutic potential, therefore screening systems to facilitate the search for potential inhibitors are a priority. Here, the methodology for the expression of a Calcium membrane transporter that can be scaled to high throughputs in yeast is presented. Methods The Plasmodium falciparum Ca2+/H+ antiporter (PfCHA was expressed in the yeast Saccharomyces cerevisiae and its activity monitored by the bioluminescence from apoaequorin triggered by divalent cations, such as calcium, magnesium and manganese. Results Bioluminescence assays demonstrated that PfCHA effectively suppressed induced cytoplasmic peaks of Ca2+, Mg2+ and Mn2+ in yeast mutants lacking the homologue yeast antiporter Vcx1p. In the scalable format of 96-well culture plates pharmacological assays with a cation antiporter inhibitor allowed the measurement of inhibition of the Ca2+ transport activity of PfCHA conveniently translated to the familiar concept of fractional inhibitory concentrations. Furthermore, the cytolocalization of this antiporter in the yeast cells showed that whilst PfCHA seems to locate to the mitochondrion of P. falciparum, in yeast PfCHA is sorted to the vacuole. This facilitates the real-time Ca2+-loading assays for further functional and pharmacological studies. Discussion The functional expression of PfCHA in S. cerevisiae and luminescence-based detection of cytoplasmic cations as presented here offer a tractable system that facilitates functional and pharmacological studies in a high-throughput format. PfCHA is shown to behave as a divalent

  1. Positive Feedback of NDT80 Expression Ensures Irreversible Meiotic Commitment in Budding Yeast

    Science.gov (United States)

    Tsuchiya, Dai; Yang, Yang; Lacefield, Soni

    2014-01-01

    In budding yeast, meiotic commitment is the irreversible continuation of the developmental path of meiosis. After reaching meiotic commitment, cells finish meiosis and gametogenesis, even in the absence of the meiosis-inducing signal. In contrast, if the meiosis-inducing signal is removed and the mitosis-inducing signal is provided prior to reaching meiotic commitment, cells exit meiosis and return to mitosis. Previous work has shown that cells commit to meiosis after prophase I but before entering the meiotic divisions. Since the Ndt80 transcription factor induces expression of middle meiosis genes necessary for the meiotic divisions, we examined the role of the NDT80 transcriptional network in meiotic commitment. Using a microfluidic approach to analyze single cells, we found that cells commit to meiosis in prometaphase I, after the induction of the Ndt80-dependent genes. Our results showed that high-level expression of NDT80 is important for the timing and irreversibility of meiotic commitment. A modest reduction in NDT80 levels delayed meiotic commitment based on meiotic stages, although the timing of each meiotic stage was similar to that of wildtype cells. A further reduction of NDT80 resulted in the surprising finding of inappropriately uncommitted cells: withdrawal of the meiosis-inducing signal and addition of the mitosis-inducing signal to cells at stages beyond metaphase I caused return to mitosis, leading to multi-nucleate cells. Since Ndt80 enhances its own transcription through positive feedback, we tested whether positive feedback ensured the irreversibility of meiotic commitment. Ablating positive feedback in NDT80 expression resulted in a complete loss of meiotic commitment. These findings suggest that irreversibility of meiotic commitment is a consequence of the NDT80 transcriptional positive feedback loop, which provides the high-level of Ndt80 required for the developmental switch of meiotic commitment. These results also illustrate the

  2. DNA micro array analysis of yeast global genome expression in response to ELF-MF exposure

    International Nuclear Information System (INIS)

    Shimizu, K.; Yamamoto, T.; Ishibashi, T.; Kyoh, B.

    2002-01-01

    There is wide spread public concern over the possible health risk of ELF-MF. Electromagnetic fields may produce a variety of effects in several biological systems, including the elevation of cancer risk and reduction of cell growth. Epidemiological studies have shown weak correlations between the exposure to ELF and the incidence of several cancers, but negative studies have also been reported. Moreover, there are some reports that basic biological events such as the cell cycle and DNA replication were affected by exposure to MF. However, to date the molecular mechanism of the MF effect on living organism is not clear. In this study, we used yeast DNA micro array to examine the transcriptional profile of all genes in response to ELF-MF. A few years ago it was difficult to carry out a global gene expression study to identify important genes regarding ELF-MF, however, today DNA micro arrays allow gene regulation in response to high density ELF-MF exposure. Thus we used micro array to analyze changes in mRNA abundance during ELF-MF exposure

  3. CASCADE, a platform for controlled gene amplification for high, tunable and selection-free gene expression in yeast

    DEFF Research Database (Denmark)

    Strucko, Tomas; Buron, Line Due; Jarczynska, Zofia Dorota

    2017-01-01

    Over-expression of a gene by increasing its copy number is often desirable in the model yeast Saccharomyces cerevisiae. It may facilitate elucidation of enzyme functions, and in cell factory design it is used to increase production of proteins and metabolites. Current methods are typically exploi...... production of two fluorescent proteins, the enzyme β-galactosidase the fungal polyketide 6-methyl salicylic acid and the plant metabolite vanillin glucoside....

  4. Expression of Genes Related to Oxidative Stress in Yeast Treated with Ionizing Radiation and N-acetyl -L-cysteine

    International Nuclear Information System (INIS)

    Park, Ji Young; Kim, Jin Kyu; Nili, Mohammad

    2010-01-01

    Ionizing radiation (IR) induces water radiolysis, which generates highly reactive hydroxyl radicals. Reactive oxygen species (ROS) cause apoptosis and cell damage including DNA strand breaks (DSBs), base damage, protein damage and lipid-hydroperoxide. Detoxifying enzymes are immediately triggered for ROS scavenging. Yeast contains two forms of superoxide dismutase (SOD). SOD1 as a cytosolic copper-zinc superoxide dismutase is located in the cytoplasm and cytosol. SOD2 as a manganese containing enzyme is act in mitochondria matrix and mitochondrion. These enzymes scavenge superoxide radicals by catalyzing the conversion of two of these radicals into hydrogen peroxide and molecular oxygen. The hydrogen peroxide formed by superoxide dismutase and by other processes is scavenged by catalase, a ubiquitous heme protein that catalyzes the dismutation of hydrogen peroxide into water and molecular oxygen. Yeast contains two catalases. Catalase A (CTA1) and Cytosolic catalase T (CTT1) is located in peroxisome and cytoplasm, respectively. Yeast has two glutathione (GSH) peroxidases, which are GPX1 and GPX2. GPX1 and GPX2 are component of cellular component and cytoplasm, respectively. The biochemical function of GSH peroxidase is to reduce lipid-hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to water. Otherwise, chemicals and materials help ROS detoxification against oxidative damage. N-acetyl-Lcysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. In this study, we examined the effect of NAC through gene expressions related to protective enzyme against oxidative stress in yeast

  5. Expression of Genes Related to Oxidative Stress in Yeast Treated with Ionizing Radiation and N-acetyl -L-cysteine

    Energy Technology Data Exchange (ETDEWEB)

    Park, Ji Young; Kim, Jin Kyu [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2010-10-15

    Ionizing radiation (IR) induces water radiolysis, which generates highly reactive hydroxyl radicals. Reactive oxygen species (ROS) cause apoptosis and cell damage including DNA strand breaks (DSBs), base damage, protein damage and lipid-hydroperoxide. Detoxifying enzymes are immediately triggered for ROS scavenging. Yeast contains two forms of superoxide dismutase (SOD). SOD1 as a cytosolic copper-zinc superoxide dismutase is located in the cytoplasm and cytosol. SOD2 as a manganese containing enzyme is act in mitochondria matrix and mitochondrion. These enzymes scavenge superoxide radicals by catalyzing the conversion of two of these radicals into hydrogen peroxide and molecular oxygen. The hydrogen peroxide formed by superoxide dismutase and by other processes is scavenged by catalase, a ubiquitous heme protein that catalyzes the dismutation of hydrogen peroxide into water and molecular oxygen. Yeast contains two catalases. Catalase A (CTA1) and Cytosolic catalase T (CTT1) is located in peroxisome and cytoplasm, respectively. Yeast has two glutathione (GSH) peroxidases, which are GPX1 and GPX2. GPX1 and GPX2 are component of cellular component and cytoplasm, respectively. The biochemical function of GSH peroxidase is to reduce lipid-hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to water. Otherwise, chemicals and materials help ROS detoxification against oxidative damage. N-acetyl-Lcysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. In this study, we examined the effect of NAC through gene expressions related to protective enzyme against oxidative stress in yeast

  6. Heterologous expression of the yeast Tpo1p or Pdr5p membrane transporters in Arabidopsis confers plant xenobiotic tolerance.

    Science.gov (United States)

    Remy, Estelle; Niño-González, María; Godinho, Cláudia P; Cabrito, Tânia R; Teixeira, Miguel C; Sá-Correia, Isabel; Duque, Paula

    2017-07-03

    Soil contamination is a major hindrance for plant growth and development. The lack of effective strategies to remove chemicals released into the environment has raised the need to increase plant resilience to soil pollutants. Here, we investigated the ability of two Saccharomyces cerevisiae plasma-membrane transporters, the Major Facilitator Superfamily (MFS) member Tpo1p and the ATP-Binding Cassette (ABC) protein Pdr5p, to confer Multiple Drug Resistance (MDR) in Arabidopsis thaliana. Transgenic plants expressing either of the yeast transporters were undistinguishable from the wild type under control conditions, but displayed tolerance when challenged with the herbicides 2,4-D and barban. Plants expressing ScTPO1 were also more resistant to the herbicides alachlor and metolachlor as well as to the fungicide mancozeb and the Co 2+ , Cu 2+ , Ni 2+ , Al 3+ and Cd 2+ cations, while ScPDR5-expressing plants exhibited tolerance to cycloheximide. Yeast mutants lacking Tpo1p or Pdr5p showed increased sensitivity to most of the agents tested in plants. Our results demonstrate that the S. cerevisiae Tpo1p and Pdr5p transporters are able to mediate resistance to a broad range of compounds of agricultural interest in yeast as well as in Arabidopsis, underscoring their potential in future biotechnological applications.

  7. Intra and Interspecific Variations of Gene Expression Levels in Yeast Are Largely Neutral: (Nei Lecture, SMBE 2016, Gold Coast).

    Science.gov (United States)

    Yang, Jian-Rong; Maclean, Calum J; Park, Chungoo; Zhao, Huabin; Zhang, Jianzhi

    2017-09-01

    It is commonly, although not universally, accepted that most intra and interspecific genome sequence variations are more or less neutral, whereas a large fraction of organism-level phenotypic variations are adaptive. Gene expression levels are molecular phenotypes that bridge the gap between genotypes and corresponding organism-level phenotypes. Yet, it is unknown whether natural variations in gene expression levels are mostly neutral or adaptive. Here we address this fundamental question by genome-wide profiling and comparison of gene expression levels in nine yeast strains belonging to three closely related Saccharomyces species and originating from five different ecological environments. We find that the transcriptome-based clustering of the nine strains approximates the genome sequence-based phylogeny irrespective of their ecological environments. Remarkably, only ∼0.5% of genes exhibit similar expression levels among strains from a common ecological environment, no greater than that among strains with comparable phylogenetic relationships but different environments. These and other observations strongly suggest that most intra and interspecific variations in yeast gene expression levels result from the accumulation of random mutations rather than environmental adaptations. This finding has profound implications for understanding the driving force of gene expression evolution, genetic basis of phenotypic adaptation, and general role of stochasticity in evolution. © The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Drug resistance is conferred on the model yeast Saccharomyces cerevisiae by expression of full-length melanoma-associated human ATP-binding cassette transporter ABCB5.

    Science.gov (United States)

    Keniya, Mikhail V; Holmes, Ann R; Niimi, Masakazu; Lamping, Erwin; Gillet, Jean-Pierre; Gottesman, Michael M; Cannon, Richard D

    2014-10-06

    ABCB5, an ATP-binding cassette (ABC) transporter, is highly expressed in melanoma cells, and may contribute to the extreme resistance of melanomas to chemotherapy by efflux of anti-cancer drugs. Our goal was to determine whether we could functionally express human ABCB5 in the model yeast Saccharomyces cerevisiae, in order to demonstrate an efflux function for ABCB5 in the absence of background pump activity from other human transporters. Heterologous expression would also facilitate drug discovery for this important target. DNAs encoding ABCB5 sequences were cloned into the chromosomal PDR5 locus of a S. cerevisiae strain in which seven endogenous ABC transporters have been deleted. Protein expression in the yeast cells was monitored by immunodetection using both a specific anti-ABCB5 antibody and a cross-reactive anti-ABCB1 antibody. ABCB5 function in recombinant yeast cells was measured by determining whether the cells possessed increased resistance to known pump substrates, compared to the host yeast strain, in assays of yeast growth. Three ABCB5 constructs were made in yeast. One was derived from the ABCB5-β mRNA, which is highly expressed in human tissues but is a truncation of a canonical full-size ABC transporter. Two constructs contained full-length ABCB5 sequences: either a native sequence from cDNA or a synthetic sequence codon-harmonized for S. cerevisiae. Expression of all three constructs in yeast was confirmed by immunodetection. Expression of the codon-harmonized full-length ABCB5 DNA conferred increased resistance, relative to the host yeast strain, to the putative substrates rhodamine 123, daunorubicin, tetramethylrhodamine, FK506, or clorgyline. We conclude that full-length ABCB5 can be functionally expressed in S. cerevisiae and confers drug resistance.

  9. Cell cycle-dependent transcription factors control the expression of yeast telomerase RNA.

    Science.gov (United States)

    Dionne, Isabelle; Larose, Stéphanie; Dandjinou, Alain T; Abou Elela, Sherif; Wellinger, Raymund J

    2013-07-01

    Telomerase is a specialized ribonucleoprotein that adds repeated DNA sequences to the ends of eukaryotic chromosomes to preserve genome integrity. Some secondary structure features of the telomerase RNA are very well conserved, and it serves as a central scaffold for the binding of associated proteins. The Saccharomyces cerevisiae telomerase RNA, TLC1, is found in very low copy number in the cell and is the limiting component of the known telomerase holoenzyme constituents. The reasons for this low abundance are unclear, but given that the RNA is very stable, transcriptional control mechanisms must be extremely important. Here we define the sequences forming the TLC1 promoter and identify the elements required for its low expression level, including enhancer and repressor elements. Within an enhancer element, we found consensus sites for Mbp1/Swi4 association, and chromatin immunoprecipitation (ChIP) assays confirmed the binding of Mbp1 and Swi4 to these sites of the TLC1 promoter. Furthermore, the enhancer element conferred cell cycle-dependent regulation to a reporter gene, and mutations in the Mbp1/Swi4 binding sites affected the levels of telomerase RNA and telomere length. Finally, ChIP experiments using a TLC1 RNA-binding protein as target showed cell cycle-dependent transcription of the TLC1 gene. These results indicate that the budding yeast TLC1 RNA is transcribed in a cell cycle-dependent fashion late in G1 and may be part of the S phase-regulated group of genes involved in DNA replication.

  10. Molecular cloning of amphioxus uncoupling protein and assessment of its uncoupling activity using a yeast heterologous expression system

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Kun [Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu (China); Sun, Guoxun [Department of Hematology, Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001 (China); Lv, Zhiyuan; Wang, Chen [Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu (China); Jiang, Xueyuan, E-mail: xueyuanjiang@yahoo.com.cn [Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu (China); Li, Donghai, E-mail: lidonghai@gmail.com [Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu (China); Zhang, Chenyu, E-mail: cyzhang@nju.edu.cn [Jiangsu Diabetes Research Center, State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu (China)

    2010-10-01

    Research highlights: {yields} Invertebrates, for example amphioxus, do express uncoupling proteins. {yields} Both the sequence and the uncoupling activity of amphioxus UCP resemble UCP2. {yields} UCP1 is the only UCP that can form dimer on yeast mitochondria. -- Abstract: The present study describes the molecular cloning of a novel cDNA fragment from amphioxus (Branchiostoma belcheri) encoding a 343-amino acid protein that is highly homologous to human uncoupling proteins (UCP), this protein is therefore named amphioxus UCP. This amphioxus UCP shares more homology with and is phylogenetically more related to mammalian UCP2 as compared with UCP1. To further assess the functional similarity of amphioxus UCP to mammalian UCP1 and -2, the amphioxus UCP, rat UCP1, and human UCP2 were separately expressed in Saccharomyces cerevisiae, and the recombinant yeast mitochondria were isolated and assayed for the state 4 respiration rate and proton leak, using pYES2 empty vector as the control. UCP1 increased the state 4 respiration rate by 2.8-fold, and the uncoupling activity was strongly inhibited by GDP, while UCP2 and amphioxus UCP only increased the state 4 respiration rate by 1.5-fold and 1.7-fold in a GDP-insensitive manner, moreover, the proton leak kinetics of amphioxus UCP was very similar to UCP2, but much different from UCP1. In conclusion, the amphioxus UCP has a mild, unregulated uncoupling activity in the yeast system, which resembles mammalian UCP2, but not UCP1.

  11. Yeast Fex1p Is a Constitutively Expressed Fluoride Channel with Functional Asymmetry of Its Two Homologous Domains*

    Science.gov (United States)

    Smith, Kathryn D.; Gordon, Patricia B.; Rivetta, Alberto; Allen, Kenneth E.; Berbasova, Tetyana; Slayman, Clifford; Strobel, Scott A.

    2015-01-01

    Fluoride is a ubiquitous environmental toxin with which all biological species must cope. A recently discovered family of fluoride export (FEX) proteins protects organisms from fluoride toxicity by removing it from the cell. We show here that FEX proteins in Saccharomyces cerevisiae function as ion channels that are selective for fluoride over chloride and that these proteins are constitutively expressed at the yeast plasma membrane. Continuous expression is in contrast to many other toxin exporters in yeast, and this, along with the fact that two nearly duplicate proteins are encoded in the yeast genome, suggests that the threat posed by fluoride ions is frequent and detrimental. Structurally, eukaryotic FEX proteins consist of two homologous four-transmembrane helix domains folded into an antiparallel dimer, where the orientation of the two domains is fixed by a single transmembrane linker helix. Using phylogenetic sequence conservation as a guide, we have identified several functionally important residues. There is substantial functional asymmetry in the effect of mutation at corresponding sites in the two domains. Specifically, mutations to residues in the C-terminal domain proved significantly more detrimental to function than did similar mutations in the N-terminal domain. Our data suggest particular residues that may be important to anion specificity, most notably the necessity of a positive charge near the end of TMH1 in the C-terminal domain. It is possible that a cationic charge at this location may create an electrostatic well for fluoride ions entering the channel from the cytoplasm. PMID:26055717

  12. Molecular cloning of amphioxus uncoupling protein and assessment of its uncoupling activity using a yeast heterologous expression system

    International Nuclear Information System (INIS)

    Chen, Kun; Sun, Guoxun; Lv, Zhiyuan; Wang, Chen; Jiang, Xueyuan; Li, Donghai; Zhang, Chenyu

    2010-01-01

    Research highlights: → Invertebrates, for example amphioxus, do express uncoupling proteins. → Both the sequence and the uncoupling activity of amphioxus UCP resemble UCP2. → UCP1 is the only UCP that can form dimer on yeast mitochondria. -- Abstract: The present study describes the molecular cloning of a novel cDNA fragment from amphioxus (Branchiostoma belcheri) encoding a 343-amino acid protein that is highly homologous to human uncoupling proteins (UCP), this protein is therefore named amphioxus UCP. This amphioxus UCP shares more homology with and is phylogenetically more related to mammalian UCP2 as compared with UCP1. To further assess the functional similarity of amphioxus UCP to mammalian UCP1 and -2, the amphioxus UCP, rat UCP1, and human UCP2 were separately expressed in Saccharomyces cerevisiae, and the recombinant yeast mitochondria were isolated and assayed for the state 4 respiration rate and proton leak, using pYES2 empty vector as the control. UCP1 increased the state 4 respiration rate by 2.8-fold, and the uncoupling activity was strongly inhibited by GDP, while UCP2 and amphioxus UCP only increased the state 4 respiration rate by 1.5-fold and 1.7-fold in a GDP-insensitive manner, moreover, the proton leak kinetics of amphioxus UCP was very similar to UCP2, but much different from UCP1. In conclusion, the amphioxus UCP has a mild, unregulated uncoupling activity in the yeast system, which resembles mammalian UCP2, but not UCP1.

  13. Increased expression of the yeast multidrug resistance ABC transporter Pdr18 leads to increased ethanol tolerance and ethanol production in high gravity alcoholic fermentation

    Directory of Open Access Journals (Sweden)

    Teixeira Miguel C

    2012-07-01

    Full Text Available Abstract Background The understanding of the molecular basis of yeast tolerance to ethanol may guide the design of rational strategies to increase process performance in industrial alcoholic fermentations. A set of 21 genes encoding multidrug transporters from the ATP-Binding Cassette (ABC Superfamily and Major Facilitator Superfamily (MFS in S. cerevisiae were scrutinized for a role in ethanol stress resistance. Results A yeast multidrug resistance ABC transporter encoded by the PDR18 gene, proposed to play a role in the incorporation of ergosterol in the yeast plasma membrane, was found to confer resistance to growth inhibitory concentrations of ethanol. PDR18 expression was seen to contribute to decreased 3 H-ethanol intracellular concentrations and decreased plasma membrane permeabilization of yeast cells challenged with inhibitory ethanol concentrations. Given the increased tolerance to ethanol of cells expressing PDR18, the final concentration of ethanol produced during high gravity alcoholic fermentation by yeast cells devoid of PDR18 was lower than the final ethanol concentration produced by the corresponding parental strain. Moreover, an engineered yeast strain in which the PDR18 promoter was replaced in the genome by the stronger PDR5 promoter, leading to increased PDR18 mRNA levels during alcoholic fermentation, was able to attain a 6 % higher ethanol concentration and a 17 % higher ethanol production yield than the parental strain. The improved fermentative performance of yeast cells over-expressing PDR18 was found to correlate with their increased ethanol tolerance and ability to restrain plasma membrane permeabilization induced throughout high gravity fermentation. Conclusions PDR18 gene over-expression increases yeast ethanol tolerance and fermentation performance leading to the production of highly inhibitory concentrations of ethanol. PDR18 overexpression in industrial yeast strains appears to be a promising approach to

  14. Image analysis for gene expression based phenotype characterization in yeast cells

    NARCIS (Netherlands)

    Tleis, M.

    2016-01-01

    Image analysis of objects in the microscope scale requires accuracy so that measurements can be used to differentiate between groups of objects that are being studied. This thesis deals with measurements in yeast biology that are obtained through microscope images. We study the algorithms and

  15. Dietary Yeast Cell Wall Extract Alters the Proteome of the Skin Mucous Barrier in Atlantic Salmon (Salmo salar: Increased Abundance and Expression of a Calreticulin-Like Protein.

    Directory of Open Access Journals (Sweden)

    Giulia Micallef

    Full Text Available In order to improve fish health and reduce use of chemotherapeutants in aquaculture production, the immunomodulatory effect of various nutritional ingredients has been explored. In salmon, there is evidence that functional feeds can reduce the abundance of sea lice. This study aimed to determine if there were consistent changes in the skin mucus proteome that could serve as a biomarker for dietary yeast cell wall extract. The effect of dietary yeast cell wall extract on the skin mucus proteome of Atlantic salmon was examined using two-dimensional gel electrophoresis. Forty-nine spots showed a statistically significant change in their normalised volumes between the control and yeast cell wall diets. Thirteen spots were successfully identified by peptide fragment fingerprinting and LC-MS/MS and these belonged to a variety of functions and pathways. To assess the validity of the results from the proteome approach, the gene expression of a selection of these proteins was studied in skin mRNA from two different independent feeding trials using yeast cell wall extracts. A calreticulin-like protein increased in abundance at both the protein and transcript level in response to dietary yeast cell wall extract. The calreticulin-like protein was identified as a possible biomarker for yeast-derived functional feeds since it showed the most consistent change in expression in both the mucus proteome and skin transcriptome. The discovery of such a biomarker is expected to quicken the pace of research in the application of yeast cell wall extracts.

  16. Yeast Kluyveromyces lactis as host for expression of the bacterial lipase: cloning and adaptation of the new lipase gene from Serratia sp.

    Science.gov (United States)

    Šiekštelė, Rimantas; Veteikytė, Aušra; Tvaska, Bronius; Matijošytė, Inga

    2015-10-01

    Many microbial lipases have been successfully expressed in yeasts, but not in industrially attractive Kluyveromyces lactis, which among other benefits can be cultivated on a medium supplemented with whey--cheap and easily available industrial waste. A new bacterial lipase from Serratia sp. was isolated and for the first time expressed into the yeast Kluyveromyces lactis by heterologous protein expression system based on a strong promoter of Kluyveromyces marxianus triosephosphate isomerase gene and signal peptide of Kluyveromyces marxianus endopolygalacturonase gene. In addition, the bacterial lipase gene was synthesized de novo by taking into account a codon usage bias optimal for K. lactis and was expressed into the yeast K. lactis also. Both resulting strains were characterized by high output level of the target protein secreted extracellularly. Secreted lipases were characterized for activity and stability.

  17. Thermotolerant yeasts selected by adaptive evolution express heat stress response at 30ºC

    DEFF Research Database (Denmark)

    Caspeta, Luis; Chen, Yun; Nielsen, Jens

    2016-01-01

    to grow at increased temperature, activated a constitutive heat stress response when grown at the optimal ancestral temperature, and that this is associated with a reduced growth rate. This preventive response was perfected by additional transcriptional changes activated when the cultivation temperature...... is increased. Remarkably, the sum of global transcriptional changes activated in the thermotolerant strains when transferred from the optimal to the high temperature, corresponded, in magnitude and direction, to the global changes observed in the ancestral strain exposed to the same transition....... This demonstrates robustness of the yeast transcriptional program when exposed to heat, and that the thermotolerant strains streamlined their path to rapidly and optimally reach post-stress transcriptional and metabolic levels. Thus, long-term adaptation to heat improved yeasts ability to rapidly adapt to increased...

  18. Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose

    Science.gov (United States)

    2013-01-01

    Background Numerous studies have examined the direct fermentation of cellulosic materials by cellulase-expressing yeast; however, ethanol productivity in these systems has not yet reached an industrial level. Certain microorganisms, such as the cellulolytic fungus Trichoderma reesei, produce expansin-like proteins, which have a cellulose-loosening effect that may increase the breakdown of cellulose. Here, to improve the direct conversion of cellulose to ethanol, yeast Saccharomyces cerevisiae co-displaying cellulase and expansin-like protein on the cell surface were constructed and examined for direct ethanol fermentation performance. Results The cellulase and expansin-like protein co-expressing strain showed 246 mU/g-wet cell of phosphoric acid swollen cellulose (PASC) degradation activity, which corresponded to 2.9-fold higher activity than that of a cellulase-expressing strain. This result clearly demonstrated that yeast cell-surface expressed cellulase and expansin-like protein act synergistically to breakdown cellulose. In fermentation experiments examining direct ethanol production from PASC, the cellulase and expansin-like protein co-expressing strain produced 3.4 g/L ethanol after 96 h of fermentation, a concentration that was 1.4-fold higher than that achieved by the cellulase-expressing strain (2.5 g/L). Conclusions The PASC degradation and fermentation ability of an engineered yeast strain was markedly improved by co-expressing cellulase and expansin-like protein on the cell surface. To our knowledge, this is the first report to demonstrate the synergetic effect of co-expressing cellulase and expansin-like protein on a yeast cell surface, which may be a promising strategy for constructing direct ethanol fermenting yeast from cellulose. PMID:23835302

  19. Life History Responses and Gene Expression Profiles of the Nematode Pristionchus pacificus Cultured on Cryptococcus Yeasts.

    Directory of Open Access Journals (Sweden)

    Gaurav V Sanghvi

    Full Text Available Nematodes, the earth's most abundant metazoa are found in all ecosystems. In order to survive in diverse environments, they have evolved distinct feeding strategies and they can use different food sources. While some nematodes are specialists, including parasites of plants and animals, others such as Pristionchus pacificus are omnivorous feeders, which can live on a diet of bacteria, protozoans, fungi or yeast. In the wild, P. pacificus is often found in a necromenic association with beetles and is known to be able to feed on a variety of microbes as well as on nematode prey. However, in laboratory studies Escherichia coli OP50 has been used as standard food source, similar to investigations in Caenorhabditis elegans and it is unclear to what extent this biases the obtained results and how relevant findings are in real nature. To gain first insight into the variation in traits induced by a non-bacterial food source, we study Pristionchus-fungi interactions under laboratory conditions. After screening different yeast strains, we were able to maintain P. pacificus for at least 50-60 generations on Cryptococcus albidus and Cryptococcus curvatus. We describe life history traits of P. pacificus on both yeast strains, including developmental timing, survival and brood size. Despite a slight developmental delay and problems to digest yeast cells, which are both reflected at a transcriptomic level, all analyses support the potential of Cryptococcus strains as food source for P. pacificus. In summary, our work establishes two Cryptococcus strains as alternative food source for P. pacificus and shows change in various developmental, physiological and morphological traits, including the transcriptomic profiles.

  20. Small, synthetic, GC-rich mRNA stem-loop modules 5' proximal to the AUG start-codon predictably tune gene expression in yeast.

    Science.gov (United States)

    Lamping, Erwin; Niimi, Masakazu; Cannon, Richard D

    2013-07-29

    A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5' UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5' UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = -15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (∆G = -4.4 kcal/mol) inhibited

  1. Small, synthetic, GC-rich mRNA stem-loop modules 5′ proximal to the AUG start-codon predictably tune gene expression in yeast

    Science.gov (United States)

    2013-01-01

    Background A large range of genetic tools has been developed for the optimal design and regulation of complex metabolic pathways in bacteria. However, fewer tools exist in yeast that can precisely tune the expression of individual enzymes in novel metabolic pathways suitable for industrial-scale production of non-natural compounds. Tuning expression levels is critical for reducing the metabolic burden of over-expressed proteins, the accumulation of toxic intermediates, and for redirecting metabolic flux from native pathways involving essential enzymes without negatively affecting the viability of the host. We have developed a yeast membrane protein hyper-expression system with critical advantages over conventional, plasmid-based, expression systems. However, expression levels are sometimes so high that they adversely affect protein targeting/folding or the growth and/or phenotype of the host. Here we describe the use of small synthetic mRNA control modules that allowed us to predictably tune protein expression levels to any desired level. Down-regulation of expression was achieved by engineering small GC-rich mRNA stem-loops into the 5′ UTR that inhibited translation initiation of the yeast ribosomal 43S preinitiation complex (PIC). Results Exploiting the fact that the yeast 43S PIC has great difficulty scanning through GC-rich mRNA stem-loops, we created yeast strains containing 17 different RNA stem-loop modules in the 5′ UTR that expressed varying amounts of the fungal multidrug efflux pump reporter Cdr1p from Candida albicans. Increasing the length of mRNA stem-loops (that contained only GC-pairs) near the AUG start-codon led to a surprisingly large decrease in Cdr1p expression; ~2.7-fold for every additional GC-pair added to the stem, while the mRNA levels remained largely unaffected. An mRNA stem-loop of seven GC-pairs (∆G = −15.8 kcal/mol) reduced Cdr1p expression levels by >99%, and even the smallest possible stem-loop of only three GC-pairs (

  2. Yeast tRNAPhe expressed in human cells can be selected by HIV-1 for use as a reverse transcription primer

    International Nuclear Information System (INIS)

    Kelly, Nathan J.; Morrow, Casey D.

    2003-01-01

    All naturally occurring human immune deficiency viruses (HIV-1) select and use tRNA Lys,3 as the primer for reverse transcription. Studies to elucidate the mechanism of tRNA selection from the intracellular milieu have been hampered due to the difficulties in manipulating the endogenous levels of tRNA Lys,3 . We have previously described a mutant HIV-1 with a primer binding site (PBS) complementary to yeast tRNA Phe (psHIV-Phe) that relies on transfection of yeast tRNA Phe for infectivity. To more accurately recapitulate the selection process, a cDNA was designed for the intracellular expression of the yeast tRNA Phe . Increasing amounts of the plasmid encoding tRNA Phe resulted in a corresponding increase in levels of yeast tRNA Phe in the cell. The yeast tRNA Phe isolated from cells transfected with the cDNA for yeast tRNA Phe , or in the cell lines expressing yeast tRNA Phe , were aminoacylated, indicating that the expressed yeast tRNA Phe was incorporated into tRNA biogenesis pathways and translation. Increasing the cytoplasmic levels of tRNA Phe resulted in increased encapsidation of tRNA Phe in viruses with a PBS complementary to tRNA Phe (psHIV-Phe) or tRNA Lys,3 (wild-type HIV-1). Production of infectious psHIV-Phe was dependent on the amount of cotransfected tRNA Phe cDNA. Increasing amounts of plasmids encoding yeast tRNA Phe produced an increase of infectious psHIV-Phe that plateaued at a level lower than that from the transfection of the wild-type genome, which uses tRNA Lys,3 as the primer for reverse transcription. Cell lines were generated that expressed yeast tRNA Phe at levels approximately 0.1% of that for tRNA Lys,3 . Even with this reduced level of yeast tRNA Phe , the cell lines complemented psHIV-Phe over background levels. The results of these studies demonstrate that intracellular levels of primer tRNA can have a direct effect on HIV-1 infectivity and further support the role for PBS-tRNA complementarity in the primer selection process

  3. Construction of a genetically modified wine yeast strain expressing the Aspergillus aculeatus rhaA gene, encoding an -L-Rhamnosidase of enological interest

    NARCIS (Netherlands)

    Manzanares, P.; Orejas, M.; Vicente Gil, J.; Graaff, de L.H.; Visser, J.; Ramon, D.

    2003-01-01

    The Aspergillus aculeatus rhaA gene encoding an alpha-L-rhamnosidase has been expressed in both laboratory and industrial wine yeast strains. Wines produced in microvinifications, conducted using a combination of the genetically modified industrial strain expressing rhaA and another strain

  4. Effect of heterologous expression of acyl-CoA-binding protein on acyl-CoA level and composition in yeast

    DEFF Research Database (Denmark)

    Mandrup, S; Jepsen, R; Skøtt, H

    1993-01-01

    We have expressed a bovine synthetic acyl-CoA-binding protein (ACBP) gene in yeast (Saccharomyces cerevisiae) under the control of the GAL1 promoter. The heterologously expressed bovine ACBP constituted up to 6.4% of total cellular protein and the processing was identical with that of native bovi...

  5. Improving the Organoleptic Properties of a Craft Mezcal Beverage by Increasing Fatty Acid Ethyl Ester Contents through ATF1 Expression in an Engineered Kluyveromyces marxianus UMPe-1 Yeast.

    Science.gov (United States)

    Campos-García, Jesús; Vargas, Alejandra; Farías-Rosales, Lorena; Miranda, Ana L; Meza-Carmen, Víctor; Díaz-Pérez, Alma L

    2018-05-02

    Mezcal, a traditional beverage that originated in Mexico, is produced from species of the Agavaceae family. The esters associated with the yeasts utilized during fermentation are important for improving the organoleptic properties of the beverage. We improved the ester contents in a mezcal beverage by using the yeast Kluyveromyces marxianus, which was engineered with the ATF1 gene. ATF1 expression in the recombinant yeast significantly increased compared with that in the parental yeast, but its fermentative parameters were unchanged. Volatile-organic-compound-content analysis showed that esters had significantly increased in the mezcal produced with the engineered yeast. In a sensory-panel test, 48% of the panelists preferred the mezcal produced from the engineered yeast, 30% preferred the mezcal produced from the wild type, and 15 and 7% preferred the two mezcal types produced following the routine procedure. Correlation analysis showed that the fruitiness/sweetness description of the mezcal produced using the ATF1-engineered K. marxianus yeast correlated with the content of the esters, whose presence improved the organoleptic properties of the craft mezcal beverage.

  6. UV-dependent production of 25-hydroxyvitamin D{sub 2} in the recombinant yeast cells expressing human CYP2R1

    Energy Technology Data Exchange (ETDEWEB)

    Yasuda, Kaori; Endo, Mariko; Ikushiro, Shinichi; Kamakura, Masaki [Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398 (Japan); Ohta, Miho [Department of Food and Nutrition Management Studies, Faculty of Human Development, Soai University, 4-4-1 Nanko-naka, Suminoe-ku, Osaka 559-0033 (Japan); Sakaki, Toshiyuki, E-mail: tsakaki@pu-toyama.ac.jp [Department of Biotechnology, Faculty of Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398 (Japan)

    2013-05-03

    Highlights: •We produce 25-hydroxyvitamin D in the recombinant yeast expressing human CYP2R1. •Vitamin D2 is produced in yeast from endogenous ergosterol with UV irradiation. •We produce 25-hydroxyvitamin D2 in the recombinant yeast without added substrate. -- Abstract: CYP2R1 is known to be a physiologically important vitamin D 25-hydroxylase. We have successfully expressed human CYP2R1 in Saccharomyces cerevisiae to reveal its enzymatic properties. In this study, we examined production of 25-hydroxylated vitamin D using whole recombinant yeast cells that expressed CYP2R1. When vitamin D{sub 3} or vitamin D{sub 2} was added to the cell suspension of CYP2R1-expressing yeast cells in a buffer containing glucose and β-cyclodextrin, the vitamins were converted into their 25-hydroxylated products. Next, we irradiated the cell suspension with UVB and incubated at 37 °C. Surprisingly, the 25-hydroxy vitamin D{sub 2} was produced without additional vitamin D{sub 2}. Endogenous ergosterol was likely converted into vitamin D{sub 2} by UV irradiation and thermal isomerization, and then the resulting vitamin D{sub 2} was converted to 25-hydroxyvitamin D{sub 2} by CYP2R1. This novel method for producing 25-hydroxyvitamin D{sub 2} without a substrate could be useful for practical purposes.

  7. Expression of three topologically distinct membrane proteins elicits unique stress response pathways in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Buck, Teresa M; Jordan, Rick; Lyons-Weiler, James; Adelman, Joshua L; Needham, Patrick G; Kleyman, Thomas R; Brodsky, Jeffrey L

    2015-06-01

    Misfolded membrane proteins are retained in the endoplasmic reticulum (ER) and are subject to ER-associated degradation, which clears the secretory pathway of potentially toxic species. While the transcriptional response to environmental stressors has been extensively studied, limited data exist describing the cellular response to misfolded membrane proteins. To this end, we expressed and then compared the transcriptional profiles elicited by the synthesis of three ER retained, misfolded ion channels: The α-subunit of the epithelial sodium channel, ENaC, the cystic fibrosis transmembrane conductance regulator, CFTR, and an inwardly rectifying potassium channel, Kir2.1, which vary in their mass, membrane topologies, and quaternary structures. To examine transcriptional profiles in a null background, the proteins were expressed in yeast, which was previously used to examine the degradation requirements for each substrate. Surprisingly, the proteins failed to induce a canonical unfolded protein response or heat shock response, although messages encoding several cytosolic and ER lumenal protein folding factors rose when αENaC or CFTR was expressed. In contrast, the levels of these genes were unaltered by Kir2.1 expression; instead, the yeast iron regulon was activated. Nevertheless, a significant number of genes that respond to various environmental stressors were upregulated by all three substrates, and compared with previous microarray data we deduced the existence of a group of genes that reflect a novel misfolded membrane protein response. These data indicate that aberrant proteins in the ER elicit profound yet unique cellular responses. Copyright © 2015 the American Physiological Society.

  8. Improving the performance of industrial ethanol-producing yeast by expressing the aspartyl protease on the cell surface.

    Science.gov (United States)

    Guo, Zhong-peng; Zhang, Liang; Ding, Zhong-yang; Wang, Zheng-Xiang; Shi, Gui-Yang

    2010-12-01

    The yeasts used in fuel ethanol manufacture are unable to metabolize soluble proteins. The PEP4 gene, encoding a vacuolar aspartyl protease in Saccharomyces cerevisiae, was either secretively or cell-surface anchored expressed in industrial ethanol-producing S. cerevisiae. The obtained recombinant strains APA (expressing the protease secretively) and APB (expressing the protease on the cell wall) were studied under ethanol fermentation conditions in feed barley cultures. The effects of expression of the protease on product formation, growth and cell protein content were measured. The biomass yield of the wild-type was clearly lower than that of the recombinant strains (0.578 ± 0.12 g biomass/g glucose for APA and 0.582 ± 0.08 g biomass/g glucose for APB). In addition, nearly 98-99% of the theoretical maximum level of ethanol yield was achieved (relative to the amount of substrate consumed) for the recombinant strains, while limiting the nitrogen source resulted in dissatisfactory fermentation for the wild-type and more than 30 g/l residual sugar was detected at the end of fermentation. In addition, higher growth rate, viability and lower yields of byproducts such as glycerol and pyruvic acid for recombinant strains were observed. Expressing acid protease can be expected to lead to a significant increase in ethanol productivity. Copyright © 2010 John Wiley & Sons, Ltd.

  9. Integrative Expression of Glucoamylase Gene in a Brewer’s Yeast Saccharomyces pastorianus Strain

    Directory of Open Access Journals (Sweden)

    Guangyi Zhang

    2008-01-01

    Full Text Available The recombinant brewer’s yeast Saccharomyces pastorianus strain was constructed byintroducing the ilv2:GLA fragment released from pMGI6, carrying glucoamylase gene (GLA and using the yeast α-acetolactate synthase gene (ILV2 as the recombination sequence. The strain was able to utilise starch as the sole carbon source, its glucoamylase activity was 6.3 U/mL and its α-acetolactate synthase activity was lowered by 33.3 %. The introduced GLA gene was integrated at the recipient genomic ILV2 gene, one copy of ILV2 gene was disrupted and the other copy remained intact. Primary wort fermentation test confirmed that the diacetyl and residual sugar concentration in the wort fermented by the recombinant strain were reduced by 65.6 and 34.2 % respectively, compared to that of the recipient strain. Under industrial operating conditions, the maturation time of beer fermented by the recombinant strain was reduced from 7 to 4 days, there were no significant differences in the appearance and mouthfeel, and the beer satisfied the high quality demands. That is why the strain could be used in beer production safely.

  10. High-yield expression in Escherichia coli, purification and application of budding yeast K2 killer protein.

    Science.gov (United States)

    Podoliankaitė, Monika; Lukša, Juliana; Vyšniauskis, Gintautas; Sereikaitė, Jolanta; Melvydas, Vytautas; Serva, Saulius; Servienė, Elena

    2014-07-01

    Saccharomyces cerevisiae K2 toxin is a highly active extracellular protein, important as a biocontrol agent for biotechnological applications in the wine industry. This protein is produced at negligible levels in yeast, making difficult to isolate it in amounts sufficient for investigation and generation of analysis tools. In this work, we demonstrate the use of a bacterial system for expression of the recombinant K2 protein, suitable for generation of antibodies specific for toxin of the yeast origin. Synthesis of the full-length S. cerevisiae K2 preprotoxin in Escherichia coli was found to be toxic to the host cell, resulting in diminished growth. Such effect was abolished by the introduction of the C-terminal truncation into K2 protein, directing it into non-toxic inclusion body fraction. The obtained protein is of limited solubility thus, facilitating the purification by simple and efficient chromatography-free procedure. The protein aggregates were successfully refolded into a soluble form yielding sufficient amounts of a tag-less truncated K2 protein suitable for polyclonal antibody production. Antibodies were raised in rabbit and found to be specific for detection of both antigen and native S. cerevisiae K2 toxin.

  11. Differential gene expression and Hog1 interaction with osmoresponsive genes in the extremely halotolerant black yeast Hortaea werneckii

    Directory of Open Access Journals (Sweden)

    Plemenitaš Ana

    2007-08-01

    Full Text Available Abstract Background Fluctuations in external salinity force eukaryotic cells to respond by changes in the gene expression of proteins acting in protective biochemical processes, thus counteracting the changing osmotic pressure. The high-osmolarity glycerol (HOG signaling pathway is essential for the efficient up-regulation of the osmoresponsive genes. In this study, the differential gene expression of the extremely halotolerant black yeast Hortaea werneckii was explored. Furthermore, the interaction of mitogen-activated protein kinase HwHog1 and RNA polymerase II with the chromatin in cells adapted to an extremely hypersaline environment was analyzed. Results A cDNA subtraction library was constructed for H. werneckii, adapted to moderate salinity or an extremely hypersaline environment of 4.5 M NaCl. An uncommon osmoresponsive set of 95 differentially expressed genes was identified. The majority of these had not previously been connected with the adaptation of salt-sensitive S. cerevisiae to hypersaline conditions. The transcriptional response in hypersaline-adapted and hypersaline-stressed cells showed that only a subset of the identified genes responded to acute salt-stress, whereas all were differentially expressed in adapted cells. Interaction with HwHog1 was shown for 36 of the 95 differentially expressed genes. The majority of the identified osmoresponsive and HwHog1-dependent genes in H. werneckii have not been previously reported as Hog1-dependent genes in the salt-sensitive S. cerevisiae. The study further demonstrated the co-occupancy of HwHog1 and RNA polymerase II on the chromatin of 17 up-regulated and 2 down-regulated genes in 4.5 M NaCl-adapted H. werneckii cells. Conclusion Extremely halotolerant H. werneckii represents a suitable and highly relevant organism to study cellular responses to environmental salinity. In comparison with the salt-sensitive S. cerevisiae, this yeast shows a different set of genes being expressed at

  12. Heterologous Expression of Membrane and Soluble Proteins Derepresses GCN4 mRNA Translation in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Steffensen, L.; Pedersen, P. A.

    2006-01-01

    -ATPase also induced GCN4 translation. Derepression of GCN4 translation required phosphorylation of eIF-2 , the tRNA binding domain of Gcn2p, and the ribosome-associated proteins Gcn1p and Gcn20p. The increase in Gcn4p density in response to heterologous expression did not induce transcription from the HIS4...... promoter, a traditional Gcn4p target.......This paper describes the first physiological response at the translational level towards heterologous protein production in Saccharomyces cerevisiae. In yeast, the phosphorylation of eukaryotic initiation factor 2 (eIF-2 ) by Gcn2p protein kinase mediates derepression of GCN4 mRNA translation. Gcn4...

  13. Multiway real-time PCR gene expression profiling in yeast. Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Czech Academy of Sciences Publication Activity Database

    Stahlberg, A.; Elbing, K.; Andrade-Garda, J.M.; Sjögreen, B.; Forootan, A.; Kubista, Mikael

    2008-01-01

    Roč. 9, č. 170 (2008), s. 1-41 ISSN 1471-2164 Institutional research plan: CEZ:AV0Z50520701 Keywords : Expression Profiling * Real-time PCR * Yeast Subject RIV: EI - Biotechnology ; Bionics Impact factor: 3.926, year: 2008

  14. What Population Reveals about Individual Cell Identity: Single-Cell Parameter Estimation of Models of Gene Expression in Yeast.

    Directory of Open Access Journals (Sweden)

    Artémis Llamosi

    2016-02-01

    Full Text Available Significant cell-to-cell heterogeneity is ubiquitously observed in isogenic cell populations. Consequently, parameters of models of intracellular processes, usually fitted to population-averaged data, should rather be fitted to individual cells to obtain a population of models of similar but non-identical individuals. Here, we propose a quantitative modeling framework that attributes specific parameter values to single cells for a standard model of gene expression. We combine high quality single-cell measurements of the response of yeast cells to repeated hyperosmotic shocks and state-of-the-art statistical inference approaches for mixed-effects models to infer multidimensional parameter distributions describing the population, and then derive specific parameters for individual cells. The analysis of single-cell parameters shows that single-cell identity (e.g. gene expression dynamics, cell size, growth rate, mother-daughter relationships is, at least partially, captured by the parameter values of gene expression models (e.g. rates of transcription, translation and degradation. Our approach shows how to use the rich information contained into longitudinal single-cell data to infer parameters that can faithfully represent single-cell identity.

  15. Process for assembly and transformation into Saccharomyces cerevisiae of a synthetic yeast artificial chromosome containing a multigene cassette to express enzymes that enhance xylose utilization designed for an automated pla

    Science.gov (United States)

    A yeast artificial chromosome (YAC) containing a multigene cassette for expression of enzymes that enhance xylose utilization (xylose isomerase [XI] and xylulokinase [XKS]) was constructed and transformed into Saccharomyces cerevisiae to demonstrate feasibility as a stable protein expression system ...

  16. Endoglucanase enzyme protein engineering by site-directed mutagenesis to improve the enzymatic properties and its expression in yeast

    Directory of Open Access Journals (Sweden)

    Farnaz Nikzad Jamnani

    2013-11-01

    Full Text Available Introduction: Fossil fuel is an expensive and finite energy source. Therefore, the use of renewable energy and biofuels production has been taken into consideration. One of the most suitable raw materials for biofuels is cellulosic compounds. Only microorganisms that contain cellulose enzymes can decompose cellulose and fungus of Trichodermareesei is the most important producer of this enzyme. Methods: In this study the nucleotide sequence of endoglucanase II, which is the starter of attack to cellulose chains, synthesized from amino acid sequence of this enzyme in fungus T.reesei and based on codon usage in the host; yeast Pichiapastoris. To produce optimized enzyme and to decrease the production time and enzyme price, protein engineering will be used. There are some methods to improve the enzymatic properties like site-directed mutagenesis in which amino-acid replacement occur. In this study two mutations were induced in endoglucanase enzyme gene by PCR in which free syctein positions 169 and 393 were switched to valine and histidine respectively. Then this gene was inserted into the pPinka expression vector and cloned in Escherichia coli. The recombinant plasmids were transferred into P.pastoris competent cells with electroporation, recombinant yeasts were cultured in BMMY medium and induced with methanol. Results: The sequencing of gene proved the induction of the two mutations and the presence of recombinant enzyme was confirmed by dinitrosalicilic acid method and SDS-PAGE. Conclusion: Examination of biochemical properties revealed that the two mutations simultaneously decreased catalytic power, thermal stability and increased the affinity of enzyme and substrate.

  17. The Natural Product Osthole Attenuates Yeast Growth by Extensively Suppressing the Gene Expressions of Mitochondrial Respiration Chain.

    Science.gov (United States)

    Wang, Zhe; Shen, Yan

    2017-03-01

    The fast growing evidences have indicated that the natural product osthole is a promising drug candidate for fighting several serious human diseases, for example, cancer and inflammation. However, the mode-of-action (MoA) of osthole remains largely incomplete. In this study, we investigated the growth inhibition activity of osthole using fission yeast as a model, with the goal of understanding the osthole's mechanism of action, especially from the molecular level. Microarray analysis indicated that osthole has significant impacts on gene transcription levels (In total, 214 genes are up-regulated, and 97 genes are down-regulated). Gene set enrichment analysis (GSEA) indicated that 11 genes belong to the "Respiration module" category, especially including the components of complex III and V of mitochondrial respiration chain. Based on GSEA and network analysis, we also found that 54 up-regulated genes belong to the "Core Environmental Stress Responses" category, particularly including many transporter genes, which suggests that the rapidly activated nutrient exchange between cell and environment is part of the MoA of osthole. In summary, osthole can greatly impact on fission yeast transcriptome, and it primarily represses the expression levels of the genes in respiration chain, which next causes the inefficiency of ATP production and thus largely explains osthole's growth inhibition activity in Schizosaccharomyces pombe (S. pombe). The complexity of the osthole's MoA shown in previous studies and our current research demonstrates that the omics approach and bioinformatics tools should be applied together to acquire the complete landscape of osthole's growth inhibition activity.

  18. Effects of N-acetyl-L-cysteine on gene expression of antioxidant enzymes in yeast cells after irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jin Kyu; Park, Ji Young; Ryu, Tae Ho; Roh, Chang Hyun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Nili, Mohammad [Dawnesh Radiation Research Institute, Barcelona (Spain)

    2012-04-15

    Ionizing radiation induces water radiolysis, which generates highly reactive hydroxyl radicals. Reactive oxygen species (ROS) cause apoptosis and cell damage. When exposed to ionizing radiation, cells activates ROS scavenging detoxifying enzymes such as superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase. SOD scavenges superoxide radicals by catalyzing the conversion of two of these radicals into hydrogen peroxide and molecular oxygen. The hydrogen peroxide formed by superoxide dismutase and by other processes is scavenged by catalase, a ubiquitous heme protein that catalyzes the dismutation of hydrogen peroxide into water and molecular oxygen. Yeast has two catalase and three GPx proteins. The biochemical function of GPx is to reduce lipid-hydroperoxides to their corresponding alcohols and to reduce free hydrogen peroxide to water. N-acetylL-cysteine (NAC) having a thiol, a precursor for glutathione (GSH), is known as one of the antioxidants. NAC prevents the depletion of GSH by radiation, increases the production of GSH, and improves enzymes activity and alkaline phosphatase. In this study, the role of NAC as an antioxidant and a radioprotector was examined on cell survival, transcriptional level, and protein level. through observing viability of cells, analyzing the gene expression of antioxidant enzyme, measuring the SOD activity and intracellular GSH levels in yeast W303-1A strain The cell viability of haploid S. cerevisiae W303-1A strain was reduced significantly at the low dose (10∼30 Gy). The half-lethal dose of the strain was about 20 Gy. The CFU assay result confirmed that NAC could not rescue the cells from radiation-induced death. When irradiated with 100 Gy, an increase in the transcriptional expression was observed in the antioxicant genes. The expression of these genes decreased by treatment of NAC in irradiated cells. NAC decline SOD activity and intracellular GSH levels. The present study shows that NAC can directly scavenge

  19. Expression of salt-induced 2-Cys peroxiredoxin from Oryza sativa increases stress tolerance and fermentation capacity in genetically engineered yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Kim, Il-Sup; Kim, Young-Saeng; Yoon, Ho-Sung

    2013-04-01

    Peroxiredoxins (Prxs), also termed thioredoxin peroxidases (TPXs), are a family of thiol-specific antioxidant enzymes that are critically involved in cell defense and protect cells from oxidative damage. In this study, a putative chloroplastic 2-Cys thioredoxin peroxidase (OsTPX) was identified by proteome analysis from leaf tissue samples of rice (Oryza sativa) seedlings exposed to 0.1 M NaCl for 3 days. To investigate the relationship between the OsTPX gene and the stress response, OsTPX was cloned into the yeast expression vector p426GPD under the control of the glyceraldehyde-3-phosphate dehydrogenase (GPD1) promoter, and the construct was transformed into Saccharomyces cerevisiae cells. OsTPX expression was confirmed by semi-quantitative reverse transcription-polymerase chain reaction and western blot analyses. OsTPX contained two highly conserved cysteine residues (Cys114 and Cys236) and an active site region (FTFVCPT), and it is structurally very similar to human 2-Cys Prx. Heterologous OsTPX expression increased the ability of the transgenic yeast cells to adapt and recover from reactive oxygen species (ROS)-induced oxidative stresses, such as a reduction of cellular hydroperoxide levels in the presence of hydrogen peroxide and menadione, by improving redox homeostasis. OsTPX expression also conferred enhanced tolerance to tert-butylhydroperoxide, heat shock, and high ethanol concentrations. Furthermore, high OsTPX expression improved the fermentation capacity of the yeast during glucose-based batch fermentation at a high temperature (40 °C) and at the general cultivation temperature (30 °C). The alcohol yield in OsTPX-expressing transgenic yeast increased by approximately 29 % (0.14 g g(-1)) and 21 % (0.12 g g(-1)) during fermentation at 40 and 30 °C, respectively, compared to the wild-type yeast. Accordingly, OsTPX-expressing transgenic yeast showed prolonged cell survival during the environmental stresses produced during fermentation. These

  20. Yeast expressed recombinant Hemagglutinin protein of Novel H1N1 elicits neutralising antibodies in rabbits and mice

    Directory of Open Access Journals (Sweden)

    Athmaram TN

    2011-11-01

    Full Text Available Abstract Currently available vaccines for the pandemic Influenza A (H1N1 2009 produced in chicken eggs have serious impediments viz limited availability, risk of allergic reactions and the possible selection of sub-populations differing from the naturally occurring virus, whereas the cell culture derived vaccines are time consuming and may not meet the demands of rapid global vaccination required to combat the present/future pandemic. Hemagglutinin (HA based subunit vaccine for H1N1 requires the HA protein in glycosylated form, which is impossible with the commonly used bacterial expression platform. Additionally, bacterial derived protein requires extensive purification and refolding steps for vaccine applications. For these reasons an alternative heterologous system for rapid, easy and economical production of Hemagglutinin protein in its glycosylated form is required. The HA gene of novel H1N1 A/California/04/2009 was engineered for expression in Pichia pastoris as a soluble secreted protein. The full length HA- synthetic gene having α-secretory tag was integrated into P. pastoris genome through homologous recombination. The resultant Pichia clones having multiple copy integrants of the transgene expressed full length HA protein in the culture supernatant. The Recombinant yeast derived H1N1 HA protein elicited neutralising antibodies both in mice and rabbits. The sera from immunised animals also exhibited Hemagglutination Inhibition (HI activity. Considering the safety, reliability and also economic potential of Pichia expression platform, our preliminary data indicates the feasibility of using this system as an alternative for large-scale production of recombinant influenza HA protein in the face of influenza pandemic threat.

  1. Feeding glycerol-enriched yeast culture improves performance, energy status, and heat shock protein gene expression of lactating Holstein cows under heat stress.

    Science.gov (United States)

    Liu, J; Ye, G; Zhou, Y; Liu, Y; Zhao, L; Liu, Y; Chen, X; Huang, D; Liao, S F; Huang, K

    2014-06-01

    This study was conducted to evaluate the effects of supplemental common yeast culture (CY) and glycerol-enriched yeast culture (GY) on performance, plasma metabolites, antioxidant status, and heat shock protein 70 (HSP70) mRNA expression in lactating Holstein cows under heat stress. During summer months, 30 healthy multiparous lactating cows (parity 3.25 ± 0.48; 60 ± 13 d in milk [DIM]; 648 ± 57 kg BW; an average milk yield of 33.8 ± 1.6 kg/d) were blocked by parity, previous milk yield, and DIM and randomly allocated to 3 dietary treatments: no supplemental yeast culture (Control), 1 L/d of CY (33.1 g yeast) per cow, and 2 L/d of GY (153.2 g glycerol and 31.6 g yeast) per cow. During the 60-d experiment, values of air temperature and relative humidity inside the barn were recorded hourly every 3 d to calculate temperature-humidity index (THI). Weekly rectal temperatures (RT) and respiration rates and daily DMI and milk yield were recorded for all cows. Milk and blood samples were taken twice monthly, and BW and BCS were obtained on d 0 and 60. In this experiment, THI values indicated cows experienced a moderate heat stress. Cows supplemented with CY and GY had greater yields of milk, energy-corrected milk and milk fat, and milk fat percent but lower HSP70 mRNA expression in peripheral blood lymphocytes than Control cows (P cows. In conclusion, either CY or GY supplementation partially mitigated the negative effects of heat stress on performance and HSP70 mRNA expression of lactating cows, and GY supplementation provided additional improvements in energy status and HSP70 gene expression of lactating cows.

  2. A moth pheromone brewery: production of (Z)-11-hexadecenol by heterologous co-expression of two biosynthetic genes from a noctuid moth in a yeast cell factory.

    Science.gov (United States)

    Hagström, Åsa K; Wang, Hong-Lei; Liénard, Marjorie A; Lassance, Jean-Marc; Johansson, Tomas; Löfstedt, Christer

    2013-12-13

    Moths (Lepidoptera) are highly dependent on chemical communication to find a mate. Compared to conventional unselective insecticides, synthetic pheromones have successfully served to lure male moths as a specific and environmentally friendly way to control important pest species. However, the chemical synthesis and purification of the sex pheromone components in large amounts is a difficult and costly task. The repertoire of enzymes involved in moth pheromone biosynthesis in insecta can be seen as a library of specific catalysts that can be used to facilitate the synthesis of a particular chemical component. In this study, we present a novel approach to effectively aid in the preparation of semi-synthetic pheromone components using an engineered vector co-expressing two key biosynthetic enzymes in a simple yeast cell factory. We first identified and functionally characterized a ∆11 Fatty-Acyl Desaturase and a Fatty-Acyl Reductase from the Turnip moth, Agrotis segetum. The ∆11-desaturase produced predominantly Z11-16:acyl, a common pheromone component precursor, from the abundant yeast palmitic acid and the FAR transformed a series of saturated and unsaturated fatty acids into their corresponding alcohols which may serve as pheromone components in many moth species. Secondly, when we co-expressed the genes in the Brewer's yeast Saccharomyces cerevisiae, a set of long-chain fatty acids and alcohols that are not naturally occurring in yeast were produced from inherent yeast fatty acids, and the presence of (Z)-11-hexadecenol (Z11-16:OH), demonstrated that both heterologous enzymes were active in concert. A 100 ml batch yeast culture produced on average 19.5 μg Z11-16:OH. Finally, we demonstrated that oxidized extracts from the yeast cells containing (Z)-11-hexadecenal and other aldehyde pheromone compounds elicited specific electrophysiological activity from male antennae of the Tobacco budworm, Heliothis virescens, supporting the idea that genes from different

  3. Oral delivery of live yeast Debaryomyces hansenii modulates the main innate immune parameters and the expression of immune-relevant genes in the gilthead seabream (Sparus aurata L.).

    Science.gov (United States)

    Reyes-Becerril, Martha; Salinas, Irene; Cuesta, Alberto; Meseguer, José; Tovar-Ramirez, Dariel; Ascencio-Valle, Felipe; Esteban, Maria Angeles

    2008-12-01

    Microorganisms isolated from fish can be used as prophylactic tools for aquaculture in the form of probiotic preparations. The purpose of this study was to evaluate the effects of dietary administration of the live yeast Debaryomyces hansenii CBS 8339 on the gilthead seabream (Sparus aurata L.) innate immune responses. Seabream were fed control or D. hansenii-supplemented diets (10(6) colony forming units, CFU g(-1)) for 4 weeks. Humoral (seric alternative complement and peroxidase activities), and cellular (peroxidase, phagocytic, respiratory burst and cytotoxic activities) innate immune parameters and antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)) were measured from serum, head-kidney leucocytes and liver, respectively, after 2 and 4 weeks of feeding. Expression levels of immune-associated genes, Hep, IgM, TCR-beta, NCCRP-1, MHC-II alpha, CSF-1R, C3, TNF-alpha and IL-1 beta, were also evaluated by real-time PCR in head-kidney, liver and intestine. Humoral immune parameters were not significantly affected by the dietary supplementation of yeast at any time of the experiment. On the other hand, D. hansenii administration significantly enhanced leucocyte peroxidase and respiratory burst activity at week 4. Phagocytic and cytotoxic activities had significantly increased by week 2 of feeding yeast but unchanged by week 4. A significant increase in liver SOD activity was observed at week 2 of feeding with the supplemented diet; however CAT activity was not affected by the dietary yeast supplement at any time of the experiment. Finally, the yeast supplemented diet down-regulated the expression of most seabream genes, except C3, in liver and intestine and up-regulated all of them in the head-kidney. These results strongly support the idea that live yeast Debaryomyces hansenii strain CBS 8339 can stimulate the innate immune parameters in seabream, especially at cellular level.

  4. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric; Suominen, Pirkko

    2010-12-07

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. Methods of producing ethanol include utilizing these modified yeast strains. ##STR00001##

  5. Expression of tung seed diacylglycerol acyltransferases (DGAT) in E. coli and yeast

    Science.gov (United States)

    Diacylglycerol acyltransferases (DGATs) catalyze the last step of triacylglycerol (TAG) biosynthesis in eukaryotic organisms. Plants and animals deficient in DGATs accumulate less TAG, resist obesity, and/or lack milk secretion. Over-expression of the DGATs increases TAG content in seeds and other t...

  6. Expression and secretion of fungal endoglucanase II and chimeric cellobiohydrolase I in the oleaginous yeast Lipomyces starkeyi.

    Science.gov (United States)

    Xu, Qi; Knoshaug, Eric P; Wang, Wei; Alahuhta, Markus; Baker, John O; Yang, Shihui; Vander Wall, Todd; Decker, Stephen R; Himmel, Michael E; Zhang, Min; Wei, Hui

    2017-07-24

    Lipomyces starkeyi is one of the leading lipid-producing microorganisms reported to date; its genetic transformation was only recently reported. Our aim is to engineer L. starkeyi to serve in consolidated bioprocessing (CBP) to produce lipid or fatty acid-related biofuels directly from abundant and low-cost lignocellulosic substrates. To evaluate L. starkeyi in this role, we first conducted a genome analysis, which revealed the absence of key endo- and exocellulases in this yeast, prompting us to select and screen four signal peptides for their suitability for the overexpression and secretion of cellulase genes. To compensate for the cellulase deficiency, we chose two prominent cellulases, Trichoderma reesei endoglucanase II (EG II) and a chimeric cellobiohydrolase I (TeTrCBH I) formed by fusion of the catalytic domain from Talaromyces emersonii CBH I with the linker peptide and cellulose-binding domain from T. reesei CBH I. The systematically tested signal peptides included three peptides from native L. starkeyi and one from Yarrowia lipolytica. We found that all four signal peptides permitted secretion of active EG II. We also determined that three of these signal peptides worked for expression of the chimeric CBH I; suggesting that our design criteria for selecting these signal peptides was effective. Encouragingly, the Y. lipolytica signal peptide was able to efficiently guide secretion of the chimeric TeTrCBH I protein from L. starkeyi. The purified chimeric TeTrCBH I showed high activity against the cellulose in pretreated corn stover and the purified EG II showed high endocellulase activity measured by the CELLG3 (Megazyme) method. Our results suggest that L. starkeyi is capable of expressing and secreting core fungal cellulases. Moreover, the purified EG II and chimeric TeTrCBH I displayed significant and potentially useful enzymatic activities, demonstrating that engineered L. starkeyi has the potential to function as an oleaginous CBP strain for biofuel

  7. Expression and characterization of the antimicrobial peptide ABP-dHC-cecropin A in the methylotrophic yeast Pichia pastoris.

    Science.gov (United States)

    Sang, Ming; Wei, Hui; Zhang, Jiaxin; Wei, Zhiheng; Wu, Xiaolong; Chen, Yan; Zhuge, Qiang

    2017-12-01

    ABP-dHC-cecropin A is a linear cationic peptide that exhibits antimicrobial properties. To explore a new approach for expression of ABP-dHC-cecropin A using the methylotrophic yeast Pichia pastoris, we cloned the ABP-dHC-cecropin A gene into the vector pPICZαA. The SacI-linearized plasmid pPICZαA-ABP-dHC-cecropin A was then transformed into P. pastoris GS115 by electroporation. Expression was induced after a 96-h incubation with 0.5% methanol at 20 °C in a culture supplied with 2% casamino acids to avoid proteolysis. Under these conditions, approximately 48 mg of ABP-dHC-cecropin A was secreted into 1L (4 × 250-mL)of medium. Recombinant ABP-dHC-cecropin A was purified using size-exclusion chromatography, and 21 mg of pure active ABP-dHC-cecropin A was obtained from 1L (4 × 250-mL)of culture. Electrophoresis on 4-20% gradient gels indicated that recombinant ABP-dHC-cecropin A was secreted as a protein approximately 4 kDa in size. Recombinant ABP-dHC-cecropin A was successfully expressed, as the product displayed antibacterial and antifungal activities (based on an antibacterial assay, scanning electron microscopy, and antifungal assay) indistinguishable from those of the synthesized protein. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. The splicing mutant of the human tumor suppressor protein DFNA5 induces programmed cell death when expressed in the yeast Saccharomyces cerevisiae

    International Nuclear Information System (INIS)

    Van Rossom, Sofie; Op de Beeck, Ken; Franssens, Vanessa; Swinnen, Erwin; Schepers, Anne; Ghillebert, Ruben; Caldara, Marina; Van Camp, Guy; Winderickx, Joris

    2012-01-01

    DFNA5 was first identified as a gene responsible for autosomal dominant deafness. Different mutations were found, but they all resulted in exon 8 skipping during splicing and premature termination of the protein. Later, it became clear that the protein also has a tumor suppression function and that it can induce apoptosis. Epigenetic silencing of the DFNA5 gene is associated with different types of cancers, including gastric and colorectal cancers as well as breast tumors. We introduced the wild-type and mutant DFNA5 allele in the yeast Saccharomyces cerevisiae. The expression of the wild-type protein was well tolerated by the yeast cells, although the protein was subject of degradation and often deposited in distinct foci when cells entered the diauxic shift. In contrast, cells had problems to cope with mutant DFNA5 and despite an apparent compensatory reduction in expression levels, the mutant protein still triggered a marked growth defect, which in part can be ascribed to its interaction with mitochondria. Consistently, cells with mutant DFNA5 displayed significantly increased levels of ROS and signs of programmed cell death. The latter occurred independently of the yeast caspase, Mca1, but involved the mitochondrial fission protein, Fis1, the voltage-dependent anion channel protein, Por1 and the mitochondrial adenine nucleotide translocators, Aac1 and Aac3. Recent data proposed DFNA5 toxicity to be associated to a globular domain encoded by exon 2–6. We confirmed these data by showing that expression of solely this domain confers a strong growth phenotype. In addition, we identified a point mutant in this domain that completely abrogated its cytotoxicity in yeast as well as human Human Embryonic Kidney 293T cells (HEK293T). Combined, our data underscore that the yeast system offers a valuable tool to further dissect the apoptotic properties of DFNA5.

  9. The splicing mutant of the human tumor suppressor protein DFNA5 induces programmed cell death when expressed in the yeast Saccharomyces cerevisiae

    Energy Technology Data Exchange (ETDEWEB)

    Van Rossom, Sofie [Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee (Belgium); Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp, Wilrijk-Antwerp (Belgium); Op de Beeck, Ken [Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp, Wilrijk-Antwerp (Belgium); Franssens, Vanessa; Swinnen, Erwin [Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee (Belgium); Schepers, Anne [Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp, Wilrijk-Antwerp (Belgium); Ghillebert, Ruben; Caldara, Marina [Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee (Belgium); Van Camp, Guy [Department of Biomedical Sciences, Center of Medical Genetics, University of Antwerp, Wilrijk-Antwerp (Belgium); Winderickx, Joris, E-mail: guy.vancamp@ua.ac.be, E-mail: joris.winderickx@bio.kuleuven.be [Department of Biology, Functional Biology, KU Leuven, Leuven-Heverlee (Belgium)

    2012-07-25

    DFNA5 was first identified as a gene responsible for autosomal dominant deafness. Different mutations were found, but they all resulted in exon 8 skipping during splicing and premature termination of the protein. Later, it became clear that the protein also has a tumor suppression function and that it can induce apoptosis. Epigenetic silencing of the DFNA5 gene is associated with different types of cancers, including gastric and colorectal cancers as well as breast tumors. We introduced the wild-type and mutant DFNA5 allele in the yeast Saccharomyces cerevisiae. The expression of the wild-type protein was well tolerated by the yeast cells, although the protein was subject of degradation and often deposited in distinct foci when cells entered the diauxic shift. In contrast, cells had problems to cope with mutant DFNA5 and despite an apparent compensatory reduction in expression levels, the mutant protein still triggered a marked growth defect, which in part can be ascribed to its interaction with mitochondria. Consistently, cells with mutant DFNA5 displayed significantly increased levels of ROS and signs of programmed cell death. The latter occurred independently of the yeast caspase, Mca1, but involved the mitochondrial fission protein, Fis1, the voltage-dependent anion channel protein, Por1 and the mitochondrial adenine nucleotide translocators, Aac1 and Aac3. Recent data proposed DFNA5 toxicity to be associated to a globular domain encoded by exon 2–6. We confirmed these data by showing that expression of solely this domain confers a strong growth phenotype. In addition, we identified a point mutant in this domain that completely abrogated its cytotoxicity in yeast as well as human Human Embryonic Kidney 293T cells (HEK293T). Combined, our data underscore that the yeast system offers a valuable tool to further dissect the apoptotic properties of DFNA5.

  10. Construction and analysis of the cDNA subtraction library of yeast and mycelial phases of Sporothrix globosa isolated in China: identification of differentially expressed genes*

    Science.gov (United States)

    Hu, Qing-bi; He, Yu; Zhou, Xun

    2015-01-01

    Species included in the Sporothrix schenckii complex are temperature-dependent with dimorphic growth and cause sporotrichosis that is characterized by chronic and fatal lymphocutaneous lesions. The putative species included in the Sporothrix complex are S. brasiliensis, S. globosa, S. mexicana, S. pallida, S. schenckii, and S. lurei. S. globosa is the causal agent of sporotrichosis in China, and its pathogenicity appears to be closely related to the dimorphic transition, i.e. from the mycelial to the yeast phase, it adapts to changing environmental conditions. To determine the molecular mechanisms of the switching process that mediates the dimorphic transition of S. globosa, suppression subtractive hybridization (SSH) was used to prepare a complementary DNA (cDNA) subtraction library from the yeast and mycelial phases. Bioinformatics analysis was performed to profile the relationship between differently expressed genes and the dimorphic transition. Two genes that were expressed at higher levels by the yeast form were selected, and their differential expression levels were verified using a quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR). It is believed that these differently expressed genes are involved in the pathogenesis of S. globosa infection in China. PMID:26642182

  11. Genetically Engineered Yeast Expressing a Lytic Peptide from Bee Venom (Melittin) Kills Symbiotic Protozoa in the Gut of Formosan Subterranean Termites.

    Science.gov (United States)

    Husseneder, Claudia; Donaldson, Jennifer R; Foil, Lane D

    2016-01-01

    The Formosan subterranean termite, Coptotermes formosanus Shiraki, is a costly invasive urban pest in warm and humid regions around the world. Feeding workers of the Formosan subterranean termite genetically engineered yeast strains that express synthetic protozoacidal lytic peptides has been shown to kill the cellulose digesting termite gut protozoa, which results in death of the termite colony. In this study, we tested if Melittin, a natural lytic peptide from bee venom, could be delivered into the termite gut via genetically engineered yeast and if the expressed Melittin killed termites via lysis of symbiotic protozoa in the gut of termite workers and/or destruction of the gut tissue itself. Melittin expressing yeast did kill protozoa in the termite gut within 56 days of exposure. The expressed Melittin weakened the gut but did not add a synergistic effect to the protozoacidal action by gut necrosis. While Melittin could be applied for termite control via killing the cellulose-digesting protozoa in the termite gut, it is unlikely to be useful as a standalone product to control insects that do not rely on symbiotic protozoa for survival.

  12. Definition of culture conditions for Arxula adeninivorans, a rational basis for studying heterologous gene expression in this dimorphic yeast.

    Science.gov (United States)

    Stöckmann, Christoph; Palmen, Thomas G; Schroer, Kirsten; Kunze, Gotthard; Gellissen, Gerd; Büchs, Jochen

    2014-06-01

    The yeast Arxula adeninivorans is considered to be a promising producer of recombinant proteins. However, growth characteristics are poorly investigated and no industrial process has been established yet. Though of vital interest for strain screening and production processes, rationally defined culture conditions remain to be developed. A cultivation system was evolved based on targeted sampling and mathematical analysis of rationally designed small-scale cultivations in shake flasks. The oxygen and carbon dioxide transfer rates were analyzed as conclusive online parameters. Oxygen limitation extended cultivation and led to ethanol formation in cultures supplied with glucose. Cultures were inhibited at pH-values below 2.8. The phosphorus demand was determined as 1.55 g phosphorus per 100 g cell dry weight. Synthetic SYN6 medium with 20 g glucose l(-1) was optimized for cultivation in shake flasks by buffering at pH 6.4 with 140 mmol MES l(-1). Optimized SYN6 medium and operating conditions provided non-limited cultivations without by-product formation. A maximal specific growth rate of 0.32 h(-1) and short fermentations of 15 h were achieved. A pH optimum curve was derived from the oxygen transfer rates of differently buffered cultures, showing maximal growth between pH 2.8 and 6.5. Furthermore, it was shown that the applied medium and cultivation conditions were also suitable for non-limiting growth and product formation of a genetically modified A. adeninivorans strain expressing a heterologous phytase.

  13. Yeast Interspecies Comparative Proteomics Reveals Divergence in Expression Profiles and Provides Insights into Proteome Resource Allocation and Evolutionary Roles of Gene Duplication*

    Science.gov (United States)

    Kito, Keiji; Ito, Haruka; Nohara, Takehiro; Ohnishi, Mihoko; Ishibashi, Yuko; Takeda, Daisuke

    2016-01-01

    Omics analysis is a versatile approach for understanding the conservation and diversity of molecular systems across multiple taxa. In this study, we compared the proteome expression profiles of four yeast species (Saccharomyces cerevisiae, Saccharomyces mikatae, Kluyveromyces waltii, and Kluyveromyces lactis) grown on glucose- or glycerol-containing media. Conserved expression changes across all species were observed only for a small proportion of all proteins differentially expressed between the two growth conditions. Two Kluyveromyces species, both of which exhibited a high growth rate on glycerol, a nonfermentative carbon source, showed distinct species-specific expression profiles. In K. waltii grown on glycerol, proteins involved in the glyoxylate cycle and gluconeogenesis were expressed in high abundance. In K. lactis grown on glycerol, the expression of glycolytic and ethanol metabolic enzymes was unexpectedly low, whereas proteins involved in cytoplasmic translation, including ribosomal proteins and elongation factors, were highly expressed. These marked differences in the types of predominantly expressed proteins suggest that K. lactis optimizes the balance of proteome resource allocation between metabolism and protein synthesis giving priority to cellular growth. In S. cerevisiae, about 450 duplicate gene pairs were retained after whole-genome duplication. Intriguingly, we found that in the case of duplicates with conserved sequences, the total abundance of proteins encoded by a duplicate pair in S. cerevisiae was similar to that of protein encoded by nonduplicated ortholog in Kluyveromyces yeast. Given the frequency of haploinsufficiency, this observation suggests that conserved duplicate genes, even though minor cases of retained duplicates, do not exhibit a dosage effect in yeast, except for ribosomal proteins. Thus, comparative proteomic analyses across multiple species may reveal not only species-specific characteristics of metabolic processes under

  14. Multiple abiotic stress tolerance of the transformants yeast cells and the transgenic Arabidopsis plants expressing a novel durum wheat catalase.

    Science.gov (United States)

    Feki, Kaouthar; Kamoun, Yosra; Ben Mahmoud, Rihem; Farhat-Khemakhem, Ameny; Gargouri, Ali; Brini, Faiçal

    2015-12-01

    Catalases are reactive oxygen species scavenging enzymes involved in response to abiotic and biotic stresses. In this study, we described the isolation and functional characterization of a novel catalase from durum wheat, designed TdCAT1. Molecular Phylogeny analyses showed that wheat TdCAT1 exhibited high amino acids sequence identity to other plant catalases. Sequence homology analysis showed that TdCAT1 protein contained the putative calmodulin binding domain and a putative conserved internal peroxisomal targeting signal PTS1 motif around its C-terminus. Predicted three-dimensional structural model revealed the presence of four putative distinct structural regions which are the N-terminal arm, the β-barrel, the wrapping and the α-helical domains. TdCAT1 protein had the heme pocket that was composed by five essential residues. TdCAT1 gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdCAT1 in yeast cells and Arabidopsis plants conferred tolerance to several abiotic stresses. Compared with the non-transformed plants, the transgenic lines maintained their growth and accumulated more proline under stress treatments. Furthermore, the amount of H2O2 was lower in transgenic lines, which was due to the high CAT and POD activities. Taken together, these data provide the evidence for the involvement of durum wheat catalase TdCAT1 in tolerance to multiple abiotic stresses in crop plants. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  15. L-arabinose fermenting yeast

    Science.gov (United States)

    Zhang, Min; Singh, Arjun; Suominen, Pirkko; Knoshaug, Eric; Franden, Mary Ann; Jarvis, Eric

    2013-02-12

    An L-arabinose utilizing yeast strain is provided for the production of ethanol by introducing and expressing bacterial araA, araB and araD genes. L-arabinose transporters are also introduced into the yeast to enhance the uptake of arabinose. The yeast carries additional genomic mutations enabling it to consume L-arabinose, even as the only carbon source, and to produce ethanol. A yeast strain engineered to metabolize arabinose through a novel pathway is also disclosed. Methods of producing ethanol include utilizing these modified yeast strains.

  16. Improving Spectral Image Classification through Band-Ratio Optimization and Pixel Clustering

    Science.gov (United States)

    O'Neill, M.; Burt, C.; McKenna, I.; Kimblin, C.

    2017-12-01

    The Underground Nuclear Explosion Signatures Experiment (UNESE) seeks to characterize non-prompt observables from underground nuclear explosions (UNE). As part of this effort, we evaluated the ability of DigitalGlobe's WorldView-3 (WV3) to detect and map UNE signatures. WV3 is the current state-of-the-art, commercial, multispectral imaging satellite; however, it has relatively limited spectral and spatial resolutions. These limitations impede image classifiers from detecting targets that are spatially small and lack distinct spectral features. In order to improve classification results, we developed custom algorithms to reduce false positive rates while increasing true positive rates via a band-ratio optimization and pixel clustering front-end. The clusters resulting from these algorithms were processed with standard spectral image classifiers such as Mixture-Tuned Matched Filter (MTMF) and Adaptive Coherence Estimator (ACE). WV3 and AVIRIS data of Cuprite, Nevada, were used as a validation data set. These data were processed with a standard classification approach using MTMF and ACE algorithms. They were also processed using the custom front-end prior to the standard approach. A comparison of the results shows that the custom front-end significantly increases the true positive rate and decreases the false positive rate.This work was done by National Security Technologies, LLC, under Contract No. DE-AC52-06NA25946 with the U.S. Department of Energy. DOE/NV/25946-3283.

  17. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli.

    Science.gov (United States)

    Ståhlberg, Anders; Elbing, Karin; Andrade-Garda, José Manuel; Sjögreen, Björn; Forootan, Amin; Kubista, Mikael

    2008-04-16

    The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  18. Multiway real-time PCR gene expression profiling in yeast Saccharomyces cerevisiae reveals altered transcriptional response of ADH-genes to glucose stimuli

    Directory of Open Access Journals (Sweden)

    Andrade-Garda José

    2008-04-01

    Full Text Available Abstract Background The large sensitivity, high reproducibility and essentially unlimited dynamic range of real-time PCR to measure gene expression in complex samples provides the opportunity for powerful multivariate and multiway studies of biological phenomena. In multiway studies samples are characterized by their expression profiles to monitor changes over time, effect of treatment, drug dosage etc. Here we perform a multiway study of the temporal response of four yeast Saccharomyces cerevisiae strains with different glucose uptake rates upon altered metabolic conditions. Results We measured the expression of 18 genes as function of time after addition of glucose to four strains of yeast grown in ethanol. The data are analyzed by matrix-augmented PCA, which is a generalization of PCA for 3-way data, and the results are confirmed by hierarchical clustering and clustering by Kohonen self-organizing map. Our approach identifies gene groups that respond similarly to the change of nutrient, and genes that behave differently in mutant strains. Of particular interest is our finding that ADH4 and ADH6 show a behavior typical of glucose-induced genes, while ADH3 and ADH5 are repressed after glucose addition. Conclusion Multiway real-time PCR gene expression profiling is a powerful technique which can be utilized to characterize functions of new genes by, for example, comparing their temporal response after perturbation in different genetic variants of the studied subject. The technique also identifies genes that show perturbed expression in specific strains.

  19. Expression of Bax in yeast affects not only the mitochondria but also vacuolar integrity and intracellular protein traffic

    DEFF Research Database (Denmark)

    Dimitrova, Irina; Toby, Garabet G; Tili, Esmerina

    2004-01-01

    -transferase (BI-GST) leads to aggregation, but not fusion of the mitochondria. In addition, Bax affects the integrity of yeast vacuoles, resulting in the disintegration and eventual loss of the organelles, and the disruption of intracellular protein traffic. While Bcl-2 coexpression only partially corrects...

  20. Exploiting the yeast L-A viral capsid for the in vivo assembly of chimeric VLPs as platform in vaccine development and foreign protein expression.

    Directory of Open Access Journals (Sweden)

    Frank Powilleit

    Full Text Available A novel expression system based on engineered variants of the yeast (Saccharomyces cerevisiae dsRNA virus L-A was developed allowing the in vivo assembly of chimeric virus-like particles (VLPs as a unique platform for a wide range of applications. We show that polypeptides fused to the viral capsid protein Gag self-assemble into isometric VLP chimeras carrying their cargo inside the capsid, thereby not only effectively preventing proteolytic degradation in the host cell cytosol, but also allowing the expression of a per se cytotoxic protein. Carboxyterminal extension of Gag by T cell epitopes from human cytomegalovirus pp65 resulted in the formation of hybrid VLPs that strongly activated antigen-specific CD8(+ memory T cells ex vivo. Besides being a carrier for polypeptides inducing antigen-specific immune responses in vivo, VLP chimeras were also shown to be effective in the expression and purification of (i a heterologous model protein (GFP, (ii a per se toxic protein (K28 alpha-subunit, and (iii a particle-associated and fully recyclable biotechnologically relevant enzyme (esterase A. Thus, yeast viral Gag represents a unique platform for the in vivo assembly of chimeric VLPs, equally attractive and useful in vaccine development and recombinant protein production.

  1. Genetically engineered yeast

    DEFF Research Database (Denmark)

    2014-01-01

    A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate semialde......A genetically modified Saccharomyces cerevisiae comprising an active fermentation pathway producing 3-HP expresses an exogenous gene expressing the aminotransferase YhxA from Bacillus cereus AH1272 catalysing a transamination reaction between beta-alanine and pyruvate to produce malonate...... semialdehyde. The yeast may also express a 3-hydroxyisobutyrate dehydrogenase (HIBADH) and a 3-hydroxypropanoate dehydrogenase (3-HPDH) and aspartate 1-decarboxylase. Additionally the yeast may express pyruvate carboxylase and aspartate aminotransferase....

  2. Initial ratio optimization for the ejector cooling system with thermal pumping effect (ECSTPE)

    International Nuclear Information System (INIS)

    He, Yijian; Sun, Yongjun; Zhang, Sheng; Lyu, Yuanli; Chen, Guangming

    2016-01-01

    Graphical abstract: The existing ejector cooling systems with thermal pumping effect (ECSTPEs) have severe problems of thermal energy and chilling load waste. The deviations of the initial ratio from its optimal value would lead to the deviations of the time length of cooling stage (TLCS), and finally, result in the performance deteriorations of the ECSTPEs. The results of the case study showed that, for an ECSTPE with R134a, a 10-second deviation from the optimal TLCS led to a decrease of 5.6% in the COP value and an increase of 23.7% in the chilling load, when the generation temperature, the condensing temperature and the evaporation temperature were 85 °C, 35 °C and 10 °C, respectively. Therefore, accurately controlling the TLCS corresponding to the optimal TLCS, which is derived on the basis of the optimal initial ratio, can effectively improve the performance of ECSPTEs. - Highlights: • ECSTPEs encounter challenges for a great waste of heat and chilling water. • Initial ratio optimization is proposed to improve the performance of ECSTPEs. • Based on the optimal initial ratio, the optimal TLCS control strategy is obtained. • With the optimal TLCS control, COP values of the ECSTPEs are effectively enhanced. • Accordingly, the chilling loads of the ECSTPEs are greatly reduced. - Abstract: An ejector cooling system with thermal pumping effect (ECSTPE) could operate without consumption of electric power, but it discards a great amount of thermal energy, which generally results in a lower COP value and a greater chilling load. An innovative concept for the optimal initial ratio is therefore proposed to develop the optimal time length of cooling stage (TLCS) control method. The optimal TLCS control method effectively improves the ECSTPE performance. First, in this context, it was theoretically proven that the optimal initial ratio could be used to reduce the energy loss and the chilling load. Second, it was formulated how to achieve the optimal initial

  3. 31P NMR measurements of the ADP concentration in yeast cells genetically modified to express creatine kinase

    International Nuclear Information System (INIS)

    Brindle, K.; Braddock, P.; Fulton, S.

    1990-01-01

    Rabbit muscle creatine kinase has been introduced into the yeast Saccharomyces cerevisiae by transforming cells with a multicopy plasmid containing the coding sequence for the enzyme under the control of the yeast phosphoglycerate kinase promoter. The transformed cells showed creating kinase activities similar to those found in mammalian heart muscle. 31 P NMR measurements of the near-equilibrium concentrations of phosphocreatine and cellular pH together with measurements of the total extractable concentrations of phosphocreatine and creatine allowed calculation of the free ADP/ATP ratio in the cell. The calculated ratio of approximately 2 was considerably higher than the ratio of between 0.06 and 0.1 measured directly in cell extracts

  4. DNA microarray analyses reveal a post-irradiation differential time-dependent gene expression profile in yeast cells exposed to X-rays and gamma-rays.

    Science.gov (United States)

    Kimura, Shinzo; Ishidou, Emi; Kurita, Sakiko; Suzuki, Yoshiteru; Shibato, Junko; Rakwal, Randeep; Iwahashi, Hitoshi

    2006-07-21

    Ionizing radiation (IR) is the most enigmatic of genotoxic stress inducers in our environment that has been around from the eons of time. IR is generally considered harmful, and has been the subject of numerous studies, mostly looking at the DNA damaging effects in cells and the repair mechanisms therein. Moreover, few studies have focused on large-scale identification of cellular responses to IR, and to this end, we describe here an initial study on the transcriptional responses of the unicellular genome model, yeast (Saccharomyces cerevisiae strain S288C), by cDNA microarray. The effect of two different IR, X-rays, and gamma (gamma)-rays, was investigated by irradiating the yeast cells cultured in YPD medium with 50 Gy doses of X- and gamma-rays, followed by resuspension of the cells in YPD for time-course experiments. The samples were collected for microarray analysis at 20, 40, and 80 min after irradiation. Microarray analysis revealed a time-course transcriptional profile of changed gene expressions. Up-regulated genes belonged to the functional categories mainly related to cell cycle and DNA processing, cell rescue defense and virulence, protein and cell fate, and metabolism (X- and gamma-rays). Similarly, for X- and gamma-rays, the down-regulated genes belonged to mostly transcription and protein synthesis, cell cycle and DNA processing, control of cellular organization, cell fate, and C-compound and carbohydrate metabolism categories, respectively. This study provides for the first time a snapshot of the genome-wide mRNA expression profiles in X- and gamma-ray post-irradiated yeast cells and comparatively interprets/discusses the changed gene functional categories as effects of these two radiations vis-à-vis their energy levels.

  5. Expression of heterologous transporters in Saccharomyces kudriavzevii: A strategy for improving yeast salt tolerance and fermentation performance

    Czech Academy of Sciences Publication Activity Database

    Dibalová-Čuláková, Hana; Alonso-del-Real, J.; Querol, A.; Sychrová, Hana

    2018-01-01

    Roč. 268, Mar 2 (2018), s. 27-34 ISSN 0168-1605 R&D Projects: GA ČR(CZ) GA15-03708S Institutional support: RVO:67985823 Keywords : fermentation * salt tolerance * alkali-metal-cation exporter * non-conventional yeasts * Nhal antiporter * Ena ATPase Subject RIV: EE - Microbiology, Virology OBOR OECD: Microbiology Impact factor: 3.339, year: 2016

  6. The Physiological and Biochemical Mechanisms Providing the Increased Constitutive Cold Resistance in the Potato Plants, Expressing the Yeast SUC2 Gene Encoding Apoplastic Invertase

    Directory of Open Access Journals (Sweden)

    A.N. Deryabin

    2016-05-01

    Full Text Available The expression of heterologous genes in plants is an effective method to improve our understanding of plant resistance mechanisms. The purpose of this work was to investigate the involvement of cell-wall invertase and apoplastic sugars into constitutive cold resistance of potato (Solanum tuberosum L., cv. Dйsirйe plants, which expressed the yeast SUC2 gene encoding apoplastic invertase. WT-plants of a potato served as the control. The increase in the essential cell-wall invertase activity in the leaves of transformed plants indicates significant changes in the cellular carbohydrate metabolism and regulatory function of this enzyme. The activity of yeast invertase changed the composition of intracellular sugars in the leaves of the transformed potato plant. The total content of sugars (sucrose, glucose, fructose in the leaves and apoplast was higher in the transformants, in comparison by WT-plants. Our data indicate higher constitutive resistance of transformants to severe hypothermia conditions compared to WT-plants. This fact allows us to consider cell-wall invertase as a enzyme of carbohydrate metabolism playing an important regulatory role in the metabolic signaling upon forming increased plant resistance to low temperature. Thus, the potato line with the integrated SUC2 gene is a convenient tool to study the role of the apoplastic invertase and the products of its activity during growth, development and formation constitutive resistance to hypothermia.

  7. Nitrile Metabolizing Yeasts

    Science.gov (United States)

    Bhalla, Tek Chand; Sharma, Monica; Sharma, Nitya Nand

    Nitriles and amides are widely distributed in the biotic and abiotic components of our ecosystem. Nitrile form an important group of organic compounds which find their applications in the synthesis of a large number of compounds used as/in pharmaceutical, cosmetics, plastics, dyes, etc>. Nitriles are mainly hydro-lyzed to corresponding amide/acid in organic chemistry. Industrial and agricultural activities have also lead to release of nitriles and amides into the environment and some of them pose threat to human health. Biocatalysis and biotransformations are increasingly replacing chemical routes of synthesis in organic chemistry as a part of ‘green chemistry’. Nitrile metabolizing organisms or enzymes thus has assumed greater significance in all these years to convert nitriles to amides/ acids. The nitrile metabolizing enzymes are widely present in bacteria, fungi and yeasts. Yeasts metabolize nitriles through nitrilase and/or nitrile hydratase and amidase enzymes. Only few yeasts have been reported to possess aldoxime dehydratase. More than sixty nitrile metabolizing yeast strains have been hither to isolated from cyanide treatment bioreactor, fermented foods and soil. Most of the yeasts contain nitrile hydratase-amidase system for metabolizing nitriles. Transformations of nitriles to amides/acids have been carried out with free and immobilized yeast cells. The nitrilases of Torulopsis candida>and Exophiala oligosperma>R1 are enantioselec-tive and regiospecific respectively. Geotrichum>sp. JR1 grows in the presence of 2M acetonitrile and may have potential for application in bioremediation of nitrile contaminated soil/water. The nitrilase of E. oligosperma>R1 being active at low pH (3-6) has shown promise for the hydroxy acids. Immobilized yeast cells hydrolyze some additional nitriles in comparison to free cells. It is expected that more focus in future will be on purification, characterization, cloning, expression and immobilization of nitrile metabolizing

  8. BH3-only protein Bim inhibits activity of antiapoptotic members of Bcl-2 family when expressed in yeast.

    Science.gov (United States)

    Juhásová, Barbora; Mentel, Marek; Bhatia-Kiššová, Ingrid; Zeman, Igor; Kolarov, Jordan; Forte, Michael; Polčic, Peter

    2011-09-02

    Proteins of the Bcl-2 family regulate programmed cell death in mammals by promoting the release of cytochrome c from mitochondria in response to various proapoptotic stimuli. The mechanism by which BH3-only members of the family activate multidomain proapoptotic proteins Bax and Bak to form a pore in mitochondrial membranes remains under dispute. We report that cell death promoting activity of BH3-only protein Bim can be reconstituted in yeast when both Bax and antiapoptotic protein Bcl-X(L) are present, suggesting that Bim likely activates Bax indirectly by inhibiting antiapoptotic proteins. Copyright © 2011 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.

  9. Yeast-expressed human membrane protein aquaporin-1 yields excellent resolution of solid-state MAS NMR spectra

    International Nuclear Information System (INIS)

    Emami, Sanaz; Fan Ying; Munro, Rachel; Ladizhansky, Vladimir; Brown, Leonid S.

    2013-01-01

    One of the biggest challenges in solid-state NMR studies of membrane proteins is to obtain a homogeneous natively folded sample giving high spectral resolution sufficient for structural studies. Eukaryotic membrane proteins are especially difficult and expensive targets in this respect. Methylotrophic yeast Pichia pastoris is a reliable producer of eukaryotic membrane proteins for crystallography and a promising economical source of isotopically labeled proteins for NMR. We show that eukaryotic membrane protein human aquaporin 1 can be doubly ( 13 C/ 15 N) isotopically labeled in this system and functionally reconstituted into phospholipids, giving excellent resolution of solid-state magic angle spinning NMR spectra.

  10. The CUP2 gene product regulates the expression of the CUP1 gene, coding for yeast metallothionein.

    OpenAIRE

    Welch, J; Fogel, S; Buchman, C; Karin, M

    1989-01-01

    The yeast CUP1 gene codes for a copper-binding protein similar to metallothionein. Copper sensitive cup1s strains contain a single copy of the CUP1 locus. Resistant strains (CUP1r) carry 12 or more multiple tandem copies. We isolated 12 ethyl methane sulfonate-induced copper sensitive mutants in a wild-type CUP1r parental strain, X2180-1A. Most mutants reduce the copper resistance phenotype only slightly. However, the mutant cup2 lowers resistance by nearly two orders of magnitude. We cloned ...

  11. Biotechnical Microbiology, yeast and bacteria

    DEFF Research Database (Denmark)

    Villadsen, Ingrid Stampe

    1999-01-01

    This section contains the following single lecture notes: Eukaryotic Cell Biology. Kingdom Fungi. Cell Division. Meiosis and Recombination. Genetics of Yeast. Organisation of the Chromosome. Organization and genetics of the mitochondrial Geneme. Regulatio of Gene Expression. Intracellular Compart...

  12. Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains.

    Science.gov (United States)

    Greppi, Anna; Krych, Łukasz; Costantini, Antonella; Rantsiou, Kalliopi; Hounhouigan, D Joseph; Arneborg, Nils; Cocolin, Luca; Jespersen, Lene

    2015-07-16

    Phytate is known as a strong chelate of minerals causing their reduced uptake by the human intestine. Ninety-three yeast isolates from traditional African fermented food products, belonging to nine species (Pichia kudriavzevii, Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces marxianus, Millerozyma farinosa, Candida glabrata, Wickerhamomyces anomalus, Hanseniaspora guilliermondii and Debaryomyces nepalensis) were screened for phytase production on solid and liquid media. 95% were able to grow in the presence of phytate as sole phosphate source, P. kudriavzevii being the best growing species. A phytase coding gene of P. kudriavzevii (PHYPk) was identified and its expression was studied during growth by RT-qPCR. The expression level of PHYPk was significantly higher in phytate-medium, compared to phosphate-medium. In phytate-medium expression was seen in the lag phase. Significant differences in gene expression were detected among the strains as well as between the media. A correlation was found between the PHYPk expression and phytase extracellular activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Utilizing Biotinylated Proteins Expressed in Yeast to Visualize DNA–Protein Interactions at the Single-Molecule Level

    Directory of Open Access Journals (Sweden)

    Huijun Xue

    2017-10-01

    Full Text Available Much of our knowledge in conventional biochemistry has derived from bulk assays. However, many stochastic processes and transient intermediates are hidden when averaged over the ensemble. The powerful technique of single-molecule fluorescence microscopy has made great contributions to the understanding of life processes that are inaccessible when using traditional approaches. In single-molecule studies, quantum dots (Qdots have several unique advantages over other fluorescent probes, such as high brightness, extremely high photostability, and large Stokes shift, thus allowing long-time observation and improved signal-to-noise ratios. So far, however, there is no convenient way to label proteins purified from budding yeast with Qdots. Based on BirA–Avi and biotin–streptavidin systems, we have established a simple method to acquire a Qdot-labeled protein and visualize its interaction with DNA using total internal reflection fluorescence microscopy. For proof-of-concept, we chose replication protein A (RPA and origin recognition complex (ORC as the proteins of interest. Proteins were purified from budding yeast with high biotinylation efficiency and rapidly labeled with streptavidin-coated Qdots. Interactions between proteins and DNA were observed successfully at the single-molecule level.

  14. The pectin lyase-encoding gene (pnl) family from Glomerella cingulata: characterization of pnlA and its expression in yeast.

    Science.gov (United States)

    Templeton, M D; Sharrock, K R; Bowen, J K; Crowhurst, R N; Rikkerink, E H

    1994-05-03

    Oligodeoxyribonucleotide primers were designed from conserved amino acid (aa) sequences between pectin lyase D (PNLD) from Aspergillus niger and pectate lyases A and E (PELA/E) from Erwinia chrysanthemi. The polymerase chain reaction (PCR) was used with these primers to amplify genomic DNA from the plant pathogenic fungus Glomerella cingulata. Three different 220-bp fragments with homology to PNL-encoding genes from A. niger, and a 320-bp fragment with homology to PEL-encoding genes from Nicotiana tabacum and E. carotovora were cloned. One of the 220-bp PCR products (designated pnlA) was used as a probe to isolate a PNL-encoding gene from a lambda genomic DNA library prepared from G. cingulata. Nucleotide (nt) sequence data revealed that this gene has seven exons and codes for a putative 380-aa protein. The nt sequence of a cDNA clone, prepared using PCR, confirmed the presence of the six introns. The positions of the introns were different from the sites of the five introns present in the three PNL-encoding genes previously sequenced from A. niger. PNLA was synthesised in yeast by cloning the cDNA into the expression vector, pEMBLYex-4, and enzymatically active protein was secreted into the culture medium. Significantly higher expression was achieved when the context of the start codon, CACCATG, was mutated to CAAAATG, a consensus sequence commonly found in highly expressed yeast genes. The produced protein had an isoelectric point (pI) of 9.4, the same as that for the G. cingulata pnlA product.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. The yeast ADH7 promoter enables gene expression under pronounced translation repression caused by the combined stress of vanillin, furfural, and 5-hydroxymethylfurfural.

    Science.gov (United States)

    Ishida, Yoko; Nguyen, Trinh Thi My; Izawa, Shingo

    2017-06-20

    Lignocellulosic biomass conversion inhibitors such as vanillin, furfural, and 5-hydroxymethylfurfural (HMF) inhibit the growth of and fermentation by Saccharomyces cerevisiae. A high concentration of each fermentation inhibitor represses translation and increases non-translated mRNAs. We previously reported that the mRNAs of ADH7 and BDH2, which encode putative NADPH- and NADH-dependent alcohol dehydrogenases, respectively, were efficiently translated even with translation repression in response to severe vanillin stress. However, the combined effects of these fermentation inhibitors on the expression of ADH7 and BDH2 remain unclear. We herein demonstrated that exposure to a combined stress of vanillin, furfural, and HMF repressed translation. The protein synthesis of Adh7, but not Bdh2 was significantly induced under combined stress conditions, even though the mRNA levels of ADH7 and BDH2 were up-regulated. Additionally, adh7Δ cells were more sensitive to the combined stress than wild-type and bdh2Δ cells. These results suggest that induction of the ADH7 expression plays a role in the tolerance to the combined stress of vanillin, furfural, and HMF. Furthermore, we succeeded in improving yeast tolerance to the combined stress by controlling the expression of ALD6 with the ADH7 promoter. Our results demonstrate that the ADH7 promoter can overcome the pronounced translation repression caused by the combined stress of vanillin, furfural, and HMF, and also suggest a new gene engineering strategy to breed robust and optimized yeasts for bioethanol production from a lignocellulosic biomass. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Expression, purification, crystallization and preliminary phasing of the heteromerization domain of the tRNA-export and aminoacylation cofactor Arc1p from yeast

    International Nuclear Information System (INIS)

    Simader, Hannes; Suck, Dietrich

    2006-01-01

    The heteromerization domain of an aminoacyl-tRNA synthetase cofactor from yeast was crystallized, complete selenomethionine MAD data were collected to 2.8 Å resolution and preliminary phasing reveals the presence of 20 monomers in the asymmetric unit. Eukaryotic aminoacyl-tRNA synthetases (aaRSs) must be integrated into an efficient tRNA-export and shuttling machinery. This is reflected by the presence of additional protein–protein interaction domains and a correspondingly higher degree of complex formation in eukaryotic aaRSs. However, the structural basis of interaction between eukaryotic aaRSs and associated protein cofactors has remained elusive. The N-terminal heteromerization domain of the tRNA aminoacylation and export cofactor Arc1p has been cloned from yeast, expressed and purified. Crystals have been obtained belonging to space group C2, with unit-cell parameters a = 222.32, b = 89.46, c = 126.79 Å, β = 99.39°. Calculated Matthews coefficients are compatible with the presence of 10–25 monomers in the asymmetric unit. A complete multiple-wavelength anomalous dispersion data set has been collected from a selenomethionine-substituted crystal at 2.8 Å resolution. Preliminary phasing reveals the presence of 20 monomers organized in five tetramers per asymmetric unit

  17. Heterologous Expression of the Carrot Hsp17.7 gene Increased Growth, Cell Viability, and Protein Solubility in Transformed Yeast (Saccharomyces cerevisiae) under Heat, Cold, Acid, and Osmotic Stress Conditions.

    Science.gov (United States)

    Ko, Eunhye; Kim, Minhye; Park, Yunho; Ahn, Yeh-Jin

    2017-08-01

    In industrial fermentation of yeast (Saccharomyces cerevisiae), culture conditions are often modified from the optimal growth conditions of the cells to maintain large-scale cultures and/or to increase recombinant protein production. However, altered growth conditions can be stressful to yeast cells resulting in reduced cell growth and viability. In this study, a small heat shock protein gene from carrot (Daucus carota L.), Hsp17.7, was inserted into the yeast genome via homologous recombination to increase tolerance to stress conditions that can occur during industrial culture. A DNA construct, Translational elongation factor gene promoter-carrot Hsp17.7 gene-Phosphoribosyl-anthranilate isomerase gene (an auxotrophic marker), was generated by a series of PCRs and introduced into the chromosome IV of the yeast genome. Immunoblot analysis showed that carrot Hsp17.7 accumulated in the transformed yeast cell lines. Growth rates and cell viability of these cell lines were higher than control cell lines under heat, cold, acid, and hyperosmotic stress conditions. Soluble protein levels were higher in the transgenic cell lines than control cell lines under heat and cold conditions, suggesting the molecular chaperone function of the recombinant Hsp17.7. This study showed that a recombinant DNA construct containing a HSP gene from carrot was successfully expressed in yeast by homologous recombination and increased tolerances to abiotic stress conditions.

  18. Unique C-terminal region of Hap3 is required for methanol-regulated gene expression in the methylotrophic yeast Candida boidinii.

    Science.gov (United States)

    Oda, Saori; Yurimoto, Hiroya; Nitta, Nobuhisa; Sakai, Yasuyoshi

    2016-05-01

    The Hap complex of the methylotrophic yeast Candida boidinii was found to be required for methanol-regulated gene expression. In this study, we performed functional characterization of CbHap3p, one of the Hap complex components in C. boidinii. Sequence alignment of Hap3 proteins revealed the presence of a unique extended C-terminal region, which is not present in Hap3p from Saccharomyces cerevisiae (ScHap3p), but is found in Hap3p proteins of methylotrophic yeasts. Deletion of the C-terminal region of CbHap3p (Δ256-292 or Δ107-237) diminished activation of methanol-regulated genes and abolished the ability to grow on methanol, but did not affect nuclear localization or DNA-binding ability. However, deletion of the N-terminal region of CbHap3p (Δ1-20) led to not only a growth defect on methanol and a decreased level of methanol-regulated gene expression, but also impaired nuclear localization and binding to methanol-regulated gene promoters. We also revealed that CbHap3p could complement the growth defect of the Schap3Δ strain on glycerol, although ScHap3p could not complement the growth defect of a Cbhap3Δ strain on methanol. We conclude that the unique C-terminal region of CbHap3p contributes to maximum activation of methanol-regulated genes, whilst the N-terminal region is required for nuclear localization and binding to DNA.

  19. Multiple Taf subunits of TFIID interact with Ino2 activation domains and contribute to expression of genes required for yeast phospholipid biosynthesis.

    Science.gov (United States)

    Hintze, Stefan; Engelhardt, Maike; van Diepen, Laura; Witt, Eric; Schüller, Hans-Joachim

    2017-12-01

    Expression of phospholipid biosynthetic genes in yeast requires activator protein Ino2 which can bind to the UAS element inositol/choline-responsive element (ICRE) and trigger activation of target genes, using two separate transcriptional activation domains, TAD1 and TAD2. However, it is still unknown which cofactors mediate activation by TADs of Ino2. Here, we show that multiple subunits of basal transcription factor TFIID (TBP-associated factors Taf1, Taf4, Taf6, Taf10 and Taf12) are able to interact in vitro with activation domains of Ino2. Interaction was no longer observed with activation-defective variants of TAD1. We were able to identify two nonoverlapping regions in the N-terminus of Taf1 (aa 1-100 and aa 182-250) each of which could interact with TAD1 of Ino2 as well as with TAD4 of activator Adr1. Specific missense mutations within Taf1 domain aa 182-250 affecting basic and hydrophobic residues prevented interaction with wild-type TAD1 and caused reduced expression of INO1. Using chromatin immunoprecipitation we demonstrated Ino2-dependent recruitment of Taf1 and Taf6 to ICRE-containing promoters INO1 and CHO2. Transcriptional derepression of INO1 was no longer possible with temperature-sensitive taf1 and taf6 mutants cultivated under nonpermissive conditions. This result supports the hypothesis of Taf-dependent expression of structural genes activated by Ino2. © 2017 John Wiley & Sons Ltd.

  20. Yeast Interacting Proteins Database: YFR015C, YFR015C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...ression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into stationary ...tion, nitrogen starvation, environmental stress, and entry into stationary phase Rows with this bait as bait..., the more highly expressed yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental

  1. [Distiller Yeasts Producing Antibacterial Peptides].

    Science.gov (United States)

    Klyachko, E V; Morozkina, E V; Zaitchik, B Ts; Benevolensky, S V

    2015-01-01

    A new method of controlling lactic acid bacteria contamination was developed with the use of recombinant Saccharomyces cerevisiae strains producing antibacterial peptides. Genes encoding the antibacterial peptides pediocin and plantaricin with codons preferable for S. cerevisiae were synthesized, and a system was constructed for their secretory expression. Recombinant S. cerevisiae strains producing antibacterial peptides effectively inhibit the growth of Lactobacillus sakei, Pediacoccus pentasaceus, Pediacoccus acidilactici, etc. The application of distiller yeasts producing antibacterial peptides enhances the ethanol yield in cases of bacterial contamination. Recombinant yeasts producing the antibacterial peptides pediocin and plantaricin can successfully substitute the available industrial yeast strains upon ethanol production.

  2. Analysis of cellular responses to aflatoxin B1 in yeast expressing human cytochrome P450 1A2 using cDNA microarrays

    International Nuclear Information System (INIS)

    Guo Yingying; Breeden, Linda L.; Fan, Wenhong; Zhao Lueping; Eaton, David L.; Zarbl, Helmut

    2006-01-01

    Aflatoxin B1 (AFB 1 ) is a potent human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In human, AFB 1 is bioactivated by cytochrome P450 (CYP450) enzymes, primarily CYP1A2, to the genotoxic epoxide that forms N 7 -guanine DNA adducts. To characterize the transcriptional responses to genotoxic insults from AFB 1 , a strain of Saccharomyces cerevisiae engineered to express human CYP1A2 was exposed to doses of AFB 1 that resulted in minimal lethality, but substantial genotoxicity. Flow cytometric analysis demonstrated a dose and time dependent S phase delay under the same treatment conditions, indicating a checkpoint response to DNA damage. Replicate cDNA microarray analyses of AFB 1 treated cells showed that about 200 genes were significantly affected by the exposure. The genes activated by AFB 1 -treatment included RAD51, DUN1 and other members of the DNA damage response signature reported in a previous study with methylmethane sulfonate and ionizing radiation [A.P. Gasch, M. Huang, S. Metzner, D. Botstein, S.J. Elledge, P.O. Brown, Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p, Mol. Biol. Cell 12 (2001) 2987-3003]. However, unlike previous studies using highly cytotoxic doses, environmental stress response genes [A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein, P.O. Brown, Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell 11 (2000) 4241-4257] were largely unaffected by our dosing regimen. About half of the transcripts affected are also known to be cell cycle regulated. The most strongly repressed transcripts were those encoding the histone genes and a group of genes that are cell cycle regulated and peak in M phase and early G1. These include most of the known daughter-specific genes. The rapid and coordinated repression of histones and M/G1-specific transcripts cannot be explained by

  3. Analysis of cellular responses to aflatoxin B{sub 1} in yeast expressing human cytochrome P450 1A2 using cDNA microarrays

    Energy Technology Data Exchange (ETDEWEB)

    Guo Yingying [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Breeden, Linda L. [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Fan, Wenhong [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Zhao Lueping [Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Eaton, David L. [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States); Fred Hutchinson Cancer Research Center, Seattle, WA (United States); Zarbl, Helmut [Departmental of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA (United States) and Fred Hutchinson Cancer Research Center, Seattle, WA (United States)]. E-mail: hzarbl@fhcrc.org

    2006-01-29

    Aflatoxin B1 (AFB{sub 1}) is a potent human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In human, AFB{sub 1} is bioactivated by cytochrome P450 (CYP450) enzymes, primarily CYP1A2, to the genotoxic epoxide that forms N{sup 7}-guanine DNA adducts. To characterize the transcriptional responses to genotoxic insults from AFB{sub 1}, a strain of Saccharomyces cerevisiae engineered to express human CYP1A2 was exposed to doses of AFB{sub 1} that resulted in minimal lethality, but substantial genotoxicity. Flow cytometric analysis demonstrated a dose and time dependent S phase delay under the same treatment conditions, indicating a checkpoint response to DNA damage. Replicate cDNA microarray analyses of AFB{sub 1} treated cells showed that about 200 genes were significantly affected by the exposure. The genes activated by AFB{sub 1}-treatment included RAD51, DUN1 and other members of the DNA damage response signature reported in a previous study with methylmethane sulfonate and ionizing radiation [A.P. Gasch, M. Huang, S. Metzner, D. Botstein, S.J. Elledge, P.O. Brown, Genomic expression responses to DNA-damaging agents and the regulatory role of the yeast ATR homolog Mec1p, Mol. Biol. Cell 12 (2001) 2987-3003]. However, unlike previous studies using highly cytotoxic doses, environmental stress response genes [A.P. Gasch, P.T. Spellman, C.M. Kao, O. Carmel-Harel, M.B. Eisen, G. Storz, D. Botstein, P.O. Brown, Genomic expression programs in the response of yeast cells to environmental changes, Mol. Biol. Cell 11 (2000) 4241-4257] were largely unaffected by our dosing regimen. About half of the transcripts affected are also known to be cell cycle regulated. The most strongly repressed transcripts were those encoding the histone genes and a group of genes that are cell cycle regulated and peak in M phase and early G1. These include most of the known daughter-specific genes. The rapid and coordinated repression of histones and M/G1-specific

  4. Yeast-expressed recombinant As16 protects mice against Ascaris suum infection through induction of a Th2-skewed immune response.

    Directory of Open Access Journals (Sweden)

    Junfei Wei

    2017-07-01

    Full Text Available Ascariasis remains the most common helminth infection in humans. As an alternative or complementary approach to global deworming, a pan-anthelminthic vaccine is under development targeting Ascaris, hookworm, and Trichuris infections. As16 and As14 have previously been described as two genetically related proteins from Ascaris suum that induced protective immunity in mice when formulated with cholera toxin B subunit (CTB as an adjuvant, but the exact protective mechanism was not well understood.As16 and As14 were highly expressed as soluble recombinant proteins (rAs16 and rAs14 in Pichia pastoris. The yeast-expressed rAs16 was highly recognized by immune sera from mice infected with A. suum eggs and elicited 99.6% protection against A. suum re-infection. Mice immunized with rAs16 formulated with ISA720 displayed significant larva reduction (36.7% and stunted larval development against A. suum eggs challenge. The protective immunity was associated with a predominant Th2-type response characterized by high titers of serological IgG1 (IgG1/IgG2a > 2000 and high levels of IL-4 and IL-5 produced by restimulated splenocytes. A similar level of protection was observed in mice immunized with rAs16 formulated with alum (Alhydrogel, known to induce mainly a Th2-type immune response, whereas mice immunized with rAs16 formulated with MPLA or AddaVax, both known to induce a Th1-type biased response, were not significantly protected against A. suum infection. The rAs14 protein was not recognized by A. suum infected mouse sera and mice immunized with rAs14 formulated with ISA720 did not show significant protection against challenge infection, possibly due to the protein's inaccessibility to the host immune system or a Th1-type response was induced which would counter a protective Th2-type response.Yeast-expressed rAs16 formulated with ISA720 or alum induced significant protection in mice against A. suum egg challenge that associates with a Th2-skewed immune

  5. Gene expression and yeast two-hybrid studies of transcription factors mediating drought stress response in root tissues of chickpea (Cicer arietinum L.

    Directory of Open Access Journals (Sweden)

    Abirami eRamalingam

    2015-12-01

    Full Text Available Drought stress has been one of the serious constraints affecting chickpea productivity to a great extent. Genomic assisted breeding in chickpea has been effective in providing a yield advantage of up to 24 %, thus having a potential to accelerate breeding precisely and efficiently. In order to do so, understanding the molecular mechanisms for drought tolerance and identification of candidate genes are crucial. Transcription factors (TFs have important roles in the regulation of plant stress related genes. In this context, quantitative real time-PCR (qRT-PCR was used to study the differential gene expression of selected TFs, identified from large-scale gene expression analysis, in contrasting drought responsive genotypes. Root tissues of ICC 4958 (tolerant, ICC 1882 (sensitive, JG 11 (elite and JG 11+ (introgression line were used for the study. Subsequently, a candidate single repeat MYB gene (1R-MYB that was remarkably induced in the drought tolerant genotypes under drought stress was cloned and subjected to Y2H analysis by screening a root cDNA library. The protein-protein interaction study identified three interacting peptides, a galactinol-sucrose galactosyltransferase 2, a CBL (Calcineurin B-like-interacting serine/threonine-protein kinase 25 and an ABA responsive 17-like, which were confirmed by the co-transformation of candidate plasmids in yeast. These findings provide preliminary insights into the ability of 1R-MYB TF to co-regulate drought tolerance mechanism in chickpea roots.

  6. Detection of NP, N3 and N7 antibodies to avian influenza virus by indirect ELISA using yeast-expressed antigens

    Directory of Open Access Journals (Sweden)

    Ammayappan Arun

    2009-10-01

    Full Text Available Abstract Background Avian influenza viruses, belonging to the family Orthomyxoviridae, possess distinct combinations of hemagglutinin (H and the neuraminidase (N surface glycoproteins. Typing of both H and N antigens is essential for the epidemiological and surveillance studies. Therefore, it is important to find a rapid, sensitive, and specific method for their assay, and ELISA can be useful for this purpose, by using recombinant proteins. Results The nucleoprotein (NP and truncated neuraminidase subtype 3 and 7 of avian influenza virus (AIV were expressed in Saccharomyces cerevisiae and used to develop an indirect enzyme-linked immunosorbent assay for antibody detection. The developed assays were evaluated with a panel of 64 chicken serum samples. The performance of NP-ELISA was compared with the commercially available ProFlok® AIV ELISA kit. The results showed comparable agreement and sensitivity between the two tests, indicating that NP-ELISA assay can be used for screening the influenza type A antibody in AIV infected birds. The N3 and N7- ELISAs also reacted specifically to their type specific sera and did not exhibit any cross-reaction with heterologous neuraminidase subtype specific sera. Conclusion The study demonstrates the expression of the NP, N3, and N7 proteins of AIV in yeast (S. cerevisiae and their application in developing an indirect ELISA for detecting NP, N3 and N7 antibodies from AIV-infected chicken sera. The described indirect ELISAs are rapid, sensitive, specific and can be used as promising tests during serological surveillance.

  7. Cloning and heterologous expression of a hydrophobin gene Ltr.hyd from the tiger milk mushroom Lentinus tuber-regium in yeast-like cells of Tremella fuciformis

    Directory of Open Access Journals (Sweden)

    Dongmei Liu

    2018-03-01

    Full Text Available Background: Hydrophobins are small proteins secreted by filamentous fungi, which show a highly surface activity. Because of the signally self-assembling abilities and surface activities, hydrophobins were considered as candidates in many aspects, for example, stabilizing foams and emulsions in food products. Lentinus tuber-regium, known as tiger milk mushroom, is both an edible and medicinal sclerotium-producing mushroom. Up to now, the hydrophobins of L. tuber-regium have not been identified. Results: In this paper, a Class I hydrophobin gene, Ltr.hyd, was cloned from L. tuber-regium and expressed in the yeast-like cells of Tremella fuciformis mediated by Agrobacterium tumefaciens. The expression vector pGEH-GH was under the control of T. fuciformis glyceraldehyde-3-phosphate dehydrogenase gene (gpd promoter. The integration of Ltr.hyd into the genome of T. fuciformis was confirmed by PCR, Southern blot, fluorescence observation and quantitative real-time PCR (qRT-PCR. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE demonstrated that recombinant hydrophobin rLtr.HYD with an expected molecular mass of 13 kDa was extracted. The yield of rLtr.HYD was 0.66 mg/g dry weight. The emulsifying activity of rLtr.HYD was better than the typical food emulsifiers sodium caseinate and Tween 20. Conclusions: We evaluated the emulsifying property of hydrophobin Ltr.HYD, which can be potentially used as a food emulsifier. Keywords: Agrobacterium tumefaciens, Emulsifier, Expression vector, Filamentous fungi, Gel electrophoresis, Glyceraldehyde-3-phosphate dehydrogenase, Heterogenous expression, Hydrophobin, Quantitative real-time PCR, Southern blot, Surface activity

  8. Stimulation of chymosin secretion by simultaneous expression with chymosin-binding llama single-domain antibody fragments in yeast

    NARCIS (Netherlands)

    Harmsen, M.M.; Smits, C.B.; Geus, de B.

    2002-01-01

    We studied the effect of coexpression of chymosin and chymosin-binding llama single-domain antibody fragments (VHHs) on the secretion of chymosin by Saccharomyces cerevisiae cells. A VHH expression library containing chymosin-specific VHHs was obtained by immunization of a llama and coexpressed with

  9. Autoselection of cytoplasmic yeast virus like elements encoding toxin/antitoxin systems involves a nuclear barrier for immunity gene expression.

    Science.gov (United States)

    Kast, Alene; Voges, Raphael; Schroth, Michael; Schaffrath, Raffael; Klassen, Roland; Meinhardt, Friedhelm

    2015-05-01

    Cytoplasmic virus like elements (VLEs) from Kluyveromyces lactis (Kl), Pichia acaciae (Pa) and Debaryomyces robertsiae (Dr) are extremely A/T-rich (>75%) and encode toxic anticodon nucleases (ACNases) along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5) results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE) as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A) site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle.

  10. Autoselection of cytoplasmic yeast virus like elements encoding toxin/antitoxin systems involves a nuclear barrier for immunity gene expression.

    Directory of Open Access Journals (Sweden)

    Alene Kast

    2015-05-01

    Full Text Available Cytoplasmic virus like elements (VLEs from Kluyveromyces lactis (Kl, Pichia acaciae (Pa and Debaryomyces robertsiae (Dr are extremely A/T-rich (>75% and encode toxic anticodon nucleases (ACNases along with specific immunity proteins. Here we show that nuclear, not cytoplasmic expression of either immunity gene (PaORF4, KlORF3 or DrORF5 results in transcript fragmentation and is insufficient to establish immunity to the cognate ACNase. Since rapid amplification of 3' ends (RACE as well as linker ligation of immunity transcripts expressed in the nucleus revealed polyadenylation to occur along with fragmentation, ORF-internal poly(A site cleavage due to the high A/T content is likely to prevent functional expression of the immunity genes. Consistently, lowering the A/T content of PaORF4 to 55% and KlORF3 to 46% by gene synthesis entirely prevented transcript cleavage and permitted functional nuclear expression leading to full immunity against the respective ACNase toxin. Consistent with a specific adaptation of the immunity proteins to the cognate ACNases, cross-immunity to non-cognate ACNases is neither conferred by PaOrf4 nor KlOrf3. Thus, the high A/T content of cytoplasmic VLEs minimizes the potential of functional nuclear recruitment of VLE encoded genes, in particular those involved in autoselection of the VLEs via a toxin/antitoxin principle.

  11. Interaction Between Yeasts and Zinc

    Science.gov (United States)

    Nicola, Raffaele De; Walker, Graeme

    Zinc is an essential trace element in biological systems. For example, it acts as a cellular membrane stabiliser, plays a critical role in gene expression and genome modification and activates nearly 300 enzymes, including alcohol dehydrogenase. The present chapter will be focused on the influence of zinc on cell physiology of industrial yeast strains of Saccharomyces cerevisiae, with special regard to the uptake and subsequent utilisation of this metal. Zinc uptake by yeast is metabolism-dependent, with most of the available zinc translocated very quickly into the vacuole. At cell division, zinc is distributed from mother to daughter cells and this effectively lowers the individual cellular zinc concentration, which may become zinc depleted at the onset of the fermentation. Zinc influences yeast fermentative performance and examples will be provided relating to brewing and wine fermentations. Industrial yeasts are subjected to several stresses that may impair fermentation performance. Such stresses may also impact on yeast cell zinc homeostasis. This chapter will discuss the practical implications for the correct management of zinc bioavailability for yeast-based biotechnologies aimed at improving yeast growth, viability, fermentation performance and resistance to environmental stresses

  12. A novel cis-acting element required for DNA damage-inducible expression of yeast DIN7

    International Nuclear Information System (INIS)

    Yoshitani, Ayako; Yoshida, Minoru; Ling Feng

    2008-01-01

    Din7 is a DNA damage-inducible mitochondrial nuclease that modulates the stability of mitochondrial DNA (mtDNA) in Saccharomyces cerevisiae. How DIN7 gene expression is regulated, however, has remained largely unclear. Using promoter sequence alignment, we found a highly conserved 19-bp sequence in the promoter regions of DIN7 and NTG1, which encodes an oxidative stress-inducible base-excision-repair enzyme. Deletion of the 19-bp sequence markedly reduced the hydroxyurea (HU)-enhanced DIN7 promoter activity. In addition, nuclear fractions prepared from HU-treated cells were used in in vitro band shift assays to reveal the presence of currently unidentified trans-acting factor(s) that preferentially bound to the 19-bp region. These results suggest that the 19-bp sequence is a novel cis-acting element that is required for the regulation of DIN7 expression in response to HU-induced DNA damage

  13. Heterologous expression of three Camellia sinensis small heat shock protein genes confers temperature stress tolerance in yeast and Arabidopsis thaliana.

    Science.gov (United States)

    Wang, Mingle; Zou, Zhongwei; Li, Qinghui; Xin, Huahong; Zhu, Xujun; Chen, Xuan; Li, Xinghui

    2017-07-01

    CsHSP17.7, CsHSP18.1, and CsHSP21.8 expressions are induced by heat and cold stresses, and CsHSP overexpression confers tolerance to heat and cold stresses in transgenic Pichia pastoris and Arabidopsis thaliana. Small heat shock proteins (sHSPs) are crucial for protecting plants against biotic and abiotic stresses, especially heat stress. However, knowledge concerning the functions of Camellia sinensis sHSP in heat and cold stresses remains poorly understood. In this study, three C. sinensis sHSP genes (i.e., CsHSP17.7, CsHSP18.1, and CsHSP21.8) were isolated and characterized using suppression subtractive hybridization (SSH) technology. The CsHSPs expression levels in C. sinensis leaves were significantly up-regulated by heat and cold stresses. Phylogenetic analyses revealed that CsHSP17.7, CsHSP18.1, and CsHSP21.8 belong to sHSP Classes I, II, and IV, respectively. Heterologous expression of the three CsHSP genes in Pichia pastoris cells enhanced heat and cold stress tolerance. When exposed to heat and cold treatments, transgenic Arabidopsis thaliana plants overexpressing CsHSP17.7, CsHSP18.1, and CsHSP21.8 had lower malondialdehyde contents, ion leakage, higher proline contents, and transcript levels of stress-related genes (e.g., AtPOD, AtAPX1, AtP5CS2, and AtProT1) compared with the control line. In addition, improved seed germination vigor was also observed in the CsHSP-overexpressing seeds under heat stress. Taken together, our results suggest that the three identified CsHSP genes play key roles in heat and cold tolerance.

  14. Yeast PAH1-encoded phosphatidate phosphatase controls the expression of CHO1-encoded phosphatidylserine synthase for membrane phospholipid synthesis.

    Science.gov (United States)

    Han, Gil-Soo; Carman, George M

    2017-08-11

    The PAH1 -encoded phosphatidate phosphatase (PAP), which catalyzes the committed step for the synthesis of triacylglycerol in Saccharomyces cerevisiae , exerts a negative regulatory effect on the level of phosphatidate used for the de novo synthesis of membrane phospholipids. This raises the question whether PAP thereby affects the expression and activity of enzymes involved in phospholipid synthesis. Here, we examined the PAP-mediated regulation of CHO1 -encoded phosphatidylserine synthase (PSS), which catalyzes the committed step for the synthesis of major phospholipids via the CDP-diacylglycerol pathway. The lack of PAP in the pah1 Δ mutant highly elevated PSS activity, exhibiting a growth-dependent up-regulation from the exponential to the stationary phase of growth. Immunoblot analysis showed that the elevation of PSS activity results from an increase in the level of the enzyme encoded by CHO1 Truncation analysis and site-directed mutagenesis of the CHO1 promoter indicated that Cho1 expression in the pah1 Δ mutant is induced through the inositol-sensitive upstream activation sequence (UAS INO ), a cis -acting element for the phosphatidate-controlled Henry (Ino2-Ino4/Opi1) regulatory circuit. The abrogation of Cho1 induction and PSS activity by a CHO1 UAS INO mutation suppressed pah1 Δ effects on lipid synthesis, nuclear/endoplasmic reticulum membrane morphology, and lipid droplet formation, but not on growth at elevated temperature. Loss of the DGK1 -encoded diacylglycerol kinase, which converts diacylglycerol to phosphatidate, partially suppressed the pah1 Δ-mediated induction of Cho1 and PSS activity. Collectively, these data showed that PAP activity controls the expression of PSS for membrane phospholipid synthesis. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  15. Responses of transgenic Arabidopsis plants and recombinant yeast cells expressing a novel durum wheat manganese superoxide dismutase TdMnSOD to various abiotic stresses.

    Science.gov (United States)

    Kaouthar, Feki; Ameny, Farhat-Khemakhem; Yosra, Kamoun; Walid, Saibi; Ali, Gargouri; Faiçal, Brini

    2016-07-01

    In plant cells, the manganese superoxide dismutase (Mn-SOD) plays an elusive role in the response to oxidative stress. In this study, we describe the isolation and functional characterization of a novel Mn-SOD from durum wheat (Triticum turgidum L. subsp. Durum), named TdMnSOD. Molecular phylogeny analysis showed that the durum TdMnSOD exhibited high amino acids sequence identity with other Mn-SOD plants. The three-dimensional structure showed that TdMnSOD forms a homotetramer and each subunit is composed of a predominantly α-helical N-terminal domain and a mixed α/β C-terminal domain. TdMnSOD gene expression analysis showed that this gene was induced by various abiotic stresses in durum wheat. The expression of TdMnSOD enhances tolerance of the transformed yeast cells to salt, osmotic, cold and H2O2-induced oxidative stresses. Moreover, the analysis of TdMnSOD transgenic Arabidopsis plants subjected to different environmental stresses revealed low H2O2 and high proline levels as compared to the wild-type plants. Compared with the non-transformed plants, an increase in the total SOD and two other antioxidant enzyme activities including catalase (CAT) and peroxidases (POD) was observed in the three transgenic lines subjected to abiotic stress. Taken together, these data provide evidence for the involvement of durum wheat TdMnSOD in tolerance to multiple abiotic stresses in crop plants. Copyright © 2016 Elsevier GmbH. All rights reserved.

  16. Functional characterization of a rice de novo DNA methyltransferase, OsDRM2, expressed in Escherichia coli and yeast

    Energy Technology Data Exchange (ETDEWEB)

    Pang, Jinsong, E-mail: pangjs542@nenu.edu.cn [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China); Dong, Mingyue; Li, Ning; Zhao, Yanli [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China); Liu, Bao, E-mail: baoliu@nenu.edu.cn [Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun, Jilin 130024 (China)

    2013-03-01

    Highlights: ► A rice de novo DNA methyltransferase OsDRM2 was cloned. ► In vitro methylation activity of OsDRM2 was characterized with Escherichia coli. ► Assays of OsDRM2 in vivo methylation were done with Saccharomyces cerevisiae. ► OsDRM2 methylation activity is not preferential to any type of cytosine context. ► The activity of OsDRM2 is independent of RdDM pathway. - Abstract: DNA methylation of cytosine nucleotides is an important epigenetic modification that occurs in most eukaryotic organisms and is established and maintained by various DNA methyltransferases together with their co-factors. There are two major categories of DNA methyltransferases: de novo and maintenance. Here, we report the isolation and functional characterization of a de novo methyltransferase, named OsDRM2, from rice (Oryza sativa L.). The full-length coding region of OsDRM2 was cloned and transformed into Escherichia coli and Saccharomyces cerevisiae. Both of these organisms expressed the OsDRM2 protein, which exhibited stochastic de novo methylation activity in vitro at CG, CHG, and CHH di- and tri-nucleotide patterns. Two lines of evidence demonstrated the de novo activity of OsDRM2: (1) a 5′-CCGG-3′ containing DNA fragment that had been pre-treated with OsDRM2 protein expressed in E. coli was protected from digestion by the CG-methylation-sensitive isoschizomer HpaII; (2) methylation-sensitive amplified polymorphism (MSAP) analysis of S. cerevisiae genomic DNA from transformants that had been introduced with OsDRM2 revealed CG and CHG methylation levels of 3.92–9.12%, and 2.88–6.93%, respectively, whereas the mock control S. cerevisiae DNA did not exhibit cytosine methylation. These results were further supported by bisulfite sequencing of the 18S rRNA and EAF5 genes of the transformed S. cerevisiae, which exhibited different DNA methylation patterns, which were observed in the genomic DNA. Our findings establish that OsDRM2 is an active de novo DNA

  17. Functional characterization of a rice de novo DNA methyltransferase, OsDRM2, expressed in Escherichia coli and yeast

    International Nuclear Information System (INIS)

    Pang, Jinsong; Dong, Mingyue; Li, Ning; Zhao, Yanli; Liu, Bao

    2013-01-01

    Highlights: ► A rice de novo DNA methyltransferase OsDRM2 was cloned. ► In vitro methylation activity of OsDRM2 was characterized with Escherichia coli. ► Assays of OsDRM2 in vivo methylation were done with Saccharomyces cerevisiae. ► OsDRM2 methylation activity is not preferential to any type of cytosine context. ► The activity of OsDRM2 is independent of RdDM pathway. - Abstract: DNA methylation of cytosine nucleotides is an important epigenetic modification that occurs in most eukaryotic organisms and is established and maintained by various DNA methyltransferases together with their co-factors. There are two major categories of DNA methyltransferases: de novo and maintenance. Here, we report the isolation and functional characterization of a de novo methyltransferase, named OsDRM2, from rice (Oryza sativa L.). The full-length coding region of OsDRM2 was cloned and transformed into Escherichia coli and Saccharomyces cerevisiae. Both of these organisms expressed the OsDRM2 protein, which exhibited stochastic de novo methylation activity in vitro at CG, CHG, and CHH di- and tri-nucleotide patterns. Two lines of evidence demonstrated the de novo activity of OsDRM2: (1) a 5′-CCGG-3′ containing DNA fragment that had been pre-treated with OsDRM2 protein expressed in E. coli was protected from digestion by the CG-methylation-sensitive isoschizomer HpaII; (2) methylation-sensitive amplified polymorphism (MSAP) analysis of S. cerevisiae genomic DNA from transformants that had been introduced with OsDRM2 revealed CG and CHG methylation levels of 3.92–9.12%, and 2.88–6.93%, respectively, whereas the mock control S. cerevisiae DNA did not exhibit cytosine methylation. These results were further supported by bisulfite sequencing of the 18S rRNA and EAF5 genes of the transformed S. cerevisiae, which exhibited different DNA methylation patterns, which were observed in the genomic DNA. Our findings establish that OsDRM2 is an active de novo DNA

  18. Structural and functional characterization of recombinant napin-like protein of Momordica charantia expressed in methylotrophic yeast Pichia pastoris.

    Science.gov (United States)

    Yadav, Shailesh Kumar R; Sahu, Tejram; Dixit, Aparna

    2016-08-01

    Napin and napin-like proteins belong to the 2S albumin seed storage family of proteins and have been shown to display a variety of biological activities. However, due to a high degree of polymorphism, purification of a single napin or napin-like protein exhibiting biological activity is extremely difficult. In the present study, we have produced the napin-like protein of Momordica charantia using the methylotrophic Pichia pastoris expression system. The recombinant napin-like protein (rMcnapin) secreted in the extracellular culture supernatant was enriched by ammonium sulfate precipitation, and purified using size exclusion chromatography at a yield of ∼290 mg/L of culture. Secondary structure analysis of the purified rMcnapin revealed it to be predominantly α-helical with minimal β strand content. CD spectroscopic and fluorescence spectroscopic analyses revealed the rMcnapin to be stable at a wide range of temperatures and pH. The rMcnapin exhibited antifungal activity against Trichoderma viride with an IC50 of ∼3.7 μg/ml and trypsin inhibitor activity with an IC50 of 4.2 μM. Thus, large amounts of homogenous preparations of the biologically active rMcnapin could be obtained at shake flask level, which is otherwise difficult from its natural source.

  19. Signature gene expressions of cell wall integrity pathway concur with tolerance response of industrial yeast Saccharomyces cerevisiae against biomass pretreatment inhibitors

    Science.gov (United States)

    Traditional industrial ethanologenic yeast Saccharomyces cerevisiae has a robust performance under various environmental conditions and can be served as a candidate for the next-generation biocatalyst development for advanced biofuels production using lignocellulose mateials. Overcoming toxic compou...

  20. Biotechnological Applications of Dimorphic Yeasts

    Science.gov (United States)

    Doiphode, N.; Joshi, C.; Ghormade, V.; Deshpande, M. V.

    The dimorphic yeasts have the equilibrium between spherical growth (budding) and polarized (hyphal or pseudohyphal tip elongation) which can be triggered by change in the environmental conditions. The reversible growth phenomenon has made dimorphic yeasts as an useful model to understand fungal evolution and fungal differentiation, in general. In nature dimorphism is clearly evident in plant and animal fungal pathogens, which survive and most importantly proliferate in the respective hosts. However, number of organisms with no known pathogenic behaviour also show such a transition, which can be exploited for the technological applications due to their different biochemical make up under different morphologies. For instance, chitin and chitosan production using dimorphic Saccharomyces, Mucor, Rhizopus and Benjaminiella, oil degradation and biotransformation with yeast-form of Yarrowia species, bioremediation of organic pollutants, exopolysac-charide production by yeast-phase of Aureobasidium pullulans, to name a few. Myrothecium verrucaria can be used for seed dressing in its yeast form and it produces a mycolytic enzyme complex in its hyphal-form for the biocontrol of fungal pathogens, while Beauveria bassiana and other entomopathogens kill the insect pest by producing yeast- like cells in the insect body. The form-specific expression of protease, chitinase, lipase, ornithine decarboxylase, glutamate dehydrogenases, etc. make Benjaminiella poitrasii, Basidiobolus sp., and Mucor rouxii strains important in bioremediation, nanobiotechnology, fungal evolution and other areas.

  1. Current awareness on yeast.

    Science.gov (United States)

    2002-02-01

    In order to keep subscribers up-to-date with the latest developments in their field, this current awareness service is provided by John Wiley & Sons and contains newly-published material on yeasts. Each bibliography is divided into 10 sections. 1 Books, Reviews & Symposia; 2 General; 3 Biochemistry; 4 Biotechnology; 5 Cell Biology; 6 Gene Expression; 7 Genetics; 8 Physiology; 9 Medical Mycology; 10 Recombinant DNA Technology. Within each section, articles are listed in alphabetical order with respect to author. If, in the preceding period, no publications are located relevant to any one of these headings, that section will be omitted. (3 weeks journals - search completed 5th. Dec. 2001)

  2. Oral application of freeze-dried yeast particles expressing the PCV2b Cap protein on their surface induce protection to subsequent PCV2b challenge in vivo.

    Science.gov (United States)

    Patterson, Robert; Eley, Thomas; Browne, Christopher; Martineau, Henny M; Werling, Dirk

    2015-11-17

    Porcine circovirus type 2 (PCV2) is now endemic in every major pig producing country, causing PCV-associated disease (PCVAD), linked with large scale economic losses. Current vaccination strategies are based on the capsid protein of the virus and are reasonably successful in preventing PCVAD but fail to induce sterile immunity. Additionally, vaccinating whole herds is expensive and time consuming. In the present study a "proof of concept" vaccine trial was employed to test the effectiveness of powdered freeze-dried recombinant Saccharomyces cerevisiae yeast stably expressing the capsid protein of PCV2b on its surface as an orally applied vaccine. PCV2-free pigs were given 3 doses of vaccine or left un-vaccinated before challenge with a defined PCV2b strain. Rectal temperatures were measured and serum and faeces samples were collected weekly. At the end of the study, pigs were euthanized, tissue samples taken and tested for PCV2b load by qPCR and immunohistochemistry. The peak of viraemia in sera and faeces of unvaccinated pigs was higher than that of vaccinated pigs. Additionally more sIgA was found in faeces of vaccinated pigs than unvaccinated. Vaccination was associated with lower serum concentrations of TNFα and IL-1β but higher concentrations of IFNα and IFNγ in comparison to the unvaccinated animals. At the end of the trial, a higher viral load was found in several lymphatic tissues and the ileum of unvaccinated pigs in comparison to vaccinated pigs. The difference between groups was especially apparent in the ileum. The results presented here demonstrate a possible use for recombinant S. cerevisiae expressing viral proteins as an oral vaccine against PCV2. A powdered freeze-dried recombinant S. cerevisiae used as an oral vaccine could be mixed with feed and may offer a cheap and less labour intensive alternative to inoculation with the additional advantage that no cooling chain would be required for vaccine transport and storage. Copyright © 2015 The

  3. Prions in yeast

    OpenAIRE

    Bezdíčka, Martin

    2013-01-01

    The thesis describes yeast prions and their biological effects on yeast in general. It defines the basic characteristics of yeast prions, that distinguish prions from other proteins. The thesis introduces various possibilities of prion formation, and propagation as well as specific types of yeast prions, including various functions of most studied types of prions. The thesis also focuses on chaperones that affect the state of yeast prions in cells. Lastly, the thesis indicates similarities be...

  4. Yeast-surface expressed BVDV E2 protein induces a Th1/Th2 response in naïve T cells

    Science.gov (United States)

    Yeast species such as Saccharomyces cerevisiae (S. cerevisiae) are well documented as being potent activators of the immune system. S. cerevisiae activates the innate immune system by engaging pattern recognition receptors such as toll like receptor 2 (TLR2) and dectin-1. In the current project, w...

  5. Cloning, characterization and heterologous expression of epoxide hydrolase-encoding cDNA sequences from yeasts belonging to the genera Rhodotorula and Rhodosporidium

    NARCIS (Netherlands)

    Visser, H.; Weijers, C.A.G.M.; Ooyen, van A.J.J.; Verdoes, J.C.

    2002-01-01

    Epoxide hydrolase-encoding cDNA sequences were isolated from the basidiomycetous yeast species Rhodosporidium toruloides CBS 349, Rhodosporidium toruloides CBS 14 and Rhodotorula araucariae CBS 6031 in order to evaluate the molecular data and potential application of this type of enzymes. The

  6. Yeast Interacting Proteins Database: YFR015C, YLR258W [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...n synthase, similar to Gsy1p; expression induced by glucose limitation, nitrogen ...; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into statio...ogen synthase, similar to Gsy1p; expression induced by glucose limitation, nitrogen starvation, heat shock,

  7. Phytase-producing capacity of yeasts isolated from traditional African fermented food products and PHYPk gene expression of Pichia kudriavzevii strains

    DEFF Research Database (Denmark)

    Greppi, Anna; Krych, Lukasz; Costantini, Antonella

    2015-01-01

    Phytate is known as a strong chelate of minerals causing their reduced uptake by the human intestine. Ninety-three yeast isolates from traditional African fermented food products, belonging to nine species (Pichia kudriavzevii, Saccharomyces cerevisiae, Clavispora lusitaniae, Kluyveromyces...... marxianus, Millerozyma farinosa, Candida glabrata, Wickerhamomyces anomalus, Hanseniaspora guilliermondii and Debaryomyces nepalensis) were screened for phytase production on solid and liquid media. 95% were able to grow in the presence of phytate as sole phosphate source, P. kudriavzevii being the best...

  8. Expression and secretion of Bacillus amyloliquefaciens alpha-amylase by using the yeast pheromone alpha-factor promoter and leader sequence in Saccharomyces cerevisiae.

    OpenAIRE

    Southgate, V J; Steyn, A J; Pretorius, I S; Van Vuuren, H J

    1993-01-01

    Replacement of the regulatory and secretory signals of the alpha-amylase gene (AMY) from Bacillus amylolique-faciens with the complete yeast pheromone alpha-factor prepro region (MF alpha 1p) resulted in increased levels of extracellular alpha-amylase production in Saccharomyces cerevisiae. However, the removal of the (Glu-Ala)2 peptide from the MF alpha 1 spacer region (Lys-Arg-Glu-Ala-Glu-Ala) yielded decreased levels of extracellular alpha-amylase.

  9. Cloning, production, and functional expression of the bacteriocin enterocin A, produced by Enterococcus faecium T136, by the yeasts Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Arxula adeninivorans.

    Science.gov (United States)

    Borrero, Juan; Kunze, Gotthard; Jiménez, Juan J; Böer, Erik; Gútiez, Loreto; Herranz, Carmen; Cintas, Luis M; Hernández, Pablo E

    2012-08-01

    The bacteriocin enterocin A (EntA) produced by Enterococcus faecium T136 has been successfully cloned and produced by the yeasts Pichia pastoris X-33EA, Kluyveromyces lactis GG799EA, Hansenula polymorpha KL8-1EA, and Arxula adeninivorans G1212EA. Moreover, P. pastoris X-33EA and K. lactis GG799EA produced EntA in larger amounts and with higher antimicrobial and specific antimicrobial activities than the EntA produced by E. faecium T136.

  10. Vaginal yeast infection

    Science.gov (United States)

    Yeast infection - vagina; Vaginal candidiasis; Monilial vaginitis ... Most women have a vaginal yeast infection at some time. Candida albicans is a common type of fungus. It is often found in small amounts ...

  11. Yeast Interacting Proteins Database: YFR015C, YJL137C [Yeast Interacting Proteins Database

    Lifescience Database Archive (English)

    Full Text Available yeast homolog; expression induced by glucose limitation, nitrogen starvation, environmental stress, and entr...pression induced by glucose limitation, nitrogen starvation, environmental stress, and entry into stationary

  12. Accelerating Yeast Prion Biology using Droplet Microfluidics

    Science.gov (United States)

    Ung, Lloyd; Rotem, Assaf; Jarosz, Daniel; Datta, Manoshi; Lindquist, Susan; Weitz, David

    2012-02-01

    Prions are infectious proteins in a misfolded form, that can induce normal proteins to take the misfolded state. Yeast prions are relevant, as a model of human prion diseases, and interesting from an evolutionary standpoint. Prions may also be a form of epigenetic inheritance, which allow yeast to adapt to stressful conditions at rates exceeding those of random mutations and propagate that adaptation to their offspring. Encapsulation of yeast in droplet microfluidic devices enables high-throughput measurements with single cell resolution, which would not be feasible using bulk methods. Millions of populations of yeast can be screened to obtain reliable measurements of prion induction and loss rates. The population dynamics of clonal yeast, when a fraction of the cells are prion expressing, can be elucidated. Furthermore, the mechanism by which certain strains of bacteria induce yeast to express prions in the wild can be deduced. Integrating the disparate fields of prion biology and droplet microfluidics reveals a more complete picture of how prions may be more than just diseases and play a functional role in yeast.

  13. Transcriptional Waves in the Yeast Cell Cycle

    OpenAIRE

    Oliva, Anna; Rosebrock, Adam; Ferrezuelo, Francisco; Pyne, Saumyadipta; Chen, Haiying; Skiena, Steve; Futcher, Bruce; Leatherwood, Janet

    2005-01-01

    Many genes are regulated as an innate part of the eukaryotic cell cycle, and a complex transcriptional network helps enable the cyclic behavior of dividing cells. This transcriptional network has been studied in Saccharomyces cerevisiae (budding yeast) and elsewhere. To provide more perspective on these regulatory mechanisms, we have used microarrays to measure gene expression through the cell cycle of Schizosaccharomyces pombe (fission yeast). The 750 genes with the most significant oscillat...

  14. Yeast for virus research

    Science.gov (United States)

    Zhao, Richard Yuqi

    2017-01-01

    Budding yeast (Saccharomyces cerevisiae) and fission yeast (Schizosaccharomyces pombe) are two popular model organisms for virus research. They are natural hosts for viruses as they carry their own indigenous viruses. Both yeasts have been used for studies of plant, animal and human viruses. Many positive sense (+) RNA viruses and some DNA viruses replicate with various levels in yeasts, thus allowing study of those viral activities during viral life cycle. Yeasts are single cell eukaryotic organisms. Hence, many of the fundamental cellular functions such as cell cycle regulation or programed cell death are highly conserved from yeasts to higher eukaryotes. Therefore, they are particularly suited to study the impact of those viral activities on related cellular activities during virus-host interactions. Yeasts present many unique advantages in virus research over high eukaryotes. Yeast cells are easy to maintain in the laboratory with relative short doubling time. They are non-biohazardous, genetically amendable with small genomes that permit genome-wide analysis of virologic and cellular functions. In this review, similarities and differences of these two yeasts are described. Studies of virologic activities such as viral translation, viral replication and genome-wide study of virus-cell interactions in yeasts are highlighted. Impacts of viral proteins on basic cellular functions such as cell cycle regulation and programed cell death are discussed. Potential applications of using yeasts as hosts to carry out functional analysis of small viral genome and to develop high throughput drug screening platform for the discovery of antiviral drugs are presented. PMID:29082230

  15. Expression of a Human Cytochrome P450 in Yeast Permits Analysis of Pathways for Response to and Repair of Aflatoxin-Induced DNA Damage†

    OpenAIRE

    Guo, Yingying; Breeden, Linda L.; Zarbl, Helmut; Preston, Bradley D.; Eaton, David L.

    2005-01-01

    Aflatoxin B1 (AFB1) is a human hepatotoxin and hepatocarcinogen produced by the mold Aspergillus flavus. In humans, AFB1 is primarily bioactivated by cytochrome P450 1A2 (CYP1A2) and 3A4 to a genotoxic epoxide that forms N7-guanine DNA adducts. A series of yeast haploid mutants defective in DNA repair and cell cycle checkpoints were transformed with human CYP1A2 to investigate how these DNA adducts are repaired. Cell survival and mutagenesis following aflatoxin B1 treatment was assayed in str...

  16. Dependence of the expression of the radiation-induced gene conversion to arginine independence in diploid yeast on the amino acid concentration: effect on allelic mapping

    International Nuclear Information System (INIS)

    Murthy, M.S.S.; Rao, B.S.; Deorukhakar, V.V.

    1976-01-01

    The yield of radiation-induced gene conversion to arginine independence in diploid yeast depended on the concentration of the amino acid both in the plating medium and in the intracellular pool. By depletion of the level of arginine in the intracellular pool of amino acid or by provision of arginine at 0.4 mg/l of the plating medium, the yield was varied by a factor as high as 20. This may be important in studies of the genetic mapping of alleles based on the slope of conversion frequency versus dose line

  17. Yeast metabolic engineering for hemicellulosic ethanol production

    Science.gov (United States)

    Jennifer Van Vleet; Thomas W. Jeffries

    2009-01-01

    Efficient fermentation of hemicellulosic sugars is critical for the bioconversion of lignocellulosics to ethanol. Efficient sugar uptake through the heterologous expression of yeast and fungal xylose/glucose transporters can improve fermentation if other metabolic steps are not rate limiting. Rectification of cofactor imbalances through heterologous expression of...

  18. Yeast-based biosensors: design and applications.

    Science.gov (United States)

    Adeniran, Adebola; Sherer, Michael; Tyo, Keith E J

    2015-02-01

    Yeast-based biosensing (YBB) is an exciting research area, as many studies have demonstrated the use of yeasts to accurately detect specific molecules. Biosensors incorporating various yeasts have been reported to detect an incredibly large range of molecules including but not limited to odorants, metals, intracellular metabolites, carcinogens, lactate, alcohols, and sugars. We review the detection strategies available for different types of analytes, as well as the wide range of output methods that have been incorporated with yeast biosensors. We group biosensors into two categories: those that are dependent upon transcription of a gene to report the detection of a desired molecule and those that are independent of this reporting mechanism. Transcription-dependent biosensors frequently depend on heterologous expression of sensing elements from non-yeast organisms, a strategy that has greatly expanded the range of molecules available for detection by YBBs. Transcription-independent biosensors circumvent the problem of sensing difficult-to-detect analytes by instead relying on yeast metabolism to generate easily detected molecules when the analyte is present. The use of yeast as the sensing element in biosensors has proven to be successful and continues to hold great promise for a variety of applications. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  19. Biomedical applications of yeast- a patent view, part one: yeasts as workhorses for the production of therapeutics and vaccines.

    Science.gov (United States)

    Roohvand, Farzin; Shokri, Mehdi; Abdollahpour-Alitappeh, Meghdad; Ehsani, Parastoo

    2017-08-01

    Yeasts, as Eukaryotes, offer unique features for ease of growth and genetic manipulation possibilities, making it an exceptional microbial host. Areas covered: This review provides general and patent-oriented insights into production of biopharmaceuticals by yeasts. Patents, wherever possible, were correlated to the original or review articles. The review describes applications of major GRAS (generally regarded as safe) yeasts for the production of therapeutic proteins and subunit vaccines; additionally, immunomodulatory properties of yeast cell wall components were reviewed for use of whole yeast cells as a new vaccine platform. The second part of the review will discuss yeast- humanization strategies and innovative applications. Expert opinion: Biomedical applications of yeasts were initiated by utilization of Saccharomyces cerevisiae, for production of leavened (fermented) products, and advanced to serve to produce biopharmaceuticals. Higher biomass production and expression/secretion yields, more similarity of glycosylation patterns to mammals and possibility of host-improvement strategies through application of synthetic biology might enhance selection of Pichia pastoris (instead of S. cerevisiae) as a host for production of biopharmaceutical in future. Immunomodulatory properties of yeast cell wall β-glucans and possibility of intracellular expression of heterologous pathogen/tumor antigens in yeast cells have expanded their application as a new platform, 'Whole Yeast Vaccines'.

  20. Biofuels. Altered sterol composition renders yeast thermotolerant

    DEFF Research Database (Denmark)

    Caspeta, Luis; Chen, Yun; Ghiaci, Payam

    2014-01-01

    adaptive laboratory evolution to select yeast strains with improved growth and ethanol production at ≥40°C. Sequencing of the whole genome, genome-wide gene expression, and metabolic-flux analyses revealed a change in sterol composition, from ergosterol to fecosterol, caused by mutations in the C-5 sterol......Ethanol production for use as a biofuel is mainly achieved through simultaneous saccharification and fermentation by yeast. Operating at ≥40°C would be beneficial in terms of increasing efficiency of the process and reducing costs, but yeast does not grow efficiently at those temperatures. We used...... desaturase gene, and increased expression of genes involved in sterol biosynthesis. Additionally, large chromosome III rearrangements and mutations in genes associated with DNA damage and respiration were found, but contributed less to the thermotolerant phenotype....

  1. Chemostat Culture for Yeast Physiology.

    Science.gov (United States)

    Kerr, Emily O; Dunham, Maitreya J

    2017-07-05

    The use of chemostat culture facilitates the careful comparison of different yeast strains growing in well-defined conditions. Variations in physiology can be measured by examining gene expression, metabolite levels, protein content, and cell morphology. In this protocol, we show how a combination of sample types can be collected during harvest from a single 20-mL chemostat in a ministat array, with special attention to coordinating the handling of the most time-sensitive sample types. © 2017 Cold Spring Harbor Laboratory Press.

  2. Tools for genetic engineering of the yeast Hansenula polymorpha

    NARCIS (Netherlands)

    Saraya, Ruchi; Gidijala, Loknath; Veenhuis, Marten; van der Klei, Ida J; Mapelli, Valeria

    2014-01-01

    Hansenula polymorpha is a methylotrophic yeast species that has favorable properties for heterologous protein production and metabolic engineering. It provides an attractive expression platform with the capability to secrete high levels of commercially important proteins. Over the past few years

  3. Distinct mutations in yeast TAF(II)25 differentially affect the composition of TFIID and SAGA complexes as well as global gene expression patterns.

    Science.gov (United States)

    Kirschner, Doris B; vom Baur, Elmar; Thibault, Christelle; Sanders, Steven L; Gangloff, Yann-Gaël; Davidson, Irwin; Weil, P Anthony; Tora, Làszlò

    2002-05-01

    The RNA polymerase II transcription factor TFIID, composed of the TATA-binding protein (TBP) and TBP-associated factors (TAF(II)s), nucleates preinitiation complex formation at protein-coding gene promoters. SAGA, a second TAF(II)-containing multiprotein complex, is involved in transcription regulation in Saccharomyces cerevisiae. One of the essential protein components common to SAGA and TFIID is yTAF(II)25. We define a minimal evolutionarily conserved 91-amino-acid region of TAF(II)25 containing a histone fold domain that is necessary and sufficient for growth in vivo. Different temperature-sensitive mutations of yTAF(II)25 or chimeras with the human homologue TAF(II)30 arrested cell growth at either the G(1) or G(2)/M cell cycle phase and displayed distinct phenotypic changes and gene expression patterns. Immunoprecipitation studies revealed that TAF(II)25 mutation-dependent gene expression and phenotypic changes correlated at least partially with the integrity of SAGA and TFIID. Genome-wide expression analysis revealed that the five TAF(II)25 temperature-sensitive mutant alleles individually affect the expression of between 18 and 33% of genes, whereas taken together they affect 64% of all class II genes. Thus, different yTAF(II)25 mutations induce distinct phenotypes and affect the regulation of different subsets of genes, demonstrating that no individual TAF(II) mutant allele reflects the full range of its normal functions.

  4. Kinetic analysis of gene expression during mycelium to yeast transition and yeast to mycelium germination in Paracoccidioides brasiliensis Análisis de la cinética de expresión de genes durante la transición de micelio a levadura y la germinación levadura a micelio en Paracoccidioides brasiliensis

    Directory of Open Access Journals (Sweden)

    Ana María García

    2011-06-01

    Full Text Available Introduction.Paracoccidioidomycosis is an endemic systemic mycosis caused by Paracoccidioides brasiliensis, a thermally dimorphic fungus that in tissues and cultures at 37ºC grows as a yeast while at lower temperatures (less than 24 ºC it becomes a mold; however the genes that rule these processes and their expression are poorly understood.
    Objective.This research focused on the kinetic expression of certain genes in P. brasiliensis throughout the dimorphic process, one that involves the transition from the mycelium-to-yeast(M-Y forms and the germination from the yeast-to-mycelium(Y- M form.
    Materials and methods. A real-time quantitative polymerase chain reaction(RT-qPCR was optimized to measure the expression of ten genes connected with diverse cellular functions including cell synthesis and wall structure, oxidative stress response, heat shock response, metabolism, proteins' processing, solute transport across the cell membrane and signal transduction pathways at different time points during the M-Y transition, as well as in the Y-M germination processes.
    Results.Genes involved in cell synthesis and wall structure, metabolism and signal transduction were differentially expressed and highly up-regulated during the Y-M germination process; on the other hand, genes involved in heat shock response, cell synthesis and wall structure were highly up-regulated during the M-Y transition process. The remaining genes were differentially regulated during both processes.
    Conclusion.In this work the up-regulation of certain genes involved in the morphological changes occurring in P. brasiliensis yeast and mycelia forms were confirmed, indicating that these biological processes play an important role during the host-pathogen interactions, as well as in the fungus adaptation to environmental conditions
    Introducción. La paracoccidioidomicosis es una micosis sistémica causada por el hogo termo-dimórfico Paracoccidioides

  5. Yeast genome sequencing:

    DEFF Research Database (Denmark)

    Piskur, Jure; Langkjær, Rikke Breinhold

    2004-01-01

    For decades, unicellular yeasts have been general models to help understand the eukaryotic cell and also our own biology. Recently, over a dozen yeast genomes have been sequenced, providing the basis to resolve several complex biological questions. Analysis of the novel sequence data has shown...... of closely related species helps in gene annotation and to answer how many genes there really are within the genomes. Analysis of non-coding regions among closely related species has provided an example of how to determine novel gene regulatory sequences, which were previously difficult to analyse because...... they are short and degenerate and occupy different positions. Comparative genomics helps to understand the origin of yeasts and points out crucial molecular events in yeast evolutionary history, such as whole-genome duplication and horizontal gene transfer(s). In addition, the accumulating sequence data provide...

  6. Transcription of lncRNA prt, clustered prt RNA sites for Mmi1 binding, and RNA polymerase II CTD phospho-sites govern the repression of pho1 gene expression under phosphate-replete conditions in fission yeast.

    Science.gov (United States)

    Chatterjee, Debashree; Sanchez, Ana M; Goldgur, Yehuda; Shuman, Stewart; Schwer, Beate

    2016-07-01

    Expression of fission yeast Pho1 acid phosphatase is repressed during growth in phosphate-rich medium. Repression is mediated by transcription of the prt locus upstream of pho1 to produce a long noncoding (lnc) prt RNA. Repression is also governed by RNA polymerase II CTD phosphorylation status, whereby inability to place a Ser7-PO4 mark (as in S7A) derepresses Pho1 expression, and inability to place a Thr4-PO4 mark (as in T4A) hyper-represses Pho1 in phosphate replete cells. Here we find that basal pho1 expression from the prt-pho1 locus is inversely correlated with the activity of the prt promoter, which resides in a 110-nucleotide DNA segment preceding the prt transcription start site. CTD mutations S7A and T4A had no effect on the activity of the prt promoter or the pho1 promoter, suggesting that S7A and T4A affect post-initiation events in prt lncRNA synthesis that make it less and more repressive of pho1, respectively. prt lncRNA contains clusters of DSR (determinant of selective removal) sequences recognized by the YTH-domain-containing protein Mmi1. Altering the nucleobase sequence of two DSR clusters in the prt lncRNA caused hyper-repression of pho1 in phosphate replete cells, concomitant with increased levels of the prt transcript. The isolated Mmi1 YTH domain binds to RNAs with single or tandem DSR elements, to the latter in a noncooperative fashion. We report the 1.75 Å crystal structure of the Mmi1 YTH domain and provide evidence that Mmi1 recognizes DSR RNA via a binding mode distinct from that of structurally homologous YTH proteins that recognize m(6)A-modified RNA. © 2016 Chatterjee et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. Structural Studies of the Yeast Mitochondrial Degradosome

    DEFF Research Database (Denmark)

    Feddersen, Ane; Jonstrup, Anette Thyssen; Brodersen, Ditlev Egeskov

    The yeast mitochondrial degradosome/exosome (mtExo) is responsible for most RNA turnover in mitochondria and has been proposed to form a central part of a mitochondrial RNA surveillance system responsible for degradation of aberrant and unprocessed RNA ([1], [2]). In contrast to the cytoplasmic...... and nuclear exosome complexes, which consist of 10-12 different nuclease subunits, the mitochondrial degradosome is composed of only two large subunits - an RNase (Dss1p) and a helicase (Suv3p), belonging the Ski2 class of DExH box RNA helicases. Both subunits are encoded on the yeast nuclear genome...... and and Suv3p from the fission yeast, Schizosaccharomyces pombe, have been cloned for heterologous expression in E. coli. Of the two, we have succeeded in purifying the 73kDa Suv3p by Ni2+-affinity chromatography followed by cleavage of the N-terminal His-tag, cation exchange, and gel filtration. Crystals...

  8. Animal vaccines based on orally presented yeast recombinants.

    Science.gov (United States)

    Shin, Min-Kyoung; Yoo, Han Sang

    2013-09-13

    In veterinary vaccinology, the oral route of administration is an attractive alternative compared to the commonly used parenteral route. Yeasts have a number of properties that make them potential live delivery systems for oral vaccination purposes such as their high expression levels, their GRAS status, adjuvant properties, and post-translational modification possibilities. Consequently, yeasts have been employed for the expression of heterologous genes and for the production of therapeutic proteins. Yeast-based vaccines are reviewed with regard to their ability to express and produce antigens from pathogens for veterinary use. Many of these vaccines have been shown to elicit protective immune responses following oral immunization in animals. Ultimately, yeast-based oral vaccines may offer a potential opportunity for the development of novel ideal vaccines in veterinary medicine. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Effects of maternal dietary selenium (Se-enriched yeast) on testis development, testosterone level and testicular steroidogenesis-related gene expression of their male kids in Taihang Black Goats.

    Science.gov (United States)

    Shi, Lei; Song, Ruigao; Yao, Xiaolei; Duan, Yunli; Ren, Youshe; Zhang, Chunxiang; Yue, Wenbin; Lei, Fulin

    2018-07-01

    To investigate the effects of maternal dietary selenium (Se-enriched yeast) on testis development, testosterone level and steroidogenesis-related gene expression in testis of their male kids, selected pregnant Taihang Black Goats were randomly allotted to four treatment groups. They were fed the basal gestation and lactation diets supplemented with 0 (control), 0.5, 2.0 and 4.0 mg of Se/kg DM. Thirty days after weaning, testes were collected from the kids. After the morphological development status of testis was examined, tissue samples were collected for analyzing testosterone concentration and histological parameters. Testosterone synthesis-related genes were detected using real-time PCR. Localization and quantification of androgen receptor (AR) in testis of goats were determined by immunohistochemical and western blot analysis. The results show that Se supplementation in the diet of dams led to higher (p kids. Excessive Se (4.0 mg/kg) can inhibit the development of testis by decreasing testicular weight and volume. The density of spermatogenic cells and Leydig cells in the Se treatment groups was significantly (p kids by modulating testosterone synthesis in goats. More attention should be given to the potential role of maternal nutrition in improving reproductive performance of their offspring. Copyright © 2018 Elsevier Inc. All rights reserved.

  10. Global gene expression analysis of fission yeast mutants impaired in Ser-2 phosphorylation of the RNA pol II carboxy terminal domain.

    Directory of Open Access Journals (Sweden)

    Reza Saberianfar

    Full Text Available In Schizosaccharomyces pombe the nuclear-localized Lsk1p-Lsc1p cyclin dependent kinase complex promotes Ser-2 phosphorylation of the heptad repeats found within the RNA pol II carboxy terminal domain (CTD. Here, we first provide evidence supporting the existence of a third previously uncharacterized Ser-2 CTD kinase subunit, Lsg1p. As expected for a component of the complex, Lsg1p localizes to the nucleus, promotes Ser-2 phosphorylation of the CTD, and physically interacts with both Lsk1p and Lsc1p in vivo. Interestingly, we also demonstrate that lsg1Δ mutants--just like lsk1Δ and lsc1Δ strains--are compromised in their ability to faithfully and reliably complete cytokinesis. Next, to address whether kinase mediated alterations in CTD phosphorylation might selectively alter the expression of genes with roles in cytokinesis and/or the cytoskeleton, global gene expression profiles were analyzed. Mutants impaired in Ser-2 phosphorylation display little change with respect to the level of transcription of most genes. However, genes affecting cytokinesis--including the actin interacting protein gene, aip1--as well as genes with roles in meiosis, are included in a small subset that are differentially regulated. Significantly, genetic analysis of lsk1Δ aip1Δ double mutants is consistent with Lsk1p and Aip1p acting in a linear pathway with respect to the regulation of cytokinesis.

  11. Co-expression of Exo-inulinase and Endo-inulinase Genes in the Oleaginous Yeast Yarrowia lipolytica for Efficient Single Cell Oil Production from Inulin.

    Science.gov (United States)

    Shi, Nianci; Mao, Weian; He, Xiaoxia; Chi, Zhe; Chi, Zhenming; Liu, Guanglei

    2018-05-01

    Yarrowia lipolytica is a promising platform for the single cell oil (SCO) production. In this study, a transformant X+N8 in which exo- and endo-inulinase genes were co-expressed could produce an inulinase activity of 124.33 U/mL within 72 h. However, the inulinase activity of a transformant X2 carrying a single exo-inulinase gene was only 47.33 U/mL within 72 h. Moreover, the transformant X+N8 could accumulate 48.13% (w/w) SCO from inulin and the cell dry weight reached 13.63 g/L within 78 h, which were significantly higher than those of the transformant X2 (41.87% (w/w) and 11.23 g/L) under the same conditions. In addition, inulin hydrolysis and utilization of the transformant X+N8 were also more efficient than those of the transformant X2 during the fermentation process. These results demonstrated that the co-expression of the exo- and endo-inulinase genes significantly enhanced the SCO production from inulin due to the improvement of the inulinase activity and the synergistic action of exo- and endo-inulinase. Besides, over 95.01% of the fatty acids from the transformant X+N8 were C16-C18, especially C18:1 (53.10%), suggesting that the fatty acids could be used as feedstock for biodiesel production.

  12. Immunogenicity and antigenicity of the recombinant EMA-1 protein of Theileria equi expressed in the yeast Pichia pastoris Imunogenicidade e antigenicidade da proteína recombinante EMA-1 de Theileria equi expressa em Pichia pastoris

    Directory of Open Access Journals (Sweden)

    Leandro Q. Nizoli

    2009-06-01

    Full Text Available The equine piroplasmosis caused by Theileria equi is one of the most important parasitic diseases of the equine, causing damage to animal health and economic losses. In T. equi, 2 merozoite surface proteins, equi merozoite antigen EMA-1 and EMA-2, have been identified as the most immunodominant antigens. This suggests that these antigens might be used as immunobiological tools. The EMA-1 of Theileria equi was cloned and expressed in the yeast Pichia pastoris. The transformed yeast was grown at high cell density, expressing up to 389 mg.L-1 of recombinant protein. The protein was concentrated and detected in Dot blot. The recombinant product was antigenically similar to the native protein as determined using monoclonal antibodies, and polyclonal antibodies obtained from equines naturally infected with T. equi. The immunogenicity of rEMA-1 protein was demonstrated by IFAT using sera from recombinant-protein-immunized mice using aluminum hydroxide as adjuvant. All animals vaccinated with rEMA-1 developed a high specific antibody response. This results suggest that rEMA-1expressed in P. pastoris might be a strong candidate to be used as an antigen for immune diagnostics as well as a vaccine antigen.A piroplasmose equina causada por Theileria equi é uma das mais importantes doenças parasitárias de equídeos, causando danos a saúde animal e perdas econômicas. Em T. equi, 2 proteínas de superfície de merozoítos, equi merozoite antigen EMA-1 e EMA-2, têm sido identificadas como antígenos imunodominantes. Sugerindo que estes antígenos possam ser usados como produtos imunobiológicos. O gene EMA-1 de T. equi foi clonado e expressado na levedura Pichia pastoris. As leveduras transformadas foram cultivadas a altas densidades celulares expressando 389 mg.L-1 de proteína recombinante. A proteína foi concentrada e detectada em Dot blot. O produto recombinante foi antigenicamente similar à proteína nativa quando determinado usando anticorpo

  13. Effect of salt hyperosmotic stress on yeast cell viability

    Directory of Open Access Journals (Sweden)

    Logothetis Stelios

    2007-01-01

    Full Text Available During fermentation for ethanol production, yeasts are subjected to different kinds of physico-chemical stresses such as: initially high sugar concentration and low temperature; and later, increased ethanol concentrations. Such conditions trigger a series of biological responses in an effort to maintain cell cycle progress and yeast cell viability. Regarding osmostress, many studies have been focused on transcriptional activation and gene expression in laboratory strains of Saccharomyces cerevisiae. The overall aim of this present work was to further our understanding of wine yeast performance during fermentations under osmotic stress conditions. Specifically, the research work focused on the evaluation of NaCl-induced stress responses of an industrial wine yeast strain S. cerevisiae (VIN 13, particularly with regard to yeast cell growth and viability. The hypothesis was that osmostress conditions energized specific genes to enable yeast cells to survive under stressful conditions. Experiments were designed by pretreating cells with different sodium chloride concentrations (NaCl: 4%, 6% and 10% w/v growing in defined media containing D-glucose and evaluating the impact of this on yeast growth and viability. Subsequent fermentation cycles took place with increasing concentrations of D-glucose (20%, 30%, 40% w/v using salt-adapted cells as inocula. We present evidence that osmostress induced by mild salt pre-treatments resulted in beneficial influences on both cell viability and fermentation performance of an industrial wine yeast strain.

  14. Biotechnology of non-Saccharomyces yeasts--the ascomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-01-01

    Saccharomyces cerevisiae and several other yeast species are among the most important groups of biotechnological organisms. S. cerevisiae and closely related ascomycetous yeasts are the major producer of biotechnology products worldwide, exceeding other groups of industrial microorganisms in productivity and economic revenues. Traditional industrial attributes of the S. cerevisiae group include their primary roles in food fermentations such as beers, cider, wines, sake, distilled spirits, bakery products, cheese, sausages, and other fermented foods. Other long-standing industrial processes involving S. cerevisae yeasts are production of fuel ethanol, single-cell protein (SCP), feeds and fodder, industrial enzymes, and small molecular weight metabolites. More recently, non-Saccharomyces yeasts (non-conventional yeasts) have been utilized as industrial organisms for a variety of biotechnological roles. Non-Saccharomyces yeasts are increasingly being used as hosts for expression of proteins, biocatalysts and multi-enzyme pathways for the synthesis of fine chemicals and small molecular weight compounds of medicinal and nutritional importance. Non-Saccharomyces yeasts also have important roles in agriculture as agents of biocontrol, bioremediation, and as indicators of environmental quality. Several of these products and processes have reached commercial utility, while others are in advanced development. The objective of this mini-review is to describe processes currently used by industry and those in developmental stages and close to commercialization primarily from non-Saccharomyces yeasts with an emphasis on new opportunities. The utility of S. cerevisiae in heterologous production of selected products is also described.

  15. Genetics of Yeasts

    Science.gov (United States)

    Querol, Amparo; Fernández-Espinar, M. Teresa; Belloch, Carmela

    The use of yeasts in biotechnology processes dates back to ancient days. Before 7000 BC, beer was produced in Sumeria. Wine was made in Assyria in 3500 BC, and ancient Rome had over 250 bakeries, which were making leavened bread by 100 BC. And milk has been made into Kefyr and Koumiss in Asia for many centuries (Demain, Phaff, & Kurtzman, 1999). However, the importance of yeast in the food and beverage industries was only realized about 1860, when their role in food manufacturing became evident.

  16. Cytolethal Distending Toxin Demonstrates Genotoxic Activity in a Yeast Model

    OpenAIRE

    Hassane, Duane C.; Lee, Robert B.; Mendenhall, Michael D.; Pickett, Carol L.

    2001-01-01

    Cytolethal distending toxins (CDTs) are multisubunit proteins produced by a variety of bacterial pathogens that cause enlargement, cell cycle arrest, and apoptosis in mammalian cells. While their function remains uncertain, recent studies suggest that they can act as intracellular DNases in mammalian cells. Here we establish a novel yeast model for understanding CDT-associated disease. Expression of the CdtB subunit in yeast causes a G2/M arrest, as seen in mammalian cells. CdtB toxicity is n...

  17. Yeast Infection during Pregnancy

    Science.gov (United States)

    ... disrupt the pH balance of the vagina. Common yeast infection symptoms include vaginal itching and a white, thick discharge that looks ... and Prevention. http://www.cdc.gov/std/tg2015/candidiasis.htm. Accessed Aug. 27, ... Vagina, Cervix, Toxic Shock Syndrome, Endometritis, and Salpingitis. In: ...

  18. Polysome Profile Analysis - Yeast

    Czech Academy of Sciences Publication Activity Database

    Pospíšek, M.; Valášek, Leoš Shivaya

    2013-01-01

    Roč. 530, č. 2013 (2013), s. 173-181 ISSN 0076-6879 Institutional support: RVO:61388971 Keywords : grow yeast cultures * polysome profile analysis * sucrose density gradient centrifugation Subject RIV: CE - Biochemistry Impact factor: 2.194, year: 2013

  19. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  20. Yeast ecology of Kombucha fermentation.

    Science.gov (United States)

    Teoh, Ai Leng; Heard, Gillian; Cox, Julian

    2004-09-01

    Kombucha is a traditional fermentation of sweetened tea, involving a symbiosis of yeast species and acetic acid bacteria. Despite reports of different yeast species being associated with the fermentation, little is known of the quantitative ecology of yeasts in Kombucha. Using oxytetracycline-supplemented malt extract agar, yeasts were isolated from four commercially available Kombucha products and identified using conventional biochemical and physiological tests. During the fermentation of each of the four products, yeasts were enumerated from both the cellulosic pellicle and liquor of the Kombucha. The number and diversity of species varied between products, but included Brettanomyces bruxellensis, Candida stellata, Schizosaccharomyces pombe, Torulaspora delbrueckii and Zygosaccharomyces bailii. While these yeast species are known to occur in Kombucha, the enumeration of each species present throughout fermentation of each of the four Kombucha cultures demonstrated for the first time the dynamic nature of the yeast ecology. Kombucha fermentation is, in general, initiated by osmotolerant species, succeeded and ultimately dominated by acid-tolerant species.

  1. Yeast Hosts for the Production of Recombinant Laccases: A Review

    Czech Academy of Sciences Publication Activity Database

    Antošová, Zuzana; Sychrová, Hana

    2016-01-01

    Roč. 58, č. 2 (2016), s. 93-116 ISSN 1073-6085 R&D Projects: GA TA ČR(CZ) TA01011461 Institutional support: RVO:67985823 Keywords : laccase * yeasts * heterologous expression * recombinant * expression optimization Subject RIV: EE - Microbiology, Virology Impact factor: 1.634, year: 2016

  2. An engineered yeast efficiently secreting penicillin.

    Directory of Open Access Journals (Sweden)

    Loknath Gidijala

    Full Text Available This study aimed at developing an alternative host for the production of penicillin (PEN. As yet, the industrial production of this beta-lactam antibiotic is confined to the filamentous fungus Penicillium chrysogenum. As such, the yeast Hansenula polymorpha, a recognized producer of pharmaceuticals, represents an attractive alternative. Introduction of the P. chrysogenum gene encoding the non-ribosomal peptide synthetase (NRPS delta-(L-alpha-aminoadipyl-L-cysteinyl-D-valine synthetase (ACVS in H. polymorpha, resulted in the production of active ACVS enzyme, when co-expressed with the Bacillus subtilis sfp gene encoding a phosphopantetheinyl transferase that activated ACVS. This represents the first example of the functional expression of a non-ribosomal peptide synthetase in yeast. Co-expression with the P. chrysogenum genes encoding the cytosolic enzyme isopenicillin N synthase as well as the two peroxisomal enzymes isopenicillin N acyl transferase (IAT and phenylacetyl CoA ligase (PCL resulted in production of biologically active PEN, which was efficiently secreted. The amount of secreted PEN was similar to that produced by the original P. chrysogenum NRRL1951 strain (approx. 1 mg/L. PEN production was decreased over two-fold in a yeast strain lacking peroxisomes, indicating that the peroxisomal localization of IAT and PCL is important for efficient PEN production. The breakthroughs of this work enable exploration of new yeast-based cell factories for the production of (novel beta-lactam antibiotics as well as other natural and semi-synthetic peptides (e.g. immunosuppressive and cytostatic agents, whose production involves NRPS's.

  3. Yeast glycolipid biosurfactants.

    Science.gov (United States)

    Jezierska, Sylwia; Claus, Silke; Van Bogaert, Inge

    2017-10-25

    Various yeasts, both conventional and exotic ones, are known to produce compounds useful to mankind. Ethanol is the most known of these compounds, but more complex molecules such as amphiphilic biosurfactants can also be derived from eukaryotic microorganisms at an industrially and commercially relevant scale. Among them, glycolipids are the most promising, due to their attractive properties and high product titers. Many of these compounds can be considered as secondary metabolites with a specific function for the host. Hence, a dedicated biosynthetic process enables regulation and combines pathways delivering the lipidic moiety and the hydrophilic carbohydrate part of the glycolipid. In this Review, we will discuss the biosynthetic and regulatory aspects of the yeast-derived sophorolipids, mannosylerythritol lipids, and cellobiose lipids, with special emphasis on the relation between glycolipid synthesis and the general lipid metabolism. © 2017 Federation of European Biochemical Societies.

  4. Tapping into yeast diversity.

    Science.gov (United States)

    Fay, Justin C

    2012-11-01

    Domesticated organisms demonstrate our capacity to influence wild species but also provide us with the opportunity to understand rapid evolution in the context of substantially altered environments and novel selective pressures. Recent advances in genetics and genomics have brought unprecedented insights into the domestication of many organisms and have opened new avenues for further improvements to be made. Yet, our ability to engineer biological systems is not without limits; genetic manipulation is often quite difficult. The budding yeast, Saccharomyces cerevisiae, is not only one of the most powerful model organisms, but is also the premier producer of fermented foods and beverages around the globe. As a model system, it entertains a hefty workforce dedicated to deciphering its genome and the function it encodes at a rich mechanistic level. As a producer, it is used to make leavened bread, and dozens of different alcoholic beverages, such as beer and wine. Yet, applying the awesome power of yeast genetics to understanding its origins and evolution requires some knowledge of its wild ancestors and the environments from which they were derived. A number of surprisingly diverse lineages of S. cerevisiae from both primeval and secondary forests in China have been discovered by Wang and his colleagues. These lineages substantially expand our knowledge of wild yeast diversity and will be a boon to elucidating the ecology, evolution and domestication of this academic and industrial workhorse.

  5. Sexual differentiation in fission yeast

    DEFF Research Database (Denmark)

    Egel, R; Nielsen, O; Weilguny, D

    1990-01-01

    The regulation of sexual reproduction in yeast constitutes the highest level of differentiation observed in these unicellular organisms. The various ramifications of this system involve DNA rearrangement, transcriptional control, post-translational modification (such as protein phosphorylation) a......) and receptor/signal processing. A few basic similarities are common to both fission and budding yeasts. The wiring of the regulatory circuitry, however, varies considerably between these divergent yeast groups....

  6. Entropy analysis in yeast DNA

    International Nuclear Information System (INIS)

    Kim, Jongkwang; Kim, Sowun; Lee, Kunsang; Kwon, Younghun

    2009-01-01

    In this article, we investigate the language structure in yeast 16 chromosomes. In order to find it, we use the entropy analysis for codons (or amino acids) of yeast 16 chromosomes, developed in analysis of natural language by Montemurro et al. From the analysis, we can see that there exists a language structure in codons (or amino acids) of yeast 16 chromosomes. Also we find that the grammar structure of amino acids of yeast 16 chromosomes has a deep relationship with secondary structure of protein.

  7. Bacterial toxin-antitoxin gene system as containment control in yeast cells

    DEFF Research Database (Denmark)

    Kristoffersen, P.; Jensen, G. B.; Gerdes, K.

    2000-01-01

    The potential of a bacterial toxin-antitoxin gene system for use in containment control in eukaryotes was explored. The Escherichia coli relE and relB genes were expressed in the yeast Saccharomyces cerevisiae, Expression of the relE gene was highly toxic to yeast cells. However, expression...... fermentation processes in which the escape of genetically modified cells would be considered highly risky....

  8. Divergence of iron metabolism in wild Malaysian yeast.

    Science.gov (United States)

    Lee, Hana N; Mostovoy, Yulia; Hsu, Tiffany Y; Chang, Amanda H; Brem, Rachel B

    2013-12-09

    Comparative genomic studies have reported widespread variation in levels of gene expression within and between species. Using these data to infer organism-level trait divergence has proven to be a key challenge in the field. We have used a wild Malaysian population of S. cerevisiae as a test bed in the search to predict and validate trait differences based on observations of regulatory variation. Malaysian yeast, when cultured in standard medium, activated regulatory programs that protect cells from the toxic effects of high iron. Malaysian yeast also showed a hyperactive regulatory response during culture in the presence of excess iron and had a unique growth defect in conditions of high iron. Molecular validation experiments pinpointed the iron metabolism factors AFT1, CCC1, and YAP5 as contributors to these molecular and cellular phenotypes; in genome-scale sequence analyses, a suite of iron toxicity response genes showed evidence for rapid protein evolution in Malaysian yeast. Our findings support a model in which iron metabolism has diverged in Malaysian yeast as a consequence of a change in selective pressure, with Malaysian alleles shifting the dynamic range of iron response to low-iron concentrations and weakening resistance to extreme iron toxicity. By dissecting the iron scarcity specialist behavior of Malaysian yeast, our work highlights the power of expression divergence as a signpost for biologically and evolutionarily relevant variation at the organismal level. Interpreting the phenotypic relevance of gene expression variation is one of the primary challenges of modern genomics.

  9. Genomics and the making of yeast biodiversity

    NARCIS (Netherlands)

    Hittinger, Chris Todd; Rokas, Antonis; Bai, Feng-Yan; Boekhout, Teun; Gonçalves, Paula; Jeffries, Thomas W; Kominek, Jacek; Lachance, Marc-André; Libkind, Diego; Rosa, Carlos A; Sampaio, José Paulo; Kurtzman, Cletus P

    2015-01-01

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces

  10. EXPRESS

    International Nuclear Information System (INIS)

    Ancelin, C.; Le, P.; DeSaint-Quentin, S.; Villatte, N.

    1987-01-01

    This paper presents EXPRESS, an expert system developed for the automation of reliability studies. The first part consists in the description of the method for static thermohydraulic systems. In this step, the authors define the knowledge representation based on the two inference engines - ALOUETTE and LCR developed by EDF. They explain all the process to construct a fault tree from a topological and functional description of the system. Numerous examples are exhibited in illustration of the method. This is followed by the lessons derived from the studies performed on some safety systems of the PALUEL nuclear plant. The development of the same approach for electric power systems is described, insisting on the difference resulting from the sequential nature of these systems. Finally, they show the main advantages identified during the studies

  11. Inheritance of the yeast mitochondrial genome

    DEFF Research Database (Denmark)

    Piskur, Jure

    1994-01-01

    Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast......Mitochondrion, extrachromosomal genetics, intergenic sequences, genome size, mitochondrial DNA, petite mutation, yeast...

  12. Yeasts preservation: alternatives for lyophilisation

    NARCIS (Netherlands)

    Nyanga, L.K.; Nout, M.J.R.; Smid, E.J.; Boekhout, T.; Zwietering, M.H.

    2012-01-01

    The aim of the study was to compare the effect of two low-cost, low technology traditional methods for drying starter cultures with standard lyophilisation. Lyophilised yeast cultures and yeast cultures preserved in dry rice cakes and dry plant fibre strands were examined for viable cell counts

  13. Yeasts in foods and beverages: impact on product quality and safety.

    Science.gov (United States)

    Fleet, Graham H

    2007-04-01

    The role of yeasts in food and beverage production extends beyond the well-known bread, beer and wine fermentations. Molecular analytical technologies have led to a major revision of yeast taxonomy, and have facilitated the ecological study of yeasts in many other products. The mechanisms by which yeasts grow in these ecosystems and impact on product quality can now be studied at the level of gene expression. Their growth and metabolic activities are moderated by a network of strain and species interactions, including interactions with bacteria and other fungi. Some yeasts have been developed as agents for the biocontrol of food spoilage fungi, and others are being considered as novel probiotic organisms. The association of yeasts with opportunistic infections and other adverse responses in humans raises new issues in the field of food safety.

  14. Yeast synthetic biology for the production of recombinant therapeutic proteins.

    Science.gov (United States)

    Kim, Hyunah; Yoo, Su Jin; Kang, Hyun Ah

    2015-02-01

    The production of recombinant therapeutic proteins is one of the fast-growing areas of molecular medicine and currently plays an important role in treatment of several diseases. Yeasts are unicellular eukaryotic microbial host cells that offer unique advantages in producing biopharmaceutical proteins. Yeasts are capable of robust growth on simple media, readily accommodate genetic modifications, and incorporate typical eukaryotic post-translational modifications. Saccharomyces cerevisiae is a traditional baker's yeast that has been used as a major host for the production of biopharmaceuticals; however, several nonconventional yeast species including Hansenula polymorpha, Pichia pastoris, and Yarrowia lipolytica have gained increasing attention as alternative hosts for the industrial production of recombinant proteins. In this review, we address the established and emerging genetic tools and host strains suitable for recombinant protein production in various yeast expression systems, particularly focusing on current efforts toward synthetic biology approaches in developing yeast cell factories for the production of therapeutic recombinant proteins. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  15. Yeast signaling pathways in the oxidative stress response

    Energy Technology Data Exchange (ETDEWEB)

    Ikner, Aminah [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States); Shiozaki, Kazuhiro [Section of Microbiology, Division of Biological Sciences, University of California, Davis, CA 95616 (United States)]. E-mail: kshiozaki@ucdavis.edu

    2005-01-06

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed.

  16. Yeast signaling pathways in the oxidative stress response

    International Nuclear Information System (INIS)

    Ikner, Aminah; Shiozaki, Kazuhiro

    2005-01-01

    Oxidative stress that generates the reactive oxygen species (ROS) is one of the major causes of DNA damage and mutations. The 'DNA damage checkpoint' that arrests cell cycle and repairs damaged DNA has been a focus of recent studies, and the genetically amenable model systems provided by yeasts have been playing a leading role in the eukaryotic checkpoint research. However, means to eliminate ROS are likely to be as important as the DNA repair mechanisms in order to suppress mutations in the chromosomal DNA, and yeasts also serve as excellent models to understand how eukaryotes combat oxidative stress. In this article, we present an overview of the signaling pathways that sense oxidative stress and induce expression of various anti-oxidant genes in the budding yeast Saccharomyces cerevisiae, the fission yeast Schizosaccharomyces pombe and the pathogenic yeast Candida albicans. Three conserved signaling modules have been identified in the oxidative stress response of these diverse yeast species: the stress-responsive MAP kinase cascade, the multistep phosphorelay and the AP-1-like transcription factor. The structure and function of these signaling modules are discussed

  17. Production of Food Grade Yeasts

    Directory of Open Access Journals (Sweden)

    Argyro Bekatorou

    2006-01-01

    Full Text Available Yeasts have been known to humans for thousands of years as they have been used in traditional fermentation processes like wine, beer and bread making. Today, yeasts are also used as alternative sources of high nutritional value proteins, enzymes and vitamins, and have numerous applications in the health food industry as food additives, conditioners and flavouring agents, for the production of microbiology media and extracts, as well as livestock feeds. Modern scientific advances allow the isolation, construction and industrial production of new yeast strains to satisfy the specific demands of the food industry. Types of commercial food grade yeasts, industrial production processes and raw materials are highlighted. Aspects of yeast metabolism, with respect to carbohydrate utilization, nutritional aspects and recent research advances are also discussed.

  18. Evolutionary History of Ascomyceteous Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Haridas, Sajeet; Riley, Robert; Salamov, Asaf; Goker, Markus; Klenk, Hans-Peter; Kurtzman, Cletus P.; Blackwell, Meredith; Grigoriev, Igor; Jeffries, Thomas W.

    2014-06-06

    Yeasts are important for many industrial and biotechnological processes and show remarkable diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. A comparison of these with several other previously published yeast genomes have added increased confidence to the phylogenetic positions of previously poorly placed species including Saitoella complicata, Babjeviella inositovora and Metschnikowia bicuspidata. Phylogenetic analysis also showed that yeasts with alternative nuclear codon usage where CUG encodes serine instead of leucine are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes with Lipomyces starkeyi and the previously published Pneumocystis jirovecii being notable exceptions. Intron analysis suggests that early diverging species have more introns. We also observed a large number of unclassified lineage specific non-simple repeats in these genomes.

  19. Cell wall trapping of autocrine peptides for human G-protein-coupled receptors on the yeast cell surface.

    Directory of Open Access Journals (Sweden)

    Jun Ishii

    Full Text Available G-protein-coupled receptors (GPCRs regulate a wide variety of physiological processes and are important pharmaceutical targets for drug discovery. Here, we describe a unique concept based on yeast cell-surface display technology to selectively track eligible peptides with agonistic activity for human GPCRs (Cell Wall Trapping of Autocrine Peptides (CWTrAP strategy. In our strategy, individual recombinant yeast cells are able to report autocrine-positive activity for human GPCRs by expressing a candidate peptide fused to an anchoring motif. Following expression and activation, yeast cells trap autocrine peptides onto their cell walls. Because captured peptides are incapable of diffusion, they have no impact on surrounding yeast cells that express the target human GPCR and non-signaling peptides. Therefore, individual yeast cells can assemble the autonomous signaling complex and allow single-cell screening of a yeast population. Our strategy may be applied to identify eligible peptides with agonistic activity for target human GPCRs.

  20. Mammalian amyloidogenic proteins promote prion nucleation in yeast.

    Science.gov (United States)

    Chandramowlishwaran, Pavithra; Sun, Meng; Casey, Kristin L; Romanyuk, Andrey V; Grizel, Anastasiya V; Sopova, Julia V; Rubel, Aleksandr A; Nussbaum-Krammer, Carmen; Vorberg, Ina M; Chernoff, Yury O

    2018-03-02

    Fibrous cross-β aggregates (amyloids) and their transmissible forms (prions) cause diseases in mammals (including humans) and control heritable traits in yeast. Initial nucleation of a yeast prion by transiently overproduced prion-forming protein or its (typically, QN-rich) prion domain is efficient only in the presence of another aggregated (in most cases, QN-rich) protein. Here, we demonstrate that a fusion of the prion domain of yeast protein Sup35 to some non-QN-rich mammalian proteins, associated with amyloid diseases, promotes nucleation of Sup35 prions in the absence of pre-existing aggregates. In contrast, both a fusion of the Sup35 prion domain to a multimeric non-amyloidogenic protein and the expression of a mammalian amyloidogenic protein that is not fused to the Sup35 prion domain failed to promote prion nucleation, further indicating that physical linkage of a mammalian amyloidogenic protein to the prion domain of a yeast protein is required for the nucleation of a yeast prion. Biochemical and cytological approaches confirmed the nucleation of protein aggregates in the yeast cell. Sequence alterations antagonizing or enhancing amyloidogenicity of human amyloid-β (associated with Alzheimer's disease) and mouse prion protein (associated with prion diseases), respectively, antagonized or enhanced nucleation of a yeast prion by these proteins. The yeast-based prion nucleation assay, developed in our work, can be employed for mutational dissection of amyloidogenic proteins. We anticipate that it will aid in the identification of chemicals that influence initial amyloid nucleation and in searching for new amyloidogenic proteins in a variety of proteomes. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Genetic study on yeast

    International Nuclear Information System (INIS)

    Mortimer, R.K.

    1981-01-01

    Research during the past year has moved ahead on several fronts. A major compilation of all the genetic mapping data for the yeast Saccharomyces cerevisiae has been completed. The map describes the location of over 300 genes on 17 chromosomes. A report on this work will appear in Microbiological Reviews in December 1980. Recombinant DNA procedures have been introduced into the experiments and RAD52 (one of the genes involved in recombination and repair damage), has been successfully cloned. This clone will be used to determine the gene product. Diploid cells homozygous for RAD52 have exceptionally high frequencies of mitotic loss of chromosomes. This loss is stimulated by ionizing radiation. This effect is a very significant finding. The effect has also been seen with certain other RAD mutants

  2. Method for using a yeast alpha-amylase promoter

    Science.gov (United States)

    Gao, Johnway; Skeen, Rodney S.; Hooker, Brian S.; Anderson, Daniel B.

    2003-04-22

    The present invention provides the promoter clone discovery of an alpha-amylase gene of a starch utilizing yeast strain Schwanniomyces castellii. The isolated alpha-amylase promoter is an inducible promoter, which can regulate strong gene expression in starch culture medium.

  3. Nucleosome structure of the yeast CHA1 promoter

    DEFF Research Database (Denmark)

    Moreira, José Manuel Alfonso; Holmberg, S

    1998-01-01

    conditions. Five yeast TBP mutants defective in different steps in activated transcription abolished CHA1 expression, but failed to affect induction-dependent chromatin rearrangement of the promoter region. Progressive truncations of the RNA polymerase II C-terminal domain caused a progressive reduction...

  4. Lager Yeast Comes of Age

    Science.gov (United States)

    2014-01-01

    Alcoholic fermentations have accompanied human civilizations throughout our history. Lager yeasts have a several-century-long tradition of providing fresh beer with clean taste. The yeast strains used for lager beer fermentation have long been recognized as hybrids between two Saccharomyces species. We summarize the initial findings on this hybrid nature, the genomics/transcriptomics of lager yeasts, and established targets of strain improvements. Next-generation sequencing has provided fast access to yeast genomes. Its use in population genomics has uncovered many more hybridization events within Saccharomyces species, so that lager yeast hybrids are no longer the exception from the rule. These findings have led us to propose network evolution within Saccharomyces species. This “web of life” recognizes the ability of closely related species to exchange DNA and thus drain from a combined gene pool rather than be limited to a gene pool restricted by speciation. Within the domesticated lager yeasts, two groups, the Saaz and Frohberg groups, can be distinguished based on fermentation characteristics. Recent evidence suggests that these groups share an evolutionary history. We thus propose to refer to the Saaz group as Saccharomyces carlsbergensis and to the Frohberg group as Saccharomyces pastorianus based on their distinct genomes. New insight into the hybrid nature of lager yeast will provide novel directions for future strain improvement. PMID:25084862

  5. Yeasts preservation: alternatives for lyophilisation

    OpenAIRE

    Nyanga, Loveness K.; Nout, Martinus J. R.; Smid, Eddy J.; Boekhout, Teun; Zwietering, Marcel H.

    2012-01-01

    The aim of the study was to compare the effect of two low-cost, low technology traditional methods for drying starter cultures with standard lyophilisation. Lyophilised yeast cultures and yeast cultures preserved in dry rice cakes and dry plant fibre strands were examined for viable cell counts during 6 months storage at 4 and 25 °C. None of the yeast cultures showed a significant loss in viable cell count during 6 months of storage at 4 °C upon lyophilisation and preservation in dry rice cak...

  6. Cadmium, ATPase-P, yeast. From transport to toxicity

    International Nuclear Information System (INIS)

    Gardarin, Aurelie

    2007-01-01

    Two projects has been developed during my PhD. One consisting in the functional study of CadA, the Cd 2+ -ATPase from Listeria monocytogenes, the other one was focused on the toxicity of cadmium and the associated response of the yeast Saccharomyces cerevisiae. This two studies used a a phenotype of sensitivity to cadmium induced by CadA expression in yeast. This phenotype was used as a screening tool to identify essential amino acids of Cd transport by CadA and to study cadmium toxicity and the corresponding yeast cellular response. CadA actively transports Cd using ATP hydrolysis as energy source. Directed mutagenesis of the membranous polar, sulphur and charged amino-acids revealed that Cd transport pathway implied four transmembrane segments (Tm) and more precisely the cysteine C 354 , C 356 and proline P 355 of the CPC motif located in Tm6, aspartate D 692 in Tm8, glutamate E 164 in Tm4 and methionine M 149 in Tm5. From our studies, 2 Cd ions would be translocated for each hydrolysis ATP. Expression of CadA in the yeast Saccharomyces cerevisiae induces an hypersensitivity to Cd. A wild type cell can grow up to 100 μm cadmium whereas CadA expressing yeast cannot grow with 1 μm cadmium in the culture medium. This cadmium sensitivity was due to the localisation of CadA in the endoplasmic reticulum membrane. Transport of cadmium in this compartment produces an accumulation of mis-folded proteins that induces the Unfolded Protein Response (UPR). As UPR also occurs in a wild type yeast exposed to low Cd concentration, one can point out endoplasmic reticulum as a extremely sensitive cellular compartment. UPR also appears as an early response to Cd as it happens far before any visible signs of toxicity. (author) [fr

  7. How does yeast respond to pressure?

    Directory of Open Access Journals (Sweden)

    Fernandes P.M.B.

    2005-01-01

    Full Text Available The brewing and baking yeast Saccharomyces cerevisiae has been used as a model for stress response studies of eukaryotic cells. In this review we focus on the effect of high hydrostatic pressure (HHP on S. cerevisiae. HHP exerts a broad effect on yeast cells characteristic of common stresses, mainly associated with protein alteration and lipid bilayer phase transition. Like most stresses, pressure induces cell cycle arrest. Below 50 MPa (500 atm yeast cell morphology is unaffected whereas above 220 MPa wild-type cells are killed. S. cerevisiae cells can acquire barotolerance if they are pretreated with a sublethal stress due to temperature, ethanol, hydrogen peroxide, or pressure. Nevertheless, pressure only leads to protection against severe stress if, after pressure pretreatment, the cells are also re-incubated at room pressure. We attribute this effect to the inhibition of the protein synthesis apparatus under HHP. The global genome expression analysis of S. cerevisiae cells submitted to HHP revealed a stress response profile. The majority of the up-regulated genes are involved in stress defense and carbohydrate metabolism while most repressed genes belong to the cell cycle progression and protein synthesis categories. However, the signaling pathway involved in the pressure response is still to be elucidated. Nitric oxide, a signaling molecule involved in the regulation of a large number of cellular functions, confers baroprotection. Furthermore, S. cerevisiae cells in the early exponential phase submitted to 50-MPa pressure show induction of the expression level of the nitric oxide synthase inducible isoform. As pressure becomes an important biotechnological tool, studies concerning this kind of stress in microorganisms are imperative.

  8. Effect of pretreatment of hydrothermally processed rice straw with laccase-displaying yeast on ethanol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Nakanishi, Akihito; Bae, Jun Gu; Fukai, Kotaro; Tokumoto, Naoki; Kuroda, Kouichi; Ogawa, Jun; Shimizu, Sakayu; Ueda, Mitsuyoshi [Kyoto Univ. (Japan). Div. of Applied Life Sciences; Nakatani, Masato [Daiwa Kasei, Shiga (Japan)

    2012-05-15

    A gene encoding laccase I was identified and cloned from the white-rot fungus Trametes sp. Ha1. Laccase I contained 10 introns and an original secretion signal sequence. After laccase I without introns was prepared by overlapping polymerase chain reaction, it was inserted into expression vector pULD1 for yeast cell surface display. The oxidation activity of a laccase-I-displaying yeast as a whole-cell biocatalyst was examined with 2,2{sup '}-azino-bis(3-ethylbenzthiazoline-6-sulphonic acid) (ABTS), and the constructed yeast showed a high oxidation activity. After the pretreatment of hydrothermally processed rice straw (HPRS) with laccase-I-displaying yeast with ABTS, fermentation was conducted with yeast codisplaying endoglucanase, cellobiohydrolase, and {beta}-glucosidase with HPRS. Fermentation of HPRS treated with laccase-I-displaying yeast was performed with 1.21-fold higher activities than those of HPRS treated with control yeast. The results indicated that pretreatment with laccase-I-displaying yeast with ABTS was effective for direct fermentation of cellulosic materials by yeast codisplaying endoglucanase, cellobiohydrolase, and {beta}-glucosidase. (orig.)

  9. Yeast strains and methods of use thereof

    OpenAIRE

    Goddard, Matthew Robert; Gardner, Richard Clague; Anfang, Nicole

    2013-01-01

    The present invention relates to yeast strains and, in particular, to yeast stains for use in fermentation processes. The invention also relates to methods of fermentation using the yeast strains of the invention either alone or in combination with other yeast strains. The invention thither relates to methods for the selection of yeast strains suitable for fermentation cultures by screening for various metabolic products and the use of specific nutrient sources.

  10. Structural investigations of yeast mannans

    International Nuclear Information System (INIS)

    Rademacher, K.H.

    1983-01-01

    Cell wall mannans were isolated from 8 different Candida species and separated in oligosaccharides by partial acetolysis. After gel chromatography specific acetolysis patterns were obtained. The 13 C NMR spectra of mannans and oligosaccharides were recorded. Signals at delta = 93.1 - 105.4 were assigned to certain chemical structures. Both the spectral patterns and the acetolysis patterns of the yeast mannans can be used for the discrimination of related yeasts. (author)

  11. Transporter engineering in biomass utilization by yeast.

    Science.gov (United States)

    Hara, Kiyotaka Y; Kobayashi, Jyumpei; Yamada, Ryosuke; Sasaki, Daisuke; Kuriya, Yuki; Hirono-Hara, Yoko; Ishii, Jun; Araki, Michihiro; Kondo, Akihiko

    2017-11-01

    Biomass resources are attractive carbon sources for bioproduction because of their sustainability. Many studies have been performed using biomass resources to produce sugars as carbon sources for cell factories. Expression of biomass hydrolyzing enzymes in cell factories is an important approach for constructing biomass-utilizing bioprocesses because external addition of these enzymes is expensive. In particular, yeasts have been extensively engineered to be cell factories that directly utilize biomass because of their manageable responses to many genetic engineering tools, such as gene expression, deletion and editing. Biomass utilizing bioprocesses have also been developed using these genetic engineering tools to construct metabolic pathways. However, sugar input and product output from these cells are critical factors for improving bioproduction along with biomass utilization and metabolic pathways. Transporters are key components for efficient input and output activities. In this review, we focus on transporter engineering in yeast to enhance bioproduction from biomass resources. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. Oral yeast colonization throughout pregnancy.

    Science.gov (United States)

    Rio, R; Simões-Silva, L; Garro, S; Silva, M-J; Azevedo, Á; Sampaio-Maia, B

    2017-03-01

    Recent studies suggest that placenta may harbour a unique microbiome that may have origin in maternal oral microbiome. Although the major physiological and hormonal adjustments observed in pregnant women lead to biochemical and microbiological modifications of the oral environment, very few studies evaluated the changes suffered by the oral microbiota throughout pregnancy. So, the aim of our study was to evaluate oral yeast colonization throughout pregnancy and to compare it with non-pregnant women. The oral yeast colonization was assessed in saliva of 30 pregnant and non-pregnant women longitudinally over a 6-months period. Demographic information was collected, a non-invasive intra-oral examination was performed and saliva flow and pH were determined. Pregnant and non-pregnant groups were similar regarding age and level of education. Saliva flow rate did not differ, but saliva pH was lower in pregnant than in non-pregnant women. Oral yeast prevalence was higher in pregnant than in non-pregnant women, either in the first or in the third trimester, but did not attain statistical significance. In individuals colonized with yeast, the total yeast quantification (Log10CFU/mL) increase from the 1st to the 3rd trimester in pregnant women, but not in non-pregnant women. Pregnancy may favour oral yeast growth that may be associated with an acidic oral environment.

  13. Yeast ribosomal proteins

    International Nuclear Information System (INIS)

    Otaka, E.; Kobata, K.

    1978-01-01

    The cytoplasmic 80s ribosomal proteins from the cells of yeast Saccharomyces cerevisiae were analyzed by SDS two-dimensional polyacrylamide gel electrophoresis. Seventyfour proteins were identified and consecutively numbered from 1 to 74. Upon oxidation of the 80s proteins with performic acid, ten proteins (no. 15, 20, 35, 40, 44, 46, 49, 51, 54 and 55) were dislocated on the gel without change of the total number of protein spots. Five proteins (no. 8, 14, 16, 36 and 74) were phosphorylated in vivo as seen in 32 P-labelling experiments. The large and small subunits separated in low magnesium medium were analyzed by the above gel electrophoresis. At least forty-five and twenty-eight proteins were assumed to be in the large and small subunits, respectively. All proteins found in the 80s ribosomes, except for no. 3, were detected in either subunit without appearance of new spots. The acidic protein no. 3 seems to be lost during subunit dissociation. (orig.) [de

  14. Metabolic regulation of yeast

    Science.gov (United States)

    Fiechter, A.

    1982-12-01

    Metabolic regulation which is based on endogeneous and exogeneous process variables which may act constantly or time dependently on the living cell is discussed. The observed phenomena of the regulation are the result of physical, chemical, and biological parameters. These parameters are identified. Ethanol is accumulated as an intermediate product and the synthesis of biomass is reduced. This regulatory effect of glucose is used for the aerobic production of ethanol. Very high production rates are thereby obtained. Understanding of the regulation mechanism of the glucose effect has improved. In addition to catabolite repression, several other mechanisms of enzyme regulation have been described, that are mostly governed by exogeneous factors. Glucose also affects the control of respiration in a third class of yeasts which are unable to make use of ethanol as a substrate for growth. This is due to the lack of any anaplerotic activity. As a consequence, diauxic growth behavior is reduced to a one-stage growth with a drastically reduced cell yield. The pulse chemostat technique, a systematic approach for medium design is developed and medium supplements that are essential for metabolic control are identified.

  15. Characterization of specialized flocculent yeasts to improve sparkling wine fermentation.

    Science.gov (United States)

    Tofalo, R; Perpetuini, G; Di Gianvito, P; Arfelli, G; Schirone, M; Corsetti, A; Suzzi, G

    2016-06-01

    Flocculent wine yeasts were characterized for the expression of FLO1, FLO5, FLO8, AMN1 and RGA1 genes, growth kinetics and physicochemical properties of the cell surface during a 6-month sparkling wine fermentation period. The expression of FLO1, FLO5, FLO8, AMN1 and RGA1 genes was determined by RT-qPCR. The physicochemical characterization of yeast surface properties was evaluated by the microbial adhesion to solvents method. FLO5 gene was the most expressed one and a linear correlation with the flocculent degree was found. Flocculent strains were more hydrophobic than the commercial wine strain EC1118. Gene expressions and the ability to face secondary wine fermentation conditions were strain dependent. The importance of FLO5 gene in developing the high flocculent characteristic of wine yeasts was highlighted. Cell surface properties depended on the time of fermentation. Better knowledge about the expression of some genes encoding the flocculent phenotype which could be useful to select suitable starter cultures to improve sparkling wine technology was achieved. A step forward in understanding the complexity and strain-specific nature of flocculation phenotype was done. © 2016 The Society for Applied Microbiology.

  16. Yeast Methylotrophy and Autophagy in a Methanol-Oscillating Environment on Growing Arabidopsis thaliana Leaves

    Science.gov (United States)

    Kawaguchi, Kosuke; Yurimoto, Hiroya; Oku, Masahide; Sakai, Yasuyoshi

    2011-01-01

    The yeast Candida boidinii capable of growth on methanol proliferates and survives on the leaves of Arabidopsis thaliana. The local methanol concentration at the phyllosphere of growing A. thaliana exhibited daily periodicity, and yeast cells responded by altering both the expression of methanol-inducible genes and peroxisome proliferation. Even under these dynamically changing environmental conditions, yeast cells proliferated 3 to 4 times in 11 days. Among the C1-metabolic enzymes, enzymes in the methanol assimilation pathway, but not formaldehyde dissimilation or anti-oxidizing enzymes, were necessary for yeast proliferation at the phyllosphere. Furthermore, both peroxisome assembly and pexophagy, a selective autophagy pathway that degrades peroxisomes, were necessary for phyllospheric proliferation. Thus, the present study sheds light on the life cycle and physiology of yeast in the natural environment at both the molecular and cellular levels. PMID:21966472

  17. Yeast Flocculation—Sedimentation and Flotation

    Directory of Open Access Journals (Sweden)

    Graham G. Stewart

    2018-04-01

    Full Text Available Unlike most fermentation alcohol beverage production processes, brewers recycle their yeast. This is achieved by employing a yeast culture’s: flocculation, adhesion, sedimentation, flotation, and cropping characteristics. As a consequence of yeast recycling, the quality of the cropped yeast culture’s characteristics is critical. However, the other major function of brewer’s yeast is to metabolise wort into ethanol, carbon dioxide, glycerol, and other fermentation products, many of which contribute to beer’s overall flavour characteristics. This review will only focus on brewer’s yeast flocculation characteristics.

  18. Population FBA predicts metabolic phenotypes in yeast.

    Directory of Open Access Journals (Sweden)

    Piyush Labhsetwar

    2017-09-01

    Full Text Available Using protein counts sampled from single cell proteomics distributions to constrain fluxes through a genome-scale model of metabolism, Population flux balance analysis (Population FBA successfully described metabolic heterogeneity in a population of independent Escherichia coli cells growing in a defined medium. We extend the methodology to account for correlations in protein expression arising from the co-regulation of genes and apply it to study the growth of independent Saccharomyces cerevisiae cells in two different growth media. We find the partitioning of flux between fermentation and respiration predicted by our model agrees with recent 13C fluxomics experiments, and that our model largely recovers the Crabtree effect (the experimentally known bias among certain yeast species toward fermentation with the production of ethanol even in the presence of oxygen, while FBA without proteomics constraints predicts respirative metabolism almost exclusively. The comparisons to the 13C study showed improvement upon inclusion of the correlations and motivated a technique to systematically identify inconsistent kinetic parameters in the literature. The minor secretion fluxes for glycerol and acetate are underestimated by our method, which indicate a need for further refinements to the metabolic model. For yeast cells grown in synthetic defined (SD medium, the calculated broad distribution of growth rates matches experimental observations from single cell studies, and we characterize several metabolic phenotypes within our modeled populations that make use of diverse pathways. Fast growing yeast cells are predicted to perform significant amount of respiration, use serine-glycine cycle and produce ethanol in mitochondria as opposed to slow growing cells. We use a genetic algorithm to determine the proteomics constraints necessary to reproduce the growth rate distributions seen experimentally. We find that a core set of 51 constraints are essential but

  19. MAP kinase pathways in the yeast Saccharomyces cerevisiae

    Science.gov (United States)

    Gustin, M. C.; Albertyn, J.; Alexander, M.; Davenport, K.; McIntire, L. V. (Principal Investigator)

    1998-01-01

    A cascade of three protein kinases known as a mitogen-activated protein kinase (MAPK) cascade is commonly found as part of the signaling pathways in eukaryotic cells. Almost two decades of genetic and biochemical experimentation plus the recently completed DNA sequence of the Saccharomyces cerevisiae genome have revealed just five functionally distinct MAPK cascades in this yeast. Sexual conjugation, cell growth, and adaptation to stress, for example, all require MAPK-mediated cellular responses. A primary function of these cascades appears to be the regulation of gene expression in response to extracellular signals or as part of specific developmental processes. In addition, the MAPK cascades often appear to regulate the cell cycle and vice versa. Despite the success of the gene hunter era in revealing these pathways, there are still many significant gaps in our knowledge of the molecular mechanisms for activation of these cascades and how the cascades regulate cell function. For example, comparison of different yeast signaling pathways reveals a surprising variety of different types of upstream signaling proteins that function to activate a MAPK cascade, yet how the upstream proteins actually activate the cascade remains unclear. We also know that the yeast MAPK pathways regulate each other and interact with other signaling pathways to produce a coordinated pattern of gene expression, but the molecular mechanisms of this cross talk are poorly understood. This review is therefore an attempt to present the current knowledge of MAPK pathways in yeast and some directions for future research in this area.

  20. The yeast genome may harbor hypoxia response elements (HRE).

    Science.gov (United States)

    Ferreira, Túlio César; Hertzberg, Libi; Gassmann, Max; Campos, Elida Geralda

    2007-01-01

    The hypoxia-inducible factor-1 (HIF-1) is a heterodimeric transcription factor activated when cells are submitted to hypoxia. The heterodimer is composed of two subunits, HIF-1alpha and the constitutively expressed HIF-1beta. During normoxia, HIF-1alpha is degraded by the 26S proteasome, but hypoxia causes HIF-1alpha to be stabilized, enter the nucleus and bind to HIF-1beta, thus forming the active complex. The complex then binds to the regulatory sequences of various genes involved in physiological and pathological processes. The specific regulatory sequence recognized by HIF-1 is the hypoxia response element (HRE) that has the consensus sequence 5'BRCGTGVBBB3'. Although the basic transcriptional regulation machinery is conserved between yeast and mammals, Saccharomyces cerevisiae does not express HIF-1 subunits. However, we hypothesized that baker's yeast has a protein analogous to HIF-1 which participates in the response to changes in oxygen levels by binding to HRE sequences. In this study we screened the yeast genome for HREs using probabilistic motif search tools. We described 24 yeast genes containing motifs with high probability of being HREs (p-value<0.1) and classified them according to biological function. Our results show that S. cerevisiae may harbor HREs and indicate that a transcription factor analogous to HIF-1 may exist in this organism.

  1. PGASO: A synthetic biology tool for engineering a cellulolytic yeast

    Directory of Open Access Journals (Sweden)

    Chang Jui-Jen

    2012-07-01

    Full Text Available Abstract Background To achieve an economical cellulosic ethanol production, a host that can do both cellulosic saccharification and ethanol fermentation is desirable. However, to engineer a non-cellulolytic yeast to be such a host requires synthetic biology techniques to transform multiple enzyme genes into its genome. Results A technique, named Promoter-based Gene Assembly and Simultaneous Overexpression (PGASO, that employs overlapping oligonucleotides for recombinatorial assembly of gene cassettes with individual promoters, was developed. PGASO was applied to engineer Kluyveromycesmarxianus KY3, which is a thermo- and toxin-tolerant yeast. We obtained a recombinant strain, called KR5, that is capable of simultaneously expressing exoglucanase and endoglucanase (both of Trichodermareesei, a beta-glucosidase (from a cow rumen fungus, a neomycin phosphotransferase, and a green fluorescent protein. High transformation efficiency and accuracy were achieved as ~63% of the transformants was confirmed to be correct. KR5 can utilize beta-glycan, cellobiose or CMC as the sole carbon source for growth and can directly convert cellobiose and beta-glycan to ethanol. Conclusions This study provides the first example of multi-gene assembly in a single step in a yeast species other than Saccharomyces cerevisiae. We successfully engineered a yeast host with a five-gene cassette assembly and the new host is capable of co-expressing three types of cellulase genes. Our study shows that PGASO is an efficient tool for simultaneous expression of multiple enzymes in the kefir yeast KY3 and that KY3 can serve as a host for developing synthetic biology tools.

  2. Therapeutic activity of a Saccharomyces cerevisiae-based probiotic and inactivated whole yeast on vaginal candidiasis.

    Science.gov (United States)

    Pericolini, Eva; Gabrielli, Elena; Ballet, Nathalie; Sabbatini, Samuele; Roselletti, Elena; Cayzeele Decherf, Amélie; Pélerin, Fanny; Luciano, Eugenio; Perito, Stefano; Jüsten, Peter; Vecchiarelli, Anna

    2017-01-02

    Vulvovaginal candidiasis is the most prevalent vaginal infection worldwide and Candida albicans is its major agent. Vulvovaginal candidiasis is characterized by disruption of the vaginal microbiota composition, as happens following large spectrum antibiotic usage. Recent studies support the effectiveness of oral and local probiotic treatment for prevention of recurrent vulvovaginal candidiasis. Saccharomyces cerevisiae is a safe yeast used as, or for, the production of ingredients for human nutrition and health. Here, we demonstrate that vaginal administration of probiotic Saccharomyces cerevisiae live yeast (GI) and, in part, inactivated whole yeast Saccharomyces cerevisiae (IY), used as post-challenge therapeutics, was able to positively influence the course of vaginal candidiasis by accelerating the clearance of the fungus. This effect was likely due to multiple interactions of Saccharomyces cerevisiae with Candida albicans. Both live and inactivated yeasts induced coaggregation of Candida and consequently inhibited its adherence to epithelial cells. However, only the probiotic yeast was able to suppress some major virulence factors of Candida albicans such as the ability to switch from yeast to mycelial form and the capacity to express several aspartyl proteases. The effectiveness of live yeast was higher than that of inactivated whole yeast suggesting that the synergy between mechanical effects and biological effects were dominant over purely mechanical effects. The protection of epithelial cells to Candida-induced damage was also observed. Overall, our data show for the first time that Saccharomyces cerevisiae-based ingredients, particularly the living cells, can exert beneficial therapeutic effects on a widespread vaginal mucosal infection.

  3. Colony size measurement of the yeast gene deletion strains for functional genomics

    Directory of Open Access Journals (Sweden)

    Mir-Rashed Nadereh

    2007-04-01

    Full Text Available Abstract Background Numerous functional genomics approaches have been developed to study the model organism yeast, Saccharomyces cerevisiae, with the aim of systematically understanding the biology of the cell. Some of these techniques are based on yeast growth differences under different conditions, such as those generated by gene mutations, chemicals or both. Manual inspection of the yeast colonies that are grown under different conditions is often used as a method to detect such growth differences. Results Here, we developed a computerized image analysis system called Growth Detector (GD, to automatically acquire quantitative and comparative information for yeast colony growth. GD offers great convenience and accuracy over the currently used manual growth measurement method. It distinguishes true yeast colonies in a digital image and provides an accurate coordinate oriented map of the colony areas. Some post-processing calculations are also conducted. Using GD, we successfully detected a genetic linkage between the molecular activity of the plant-derived antifungal compound berberine and gene expression components, among other cellular processes. A novel association for the yeast mek1 gene with DNA damage repair was also identified by GD and confirmed by a plasmid repair assay. The results demonstrate the usefulness of GD for yeast functional genomics research. Conclusion GD offers significant improvement over the manual inspection method to detect relative yeast colony size differences. The speed and accuracy associated with GD makes it an ideal choice for large-scale functional genomics investigations.

  4. The yeast replicative aging model.

    Science.gov (United States)

    He, Chong; Zhou, Chuankai; Kennedy, Brian K

    2018-03-08

    It has been nearly three decades since the budding yeast Saccharomyces cerevisiae became a significant model organism for aging research and it has emerged as both simple and powerful. The replicative aging assay, which interrogates the number of times a "mother" cell can divide and produce "daughters", has been a stalwart in these studies, and genetic approaches have led to the identification of hundreds of genes impacting lifespan. More recently, cell biological and biochemical approaches have been developed to determine how cellular processes become altered with age. Together, the tools are in place to develop a holistic view of aging in this single-celled organism. Here, we summarize the current state of understanding of yeast replicative aging with a focus on the recent studies that shed new light on how aging pathways interact to modulate lifespan in yeast. Copyright © 2018. Published by Elsevier B.V.

  5. [Yeast species in vulvovaginitis candidosa].

    Science.gov (United States)

    Nemes-Nikodém, Éva; Tamási, Béla; Mihalik, Noémi; Ostorházi, Eszter

    2015-01-04

    Vulvovaginal candidiasis is the most common mycosis, however, the available information about antifungal susceptibilities of these yeasts is limited. To compare the gold standard fungal culture with a new molecular identification method and report the incidence of yeast species in vulvovaginitis candidosa. The authors studied 370 yeasts isolated from vulvovaginal candidiasis and identified them by phenotypic and molecular methods. The most common species was Candida albicans (85%), followed by Candida glabrata, and other Candida species. At present there are no recommendations for the evaluation of antifungal susceptibility of pathogenic fungal species occurring in vulvovaginal candidiasis and the natural antifungal resistance of the different species is known only. Matrix Assisted Laser Desorption Ionization Time of Flight identification can be used to differentiate the fluconazole resistant Candida dubliniensis and the sensitive Candida albicans strains.

  6. Indole-3-Acetic Acid-Producing Yeasts in the Phyllosphere of the Carnivorous Plant Drosera indica L

    Science.gov (United States)

    Shin, Li-Ying; Wei, Jyuan-Yu; Fu, Shih-Feng; Chou, Jui-Yu

    2014-01-01

    Yeasts are widely distributed in nature and exist in association with other microorganisms as normal inhabitants of soil, vegetation, and aqueous environments. In this study, 12 yeast strains were enriched and isolated from leaf samples of the carnivorous plant Drosera indica L., which is currently threatened because of restricted habitats and use in herbal industries. According to similarities in large subunit and small subunit ribosomal RNA gene sequences, we identified 2 yeast species in 2 genera of the phylum Ascomycota, and 5 yeast species in 5 genera of the phylum Basidiomycota. All of the isolated yeasts produced indole-3-acetic acid (IAA) when cultivated in YPD broth supplemented with 0.1% L-tryptophan. Growth conditions, such as the pH and temperature of the medium, influenced yeast IAA production. Our results also suggested the existence of a tryptophan-independent IAA biosynthetic pathway. We evaluated the effects of various concentrations of exogenous IAA on yeast growth and observed that IAA produced by wild yeasts modifies auxin-inducible gene expression in Arabidopsis. Our data suggest that yeasts can promote plant growth and support ongoing prospecting of yeast strains for inclusion into biofertilizer for sustainable agriculture. PMID:25464336

  7. Radiation stimulation of yeast crops for increasing output of alcohol and baker yeasts

    International Nuclear Information System (INIS)

    Vlad, E.; Marsheu, P.

    1974-01-01

    The purpose of this study was to stimulate by gamma radiation the existing commercial types of yeast so as to obtain yeasts that would better reflect the substrate and have improved reproductive capacity. The experiments were conducted under ordinary conditions using commercial yeasts received from one factory producing alcohol and bakery yeasts and isolated as pure cultures. Irradiating yeast cultures with small doses (up to 10 krad) was found to stimulate the reproduction and fermenting activity of yeast cells as manifested in increased accumulation of yeast biomass and greater yield of ethyl alcohol. (E.T.)

  8. Stable current outputs and phytate degradation by yeast-based biofuel cell.

    Science.gov (United States)

    Hubenova, Yolina; Georgiev, Danail; Mitov, Mario

    2014-09-01

    In this paper, we report for the first time that Candida melibiosica 2491 yeast strain expresses enhanced phytase activity when used as a biocatalyst in biofuel cells. The polarization also results in an increase of the yeast biomass. Higher steady-state electrical outputs, assigned to earlier production of an endogenous mediator, were achieved at continuous polarization under constant load. The obtained results prove that the C. melibiosica yeast-based biofuel cell could be used for simultaneous electricity generation and phytate bioremediation. In addition, the higher phytase activity obtained by interruptive polarization suggests a new method for increasing the phytase yield from microorganisms. Copyright © 2014 John Wiley & Sons, Ltd.

  9. Cell-surface display of enzymes by the yeast Saccharomyces cerevisiae for synthetic biology.

    Science.gov (United States)

    Tanaka, Tsutomu; Kondo, Akihiko

    2015-02-01

    In yeast cell-surface displays, functional proteins, such as cellulases, are genetically fused to an anchor protein and expressed on the cell surface. Saccharomyces cerevisiae, which is often utilized as a cell factory for the production of fuels, chemicals, and proteins, is the most commonly used yeast for cell-surface display. To construct yeast cells with a desired function, such as the ability to utilize cellulose as a substrate for bioethanol production, cell-surface display techniques for the efficient expression of enzymes on the cell membrane need to be combined with metabolic engineering approaches for manipulating target pathways within cells. In this Minireview, we summarize the recent progress of biorefinery fields in the development and application of yeast cell-surface displays from a synthetic biology perspective and discuss approaches for further enhancing cell-surface display efficiency. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  10. Transcriptional robustness and protein interactions are associated in yeast

    Directory of Open Access Journals (Sweden)

    Conant Gavin C

    2011-05-01

    Full Text Available Abstract Background Robustness to insults, both external and internal, is a characteristic feature of life. One level of biological organization for which noise and robustness have been extensively studied is gene expression. Cells have a variety of mechanisms for buffering noise in gene expression, but it is not completely clear what rules govern whether or not a given gene uses such tools to maintain appropriate expression. Results Here, we show a general association between the degree to which yeast cells have evolved mechanisms to buffer changes in gene expression and whether they possess protein-protein interactions. We argue that this effect bears an affinity to epistasis, because yeast appears to have evolved regulatory mechanisms such that distant changes in gene copy number for a protein-protein interaction partner gene can alter a gene's expression. This association is not unexpected given recent work linking epistasis and the deleterious effects of changes in gene dosage (i.e., the dosage balance hypothesis. Using gene expression data from artificial aneuploid strains of bakers' yeast, we found that genes coding for proteins that physically interact with other proteins show less expression variation in response to aneuploidy than do other genes. This effect is even more pronounced for genes whose products interact with proteins encoded on aneuploid chromosomes. We further found that genes targeted by transcription factors encoded on aneuploid chromosomes were more likely to change in expression after aneuploidy. Conclusions We suggest that these observations can be best understood as resulting from the higher fitness cost of misexpression in epistatic genes and a commensurate greater regulatory control of them.

  11. Homocysteine regulates fatty acid and lipid metabolism in yeast.

    Science.gov (United States)

    Visram, Myriam; Radulovic, Maja; Steiner, Sabine; Malanovic, Nermina; Eichmann, Thomas O; Wolinski, Heimo; Rechberger, Gerald N; Tehlivets, Oksana

    2018-04-13

    S -Adenosyl-l-homocysteine hydrolase (AdoHcy hydrolase; Sah1 in yeast/AHCY in mammals) degrades AdoHcy, a by-product and strong product inhibitor of S -adenosyl-l-methionine (AdoMet)-dependent methylation reactions, to adenosine and homocysteine (Hcy). This reaction is reversible, so any elevation of Hcy levels, such as in hyperhomocysteinemia (HHcy), drives the formation of AdoHcy, with detrimental consequences for cellular methylation reactions. HHcy, a pathological condition linked to cardiovascular and neurological disorders, as well as fatty liver among others, is associated with a deregulation of lipid metabolism. Here, we developed a yeast model of HHcy to identify mechanisms that dysregulate lipid metabolism. Hcy supplementation to wildtype cells up-regulated cellular fatty acid and triacylglycerol content and induced a shift in fatty acid composition, similar to changes observed in mutants lacking Sah1. Expression of the irreversible bacterial pathway for AdoHcy degradation in yeast allowed us to dissect the impact of AdoHcy accumulation on lipid metabolism from the impact of elevated Hcy. Expression of this pathway fully suppressed the growth deficit of sah1 mutants as well as the deregulation of lipid metabolism in both the sah1 mutant and Hcy-exposed wildtype, showing that AdoHcy accumulation mediates the deregulation of lipid metabolism in response to elevated Hcy in yeast. Furthermore, Hcy supplementation in yeast led to increased resistance to cerulenin, an inhibitor of fatty acid synthase, as well as to a concomitant decline of condensing enzymes involved in very long-chain fatty acid synthesis, in line with the observed shift in fatty acid content and composition. © 2018 by The American Society for Biochemistry and Molecular Biology, Inc.

  12. Surplus yeast tank failing catastrophically

    DEFF Research Database (Denmark)

    Hedlund, Frank Huess

    2016-01-01

    GOOD REASON FOR CAUTION I A large surplus yeast tank shot into the air leaving the floor plate and the contents behind. Although not designed for overpressure, the tank was kept at “very slight overpressure” to suppress nuisance foaming. The brewery was unaware of the hazards of compressed air...

  13. Nucleotide excision repair in yeast

    NARCIS (Netherlands)

    Eijk, Patrick van

    2012-01-01

    Nucleotide Excision Repair (NER) is a conserved DNA repair pathway capable of removing a broad spectrum of DNA damage. In human cells a defect in NER leads to the disorder Xeroderma pigmentosum (XP). The yeast Saccharomyces cerevisiae is an excellent model organism to study the mechanism of NER. The

  14. Yeast genomics on food flavours

    NARCIS (Netherlands)

    Schoondermark-Stolk, Sung Ah

    2005-01-01

    The appearance and concentration of the fusel alcohol 3-methyl-1-butanol is important for the flavour of fermented foods. 3-Methyl-1-butanol is formed by yeast during the conversion of L-leucine. Identification of the enzymes and genes involved in the formation of 3-methyl-1-butanol is a major

  15. Applications of computational modeling in metabolic engineering of yeast

    DEFF Research Database (Denmark)

    Kerkhoven, Eduard J.; Lahtvee, Petri-Jaan; Nielsen, Jens

    2015-01-01

    a preferred flux distribution. These methods point to strategies for altering gene expression; however, fluxes are often controlled by post-transcriptional events. Moreover, GEMs are usually not taking into account metabolic regulation, thermodynamics and enzyme kinetics. To facilitate metabolic engineering......, it is necessary to expand the modeling of metabolism to consider kinetics of individual processes. This review will give an overview about models available for metabolic engineering of yeast and discusses their applications....

  16. Improved vanillin production in baker's yeast through in silico design

    DEFF Research Database (Denmark)

    Brochado, Ana Rita; Matos, Cláudia; Møller, Birger L.

    2010-01-01

    Background: Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has...... recently been implemented in baker's yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing an attractive alternative to chemical synthesis. Results: Expression of a glycosyltransferase from Arabidopsis...

  17. A point mutation of human p53, which was not detected as a mutation by a yeast functional assay, led to apoptosis but not p21Waf1/Cip1/Sdi1 expression in response to ionizing radiation in a human osteosarcoma cell line, Saos-2

    International Nuclear Information System (INIS)

    Okaichi, Kumio; Wang Lihong; Sasaki, Ji-ichiro; Saya, Hideyuki; Tada, Mitsuhiro; Okumura, Yutaka

    1999-01-01

    Purpose: The 123A point mutation of p53 showed increased radiosensitivity, whereas other mutations (143A, 175H, and 273H) were not affected. To determine the reason for increased radiosensitivity of the 123A mutation, the response of the transformant of 123A mutation to ionizing radiation (IR) was examined and compared to those of transformants with the wild type p53 or other point mutations (143A, 175H, and 273H). Methods and Materials: Stable transformants with a mutant or wild type p53 made by introducing cDNA into the human osteosarcoma cell line, Saos-2, which lacks an endogenous p53 were used. The transcriptional activity of mutant p53 was examined using a yeast functional assay. The transformants were examined for the accumulation of p53, the induction of p21 Waf1/Cip1/Sdi1 (hereafter referred to as p21), and the other response of p53-responsive genes (MDM2, Bax, and Bcl-2) by Western blotting. Apoptosis was analyzed by detection of DNA fragmentation. Results: The 123A point mutation of p53 was detected as a wild type in the yeast functional assay. The 123A mutant accumulated p53 in response to IR. The 123A mutant did not induce p21, but normally responded to MDM2, Bax, and Bcl-2. The 123A mutant entered apoptosis earlier than the wild type p53 transformant, and induced Fas at earlier in response to IR. Conclusion: The 123A mutant led to apoptosis, but not p21 expression in response to IR. The occurrence of apoptosis, but not induction of p21, corresponded to the radiosensitivity in the transformant. The early occurrence of apoptosis in 123A transformants may depend on the early induction of Fas

  18. Yeast as a Heterologous Model System to Uncover Type III Effector Function.

    Directory of Open Access Journals (Sweden)

    Crina Popa

    2016-02-01

    Full Text Available Type III effectors (T3E are key virulence proteins that are injected by bacterial pathogens inside the cells of their host to subvert cellular processes and contribute to disease. The budding yeast Saccharomyces cerevisiae represents an important heterologous system for the functional characterisation of T3E proteins in a eukaryotic environment. Importantly, yeast contains eukaryotic processes with low redundancy and are devoid of immunity mechanisms that counteract T3Es and mask their function. Expression in yeast of effectors from both plant and animal pathogens that perturb conserved cellular processes often resulted in robust phenotypes that were exploited to elucidate effector functions, biochemical properties, and host targets. The genetic tractability of yeast and its amenability for high-throughput functional studies contributed to the success of this system that, in recent years, has been used to study over 100 effectors. Here, we provide a critical view on this body of work and describe advantages and limitations inherent to the use of yeast in T3E research. "Favourite" targets of T3Es in yeast are cytoskeleton components and small GTPases of the Rho family. We describe how mitogen-activated protein kinase (MAPK signalling, vesicle trafficking, membrane structures, and programmed cell death are also often altered by T3Es in yeast and how this reflects their function in the natural host. We describe how effector structure-function studies and analysis of candidate targeted processes or pathways can be carried out in yeast. We critically analyse technologies that have been used in yeast to assign biochemical functions to T3Es, including transcriptomics and proteomics, as well as suppressor, gain-of-function, or synthetic lethality screens. We also describe how yeast can be used to select for molecules that block T3E function in search of new antibacterial drugs with medical applications. Finally, we provide our opinion on the limitations

  19. A cloned prokaryotic Cd2+ P-type ATPase increases yeast sensitivity to Cd2+

    International Nuclear Information System (INIS)

    Wu, C.-C.; Bal, Nathalie; Perard, Julien; Lowe, Jennifer; Boscheron, Cecile; Mintz, Elisabeth; Catty, Patrice

    2004-01-01

    CadA, the P1-type ATPase involved in Listeria monocytogenes resistance to Cd 2+ , was expressed in Saccharomyces cerevisiae and did just the opposite to what was expected, as it strikingly decreased the Cd 2+ tolerance of these cells. Yeast cells expressing the non-functional mutant Asp 398 Ala could grow on selective medium containing up to 100 μM Cd 2+ , whereas those expressing the functional protein could not grow in the presence of 1 μM Cd 2+ . The CadA-GFP fusion protein was localized in the endoplasmic reticulum membrane, suggesting that yeast hyper-sensitivity was due to Cd 2+ accumulation in the reticulum lumen. CadA is also known to transport Zn 2+ , but Zn 2+ did not protect the cells against Cd 2+ poisoning. In the presence of 10 μM Cd 2+ , transformed yeasts survived by rapid loss of their expression vector

  20. A novel plant glutathione S-transferase/peroxidase suppresses Bax lethality in yeast

    DEFF Research Database (Denmark)

    Kampranis, S C; Damianova, R; Atallah, M

    2000-01-01

    The mammalian inducer of apoptosis Bax is lethal when expressed in yeast and plant cells. To identify potential inhibitors of Bax in plants we transformed yeast cells expressing Bax with a tomato cDNA library and we selected for cells surviving after the induction of Bax. This genetic screen allows...... for the identification of plant genes, which inhibit either directly or indirectly the lethal phenotype of Bax. Using this method a number of cDNA clones were isolated, the more potent of which encodes a protein homologous to the class theta glutathione S-transferases. This Bax-inhibiting (BI) protein was expressed...... in Escherichia coli and found to possess glutathione S-transferase (GST) and weak glutathione peroxidase (GPX) activity. Expression of Bax in yeast decreases the intracellular levels of total glutathione, causes a substantial reduction of total cellular phospholipids, diminishes the mitochondrial membrane...

  1. Crystal structure of the yeast nicotinamidase Pnc1p.

    Science.gov (United States)

    Hu, Gang; Taylor, Alexander B; McAlister-Henn, Lee; Hart, P John

    2007-05-01

    The yeast nicotinamidase Pnc1p acts in transcriptional silencing by reducing levels of nicotinamide, an inhibitor of the histone deacetylase Sir2p. The Pnc1p structure was determined at 2.9A resolution using MAD and MIRAS phasing methods after inadvertent crystallization during the pursuit of the structure of histidine-tagged yeast isocitrate dehydrogenase (IDH). Pnc1p displays a cluster of surface histidine residues likely responsible for its co-fractionation with IDH from Ni(2+)-coupled chromatography resins. Researchers expressing histidine-tagged proteins in yeast should be aware of the propensity of Pnc1p to crystallize, even when overwhelmed in concentration by the protein of interest. The protein assembles into extended helical arrays interwoven to form an unusually robust, yet porous superstructure. Comparison of the Pnc1p structure with those of three homologous bacterial proteins reveals a common core fold punctuated by amino acid insertions unique to each protein. These insertions mediate the self-interactions that define the distinct higher order oligomeric states attained by these molecules. Pnc1p also acts on pyrazinamide, a substrate analog converted by the nicotinamidase from Mycobacterium tuberculosis into a product toxic to that organism. However, we find no evidence for detrimental effects of the drug on yeast cell growth.

  2. Yeast synthetic biology toolbox and applications for biofuel production.

    Science.gov (United States)

    Tsai, Ching-Sung; Kwak, Suryang; Turner, Timothy L; Jin, Yong-Su

    2015-02-01

    Yeasts are efficient biofuel producers with numerous advantages outcompeting bacterial counterparts. While most synthetic biology tools have been developed and customized for bacteria especially for Escherichia coli, yeast synthetic biological tools have been exploited for improving yeast to produce fuels and chemicals from renewable biomass. Here we review the current status of synthetic biological tools and their applications for biofuel production, focusing on the model strain Saccharomyces cerevisiae We describe assembly techniques that have been developed for constructing genes, pathways, and genomes in yeast. Moreover, we discuss synthetic parts for allowing precise control of gene expression at both transcriptional and translational levels. Applications of these synthetic biological approaches have led to identification of effective gene targets that are responsible for desirable traits, such as cellulosic sugar utilization, advanced biofuel production, and enhanced tolerance against toxic products for biofuel production from renewable biomass. Although an array of synthetic biology tools and devices are available, we observed some gaps existing in tool development to achieve industrial utilization. Looking forward, future tool development should focus on industrial cultivation conditions utilizing industrial strains. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permission@oup.com.

  3. 'Yeast mail': a novel Saccharomyces application (NSA) to encrypt messages.

    Science.gov (United States)

    Rosemeyer, Helmut; Paululat, Achim; Heinisch, Jürgen J

    2014-09-01

    The universal genetic code is used by all life forms to encode biological information. It can also be used to encrypt semantic messages and convey them within organisms without anyone but the sender and recipient knowing, i.e., as a means of steganography. Several theoretical, but comparatively few experimental, approaches have been dedicated to this subject, so far. Here, we describe an experimental system to stably integrate encrypted messages within the yeast genome using a polymerase chain reaction (PCR)-based, one-step homologous recombination system. Thus, DNA sequences encoding alphabetical and/or numerical information will be inherited by yeast propagation and can be sent in the form of dried yeast. Moreover, due to the availability of triple shuttle vectors, Saccharomyces cerevisiae can also be used as an intermediate construction device for transfer of information to either Drosophila or mammalian cells as steganographic containers. Besides its classical use in alcoholic fermentation and its modern use for heterologous gene expression, we here show that baker's yeast can thus be employed in a novel Saccharomyces application (NSA) as a simple steganographic container to hide and convey messages. Copyright © 2014 Verlag Helvetica Chimica Acta AG, Zürich.

  4. Endoplasmic reticulum involvement in yeast cell death

    International Nuclear Information System (INIS)

    Nicanor Austriaco, O.

    2012-01-01

    Yeast cells undergo programed cell death (PCD) with characteristic markers associated with apoptosis in mammalian cells including chromatin breakage, nuclear fragmentation, reactive oxygen species generation, and metacaspase activation. Though significant research has focused on mitochondrial involvement in this phenomenon, more recent work with both Saccharomyces cerevisiae and Schizosaccharomyces pombe has also implicated the endoplasmic reticulum (ER) in yeast PCD. This minireview provides an overview of ER stress-associated cell death (ER-SAD) in yeast. It begins with a description of ER structure and function in yeast before moving to a discussion of ER-SAD in both mammalian and yeast cells. Three examples of yeast cell death associated with the ER will be highlighted here including inositol starvation, lipid toxicity, and the inhibition of N-glycosylation. It closes by suggesting ways to further examine the involvement of the ER in yeast cell death.

  5. Brewing characteristics of piezosensitive sake yeasts

    Science.gov (United States)

    Nomura, Kazuki; Hoshino, Hirofumi; Igoshi, Kazuaki; Onozuka, Haruka; Tanaka, Erika; Hayashi, Mayumi; Yamazaki, Harutake; Takaku, Hiroaki; Iguchi, Akinori; Shigematsu, Toru

    2018-04-01

    Application of high hydrostatic pressure (HHP) treatment to food processing is expected as a non-thermal fermentation regulation technology that supresses over fermentation. However, the yeast Saccharomyces cerevisiae used for Japanese rice wine (sake) brewing shows high tolerance to HHP. Therefore, we aimed to generate pressure-sensitive (piezosensitive) sake yeast strains by mating sake with piezosensitive yeast strains to establish an HHP fermentation regulation technology and extend the shelf life of fermented foods. The results of phenotypic analyses showed that the generated yeast strains were piezosensitive and exhibited similar fermentation ability compared with the original sake yeast strain. In addition, primary properties of sake brewed using these strains, such as ethanol concentration, sake meter value and sake flavor compounds, were almost equivalent to those obtained using the sake yeast strain. These results suggest that the piezosensitive strains exhibit brewing characteristics essentially equivalent to those of the sake yeast strain.

  6. An IPTG-inducible derivative of the fission yeast nmt promoter

    DEFF Research Database (Denmark)

    Kjærulff, Søren; Nielsen, Olaf

    2015-01-01

    We here describe an IPTG-inducible system that reveals that the lac repressor alone can function as a potent transmodulator to regulate gene expression in the fission yeast, Schizosaccharomyces pombe. This expression system is a derivative of the Sz. pombe nmt promoter, which normally is strongly...

  7. Antioxidant defense parameters as predictive biomarkers for fermentative capacity of active dried wine yeast.

    Science.gov (United States)

    Gamero-Sandemetrio, Esther; Gómez-Pastor, Rocío; Matallana, Emilia

    2014-08-01

    The production of active dried yeast (ADY) is a common practice in industry for the maintenance of yeast starters and as a means of long term storage. The process, however, causes multiple cell injuries, with oxidative damage being one of the most important stresses. Consequentially, dehydration tolerance is a highly appreciated property in yeast for ADY production. In this study we analyzed the cellular redox environment in three Saccharomyces cerevisiae wine strains, which show markedly different fermentative capacities after dehydration. To measure/quantify the effect of dehydration on the S. cerevisiae strains, we used: (i) fluorescent probes; (ii) antioxidant enzyme activities; (ii) intracellular damage; (iii) antioxidant metabolites; and (iv) gene expression, to select a minimal set of biochemical parameters capable of predicting desiccation tolerance in wine yeasts. Our results show that naturally enhanced antioxidant defenses prevent oxidative damage after wine yeast biomass dehydration and improve fermentative capacity. Based on these results we chose four easily assayable parameters/biomarkers for the selection of industrial yeast strains of interest for ADY production: trehalose and glutathione levels, and glutathione reductase and catalase enzymatic activities. Yeast strains selected in accordance with this process display high levels of trehalose, low levels of oxidized glutathione, a high induction of glutathione reductase activity, as well as a high basal level and sufficient induction of catalase activity, which are properties inherent in superior ADY strains. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Dynamical analysis of yeast protein interaction network during the sake brewing process.

    Science.gov (United States)

    Mirzarezaee, Mitra; Sadeghi, Mehdi; Araabi, Babak N

    2011-12-01

    Proteins interact with each other for performing essential functions of an organism. They change partners to get involved in various processes at different times or locations. Studying variations of protein interactions within a specific process would help better understand the dynamic features of the protein interactions and their functions. We studied the protein interaction network of Saccharomyces cerevisiae (yeast) during the brewing of Japanese sake. In this process, yeast cells are exposed to several stresses. Analysis of protein interaction networks of yeast during this process helps to understand how protein interactions of yeast change during the sake brewing process. We used gene expression profiles of yeast cells for this purpose. Results of our experiments revealed some characteristics and behaviors of yeast hubs and non-hubs and their dynamical changes during the brewing process. We found that just a small portion of the proteins (12.8 to 21.6%) is responsible for the functional changes of the proteins in the sake brewing process. The changes in the number of edges and hubs of the yeast protein interaction networks increase in the first stages of the process and it then decreases at the final stages.

  9. Yeast Isolation for Bioethanol Production

    Directory of Open Access Journals (Sweden)

    EKA RURIANI

    2012-09-01

    Full Text Available We have isolated 12 yeast isolates from five different rotten fruits by using a yeast glucose chloramphenicol agar (YGCA medium supplemented with tetracycline. From pre-screening assay, four isolates exhibited higher substrate (glucose-xylose consumption efficiency in the reaction tube fermentation compared to Saccharomyces cerevisiae dan Saccharomyces ellipsoids as the reference strains. Based on the fermentation process in gooseneck flasks, we observed that two isolates (K and SB showed high fermentation efficiency both in sole glucose and mixed glucose-xylose substrate. Moreover, isolates K and SB produced relatively identical level of ethanol concentration compared to the reference strains. Isolates H and MP could only produce high levels of ethanol in glucose fermentation, while only half of that amount of ethanol was detected in glucose-xylose fermentation. Isolate K and SB were identified as Pichia kudriavzeevii (100% based on large sub unit (LSU ribosomal DNA D1/D2 region.

  10. Oral yeast colonization throughout pregnancy

    OpenAIRE

    Rio, Rute; Sim?es-Silva, Liliana; Garro, Sofia; Silva, M?rio-Jorge; Azevedo, ?lvaro; Sampaio-Maia, Benedita

    2017-01-01

    Background Recent studies suggest that placenta may harbour a unique microbiome that may have origin in maternal oral microbiome. Although the major physiological and hormonal adjustments observed in pregnant women lead to biochemical and microbiological modifications of the oral environment, very few studies evaluated the changes suffered by the oral microbiota throughout pregnancy. So, the aim of our study was to evaluate oral yeast colonization throughout pregnancy and to compare it with n...

  11. Yeast: A new oil producer?

    Directory of Open Access Journals (Sweden)

    Beopoulos Athanasios

    2012-01-01

    Full Text Available The increasing demand of plant oils or animal fat for biodiesel and specific lipid derivatives for the oleochemical field (such as lubricants, adhesives or plastics have created price imbalance in both the alimentary and energy field. Moreover, the lack of non-edible oil feedstock has given rise to concerns on land-use practices and on oil production strategies. Recently, much attention has been paid to the exploitation of microbial oils. Most of them present lipid profiles similar in type and composition to plants and could therefore have many advantages as are no competitive with food, have short process cycles and their cultivation is independent of climate factors. Among microorganisms, yeasts seem to be very promising as they can be easily genetically enhanced, are suitable for large-scale fermentation and are devoid of endotoxins. This review will focus on the recent understanding of yeasts lipid metabolism, the succeeding genetic engineering of the lipid pathways and the recent developments on fermentation techniques that pointed out yeasts as promising alternative producers for oil or plastic.

  12. Yeast Carbon Catabolite Repression†

    Science.gov (United States)

    Gancedo, Juana M.

    1998-01-01

    Glucose and related sugars repress the transcription of genes encoding enzymes required for the utilization of alternative carbon sources; some of these genes are also repressed by other sugars such as galactose, and the process is known as catabolite repression. The different sugars produce signals which modify the conformation of certain proteins that, in turn, directly or through a regulatory cascade affect the expression of the genes subject to catabolite repression. These genes are not all controlled by a single set of regulatory proteins, but there are different circuits of repression for different groups of genes. However, the protein kinase Snf1/Cat1 is shared by the various circuits and is therefore a central element in the regulatory process. Snf1 is not operative in the presence of glucose, and preliminary evidence suggests that Snf1 is in a dephosphorylated state under these conditions. However, the enzymes that phosphorylate and dephosphorylate Snf1 have not been identified, and it is not known how the presence of glucose may affect their activity. What has been established is that Snf1 remains active in mutants lacking either the proteins Grr1/Cat80 or Hxk2 or the Glc7 complex, which functions as a protein phosphatase. One of the main roles of Snf1 is to relieve repression by the Mig1 complex, but it is also required for the operation of transcription factors such as Adr1 and possibly other factors that are still unidentified. Although our knowledge of catabolite repression is still very incomplete, it is possible in certain cases to propose a partial model of the way in which the different elements involved in catabolite repression may be integrated. PMID:9618445

  13. Construction and application of a protein and genetic interaction network (yeast interactome).

    Science.gov (United States)

    Stuart, Gregory R; Copeland, William C; Strand, Micheline K

    2009-04-01

    Cytoscape is a bioinformatic data analysis and visualization platform that is well-suited to the analysis of gene expression data. To facilitate the analysis of yeast microarray data using Cytoscape, we constructed an interaction network (interactome) using the curated interaction data available from the Saccharomyces Genome Database (www.yeastgenome.org) and the database of yeast transcription factors at YEASTRACT (www.yeastract.com). These data were formatted and imported into Cytoscape using semi-automated methods, including Linux-based scripts, that simplified the process while minimizing the introduction of processing errors. The methods described for the construction of this yeast interactome are generally applicable to the construction of any interactome. Using Cytoscape, we illustrate the use of this interactome through the analysis of expression data from a recent yeast diauxic shift experiment. We also report and briefly describe the complex associations among transcription factors that result in the regulation of thousands of genes through coordinated changes in expression of dozens of transcription factors. These cells are thus able to sensitively regulate cellular metabolism in response to changes in genetic or environmental conditions through relatively small changes in the expression of large numbers of genes, affecting the entire yeast metabolome.

  14. Functional expression of rat VPAC1 receptor in Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Hansen, M.K.; Tams, J.W.; Fahrenkrug, Jan

    1999-01-01

    G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide......G protein-coupled receptor; heterologous expression; membrane protein; Saccharomyces cerevisiae, vasoactive intestinal polypeptide; yeast mating factor-pre-pro *Ga-leader peptide...

  15. Yeast flocculation: New story in fuel ethanol production.

    Science.gov (United States)

    Zhao, X Q; Bai, F W

    2009-01-01

    Yeast flocculation has been used in the brewing industry to facilitate biomass recovery for a long time, and thus its mechanism of yeast flocculation has been intensively studied. However, the application of flocculating yeast in ethanol production garnered attention mainly in the 1980s and 1990s. In this article, updated research progress in the molecular mechanism of yeast flocculation and the impact of environmental conditions on yeast flocculation are reviewed. Construction of flocculating yeast strains by genetic approach and utilization of yeast flocculation for ethanol production from various feedstocks were presented. The concept of self-immobilized yeast cells through their flocculation is revisited through a case study of continuous ethanol fermentation with the flocculating yeast SPSC01, and their technical and economic advantages are highlighted by comparing with yeast cells immobilized with supporting materials and regular free yeast cells as well. Taking the flocculating yeast SPSC01 as an example, the ethanol tolerance of the flocculating yeast was also discussed.

  16. Toward low-cost affinity reagents: lyophilized yeast-scFv probes specific for pathogen antigens.

    Directory of Open Access Journals (Sweden)

    Sean A Gray

    Full Text Available The generation of affinity reagents, usually monoclonal antibodies, remains a critical bottleneck in biomedical research and diagnostic test development. Recombinant antibody-like proteins such as scFv have yet to replace traditional monoclonal antibodies in antigen detection applications, in large part because of poor performance of scFv in solution. To address this limitation, we have developed assays that use whole yeast cells expressing scFv on their surfaces (yeast-scFv in place of soluble purified scFv or traditional monoclonal antibodies. In this study, a nonimmune library of human scFv displayed on the surfaces of yeast cells was screened for clones that bind to recombinant cyst proteins of Entamoeba histolytica, an enteric pathogen of humans. Selected yeast-scFv clones were stabilized by lyophilization and used in detection assay formats in which the yeast-scFv served as solid support-bound monoclonal antibodies. Specific binding of antigen to the yeast-scFv was detected by staining with rabbit polyclonal antibodies. In flow cytometry-based assays, lyophilized yeast-scFv reagents retained full binding activity and specificity for their cognate antigens after 4 weeks of storage at room temperature in the absence of desiccants or stabilizers. Because flow cytometry is not available to all potential assay users, an immunofluorescence assay was also developed that detects antigen with similar sensitivity and specificity. Antigen-specific whole-cell yeast-scFv reagents can be selected from nonimmune libraries in 2-3 weeks, produced in vast quantities, and packaged in lyophilized form for extended shelf life. Lyophilized yeast-scFv show promise as low cost, renewable alternatives to monoclonal antibodies for diagnosis and research.

  17. Yeasts Diversity in Fermented Foods and Beverages

    Science.gov (United States)

    Tamang, Jyoti Prakash; Fleet, Graham H.

    People across the world have learnt to culture and use the essential microorganisms for production of fermented foods and alcoholic beverages. A fermented food is produced either spontaneously or by adding mixed/pure starter culture(s). Yeasts are among the essential functional microorganisms encountered in many fermented foods, and are commercially used in production of baker's yeast, breads, wine, beer, cheese, etc. In Asia, moulds are predominant followed by amylolytic and alcohol-producing yeasts in the fermentation processes, whereas in Africa, Europe, Australia and America, fermented products are prepared exclusively using bacteria or bacteria-yeasts mixed cultures. This chapter would focus on the varieties of fermented foods and alcoholic beverages produced by yeasts, their microbiology and role in food fermentation, widely used commercial starters (pilot production, molecular aspects), production technology of some common commercial fermented foods and alcoholic beverages, toxicity and food safety using yeasts cultures and socio-economy

  18. Quantitative monitoring of yeast fermentation using Raman spectroscopy

    DEFF Research Database (Denmark)

    Iversen, Jens A.; Berg, Rolf W.; Ahring, Birgitte K.

    2014-01-01

    of a Saccharomyces cerevisiae fermentation process using a Raman spectroscopy instrument equipped with a robust sapphire ball probe.A method was developed to correct the Raman signal for the attenuation caused by light scattering cell particulate, hence enabling quantification of reaction components and possibly...... measurement of yeast cell concentrations. Extinction of Raman intensities to more than 50 % during fermentation was normalized with approximated extinction expressions using Raman signal of water around 1,627 cm−1 as internal standard to correct for the effect of scattering. Complicated standard multi...... was followed by linear regression. In situ quantification measurements of the fermentation resulted in root mean square errors of prediction (RMSEP) of 2.357, 1.611, and 0.633 g/L for glucose, ethanol, and yeast concentrations, respectively....

  19. Synthetic yeast based cell factories for vanillin-glucoside production

    DEFF Research Database (Denmark)

    Strucko, Tomas

    and controlled expression/overexpression of genes of interest. De novo biosynthetic pathway for vanillin-β-glucoside production was employed as a model system for several case studies in this project. In order to construct yeast cell factories fulfilling current demands of industrial biotechnology, methods......The yeast Saccharomyces cerevisiae is well a characterized microorganism and widely used as eukaryotic model organism as well as a key cell factory for bioproduction of various products. The latter comprise a large variety of scientifically and industrially relevant products such as low-value bulk...... chemicals and biofuels, food additives, high-value chemicals and recombinant proteins. Despite the recent achievements in the fields of systems biology and metabolic engineering together with availability of broad genetic engineering toolbox, the full potential of S. cerevisiae as a cell factory is not yet...

  20. Yeast functional genomic screens lead to identification of a role for a bacterial effector in innate immunity regulation.

    Directory of Open Access Journals (Sweden)

    Roger W Kramer

    2007-02-01

    Full Text Available Numerous bacterial pathogens manipulate host cell processes to promote infection and ultimately cause disease through the action of proteins that they directly inject into host cells. Identification of the targets and molecular mechanisms of action used by these bacterial effector proteins is critical to understanding pathogenesis. We have developed a systems biological approach using the yeast Saccharomyces cerevisiae that can expedite the identification of cellular processes targeted by bacterial effector proteins. We systematically screened the viable yeast haploid deletion strain collection for mutants hypersensitive to expression of the Shigella type III effector OspF. Statistical data mining of the results identified several cellular processes, including cell wall biogenesis, which when impaired by a deletion caused yeast to be hypersensitive to OspF expression. Microarray experiments revealed that OspF expression resulted in reversed regulation of genes regulated by the yeast cell wall integrity pathway. The yeast cell wall integrity pathway is a highly conserved mitogen-activated protein kinase (MAPK signaling pathway, normally activated in response to cell wall perturbations. Together these results led us to hypothesize and subsequently demonstrate that OspF inhibited both yeast and mammalian MAPK signaling cascades. Furthermore, inhibition of MAPK signaling by OspF is associated with attenuation of the host innate immune response to Shigella infection in a mouse model. These studies demonstrate how yeast systems biology can facilitate functional characterization of pathogenic bacterial effector proteins.

  1. Drosophila Regulate Yeast Density and Increase Yeast Community Similarity in a Natural Substrate

    OpenAIRE

    Stamps, Judy A.; Yang, Louie H.; Morales, Vanessa M.; Boundy-Mills, Kyria L.

    2012-01-01

    Drosophila melanogaster adults and larvae, but especially larvae, had profound effects on the densities and community structure of yeasts that developed in banana fruits. Pieces of fruit exposed to adult female flies previously fed fly-conditioned bananas developed higher yeast densities than pieces of the same fruits that were not exposed to flies, supporting previous suggestions that adult Drosophila vector yeasts to new substrates. However, larvae alone had dramatic effects on yeast densit...

  2. Understanding start-up problems in yeast glycolysis.

    Science.gov (United States)

    Overal, Gosse B; Teusink, Bas; Bruggeman, Frank J; Hulshof, Josephus; Planqué, Robert

    2018-05-01

    Yeast glycolysis has been the focus of research for decades, yet a number of dynamical aspects of yeast glycolysis remain poorly understood at present. If nutrients are scarce, yeast will provide its catabolic and energetic needs with other pathways, but the enzymes catalysing upper glycolytic fluxes are still expressed. We conjecture that this overexpression facilitates the rapid transition to glycolysis in case of a sudden increase in nutrient concentration. However, if starved yeast is presented with abundant glucose, it can enter into an imbalanced state where glycolytic intermediates keep accumulating, leading to arrested growth and cell death. The bistability between regularly functioning and imbalanced phenotypes has been shown to depend on redox balance. We shed new light on these phenomena with a mathematical analysis of an ordinary differential equation model, including NADH to account for the redox balance. In order to gain qualitative insight, most of the analysis is parameter-free, i.e., without assigning a numerical value to any of the parameters. The model has a subtle bifurcation at the switch between an inviable equilibrium state and stable flux through glycolysis. This switch occurs if the ratio between the flux through upper glycolysis and ATP consumption rate of the cell exceeds a fixed threshold. If the enzymes of upper glycolysis would be barely expressed, our model predicts that there will be no glycolytic flux, even if external glucose would be at growth-permissable levels. The existence of the imbalanced state can be found for certain parameter conditions independent of the mentioned bifurcation. The parameter-free analysis proved too complex to directly gain insight into the imbalanced states, but the starting point of a branch of imbalanced states can be shown to exist in detail. Moreover, the analysis offers the key ingredients necessary for successful numerical continuation, which highlight the existence of this bistability and the

  3. Engineering 1-Alkene Biosynthesis and Secretion by Dynamic Regulation in Yeast

    DEFF Research Database (Denmark)

    Zhou, Yongjin J.; Hu, Yating; Zhu, Zhiwei

    2018-01-01

    strategy to control the expression of membrane enzyme and 1-alkene production and cell growth by relieving the possible toxicity of overexpressed membrane proteins. With these efforts, the engineered yeast cell factory produced 35.3 mg/L 1-alkenes with more than 80% being secreted. This represents a 10...... product secretion. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce and secrete 1-alkenes by manipulation of the fatty acid metabolism, enzyme selection, engineering the electron transfer system and expressing a transporter. Furthermore, we implemented a dynamic regulation...

  4. Novel insights in genetic transformation of the probiotic yeast Saccharomyces boulardii.

    Science.gov (United States)

    Douradinha, Bruno; Reis, Viviane C B; Rogers, Matthew B; Torres, Fernando A G; Evans, Jared D; Marques, Ernesto T A

    2014-01-01

    Saccharomyces boulardii (S. boulardii) is a probiotic yeast related to Saccharomyces cerevisiae (S. cerevisiae) but with distinct genetic, taxonomic and metabolic properties. S. cerevisiae has been used extensively in biotechnological applications. Currently, many strains are available, and multiple genetic tools have been developed, which allow the expression of several exogenous proteins of interest with applications in the fields of medicine, biofuels, the food industry, and scientific research, among others. Although S. boulardii has been widely studied due to its probiotic properties against several gastrointestinal tract disorders, very few studies addressed the use of this yeast as a vector for expression of foreign genes of interest with biotechnological applications. Here we show that, despite the similarity of the two yeasts, not all genetic tools used in S. cerevisiae can be applied in S. boulardii. While transformation of the latter could be obtained using a commercial kit developed for the former, consequent screening of successful transformants had to be optimized. We also show that several genes frequently used in genetic manipulation of S. cerevisiae (e.g., promoters and resistance markers) are present in S. boulardii. Sequencing revealed a high rate of homology (> 96%) between the orthologs of the two yeasts. However, we also observed some of them are not eligible to be targeted for transformation of S. boulardii. This work has important applications toward the potential of this probiotic yeast as an expression system for genes of interest.

  5. Isolation of baker's yeast mutants with proline accumulation that showed enhanced tolerance to baking-associated stresses.

    Science.gov (United States)

    Tsolmonbaatar, Ariunzaya; Hashida, Keisuke; Sugimoto, Yukiko; Watanabe, Daisuke; Furukawa, Shuhei; Takagi, Hiroshi

    2016-12-05

    During bread-making processes, yeast cells are exposed to baking-associated stresses such as freeze-thaw, air-drying, and high-sucrose concentrations. Previously, we reported that self-cloning diploid baker's yeast strains that accumulate proline retained higher-level fermentation abilities in both frozen and sweet doughs than the wild-type strain. Although self-cloning yeasts do not have to be treated as genetically modified yeasts, the conventional methods for breeding baker's yeasts are more acceptable to consumers than the use of self-cloning yeasts. In this study, we isolated mutants resistant to the proline analogue azetidine-2-carboxylate (AZC) derived from diploid baker's yeast of Saccharomyces cerevisiae. Some of the mutants accumulated a greater amount of intracellular proline, and among them, 5 mutants showed higher cell viability than that observed in the parent wild-type strain under freezing or high-sucrose stress conditions. Two of them carried novel mutations in the PRO1 gene encoding the Pro247Ser or Glu415Lys variant of γ-glutamyl kinase (GK), which is a key enzyme in proline biosynthesis in S. cerevisiae. Interestingly, we found that these mutations resulted in AZC resistance of yeast cells and desensitization to proline feedback inhibition of GK, leading to intracellular proline accumulation. Moreover, baker's yeast cells expressing the PRO1 P247S and PRO1 E415K gene were more tolerant to freezing stress than cells expressing the wild-type PRO1 gene. The approach described here could be a practical method for the breeding of proline-accumulating baker's yeasts with higher tolerance to baking-associated stresses. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. YMDB: the Yeast Metabolome Database

    Science.gov (United States)

    Jewison, Timothy; Knox, Craig; Neveu, Vanessa; Djoumbou, Yannick; Guo, An Chi; Lee, Jacqueline; Liu, Philip; Mandal, Rupasri; Krishnamurthy, Ram; Sinelnikov, Igor; Wilson, Michael; Wishart, David S.

    2012-01-01

    The Yeast Metabolome Database (YMDB, http://www.ymdb.ca) is a richly annotated ‘metabolomic’ database containing detailed information about the metabolome of Saccharomyces cerevisiae. Modeled closely after the Human Metabolome Database, the YMDB contains >2000 metabolites with links to 995 different genes/proteins, including enzymes and transporters. The information in YMDB has been gathered from hundreds of books, journal articles and electronic databases. In addition to its comprehensive literature-derived data, the YMDB also contains an extensive collection of experimental intracellular and extracellular metabolite concentration data compiled from detailed Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) metabolomic analyses performed in our lab. This is further supplemented with thousands of NMR and MS spectra collected on pure, reference yeast metabolites. Each metabolite entry in the YMDB contains an average of 80 separate data fields including comprehensive compound description, names and synonyms, structural information, physico-chemical data, reference NMR and MS spectra, intracellular/extracellular concentrations, growth conditions and substrates, pathway information, enzyme data, gene/protein sequence data, as well as numerous hyperlinks to images, references and other public databases. Extensive searching, relational querying and data browsing tools are also provided that support text, chemical structure, spectral, molecular weight and gene/protein sequence queries. Because of S. cervesiae's importance as a model organism for biologists and as a biofactory for industry, we believe this kind of database could have considerable appeal not only to metabolomics researchers, but also to yeast biologists, systems biologists, the industrial fermentation industry, as well as the beer, wine and spirit industry. PMID:22064855

  7. Selection of yeast Saccharomyces cerevisiae promoters available for xylose cultivation and fermentation.

    Science.gov (United States)

    Nambu-Nishida, Yumiko; Sakihama, Yuri; Ishii, Jun; Hasunuma, Tomohisa; Kondo, Akihiko

    2018-01-01

    To efficiently utilize xylose, a major sugar component of hemicelluloses, in Saccharomyces cerevisiae requires the proper expression of varied exogenous and endogenous genes. To expand the repertoire of promoters in engineered xylose-utilizing yeast strains, we selected promoters in S. cerevisiae during cultivation and fermentation using xylose as a carbon source. To select candidate promoters that function in the presence of xylose, we performed comprehensive gene expression analyses using xylose-utilizing yeast strains both during xylose and glucose fermentation. Based on microarray data, we chose 29 genes that showed strong, moderate, and weak expression in xylose rather than glucose fermentation. The activities of these promoters in a xylose-utilizing yeast strain were measured by lacZ reporter gene assays over time during aerobic cultivation and microaerobic fermentation, both in xylose and glucose media. In xylose media, P TDH3 , P FBA1 , and P TDH1 were favorable for high expression, and P SED1 , P HXT7 , P PDC1 , P TEF1 , P TPI1 , and P PGK1 were acceptable for medium-high expression in aerobic cultivation, and moderate expression in microaerobic fermentation. P TEF2 allowed moderate expression in aerobic culture and weak expression in microaerobic fermentation, although it showed medium-high expression in glucose media. P ZWF1 and P SOL4 allowed moderate expression in aerobic cultivation, while showing weak but clear expression in microaerobic fermentation. P ALD3 and P TKL2 showed moderate promoter activity in aerobic cultivation, but showed almost no activity in microaerobic fermentation. The knowledge of promoter activities in xylose cultivation obtained in this study will permit the control of gene expression in engineered xylose-utilizing yeast strains that are used for hemicellulose fermentation. Copyright © 2017 The Society for Biotechnology, Japan. Published by Elsevier B.V. All rights reserved.

  8. Experimental evolution in budding yeast

    Science.gov (United States)

    Murray, Andrew

    2012-02-01

    I will discuss our progress in analyzing evolution in the budding yeast, Saccharomyces cerevisiae. We take two basic approaches. The first is to try and examine quantitative aspects of evolution, for example by determining how the rate of evolution depends on the mutation rate and the population size or asking whether the rate of mutation is uniform throughout the genome. The second is to try to evolve qualitatively novel, cell biologically interesting phenotypes and track the mutations that are responsible for the phenotype. Our efforts include trying to alter cell morphology, evolve multicellularity, and produce a biological oscillator.

  9. Detection of anabolic steroids in dietary supplements: The added value of an androgen yeast bioassay in parallel with a liquid chromatography-tandem mass spectrometry screening method

    NARCIS (Netherlands)

    Rijk, J.C.W.; Bovee, T.F.H.; Wang, S.; Poucke, C.; Peteghem, van C.; Nielen, M.W.F.

    2009-01-01

    Recently we constructed a recombinant yeast cell that expresses the human androgen receptor (hAR) and yeast enhanced green fluorescent protein (yEGFP), the latter in response to androgens. When exposed to testosterone, the concentration where half-maximal activation is reached (EC50) was 50 nM.

  10. Tolerant industrial yeast Saccharomyces cerevisiae posses a more robust cell wall integrity signaling pathway against 2-furaldehyde and 5-(hydroxymethyl)-2-furaldehyde

    Science.gov (United States)

    Cell wall integrity signaling pathway in Saccharomyces cerevisiae is a conserved function for detecting and responding to cell stress conditions but less understood for industrial yeast. We dissected gene expression dynamics for a tolerant industrial yeast strain NRRL Y-50049 in response to challeng...

  11. A yeast pheromone-based inter-species communication system.

    Science.gov (United States)

    Hennig, Stefan; Clemens, André; Rödel, Gerhard; Ostermann, Kai

    2015-02-01

    We report on a pheromone-based inter-species communication system, allowing for a controlled cell-cell communication between the two species Saccharomyces cerevisiae and Schizosaccharomyces pombe as a proof of principle. It exploits the mating response pathways of the two yeast species employing the pheromones, α- or P-factor, as signaling molecules. The authentic and chimeric pheromone-encoding genes were engineered to code for the P-factor in S. cerevisiae and the α-factor in S. pombe. Upon transformation of the respective constructs, cells were enabled to express the mating pheromone of the opposite species. The supernatant of cultures of S. pombe cells expressing α-factor were able to induce a G1 arrest in the cell cycle, a change in morphology to the typical shmoo effect and expression driven by the pheromone-responsive FIG1 promoter in S. cerevisiae. The supernatant of cultures of S. cerevisiae cells expressing P-factor similarly induced cell cycle arrest in G1, an alteration in morphology typical for mating as well as the activation of the pheromone-responsive promoters of the rep1 and sxa2 genes in a pheromone-hypersensitive reporter strain of S. pombe. Apparently, both heterologous pheromones were correctly processed and secreted in an active form by the cells of the other species. Our data clearly show that the species-specific pheromone systems of yeast species can be exploited for a controlled inter-species communication.

  12. Biodiesel generation from oleaginous yeast Rhodotorula glutinis ...

    African Journals Online (AJOL)

    Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. ... Biodiesel generation from oleaginous yeast Rhodotorula glutinis with xylose assimilating capacity. C Dai, J Tao, F Xie, Y Dai, M Zhao. Abstract. This study explored a strategy to convert agricultural and forestry residues into ...

  13. Yeasts in sustainable bioethanol production: A review.

    Science.gov (United States)

    Mohd Azhar, Siti Hajar; Abdulla, Rahmath; Jambo, Siti Azmah; Marbawi, Hartinie; Gansau, Jualang Azlan; Mohd Faik, Ainol Azifa; Rodrigues, Kenneth Francis

    2017-07-01

    Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  14. The wine and beer yeast Dekkera bruxellensis.

    Science.gov (United States)

    Schifferdecker, Anna Judith; Dashko, Sofia; Ishchuk, Olena P; Piškur, Jure

    2014-09-01

    Recently, the non-conventional yeast Dekkera bruxellensis has been gaining more and more attention in the food industry and academic research. This yeast species is a distant relative of Saccharomyces cerevisiae and is especially known for two important characteristics: on the one hand, it is considered to be one of the main spoilage organisms in the wine and bioethanol industry; on the other hand, it is 'indispensable' as a contributor to the flavour profile of Belgium lambic and gueuze beers. Additionally, it adds to the characteristic aromatic properties of some red wines. Recently this yeast has also become a model for the study of yeast evolution. In this review we focus on the recently developed molecular and genetic tools, such as complete genome sequencing and transformation, to study and manipulate this yeast. We also focus on the areas that are particularly well explored in this yeast, such as the synthesis of off-flavours, yeast detection methods, carbon metabolism and evolutionary history. © 2014 The Authors. Yeast published by John Wiley & Sons, Ltd.

  15. Biodiesel generation from oleaginous yeast Rhodotorula glutinis ...

    African Journals Online (AJOL)

    SERVER

    2007-09-19

    Sep 19, 2007 ... This study explored a strategy to convert agricultural and forestry residues into microbial lipid, which could be further transformed into biodiesel. Among the 250 yeast strains screened for xylose assimilating capacity, eight oleaginous yeasts were selected by Sudan Black B test. The lipid content of these 8 ...

  16. 21 CFR 73.355 - Phaffia yeast.

    Science.gov (United States)

    2010-04-01

    ... stabilized color additive mixture. Color additive mixtures for fish feed use made with phaffia yeast may... additive mixtures for coloring foods. (b) Specifications. Phaffia yeast shall conform to the following... § 501.4 of this chapter. (3) The presence of the color additive in salmonid fish that have been fed...

  17. Biosynthesis of polyhydroxyalkanotes in wildtype yeasts | Desuoky ...

    African Journals Online (AJOL)

    Biosynthesis of the biodegradable polymers polyhydroxyalkanotes (PHAs) are studied extensively in wild type and genetically modified prokaryotic cells, however the content and structure of PHA in wild type yeasts are not well documented. The purpose of this study was to screen forty yeast isolates collected from different ...

  18. Virgin olive oil yeasts: A review.

    Science.gov (United States)

    Ciafardini, Gino; Zullo, Biagi Angelo

    2018-04-01

    This review summarizes current knowledge on virgin olive oil yeasts. Newly produced olive oil contains solid particles and micro drops of vegetation water in which yeasts reproduce to become the typical microbiota of olive oil. To date, about seventeen yeast species have been isolated from different types of olive oils and their by-products, of which six species have been identified as new species. Certain yeast species contribute greatly to improving the sensorial characteristics of the newly produced olive oil, whereas other species are considered harmful as they can damage the oil quality through the production of unpleasant flavors and triacylglycerol hydrolysis. Studies carried out in certain yeast strains have demonstrated the presence of defects in olive oil treated with Candida adriatica, Nakazawaea wickerhamii and Candida diddensiae specific strains, while other olive oil samples treated with other Candida diddensiae strains were defect-free after four months of storage and categorized as extra virgin. A new acetic acid producing yeast species, namely, Brettanomyces acidodurans sp. nov., which was recently isolated from olive oil, could be implicated in the wine-vinegary defect of the product. Other aspects related to the activity of the lipase-producing yeasts and the survival of the yeast species in the flavored olive oils are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Yeasts in sustainable bioethanol production: A review

    Directory of Open Access Journals (Sweden)

    Siti Hajar Mohd Azhar

    2017-07-01

    Full Text Available Bioethanol has been identified as the mostly used biofuel worldwide since it significantly contributes to the reduction of crude oil consumption and environmental pollution. It can be produced from various types of feedstocks such as sucrose, starch, lignocellulosic and algal biomass through fermentation process by microorganisms. Compared to other types of microoganisms, yeasts especially Saccharomyces cerevisiae is the common microbes employed in ethanol production due to its high ethanol productivity, high ethanol tolerance and ability of fermenting wide range of sugars. However, there are some challenges in yeast fermentation which inhibit ethanol production such as high temperature, high ethanol concentration and the ability to ferment pentose sugars. Various types of yeast strains have been used in fermentation for ethanol production including hybrid, recombinant and wild-type yeasts. Yeasts can directly ferment simple sugars into ethanol while other type of feedstocks must be converted to fermentable sugars before it can be fermented to ethanol. The common processes involves in ethanol production are pretreatment, hydrolysis and fermentation. Production of bioethanol during fermentation depends on several factors such as temperature, sugar concentration, pH, fermentation time, agitation rate, and inoculum size. The efficiency and productivity of ethanol can be enhanced by immobilizing the yeast cells. This review highlights the different types of yeast strains, fermentation process, factors affecting bioethanol production and immobilization of yeasts for better bioethanol production.

  20. The essence of yeast quiescence.

    Science.gov (United States)

    De Virgilio, Claudio

    2012-03-01

    Like all microorganisms, yeast cells spend most of their natural lifetime in a reversible, quiescent state that is primarily induced by limitation for essential nutrients. Substantial progress has been made in defining the features of quiescent cells and the nutrient-signaling pathways that shape these features. A view that emerges from the wealth of new data is that yeast cells dynamically configure the quiescent state in response to nutritional challenges by using a set of key nutrient-signaling pathways, which (1) regulate pathway-specific effectors, (2) converge on a few regulatory nodes that bundle multiple inputs to communicate unified, graded responses, and (3) mutually modulate their competences to transmit signals. Here, I present an overview of our current understanding of the architecture of these pathways, focusing on how the corresponding core signaling protein kinases (i.e. PKA, TORC1, Snf1, and Pho85) are wired to ensure an adequate response to nutrient starvation, which enables cells to tide over decades, if not centuries, of famine. © 2011 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  1. Comet assay on tetraploid yeast cells

    DEFF Research Database (Denmark)

    Rank, Jette; Syberg, Kristian; Jensen, Klara

    2009-01-01

    Tetraploid yeast cells (Saccharomyces cerevisiae) were used in the comet assay with the intention of developing a new, fast and easy assay for detecting environmental genotoxic agents without using higher organisms. Two DNA-damaging chemicals, H2O2 and acrylamide, together with wastewater from...... three municipal treatment plants were tested for their effect on the yeast-cell DNA. The main problem with using yeast in the comet assay is the necessity to degrade the cell wall. This was achieved by using Zymolase 100 T twice during the procedure, since Zymolase 20 T did not open the cell wall....... Analytical problems that arose due to the small amount of DNA in the yeast nuclei in haploid and diploid cells, which contain 13 Mbp and 26 Mbp DNA per cell, respectively, were solved by using tetraploid yeast cells (52 Mbp) instead. DNA damage was shown after exposure to H2O2 and acrylamide. The lowest dose...

  2. SUMO expression shortens the lag phase of Saccharomyces cerevisiae yeast growth caused by complex interactive effects of major mixed fermentation inhibitors found in hot-compressed water-treated lignocellulosic hydrolysate.

    Science.gov (United States)

    Jayakody, Lahiru N; Kadowaki, Masafumi; Tsuge, Keisuke; Horie, Kenta; Suzuki, Akihiro; Hayashi, Nobuyuki; Kitagaki, Hiroshi

    2015-01-01

    The complex inhibitory effects of inhibitors present in lignocellulose hydrolysate suppress the ethanol fermentation of Saccharomyces cerevisiae. Although the interactive inhibitory effects play important roles in the actual hydrolysate, few studies have investigated glycolaldehyde, the key inhibitor of hot-compressed water-treated lignocellulose hydrolysate. Given this challenge, we investigated the interactive effects of mixed fermentation inhibitors, including glycolaldehyde. First, we confirmed that glycolaldehyde was the most potent inhibitor in the hydrolysate and exerted interactive inhibitory effects in combination with major inhibitors. Next, through genome-wide analysis and megavariate data modeling, we identified SUMOylation as a novel potential mechanism to overcome the combinational inhibitory effects of fermentation inhibitors. Indeed, overall SUMOylation was increased and Pgk1, which produces an ATP molecule in glycolysis by substrate-level phosphorylation, was SUMOylated and degraded in response to glycolaldehyde. Augmenting the SUMO-dependent ubiquitin system in the ADH1-expressing strain significantly shortened the lag phase of growth, released cells from G2/M arrest, and improved energy status and glucose uptake in the inhibitor-containing medium. In summary, our study was the first to establish SUMOylation as a novel platform for regulating the lag phase caused by complex fermentation inhibitors.

  3. Yeast prions form infectious amyloid inclusion bodies in bacteria

    Directory of Open Access Journals (Sweden)

    Espargaró Alba

    2012-06-01

    Full Text Available Abstract Background Prions were first identified as infectious proteins associated with fatal brain diseases in mammals. However, fungal prions behave as epigenetic regulators that can alter a range of cellular processes. These proteins propagate as self-perpetuating amyloid aggregates being an example of structural inheritance. The best-characterized examples are the Sup35 and Ure2 yeast proteins, corresponding to [PSI+] and [URE3] phenotypes, respectively. Results Here we show that both the prion domain of Sup35 (Sup35-NM and the Ure2 protein (Ure2p form inclusion bodies (IBs displaying amyloid-like properties when expressed in bacteria. These intracellular aggregates template the conformational change and promote the aggregation of homologous, but not heterologous, soluble prionogenic molecules. Moreover, in the case of Sup35-NM, purified IBs are able to induce different [PSI+] phenotypes in yeast, indicating that at least a fraction of the protein embedded in these deposits adopts an infectious prion fold. Conclusions An important feature of prion inheritance is the existence of strains, which are phenotypic variants encoded by different conformations of the same polypeptide. We show here that the proportion of infected yeast cells displaying strong and weak [PSI+] phenotypes depends on the conditions under which the prionogenic aggregates are formed in E. coli, suggesting that bacterial systems might become useful tools to generate prion strain diversity.

  4. H3K9me-independent gene silencing in fission yeast heterochromatin by Clr5 and histone deacetylases

    DEFF Research Database (Denmark)

    Hansen, Klavs R; Hazan, Idit; Shanker, Sreenath

    2011-01-01

    organisms such as fission yeast. In spite of numerous studies, the relative contributions of the various heterochromatic histone marks to the properties of heterochromatin remain largely undefined. Here, we report that silencing of the fission yeast mating-type cassettes, which are located in a well......, our results point to histone deacetylases as prominent repressors of gene expression in fission yeast heterochromatin. These deacetylases can act in concert with, or independently of, the widely studied H3K9me mark to influence gene silencing at heterochromatic loci....

  5. Genomic signatures of adaptation to wine biological ageing conditions in biofilm-forming flor yeasts.

    Science.gov (United States)

    Coi, A L; Bigey, F; Mallet, S; Marsit, S; Zara, G; Gladieux, P; Galeote, V; Budroni, M; Dequin, S; Legras, J L

    2017-04-01

    The molecular and evolutionary processes underlying fungal domestication remain largely unknown despite the importance of fungi to bioindustry and for comparative adaptation genomics in eukaryotes. Wine fermentation and biological ageing are performed by strains of S. cerevisiae with, respectively, pelagic fermentative growth on glucose and biofilm aerobic growth utilizing ethanol. Here, we use environmental samples of wine and flor yeasts to investigate the genomic basis of yeast adaptation to contrasted anthropogenic environments. Phylogenetic inference and population structure analysis based on single nucleotide polymorphisms revealed a group of flor yeasts separated from wine yeasts. A combination of methods revealed several highly differentiated regions between wine and flor yeasts, and analyses using codon-substitution models for detecting molecular adaptation identified sites under positive selection in the high-affinity transporter gene ZRT1. The cross-population composite likelihood ratio revealed selective sweeps at three regions, including in the hexose transporter gene HXT7, the yapsin gene YPS6 and the membrane protein coding gene MTS27. Our analyses also revealed that the biological ageing environment has led to the accumulation of numerous mutations in proteins from several networks, including Flo11 regulation and divalent metal transport. Together, our findings suggest that the tuning of FLO11 expression and zinc transport networks are a distinctive feature of the genetic changes underlying the domestication of flor yeasts. Our study highlights the multiplicity of genomic changes underlying yeast adaptation to man-made habitats and reveals that flor/wine yeast lineage can serve as a useful model for studying the genomics of adaptive divergence. © 2017 John Wiley & Sons Ltd.

  6. A chemical genetic screen for modulators of asymmetrical 2,2'-dimeric naphthoquinones cytotoxicity in yeast.

    Directory of Open Access Journals (Sweden)

    Ashkan Emadi

    Full Text Available BACKGROUND: Dimeric naphthoquinones (BiQ were originally synthesized as a new class of HIV integrase inhibitors but have shown integrase-independent cytotoxicity in acute lymphoblastic leukemia cell lines suggesting their use as potential anti-neoplastic agents. The mechanism of this cytotoxicity is unknown. In order to gain insight into the mode of action of binaphthoquinones we performed a systematic high-throughput screen in a yeast isogenic deletion mutant array for enhanced or suppressed growth in the presence of binaphthoquinones. METHODOLOGY/PRINCIPAL FINDINGS: Exposure of wild type yeast strains to various BiQs demonstrated inhibition of yeast growth with IC(50s in the microM range. Drug sensitivity and resistance screens were performed by exposing arrays of a haploid yeast deletion mutant library to BiQs at concentrations near their IC(50. Sensitivity screens identified yeast with deletions affecting mitochondrial function and cellular respiration as having increased sensitivity to BiQs. Corresponding to this, wild type yeast grown in the absence of a fermentable carbon source were particularly sensitive to BiQs, and treatment with BiQs was shown to disrupt the mitochondrial membrane potential and lead to the generation of reactive oxygen species (ROS. Furthermore, baseline ROS production in BiQ sensitive mutant strains was increased compared to wild type and could be further augmented by the presence of BiQ. Screens for resistance to BiQ action identified the mitochondrial external NAD(PH dehydrogenase, NDE1, as critical to BiQ toxicity and over-expression of this gene resulted in increased ROS production and increased sensitivity of wild type yeast to BiQ. CONCLUSIONS/SIGNIFICANCE: In yeast, binaphthoquinone cytotoxicity is likely mediated through NAD(PH:quonine oxidoreductases leading to ROS production and dysfunctional mitochondria. Further studies are required to validate this mechanism in mammalian cells.

  7. SREBP controls oxygen-dependent mobilization of retrotransposons in fission yeast.

    Directory of Open Access Journals (Sweden)

    Alfica Sehgal

    2007-08-01

    Full Text Available Retrotransposons are mobile genetic elements that proliferate through an RNA intermediate. Transposons do not encode transcription factors and thus rely on host factors for mRNA expression and survival. Despite information regarding conditions under which elements are upregulated, much remains to be learned about the regulatory mechanisms or factors controlling retrotransposon expression. Here, we report that low oxygen activates the fission yeast Tf2 family of retrotransposons. Sre1, the yeast ortholog of the mammalian membrane-bound transcription factor sterol regulatory element binding protein (SREBP, directly induces the expression and mobilization of Tf2 retrotransposons under low oxygen. Sre1 binds to DNA sequences in the Tf2 long terminal repeat that functions as an oxygen-dependent promoter. We find that Tf2 solo long terminal repeats throughout the genome direct oxygen-dependent expression of adjacent coding and noncoding sequences, providing a potential mechanism for the generation of oxygen-dependent gene expression.

  8. Electron transport chain in a thermotolerant yeast.

    Science.gov (United States)

    Mejía-Barajas, Jorge A; Martínez-Mora, José A; Salgado-Garciglia, Rafael; Noriega-Cisneros, Ruth; Ortiz-Avila, Omar; Cortés-Rojo, Christian; Saavedra-Molina, Alfredo

    2017-04-01

    Yeasts capable of growing and surviving at high temperatures are regarded as thermotolerant. For appropriate functioning of cellular processes and cell survival, the maintenance of an optimal redox state is critical of reducing and oxidizing species. We studied mitochondrial functions of the thermotolerant Kluyveromyces marxianus SLP1 and the mesophilic OFF1 yeasts, through the evaluation of its mitochondrial membrane potential (ΔΨ m ), ATPase activity, electron transport chain (ETC) activities, alternative oxidase activity, lipid peroxidation. Mitochondrial membrane potential and the cytoplasmic free Ca 2+ ions (Ca 2+ cyt) increased in the SLP1 yeast when exposed to high temperature, compared with the mesophilic yeast OFF1. ATPase activity in the mesophilic yeast diminished 80% when exposed to 40° while the thermotolerant SLP1 showed no change, despite an increase in the mitochondrial lipid peroxidation. The SLP1 thermotolerant yeast exposed to high temperature showed a diminution of 33% of the oxygen consumption in state 4. The uncoupled state 3 of oxygen consumption did not change in the mesophilic yeast when it had an increase of temperature, whereas in the thermotolerant SLP1 yeast resulted in an increase of 2.5 times when yeast were grown at 30 o , while a decrease of 51% was observed when it was exposed to high temperature. The activities of the ETC complexes were diminished in the SLP1 when exposed to high temperature, but also it was distinguished an alternative oxidase activity. Our results suggest that the mitochondria state, particularly ETC state, is an important characteristic of the thermotolerance of the SLP1 yeast strain.

  9. Characterization of an AtCCX5 gene from Arabidopsis thaliana that involves in high-affinity K+ uptake and Na+ transport in yeast

    International Nuclear Information System (INIS)

    Zhang, Xinxin; Zhang, Min; Takano, Tetsuo; Liu, Shenkui

    2011-01-01

    Highlights: → The AtCCX5 protein coding a putative cation calcium exchanger was characterized. → AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. → AtCCX5 protein did not show the same transport properties as the CAXs. → AtCCX5 protein involves in mediating high-affinity K + uptake in yeast. → AtCCX5 protein also involves in Na + transport in yeast. -- Abstract: The gene for a putative cation calcium exchanger (CCX) from Arabidopsis thaliana, AtCCX5, was cloned and its function was analyzed in yeast. Green fluorescent protein-tagged AtCCX5 expressed in yeast was localized in the plasma membrane and nuclear periphery. The yeast transformants expressing AtCCX5 were created and their growth in the presence of various cations (K + , Na + , Ca 2+ , Mg 2+ , Fe 2+ , Cu 2+ , Co 2+ , Cd 2+ , Mn 2+ , Ba 2+ , Ni 2+ , Zn 2+ , and Li + ) were analyzed. AtCCX5 expression was found to affect the response to K + and Na + in yeast. The AtCCX5 transformant also showed a little better growth to Zn 2+ . The yeast mutant 9.3 expressing AtCCX5 restored growth of the mutant on medium with low K + (0.5 mM), and also suppressed its Na + sensitivity. Ion uptake experiments showed that AtCCX5 mediated relatively high-affinity K + uptake and was also involved in Na + transport in yeast. Taken together, these findings suggest that the AtCCX5 is a novel transport protein involves in mediating high-affinity K + uptake and Na + transport in yeast.

  10. A rice tonoplastic calcium exchanger, OsCCX2 mediates Ca2+/cation transport in yeast

    Science.gov (United States)

    Yadav, Akhilesh K.; Shankar, Alka; Jha, Saroj K.; Kanwar, Poonam; Pandey, Amita; Pandey, Girdhar K.

    2015-01-01

    In plant cell, cations gradient in cellular compartments is maintained by synergistic action of various exchangers, pumps and channels. The Arabidopsis exchanger family members (AtCCX3 and AtCCX5) were previously studied and belong to CaCA (calcium cation exchangers) superfamily while none of the rice CCXs has been functionally characterized for their cation transport activities till date. Rice genome encode four CCXs and only OsCCX2 transcript showed differential expression under abiotic stresses and Ca2+ starvation conditions. The OsCCX2 localized to tonoplast and suppresses the Ca2+ sensitivity of K667 (low affinity Ca2+ uptake deficient) yeast mutant under excess CaCl2 conditions. In contrast to AtCCXs, OsCCX2 expressing K667 yeast cells show tolerance towards excess Na+, Li+, Fe2+, Zn2+ and Co2+ and suggest its ability to transport both mono as well as divalent cations in yeast. Additionally, in contrast to previously characterized AtCCXs, OsCCX2 is unable to complement yeast trk1trk2 double mutant suggesting inability to transport K+ in yeast system. These finding suggest that OsCCX2 having distinct metal transport properties than previously characterized plant CCXs. OsCCX2 can be used as potential candidate for enhancing the abiotic stress tolerance in plants as well as for phytoremediation of heavy metal polluted soil. PMID:26607171

  11. Anhidrotic ectodermal dysplasia gene region cloned in yeast artificial chromosomes

    Energy Technology Data Exchange (ETDEWEB)

    Kere, J. [Washington Univ. School of Medicine, St. Louis, MO (United States)]|[Univ. of Helsinki (Finland); Grzeschik, K.H. [Univ. of Marburg (Germany); Limon, J. [Medical Academy, Gdansk (Poland); Gremaud, M.; Schlessinger, D. [Washington Univ. School of Medicine, St. Louis, MO (United States); De La Chapelle, A. [Univ. of Helsinki (Finland)

    1993-05-01

    Anhidrotic ectodermal dysplasia (EDA), an X-chromosomal recessive disorder, is expressed in a few females with chromosomal translocations involving bands Xq12-q13. Using available DNA markers from the region and somatic cell hybrids the authors mapped the X-chromosomal breakpoints in two such translocations. The breakpoints were further mapped within a yeast artificial chromosome contig constructed by chromosome walking techniques. Genomic DNA markers that map between the two translocation breakpoints were recovered representing putative portions of the EDA gene. 32 refs., 3 figs., 1 tab.

  12. Yeast as a Model System to Study Tau Biology

    Directory of Open Access Journals (Sweden)

    Ann De Vos

    2011-01-01

    Full Text Available Hyperphosphorylated and aggregated human protein tau constitutes a hallmark of a multitude of neurodegenerative diseases called tauopathies, exemplified by Alzheimer's disease. In spite of an enormous amount of research performed on tau biology, several crucial questions concerning the mechanisms of tau toxicity remain unanswered. In this paper we will highlight some of the processes involved in tau biology and pathology, focusing on tau phosphorylation and the interplay with oxidative stress. In addition, we will introduce the development of a human tau-expressing yeast model, and discuss some crucial results obtained in this model, highlighting its potential in the elucidation of cellular processes leading to tau toxicity.

  13. The Snf1 Protein Kinase in the Yeast Saccharomyces cerevisiae

    DEFF Research Database (Denmark)

    Usaite, Renata

    2008-01-01

    4 on the regulation of glucose and galactose metabolism, I physiologically characterized Δsnf1, Δsnf4, and Δsnf1Δsnf4 CEN.PK background yeast strains in glucose and glucose-galactose mixture batch cultivations (chapter 2). The results of this study showed that delayed induction of galactose...... that the stable isotope labeling approach is highly reproducible among biological replicates when complex protein mixtures containing small expression changes were analyzed. Where poor correlation between stable isotope labeling and spectral counting was found, the major reason behind the discrepancy was the lack...

  14. Distinct Domestication Trajectories in Top-Fermenting Beer Yeasts and Wine Yeasts.

    Science.gov (United States)

    Gonçalves, Margarida; Pontes, Ana; Almeida, Pedro; Barbosa, Raquel; Serra, Marta; Libkind, Diego; Hutzler, Mathias; Gonçalves, Paula; Sampaio, José Paulo

    2016-10-24

    Beer is one of the oldest alcoholic beverages and is produced by the fermentation of sugars derived from starches present in cereal grains. Contrary to lager beers, made by bottom-fermenting strains of Saccharomyces pastorianus, a hybrid yeast, ale beers are closer to the ancient beer type and are fermented by S. cerevisiae, a top-fermenting yeast. Here, we use population genomics to investigate (1) the closest relatives of top-fermenting beer yeasts; (2) whether top-fermenting yeasts represent an independent domestication event separate from those already described; (3) whether single or multiple beer yeast domestication events can be inferred; and (4) whether top-fermenting yeasts represent non-recombinant or recombinant lineages. Our results revealed that top-fermenting beer yeasts are polyphyletic, with a main clade composed of at least three subgroups, dominantly represented by the German, British, and wheat beer strains. Other beer strains were phylogenetically close to sake, wine, or bread yeasts. We detected genetic signatures of beer yeast domestication by investigating genes previously linked to brewing and using genome-wide scans. We propose that the emergence of the main clade of beer yeasts is related with a domestication event distinct from the previously known cases of wine and sake yeast domestication. The nucleotide diversity of the main beer clade more than doubled that of wine yeasts, which might be a consequence of fundamental differences in the modes of beer and wine yeast domestication. The higher diversity of beer strains could be due to the more intense and different selection regimes associated to brewing. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Repression of a mating type cassette in the fission yeast by four DNA elements

    DEFF Research Database (Denmark)

    Ekwall, K; Nielsen, O; Ruusala, T

    1991-01-01

    The fission yeast, Schizosaccharomyces pombe, expresses one of two alternative mating types. They are specified by one of two determinants (M or P) present at the mat1 locus. In addition, silent copies of M and P are present on the same chromosome. In the present work we demonstrate that the diff...... partitioning in mitosis to Schizosaccharomyces pombe ars plasmids....

  16. Watermelon glyoxysomal malate dehydrogenase is sorted to peroxisomes of the methylotrophic yeast, Hansenula polymorpha

    NARCIS (Netherlands)

    Klei, I.J. van der; Faber, K.N.; Keizer-Gunnink, I.; Gietl, C.; Harder, W.; Veenhuis, M.

    1993-01-01

    We have studied the fate of the watermelon (Citrullus vulgaris Schrad.) glyoxysomal enzyme, malate dehydrogenase (gMDH), after synthesis in the methylotrophic yeast, Hansenula polymorpha. The gene encoding the precursor form of gMDH (pre-gMDH) was cloned in an H. polymorpha expression vector

  17. Introduction of the yeast DNA repair gene PHR1 into normal and xeroderma pigmentosum human cells

    International Nuclear Information System (INIS)

    Whyte, D.B.

    1988-01-01

    The goal of the work described herein is to determine how UV light kills and mutates human cells. Specifically, the hypothesis to be tested states that the major cause of cell death is the cyclobutane dimer. The yeast (S. cerevisiae) enzyme photolyase provides an elegant means of dissecting the biological effects of the two lesions. Photolyase, the product of the PHR1 gene, catalyzes the visible light-dependent reversal of cyclobutane pyrimidine dimers. Introducing the gene for photolyase into human cells, which do not have a functional photoreactivation mechanism, should allow specific repair of cyclobutane pyrimidine dimers. To express the yeast DNA repair gene in human cells, the yeast PHR1 coding sequence was cloned into the mammalian expression vector pRSV4NEO-I. The resulting plasmid, pRSVPHR1, contains the coding sequence of the yeast gene, under control of transcription signals recognized by mammalian cells, and the dominant selectable gene neo. pRSVPHR1 was introduced into normal and XP SV40-transformed fibroblasts by the calcium phosphate coprecipitation technique, and G418-resistant clones were isolated. The level of PHR1 expression was determined by cytoplasmic RNA dot blots. Two clones, XP-3B and GM-20A, had high levels of expression

  18. Genomics and the making of yeast biodiversity.

    Science.gov (United States)

    Hittinger, Chris Todd; Rokas, Antonis; Bai, Feng-Yan; Boekhout, Teun; Gonçalves, Paula; Jeffries, Thomas W; Kominek, Jacek; Lachance, Marc-André; Libkind, Diego; Rosa, Carlos A; Sampaio, José Paulo; Kurtzman, Cletus P

    2015-12-01

    Yeasts are unicellular fungi that do not form fruiting bodies. Although the yeast lifestyle has evolved multiple times, most known species belong to the subphylum Saccharomycotina (syn. Hemiascomycota, hereafter yeasts). This diverse group includes the premier eukaryotic model system, Saccharomyces cerevisiae; the common human commensal and opportunistic pathogen, Candida albicans; and over 1000 other known species (with more continuing to be discovered). Yeasts are found in every biome and continent and are more genetically diverse than angiosperms or chordates. Ease of culture, simple life cycles, and small genomes (∼10-20Mbp) have made yeasts exceptional models for molecular genetics, biotechnology, and evolutionary genomics. Here we discuss recent developments in understanding the genomic underpinnings of the making of yeast biodiversity, comparing and contrasting natural and human-associated evolutionary processes. Only a tiny fraction of yeast biodiversity and metabolic capabilities has been tapped by industry and science. Expanding the taxonomic breadth of deep genomic investigations will further illuminate how genome function evolves to encode their diverse metabolisms and ecologies. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Yeast cell factories on the horizon

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2015-01-01

    For thousands of years, yeast has been used for making beer, bread, and wine. In modern times, it has become a commercial workhorse for producing fuels, chemicals, and pharmaceuticals such as insulin, human serum albumin, and vaccines against hepatitis virus and human papillomavirus. Yeast has also...... been engineered to make chemicals at industrial scale (e.g., succinic acid, lactic acid, resveratrol) and advanced biofuels (e.g., isobutanol) (1). On page 1095 of this issue, Galanie et al. (2) demonstrate that yeast can now be engineered to produce opioids (2), a major class of compounds used...

  20. 21 CFR 172.590 - Yeast-malt sprout extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Yeast-malt sprout extract. 172.590 Section 172.590... CONSUMPTION Flavoring Agents and Related Substances § 172.590 Yeast-malt sprout extract. Yeast-malt sprout... prescribed conditions: (a) The additive is produced by partial hydrolysis of yeast extract (derived from...

  1. 21 CFR 184.1983 - Bakers yeast extract.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast extract. 184.1983 Section 184.1983... Listing of Specific Substances Affirmed as GRAS § 184.1983 Bakers yeast extract. (a) Bakers yeast extract... a selected strain of yeast, Saccharomyces cerevisiae. It may be concentrated or dried. (b) The...

  2. 21 CFR 172.898 - Bakers yeast glycan.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Bakers yeast glycan. 172.898 Section 172.898 Food... Multipurpose Additives § 172.898 Bakers yeast glycan. Bakers yeast glycan may be safely used in food in accordance with the following conditions: (a) Bakers yeast glycan is the comminuted, washed, pasteurized, and...

  3. Identification of the Transcription Factor Znc1p, which Regulates the Yeast-to-Hypha Transition in the Dimorphic Yeast Yarrowia lipolytica

    Science.gov (United States)

    Martinez-Vazquez, Azul; Gonzalez-Hernandez, Angelica; Domínguez, Ángel; Rachubinski, Richard; Riquelme, Meritxell; Cuellar-Mata, Patricia; Guzman, Juan Carlos Torres

    2013-01-01

    The dimorphic yeast Yarrowia lipolytica is used as a model to study fungal differentiation because it grows as yeast-like cells or forms hyphal cells in response to changes in environmental conditions. Here, we report the isolation and characterization of a gene, ZNC1, involved in the dimorphic transition in Y. lipolytica. The ZNC1 gene encodes a 782 amino acid protein that contains a Zn(II)2C6 fungal-type zinc finger DNA-binding domain and a leucine zipper domain. ZNC1 transcription is elevated during yeast growth and decreases during the formation of mycelium. Cells in which ZNC1 has been deleted show increased hyphal cell formation. Znc1p-GFP localizes to the nucleus, but mutations within the leucine zipper domain of Znc1p, and to a lesser extent within the Zn(II)2C6 domain, result in a mislocalization of Znc1p to the cytoplasm. Microarrays comparing gene expression between znc1::URA3 and wild-type cells during both exponential growth and the induction of the yeast-to-hypha transition revealed 1,214 genes whose expression was changed by 2-fold or more under at least one of the conditions analyzed. Our results suggest that Znc1p acts as a transcription factor repressing hyphal cell formation and functions as part of a complex network regulating mycelial growth in Y. lipolytica. PMID:23826133

  4. Immobilization of yeast cells by radiation-induced polymerization

    International Nuclear Information System (INIS)

    Fujimura, T.; Kaetsu, I.

    1982-01-01

    Radiation-induced polymerization method was applied to the immobilization of yeast cells. The effects of irradiation, cooling and monomer, which are neccessary for polymerization, were recovered completely by subsequent aerobical incubation of yeast cells. The ethanol productive in immobilized yeast cells increased with the increase of aerobical incubation period. The growth of yeast cells in immobilized yeast cells was indicated. The maximum ethanol productivity in immobilized yeast cell system was around three times as much as that in free yeast cell system. (orig.)

  5. Functional conservation between Schizosaccharomyces pombe ste8 and Saccharomyces cerevisiae STE11 protein kinases in yeast signal transduction

    DEFF Research Database (Denmark)

    Styrkársdóttir, U; Egel, R; Nielsen, O

    1992-01-01

    in signal transduction in budding yeast. Expression of the S. cerevisiae STE11 gene in S. pombe ste8 mutants restores the ability to transcribe mat1-Pm in response to pheromone. Also, such cells become capable of conjugation and sporulation. When mat1-Pm is artifically expressed from a heterologous promoter...

  6. High power density yeast catalyzed microbial fuel cells

    Science.gov (United States)

    Ganguli, Rahul

    Microbial fuel cells leverage whole cell biocatalysis to convert the energy stored in energy-rich renewable biomolecules such as sugar, directly to electrical energy at high efficiencies. Advantages of the process include ambient temperature operation, operation in natural streams such as wastewater without the need to clean electrodes, minimal balance-of-plant requirements compared to conventional fuel cells, and environmentally friendly operation. These make the technology very attractive as portable power sources and waste-to-energy converters. The principal problem facing the technology is the low power densities compared to other conventional portable power sources such as batteries and traditional fuel cells. In this work we examined the yeast catalyzed microbial fuel cell and developed methods to increase the power density from such fuel cells. A combination of cyclic voltammetry and optical absorption measurements were used to establish significant adsorption of electron mediators by the microbes. Mediator adsorption was demonstrated to be an important limitation in achieving high power densities in yeast-catalyzed microbial fuel cells. Specifically, the power densities are low for the length of time mediator adsorption continues to occur. Once the mediator adsorption stops, the power densities increase. Rotating disk chronoamperometry was used to extract reaction rate information, and a simple kinetic expression was developed for the current observed in the anodic half-cell. Since the rate expression showed that the current was directly related to microbe concentration close to the electrode, methods to increase cell mass attached to the anode was investigated. Electrically biased electrodes were demonstrated to develop biofilm-like layers of the Baker's yeast with a high concentration of cells directly connected to the electrode. The increased cell mass did increase the power density 2 times compared to a non biofilm fuel cell, but the power density

  7. The global transcriptional response of fission yeast to hydrogen sulfide.

    Directory of Open Access Journals (Sweden)

    Xu Jia

    Full Text Available BACKGROUND: Hydrogen sulfide (H(2S is a newly identified member of the small family of gasotransmitters that are endogenous gaseous signaling molecules that have a fundamental role in human biology and disease. Although it is a relatively recent discovery and the mechanism of H(2S activity is not completely understood, it is known to be involved in a number of cellular processes; H(2S can affect ion channels, transcription factors and protein kinases in mammals. METHODOLOGY/PRINCIPAL FINDINGS: In this paper, we have used fission yeast as a model organism to study the global gene expression profile in response to H(2S by microarray. We initially measured the genome-wide transcriptional response of fission yeast to H(2S. Through the functional classification of genes whose expression profile changed in response to H(2S, we found that H(2S mainly influences genes that encode putative or known stress proteins, membrane transporters, cell cycle/meiotic proteins, transcription factors and respiration protein in the mitochondrion. Our analysis showed that there was a significant overlap between the genes affected by H(2S and the stress response. We identified that the target genes of the MAPK pathway respond to H(2S; we also identified that a number of transporters respond to H(2S, these include sugar/carbohydrate transporters, ion transporters, and amino acid transporters. We found many mitochondrial genes to be down regulated upon H(2S treatment and that H(2S can reduce mitochondrial oxygen consumption. CONCLUSION/SIGNIFICANCE: This study identifies potential molecular targets of the signaling molecule H(2S in fission yeast and provides clues about the identity of homologues human proteins and will further the understanding of the cellular role of H(2S in human diseases.

  8. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer

    DEFF Research Database (Denmark)

    Denby, Charles M.; Li, Rachel A.; Vu, Van T.

    2018-01-01

    Flowers of the hop plant provide both bitterness and "hoppy" flavor to beer. Hops are, however, both a water and energy intensive crop and vary considerably in essential oil content, making it challenging to achieve a consistent hoppy taste in beer. Here, we report that brewer's yeast can...... be engineered to biosynthesize aromatic monoterpene molecules that impart hoppy flavor to beer by incorporating recombinant DNA derived from yeast, mint, and basil. Whereas metabolic engineering of biosynthetic pathways is commonly enlisted to maximize product titers, tuning expression of pathway enzymes...

  9. Reconstitution in yeast of the Arabidopsis SOS signaling pathway for Na+ homeostasis

    OpenAIRE

    Quintero, Francisco J.; Ohta, Masaru; Shi, Huazhong; Zhu, Jian-Kang; Pardo, José M.

    2002-01-01

    The Arabidopsis thaliana SOS1 protein is a putative Na H antiporter that functions in Na extrusion and is essential for the NaCl tolerance of plants. sos1 mutant plants share phenotypic similarities with mutants lacking the protein kinase SOS2 and the Ca2 sensor SOS3. To investigate whether the three SOS proteins function in the same response pathway, we have reconstituted the SOS system in yeast cells. Expression of SOS1 improved the Na tolerance of yeast mutants la...

  10. The euryhaline yeast Debaryomyces hansenii has two catalase genes encoding enzymes with differential activity profile.

    Science.gov (United States)

    Segal-Kischinevzky, Claudia; Rodarte-Murguía, Beatriz; Valdés-López, Victor; Mendoza-Hernández, Guillermo; González, Alicia; Alba-Lois, Luisa

    2011-03-01

    Debaryomyces hansenii is a spoilage yeast able to grow in a variety of ecological niches, from seawater to dairy products. Results presented in this article show that (i) D. hansenii has an inherent resistance to H2O2 which could be attributed to the fact that this yeast has a basal catalase activity which is several-fold higher than that observed in Saccharomyces cerevisiae under the same culture conditions, (ii) D. hansenii has two genes (DhCTA1 and DhCTT1) encoding two catalase isozymes with a differential enzymatic activity profile which is not strictly correlated with a differential expression profile of the encoding genes.

  11. Fatty acids from oleaginous yeasts and yeast-like fungi and their potential applications.

    Science.gov (United States)

    Xue, Si-Jia; Chi, Zhe; Zhang, Yu; Li, Yan-Feng; Liu, Guang-Lei; Jiang, Hong; Hu, Zhong; Chi, Zhen-Ming

    2018-02-01

    Oleaginous yeasts, fatty acids biosynthesis and regulation in the oleaginous yeasts and the fatty acids from the oleaginous yeasts and their applications are reviewed in this article. Oleaginous yeasts such as Rhodosporidium toruloides, Yarrowia lipolytica, Rhodotorula mucilaginosa, and Aureobasidium melanogenum, which can accumulate over 50% lipid of their cell dry weight, have many advantages over other oleaginous microorganisms. The fatty acids from the oleaginous yeasts have many potential applications. Many oleaginous yeasts have now been genetically modified to over-produce fatty acids and their derivatives. The most important features of the oleaginous yeasts are that they have special enzymatic systems for enhanced biosynthesis and regulation of fatty acids in their lipid particles. Recently, some oleaginous yeasts such as R. toruloides have been found to have a unique fatty acids synthetase and other oleaginous yeasts such as A. melanogenum have a unique highly reducing polyketide synthase (HR-PKS) involved in the biosynthesis of hydroxyl fatty acids. It is necessary to further enhance lipid biosynthesis using metabolic engineering and explore new applications of fatty acids in biotechnology.

  12. Isolation and identification of radiation resistant yeasts from sea water

    International Nuclear Information System (INIS)

    Park, Jong Cheon; Jeong, Yong Uk; Kim, Du Hong; Jo, Eun A

    2011-12-01

    This study was conducted to isolate radiation-resistant yeasts from sea water for development of application technology of radiation-resistant microorganism. · Isolation of 656 yeasts from sea water and selection of 2 radiation-resistant yeasts (D 10 value >3) · Identification of isolated yeasts as Filobasidium elegans sharing 99% sequence similarity · Characterization of isolated yeast with ability to repair of the DNA damage and membrane integrity to irradiation

  13. Activation of waste brewer's yeast Saccharomyces cerevisiae for bread production

    OpenAIRE

    Popov Stevan D.; Dodić Siniša N.; Mastilović Jasna S.; Dodić Jelena M.; Popov-Raljić Jovanka V.

    2005-01-01

    The waste brewer's yeast S. cerevisiae (activated and non-activated) was compared with the commercial baker's yeast regarding the volume of developed gas in dough, volume and freshness stability of produced bread. The activation of waste brewer's yeast resulted in the increased volume of developed gas in dough by 100% compared to non-activated brewer's yeast, and the obtained bread is of more stable freshness compared to bread produced with baker's yeast. The activation of BY affects positive...

  14. Regulatory aspects of methanol metabolism in yeasts

    International Nuclear Information System (INIS)

    Trotsenko, Y.A.; Bystrykh, L.V.; Ubiyvovk, V.M.

    1984-01-01

    Formaldehyde is the first and key intermediate in the metabolism of methylotrophic yeasts since it stands at a branch point of pathways for methanol oxidation and assimilation. Methanol and, formaldehyde are toxic compounds which severely affect the growth rate, yield coefficient, etc., of yeasts. Two questions arise when considering regulation of methanol metabolism in yeasts how a nontoxic level of formaldehyde is maintained in the cell and how the formaldehyde flow is distributed into oxidation and assimilation. To answer these questions we studied the role of GSH, which spontaneously binds formaldehyde, yielding S-hydroxymethylglutathione; in vivo rates of formaldehyde dissimilation and assimilation by using [ 14 C]methanol; profiles of enzymes responsible for production and utilization of formaldehyde; and levels of metabolites affecting dissimilation and assimilation of formaldehyde. All of the experiments were carried out with the methylotrophic yeast Candida boidinii KD1. 19 refs., 4 figs., 1 tab

  15. Propagation of Mammalian Prions in Yeast

    National Research Council Canada - National Science Library

    Harris, David A

    2006-01-01

    ...: the budding yeast Saccharomyces cerevisiae. This unicellular organism offers a number of potential advantages for the study of prion biology, including rapid generation time, ease of culturing, and facile genetics...

  16. Structure and function of yeast alcohol dehydrogenase

    Directory of Open Access Journals (Sweden)

    VLADIMIR LESKOVAC

    2000-04-01

    Full Text Available 1. Introduction 2. Isoenzymes of YADH 3. Substrate specificity 4. Kinetic mechanism 5. Primary structure 6. The active site 7. Mutations in the yeast enzyme 8. Chemical mechanism 9. Binding of coenzymes 10. Hydride transfer

  17. yeast transformation of Mucor circinelloides Tieghe

    African Journals Online (AJOL)

    GRACE

    2006-05-02

    May 2, 2006 ... A nested model analysis of variance of growth data of induced yeast .... Figure 2. Mean biomass and relative growth rates of M. circinelloides cultivated in treatments in ..... Pullman B (ed) Frontiers in Physicochemical Biology.

  18. Genomic Evolution of the Ascomycete Yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Riley, Robert; Haridas, Sajeet; Salamov, Asaf; Boundy-Mills, Kyria; Goker, Markus; Hittinger, Chris; Klenk, Hans-Peter; Lopes, Mariana; Meir-Kolthoff, Jan P.; Rokas, Antonis; Rosa, Carlos; Scheuner, Carmen; Soares, Marco; Stielow, Benjamin; Wisecaver, Jennifer H.; Wolfe, Ken; Blackwell, Meredith; Kurtzman, Cletus; Grigoriev, Igor; Jeffries, Thomas

    2015-03-16

    Yeasts are important for industrial and biotechnological processes and show remarkable metabolic and phylogenetic diversity despite morphological similarities. We have sequenced the genomes of 16 ascomycete yeasts of taxonomic and industrial importance including members of Saccharomycotina and Taphrinomycotina. Phylogenetic analysis of these and previously published yeast genomes helped resolve the placement of species including Saitoella complicata, Babjeviella inositovora, Hyphopichia burtonii, and Metschnikowia bicuspidata. Moreover, we find that alternative nuclear codon usage, where CUG encodes serine instead of leucine, are monophyletic within the Saccharomycotina. Most of the yeasts have compact genomes with a large fraction of single exon genes, and a tendency towards more introns in early-diverging species. Analysis of enzyme phylogeny gives insights into the evolution of metabolic capabilities such as methanol utilization and assimilation of alternative carbon sources.

  19. Yeasts are essential for cocoa bean fermentation.

    Science.gov (United States)

    Ho, Van Thi Thuy; Zhao, Jian; Fleet, Graham

    2014-03-17

    Cocoa beans (Theobroma cacao) are the major raw material for chocolate production and fermentation of the beans is essential for the development of chocolate flavor precursors. In this study, a novel approach was used to determine the role of yeasts in cocoa fermentation and their contribution to chocolate quality. Cocoa bean fermentations were conducted with the addition of 200ppm Natamycin to inhibit the growth of yeasts, and the resultant microbial ecology and metabolism, bean chemistry and chocolate quality were compared with those of normal (control) fermentations. The yeasts Hanseniaspora guilliermondii, Pichia kudriavzevii and Kluyveromyces marxianus, the lactic acid bacteria Lactobacillus plantarum and Lactobacillus fermentum and the acetic acid bacteria Acetobacter pasteurianus and Gluconobacter frateurii were the major species found in the control fermentation. In fermentations with the presence of Natamycin, the same bacterial species grew but yeast growth was inhibited. Physical and chemical analyses showed that beans fermented without yeasts had increased shell content, lower production of ethanol, higher alcohols and esters throughout fermentation and lesser presence of pyrazines in the roasted product. Quality tests revealed that beans fermented without yeasts were purplish-violet in color and not fully brown, and chocolate prepared from these beans tasted more acid and lacked characteristic chocolate flavor. Beans fermented with yeast growth were fully brown in color and gave chocolate with typical characters which were clearly preferred by sensory panels. Our findings demonstrate that yeast growth and activity were essential for cocoa bean fermentation and the development of chocolate characteristics. Crown Copyright © 2014. Published by Elsevier B.V. All rights reserved.

  20. Determination of tritium in wine yeast samples

    International Nuclear Information System (INIS)

    Cotarlea, Monica-Ionela; Paunescu Niculina; Galeriu, D; Mocanu, N.; Margineanu, R.; Marin, G.

    1998-01-01

    Analytical procedures were developed to determine tritium in wine and wine yeast samples. The content of organic compounds affecting the LSC measurement is reduced by fractioning distillation for wine samples and azeotropic distillation/fractional distillation for wine yeast samples. Finally, the water samples were normally distilled with K MO 4 . The established procedures were successfully applied for wine and wine samples from Murfatlar harvests of the years 1995 and 1996. (authors)

  1. Identification of small molecule inhibitors of Pseudomonas aeruginosa exoenzyme S using a yeast phenotypic screen.

    Directory of Open Access Journals (Sweden)

    Anthony Arnoldo

    2008-02-01

    Full Text Available Pseudomonas aeruginosa is an opportunistic human pathogen that is a key factor in the mortality of cystic fibrosis patients, and infection represents an increased threat for human health worldwide. Because resistance of Pseudomonas aeruginosa to antibiotics is increasing, new inhibitors of pharmacologically validated targets of this bacterium are needed. Here we demonstrate that a cell-based yeast phenotypic assay, combined with a large-scale inhibitor screen, identified small molecule inhibitors that can suppress the toxicity caused by heterologous expression of selected Pseudomonas aeruginosa ORFs. We identified the first small molecule inhibitor of Exoenzyme S (ExoS, a toxin involved in Type III secretion. We show that this inhibitor, exosin, modulates ExoS ADP-ribosyltransferase activity in vitro, suggesting the inhibition is direct. Moreover, exosin and two of its analogues display a significant protective effect against Pseudomonas infection in vivo. Furthermore, because the assay was performed in yeast, we were able to demonstrate that several yeast homologues of the known human ExoS targets are likely ADP-ribosylated by the toxin. For example, using an in vitro enzymatic assay, we demonstrate that yeast Ras2p is directly modified by ExoS. Lastly, by surveying a collection of yeast deletion mutants, we identified Bmh1p, a yeast homologue of the human FAS, as an ExoS cofactor, revealing that portions of the bacterial toxin mode of action are conserved from yeast to human. Taken together, our integrated cell-based, chemical-genetic approach demonstrates that such screens can augment traditional drug screening approaches and facilitate the discovery of new compounds against a broad range of human pathogens.

  2. Metabolic Engineering of Oleaginous Yeasts for Fatty Alcohol Production

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Wei, Hui; Knoshaug, Eric; Van Wychen, Stefanie; Xu, Qi; Himmel, Michael E.; Zhang, Min

    2016-04-25

    To develop pathways for advanced biological upgrading of sugars to hydrocarbons, we are seeking biological approaches to produce high carbon efficiency intermediates amenable to separations and catalytic upgrading to hydrocarbon fuels. In this study, we successfully demonstrated fatty alcohol production by oleaginous yeasts Yarrowia lipolytica and Lipomyces starkeyi by expressing a bacteria-derived fatty acyl-CoA reductase (FAR). Moreover, we find higher extracellular distribution of fatty alcohols produced by FAR-expressing L. starkeyi strain as compared to Y. lipolytica strain, which would benefit the downstream product recovery process. In both oleaginous yeasts, long chain length saturated fatty alcohols were predominant, accounting for more than 85% of the total fatty alcohols produced. To the best of our knowledge, this is the first report of fatty alcohol production in L. starkeyi. Taken together, our work demonstrates that in addition to Y. lipolytica, L. starkeyi can also serve as a platform organism for production of fatty acid-derived biofuels and bioproducts via metabolic engineering. We believe strain and process development both will significantly contribute to our goal of producing scalable and cost-effective fatty alcohols from renewable biomass.

  3. Analysis of aging in lager brewing yeast during serial repitching.

    Science.gov (United States)

    Bühligen, Franziska; Lindner, Patrick; Fetzer, Ingo; Stahl, Frank; Scheper, Thomas; Harms, Hauke; Müller, Susann

    2014-10-10

    Serial repitching of brewing yeast inoculates is an important economic factor in the brewing industry, as their propagation is time and resource intensive. Here, we investigated whether replicative aging and/or the population distribution status changed during serial repitching in three different breweries with the same brewing yeast strain but different abiotic backgrounds and repitching regimes with varying numbers of reuses. Next to bud scar numbers the DNA content of the Saccharomyces pastorianus HEBRU cells was analyzed. Gene expression patterns were investigated using low-density microarrays with genes for aging, stress, storage compound metabolism and cell cycle. Two breweries showed a stable rejuvenation rate during serial repitching. In a third brewery the fraction of virgin cells varied, which could be explained with differing wort aeration rates. Furthermore, the number of bud scars per cell and cell size correlated in all 3 breweries throughout all runs. Transcriptome analyses revealed that from the 6th run on, mainly for the cells positive gene expression could be seen, for example up-regulation of trehalose and glycogen metabolism genes. Additionally, the cells' settling in the cone was dependent on cell size, with the lowest and the uppermost cone layers showing the highest amount of dead cells. In general, cells do not progressively age during extended serial repitching. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. Integrative analysis of the mitochondrial proteome in yeast.

    Directory of Open Access Journals (Sweden)

    Holger Prokisch

    2004-06-01

    Full Text Available In this study yeast mitochondria were used as a model system to apply, evaluate, and integrate different genomic approaches to define the proteins of an organelle. Liquid chromatography mass spectrometry applied to purified mitochondria identified 546 proteins. By expression analysis and comparison to other proteome studies, we demonstrate that the proteomic approach identifies primarily highly abundant proteins. By expanding our evaluation to other types of genomic approaches, including systematic deletion phenotype screening, expression profiling, subcellular localization studies, protein interaction analyses, and computational predictions, we show that an integration of approaches moves beyond the limitations of any single approach. We report the success of each approach by benchmarking it against a reference set of known mitochondrial proteins, and predict approximately 700 proteins associated with the mitochondrial organelle from the integration of 22 datasets. We show that a combination of complementary approaches like deletion phenotype screening and mass spectrometry can identify over 75% of the known mitochondrial proteome. These findings have implications for choosing optimal genome-wide approaches for the study of other cellular systems, including organelles and pathways in various species. Furthermore, our systematic identification of genes involved in mitochondrial function and biogenesis in yeast expands the candidate genes available for mapping Mendelian and complex mitochondrial disorders in humans.

  5. Yeast cell surface display for lipase whole cell catalyst and its applications

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yun; Zhang, Rui; Lian, Zhongshuai; Wang, Shihui; Wright, Aaron T.

    2014-08-01

    The cell surface display technique allows for the expression of target proteins or peptides on the microbial cell surface by fusing an appropriate protein as an anchoring motif. Yeast display systems, such as Pichia pastoris, Yarowia lipolytica and Saccharomyces cerevisiae, are ideal, alternative and extensive display systems with the advantage of simple genetic manipulation and post-translational modification of expressed heterologous proteins. Engineered yeasts show high performance characteristics and variant utilizations. Herein, we comprehensively summarize the variant factors affecting lipase whole cell catalyst activity and display efficiency, including the structure and size of target proteins, screening anchor proteins, type and chain length of linkers, and the appropriate matching rules among the above-mentioned display units. Furthermore, we also address novel approaches to enhance stability and activity of recombinant lipases, such as VHb gene co-expression, multi-enzyme co-display technique, and the micro-environmental interference and self-assembly techniques. Finally, we represent the variety of applications of whole cell surface displayed lipases on yeast cells in non-aqueous phases, including synthesis of esters, PUFA enrichment, resolution of chiral drugs, organic synthesis and biofuels. We demonstrate that the lipase surface display technique is a powerful tool for functionalizing yeasts to serve as whole cell catalysts, and increasing interest is providing an impetus for broad application of this technique.

  6. The growth of solar radiated yeast

    Energy Technology Data Exchange (ETDEWEB)

    Kraft, T.

    1995-09-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  7. The growth of solar radiated yeast

    Science.gov (United States)

    Kraft, Tyrone

    1995-01-01

    This researcher plans to determine if solar radiation affects the growth of yeast. The irradiated yeast was obtained from a sample exposed in space during a Space Shuttle flight of September 9-20, 1994. Further, the control groups were held at: (1) Goddard Space Flight Center (GSFC) in Greenbelt, Maryland; and (2) South Dakota School of Mines and Technology. The procedure used was based on the fact that yeast is most often used in consumable baked goods. Therefore, the yeast was incorporated into a basic Betty Crocker bread recipe. Data was collected by placing measured amounts of dough into sample containers with fifteen minute growth in height measurements collected and recorded. This researcher assumed the viability of yeast to be relative to its ability to produce carbon dioxide gas and cause the dough to rise. As all ingredients and surroundings were equal, this researcher assumed the yeast will produce the only significant difference in data collected. This researcher noted the approximate use date on all sample packages to be prior to arrival and experiment date. All dates equal, it was then assumed each would act in a similar manner of response. This assumption will allow for equally correct data collection.

  8. History of genome editing in yeast.

    Science.gov (United States)

    Fraczek, Marcin G; Naseeb, Samina; Delneri, Daniela

    2018-05-01

    For thousands of years humans have used the budding yeast Saccharomyces cerevisiae for the production of bread and alcohol; however, in the last 30-40 years our understanding of the yeast biology has dramatically increased, enabling us to modify its genome. Although S. cerevisiae has been the main focus of many research groups, other non-conventional yeasts have also been studied and exploited for biotechnological purposes. Our experiments and knowledge have evolved from recombination to high-throughput PCR-based transformations to highly accurate CRISPR methods in order to alter yeast traits for either research or industrial purposes. Since the release of the genome sequence of S. cerevisiae in 1996, the precise and targeted genome editing has increased significantly. In this 'Budding topic' we discuss the significant developments of genome editing in yeast, mainly focusing on Cre-loxP mediated recombination, delitto perfetto and CRISPR/Cas. © 2018 The Authors. Yeast published by John Wiley & Sons, Ltd.

  9. Radiodiagnosis of yeast alveolits (a clinicoexperimental study)

    International Nuclear Information System (INIS)

    Amosov, I.S.; Smirnov, V.A.

    1984-01-01

    A clinicoroetgenological study was made of 115 workers engaged in the yeast production for different periods of time. Disorders of the respiration biomechanics were revealed depending on the period of service. These data were obtained as a result of the use of roentgenopneumopolygraphy. An experimental study was conducted to establish the nature of lesions in the bronchopulmonary system in allergic alveolitis. The effect of finely divided yeast dust on the bronchopulmonary system was studied on 132 guinea-pigs usinq microbronchography and morphological examination. As a result of the study it has been established that during the inhalation of yeast dust, notnceable dystrophy of the bronchi develops, the sizes of alveoli enlarge and part of them undergo emphysematous distension with the rupture of the interalveolar septa. In the course of the study, it has been shown that yeast dust is little agreessive, yeast alveolitis develops after many years of work. The clinical symptoms are non-specific and insignificant. X-ray and morphological changes are followed by the physical manifestations of yeast alveolitis

  10. Novel brewing yeast hybrids: creation and application.

    Science.gov (United States)

    Krogerus, Kristoffer; Magalhães, Frederico; Vidgren, Virve; Gibson, Brian

    2017-01-01

    The natural interspecies Saccharomyces cerevisiae × Saccharomyces eubayanus hybrid yeast is responsible for global lager beer production and is one of the most important industrial microorganisms. Its success in the lager brewing environment is due to a combination of traits not commonly found in pure yeast species, principally low-temperature tolerance, and maltotriose utilization. Parental transgression is typical of hybrid organisms and has been exploited previously for, e.g., the production of wine yeast with beneficial properties. The parental strain S. eubayanus has only been discovered recently and newly created lager yeast strains have not yet been applied industrially. A number of reports attest to the feasibility of this approach and artificially created hybrids are likely to have a significant impact on the future of lager brewing. De novo S. cerevisiae × S. eubayanus hybrids outperform their parent strains in a number of respects, including, but not restricted to, fermentation rate, sugar utilization, stress tolerance, and aroma formation. Hybrid genome function and stability, as well as different techniques for generating hybrids and their relative merits are discussed. Hybridization not only offers the possibility of generating novel non-GM brewing yeast strains with unique properties, but is expected to aid in unraveling the complex evolutionary history of industrial lager yeast.

  11. Making Sense of the Yeast Sphingolipid Pathway.

    Science.gov (United States)

    Megyeri, Márton; Riezman, Howard; Schuldiner, Maya; Futerman, Anthony H

    2016-12-04

    Sphingolipids (SL) and their metabolites play key roles both as structural components of membranes and as signaling molecules. Many of the key enzymes and regulators of SL metabolism were discovered using the yeast Saccharomyces cerevisiae, and based on the high degree of conservation, a number of mammalian homologs were identified. Although yeast continues to be an important tool for SL research, the complexity of SL structure and nomenclature often hampers the ability of new researchers to grasp the subtleties of yeast SL biology and discover new modulators of this intricate pathway. Moreover, the emergence of lipidomics by mass spectrometry has enabled the rapid identification of SL species in yeast and rendered the analysis of SL composition under various physiological and pathophysiological conditions readily amenable. However, the complex nomenclature of the identified species renders much of the data inaccessible to non-specialists. In this review, we focus on parsing both the classical SL nomenclature and the nomenclature normally used during mass spectrometry analysis, which should facilitate the understanding of yeast SL data and might shed light on biological processes in which SLs are involved. Finally, we discuss a number of putative roles of various yeast SL species. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Revaluation of Waste Yeast from Beer Production

    Directory of Open Access Journals (Sweden)

    Nicoleta Suruceanu

    2013-11-01

    Full Text Available Brewing yeast is an important waste product from beer production. The valorification of slurry yeast mainly consists of separation of vitamins and important nitrogen compounds. The hops compounds, one of the most important raw materials in beer technology are removed beforehand valorification. The prenylflavonoids compounds from hops are important bioactive compounds that can be revaluation with proper technology. Revaluation of prenylflavonoids from waste yeast into dietary supplement, identification and quantification of xanthohumol by HPLC method. Waste yeast from brewery pilot plant of USAMV Cluj Napoca it was dried by atomization and the powder was analyzed on xanthohumol content by HPLC method. For quantification a calibration curve it was used. The process of drying by atomisation lead to a powder product. It was used malt dextrin powder for stabilisation. The final product it was encapsulated. The xanthohumol content of powdered yeast it was 1.94 µg/ml. In conclusion the slurry yeast from beer production it is an important source of prenylflavonoids compounds.

  13. Flor Yeast: New Perspectives Beyond Wine Aging

    Science.gov (United States)

    Legras, Jean-Luc; Moreno-Garcia, Jaime; Zara, Severino; Zara, Giacomo; Garcia-Martinez, Teresa; Mauricio, Juan C.; Mannazzu, Ilaria; Coi, Anna L.; Bou Zeidan, Marc; Dequin, Sylvie; Moreno, Juan; Budroni, Marilena

    2016-01-01

    The most important dogma in white-wine production is the preservation of the wine aroma and the limitation of the oxidative action of oxygen. In contrast, the aging of Sherry and Sherry-like wines is an aerobic process that depends on the oxidative activity of flor strains of Saccharomyces cerevisiae. Under depletion of nitrogen and fermentable carbon sources, these yeast produce aggregates of floating cells and form an air–liquid biofilm on the wine surface, which is also known as velum or flor. This behavior is due to genetic and metabolic peculiarities that differentiate flor yeast from other wine yeast. This review will focus first on the most updated data obtained through the analysis of flor yeast with -omic tools. Comparative genomics, proteomics, and metabolomics of flor and wine yeast strains are shedding new light on several features of these special yeast, and in particular, they have revealed the extent of proteome remodeling imposed by the biofilm life-style. Finally, new insights in terms of promotion and inhibition of biofilm formation through small molecules, amino acids, and di/tri-peptides, and novel possibilities for the exploitation of biofilm immobilization within a fungal hyphae framework, will be discussed. PMID:27148192

  14. Genome scale models of yeast: towards standardized evaluation and consistent omic integration

    DEFF Research Database (Denmark)

    Sanchez, Benjamin J.; Nielsen, Jens

    2015-01-01

    Genome scale models (GEMs) have enabled remarkable advances in systems biology, acting as functional databases of metabolism, and as scaffolds for the contextualization of high-throughput data. In the case of Saccharomyces cerevisiae (budding yeast), several GEMs have been published and are curre......Genome scale models (GEMs) have enabled remarkable advances in systems biology, acting as functional databases of metabolism, and as scaffolds for the contextualization of high-throughput data. In the case of Saccharomyces cerevisiae (budding yeast), several GEMs have been published...... in which all levels of omics data (from gene expression to flux) have been integrated in yeast GEMs. Relevant conclusions and current challenges for both GEM evaluation and omic integration are highlighted....

  15. Engineering yeast for the expression and secretion of cellulase cocktails

    Science.gov (United States)

    Enzyme systems that digest the cellulose in plant cell walls have potential value in the biorefining of renewable feedstocks such as crop residues, straws, and grasses to biofuels and other bioproducts. The bacterium Clostridium cellulovorans is a useful source of biomass-degrading enzymes because ...

  16. Heterologous expression of Hordeum vulgare cysteine protease in yeast

    DEFF Research Database (Denmark)

    Rosenkilde, Anne Lind; Dionisio, Giuseppe; Holm, Preben B

    Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins during germination. Several Cysteine proteases have been identified in barley. One of the key enzymes, Hordeum vulgare endoprotease B2 (HvEPB2) was cloned with and w......Cysteine Proteases accounts for more than 90 % of the total proteolytic activity in the degradation of barley seed storage proteins during germination. Several Cysteine proteases have been identified in barley. One of the key enzymes, Hordeum vulgare endoprotease B2 (HvEPB2) was cloned...

  17. Spermidine cures yeast of prions

    Directory of Open Access Journals (Sweden)

    Shaun H. Speldewinde

    2015-12-01

    Full Text Available Prions are self-perpetuating amyloid protein aggregates which underlie various neurodegenerative diseases in mammals. The molecular basis underlying their conversion from a normally soluble protein into the prion form remains largely unknown. Studies aimed at uncovering these mechanism(s are therefore essential if we are to develop effective therapeutic strategies to counteract these disease-causing entities. Autophagy is a cellular degradation system which has predominantly been considered as a non-selective bulk degradation process which recycles macromolecules in response to starvation conditions. We now know that autophagy also serves as a protein quality control mechanism which selectively degrades protein aggregates and damaged organelles. These are commonly accumulated in various neurodegenerative disorders including prion diseases. In our recent study [Speldewinde et al. Mol. Biol. Cell. (2015] we used the well-established yeast [PSI+]/Sup35 and [PIN­+]/Rnq1 prion models to show that autophagy prevents sporadic prion formation. Importantly, we found that spermidine, a polyamine that has been used to increase autophagic flux, acts as a protective agent which prevents spontaneous prion formation.

  18. More than just trash bins? Potential roles for extracellular vesicles in the vertical and horizontal transmission of yeast prions.

    Science.gov (United States)

    Kabani, Mehdi; Melki, Ronald

    2016-05-01

    In the yeast Saccharomyces cerevisiae, an ensemble of structurally and functionally diverse cytoplasmic proteins has the ability to form self-perpetuating protein aggregates (e.g. prions) which are the vectors of heritable non-Mendelian phenotypic traits. Whether harboring these prions is deleterious-akin to mammalian degenerative disorders-or beneficial-as epigenetic modifiers of gene expression-for yeasts has been intensely debated and strong arguments were made in support of both views. We recently reported that the yeast prion protein Sup35p is exported via extracellular vesicles (EV), both in its soluble and aggregated infectious states. Herein, we discuss the possible implications of this observation and propose several hypotheses regarding the roles of EV in both vertical and horizontal propagation of 'good' and 'bad' yeast prions.

  19. An improved, bias-reduced probabilistic functional gene network of baker's yeast, Saccharomyces cerevisiae.

    Directory of Open Access Journals (Sweden)

    Insuk Lee

    2007-10-01

    Full Text Available Probabilistic functional gene networks are powerful theoretical frameworks for integrating heterogeneous functional genomics and proteomics data into objective models of cellular systems. Such networks provide syntheses of millions of discrete experimental observations, spanning DNA microarray experiments, physical protein interactions, genetic interactions, and comparative genomics; the resulting networks can then be easily applied to generate testable hypotheses regarding specific gene functions and associations.We report a significantly improved version (v. 2 of a probabilistic functional gene network of the baker's yeast, Saccharomyces cerevisiae. We describe our optimization methods and illustrate their effects in three major areas: the reduction of functional bias in network training reference sets, the application of a probabilistic model for calculating confidences in pair-wise protein physical or genetic interactions, and the introduction of simple thresholds that eliminate many false positive mRNA co-expression relationships. Using the network, we predict and experimentally verify the function of the yeast RNA binding protein Puf6 in 60S ribosomal subunit biogenesis.YeastNet v. 2, constructed using these optimizations together with additional data, shows significant reduction in bias and improvements in precision and recall, in total covering 102,803 linkages among 5,483 yeast proteins (95% of the validated proteome. YeastNet is available from http://www.yeastnet.org.

  20. Yeast cell surface display: An efficient strategy for improvement of bioethanol fermentation performance.

    Science.gov (United States)

    Chen, Xianzhong

    2017-03-04

    The cell surface serves as a functional interface between the inside and the outside of the cell. Within the past 20 y the ability of yeast (Saccharomyces cerevisiae) to display heterologous proteins on the cell surface has been demonstrated. Furthermore, S. cerevisiae has been both developed and applied in expression of various proteins on the cell surface. Using this novel and useful strategy, proteins and peptides of various kinds can be displayed on the yeast cell surface by fusing the protein of interest with the glycosylphosphatidylinositol (GPI)-anchoring system. Consolidated bioprocessing (CBP) using S. cerevisiae represents a promising technology for bioethanol production. However, further work is needed to improve the fermentation performance. There is some excellent previous research regarding construction of yeast biocatalyst using the surface display system to decrease cost, increase efficiency of ethanol production and directly utilize starch or biomass for fuel production. In this commentary, we reviewed the yeast surface display system and highlighted recent work. Additionally, the strategy for decrease of phytate phosphate content in dried distillers grains with solubles (DDGS) by display of phytase on the yeast cell surface is discussed.

  1. Regulation of the yeast metabolic cycle by transcription factors with periodic activities

    Directory of Open Access Journals (Sweden)

    Pellegrini Matteo

    2011-10-01

    Full Text Available Abstract Background When growing budding yeast under continuous, nutrient-limited conditions, over half of yeast genes exhibit periodic expression patterns. Periodicity can also be observed in respiration, in the timing of cell division, as well as in various metabolite levels. Knowing the transcription factors involved in the yeast metabolic cycle is helpful for determining the cascade of regulatory events that cause these patterns. Results Transcription factor activities were estimated by linear regression using time series and genome-wide transcription factor binding data. Time-translation matrices were estimated using least squares and were used to model the interactions between the most significant transcription factors. The top transcription factors have functions involving respiration, cell cycle events, amino acid metabolism and glycolysis. Key regulators of transitions between phases of the yeast metabolic cycle appear to be Hap1, Hap4, Gcn4, Msn4, Swi6 and Adr1. Conclusions Analysis of the phases at which transcription factor activities peak supports previous findings suggesting that the various cellular functions occur during specific phases of the yeast metabolic cycle.

  2. The phytopathogenic virulent effector protein RipI induces apoptosis in budding yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Deng, Meng-Ying; Sun, Yun-Hao; Li, Pai; Fu, Bei; Shen, Dong; Lu, Yong-Jun

    2016-10-01

    Virulent protein toxins secreted by the bacterial pathogens can cause cytotoxicity by various molecular mechanisms to combat host cell defense. On the other hand, these proteins can also be used as probes to investigate the defense pathway of host innate immunity. Ralstonia solanacearum, one of the most virulent bacterial phytopathogens, translocates more than 70 effector proteins via type III secretion system during infection. Here, we characterized the cytotoxicity of effector RipI in budding yeast Saccharomyce scerevisiae, an alternative host model. We found that over-expression of RipI resulted in severe growth defect and arginine (R) 117 within the predicted integrase motif was required for inhibition of yeast growth. The phenotype of death manifested the hallmarks of apoptosis. Our data also revealed that RipI-induced apoptosis was independent of Yca1 and mitochondria-mediated apoptotic pathways because Δyca1 and Δaif1 were both sensitive to RipI as compared with the wild type. We further demonstrated that RipI was localized in the yeast nucleus and the N-terminal 1-174aa was required for the localization. High-throughput RNA sequencing analysis showed that upon RipI over-expression, 101 unigenes of yeast ribosome presented lower expression level, and 42 GO classes related to the nucleus or recombination were enriched with differential expression levels. Taken together, our data showed that a nuclear-targeting effector RipI triggers yeast apoptosis, potentially dependent on its integrase function. Our results also provided an alternative strategy to dissect the signaling pathway of cytotoxicity induced by the protein toxins. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Building Better Biosensors for Exploration into Deep-Space, Using Humanized Yeast

    Science.gov (United States)

    Liddell, Lauren; Santa Maria, Sergio; Tieze, Sofia; Bhattacharya, Sharmila

    2017-01-01

    1.BioSentinel is 1 of 13 secondary payloads hitching a ride beyond Low Earth Orbit on Exploration Mission 1 (EM-1), set to launch from NASAs Space Launch System in 2019. EM-1 is our first opportunity to investigate the effects of the deep space environment on a eukaryotic biological system, the budding yeast S. cerevisiae. Though separated by a billion years of evolution we share hundreds of genes important for basic cell function, including responses to DNA damage. Thus, yeast is an ideal biosensor for detecting typesextent of damage induced by deep-space radiation.We will fly desiccated cells, then rehydrate to wake them up when the automated payload is ready to initiate the experiment. Rehydration solution contains SC (Synthetic Complete) media and alamarBlue, an indicator for changes in growth and metabolism. Telemetry of LED readings will then allow us to detect how cells respond throughout the mission. The desiccation-rehydration process can be extremely damaging to cells, and can severely diminish our ability to accurately measure and model cellular responses to deep-space radiation. The aim of this study is to develop a better biosensor: yeast strains that are more resistant to desiccation stress. We will over-express known cellular protectants, including hydrophilin Sip18, the protein disaggregase Hsp104, and thioredoxin Trx2, a responder to oxidative stress, then measure cell viability after desiccation to determine which factors improve stress tolerance. Over-expression of SIP18 in wine yeast starter cultures was previously reported to increase viability following desiccation stress by up to 70. Thus, we expect similar improvements in our space-yeast strains. By designing better yeast biosensors we can better prepare for and mitigate the potential dangers of deep-space radiation for future missions.This work is funded by NASAs AES program.

  4. NetPhosYeast: prediction of protein phosphorylation sites in yeast

    DEFF Research Database (Denmark)

    Ingrell, C.R.; Miller, Martin Lee; Jensen, O.N.

    2007-01-01

    sites compared to those in humans, suggesting the need for an yeast-specific phosphorylation site predictor. NetPhosYeast achieves a correlation coefficient close to 0.75 with a sensitivity of 0.84 and specificity of 0.90 and outperforms existing predictors in the identification of phosphorylation sites...

  5. Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling during ethanol fermentation

    Directory of Open Access Journals (Sweden)

    Lili Li

    2017-03-01

    Full Text Available Objectives: To improve ethanolic fermentation performance of self-flocculating yeast, difference between a flocculating yeast strain and a regular industrial yeast strain was analyzed by transcriptional and metabolic approaches. Results: The number of down-regulated (industrial yeast YIC10 vs. flocculating yeast GIM2.71 and up-regulated genes were 4503 and 228, respectively. It is the economic regulation for YIC10 that non-essential genes were down-regulated, and cells put more “energy” into growth and ethanol production. Hexose transport and phosphorylation were not the limiting-steps in ethanol fermentation for GIM2.71 compared to YIC10, whereas the reaction of 1,3-disphosphoglycerate to 3-phosphoglycerate, the decarboxylation of pyruvate to acetaldehyde and its subsequent reduction to ethanol were the most limiting steps. GIM2.71 had stronger stress response than non-flocculating yeast and much more carbohydrate was distributed to other bypass, such as glycerol, acetate and trehalose synthesis. Conclusions: Differences between flocculating yeast and regular industrial yeast in transcription and metabolite profiling will provide clues for improving the fermentation performance of GIM2.71.

  6. Increasing the yeast yield in alcohol fermentation

    Energy Technology Data Exchange (ETDEWEB)

    Pelc, A; Vamos, E; Varga, L; Gavalya, S; Dolanszky, F

    1964-02-01

    The yeast and ethanol yields (the latter being based on the substrate) are enhanced by adding the substrate (molasses) gradually to the suspension of inoculating yeast during the main fermentation period, passing air through the mash, ceasing both substrate addition and aeration at the end of the main period, and allowing the process to come to an end. This way 12 to 14 kg yeast (dry weight)/100 l ethanol could be obtained within 16 to 24 hours and the yeast obtained could be used as the inoculum for the next charge. For example: 11 to 16 kg yeast (or 18 to 25 l yeast suspension from the preceding charge, containing 18 to 20% dry matter) is kept in 30 to 35 l H/sub 2/SO/sub 4/ (0.74 g/100 ml) for 1 hour, diluted with H/sub 2/O and 30 kg sterile molasses to 300 l, kept at 30 to 32/sup 0/ with mild aeration for 2 hours, 1900 l 30/sup 0/ H/sub 2/O added, then 1 m/sup 3/ air/m/sup 2//hour is passed through the mixture, with the addition of 270 kg sterile molasses, and a solution of 8 kg superphosphate and 5 kg (NH/sub 4/)/sub 2/SO/sub 4/ in 100 l H/sub 2/O, the latter being added in 5 portions over 2 hours. Molasses (600 kg) is added during the main period, maintaining the pH at 5 (H/sub 2/SO/sub 4/), and the temperature at 30/sup 0/, then aeration is ceased and the mixture kept until fermentation proceeds. The 3000 l medium contains 9.6% ethanol and 1.38% yeast, respectively.

  7. Human COQ9 Rescues a coq9 Yeast Mutant by Enhancing Coenzyme Q Biosynthesis from 4-Hydroxybenzoic Acid and Stabilizing the CoQ-Synthome

    Directory of Open Access Journals (Sweden)

    Cuiwen H. He

    2017-07-01

    Full Text Available Coq9 is required for the stability of a mitochondrial multi-subunit complex, termed the CoQ-synthome, and the deamination step of Q intermediates that derive from para-aminobenzoic acid (pABA in yeast. In human, mutations in the COQ9 gene cause neonatal-onset primary Q10 deficiency. In this study, we determined whether expression of human COQ9 could complement yeast coq9 point or null mutants. We found that expression of human COQ9 rescues the growth of the temperature-sensitive yeast mutant, coq9-ts19, on a non-fermentable carbon source and increases the content of Q6, by enhancing Q biosynthesis from 4-hydroxybenzoic acid (4HB. To study the mechanism for the rescue by human COQ9, we determined the steady-state levels of yeast Coq polypeptides in the mitochondria of the temperature-sensitive yeast coq9 mutant expressing human COQ9. We show that the expression of human COQ9 significantly increased steady-state levels of yeast Coq4, Coq6, Coq7, and Coq9 at permissive temperature. Human COQ9 polypeptide levels persisted at non-permissive temperature. A small amount of the human COQ9 co-purified with tagged Coq6, Coq6-CNAP, indicating that human COQ9 interacts with the yeast Q-biosynthetic complex. These findings suggest that human COQ9 rescues the yeast coq9 temperature-sensitive mutant by stabilizing the CoQ-synthome and increasing Q biosynthesis from 4HB. This finding provides a powerful approach to studying the function of human COQ9 using yeast as a model.

  8. Schizosaccharomyces japonicus: the fission yeast is a fusion of yeast and hyphae.

    Science.gov (United States)

    Niki, Hironori

    2014-03-01

    The clade of Schizosaccharomyces includes 4 species: S. pombe, S. octosporus, S. cryophilus, and S. japonicus. Although all 4 species exhibit unicellular growth with a binary fission mode of cell division, S. japonicus alone is dimorphic yeast, which can transit from unicellular yeast to long filamentous hyphae. Recently it was found that the hyphal cells response to light and then synchronously activate cytokinesis of hyphae. In addition to hyphal growth, S. japonicas has many properties that aren't shared with other fission yeast. Mitosis of S. japonicas is referred to as semi-open mitosis because dynamics of nuclear membrane is an intermediate mode between open mitosis and closed mitosis. Novel genetic tools and the whole genomic sequencing of S. japonicas now provide us with an opportunity for revealing unique characters of the dimorphic yeast. © 2013 The Author. Yeast Published by John Wiley & Sons Ltd.

  9. Terroir of yeasts? – Application of FTIR spectroscopy and molecular methods for strain typing of yeasts

    Directory of Open Access Journals (Sweden)

    Gerhards Daniel

    2015-01-01

    Full Text Available The site specific influence on wine (Terroir is an often by wine producers, consumers and scientists discussed topic in the world of wine. A study on grapes and (spontaneous fermentations from six different vineyards was done to investigate the biodiversity of yeasts and to answer the question if there is a terroir of yeast and how it could be influenced. Randomly isolated yeasts were identified by FTIR-spectroscopy and molecular methods on species and strain level. Vineyard specific yeast floras would be observed but they are not such important as expected. Only a few overlapping strain patterns would be identified during both vintages. The yeast flora of the winery had a huge impact on the spontaneous fermentations, but is not really constant and influenced by different factors from outside.

  10. Transcriptional Regulation and the Diversification of Metabolism in Wine Yeast Strains

    Science.gov (United States)

    Rossouw, Debra; Jacobson, Dan; Bauer, Florian F.

    2012-01-01

    Transcription factors and their binding sites have been proposed as primary targets of evolutionary adaptation because changes to single transcription factors can lead to far-reaching changes in gene expression patterns. Nevertheless, there is very little concrete evidence for such evolutionary changes. Industrial wine yeast strains, of the species Saccharomyces cerevisiae, are a geno- and phenotypically diverse group of organisms that have adapted to the ecological niches of industrial winemaking environments and have been selected to produce specific styles of wine. Variation in transcriptional regulation among wine yeast strains may be responsible for many of the observed differences and specific adaptations to different fermentative conditions in the context of commercial winemaking. We analyzed gene expression profiles of wine yeast strains to assess the impact of transcription factor expression on metabolic networks. The data provide new insights into the molecular basis of variations in gene expression in industrial strains and their consequent effects on metabolic networks important to wine fermentation. We show that the metabolic phenotype of a strain can be shifted in a relatively predictable manner by changing expression levels of individual transcription factors, opening opportunities to modify transcription networks to achieve desirable outcomes. PMID:22042577

  11. Improved vanillin production in baker's yeast through in silico design.

    Science.gov (United States)

    Brochado, Ana Rita; Matos, Claudia; Møller, Birger L; Hansen, Jørgen; Mortensen, Uffe H; Patil, Kiran Raosaheb

    2010-11-08

    Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has recently been implemented in baker's yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing an attractive alternative to chemical synthesis. Expression of a glycosyltransferase from Arabidopsis thaliana in the vanillin producing S. cerevisiae strain served to decrease product toxicity. An in silico metabolic engineering strategy of this vanillin glucoside producing strain was designed using a set of stoichiometric modelling tools applied to the yeast genome-scale metabolic network. Two targets (PDC1 and GDH1) were selected for experimental verification resulting in four engineered strains. Three of the mutants showed up to 1.5 fold higher vanillin β-D-glucoside yield in batch mode, while continuous culture of the Δpdc1 mutant showed a 2-fold productivity improvement. This mutant presented a 5-fold improvement in free vanillin production compared to the previous work on de novo vanillin biosynthesis in baker's yeast. Use of constraints corresponding to different physiological states was found to greatly influence the target predictions given minimization of metabolic adjustment (MOMA) as biological objective function. In vivo verification of the targets, selected based on their predicted metabolic adjustment, successfully led to overproducing strains. Overall, we propose and demonstrate a framework for in silico design and target selection for improving microbial cell factories.

  12. Improved vanillin production in baker's yeast through in silico design

    Science.gov (United States)

    2010-01-01

    Background Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has recently been implemented in baker's yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing an attractive alternative to chemical synthesis. Results Expression of a glycosyltransferase from Arabidopsis thaliana in the vanillin producing S. cerevisiae strain served to decrease product toxicity. An in silico metabolic engineering strategy of this vanillin glucoside producing strain was designed using a set of stoichiometric modelling tools applied to the yeast genome-scale metabolic network. Two targets (PDC1 and GDH1) were selected for experimental verification resulting in four engineered strains. Three of the mutants showed up to 1.5 fold higher vanillin β-D-glucoside yield in batch mode, while continuous culture of the Δpdc1 mutant showed a 2-fold productivity improvement. This mutant presented a 5-fold improvement in free vanillin production compared to the previous work on de novo vanillin biosynthesis in baker's yeast. Conclusion Use of constraints corresponding to different physiological states was found to greatly influence the target predictions given minimization of metabolic adjustment (MOMA) as biological objective function. In vivo verification of the targets, selected based on their predicted metabolic adjustment, successfully led to overproducing strains. Overall, we propose and demonstrate a framework for in silico design and target selection for improving microbial cell factories. PMID:21059201

  13. Improved vanillin production in baker's yeast through in silico design

    Directory of Open Access Journals (Sweden)

    Hansen Jørgen

    2010-11-01

    Full Text Available Abstract Background Vanillin is one of the most widely used flavouring agents, originally obtained from cured seed pods of the vanilla orchid Vanilla planifolia. Currently vanillin is mostly produced via chemical synthesis. A de novo synthetic pathway for heterologous vanillin production from glucose has recently been implemented in baker's yeast, Saccharamyces cerevisiae. In this study we aimed at engineering this vanillin cell factory towards improved productivity and thereby at developing an attractive alternative to chemical synthesis. Results Expression of a glycosyltransferase from Arabidopsis thaliana in the vanillin producing S. cerevisiae strain served to decrease product toxicity. An in silico metabolic engineering strategy of this vanillin glucoside producing strain was designed using a set of stoichiometric modelling tools applied to the yeast genome-scale metabolic network. Two targets (PDC1 and GDH1 were selected for experimental verification resulting in four engineered strains. Three of the mutants showed up to 1.5 fold higher vanillin β-D-glucoside yield in batch mode, while continuous culture of the Δpdc1 mutant showed a 2-fold productivity improvement. This mutant presented a 5-fold improvement in free vanillin production compared to the previous work on de novo vanillin biosynthesis in baker's yeast. Conclusion Use of constraints corresponding to different physiological states was found to greatly influence the target predictions given minimization of metabolic adjustment (MOMA as biological objective function. In vivo verification of the targets, selected based on their predicted metabolic adjustment, successfully led to overproducing strains. Overall, we propose and demonstrate a framework for in silico design and target selection for improving microbial cell factories.

  14. The enrichment of TATA box and the scarcity of depleted proximal nucleosome in the promoters of duplicated yeast genes.

    Science.gov (United States)

    Kim, Yuseob; Lee, Jang H; Babbitt, Gregory A

    2010-01-01

    Population genetic theory of gene duplication suggests that the preservation of duplicate copies requires functional divergence upon duplication. Genes that can be readily modified to produce new gene expression patterns may thus be duplicated often. In yeast, genes exhibit dichotomous expression patterns based on their promoter architectures. The expression of genes that contain TATA box or occupied proximal nucleosome (OPN) tends to be variable and respond to external signals. On the other hand, genes without TATA box or with depleted proximal nucleosome (DPN) are expressed constitutively. We find that recent duplicates in the yeast genome are heavily biased to be TATA box containing genes and not to be DPN genes. This suggests that variably expressed genes, due to the functional organization in their promoters, have higher duplicability than constitutively expressed genes.

  15. Protein patterns of yeast during sporulation

    International Nuclear Information System (INIS)

    Litske Petersen, J.G.; Kielland-Brandt, M.C.; Nilsson-Tillgren, T.

    1979-01-01

    High resolution two-dimensional gel electrophoresis was used to study protein synthesis during synchronous meiosis and ascospore formation of Saccharomyces cerevisiae. The stained protein patterns of samples harvested at any stage between meiotic prophase and the four-spore stage in two sporulating strains showed the same approximately 250 polypeptides. Of these only a few seemed to increase or decrease in concentration during sporulation. The characteristic pattern of sporulating yeast was identical to the pattern of glucose-grown staitonary yeast cells adapted to respiration. The latter type of cells readily initiates meiosis when transferred to sporulation medium. This pattern differed from the protein patterns of exponentially growing cells in glucose or acetate presporulation medium. Five major proteins in stationary and sporulating yeast cells were not detected in either type of exponential culture. Two-dimensional autoradiograms of [ 35 S]methionine-labelled yeast proteins revealed that some proteins were preferentially labelled during sporulation, while other proteins were labelled at later stages. These patterns differed from the auroradiograms of exponentially growing yeast cells in glucose presporulation medium in a number of spots. No differences were observed when stained gels or autoradiograms of sporulating cultures and non-sporulating strains in sporulation medium were compared. (author)

  16. A soluble diacylglycerol acyltransferase is involved in triacylglycerol biosynthesis in the oleaginous yeast Rhodotorula glutinis.

    Science.gov (United States)

    Rani, Sapa Hima; Saha, Saikat; Rajasekharan, Ram

    2013-01-01

    The biosynthesis of triacylglycerol (TAG) occurs in the microsomal membranes of eukaryotes. Here, we report the identification and functional characterization of diacylglycerol acyltransferase (DGAT), a member of the 10 S cytosolic TAG biosynthetic complex (TBC) in Rhodotorula glutinis. Both a full-length and an N-terminally truncated cDNA clone of a single gene were isolated from R. glutinis. The DGAT activity of the protein encoded by RgDGAT was confirmed in vivo by the heterologous expression of cDNA in a Saccharomyces cerevisiae quadruple mutant (H1246) that is defective in TAG synthesis. RgDGAT overexpression in yeast was found to be capable of acylating diacylglycerol (DAG) in an acyl-CoA-dependent manner. Quadruple mutant yeast cells exhibit growth defects in the presence of oleic acid, but wild-type yeast cells do not. In an in vivo fatty acid supplementation experiment, RgDGAT expression rescued quadruple mutant growth in an oleate-containing medium. We describe a soluble acyl-CoA-dependent DAG acyltransferase from R. glutinis that belongs to the DGAT3 class of enzymes. The study highlights the importance of an alternative TAG biosynthetic pathway in oleaginous yeasts.

  17. Sequestration of Sup35 by aggregates of huntingtin fragments causes toxicity of [PSI+] yeast.

    Science.gov (United States)

    Zhao, Xiaohong; Park, Yang-Nim; Todor, Horia; Moomau, Christine; Masison, Daniel; Eisenberg, Evan; Greene, Lois E

    2012-07-06

    Expression of huntingtin fragments with 103 glutamines (HttQ103) is toxic in yeast containing either the [PIN(+)] prion, which is the amyloid form of Rnq1, or [PSI(+)] prion, which is the amyloid form of Sup35. We find that HttQP103, which has a polyproline region at the C-terminal end of the polyQ repeat region, is significantly more toxic in [PSI(+)] yeast than in [PIN(+)], even though HttQP103 formed multiple aggregates in both [PSI(+)] and [PIN(+)] yeast. This toxicity was only observed in the strong [PSI(+)] variant, not the weak [PSI(+)] variant, which has more soluble Sup35 present than the strong variant. Furthermore, expression of the MC domains of Sup35, which retains the C-terminal domain of Sup35, but lacks the N-terminal prion domain, almost completely rescued HttQP103 toxicity, but was less effective in rescuing HttQ103 toxicity. Therefore, the toxicity of HttQP103 in yeast containing the [PSI(+)] prion is primarily due to sequestration of the essential protein, Sup35.

  18. Identifying Cis-Regulatory Changes Involved in the Evolution of Aerobic Fermentation in Yeasts

    Science.gov (United States)

    Lin, Zhenguo; Wang, Tzi-Yuan; Tsai, Bing-Shi; Wu, Fang-Ting; Yu, Fu-Jung; Tseng, Yu-Jung; Sung, Huang-Mo; Li, Wen-Hsiung

    2013-01-01

    Gene regulation change has long been recognized as an important mechanism for phenotypic evolution. We used the evolution of yeast aerobic fermentation as a model to explore how gene regulation has evolved and how this process has contributed to phenotypic evolution and adaptation. Most eukaryotes fully oxidize glucose to CO2 and H2O in mitochondria to maximize energy yield, whereas some yeasts, such as Saccharomyces cerevisiae and its relatives, predominantly ferment glucose into ethanol even in the presence of oxygen, a phenomenon known as aerobic fermentation. We examined the genome-wide gene expression levels among 12 different yeasts and found that a group of genes involved in the mitochondrial respiration process showed the largest reduction in gene expression level during the evolution of aerobic fermentation. Our analysis revealed that the downregulation of these genes was significantly associated with massive loss of binding motifs of Cbf1p in the fermentative yeasts. Our experimental assays confirmed the binding of Cbf1p to the predicted motif and the activator role of Cbf1p. In summary, our study laid a foundation to unravel the long-time mystery about the genetic basis of evolution of aerobic fermentation, providing new insights into understanding the role of cis-regulatory changes in phenotypic evolution. PMID:23650209

  19. L-histidine inhibits biofilm formation and FLO11-associated phenotypes in Saccharomyces cerevisiae flor yeasts.

    Science.gov (United States)

    Bou Zeidan, Marc; Zara, Giacomo; Viti, Carlo; Decorosi, Francesca; Mannazzu, Ilaria; Budroni, Marilena; Giovannetti, Luciana; Zara, Severino

    2014-01-01

    Flor yeasts of Saccharomyces cerevisiae have an innate diversity of Flo11p which codes for a highly hydrophobic and anionic cell-wall glycoprotein with a fundamental role in biofilm formation. In this study, 380 nitrogen compounds were administered to three S. cerevisiae flor strains handling Flo11p alleles with different expression levels. S. cerevisiae strain S288c was used as the reference strain as it cannot produce Flo11p. The flor strains generally metabolized amino acids and dipeptides as the sole nitrogen source, although with some exceptions regarding L-histidine and histidine containing dipeptides. L-histidine completely inhibited growth and its effect on viability was inversely related to Flo11p expression. Accordingly, L-histidine did not affect the viability of the Δflo11 and S288c strains. Also, L-histidine dramatically decreased air-liquid biofilm formation and adhesion to polystyrene of the flor yeasts with no effect on the transcription level of the Flo11p gene. Moreover, L-histidine modified the chitin and glycans content on the cell-wall of flor yeasts. These findings reveal a novel biological activity of L-histidine in controlling the multicellular behavior of yeasts [corrected].

  20. Improving yeast strains using recyclable integration cassettes, for the production of plant terpenoids

    Directory of Open Access Journals (Sweden)

    Johnson Christopher B

    2011-01-01

    Full Text Available Abstract Background Terpenoids constitute a large family of natural products, attracting commercial interest for a variety of uses as flavours, fragrances, drugs and alternative fuels. Saccharomyces cerevisiae offers a versatile cell factory, as the precursors of terpenoid biosynthesis are naturally synthesized by the sterol biosynthetic pathway. Results S. cerevisiae wild type yeast cells, selected for their capacity to produce high sterol levels were targeted for improvement aiming to increase production. Recyclable integration cassettes were developed which enable the unlimited sequential integration of desirable genetic elements (promoters, genes, termination sequence at any desired locus in the yeast genome. The approach was applied on the yeast sterol biosynthetic pathway genes HMG2, ERG20 and IDI1 resulting in several-fold increase in plant monoterpene and sesquiterpene production. The improved strains were robust and could sustain high terpenoid production levels for an extended period. Simultaneous plasmid-driven co-expression of IDI1 and the HMG2 (K6R variant, in the improved strain background, maximized monoterpene production levels. Expression of two terpene synthase enzymes from the sage species Salvia fruticosa and S. pomifera (SfCinS1, SpP330 in the modified yeast cells identified a range of terpenoids which are also present in the plant essential oils. Co-expression of the putative interacting protein HSP90 with cineole synthase 1 (SfCinS1 also improved production levels, pointing to an additional means to improve production. Conclusions Using the developed molecular tools, new yeast strains were generated with increased capacity to produce plant terpenoids. The approach taken and the durability of the strains allow successive rounds of improvement to maximize yields.

  1. Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules

    Energy Technology Data Exchange (ETDEWEB)

    Leão, Mariana; Gomes, Sara; Bessa, Cláudia; Soares, Joana; Raimundo, Liliana [REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto (Portugal); Monti, Paola; Fronza, Gilberto [Mutagenesis Unit, Istituto di Ricerca e Cura a Carattere Scientifico Azienda Ospedaliera Universitaria San Martino-IST-Istituto Nazionale per la Ricerca sul Cancro, 16132 Genoa (Italy); Pereira, Clara [REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto (Portugal); Saraiva, Lucília, E-mail: lucilia.saraiva@ff.up.pt [REQUIMTE, Laboratório de Microbiologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira n. 164, 4050-313 Porto (Portugal)

    2015-01-01

    In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either per se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions. - Highlights: • p53, p63 and p73 are individually studied in the yeast S. cerevisiae. • p53 family members induce ROS production, cell cycle arrest and autophagy in yeast. • p53 family members increase actin depolarization and expression levels in yeast. • MDM2 and MDMX inhibit the activity of p53 family members in yeast. • Yeast can be a useful tool to study the biology and drugability of p53, p63 and p73.

  2. Studying p53 family proteins in yeast: Induction of autophagic cell death and modulation by interactors and small molecules

    International Nuclear Information System (INIS)

    Leão, Mariana; Gomes, Sara; Bessa, Cláudia; Soares, Joana; Raimundo, Liliana; Monti, Paola; Fronza, Gilberto; Pereira, Clara; Saraiva, Lucília

    2015-01-01

    In this work, the yeast Saccharomyces cerevisiae was used to individually study human p53, p63 (full length and truncated forms) and p73. Using this cell system, the effect of these proteins on cell proliferation and death, and the influence of MDM2 and MDMX on their activities were analyzed. When expressed in yeast, wild-type p53, TAp63, ΔNp63 and TAp73 induced growth inhibition associated with S-phase cell cycle arrest. This growth inhibition was accompanied by reactive oxygen species production and autophagic cell death. Furthermore, they stimulated rapamycin-induced autophagy. On the contrary, none of the tested p53 family members induced apoptosis either per se or after apoptotic stimuli. As previously reported for p53, also TAp63, ΔNp63 and TAp73 increased actin expression levels and its depolarization, suggesting that ACT1 is also a p63 and p73 putative yeast target gene. Additionally, MDM2 and MDMX inhibited the activity of all tested p53 family members in yeast, although the effect was weaker on TAp63. Moreover, Nutlin-3a and SJ-172550 were identified as potential inhibitors of the p73 interaction with MDM2 and MDMX, respectively. Altogether, the yeast-based assays herein developed can be envisaged as a simplified cell system to study the involvement of p53 family members in autophagy, the modulation of their activities by specific interactors (MDM2 and MDMX), and the potential of new small molecules to modulate these interactions. - Highlights: • p53, p63 and p73 are individually studied in the yeast S. cerevisiae. • p53 family members induce ROS production, cell cycle arrest and autophagy in yeast. • p53 family members increase actin depolarization and expression levels in yeast. • MDM2 and MDMX inhibit the activity of p53 family members in yeast. • Yeast can be a useful tool to study the biology and drugability of p53, p63 and p73

  3. Yeast genetics. A manual of methods

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, J.F.T.; Spencer, D.M.; Bruce, I.J.

    1989-01-01

    This is a bench-top manual of methods needed both for classical genetics as related to yeasts, such as mating, sporulation, isolation of hybrids, microdissection of asci for the isolation of single-spore clones, as well as for mapping of genes and the construction of new strains by protoplast fusion. Special emphasis is on mutations in general, and on methods of isolating a number of important classes of mutants in particular. Basic techniques for the separation of chromosomes by electrophoresis, such as OFAGE, FIGE, and CHEF, are discussed, with detailed protocols for the first two. Furthermore, new methods, e.g. for the isolation of high molecular weight DNA from yeast, isolation of RNA, and techniques for transformation of yeasts, are also described in detail. (orig.) With 10 figs.

  4. Modeling diauxic glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Sørensen, Preben Graae

    2010-01-01

    for investigations of central metabolism dynamics of yeast cells. We have previously proposed a model for the open system comprised of the primary fermentative reactions in yeast that quantitatively describes the oscillatory dynamics. However, this model fails to describe the transient behavior of metabolic......Glycolytic oscillations in a stirred suspension of starved yeast cells is an excellent model system for studying the dynamics of metabolic switching in living systems. In an open-flow system the oscillations can be maintained indefinitely at a constant operating point where they can....... Experimental and computational results strongly suggest that regulation of acetaldehyde explains the observed behavior. We have extended the original model with regulation of pyruvate decarboxylase, a reversible alcohol dehydrogenase, and drainage of pyruvate. Using the method of time rescaling in the extended...

  5. [Urinary infection by Saccharomyces cerevisiae: Emerging yeast?].

    Science.gov (United States)

    Elkhihal, B; Elhalimi, M; Ghfir, B; Mostachi, A; Lyagoubi, M; Aoufi, S

    2015-12-01

    Saccharomyces cerevisiae is a commensal yeast of the digestive, respiratory and genito-urinary tract. It is widely used as a probiotic for the treatment of post-antibiotic diarrhea. It most often occurs in immunocompromised patients frequently causing fungemia. We report the case of an adult diabetic patient who had a urinary tract infection due to S. cerevisiae. The disease started with urination associated with urinary frequency burns without fever. The diagnosis was established by the presence of yeasts on direct examination and positivity of culture on Sabouraud-chloramphenicol three times. The auxanogramme gallery (Auxacolor BioRad(®)) allowed the identification of S. cerevisiae. The patient was put on fluconazole with good outcome. This observation points out that this is an opportunistic yeast in immunocompromised patients. Copyright © 2015 Elsevier Masson SAS. All rights reserved.

  6. Flux control through protein phosphorylation in yeast

    DEFF Research Database (Denmark)

    Chen, Yu; Nielsen, Jens

    2016-01-01

    Protein phosphorylation is one of the most important mechanisms regulating metabolism as it can directly modify metabolic enzymes by the addition of phosphate groups. Attributed to such a rapid and reversible mechanism, cells can adjust metabolism rapidly in response to temporal changes. The yeast...... as well as identify mechanisms underlying human metabolic diseases. Here we collect functional phosphorylation events of 41 enzymes involved in yeast metabolism and demonstrate functional mechanisms and the application of this information in metabolic engineering. From a systems biology perspective, we...... describe the development of phosphoproteomics in yeast as well as approaches to analysing the phosphoproteomics data. Finally, we focus on integrated analyses with other omics data sets and genome-scale metabolic models. Despite the advances, future studies improving both experimental technologies...

  7. Probiotic Properties of Non-Saccharomyces Yeasts

    DEFF Research Database (Denmark)

    Smith, Ida Mosbech

    to harmless luminal substances is a key feature of the intestinal immune system. In this context, dendritic cells (DCs) present in the tissues lining the human gut are central players involved in microbial sensing and shaping of appropriate adaptive immune responses. Probiotics are live microorganisms which...... when administered in adequate amounts confer a health benefit on the host. While the majority of probiotic microorganisms studied to date are lactic acid bacteria, research in yeasts with potentially beneficial influences on human health has mainly revolved around Saccharomyces boulardii. This yeast...... has shown a positive impact on disease outcome in clinical studies of inflammatory bowel disease, indicating an ability of S. boulardii to influence human immune responses underlying intestinal inflammation. Consequent to this focus on S. boulardii as the fundamental probiotic yeast, very little...

  8. Metallic Biosorption Using Yeasts in Continuous Systems

    Directory of Open Access Journals (Sweden)

    Karla Miriam Hernández Mata

    2013-01-01

    Full Text Available Mining effluents were found to be the main source of pollution by heavy metals of the surface water in the San Pedro River in Sonora, Mexico. The overall objective of this study was to determine the biosorption of Zn, Cu, Mn, and Fe with yeasts isolated from San Pedro River in a continuous system. The tests conducted in two reactors packed with zeolite connected in series. The first reactor was inoculated mixing two yeasts species, and the effluent of the first reactor was fed to second reactor. Subsequently, the first reactor was fed with contaminated water of San Pedro River and effluent from this was the second reactor influent. After 40 days of the experiment a reduction of 81.5% zinc, 76.5% copper, manganese 95.5%, and 99.8% of iron was obtained. These results show that the selected yeasts are capable of biosorbing zinc, copper, manganese, and iron under these conditions.

  9. Yeasts and yeast-like organisms associated with fruits and blossoms of different fruit trees.

    Science.gov (United States)

    Vadkertiová, Renáta; Molnárová, Jana; Vránová, Dana; Sláviková, Elena

    2012-12-01

    Yeasts are common inhabitants of the phyllosphere, but our knowledge of their diversity in various plant organs is still limited. This study focused on the diversity of yeasts and yeast-like organisms associated with matured fruits and fully open blossoms of apple, plum, and pear trees, during 2 consecutive years at 3 localities in southwest Slovakia. The occurrence of yeasts and yeast-like organisms in fruit samples was 2½ times higher and the yeast community more diverse than that in blossom samples. Only 2 species (Aureobasidium pullulans and Metschnikowia pulcherrima) occurred regularly in the blossom samples, whereas Galactomyces candidus, Hanseniaspora guilliermondii, Hanseniaspora uvarum, M. pulcherrima, Pichia kluyveri, Pichia kudriavzevii, and Saccharomyces cerevisiae were the most frequently isolated species from the fruit samples. The ratio of the number of samples where only individual species were present to the number of samples where 2 or more species were found (consortium) was counted. The occurrence of individual species in comparison with consortia was much higher in blossom samples than in fruit samples. In the latter, consortia predominated. Aureobasidium pullulans, M. pulcherrima, and S. cerevisiae, isolated from both the fruits and blossoms, can be considered as resident yeast species of various fruit tree species cultivated in southwest Slovakia localities.

  10. New yeasts-new brews: modern approaches to brewing yeast design and development.

    Science.gov (United States)

    Gibson, B; Geertman, J-M A; Hittinger, C T; Krogerus, K; Libkind, D; Louis, E J; Magalhães, F; Sampaio, J P

    2017-06-01

    The brewing industry is experiencing a period of change and experimentation largely driven by customer demand for product diversity. This has coincided with a greater appreciation of the role of yeast in determining the character of beer and the widespread availability of powerful tools for yeast research. Genome analysis in particular has helped clarify the processes leading to domestication of brewing yeast and has identified domestication signatures that may be exploited for further yeast development. The functional properties of non-conventional yeast (both Saccharomyces and non-Saccharomyces) are being assessed with a view to creating beers with new flavours as well as producing flavoursome non-alcoholic beers. The discovery of the psychrotolerant S. eubayanus has stimulated research on de novo S. cerevisiae × S. eubayanus hybrids for low-temperature lager brewing and has led to renewed interest in the functional importance of hybrid organisms and the mechanisms that determine hybrid genome function and stability. The greater diversity of yeast that can be applied in brewing, along with an improved understanding of yeasts' evolutionary history and biology, is expected to have a significant and direct impact on the brewing industry, with potential for improved brewing efficiency, product diversity and, above all, customer satisfaction. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Nonselective enrichment for yeast adenine mutants by flow cytometry

    Science.gov (United States)

    Bruschi, C. V.; Chuba, P. J.

    1988-01-01

    The expression of certain adenine biosynthetic mutations in the yeast Saccharomyces cerevisiae results in a red colony color. This phenomenon has historically provided an ideal genetic marker for the study of mutation, recombination, and aneuploidy in lower eukaryotes by classical genetic analysis. In this paper, it is reported that cells carrying ade1 and/or ade2 mutations exhibit primary fluorescence. Based on this observation, the nonselective enrichment of yeast cultures for viable adenine mutants by using the fluorescence-activated cell sorter has been achieved. The advantages of this approach over conventional genetic analysis of mutation, recombination, and mitotic chromosomal stability include speed and accuracy in acquiring data for large numbers of clones. By using appropriate strains, the cell sorter has been used for the isolation of both forward mutations and chromosomal loss events in S. cerevisiae. The resolving power of this system and its noninvasiveness can easily be extended to more complex organisms, including mammalian cells, in which analogous metabolic mutants are available.

  12. Novel Wine Yeast for Improved Utilisation of Proline during Fermentation

    Directory of Open Access Journals (Sweden)

    Danfeng Long

    2018-02-01

    Full Text Available Proline is the predominant amino acid in grape juice, but it is poorly assimilated by wine yeast under the anaerobic conditions typical of most fermentations. Exploiting the abundance of this naturally occurring nitrogen source to overcome the need for nitrogen supplementation and/or the risk of stuck or sluggish fermentations would be most beneficial. This study describes the isolation and evaluation of a novel wine yeast isolate, Q7, obtained through ethyl methanesulfonate (EMS mutagenesis. The utilisation of proline by the EMS isolate was markedly higher than by the QA23 wild type strain, with approximately 700 and 300 mg/L more consumed under aerobic and self-anaerobic fermentation conditions, respectively, in the presence of preferred nitrogen sources. Higher intracellular proline contents in the wild type strain implied a lesser rate of proline catabolism or incorporation by this strain, but with higher cell viability after freezing treatment. The expression of key genes (PUT1, PUT2, PUT3, PUT4, GAP1 and URE2 involved in proline degradation, transport and repression were compared between the parent strain and the isolate, revealing key differences. The application of these strains for efficient conduct for nitrogen-limited fermentations is a possibility.

  13. Osmotic stress response in the wine yeast Dekkera bruxellensis.

    Science.gov (United States)

    Galafassi, Silvia; Toscano, Marco; Vigentini, Ileana; Piškur, Jure; Compagno, Concetta

    2013-12-01

    Dekkera bruxellensis is mainly associated with lambic beer fermentation and wine production and may contribute in a positive or negative manner to the flavor development. This yeast is able to produce phenolic compounds, such as 4-ethylguaiacol and 4-ethylphenol which could spoil the wine, depending on their concentration. In this work we have investigated how this yeast responds when exposed to conditions causing osmotic stress, as high sorbitol or salt concentrations. We observed that osmotic stress determined the production and accumulation of intracellular glycerol, and the expression of NADH-dependent glycerol-3-phosphate dehydrogenase (GPD) activity was elevated. The involvement of the HOG MAPK pathway in response to this stress condition was also investigated. We show that in D. bruxellensis Hog1 protein is activated by phosphorylation under hyperosmotic conditions, highlighting the conserved role of HOG MAP kinase signaling pathway in the osmotic stress response. Gene Accession numbers in GenBank: DbHOG1: JX65361, DbSTL1: JX965362. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Vascular homeostasis regulators, Edn1 and Agpt2, are upregulated as a protective effect of heat-treated zinc yeast in irradiated murine bone marrow

    International Nuclear Information System (INIS)

    Ueno, Megumi; Imadome, Kaori; Iwakawa, Mayumi; Anzai, Kazunori; Ikota, Nobuo; Imai, Takashi

    2010-01-01

    The purpose of this study was to elucidate the mechanism underlying the in vivo radioprotection activity by Zn-containing, heat-treated Saccharomyces cerevisiae yeast (Zn-yeast). Zn-yeast suspension was administered into C3H/He mice immediately after whole body irradiation (WBI) at 7.5 Gy. Bone marrow was extracted from the mice 6 hours after irradiation and analyzed on a microarray. Expression changes in the candidate responsive genes differentially expressed in treated mice were re-examined by quantitative reverse transcription polymerase chain reaction (qRT-PCR). The bone marrow was also examined pathologically at 6 h, 3, 7, and 14 days postirradiation. Thirty-six genes, including Edn1 and Agpt2, were identified as candidate responsive genes in irradiated mouse bone marrow treated with Zn-yeast by showing a greater than three-fold change compared with control (no irradiation and no Zn-yeast) mice. The expressions of Cdkn1a, Bax, and Ccng, which are well known as radioresponsive genes, were upregulated in WBI mice and Zn-yeast treated WBI mice. Pathological examination showed the newly formed microvessels lined with endothelial cells, and small round hematopoietic cells around vessels in bone marrow matrix of mice administered with Zn-yeast after WBI, while whole-body irradiated mice developed fatty bone marrow within 2 weeks after irradiation. This study identified a possible mechanism for the postirradiation protection conferred by Zn-yeast. The protective effect of Zn-yeast against WBI is related to maintaining the bone marrow microenvironment, including targeting endothelial cells and cytokine release. (author)

  15. Yeast Infection Test: MedlinePlus Lab Test Information

    Science.gov (United States)

    ... cheese-like discharge Painful urination Redness in the vagina Yeast infection of the penis may cause: Redness Scaling Rash ... on the location of your symptoms: If a vaginal yeast infection is suspected , your health care provider will perform ...

  16. Autophagy: one more Nobel Prize for yeast

    Directory of Open Access Journals (Sweden)

    Andreas Zimmermann

    2016-12-01

    Full Text Available The recent announcement of the 2016 Nobel Prize in Physiology or Medicine, awarded to Yoshinori Ohsumi for the discoveries of mechanisms governing autophagy, underscores the importance of intracellular degradation and recycling. At the same time, it further cements yeast, in which this field decisively developed, as a prolific model organism. Here we provide a quick historical overview that mirrors both the importance of autophagy as a conserved and essential process for cellular life and death as well as the crucial role of yeast in its mechanistic characterization.

  17. Characterization of wine yeasts for ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, J.; Benitez, T.

    1986-11-01

    Selected wine yeasts were tested for their ethanol and sugar tolerance, and for their fermentative capacity. Growth (..mu..) and fermentation rates (..nu..) were increasingly inhibited by increasing ethanol and glucose concentrations, ''flor'' yeasts being the least inhibited. Except in the latter strains, the ethanol production rate was accelerated by adding the glucose stepwise. The best fermenting strains selected in laboratory medium were also the best at fermenting molasses. Invertase activity was not a limiting step in ethanol production, ..nu.. being accelerated by supplementing molasses with ammonia and biotine, and by cell recycle.

  18. A set of nutrient limitations trigger yeast cell death in a nitrogen-dependent manner during wine alcoholic fermentation.

    Directory of Open Access Journals (Sweden)

    Camille Duc

    Full Text Available Yeast cell death can occur during wine alcoholic fermentation. It is generally considered to result from ethanol stress that impacts membrane integrity. This cell death mainly occurs when grape musts processing reduces lipid availability, resulting in weaker membrane resistance to ethanol. However the mechanisms underlying cell death in these conditions remain unclear. We examined cell death occurrence considering yeast cells ability to elicit an appropriate response to a given nutrient limitation and thus survive starvation. We show here that a set of micronutrients (oleic acid, ergosterol, pantothenic acid and nicotinic acid in low, growth-restricting concentrations trigger cell death in alcoholic fermentation when nitrogen level is high. We provide evidence that nitrogen signaling is involved in cell death and that either SCH9 deletion or Tor inhibition prevent cell death in several types of micronutrient limitation. Under such limitations, yeast cells fail to acquire any stress resistance and are unable to store glycogen. Unexpectedly, transcriptome analyses did not reveal any major changes in stress genes expression, suggesting that post-transcriptional events critical for stress response were not triggered by micronutrient starvation. Our data point to the fact that yeast cell death results from yeast inability to trigger an appropriate stress response under some conditions of nutrient limitations most likely not encountered by yeast in the wild. Our conclusions provide a novel frame for considering both cell death and the management of nutrients during alcoholic fermentation.

  19. Occurrence of Killer Yeast Strains in Fruit and Berry Wine Yeast Populations

    Directory of Open Access Journals (Sweden)

    Gintare Gulbiniene

    2004-01-01

    Full Text Available Apple, cranberry, chokeberry and Lithuanian red grape wine yeast populations were used for the determination of killer yeast occurrence. According to the tests of the killer characteristics and immunity the isolated strains were divided into seven groups. In this work the activity of killer toxins purified from some typical strains was evaluated. The analysed strains produced different amounts of active killer toxin and some of them possessed new industrially significant killer properties. Total dsRNA extractions in 11 killer strains of yeast isolated from spontaneous fermentations revealed that the molecular basis of the killer phenomenon was not only dsRNAs, but also unidentified genetic determinants.

  20. Decolorization of a recalcitrant organic compound (Melanoidin by a novel thermotolerant yeast, Candida tropicalis RG-9

    Directory of Open Access Journals (Sweden)

    Tiwari Soni

    2012-06-01

    Full Text Available Abstract Background Sugarcane distilleries use molasses for ethanol production and generate large volume of effluent containing high biological oxygen demand (BOD and chemical oxygen demand (COD along with melanoidin pigment. Melanoidin is a recalcitrant compound that causes several toxic effects on living system, therefore, may be treated before disposal. The aim of this study was to isolate a potential thermotolerant melanoidin decolorizing yeast from natural resources, and optimized different physico-chemical and nutritional parameters. Results Total 24 yeasts were isolated from the soil samples of near by distillery site, in which isolate Y-9 showed maximum decolorization and identified as Candida tropicalis by Microbial Type Culture Collection (MTCC Chandigarh, India. The decolorization yield was expressed as the decrease in the absorbance at 475 nm against initial absorbance at the same wavelength. Uninoculated medium served as control. Yeast showed maximum decolorization (75% at 45°C using 0.2%, glucose; 0.2%, peptone; 0.05%, MgSO4; 0.01%, KH2PO4; pH-5.5 within 24 h of incubation under static condition. Decolorizing ability of yeast was also confirmed by high performance liquid chromatography (HPLC analysis. Conclusion The yeast strain efficiently decolorized melanoidin pigment of distillery effluent at higher temperature than the other earlier reported strains of yeast, therefore, this strain could also be used at industrial level for melanoidin decolorization as it tolerated a wide range of temperature and pH with very small amount of carbon and nitrogen sources.

  1. Study of the plant COPII vesicle coat subunits by functional complementation of yeast Saccharomyces cerevisiae mutants.

    Directory of Open Access Journals (Sweden)

    Johan-Owen De Craene

    Full Text Available The formation and budding of endoplasmic reticulum ER-derived vesicles depends on the COPII coat protein complex that was first identified in yeast Saccharomyces cerevisiae. The ER-associated Sec12 and the Sar1 GTPase initiate the COPII coat formation by recruiting the Sec23-Sec24 heterodimer following the subsequent recruitment of the Sec13-Sec31 heterotetramer. In yeast, there is usually one gene encoding each COPII protein and these proteins are essential for yeast viability, whereas the plant genome encodes multiple isoforms of all COPII subunits. Here, we used a systematic yeast complementation assay to assess the functionality of Arabidopsis thaliana COPII proteins. In this study, the different plant COPII subunits were expressed in their corresponding temperature-sensitive yeast mutant strain to complement their thermosensitivity and secretion phenotypes. Secretion was assessed using two different yeast cargos: the soluble α-factor pheromone and the membranous v-SNARE (vesicle-soluble NSF (N-ethylmaleimide-sensitive factor attachment protein receptor Snc1 involved in the fusion of the secretory vesicles with the plasma membrane. This complementation study allowed the identification of functional A. thaliana COPII proteins for the Sec12, Sar1, Sec24 and Sec13 subunits that could represent an active COPII complex in plant cells. Moreover, we found that AtSec12 and AtSec23 were co-immunoprecipitated with AtSar1 in total cell extract of 15 day-old seedlings of A. thaliana. This demonstrates that AtSar1, AtSec12 and AtSec23 can form a protein complex that might represent an active COPII complex in plant cells.

  2. Guidelines and recommendations on yeast cell death nomenclature

    OpenAIRE

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andres; Austriaco, Nicanor; Sigrist, Stephan J.

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cellular demise. However, the investigation of yeast cell death is a relatively young field, and a widely accepted set of concepts and terms is still missing. Here, we propose unified criteria for the definition of accidental, regulated, and programmed forms of cell death in yeast based on a series of mor...

  3. Effect of increasing growth temperature on yeast fermentation ...

    African Journals Online (AJOL)

    The effect of increasing growth temperature on yeast fermentation was studied at approximately 5 oC intervals over a range of 18 – 37 oC, using one strain each of ale, lager and wine yeast. The ale and wine yeasts grew at all the temperatures tested, but lager yeast failed to grow at 37 oC. All these strains gave lower ...

  4. Statistical indicators of collective behavior and functional clusters in gene networks of yeast

    Science.gov (United States)

    Živković, J.; Tadić, B.; Wick, N.; Thurner, S.

    2006-03-01

    We analyze gene expression time-series data of yeast (S. cerevisiae) measured along two full cell-cycles. We quantify these data by using q-exponentials, gene expression ranking and a temporal mean-variance analysis. We construct gene interaction networks based on correlation coefficients and study the formation of the corresponding giant components and minimum spanning trees. By coloring genes according to their cell function we find functional clusters in the correlation networks and functional branches in the associated trees. Our results suggest that a percolation point of functional clusters can be identified on these gene expression correlation networks.

  5. Guidelines and recommendations on yeast cell death nomenclature

    NARCIS (Netherlands)

    Carmona-Gutierrez, Didac; Bauer, Maria Anna; Zimmermann, Andreas; Aguilera, Andrés; Austriaco, Nicanor; Ayscough, Kathryn; Balzan, Rena; Bar-Nun, Shoshana; Barrientos, Antonio; Belenky, Peter; Blondel, Marc; Braun, Ralf J; Breitenbach, Michael; Burhans, William C; Büttner, Sabrina; Cavalieri, Duccio; Chang, Michael; Cooper, Katrina F; Côrte-Real, Manuela; Costa, Vítor; Cullin, Christophe; Dawes, Ian; Dengjel, Jörn; Dickman, Martin B; Eisenberg, Tobias; Fahrenkrog, Birthe; Fasel, Nicolas; Fröhlich, Kai-Uwe; Gargouri, Ali; Giannattasio, Sergio; Goffrini, Paola; Gourlay, Campbell W; Grant, Chris M; Greenwood, Michael T; Guaragnella, Nicoletta; Heger, Thomas; Heinisch, Jürgen; Herker, Eva; Herrmann, Johannes M; Hofer, Sebastian; Jiménez-Ruiz, Antonio; Jungwirth, Helmut; Kainz, Katharina; Kontoyiannis, Dimitrios P; Ludovico, Paula; Manon, Stéphen; Martegani, Enzo; Mazzoni, Cristina; Megeney, Lynn A; Meisinger, Chris; Nielsen, Jens; Nyström, Thomas; Osiewacz, Heinz D; Outeiro, Tiago F; Park, Hay-Oak; Pendl, Tobias; Petranovic, Dina; Picot, Stephane; Polčic, Peter; Powers, Ted; Ramsdale, Mark; Rinnerthaler, Mark; Rockenfeller, Patrick; Ruckenstuhl, Christoph; Schaffrath, Raffael; Segovia, Maria; Severin, Fedor F; Sharon, Amir; Sigrist, Stephan J; Sommer-Ruck, Cornelia; Sousa, Maria João; Thevelein, Johan M; Thevissen, Karin; Titorenko, Vladimir; Toledano, Michel B; Tuite, Mick; Vögtle, F-Nora; Westermann, Benedikt; Winderickx, Joris; Wissing, Silke; Wölfl, Stefan; Zhang, Zhaojie J; Zhao, Richard Y; Zhou, Bing; Galluzzi, Lorenzo; Kroemer, Guido; Madeo, Frank

    2018-01-01

    Elucidating the biology of yeast in its full complexity has major implications for science, medicine and industry. One of the most critical processes determining yeast life and physiology is cel-lular demise. However, the investigation of yeast cell death is a relatively young field, and a widely

  6. Selection of oleaginous yeasts for fatty acid production

    NARCIS (Netherlands)

    Lamers, Dennis; Biezen, van Nick; Martens, Dirk; Peters, Linda; Zilver, van de Eric; Jacobs-van Dreumel, Nicole; Wijffels, René H.; Lokman, Christien

    2016-01-01

    Background: Oleaginous yeast species are an alternative for the production of lipids or triacylglycerides (TAGs). These yeasts are usually non-pathogenic and able to store TAGs ranging from 20 % to 70 % of their cell mass depending on culture conditions. TAGs originating from oleaginous yeasts

  7. Performance of baker's yeast produced using date syrup substrate ...

    African Journals Online (AJOL)

    Baker's yeast was produced from three selected baker's yeast strains using date syrup as a substrate at low and high flow rate compared to those produced using molasses substrates. Performance of the produced baker's yeasts on Arabic bread quality was investigated. Baking tests showed a positive relationship between ...

  8. Triacetic acid lactone production in industrial Saccharomyces yeast strains

    Science.gov (United States)

    Triacetic acid lactone (TAL) is a potential platform chemical that can be produced in yeast. To evaluate the potential for industrial yeast strains to produce TAL, the g2ps1 gene encoding 2-pyrone synthase was transformed into thirteen industrial yeast strains of varied genetic background. TAL produ...

  9. 21 CFR 573.750 - Pichia pastoris dried yeast.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 6 2010-04-01 2010-04-01 false Pichia pastoris dried yeast. 573.750 Section 573... Food Additive Listing § 573.750 Pichia pastoris dried yeast. (a) Identity. The food additive Pichia pastoris dried yeast may be used in feed formulations of broiler chickens as a source of protein not to...

  10. Oligomerisation of C. elegans Olfactory Receptors, ODR-10 and STR-112, in Yeast

    KAUST Repository

    Tehseen, Muhammad

    2014-09-25

    It is widely accepted that vertebrate G-Protein Coupled Receptors (GPCRs) associate with each other as homo- or hetero-dimers or higher-order oligomers. The C. elegans genome encodes hundreds of olfactory GPCRs, which may be expressed in fewer than a dozen chemosensory neurons, suggesting an opportunity for oligomerisation. Here we show, using three independent lines of evidence: co-immunoprecipitation, bioluminescence resonance energy transfer and a yeast two-hybrid assay that nematode olfactory receptors (ORs) oligomerise when heterologously expressed in yeast. Specifically, the nematode receptor ODR-10 is able to homo-oligomerise and can also form heteromers with the related nematode receptor STR-112. ODR-10 also oligomerised with the rat I7 OR but did not oligomerise with the human somatostatin receptor 5, a neuropeptide receptor. In this study, the question of functional relevance was not addressed and remains to be investigated.

  11. Oligomerisation of C. elegans Olfactory Receptors, ODR-10 and STR-112, in Yeast

    KAUST Repository

    Tehseen, Muhammad; Liao, Chunyan; Dacres, Helen; Dumancic, Mira; Trowell, Stephen; Anderson, Alisha

    2014-01-01

    It is widely accepted that vertebrate G-Protein Coupled Receptors (GPCRs) associate with each other as homo- or hetero-dimers or higher-order oligomers. The C. elegans genome encodes hundreds of olfactory GPCRs, which may be expressed in fewer than a dozen chemosensory neurons, suggesting an opportunity for oligomerisation. Here we show, using three independent lines of evidence: co-immunoprecipitation, bioluminescence resonance energy transfer and a yeast two-hybrid assay that nematode olfactory receptors (ORs) oligomerise when heterologously expressed in yeast. Specifically, the nematode receptor ODR-10 is able to homo-oligomerise and can also form heteromers with the related nematode receptor STR-112. ODR-10 also oligomerised with the rat I7 OR but did not oligomerise with the human somatostatin receptor 5, a neuropeptide receptor. In this study, the question of functional relevance was not addressed and remains to be investigated.

  12. The Hidden Complexity of Mendelian Traits across Natural Yeast Populations

    Directory of Open Access Journals (Sweden)

    Jing Hou

    2016-07-01

    Full Text Available Mendelian traits are considered to be at the lower end of the complexity spectrum of heritable phenotypes. However, more than a century after the rediscovery of Mendel’s law, the global landscape of monogenic variants, as well as their effects and inheritance patterns within natural populations, is still not well understood. Using the yeast Saccharomyces cerevisiae, we performed a species-wide survey of Mendelian traits across a large population of isolates. We generated offspring from 41 unique parental pairs and analyzed 1,105 cross/trait combinations. We found that 8.9% of the cases were Mendelian. Further tracing of causal variants revealed background-specific expressivity and modified inheritances, gradually transitioning from Mendelian to complex traits in 30% of the cases. In fact, when taking into account the natural population diversity, the hidden complexity of traits could be substantial, confounding phenotypic predictability even for simple Mendelian traits.

  13. Multiplex engineering of industrial yeast genomes using CRISPRm.

    Science.gov (United States)

    Ryan, Owen W; Cate, Jamie H D

    2014-01-01

    Global demand has driven the use of industrial strains of the yeast Saccharomyces cerevisiae for large-scale production of biofuels and renewable chemicals. However, the genetic basis of desired domestication traits is poorly understood because robust genetic tools do not exist for industrial hosts. We present an efficient, marker-free, high-throughput, and multiplexed genome editing platform for industrial strains of S. cerevisiae that uses plasmid-based expression of the CRISPR/Cas9 endonuclease and multiple ribozyme-protected single guide RNAs. With this multiplex CRISPR (CRISPRm) system, it is possible to integrate DNA libraries into the chromosome for evolution experiments, and to engineer multiple loci simultaneously. The CRISPRm tools should therefore find use in many higher-order synthetic biology applications to accelerate improvements in industrial microorganisms.

  14. Modelling the CDK-dependent transcription cycle in fission yeast.

    Science.gov (United States)

    Sansó, Miriam; Fisher, Robert P

    2013-12-01

    CDKs (cyclin-dependent kinases) ensure directionality and fidelity of the eukaryotic cell division cycle. In a similar fashion, the transcription cycle is governed by a conserved subfamily of CDKs that phosphorylate Pol II (RNA polymerase II) and other substrates. A genetic model organism, the fission yeast Schizosaccharomyces pombe, has yielded robust models of cell-cycle control, applicable to higher eukaryotes. From a similar approach combining classical and chemical genetics, fundamental principles of transcriptional regulation by CDKs are now emerging. In the present paper, we review the current knowledge of each transcriptional CDK with respect to its substrate specificity, function in transcription and effects on chromatin modifications, highlighting the important roles of CDKs in ensuring quantity and quality control over gene expression in eukaryotes.

  15. Caspase inhibitors of the P35 family are more active when purified from yeast than bacteria.

    Directory of Open Access Journals (Sweden)

    Ingo L Brand

    Full Text Available Many insect viruses express caspase inhibitors of the P35 superfamily, which prevent defensive host apoptosis to enable viral propagation. The prototypical P35 family member, AcP35 from Autographa californica M nucleopolyhedrovirus, has been extensively studied. Bacterially purified AcP35 has been previously shown to inhibit caspases from insect, mammalian and nematode species. This inhibition occurs via a pseudosubstrate mechanism involving caspase-mediated cleavage of a "reactive site loop" within the P35 protein, which ultimately leaves cleaved P35 covalently bound to the caspase's active site. We observed that AcP35 purifed from Saccharomyces cerevisae inhibited caspase activity more efficiently than AcP35 purified from Escherichia coli. This differential potency was more dramatic for another P35 family member, MaviP35, which inhibited human caspase 3 almost 300-fold more potently when purified from yeast than bacteria. Biophysical assays revealed that MaviP35 proteins produced in bacteria and yeast had similar primary and secondary structures. However, bacterially produced MaviP35 possessed greater thermal stability and propensity to form higher order oligomers than its counterpart purified from yeast. Caspase 3 could process yeast-purified MaviP35, but failed to detectably cleave bacterially purified MaviP35. These data suggest that bacterially produced P35 proteins adopt subtly different conformations from their yeast-expressed counterparts, which hinder caspase access to the reactive site loop to reduce the potency of caspase inhibition, and promote aggregation. These data highlight the differential caspase inhibition by recombinant P35 proteins purified from different sources, and caution that analyses of bacterially produced P35 family members (and perhaps other types of proteins may underestimate their activity.

  16. The rate of metabolism as a factor determining longevity of the Saccharomyces cerevisiae yeast.

    Science.gov (United States)

    Molon, Mateusz; Szajwaj, Monika; Tchorzewski, Marek; Skoczowski, Andrzej; Niewiadomska, Ewa; Zadrag-Tecza, Renata

    2016-02-01

    Despite many controversies, the yeast Saccharomyces cerevisiae continues to be used as a model organism for the study of aging. Numerous theories and hypotheses have been created for several decades, yet basic mechanisms of aging have remained unclear. Therefore, the principal aim of this work is to propose a possible mechanism leading to increased longevity in yeast. In this paper, we suggest for the first time that there is a link between decreased metabolic activity, fertility and longevity expressed as time of life in yeast. Determination of reproductive potential and total lifespan with the use of fob1Δ and sfp1Δ mutants allows us to compare the "longevity" presented as the number of produced daughters with the longevity expressed as the time of life. The results of analyses presented in this paper suggest the need for a change in the definition of longevity of yeast by taking into consideration the time parameter. The mutants that have been described as "long-lived" in the literature, such as the fob1Δ mutant, have an increased reproductive potential but live no longer than their standard counterparts. On the other hand, the sfp1Δ mutant and the wild-type strain produce a similar number of daughter cells, but the former lives much longer. Our results demonstrate a correlation between the decreased efficiency of the translational apparatus and the longevity of the sfp1Δ mutant. We suggest that a possible factor regulating the lifespan is the rate of cell metabolism. To measure the basic metabolism of the yeast cells, we used the isothermal microcalorimetry method. In the case of sfp1Δ, the flow of energy, ATP concentration, polysome profile and translational fitness are significantly lower in comparison with the wild-type strain and the fob1Δ mutant.

  17. Yeast mother cell-specific aging

    Czech Academy of Sciences Publication Activity Database

    Breitenbach, M.; Laun, P.; Pichová, Alena; Madeo, F.; Heeren, G.; Kohlwein, S. D.; Froehlich, K. U.; Dawes, I.

    2001-01-01

    Roč. 18, - (2001), s. 21 ISSN 0749-503X. [International Conference on Yeast Genetics and Molecular Biology /20./. 26.08.2001-31.08.2001, Prague] Institutional research plan: CEZ:AV0Z5020903 Subject RIV: EB - Genetics ; Molecular Biology

  18. Xylitol production from colombian native yeast strains

    Directory of Open Access Journals (Sweden)

    Isleny Andrea Vanegas Córdoba

    2004-07-01

    Full Text Available Xylitol is an alternative sweetener with similar characteristics to sucrose that has become of great interest, due mainly to its safe use in diabetic patients and those deficient in glucose-6-phosphate-dehydrogenase. Its chemical production is expensive and generates undesirable by-products, whereas biotechnological process, which uses different yeasts genera, is a viable production alternative because it is safer and specific. Colombia has a privilege geographic location and offers a great microbial variety, this can be taken advantage of with academic and commercial goals. Because of this, some native microorganisms with potential to produce xylitol were screened in this work. It were isolated 25 yeasts species, from which was possible to identify 84% by the kit API 20C-AUX. Three yeasts: Candida kefyr, C. tropicalis y C. parapsilosis presented greater capacity to degrade xylose compared to the others, therefore they were selected for the later evaluation of its productive capacity. Discontinuous cellular cultures were developed in shaken flasks at 200 rpm and 35°C by 30 hours, using synthetic media with xylose as carbon source. Xylose consumption and xylitol production were evaluated by thin layer chromatography and high performance liquid chromatography. The maximal efficiency were obtained with Candida kefyr and C. tropicalis (Yp/s 0.5 y 0.43 g/g, respectively, using an initial xylose concentration of 20 g/L. Key words: Xylitol, xylose, yeasts, Candida kefyr, C. tropicalis, C. parapsilosis.

  19. Uncommon opportunistic yeast bloodstream infections from Qatar

    NARCIS (Netherlands)

    Taj-Aldeen, S.J.; AbdulWahab, A.; Kolecka, A.; Deshmukh, A.; Meis, J.F.G.M.; Boekhout, T.

    2014-01-01

    Eleven uncommon yeast species that are associated with high mortality rates irrespective of antifungal therapy were isolated from 17/187 (201 episodes) pediatric and elderly patients with fungemia from Qatar. The samples were taken over a 6-year period (January 2004-December 2010). Isolated species

  20. Ethanol fermentation with a flocculating yeast

    Energy Technology Data Exchange (ETDEWEB)

    Admassu, W; Korus, R A; Heimsch, R C

    1985-08-01

    A 100 cm x 5.7 cm internal diameter tower fermentor was fabricated and operated continuously for 11 months using the floc-forming yeast, Saccharomyces cerevisiae (American Type Culture Collection 4097). Steady state operation of the system was characterized at 32/sup 0/C and pH 4.0 for glucose concentrations ranging from 105 to 215 g l/sup -1/. The height of the yeast bed in the tower was maintained at 80 cm. The high yeast density, ethanol concentration and low pH prevented bacterial contamination in the reactor. The concentration profiles of glucose and ethanol within the bed were described by a dispersion model. Modeling parameters were determined for the yeast by batch kinetics and tracer experiments. The kinetic model included ethanol inhibition and substrate limitation. A tracer study with step input of D-xylose (a non-metabolizable sugar for S. cerevisiae) determined the dispersion number (D/uL=0.16) and liquid voidage (epsilonsub(L)=0.25). Measurements taken after 6 months of continuous operation indicated that there was no significant change in fermentor performance.

  1. Analysis of RNA metabolism in fission yeast

    DEFF Research Database (Denmark)

    Wise, Jo Ann; Nielsen, Olaf

    2017-01-01

    Here we focus on the biogenesis and function of messenger RNA (mRNA) in fission yeast cells. Following a general introduction that also briefly touches on other classes of RNA, we provide an overview of methods used to analyze mRNAs throughout their life cycles....

  2. UBA domain containing proteins in fission yeast

    DEFF Research Database (Denmark)

    Hartmann-Petersen, Rasmus; Semple, Colin A M; Ponting, Chris P

    2003-01-01

    characterised on both the functional and structural levels. One example of a widespread ubiquitin binding module is the ubiquitin associated (UBA) domain. Here, we discuss the approximately 15 UBA domain containing proteins encoded in the relatively small genome of the fission yeast Schizosaccharomyces pombe...

  3. Vaginal yeast infections in diabetic women

    African Journals Online (AJOL)

    could we implicate either trichomoniasis or candidiasis as causes ofthese symptoms (Table I). It is possible that in some instances yeasts may have been missed on cul- ture since it has been estimated that at least 10' cfu/m! are required for a culture to be positive.15 Gardnerella vaginalis was not sought in this study and ...

  4. Phosphorylation site on yeast pyruvate dehydrogenase complex

    International Nuclear Information System (INIS)

    Uhlinger, D.J.

    1986-01-01

    The pyruvate dehydrogenase complex was purified to homogeneity from baker's yeast (Saccharomyces cerevisiae). Yeast cells were disrupted in a Manton-Gaulin laboratory homogenizer. The pyruvate dehydrogenase complex was purified by fractionation with polyethylene glycol, isoelectric precipitation, ultracentrifugation and chromatography on hydroxylapatite. Final purification of the yeast pyruvate dehydrogenase complex was achieved by cation-exchange high pressure liquid chromatography (HPLC). No endogenous pyruvate dehydrogenase kinase activity was detected during the purification. However, the yeast pyruvate dehydrogenase complex was phosphorylated and inactivated with purified pyruvate dehydrogenase kinase from bovine kidney. Tryptic digestion of the 32 P-labeled complex yielded a single phosphopeptide which was purified to homogeniety. The tryptic digest was subjected to chromatography on a C-18 reverse phase HPLC column with a linear gradient of acetonitrile. Radioactive fractions were pooled, concentrated, and subjected to anion-exchange HPLC. The column was developed with a linear gradient of ammonium acetate. Final purification of the phosphopeptide was achieved by chromatography on a C-18 reverse phase HPLC column developed with a linear gradient of acetonitrile. The amino acid sequence of the homogeneous peptide was determined by manual modified Edman degradation

  5. Functional differences in yeast protein disulfide isomerases

    DEFF Research Database (Denmark)

    Nørgaard, P; Westphal, V; Tachibana, C

    2001-01-01

    PDI1 is the essential gene encoding protein disulfide isomerase in yeast. The Saccharomyces cerevisiae genome, however, contains four other nonessential genes with homology to PDI1: MPD1, MPD2, EUG1, and EPS1. We have investigated the effects of simultaneous deletions of these genes. In several...

  6. Catalytic site interactions in yeast OMP synthase

    DEFF Research Database (Denmark)

    Hansen, Michael Riis; Barr, Eric W.; Jensen, Kaj Frank

    2014-01-01

    45 (2006) 5330-5342]. This behavior was investigated in the yeast enzyme by mutations in the conserved catalytic loop and 5-phosphoribosyl-1-diphosphate (PRPP) binding motif. Although the reaction is mechanistically sequential, the wild-type (WT) enzyme shows parallel lines in double reciprocal...

  7. Hybridization of Palm Wine Yeasts ( Saccharomyces Cerevisiae ...

    African Journals Online (AJOL)

    Haploid auxotrophic strains of Saccharomyces cerevisiae were selected from palm wine and propagated by protoplast fusion with Brewers yeast. Fusion resulted in an increase in both ethanol production and tolerance against exogenous ethanol. Mean fusion frequencies obtained for a mating types ranged between 8 x ...

  8. Actin and Endocytosis in Budding Yeast

    Science.gov (United States)

    Goode, Bruce L.; Eskin, Julian A.; Wendland, Beverly

    2015-01-01

    Endocytosis, the process whereby the plasma membrane invaginates to form vesicles, is essential for bringing many substances into the cell and for membrane turnover. The mechanism driving clathrin-mediated endocytosis (CME) involves > 50 different protein components assembling at a single location on the plasma membrane in a temporally ordered and hierarchal pathway. These proteins perform precisely choreographed steps that promote receptor recognition and clustering, membrane remodeling, and force-generating actin-filament assembly and turnover to drive membrane invagination and vesicle scission. Many critical aspects of the CME mechanism are conserved from yeast to mammals and were first elucidated in yeast, demonstrating that it is a powerful system for studying endocytosis. In this review, we describe our current mechanistic understanding of each step in the process of yeast CME, and the essential roles played by actin polymerization at these sites, while providing a historical perspective of how the landscape has changed since the preceding version of the YeastBook was published 17 years ago (1997). Finally, we discuss the key unresolved issues and where future studies might be headed. PMID:25657349

  9. Cell biology of homologous recombination in yeast

    DEFF Research Database (Denmark)

    Eckert-Boulet, Nadine Valerie; Rothstein, Rodney; Lisby, Michael

    2011-01-01

    Homologous recombination is an important pathway for error-free repair of DNA lesions, such as single- and double-strand breaks, and for rescue of collapsed replication forks. Here, we describe protocols for live cell imaging of single-lesion recombination events in the yeast Saccharomyces...

  10. Effect of yeast storage temperature and flour composition on fermentative activities of baker's yeast

    Directory of Open Access Journals (Sweden)

    Pejin Dušanka J.

    2009-01-01

    Full Text Available Baker's yeast is a set of living cells of Saccharomyces cerevisiae. It contains around 70-72% of water, 42-45% of proteins, around 40% of carbohydrates, around 7.5% of lipids (based on dry matter, and vitamin B-complex. On the basis of yeast cell analysis it can be concluded that yeast is a complex biological system which changes in time. The intensity of the changes depends on temperature. Yeast sample was stored at 4°C i 24°C for 12 days. During storage at 4°C, the content of total carbohydrates decreased from 48.81% to 37.50% (dry matter, whereas carbohydrate loss ranged from 40.81% to 29.28% at 24°C. The content of trehalose was 12.33% in the yeast sample stored at 4°C and 0.24% at 24°C. Loss of fermentative activity was 81.76% in the sample stored at 24°C for 12 days. The composition of five samples of 1st category flour was investigated. It was found that flours containing more reducing sugars and maltose enable higher fermentation activities. The flours with higher ash content (in the range 0.5-0.94% had higher contents of phytic acid. Higher ash and phytic contents in flour increased the yeast fermentative efficiency. In bakery industry, a range of ingredients has been applied to improve the product's quality such as surface active substances (emulsifiers, enzymes, sugars and fats. In the paper, the effect of some ingredients added to dough (margarine, saccharose, sodium chloride and malted barley on the yeast fermentative activity was studied. The mentioned ingredients were added to dough at different doses: 0.5, 1.0, 1.5 and 2.0%, flour basis. It was found that the investigated ingredients affected the fermentative activity of yeast and improved the bread quality.

  11. Metabolic engineering of oleaginous yeast Yarrowia lipolytica for limonene overproduction.

    Science.gov (United States)

    Cao, Xuan; Lv, Yu-Bei; Chen, Jun; Imanaka, Tadayuki; Wei, Liu-Jing; Hua, Qiang

    2016-01-01

    Limonene, a monocyclic monoterpene, is known for its using as an important precursor of many flavoring, pharmaceutical, and biodiesel products. Currently, d-limonene has been produced via fractionation from essential oils or as a byproduct of orange juice production, however, considering the increasing need for limonene and a certain amount of pesticides may exist in the limonene obtained from the citrus industry, some other methods should be explored to produce limonene. To construct the limonene synthetic pathway in Yarrowia lipolytica , two genes encoding neryl diphosphate synthase 1 (NDPS1) and limonene synthase (LS) were codon-optimized and heterologously expressed in Y. lipolytica . Furthermore, to maximize limonene production, several genes involved in the MVA pathway were overexpressed, either in different copies of the same gene or in combination. Finally with the optimized pyruvic acid and dodecane concentration in flask culture, a maximum limonene titer and content of 23.56 mg/L and 1.36 mg/g DCW were achieved in the final engineered strain Po1f-LN-051, showing approximately 226-fold increase compared with the initial yield 0.006 mg/g DCW. This is the first report on limonene biosynthesis in oleaginous yeast Y. lipolytica by heterologous expression of codon-optimized tLS and tNDPS1 genes. To our knowledge, the limonene production 23.56 mg/L, is the highest limonene production level reported in yeast. In short, we demonstrate that Y. lipolytica provides a compelling platform for the overproduction of limonene derivatives, and even other monoterpenes.

  12. Localization of mRNAs coding for mitochondrial proteins in the yeast Saccharomyces cerevisiae

    OpenAIRE

    Gadir, Noga; Haim-Vilmovsky, Liora; Kraut-Cohen, Judith; Gerst, Jeffrey E.

    2011-01-01

    Targeted mRNA localization is a likely determinant of localized protein synthesis. To investigate whether mRNAs encoding mitochondrial proteins (mMPs) localize to mitochondria and, thus, might confer localized protein synthesis and import, we visualized endogenously expressed mMPs in vivo for the first time. We determined the localization of 24 yeast mMPs encoding proteins of the mitochondrial matrix, outer and inner membrane, and intermembrane space and found that many mMPs colocalize with m...

  13. Directed evolution of xylose isomerase for improved xylose catabolism and fermentation in the yeast Saccharomyces cerevisiae.

    Science.gov (United States)

    Lee, Sun-Mi; Jellison, Taylor; Alper, Hal S

    2012-08-01

    The heterologous expression of a highly functional xylose isomerase pathway in Saccharomyces cerevisiae would have significant advantages for ethanol yield, since the pathway bypasses cofactor requirements found in the traditionally used oxidoreductase pathways. However, nearly all reported xylose isomerase-based pathways in S. cerevisiae suffer from poor ethanol productivity, low xylose consumption rates, and poor cell growth compared with an oxidoreductase pathway and, additionally, often require adaptive strain evolution. Here, we report on the directed evolution of the Piromyces sp. xylose isomerase (encoded by xylA) for use in yeast. After three rounds of mutagenesis and growth-based screening, we isolated a variant containing six mutations (E15D, E114G, E129D, T142S, A177T, and V433I) that exhibited a 77% increase in enzymatic activity. When expressed in a minimally engineered yeast host containing a gre3 knockout and tal1 and XKS1 overexpression, the strain expressing this mutant enzyme improved its aerobic growth rate by 61-fold and both ethanol production and xylose consumption rates by nearly 8-fold. Moreover, the mutant enzyme enabled ethanol production by these yeasts under oxygen-limited fermentation conditions, unlike the wild-type enzyme. Under microaerobic conditions, the ethanol production rates of the strain expressing the mutant xylose isomerase were considerably higher than previously reported values for yeast harboring a xylose isomerase pathway and were also comparable to those of the strains harboring an oxidoreductase pathway. Consequently, this study shows the potential to evolve a xylose isomerase pathway for more efficient xylose utilization.

  14. Yeast cell differentiation: Lessons from pathogenic and non-pathogenic yeasts.

    Science.gov (United States)

    Palková, Zdena; Váchová, Libuše

    2016-09-01

    Yeasts, historically considered to be single-cell organisms, are able to activate different differentiation processes. Individual yeast cells can change their life-styles by processes of phenotypic switching such as the switch from yeast-shaped cells to filamentous cells (pseudohyphae or true hyphae) and the transition among opaque, white and gray cell-types. Yeasts can also create organized multicellular structures such as colonies and biofilms, and the latter are often observed as contaminants on surfaces in industry and medical care and are formed during infections of the human body. Multicellular structures are formed mostly of stationary-phase or slow-growing cells that diversify into specific cell subpopulations that have unique metabolic properties and can fulfill specific tasks. In addition to the development of multiple protective mechanisms, processes of metabolic reprogramming that reflect a changed environment help differentiated individual cells and/or community cell constituents to survive harmful environmental attacks and/or to escape the host immune system. This review aims to provide an overview of differentiation processes so far identified in individual yeast cells as well as in multicellular communities of yeast pathogens of the Candida and Cryptococcus spp. and the Candida albicans close relative, Saccharomyces cerevisiae. Molecular mechanisms and extracellular signals potentially involved in differentiation processes are also briefly mentioned. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Production and characterization of glucoamylase from fungus Aspergillus awamori expressed in yeast Saccharomyces cerevisiae using different carbon sources Produção e caracterização da glucoamilase do fungo Aspergillus awamori expressa em levedura Saccharomyces cerevisiae usando diferentes fontes de carbono

    Directory of Open Access Journals (Sweden)

    Fabiana Carina Pavezzi

    2008-03-01

    Full Text Available Glucoamylase is widely used in the food industry to produce high glucose syrup, and also in fermentation processes for production beer and ethanol. In this work the productivity of the glucoamylase of Aspergillus awamori expressed by the yeast Saccharomyces cerevisiae, produced in submerged fermentation using different starches, was evaluated and characterized physico-chemically. The enzyme presented high specific activity, 13.8 U/mgprotein or 2.9 U/mgbiomass, after 48 h of fermentation using soluble starch as substrate. Glucoamylase presented optimum activity at temperature of 55ºC, and, in the substratum absence, the thermostability was for 1h at 50ºC. The optimum pH of activity was pH 3.5 - 4.0 and the pH stability between 5.0 and 7.0. The half life at 65ºC was at 30.2 min, and the thermal energy of denaturation was 234.3 KJ mol-1. The hydrolysis of different substrate showed the enzyme's preference for the substrate with a larger polymerization degree. The gelatinized corn starch was the substratum most susceptible to the enzymatic action.A glucoamilase é amplamente utilizada na indústria de alimentos no processamento do amido para a produção de xarope com alto teor de glicose e também muito empregada nos processos de fermentação para produção de cerveja e etanol. Neste trabalho a glucoamilase de Aspergillus awamori expressa em Saccharomyces cerevisiae produzida sob fermentação líquida foi avaliada quanto à produtividade em diferentes amidos e caracterizada físico-quimicamente. A enzima apresentou alta atividade específica de 13,8 U/mg proteína e de 2,9 U/mg biomassa ao final de 48 h de fermentação em meio contendo amido solúvel. A glucoamilase apresentou temperatura ótima de atividade a 55ºC, e temperatura de desnaturação térmica na ausência de substrato por 1h a 50ºC. O pH ótimo de atividade foi na faixa de 3,5 - 4,0 e a estabilidade ao pH entre os valores 5,0 e 7,0. A meia vida a 65ºC foi 30,2 min., e a

  16. Generation of Recombinant Schmallenberg Virus Nucleocapsid Protein in Yeast and Development of Virus-Specific Monoclonal Antibodies

    Directory of Open Access Journals (Sweden)

    Justas Lazutka

    2014-01-01

    Full Text Available Schmallenberg virus (SBV, discovered in continental Europe in late 2011, causes mild clinical signs in adult ruminants, including diarrhoea and reduced milk yield. However, fetal infection can lead to severe malformation in newborn offspring. To develop improved reagents for SBV serology, a high-level yeast expression system was employed to produce recombinant SBV nucleocapsid (N protein. Recombinant SBV N protein was investigated as an antigen in SBV-specific IgG enzyme immunoassay and used for generation of monoclonal antibodies (MAbs. Yeast-expressed SBV N protein was reactive with anti-SBV IgG-positive cow serum specimens collected from different farms of Lithuania. After immunization of mice with recombinant SBV N protein, four MAbs were generated. The MAbs raised against recombinant SBV N protein reacted with native viral nucleocapsids in SBV-infected BHK cells by immunofluorescence assay. The reactivity of recombinant N protein with SBV-positive cow serum specimens and the ability of the MAbs to recognize virus-infected cells confirm the antigenic similarity between yeast-expressed SBV N protein and native viral nucleocapsids. Our study demonstrates that yeast expression system is suitable for high-level production of recombinant SBV N protein and provides the first evidence on the presence of SBV-specific antibodies in cow serum specimens collected in Lithuania.

  17. Increased availability of NADH in metabolically engineered baker's yeast improves transaminase-oxidoreductase coupled asymmetric whole-cell bioconversion

    DEFF Research Database (Denmark)

    Knudsen, Jenny Dahl; Hägglöf, Cecilia; Weber, Nora

    2016-01-01

    yeast for transamination-reduction coupled asymmetric one-pot conversion was investigated. RESULTS: A series of active whole-cell biocatalysts were constructed by over-expressing the (S)-selective ω-transaminase (VAMT) from Capsicum chinense together with the NADH-dependent (S)-selective alcohol...

  18. Bioethanol a Microbial Biofuel Metabolite; New Insights of Yeasts Metabolic Engineering

    Directory of Open Access Journals (Sweden)

    Khaled A. Selim

    2018-03-01

    Full Text Available Scarcity of the non-renewable energy sources, global warming, environmental pollution, and raising the cost of petroleum are the motive for the development of renewable, eco-friendly fuels production with low costs. Bioethanol production is one of the promising materials that can subrogate the petroleum oil, and it is considered recently as a clean liquid fuel or a neutral carbon. Diverse microorganisms such as yeasts and bacteria are able to produce bioethanol on a large scale, which can satisfy our daily needs with cheap and applicable methods. Saccharomyces cerevisiae and Pichia stipitis are two of the pioneer yeasts in ethanol production due to their abilities to produce a high amount of ethanol. The recent focus is directed towards lignocellulosic biomass that contains 30–50% cellulose and 20–40% hemicellulose, and can be transformed into glucose and fundamentally xylose after enzymatic hydrolysis. For this purpose, a number of various approaches have been used to engineer different pathways for improving the bioethanol production with simultaneous fermentation of pentose and hexoses sugars in the yeasts. These approaches include metabolic and flux analysis, modeling and expression analysis, followed by targeted deletions or the overexpression of key genes. In this review, we highlight and discuss the current status of yeasts genetic engineering for enhancing bioethanol production, and the conditions that influence bioethanol production.

  19. Engineered CRISPR/Cas9 system for multiplex genome engineering of polyploid industrial yeast strains.

    Science.gov (United States)

    Lian, Jiazhang; Bao, Zehua; Hu, Sumeng; Zhao, Huimin

    2018-06-01

    The CRISPR/Cas9 system has been widely used for multiplex genome engineering of Saccharomyces cerevisiae. However, its application in manipulating industrial yeast strains is less successful, probably due to the genome complexity and low copy numbers of gRNA expression plasmids. Here we developed an efficient CRISPR/Cas9 system for industrial yeast strain engineering by using our previously engineered plasmids with increased copy numbers. Four genes in both a diploid strain (Ethanol Red, 8 alleles in total) and a triploid strain (ATCC 4124, 12 alleles in total) were knocked out in a single step with 100% efficiency. This system was used to construct xylose-fermenting, lactate-producing industrial yeast strains, in which ALD6, PHO13, LEU2, and URA3 were disrupted in a single step followed by the introduction of a xylose utilization pathway and a lactate biosynthetic pathway on auxotrophic marker plasmids. The optimized CRISPR/Cas9 system provides a powerful tool for the development of industrial yeast based microbial cell factories. © 2018 Wiley Periodicals, Inc.

  20. The CWI Pathway: Regulation of the Transcriptional Adaptive Response to Cell Wall Stress in Yeast

    Directory of Open Access Journals (Sweden)

    Ana Belén Sanz

    2017-12-01

    Full Text Available Fungi are surrounded by an essential structure, the cell wall, which not only confers cell shape but also protects cells from environmental stress. As a consequence, yeast cells growing under cell wall damage conditions elicit rescue mechanisms to provide maintenance of cellular integrity and fungal survival. Through transcriptional reprogramming, yeast modulate the expression of genes important for cell wall biogenesis and remodeling, metabolism and energy generation, morphogenesis, signal transduction and stress. The yeast cell wall integrity (CWI pathway, which is very well conserved in other fungi, is the key pathway for the regulation of this adaptive response. In this review, we summarize the current knowledge of the yeast transcriptional program elicited to counterbalance cell wall stress situations, the role of the CWI pathway in the regulation of this program and the importance of the transcriptional input received by other pathways. Modulation of this adaptive response through the CWI pathway by positive and negative transcriptional feedbacks is also discussed. Since all these regulatory mechanisms are well conserved in pathogenic fungi, improving our knowledge about them will have an impact in the developing of new antifungal therapies.

  1. Transparent mediation-based access to multiple yeast data sources using an ontology driven interface.

    Science.gov (United States)

    Briache, Abdelaali; Marrakchi, Kamar; Kerzazi, Amine; Navas-Delgado, Ismael; Rossi Hassani, Badr D; Lairini, Khalid; Aldana-Montes, José F

    2012-01-25

    Saccharomyces cerevisiae is recognized as a model system representing a simple eukaryote whose genome can be easily manipulated. Information solicited by scientists on its biological entities (Proteins, Genes, RNAs...) is scattered within several data sources like SGD, Yeastract, CYGD-MIPS, BioGrid, PhosphoGrid, etc. Because of the heterogeneity of these sources, querying them separately and then manually combining the returned results is a complex and time-consuming task for biologists most of whom are not bioinformatics expert. It also reduces and limits the use that can be made on the available data. To provide transparent and simultaneous access to yeast sources, we have developed YeastMed: an XML and mediator-based system. In this paper, we present our approach in developing this system which takes advantage of SB-KOM to perform the query transformation needed and a set of Data Services to reach the integrated data sources. The system is composed of a set of modules that depend heavily on XML and Semantic Web technologies. User queries are expressed in terms of a domain ontology through a simple form-based web interface. YeastMed is the first mediation-based system specific for integrating yeast data sources. It was conceived mainly to help biologists to find simultaneously relevant data from multiple data sources. It has a biologist-friendly interface easy to use. The system is available at http://www.khaos.uma.es/yeastmed/.

  2. Characterization of a Plasmodium falciparum Orthologue of the Yeast Ubiquinone-Binding Protein, Coq10p.

    Directory of Open Access Journals (Sweden)

    Bethany J Jenkins

    Full Text Available Coenzyme Q (CoQ, ubiquinone is a central electron carrier in mitochondrial respiration. CoQ is synthesized through multiple steps involving a number of different enzymes. The prevailing view that the CoQ used in respiration exists as a free pool that diffuses throughout the mitochondrial inner membrane bilayer has recently been challenged. In the yeast Saccharomyces cerevisiae, deletion of the gene encoding Coq10p results in respiration deficiency without inhibiting the synthesis of CoQ, suggesting that the Coq10 protein is critical for the delivery of CoQ to the site(s of respiration. The precise mechanism by which this is achieved remains unknown at present. We have identified a Plasmodium orthologue of Coq10 (PfCoq10, which is predominantly expressed in trophozoite-stage parasites, and localizes to the parasite mitochondrion. Expression of PfCoq10 in the S. cerevisiae coq10 deletion strain restored the capability of the yeast to grow on respiratory substrates, suggesting a remarkable functional conservation of this protein over a vast evolutionary distance, and despite a relatively low level of amino acid sequence identity. As the antimalarial drug atovaquone acts as a competitive inhibitor of CoQ, we assessed whether over-expression of PfCoq10 altered the atovaquone sensitivity in parasites and in yeast mitochondria, but found no alteration of its activity.

  3. Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd(2+), Zn(2+), Cu(2+), and NaCl in transgenic yeast.

    Science.gov (United States)

    Yang, Jingli; Wang, Yucheng; Liu, Guifeng; Yang, Chuanping; Li, Chenghao

    2011-03-01

    A metallothionein-like gene, ThMT3, encoding a type 3 metallothionein, was isolated from a Tamarix hispida leaf cDNA library. Expression analysis revealed that mRNA of ThMT3 was upregulated by high salinity as well as by heavy metal ions, and that ThMT3 was predominantly expressed in the leaf. Transgenic yeast (Saccharomyces cerevisiae) expressing ThMT3 showed increased tolerance to Cd(2+), Zn(2+), Cu(2+), and NaCl stress. Transgenic yeast also accumulated more Cd(2+), Zn(2+), and NaCl, but not Cu(2+). Analysis of the expression of four genes (GLR1, GTT2, GSH1, and YCF1) that aid in transporting heavy metal (Cd(2+)) from the cytoplasm to the vacuole demonstrated that none of these genes were induced under Cd(2+), Zn(2+), Cu(2+), and NaCl stress in ThMT3-transgenic yeast. H(2)O(2) levels in transgenic yeast under such stress conditions were less than half those in control yeast under the same conditions. Three antioxidant genes (SOD1, CAT1, and GPX1) were specifically expressed under Cd(2+), Zn(2+), Cu(2+), and NaCl stress in the transgenic yeast. Cd(2+), Zn(2+), and Cu(2+) increased the expression levels of SOD1, CAT1, and GPX1, respectively, whereas NaCl induced the expression of SOD1 and GPX1.

  4. Baker's yeast: production of D- and L-3-hydroxy esters

    DEFF Research Database (Denmark)

    Dahl, Allan Carsten; Madsen, Jørgen Øgaard

    1998-01-01

    harvested while growing. In contrast, the stereoselectivity was shifted towards L-hydroxy esters when the oxo esters were added slowly to ordinary baker's yeast supplied with gluconolactone as co-substrate. The reduction rate with gluconolactone was increased by active aeration. Ethyl L-(S)-3......Baker's yeast grown under oxygen limited conditions and used in the reduction of 3-oxo esters results in a shift of the stereoselectivity of the yeast towards D-hydroxy esters as compared with ordinary baker's yeast. The highest degree of stereoselectivity was obtained with growing yeast or yeast......-hydroxybutanoate was afforded in >99% ee. Both enantiomers of ethyl 3-hydroxypentanoate, D-(R) in 96% ee and L-(S) in 93% ee, and of ethyl 4-chloro-3-hydroxybutanoate, D-(S) in 98% ee and L-(R) in 94% ee, were obtained. The results demonstrate that the stereoselectivity of baker's yeast can be controlled...

  5. Between science and industry-applied yeast research.

    Science.gov (United States)

    Korhola, Matti

    2018-03-01

    I was fortunate to enter yeast research at the Alko Research Laboratories with a strong tradition in yeast biochemistry and physiology studies. At the same time in the 1980s there was a fundamental or paradigm change in molecular biology research with discoveries in DNA sequencing and other analytical and physical techniques for studying macromolecules and cells. Since that time biotechnological research has expanded the traditional fermentation industries to efficient production of industrial and other enzymes and specialty chemicals. Our efforts were directed towards improving the industrial production organisms: minerals enriched yeasts (Se, Cr, Zn) and high glutathione content yeast, baker´s, distiller´s, sour dough and wine yeasts, and the fungal Trichoderma reesei platform for enzyme production. I am grateful for the trust of my colleagues in several leadership positions at the Alko Research Laboratories, Yeast Industry Platform and at the international yeast community.

  6. Full Data of Yeast Interacting Proteins Database (Original Version) - Yeast Interacting Proteins Database | LSDB Archive [Life Science Database Archive metadata

    Lifescience Database Archive (English)

    Full Text Available List Contact us Yeast Interacting Proteins Database Full Data of Yeast Interacting Proteins Database (Origin...al Version) Data detail Data name Full Data of Yeast Interacting Proteins Database (Original Version) DOI 10....18908/lsdba.nbdc00742-004 Description of data contents The entire data in the Yeast Interacting Proteins Database...eir interactions are required. Several sources including YPD (Yeast Proteome Database, Costanzo, M. C., Hoga...ematic name in the SGD (Saccharomyces Genome Database; http://www.yeastgenome.org /). Bait gene name The gen

  7. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations.

    Science.gov (United States)

    Padilla, Beatriz; García-Fernández, David; González, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of microorganisms that maintain a microbial footprint in wine from the examined vineyard. In this study, two typical grape varieties, Grenache and Carignan, have been sampled from four different vineyards in the DOQ Priorat winegrowing region. Afterward, eight spontaneous alcoholic fermentations containing only grapes from one sampling point and of one variety were conducted at laboratory scale. The fermentation kinetics and yeast population dynamics within each fermentation experiment were evaluated. Yeast identification was performed by RFLP-PCR of the 5.8S-ITS region and by sequencing D1/D2 of the 26S rRNA gene of the isolates. The fermentation kinetics did not indicate clear differences between the two varieties of grapes or among vineyards. Approximately 1,400 isolates were identified, exhibiting high species richness in some fermentations. Of all the isolates studied, approximately 60% belong to the genus Hanseniaspora, 16% to Saccharomyces, and 11% to Candida. Other minor genera, such as Hansenula, Issatchenkia, Kluyveromyces, Saccharomycodes, and Zygosaccharomyces, were also found. The distribution of the identified yeast throughout the fermentation process was studied, and Saccharomyces cerevisiae was found to be present mainly at the end of the fermentation process, while Aureobasidium pullulans was isolated primarily during the first days of fermentation in three of the eight spontaneous fermentations. This work highlights the complexity and diversity of the vineyard

  8. Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough.

    Science.gov (United States)

    Sasano, Yu; Takahashi, Shunsuke; Shima, Jun; Takagi, Hiroshi

    2010-03-31

    During bread-making processes, yeast cells are exposed to multiple stresses. Air-drying stress is one of the most harmful stresses by generation of reactive oxygen species (ROS). Previously, we discovered that the novel N-acetyltransferase Mpr1/2 confers oxidative stress tolerance by reducing intracellular ROS level in Saccharomyces cerevisiae Sigma1278b strain. In this study, we revealed that Japanese industrial baker's yeast possesses one MPR gene. The nucleotide sequence of the MPR gene in industrial baker's yeast was identical to the MPR2 gene in Sigma1278b strain. Gene disruption analysis showed that the MPR2 gene in industrial baker's yeast is involved in air-drying stress tolerance by reducing the intracellular oxidation levels. We also found that expression of the Lys63Arg and Phe65Leu variants with enhanced enzymatic activity and stability, respectively, increased the fermentation ability of bread dough after exposure to air-drying stress compared with the wild-type Mpr1. In addition, our recent study showed that industrial baker's yeast cells accumulating proline exhibited enhanced freeze tolerance in bread dough. Proline accumulation also enhanced the fermentation ability after air-drying stress treatment in industrial baker's yeast. Hence, the antioxidant enzyme Mpr1/2 could be promising for breeding novel yeast strains that are tolerant to air-drying stress. Copyright 2010 Elsevier B.V. All rights reserved.

  9. Using heterologous expression systems to characterize potassium and sodium transport activities.

    Science.gov (United States)

    Rodríguez, Alonso; Benito, Begoña; Cagnac, Olivier

    2012-01-01

    The expression of plant transporters in simple well-characterized cell systems is an irreplaceable technique for gaining insights into the kinetic and energetic features of plant transporters. Among all the available expression systems, yeast cells offer the highest simplicity and have the capacity to mimic the in vivo properties of plant transporters. Here, we describe the use of yeast mutants to express K(+) and Na(+) plant transporters and discuss some experimental problems that can produce misleading results.

  10. Game dynamic model for yeast development.

    Science.gov (United States)

    Huang, Yuanyuan; Wu, Zhijun

    2012-07-01

    Game theoretic models, along with replicator equations, have been applied successfully to the study of evolution of populations of competing species, including the growth of a population, the reaching of the population to an equilibrium state, and the evolutionary stability of the state. In this paper, we analyze a game model proposed by Gore et al. (Nature 456:253-256, 2009) in their recent study on the co-development of two mixed yeast strains. We examine the mathematical properties of this model with varying experimental parameters. We simulate the growths of the yeast strains and compare them with the experimental results. We also compute and analyze the equilibrium state of the system and prove that it is asymptotically and evolutionarily stable.

  11. Mapping replication origins in yeast chromosomes.

    Science.gov (United States)

    Brewer, B J; Fangman, W L

    1991-07-01

    The replicon hypothesis, first proposed in 1963 by Jacob and Brenner, states that DNA replication is controlled at sites called origins. Replication origins have been well studied in prokaryotes. However, the study of eukaryotic chromosomal origins has lagged behind, because until recently there has been no method for reliably determining the identity and location of origins from eukaryotic chromosomes. Here, we review a technique we developed with the yeast Saccharomyces cerevisiae that allows both the mapping of replication origins and an assessment of their activity. Two-dimensional agarose gel electrophoresis and Southern hybridization with total genomic DNA are used to determine whether a particular restriction fragment acquires the branched structure diagnostic of replication initiation. The technique has been used to localize origins in yeast chromosomes and assess their initiation efficiency. In some cases, origin activation is dependent upon the surrounding context. The technique is also being applied to a variety of eukaryotic organisms.

  12. Stochasticity in the yeast mating pathway

    International Nuclear Information System (INIS)

    Hong-Li, Wang; Zheng-Ping, Fu; Xin-Hang, Xu; Qi, Ouyang

    2009-01-01

    We report stochastic simulations of the yeast mating signal transduction pathway. The effects of intrinsic and external noise, the influence of cell-to-cell difference in the pathway capacity, and noise propagation in the pathway have been examined. The stochastic temporal behaviour of the pathway is found to be robust to the influence of inherent fluctuations, and intrinsic noise propagates in the pathway in a uniform pattern when the yeasts are treated with pheromones of different stimulus strengths and of varied fluctuations. In agreement with recent experimental findings, extrinsic noise is found to play a more prominent role than intrinsic noise in the variability of proteins. The occurrence frequency for the reactions in the pathway are also examined and a more compact network is obtained by dropping most of the reactions of least occurrence

  13. [Invasive yeast infections in neutropenic patients].

    Science.gov (United States)

    Ruiz Camps, Isabel; Jarque, Isidro

    2016-01-01

    Invasive fungal diseases caused by yeasts still play an important role in the morbidity and mortality in neutropenic patients with haematological malignancies. Although the overall incidence of invasive candidiasis has decreased due to widespread use of antifungal prophylaxis, the incidence of non-Candida albicans Candida species is increasing compared with that of C.albicans, and mortality of invasive candidiasis continues to be high. In addition, there has been an increase in invasive infections caused by an array of uncommon yeasts, including species of the genus Malassezia, Rhodotorula, Trichosporon and Saprochaete, characterised by their resistance to echinocandins and poor prognosis. Copyright © 2016 Asociación Española de Micología. Publicado por Elsevier España, S.L.U. All rights reserved.

  14. Isolation and characterization of phenol degrading yeast.

    Science.gov (United States)

    Patel, Riddhi; Rajkumar, Shalini

    2009-04-01

    A phenol degrading yeast isolate was identified and characterized from the soil sample collected from a landfill site, in Ahmedabad, India, by plating the soil dilutions on Sabouraud's Dextrose Agar. The microscopic studies and biochemical tests indicated the isolate to be Saccharomyces cerevisiae. The phenol degrading potential of the isolate was measured by inoculation of pure culture in the mineral medium containing various phenol concentrations ranging from 100 to 800 mg l(-1 )and monitoring phenol disappearance rate at regular intervals of time. Growth of the isolate in mineral medium with various phenol concentrations was monitored by measuring the turbidity (OD(600) nm). The results showed that the isolated yeast was tolerant to phenol up to 800 mg(-1). The phenol degradation ranged from 8.57 to 100% for the concentration of phenol from 800 mg l(-1 )to 200 mg l(-1), respectively. ((c) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim).

  15. Made for Each Other: Ascomycete Yeasts and Insects.

    Science.gov (United States)

    Blackwell, Meredith

    2017-06-01

    Fungi and insects live together in the same habitats, and many species of both groups rely on each other for success. Insects, the most successful animals on Earth, cannot produce sterols, essential vitamins, and many enzymes; fungi, often yeast-like in growth form, make up for these deficits. Fungi, however, require constantly replenished substrates because they consume the previous ones, and insects, sometimes lured by volatile fungal compounds, carry fungi directly to a similar, but fresh, habitat. Yeasts associated with insects include Ascomycota (Saccharomycotina, Pezizomycotina) and a few Basidiomycota. Beetles, homopterans, and flies are important associates of fungi, and in turn the insects carry yeasts in pits, specialized external pouches, and modified gut pockets. Some yeasts undergo sexual reproduction within the insect gut, where the genetic diversity of the population is increased, while others, well suited to their stable environment, may never mate. The range of interactions extends from dispersal of yeasts on the surface of insects (e.g., cactus- Drosophila -yeast and ephemeral flower communities, ambrosia beetles, yeasts with holdfasts) to extremely specialized associations of organisms that can no longer exist independently, as in the case of yeast-like symbionts of planthoppers. In a few cases yeast-like fungus-insect associations threaten butterflies and other species with extinction. Technical advances improve discovery and identification of the fungi but also inform our understanding of the evolution of yeast-insect symbioses, although there is much more to learn.

  16. Yeast surface displaying glucose oxidase as whole-cell biocatalyst: construction, characterization, and its electrochemical glucose sensing application.

    Science.gov (United States)

    Wang, Hongwei; Lang, Qiaolin; Li, Liang; Liang, Bo; Tang, Xiangjiang; Kong, Lingrang; Mascini, Marco; Liu, Aihua

    2013-06-18

    The display of glucose oxidase (GOx) on yeast cell surface using a-agglutinin as an anchor motif was successfully developed. Both the immunochemical analysis and enzymatic assay showed that active GOx was efficiently expressed and translocated on the cell surface. Compared with conventional GOx, the yeast cell surface that displayed GOx (GOx-yeast) demonstrated excellent enzyme properties, such as good stability within a wide pH range (pH 3.5-11.5), good thermostability (retaining over 94.8% enzyme activity at 52 °C and 84.2% enzyme activity at 56 °C), and high d-glucose specificity. In addition, direct electrochemistry was achieved at a GOx-yeast/multiwalled-carbon-nanotube modified electrode, suggesting that the host cell of yeast did not have any adverse effect on the electrocatalytic property of the recombinant GOx. Thus, a novel electrochemical glucose biosensor based on this GOx-yeast was developed. The as-prepared biosensor was linear with the concentration of d-glucose within the range of 0.1-14 mM and a low detection limit of 0.05 mM (signal-to-noise ratio of S/N = 3). Moreover, the as-prepared biosensor is stable, specific, reproducible, simple, and cost-effective, which can be applicable for real sample detection. The proposed strategy to construct robust GOx-yeast may be applied to explore other oxidase-displaying-system-based whole-cell biocatalysts, which can find broad potential application in biosensors, bioenergy, and industrial catalysis.

  17. Characterization of yeast extracellular vesicles: evidence for the participation of different pathways of cellular traffic in vesicle biogenesis.

    Directory of Open Access Journals (Sweden)

    Débora L Oliveira

    2010-06-01

    Full Text Available Extracellular vesicles in yeast cells are involved in the molecular traffic across the cell wall. In yeast pathogens, these vesicles have been implicated in the transport of proteins, lipids, polysaccharide and pigments to the extracellular space. Cellular pathways required for the biogenesis of yeast extracellular vesicles are largely unknown.We characterized extracellular vesicle production in wild type (WT and mutant strains of the model yeast Saccharomyces cerevisiae using transmission electron microscopy in combination with light scattering analysis, lipid extraction and proteomics. WT cells and mutants with defective expression of Sec4p, a secretory vesicle-associated Rab GTPase essential for Golgi-derived exocytosis, or Snf7p, which is involved in multivesicular body (MVB formation, were analyzed in parallel. Bilayered vesicles with diameters at the 100-300 nm range were found in extracellular fractions from yeast cultures. Proteomic analysis of vesicular fractions from the cells aforementioned and additional mutants with defects in conventional secretion pathways (sec1-1, fusion of Golgi-derived exocytic vesicles with the plasma membrane; bos1-1, vesicle targeting to the Golgi complex or MVB functionality (vps23, late endosomal trafficking revealed a complex and interrelated protein collection. Semi-quantitative analysis of protein abundance revealed that mutations in both MVB- and Golgi-derived pathways affected the composition of yeast extracellular vesicles, but none abrogated vesicle production. Lipid analysis revealed that mutants with defects in Golgi-related components of the secretory pathway had slower vesicle release kinetics, as inferred from intracellular accumulation of sterols and reduced detection of these lipids in vesicle fractions in comparison with WT cells.Our results suggest that both conventional and unconventional pathways of secretion are required for biogenesis of extracellular vesicles, which demonstrate the

  18. De novo biosynthesis of vanillin in fission yeast (Schizosaccharomyces pombe) and baker's yeast (Saccharomyces cerevisiae).

    Science.gov (United States)

    Hansen, Esben H; Møller, Birger Lindberg; Kock, Gertrud R; Bünner, Camilla M; Kristensen, Charlotte; Jensen, Ole R; Okkels, Finn T; Olsen, Carl E; Motawia, Mohammed S; Hansen, Jørgen

    2009-05-01

    Vanillin is one of the world's most important flavor compounds, with a global market of 180 million dollars. Natural vanillin is derived from the cured seed pods of the vanilla orchid (Vanilla planifolia), but most of the world's vanillin is synthesized from petrochemicals or wood pulp lignins. We have established a true de novo biosynthetic pathway for vanillin production from glucose in Schizosaccharomyces pombe, also known as fission yeast or African beer yeast, as well as in baker's yeast, Saccharomyces cerevisiae. Productivities were 65 and 45 mg/liter, after introduction of three and four heterologous genes, respectively. The engineered pathways involve incorporation of 3-dehydroshikimate dehydratase from the dung mold Podospora pauciseta, an aromatic carboxylic acid reductase (ACAR) from a bacterium of the Nocardia genus, and an O-methyltransferase from Homo sapiens. In S. cerevisiae, the ACAR enzyme required activation by phosphopantetheinylation, and this was achieved by coexpression of a Corynebacterium glutamicum phosphopantetheinyl transferase. Prevention of reduction of vanillin to vanillyl alcohol was achieved by knockout of the host alcohol dehydrogenase ADH6. In S. pombe, the biosynthesis was further improved by introduction of an Arabidopsis thaliana family 1 UDP-glycosyltransferase, converting vanillin into vanillin beta-D-glucoside, which is not toxic to the yeast cells and thus may be accumulated in larger amounts. These de novo pathways represent the first examples of one-cell microbial generation of these valuable compounds from glucose. S. pombe yeast has not previously been metabolically engineered to produce any valuable, industrially scalable, white biotech commodity.

  19. MALDI-TOF MS as a tool to identify foodborne yeasts and yeast-like fungi.

    Science.gov (United States)

    Quintilla, Raquel; Kolecka, Anna; Casaregola, Serge; Daniel, Heide M; Houbraken, Jos; Kostrzewa, Markus; Boekhout, Teun; Groenewald, Marizeth

    2018-02-02

    Since food spoilage by yeasts causes high economic losses, fast and accurate identifications of yeasts associated with food and food-related products are important for the food industry. In this study the efficiency of the matrix assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) to identify food related yeasts was evaluated. A CBS in-house MALDI-TOF MS database was created and later challenged with a blinded test set of 146 yeast strains obtained from food and food related products. Ninety eight percent of the strains were correctly identified with log score values>1.7. One strain, Mrakia frigida, gained a correct identification with a score value1.7. Ambiguous identifications were observed due to two incorrect reference mass spectra's found in the commercial database BDAL v.4.0, namely Candida sake DSM 70763 which was re-identified as Candida oleophila, and Candida inconspicua DSM 70631 which was re-identified as Pichia membranifaciens. MALDI-TOF MS can distinguish between most of the species, but for some species complexes, such as the Kazachstania telluris and Mrakia frigida complexes, MALDI-TOF MS showed limited resolution and identification of sibling species was sometimes problematic. Despite this, we showed that the MALDI-TOF MS is applicable for routine identification and validation of foodborne yeasts, but a further update of the commercial reference databases is needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Phyllosphere yeasts rapidly break down biodegradable plastics

    OpenAIRE

    Kitamoto, Hiroko K; Shinozaki, Yukiko; Cao, Xiao-hong; Morita, Tomotake; Konishi, Masaaki; Tago, Kanako; Kajiwara, Hideyuki; Koitabashi, Motoo; Yoshida, Shigenobu; Watanabe, Takashi; Sameshima-Yamashita, Yuka; Nakajima-Kambe, Toshiaki; Tsushima, Seiya

    2011-01-01

    The use of biodegradable plastics can reduce the accumulation of environmentally persistent plastic wastes. The rate of degradation of biodegradable plastics depends on environmental conditions and is highly variable. Techniques for achieving more consistent degradation are needed. However, only a few microorganisms involved in the degradation process have been isolated so far from the environment. Here, we show that Pseudozyma spp. yeasts, which are common in the phyllosphere and are easily ...

  1. Chronological aging-induced apoptosis in yeast

    OpenAIRE

    Fabrizio, Paola; Longo, Valter D.

    2008-01-01

    Saccharomyces cerevisiae is the simplest among the major eukaryotic model organisms for aging and diseases. Longevity in the chronological life span paradigm is measured as the mean and maximum survival period of populations of non-dividing yeast. This paradigm has been used successfully to identify several life-regulatory genes and three evolutionary conserved pro-aging pathways. More recently, Schizosaccharomyces pombe has been shown to age chronologically in a manner that resembles that of...

  2. Environmental influences on organotin-yeast interactions

    OpenAIRE

    White, Jane S.

    2002-01-01

    As a consequence of the widespread industrial and agricultural applications of organotin compounds, contamination of various ecosystems has occurred in recent decades. Understanding how these compounds interact with cellular membranes is essential in assessing the risks of organotin pollution. The organotins, tributyltin (TBT) and trimethyltin (TMT) and inorganic tin, Sn(IV), were investigated for their physical interactions with non-metabolising cells and protoplasts of the yeast, Candida ma...

  3. Beneficial properties of probiotic yeast Saccharomyces boulardii

    OpenAIRE

    Tomičić Zorica M.; Čolović Radmilo R.; Čabarkapa Ivana S.; Vukmirović Đuro M.; Đuragić Olivera M.; Tomičić Ružica M.

    2016-01-01

    Saccharomyces boulardii is unique probiotic and biotherapeutic yeast, known to survive in gastric acidity and it is not adversely affected or inhibited by antibiotics or does not alter or adversely affect the normal microbiota. S. boulardii has been utilized worldwide as a probiotic supplement to support gastrointestinal health. The multiple mechanisms of action of S. boulardii and its properties may explain its efficacy and beneficial effects in acute and chronic gastrointestinal diseases th...

  4. Taxonomy Icon Data: fission yeast [Taxonomy Icon

    Lifescience Database Archive (English)

    Full Text Available fission yeast Schizosaccharomyces pombe Schizosaccharomyces_pombe_L.png Schizosaccharomyce...s_pombe_NL.png Schizosaccharomyces_pombe_S.png Schizosaccharomyces_pombe_NS.png http://biosciencedbc....jp/taxonomy_icon/icon.cgi?i=Schizosaccharomyces+pombe&t=L http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schizosaccharomyce...s+pombe&t=NL http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schizosaccharomyce...s+pombe&t=S http://biosciencedbc.jp/taxonomy_icon/icon.cgi?i=Schizosaccharomyces+pombe&t=NS

  5. Pentose utilization in yeasts: Physiology and biochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Jeppson, H.

    1996-04-01

    The fermentive performance of bacteria, yeasts, and filamentous fungi was investigated in a pentose (xylose)-rich lignocellulosic hydrolyzate. The filamentous fungus Fusarium oxysporum and the xylose-fermenting yeast Pichia stipitis were found to be very sensitive to the inhibiting hydrolyzate. Recombinant xylose-utilizing Saccharomyces cerevisiae showed very poor ethanol formation from xylose; xylitol being the major product formed. The highest ethanol yields were obtained with recombinant Escherichia coli KO11, however, for maximal ethanol yield detoxification of the hydrolyzate was required. The influence of oxygen on the regulation of carbohydrate metabolism in the xylose-fermenting yeast P. stipitis CBS 6054 was investigated. A low and well-controlled level of oxygenation has been found to be required for efficient ethanol formation from xylose by the xylose-fermenting yeasts. The requirement of oxygen is frequently ascribed to the apparent redox imbalance which develops under anaerobic conditions due to the difference in co-factor utilization of the two first enzymes in the xylose metabolism, further reflected in xylitol excretion. However, a low and well controlled level of oxygenation for maximal ethanol production from glucose was also demonstrated, suggesting that the oxygen requirement is not only due to the dual co-factor utilization, but also serves other purposes. Cyanide-insensitive and salicyl hydroxamic acid-sensitive respiration (CIR) was found in P. stipitis. CIR is suggested to act as a redox sink preventing xylitol formation in P. stipitis under oxygen-limited xylose fermentations. Xylitol metabolism by P. stipitis CBS 6054 was strictly respiratory and ethanol was not formed under any conditions. The absence of ethanol formation was not due to a lack of fermentative enzymes, since the addition of glucose to xylitol-pregrown cells resulted in ethanol formation. 277 refs, 5 figs, 7 tabs

  6. Yeast Biodiversity from DOQ Priorat Uninoculated Fermentations

    OpenAIRE

    Padilla, Beatriz; Garc?a-Fern?ndez, David; Gonz?lez, Beatriz; Izidoro, Iara; Esteve-Zarzoso, Braulio; Beltran, Gemma; Mas, Albert

    2016-01-01

    Climate, soil, and grape varieties are the primary characteristics of terroir and lead to the definition of various appellations of origin. However, the microbiota associated with grapes are also affected by these conditions and can leave a footprint in a wine that will be part of the characteristics of terroir. Thus, a description of the yeast microbiota within a vineyard is of interest not only to provide a better understanding of the winemaking process, but also to understand the source of...

  7. Raman Microspectroscopy of the Yeast Vacuoles

    Czech Academy of Sciences Publication Activity Database

    Bednárová, Lucie; Palacký, J.; Bauerová, Václava; Hrušková-Heidingsfeldová, Olga; Pichová, Iva; Mojzeš, P.

    2012-01-01

    Roč. 27, 5-6 (2012), s. 503-507 ISSN 0712-4813 R&D Projects: GA ČR GAP208/10/0376; GA ČR GA310/09/1945 Institutional research plan: CEZ:AV0Z40550506 Keywords : Raman microspectroscopy * living cell * yeast * vacuole * chemical composition * polyphospate * Candida albicans Subject RIV: CE - Biochemistry Impact factor: 0.530, year: 2012

  8. Development of Industrial Yeast Platform Strains

    DEFF Research Database (Denmark)

    Bergdahl, Basti; Dato, Laura; Förster, Jochen

    2014-01-01

    Most of the current metabolic engineering projects are carried out using laboratory strains as the starting host. Although such strains are easily manipulated genetically, their robustness does not always meet the requirements set by industrial fermentation conditions. In such conditions, the cells...... screening of the 36 industrial and laboratory yeast strains. In addition, progress in the development of molecular biology methods for generating the new strains will be presented....

  9. Cyanohydrin reactions enhance glycolytic oscillations in yeast

    DEFF Research Database (Denmark)

    Hald, Bjørn Olav; Nielsen, Astrid Gram; Tortzen, Christian

    2015-01-01

    Synchronous metabolic oscillations can be induced in yeast by addition of glucose and removal of extracellular acetaldehyde (ACAx). Compared to other means of ACAx removal, cyanide robustly induces oscillations, indicating additional cyanide reactions besides ACA to lactonitrile conversion. Here......: a) by reducing [ACAx] relative to oscillation amplitude, b) by targeting multiple intracellular carbonyl compounds during fermentation, and c) by acting as a phase resetting stimulus....

  10. Enzymes of Candida tropicalis yeast biodegrading phenol

    OpenAIRE

    Koubková, Zuzana

    2011-01-01

    Effluents of industrial wastewaters from oil refineries, paper mills, dyes, ceramic factories, resins, textiles and plastic contain high concentrations of aromatic compounds, which are toxic to organisms. Degradation of these compounds to tolerant limits before releasing them into the environment is an urgent requirement. Candida tropicalis yeast is an important representative of eucaryotic microorganisms that are able to utilize phenol. During the first phase of phenol biodegradation, cytopl...

  11. Biotechnology of non-Saccharomyces yeasts-the basidiomycetes.

    Science.gov (United States)

    Johnson, Eric A

    2013-09-01

    Yeasts are the major producer of biotechnology products worldwide, exceeding production in capacity and economic revenues of other groups of industrial microorganisms. Yeasts have wide-ranging fundamental and industrial importance in scientific, food, medical, and agricultural disciplines (Fig. 1). Saccharomyces is the most important genus of yeast from fundamental and applied perspectives and has been expansively studied. Non-Saccharomyces yeasts (non-conventional yeasts) including members of the Ascomycetes and Basidiomycetes also have substantial current utility and potential applicability in biotechnology. In an earlier mini-review, "Biotechnology of non-Saccharomyces yeasts-the ascomycetes" (Johnson Appl Microb Biotechnol 97: 503-517, 2013), the extensive biotechnological utility and potential of ascomycetous yeasts are described. Ascomycetous yeasts are particularly important in food and ethanol formation, production of single-cell protein, feeds and fodder, heterologous production of proteins and enzymes, and as model and fundamental organisms for the delineation of genes and their function in mammalian and human metabolism and disease processes. In contrast, the roles of basidiomycetous yeasts in biotechnology have mainly been evaluated only in the past few decades and compared to the ascomycetous yeasts and currently have limited industrial utility. From a biotechnology perspective, the basidiomycetous yeasts are known mainly for the production of enzymes used in pharmaceutical and chemical synthesis, for production of certain classes of primary and secondary metabolites such as terpenoids and carotenoids, for aerobic catabolism of complex carbon sources, and for bioremediation of environmental pollutants and xenotoxicants. Notwithstanding, the basidiomycetous yeasts appear to have considerable potential in biotechnology owing to their catabolic utilities, formation of enzymes acting on recalcitrant substrates, and through the production of unique primary

  12. Yeast CUP1 protects HeLa cells against copper-induced stress

    Energy Technology Data Exchange (ETDEWEB)

    Xie, X.X. [Department of Animal Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai (China); College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou (China); Ma, Y.F.; Wang, Q.S.; Chen, Z.L.; Liao, R.R.; Pan, Y.C. [Department of Animal Sciences, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai (China)

    2015-06-12

    As an essential trace element, copper can be toxic in mammalian cells when present in excess. Metallothioneins (MTs) are small, cysteine-rich proteins that avidly bind copper and thus play an important role in detoxification. YeastCUP1 is a member of the MT gene family. The aim of this study was to determine whether yeast CUP1 could bind copper effectively and protect cells against copper stress. In this study,CUP1 expression was determined by quantitative real-time PCR, and copper content was detected by inductively coupled plasma mass spectrometry. Production of intracellular reactive oxygen species (ROS) was evaluated using the 2',7'-dichlorofluorescein-diacetate (DCFH-DA) assay. Cellular viability was detected using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay, and the cell cycle distribution of CUP1 was analyzed by fluorescence-activated cell sorting. The data indicated that overexpression of yeast CUP1 in HeLa cells played a protective role against copper-induced stress, leading to increased cellular viability (P<0.05) and decreased ROS production (P<0.05). It was also observed that overexpression of yeast CUP1 reduced the percentage of G1 cells and increased the percentage of S cells, which suggested that it contributed to cell viability. We found that overexpression of yeast CUP1 protected HeLa cells against copper stress. These results offer useful data to elucidate the mechanism of the MT gene on copper metabolism in mammalian cells.

  13. Engineered bacterial hydrophobic oligopeptide repeats in a synthetic yeast prion, [REP-PSI+

    Directory of Open Access Journals (Sweden)

    Fátima eGasset-Rosa

    2015-04-01

    Full Text Available The yeast translation termination factor Sup35p, by aggregating as the [PSI+] prion, enables ribosomes to read-through stop codons, thus expanding the diversity of the Saccharomyces cerevisiae proteome. Yeast prions are functional amyloids that replicate by templating their conformation on native protein molecules, then assembling as large aggregates and fibers. Prions propagate epigenetically from mother to daughter cells by fragmentation of such assemblies. In the N-terminal prion-forming domain, Sup35p has glutamine/asparagine-rich oligopeptide repeats (OPRs, which enable propagation through chaperone-elicited shearing. We have engineered chimeras by replacing the polar OPRs in Sup35p by up to five repeats of a hydrophobic amyloidogenic sequence from the synthetic bacterial prionoid RepA-WH1. The resulting hybrid, [REP-PSI+], i was functional in a stop codon read-through assay in S. cerevisiae; ii generates weak phenotypic variants upon both its expression or transformation into [psi-] cells; iii these variants correlated with high molecular weight aggregates resistant to SDS during electrophoresis; and iv according to fluorescence microscopy, the fusion of the prion domains from the engineered chimeras to the reporter protein mCherry generated perivacuolar aggregate foci in yeast cells. All these are signatures of bona fide yeast prions. As assessed through biophysical approaches, the chimeras assembled as oligomers rather than as the fibers characteristic of [PSI+]. These results suggest that it is the balance between polar and hydrophobic residues in OPRs what determines prion conformational dynamics. In addition, our findings illustrate the feasibility of enabling new propagation traits in yeast prions by engineering OPRs with heterologous amyloidogenic sequence repeats.

  14. Respiratory capacity of the Kluyveromyces marxianus yeast isolated from the mezcal process during oxidative stress.

    Science.gov (United States)

    Arellano-Plaza, Melchor; Gschaedler-Mathis, Anne; Noriega-Cisneros, Ruth; Clemente-Guerrero, Mónica; Manzo-Ávalos, Salvador; González-Hernández, Juan Carlos; Saavedra-Molina, Alfredo

    2013-07-01

    During the mezcal fermentation process, yeasts are affected by several stresses that can affect their fermentation capability. These stresses, such as thermal shock, ethanol, osmotic and growth inhibitors are common during fermentation. Cells have improved metabolic systems and they express stress response genes in order to decrease the damage caused during the stress, but to the best of our knowledge, there are no published works exploring the effect of oxidants and prooxidants, such as H2O2 and menadione, during growth. In this article, we describe the behavior of Kluyveromyces marxianus isolated from spontaneous mezcal fermentation during oxidative stress, and compared it with that of Saccharomyces cerevisiae strains that were also obtained from mezcal, using the W303-1A strain as a reference. S. cerevisiae strains showed greater viability after oxidative stress compared with K. marxianus strains. However, when the yeast strains were grown in the presence of oxidants in the media, K. marxianus exhibited a greater ability to grow in menadione than it did in H2O2. Moreover, when K. marxianus SLP1 was grown in a minibioreactor, its behavior when exposed to menadione was different from its behavior with H2O2. The yeast maintained the ability to consume dissolved oxygen during the 4 h subsequent to the addition of menadione, and then stopped respiration. When exposed to H2O2, the yeast stopped consuming oxygen for the following 8 h, but began to consume oxygen when stressors were no longer applied. In conclusion, yeast isolated from spontaneous mezcal fermentation was able to resist oxidative stress for a long period of time.

  15. Functional conservation of coenzyme Q biosynthetic genes among yeasts, plants, and humans.

    Directory of Open Access Journals (Sweden)

    Kazuhiro Hayashi

    Full Text Available Coenzyme Q (CoQ is an essential factor for aerobic growth and oxidative phosphorylation in the electron transport system. The biosynthetic pathway for CoQ has been proposed mainly from biochemical and genetic analyses of Escherichia coli and Saccharomyces cerevisiae; however, the biosynthetic pathway in higher eukaryotes has been explored in only a limited number of studies. We previously reported the roles of several genes involved in CoQ synthesis in the fission yeast Schizosaccharomyces pombe. Here, we expand these findings by identifying ten genes (dps1, dlp1, ppt1, and coq3-9 that are required for CoQ synthesis. CoQ10-deficient S. pombe coq deletion strains were generated and characterized. All mutant fission yeast strains were sensitive to oxidative stress, produced a large amount of sulfide, required an antioxidant to grow on minimal medium, and did not survive at the stationary phase. To compare the biosynthetic pathway of CoQ in fission yeast with that in higher eukaryotes, the ability of CoQ biosynthetic genes from humans and plants (Arabidopsis thaliana to functionally complement the S. pombe coq deletion strains was determined. With the exception of COQ9, expression of all other human and plant COQ genes recovered CoQ10 production by the fission yeast coq deletion strains, although the addition of a mitochondrial targeting sequence was required for human COQ3 and COQ7, as well as A. thaliana COQ6. In summary, this study describes the functional conservation of CoQ biosynthetic genes between yeasts, humans, and plants.

  16. Comparative kinetic characterization of catalases from Candida boidinii yeast and bovine liver.

    Science.gov (United States)

    Metelitza, D I; Eryomin, A N; Artzukevich, I M; Chernikevich, I P

    1997-04-01

    Catalase with molecular weight 230 +/- kD was isolated and purified from methylotrophic yeasts Candida boidinii by ion-exchange chromatography. The kinetic characteristics of yeast and bovine liver catalases were compared in the reaction of H2O2 decomposition using a wide range of H2O2 concentrations (up to 0.12 M) and PH (2-10). First order rates constants (k, sec-1) were determined for both enzymes from semi-logarithmic anamorphoses of kinetic curves of H2O2 utilization. Anamorphoses of complete kinetic curves as a function of 1/ln([H2O2]0/[H2O2]t) versus 1/t were used for calculation of the effective rate constants of catalase inactivation during the reaction (k(in), sec-1) and the rate constants of interaction of catalase complex I with the second molecule of H2O2 (k2, M-1.sec-1). The effects of initial catalase concentrations, H2O2, and pH on k, k2, and k(in) were similar for both enzymes. Catalytic constant, k2, and the efficacy expressed as a ratio kcat/Km were 1.87-, 1.45-, and 1.3-fold, respectively, higher for bovine catalase than that of yeast catalase. Operational stability of yeast catalase is 3.5-fold higher than the stability of bovine catalase and much higher during cyclic decomposition of 50 mM H2O2. Enhanced operational stability and inexpensive source of its preparation open prospects for practical applications of yeast catalase for co-immobilization with superoxide dismutase on non-toxic carriers.

  17. In situ rheology of yeast biofilms.

    Science.gov (United States)

    Brugnoni, Lorena I; Tarifa, María C; Lozano, Jorge E; Genovese, Diego

    2014-01-01

    The aim of the present work was to investigate the in situ rheological behavior of yeast biofilms growing on stainless steel under static and turbulent flow. The species used (Rhodototula mucilaginosa, Candida krusei, Candida kefyr and Candida tropicalis) were isolated from a clarified apple juice industry. The flow conditions impacted biofilm composition over time, with a predominance of C. krusei under static and turbulent flow. Likewise, structural variations occurred, with a tighter appearance under dynamic flow. Under turbulent flow there was an increase of 112 μm in biofilm thickness at 11 weeks (p < 0.001) and cell morphology was governed by hyphal structures and rounded cells. Using the in situ growth method introduced here, yeast biofilms were determined to be viscoelastic materials with a predominantly solid-like behavior, and neither this nor the G'0 values were significantly affected by the flow conditions or the growth time, and at large deformations their weak structure collapsed beyond a critical strain of about 1.5-5%. The present work could represent a starting point for developing in situ measurements of yeast rheology and contribute to a thin body of knowledge about fungal biofilm formation.

  18. Determination of Proteinaceous Selenocysteine in Selenized Yeast

    Directory of Open Access Journals (Sweden)

    Katarzyna Bierla

    2018-02-01

    Full Text Available A method for the quantitation of proteinaceous selenocysteine (SeCys in Se-rich yeast was developed. The method is based on the reduction of the Se-Se and S-Se bridges with dithiotretiol, derivatization with iodoacetamide (carbamidomethylation, followed by HPLC-ICP MS. The chromatographic conditions were optimized for the total recovery of the proteinaceous selenocysteine, the minimum number of peaks in the chromatogram (reduction of derivatization products of other Se-species present and the baseline separation. A typical chromatogram of a proteolytic digest of selenized yeast protein consisted of up to five peaks (including SeMet, carbamidomethylated (CAM-SeCys, and Se(CAM2 identified by retention time matching with available standards and electrospray MS. Inorganic selenium non-specifically attached to proteins and selenomethionine could be quantified (in the form of Se(CAM2 along with SeCys. Selenocysteine, selenomethionine, inorganic selenium, and the water soluble-metabolite fraction accounted for the totality of selenium species in Se-rich yeast.

  19. How do yeast sense mitochondrial dysfunction?

    Directory of Open Access Journals (Sweden)

    Dmitry A. Knorre

    2016-09-01

    Full Text Available Apart from energy transformation, mitochondria play important signaling roles. In yeast, mitochondrial signaling relies on several molecular cascades. However, it is not clear how a cell detects a particular mitochondrial malfunction. The problem is that there are many possible manifestations of mitochondrial dysfunction. For example, exposure to the specific antibiotics can either decrease (inhibitors of respiratory chain or increase (inhibitors of ATP-synthase mitochondrial transmembrane potential. Moreover, even in the absence of the dysfunctions, a cell needs feedback from mitochondria to coordinate mitochondrial biogenesis and/or removal by mitophagy during the division cycle. To cope with the complexity, only a limited set of compounds is monitored by yeast cells to estimate mitochondrial functionality. The known examples of such compounds are ATP, reactive oxygen species, intermediates of amino acids synthesis, short peptides, Fe-S clusters and heme, and also the precursor proteins which fail to be imported by mitochondria. On one hand, the levels of these molecules depend not only on mitochondria. On the other hand, these substances are recognized by the cytosolic sensors which transmit the signals to the nucleus leading to general, as opposed to mitochondria-specific, transcriptional response. Therefore, we argue that both ways of mitochondria-to-nucleus communication in yeast are mostly (if not completely unspecific, are mediated by the cytosolic signaling machinery and strongly depend on cellular metabolic state.

  20. [Mitochondria inheritance in yeast saccharomyces cerevisiae].

    Science.gov (United States)

    Fizikova, A Iu

    2011-01-01

    The review is devoted to the main mechanisms of mitochondria inheritance in yeast Saccharonmyces cerevisiae. The genetic mechanisms of functionally active mitochondria inheritance in eukaryotic cells is one of the most relevant in modem researches. A great number of genetic diseases are associated with mitochondria dysfunction. Plasticity of eukaryotic cell metabolism according to the environmental changes is ensured by adequate mitochondria functioning by means of ATP synthesis coordination, reactive oxygen species accumulation, apoptosis regulation and is an important factor of cell adaptation to stress. Mitochondria participation in important for cell vitality processes masters the presence of accurate mechanisms of mitochondria functions regulation according to environment fluctuations. The mechanisms of mitochondria division and distribution are highly conserved. Baker yeast S. cerevisiae is an ideal model object for mitochondria researches due to energetic metabolism lability, ability to switch over respiration to fermentation, and petite-positive phenotype. Correction of metabolism according to the environmental changes is necessary for cell vitality. The influence of respiratory, carbon, amino acid and phosphate metabolism on mitochondria functions was shown. As far as the mechanisms that stabilize functions of mitochondria and mtDNA are highly conserve, we can project yeast regularities on higher eukaryotes systems. This makes it possible to approximate understanding the etiology and pathogenesis of a great number of human diseases.

  1. Tombusviruses upregulate phospholipid biosynthesis via interaction between p33 replication protein and yeast lipid sensor proteins during virus replication in yeast

    International Nuclear Information System (INIS)

    Barajas, Daniel; Xu, Kai; Sharma, Monika; Wu, Cheng-Yu; Nagy, Peter D.

    2014-01-01

    Positive-stranded RNA viruses induce new membranous structures and promote membrane proliferation in infected cells to facilitate viral replication. In this paper, the authors show that a plant-infecting tombusvirus upregulates transcription of phospholipid biosynthesis genes, such as INO1, OPI3 and CHO1, and increases phospholipid levels in yeast model host. This is accomplished by the viral p33 replication protein, which interacts with Opi1p FFAT domain protein and Scs2p VAP protein. Opi1p and Scs2p are phospholipid sensor proteins and they repress the expression of phospholipid genes. Accordingly, deletion of OPI1 transcription repressor in yeast has a stimulatory effect on TBSV RNA accumulation and enhanced tombusvirus replicase activity in an in vitro assay. Altogether, the presented data convincingly demonstrate that de novo lipid biosynthesis is required for optimal TBSV replication. Overall, this work reveals that a (+)RNA virus reprograms the phospholipid biosynthesis pathway in a unique way to facilitate its replication in yeast cells. - Highlights: • Tombusvirus p33 replication protein interacts with FFAT-domain host protein. • Tombusvirus replication leads to upregulation of phospholipids. • Tombusvirus replication depends on de novo lipid synthesis. • Deletion of FFAT-domain host protein enhances TBSV replication. • TBSV rewires host phospholipid synthesis

  2. Probiotic yeast inhibits VEGFR signaling and angiogenesis in intestinal inflammation.

    Directory of Open Access Journals (Sweden)

    Xinhua Chen

    Full Text Available Saccharomyces boulardii (Sb can protect against intestinal injury and tumor formation, but how this probiotic yeast controls protective mucosal host responses is unclear. Angiogenesis is an integral process of inflammatory responses in inflammatory bowel diseases (IBD and required for mucosal remodeling during restitution. The aim of this study was to determine whether Sb alters VEGFR (vascular endothelial growth factor receptor signaling, a central regulator of angiogenesis.HUVEC were used to examine the effects of Sb on signaling and on capillary tube formation (using the ECMatrix™ system. The effects of Sb on VEGF-mediated angiogenesis were examined in vivo using an adenovirus expressing VEGF-A(164 in the ears of adult nude mice (NuNu. The effects of Sb on blood vessel volume branching and density in DSS-induced colitis was quantified using VESsel GENeration (VESGEN software.1 Sb treatment attenuated weight-loss (p<0.01 and histological damage (p<0.01 in DSS colitis. VESGEN analysis of angiogenesis showed significantly increased blood vessel density and volume in DSS-treated mice compared to control. Sb treatment significantly reduced the neo-vascularization associated with acute DSS colitis and accelerated mucosal recovery restoration of the lamina propria capillary network to a normal morphology. 2 Sb inhibited VEGF-induced angiogenesis in vivo in the mouse ear model. 3 Sb also significantly inhibited angiogenesis in vitro in the capillary tube assay in a dose-dependent manner (p<0.01. 4 In HUVEC, Sb reduced basal VEGFR-2 phosphorylation, VEGFR-2 phosphorylation in response to VEGF as well as activation of the downstream kinases PLCγ and Erk1/2.Our findings indicate that the probiotic yeast S boulardii can modulate angiogenesis to limit intestinal inflammation and promote mucosal tissue repair by regulating VEGFR signaling.

  3. Genomewide identification of pheromone-targeted transcription in fission yeast

    Directory of Open Access Journals (Sweden)

    Wright Anthony

    2006-11-01

    Full Text Available Abstract Background Fission yeast cells undergo sexual differentiation in response to nitrogen starvation. In this process haploid M and P cells first mate to form diploid zygotes, which then enter meiosis and sporulate. Prior to mating, M and P cells communicate with diffusible mating pheromones that activate a signal transduction pathway in the opposite cell type. The pheromone signalling orchestrates mating and is also required for entry into meiosis. Results Here we use DNA microarrays to identify genes that are induced by M-factor in P cells and by P-factor in M-cells. The use of a cyr1 genetic background allowed us to study pheromone signalling independently of nitrogen starvation. We identified a total of 163 genes that were consistently induced more than two-fold by pheromone stimulation. Gene disruption experiments demonstrated the involvement of newly discovered pheromone-induced genes in the differentiation process. We have mapped Gene Ontology (GO categories specifically associated with pheromone induction. A direct comparison of the M- and P-factor induced expression pattern allowed us to identify cell-type specific transcripts, including three new M-specific genes and one new P-specific gene. Conclusion We found that the pheromone response was very similar in M and P cells. Surprisingly, pheromone control extended to genes fulfilling their function well beyond the point of entry into meiosis, including numerous genes required for meiotic recombination. Our results suggest that the Ste11 transcription factor is responsible for the majority of pheromone-induced transcription. Finally, most cell-type specific genes now appear to be identified in fission yeast.

  4. Immobility, inheritance and plasticity of shape of the yeast nucleus

    Directory of Open Access Journals (Sweden)

    Andrulis Erik D

    2007-11-01

    Full Text Available Abstract Background Since S. cerevisiae undergoes closed mitosis, the nuclear envelope of the daughter nucleus is continuous with that of the maternal nucleus at anaphase. Nevertheless, several constitutents of the maternal nucleus are not present in the daughter nucleus. The present study aims to identify proteins which impact the shape of the yeast nucleus and to learn whether modifications of shape are passed on to the next mitotic generation. The Esc1p protein of S. cerevisiae localizes to the periphery of the nucleoplasm, can anchor chromatin, and has been implicated in targeted silencing both at telomeres and at HMR. Results Upon increased Esc1p expression, cell division continues and dramatic elaborations of the nuclear envelope extend into the cytoplasm. These "escapades" include nuclear pores and associate with the nucleolus, but exclude chromatin. Escapades are not inherited by daughter nuclei. This exclusion reflects their relative immobility, which we document in studies of prezygotes. Moreover, excess Esc1p affects the levels of multiple transcripts, not all of which originate at telomere-proximal loci. Unlike Esc1p and the colocalizing protein, Mlp1p, overexpression of selected proteins of the inner nuclear membrane is toxic. Conclusion Esc1p is the first non-membrane protein of the nuclear periphery which – like proteins of the nuclear lamina of higher eukaryotes – can modify the shape of the yeast nucleus. The elaborations of the nuclear envelope ("escapades" which appear upon induction of excess Esc1p are not inherited during mitotic growth. The lack of inheritance of such components could help sustain cell growth when parental nuclei have acquired potentially deleterious characteristics.

  5. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast

    Directory of Open Access Journals (Sweden)

    Sasano Yu

    2012-04-01

    Full Text Available Abstract Background During the bread-making process, industrial baker's yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS, leading to cell death and reduced fermentation ability. Thus, there is a great need for a baker's yeast strain with higher tolerance to baking-associated stresses. Recently, we revealed a novel antioxidative mechanism in a laboratory yeast strain that is involved in stress-induced nitric oxide (NO synthesis from proline via proline oxidase Put1 and N-acetyltransferase Mpr1. We also found that expression of the proline-feedback inhibition-less sensitive mutant γ-glutamyl kinase (Pro1-I150T and the thermostable mutant Mpr1-F65L resulted in an enhanced fermentation ability of baker's yeast in bread dough after freeze-thaw stress and air-drying stress, respectively. However, baker's yeast strains with high fermentation ability under multiple baking-associated stresses have not yet been developed. Results We constructed a self-cloned diploid baker's yeast strain with enhanced proline and NO synthesis by expressing Pro1-I150T and Mpr1-F65L in the presence of functional Put1. The engineered strain increased the intracellular NO level in response to air-drying stress, and the strain was tolerant not only to oxidative stress but also to both air-drying and freeze-thaw stresses probably due to the reduced intracellular ROS level. We also showed that the resultant strain retained higher leavening activity in bread dough after air-drying and freeze-thaw stress than that of the wild-type strain. On the other hand, enhanced stress tolerance and fermentation ability did not occur in the put1-deficient strain. This result suggests that NO is synthesized in baker's yeast from proline in response to oxidative stresses that induce ROS

  6. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast.

    Science.gov (United States)

    Sasano, Yu; Haitani, Yutaka; Hashida, Keisuke; Ohtsu, Iwao; Shima, Jun; Takagi, Hiroshi

    2012-04-01

    During the bread-making process, industrial baker's yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS), leading to cell death and reduced fermentation ability. Thus, there is a great need for a baker's yeast strain with higher tolerance to baking-associated stresses. Recently, we revealed a novel antioxidative mechanism in a laboratory yeast strain that is involved in stress-induced nitric oxide (NO) synthesis from proline via proline oxidase Put1 and N-acetyltransferase Mpr1. We also found that expression of the proline-feedback inhibition-less sensitive mutant γ-glutamyl kinase (Pro1-I150T) and the thermostable mutant Mpr1-F65L resulted in an enhanced fermentation ability of baker's yeast in bread dough after freeze-thaw stress and air-drying stress, respectively. However, baker's yeast strains with high fermentation ability under multiple baking-associated stresses have not yet been developed. We constructed a self-cloned diploid baker's yeast strain with enhanced proline and NO synthesis by expressing Pro1-I150T and Mpr1-F65L in the presence of functional Put1. The engineered strain increased the intracellular NO level in response to air-drying stress, and the strain was tolerant not only to oxidative stress but also to both air-drying and freeze-thaw stresses probably due to the reduced intracellular ROS level. We also showed that the resultant strain retained higher leavening activity in bread dough after air-drying and freeze-thaw stress than that of the wild-type strain. On the other hand, enhanced stress tolerance and fermentation ability did not occur in the put1-deficient strain. This result suggests that NO is synthesized in baker's yeast from proline in response to oxidative stresses that induce ROS generation and that increased NO plays an important

  7. Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast

    Science.gov (United States)

    2012-01-01

    Background During the bread-making process, industrial baker's yeast, mostly Saccharomyces cerevisiae, is exposed to baking-associated stresses, such as air-drying and freeze-thaw stress. These baking-associated stresses exert severe injury to yeast cells, mainly due to the generation of reactive oxygen species (ROS), leading to cell death and reduced fermentation ability. Thus, there is a great need for a baker's yeast strain with higher tolerance to baking-associated stresses. Recently, we revealed a novel antioxidative mechanism in a laboratory yeast strain that is involved in stress-induced nitric oxide (NO) synthesis from proline via proline oxidase Put1 and N-acetyltransferase Mpr1. We also found that expression of the proline-feedback inhibition-less sensitive mutant γ-glutamyl kinase (Pro1-I150T) and the thermostable mutant Mpr1-F65L resulted in an enhanced fermentation ability of baker's yeast in bread dough after freeze-thaw stress and air-drying stress, respectively. However, baker's yeast strains with high fermentation ability under multiple baking-associated stresses have not yet been developed. Results We constructed a self-cloned diploid baker's yeast strain with enhanced proline and NO synthesis by expressing Pro1-I150T and Mpr1-F65L in the presence of functional Put1. The engineered strain increased the intracellular NO level in response to air-drying stress, and the strain was tolerant not only to oxidative stress but also to both air-drying and freeze-thaw stresses probably due to the reduced intracellular ROS level. We also showed that the resultant strain retained higher leavening activity in bread dough after air-drying and freeze-thaw stress than that of the wild-type strain. On the other hand, enhanced stress tolerance and fermentation ability did not occur in the put1-deficient strain. This result suggests that NO is synthesized in baker's yeast from proline in response to oxidative stresses that induce ROS generation and that increased NO

  8. Effect of increased yeast alcohol acetyltransferase activity on flavor profiles of wine and distillates.

    Science.gov (United States)

    Lilly, M; Lambrechts, M G; Pretorius, I S

    2000-02-01

    The distinctive flavor of wine, brandy, and other grape-derived alcoholic beverages is affected by many compounds, including esters produced during alcoholic fermentation. The characteristic fruity odors of the fermentation bouquet are primarily due to a mixture of hexyl acetate, ethyl caproate (apple-like aroma), iso-amyl acetate (banana-like aroma), ethyl caprylate (apple-like aroma), and 2-phenylethyl acetate (fruity, flowery flavor with a honey note). The objective of this study was to investigate the feasibility of improving the aroma of wine and distillates by overexpressing one of the endogenous yeast genes that controls acetate ester production during fermentation. The synthesis of acetate esters by the wine yeast Saccharomyces cerevisiae during fermentation is ascribed to at least three acetyltransferase activities, namely, alcohol acetyltransferase (AAT), ethanol acetyltransferase, and iso-amyl AAT. To investigate the effect of increased AAT activity on the sensory quality of Chenin blanc wines and distillates from Colombar base wines, we have overexpressed the alcohol acetyltransferase gene (ATF1) of S. cerevisiae. The ATF1 gene, located on chromosome XV, was cloned from a widely used commercial wine yeast strain of S. cerevisiae, VIN13, and placed under the control of the constitutive yeast phosphoglycerate kinase gene (PGK1) promoter and terminator. Chromoblot analysis confirmed the integration of the modified copy of ATF1 into the genome of three commercial wine yeast strains (VIN7, VIN13, and WE228). Northern blot analysis indicated constitutive expression of ATF1 at high levels in these yeast transformants. The levels of ethyl acetate, iso-amyl acetate, and 2-phenylethyl acetate increased 3- to 10-fold, 3.8- to 12-fold, and 2- to 10-fold, respectively, depending on the fermentation temperature, cultivar, and yeast strain used. The concentrations of ethyl caprate, ethyl caprylate, and hexyl acetate only showed minor changes, whereas the acetic acid

  9. Three gene expression vector sets for concurrently expressing multiple genes in Saccharomyces cerevisiae.

    Science.gov (United States)

    Ishii, Jun; Kondo, Takashi; Makino, Harumi; Ogura, Akira; Matsuda, Fumio; Kondo, Akihiko

    2014-05-01

    Yeast has the potential to be used in bulk-scale fermentative production of fuels and chemicals due to its tolerance for low pH and robustness for autolysis. However, expression of multiple external genes in one host yeast strain is considerably labor-intensive due to the lack of polycistronic transcription. To promote the metabolic engineering of yeast, we generated systematic and convenient genetic engineering tools to express multiple genes in Saccharomyces cerevisiae. We constructed a series of multi-copy and integration vector sets for concurrently expressing two or three genes in S. cerevisiae by embedding three classical promoters. The comparative expression capabilities of the constructed vectors were monitored with green fluorescent protein, and the concurrent expression of genes was monitored with three different fluorescent proteins. Our multiple gene expression tool will be helpful to the advanced construction of genetically engineered yeast strains in a variety of research fields other than metabolic engineering. © 2014 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  10. Co-fermentation using Recombinant Saccharomyces cerevisiae Yeast Strains Hyper-secreting Different Cellulases for the Production of Cellulosic Bioethanol.

    Science.gov (United States)

    Lee, Cho-Ryong; Sung, Bong Hyun; Lim, Kwang-Mook; Kim, Mi-Jin; Sohn, Min Jeong; Bae, Jung-Hoon; Sohn, Jung-Hoon

    2017-06-30

    To realize the economical production of ethanol and other bio-based chemicals from lignocellulosic biomass by consolidated bioprocessing (CBP), various cellulases from different sources were tested to improve the level of cellulase secretion in the yeast Saccharomyces cerevisiae by screening an optimal translational fusion partner (TFP) as both a secretion signal and fusion partner. Among them, four indispensable cellulases for cellulose hydrolysis, including Chaetomium thermophilum cellobiohydrolase (CtCBH1), Chrysosporium lucknowense cellobiohydrolase (ClCBH2), Trichoderma reesei endoglucanase (TrEGL2), and Saccharomycopsis fibuligera β-glucosidase (SfBGL1), were identified to be highly secreted in active form in yeast. Despite variability in the enzyme levels produced, each recombinant yeast could secrete approximately 0.6-2.0 g/L of cellulases into the fermentation broth. The synergistic effect of the mixed culture of the four strains expressing the essential cellulases with the insoluble substrate Avicel and several types of cellulosic biomass was demonstrated to be effective. Co-fermentation of these yeast strains produced approximately 14 g/L ethanol from the pre-treated rice straw containing 35 g/L glucan with 3-fold higher productivity than that of wild type yeast using a reduced amount of commercial cellulases. This process will contribute to the cost-effective production of bioenergy such as bioethanol and biochemicals from cellulosic biomass.

  11. Functional identification of an Arabidopsis snf4 ortholog by screening for heterologous multicopy suppressors of snf4 deficiency in yeast

    DEFF Research Database (Denmark)

    Kleinow, T.; Bhalerao, R.; Breuer, F.

    2000-01-01

    Yeast Snf4 is a prototype of activating gamma-subunits of conserved Snf1/AMPK-related protein kinases (SnRKs) controlling glucose and stress signaling in eukaryotes. The catalytic subunits of Arabidopsis SnRKs, AKIN10 and AKIN11, interact with Snf4 and suppress the snf1 and snf4 mutations in yeast....... By expression of an Arabidopsis cDNA library in yeast, heterologous multicopy snf4 suppressors were isolated. In addition to AKIN10 and AKIN11, the deficiency of yeast snf4 mutant to grown on non-fermentable carbon source was suppressed by Arabidopsis Myb30, CAAT-binding factor Hap3b, casein kinase I, zinc......-finger factors AZF2 and ZAT10, as well as orthologs of hexose/UDP-hexose transporters, calmodulin, SMC1-cohesin and Snf4. Here we describe the characterization of AtSNF4, a functional Arabidopsis Snf4 ortholog, that interacts with yeast Snf1 and specifically binds to the C-terminal regulatory domain...

  12. Adaptive response to chronic mild ethanol stress involves ROS, sirtuins and changes in chromosome dosage in wine yeasts.

    Science.gov (United States)

    Adamczyk, Jagoda; Deregowska, Anna; Skoneczny, Marek; Skoneczna, Adrianna; Kwiatkowska, Aleksandra; Potocki, Leszek; Rawska, Ewa; Pabian, Sylwia; Kaplan, Jakub; Lewinska, Anna; Wnuk, Maciej

    2016-05-24

    Industrial yeast strains of economic importance used in winemaking and beer production are genomically diverse and subjected to harsh environmental conditions during fermentation. In the present study, we investigated wine yeast adaptation to chronic mild alcohol stress when cells were cultured for 100 generations in the presence of non-cytotoxic ethanol concentration. Ethanol-induced reactive oxygen species (ROS) and superoxide signals promoted growth rate during passages that was accompanied by increased expression of sirtuin proteins, Sir1, Sir2 and Sir3, and DNA-binding transcription regulator Rap1. Genome-wide array-CGH analysis revealed that yeast genome was shaped during passages. The gains of chromosomes I, III and VI and significant changes in the gene copy number in nine functional gene categories involved in metabolic processes and stress responses were observed. Ethanol-mediated gains of YRF1 and CUP1 genes were the most accented. Ethanol also induced nucleolus fragmentation that confirms that nucleolus is a stress sensor in yeasts. Taken together, we postulate that wine yeasts of different origin may adapt to mild alcohol stress by shifts in intracellular redox state promoting growth capacity, upregulation of key regulators of longevity, namely sirtuins and changes in the dosage of genes involved in the telomere maintenance and ion detoxification.

  13. Improvement of lipid production by the oleaginous yeast Rhodosporidium toruloides through UV mutagenesis.

    Science.gov (United States)

    Yamada, Ryosuke; Kashihara, Tomomi; Ogino, Hiroyasu

    2017-05-01

    Oleaginous yeasts are considered a promising alternative lipid source for biodiesel fuel production. In this study, we attempted to improve the lipid productivity of the oleaginous yeast Rhodosporidium toruloides through UV irradiation mutagenesis and selection based on ethanol and H 2 O 2 tolerance or cerulenin, a fatty acid synthetase inhibitor. Glucose consumption, cell growth, and lipid production of mutants were evaluated. The transcription level of genes involved in lipid production was also evaluated in mutants. The ethanol and H 2 O 2 tolerant strain 8766 2-31M and the cerulenin resistant strain 8766 3-11C were generated by UV mutagenesis. The 8766 2-31M mutant showed a higher lipid production rate, and the 8766 3-11C mutant produced a larger amount of lipid and had a higher lipid production rate than the wild type strain. Transcriptional analysis revealed that, similar to the wild type strain, the ACL1 and GND1 genes were expressed at significantly low levels, whereas IDP1 and ME1 were highly expressed. In conclusion, lipid productivity in the oleaginous yeast R. toruloides was successfully improved via UV mutagenesis and selection. The study also identified target genes for improving lipid productivity through gene recombination.

  14. Potential spoilage yeasts in winery environments: Characterization and proteomic analysis of Trigonopsis cantarellii.

    Science.gov (United States)

    Portugal, Cauré; Pinto, Luís; Ribeiro, Miguel; Tenorio, Carmen; Igrejas, Gilberto; Ruiz-Larrea, Fernanda

    2015-10-01

    Wine microbiota is complex and includes a wide diversity of yeast species. Few of them are able to survive under the restrictive conditions of dry red wines. In our study we detected and identified seven yeast species of the order Saccharomycetales that can be considered potential spoilers of wines due to physiological traits such as acidogenic metabolism and off-odor generation: Arthroascus schoenii, Candida ishiwadae, Meyerozyma guilliermondii, Pichia holstii, Pichia manshurica, Trigonopsis cantarellii, and Trigonopsis variabilis. Based on the prevalence of T. cantarellii isolates in the wine samples of our study, we further characterized this species, determined molecular and phenotypic features, and performed a proteomic analysis to identify differentially expressed proteins at mid-exponential growth phase in the presence of ethanol in the culture broth. This yeast species is shown to be able to grow in the presence of ethanol by expressing heat shock proteins (Hsp70, Hsp71) and a DNA damage-related protein (Rad24), and to be able to confer spoilage characteristics on wine. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Taming wild yeast: potential of conventional and nonconventional yeasts in industrial fermentations.

    Science.gov (United States)

    Steensels, Jan; Verstrepen, Kevin J

    2014-01-01

    Yeasts are the main driving force behind several industrial food fermentation processes, including the production of beer, wine, sake, bread, and chocolate. Historically, these processes developed from uncontrolled, spontaneous fermentation reactions that rely on a complex mixture of microbes present in the environment. Because such spontaneous processes are generally inconsistent and inefficient and often lead to the formation of off-flavors, most of today's industrial production utilizes defined starter cultures, often consisting of a specific domesticated strain of Saccharomyces cerevisiae, S. bayanus, or S. pastorianus. Although this practice greatly improved process consistency, efficiency, and overall quality, it also limited the sensorial complexity of the end product. In this review, we discuss how Saccharomyces yeasts were domesticated to become the main workhorse of food fermentations, and we investigate the potential and selection of nonconventional yeasts that are often found in spontaneous fermentations, such as Brettanomyces, Hanseniaspora, and Pichia spp.

  16. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants

    International Nuclear Information System (INIS)

    Imura, Yoshiyuki; Molho, Melissa; Chuang, Chingkai; Nagy, Peter D.

    2015-01-01

    Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement both defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly. - Highlights: • Tombusvirus p33 replication protein interacts with cellular RAD6/Ubc2 E2 enzymes. • Deletion of RAD6 reduces tombusvirus replication in yeast. • Silencing of UBC2 in plants inhibits tombusvirus replication. • Mono- and bi-ubiquitination of p33 replication protein in yeast and in vitro. • Rad6p promotes the recruitment of cellular ESCRT proteins into the tombusvirus replicase

  17. Cellular Ubc2/Rad6 E2 ubiquitin-conjugating enzyme facilitates tombusvirus replication in yeast and plants

    Energy Technology Data Exchange (ETDEWEB)

    Imura, Yoshiyuki, E-mail: imura@brs.nihon-u.ac.jp; Molho, Melissa; Chuang, Chingkai; Nagy, Peter D., E-mail: pdnagy2@uky.edu

    2015-10-15

    Mono- and multi-ubiquitination alters the functions and subcellular localization of many cellular and viral proteins. Viruses can co-opt or actively manipulate the ubiquitin network to support viral processes or suppress innate immunity. Using yeast (Saccharomyces cerevisiae) model host, we show that the yeast Rad6p (radiation sensitive 6) E2 ubiquitin-conjugating enzyme and its plant ortholog, AtUbc2, interact with two tombusviral replication proteins and these E2 ubiquitin-conjugating enzymes could be co-purified with the tombusvirus replicase. We demonstrate that TBSV RNA replication and the mono- and bi-ubiquitination level of p33 is decreased in rad6Δ yeast. However, plasmid-based expression of AtUbc2p could complement both defects in rad6Δ yeast. Knockdown of UBC2 expression in plants also decreases tombusvirus accumulation and reduces symptom severity, suggesting that Ubc2p is critical for virus replication in plants. We provide evidence that Rad6p is involved in promoting the subversion of Vps23p and Vps4p ESCRT proteins for viral replicase complex assembly. - Highlights: • Tombusvirus p33 replication protein interacts with cellular RAD6/Ubc2 E2 enzymes. • Deletion of RAD6 reduces tombusvirus replication in yeast. • Silencing of UBC2 in plants inhibits tombusvirus replication. • Mono- and bi-ubiquitination of p33 replication protein in yeast and in vitro. • Rad6p promotes the recruitment of cellular ESCRT proteins into the tombusvirus replicase.

  18. Melanin production by a yeast strain XJ5-1 of Aureobasidium melanogenum isolated from the Taklimakan desert and its role in the yeast survival in stress environments.

    Science.gov (United States)

    Jiang, Hong; Liu, Nan-Nan; Liu, Guang-Lei; Chi, Zhe; Wang, Jian-Ming; Zhang, Ly-Ly; Chi, Zhen-Ming

    2016-07-01

    The yeast strain XJ5-1 isolated from the Taklimakan desert soil was identified to be a strain of Aureobasdium melanogenum and could produce a large amount of melanin when it was grown in the PDA medium, but its melanin biosynthesis and expression of the PKS gene responsible for the melanin biosynthesis was significantly repressed in the presence of (NH4)2SO4. However, A. melanogenum P5 strain isolated from a mangrove ecosystem grown in both the presence and the absence of (NH4)2SO4 did not produce any melanin. The cell size of A. melanogenum XJ5-1 strain was much higher than that of A. melanogenum P5 strain. The melanized cells of the yeast strain XJ5-1 had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), heat treatment (40 °C), salt shock (200.0 g/L NaCl), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than the non-melanized cells of the same yeast strain XJ5-1. At the same time, the melanized cells of the yeast strain XJ5-1 also had higher tolerance to UV radiation, oxidation (200.0 mM H2O2), desiccation and strong acid hydrolysis (6.0 M HCl) at high temperature (80 °C) than A. melanogenum P5 strain, but had similar resistance to heat treatment (40 °C) and salt shock (200.0 g/L NaCl) compared to those of A. melanogenum P5 strain. All the results revealed that many characteristics of A. melanogenum XJ5-1 isolated from the Taklimakan desert soil was different from those of A. melanogenum P5 strain isolated from the mangrove ecosystem.

  19. Not your ordinary yeast: non-Saccharomyces yeasts in wine production uncovered.

    Science.gov (United States)

    Jolly, Neil P; Varela, Cristian; Pretorius, Isak S

    2014-03-01

    Saccharomyces cerevisiae and grape juice are 'natural companions' and make a happy wine marriage. However, this relationship can be enriched by allowing 'wild' non-Saccharomyces yeast to participate in a sequential manner in the early phases of grape must fermentation. However, such a triangular relationship is complex and can only be taken to 'the next level' if there are no spoilage yeast present and if the 'wine yeast' - S. cerevisiae - is able to exert its dominance in time to successfully complete the alcoholic fermentation. Winemakers apply various 'matchmaking' strategies (e.g. cellar hygiene, pH, SO2 , temperature and nutrient management) to keep 'spoilers' (e.g. Dekkera bruxellensis) at bay, and allow 'compatible' wild yeast (e.g. Torulaspora delbrueckii, Pichia kluyveri, Lachancea thermotolerans and Candida/Metschnikowia pulcherrima) to harmonize with potent S. cerevisiae wine yeast and bring the best out in wine. Mismatching can lead to a 'two is company, three is a crowd' scenario. More than 40 of the 1500 known yeast species have been isolated from grape must. In this article, we review the specific flavour-active characteristics of those non-Saccharomyces species that might play a positive role in both spontaneous and inoculated wine ferments. We seek to present 'single-species' and 'multi-species' ferments in a new light and a new context, and we raise important questions about the direction of mixed-fermentation research to address market trends regarding so-called 'natural' wines. This review also highlights that, despite the fact that most frontier research and technological developments are often focussed primarily on S. cerevisiae, non-Saccharomyces research can benefit from the techniques and knowledge developed by research on the former. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  20. Black yeast-like fungi in skin and nail

    DEFF Research Database (Denmark)

    Saunte, D M; Tarazooie, B; Arendrup, M C

    2011-01-01

    Black yeast-like fungi are rarely reported from superficial infections. We noticed a consistent prevalence of these organisms as single isolations from mycological routine specimens. To investigate the prevalence of black yeast-like fungi in skin, hair and nail specimens and to discuss...... the probability of these species to be involved in disease. Slow-growing black yeast-like fungi in routine specimens were prospectively collected and identified. A questionnaire regarding patient information was sent to physicians regarding black yeast-like fungus positive patients. A total of 20 746...... dermatological specimens were examined by culture. Black yeast-like fungi accounted for 2.2% (n = 108) of the positive cultures. Only 31.0% of the samples, culture positive for black yeast-like fungi were direct microscopy positive when compared with overall 68.8% of the culture positive specimens. The most...