WorldWideScience

Sample records for expression phenotype mapping

  1. The genotype-phenotype map of an evolving digital organism

    OpenAIRE

    Fortuna, Miguel A.; Zaman, Luis; Ofria, Charles; Wagner, Andreas

    2017-01-01

    To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms fr...

  2. Mapping pathological phenotypes in Reelin mutant mice

    Directory of Open Access Journals (Sweden)

    Caterina eMichetti

    2014-09-01

    Full Text Available Autism Spectrum Disorders (ASD are neurodevelopmental disorders with multifactorial origin characterized by social communication and behavioural perseveration deficits. Several studies showed an association between the reelin gene mutation and increased risk of ASD and a reduced reelin expression in some brain regions of ASD subjects, suggesting a role for reelin deficiency in ASD etiology. Reelin is a large extracellular matrix glycoprotein playing important roles during development of the central nervous system. To deeply investigate the role of reelin dysfunction as vulnerability factor in ASD, we investigated the behavioural, neurochemical and brain morphological features of reeler male mice. We recently reported a genotype-dependent deviation in ultrasonic vocal repertoire and a general delay in motor development in reeler pups. We now report that adult male heterozygous reeler mice did not show social behaviour and communication deficits during male-female social interactions. Wildtype and heterozygous mice also showed a typical light/dark locomotor activity profile, with a peak during the central interval of the dark phase. However, when faced with a mild stressful stimulus (a saline injection only heterozygous mice showed an over response to stress. At the end of the behavioural studies, we conducted high performance liquid chromatography and magnetic resonance imaging and spectroscopy to investigate whether reelin mutation influences brain monoamine and metabolites levels in regions involved in ASD. Low levels of dopamine in cortex and high levels of glutamate and taurine in hippocampus were detected in heterozygous mice, in line with clinical data collected on ASD children. Altogether, our data detected subtle but relevant neurochemical abnormalities in reeler mice supporting this mutant line, particularly male subjects, as a valid experimental model to estimate the contribution played by reelin deficiency in the global ASD

  3. The genotype-phenotype map of an evolving digital organism.

    Directory of Open Access Journals (Sweden)

    Miguel A Fortuna

    2017-02-01

    Full Text Available To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences, which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable.

  4. The genotype-phenotype map of an evolving digital organism.

    Science.gov (United States)

    Fortuna, Miguel A; Zaman, Luis; Ofria, Charles; Wagner, Andreas

    2017-02-01

    To understand how evolving systems bring forth novel and useful phenotypes, it is essential to understand the relationship between genotypic and phenotypic change. Artificial evolving systems can help us understand whether the genotype-phenotype maps of natural evolving systems are highly unusual, and it may help create evolvable artificial systems. Here we characterize the genotype-phenotype map of digital organisms in Avida, a platform for digital evolution. We consider digital organisms from a vast space of 10141 genotypes (instruction sequences), which can form 512 different phenotypes. These phenotypes are distinguished by different Boolean logic functions they can compute, as well as by the complexity of these functions. We observe several properties with parallels in natural systems, such as connected genotype networks and asymmetric phenotypic transitions. The likely common cause is robustness to genotypic change. We describe an intriguing tension between phenotypic complexity and evolvability that may have implications for biological evolution. On the one hand, genotypic change is more likely to yield novel phenotypes in more complex organisms. On the other hand, the total number of novel phenotypes reachable through genotypic change is highest for organisms with simple phenotypes. Artificial evolving systems can help us study aspects of biological evolvability that are not accessible in vastly more complex natural systems. They can also help identify properties, such as robustness, that are required for both human-designed artificial systems and synthetic biological systems to be evolvable.

  5. Integrating Evolutionary Game Theory into Mechanistic Genotype-Phenotype Mapping.

    Science.gov (United States)

    Zhu, Xuli; Jiang, Libo; Ye, Meixia; Sun, Lidan; Gragnoli, Claudia; Wu, Rongling

    2016-05-01

    Natural selection has shaped the evolution of organisms toward optimizing their structural and functional design. However, how this universal principle can enhance genotype-phenotype mapping of quantitative traits has remained unexplored. Here we show that the integration of this principle and functional mapping through evolutionary game theory gains new insight into the genetic architecture of complex traits. By viewing phenotype formation as an evolutionary system, we formulate mathematical equations to model the ecological mechanisms that drive the interaction and coordination of its constituent components toward population dynamics and stability. Functional mapping provides a procedure for estimating the genetic parameters that specify the dynamic relationship of competition and cooperation and predicting how genes mediate the evolution of this relationship during trait formation. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. The Microenvironment in Gliomas: Phenotypic Expressions

    Directory of Open Access Journals (Sweden)

    Davide Schiffer

    2015-12-01

    Full Text Available The microenvironment of malignant gliomas is described according to its definition in the literature. Beside tumor cells, a series of stromal cells (microglia/macrophages, pericytes, fibroblasts, endothelial cells, normal and reactive astrocytes represents the cell component, whereas a complex network of molecular signaling represents the functional component. Its most evident expressions are perivascular and perinecrotic niches that are believed to be the site of tumor stem cells or progenitors in the tumor. Phenotypically, both niches are not easily recognizable; here, they are described together with a critical revision of their concept. As for perinecrotic niches, an alternative interpretation is given about their origin that regards the tumor stem cells as the residue of those that populated hyperproliferating areas in which necroses develop. This is based on the concept that the stem-like is a status and not a cell type, depending on the microenvironment that regulates a conversion of tumor non-stem cells and tumor stem cells through a cell reprogramming.

  7. Elucidating the genotype–phenotype map by automatic enumeration and analysis of the phenotypic repertoire

    Science.gov (United States)

    Lomnitz, Jason G; Savageau, Michael A

    2015-01-01

    Background: The gap between genotype and phenotype is filled by complex biochemical systems most of which are poorly understood. Because these systems are complex, it is widely appreciated that quantitative understanding can only be achieved with the aid of mathematical models. However, formulating models and measuring or estimating their numerous rate constants and binding constants is daunting. Here we present a strategy for automating difficult aspects of the process. Methods: The strategy, based on a system design space methodology, is applied to a class of 16 designs for a synthetic gene oscillator that includes seven designs previously formulated on the basis of experimentally measured and estimated parameters. Results: Our strategy provides four important innovations by automating: (1) enumeration of the repertoire of qualitatively distinct phenotypes for a system; (2) generation of parameter values for any particular phenotype; (3) simultaneous realization of parameter values for several phenotypes to aid visualization of transitions from one phenotype to another, in critical cases from functional to dysfunctional; and (4) identification of ensembles of phenotypes whose expression can be phased to achieve a specific sequence of functions for rationally engineering synthetic constructs. Our strategy, applied to the 16 designs, reproduced previous results and identified two additional designs capable of sustained oscillations that were previously missed. Conclusions: Starting with a system’s relatively fixed aspects, its architectural features, our method enables automated analysis of nonlinear biochemical systems from a global perspective, without first specifying parameter values. The examples presented demonstrate the efficiency and power of this automated strategy. PMID:26998346

  8. Elucidating the genotype-phenotype map by automatic enumeration and analysis of the phenotypic repertoire.

    Science.gov (United States)

    Lomnitz, Jason G; Savageau, Michael A

    The gap between genotype and phenotype is filled by complex biochemical systems most of which are poorly understood. Because these systems are complex, it is widely appreciated that quantitative understanding can only be achieved with the aid of mathematical models. However, formulating models and measuring or estimating their numerous rate constants and binding constants is daunting. Here we present a strategy for automating difficult aspects of the process. The strategy, based on a system design space methodology, is applied to a class of 16 designs for a synthetic gene oscillator that includes seven designs previously formulated on the basis of experimentally measured and estimated parameters. Our strategy provides four important innovations by automating: (1) enumeration of the repertoire of qualitatively distinct phenotypes for a system; (2) generation of parameter values for any particular phenotype; (3) simultaneous realization of parameter values for several phenotypes to aid visualization of transitions from one phenotype to another, in critical cases from functional to dysfunctional; and (4) identification of ensembles of phenotypes whose expression can be phased to achieve a specific sequence of functions for rationally engineering synthetic constructs. Our strategy, applied to the 16 designs, reproduced previous results and identified two additional designs capable of sustained oscillations that were previously missed. Starting with a system's relatively fixed aspects, its architectural features, our method enables automated analysis of nonlinear biochemical systems from a global perspective, without first specifying parameter values. The examples presented demonstrate the efficiency and power of this automated strategy.

  9. Genetic Mapping of Novel Loci Affecting Canine Blood Phenotypes.

    Directory of Open Access Journals (Sweden)

    Michelle E White

    Full Text Available Since the publication of the dog genome and the construction of high-quality genome-wide SNP arrays, thousands of dogs have been genotyped for disease studies. For many of these dogs, additional clinical phenotypes are available, such as hematological and clinical chemistry results collected during routine veterinary care. Little is known about the genetic basis of variation in blood phenotypes, but this variation may play an important role in the etiology and progression of many diseases. From a cohort of dogs that had been previously genotyped on a semi-custom Illumina CanineHD array for various genome-wide association studies (GWAS at Cornell University Hospital for Animals, we chose 353 clinically healthy, adult dogs for our analysis of clinical pathologic test results (14 hematological tests and 25 clinical chemistry tests. After correcting for age, body weight and sex, genetic associations were identified for amylase, segmented neutrophils, urea nitrogen, glucose, and mean corpuscular hemoglobin. Additionally, a strong genetic association (P = 8.1×10-13 was evident between a region of canine chromosome 13 (CFA13 and alanine aminotransferase (ALT, explaining 23% of the variation in ALT levels. This region of CFA13 encompasses the GPT gene that encodes the transferase. Dogs homozygous for the derived allele exhibit lower ALT activity, making increased ALT activity a less useful marker of hepatic injury in these individuals. Overall, these associations provide a roadmap for identifying causal variants that could improve interpretation of clinical blood tests and understanding of genetic risk factors associated with diseases such as canine diabetes and anemia, and demonstrate the utility of holistic phenotyping of dogs genotyped for disease mapping studies.

  10. Genetic Mapping of Novel Loci Affecting Canine Blood Phenotypes.

    Science.gov (United States)

    White, Michelle E; Hayward, Jessica J; Stokol, Tracy; Boyko, Adam R

    2015-01-01

    Since the publication of the dog genome and the construction of high-quality genome-wide SNP arrays, thousands of dogs have been genotyped for disease studies. For many of these dogs, additional clinical phenotypes are available, such as hematological and clinical chemistry results collected during routine veterinary care. Little is known about the genetic basis of variation in blood phenotypes, but this variation may play an important role in the etiology and progression of many diseases. From a cohort of dogs that had been previously genotyped on a semi-custom Illumina CanineHD array for various genome-wide association studies (GWAS) at Cornell University Hospital for Animals, we chose 353 clinically healthy, adult dogs for our analysis of clinical pathologic test results (14 hematological tests and 25 clinical chemistry tests). After correcting for age, body weight and sex, genetic associations were identified for amylase, segmented neutrophils, urea nitrogen, glucose, and mean corpuscular hemoglobin. Additionally, a strong genetic association (P = 8.1×10-13) was evident between a region of canine chromosome 13 (CFA13) and alanine aminotransferase (ALT), explaining 23% of the variation in ALT levels. This region of CFA13 encompasses the GPT gene that encodes the transferase. Dogs homozygous for the derived allele exhibit lower ALT activity, making increased ALT activity a less useful marker of hepatic injury in these individuals. Overall, these associations provide a roadmap for identifying causal variants that could improve interpretation of clinical blood tests and understanding of genetic risk factors associated with diseases such as canine diabetes and anemia, and demonstrate the utility of holistic phenotyping of dogs genotyped for disease mapping studies.

  11. Phenotypic expressions of CCR5-Delta 32/Delta 32 homozygosity

    NARCIS (Netherlands)

    Nguyen, GT; Carrington, M; Beeler, JA; Dean, M; Aledort, LM; Blatt, PM; Cohen, AR; DiMichele, D; Eyster, ME; Kessler, CM; Konkle, B; Leissinger, C; Luban, N; O'Brien, SJ; Goedert, JJ; O'Brien, TR

    1999-01-01

    Objective: As blockade of CC-chemokine receptor 5 (CCR5) has been proposed as therapy for HIV-1, we examined whether the CCR5-Delta 32/Delta 32 homozygous genotype has phenotypic expressions other than those related to HIV-1. Design: Study subjects were white homosexual men or men with hemophilia

  12. Genotype to phenotype mapping and the fitness landscape of the E. coli lac promoter.

    Directory of Open Access Journals (Sweden)

    Jakub Otwinowski

    Full Text Available Genotype-to-phenotype maps and the related fitness landscapes that include epistatic interactions are difficult to measure because of their high dimensional structure. Here we construct such a map using the recently collected corpora of high-throughput sequence data from the 75 base pairs long mutagenized E. coli lac promoter region, where each sequence is associated with its phenotype, the induced transcriptional activity measured by a fluorescent reporter. We find that the additive (non-epistatic contributions of individual mutations account for about two-thirds of the explainable phenotype variance, while pairwise epistasis explains about 7% of the variance for the full mutagenized sequence and about 15% for the subsequence associated with protein binding sites. Surprisingly, there is no evidence for third order epistatic contributions, and our inferred fitness landscape is essentially single peaked, with a small amount of antagonistic epistasis. There is a significant selective pressure on the wild type, which we deduce to be multi-objective optimal for gene expression in environments with different nutrient sources. We identify transcription factor (CRP and RNA polymerase binding sites in the promotor region and their interactions without difficult optimization steps. In particular, we observe evidence for previously unexplored genetic regulatory mechanisms, possibly kinetic in nature. We conclude with a cautionary note that inferred properties of fitness landscapes may be severely influenced by biases in the sequence data.

  13. Mapping and Manipulating Facial Expression

    Science.gov (United States)

    Theobald, Barry-John; Matthews, Iain; Mangini, Michael; Spies, Jeffrey R.; Brick, Timothy R.; Cohn, Jeffrey F.; Boker, Steven M.

    2009-01-01

    Nonverbal visual cues accompany speech to supplement the meaning of spoken words, signify emotional state, indicate position in discourse, and provide back-channel feedback. This visual information includes head movements, facial expressions and body gestures. In this article we describe techniques for manipulating both verbal and nonverbal facial…

  14. Pathway-based factor analysis of gene expression data produces highly heritable phenotypes that associate with age.

    Science.gov (United States)

    Anand Brown, Andrew; Ding, Zhihao; Viñuela, Ana; Glass, Dan; Parts, Leopold; Spector, Tim; Winn, John; Durbin, Richard

    2015-03-09

    Statistical factor analysis methods have previously been used to remove noise components from high-dimensional data prior to genetic association mapping and, in a guided fashion, to summarize biologically relevant sources of variation. Here, we show how the derived factors summarizing pathway expression can be used to analyze the relationships between expression, heritability, and aging. We used skin gene expression data from 647 twins from the MuTHER Consortium and applied factor analysis to concisely summarize patterns of gene expression to remove broad confounding influences and to produce concise pathway-level phenotypes. We derived 930 "pathway phenotypes" that summarized patterns of variation across 186 KEGG pathways (five phenotypes per pathway). We identified 69 significant associations of age with phenotype from 57 distinct KEGG pathways at a stringent Bonferroni threshold ([Formula: see text]). These phenotypes are more heritable ([Formula: see text]) than gene expression levels. On average, expression levels of 16% of genes within these pathways are associated with age. Several significant pathways relate to metabolizing sugars and fatty acids; others relate to insulin signaling. We have demonstrated that factor analysis methods combined with biological knowledge can produce more reliable phenotypes with less stochastic noise than the individual gene expression levels, which increases our power to discover biologically relevant associations. These phenotypes could also be applied to discover associations with other environmental factors. Copyright © 2015 Brown et al.

  15. Discrimination of meniscal cell phenotypes using gene expression profiles

    Directory of Open Access Journals (Sweden)

    M Son

    2012-03-01

    Full Text Available The lack of quantitative and objective metrics to assess cartilage and meniscus cell phenotypes contributes to the challenges in fibrocartilage tissue engineering. Although functional assessment of the final resulting tissue is essential, initial characterization of cell sources and quantitative description of their progression towards the natural, desired cell phenotype would provide an effective tool in optimizing cell-based tissue engineering strategies. The purpose of this study was to identify quantifiable characteristics of meniscal cells and thereby find phenotypical markers that could effectively categorize cells based on their tissue of origin (cartilage, inner, middle, and outer meniscus. The combination of gene expression ratios collagen VI/collagen II, ADAMTS-5/collagen II, and collagen I/collagen II was the most effective indicator of variation among different tissue regions. We additionally demonstrate a possible application of these quantifiable metrics in evaluating the use of serially passaged chondrocytes as a possible cell source in fibrocartilage engineering. Comparing the ratios of the passaged chondrocytes and the native meniscal cells may provide direction to optimize towards the desired cell phenotype. We have thus shown that measurable markers defining the characteristics of the native meniscus can establish a standard by which different tissue engineering strategies can be objectively assessed. Such metrics could additionally be useful in exploring the different stages of meniscal degradation in osteoarthritis and provide some insight in the disease progression.

  16. A Marfan syndrome gene expression phenotype in cultured skin fibroblasts

    Directory of Open Access Journals (Sweden)

    Emond Mary

    2007-09-01

    Full Text Available Abstract Background Marfan syndrome (MFS is a heritable connective tissue disorder caused by mutations in the fibrillin-1 gene. This syndrome constitutes a significant identifiable subtype of aortic aneurysmal disease, accounting for over 5% of ascending and thoracic aortic aneurysms. Results We used spotted membrane DNA macroarrays to identify genes whose altered expression levels may contribute to the phenotype of the disease. Our analysis of 4132 genes identified a subset with significant expression differences between skin fibroblast cultures from unaffected controls versus cultures from affected individuals with known fibrillin-1 mutations. Subsequently, 10 genes were chosen for validation by quantitative RT-PCR. Conclusion Differential expression of many of the validated genes was associated with MFS samples when an additional group of unaffected and MFS affected subjects were analyzed (p-value -6 under the null hypothesis that expression levels in cultured fibroblasts are unaffected by MFS status. An unexpected observation was the range of individual gene expression. In unaffected control subjects, expression ranges exceeding 10 fold were seen in many of the genes selected for qRT-PCR validation. The variation in expression in the MFS affected subjects was even greater.

  17. Potential translational targets revealed by linking mouse grooming behavioral phenotypes to gene expression using public databases.

    Science.gov (United States)

    Roth, Andrew; Kyzar, Evan J; Cachat, Jonathan; Stewart, Adam Michael; Green, Jeremy; Gaikwad, Siddharth; O'Leary, Timothy P; Tabakoff, Boris; Brown, Richard E; Kalueff, Allan V

    2013-01-10

    Rodent self-grooming is an important, evolutionarily conserved behavior, highly sensitive to pharmacological and genetic manipulations. Mice with aberrant grooming phenotypes are currently used to model various human disorders. Therefore, it is critical to understand the biology of grooming behavior, and to assess its translational validity to humans. The present in-silico study used publicly available gene expression and behavioral data obtained from several inbred mouse strains in the open-field, light-dark box, elevated plus- and elevated zero-maze tests. As grooming duration differed between strains, our analysis revealed several candidate genes with significant correlations between gene expression in the brain and grooming duration. The Allen Brain Atlas, STRING, GoMiner and Mouse Genome Informatics databases were used to functionally map and analyze these candidate mouse genes against their human orthologs, assessing the strain ranking of their expression and the regional distribution of expression in the mouse brain. This allowed us to identify an interconnected network of candidate genes (which have expression levels that correlate with grooming behavior), display altered patterns of expression in key brain areas related to grooming, and underlie important functions in the brain. Collectively, our results demonstrate the utility of large-scale, high-throughput data-mining and in-silico modeling for linking genomic and behavioral data, as well as their potential to identify novel neural targets for complex neurobehavioral phenotypes, including grooming. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Phenotypic expression of polycystic ovary syndrome in South Asian women.

    Science.gov (United States)

    Mehta, Jaya; Kamdar, Vikram; Dumesic, Daniel

    2013-03-01

    Polycystic ovary syndrome (PCOS) occurs in 6% to 10% of women and, as the most common worldwide endocrinopathy of reproductive-aged women, is linked to a constellation of reproductive and metabolic abnormalities, including anovulatory infertility, hirsutism, acne, and insulin resistance in association with metabolic syndrome. Despite a genetic component to PCOS, ethnicity plays an important role in the phenotypic expression of PCOS, with South Asian PCOS women having more severe reproductive and metabolic symptoms than other ethnic groups. South Asians with PCOS seek medical care at an earlier age for reproductive abnormalities; have a higher degree of hirsutism, infertility, and acne; and experience lower live birth rates following in vitro fertilization than do whites with PCOS. Similarly, South Asians with PCOS have a higher prevalence of insulin resistance and metabolic syndrome than do other PCOS-related ethnic groups of a similar body mass index. Inheritance of PCOS appears to have a complex genetic basis, including genetic differences based on ethnicity, which interact with lifestyle and other environmental factors to affect PCOS phenotypic expression. Obstetricians and Gynecologists, Family Physicians Learning Objectives: After completing this CME activity, physicians should be better able to state an ethnic difference in reproductive dysfunction between South Asian and white women with polycystic ovary syndrome (PCOS), state an ethnic difference in metabolic dysfunction between South Asian and white women with PCOS, identify a genetic abnormality found in South Asian women with PCOS, and list 2 environmental factors that predispose South Asian women to metabolic dysfunction.

  19. Map-based cloning and expression analysis of BMR-6 in sorghum

    Indian Academy of Sciences (India)

    CAD), using a map-based cloning approach. Genetic complementation confirmed that CAD is responsible for the BMR-6 phenotype. BMR-6 gene was expressed in all tested sorghum tissues, with the highest being in midrib and stem. Transient ...

  20. Heterogeneity mapping of protein expression in tumors using quantitative immunofluorescence.

    Science.gov (United States)

    Faratian, Dana; Christiansen, Jason; Gustavson, Mark; Jones, Christine; Scott, Christopher; Um, InHwa; Harrison, David J

    2011-10-25

    Morphologic heterogeneity within an individual tumor is well-recognized by histopathologists in surgical practice. While this often takes the form of areas of distinct differentiation into recognized histological subtypes, or different pathological grade, often there are more subtle differences in phenotype which defy accurate classification (Figure 1). Ultimately, since morphology is dictated by the underlying molecular phenotype, areas with visible differences are likely to be accompanied by differences in the expression of proteins which orchestrate cellular function and behavior, and therefore, appearance. The significance of visible and invisible (molecular) heterogeneity for prognosis is unknown, but recent evidence suggests that, at least at the genetic level, heterogeneity exists in the primary tumor(1,2), and some of these sub-clones give rise to metastatic (and therefore lethal) disease. Moreover, some proteins are measured as biomarkers because they are the targets of therapy (for instance ER and HER2 for tamoxifen and trastuzumab (Herceptin), respectively). If these proteins show variable expression within a tumor then therapeutic responses may also be variable. The widely used histopathologic scoring schemes for immunohistochemistry either ignore, or numerically homogenize the quantification of protein expression. Similarly, in destructive techniques, where the tumor samples are homogenized (such as gene expression profiling), quantitative information can be elucidated, but spatial information is lost. Genetic heterogeneity mapping approaches in pancreatic cancer have relied either on generation of a single cell suspension(3), or on macrodissection(4). A recent study has used quantum dots in order to map morphologic and molecular heterogeneity in prostate cancer tissue(5), providing proof of principle that morphology and molecular mapping is feasible, but falling short of quantifying the heterogeneity. Since immunohistochemistry is, at best, only semi

  1. Genome-wide association analyses of expression phenotypes.

    Science.gov (United States)

    Chen, Gary K; Zheng, Tian; Witte, John S; Goode, Ellen L; Gao, Lei; Hu, Pingzhao; Suh, Young Ju; Suktitipat, Bhoom; Szymczak, Silke; Woo, Jung Hoon; Zhang, Wei

    2007-01-01

    A number of issues arise when analyzing the large amount of data from high-throughput genotype and expression microarray experiments, including design and interpretation of genome-wide association studies of expression phenotypes. These issues were considered by contributions submitted to Group 1 of the Genetic Analysis Workshop 15 (GAW15), which focused on the association of quantitative expression data. These contributions evaluated diverse hypotheses, including those relevant to cancer and obesity research, and used various analytic techniques, many of which were derived from information theory. Several observations from these reports stand out. First, one needs to consider the genetic model of the trait of interest and carefully select which single nucleotide polymorphisms and individuals are included early in the design stage of a study. Second, by targeting specific pathways when analyzing genome-wide data, one can generate more interpretable results than agnostic approaches. Finally, for datasets with small sample sizes but a large number of features like the Genetic Analysis Workshop 15 dataset, machine learning approaches may be more practical than traditional parametric approaches. (c) 2007 Wiley-Liss, Inc.

  2. Pheno2Geno - High-throughput generation of genetic markers and maps from molecular phenotypes for crosses between inbred strains.

    Science.gov (United States)

    Zych, Konrad; Li, Yang; van der Velde, Joeri K; Joosen, Ronny V L; Ligterink, Wilco; Jansen, Ritsert C; Arends, Danny

    2015-02-19

    Genetic markers and maps are instrumental in quantitative trait locus (QTL) mapping in segregating populations. The resolution of QTL localization depends on the number of informative recombinations in the population and how well they are tagged by markers. Larger populations and denser marker maps are better for detecting and locating QTLs. Marker maps that are initially too sparse can be saturated or derived de novo from high-throughput omics data, (e.g. gene expression, protein or metabolite abundance). If these molecular phenotypes are affected by genetic variation due to a major QTL they will show a clear multimodal distribution. Using this information, phenotypes can be converted into genetic markers. The Pheno2Geno tool uses mixture modeling to select phenotypes and transform them into genetic markers suitable for construction and/or saturation of a genetic map. Pheno2Geno excludes candidate genetic markers that show evidence for multiple possibly epistatically interacting QTL and/or interaction with the environment, in order to provide a set of robust markers for follow-up QTL mapping. We demonstrate the use of Pheno2Geno on gene expression data of 370,000 probes in 148 A. thaliana recombinant inbred lines. Pheno2Geno is able to saturate the existing genetic map, decreasing the average distance between markers from 7.1 cM to 0.89 cM, close to the theoretical limit of 0.68 cM (with 148 individuals we expect a recombination every 100/148=0.68 cM); this pinpointed almost all of the informative recombinations in the population. The Pheno2Geno package makes use of genome-wide molecular profiling and provides a tool for high-throughput de novo map construction and saturation of existing genetic maps. Processing of the showcase dataset takes less than 30 minutes on an average desktop PC. Pheno2Geno improves QTL mapping results at no additional laboratory cost and with minimum computational effort. Its results are formatted for direct use in R/qtl, the leading R

  3. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.

  4. Using Dendritic Heat Maps to Simultaneously Display Genotype Divergence with Phenotype Divergence.

    Science.gov (United States)

    Kellom, Matthew; Raymond, Jason

    2016-01-01

    The advancement of techniques to visualize and analyze large-scale sequencing datasets is an area of active research and is rooted in traditional techniques such as heat maps and dendrograms. We introduce dendritic heat maps that display heat map results over aligned DNA sequence clusters for a range of clustering cutoffs. Dendritic heat maps aid in visualizing the effects of group differences on clustering hierarchy and relative abundance of sampled sequences. Here, we artificially generate two separate datasets with simplified mutation and population growth procedures with GC content group separation to use as example phenotypes. In this work, we use the term phenotype to represent any feature by which groups can be separated. These sequences were clustered in a fractional identity range of 0.75 to 1.0 using agglomerative minimum-, maximum-, and average-linkage algorithms, as well as a divisive centroid-based algorithm. We demonstrate that dendritic heat maps give freedom to scrutinize specific clustering levels across a range of cutoffs, track changes in phenotype inequity across multiple levels of sequence clustering specificity, and easily visualize how deeply rooted changes in phenotype inequity are in a dataset. As genotypes diverge in sample populations, clusters are shown to break apart into smaller clusters at higher identity cutoff levels, similar to a dendrogram. Phenotype divergence, which is shown as a heat map of relative abundance bin response, may or may not follow genotype divergences. This joined view highlights the relationship between genotype and phenotype divergence for treatment groups. We discuss the minimum-, maximum-, average-, and centroid-linkage algorithm approaches to building dendritic heat maps and make a case for the divisive "top-down" centroid-based clustering methodology as being the best option visualize the effects of changing factors on clustering hierarchy and relative abundance.

  5. Using Dendritic Heat Maps to Simultaneously Display Genotype Divergence with Phenotype Divergence.

    Directory of Open Access Journals (Sweden)

    Matthew Kellom

    Full Text Available The advancement of techniques to visualize and analyze large-scale sequencing datasets is an area of active research and is rooted in traditional techniques such as heat maps and dendrograms. We introduce dendritic heat maps that display heat map results over aligned DNA sequence clusters for a range of clustering cutoffs. Dendritic heat maps aid in visualizing the effects of group differences on clustering hierarchy and relative abundance of sampled sequences. Here, we artificially generate two separate datasets with simplified mutation and population growth procedures with GC content group separation to use as example phenotypes. In this work, we use the term phenotype to represent any feature by which groups can be separated. These sequences were clustered in a fractional identity range of 0.75 to 1.0 using agglomerative minimum-, maximum-, and average-linkage algorithms, as well as a divisive centroid-based algorithm. We demonstrate that dendritic heat maps give freedom to scrutinize specific clustering levels across a range of cutoffs, track changes in phenotype inequity across multiple levels of sequence clustering specificity, and easily visualize how deeply rooted changes in phenotype inequity are in a dataset. As genotypes diverge in sample populations, clusters are shown to break apart into smaller clusters at higher identity cutoff levels, similar to a dendrogram. Phenotype divergence, which is shown as a heat map of relative abundance bin response, may or may not follow genotype divergences. This joined view highlights the relationship between genotype and phenotype divergence for treatment groups. We discuss the minimum-, maximum-, average-, and centroid-linkage algorithm approaches to building dendritic heat maps and make a case for the divisive "top-down" centroid-based clustering methodology as being the best option visualize the effects of changing factors on clustering hierarchy and relative abundance.

  6. Fine mapping quantitative trait loci under selective phenotyping strategies based on linkage and linkage disequilibrium criteria

    DEFF Research Database (Denmark)

    Ansari-Mahyari, S; Berg, P; Lund, M S

    2009-01-01

    disequilibrium-based sampling criteria (LDC) for selecting individuals to phenotype are compared to random phenotyping in a quantitative trait loci (QTL) verification experiment using stochastic simulation. Several strategies based on LAC and LDC for selecting the most informative 30%, 40% or 50% of individuals...... for phenotyping to extract maximum power and precision in a QTL fine mapping experiment were developed and assessed. Linkage analyses for the mapping was performed for individuals sampled on LAC within families and combined linkage disequilibrium and linkage analyses was performed for individuals sampled across...... the whole population based on LDC. The results showed that selecting individuals with similar haplotypes to the paternal haplotypes (minimum recombination criterion) using LAC compared to random phenotyping gave at least the same power to detect a QTL but decreased the accuracy of the QTL position. However...

  7. Phenotypic expression in the developing murine enteric nervous system

    International Nuclear Information System (INIS)

    Rothman, T.P.; Gershon, M.D.

    1982-01-01

    The development of the enteric nervous system was examined in fetal mice. Synthesis of [3H] acetylcholine ([3H]ACh) from [3H]choline and acetylcholinesterase histochemistry were used as phenotypic markers for cholinergic neurons, while the radioautographic detection of the specific uptake of [3H]serotonin (5-[3H]HT) and immunocytochemical staining with antiserum to 5-HT marked serotonergic neurons. The gut also was examined by light and electron microscopy. Development of the gut was studied in situ and in explants grown in organotypic tissue culture. Neurons were first detected morphologically in the foregut on embryonic day 12 (E12). Synthesis of [3H]ACh was detectable on days E10 to E12 but increased markedly between days E13 and E14. Uptake and radioautographic labeling by 5-[3H]HT was seen first in the foregut on day E12, in the colon on day E13, and in the terminal colon on day E14. Gut explanted from both distal and proximal bowel prior to the time when neurons could be detected (days E9 to E11) nevertheless formed neurons in culture. These cultures of early explants displayed markers for both cholinergic and serotonergic neurons. Enhances development of both cholinergic and serotonergic neurons was found in cultures explanted at day E11 over that found in cultures explanted on days E9 or E10. The evidence presented indicates (1) that enteric neurons develop from nonrecognizable precursors, (2) that the proximodistal gradient in neuronal phenotypic expression probably is not related to a proximodistal migration of precursor cells down the gut, (3) that the colonization of the bowel by neuronal precursors may be a prolonged process continuing from day E9 at least through day E11, (4) that the first pool of neuronal primordia to colonize the developing bowel can produce both cholinergic and serotonergic neurons

  8. Genetic localization and phenotypic expression of X-linked cataract (Xcat) in Mus musculus.

    Science.gov (United States)

    Favor, J; Pretsch, W

    1990-01-01

    Linkage data relative to the markers tabby and glucose-6-phosphate dehydrogenase are presented to locate X-linked cataract (Xcat) in the distal portion of the mouse X-chromosome between jimpy and hypophosphatemia. The human X-linked cataract-dental syndrome, Nance-Horan Syndrome, also maps closely to human hypophosphatemia and would suggest homology between mouse Xcat and human Nance-Horan Syndrome genes. In hemizygous males and homozygous females penetrance is complete with only slight variation in the degree of expression. Phenotypic expression in Xcat heterozygous females ranges from totally clear to totally opaque lenses. The phenotypic expression between the two lenses of a heterozygous individual could also vary between totally clear and totally opaque lenses. However, a correlation in the degree of expression between the eyes of an individual was observed. A variegated pattern of lens opacity was evident in female heterozygotes. Based on these observations, the site of gene action for the Xcat locus is suggested to be endogenous to the lens cells and the precursor cell population of the lens is concluded to be small. The identification of an X-linked cataract locus is an important contribution to the estimate of the number of mutable loci resulting in cataract, an estimate required so that dominant cataract mutagenesis results may be expressed on a per locus basis. The Xcat mutation may be a useful marker for a distal region of the mouse X-chromosome which is relatively sparsely marked and the X-linked cataract mutation may be employed in gene expression and lens development studies.

  9. Expression of the Broad Autism Phenotype in Simplex Autism Families from the Simons Simplex Collection

    Science.gov (United States)

    Davidson, Julie; Goin-Kochel, Robin P.; Green-Snyder, Lee Anne; Hundley, Rachel J.; Warren, Zachary; Peters, Sarika U.

    2014-01-01

    The broad autism phenotype (BAP) refers to the phenotypic expression of an underlying genetic liability to autism, manifest in non-autistic relatives. This study examined the relationship among the "Broad Autism Phenotype Questionnaire" (BAPQ), "Social Responsiveness Scale: Adult Research Version" (SRS:ARV), and "Family…

  10. Systems Biology for Mapping Genotype-Phenotype Relations in Yeast

    KAUST Repository

    Nielsen, Jens

    2016-01-25

    The yeast Saccharomyces cerevisiae is widely used for production of fuels, chemicals, pharmaceuticals and materials. Through metabolic engineering of this yeast a number of novel new industrial processes have been developed over the last 10 years. Besides its wide industrial use, S. cerevisiae serves as an eukaryal model organism, and many systems biology tools have therefore been developed for this organism. Among these genome-scale metabolic models have shown to be most successful as they easy integrate with omics data and at the same time have been shown to have excellent predictive power. Despite our extensive knowledge of yeast metabolism and its regulation we are still facing challenges when we want to engineer complex traits, such as improved tolerance to toxic metabolites like butanol and elevated temperatures or when we want to engineer the highly complex protein secretory pathway. In this presentation it will be demonstrated how we can combine directed evolution with systems biology analysis to identify novel targets for rational design-build-test of yeast strains that have improved phenotypic properties. In this lecture an overview of systems biology of yeast will be presented together with examples of how genome-scale metabolic modeling can be used for prediction of cellular growth at different conditions. Examples will also be given on how adaptive laboratory evolution can be used for identifying targets for improving tolerance towards butanol, increased temperature and low pH and for improving secretion of heterologous proteins.

  11. Comprehensive Clinical Phenotyping and Genetic Mapping for the Discovery of Autism Susceptibility Genes

    Science.gov (United States)

    2013-03-14

    behavioral teaching strategies and best practice for teaching students with autism spectrum disorders 4.52 Learn strategies for incorporating IEP goals...AFRL-SA-WP-TR-2013-0013 Comprehensive Clinical Phenotyping and Genetic Mapping for the Discovery of Autism Susceptibility Genes...Genetic Mapping for the Discovery of Autism Susceptibility Genes 5a. CONTRACT NUMBER N/A 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6

  12. Borderline Personality Disorder as a Female Phenotypic Expression of Psychopathy?

    Science.gov (United States)

    Sprague, Jenessa; Javdani, Shabnam; Sadeh, Naomi; Newman, Joseph P.; Verona, Edelyn

    2011-01-01

    Evidence suggests that the combination of the interpersonal-affective (F1) and impulsive-antisocial (F2) features of psychopathy may be associated with borderline personality disorder (BPD), specifically among women (e.g., Coid, 1993; Hicks, Vaidyana-than, & Patrick, 2010). However, empirical research explicitly examining gendered relationships between BPD and psychopathy factors is lacking. To further inform this area of research, we investigated the hypothesis that the interplay between the two psychopathy factors is associated with BPD among women across two studies. Study 1 consisted of a college sample of 318 adults (51% women), and Study 2 consisted of a large sample of 488 female prisoners. The interpersonal-affective (F1) and impulsiveantisocial psychopathy (F2) scores, measured with self-report and clinician-rated indices, respectively, were entered as explanatory variables in regression analyses to investigate their unique contributions to BPD traits. Across two independent samples, results indicated that the interaction of high F1 and F2 psychopathy scores was associated with BPD in women. This association was found to be specific to women in Study 1. These results suggest that BPD and psychopathy, at least as they are measured by current instruments, overlap in women and, accordingly, may reflect gender-differentiated phenotypic expressions of similar dispositional vulnerabilities. PMID:22452756

  13. Semiparametric Allelic Tests for Mapping Multiple Phenotypes: Binomial Regression and Mahalanobis Distance.

    Science.gov (United States)

    Majumdar, Arunabha; Witte, John S; Ghosh, Saurabh

    2015-12-01

    Binary phenotypes commonly arise due to multiple underlying quantitative precursors and genetic variants may impact multiple traits in a pleiotropic manner. Hence, simultaneously analyzing such correlated traits may be more powerful than analyzing individual traits. Various genotype-level methods, e.g., MultiPhen (O'Reilly et al. []), have been developed to identify genetic factors underlying a multivariate phenotype. For univariate phenotypes, the usefulness and applicability of allele-level tests have been investigated. The test of allele frequency difference among cases and controls is commonly used for mapping case-control association. However, allelic methods for multivariate association mapping have not been studied much. In this article, we explore two allelic tests of multivariate association: one using a Binomial regression model based on inverted regression of genotype on phenotype (Binomial regression-based Association of Multivariate Phenotypes [BAMP]), and the other employing the Mahalanobis distance between two sample means of the multivariate phenotype vector for two alleles at a single-nucleotide polymorphism (Distance-based Association of Multivariate Phenotypes [DAMP]). These methods can incorporate both discrete and continuous phenotypes. Some theoretical properties for BAMP are studied. Using simulations, the power of the methods for detecting multivariate association is compared with the genotype-level test MultiPhen's. The allelic tests yield marginally higher power than MultiPhen for multivariate phenotypes. For one/two binary traits under recessive mode of inheritance, allelic tests are found to be substantially more powerful. All three tests are applied to two different real data and the results offer some support for the simulation study. We propose a hybrid approach for testing multivariate association that implements MultiPhen when Hardy-Weinberg Equilibrium (HWE) is violated and BAMP otherwise, because the allelic approaches assume HWE

  14. Expressive map design: OGC SLD/SE++ extension for expressive map styles

    Science.gov (United States)

    Christophe, Sidonie; Duménieu, Bertrand; Masse, Antoine; Hoarau, Charlotte; Ory, Jérémie; Brédif, Mathieu; Lecordix, François; Mellado, Nicolas; Turbet, Jérémie; Loi, Hugo; Hurtut, Thomas; Vanderhaeghe, David; Vergne, Romain; Thollot, Joëlle

    2018-05-01

    In the context of custom map design, handling more artistic and expressive tools has been identified as a carto-graphic need, in order to design stylized and expressive maps. Based on previous works on style formalization, an approach for specifying the map style has been proposed and experimented for particular use cases. A first step deals with the analysis of inspiration sources, in order to extract `what does make the style of the source', i.e. the salient visual characteristics to be automatically reproduced (textures, spatial arrangements, linear stylization, etc.). In a second step, in order to mimic and generate those visual characteristics, existing and innovative rendering techniques have been implemented in our GIS engine, thus extending the capabilities to generate expressive renderings. Therefore, an extension of the existing cartographic pipeline has been proposed based on the following aspects: 1- extension of the symbolization specifications OGC SLD/SE in order to provide a formalism to specify and reference expressive rendering methods; 2- separate the specification of each rendering method and its parameterization, as metadata. The main contribution has been described in (Christophe et al. 2016). In this paper, we focus firstly on the extension of the cartographic pipeline (SLD++ and metadata) and secondly on map design capabilities which have been experimented on various topographic styles: old cartographic styles (Cassini), artistic styles (watercolor, impressionism, Japanese print), hybrid topographic styles (ortho-imagery & vector data) and finally abstract and photo-realist styles for the geovisualization of costal area. The genericity and interoperability of our approach are promising and have already been tested for 3D visualization.

  15. Comprehensive Clinical Phenotyping & Genetic Mapping for the Discovery of Autism Susceptibility Genes

    Science.gov (United States)

    2012-12-05

    teaching students with autism spectrum disorders 4.52 Learn strategies for incorporating IEP goals and district standard into daily teaching...W403 Columbus, OH 43205 Final Report Comprehensive Clinical Phenotyping & Genetic Mapping for the Discovery of Autism Susceptibility Genes...QFOXGHDUHDFRGH 1.0 Summary In 2006, the Central Ohio Registry for Autism (CORA) was initiated as a collaboration between Wright-Patterson Air

  16. Distribution of genotype network sizes in sequence-to-structure genotype-phenotype maps.

    Science.gov (United States)

    Manrubia, Susanna; Cuesta, José A

    2017-04-01

    An essential quantity to ensure evolvability of populations is the navigability of the genotype space. Navigability, understood as the ease with which alternative phenotypes are reached, relies on the existence of sufficiently large and mutually attainable genotype networks. The size of genotype networks (e.g. the number of RNA sequences folding into a particular secondary structure or the number of DNA sequences coding for the same protein structure) is astronomically large in all functional molecules investigated: an exhaustive experimental or computational study of all RNA folds or all protein structures becomes impossible even for moderately long sequences. Here, we analytically derive the distribution of genotype network sizes for a hierarchy of models which successively incorporate features of increasingly realistic sequence-to-structure genotype-phenotype maps. The main feature of these models relies on the characterization of each phenotype through a prototypical sequence whose sites admit a variable fraction of letters of the alphabet. Our models interpolate between two limit distributions: a power-law distribution, when the ordering of sites in the prototypical sequence is strongly constrained, and a lognormal distribution, as suggested for RNA, when different orderings of the same set of sites yield different phenotypes. Our main result is the qualitative and quantitative identification of those features of sequence-to-structure maps that lead to different distributions of genotype network sizes. © 2017 The Author(s).

  17. Manipulation of MKS1 gene expression affects Kalanchoë blossfeldiana and Petunia hybrida phenotypes.

    Science.gov (United States)

    Gargul, Joanna Maria; Mibus, Heiko; Serek, Margrethe

    2015-01-01

    The establishment of alternative methods to chemical treatments for growth retardation and pathogen protection in ornamental plant production has become a major goal in recent breeding programmes. This study evaluates the effect of manipulating MAP kinase 4 nuclear substrate 1 (MKS1) expression in Kalanchoë blossfeldiana and Petunia hybrida. The Arabidopsis thaliana MKS1 gene was overexpressed in both species via Agrobacterium-mediated transformation, resulting in dwarfed phenotypes and delayed flowering in both species and increased tolerance to Pseudomonas syringae pv. tomato in transgenic Petunia plants. The lengths of the stems and internodes were decreased, while the number of nodes in the transgenic plants was similar to that of the control plants in both species. The transgenic Kalanchoë flowers had an increased anthocyanin concentration, and the length of the inflorescence stem was decreased. The morphology of transgenic Petunia flowers was not altered. The results of the Pseudomonas syringae tolerance test showed that Petunia plants with one copy of the transgene reacted similarly to the nontransgenic control plants; however, plants with four copies of the transgene exhibited considerably higher tolerance to bacterial attack. Transgene integration and expression was determined by Southern blot hybridization and RT-PCR analyses. MKS1 in wild-type Petunia plants was down-regulated through a virus-induced gene silencing (VIGS) method using tobacco rattle virus vectors. There were no significant phenotypic differences between the plants with silenced MKS1 genes and the controls. The relative concentration of the MKS1 transcript in VIGS-treated plants was estimated by quantitative RT-PCR. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  18. Phenotype expression in women with CMT1X.

    LENUS (Irish Health Repository)

    Siskind, Carly E

    2011-06-01

    Charcot-Marie-Tooth disease type 1X (CMT1X) is the second most common inherited peripheral neuropathy. Women with CMT1X typically have a less severe phenotype than men, perhaps because of X-inactivation patterns. Our objective was to determine the phenotype of women with CMT1X and whether X-inactivation patterns in white blood cells (WBCs) differ between females with CMT1X and controls. Thirty-one women with CMT1X were evaluated using the CMT neuropathy score (CMTNS) and the CMT symptom score in cross-sectional and longitudinal analyses. Lower scores correspond to less disability. WBCs were analyzed for X-inactivation pattern by androgen receptor X-inactivation assay in 14 patients and 23 controls. The 31 women\\'s mean CMTNS was 8.35. Two-thirds of the cohort had a mild CMTNS (mean 4.85) and one-third had a moderate CMTNS (mean 14.73). Three patients had a CMTNS of 0. The pattern of X-inactivation did not differ between the affected and control groups. Women with CMT1X presented with variable impairment independent of age, type of mutation, or location of mutation. No evidence supported the presence of a gap junction beta-1 (GJB1) mutation affecting the pattern of X-inactivation in blood. Further studies are planned to determine whether X-inactivation is the mechanism for CMT1X females\\' variable phenotypes.

  19. Characterization and differential gene expression between two phenotypic phase variants in Salmonella enterica serovar Typhimurium.

    Directory of Open Access Journals (Sweden)

    Sheila K Patterson

    Full Text Available Salmonella enterica serovar Typhimurium strain 798 has previously been shown to undergo phenotypic phase variation. One of the phenotypes expresses virulence traits such as adhesion, while the other phenotype does not. Phenotypic phase variation appears to correlate with the ability of this strain to cause persistent, asymptomatic infections of swine. A new method to detect cells in either phenotypic phase was developed using Evans Blue-Uranine agar plates. Using this new assay, rates of phenotypic phase variation were obtained. The rate of phase variation from non-adhesive to adhesive phenotype was approximately 10(-4 per cell per generation while phase variation from the adhesive to the non-adhesive phenotype was approximately 10(-6 per cell per generation. Two highly virulent S. Typhimurium strains, SL1344 and ATCC 14028, were also shown to undergo phase variation. However, while the rate from adhesive to non-adhesive phenotype was approximately the same as for strain 798, the non-adhesive to adhesive phenotype shift was 37-fold higher. Differential gene expression was measured using RNA-Seq. Eighty-three genes were more highly expressed by 798 cells in the adhesive phenotype compared to the non-adhesive cells. Most of the up-regulated genes were in virulence genes and in particular all genes in the Salmonella pathogenicity island 1 were up-regulated. When compared to the virulent strain SL1344, expression of the virulence genes was approximately equal to those up-regulated in the adhesive phenotype of strain 798. A comparison of invasive ability demonstrated that strain SL1344 was the most invasive followed by the adhesive phenotype of strain 798, then the non-adhesive phenotype of strain 798. The least invasive strain was ATCC 14028. The genome of strain 798 was sequenced and compared to SL1344. Both strains had very similar genome sequences and gene deletions could not readily explain differences in the rates of phase variation from non

  20. Cre recombinase expression can result in phenotypic aberrations in plants

    NARCIS (Netherlands)

    Coppoolse, E.; Vroomen, de M.J.; Roelofs, D.; Smit, J.; Gennip, van F.; Hersmus, B.J.M.; Nijkamp, H.J.J.; Haaren, van M.J.

    2003-01-01

    The cre recombinase gene was stably introduced and expressed in tomato, petunia and Nicotiana tabacum. Some plants expressing the cre gene driven by a CaMV 35S promoter displayed growth retardation and a distinct pattern of chlorosis in their leaves. Although no direct relation can be proven between

  1. Cre recombinase expression can result in phenotypic aberrations in plants

    NARCIS (Netherlands)

    Coppoolse, Eric R; de Vroomen, Marianne J; Roelofs, Dick; Smit, Jaap; van Gennip, Femke; Hersmus, Bart J M; Nijkamp, H John J; van Haaren, Mark J J

    The cre recombinase gene was stably introduced and expressed in tomato, petunia and Nicotiana tabacum. Some plants expressing the cre gene driven by a CaMV 35S promoter displayed growth retardation and a distinct pattern of chlorosis in their leaves. Although no direct relation can be proven between

  2. Aberrant phenotypes of transgenic mice expressing dimeric human erythropoietin

    Directory of Open Access Journals (Sweden)

    Yun Seong-Jo

    2012-01-01

    Full Text Available Abstract Background Dimeric human erythropoietin (dHuEPO peptides are reported to exhibit significantly higher biological activity than the monomeric form of recombinant EPO. The objective of this study was to produce transgenic (tg mice expressing dHuEPO and to investigate the characteristics of these mice. Methods A dHuEPO-expressing vector under the control of the goat beta-casein promoter, which produced a dimer of human EPO molecules linked by a 2-amino acid peptide linker (Asp-Ile, was constructed and injected into 1-cell fertilized embryos by microinjection. Mice were screened using genomic DNA samples obtained from tail biopsies. Blood samples were obtained by heart puncture using heparinized tubes, and hematologic parameters were assessed. Using the microarray analysis tool, we analyzed differences in gene expression in the spleens of tg and control mice. Results A high rate of spontaneous abortion or death of the offspring was observed in the recipients of dHuEPO embryos. We obtained 3 founder lines (#4, #11, and #47 of tg mice expressing the dHuEPO gene. However, only one founder line showed stable germline integration and transmission, subsequently establishing the only transgenic line (#11. We obtained 2 F1 mice and 3 F2 mice from line #11. The dHuEPO protein could not be obtained because of repeated spontaneous abortions in the tg mice. Tg mice exhibited symptoms such as short lifespan and abnormal blood composition. The red blood cell count, white blood cell count, and hematocrit levels in the tg mice were remarkably higher than those in the control mice. The spleens of the tg mice (F1 and F2 females were 11- and -21-fold larger than those of the control mice. Microarray analysis revealed 2,672 spleen-derived candidate genes; more genes were downregulated than upregulated (849/764. Reverse transcriptase-polymerase chain reaction (RT-PCR and quantitative real-time PCR (qRT-PCR were used for validating the results of the microarray

  3. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth.

    Science.gov (United States)

    Zhang, Xuehai; Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Xiong, Lizhong; Yang, Wanneng; Yan, Jianbing

    2017-03-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize ( Zea mays ) recombinant inbred line population ( n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction. © 2017 American Society of Plant Biologists. All Rights Reserved.

  4. Algorithmic Mapping and Characterization of the Drug-Induced Phenotypic-Response Space of Parasites Causing Schistosomiasis.

    Science.gov (United States)

    Singh, Rahul; Beasley, Rachel; Long, Thavy; Caffrey, Conor R

    2018-01-01

    Neglected tropical diseases, especially those caused by helminths, constitute some of the most common infections of the world's poorest people. Amongst these, schistosomiasis (bilharzia or 'snail fever'), caused by blood flukes of the genus Schistosoma, ranks second only to malaria in terms of human impact: two hundred million people are infected and close to 800 million are at risk of infection. Drug screening against helminths poses unique challenges: the parasite cannot be cloned and is difficult to target using gene knockouts or RNAi. Consequently, both lead identification and validation involve phenotypic screening, where parasites are exposed to compounds whose effects are determined through the analysis of the ensuing phenotypic responses. The efficacy of leads thus identified derives from one or more or even unknown molecular mechanisms of action. The two most immediate and significant challenges that confront the state-of-the-art in this area are: the development of automated and quantitative phenotypic screening techniques and the mapping and quantitative characterization of the totality of phenotypic responses of the parasite. In this paper, we investigate and propose solutions for the latter problem in terms of the following: (1) mathematical formulation and algorithms that allow rigorous representation of the phenotypic response space of the parasite, (2) application of graph-theoretic and network analysis techniques for quantitative modeling and characterization of the phenotypic space, and (3) application of the aforementioned methodology to analyze the phenotypic space of S. mansoni - one of the etiological agents of schistosomiasis, induced by compounds that target its polo-like kinase 1 (PLK 1) gene - a recently validated drug target. In our approach, first, bio-image analysis algorithms are used to quantify the phenotypic responses of different drugs. Next, these responses are linearly mapped into a low- dimensional space using Principle

  5. Modulation of the osteosarcoma expression phenotype by microRNAs.

    Directory of Open Access Journals (Sweden)

    Heidi M Namløs

    Full Text Available BACKGROUND: Osteosarcomas are the most common primary malignant tumors of bone and show multiple and complex genomic aberrations. miRNAs are non-coding RNAs capable of regulating gene expression at the post transcriptional level, and miRNAs and their target genes may represent novel therapeutic targets or biomarkers for osteosarcoma. In order to investigate the involvement of miRNAs in osteosarcoma development, global microarray analyses of a panel of 19 human osteosarcoma cell lines was performed. PRINCIPAL FINDINGS: We identified 177 miRNAs that were differentially expressed in osteosarcoma cell lines relative to normal bone. Among these, miR-126/miR-126*, miR-142-3p, miR-150, miR-223, miR-486-5p and members of the miR-1/miR-133a, miR-144/miR-451, miR-195/miR-497 and miR-206/miR-133b clusters were found to be downregulated in osteosarcoma cell lines. All miRNAs in the paralogous clusters miR-17-92, miR-106b-25 and miR-106a-92 were overexpressed. Furthermore, the upregulated miRNAs included miR-9/miR-9*, miR-21*, miR-31/miR-31*, miR-196a/miR-196b, miR-374a and members of the miR-29 and miR-130/301 families. The most interesting inversely correlated miRNA/mRNA pairs in osteosarcoma cell lines included miR-9/TGFBR2 and miR-29/p85α regulatory subunit of PI3K. PTEN mRNA correlated inversely with miR-92a and members of the miR-17 and miR-130/301 families. Expression profiles of selected miRNAs were confirmed in clinical samples. A set of miRNAs, miR-1, miR-18a, miR-18b, miR-19b, miR-31, miR-126, miR-142-3p, miR-133b, miR-144, miR-195, miR-223, miR-451 and miR-497 was identified with an intermediate expression level in osteosarcoma clinical samples compared to osteoblasts and bone, which may reflect the differentiation level of osteosarcoma relative to the undifferentiated osteoblast and fully differentiated normal bone. SIGNIFICANCE: This study provides an integrated analysis of miRNA and mRNA in osteosarcoma, and gives new insight into the complex

  6. Phenotype and 244k array-CGH characterization of chromosome 13q deletions: an update of the phenotypic map of 13q21.1-qter

    DEFF Research Database (Denmark)

    Kirchhoff, Maria; Bisgaard, Anne-Marie; Stoeva, Radka

    2009-01-01

    Partial deletions of the long arm of chromosome 13 lead to variable phenotypes dependant on the size and position of the deleted region. In order to update the phenotypic map of chromosome 13q21.1-qter deletions, we applied 244k Agilent oligonucleotide-based array-CGH to determine the exact break......-genotype correlation on chromosome 13. In contrast to previous reports of carriers of 13q32 band deletions as the most seriously affected patients, we present two such individuals with long-term survival, 28 and 2.5 years....

  7. Introduction of a normal human chromosome 8 corrects abnormal phenotypes of Werner syndrome cells immortalized by expressing an hTERT gene

    International Nuclear Information System (INIS)

    Ariyoshi, Kentaro; Kodama, Seiji; Suzuki, Keiji; Goto, Makoto; Oshimura, Mitsuo; Ishizaki, Kanji; Watanabe, Masami

    2009-01-01

    Werner syndrome (WS) is an autosomal recessive disease characterized by premature aging and caused by mutations of the WRN gene mapped at 8p12. To examine functional complementation of WS phenotypes, we introduced a normal human chromosome 8 into a strain of WS fibroblasts (WS3RGB) immortalized by expressing a human telomerase reverse transcriptase subunit (hTERT) gene. Here, we demonstrate that the abnormal WS phenotypes including cellular sensitivities to 4-nitroquinoline-1-oxide (4NQO) and hydroxy urea (HU), and chromosomal radiosensitivity at G 2 phase are corrected by expression of the WRN gene mediated by introducing a chromosome 8. This indicates that those multiple abnormal WS phenotypes are derived from a primary, but not secondary, defect in the WRN gene. (author)

  8. Ectopic expression of DLK1 protein in skeletal muscle of padumnal heterozygotes causes the callipyge phenotype

    DEFF Research Database (Denmark)

    Davis, Erica; Jensen, Charlotte Harken; Farnir, Frédéric

    2004-01-01

    profile causes the callipyge muscular hypertrophy has remained unclear. Herein, we demonstrate that the callipyge phenotype is perfectly correlated with ectopic expression of DLK1 protein in hypertrophied muscle of +(MAT)/CLPG(PAT) sheep. We demonstrate the causality of this association by inducing...... a generalized muscular hypertrophy in transgenic mice that express DLK1 in skeletal muscle. The absence of DLK1 protein in skeletal muscle of CLPG/CLPG animals, despite the presence of DLK1 mRNA, supports a trans inhibition mediated by noncoding RNAs expressed from the maternal allele.......The callipyge (CLPG) phenotype is an inherited skeletal muscle hypertrophy described in sheep. It is characterized by an unusual mode of inheritance ("polar overdominance") in which only heterozygous individuals having received the CLPG mutation from their father (+(MAT)/CLPG(PAT)) express...

  9. Analysis of multiplex gene expression maps obtained by voxelation.

    Science.gov (United States)

    An, Li; Xie, Hongbo; Chin, Mark H; Obradovic, Zoran; Smith, Desmond J; Megalooikonomou, Vasileios

    2009-04-29

    Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in cortex and corpus callosum. The experimental

  10. Analysis of multiplex gene expression maps obtained by voxelation

    Directory of Open Access Journals (Sweden)

    Smith Desmond J

    2009-04-01

    Full Text Available Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we present an approach for identifying the relation between gene expression maps obtained by voxelation and gene functions. Results To analyze the dataset, we chose typical genes as queries and aimed at discovering similar gene groups. Gene similarity was determined by using the wavelet features extracted from the left and right hemispheres averaged gene expression maps, and by the Euclidean distance between each pair of feature vectors. We also performed a multiple clustering approach on the gene expression maps, combined with hierarchical clustering. Among each group of similar genes and clusters, the gene function similarity was measured by calculating the average gene function distances in the gene ontology structure. By applying our methodology to find similar genes to certain target genes we were able to improve our understanding of gene expression patterns and gene functions. By applying the clustering analysis method, we obtained significant clusters, which have both very similar gene expression maps and very similar gene functions respectively to their corresponding gene ontologies. The cellular component ontology resulted in prominent clusters expressed in cortex and corpus callosum. The molecular function ontology gave prominent clusters in cortex, corpus callosum and hypothalamus. The biological process ontology resulted in clusters in cortex, hypothalamus and choroid plexus. Clusters from all three ontologies combined were most prominently expressed in

  11. Mapping determinants of gene expression plasticity by genetical genomics in C. elegans.

    Directory of Open Access Journals (Sweden)

    Yang Li

    2006-12-01

    Full Text Available Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic response of gene expression also shows heritable difference has not yet been studied. Here we show that differential expression induced by temperatures of 16 degrees C and 24 degrees C has a strong genetic component in Caenorhabditis elegans recombinant inbred strains derived from a cross between strains CB4856 (Hawaii and N2 (Bristol. No less than 59% of 308 trans-acting genes showed a significant eQTL-by-environment interaction, here termed plasticity quantitative trait loci. In contrast, only 8% of an estimated 188 cis-acting genes showed such interaction. This indicates that heritable differences in plastic responses of gene expression are largely regulated in trans. This regulation is spread over many different regulators. However, for one group of trans-genes we found prominent evidence for a common master regulator: a transband of 66 coregulated genes appeared at 24 degrees C. Our results suggest widespread genetic variation of differential expression responses to environmental impacts and demonstrate the potential of genetical genomics for mapping the molecular determinants of phenotypic plasticity.

  12. Multiplatform serum metabolic phenotyping combined with pathway mapping to identify biochemical differences in smokers.

    Science.gov (United States)

    Kaluarachchi, Manuja R; Boulangé, Claire L; Garcia-Perez, Isabel; Lindon, John C; Minet, Emmanuel F

    2016-10-01

    Determining perturbed biochemical functions associated with tobacco smoking should be helpful for establishing causal relationships between exposure and adverse events. A multiplatform comparison of serum of smokers (n = 55) and never-smokers (n = 57) using nuclear magnetic resonance spectroscopy, UPLC-MS and statistical modeling revealed clustering of the classes, distinguished by metabolic biomarkers. The identified metabolites were subjected to metabolic pathway enrichment, modeling adverse biological events using available databases. Perturbation of metabolites involved in chronic obstructive pulmonary disease, cardiovascular diseases and cancer were identified and discussed. Combining multiplatform metabolic phenotyping with knowledge-based mapping gives mechanistic insights into disease development, which can be applied to next-generation tobacco and nicotine products for comparative risk assessment.

  13. Mapping pathological phenotypes in a mouse model of CDKL5 disorder.

    Directory of Open Access Journals (Sweden)

    Elena Amendola

    Full Text Available Mutations in cyclin-dependent kinase-like 5 (CDKL5 cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG responses to convulsant treatment, decreased visual evoked responses (VEPs, and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder.

  14. Mapping pathological phenotypes in a mouse model of CDKL5 disorder.

    Science.gov (United States)

    Amendola, Elena; Zhan, Yang; Mattucci, Camilla; Castroflorio, Enrico; Calcagno, Eleonora; Fuchs, Claudia; Lonetti, Giuseppina; Silingardi, Davide; Vyssotski, Alexei L; Farley, Dominika; Ciani, Elisabetta; Pizzorusso, Tommaso; Giustetto, Maurizio; Gross, Cornelius T

    2014-01-01

    Mutations in cyclin-dependent kinase-like 5 (CDKL5) cause early-onset epileptic encephalopathy, a neurodevelopmental disorder with similarities to Rett Syndrome. Here we describe the physiological, molecular, and behavioral phenotyping of a Cdkl5 conditional knockout mouse model of CDKL5 disorder. Behavioral analysis of constitutive Cdkl5 knockout mice revealed key features of the human disorder, including limb clasping, hypoactivity, and abnormal eye tracking. Anatomical, physiological, and molecular analysis of the knockout uncovered potential pathological substrates of the disorder, including reduced dendritic arborization of cortical neurons, abnormal electroencephalograph (EEG) responses to convulsant treatment, decreased visual evoked responses (VEPs), and alterations in the Akt/rpS6 signaling pathway. Selective knockout of Cdkl5 in excitatory and inhibitory forebrain neurons allowed us to map the behavioral features of the disorder to separable cell-types. These findings identify physiological and molecular deficits in specific forebrain neuron populations as possible pathological substrates in CDKL5 disorder.

  15. Cloning, expression and functional analysis of MAP30 from ...

    African Journals Online (AJOL)

    use

    2011-12-07

    Dec 7, 2011 ... gene was cloned and expressed and the induction of the recombinant MAP30 protein on .... RNA reverse transcription was carried out by RevertAidTM First ... volume of Premix Ex Taq™ (Takara Bio Inc, Japan), PCR cycling.

  16. A Bystander Mechanism Explains the Specific Phenotype of a Broadly Expressed Misfolded Protein.

    Directory of Open Access Journals (Sweden)

    Lauren Klabonski

    2016-12-01

    Full Text Available Misfolded proteins in transgenic models of conformational diseases interfere with proteostasis machinery and compromise the function of many structurally and functionally unrelated metastable proteins. This collateral damage to cellular proteins has been termed 'bystander' mechanism. How a single misfolded protein overwhelms the proteostasis, and how broadly-expressed mutant proteins cause cell type-selective phenotypes in disease are open questions. We tested the gain-of-function mechanism of a R37C folding mutation in an endogenous IGF-like C.elegans protein DAF-28. DAF-28(R37C is broadly expressed, but only causes dysfunction in one specific neuron, ASI, leading to a distinct developmental phenotype. We find that this phenotype is caused by selective disruption of normal biogenesis of an unrelated endogenous protein, DAF-7/TGF-β. The combined deficiency of DAF-28 and DAF-7 biogenesis, but not of DAF-28 alone, explains the gain-of-function phenotype-deficient pro-growth signaling by the ASI neuron. Using functional, fluorescently-tagged protein, we find that, in animals with mutant DAF-28/IGF, the wild-type DAF-7/TGF-β is mislocalized to and accumulates in the proximal axon of the ASI neuron. Activation of two different branches of the unfolded protein response can modulate both the developmental phenotype and DAF-7 mislocalization in DAF-28(R37C animals, but appear to act through divergent mechanisms. Our finding that bystander targeting of TGF-β explains the phenotype caused by a folding mutation in an IGF-like protein suggests that, in conformational diseases, bystander misfolding may specify the distinct phenotypes caused by different folding mutations.

  17. Heterogeneity of functional properties of Clone 66 murine breast cancer cells expressing various stem cell phenotypes.

    Science.gov (United States)

    Mukhopadhyay, Partha; Farrell, Tracy; Sharma, Gayatri; McGuire, Timothy R; O'Kane, Barbara; Sharp, J Graham

    2013-01-01

    Breast cancer grows, metastasizes and relapses from rare, therapy resistant cells with a stem cell phenotype (cancer stem cells/CSCs). However, there is a lack of studies comparing the functions of CSCs isolated using different phenotypes in order to determine if CSCs are homogeneous or heterogeneous. Cells with various stem cell phenotypes were isolated by sorting from Clone 66 murine breast cancer cells that grow orthotopically in immune intact syngeneic mice. These populations were compared by in vitro functional assays for proliferation, growth, sphere and colony formation; and in vivo limiting dilution analysis of tumorigenesis. The proportion of cells expressing CD44(high)CD24(low/neg), side population (SP) cells, ALDH1(+), CD49f(high), CD133(high), and CD34(high) differed, suggesting heterogeneity. Differences in frequency and size of tumor spheres from these populations were observed. Higher rates of proliferation of non-SP, ALDH1(+), CD34(low), and CD49f(high) suggested properties of transit amplifying cells. Colony formation was higher from ALDH1(-) and non-SP cells than ALDH1(+) and SP cells suggesting a progenitor phenotype. The frequency of clonal colonies that grew in agar varied and was differentially altered by the presence of Matrigel™. In vivo, fewer cells with a stem cell phenotype were needed for tumor formation than "non-stem" cells. Fewer SP cells were needed to form tumors than ALDH1(+) cells suggesting further heterogeneities of cells with stem phenotypes. Different levels of cytokines/chemokines were produced by Clone 66 with RANTES being the highest. Whether the heterogeneity reflects soluble factor production remains to be determined. These data demonstrate that Clone 66 murine breast cancer cells that express stem cell phenotypes are heterogeneous and exhibit different functional properties, and this may also be the case for human breast cancer stem cells.

  18. Phenotypic plasticity, QTL mapping and genomic characterization of bud set in black poplar

    Directory of Open Access Journals (Sweden)

    Fabbrini Francesco

    2012-04-01

    Full Text Available Abstract Background The genetic control of important adaptive traits, such as bud set, is still poorly understood in most forest trees species. Poplar is an ideal model tree to study bud set because of its indeterminate shoot growth. Thus, a full-sib family derived from an intraspecific cross of P. nigra with 162 clonally replicated progeny was used to assess the phenotypic plasticity and genetic variation of bud set in two sites of contrasting environmental conditions. Results Six crucial phenological stages of bud set were scored. Night length appeared to be the most important signal triggering the onset of growth cessation. Nevertheless, the effect of other environmental factors, such as temperature, increased during the process. Moreover, a considerable role of genotype × environment (G × E interaction was found in all phenological stages with the lowest temperature appearing to influence the sensitivity of the most plastic genotypes. Descriptors of growth cessation and bud onset explained the largest part of phenotypic variation of the entire process. Quantitative trait loci (QTL for these traits were detected. For the four selected traits (the onset of growth cessation (date2.5, the transition from shoot to bud (date1.5, the duration of bud formation (subproc1 and bud maturation (subproc2 eight and sixteen QTL were mapped on the maternal and paternal map, respectively. The identified QTL, each one characterized by small or modest effect, highlighted the complex nature of traits involved in bud set process. Comparison between map location of QTL and P. trichocarpa genome sequence allowed the identification of 13 gene models, 67 bud set-related expressional and six functional candidate genes (CGs. These CGs are functionally related to relevant biological processes, environmental sensing, signaling, and cell growth and development. Some strong QTL had no obvious CGs, and hold great promise to identify unknown genes that affect bud set

  19. Towards systems genetic analyses in barley: Integration of phenotypic, expression and genotype data into GeneNetwork

    Directory of Open Access Journals (Sweden)

    Druka Arnis

    2008-11-01

    Full Text Available Abstract Background A typical genetical genomics experiment results in four separate data sets; genotype, gene expression, higher-order phenotypic data and metadata that describe the protocols, processing and the array platform. Used in concert, these data sets provide the opportunity to perform genetic analysis at a systems level. Their predictive power is largely determined by the gene expression dataset where tens of millions of data points can be generated using currently available mRNA profiling technologies. Such large, multidimensional data sets often have value beyond that extracted during their initial analysis and interpretation, particularly if conducted on widely distributed reference genetic materials. Besides quality and scale, access to the data is of primary importance as accessibility potentially allows the extraction of considerable added value from the same primary dataset by the wider research community. Although the number of genetical genomics experiments in different plant species is rapidly increasing, none to date has been presented in a form that allows quick and efficient on-line testing for possible associations between genes, loci and traits of interest by an entire research community. Description Using a reference population of 150 recombinant doubled haploid barley lines we generated novel phenotypic, mRNA abundance and SNP-based genotyping data sets, added them to a considerable volume of legacy trait data and entered them into the GeneNetwork http://www.genenetwork.org. GeneNetwork is a unified on-line analytical environment that enables the user to test genetic hypotheses about how component traits, such as mRNA abundance, may interact to condition more complex biological phenotypes (higher-order traits. Here we describe these barley data sets and demonstrate some of the functionalities GeneNetwork provides as an easily accessible and integrated analytical environment for exploring them. Conclusion By

  20. cudaMap: a GPU accelerated program for gene expression connectivity mapping.

    Science.gov (United States)

    McArt, Darragh G; Bankhead, Peter; Dunne, Philip D; Salto-Tellez, Manuel; Hamilton, Peter; Zhang, Shu-Dong

    2013-10-11

    Modern cancer research often involves large datasets and the use of sophisticated statistical techniques. Together these add a heavy computational load to the analysis, which is often coupled with issues surrounding data accessibility. Connectivity mapping is an advanced bioinformatic and computational technique dedicated to therapeutics discovery and drug re-purposing around differential gene expression analysis. On a normal desktop PC, it is common for the connectivity mapping task with a single gene signature to take > 2h to complete using sscMap, a popular Java application that runs on standard CPUs (Central Processing Units). Here, we describe new software, cudaMap, which has been implemented using CUDA C/C++ to harness the computational power of NVIDIA GPUs (Graphics Processing Units) to greatly reduce processing times for connectivity mapping. cudaMap can identify candidate therapeutics from the same signature in just over thirty seconds when using an NVIDIA Tesla C2050 GPU. Results from the analysis of multiple gene signatures, which would previously have taken several days, can now be obtained in as little as 10 minutes, greatly facilitating candidate therapeutics discovery with high throughput. We are able to demonstrate dramatic speed differentials between GPU assisted performance and CPU executions as the computational load increases for high accuracy evaluation of statistical significance. Emerging 'omics' technologies are constantly increasing the volume of data and information to be processed in all areas of biomedical research. Embracing the multicore functionality of GPUs represents a major avenue of local accelerated computing. cudaMap will make a strong contribution in the discovery of candidate therapeutics by enabling speedy execution of heavy duty connectivity mapping tasks, which are increasingly required in modern cancer research. cudaMap is open source and can be freely downloaded from http://purl.oclc.org/NET/cudaMap.

  1. Neurochemical phenotype of cytoglobin‑expressing neurons in the rat hippocampus

    DEFF Research Database (Denmark)

    Hundahl, Christian Ansgar; Fahrenkrug, Jan; Hannibal, Jens

    2014-01-01

    in a subpopulation of brain neurons. Recently, it has been shown that stress upregulates Cygb expression in the brain and the majority of neuronal nitric oxide synthase (nNOS)-positive neurons, an enzyme that produces NO, co-express Cygb. However, there are more neurons expressing Cygb than nNOS, thus a large number...... of Cygb neurons remain uncharacterized by the neurochemical content. The aim of the present study was to provide an additional and more detailed neurochemical phenotype of Cygb-expressing neurons in the rat hippocampus. The rat hippocampus was chosen due to the abundance of Cygb, as well as this limbic...... structure being an important target in a number of neurodegenerative diseases. Using triple immunohistochemistry, it was demonstrated that nearly all the parvalbumin- and heme oxygenase 1-positive neurons co-express Cygb and to a large extent, these neuron populations are distinct from the population...

  2. VARIABILITY IN PHENOTYPIC EXPRESSION OF SEED QUALITY TRAITS IN SOYBEAN GERMPLASM

    Directory of Open Access Journals (Sweden)

    Aleksandra Sudarić

    2017-01-01

    Full Text Available The aim of this research was to determine the genetic variability of chosen soybean lines in seed quality by determining diversity in phenotypic expression of 1000 seed weight, as well as protein and oil concentrations in the seed. Field trials were set up in a randomized, complete block design with two replications, at the Agricultural Institute Osijek during three growing seasons (2010-2012. Each year, after harvest, 1000 seed weight, and protein and oil concentrations in the seed were determined. Statistical analyses of the results included: calculating basic measures of variation and analysis of variance. The analyzed data showed the existence of plant material's diversity in phenotypic expression of investigated seed quality traits, as well as the existence of statistically significant genotype and year effects.

  3. A Complex Structural Variation on Chromosome 27 Leads to the Ectopic Expression of HOXB8 and the Muffs and Beard Phenotype in Chickens

    Science.gov (United States)

    Wang, Yanqiang; Luo, Chenglong; Liu, Ranran; Qu, Hao; Shu, Dingming; Wen, Jie; Crooijmans, Richard P. M. A.; Zhao, Yiqiang; Hu, Xiaoxiang; Li, Ning

    2016-01-01

    Muffs and beard (Mb) is a phenotype in chickens where groups of elongated feathers gather from both sides of the face (muffs) and below the beak (beard). It is an autosomal, incomplete dominant phenotype encoded by the Muffs and beard (Mb) locus. Here we use genome-wide association (GWA) analysis, linkage analysis, Identity-by-Descent (IBD) mapping, array-CGH, genome re-sequencing and expression analysis to show that the Mb allele causing the Mb phenotype is a derived allele where a complex structural variation (SV) on GGA27 leads to an altered expression of the gene HOXB8. This Mb allele was shown to be completely associated with the Mb phenotype in nine other independent Mb chicken breeds. The Mb allele differs from the wild-type mb allele by three duplications, one in tandem and two that are translocated to that of the tandem repeat around 1.70 Mb on GGA27. The duplications contain total seven annotated genes and their expression was tested during distinct stages of Mb morphogenesis. A continuous high ectopic expression of HOXB8 was found in the facial skin of Mb chickens, strongly suggesting that HOXB8 directs this regional feather-development. In conclusion, our results provide an interesting example of how genomic structural rearrangements alter the regulation of genes leading to novel phenotypes. Further, it again illustrates the value of utilizing derived phenotypes in domestic animals to dissect the genetic basis of developmental traits, herein providing novel insights into the likely role of HOXB8 in feather development and differentiation. PMID:27253709

  4. Elevated expression of Thoc1 is associated with aggressive phenotype and poor prognosis in colorectal cancer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chenchen; Yue, Ben; Yuan, Chenwei; Zhao, Senlin; Fang, Changyi; Yu, Yang; Yan, Dongwang, E-mail: yandw70@163.com

    2015-12-04

    The THO complex 1 (Thoc1) is a nuclear matrix protein playing vital roles in transcription elongation and mRNA export. Recently, aberrant expression of Thoc1 has been reported in an increasing array of tumor types. However, the clinical significance of Thoc1 expression in colorectal cancer (CRC) is still unknown. The present study aimed to characterize the expression of Thoc1 in human CRC and evaluate its clinical significance. Quantitative real-time polymerase chain reaction (qRT-PCR) and Western blotting analyses showed that the mRNA and protein expression of Thoc1 in CRC specimens was significantly higher than that in adjacent normal colon mucosae. Immunohistochemistry (IHC) was conducted to characterize the expression pattern of Thoc1 in 185 archived paraffin-embedded CRC specimens. Statistical analyses revealed that high levels of Thoc1 expression were associated with the clinical stages and tumor differentiation. CRC patients with high levels of Thoc1 expression had poorer overall-survival and disease-free survival, whereas those with lower levels of Thoc1 expression survived longer. Furthermore, multivariate Cox regression analyses demonstrated that Thoc1 expression remained an independent prognostic factor for increased disease recurrence and decreased survival. Our results suggest for the first time that Thoc1 is involved in the development and progression of CRC, and elevated expression of Thoc1 is associated with aggressive phenotype and poor prognosis in CRC. These findings may prove to be clinically useful for developing a new therapeutic target of CRC treatment.

  5. Molecular and phenotypic characterization of transgenic wheat and sorghum events expressing the barley alanine aminotransferase.

    Science.gov (United States)

    Peña, Pamela A; Quach, Truyen; Sato, Shirley; Ge, Zhengxiang; Nersesian, Natalya; Dweikat, Ismail M; Soundararajan, Madhavan; Clemente, Tom

    2017-12-01

    The expression of a barley alanine aminotransferase gene impacts agronomic outcomes in a C3 crop, wheat. The use of nitrogen-based fertilizers has become one of the major agronomic inputs in crop production systems. Strategies to enhance nitrogen assimilation and flux in planta are being pursued through the introduction of novel genetic alleles. Here an Agrobacterium-mediated approach was employed to introduce the alanine aminotransferase from barley (Hordeum vulgare), HvAlaAT, into wheat (Triticum aestivum) and sorghum (Sorghum bicolor), regulated by either constitutive or root preferred promoter elements. Plants harboring the transgenic HvAlaAT alleles displayed increased alanine aminotransferase (alt) activity. The enhanced alt activity impacted height, tillering and significantly boosted vegetative biomass relative to controls in wheat evaluated under hydroponic conditions, where the phenotypic outcome across these parameters varied relative to time of year study was conducted. Constitutive expression of HvAlaAT translated to elevation in wheat grain yield under field conditions. In sorghum, expression of HvAlaAT enhanced enzymatic activity, but no changes in phenotypic outcomes were observed. Taken together these results suggest that positive agronomic outcomes can be achieved through enhanced alt activity in a C3 crop, wheat. However, the variability observed across experiments under greenhouse conditions implies the phenotypic outcomes imparted by the HvAlaAT allele in wheat may be impacted by environment.

  6. Altered Phenotypes in Saccharomyces cerevisiae by Heterologous Expression of Basidiomycete Moniliophthora perniciosa SOD2 Gene

    Directory of Open Access Journals (Sweden)

    Sônia C. Melo

    2015-06-01

    Full Text Available Heterologous expression of a putative manganese superoxide dismutase gene (SOD2 of the basidiomycete Moniliophthora perniciosa complemented the phenotypes of a Saccharomyces cerevisiae sod2Δ mutant. Sequence analysis of the cloned M. perniciosa cDNA revealed an open reading frame (ORF coding for a 176 amino acid polypeptide with the typical metal-binding motifs of a SOD2 gene, named MpSOD2. Phylogenetic comparison with known manganese superoxide dismutases (MnSODs located the protein of M. perniciosa (MpSod2p in a clade with the basidiomycete fungi Coprinopsis cinerea and Laccaria bicolor. Haploid wild-type yeast transformants containing a single copy of MpSOD2 showed increased resistance phenotypes against oxidative stress-inducing hydrogen peroxide and paraquat, but had unaltered phenotype against ultraviolet–C (UVC radiation. The same transformants exhibited high sensitivity against treatment with the pro-mutagen diethylnitrosamine (DEN that requires oxidation to become an active mutagen/carcinogen. Absence of MpSOD2 in the yeast sod2Δ mutant led to DEN hyper-resistance while introduction of a single copy of this gene restored the yeast wild-type phenotype. The haploid yeast wild-type transformant containing two SOD2 gene copies, one from M. perniciosa and one from its own, exhibited DEN super-sensitivity. This transformant also showed enhanced growth at 37 °C on the non-fermentable carbon source lactate, indicating functional expression of MpSod2p. The pro-mutagen dihydroethidium (DHE-based fluorescence assay monitored basal level of yeast cell oxidative stress. Compared to the wild type, the yeast sod2Δ mutant had a much higher level of intrinsic oxidative stress, which was reduced to wild type (WT level by introduction of one copy of the MpSOD2 gene. Taken together our data indicates functional expression of MpSod2 protein in the yeast S. cerevisiae.

  7. Phenotypical expression of reduced mobility during limb ontogeny in frogs: the knee-joint case

    Directory of Open Access Journals (Sweden)

    Maria Laura Ponssa

    2016-02-01

    Full Text Available Movement is one of the most important epigenetic factors for normal development of the musculoskeletal system, particularly during genesis and joint development. Studies regarding alterations to embryonic mobility, performed on anurans, chickens and mammals, report important phenotypical similarities as a result of the reduction or absence of this stimulus. The precise stage of development at which the stimulus modification generates phenotypic modifications however, is yet to be determined. In this work we explore whether the developmental effects of abnormal mobility can appear at any time during development or whether they begin to express themselves in particular phases of tadpole ontogeny. We conducted five experiments that showed that morphological abnormalities are not visible until Stages 40–42. Morphology in earlier stages remains normal, probably due to the fact that the bones/muscles/tendons have not yet developed and therefore are not affected by immobilization. These results suggest the existence of a specific period of phenotypical expression in which normal limb movement is necessary for the correct development of the joint tissue framework.

  8. Phenotypic differences between oral and skin fibroblasts in wound contraction and growth factor expression.

    Science.gov (United States)

    Shannon, Diane B; McKeown, Scott T W; Lundy, Fionnuala T; Irwin, Chris R

    2006-01-01

    Wounds of the oral mucosa heal in an accelerated fashion with reduced scarring compared with cutaneous wounds. The differences in healing outcome between oral mucosa and skin could be because of phenotypic differences between the respective fibroblast populations. This study compared paired mucosal and dermal fibroblasts in terms of collagen gel contraction, alpha-smooth muscle actin expression (alpha-SMA), and production of the epithelial growth factors: keratinocyte growth factor (KGF) and hepatocyte growth factor/scatter factor (HGF). The effects of transforming growth factor -beta1 and -beta3 on each parameter were also determined. Gel contraction in floating collagen lattices was determined over a 7-day period. alpha-SMA expression by fibroblasts was determined by Western blotting. KGF and HGF expression were determined by an enzyme-linked immunosorbent assay. Oral fibroblasts induced accelerated collagen gel contraction, yet surprisingly expressed lower levels of alpha-SMA. Oral cells also produced significantly greater levels of both KGF and HGF than their dermal counterparts. Transforming growth factor-beta1 and -beta3, over the concentration range of 0.1-10 ng/mL, had similar effects on cell function, stimulating both gel contraction and alpha-SMA production, but inhibiting KGF and HGF production by both cell types. These data indicate phenotypic differences between oral and dermal fibroblasts that may well contribute to the differences in healing outcome between these two tissues.

  9. Destabilizing protein polymorphisms in the genetic background direct phenotypic expression of mutant SOD1 toxicity.

    Directory of Open Access Journals (Sweden)

    Tali Gidalevitz

    2009-03-01

    Full Text Available Genetic background exerts a strong modulatory effect on the toxicity of aggregation-prone proteins in conformational diseases. In addition to influencing the misfolding and aggregation behavior of the mutant proteins, polymorphisms in putative modifier genes may affect the molecular processes leading to the disease phenotype. Mutations in SOD1 in a subset of familial amyotrophic lateral sclerosis (ALS cases confer dominant but clinically variable toxicity, thought to be mediated by misfolding and aggregation of mutant SOD1 protein. While the mechanism of toxicity remains unknown, both the nature of the SOD1 mutation and the genetic background in which it is expressed appear important. To address this, we established a Caenorhabditis elegans model to systematically examine the aggregation behavior and genetic interactions of mutant forms of SOD1. Expression of three structurally distinct SOD1 mutants in C. elegans muscle cells resulted in the appearance of heterogeneous populations of aggregates and was associated with only mild cellular dysfunction. However, introduction of destabilizing temperature-sensitive mutations into the genetic background strongly enhanced the toxicity of SOD1 mutants, resulting in exposure of several deleterious phenotypes at permissive conditions in a manner dependent on the specific SOD1 mutation. The nature of the observed phenotype was dependent on the temperature-sensitive mutation present, while its penetrance reflected the specific combination of temperature-sensitive and SOD1 mutations. Thus, the specific toxic phenotypes of conformational disease may not be simply due to misfolding/aggregation toxicity of the causative mutant proteins, but may be defined by their genetic interactions with cellular pathways harboring mildly destabilizing missense alleles.

  10. Expression of DISC1-interactome members correlates with cognitive phenotypes related to schizophrenia.

    Science.gov (United States)

    Rampino, Antonio; Walker, Rosie May; Torrance, Helen Scott; Anderson, Susan Maguire; Fazio, Leonardo; Di Giorgio, Annabella; Taurisano, Paolo; Gelao, Barbara; Romano, Raffaella; Masellis, Rita; Ursini, Gianluca; Caforio, Grazia; Blasi, Giuseppe; Millar, J Kirsty; Porteous, David John; Thomson, Pippa Ann; Bertolino, Alessandro; Evans, Kathryn Louise

    2014-01-01

    Cognitive dysfunction is central to the schizophrenia phenotype. Genetic and functional studies have implicated Disrupted-in-Schizophrenia 1 (DISC1), a leading candidate gene for schizophrenia and related psychiatric conditions, in cognitive function. Altered expression of DISC1 and DISC1-interactors has been identified in schizophrenia. Dysregulated expression of DISC1-interactome genes might, therefore, contribute to schizophrenia susceptibility via disruption of molecular systems required for normal cognitive function. Here, the blood RNA expression levels of DISC1 and DISC1-interacting proteins were measured in 63 control subjects. Cognitive function was assessed using neuropsychiatric tests and functional magnetic resonance imaging was used to assess the activity of prefrontal cortical regions during the N-back working memory task, which is abnormal in schizophrenia. Pairwise correlations between gene expression levels and the relationship between gene expression levels and cognitive function and N-back-elicited brain activity were assessed. Finally, the expression levels of DISC1, AKAP9, FEZ1, NDEL1 and PCM1 were compared between 63 controls and 69 schizophrenic subjects. We found that DISC1-interactome genes showed correlated expression in the blood of healthy individuals. The expression levels of several interactome members were correlated with cognitive performance and N-back-elicited activity in the prefrontal cortex. In addition, DISC1 and NDEL1 showed decreased expression in schizophrenic subjects compared to healthy controls. Our findings highlight the importance of the coordinated expression of DISC1-interactome genes for normal cognitive function and suggest that dysregulated DISC1 and NDEL1 expression might, in part, contribute to susceptibility for schizophrenia via disruption of prefrontal cortex-dependent cognitive functions.

  11. Expression of DISC1-interactome members correlates with cognitive phenotypes related to schizophrenia.

    Directory of Open Access Journals (Sweden)

    Antonio Rampino

    Full Text Available Cognitive dysfunction is central to the schizophrenia phenotype. Genetic and functional studies have implicated Disrupted-in-Schizophrenia 1 (DISC1, a leading candidate gene for schizophrenia and related psychiatric conditions, in cognitive function. Altered expression of DISC1 and DISC1-interactors has been identified in schizophrenia. Dysregulated expression of DISC1-interactome genes might, therefore, contribute to schizophrenia susceptibility via disruption of molecular systems required for normal cognitive function. Here, the blood RNA expression levels of DISC1 and DISC1-interacting proteins were measured in 63 control subjects. Cognitive function was assessed using neuropsychiatric tests and functional magnetic resonance imaging was used to assess the activity of prefrontal cortical regions during the N-back working memory task, which is abnormal in schizophrenia. Pairwise correlations between gene expression levels and the relationship between gene expression levels and cognitive function and N-back-elicited brain activity were assessed. Finally, the expression levels of DISC1, AKAP9, FEZ1, NDEL1 and PCM1 were compared between 63 controls and 69 schizophrenic subjects. We found that DISC1-interactome genes showed correlated expression in the blood of healthy individuals. The expression levels of several interactome members were correlated with cognitive performance and N-back-elicited activity in the prefrontal cortex. In addition, DISC1 and NDEL1 showed decreased expression in schizophrenic subjects compared to healthy controls. Our findings highlight the importance of the coordinated expression of DISC1-interactome genes for normal cognitive function and suggest that dysregulated DISC1 and NDEL1 expression might, in part, contribute to susceptibility for schizophrenia via disruption of prefrontal cortex-dependent cognitive functions.

  12. Expression cartography of human tissues using self organizing maps

    Directory of Open Access Journals (Sweden)

    Löffler Markus

    2011-07-01

    Full Text Available Abstract Background Parallel high-throughput microarray and sequencing experiments produce vast quantities of multidimensional data which must be arranged and analyzed in a concerted way. One approach to addressing this challenge is the machine learning technique known as self organizing maps (SOMs. SOMs enable a parallel sample- and gene-centered view of genomic data combined with strong visualization and second-level analysis capabilities. The paper aims at bridging the gap between the potency of SOM-machine learning to reduce dimension of high-dimensional data on one hand and practical applications with special emphasis on gene expression analysis on the other hand. Results The method was applied to generate a SOM characterizing the whole genome expression profiles of 67 healthy human tissues selected from ten tissue categories (adipose, endocrine, homeostasis, digestion, exocrine, epithelium, sexual reproduction, muscle, immune system and nervous tissues. SOM mapping reduces the dimension of expression data from ten of thousands of genes to a few thousand metagenes, each representing a minicluster of co-regulated single genes. Tissue-specific and common properties shared between groups of tissues emerge as a handful of localized spots in the tissue maps collecting groups of co-regulated and co-expressed metagenes. The functional context of the spots was discovered using overrepresentation analysis with respect to pre-defined gene sets of known functional impact. We found that tissue related spots typically contain enriched populations of genes related to specific molecular processes in the respective tissue. Analysis techniques normally used at the gene-level such as two-way hierarchical clustering are better represented and provide better signal-to-noise ratios if applied to the metagenes. Metagene-based clustering analyses aggregate the tissues broadly into three clusters containing nervous, immune system and the remaining tissues

  13. Transgenic expression of cyclooxygenase-2 (COX2) causes premature aging phenotypes in mice.

    Science.gov (United States)

    Kim, Joohwee; Vaish, Vivek; Feng, Mingxiao; Field, Kevin; Chatzistamou, Ioulia; Shim, Minsub

    2016-10-07

    Cyclooxygenase (COX) is a key enzyme in the biosynthesis of prostanoids, lipid signaling molecules that regulate various physiological processes. COX2, one of the isoforms of COX, is highly inducible in response to a wide variety of cellular and environmental stresses. Increased COX2 expression is thought to play a role in the pathogenesis of many age-related diseases. COX2 expression is also reported to be increased in the tissues of aged humans and mice, which suggests the involvement of COX2 in the aging process. However, it is not clear whether the increased COX2 expression is causal to or a result of aging. We have now addressed this question by creating an inducible COX2 transgenic mouse model. Here we show that post-natal expression of COX2 led to a panel of aging-related phenotypes. The expression of p16, p53, and phospho-H2AX was increased in the tissues of COX2 transgenic mice. Additionally, adult mouse lung fibroblasts from COX2 transgenic mice exhibited increased expression of the senescence-associated β-galactosidase. Our study reveals that the increased COX2 expression has an impact on the aging process and suggests that modulation of COX2 and its downstream signaling may be an approach for intervention of age-related disorders.

  14. The expression of HSP in human skeletal muscle. Effects of muscle fiber phenotype and training background

    DEFF Research Database (Denmark)

    Folkesson, Mattias; Mackey, Abigail L; Langberg, Henning

    2013-01-01

    AIM: Exercise-induced adaptations of skeletal muscle are related to training mode and can be muscle fibre type specific. This study aimed to investigate heat shock protein expression in type I and type II muscle fibres in resting skeletal muscle of subjects with different training backgrounds...... myosin heavy chain I and IIA, αB-crystallin, HSP27, HSP60 and HSP70. RESULTS: In ACT and RES, but not in END, a fibre type specific expression with higher staining intensity in type I than type II fibres was seen for αB-crystallin. The opposite (II>I) was found for HSP27 in subjects from ACT (6 of 12...... HSPs in human skeletal muscle is influenced by muscle fibre phenotype. The fibre type specific expression of HSP70 is influenced by resistance and endurance training whereas those of αB-crystallin and HSP27 are influenced only by endurance training suggesting the existence of a training...

  15. High-Throughput Phenotyping and QTL Mapping Reveals the Genetic Architecture of Maize Plant Growth1[OPEN

    Science.gov (United States)

    Huang, Chenglong; Wu, Di; Qiao, Feng; Li, Wenqiang; Duan, Lingfeng; Wang, Ke; Xiao, Yingjie; Chen, Guoxing; Liu, Qian; Yang, Wanneng

    2017-01-01

    With increasing demand for novel traits in crop breeding, the plant research community faces the challenge of quantitatively analyzing the structure and function of large numbers of plants. A clear goal of high-throughput phenotyping is to bridge the gap between genomics and phenomics. In this study, we quantified 106 traits from a maize (Zea mays) recombinant inbred line population (n = 167) across 16 developmental stages using the automatic phenotyping platform. Quantitative trait locus (QTL) mapping with a high-density genetic linkage map, including 2,496 recombinant bins, was used to uncover the genetic basis of these complex agronomic traits, and 988 QTLs have been identified for all investigated traits, including three QTL hotspots. Biomass accumulation and final yield were predicted using a combination of dissected traits in the early growth stage. These results reveal the dynamic genetic architecture of maize plant growth and enhance ideotype-based maize breeding and prediction. PMID:28153923

  16. Mapping organism expression levels at cellular resolution in developing Drosophila

    Science.gov (United States)

    Knowles, David W.; Keranen, Soile; Biggin, Mark D.; Sudar, Damir

    2002-05-01

    The development of an animal embryo is orchestrated by a network of genetically determined, temporal and spatial gene expression patterns that determine the animals final form. To understand such networks, we are developing novel quantitative optical imaging techniques to map gene expression levels at cellular and sub-cellular resolution within pregastrula Drosophila. Embryos at different stages of development are labeled for total DNA and specific gene products using different fluorophors and imaged in 3D with confocal microscopy. Innovative steps have been made which allow the DNA-image to be automatically segmented to produce a morphological mask of the individual nuclear boundaries. For each stage of development an average morphology is chosen to which images from different embryo are compared. The morphological mask is then used to quantify gene-product on a per nuclei basis. What results is an atlas of the relative amount of the specific gene product expressed within the nucleus of every cell in the embryo at the various stages of development. We are creating a quantitative database of transcription factor and target gene expression patterns in wild-type and factor mutant embryos with single cell resolution. Our goal is to uncover the rules determining how patterns of gene expression are generated.

  17. Phenotypic characterization, genetic mapping and candidate gene analysis of a source conferring reduced plant height in sunflower.

    Science.gov (United States)

    Ramos, María Laura; Altieri, Emiliano; Bulos, Mariano; Sala, Carlos A

    2013-01-01

    Reduced height germplasm has the potential to increase stem strength, standability, and also yields potential of the sunflower crop (Helianthus annuus L. var. macrocarpus Ckll.). In this study, we report on the inheritance, mapping, phenotypic and molecular characterization of a reduced plant height trait in inbred lines derived from the source DDR. This trait is controlled by a semidominant allele, Rht1, which maps on linkage group 12 of the sunflower public consensus map. Phenotypic effects of this allele include shorter height and internode length, insensibility to exogenous gibberellin application, normal skotomorphogenetic response, and reduced seed set under self-pollination conditions. This later effect presumably is related to the reduced pollen viability observed in all DDR-derived lines studied. Rht1 completely cosegregated with a haplotype of the HaDella1 gene sequence. This haplotype consists of a point mutation converting a leucine residue in a proline within the conserved DELLA domain. Taken together, the phenotypic, genetic, and molecular results reported here indicate that Rht1 in sunflower likely encodes an altered DELLA protein. If the DELPA motif of the HaDELLA1 sequence in the Rht1-encoded protein determines by itself the observed reduction in height is a matter that remains to be investigated.

  18. Cloning, expression, and chromosome mapping of human galectin-7

    DEFF Research Database (Denmark)

    Madsen, Peder; Rasmussen, H H; Flint, T

    1995-01-01

    The galectins are a family of beta-galactoside-binding proteins implicated in modulating cell-cell and cell-matrix interactions. Here we report the cloning and expression of a novel member of this family (galectin-7) that correspond to IEF (isoelectric focusing) 17 (12,700 Da; pI, 7.6) in the human...... keratinocyte protein data base, and that is strikingly down-regulated in SV40 transformed keratinocytes (K14). The cDNA was cloned from a lambda gt11 cDNA expression library using degenerated oligodeoxyribonucleotides back-translated from an IEF 17 peptide sequence. The protein encoded by the galectin-7 clone......14 keratinocytes imply a role in cell-cell and/or cell-matrix interactions necessary for normal growth control. The galectin-7 gene was mapped to chromosome 19. Udgivelsesdato: 1995-Mar-17...

  19. The life of a dead ant -the expression of an adaptive extended phenotype

    DEFF Research Database (Denmark)

    Andersen, Sandra Breum; Gerritsma, Sylvia; Yusah, Kalsum M.

    2009-01-01

    to make hosts bite onto vegetation prior to killing them. We show that this represents a fine-tuned fungal adaptation: an extended phenotype. Dead ants were found under leaves, attached by their mandibles, on the northern side of saplings ca. 25 cm above the soil, where temperature and humidity conditions......Specialized parasites are expected to express complex adaptations to their hosts. Manipulation of host behavior is such an adaptation. We studied the fungus Ophiocordyceps unilateralis, a locally specialized parasite of arboreal Camponotus leonardi ants. Ant-infecting Ophiocordyceps are known...

  20. Developmental Connectivity and Molecular Phenotypes of Unique Cortical Projection Neurons that Express a Synapse-Associated Receptor Tyrosine Kinase.

    Science.gov (United States)

    Kast, Ryan J; Wu, Hsiao-Huei; Levitt, Pat

    2017-11-28

    The complex circuitry and cell-type diversity of the cerebral cortex are required for its high-level functions. The mechanisms underlying the diversification of cortical neurons during prenatal development have received substantial attention, but understanding of neuronal heterogeneity is more limited during later periods of cortical circuit maturation. To address this knowledge gap, connectivity analysis and molecular phenotyping of cortical neuron subtypes that express the developing synapse-enriched MET receptor tyrosine kinase were performed. Experiments used a MetGFP transgenic mouse line, combined with coexpression analysis of class-specific molecular markers and retrograde connectivity mapping. The results reveal that MET is expressed by a minor subset of subcerebral and a larger number of intratelencephalic projection neurons. Remarkably, MET is excluded from most layer 6 corticothalamic neurons. These findings are particularly relevant for understanding the maturation of discrete cortical circuits, given converging evidence that MET influences dendritic elaboration and glutamatergic synapse maturation. The data suggest that classically defined cortical projection classes can be further subdivided based on molecular characteristics that likely influence synaptic maturation and circuit wiring. Additionally, given that MET is classified as a high confidence autism risk gene, the data suggest that projection neuron subpopulations may be differentially vulnerable to disorder-associated genetic variation. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  1. Hepatic Transporter Expression in Metabolic Syndrome: Phenotype, Serum Metabolic Hormones, and Transcription Factor Expression.

    Science.gov (United States)

    Donepudi, Ajay C; Cheng, Qiuqiong; Lu, Zhenqiang James; Cherrington, Nathan J; Slitt, Angela L

    2016-04-01

    Metabolic syndrome is a multifactorial disease associated with obesity, insulin resistance, diabetes, and the alteration of multiple metabolic hormones. Obesity rates have been rising worldwide, which increases our need to understand how this population will respond to drugs and exposure to other chemicals. The purpose of this study was to determine in lean and obese mice the ontogeny of clinical biomarkers such as serum hormone and blood glucose levels as well as the physiologic markers that correlate with nuclear receptor- and transporter-related pathways. Livers from male and female wild-type (WT) (C57BL/6) and ob/ob mice littermates were collected before, during, and after the onset of obesity. Serum hormone and mRNA levels were analyzed. Physiologic changes and gene expression during maturation and progression to obesity were performed and correlation analysis was performed using canonical correlations. Significant ontogenic changes in both WT and ob/ob mice were observed and these ontogenic changes differ in ob/ob mice with the development of obesity. In males and females, the ontogenic pattern of the expression of genes such as Abcc3, 4, Abcg2, Cyp2b10, and 4a14 started to differ from week 3, and became significant at weeks 4 and 8 in ob/ob mice compared with WT mice. In obese males, serum resistin, glucagon, and glucose levels correlated with the expression of most hepatic ATP-binding cassette (Abc) transporters, whereas in obese females, serum glucagon-like peptide 1 levels were correlated with most hepatic uptake transporters and P450 enzymes. Overall, the correlation between physiologic changes and gene expression indicate that metabolism-related hormones may play a role in regulating the genes involved in drug metabolism and transport. Copyright © 2016 by The American Society for Pharmacology and Experimental Therapeutics.

  2. Map-based cloning and expression analysis of BMR-6 in sorghum.

    Science.gov (United States)

    Li, Jieqin; Wang, Lihua; Zhang, Qiuwen; Liu, Yanlong

    2015-09-01

    Brown midrib mutants in sorghum are associated with reduced lignin content and increased cell wall digestibility. In this study, we characterized a bmr-6 sorghum mutant, which shows reddish pigment in the midrib and stem after the fifth-leaf stage. Compared to wild type, Kalson lignin content of bmr-6 is decreased significantly. We used histological analysis to determine that the mutant exhibited a modified pattern of lignin staining and found an increased polysaccharide content. We cloned BMR-6 gene, a gene encoded a cinnamyl alcohol dehydrogenase (CAD), using a map-based cloning approach. Genetic complementation confirmed that CAD is responsible for the BMR-6 phenotype. BMR-6 gene was expressed in all tested sorghum tissues, with the highest being in midrib and stem. Transient expression assays in Nicotiana benthamiana leaves demonstrated cytomplasmic localization of BMR-6. We found that the expression level of bmr-6 was significantly decreased in the mutant but expression of SbCAD3 and SbCAD5 were significantly increased. Our results indicate that BMR-6 not only affects the distribution of lignin but also the biosynthesis of lignin in sorghum.

  3. Variable phenotypic expression and onset in MYH14 distal hereditary motor neuropathy phenotype in a large, multigenerational North American family.

    Science.gov (United States)

    Iyadurai, Stanley; Arnold, W David; Kissel, John T; Ruhno, Corey; Mcgovern, Vicki L; Snyder, Pamela J; Prior, Thomas W; Roggenbuck, Jennifer; Burghes, Arthur H; Kolb, Stephen J

    2017-08-01

    Distal hereditary motor neuropathy (dHMN) causes distal-predominant weakness without prominent sensory loss. Myosin heavy chain disorders most commonly result in distal myopathy and cardiomyopathy with or without hearing loss, but a complex phenotype with dHMN, myopathy, hoarseness, and hearing loss was reported in a Korean family with a c.2822G>T mutation in MYH14. In this study we report phenotypic features in a North American family with the c.2822G>T in MYH14. Clinical and molecular characterization was performed in a large, 6-generation, Caucasian family with MYH14 dHMN. A total of 11 affected and 7 unaffected individuals were evaluated and showed varying age of onset and severity of weakness. Genotypic concordance was confirmed with molecular analysis. Electrophysiological studies demonstrated distal motor axonal degeneration without myopathy in all affected subjects tested. Mutation of MYH14 can result in a range of neuromuscular phenotypes that includes a dHMN and hearing loss phenotype with variable age of onset. Muscle Nerve 56: 341-345, 2017. © 2016 Wiley Periodicals, Inc.

  4. Alteration of Hepatic Gene Expression along with the Inherited Phenotype of Acquired Fatty Liver in Chicken

    Directory of Open Access Journals (Sweden)

    Yonghong Zhang

    2018-04-01

    Full Text Available Fatty liver is a widespread disease in chickens that causes a decrease in egg production and even death. The characteristics of the inherited phenotype of acquired fatty liver and the molecular mechanisms underlying it, however, are largely unknown. In the current study, fatty liver was induced in 3 breeds by a high-fat (HF diet and a methionine choline-deficient (MCD diet. The results showed that the dwarf Jingxing-Huang (JXH chicken was more susceptible to fatty liver compared with the layer White Leghorns (WL and local Beijing-You (BJY breeds. In addition, it was found that the paternal fatty livers induced by HF diet in JXH chickens were inherited. Compared to birds without fatty liver in the control group, both offsprings and their sires with fatty livers in the paternal group exhibited altered hepatic gene expression profiles, including upregulation of several key genes involved in fatty acid metabolism, lipid metabolism and glucose metabolism (ACACA, FASN, SCD, ACSL5, FADS2, FABP1, APOA4 and ME1. This study uniquely revealed that acquired fatty liver in cocks can be inherited. The hepatic gene expression profiles were altered in chickens with the inherited phenotype of acquired paternal fatty liver and several genes could be candidate biomarkers.

  5. Alteration of Hepatic Gene Expression along with the Inherited Phenotype of Acquired Fatty Liver in Chicken

    Science.gov (United States)

    Zhang, Yonghong; Liu, Zhen; Liu, Ranran; Wang, Jie; Zheng, Maiqing; Li, Qinghe; Cui, Huanxian; Zhao, Guiping; Wen, Jie

    2018-01-01

    Fatty liver is a widespread disease in chickens that causes a decrease in egg production and even death. The characteristics of the inherited phenotype of acquired fatty liver and the molecular mechanisms underlying it, however, are largely unknown. In the current study, fatty liver was induced in 3 breeds by a high-fat (HF) diet and a methionine choline-deficient (MCD) diet. The results showed that the dwarf Jingxing-Huang (JXH) chicken was more susceptible to fatty liver compared with the layer White Leghorns (WL) and local Beijing-You (BJY) breeds. In addition, it was found that the paternal fatty livers induced by HF diet in JXH chickens were inherited. Compared to birds without fatty liver in the control group, both offsprings and their sires with fatty livers in the paternal group exhibited altered hepatic gene expression profiles, including upregulation of several key genes involved in fatty acid metabolism, lipid metabolism and glucose metabolism (ACACA, FASN, SCD, ACSL5, FADS2, FABP1, APOA4 and ME1). This study uniquely revealed that acquired fatty liver in cocks can be inherited. The hepatic gene expression profiles were altered in chickens with the inherited phenotype of acquired paternal fatty liver and several genes could be candidate biomarkers. PMID:29642504

  6. Alteration of Hepatic Gene Expression along with the Inherited Phenotype of Acquired Fatty Liver in Chicken.

    Science.gov (United States)

    Zhang, Yonghong; Liu, Zhen; Liu, Ranran; Wang, Jie; Zheng, Maiqing; Li, Qinghe; Cui, Huanxian; Zhao, Guiping; Wen, Jie

    2018-04-08

    Fatty liver is a widespread disease in chickens that causes a decrease in egg production and even death. The characteristics of the inherited phenotype of acquired fatty liver and the molecular mechanisms underlying it, however, are largely unknown. In the current study, fatty liver was induced in 3 breeds by a high-fat (HF) diet and a methionine choline-deficient (MCD) diet. The results showed that the dwarf Jingxing-Huang (JXH) chicken was more susceptible to fatty liver compared with the layer White Leghorns (WL) and local Beijing-You (BJY) breeds. In addition, it was found that the paternal fatty livers induced by HF diet in JXH chickens were inherited. Compared to birds without fatty liver in the control group, both offsprings and their sires with fatty livers in the paternal group exhibited altered hepatic gene expression profiles, including upregulation of several key genes involved in fatty acid metabolism, lipid metabolism and glucose metabolism ( ACACA , FASN , SCD , ACSL5 , FADS2 , FABP1 , APOA4 and ME1 ). This study uniquely revealed that acquired fatty liver in cocks can be inherited. The hepatic gene expression profiles were altered in chickens with the inherited phenotype of acquired paternal fatty liver and several genes could be candidate biomarkers.

  7. Gene expression profiling in the striatum of inbred mouse strains with distinct opioid-related phenotypes

    Directory of Open Access Journals (Sweden)

    Piechota Marcin

    2006-06-01

    Full Text Available Abstract Background Mouse strains with a contrasting response to morphine provide a unique model for studying the genetically determined diversity of sensitivity to opioid reward, tolerance and dependence. Four inbred strains selected for this study exhibit the most distinct opioid-related phenotypes. C57BL/6J and DBA/2J mice show remarkable differences in morphine-induced antinociception, self-administration and locomotor activity. 129P3/J mice display low morphine tolerance and dependence in contrast to high sensitivity to precipitated withdrawal observed in SWR/J and C57BL/6J strains. In this study, we attempted to investigate the relationships between genetic background and basal gene expression profile in the striatum, a brain region involved in the mechanism of opioid action. Results Gene expression was studied by Affymetrix Mouse Genome 430v2.0 arrays with probes for over 39.000 transcripts. Analysis of variance with the control for false discovery rate (q Khdrbs1 and ATPase Na+/K+ alpha2 subunit (Atp1a2 with morphine self-administration and analgesic effects, respectively. Finally, the examination of transcript structure demonstrated a possible inter-strain variability of expressed mRNA forms as for example the catechol-O-methyltransferase (Comt gene. Conclusion The presented study led to the recognition of differences in the gene expression that may account for distinct phenotypes. Moreover, results indicate strong contribution of genetic background to differences in gene transcription in the mouse striatum. The genes identified in this work constitute promising candidates for further animal studies and for translational genetic studies in the field of addictive and analgesic properties of opioids.

  8. Integration of Neuroimaging and Microarray Datasets  through Mapping and Model-Theoretic Semantic Decomposition of Unstructured Phenotypes

    Directory of Open Access Journals (Sweden)

    Spiro P. Pantazatos

    2009-06-01

    Full Text Available An approach towards heterogeneous neuroscience dataset integration is proposed that uses Natural Language Processing (NLP and a knowledge-based phenotype organizer system (PhenOS to link ontology-anchored terms to underlying data from each database, and then maps these terms based on a computable model of disease (SNOMED CT®. The approach was implemented using sample datasets from fMRIDC, GEO, The Whole Brain Atlas and Neuronames, and allowed for complex queries such as “List all disorders with a finding site of brain region X, and then find the semantically related references in all participating databases based on the ontological model of the disease or its anatomical and morphological attributes”. Precision of the NLP-derived coding of the unstructured phenotypes in each dataset was 88% (n = 50, and precision of the semantic mapping between these terms across datasets was 98% (n = 100. To our knowledge, this is the first example of the use of both semantic decomposition of disease relationships and hierarchical information found in ontologies to integrate heterogeneous phenotypes across clinical and molecular datasets.

  9. A Model-Based Joint Identification of Differentially Expressed Genes and Phenotype-Associated Genes.

    Directory of Open Access Journals (Sweden)

    Samuel Sunghwan Cho

    Full Text Available Over the last decade, many analytical methods and tools have been developed for microarray data. The detection of differentially expressed genes (DEGs among different treatment groups is often a primary purpose of microarray data analysis. In addition, association studies investigating the relationship between genes and a phenotype of interest such as survival time are also popular in microarray data analysis. Phenotype association analysis provides a list of phenotype-associated genes (PAGs. However, it is sometimes necessary to identify genes that are both DEGs and PAGs. We consider the joint identification of DEGs and PAGs in microarray data analyses. The first approach we used was a naïve approach that detects DEGs and PAGs separately and then identifies the genes in an intersection of the list of PAGs and DEGs. The second approach we considered was a hierarchical approach that detects DEGs first and then chooses PAGs from among the DEGs or vice versa. In this study, we propose a new model-based approach for the joint identification of DEGs and PAGs. Unlike the previous two-step approaches, the proposed method identifies genes simultaneously that are DEGs and PAGs. This method uses standard regression models but adopts different null hypothesis from ordinary regression models, which allows us to perform joint identification in one-step. The proposed model-based methods were evaluated using experimental data and simulation studies. The proposed methods were used to analyze a microarray experiment in which the main interest lies in detecting genes that are both DEGs and PAGs, where DEGs are identified between two diet groups and PAGs are associated with four phenotypes reflecting the expression of leptin, adiponectin, insulin-like growth factor 1, and insulin. Model-based approaches provided a larger number of genes, which are both DEGs and PAGs, than other methods. Simulation studies showed that they have more power than other methods

  10. A Model-Based Joint Identification of Differentially Expressed Genes and Phenotype-Associated Genes

    Science.gov (United States)

    Seo, Minseok; Shin, Su-kyung; Kwon, Eun-Young; Kim, Sung-Eun; Bae, Yun-Jung; Lee, Seungyeoun; Sung, Mi-Kyung; Choi, Myung-Sook; Park, Taesung

    2016-01-01

    Over the last decade, many analytical methods and tools have been developed for microarray data. The detection of differentially expressed genes (DEGs) among different treatment groups is often a primary purpose of microarray data analysis. In addition, association studies investigating the relationship between genes and a phenotype of interest such as survival time are also popular in microarray data analysis. Phenotype association analysis provides a list of phenotype-associated genes (PAGs). However, it is sometimes necessary to identify genes that are both DEGs and PAGs. We consider the joint identification of DEGs and PAGs in microarray data analyses. The first approach we used was a naïve approach that detects DEGs and PAGs separately and then identifies the genes in an intersection of the list of PAGs and DEGs. The second approach we considered was a hierarchical approach that detects DEGs first and then chooses PAGs from among the DEGs or vice versa. In this study, we propose a new model-based approach for the joint identification of DEGs and PAGs. Unlike the previous two-step approaches, the proposed method identifies genes simultaneously that are DEGs and PAGs. This method uses standard regression models but adopts different null hypothesis from ordinary regression models, which allows us to perform joint identification in one-step. The proposed model-based methods were evaluated using experimental data and simulation studies. The proposed methods were used to analyze a microarray experiment in which the main interest lies in detecting genes that are both DEGs and PAGs, where DEGs are identified between two diet groups and PAGs are associated with four phenotypes reflecting the expression of leptin, adiponectin, insulin-like growth factor 1, and insulin. Model-based approaches provided a larger number of genes, which are both DEGs and PAGs, than other methods. Simulation studies showed that they have more power than other methods. Through analysis of

  11. Litter size variation in hypothalamic gene expression determines adult metabolic phenotype in Brandt's voles (Lasiopodomys brandtii.

    Directory of Open Access Journals (Sweden)

    Xue-Ying Zhang

    Full Text Available Early postnatal environments may have long-term and potentially irreversible consequences on hypothalamic neurons involved in energy homeostasis. Litter size is an important life history trait and negatively correlated with milk intake in small mammals, and thus has been regarded as a naturally varying feature of the early developmental environment. Here we investigated the long-term effects of litter size on metabolic phenotype and hypothalamic neuropeptide mRNA expression involved in the regulation of energy homeostasis, using the offspring reared from large (10-12 and small (3-4 litter sizes, of Brandt's voles (Lasiopodomys brandtii, a rodent species from Inner Mongolia grassland in China.Hypothalamic leptin signaling and neuropeptides were measured by Real-Time PCR. We showed that offspring reared from small litters were heavier at weaning and also in adulthood than offspring from large litters, accompanied by increased food intake during development. There were no significant differences in serum leptin levels or leptin receptor (OB-Rb mRNA in the hypothalamus at weaning or in adulthood, however, hypothalamic suppressor of cytokine signaling 3 (SOCS3 mRNA in adulthood increased in small litters compared to that in large litters. As a result, the agouti-related peptide (AgRP mRNA increased in the offspring from small litters.These findings support our hypothesis that natural litter size has a permanent effect on offspring metabolic phenotype and hypothalamic neuropeptide expression, and suggest central leptin resistance and the resultant increase in AgRP expression may be a fundamental mechanism underlying hyperphagia and the increased risk of overweight in pups of small litters. Thus, we conclude that litter size may be an important and central determinant of metabolic fitness in adulthood.

  12. Meta-analysis of peripheral blood gene expression modules for COPD phenotypes.

    Directory of Open Access Journals (Sweden)

    Dominik Reinhold

    Full Text Available Chronic obstructive pulmonary disease (COPD occurs typically in current or former smokers, but only a minority of people with smoking history develops the disease. Besides environmental factors, genetics is an important risk factor for COPD. However, the relationship between genetics, environment and phenotypes is not well understood. Sample sizes for genome-wide expression studies based on lung tissue have been small due to the invasive nature of sample collection. Increasing evidence for the systemic nature of the disease makes blood a good alternative source to study the disease, but there have also been few large-scale blood genomic studies in COPD. Due to the complexity and heterogeneity of COPD, examining groups of interacting genes may have more relevance than identifying individual genes. Therefore, we used Weighted Gene Co-expression Network Analysis to find groups of genes (modules that are highly connected. However, module definitions may vary between individual data sets. To alleviate this problem, we used a consensus module definition based on two cohorts, COPDGene and ECLIPSE. We studied the relationship between the consensus modules and COPD phenotypes airflow obstruction and emphysema. We also used these consensus module definitions on an independent cohort (TESRA and performed a meta analysis involving all data sets. We found several modules that are associated with COPD phenotypes, are enriched in functional categories and are overrepresented for cell-type specific genes. Of the 14 consensus modules, three were strongly associated with airflow obstruction (meta p ≤ 0.0002, and two had some association with emphysema (meta p ≤ 0.06; some associations were stronger in the case-control cohorts, and others in the cases-only subcohorts. Gene Ontology terms that were overrepresented included "immune response" and "defense response." The cell types whose type-specific genes were overrepresented in modules (p < 0.05 included

  13. Phenotype and Tissue Expression as a Function of Genetic Risk in Polycystic Ovary Syndrome.

    Directory of Open Access Journals (Sweden)

    Cindy T Pau

    Full Text Available Genome-wide association studies and replication analyses have identified (n = 5 or replicated (n = 10 DNA variants associated with risk for polycystic ovary syndrome (PCOS in European women. However, the causal gene and underlying mechanism for PCOS risk at these loci have not been determined. We hypothesized that analysis of phenotype, gene expression and metformin response as a function of genotype would identify candidate genes and pathways that could provide insight into the underlying mechanism for risk at these loci. To test the hypothesis, subjects with PCOS (n = 427 diagnosed according to the NIH criteria (< 9 menses per year and clinical or biochemical hyperandrogenism and controls (n = 407 with extensive phenotyping were studied. A subset of subjects (n = 38 underwent a subcutaneous adipose tissue biopsy for RNA sequencing and were subsequently treated with metformin for 12 weeks with standardized outcomes measured. Data were analyzed according to genotype at PCOS risk loci and adjusted for the false discovery rate. A gene variant in the THADA locus was associated with response to metformin and metformin was a predicted upstream regulator at the same locus. Genotype at the FSHB locus was associated with LH levels. Genes near the PCOS risk loci demonstrated differences in expression as a function of genotype in adipose including BLK and NEIL2 (GATA4 locus, GLIPR1 and PHLDA1 (KRR1 locus. Based on the phenotypes, expression quantitative trait loci (eQTL, and upstream regulatory and pathway analyses we hypothesize that there are PCOS subtypes. FSHB, FHSR and LHR loci may influence PCOS risk based on their relationship to gonadotropin levels. The THADA, GATA4, ERBB4, SUMO1P1, KRR1 and RAB5B loci appear to confer risk through metabolic mechanisms. The IRF1, SUMO1P1 and KRR1 loci may confer PCOS risk in development. The TOX3 and GATA4 loci appear to be involved in inflammation and its consequences. The data suggest potential PCOS subtypes and

  14. Global Gene Expression Analysis of Cross-Protected Phenotype of Pectobacterium atrosepticum.

    Directory of Open Access Journals (Sweden)

    Vladimir Gorshkov

    Full Text Available The ability to adapt to adverse conditions permits many bacterial species to be virtually ubiquitous and survive in a variety of ecological niches. This ability is of particular importance for many plant pathogenic bacteria that should be able to exist, except for their host plants, in different environments e.g. soil, water, insect-vectors etc. Under some of these conditions, bacteria encounter absence of nutrients and persist, acquiring new properties related to resistance to a variety of stress factors (cross-protection. Although many studies describe the phenomenon of cross-protection and several regulatory components that induce the formation of resistant cells were elucidated, the global comparison of the physiology of cross-protected phenotype and growing cells has not been performed. In our study, we took advantage of RNA-Seq technology to gain better insights into the physiology of cross-protected cells on the example of a harmful phytopathogen, Pectobacterium atrosepticum (Pba that causes crop losses all over the world. The success of this bacterium in plant colonization is related to both its virulence potential and ability to persist effectively under various stress conditions (including nutrient deprivation retaining the ability to infect plants afterwards. In our previous studies, we showed Pba to be advanced in applying different adaptive strategies that led to manifestation of cell resistance to multiple stress factors. In the present study, we determined the period necessary for the formation of cross-protected Pba phenotype under starvation conditions, and compare the transcriptome profiles of non-adapted growing cells and of adapted cells after the cross-protective effect has reached the maximal level. The obtained data were verified using qRT-PCR. Genes that were expressed differentially (DEGs in two cell types were classified into functional groups and categories using different approaches. As a result, we portrayed

  15. The life of a dead ant: the expression of an adaptive extended phenotype.

    Science.gov (United States)

    Andersen, Sandra B; Gerritsma, Sylvia; Yusah, Kalsum M; Mayntz, David; Hywel-Jones, Nigel L; Billen, Johan; Boomsma, Jacobus J; Hughes, David P

    2009-09-01

    Specialized parasites are expected to express complex adaptations to their hosts. Manipulation of host behavior is such an adaptation. We studied the fungus Ophiocordyceps unilateralis, a locally specialized parasite of arboreal Camponotus leonardi ants. Ant-infecting Ophiocordyceps are known to make hosts bite onto vegetation before killing them. We show that this represents a fine-tuned fungal adaptation: an extended phenotype. Dead ants were found under leaves, attached by their mandibles, on the northern side of saplings approximately 25 cm above the soil, where temperature and humidity conditions were optimal for fungal growth. Experimental relocation confirmed that parasite fitness was lower outside this manipulative zone. Host resources were rapidly colonized and further secured by extensive internal structuring. Nutritional composition analysis indicated that such structuring allows the parasite to produce a large fruiting body for spore production. Our findings suggest that the osmotrophic lifestyle of fungi may have facilitated novel exploitation strategies.

  16. Expression of Caytaxin protein in Cayman Ataxia mouse models correlates with phenotype severity.

    Directory of Open Access Journals (Sweden)

    Kristine M Sikora

    Full Text Available Caytaxin is a highly-conserved protein, which is encoded by the Atcay/ATCAY gene. Mutations in Atcay/ATCAY have been identified as causative of cerebellar disorders such as the rare hereditary disease Cayman ataxia in humans, generalized dystonia in the dystonic (dt rat, and marked motor defects in three ataxic mouse lines. While several lines of evidence suggest that Caytaxin plays a critical role in maintaining nervous system processes, the physiological function of Caytaxin has not been fully characterized. In the study presented here, we generated novel specific monoclonal antibodies against full-length Caytaxin to examine endogenous Caytaxin expression in wild type and Atcay mutant mouse lines. Caytaxin protein is absent from brain tissues in the two severely ataxic Atcay(jit (jittery and Atcay(swd (sidewinder mutant lines, and markedly decreased in the mildly ataxic/dystonic Atcay(ji-hes (hesitant line, indicating a correlation between Caytaxin expression and disease severity. As the expression of wild type human Caytaxin in mutant sidewinder and jittery mice rescues the ataxic phenotype, Caytaxin's physiological function appears to be conserved between the human and mouse orthologs. Across multiple species and in several neuronal cell lines Caytaxin is expressed as several protein isoforms, the two largest of which are caused by the usage of conserved methionine translation start sites. The work described in this manuscript presents an initial characterization of the Caytaxin protein and its expression in wild type and several mutant mouse models. Utilizing these animal models of human Cayman Ataxia will now allow an in-depth analysis to elucidate Caytaxin's role in maintaining normal neuronal function.

  17. 3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line

    International Nuclear Information System (INIS)

    Hatta, Mitsutoki; Naganuma, Kaori; Kato, Kenichi; Yamazaki, Jun

    2015-01-01

    In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial–mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histone H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell–cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns. - Highlights: • DZNep reduced PcG proteins and associated histone modifications in OSCC cells. • DZNep enhanced cell–cell adhesion indicative of epithelial phenotype in OSCC cells. • DZNep suppressed the aggressive phenotype-related gene expression in OSCC cells. • DZNep activated the gene expression of epithelial markers in OSCC cells.

  18. 3-Deazaneplanocin A suppresses aggressive phenotype-related gene expression in an oral squamous cell carcinoma cell line

    Energy Technology Data Exchange (ETDEWEB)

    Hatta, Mitsutoki, E-mail: hatta@college.fdcnet.ac.jp [Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka (Japan); Naganuma, Kaori [Department of Oral and Maxillofacial Surgery, Fukuoka Dental College, Fukuoka (Japan); Kato, Kenichi; Yamazaki, Jun [Department of Physiological Science and Molecular Biology, Fukuoka Dental College, Fukuoka (Japan)

    2015-12-04

    In tumor tissues, alterations of gene expression caused by aberrant epigenetic modifications confer phenotypic diversity on malignant cells. Although 3-deazaneplanocin A (DZNep) has been shown to reactivate tumor suppressor genes in several cancer cells, it remains unclear whether DZNep attenuates the malignant phenotypes of oral squamous cell carcinoma (OSCC) cells. In this study, we investigated the effect of DZNep on the expression of genes related to aggressive phenotypes, such as epithelial–mesenchymal transition, in OSCC cells. We found that DZNep reduced the cellular levels of polycomb group proteins (EZH2, SUZ12, BMI1, and RING1A) and the associated trimethylation of Lys27 on histone H3 and monoubiquitination of Lys119 on histone H2A in the poorly differentiated OSCC cell line SAS. Immunocytochemical staining demonstrated that DZNep induced the reorganization of filamentous actin and the membrane localization of E-cadherin associated with cell–cell adhesions. We also found an inhibitory effect of DZNep on cell proliferation using a WST assay. Finally, quantitative RT-PCR analysis demonstrated that genes involved in the aggressive phenotypes (TWIST2, EGFR, ACTA2, TGFB1, WNT5B, and APLIN) were down-regulated, whereas epithelial phenotype genes (CDH1, CLDN4, IVL, and TGM1) were up-regulated in SAS cells treated with DZNep. Collectively, our findings suggest that DZNep reverses the aggressive characteristics of OSCC cells through the dynamic regulation of epithelial plasticity via the reprogramming of gene expression patterns. - Highlights: • DZNep reduced PcG proteins and associated histone modifications in OSCC cells. • DZNep enhanced cell–cell adhesion indicative of epithelial phenotype in OSCC cells. • DZNep suppressed the aggressive phenotype-related gene expression in OSCC cells. • DZNep activated the gene expression of epithelial markers in OSCC cells.

  19. Mild expression of mitral valve prolapse in the Framingham offspring: expanding the phenotypic spectrum.

    Science.gov (United States)

    Delling, Francesca N; Gona, Philimon; Larson, Martin G; Lehman, Birgitta; Manning, Warren J; Levine, Robert A; Benjamin, Emelia J; Vasan, Ramachandran S

    2014-01-01

    Mitral valve (MV) prolapse (MVP) is a common disorder associated with mitral regurgitation, endocarditis, heart failure, and sudden death. Nondiagnostic morphologies have been described in the familial context and may represent early expression of MVP in those genetically predisposed. The aim of this study was to explore the spectrum of MVP abnormalities in the community and compare their clinical and echocardiographic features. We measured annular diameter MV leaflet displacement, thickness, anterior and posterior leaflet projections onto the annulus, MV leaflet coaptation height (posterior MV leaflet projection/annular diameter), and MR jet height in 296 individuals of the Framingham Offspring Study with MVP (n = 77), the "abnormal anterior coaptation" (AAC) phenotype (n = 11) or "minimal systolic displacement" (MSD) (n = 57), and 151 age-matched and sex-matched referents with no MVP or its nondiagnostic forms. AAC did not meet diagnostic displacement criteria but resembled MVP with regard to annular diameter and leaflet thickness (P > .05 for both). AAC was similar to posterior MVP with regard to posterior leaflet asymmetry and an anteriorly shifted coaptation (P = .91). Compared to patients with MSD and referents, patients with AAC had greater leaflet coaptation height, thickness, and annular diameter (P MVP, but the coaptation point was more posterior (coaptation height = 31% vs. 42%, P MVP had jet height ≥ 2 mm (mild or greater MR) compared with the other participants (44% vs. 16%, P MVP. AAC and MSD may thus represent early expressions of MVP. Longitudinal studies are warranted to elucidate the natural history of these phenotypes. Published by Mosby, Inc.

  20. Phenotypic plasticity in opsin expression in a butterfly compound eye complements sex role reversal

    Directory of Open Access Journals (Sweden)

    Everett Andrew

    2012-11-01

    Full Text Available Abstract Background Animals often display phenotypic plasticity in morphologies and behaviors that result in distinct adaptations to fluctuating seasonal environments. The butterfly Bicyclus anynana has two seasonal forms, wet and dry, that vary in wing ornament brightness and in the identity of the sex that performs the most courting and choosing. Rearing temperature is the cue for producing these alternative seasonal forms. We hypothesized that, barring any developmental constraints, vision should be enhanced in the choosy individuals but diminished in the non-choosy individuals due to physiological costs. As a proxy of visual performance we measured eye size, facet lens size, and sensitivity to light, e.g., the expression levels of all opsins, in males and females of both seasonal forms. Results We found that B. anynana eyes displayed significant sexual dimorphism and phenotypic plasticity for both morphology and opsin expression levels, but not all results conformed to our prediction. Males had larger eyes than females across rearing temperatures, and increases in temperature produced larger eyes in both sexes, mostly via increases in facet number. Ommatidia were larger in the choosy dry season (DS males and transcript levels for all three opsins were significantly lower in the less choosy DS females. Conclusions Opsin level plasticity in females, and ommatidia size plasticity in males supported our visual plasticity hypothesis but males appear to maintain high visual function across both seasons. We discuss our results in the context of distinct sexual and natural selection pressures that may be facing each sex in the wild in each season.

  1. Spectral map-analysis: a method to analyze gene expression data

    OpenAIRE

    Bijnens, Luc J.M.; Lewi, Paul J.; Göhlmann, Hinrich W.; Molenberghs, Geert; Wouters, Luc

    2004-01-01

    bioinformatics; biplot; correspondence factor analysis; data mining; data visualization; gene expression data; microarray data; multivariate exploratory data analysis; principal component analysis; Spectral map analysis

  2. Phenotypic and gene expression changes between low (glucose-responsive) and High (glucose non-responsive) MIN-6 beta cells

    DEFF Research Database (Denmark)

    O´Driscoll, L.; Gammell, p.; McKierman, E.

    2006-01-01

    The long-term potential to routinely use replacement beta cells/islets as cell therapy for type 1 diabetes relies on our ability to culture such cells/islets, in vitro, while maintaining their functional status. Previous beta cell studies, by ourselves and other researchers, have indicated...... that the glucose-stimulated insulin secretion (GSIS) phenotype is relatively unstable, in long-term culture. This study aimed to investigate phenotypic and gene expression changes associated with this loss of GSIS, using the MIN-6 cell line as model. Phenotypic differences between MIN-6(L, low passage) and MIN-6(H......, high passage) were determined by ELISA (assessing GSIS and cellular (pro)insulin content), proliferation assays, phase contrast light microscopy and analysis of alkaline phosphatase expression. Differential mRNA expression was investigated using microarray, bioinformatics and real-time PCR technologies...

  3. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping

    DEFF Research Database (Denmark)

    Vaysse, Amaury; Ratnakumar, Abhirami; Derrien, Thomas

    2011-01-01

    The extraordinary phenotypic diversity of dog breeds has been sculpted by a unique population history accompanied by selection for novel and desirable traits. Here we perform a comprehensive analysis using multiple test statistics to identify regions under selection in 509 dogs from 46 diverse br...

  4. Mapping phenotypic plasticity and genotype-environment interactions affecting life-history traits in Caenorhabditis elegans

    NARCIS (Netherlands)

    Gutteling, E.W.; Riksen, J.A.G.; Bakker, J.; Kammenga, J.E.

    2007-01-01

    Phenotypic plasticity and genotype-environment interactions (GEI) play an important role in the evolution of life histories. Knowledge of the molecular genetic basis of plasticity and GEI provides insight into the underlying mechanisms of life-history changes in different environments. We used a

  5. Myosin-binding Protein C Compound Heterozygous Variant Effect on the Phenotypic Expression of Hypertrophic Cardiomyopathy.

    Science.gov (United States)

    Rafael, Julianny Freitas; Cruz, Fernando Eugênio Dos Santos; Carvalho, Antônio Carlos Campos de; Gottlieb, Ilan; Cazelli, José Guilherme; Siciliano, Ana Paula; Dias, Glauber Monteiro

    2017-04-01

    Hypertrophic cardiomyopathy (HCM) is an autosomal dominant genetic disease caused by mutations in genes encoding sarcomere proteins. It is the major cause of sudden cardiac death in young high-level athletes. Studies have demonstrated a poorer prognosis when associated with specific mutations. The association between HCM genotype and phenotype has been the subject of several studies since the discovery of the genetic nature of the disease. This study shows the effect of a MYBPC3 compound variant on the phenotypic HCM expression. A family in which a young man had a clinical diagnosis of HCM underwent clinical and genetic investigations. The coding regions of the MYH7, MYBPC3 and TNNT2 genes were sequenced and analyzed. The proband present a malignant manifestation of the disease, and is the only one to express HCM in his family. The genetic analysis through direct sequencing of the three main genes related to this disease identified a compound heterozygous variant (p.E542Q and p.D610H) in MYBPC3. A family analysis indicated that the p.E542Q and p.D610H alleles have paternal and maternal origin, respectively. No family member carrier of one of the variant alleles manifested clinical signs of HCM. We suggest that the MYBPC3-biallelic heterozygous expression of p.E542Q and p.D610H may cause the severe disease phenotype seen in the proband. Resumo A cardiomiopatia hipertrófica (CMH) é uma doença autossômica dominante causada por mutações em genes que codificam as proteínas dos sarcômeros. É a principal causa de morte súbita cardíaca em atletas jovens de alto nível. Estudos têm demonstrado um pior prognóstico associado a mutações específicas. A associação entre genótipo e fenótipo em CMH tem sido objeto de diversos estudos desde a descoberta da origem genética dessa doença. Este trabalho apresenta o efeito de uma mutação composta em MYBPC3 na expressão fenotípica da CMH. Uma família na qual um jovem tem o diagnóstico clínico de CMH foi

  6. Galunisertib suppresses the staminal phenotype in hepatocellular carcinoma by modulating CD44 expression.

    Science.gov (United States)

    Rani, Bhavna; Malfettone, Andrea; Dituri, Francesco; Soukupova, Jitka; Lupo, Luigi; Mancarella, Serena; Fabregat, Isabel; Giannelli, Gianluigi

    2018-03-07

    Cancer stem cells (CSCs) niche in the tumor microenvironment is responsible for cancer recurrence and therapy failure. To better understand its molecular and biological involvement in hepatocellular carcinoma (HCC) progression, one can design more effective therapies and tailored then to individual patients. While sorafenib is currently the only approved drug for first-line treatment of advanced stage HCC, its role in modulating the CSC niche is estimated to be small. By contrast, transforming growth factor (TGF)-β pathway seems to influence the CSC and thus may impact hallmarks of HCC, such as liver fibrosis, cirrhosis, and tumor progression. Therefore, blocking this pathway may offer an appealing and druggable target. In our study, we have used galunisertib (LY2157299), a selective ATP-mimetic inhibitor of TGF-β receptor I (TGFβI/ALK5) activation, currently under clinical investigation in HCC patients. Because the drug resistance is mainly mediated by CSCs, we tested the effects of galunisertib on stemness phenotype in HCC cells to determine whether TGF-β signaling modulates CSC niche and drug resistance. Galunisertib modulated the expression of stemness-related genes only in the invasive (HLE and HLF) HCC cells inducing a decreased expression of CD44 and THY1. Furthermore, galunisertib also reduced the stemness-related functions of invasive HCC cells decreasing the formation of colonies, liver spheroids and invasive growth ability. Interestingly, CD44 loss of function mimicked the galunisertib effects on HCC stemness-related functions. Galunisertib treatment also reduced the expression of stemness-related genes in ex vivo human HCC specimens. Our observations are the first evidence that galunisertib effectiveness overcomes stemness-derived aggressiveness via decreased expression CD44 and THY1.

  7. Functional Associations by Response Overlap (FARO, a functional genomics approach matching gene expression phenotypes.

    Directory of Open Access Journals (Sweden)

    Henrik Bjørn Nielsen

    2007-08-01

    Full Text Available The systematic comparison of transcriptional responses of organisms is a powerful tool in functional genomics. For example, mutants may be characterized by comparing their transcript profiles to those obtained in other experiments querying the effects on gene expression of many experimental factors including treatments, mutations and pathogen infections. Similarly, drugs may be discovered by the relationship between the transcript profiles effectuated or impacted by a candidate drug and by the target disease. The integration of such data enables systems biology to predict the interplay between experimental factors affecting a biological system. Unfortunately, direct comparisons of gene expression profiles obtained in independent, publicly available microarray experiments are typically compromised by substantial, experiment-specific biases. Here we suggest a novel yet conceptually simple approach for deriving 'Functional Association(s by Response Overlap' (FARO between microarray gene expression studies. The transcriptional response is defined by the set of differentially expressed genes independent from the magnitude or direction of the change. This approach overcomes the limited comparability between studies that is typical for methods that rely on correlation in gene expression. We apply FARO to a compendium of 242 diverse Arabidopsis microarray experimental factors, including phyto-hormones, stresses and pathogens, growth conditions/stages, tissue types and mutants. We also use FARO to confirm and further delineate the functions of Arabidopsis MAP kinase 4 in disease and stress responses. Furthermore, we find that a large, well-defined set of genes responds in opposing directions to different stress conditions and predict the effects of different stress combinations. This demonstrates the usefulness of our approach for exploiting public microarray data to derive biologically meaningful associations between experimental factors. Finally, our

  8. Mapping Determinants of Gene Expression Plasticity by Genetical Genomics in C. elegans

    NARCIS (Netherlands)

    Li, Y.; Alda Alvarez, O.; Gutteling, E.W.; Tijsterman, M.; Fu, J.; Riksen, J.A.G.; Hazendonk, E.; Prins, J.C.P.; Plasterk, R.H.A.; Jansen, R.C.; Breitling, R.; Kammenga, J.E.

    2006-01-01

    Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic

  9. Mapping determinants of gene expression plasticity by genetical genomics in C. elegans.

    NARCIS (Netherlands)

    Li, Y.; Alvarez, O.A.; Gutteling, E.W.; Tijsterman, M.; Fu, J.; Riksen, J.A.; Hazendonk, M.G.A.; Prins, P.; Plasterk, R.H.A.; Jansen, R.C.; Breitling, R.; Kammenga, J.E.

    2006-01-01

    Recent genetical genomics studies have provided intimate views on gene regulatory networks. Gene expression variations between genetically different individuals have been mapped to the causal regulatory regions, termed expression quantitative trait loci. Whether the environment-induced plastic

  10. Contrasting gene expression programs correspond with predator-induced phenotypic plasticity within and across generations in Daphnia.

    Science.gov (United States)

    Hales, Nicole R; Schield, Drew R; Andrew, Audra L; Card, Daren C; Walsh, Matthew R; Castoe, Todd A

    2017-10-01

    Research has shown that a change in environmental conditions can alter the expression of traits during development (i.e., "within-generation phenotypic plasticity") as well as induce heritable phenotypic responses that persist for multiple generations (i.e., "transgenerational plasticity", TGP). It has long been assumed that shifts in gene expression are tightly linked to observed trait responses at the phenotypic level. Yet, the manner in which organisms couple within- and TGP at the molecular level is unclear. Here we tested the influence of fish predator chemical cues on patterns of gene expression within- and across generations using a clone of Daphnia ambigua that is known to exhibit strong TGP but weak within-generation plasticity. Daphnia were reared in the presence of predator cues in generation 1, and shifts in gene expression were tracked across two additional asexual experimental generations that lacked exposure to predator cues. Initial exposure to predator cues in generation 1 was linked to ~50 responsive genes, but such shifts were 3-4× larger in later generations. Differentially expressed genes included those involved in reproduction, exoskeleton structure and digestion; major shifts in expression of genes encoding ribosomal proteins were also identified. Furthermore, shifts within the first-generation and transgenerational shifts in gene expression were largely distinct in terms of the genes that were differentially expressed. Such results argue that the gene expression programmes involved in within- vs. transgeneration plasticity are fundamentally different. Our study provides new key insights into the plasticity of gene expression and how it relates to phenotypic plasticity in nature. © 2017 John Wiley & Sons Ltd.

  11. Global Gene Expression Differences in Joints of Mice with Divergent Post Traumatic Osteoarthritis Phenotypes

    Energy Technology Data Exchange (ETDEWEB)

    Kibui, J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2016-07-28

    Osteoarthritis (OA) is a debilitating joint disease characterized by cartilage degradation which prompts pain, stiffness and swelling. Contributing factors include age, genetics, obesity, injury and overuse of joints. OA is defined by an acute phase and a chronic phase whereby inflammation and degeneration of articular cartilage and other tissues is followed by joint pain and limited mobility. Patients remain asymptomatic until substantial joint damage has occurred and therefore rely on long term surgical joint replacement and pain management as their sole treatment options. For this reason, there is an increasing need to identify early stage osteoarthritis biomarkers. Our study aimed to identify and characterize gene expression variances in 3 different mouse strains (STR/ort, C57BL/6 and MRL/MpJ) with different susceptibility to post traumatic osteoarthritis (PTOA). Through RNA sequence analysis of whole knee joint RNA, we identified differentially expressed genes associated with the initial stages of PTOA in relation to mice with divergent phenotypes. These results will help elucidate potential mechanisms responsible for PTOA outcomes.

  12. Positive attitude towards life and emotional expression as personality phenotypes for centenarians.

    Science.gov (United States)

    Kato, Kaori; Zweig, Richard; Barzilai, Nir; Atzmon, Gil

    2012-05-01

    Centenarians have been reported to share particular personality traits including low neuroticism and high extraversion and conscientiousness. Since these traits have moderate to high heritability and are associated with various health outcomes, personality appears linked to bio-genetic mechanisms which may contribute to exceptional longevity. Therefore, the present study sought to detect genetically-based personality phenotypes in a genetically homogeneous sample of centenarians through developing and examining psychometric properties of a brief measure of the personality of centenarians, the Personality Outlook Profile Scale (POPS). The results generated two personality characteristics/domains, Positive Attitude Towards Life (PATL: optimism, easygoing, laughter, and introversion/outgoing) and Emotional Expression (EE: expressing emotions openly and not bottling up emotions). These domains demonstrated acceptable concurrent validity with two established personality measures, the NEO-Five Factor Inventory and Life Orientation Test-Revised. Additionally, centenarians in both groups had lower neuroticism and higher conscientiousness than the US adult population. Findings suggest that the POPS is a psychometrically sound measure of personality in centenarians and capture personality aspects of extraversion, neuroticism, and conscientiousness, as well as dispositional optimism which may contribute to successful aging.

  13. Bmp2 deletion causes an amelogenesis imperfecta phenotype via regulating enamel gene expression.

    Science.gov (United States)

    Guo, Feng; Feng, Junsheng; Wang, Feng; Li, Wentong; Gao, Qingping; Chen, Zhuo; Shoff, Lisa; Donly, Kevin J; Gluhak-Heinrich, Jelica; Chun, Yong Hee Patricia; Harris, Stephen E; MacDougall, Mary; Chen, Shuo

    2015-08-01

    Although Bmp2 is essential for tooth formation, the role of Bmp2 during enamel formation remains unknown in vivo. In this study, the role of Bmp2 in regulation of enamel formation was investigated by the Bmp2 conditional knock out (Bmp2 cKO) mice. Teeth of Bmp2 cKO mice displayed severe and profound phenotypes with asymmetric and misshaped incisors as well as abrasion of incisors and molars. Scanning electron microscopy analysis showed that the enamel layer was hypoplastic and enamel lacked a typical prismatic pattern. Teeth from null mice were much more brittle as tested by shear and compressive moduli. Expression of enamel matrix protein genes, amelogenin, enamelin, and enamel-processing proteases, Mmp-20 and Klk4 was reduced in the Bmp2 cKO teeth as reflected in a reduced enamel formation. Exogenous Bmp2 up-regulated those gene expressions in mouse enamel organ epithelial cells. This result for the first time indicates Bmp2 signaling is essential for proper enamel development and mineralization in vivo. © 2015 Wiley Periodicals, Inc.

  14. Application of Unmanned Aircraft Systems (UAS) for phenotypic mapping of white spruce genotypes along environmental gradients

    Science.gov (United States)

    D'Odorico, P.; Wong, C. Y.; Besik, A.; Earon, E.; Isabel, N.; Ensminger, I.

    2017-12-01

    Rapid climate change is expected to cause a mismatch between locally adapted tree populations and the optimal climatic conditions to which they have adapted. Plant breeding and reforestation programs will increasingly need to rely on high-throughput precision phenotyping tools for the selection of genotypes with increased drought and stress tolerance. In this work, we present the possibilities offered by Unmanned Aircraft Systems (UAS) carrying optical sensors to monitor and assess differences in performance among white spruce genotypes. While high-throughput precision phenotyping using UAS has gained traction in agronomic crop research during the last few years, to our knowledge it is still at its infancy in forestry applications. UAS surveys were performed at different times during the growing season over large white spruce common garden experiments established by the Canadian Forest Service at four different sites, each characterized by 2000 clonally replicated genotypes. Sites are distributed over a latitudinal gradient, in Ontario and Quebec, Canada. The UAS payload consisted of a custom-bands multispectral sensor acquiring radiation at wavelength at which the reflectance spectrum of vegetation is known to capture physiological change under disturbance and stress. Ground based tree-top spectral reflectances and leaf level functional traits were also acquired for validation purposes parallel to UAS surveys. We will discuss the potential and the challenges of using optical sensors on UAS to infer genotypic variation in tree response to stress events and show how spectral data can function as the link between large-scale phenotype and genotype data.

  15. MAP17 and SGLT1 protein expression levels as prognostic markers for cervical tumor patient survival.

    Directory of Open Access Journals (Sweden)

    Marco Perez

    Full Text Available MAP17 is a membrane-associated protein that is overexpressed in human tumors. Because the expression of MAP17 increases reactive oxygen species (ROS generation through SGLT1 in cancer cells, in the present work, we investigated whether MAP17 and/or SGLT1 might be markers for the activity of treatments involving oxidative stress, such as cisplatin or radiotherapy. First, we confirmed transcriptional alterations in genes involved in the oxidative stress induced by MAP17 expression in HeLa cervical tumor cells and found that Hela cells expressing MAP17 were more sensitive to therapies that induce ROS than were parental cells. Furthermore, MAP17 increased glucose uptake through SGLT receptors. We then analyzed MAP17 and SGLT1 expression levels in cervical tumors treated with cisplatin plus radiotherapy and correlated the expression levels with patient survival. MAP17 and SGLT1 were expressed in approximately 70% and 50% of cervical tumors of different types, respectively, but they were not expressed in adenoma tumors. Furthermore, there was a significant correlation between MAP17 and SGLT1 expression levels. High levels of either MAP17 or SGLT1 correlated with improved patient survival after treatment. However, the patients with high levels of both MAP17 and SGLT1 survived through the end of this study. Therefore, the combination of high MAP17 and SGLT1 levels is a marker for good prognosis in patients with cervical tumors after cisplatin plus radiotherapy treatment. These results also suggest that the use of MAP17 and SGLT1 markers may identify patients who are likely to exhibit a better response to treatments that boost oxidative stress in other cancer types.

  16. 14q12 and severe Rett-like phenotypes: new clinical insights and physical mapping of FOXG1-regulatory elements

    Science.gov (United States)

    Allou, Lila; Lambert, Laetitia; Amsallem, Daniel; Bieth, Eric; Edery, Patrick; Destrée, Anne; Rivier, François; Amor, David; Thompson, Elizabeth; Nicholl, Julian; Harbord, Michael; Nemos, Christophe; Saunier, Aline; Moustaïne, Aissa; Vigouroux, Adeline; Jonveaux, Philippe; Philippe, Christophe

    2012-01-01

    The Forkhead box G1 (FOXG1) gene has been implicated in severe Rett-like phenotypes. It encodes the Forkhead box protein G1, a winged-helix transcriptional repressor critical for forebrain development. Recently, the core FOXG1 syndrome was defined as postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and dysgenesis of the corpus callosum. We present seven additional patients with a severe Rett-like neurodevelopment disorder associated with de novo FOXG1 point mutations (two cases) or 14q12 deletions (five cases). We expand the mutational spectrum in patients with FOXG1-related encephalopathies and precise the core FOXG1 syndrome phenotype. Dysgenesis of the corpus callosum and dyskinesia are not always present in FOXG1-mutated patients. We believe that the FOXG1 gene should be considered in severely mentally retarded patients (no speech-language) with severe acquired microcephaly (−4 to−6 SD) and few clinical features suggestive of Rett syndrome. Interestingly enough, three 14q12 deletions that do not include the FOXG1 gene are associated with phenotypes very reminiscent to that of FOXG1-mutation-positive patients. We physically mapped a putative long-range FOXG1-regulatory element in a 0.43 Mb DNA segment encompassing the PRKD1 locus. In fibroblast cells, a cis-acting regulatory sequence located more than 0.6 Mb away from FOXG1 acts as a silencer at the transcriptional level. These data are important for clinicians and for molecular biologists involved in the management of patients with severe encephalopathies compatible with a FOXG1-related phenotype. PMID:22739344

  17. Monte Carlo simulation of OLS and linear mixed model inference of phenotypic effects on gene expression.

    Science.gov (United States)

    Walker, Jeffrey A

    2016-01-01

    Self-contained tests estimate and test the association between a phenotype and mean expression level in a gene set defined a priori . Many self-contained gene set analysis methods have been developed but the performance of these methods for phenotypes that are continuous rather than discrete and with multiple nuisance covariates has not been well studied. Here, I use Monte Carlo simulation to evaluate the performance of both novel and previously published (and readily available via R) methods for inferring effects of a continuous predictor on mean expression in the presence of nuisance covariates. The motivating data are a high-profile dataset which was used to show opposing effects of hedonic and eudaimonic well-being (or happiness) on the mean expression level of a set of genes that has been correlated with social adversity (the CTRA gene set). The original analysis of these data used a linear model (GLS) of fixed effects with correlated error to infer effects of Hedonia and Eudaimonia on mean CTRA expression. The standardized effects of Hedonia and Eudaimonia on CTRA gene set expression estimated by GLS were compared to estimates using multivariate (OLS) linear models and generalized estimating equation (GEE) models. The OLS estimates were tested using O'Brien's OLS test, Anderson's permutation [Formula: see text]-test, two permutation F -tests (including GlobalAncova), and a rotation z -test (Roast). The GEE estimates were tested using a Wald test with robust standard errors. The performance (Type I, II, S, and M errors) of all tests was investigated using a Monte Carlo simulation of data explicitly modeled on the re-analyzed dataset. GLS estimates are inconsistent between data sets, and, in each dataset, at least one coefficient is large and highly statistically significant. By contrast, effects estimated by OLS or GEE are very small, especially relative to the standard errors. Bootstrap and permutation GLS distributions suggest that the GLS results in

  18. Monte Carlo simulation of OLS and linear mixed model inference of phenotypic effects on gene expression

    Directory of Open Access Journals (Sweden)

    Jeffrey A. Walker

    2016-10-01

    Full Text Available Background Self-contained tests estimate and test the association between a phenotype and mean expression level in a gene set defined a priori. Many self-contained gene set analysis methods have been developed but the performance of these methods for phenotypes that are continuous rather than discrete and with multiple nuisance covariates has not been well studied. Here, I use Monte Carlo simulation to evaluate the performance of both novel and previously published (and readily available via R methods for inferring effects of a continuous predictor on mean expression in the presence of nuisance covariates. The motivating data are a high-profile dataset which was used to show opposing effects of hedonic and eudaimonic well-being (or happiness on the mean expression level of a set of genes that has been correlated with social adversity (the CTRA gene set. The original analysis of these data used a linear model (GLS of fixed effects with correlated error to infer effects of Hedonia and Eudaimonia on mean CTRA expression. Methods The standardized effects of Hedonia and Eudaimonia on CTRA gene set expression estimated by GLS were compared to estimates using multivariate (OLS linear models and generalized estimating equation (GEE models. The OLS estimates were tested using O’Brien’s OLS test, Anderson’s permutation ${r}_{F}^{2}$ r F 2 -test, two permutation F-tests (including GlobalAncova, and a rotation z-test (Roast. The GEE estimates were tested using a Wald test with robust standard errors. The performance (Type I, II, S, and M errors of all tests was investigated using a Monte Carlo simulation of data explicitly modeled on the re-analyzed dataset. Results GLS estimates are inconsistent between data sets, and, in each dataset, at least one coefficient is large and highly statistically significant. By contrast, effects estimated by OLS or GEE are very small, especially relative to the standard errors. Bootstrap and permutation GLS

  19. Temporal expression profiling identifies pathways mediating effect of causal variant on phenotype.

    Directory of Open Access Journals (Sweden)

    Saumya Gupta

    2015-06-01

    Full Text Available Even with identification of multiple causal genetic variants for common human diseases, understanding the molecular processes mediating the causal variants' effect on the disease remains a challenge. This understanding is crucial for the development of therapeutic strategies to prevent and treat disease. While static profiling of gene expression is primarily used to get insights into the biological bases of diseases, it makes differentiating the causative from the correlative effects difficult, as the dynamics of the underlying biological processes are not monitored. Using yeast as a model, we studied genome-wide gene expression dynamics in the presence of a causal variant as the sole genetic determinant, and performed allele-specific functional validation to delineate the causal effects of the genetic variant on the phenotype. Here, we characterized the precise genetic effects of a functional MKT1 allelic variant in sporulation efficiency variation. A mathematical model describing meiotic landmark events and conditional activation of MKT1 expression during sporulation specified an early meiotic role of this variant. By analyzing the early meiotic genome-wide transcriptional response, we demonstrate an MKT1-dependent role of novel modulators, namely, RTG1/3, regulators of mitochondrial retrograde signaling, and DAL82, regulator of nitrogen starvation, in additively effecting sporulation efficiency. In the presence of functional MKT1 allele, better respiration during early sporulation was observed, which was dependent on the mitochondrial retrograde regulator, RTG3. Furthermore, our approach showed that MKT1 contributes to sporulation independent of Puf3, an RNA-binding protein that steady-state transcription profiling studies have suggested to mediate MKT1-pleiotropic effects during mitotic growth. These results uncover interesting regulatory links between meiosis and mitochondrial retrograde signaling. In this study, we highlight the advantage

  20. Differential gene expression underlying ovarian phenotype determination in honey bee, Apis mellifera L., caste development.

    Science.gov (United States)

    Lago, Denyse Cavalcante; Humann, Fernanda Carvalho; Barchuk, Angel Roberto; Abraham, Kuruvilla Joseph; Hartfelder, Klaus

    2016-12-01

    Adult honey bee queens and workers drastically differ in ovary size. This adult ovary phenotype difference becomes established during the final larval instar, when massive programmed cell death leads to the degeneration of 95-99% of the ovariole anlagen in workers. The higher juvenile hormone (JH) levels in queen larvae protect the ovaries against such degeneration. To gain insights into the molecular architecture underlying this divergence critical for adult caste fate and worker sterility, we performed a microarray analysis on fourth and early fifth instar queen and worker ovaries. For the fourth instar we found nine differentially expressed genes (DEGs) with log 2 FC > 1.0, but this number increased to 56 in early fifth-instar ovaries. We selected 15 DEGs for quantitative PCR (RT-qPCR) analysis. Nine differed significantly by the variables caste and/or development. Interestingly, genes with enzyme functions were higher expressed in workers, while those related to transcription and signaling had higher transcript levels in queens. For the RT-qPCR confirmed genes we analyzed their response to JH. This revealed a significant up-regulation for two genes, a short chain dehydrogenase reductase (sdr) and a heat shock protein 90 (hsp90). Five other genes, including hsp60 and hexamerin 70b (hex70b), were significantly down-regulated by JH. The sdr gene had previously come up as differentially expressed in other transcriptome analyses on honey bee larvae and heat shock proteins are frequently involved in insect hormone responses, this making them interesting candidates for further functional assays. Copyright © 2016. Published by Elsevier Ltd.

  1. Effect of porous titanium coating thickness on in vitro osteoblast phenotype expression

    Directory of Open Access Journals (Sweden)

    Antonio Canabarro

    2011-03-01

    Full Text Available Aim: This study aimed at determining the effect of different thickness of porous titanium (Ti coating, 0.5, 1.0 and 1.5 mm thick (PC-0.5, PC-1.0 and PC-1.5, on osteoblast phenotype expression. Materials and methods: Dense Ti discs coated with 0.5, 1.0 and 1.5 mm of porous Ti (PC-0.5, PC-1.0 and PC-1.5, respectively were fabricated by powder metallurgy process with pore size typically between 50 and 400 μm and porosity of 60%. Osteoblastic cells obtained from human alveolar bone were cultured on dense Ti (D-Ti and PC-Ti discs for periods of up to 17 days. Results: Cultures grown on PC-Ti exhibited higher cell proliferation rate than on D-Ti. By comparing PC-Ti groups, it was observed statistical differences on culture grown only at day 10 (PC-0.5expression of type I collagen (COL, alkaline phosphatase (ALP, and osteocalcin (OC. The calcium content was significantly greater on PC-1.5 compared to all other groups. Conclusion: These results indicate that PC-Ti favored osteoblastic cell proliferation. In addition, they increased gene expression of osteoblastic markers and higher content of mineralized matrix was observed on the thicker PC-Ti coating (PC-1.5. Therefore, further in vivo evaluations should be done in order to investigate whether this structure should be considered for clinical implant applications.

  2. Phenotypic expression is a prerequisite for malignant arrhythmic events and sudden cardiac death in arrhythmogenic right ventricular cardiomyopathy.

    Science.gov (United States)

    Zorzi, Alessandro; Rigato, Ilaria; Pilichou, Kalliopi; Perazzolo Marra, Martina; Migliore, Federico; Mazzotti, Elisa; Gregori, Dario; Thiene, Gaetano; Daliento, Luciano; Iliceto, Sabino; Rampazzo, Alessandra; Basso, Cristina; Bauce, Barbara; Corrado, Domenico

    2016-07-01

    Whether a desmosomal (DS)-gene defect may in itself induce life-threatening ventricular arrhythmias regardless of phenotypic expression of arrhythmogenic right ventricular cardiomyopathy (ARVC) is still debated. This prospective study evaluated the long-term outcome of DS-gene mutation carriers in relation to the ARVC phenotypic expression. The study population included 116 DS-gene mutation carriers [49% males; median age 33 years (16-48 years)] without prior sustained ventricular tachycardia (VT) or ventricular fibrillation (VF). The incidence of the arrhythmic endpoint, including sudden cardiac death (SCD), aborted SCD, sustained VT, and appropriate implantable cardioverter-defibrillator (ICD) intervention was evaluated prospectively and stratified by the presence of ARVC phenotype and risk factors (syncope, ventricular dysfunction, and non-sustained VT). At enrolment, 40 of 116 (34%) subjects fulfilled the criteria for definite ARVC while the remaining were either borderline or phenotype negatives. During a median follow-up of 8.5 (5-12) years, 10 patients (9%) had arrhythmic events (0.9%/year). The event rate was 2.3%/year among patients with definite ARVC and 0.2%/year among borderline or phenotype negative patients (P = 0.002). In patients with definite ARVC, the incidence of arrhythmias was higher in those with ≥1 risk factors (4.1%/year) than in those with no risk factors (0.4%/year, P = 0.02). Mortality was 0.2%/year (1 heart failure death and 1 SCD). The ARVC phenotypic expression is a prerequisite for the occurrence of life-threatening arrhythmias in DS-gene mutation carriers. The vast majority of malignant arrhythmic events occurred in patients with an overt disease phenotype and major risk factors suggesting that this subgroup most benefits from ICD therapy. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  3. Inferring gene dependency network specific to phenotypic alteration based on gene expression data and clinical information of breast cancer.

    Science.gov (United States)

    Zhou, Xionghui; Liu, Juan

    2014-01-01

    Although many methods have been proposed to reconstruct gene regulatory network, most of them, when applied in the sample-based data, can not reveal the gene regulatory relations underlying the phenotypic change (e.g. normal versus cancer). In this paper, we adopt phenotype as a variable when constructing the gene regulatory network, while former researches either neglected it or only used it to select the differentially expressed genes as the inputs to construct the gene regulatory network. To be specific, we integrate phenotype information with gene expression data to identify the gene dependency pairs by using the method of conditional mutual information. A gene dependency pair (A,B) means that the influence of gene A on the phenotype depends on gene B. All identified gene dependency pairs constitute a directed network underlying the phenotype, namely gene dependency network. By this way, we have constructed gene dependency network of breast cancer from gene expression data along with two different phenotype states (metastasis and non-metastasis). Moreover, we have found the network scale free, indicating that its hub genes with high out-degrees may play critical roles in the network. After functional investigation, these hub genes are found to be biologically significant and specially related to breast cancer, which suggests that our gene dependency network is meaningful. The validity has also been justified by literature investigation. From the network, we have selected 43 discriminative hubs as signature to build the classification model for distinguishing the distant metastasis risks of breast cancer patients, and the result outperforms those classification models with published signatures. In conclusion, we have proposed a promising way to construct the gene regulatory network by using sample-based data, which has been shown to be effective and accurate in uncovering the hidden mechanism of the biological process and identifying the gene signature for

  4. Common ADRB2 haplotypes derived from 26 polymorphic sites direct beta2-adrenergic receptor expression and regulation phenotypes.

    Directory of Open Access Journals (Sweden)

    Alfredo Panebra

    2010-07-01

    Full Text Available The beta2-adrenergic receptor (beta2AR is expressed on numerous cell-types including airway smooth muscle cells and cardiomyocytes. Drugs (agonists or antagonists acting at these receptors for treatment of asthma, chronic obstructive pulmonary disease, and heart failure show substantial interindividual variability in response. The ADRB2 gene is polymorphic in noncoding and coding regions, but virtually all ADRB2 association studies have utilized the two common nonsynonymous coding SNPs, often reaching discrepant conclusions.We constructed the 8 common ADRB2 haplotypes derived from 26 polymorphisms in the promoter, 5'UTR, coding, and 3'UTR of the intronless ADRB2 gene. These were cloned into an expression construct lacking a vector-based promoter, so that beta2AR expression was driven by its promoter, and steady state expression could be modified by polymorphisms throughout ADRB2 within a haplotype. "Whole-gene" transfections were performed with COS-7 cells and revealed 4 haplotypes with increased cell surface beta2AR protein expression compared to the others. Agonist-promoted downregulation of beta2AR protein expression was also haplotype-dependent, and was found to be increased for 2 haplotypes. A phylogenetic tree of the haplotypes was derived and annotated by cellular phenotypes, revealing a pattern potentially driven by expression.Thus for obstructive lung disease, the initial bronchodilator response from intermittent administration of beta-agonist may be influenced by certain beta2AR haplotypes (expression phenotypes, while other haplotypes may influence tachyphylaxis during the response to chronic therapy (downregulation phenotypes. An ideal clinical outcome of high expression and less downregulation was found for two haplotypes. Haplotypes may also affect heart failure antagonist therapy, where beta2AR increase inotropy and are anti-apoptotic. The haplotype-specific expression and regulation phenotypes found in this transfection

  5. Identification of genomic regions associated with phenotypic variation between dog breeds using selection mapping.

    Directory of Open Access Journals (Sweden)

    Amaury Vaysse

    2011-10-01

    Full Text Available The extraordinary phenotypic diversity of dog breeds has been sculpted by a unique population history accompanied by selection for novel and desirable traits. Here we perform a comprehensive analysis using multiple test statistics to identify regions under selection in 509 dogs from 46 diverse breeds using a newly developed high-density genotyping array consisting of >170,000 evenly spaced SNPs. We first identify 44 genomic regions exhibiting extreme differentiation across multiple breeds. Genetic variation in these regions correlates with variation in several phenotypic traits that vary between breeds, and we identify novel associations with both morphological and behavioral traits. We next scan the genome for signatures of selective sweeps in single breeds, characterized by long regions of reduced heterozygosity and fixation of extended haplotypes. These scans identify hundreds of regions, including 22 blocks of homozygosity longer than one megabase in certain breeds. Candidate selection loci are strongly enriched for developmental genes. We chose one highly differentiated region, associated with body size and ear morphology, and characterized it using high-throughput sequencing to provide a list of variants that may directly affect these traits. This study provides a catalogue of genomic regions showing extreme reduction in genetic variation or population differentiation in dogs, including many linked to phenotypic variation. The many blocks of reduced haplotype diversity observed across the genome in dog breeds are the result of both selection and genetic drift, but extended blocks of homozygosity on a megabase scale appear to be best explained by selection. Further elucidation of the variants under selection will help to uncover the genetic basis of complex traits and disease.

  6. Temperature control of molecular circuit switch responsible for virulent phenotype expression in uropathogenic Escherichia coli

    Science.gov (United States)

    Samoilov, Michael

    2010-03-01

    The behavior and fate of biological organisms are to a large extent dictated by their environment, which can be often viewed as a collection of features and constraints governed by physics laws. Since biological systems comprise networks of molecular interactions, one such key physical property is temperature, whose variations directly affect the rates of biochemical reactions involved. For instance, temperature is known to control many gene regulatory circuits responsible for pathogenicity in bacteria. One such example is type 1 fimbriae (T1F) -- the foremost virulence factor in uropathogenic E. coli (UPEC), which accounts for 80-90% of all community-acquired urinary tract infections (UTIs). The expression of T1F is randomly `phase variable', i.e. individual cells switch between virulent/fimbriate and avirulent/afimbriate phenotypes, with rates regulated by temperature. Our computational investigation of this process, which is based on FimB/FimE recombinase-mediated inversion of fimS DNA element, offers new insights into its discrete-stochastic kinetics. In particular, it elucidates the logic of T1F control optimization to the host temperature and contributes further understanding toward the development of novel therapeutic approaches to UPEC-caused UTIs.

  7. Galectin-7 Expression Potentiates HER-2-Positive Phenotype in Breast Cancer.

    Directory of Open Access Journals (Sweden)

    Andrée-Anne Grosset

    Full Text Available HER-2 positive tumors are among the most aggressive subtypes of breast cancer and are frequently associated with metastasis and poor outcome. As with other aggressive subtypes of breast cancer, these tumors are associated with abnormally high expression of galectin-7 (gal-7, which confers metastatic breast tumor cells with increased invasive behavior. Although previous studies in the rat model of breast tumorigenesis have shown that gal-7 is also increased in primary breast tumor, its contribution to the development of the primary breast tumors remains unclear. In the present work, we have used genetically-engineered gal-7-deficient mice to examine the role of gal-7 in the development of the mammary gland and of breast cancer. Using histological and immunohistological analysis of whole mammary glands at different stages of development, we detected no significant changes between normal and gal-7-deficient mice. To test the involvement of gal-7 in breast cancer, we next examined the effects of loss of gal-7 on mammary tumor development by crossing gal-7-deficient mice with the mammary tumor transgenic mouse strain FVB-Tg(MMTV-Erbb2NK1Mul/J. Finally, assessment of mice survival and tumor volume showed a delay of mammary tumor growth in the absence of systemic gal-7. These data suggest that gal-7 could potentiate the phenotype of HER-2 positive primary breast cancer.

  8. Phenotypic and gene expression responses of E. coli to antibiotics during spaceflight

    Science.gov (United States)

    Zea, Luis

    Bacterial susceptibility to antibiotics has been shown in vitro to be reduced during spaceflight; however, the underlying mechanisms responsible for this outcome are not fully understood. In particular, it is not yet clear whether this observed response is due to increased drug resistance (a microbial defense response) or decreased drug efficacy (a microgravity biophysical mass transport effect). To gain insight into the differentiation between these two potential causes, an investigation was undertaken onboard the International Space Station (ISS) in 2014 termed Antibiotic Effectiveness in Space-1 (AES-1). For this purpose, E. coli was challenged with two antibiotics, Gentamicin Sulfate and Colistin Sulfate, at concentrations higher than those needed to inhibit growth on Earth. Phenotypic parameters (cell size, cell envelope thickness, population density and lag phase duration) and gene expression were compared between the spaceflight samples and ground controls cultured in varying levels of drug concentration. It was observed that flight samples proliferated in antibiotic concentrations that were inhibitory on Earth, growing on average to a 13-fold greater concentration than matched 1g controls. Furthermore, at the highest drug concentrations in space, E. coli cells were observed to aggregate into visible clusters. In spaceflight, cell size was significantly reduced, translating to a decrease in cell surface area to about one half of the ground controls. Smaller cell surface area can in turn proportionally reduce the rate of antibiotic molecules reaching the cell. Additionally, it was observed that genes --- in some cases more than 2000 --- were overexpressed in space with respect to ground controls. Up-regulated genes include poxB, which helps catabolize glucose into organic acids that alter acidity around and inside the cell, and the gadABC family genes, which confer resistance to extreme acid conditions. The next step is to characterize the mechanisms behind

  9. A mathematical framework for functional mapping of complex phenotypes using delay differential equations.

    Science.gov (United States)

    Fu, Guifang; Wang, Zhong; Li, Jiahan; Wu, Rongling

    2011-11-21

    All biological phenomena occurring at different levels of organization from cells to organisms can be modeled as a dynamic system, in which the underlying components interact dynamically to comprehend its biological function. Such a systems modeling approach facilitates the use of biochemically and biophysically detailed mathematical models to describe and quantify "living cells," leading to an in-depth and precise understanding of the behavior, development and function of a biological system. Here, we illustrate how this approach can be used to map genes or quantitative trait loci (QTLs) that control a complex trait using the example of the circadian rhythm system which has been at the forefront of analytical mathematical modeling for many years. We integrate a system of biologically meaningful delay differential equations (DDEs) into functional mapping, a statistical model designed to map dynamic QTLs involved in biological processes. The DDEs model the ability of circadian rhythm to generate autonomously sustained oscillations with a period close to 24h, in terms of time-varying mRNA and protein abundances. By incorporating the Runge-Kutta fourth order algorithm within the likelihood-based context of functional mapping, we estimated the genetic parameters that define the periodic pattern of QTL effects on time-varying mRNA and protein abundances and their dynamic association as well as the linkage disequilibrium of the QTL and a marker. We prove theorems about how to choose appropriate parameters to guarantee periodic oscillations. We further used simulation studies to investigate how a QTL influences the period and the amplitude of circadian oscillations through changing model parameters. The model provides a quantitative framework for assessing the interplay between genetic effects of QTLs and rhythmic responses. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Frequency and expression of mutacin biosynthesis genes in isolates of Streptococcus mutans with different mutacin-producing phenotypes.

    Science.gov (United States)

    Kamiya, Regianne Umeko; Höfling, José Francisco; Gonçalves, Reginaldo Bruno

    2008-05-01

    The aim of this study was to analyse the frequency and expression of biosynthesis genes in 47 Streptococcus mutans isolates with different mutacin-producing phenotypes. Detection of the frequency and expression of genes encoding mutacin types I, II, III and IV were carried out by PCR and semi-quantitative RT-PCR, respectively, using primers specific for each type of biosynthesis gene. In addition, a further eight genes encoding putative bacteriocins, designated bsm 283, bsm 299, bsm 423, bsm 1889c, bsm 1892c, bsm 1896, bsm 1906c and bsm 1914, were also screened. There was a high phenotypic diversity; some Streptococcus mutans isolates presented broad antimicrobial spectra against other Streptococcus mutans clinical isolates, including bacteria resistant to common antibiotics, as well as Staphylococcus aureus, Staphylococcus epidermidis, Enterococcus faecalis and Streptococcus pyogenes. The expression frequency of the bsm gene was higher than that of the previously characterized mutacins (I-IV). There was no positive correlation between the number of indicator strains inhibited (antimicrobial spectra) and the number of biosynthesis genes expressed (Spearman correlation test, r=-0.03, P>0.05). In conclusion, the high diversity of mutacin-producing phenotypes, associated with high frequency of expression of the biosynthesis genes screened, reveals a broad repertoire of genetic determinants encoding antimicrobial peptides that can act in different combinations.

  11. Creating and validating cis-regulatory maps of tissue-specific gene expression regulation

    Science.gov (United States)

    O'Connor, Timothy R.; Bailey, Timothy L.

    2014-01-01

    Predicting which genomic regions control the transcription of a given gene is a challenge. We present a novel computational approach for creating and validating maps that associate genomic regions (cis-regulatory modules–CRMs) with genes. The method infers regulatory relationships that explain gene expression observed in a test tissue using widely available genomic data for ‘other’ tissues. To predict the regulatory targets of a CRM, we use cross-tissue correlation between histone modifications present at the CRM and expression at genes within 1 Mbp of it. To validate cis-regulatory maps, we show that they yield more accurate models of gene expression than carefully constructed control maps. These gene expression models predict observed gene expression from transcription factor binding in the CRMs linked to that gene. We show that our maps are able to identify long-range regulatory interactions and improve substantially over maps linking genes and CRMs based on either the control maps or a ‘nearest neighbor’ heuristic. Our results also show that it is essential to include CRMs predicted in multiple tissues during map-building, that H3K27ac is the most informative histone modification, and that CAGE is the most informative measure of gene expression for creating cis-regulatory maps. PMID:25200088

  12. Phenotypic Characterization and Genetic Dissection of Growth Period Traits in Soybean (Glycine max Using Association Mapping.

    Directory of Open Access Journals (Sweden)

    Zhangxiong Liu

    Full Text Available The growth period traits are important traits that affect soybean yield. The insights into the genetic basis of growth period traits can provide theoretical basis for cultivated area division, rational distribution, and molecular breeding for soybean varieties. In this study, genome-wide association analysis (GWAS was exploited to detect the quantitative trait loci (QTL for number of days to flowering (ETF, number of days from flowering to maturity (FTM, and number of days to maturity (ETM using 4032 single nucleotide polymorphism (SNP markers with 146 cultivars mainly from Northeast China. Results showed that abundant phenotypic variation was presented in the population, and variation explained by genotype, environment, and genotype by environment interaction were all significant for each trait. The whole accessions could be clearly clustered into two subpopulations based on their genetic relatedness, and accessions in the same group were almost from the same province. GWAS based on the unified mixed model identified 19 significant SNPs distributed on 11 soybean chromosomes, 12 of which can be consistently detected in both planting densities, and 5 of which were pleotropic QTL. Of 19 SNPs, 7 SNPs located in or close to the previously reported QTL or genes controlling growth period traits. The QTL identified with high resolution in this study will enrich our genomic understanding of growth period traits and could then be explored as genetic markers to be used in genomic applications in soybean breeding.

  13. Factors Influencing the Phenotypic Expression of Hypertrophic Cardiomyopathy in Genetic Carriers.

    Science.gov (United States)

    Pérez-Sánchez, Inmaculada; Romero-Puche, Antonio José; García-Molina Sáez, Esperanza; Sabater-Molina, María; López-Ayala, José María; Muñoz-Esparza, Carmen; López-Cuenca, David; de la Morena, Gonzalo; Castro-García, Francisco José; Gimeno-Blanes, Juan Ramón

    2018-03-01

    Hypertrophic cardiomyopathy (HCM) is a disorder with variable expression. It is mainly caused by mutations in sarcomeric genes but the phenotype could be modulated by other factors. The aim of this study was to determine whether factors such as sex, systemic hypertension, or physical activity are modifiers of disease severity and to establish their role in age-related penetrance of HCM. We evaluated 272 individuals (mean age 49 ± 17 years, 57% males) from 72 families with causative mutations. The relationship between sex, hypertension, physical activity, and left ventricular hypertrophy was studied. The proportion of affected individuals increased with age. Men developed the disease 12.5 years earlier than women (adjusted median, 95%CI, -17.52 to -6.48; P < .001). Hypertensive patients were diagnosed with HCM later (10.8 years of delay) than normotensive patients (adjusted median, 95%CI, 6.28-17.09; P < .001). Individuals who performed physical activity were diagnosed with HCM significantly earlier (7.3 years, adjusted median, 95%CI, -14.49 to -1.51; P = .016). Sex, hypertension, and the degree of physical activity were not significantly associated with the severity of left ventricular hypertrophy. Adjusted survival both free from sudden death and from the combined event were not influenced by any of the exploratory variables. Men and athletes who are carriers of sarcomeric mutations are diagnosed earlier than women and sedentary individuals. Hypertensive carriers of sarcomeric mutations have a delayed diagnosis. Sex, hypertension, and physical activity are not associated with disease severity in carriers of HCM causative mutations. Copyright © 2017 Sociedad Española de Cardiología. Published by Elsevier España, S.L.U. All rights reserved.

  14. The M142T mutation causes B3 phenotype: three cases and an in vitro expression study.

    Science.gov (United States)

    Cho, Duck; Shin, Dong-Jun; Yazer, Mark Harris; Ihm, Chun-Hwa; Hur, Young-Moon; Kee, Seung-Jung; Kim, Soo-Hyun; Shin, Myung-Geun; Shin, Jong-Hee; Suh, Soon-Pal; Ryang, Dong-Wook

    2010-02-01

    The B3 phenotype is the most common B subtype in Korea. The B305 allele (425 T>C, M142T) was first reported in 2 Chinese individuals; however, it has not yet been reported in the Koreans, and the impact of the M142T mutation on the expression of the B3 phenotype has also not been studied. To resolve an ABO discrepancy between a group O neonate and her group O father and A(1)B(3) mother, blood samples from these individuals and other family members were referred to our laboratory for ABO gene analysis. The B305 allele was discovered in the neonate (B305/O01), her mother (A102/ B305), and her maternal aunt (B305/O02), while her father was typed as O01/O02. Transient transfection experiments were performed in HeLa cells using the B305 allele synthesized by site-directed mutagenesis; flow cytometric analysis revealed that this transfect expressed 35.5% of the total B antigen produced by the B101 allele transfect. For comparison, Bx01 allele transfects were also created, and they expressed 11.4% of the total B antigen expressed on the surface of B101 transfects. These experiments demonstrate that the M142T (425 T>C) mutation is responsible for the B subtype phenotype produced by the B305 allele.

  15. Associations between resistance phenotype and gene expression in response to serial exposure to oxacillin and ciprofloxacin in Staphylococcus aureus.

    Science.gov (United States)

    Uddin, M J; Ahn, J

    2017-12-01

    This study was designed to delineate the relationship between resistance phenotypes and gene expression in wild-type (SA WT ), oxacillin-induced (SA OXA ), ciprofloxacin-induced (SA CIP ) and clinically acquired antibiotic-resistant Staphylococcus aureus (SA CA ) exposed to oxacillin (β-lactam) and ciprofloxacin (fluoroquinolone). The phenotypic response and gene expression were varied with the antibiotic exposure. SA WT was highly resistant to oxacillin (MIC = 8 μg ml -1 ) after serial exposure to oxacillin, while the oxacillin susceptibility was not changed in SA WT when exposed to ciprofloxacin (MIC = 0·25 μg ml -1 ). The clinical isolate, SA CA , was highly resistant to all classes of antibiotics used in this study. The increased resistance of SA OXA and SA CIP to penicillinase-labile penicillins was attributed to the production of β-lactamase, which is in good agreement with the overexpression of blaZ (>2-fold). The overexpression of efflux pump-related genes (norA, norB, norC, mdeA, mepR, mgrA and lmrS) was associated with the increased resistance of SA CIP and SA CA to aminoglycosides and quinolones. This study confirmed that the linkage between resistance phenotypes and molecular genotypes highly varied depending on intrinsic resistance profile, response to antibiotic exposure and genes conferring resistance. This study provides useful information for understanding the mechanisms of methicillin resistance in S. aureus in association with phenotypic and genotypic resistance determinants. The improvement in current standards is essential to accurately detect methicillin-resistant Staphylococcus aureus in consideration of various resistance phenotypes and genotypes. The varied and distinctive expression patterns of antibiotic resistance-related genes were observed in S. aureus exposed to oxacillin and ciprofloxacin. It is worth noting the relationship between resistance phenotype and resistance genotype in terms of MIC values and expression of

  16. Constraints on eQTL Fine Mapping in the Presence of Multisite Local Regulation of Gene Expression

    Directory of Open Access Journals (Sweden)

    Biao Zeng

    2017-08-01

    Full Text Available Expression quantitative trait locus (eQTL detection has emerged as an important tool for unraveling of the relationship between genetic risk factors and disease or clinical phenotypes. Most studies use single marker linear regression to discover primary signals, followed by sequential conditional modeling to detect secondary genetic variants affecting gene expression. However, this approach assumes that functional variants are sparsely distributed and that close linkage between them has little impact on estimation of their precise location and the magnitude of effects. We describe a series of simulation studies designed to evaluate the impact of linkage disequilibrium (LD on the fine mapping of causal variants with typical eQTL effect sizes. In the presence of multisite regulation, even though between 80 and 90% of modeled eSNPs associate with normally distributed traits, up to 10% of all secondary signals could be statistical artifacts, and at least 5% but up to one-quarter of credible intervals of SNPs within r2 > 0.8 of the peak may not even include a causal site. The Bayesian methods eCAVIAR and DAP (Deterministic Approximation of Posteriors provide only modest improvement in resolution. Given the strong empirical evidence that gene expression is commonly regulated by more than one variant, we conclude that the fine mapping of causal variants needs to be adjusted for multisite influences, as conditional estimates can be highly biased by interference among linked sites, but ultimately experimental verification of individual effects is needed. Presumably similar conclusions apply not just to eQTL mapping, but to multisite influences on fine mapping of most types of quantitative trait.

  17. Analysis of multiplex gene expression maps obtained by voxelation

    OpenAIRE

    An, L; Xie, H; Chin, MH; Obradovic, Z; Smith, DJ; Megalooikonomou, V

    2009-01-01

    Abstract Background Gene expression signatures in the mammalian brain hold the key to understanding neural development and neurological disease. Researchers have previously used voxelation in combination with microarrays for acquisition of genome-wide atlases of expression patterns in the mouse brain. On the other hand, some work has been performed on studying gene functions, without taking into account the location information of a gene's expression in a mouse brain. In this paper, we presen...

  18. In vitro cytokine production and phenotype expression by blood mononuclear cells from umbilical cords, children and adults

    DEFF Research Database (Denmark)

    Müller, K; Zak, M; Nielsen, S

    1996-01-01

    Age related differences in immunological reactions include variations in the in vitro functions of blood mononuclear cells (MNC). In an attempt to understand the mechanism behind these differences we examined age related differences in the phenotype profiles of MNC in parallel with the in vitro......, and unmeasurable levels in cord blood MNC. Flow cytometry analysis of the phenotypic distribution of MNC revealed age related differences in the expression of CD3, CD4, CD8, CD14, CD19, CD45RA, CD45R0, CD2, LFA-1, ICAM-1 and LFA-3. Correlation studies did not indicate that the observed differences in cytokine....... In conclusion, the study provides evidence of age related differences in the production of TNF alpha, IL-6 and IFNg among neonates, children and adults. These differences may to some extent be caused by differences in the expression of cell surface molecules involved in cellular interactions and signalling....

  19. Global changes in gene expression associated with phenotypic switching of wild yeast

    DEFF Research Database (Denmark)

    Stovicek, Vratislav; Váchová, Libuše; Begany, Markéta

    2014-01-01

    transitions that affect other properties of phenotypic strain-variants, such as resistance to the impact of environmental stress. Here we document the regulatory role of the histone deacetylase Hda1p in developing such a resistance. Conclusions : We provide detailed analysis of transcriptomic and phenotypic...... to this ability. Finally, we identify the importance of histone deacetylase Hda1p in strain resistance to stresses....

  20. Systematic drug safety evaluation based on public genomic expression (Connectivity Map) data: myocardial and infectious adverse reactions as application cases.

    Science.gov (United States)

    Wang, Kejian; Weng, Zuquan; Sun, Liya; Sun, Jiazhi; Zhou, Shu-Feng; He, Lin

    2015-02-13

    Adverse drug reaction (ADR) is of great importance to both regulatory agencies and the pharmaceutical industry. Various techniques, such as quantitative structure-activity relationship (QSAR) and animal toxicology, are widely used to identify potential risks during the preclinical stage of drug development. Despite these efforts, drugs with safety liabilities can still pass through safety checkpoints and enter the market. This situation raises the concern that conventional chemical structure analysis and phenotypic screening are not sufficient to avoid all clinical adverse events. Genomic expression data following in vitro drug treatments characterize drug actions and thus have become widely used in drug repositioning. In the present study, we explored prediction of ADRs based on the drug-induced gene-expression profiles from cultured human cells in the Connectivity Map (CMap) database. The results showed that drugs inducing comparable ADRs generally lead to similar CMap expression profiles. Based on such ADR-gene expression association, we established prediction models for various ADRs, including severe myocardial and infectious events. Drugs with FDA boxed warnings of safety liability were effectively identified. We therefore suggest that drug-induced gene expression change, in combination with effective computational methods, may provide a new dimension of information to facilitate systematic drug safety evaluation. Copyright © 2015 Elsevier Inc. All rights reserved.

  1. Closed-form expressions for integrals of MKdV and sine-Gordon maps

    International Nuclear Information System (INIS)

    Kamp, Peter H van der; Rojas, O; Quispel, G R W

    2007-01-01

    We present closed-form expressions for approximately N integrals of 2N-dimensional maps. The maps are obtained by travelling wave reductions of the modified Korteweg-de Vries equation and of the sine-Gordon equation, respectively. We provide the integrating factors corresponding to the integrals. Moreover we show how the integrals and the integrating factors relate to the staircase method

  2. Assessing the value of phenotypic information from non-genotyped animals for QTL mapping of complex traits in real and simulated populations.

    Science.gov (United States)

    Melo, Thaise P; Takada, Luciana; Baldi, Fernando; Oliveira, Henrique N; Dias, Marina M; Neves, Haroldo H R; Schenkel, Flavio S; Albuquerque, Lucia G; Carvalheiro, Roberto

    2016-06-21

    QTL mapping through genome-wide association studies (GWAS) is challenging, especially in the case of low heritability complex traits and when few animals possess genotypic and phenotypic information. When most of the phenotypic information is from non-genotyped animals, GWAS can be performed using the weighted single-step GBLUP (WssGBLUP) method, which permits to combine all available information, even that of non-genotyped animals. However, it is not clear to what extent phenotypic information from non-genotyped animals increases the power of QTL detection, and whether factors such as the extent of linkage disequilibrium (LD) in the population and weighting SNPs in WssGBLUP affect the importance of using information from non-genotyped animals in GWAS. These questions were investigated in this study using real and simulated data. Analysis of real data showed that the use of phenotypes of non-genotyped animals affected SNP effect estimates and, consequently, QTL mapping. Despite some coincidence, the most important genomic regions identified by the analyses, either using or ignoring phenotypes of non-genotyped animals, were not the same. The simulation results indicated that the inclusion of all available phenotypic information, even that of non-genotyped animals, tends to improve QTL detection for low heritability complex traits. For populations with low levels of LD, this trend of improvement was less pronounced. Stronger shrinkage on SNPs explaining lower variance was not necessarily associated with better QTL mapping. The use of phenotypic information from non-genotyped animals in GWAS may improve the ability to detect QTL for low heritability complex traits, especially in populations in which the level of LD is high.

  3. A Multidisciplinary Phenotyping and Genotyping Analysis of a Mapping Population Enables Quality to Be Combined with Yield in Rice

    Directory of Open Access Journals (Sweden)

    Mariafe Calingacion

    2017-05-01

    Full Text Available In this study a mapping population (F8 of ca 200 progeny from a cross between the commercial rice varieties Apo and IR64 has been both genotyped and phenotyped. A genotyping-by-sequencing approach was first used to identify 2,681 polymorphic SNP markers which gave dense coverage of the genome with a good distribution across all 12 chromosomes. The coefficient of parentage was also low, at 0.13, confirming that the parents are genetically distant from each other. The progeny, together with both parents, were grown under irrigated and water restricted conditions in a randomised block design. All grain was harvested to determine variation in yield across the population. The grains were then polished following standard procedures prior to performing the phenotyping analyses. A Gas Chromatography—Mass Spectrometry approach was used to determine the volatile biochemical profiles of each line and after data curation and processing, discriminatory metabolites were putatively identified based on in-house and commercial spectral libraries. These data were used to predict the potential role of these metabolites in determining differences in aroma between genotypes. A number of QTLs for yield and for individual metabolites have been identified. Following these combined multi-disciplinary analyses, it proved possible to identify a number of lines which appeared to combine the favourable aroma attributes of IR64 with the favourable (higher yield potential of Apo. As such, these lines are excellent candidates to assess further as potential genotypes to work up into a new variety of rice which has both good yield and good quality, thus meeting the needs of both farmer and consumer alike.

  4. Charting the genotype-phenotype map: lessons from the Drosophila melanogaster Genetic Reference Panel.

    Science.gov (United States)

    Mackay, Trudy F C; Huang, Wen

    2018-01-01

    Understanding the genetic architecture (causal molecular variants, their effects, and frequencies) of quantitative traits is important for precision agriculture and medicine and predicting adaptive evolution, but is challenging in most species. The Drosophila melanogaster Genetic Reference Panel (DGRP) is a collection of 205 inbred strains with whole genome sequences derived from a single wild population in Raleigh, NC, USA. The large amount of quantitative genetic variation, lack of population structure, and rapid local decay of linkage disequilibrium in the DGRP and outbred populations derived from DGRP lines present a favorable scenario for performing genome-wide association (GWA) mapping analyses to identify candidate causal genes, polymorphisms, and pathways affecting quantitative traits. The many GWA studies utilizing the DGRP have revealed substantial natural genetic variation for all reported traits, little evidence for variants with large effects but enrichment for variants with low P-values, and a tendency for lower frequency variants to have larger effects than more common variants. The variants detected in the GWA analyses rarely overlap those discovered using mutagenesis, and often are the first functional annotations of computationally predicted genes. Variants implicated in GWA analyses typically have sex-specific and genetic background-specific (epistatic) effects, as well as pleiotropic effects on other quantitative traits. Studies in the DGRP reveal substantial genetic control of environmental variation. Taking account of genetic architecture can greatly improve genomic prediction in the DGRP. These features of the genetic architecture of quantitative traits are likely to apply to other species, including humans. WIREs Dev Biol 2018, 7:e289. doi: 10.1002/wdev.289 This article is categorized under: Invertebrate Organogenesis > Flies. © 2017 Wiley Periodicals, Inc.

  5. Phenotype-dependent effects of EpCAM expression on growth and invasion of human breast cancer cell lines

    International Nuclear Information System (INIS)

    Martowicz, Agnieszka; Spizzo, Gilbert; Gastl, Guenther; Untergasser, Gerold

    2012-01-01

    The epithelial cell adhesion molecule (EpCAM) has been shown to be overexpressed in breast cancer and stem cells and has emerged as an attractive target for immunotherapy of breast cancer patients. This study analyzes the effects of EpCAM on breast cancer cell lines with epithelial or mesenchymal phenotype. For this purpose, shRNA-mediated knockdown of EpCAM gene expression was performed in EpCAM high breast cancer cell lines with epithelial phenotype (MCF-7, T47D and SkBR3). Moreover, EpCAM low breast carcinoma cell lines with mesenchymal phenotype (MDA-MB-231, Hs578t) and inducible overexpression of EpCAM were used to study effects on proliferation, migration and in vivo growth. In comparison to non-specific silencing controls (n/s-crtl) knockdown of EpCAM (E#2) in EpCAM high cell lines resulted in reduced cell proliferation under serum-reduced culture conditions. Moreover, DNA synthesis under 3D culture conditions in collagen was significantly reduced. Xenografts of MCF-7 and T47D cells with knockdown of EpCAM formed smaller tumors that were less invasive. EpCAM low cell lines with tetracycline-inducible overexpression of EpCAM showed no increased cell proliferation or migration under serum-reduced growth conditions. MDA-MB-231 xenografts with EpCAM overexpression showed reduced invasion into host tissue and more infiltrates of chicken granulocytes. The role of EpCAM in breast cancer strongly depends on the epithelial or mesenchymal phenotype of tumor cells. Cancer cells with epithelial phenotype need EpCAM as a growth- and invasion-promoting factor, whereas tumor cells with a mesenchymal phenotype are independent of EpCAM in invasion processes and tumor progression. These findings might have clinical implications for EpCAM-based targeting strategies in patients with invasive breast cancer

  6. Oxide Synthase Expression by p38 MAP Kinase

    Directory of Open Access Journals (Sweden)

    Tuija Turpeinen

    2011-01-01

    Full Text Available The role of dual specificity phosphatase 1 (DUSP1 in inducible nitric oxide synthase (iNOS expression in A549 human pulmonary epithelial cells, J774 mouse macrophages and primary mouse bone marrow-derived macrophages (BMMs was investigated. iNOS expression was induced by a cytokine mixture (TNF, IFNγ and IL-1β in A549 cells and by LPS in J774 cells, and it was inhibited by p38 MAPK inhibitors SB202190 and BIRB 796. Stimulation with cytokine mixture or LPS enhanced also DUSP1 expression. Down-regulation of DUSP1 by siRNA increased p38 MAPK phosphorylation and iNOS expression in A549 and J774 cells. In addition, LPS-induced iNOS expression was enhanced in BMMs from DUSP1(−/− mice as compared to that in BMMs from wild-type mice. The results indicate that DUSP1 suppresses iNOS expression by limiting p38 MAPK activity in human and mouse cells. Compounds that enhance DUSP1 expression or modulate its function may be beneficial in diseases complicated with increased iNOS-mediated NO production.

  7. Recognition of emotional facial expressions and broad autism phenotype in parents of children diagnosed with autistic spectrum disorder.

    Science.gov (United States)

    Kadak, Muhammed Tayyib; Demirel, Omer Faruk; Yavuz, Mesut; Demir, Türkay

    2014-07-01

    Research findings debate about features of broad autism phenotype. In this study, we tested whether parents of children with autism have problems recognizing emotional facial expression and the contribution of such an impairment to the broad phenotype of autism. Seventy-two parents of children with autistic spectrum disorder and 38 parents of control group participated in the study. Broad autism features was measured with Autism Quotient (AQ). Recognition of Emotional Face Expression Test was assessed with the Emotion Recognition Test, consisting a set of photographs from Ekman & Friesen's. In a two-tailed analysis of variance of AQ, there was a significant difference for social skills (F(1, 106)=6.095; p<.05). Analyses of variance revealed significant difference in the recognition of happy, surprised and neutral expressions (F(1, 106)=4.068, p=.046; F(1, 106)=4.068, p=.046; F(1, 106)=6.064, p=.016). According to our findings, social impairment could be considered a characteristic feature of BAP. ASD parents had difficulty recognizing neutral expressions, suggesting that ASD parents may have impaired recognition of ambiguous expressions as do autistic children. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Linkage mapping of putative regulator genes of barley grain development characterized by expression profiling

    Directory of Open Access Journals (Sweden)

    Wobus Ulrich

    2009-01-01

    Full Text Available Abstract Background Barley (Hordeum vulgare L. seed development is a highly regulated process with fine-tuned interaction of various tissues controlling distinct physiological events during prestorage, storage and dessication phase. As potential regulators involved within this process we studied 172 transcription factors and 204 kinases for their expression behaviour and anchored a subset of them to the barley linkage map to promote marker-assisted studies on barley grains. Results By a hierachical clustering of the expression profiles of 376 potential regulatory genes expressed in 37 different tissues, we found 50 regulators preferentially expressed in one of the three grain tissue fractions pericarp, endosperm and embryo during seed development. In addition, 27 regulators found to be expressed during both seed development and germination and 32 additional regulators are characteristically expressed in multiple tissues undergoing cell differentiation events during barley plant ontogeny. Another 96 regulators were, beside in the developing seed, ubiquitously expressed among all tissues of germinating seedlings as well as in reproductive tissues. SNP-marker development for those regulators resulted in anchoring 61 markers on the genetic linkage map of barley and the chromosomal assignment of another 12 loci by using wheat-barley addition lines. The SNP frequency ranged from 0.5 to 1.0 SNP/kb in the parents of the various mapping populations and was 2.3 SNP/kb over all eight lines tested. Exploration of macrosynteny to rice revealed that the chromosomal orders of the mapped putative regulatory factors were predominantly conserved during evolution. Conclusion We identified expression patterns of major transcription factors and signaling related genes expressed during barley ontogeny and further assigned possible functions based on likely orthologs functionally well characterized in model plant species. The combined linkage map and reference

  9. Phenotypic transition maps of 3D breast acini obtained by imaging-guided agent-based modeling

    Energy Technology Data Exchange (ETDEWEB)

    Tang, Jonathan; Enderling, Heiko; Becker-Weimann, Sabine; Pham, Christopher; Polyzos, Aris; Chen, Chen-Yi; Costes, Sylvain V

    2011-02-18

    We introduce an agent-based model of epithelial cell morphogenesis to explore the complex interplay between apoptosis, proliferation, and polarization. By varying the activity levels of these mechanisms we derived phenotypic transition maps of normal and aberrant morphogenesis. These maps identify homeostatic ranges and morphologic stability conditions. The agent-based model was parameterized and validated using novel high-content image analysis of mammary acini morphogenesis in vitro with focus on time-dependent cell densities, proliferation and death rates, as well as acini morphologies. Model simulations reveal apoptosis being necessary and sufficient for initiating lumen formation, but cell polarization being the pivotal mechanism for maintaining physiological epithelium morphology and acini sphericity. Furthermore, simulations highlight that acinus growth arrest in normal acini can be achieved by controlling the fraction of proliferating cells. Interestingly, our simulations reveal a synergism between polarization and apoptosis in enhancing growth arrest. After validating the model with experimental data from a normal human breast line (MCF10A), the system was challenged to predict the growth of MCF10A where AKT-1 was overexpressed, leading to reduced apoptosis. As previously reported, this led to non growth-arrested acini, with very large sizes and partially filled lumen. However, surprisingly, image analysis revealed a much lower nuclear density than observed for normal acini. The growth kinetics indicates that these acini grew faster than the cells comprising it. The in silico model could not replicate this behavior, contradicting the classic paradigm that ductal carcinoma in situ is only the result of high proliferation and low apoptosis. Our simulations suggest that overexpression of AKT-1 must also perturb cell-cell and cell-ECM communication, reminding us that extracellular context can dictate cellular behavior.

  10. Increased expression of aphidicolin-induced common fragile sites in Tourette syndrome: The key to understand the genetics of comorbid phenotypes?

    Energy Technology Data Exchange (ETDEWEB)

    Gericke, G.S.; Simonic, I.; Cloete, E.; Becker, P.J. [Univ. of Pretoria (South Africa)

    1996-02-16

    In a comparison of 80 common aphidicolin-induced fragile sites (FS) between 26 DSM-IV Tourette syndrome (TS) and 24 control individuals, the mean of the summed break frequencies following mild aphidicolin pretreatment was significantly higher in TS individuals than in controls (P < 0.001). Other breakpoints encountered during this study, i.e., random breaks, breaks corresponding to rare FS, and breakpoints recorded by others but not listed as common FS according to the Chromosome Coordinating Meeting were listed as category II breakpoints. By using the most significantly different mean FS breakage figures between TS and control individuals, further stepwise discriminant analysis allowed identification of TS individuals from only a few sites in both the common FS and category II breakpoint groups. Future research needs to focus on confirmation of altered common fragile site expression in association with behavioral variation, whether expression of certain discriminatory sites concurs with specific comorbid disorder expression; the nature of the molecular alterations at these FS and the implications of a genomic instability phenotype for the mapping of a primary TS gene or genes. 45 refs., 1 fig., 2 tabs.

  11. A high-density transcript linkage map with 1,845 expressed genes positioned by microarray-based Single Feature Polymorphisms (SFP) in Eucalyptus

    Science.gov (United States)

    2011-01-01

    Background Technological advances are progressively increasing the application of genomics to a wider array of economically and ecologically important species. High-density maps enriched for transcribed genes facilitate the discovery of connections between genes and phenotypes. We report the construction of a high-density linkage map of expressed genes for the heterozygous genome of Eucalyptus using Single Feature Polymorphism (SFP) markers. Results SFP discovery and mapping was achieved using pseudo-testcross screening and selective mapping to simultaneously optimize linkage mapping and microarray costs. SFP genotyping was carried out by hybridizing complementary RNA prepared from 4.5 year-old trees xylem to an SFP array containing 103,000 25-mer oligonucleotide probes representing 20,726 unigenes derived from a modest size expressed sequence tags collection. An SFP-mapping microarray with 43,777 selected candidate SFP probes representing 15,698 genes was subsequently designed and used to genotype SFPs in a larger subset of the segregating population drawn by selective mapping. A total of 1,845 genes were mapped, with 884 of them ordered with high likelihood support on a framework map anchored to 180 microsatellites with average density of 1.2 cM. Using more probes per unigene increased by two-fold the likelihood of detecting segregating SFPs eventually resulting in more genes mapped. In silico validation showed that 87% of the SFPs map to the expected location on the 4.5X draft sequence of the Eucalyptus grandis genome. Conclusions The Eucalyptus 1,845 gene map is the most highly enriched map for transcriptional information for any forest tree species to date. It represents a major improvement on the number of genes previously positioned on Eucalyptus maps and provides an initial glimpse at the gene space for this global tree genome. A general protocol is proposed to build high-density transcript linkage maps in less characterized plant species by SFP genotyping

  12. Changing phenotypic expression in a patient with a mitochondrial encephalopathy due to 13042G>A de novo mutation--a 5 year follow up.

    Science.gov (United States)

    Schinwelski, M; Kierdaszuk, B; Dulski, J; Tońska, K; Kodroń, A; Sitek, E J; Bartnik, E; Kamińska, A; Kwieciński, H; Sławek, J

    2015-08-01

    Mutations in NADH dehydrogenase (ND) subunits of complex I lead to mitochondrial encephalomyopathies associated with various phenotypes. This report aims to present the patient's clinical symptomatology in the context of a very rare 13042G>A de novo mutation and with an emphasis on changing phenotypic expression and pronounced, long-standing response to levetiracetam.

  13. Integrative DNA methylation and gene expression analysis to assess the universality of the CpG island methylator phenotype.

    Science.gov (United States)

    Moarii, Matahi; Reyal, Fabien; Vert, Jean-Philippe

    2015-10-13

    The CpG island methylator phenotype (CIMP) was first characterized in colorectal cancer but since has been extensively studied in several other tumor types such as breast, bladder, lung, and gastric. CIMP is of clinical importance as it has been reported to be associated with prognosis or response to treatment. However, the identification of a universal molecular basis to define CIMP across tumors has remained elusive. We perform a genome-wide methylation analysis of over 2000 tumor samples from 5 cancer sites to assess the existence of a CIMP with common molecular basis across cancers. We then show that the CIMP phenotype is associated with specific gene expression variations. However, we do not find a common genetic signature in all tissues associated with CIMP. Our results suggest the existence of a universal epigenetic and transcriptomic signature that defines the CIMP across several tumor types but does not indicate the existence of a common genetic signature of CIMP.

  14. Systematic drug safety evaluation based on public genomic expression (Connectivity Map) data: Myocardial and infectious adverse reactions as application cases

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Kejian, E-mail: kejian.wang.bio@gmail.com [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai (China); Weng, Zuquan [Japan National Institute of Occupational Safety and Health, Kawasaki (Japan); Sun, Liya [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai (China); Sun, Jiazhi; Zhou, Shu-Feng [Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL (United States); He, Lin, E-mail: helin@Bio-X.com [Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, Shanghai (China)

    2015-02-13

    Adverse drug reaction (ADR) is of great importance to both regulatory agencies and the pharmaceutical industry. Various techniques, such as quantitative structure–activity relationship (QSAR) and animal toxicology, are widely used to identify potential risks during the preclinical stage of drug development. Despite these efforts, drugs with safety liabilities can still pass through safety checkpoints and enter the market. This situation raises the concern that conventional chemical structure analysis and phenotypic screening are not sufficient to avoid all clinical adverse events. Genomic expression data following in vitro drug treatments characterize drug actions and thus have become widely used in drug repositioning. In the present study, we explored prediction of ADRs based on the drug-induced gene-expression profiles from cultured human cells in the Connectivity Map (CMap) database. The results showed that drugs inducing comparable ADRs generally lead to similar CMap expression profiles. Based on such ADR-gene expression association, we established prediction models for various ADRs, including severe myocardial and infectious events. Drugs with FDA boxed warnings of safety liability were effectively identified. We therefore suggest that drug-induced gene expression change, in combination with effective computational methods, may provide a new dimension of information to facilitate systematic drug safety evaluation. - Highlights: • Drugs causing common toxicity lead to similar in vitro gene expression changes. • We built a model to predict drug toxicity with drug-specific expression profiles. • Drugs with FDA black box warnings were effectively identified by our model. • In vitro assay can detect severe toxicity in the early stage of drug development.

  15. Systematic drug safety evaluation based on public genomic expression (Connectivity Map) data: Myocardial and infectious adverse reactions as application cases

    International Nuclear Information System (INIS)

    Wang, Kejian; Weng, Zuquan; Sun, Liya; Sun, Jiazhi; Zhou, Shu-Feng; He, Lin

    2015-01-01

    Adverse drug reaction (ADR) is of great importance to both regulatory agencies and the pharmaceutical industry. Various techniques, such as quantitative structure–activity relationship (QSAR) and animal toxicology, are widely used to identify potential risks during the preclinical stage of drug development. Despite these efforts, drugs with safety liabilities can still pass through safety checkpoints and enter the market. This situation raises the concern that conventional chemical structure analysis and phenotypic screening are not sufficient to avoid all clinical adverse events. Genomic expression data following in vitro drug treatments characterize drug actions and thus have become widely used in drug repositioning. In the present study, we explored prediction of ADRs based on the drug-induced gene-expression profiles from cultured human cells in the Connectivity Map (CMap) database. The results showed that drugs inducing comparable ADRs generally lead to similar CMap expression profiles. Based on such ADR-gene expression association, we established prediction models for various ADRs, including severe myocardial and infectious events. Drugs with FDA boxed warnings of safety liability were effectively identified. We therefore suggest that drug-induced gene expression change, in combination with effective computational methods, may provide a new dimension of information to facilitate systematic drug safety evaluation. - Highlights: • Drugs causing common toxicity lead to similar in vitro gene expression changes. • We built a model to predict drug toxicity with drug-specific expression profiles. • Drugs with FDA black box warnings were effectively identified by our model. • In vitro assay can detect severe toxicity in the early stage of drug development

  16. Two novel MYH7 proline substitutions cause Laing Distal Myopathy-like phenotypes with variable expressivity and neck extensor contracture.

    Science.gov (United States)

    Feinstein-Linial, Miora; Buvoli, Massimo; Buvoli, Ada; Sadeh, Menachem; Dabby, Ron; Straussberg, Rachel; Shelef, Ilan; Dayan, Daniel; Leinwand, Leslie Anne; Birk, Ohad S

    2016-08-12

    Human skeletal muscles express three major myosin heavy chain (MyHC) isoforms: MyHCIIx (MYH1) in fast type 2B muscle fibers, MyHCIIa (MYH2) in fast type 2A fibers and MyHCI/β-cardiac MyHC (MYH7) in slow type I skeletal fibers and cardiac ventricles. In line with its expression pattern, MYH7 mutations have been reported in association with hypertrophic or dilated cardiomyopathy, skeletal myopathies or a combination of both. We analyzed the clinical and molecular phenotype of two unrelated families of Jewish Moroccan ancestry that presented with apparently autosomal dominant inheritance of progressive Laing-like distal myopathy with non-specific myopathic changes, but uncommon marked contractures and wasting of the neck extensors. Clinical phenotyping, whole exome sequencing and restriction analysis, generation of mutants followed by cell culture transfection and imaging. Using whole exome sequencing we identified in both families two novel heterozygous proline substitutions located in exon 31 of MYH7 within its rod domain: c.4309G>C (p.Ala1437Pro) and c.4301G>C (p.Arg1434Pro). Here we show that the phenotype caused by these mutations includes marked cervical muscle contracture, and report that the severity of the phenotype varies significantly, to the extent of non-penetrance in one of the families. Finally, we provide evidence that both proline substitutions impair myosin self-assembly in non-muscle cells transfected with β-myosin constructs carrying the mutations, but do not prevent incorporation of the mutant molecules into the sarcomere. This study expands our clinical and molecular knowledge of MYH7 rod mutations causing skeletal myopathies, and underscores the importance of discussing disease penetrance during genetic counseling.

  17. Intraoperative mapping of expressive language cortex using passive real-time electrocorticography

    Directory of Open Access Journals (Sweden)

    AmiLyn M. Taplin

    2016-01-01

    Full Text Available In this case report, we investigated the utility and practicality of passive intraoperative functional mapping of expressive language cortex using high-resolution electrocorticography (ECoG. The patient presented here experienced new-onset seizures caused by a medium-grade tumor in very close proximity to expressive language regions. In preparation of tumor resection, the patient underwent multiple functional language mapping procedures. We examined the relationship of results obtained with intraoperative high-resolution ECoG, extraoperative ECoG utilizing a conventional subdural grid, extraoperative electrical cortical stimulation (ECS mapping, and functional magnetic resonance imaging (fMRI. Our results demonstrate that intraoperative mapping using high-resolution ECoG is feasible and, within minutes, produces results that are qualitatively concordant to those achieved by extraoperative mapping modalities. They also suggest that functional language mapping of expressive language areas with ECoG may prove useful in many intraoperative conditions given its time efficiency and safety. Finally, they demonstrate that integration of results from multiple functional mapping techniques, both intraoperative and extraoperative, may serve to improve the confidence in or precision of functional localization when pathology encroaches upon eloquent language cortex.

  18. Development of multigene expression signature maps at the protein level from digitized immunohistochemistry slides.

    Directory of Open Access Journals (Sweden)

    Gregory J Metzger

    Full Text Available Molecular classification of diseases based on multigene expression signatures is increasingly used for diagnosis, prognosis, and prediction of response to therapy. Immunohistochemistry (IHC is an optimal method for validating expression signatures obtained using high-throughput genomics techniques since IHC allows a pathologist to examine gene expression at the protein level within the context of histologically interpretable tissue sections. Additionally, validated IHC assays may be readily implemented as clinical tests since IHC is performed on routinely processed clinical tissue samples. However, methods have not been available for automated n-gene expression profiling at the protein level using IHC data. We have developed methods to compute expression level maps (signature maps of multiple genes from IHC data digitized on a commercial whole slide imaging system. Areas of cancer for these expression level maps are defined by a pathologist on adjacent, co-registered H&E slides, allowing assessment of IHC statistics and heterogeneity within the diseased tissue. This novel way of representing multiple IHC assays as signature maps will allow the development of n-gene expression profiling databases in three dimensions throughout virtual whole organ reconstructions.

  19. Structures of Rotavirus Reassortants Demonstrate Correlation of Altered Conformation of the VP4 Spike and Expression of Unexpected VP4-Associated Phenotypes

    Science.gov (United States)

    Pesavento, Joseph B.; Billingsley, Angela M.; Roberts, Ed J.; Ramig, Robert F.; Prasad, B. V. Venkataram

    2003-01-01

    Numerous prior studies have indicated that viable rotavirus reassortants containing structural proteins of heterologous parental origin may express unexpected phenotypes, such as changes in infectivity and immunogenicity. To provide a structural basis for alterations in phenotypic expression, a three-dimensional structural analysis of these reassortants was conducted. The structures of the reassortants show that while VP4 generally maintains the parental structure when moved to a heterologous protein background, in certain reassortants, there are subtle alterations in the conformation of VP4. The alterations in VP4 conformation correlated with expression of unexpected VP4-associated phenotypes. Interactions between heterologous VP4 and VP7 in reassortants expressing unexpected phenotypes appeared to induce the conformational alterations seen in VP4. PMID:12584352

  20. Gallic acid modulates phenotypic behavior and gene expression in oral squamous cell carcinoma cells by interfering with leptin pathway.

    Science.gov (United States)

    Santos, Eliane Macedo Sobrinho; da Rocha, Rogério Gonçalves; Santos, Hércules Otacílio; Guimarães, Talita Antunes; de Carvalho Fraga, Carlos Alberto; da Silveira, Luiz Henrique; Batista, Paulo Ricardo; de Oliveira, Paulo Sérgio Lopes; Melo, Geraldo Aclécio; Santos, Sérgio Henrique; de Paula, Alfredo Maurício Batista; Guimarães, André Luiz Sena; Farias, Lucyana Conceição

    2018-01-01

    Gallic acid is a polyphenolic compost appointed to interfere with neoplastic cells behavior. Evidence suggests an important role of leptin in carcinogenesis pathways, inducing a proliferative phenotype. We investigated the potential of gallic acid to modulate leptin-induced cell proliferation and migration of oral squamous cell carcinoma cell lines. The gallic acid effect on leptin secretion by oral squamous cell carcinoma cells, as well as the underlying molecular mechanisms, was also assessed. For this, we performed proliferation, migration, immunocytochemical and qPCR assays. The expression levels of cell migration-related genes (MMP2, MMP9, Col1A1, and E-cadherin), angiogenesis (HIF-1α, mir210), leptin signaling (LepR, p44/42 MAPK), apoptosis (casp-3), and secreted leptin levels by oral squamous cell carcinoma cells were also measured. Gallic acid decreased proliferation and migration of leptin-treated oral squamous cell carcinoma cells, and reduced mRNA expression of MMP2, MMP9, Col1A1, mir210, but did not change HIF-1α. Gallic acid decreased levels of leptin secreted by oral squamous cell carcinoma cells, accordingly with downregulation of p44/42 MAPK expression. Thus, gallic acid appears to break down neoplastic phenotype of oral squamous cell carcinoma cells by interfering with leptin pathway. Copyright © 2017 Elsevier GmbH. All rights reserved.

  1. Development of a porcine skeletal muscle cDNA microarray: analysis of differential transcript expression in phenotypically distinct muscles

    Directory of Open Access Journals (Sweden)

    Stear Michael

    2003-03-01

    Full Text Available Abstract Background Microarray profiling has the potential to illuminate the molecular processes that govern the phenotypic characteristics of porcine skeletal muscles, such as hypertrophy or atrophy, and the expression of specific fibre types. This information is not only important for understanding basic muscle biology but also provides underpinning knowledge for enhancing the efficiency of livestock production. Results We report on the de novo development of a composite skeletal muscle cDNA microarray, comprising 5500 clones from two developmentally distinct cDNA libraries (longissimus dorsi of a 50-day porcine foetus and the gastrocnemius of a 3-day-old pig. Clones selected for the microarray assembly were of low to moderate abundance, as indicated by colony hybridisation. We profiled the differential expression of genes between the psoas (red muscle and the longissimus dorsi (white muscle, by co-hybridisation of Cy3 and Cy5 labelled cDNA derived from these two muscles. Results from seven microarray slides (replicates correctly identified genes that were expected to be differentially expressed, as well as a number of novel candidate regulatory genes. Quantitative real-time RT-PCR on selected genes was used to confirm the results from the microarray. Conclusion We have developed a porcine skeletal muscle cDNA microarray and have identified a number of candidate genes that could be involved in muscle phenotype determination, including several members of the casein kinase 2 signalling pathway.

  2. Phenotypes, antioxidant responses, and gene expression changes accompanying a sugar-only diet in Bactrocera dorsalis (Hendel) (Diptera: Tephritidae).

    Science.gov (United States)

    Chen, Er-Hu; Hou, Qiu-Li; Wei, Dan-Dan; Jiang, Hong-Bo; Wang, Jin-Jun

    2017-08-17

    Diet composition (yeast:carbohydrate ratio) is an important determinant of growth, development, and reproduction. Recent studies have shown that decreased yeast intake elicits numerous transcriptomic changes and enhances somatic maintenance and lifespan, which in turn reduces reproduction in various insects. However, our understanding of the responses leading to a decrease in yeast ratio to 0% is limited. In the present study, we investigated the effects of a sugar-only diet (SD) on the gene expression patterns of the oriental fruit fly, Bactrocera dorsalis (Hendel), one of the most economically important pests in the family Tephritidae. RNA sequencing analyses showed that flies reared on an SD induced significant changes in the expression levels of genes associated with specific metabolic as well as cell growth and death pathways. Moreover, the observed upregulated genes in energy production and downregulated genes associated with reproduction suggested that SD affects somatic maintenance and reproduction in B. dorsalis. As expected, we observed that SD altered B. dorsalis phenotypes by significantly increasing stress (starvation and desiccation) resistance, decreasing reproduction, but did not extend lifespan compared to those that received a normal diet (ND) regime. In addition, administration of an SD resulted in a reduction in antioxidant enzyme activities and an increase in MDA concentrations, thereby suggesting that antioxidants cannot keep up with the increase in oxidative damage induced by SD regime. The application of an SD diet induces changes in phenotypes, antioxidant responses, and gene expressions in B. dorsalis. Previous studies have associated extended lifespan with reduced fecundity. The current study did not observe a prolongation of lifespan in B. dorsalis, which instead incurred oxidative damage. The findings of the present study improve our understanding of the molecular, biochemical, and phenotypic response of B. dorsalis to an SD diet.

  3. Sequence-Based Mapping and Genome Editing Reveal Mutations in Stickleback Hps5 Cause Oculocutaneous Albinism and the casper Phenotype

    Directory of Open Access Journals (Sweden)

    James C. Hart

    2017-09-01

    Full Text Available Here, we present and characterize the spontaneous X-linked recessive mutation casper, which causes oculocutaneous albinism in threespine sticklebacks (Gasterosteus aculeatus. In humans, Hermansky-Pudlak syndrome results in pigmentation defects due to disrupted formation of the melanin-containing lysosomal-related organelle (LRO, the melanosome. casper mutants display not only reduced pigmentation of melanosomes in melanophores, but also reductions in the iridescent silver color from iridophores, while the yellow pigmentation from xanthophores appears unaffected. We mapped casper using high-throughput sequencing of genomic DNA from bulked casper mutants to a region of the stickleback X chromosome (chromosome 19 near the stickleback ortholog of Hermansky-Pudlak syndrome 5 (Hps5. casper mutants have an insertion of a single nucleotide in the sixth exon of Hps5, predicted to generate an early frameshift. Genome editing using CRISPR/Cas9 induced lesions in Hps5 and phenocopied the casper mutation. Injecting single or paired Hps5 guide RNAs revealed higher incidences of genomic deletions from paired guide RNAs compared to single gRNAs. Stickleback Hps5 provides a genetic system where a hemizygous locus in XY males and a diploid locus in XX females can be used to generate an easily scored visible phenotype, facilitating quantitative studies of different genome editing approaches. Lastly, we show the ability to better visualize patterns of fluorescent transgenic reporters in Hps5 mutant fish. Thus, Hps5 mutations present an opportunity to study pigmented LROs in the emerging stickleback model system, as well as a tool to aid in assaying genome editing and visualizing enhancer activity in transgenic fish.

  4. Phenotypic expression of partial AZFc deletions is independent of the variations in DAZL and BOULE in a Han population.

    Science.gov (United States)

    Chen, Pu; Ma, Mingyi; Li, Lei; Zhang, Sizhong; Su, Dan; Ma, Yongxin; Liu, Yunqiang; Tao, Dachang; Lin, Li; Yang, Yuan

    2010-01-01

    DAZ on the Y chromosome and 2 autosomal ancestral genes DAZL and BOULE are suggested to represent functional conservation in spermatogenesis. The partial AZFc deletion, a common mutation of the Y chromosome, always involves 2 DAZ copies and represents a different spermatogenic phenotype in the populations studied. To investigate whether the variations in DAZL and BOULE influence partial AZFc deletion phenotype, the genotyping of 15 loci variations, including 4 known mutations and 11 single-nucleotide polymorphisms (SNPs), was carried out in 157 azoo-/oligzoospermic men and 57 normozoospermic men, both groups with partial AZFc deletions. The frequencies of the alleles, genotypes, and haplotypes of the variations were compared between the 2 groups. As a result, for 9 exonic variations in DAZL and BOULE, only T12A was observed in both groups with similar frequency, and I71V was identified in an azoospermic man with b2/b3 deletion, whereas the rest were absent in the population. The distribution of DAZL haplotypes from 4 variations, including T12A, and of BOULE haplotypes from 2 SNPs was similar between men with normozoospermia and spermatogenic failure. Our findings indicate that the contribution of DAZL and BOULE variations to spermatogenic impairment in men with the DAZ defect is greatly limited, suggesting that expression of spermatogenic phenotypes of partial AZFc deletions is independent of the variations in DAZL and BOULE in the Han population.

  5. Expression of Momordica charantia MAP30 and its antitumor effect on bladder cancer cells.

    Science.gov (United States)

    Hlin, Hao; Zhi-Guo, Zhang; Cong-Hui, Han; Yan, Zhao; Qing, Liang; Bo, Jiang; Hou-Guang, He; Jun-Jie, Zhang; Pei-Ying, Zhang

    2016-06-01

    Momordica charantia (MC) is an edible medicinal plant that is known for its diversified biological functions. Momordica Antiviral Protein 30kD (MAP30) is a type I single chain ribosome-inactivating protein (RIP) isolated from the mature fruit and seeds of MC. Since MAP30 content in MC is limited, the study aim was to generate the recombinant MAP30 protein using prokaryotic expression system and determine its apoptotic/growth inhibitory effects on bladder cancer 5637 cells. MAP30 gene was amplified by PCR from MC genomic DNA and identified by sequencing. The target gene was inserted into pET-28a (+) vector and transformed into E. coli BL21 (DE3) cells. Positive clones were selected by PCR. Recombinant protein was efficiently expressed under induction with 1.0 mM Isopropylthio-β-D-galactoside (IPTG) at 30° C for 4 hours. Cytotoxicity studies were performed using MTT assay by treating 5637 bladder cancer cells with 100 µg/mL, 200 µg/mL, and 400 µg/mL concentrations of MAP30 for 24 hours and 48 hours, respectively. Flow cytometry was used to measure the apoptosis of MAP30-treatedcells in time course experiments. Full-length MAP30 gene was successfully expressed in Escherichia coli (E. coli) BL21 strain and MAP30 recombinant protein inhibited the growth of bladder cancer 5637 cells at 200 µg/mL and 400 µg/mL concentrations by inducing apoptosis of target cells in a dose- and time-dependent manner. It was, therefore, concluded that the MAP30 recombinant protein displayed potent antitumor activity in vitro.

  6. Improving the phenotypic expression of rice genotypes: Rethinking “intensification” for production systems and selection practices for rice breeding

    Directory of Open Access Journals (Sweden)

    Norman Uphoff

    2015-06-01

    Full Text Available Intensification in rice crop production is generally understood as requiring increased use of material inputs: water, inorganic fertilizers, and agrochemicals. However, this is not the only kind of intensification available. More productive crop phenotypes, with traits such as more resistance to biotic and abiotic stresses and shorter crop cycles, are possible through modifications in the management of rice plants, soil, water, and nutrients, reducing rather than increasing material inputs. Greater factor productivity can be achieved through the application of new knowledge and more skill, and (initially more labor, as seen from the System of Rice Intensification (SRI, whose practices are used in various combinations by as many as 10 million farmers on about 4 million hectares in over 50 countries. The highest yields achieved with these management methods have come from hybrids and improved rice varieties, confirming the importance of making genetic improvements. However, unimproved varieties are also responsive to these changes, which induce better growth and functioning of rice root systems and more abundance, diversity, and activity of beneficial soil organisms. Some of these organisms as symbiotic endophytes can affect and enhance the expression of rice plants' genetic potential as well as their phenotypic resilience to multiple stresses, including those of climate change. SRI experience and data suggest that decades of plant breeding have been selecting for the best crop genetic endowments under suboptimal growing conditions, with crowding of plants that impedes their photosynthesis and growth, flooding of rice paddies that causes roots to degenerate and forgoes benefits derived from aerobic soil organisms, and overuse of agrochemicals that adversely affect these organisms as well as soil and human health. This review paper reports evidence from research in India and Indonesia that changes in crop and water management can improve the

  7. Induction of expression of two phenotypic markers of pulmonary type II cells in a cultured cell line

    International Nuclear Information System (INIS)

    Henderson, R.F.; Waide, J.J.; Scott, G.G.

    1994-01-01

    The functions of pulmonary type II cells, such as synthesis of pulmonary surfactant and metabolism of inhaled xenobiotics, can be studied in primary isolates of lung cells. However, isolated type II cells, when cultured, quickly lose the phenotypic expressions characteristics of type II cells, including surfactant lipid and protein synthesis and alkaline phosphatase (AP) activity. A cultured cell line that maintained expression of type II cell markers of differentiation would be advantageous for the study of such functions as surfactant synthesis and secretion. Such a cell line would allow generation of a large number of homogeneous cells for study. The purpose of the current study was to induce markers of differentiated type II cells in a cultured cell line to facilitate studies of factors that control surfactant synthesis and secretion

  8. Use of expression constructs to dissect the functional domains of the CHS/beige protein: identification of multiple phenotypes.

    Science.gov (United States)

    Ward, Diane McVey; Shiflett, Shelly L; Huynh, Dinh; Vaughn, Michael B; Prestwich, Glenn; Kaplan, Jerry

    2003-06-01

    The Chediak-Higashi Syndrome (CHS) and the orthologous murine disorder beige are characterized at the cellular level by the presence of giant lysosomes. The CHS1/Beige protein is a 3787 amino acid protein of unknown function. To determine functional domains of the CHS1/Beige protein, we generated truncated constructs of the gene/protein. These truncated proteins were transiently expressed in Cos-7 or HeLa cells and their effect on membrane trafficking was examined. Beige is apparently a cytosolic protein, as are most transiently expressed truncated Beige constructs. Expression of the Beige construct FM (amino acids 1-2037) in wild-type cells led to enlarged lysosomes. Similarly, expression of a 5.5-kb region (amino acids 2035-3787) of the carboxyl terminal of Beige (22B) also resulted in enlarged lysosomes. Expression of FM solely affected lysosome size, whereas expression of 22B led to alterations in lysosome size, changes in the Golgi and eventually cell death. The two constructs could be used to further dissect phenotypes resulting from loss of the Beige protein. CHS or beigej fibroblasts show an absence of nuclear staining using a monoclonal antibody directed against phosphatidylinositol 4,5 bisphosphate [PtdIns(4,5) P2]. Transformation of beige j fibroblasts with a YAC containing the full-length Beige gene resulted in the normalization of lysosome size and nuclear PtdIns(4,5)P2 staining. Expression of the carboxyl dominant negative construct 22B led to loss of nuclear PtdIns(4,5)P2 staining. Expression of the FM dominant negative clone did not alter nuclear PtdIns(4,5) P2 localization. These results suggest that the Beige protein interacts with at least two different partners and that the Beige protein affects cellular events, such as nuclear PtdIns(4,5)P2 localization, in addition to lysosome size.

  9. Gene expression profiles deciphering rice phenotypic variation between Nipponbare (Japonica and 93-11 (Indica during oxidative stress.

    Directory of Open Access Journals (Sweden)

    Fengxia Liu

    Full Text Available Rice is a very important food staple that feeds more than half the world's population. Two major Asian cultivated rice (Oryza sativa L. subspecies, japonica and indica, show significant phenotypic variation in their stress responses. However, the molecular mechanisms underlying this phenotypic variation are still largely unknown. A common link among different stresses is that they produce an oxidative burst and result in an increase of reactive oxygen species (ROS. In this study, methyl viologen (MV as a ROS agent was applied to investigate the rice oxidative stress response. We observed that 93-11 (indica seedlings exhibited leaf senescence with severe lesions under MV treatment compared to Nipponbare (japonica. Whole-genome microarray experiments were conducted, and 1,062 probe sets were identified with gene expression level polymorphisms between the two rice cultivars in addition to differential expression under MV treatment, which were assigned as Core Intersectional Probesets (CIPs. These CIPs were analyzed by gene ontology (GO and highlighted with enrichment GO terms related to toxin and oxidative stress responses as well as other responses. These GO term-enriched genes of the CIPs include glutathine S-transferases (GSTs, P450, plant defense genes, and secondary metabolism related genes such as chalcone synthase (CHS. Further insertion/deletion (InDel and regulatory element analyses for these identified CIPs suggested that there may be some eQTL hotspots related to oxidative stress in the rice genome, such as GST genes encoded on chromosome 10. In addition, we identified a group of marker genes individuating the japonica and indica subspecies. In summary, we developed a new strategy combining biological experiments and data mining to study the possible molecular mechanism of phenotypic variation during oxidative stress between Nipponbare and 93-11. This study will aid in the analysis of the molecular basis of quantitative traits.

  10. Lessons from a phenotyping center revealed by the genome-guided mapping of powdery mildew resistance loci

    Science.gov (United States)

    The genomics era brought unprecedented tools for genetic analysis of host resistance, but careful attention is needed on obtaining accurate and reproducible phenotypes so that genomic results appropriately reflect biology. Phenotyping host resistance by natural infection in the field can produce var...

  11. Mapping the Wolf-Hirschhorn syndrome phenotype outside the currently accepted WHS critical region and defining a new critical region, WHSCR-2.

    Science.gov (United States)

    Zollino, Marcella; Lecce, Rosetta; Fischetto, Rita; Murdolo, Marina; Faravelli, Francesca; Selicorni, Angelo; Buttè, Cinzia; Memo, Luigi; Capovilla, Giuseppe; Neri, Giovanni

    2003-03-01

    In an attempt to define the distinctive Wolf-Hirschhorn syndrome (WHS) phenotype, and to map its specific clinical manifestations, a total of eight patients carrying a 4p16.3 microdeletion were analyzed for their clinical phenotype and their respective genotypes. The extent of each individual deletion was established by fluorescence in situ hybridization, with a cosmid contig spanning the genomic region from MSX1 (distal half of 4p16.1) to the subtelomeric locus D4S3359. The deletions were 1.9-3.5 Mb, and all were terminal. All the patients presented with a mild phenotype, in which major malformations were usually absent. It is worth noting that head circumference was normal for height in two patients (those with the smallest deletions [1.9 and 2.2 Mb]). The currently accepted WHS critical region (WHSCR) was fully preserved in the patient with the 1.9-Mb deletion, in spite of a typical WHS phenotype. The deletion in this patient spanned the chromosome region from D4S3327 (190 b4 cosmid clone included) to the telomere. From a clinical point of view, the distinctive WHS phenotype is defined by the presence of typical facial appearance, mental retardation, growth delay, congenital hypotonia, and seizures. These signs represent the minimal diagnostic criteria for WHS. This basic phenotype maps distal to the currently accepted WHSCR. Here, we propose a new critical region for WHS, and we refer to this region as "WHSCR-2." It falls within a 300-600-kb interval in 4p16.3, between the loci D4S3327 and D4S98-D4S168. Among the candidate genes already described for WHS, LETM1 (leucine zipper/EF-hand-containing transmembrane) is likely to be pathogenetically involved in seizures. On the basis of genotype-phenotype correlation analysis, dividing the WHS phenotype into two distinct clinical entities, a "classical" and a "mild" form, is recommended for the purpose of proper genetic counseling.

  12. Exploring the phenotypic expression of a regulatory proteome- altering gene by spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Munck, L.; Nielsen, J.P.; Møller, B.

    2001-01-01

    electrophoresis, resulting in a radically changed amino acid and chemical composition. A synergy interval partial least squares regression model (si-PLSR) is tested to select combinations of spectral segments which have a high correlation to defined chemical components indicative of the lys3a gene, such as direct...... effects of the changed proteome, for example, the amide content, or indirect effects due to changes in carbohydrate and fat composition. It is concluded that the redundancy of biological information on the DNA sequence level is also represented at the phenotypic level in the dataset read by the NIR...... spectroscopic sensor from the chemical physical fingerprint. The PLS algorithm chooses spectral intervals: which combine both direct and indirect proteome effects. This explains the robustness of NIR spectral predictions by PLSR for a wide range of chemical components. The new option of using spectroscopy...

  13. Familial aggregation of phenotypic expression of premature hair hypopigmentation in the craniofacial region

    Directory of Open Access Journals (Sweden)

    Corey Black

    2015-04-01

    Full Text Available There are many patients who experience premature hypopigmentation of hair, but do not understand the underlying causes and potential dangers associated with them. The causes range from genetic predisposition to environmental influences such as tobacco use. Premature hypopigmentation of the hair shaft can also be associated with many syndromes; some which cause dental anomalies. Today, treatment options are limited for patients, although various studies are being done on mice to target the underlying mechanism of action. Understanding the differences between all of the possible causes of this particular phenotype can help clinicians better identify the symptoms, educate patients, and possibly modify treatment to suit the needs of each patient on an individual basis.

  14. An innovative way to highlight the power of each polymorphism on elite athletes phenotype expression

    Directory of Open Access Journals (Sweden)

    Valentina Contrò

    2018-03-01

    Full Text Available The purpose of this study was to determine the probability of soccer players having the best genetic background that could increase performance, evaluating the polymorphism that are considered Performance Enhancing Polymorphism (PEPs distributed on five genes: PPARα, PPARGC1A, NRF2, ACE e CKMM. Particularly, we investigated how each polymorphism works directly or through another polymorphism to distinguish elite athletes from non-athletic population. Sixty professional soccer players (age 22.5 ± 2.2 and sixty healthy volunteers (age 21.2± 2.3 were enrolled. Samples of venous blood was used to prepare genomic DNA. The polymorphic sites were scanned using PCR-RFLP protocols with different enzyme. We used a multivariate logistic regression analysis to demonstrate an association between the five PEPs and elite phenotype. We found statistical significance in NRF2 (AG/GG genotype polymorphism/soccer players association (p<0.05 as well as a stronger association in ACE polymorphism (p=0.02. Particularly, we noticed that the ACE ID genotype and even more the II genotype are associated with soccer player phenotype. Although the other PEPs had no statistical significance, we proved that some of these may work indirectly, amplifying the effect of another polymorphism; for example, seems that PPARα could acts on NRF2 (GG enhancing the effect of the latter, notwithstanding it had not shown a statistical significance. In conclusion, to establish if a polymorphism can influence the performance, it is necessary to understand how they act and interact, directly and indirectly, on each other

  15. Mesenchymal Tumors Can Derive from Ng2/Cspg4-Expressing Pericytes with β-Catenin Modulating the Neoplastic Phenotype

    Directory of Open Access Journals (Sweden)

    Shingo Sato

    2016-07-01

    Full Text Available The cell of origin for most mesenchymal tumors is unclear. One cell type that contributes to this lineages is the pericyte, a cell expressing Ng2/Cspg4. Using lineage tracing, we demonstrated that bone and soft tissue sarcomas driven by the deletion of the Trp53 tumor suppressor, or desmoid tumors driven by a mutation in Apc, can derive from cells expressing Ng2/Cspg4. Deletion of the Trp53 tumor suppressor gene in these cells resulted in the bone and soft tissue sarcomas that closely resemble human sarcomas, while stabilizing β-catenin in this same cell type caused desmoid tumors. Comparing expression between Ng2/Cspg4-expressing pericytes lacking Trp53 and sarcomas that arose from deletion of Trp53 showed inhibition of β-catenin signaling in the sarcomas. Activation of β-catenin inhibited the formation and growth of sarcomas. Thus, pericytes can be a cell of origin for mesenchymal tumors, and β-catenin dysregulation plays an important role in the neoplastic phenotype.

  16. Evaluation of phenoxybenzamine in the CFA model of pain following gene expression studies and connectivity mapping.

    Science.gov (United States)

    Chang, Meiping; Smith, Sarah; Thorpe, Andrew; Barratt, Michael J; Karim, Farzana

    2010-09-16

    We have previously used the rat 4 day Complete Freund's Adjuvant (CFA) model to screen compounds with potential to reduce osteoarthritic pain. The aim of this study was to identify genes altered in this model of osteoarthritic pain and use this information to infer analgesic potential of compounds based on their own gene expression profiles using the Connectivity Map approach. Using microarrays, we identified differentially expressed genes in L4 and L5 dorsal root ganglia (DRG) from rats that had received intraplantar CFA for 4 days compared to matched, untreated control animals. Analysis of these data indicated that the two groups were distinguishable by differences in genes important in immune responses, nerve growth and regeneration. This list of differentially expressed genes defined a "CFA signature". We used the Connectivity Map approach to identify pharmacologic agents in the Broad Institute Build02 database that had gene expression signatures that were inversely related ('negatively connected') with our CFA signature. To test the predictive nature of the Connectivity Map methodology, we tested phenoxybenzamine (an alpha adrenergic receptor antagonist) - one of the most negatively connected compounds identified in this database - for analgesic activity in the CFA model. Our results indicate that at 10 mg/kg, phenoxybenzamine demonstrated analgesia comparable to that of Naproxen in this model. Evaluation of phenoxybenzamine-induced analgesia in the current study lends support to the utility of the Connectivity Map approach for identifying compounds with analgesic properties in the CFA model.

  17. Mapping a mathematical expression onto a Montium ALU using GNU Bison

    NARCIS (Netherlands)

    Rosien, M.A.J.; Smit, Gerardus Johannes Maria

    2004-01-01

    The Montium processing tile [1], [4] contains a number of complex ALUs which can perform many different operations in many different ways. In the Chameleon tool flow [2], it is necessary to automatically determine whether a certain mathematical expression can be mapped onto an ALU and to

  18. Medial prefrontal cortex: genes linked to bipolar disorder and schizophrenia have altered expression in the highly social maternal phenotype

    Directory of Open Access Journals (Sweden)

    Brian E Eisinger

    2014-04-01

    Full Text Available The transition to motherhood involves CNS changes that modify sociability and affective state. However, these changes also put females at risk for postpartum depression and psychosis, which impairs parenting abilities and adversely affects children. Thus, changes in expression and interactions in a core subset of genes may be critical for emergence of a healthy maternal phenotype, but inappropriate changes of the same genes could put women at risk for postpartum disorders. This study evaluated microarray gene expression changes in medial prefrontal cortex (mPFC, a region implicated in both maternal behavior and psychiatric disorders. Postpartum mice were compared to virgin controls housed with females and isolated for identical durations. Using the Modular Single-set Enrichment Test (MSET, we found that the genetic landscape of maternal mPFC bears statistical similarity to gene databases associated with schizophrenia (5 of 5 sets and bipolar disorder (BPD, 3 of 3 sets. In contrast to previous studies of maternal lateral septum and medial preoptic area, enrichment of autism and depression-linked genes was not significant (2 of 9 sets, 0 of 4 sets. Among genes linked to multiple disorders were fatty acid binding protein 7 (Fabp7, glutamate metabotropic receptor 3 (Grm3, platelet derived growth factor, beta polypeptide (Pdgfrb, and nuclear receptor subfamily 1, group D, member 1 (Nr1d1. RT-qPCR confirmed these gene changes as well as FMS-like tyrosine kinase 1 (Flt1 and proenkephalin (Penk. Systems-level methods revealed involvement of developmental gene networks in establishing the maternal phenotype and indirectly suggested a role for numerous microRNAs and transcription factors in mediating expression changes. Together, this study suggests that a subset of genes involved in shaping the healthy maternal brain may also be dysregulated in mental health disorders and put females at risk for postpartum psychosis with aspects of schizophrenia and BPD.

  19. Phenotypic characterization of neurotensin messenger RNA-expressing cells in the neuroleptic-treated rat striatum: a detailed cellular co-expression study

    International Nuclear Information System (INIS)

    Emson, P.C.; Westmore, K.; Augood, S.J.

    1996-01-01

    The chemical phenotype of proneurotensin messenger RNA-expressing cells was determined in the acute haloperidol-treated rat striatum using a combination of [ 35 S]-labelled and alkaline phosphatase-labelled oligonucleotides. Cellular sites of proneurotensin messenger RNA expression were visualized simultaneously on tissue sections processed to reveal cellular sites of preproenkephalin A messenger RNA or the dopamine and adenylate cyclase phosphoprotein-32, messenger RNA. The cellular co-expression of preproenkepahlin A and preprotachykinin messenger RNA was also examined within forebrain structures. Cellular sites of preproenkephalin A and dopamine and adenylate cyclase phosphoprotein-32 messenger RNAs were visualized using alkaline phosphatase-labelled oligonucleotides whilst sites of preprotachykinin and proneurotensin messenger RNA expression were detected using [ 35 S]-labelled oligos. Cellular sites of enkephalin and dopamine and adenylate cyclase phosphoprotein-32 gene expression were identified microscopically by the concentration of purple alkaline phosphatase reaction product within the cell cytoplasm, whereas sites of substance P and proneurotensin gene expression were identified by the dense clustering of silver grains overlying cells.An intense hybridization signal was detected for all three neuropeptide messenger RNAs in the striatum, the nucleus accumbens and septum. Dopamine and adenylate cyclase phosphoprotein-32 messenger RNA was detected within the neostriatum but not within the septum. In all forebrain regions examined, with the exception of the islands of Cajella, the cellular expression of enkephalin messenger RNA and substance P messenger RNA was discordant; the two neuropeptide messenger RNAs were detected essentially in different cells, although in the striatum and nucleus accumbens occasional isolated cells were detected which contained both hybridization signals; dense clusters of silver grains overlay alkaline phosphatase-positive cells

  20. Phenotypic characterization of neurotensin messenger RNA-expressing cells in the neuroleptic-treated rat striatum: a detailed cellular co-expression study

    Energy Technology Data Exchange (ETDEWEB)

    Emson, P C; Westmore, K; Augood, S J [MRC Molecular Neuroscience Group, The Department of Neurobiology, The Babraham Institute, Babraham, Cambridge (United Kingdom)

    1996-12-11

    The chemical phenotype of proneurotensin messenger RNA-expressing cells was determined in the acute haloperidol-treated rat striatum using a combination of [{sup 35}S]-labelled and alkaline phosphatase-labelled oligonucleotides. Cellular sites of proneurotensin messenger RNA expression were visualized simultaneously on tissue sections processed to reveal cellular sites of preproenkephalin A messenger RNA or the dopamine and adenylate cyclase phosphoprotein-32, messenger RNA. The cellular co-expression of preproenkepahlin A and preprotachykinin messenger RNA was also examined within forebrain structures. Cellular sites of preproenkephalin A and dopamine and adenylate cyclase phosphoprotein-32 messenger RNAs were visualized using alkaline phosphatase-labelled oligonucleotides whilst sites of preprotachykinin and proneurotensin messenger RNA expression were detected using [{sup 35}S]-labelled oligos. Cellular sites of enkephalin and dopamine and adenylate cyclase phosphoprotein-32 gene expression were identified microscopically by the concentration of purple alkaline phosphatase reaction product within the cell cytoplasm, whereas sites of substance P and proneurotensin gene expression were identified by the dense clustering of silver grains overlying cells.An intense hybridization signal was detected for all three neuropeptide messenger RNAs in the striatum, the nucleus accumbens and septum. Dopamine and adenylate cyclase phosphoprotein-32 messenger RNA was detected within the neostriatum but not within the septum. In all forebrain regions examined, with the exception of the islands of Cajella, the cellular expression of enkephalin messenger RNA and substance P messenger RNA was discordant; the two neuropeptide messenger RNAs were detected essentially in different cells, although in the striatum and nucleus accumbens occasional isolated cells were detected which contained both hybridization signals; dense clusters of silver grains overlay alkaline phosphatase

  1. The Expression of TALEN before Fertilization Provides a Rapid Knock-Out Phenotype in Xenopus laevis Founder Embryos.

    Science.gov (United States)

    Miyamoto, Kei; Suzuki, Ken-Ichi T; Suzuki, Miyuki; Sakane, Yuto; Sakuma, Tetsushi; Herberg, Sarah; Simeone, Angela; Simpson, David; Jullien, Jerome; Yamamoto, Takashi; Gurdon, J B

    2015-01-01

    Recent advances in genome editing using programmable nucleases have revolutionized gene targeting in various organisms. Successful gene knock-out has been shown in Xenopus, a widely used model organism, although a system enabling less mosaic knock-out in founder embryos (F0) needs to be explored in order to judge phenotypes in the F0 generation. Here, we injected modified highly active transcription activator-like effector nuclease (TALEN) mRNA to oocytes at the germinal vesicle (GV) stage, followed by in vitro maturation and intracytoplasmic sperm injection, to achieve a full knock-out in F0 embryos. Unlike conventional injection methods to fertilized embryos, the injection of TALEN mRNA into GV oocytes allows expression of nucleases before fertilization, enabling them to work from an earlier stage. Using this procedure, most of developed embryos showed full knock-out phenotypes of the pigmentation gene tyrosinase and/or embryonic lethal gene pax6 in the founder generation. In addition, our method permitted a large 1 kb deletion. Thus, we describe nearly complete gene knock-out phenotypes in Xenopus laevis F0 embryos. The presented method will help to accelerate the production of knock-out frogs since we can bypass an extra generation of about 1 year in Xenopus laevis. Meantime, our method provides a unique opportunity to rapidly test the developmental effects of disrupting those genes that do not permit growth to an adult able to reproduce. In addition, the protocol shown here is considerably less invasive than the previously used host transfer since our protocol does not require surgery. The experimental scheme presented is potentially applicable to other organisms such as mammals and fish to resolve common issues of mosaicism in founders.

  2. Amniotic fluid RNA gene expression profiling provides insights into the phenotype of Turner syndrome.

    Science.gov (United States)

    Massingham, Lauren J; Johnson, Kirby L; Scholl, Thomas M; Slonim, Donna K; Wick, Heather C; Bianchi, Diana W

    2014-09-01

    Turner syndrome is a sex chromosome aneuploidy with characteristic malformations. Amniotic fluid, a complex biological material, could contribute to the understanding of Turner syndrome pathogenesis. In this pilot study, global gene expression analysis of cell-free RNA in amniotic fluid supernatant was utilized to identify specific genes/organ systems that may play a role in Turner syndrome pathophysiology. Cell-free RNA from amniotic fluid of five mid-trimester Turner syndrome fetuses and five euploid female fetuses matched for gestational age was extracted, amplified, and hybridized onto Affymetrix(®) U133 Plus 2.0 arrays. Significantly differentially regulated genes were identified using paired t tests. Biological interpretation was performed using Ingenuity Pathway Analysis and BioGPS gene expression atlas. There were 470 statistically significantly differentially expressed genes identified. They were widely distributed across the genome. XIST was significantly down-regulated (p Turner syndrome transcriptome from other aneuploidies we previously studied. Manual curation of the differentially expressed gene list identified genes of possible pathologic significance, including NFATC3, IGFBP5, and LDLR. Transcriptomic differences in the amniotic fluid of Turner syndrome fetuses are due to genome-wide dysregulation. The hematologic/immune system differences may play a role in early-onset autoimmune dysfunction. Other genes identified with possible pathologic significance are associated with cardiac and skeletal systems, which are known to be affected in females with Turner syndrome. The discovery-driven approach described here may be useful in elucidating novel mechanisms of disease in Turner syndrome.

  3. The Life of a Dead Ant : The Expression of an Adaptive Extended Phenotype

    NARCIS (Netherlands)

    Andersen, Sandra B.; Gerritsma, Sylvia; Yusah, Kalsum M.; Mayntz, David; Hywel-Jones, Nigel L.; Billen, Johan; Boomsma, Jacobus J.; Hughes, David P.

    Specialized parasites are expected to express complex adaptations to their hosts. Manipulation of host behavior is such an adaptation. We studied the fungus Ophiocordyceps unilateralis, a locally specialized parasite of arboreal Camponotus leonardi ants. Ant-infecting Ophiocordyceps are known to

  4. Functional Associations by Response Overlap (FARO), a functional genomics approach matching gene expression phenotypes

    DEFF Research Database (Denmark)

    Nielsen, Henrik Bjørn; Mundy, J.; Willenbrock, Hanni

    2007-01-01

    The systematic comparison of transcriptional responses of organisms is a powerful tool in functional genomics. For example, mutants may be characterized by comparing their transcript profiles to those obtained in other experiments querying the effects on gene expression of many experimental facto...

  5. Gene expression reaction norms unravel the molecular and cellular processes underpinning the plastic phenotypes of Alternanthera philoxeroides in contrasting hydrological conditions

    Directory of Open Access Journals (Sweden)

    Lexuan eGao

    2015-11-01

    Full Text Available Alternanthera philoxeroides is an amphibious invasive weed that can colonize both aquatic and terrestrial habitats. Individuals growing in different habitats exhibit extensive phenotypic variation but little genetic differentiation. Little is known about the molecular basis underlying environment-induced phenotypic changes. Variation in transcript abundance in A. philoxeroides was characterized throughout the time-courses of pond and upland treatments using RNA-Sequencing. 7,805 genes demonstrated variable expression in response to different treatments,forming 11 transcriptionally coordinated gene groups. Functional enrichment analysis of plastically expressed genes revealed pathway changes in hormone-mediated signaling, osmotic adjustment, cell wall remodeling and programmed cell death, providing a mechanistic understanding of the biological processes underlying the phenotypic changes in A. philoxeroides. Both transcriptional modulation of environmentally sensitive loci and environmentally dependent control of regulatory loci influenced the plastic responses to the environment. Phenotypic responses and gene expression patterns to contrasting hydrological conditions were compared between A. philoxeroides and its alien congener A. pungens. The terricolous A. pungens displayed limited phenotypic plasticity to different treatments. It was postulated based on gene expression comparison that the interspecific variation in plasticity between A. philoxeroides and A. pungens was not due to environmentally-mediated changes in hormone levels but to variations in the type and relative abundance of different signal transducers and receptors expressed in the target tissue.

  6. Delayed phenotypic expression of growth hormone transgenesis during early ontogeny in Atlantic salmon (Salmo salar?

    Directory of Open Access Journals (Sweden)

    Darek T R Moreau

    Full Text Available Should growth hormone (GH transgenic Atlantic salmon escape, there may be the potential for ecological and genetic impacts on wild populations. This study compared the developmental rate and respiratory metabolism of GH transgenic and non-transgenic full sibling Atlantic salmon during early ontogeny; a life history period of intense selection that may provide critical insight into the fitness consequences of escaped transgenics. Transgenesis did not affect the routine oxygen consumption of eyed embryos, newly hatched larvae or first-feeding juveniles. Moreover, the timing of early life history events was similar, with transgenic fish hatching less than one day earlier, on average, than their non-transgenic siblings. As the start of exogenous feeding neared, however, transgenic fish were somewhat developmentally behind, having more unused yolk and being slightly smaller than their non-transgenic siblings. Although such differences were found between transgenic and non-transgenic siblings, family differences were more important in explaining phenotypic variation. These findings suggest that biologically significant differences in fitness-related traits between GH transgenic and non-transgenic Atlantic salmon were less than family differences during the earliest life stages. The implications of these results are discussed in light of the ecological risk assessment of genetically modified animals.

  7. Modified intracellular-associated phenotypes in a recombinant Salmonella Typhi expressing S. Typhimurium SPI-3 sequences.

    Directory of Open Access Journals (Sweden)

    Patricio Retamal

    Full Text Available A bioinformatics comparison of Salmonella Pathogenicity Island 3 sequences from S. Typhi and S. Typhimurium serovars showed that ten genes are highly conserved. However three of them are pseudogenes in S. Typhi. Our aim was to understand what functions are lost in S. Typhi due to pseudogenes by constructing a S. Typhi genetic hybrid carrying the SPI-3 region of S. Typhimurium instead of its own SPI-3. We observed that under stressful conditions the hybrid strain showed a clear impairment in resistance to hydrogen peroxide and decreased survival within U937 culture monocytes. We hypothesized that the marT-fidL operon, encoded in SPI-3, was responsible for the new phenotypes because marT is a pseudogen in S. Typhi and has a demonstrated role as a transcriptional regulator in S. Typhimurium. Therefore we cloned and transferred the S. Typhimurium marT-fidL operon into S. Typhi and confirmed that invasion of monocytes was dramatically decreased. Finally, our findings suggest that the genomic and functional differences between SPI-3 sequences have implications in the host specificity of Typhi and Typhimurium serovars.

  8. 17β-estradiol-induced ACSL4 protein expression promotes an invasive phenotype in estrogen receptor positive mammary carcinoma cells.

    Science.gov (United States)

    Belkaid, Anissa; Ouellette, Rodney J; Surette, Marc E

    2017-04-01

    Long chain acyl-CoA synthase-4 (ACSL4) expression has been associated with an aggressive phenotype in breast carcinoma cells, whereas its role in ERα-positive breast cancer has not been studied. ACSL4 prefers 20-carbon polyunsaturated fatty acid (PUFA) substrates, and along with other ACSLs has been associated with cellular uptake of exogenous fatty acids. 17β-estradiol induces proliferation and invasive capacities in ERα+ve breast carcinoma that is associated with modifications of cellular lipid metabolism. In this study, treatment of steroid-starved ERα-positive MCF-7 and T47D mammary carcinoma cells with 17β-estradiol resulted in increased cellular uptake of the PUFA arachidonic acid (AA) and eicosapentaenoic acid (EPA), important building blocks for cellular membranes, and increased ACSL4 protein levels. There was no change in the expression of the ACSL1, ACSL3 and ACSL6 protein isotypes. Increased ACSL4 protein expression was not accompanied by changes in ACSL4 mRNA expression, but was associated with a significant increase in the protein half-life compared to untreated cells. ERα silencing reversed the impact of 17β-estradiol on ACSL4 protein levels and half-life. Silencing of ACSL4 eliminated the 17β-estradiol-induced increase in AA and EPA uptake, as well as the 17β-estradiol-induced cell migration, proliferation and invasion capacities. ASCL4 silencing also prevented the 17β-estradiol induced increases in p-Akt and p-GSK3β, and decrease in E-cadherin expression, important events in epithelial to mesenchymal transition. Taken together, these results demonstrate that ACSL4 is a target of 17β-estradiol-stimulated ERα and is required for the cellular uptake of exogenous PUFA and the manifestation of a more malignant phenotype in ERα+ve breast carcinoma cells. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  9. Clonal expansion of the Pseudogymnoascus destructans genotype in North America is accompanied by significant variation in phenotypic expression.

    Directory of Open Access Journals (Sweden)

    Jordan Khankhet

    Full Text Available Pseudogymnoascus destructans is the causative agent of an emerging infectious disease that threatens populations of several North American bat species. The fungal disease was first observed in 2006 and has since caused the death of nearly six million bats. The disease, commonly known as white-nose syndrome, is characterized by a cutaneous infection with P. destructans causing erosions and ulcers in the skin of nose, ears and/or wings of bats. Previous studies based on sequences from eight loci have found that isolates of P. destructans from bats in the US all belong to one multilocus genotype. Using the same multilocus sequence typing method, we found that isolates from eastern and central Canada also had the same genotype as those from the US, consistent with the clonal expansion of P. destructans into Canada. However, our PCR fingerprinting revealed that among the 112 North American isolates we analyzed, three, all from Canada, showed minor genetic variation. Furthermore, we found significant variations among isolates in mycelial growth rate; the production of mycelial exudates; and pigment production and diffusion into agar media. These phenotypic differences were influenced by culture medium and incubation temperature, indicating significant variation in environmental condition--dependent phenotypic expression among isolates of the clonal P. destructans genotype in North America.

  10. Clonal expansion of the Pseudogymnoascus destructans genotype in North America is accompanied by significant variation in phenotypic expression.

    Science.gov (United States)

    Khankhet, Jordan; Vanderwolf, Karen J; McAlpine, Donald F; McBurney, Scott; Overy, David P; Slavic, Durda; Xu, Jianping

    2014-01-01

    Pseudogymnoascus destructans is the causative agent of an emerging infectious disease that threatens populations of several North American bat species. The fungal disease was first observed in 2006 and has since caused the death of nearly six million bats. The disease, commonly known as white-nose syndrome, is characterized by a cutaneous infection with P. destructans causing erosions and ulcers in the skin of nose, ears and/or wings of bats. Previous studies based on sequences from eight loci have found that isolates of P. destructans from bats in the US all belong to one multilocus genotype. Using the same multilocus sequence typing method, we found that isolates from eastern and central Canada also had the same genotype as those from the US, consistent with the clonal expansion of P. destructans into Canada. However, our PCR fingerprinting revealed that among the 112 North American isolates we analyzed, three, all from Canada, showed minor genetic variation. Furthermore, we found significant variations among isolates in mycelial growth rate; the production of mycelial exudates; and pigment production and diffusion into agar media. These phenotypic differences were influenced by culture medium and incubation temperature, indicating significant variation in environmental condition--dependent phenotypic expression among isolates of the clonal P. destructans genotype in North America.

  11. Transgenic fatal familial insomnia mice indicate prion infectivity-independent mechanisms of pathogenesis and phenotypic expression of disease.

    Directory of Open Access Journals (Sweden)

    Ihssane Bouybayoune

    2015-04-01

    Full Text Available Fatal familial insomnia (FFI and a genetic form of Creutzfeldt-Jakob disease (CJD178 are clinically different prion disorders linked to the D178N prion protein (PrP mutation. The disease phenotype is determined by the 129 M/V polymorphism on the mutant allele, which is thought to influence D178N PrP misfolding, leading to the formation of distinctive prion strains with specific neurotoxic properties. However, the mechanism by which misfolded variants of mutant PrP cause different diseases is not known. We generated transgenic (Tg mice expressing the mouse PrP homolog of the FFI mutation. These mice synthesize a misfolded form of mutant PrP in their brains and develop a neurological illness with severe sleep disruption, highly reminiscent of FFI and different from that of analogously generated Tg(CJD mice modeling CJD178. No prion infectivity was detectable in Tg(FFI and Tg(CJD brains by bioassay or protein misfolding cyclic amplification, indicating that mutant PrP has disease-encoding properties that do not depend on its ability to propagate its misfolded conformation. Tg(FFI and Tg(CJD neurons have different patterns of intracellular PrP accumulation associated with distinct morphological abnormalities of the endoplasmic reticulum and Golgi, suggesting that mutation-specific alterations of secretory transport may contribute to the disease phenotype.

  12. Characterization of the multiple drug resistance phenotype expressed by tumour cells following in vitro exposure to fractionated X-irradiation

    International Nuclear Information System (INIS)

    Hill, B.T.; McClean, S.; Hosking, L.; Shellard, S.; Dempke, W.; Whelan, R.

    1992-01-01

    The major clinical problem of the emergence of drug resistant tumor cell populations is recognized in patients previously treated with antitumor drugs and with radiotherapy. It is proposed that, although radiation-induced vascular fibrosis may limit drug delivery to the tumor, exposure to radiation may 'induce' or 'select for' drug resistance. This hypothesis was examined by establishing in vitro model systems to investigate the resistance phenotype of tumor cells following exposure to X-rays. Characteristically tumor cells surviving exposure to a series of fractions of X-irradiation are shown to have consistently expressed resistance to multiple drugs, including the Vinca alkaloids and the epipodophyllotoxins. Currently this research is aimed at determining whether distinctive resistance mechanisms operate depending on whether resistance results following drug or X-ray exposure. Initial results indicate that whilst some common mechanisms operate, drug resistant tumor cells identified following exposure to X-irradiation appear to exhibit a novel multidrug resistance phenotype. (author). 13 refs., 1 tab

  13. Frequency of alpha- and beta-haemolysin in Staphylococcus aureus of bovine and human origin - A comparison between pheno- and genotype and variation in phenotypic expression

    DEFF Research Database (Denmark)

    Aarestrup, Frank Møller; Larsen, H.D.; Eriksen, N.H.R.

    1999-01-01

    The phenotypic expression of haemolysins and the presence of genes encoding alpha and beta-haemolysin were determined in 105 Sraphylococcus aureus isolates from bovine mastitis, 100 isolates from the nostrils of healthy humans, and 60 isolates from septicaemia in humans. Furthermore, the possible...... change in expression of haemolysins after subcultivation in human and bovine blood and milk was studied in selected isolates. alpha-haemolysin was expressed phenotypically in 39 (37%) of the bovine isolates, in 59 (59%) of the human carrier isolates, and in 40 (67%) of the isolates from septicaemia. beta......-haemolysin was expressed in 76 (72%) bovine, 11 (11%) carrier, and 8 (13%) septicaemia isolates. Significantly more bovine than human isolates expressed beta-haemolysin and significantly fewer expressed alpha-haemolysin. Genotypically, the gene encoding alpha-haemolysin was detected in all isolates. A significant...

  14. Dysregulation of gene expression in the artificial human trisomy cells of chromosome 8 associated with transformed cell phenotypes.

    Directory of Open Access Journals (Sweden)

    Hisakatsu Nawata

    Full Text Available A change in chromosome number, known as aneuploidy, is a common characteristic of cancer. Aneuploidy disrupts gene expression in human cancer cells and immortalized human epithelial cells, but not in normal human cells. However, the relationship between aneuploidy and cancer remains unclear. To study the effects of aneuploidy in normal human cells, we generated artificial cells of human primary fibroblast having three chromosome 8 (trisomy 8 cells by using microcell-mediated chromosome transfer technique. In addition to decreased proliferation, the trisomy 8 cells lost contact inhibition and reproliferated after exhibiting senescence-like characteristics that are typical of transformed cells. Furthermore, the trisomy 8 cells exhibited chromosome instability, and the overall gene expression profile based on microarray analyses was significantly different from that of diploid human primary fibroblasts. Our data suggest that aneuploidy, even a single chromosome gain, can be introduced into normal human cells and causes, in some cases, a partial cancer phenotype due to a disruption in overall gene expression.

  15. Phenotype commitment in vascular smooth muscle cells derived from coronary atherosclerotic plaques: differential gene expression of endothelial Nitric Oxide Synthase

    Directory of Open Access Journals (Sweden)

    ML Rossi

    2009-06-01

    Full Text Available Unstable angina and myocardial infarction are the clinical manifestations of the abrupt thrombotic occlusion of an epicardial coronary artery as a result of spontaneous atherosclerotic plaque rupture or fissuring, and the exposure of highly thrombogenic material to blood. It has been demonstrated that the proliferation of vascular smooth muscle cells (VSMCs and impaired bioavailabilty of nitric oxide (NO are among the most important mechanisms involved in the progression of atherosclerosis. It has also been suggested that a NO imbalance in coronary arteries may be involved in myocardial ischemia as a result of vasomotor dysfunction triggering plaque rupture and the thrombotic response. We used 5’ nuclease assays (TaqMan™ PCRs to study gene expression in coronary plaques collected by means of therapeutic directional coronary atherectomy from 15 patients with stable angina (SA and 15 with acute coronary syndromes (ACS without ST elevation. Total RNA was extracted from the 30 plaques and the cDNA was amplified in order to determine endothelial nitric oxide synthase (eNOS gene expression. Analysis of the results showed that the expression of eNOS was significantly higher (p<0.001 in the plaques from the ACS patients. Furthermore, isolated VSMCs from ACS and SA plaques confirmed the above pattern even after 25 plating passages. In situ RT-PCR was also carried out to co-localize the eNOS messengers and the VSMC phenotype.

  16. Tumor Cells Express FcγRl Which Contributes to Tumor Cell Growth and a Metastatic Phenotype

    Directory of Open Access Journals (Sweden)

    M. Bud Nelson

    2001-01-01

    Full Text Available High levels of circulating immune complexes containing tumor-associated antigens are associated with a poor prognosis for individuals with cancer. The ability of B cells, previously exposed to tumor-associated antigens, to promote both in vitro and in vivo tumor growth formed the rationale to evaluate the mechanism by which immune complexes may promote tumor growth. In elucidating this mechanism, FcγRl expression by tumor cells was characterized by flow cytometry, polymerase chain reaction, and sequence analysis. Immune complexes containing shed tumor antigen and anti-shed tumor antigen Ab cross-linked FcγRl-expressing tumor cells, which resulted in an induction of tumor cell proliferation and of shed tumor antigen production. Use of selective tyrosine kinase inhibitors demonstrated that tumor cell proliferation induced by immune complex cross-linking of FcγRl is dependent on the tyrosine kinase signal transduction pathway. A selective inhibitor of phosphatidylinositol-3 kinase also inhibited this induction of tumor cell proliferation. These findings support a role for immune complexes and FcγRl expression by tumor cells in augmentation of tumor growth and a metastatic phenotype.

  17. Endometrial gene expression profile of pregnant sows with extreme phenotypes for reproductive efficiency.

    Science.gov (United States)

    Córdoba, S; Balcells, I; Castelló, A; Ovilo, C; Noguera, J L; Timoneda, O; Sánchez, A

    2015-10-05

    Prolificacy can directly impact porcine profitability, but large genetic variation and low heritability have been found regarding litter size among porcine breeds. To identify key differences in gene expression associated to swine reproductive efficiency, we performed a transcriptome analysis of sows' endometrium from an Iberian x Meishan F2 population at day 30-32 of gestation, classified according to their estimated breeding value (EBV) as high (H, EBV > 0) and low (L, EBV ratio = 3.50), PTHLH (p = 0.03; H/L ratio = 3.69), MMP8 (p = 0.01; H/L ratio =4.41) and SCNN1G (p = 0.04; H/L ratio = 3.42). Although selected miRNAs showed similar expression levels between H and L groups, significant correlation was found between the expression level of ssc-miR-133a (p < 0.01) and ssc-miR-92a (p < 0.01) and validated genes. These results provide a better understanding of the genetic architecture of prolificacy-related traits and embryo implantation failure in pigs.

  18. Exploring the molecular mechanisms of Traditional Chinese Medicine components using gene expression signatures and connectivity map.

    Science.gov (United States)

    Yoo, Minjae; Shin, Jimin; Kim, Hyunmin; Kim, Jihye; Kang, Jaewoo; Tan, Aik Choon

    2018-04-04

    Traditional Chinese Medicine (TCM) has been practiced over thousands of years in China and other Asian countries for treating various symptoms and diseases. However, the underlying molecular mechanisms of TCM are poorly understood, partly due to the "multi-component, multi-target" nature of TCM. To uncover the molecular mechanisms of TCM, we perform comprehensive gene expression analysis using connectivity map. We interrogated gene expression signatures obtained 102 TCM components using the next generation Connectivity Map (CMap) resource. We performed systematic data mining and analysis on the mechanism of action (MoA) of these TCM components based on the CMap results. We clustered the 102 TCM components into four groups based on their MoAs using next generation CMap resource. We performed gene set enrichment analysis on these components to provide additional supports for explaining these molecular mechanisms. We also provided literature evidence to validate the MoAs identified through this bioinformatics analysis. Finally, we developed the Traditional Chinese Medicine Drug Repurposing Hub (TCM Hub) - a connectivity map resource to facilitate the elucidation of TCM MoA for drug repurposing research. TCMHub is freely available in http://tanlab.ucdenver.edu/TCMHub. Molecular mechanisms of TCM could be uncovered by using gene expression signatures and connectivity map. Through this analysis, we identified many of the TCM components possess diverse MoAs, this may explain the applications of TCM in treating various symptoms and diseases. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  19. Expression map of a complete set of gustatory receptor genes in chemosensory organs of Bombyx mori.

    Science.gov (United States)

    Guo, Huizhen; Cheng, Tingcai; Chen, Zhiwei; Jiang, Liang; Guo, Youbing; Liu, Jianqiu; Li, Shenglong; Taniai, Kiyoko; Asaoka, Kiyoshi; Kadono-Okuda, Keiko; Arunkumar, Kallare P; Wu, Jiaqi; Kishino, Hirohisa; Zhang, Huijie; Seth, Rakesh K; Gopinathan, Karumathil P; Montagné, Nicolas; Jacquin-Joly, Emmanuelle; Goldsmith, Marian R; Xia, Qingyou; Mita, Kazuei

    2017-03-01

    Most lepidopteran species are herbivores, and interaction with host plants affects their gene expression and behavior as well as their genome evolution. Gustatory receptors (Grs) are expected to mediate host plant selection, feeding, oviposition and courtship behavior. However, due to their high diversity, sequence divergence and extremely low level of expression it has been difficult to identify precisely a complete set of Grs in Lepidoptera. By manual annotation and BAC sequencing, we improved annotation of 43 gene sequences compared with previously reported Grs in the most studied lepidopteran model, the silkworm, Bombyx mori, and identified 7 new tandem copies of BmGr30 on chromosome 7, bringing the total number of BmGrs to 76. Among these, we mapped 68 genes to chromosomes in a newly constructed chromosome distribution map and 8 genes to scaffolds; we also found new evidence for large clusters of BmGrs, especially from the bitter receptor family. RNA-seq analysis of diverse BmGr expression patterns in chemosensory organs of larvae and adults enabled us to draw a precise organ specific map of BmGr expression. Interestingly, most of the clustered genes were expressed in the same tissues and more than half of the genes were expressed in larval maxillae, larval thoracic legs and adult legs. For example, BmGr63 showed high expression levels in all organs in both larval and adult stages. By contrast, some genes showed expression limited to specific developmental stages or organs and tissues. BmGr19 was highly expressed in larval chemosensory organs (especially antennae and thoracic legs), the single exon genes BmGr53 and BmGr67 were expressed exclusively in larval tissues, the BmGr27-BmGr31 gene cluster on chr7 displayed a high expression level limited to adult legs and the candidate CO 2 receptor BmGr2 was highly expressed in adult antennae, where few other Grs were expressed. Transcriptional analysis of the Grs in B. mori provides a valuable new reference for

  20. Molecular and phenotypic characterization of transgenic soybean expressing the Arabidopsis ferric chelate reductase gene, FRO2.

    Science.gov (United States)

    Vasconcelos, Marta; Eckert, Helene; Arahana, Venancio; Graef, George; Grusak, Michael A; Clemente, Tom

    2006-10-01

    Soybean (Glycine max Merr.) production is reduced under iron-limiting calcareous soils throughout the upper Midwest regions of the US. Like other dicotyledonous plants, soybean responds to iron-limiting environments by induction of an active proton pump, a ferric iron reductase and an iron transporter. Here we demonstrate that heterologous expression of the Arabidopsis thaliana ferric chelate reductase gene, FRO2, in transgenic soybean significantly enhances Fe(+3) reduction in roots and leaves. Root ferric reductase activity was up to tenfold higher in transgenic plants and was not subjected to post-transcriptional regulation. In leaves, reductase activity was threefold higher in the transgenic plants when compared to control. The enhanced ferric reductase activity led to reduced chlorosis, increased chlorophyll concentration and a lessening in biomass loss in the transgenic events between Fe treatments as compared to control plants grown under hydroponics that mimicked Fe-sufficient and Fe-deficient soil environments. However, the data indicate that constitutive FRO2 expression under non-iron stress conditions may lead to a decrease in plant productivity as reflected by reduced biomass accumulation in the transgenic events under non-iron stress conditions. When grown at Fe(III)-EDDHA levels greater than 10 microM, iron concentration in the shoots of transgenic plants was significantly higher than control. The same observation was found in the roots in plants grown at iron levels higher than 32 microM Fe(III)-EDDHA. These results suggest that heterologous expression of an iron chelate reductase in soybean can provide a route to alleviate iron deficiency chlorosis.

  1. Cross-platform analysis of cancer microarray data improves gene expression based classification of phenotypes

    Directory of Open Access Journals (Sweden)

    Eils Roland

    2005-11-01

    Full Text Available Abstract Background The extensive use of DNA microarray technology in the characterization of the cell transcriptome is leading to an ever increasing amount of microarray data from cancer studies. Although similar questions for the same type of cancer are addressed in these different studies, a comparative analysis of their results is hampered by the use of heterogeneous microarray platforms and analysis methods. Results In contrast to a meta-analysis approach where results of different studies are combined on an interpretative level, we investigate here how to directly integrate raw microarray data from different studies for the purpose of supervised classification analysis. We use median rank scores and quantile discretization to derive numerically comparable measures of gene expression from different platforms. These transformed data are then used for training of classifiers based on support vector machines. We apply this approach to six publicly available cancer microarray gene expression data sets, which consist of three pairs of studies, each examining the same type of cancer, i.e. breast cancer, prostate cancer or acute myeloid leukemia. For each pair, one study was performed by means of cDNA microarrays and the other by means of oligonucleotide microarrays. In each pair, high classification accuracies (> 85% were achieved with training and testing on data instances randomly chosen from both data sets in a cross-validation analysis. To exemplify the potential of this cross-platform classification analysis, we use two leukemia microarray data sets to show that important genes with regard to the biology of leukemia are selected in an integrated analysis, which are missed in either single-set analysis. Conclusion Cross-platform classification of multiple cancer microarray data sets yields discriminative gene expression signatures that are found and validated on a large number of microarray samples, generated by different laboratories and

  2. Prevalence and molecular characterization of clinical isolates of Escherichia coli expressing an AmpC phenotype

    DEFF Research Database (Denmark)

    Jørgensen, Rikke Lind; Nielsen, Jesper Boye; Friis-Møller, Alice

    2010-01-01

    . Hyperproduction of AmpC beta-lactamase was confirmed by isoelectric focusing (IEF). The presence of a plasmid-mediated ampC gene (pAmpC) was detected by multiplex PCR. The promoter and the entire reading frame of the chromosomal ampC gene were sequenced to identify promoter mutations associated...... by multilocus sequence typing (MLST). The remaining isolates all had mutations or insertions in the promoter region, which could explain increased expression of the chromosomal AmpC enzyme. Mutations in the ampC gene associated with extended activity were rare and did not cause resistance to cefepime...

  3. PAF-receptor is preferentially expressed in a distinct synthetic phenotype of smooth muscle cells cloned from human internal thoracic artery: Functional implications in cell migration

    International Nuclear Information System (INIS)

    Stengel, Dominique; O'Neil, Caroline; Brocheriou, Isabelle; Karabina, Sonia-Athina; Durand, Herve; Caplice, Noel M.; Pickering, J. Geoffrey; Ninio, Ewa

    2006-01-01

    Platelet-activating-Factor (PAF) and its structural analogues formed upon low density lipoprotein oxidation are involved in atherosclerotic plaque formation and may signal through PAF-receptor (PAF-R) expressed in human macrophages and in certain smooth muscle cells (SMCs) in the media, but rarely in the intima of human plaques. Our aim was to determine which SMC phenotype expresses PAF-R and whether this receptor is functional in cell migration. Circulating SMC progenitors and two phenotypically distinct clones of proliferative, epithelioid phenotype vs contractile, spindle-shaped SMCs from the media of adult internal thoracic artery were studied for the presence of PAF-receptor (PAF-R). The levels of specific mRNA were obtained by reverse transcription/real-time PCR, the protein expression was deduced from immunohistochemistry staining, and the functional transmigration assay was performed by Boyden chamber-type chemotaxis assay. Only SMCs of spindle-shape and synthetic phenotype expressed both mRNA and PAF-R protein and in the functional test migrated at low concentrations of PAF. Two unrelated, specific PAF-R antagonists inhibited PAF-induced migration, but did not modify the migration initiated by PDGF. The presence of functional PAF-R in arterial spindle-shaped SMCs of synthetic phenotype may be important for their migration from the media into the intima and atherosclerotic plaques formation

  4. Retinal phenotype-genotype correlation of pediatric patients expressing mutations in the Norrie disease gene.

    Science.gov (United States)

    Wu, Wei-Chi; Drenser, Kimberly; Trese, Michael; Capone, Antonio; Dailey, Wendy

    2007-02-01

    To correlate the ophthalmic findings of patients with pediatric vitreoretinopathies with mutations occurring in the Norrie disease gene (NDP). One hundred nine subjects with diverse pediatric vitreoretinopathies and 54 control subjects were enrolled in the study. Diagnoses were based on retinal findings at each patient's first examination. Samples of DNA from each patient underwent polymerase chain reaction amplification and direct sequencing of the NDP gene. Eleven male patients expressing mutations in the NDP gene were identified in the test group, whereas the controls demonstrated wild-type NDP. All patients diagnosed as having Norrie disease had mutations in the NDP gene. Four of the patients with Norrie disease had mutations involving a cysteine residue in the cysteine-knot motif. Four patients diagnosed as having familial exudative vitreoretinopathy were found to have noncysteine mutations. One patient with retinopathy of prematurity had a 14-base deletion in the 5' untranslated region (exon 1), and 1 patient with bilateral persistent fetal vasculature syndrome expressed a noncysteine mutation in the second exon. Mutations disrupting the cysteine-knot motif corresponded to severe retinal dysgenesis, whereas patients with noncysteine mutations had varying degrees of avascular peripheral retina, extraretinal vasculature, and subretinal exudate. Patients exhibiting severe retinal dysgenesis should be suspected of carrying a mutation that disrupts the cysteine-knot motif in the NDP gene.

  5. An Engineered Survival-Selection Assay for Extracellular Protein Expression Uncovers Hypersecretory Phenotypes in Escherichia coli.

    Science.gov (United States)

    Natarajan, Aravind; Haitjema, Charles H; Lee, Robert; Boock, Jason T; DeLisa, Matthew P

    2017-05-19

    The extracellular expression of recombinant proteins using laboratory strains of Escherichia coli is now routinely achieved using naturally secreted substrates, such as YebF or the osmotically inducible protein Y (OsmY), as carrier molecules. However, secretion efficiency through these pathways needs to be improved for most synthetic biology and metabolic engineering applications. To address this challenge, we developed a generalizable survival-based selection strategy that effectively couples extracellular protein secretion to antibiotic resistance and enables facile isolation of rare mutants from very large populations (i.e., 10 10-12 clones) based simply on cell growth. Using this strategy in the context of the YebF pathway, a comprehensive library of E. coli single-gene knockout mutants was screened and several gain-of-function mutations were isolated that increased the efficiency of extracellular expression without compromising the integrity of the outer membrane. We anticipate that this user-friendly strategy could be leveraged to better understand the YebF pathway and other secretory mechanisms-enabling the exploration of protein secretion in pathogenesis as well as the creation of designer E. coli strains with greatly expanded secretomes-all without the need for expensive exogenous reagents, assay instruments, or robotic automation.

  6. Phenotypic Characteristics of PD-1 and CTLA-4 Expression in Symptomatic Acute Hepatitis A.

    Science.gov (United States)

    Cho, Hyosun; Kang, Hyojeung; Kim, Chang Wook; Kim, Hee Yeon; Jang, Jeong Won; Yoon, Seung Kew; Lee, Chang Don

    2016-03-01

    The immunoregulatory molecules programmed death 1 (PD-1) and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) are associated with the dysfunction of antiviral effector T-cells, which leads to T-cell exhaustion and persistent viral infection in patients with chronic hepatitis C and chronic hepatitis B. Little is known about the role of PD-1 and CTLA-4 in patients with symptomatic acute hepatitis A (AHA). Peripheral blood mononuclear cells were isolated from seven patients with AHA and from six patients with nonviral acute toxic hepatitis (ATH) during the symptomatic and convalescent phases of the respective diseases; five healthy subjects acted as controls. The expression of PD-1 and CTLA-4 on T-cells was measured by flow cytometry. PD-1 and CTLA-4 expression during the symptomatic phase was significantly higher in the T-cells of AHA patients than in those of ATH patients or healthy controls (PD-1 18.3% vs 3.7% vs 1.6%, respectively, p<0.05; CTLA-4 23.5% vs 6.1% vs 5.9%, respectively, p<0.05). The levels of both molecules decreased dramatically during the convalescent phase of AHA, whereas a similar pattern was not seen in ATH. Our findings are consistent with a viral-protective effect of PD-1 and CTLA-4 as inhibitory molecules that suppress cytotoxic T-cells and thereby prevent the destruction of virus-infected hepatocytes in AHA.

  7. Phenotypic and gene expression modification with normal brain aging in GFAP-positive astrocytes and neural stem cells.

    Science.gov (United States)

    Bernal, Giovanna M; Peterson, Daniel A

    2011-06-01

    Astrocytes secrete growth factors that are both neuroprotective and supportive for the local environment. Identified by glial fibrillary acidic protein (GFAP) expression, astrocytes exhibit heterogeneity in morphology and in the expression of phenotypic markers and growth factors throughout different adult brain regions. In adult neurogenic niches, astrocytes secrete vascular endothelial growth factor (VEGF) and fibroblast growth factor-2 (FGF-2) within the neurogenic niche and are also a source of special GFAP-positive multipotent neural stem cells (NSCs). Normal aging is accompanied by a decline in CNS function and reduced neurogenesis. We asked whether a decreased availability of astrocyte-derived factors may contribute to the age-related decline in neurogenesis. Determining alterations of astrocytic activity in the aging brain is crucial for understanding CNS homeostasis in aging and for assessing appropriate therapeutic targets for an aging population. We found region-specific alterations in the gene expression of GFAP, VEGF, and FGF-2 and their receptors in the aged brain corresponding to changes in astrocytic reactivity, supporting astrocytic heterogeneity and demonstrating a differential aging effect. We found that GFAP-positive NSCs uniquely coexpress both VEGF and its key mitotic receptor Flk-1 in both young and aged hippocampus, indicating a possible autocrine/paracrine signaling mechanism. VEGF expression is lost once NSCs commit to a neuronal fate, but Flk-1-mediated sensitivity to VEGF signaling is maintained. We propose that age-related astrocytic changes result in reduced VEGF and FGF-2 signaling, which in turn limits NSC and progenitor cell maintenance and contributes to decreased neurogenesis. © 2011 The Authors. Aging Cell © 2011 Blackwell Publishing Ltd/Anatomical Society of Great Britain and Ireland.

  8. NCR1 Expression Identifies Canine Natural Killer Cell Subsets with Phenotypic Similarity to Human Natural Killer Cells

    Directory of Open Access Journals (Sweden)

    Jennifer Ann Foltz

    2016-11-01

    Full Text Available Canines spontaneously develop many cancers similar to humans - including osteosarcoma, leukemia, and lymphoma - offering the opportunity to study immune therapies in a genetically heterogeneous and immunocompetent environment. However, a lack of antibodies recognizing canine NK cell markers has resulted in suboptimal characterization and unknown purity of NK cell products, hindering the development of canine models of NK cell adoptive immunotherapy. To this end, we generated a novel antibody to canine NCR1 (NKp46, the putative species-wide marker of NK cells, enabling purification of NK cells for further characterization. We demonstrate that CD3-/NKp46+ cells in healthy and osteosarcoma-bearing canines have phenotypic similarity to human CD3-/NKp46+ NK cells, expressing mRNA for CD16 and the natural cytotoxicity receptors NKp30, NKp44, and NKp80. Functionally, we demonstrate with the calcein release assay that canine CD3-/NKp46+ cells kill canine tumor cell lines without prior sensitization and secrete IFN-γ, TNF-α, IL-8, IL-10, and GM-CSF as measured by Luminex. Like human NK cells, CD3-/NKp46+ cells expand rapidly on feeder cells expressing 4-1BBL and membrane-bound IL-21 (median= 20,283-fold in 21 days. Further, we identify a minor Null population (CD3-/CD21-/CD14-/NKp46- with reduced cytotoxicity against osteosarcoma cells, but similar cytokine secretion as CD3-/NKp46+ cells. Null cells in canines and humans have reduced expression of NKG2D, NKp44, and CD16 compared to NKp46+ NK cells, and can be induced to express NKp46 with further expansion on feeder cells. In conclusion, we have identified and characterized canine NK cells, including an NKp46- subset of canine and human NK cells, using a novel anti-canine NKp46 antibody, and report robust ex vivo expansion of canine NK cells sufficient for adoptive immunotherapy.

  9. Maillard reaction products enriched food extract reduce the expression of myofibroblast phenotype markers.

    Science.gov (United States)

    Ruhs, Stefanie; Nass, Norbert; Somoza, Veronika; Friess, Ulrich; Schinzel, Reinhard; Silber, Rolf-Edgar; Simm, Andreas

    2007-04-01

    Advanced glycation end products (AGE) are associated with a wide range of degenerative diseases. The present investigation aimed at analysing the influence of AGE containing nutritional extracts on cardiac fibroblasts (CFs) as the major cell type responsible for cardiac fibrosis. Mice CFs were treated with bread crust extract (BCE) which contained significant amounts of a variety of AGE modifications. BCE treatment with up to 30 mg/mL did not impair cell viability. Furthermore, BCE induced a moderate elevation of reactive oxygen species (ROS) production and activation of redox sensitive pathways like the p42/44(MAPK), p38(MAPK) and NF-kappaB but did not alter Akt kinase phosphorylation. Expression of smooth muscle alpha-actin and tropomyosin-1, which represent markers for myofibroblast differentiation, was reduced after bread crust treatment. These data suggest a putative antifibrotic effect of melanoidin-rich food.

  10. TOTAL NUMBER, DISTRIBUTION, AND PHENOTYPE OF CELLS EXPRESSING CHONDROITIN SULPHATE PROTEOGLYCANS IN THE NORMAL HUMAN AMYGDALA

    Science.gov (United States)

    Pantazopoulos, Harry; Murray, Elisabeth A.; Berretta, Sabina

    2009-01-01

    Chondroitin sulphate proteoglycans (CSPGs) are a key structural component of the brain extracellular matrix. They are involved in critical neurodevelopmental functions and are one of the main components of pericellular aggregates known as perineuronal nets. As a step toward investigating their functional and pathophysiological roles in the human amygdala, we assessed the pattern of CSPG expression in the normal human amygdala using wisteria floribunda agglutinin (WFA) lectin-histochemistry. Total numbers of WFA-labeled elements were measured in the lateral (LN), basal (BN), accessory basal (ABN) and cortical (CO) nuclei of the amygdala from 15 normal adult human subjects. For interspecies qualitative comparison, we also investigated the pattern of WFA labeling in the amygdala of naïve rats (n=32) and rhesus monkeys (Macaca mulatta; n=6). In human amygdala, WFA lectin-histochemistry resulted in labeling of perineuronal nets and cells with clear glial morphology, while neurons did not show WFA-labeling. Total numbers of WFA-labeled glial cells showed high interindividual variability. These cells aggregated in clusters with a consistent between-subjects spatial distribution. In a subset of human subjects (n=5), dual color fluorescence using an antibody raised against glial fibrillary acidic protein (GFAP) and WFA showed that the majority (93.7%) of WFA-labeled glial cells correspond to astrocytes. In rat and monkey amygdala, WFA histochemistry labeled perineuronal nets, but not glial cells. These results suggest that astrocytes are the main cell type expressing CSPGs in the adult human amygdala. Their highly segregated distribution pattern suggests that these cells serve specialized functions within human amygdalar nuclei. PMID:18374308

  11. Lifespan Extension and Sustained Expression of Stem Cell Phenotype of Human Breast Epithelial Stem Cells in a Medium with Antioxidants

    Directory of Open Access Journals (Sweden)

    Kai-Hung Wang

    2016-01-01

    Full Text Available We have previously reported the isolation and culture of a human breast epithelial cell type with stem cell characteristics (Type I HBEC from reduction mammoplasty using the MSU-1 medium. Subsequently, we have developed several different normal human adult stem cell types from different tissues using the K-NAC medium. In this study, we determined whether this low calcium K-NAC medium with antioxidants (N-acetyl-L-cysteine and L-ascorbic acid-2-phosphate is a better medium to grow human breast epithelial cells. The results clearly show that the K-NAC medium is a superior medium for prolonged growth (cumulative population doubling levels ranged from 30 to 40 of normal breast epithelial cells that expressed stem cell phenotypes. The characteristics of these mammary stem cells include deficiency in gap junctional intercellular communication, expression of Oct-4, and the ability to differentiate into basal epithelial cells and to form organoid showing mammary ductal and terminal end bud-like structures. Thus, this new method of growing Type I HBECs will be very useful in future studies of mammary development, breast carcinogenesis, chemoprevention, and cancer therapy.

  12. Experimental sheep BSE prions generate the vCJD phenotype when serially passaged in transgenic mice expressing human prion protein.

    Science.gov (United States)

    Joiner, Susan; Asante, Emmanuel A; Linehan, Jacqueline M; Brock, Lara; Brandner, Sebastian; Bellworthy, Susan J; Simmons, Marion M; Hope, James; Collinge, John; Wadsworth, Jonathan D F

    2018-03-15

    The epizootic prion disease of cattle, bovine spongiform encephalopathy (BSE), causes variant Creutzfeldt-Jakob disease (vCJD) in humans following dietary exposure. While it is assumed that all cases of vCJD attributed to a dietary aetiology are related to cattle BSE, sheep and goats are susceptible to experimental oral challenge with cattle BSE prions and farmed animals in the UK were undoubtedly exposed to BSE-contaminated meat and bone meal during the late 1980s and early 1990s. Although no natural field cases of sheep BSE have been identified, it cannot be excluded that some BSE-infected sheep might have entered the European human food chain. Evaluation of the zoonotic potential of sheep BSE prions has been addressed by examining the transmission properties of experimental brain isolates in transgenic mice that express human prion protein, however to-date there have been relatively few studies. Here we report that serial passage of experimental sheep BSE prions in transgenic mice expressing human prion protein with methionine at residue 129 produces the vCJD phenotype that mirrors that seen when the same mice are challenged with vCJD prions from patient brain. These findings are congruent with those reported previously by another laboratory, and thereby strongly reinforce the view that sheep BSE prions could have acted as a causal agent of vCJD within Europe. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  13. Phenotypic correction of von Willebrand disease type 3 blood-derived endothelial cells with lentiviral vectors expressing von Willebrand factor

    Science.gov (United States)

    De Meyer, Simon F.; Vanhoorelbeke, Karen; Chuah, Marinee K.; Pareyn, Inge; Gillijns, Veerle; Hebbel, Robert P.; Collen, Désiré; Deckmyn, Hans; VandenDriessche, Thierry

    2006-01-01

    Von Willebrand disease (VWD) is an inherited bleeding disorder, caused by quantitative (type 1 and 3) or qualitative (type 2) defects in von Willebrand factor (VWF). Gene therapy is an appealing strategy for treatment of VWD because it is caused by a single gene defect and because VWF is secreted into the circulation, obviating the need for targeting specific organs or tissues. However, development of gene therapy for VWD has been hampered by the considerable length of the VWF cDNA (8.4 kb [kilobase]) and the inherent complexity of the VWF protein that requires extensive posttranslational processing. In this study, a gene-based approach for VWD was developed using lentiviral transduction of blood-outgrowth endothelial cells (BOECs) to express functional VWF. A lentiviral vector encoding complete human VWF was used to transduce BOECs isolated from type 3 VWD dogs resulting in high-transduction efficiencies (95.6% ± 2.2%). Transduced VWD BOECs efficiently expressed functional vector-encoded VWF (4.6 ± 0.4 U/24 hour per 106 cells), with normal binding to GPIbα and collagen and synthesis of a broad range of multimers resulting in phenotypic correction of these cells. These results indicate for the first time that gene therapy of type 3 VWD is feasible and that BOECs are attractive target cells for this purpose. PMID:16478886

  14. Gene expression profiling and association of circulating lactoferrin level with obesity-related phenotypes in Latino youth.

    Science.gov (United States)

    Kim, J Y; Campbell, L E; Shaibi, G Q; Coletta, D K

    2015-10-01

    Low-grade inflammation is an underlying feature of obesity and identifying inflammatory markers is crucial to understanding this disease. Therefore, the purpose of this study was twofold: (i) to perform a global microarray analysis and (ii) to investigate the role of lactoferrin (LTF), one of the most altered genes, in relation to obesity in Latino youth. Non-diabetic Latino youth (71 males/92 females; 15.6 ± 3.2 years) were studied. A subset of 39 participants was randomly selected for global microarray analysis profiling from the whole blood sample. Serum LTF was compared between lean (n = 78) and overweight/obese (n = 85) participants. Microarray analysis revealed that a total of 1870 probes were altered in expression ≥1.2-fold and P obese participants compared with lean. KEGG (Kyoto Encyclopedia of Genes and Genomes) analysis revealed significant enrichment for pathways including toll-like receptor (TLR) and B cell receptor signalling pathways. LTF and TLR5 were increased in expression by 2.2 and 1.5 fold, respectively, in the overweight/obese participants. Increased LTF concentrations were significantly associated with high risk of obesity-related phenotypes (all P obesity risk among Latino youth. This finding is discordant to what has been shown in adults and suggests that age may modulate the association between LTF and obesity-related health. © 2014 World Obesity.

  15. The effect of globin scaffold on osteoblast adhesion and phenotype expression in vitro.

    Science.gov (United States)

    Hamdan, Ahmad A; Loty, Sabine; Isaac, Juliane; Tayot, Jean-Louis; Bouchard, Philippe; Khraisat, Ameen; Bedral, Ariane; Sautier, Jean-Michel

    2012-01-01

    Different synthetic and natural biomaterials have been used in bone tissue regeneration. However, several limitations are associated with the use of synthetic as well as allogenous or xenogenous natural materials. This study evaluated, in an in vitro model, the behavior of rat osteoblastic cells cultured on a human globin scaffold. Rat osteoblastic cells were isolated from the calvaria of 21-day-old fetal Sprague-Dawley rats. They were then grown in the presence of globin. Real-time polymerase chain reaction (RT-PCR) was performed to study the expression of cyclin D1, integrin Β1, Msx2, Dlx5, Runx2, and osteocalcin on days 1, 5, and 9. Moreover, alkaline phosphatase activity was measured on days 1, 3, 5, and 7. Alizarin red staining was performed on day 9 to observe calcium deposition. Cells were able to adhere, proliferate, and differentiate on globin scaffolds. Moreover, RT-PCR showed that globin may stimulate some key genes of osteoblastic differentiation (Runx2, osteocalcin, Dlx5). Globin had an inhibitory effect on alkaline phosphatase activity. Calcium deposits were seen after 9 days of culture. These results indicate that purified human globin might be a suitable scaffold for bone tissue regeneration.

  16. Functional characterizations of venom phenotypes in the eastern diamondback rattlesnake (Crotalus adamanteus) and evidence for expression-driven divergence in toxic activities among populations

    Science.gov (United States)

    Margres, Mark J.; Walls, Robert; Suntravat, Montamas; Lucena, Sara; Sánchez, Elda E.; Rokyta, Darin R.

    2016-01-01

    Phenotypes frequently vary across and within species. The connection between specific phenotypic effects and function, however, is less understood despite being essential to our understanding of the adaptive process. Snake venoms are ideal for identifying functionally important phenotypic variation because venom variation is common, and venoms can be functionally characterized through simple assays and toxicity measurements. Previous work with the eastern diamondback rattlesnake (Crotalus adamanteus) used multivariate statistical approaches to identify six unique venom phenotypes. We functionally characterized hemolytic, gelatinase, fibrinogenolytic, and coagulant activity for all six phenotypes, as well as one additional venom, to determine if the statistically significant differences in toxin expression levels previously documented corresponded to differences in venom activity. In general, statistical differences in toxin expression predicted the identified functional differences, or lack thereof, in toxic activity, demonstrating that the statistical approach used to characterize C. adamanteus venoms was a fair representation of biologically meaningful differences. Minor differences in activity not accounted for by the statistical model may be the result of amino-acid differences and/or post-translational modifications, but overall we were able to link variation in protein expression levels to variation in function as predicted by multivariate statistical approaches. PMID:27179420

  17. A biological network-based regularized artificial neural network model for robust phenotype prediction from gene expression data.

    Science.gov (United States)

    Kang, Tianyu; Ding, Wei; Zhang, Luoyan; Ziemek, Daniel; Zarringhalam, Kourosh

    2017-12-19

    Stratification of patient subpopulations that respond favorably to treatment or experience and adverse reaction is an essential step toward development of new personalized therapies and diagnostics. It is currently feasible to generate omic-scale biological measurements for all patients in a study, providing an opportunity for machine learning models to identify molecular markers for disease diagnosis and progression. However, the high variability of genetic background in human populations hampers the reproducibility of omic-scale markers. In this paper, we develop a biological network-based regularized artificial neural network model for prediction of phenotype from transcriptomic measurements in clinical trials. To improve model sparsity and the overall reproducibility of the model, we incorporate regularization for simultaneous shrinkage of gene sets based on active upstream regulatory mechanisms into the model. We benchmark our method against various regression, support vector machines and artificial neural network models and demonstrate the ability of our method in predicting the clinical outcomes using clinical trial data on acute rejection in kidney transplantation and response to Infliximab in ulcerative colitis. We show that integration of prior biological knowledge into the classification as developed in this paper, significantly improves the robustness and generalizability of predictions to independent datasets. We provide a Java code of our algorithm along with a parsed version of the STRING DB database. In summary, we present a method for prediction of clinical phenotypes using baseline genome-wide expression data that makes use of prior biological knowledge on gene-regulatory interactions in order to increase robustness and reproducibility of omic-scale markers. The integrated group-wise regularization methods increases the interpretability of biological signatures and gives stable performance estimates across independent test sets.

  18. An interdisciplinary approach to mapping through scientific cartography, design and artistic expression

    Science.gov (United States)

    Gardener, Joanna; Cartwright, William; Duxbury, Lesley

    2018-05-01

    This paper reports on the initial findings of an interdisciplinary study exploring perceptions of space and place through alternate ways of mapping. The research project aims to bring depth and meaning to places by utilising a combination of diverse influences and responses, including emotional, sensory, memory and imaginary. It investigates mapping from a designer's perspective, with further narration from both the cartographic science and fine art perspectives. It examines the role of design and artistic expression in the cartographic process, and its capacity to effect and transform the appearance, reading and meaning of the final cartographic outcome (Robinson 2010). The crossover between the cartographic sciences and the work of artists who explore space and place enables an interrogation of where these fields collide or alternatively merge, in order to challenge the definition of a map. By exploring cartography through the overlapping of the distinct fields of science and art, this study challenges and questions the tipping point of when a map ceases to be a map and becomes art.

  19. Presence of intestinal Mycobacterium avium subspecies paratuberculosis (MAP DNA is not associated with altered MMP expression in ulcerative colitis

    Directory of Open Access Journals (Sweden)

    Halwe Jörg M

    2011-04-01

    Full Text Available Abstract Background Mycobacterium avium subspecies paratuberculosis (MAP is suspected to be a causative agent in human Crohn's disease (CD. Recent evidence suggests that pathogenic mycobacteria and MAP can induce the expression of Matrix Metalloproteinases (MMP, which are the main proteases in the pathogenesis of mucosal ulcerations in inflammatory bowel disease (IBD. Within this study we assessed the prevalence of intestinal MAP specific DNA in patients with Crohn's disease, ulcerative colitis (UC, and healthy controls. We further analysed regulation patterns of MMPs in mucosal tissues of UC patients with and without intestinal MAP DNA detection. Methods Colonic biopsy samples were obtained from 63 Norwegian and German IBD patients and 21 healthy controls. RNA was quantified by quantitative real-time polymerase chain reaction (PCR to study MMP gene expression in both pathological and healthy mucosal specimens. The presence of MAP DNA in colonic mucosa was examined using MAP specific PCR. Results MAP DNA was detected in 20% of UC patients and 33% of healthy controls but only in 7% of patients with CD. UC patients treated with corticosteroids exhibited a significantly increased frequency of intestinal MAP DNA compared to those not receiving corticosteroids. Expression of MMP-1, -2, -7, -9, -13, -19, -28 and TNF-α did not differ between UC patients with presence of intestinal MAP DNA compared to those without. MMP-2, MMP-9 and MMP-13 were significantly decreased in UC patients receiving corticosteroids. Conclusions The presence of intestinal MAP specific DNA is not associated with altered MMP expression in UC in vivo. Corticosteroids are associated with increased detection of intestinal MAP DNA and decreased expression of certain MMPs. Frequent detection of MAP DNA in healthy controls might be attributable to the wide environmental distribution of MAP and its presence in the food-chain.

  20. Expression of the C- KIT Molecule in Acute Myeloid Leukemias: Implications of the Immuno phenotypes CD117 and CD15 in the Detection of Minimal Residual Disease

    International Nuclear Information System (INIS)

    Omar, S.

    2001-01-01

    Study of the c-kit proto-oncogene (CD117) may be of help for the identification of phenotypic profiles that are absent or present at very low frequencies on normal human blast cells and therefore might be of great value for the detection of leukemic cells displaying such immuno phenotypes in patients in complete remission. Design and methods: Ninety patients with acute myeloid leukemias, diagnosed according to FAB criteria and immunological marker studies, were studied for the dual expression on blast cells of the CD117/CD15 immuno phenotype co expression by direct immunofluorescence assay using dual staining combination flow cytometry. Results: In 69/90 acute myeloid leukemia patients analyzed (77%), blast cells expressed the CD117 antigen. Moreover, in 38 of them (42% of acute myeloid leukemia cases), leukemic blasts co expressed the CD117 and CD15 antigens. There was no significant correlation between the FAB classification and the CD117 and CD15 expression in acute myeloid leukemia cases. Conclusions: These results suggest that immunological methods for the detection of MRD based on the existence of aberrant phenotypes could be used in the majority of AML patients. This phenotype CD117/CD15, present in acute myeloid leukemia cases at a relatively high frequency (42%), represents an aberrant phenotype, because it was not detected on normal human blast cells, suggesting that the use of these combinations of monoclonal antibodies could be of help in detecting residual leukemic blasts among normal blast cells. The use of the CD117 antigen in different monoclonal antibodies combinations may be of great help for the detection of minimal residual disease in a high proportion of acute myeloid leukemia cases, especially in those patients displaying the CD117+/CD15+ immuno phenotype, because cells co expressing both antigens in normal blasts, if present, are at very low frequencies. The simultaneous assessment of two or more markers in single cells has facilitated the

  1. Accurate Breakpoint Mapping in Apparently Balanced Translocation Families with Discordant Phenotypes Using Whole Genome Mate-Pair Sequencing

    DEFF Research Database (Denmark)

    Aristidou, Constantia; Koufaris, Costas; Theodosiou, Athina

    2017-01-01

    Familial apparently balanced translocations (ABTs) segregating with discordant phenotypes are extremely challenging for interpretation and counseling due to the scarcity of publications and lack of routine techniques for quick investigation. Recently, next generation sequencing has emerged...... and non-affected members carrying the same translocations. PTCD1, ATP5J2-PTCD1, CADPS2, and STPG1 were disrupted by the translocations in three families, rendering them initially as possible disease candidate genes. However, subsequent mutation screening and structural variant analysis did not reveal any...... can also be used in routine clinical investigation of ABT cases. Unlike de novo translocations, no associations were determined here between familial two-way ABTs and the phenotype of the affected members, in which the presence of cryptic imbalances and complex chromosomal rearrangements has been...

  2. The effect of variation in physical properties of porous bioactive glass on the expression and maintenance of the osteoblastic phenotype

    Science.gov (United States)

    Effah Kaufmann, Elsie Akosua Biraa

    pore sizes and porosity and determined the effect of substrate properties on the expression and maintenance of the osteoblastic phenotype, using an in vitro culture of osteoblast-like cells. Our data showed that porous bioactive glass substrates support the proliferation and maturation of osteoblast-like cells. Within the conditions of the experiment, we also found that at a given porosity of 44% the pore size of bioactive glass neither directs nor modulates the in vitro expression of the osteoblastic phenotype. On the other hand, at an average pore size of 92 mum, when cultures are maintained for 14 days, cell activity is greatly affected by the substrate porosity. As the porosity increases from 35% to 59%, osteoblast activity is adversely affected. (Abstract shortened by UMI.)

  3. Mercury-induced hepatotoxicity in zebrafish: in vivo mechanistic insights from transcriptome analysis, phenotype anchoring and targeted gene expression validation

    Directory of Open Access Journals (Sweden)

    Mathavan Sinnakaruppan

    2010-03-01

    Full Text Available Abstract Background Mercury is a prominent environmental contaminant that causes detrimental effects to human health. Although the liver has been known to be a main target organ, there is limited information on in vivo molecular mechanism of mercury-induced toxicity in the liver. By using transcriptome analysis, phenotypic anchoring and validation of targeted gene expression in zebrafish, mercury-induced hepatotoxicity was investigated and a number of perturbed cellular processes were identified and compared with those captured in the in vitro human cell line studies. Results Hepato-transcriptome analysis of mercury-exposed zebrafish revealed that the earliest deregulated genes were associated with electron transport chain, mitochondrial fatty acid beta-oxidation, nuclear receptor signaling and apoptotic pathway, followed by complement system and proteasome pathway, and thereafter DNA damage, hypoxia, Wnt signaling, fatty acid synthesis, gluconeogenesis, cell cycle and motility. Comparative meta-analysis of microarray data between zebrafish liver and human HepG2 cells exposed to mercury identified some common toxicological effects of mercury-induced hepatotoxicity in both models. Histological analyses of liver from mercury-exposed fish revealed morphological changes of liver parenchyma, decreased nucleated cell count, increased lipid vesicles, glycogen and apoptotic bodies, thus providing phenotypic evidence for anchoring of the transcriptome analysis. Validation of targeted gene expression confirmed deregulated gene-pathways from enrichment analysis. Some of these genes responding to low concentrations of mercury may serve as toxicogenomic-based markers for detection and health risk assessment of environmental mercury contaminations. Conclusion Mercury-induced hepatotoxicity was triggered by oxidative stresses, intrinsic apoptotic pathway, deregulation of nuclear receptor and kinase activities including Gsk3 that deregulates Wnt signaling

  4. Static compression down-regulates N-cadherin expression and facilitates loss of cell phenotype of nucleus pulposus cells in a disc perfusion culture.

    Science.gov (United States)

    Zhou, Haibo; Shi, Jianmin; Zhang, Chao; Li, Pei

    2018-02-28

    Mechanical compression often induces degenerative changes of disc nucleus pulposus (NP) tissue. It has been indicated that N-cadherin (N-CDH)-mediated signaling helps to preserve the NP cell phenotype. However, N-CDH expression and the resulting NP-specific phenotype alteration under the static compression and dynamic compression remain unclear. To study the effects of static compression and dynamic compression on N-CDH expression and NP-specific phenotype in an in vitro disc organ culture. Porcine discs were organ cultured in a self-developed mechanically active bioreactor for 7 days and subjected to static or dynamic compression (0.4 MPa for 2 h once per day). The noncompressed discs were used as controls. Compared with the dynamic compression, static compression significantly down-regulated the expression of N-CDH and NP-specific markers (laminin, brachyury, and keratin 19); decreased the Alcian Blue staining intensity, glycosaminoglycan and hydroxyproline contents; and declined the matrix macromolecule (aggrecan and collagen II) expression. Compared with the dynamic compression, static compression causes N-CDH down-regulation, loss of NP-specific phenotype, and the resulting decrease in NP matrix synthesis. © 2018 The Author(s).

  5. Effects of prenatal low protein and postnatal high fat diets on visceral adipose tissue macrophage phenotypes and IL-6 expression in Sprague Dawley rat offspring

    Science.gov (United States)

    Adipose tissue macrophages (ATM) are implicated in adipose tissue inflammation and obesity-related insulin resistance. Maternal low protein models result in fetal programming of obesity. However, it is not known whether maternal undernutrition increases ATM phenotypic expression in F1 offspring. Us...

  6. The expression of depression among Javanese patients with major depressive disorder: a concept mapping study.

    Science.gov (United States)

    Brintnell, E Sharon; Sommer, Ryan W; Kuncoro, Bambang; Setiawan, G Pandu; Bailey, Patricia

    2013-08-01

    In this study, we explored the presentation of clinical depression in Java, Indonesia. Interviews were conducted with 20 Javanese patients (male and female) with major depressive disorder from both lower and higher socioeconomic levels. The recruited participants came from provincial and private mental health hospitals in the cities of Solo, Yogykarta (Jogja), Jakarta, and Malang on the island of Java, Indonesia. Concept mapping methodology using multidimensional scaling and hierarchical cluster analysis was used to identify underlying themes in the expression of depressive phenomena in this Indonesian population. The results identified themes that grouped into six clusters: interpersonal relationships, hopelessness, physical/somatic, poverty of thought, discourage, and defeat. Findings give support to the view that culture influences the expression of Indonesian depressive phenomenology, which nevertheless has some common roots with Western clinical pictures of the disorder. Cultural influences may mask symptoms of the disorder to clinicians. Diagnostic and assessment tools must be carefully selected to ensure they address culturally specific expressions of depression.

  7. QUADrATiC: scalable gene expression connectivity mapping for repurposing FDA-approved therapeutics.

    Science.gov (United States)

    O'Reilly, Paul G; Wen, Qing; Bankhead, Peter; Dunne, Philip D; McArt, Darragh G; McPherson, Suzanne; Hamilton, Peter W; Mills, Ken I; Zhang, Shu-Dong

    2016-05-04

    Gene expression connectivity mapping has proven to be a powerful and flexible tool for research. Its application has been shown in a broad range of research topics, most commonly as a means of identifying potential small molecule compounds, which may be further investigated as candidates for repurposing to treat diseases. The public release of voluminous data from the Library of Integrated Cellular Signatures (LINCS) programme further enhanced the utilities and potentials of gene expression connectivity mapping in biomedicine. We describe QUADrATiC ( http://go.qub.ac.uk/QUADrATiC ), a user-friendly tool for the exploration of gene expression connectivity on the subset of the LINCS data set corresponding to FDA-approved small molecule compounds. It enables the identification of compounds for repurposing therapeutic potentials. The software is designed to cope with the increased volume of data over existing tools, by taking advantage of multicore computing architectures to provide a scalable solution, which may be installed and operated on a range of computers, from laptops to servers. This scalability is provided by the use of the modern concurrent programming paradigm provided by the Akka framework. The QUADrATiC Graphical User Interface (GUI) has been developed using advanced Javascript frameworks, providing novel visualization capabilities for further analysis of connections. There is also a web services interface, allowing integration with other programs or scripts. QUADrATiC has been shown to provide an improvement over existing connectivity map software, in terms of scope (based on the LINCS data set), applicability (using FDA-approved compounds), usability and speed. It offers potential to biological researchers to analyze transcriptional data and generate potential therapeutics for focussed study in the lab. QUADrATiC represents a step change in the process of investigating gene expression connectivity and provides more biologically-relevant results than

  8. The Annotation, Mapping, Expression and Network (AMEN suite of tools for molecular systems biology

    Directory of Open Access Journals (Sweden)

    Primig Michael

    2008-02-01

    Full Text Available Abstract Background High-throughput genome biological experiments yield large and multifaceted datasets that require flexible and user-friendly analysis tools to facilitate their interpretation by life scientists. Many solutions currently exist, but they are often limited to specific steps in the complex process of data management and analysis and some require extensive informatics skills to be installed and run efficiently. Results We developed the Annotation, Mapping, Expression and Network (AMEN software as a stand-alone, unified suite of tools that enables biological and medical researchers with basic bioinformatics training to manage and explore genome annotation, chromosomal mapping, protein-protein interaction, expression profiling and proteomics data. The current version provides modules for (i uploading and pre-processing data from microarray expression profiling experiments, (ii detecting groups of significantly co-expressed genes, and (iii searching for enrichment of functional annotations within those groups. Moreover, the user interface is designed to simultaneously visualize several types of data such as protein-protein interaction networks in conjunction with expression profiles and cellular co-localization patterns. We have successfully applied the program to interpret expression profiling data from budding yeast, rodents and human. Conclusion AMEN is an innovative solution for molecular systems biological data analysis freely available under the GNU license. The program is available via a website at the Sourceforge portal which includes a user guide with concrete examples, links to external databases and helpful comments to implement additional functionalities. We emphasize that AMEN will continue to be developed and maintained by our laboratory because it has proven to be extremely useful for our genome biological research program.

  9. Correlation Analysis Between Expression Levels of Hepatic Growth Hormone Receptor, Janus Kinase 2, Insulin-Like Growth Factor-I Genes and Dwarfism Phenotype in Bama Minipig.

    Science.gov (United States)

    Yang, Haowen; Jiang, Qinyang; Wu, Dan; Lan, Ganqiu; Fan, Jing; Guo, Yafen; Chen, Baojian; Yang, Xiurong; Jiang, Hesheng

    2015-02-01

    Animal growth and development are complex and sophisticated biological metabolic processes, in which genes plays an important role. In this paper, we employed real-time quantitative PCR (RT-qPCR) to analyze the expression levels of hepatic GHR, JAK2 and IGF-I genes in 1, 30, 180 day of Bama minipig and Landrace with attempt to verify the correlation between the expression of these growth-associated genes and the dwarfism phenotype of Bama minipig. The results showed that the expression levels of these 3 genes in Bama minipigs were down-regulated expressed from 1 day to 30 day, and which was up-regulated expressed in Landrace. The expression levels of the 3 genes on 1, 30, 180 day were prominently higher in Landrace than in Bama minipigs. The significant differences of the 3 genes expression levels on 1 day between this two breeds indicate that different expressions of these genes might occur before birth. It is speculated that the down-regulated expression of the 3 genes may have a close correlation with the dwarfism phenotype of Bama minipig. More investigations in depth of this study is under progress with the help of biochip nanotechnology.

  10. CRH Affects the Phenotypic Expression of Sepsis-Associated Virulence Factors by Streptococcus pneumoniae Serotype 1 In vitro

    Directory of Open Access Journals (Sweden)

    Colette G. Ngo Ndjom

    2017-06-01

    Full Text Available Sepsis is a life-threatening health condition caused by infectious pathogens of the respiratory tract, and accounts for 28–50% of annual deaths in the US alone. Current treatment regimen advocates the use of corticosteroids as adjunct treatment with antibiotics, for their broad inhibitory effect on the activity and production of pro-inflammatory mediators. However, despite their use, corticosteroids have not proven to be able to reverse the death incidence among septic patients. We have previously demonstrated the potential for neuroendocrine factors to directly influence Streptococcus pneumoniae virulence, which may in turn mediate disease outcome leading to sepsis and septic shock. The current study investigated the role of Corticotropin-releasing hormone (CRH in mediating key markers of pneumococcal virulence as important phenotypic determinants of sepsis and septic shock risks. In vitro cultures of serotype 1 pneumococcal strain with CRH promoted growth rate, increased capsule thickness and penicillin resistance, as well as induced pneumolysin gene expression. These results thus provide significant insights of CRH–pathogen interactions useful in understanding the underlying mechanisms of neuroendocrine factor's role in the onset of community acquired pneumonias (CAP, sepsis and septic shock.

  11. Different gene expressions on the left and the right: a genotype/phenotype mismatch in need of attention.

    Science.gov (United States)

    Mittwoch, Ursula

    2008-01-01

    Discordance in monozygotic twins has traditionally been explained in terms of environmental influences. A recent investigation has found a difference in epigenetic markers in older but not in younger twins. However, phenotypic differences that depend on an individual's postnatal life style do not address the problem of discordance in congenital malformations, or the reason why malformations are frequently unilateral, often with a preference for one or the other side. One such condition, cleft lip with or without cleft palate, which is preferentially expressed on the left, is a multifactorial condition, that is caused by a failure of the critical timing necessary for different groups of cells to meet and develop into a normal face. This process is dependent on cell proliferation and migration, which are energy-dependent, while the additional requirement for apoptosis to allow cell fusion suggests the involvement of mitochondria. Recent progress in two separate areas of research could lead to a better understanding of the problem of facial clefts: (1) the recognition of an interaction between gene products and mitochondria in the aetiology of neurodegenerative diseases and (2) the discovery of an increasing number of genes, including transcription factors, growth factors and members of the TGF-beta signalling family, that are differentially expressed on the left and right side, thus pointing to a difference in their micro-environment. These findings emphasize the importance of investigating the activity of candidate genes for complex developmental processes separately on the left and right sides. Data presented in this review suggest that differential growth rates may lead to an inversion of laterality. A method is described to test for a possible mitochondrial difference between left and right sides, using a mouse model with cleft lip.

  12. Brain-wide maps of Fos expression during fear learning and recall.

    Science.gov (United States)

    Cho, Jin-Hyung; Rendall, Sam D; Gray, Jesse M

    2017-04-01

    Fos induction during learning labels neuronal ensembles in the hippocampus that encode a specific physical environment, revealing a memory trace. In the cortex and other regions, the extent to which Fos induction during learning reveals specific sensory representations is unknown. Here we generate high-quality brain-wide maps of Fos mRNA expression during auditory fear conditioning and recall in the setting of the home cage. These maps reveal a brain-wide pattern of Fos induction that is remarkably similar among fear conditioning, shock-only, tone-only, and fear recall conditions, casting doubt on the idea that Fos reveals auditory-specific sensory representations. Indeed, novel auditory tones lead to as much gene induction in visual as in auditory cortex, while familiar (nonconditioned) tones do not appreciably induce Fos anywhere in the brain. Fos expression levels do not correlate with physical activity, suggesting that they are not determined by behavioral activity-driven alterations in sensory experience. In the thalamus, Fos is induced more prominently in limbic than in sensory relay nuclei, suggesting that Fos may be most sensitive to emotional state. Thus, our data suggest that Fos expression during simple associative learning labels ensembles activated generally by arousal rather than specifically by a particular sensory cue. © 2017 Cho et al.; Published by Cold Spring Harbor Laboratory Press.

  13. Responses of Myosin Heavy Chain Phenotypes and Gene Expressions in Neck Muscle to Micro- an Hyper-Gravity in Mice

    Science.gov (United States)

    Ohira, Tomotaka; Ohira, Takashi; Kawano, F.; Shibaguchi, T.; Okabe, H.; Ohno, Y.; Nakai, N.; Ochiai, T.; Goto, K.; Ohira, Y.

    2013-02-01

    Neck muscles are known to play important roles in the maintenance of head posture against gravity. However, it is not known how the properties of neck muscle are influenced by gravity. Therefore, the current study was performed to investigate the responses of neck muscle (rhomboideus capitis) in mice to inhibition of gravity and/or increase to 2-G for 3 months to test the hypothesis that the properties of neck muscles are regulated in response to the level of mechanical load applied by the gravitational load. Three male wild type C57BL/10J mice (8 weeks old) were launched by space shuttle Discovery (STS-128) and housed in Japanese Experimental Module “KIBO” on the International Space Station in mouse drawer system (MDS) project, which was organized by Italian Space Agency. Only 1 mouse returned to the Earth alive after 3 months by space shuttle Atlantis (STS-129). Neck muscles were sampled from both sides within 3 hours after landing. Cage and laboratory control experiments were also performed on the ground. Further, 3-month ground-based control experiments were performed with 6 groups, i.e. pre-experiment, 3-month hindlimb suspension, 2-G exposure by using animal centrifuge, and vivarium control (n=5 each group). Five mice were allowed to recover from hindlimb suspension (including 5 cage control) for 3 months in the cage. Neck muscles were sampled bilaterally before and after 3-month suspension and 2-G exposure, and at the end of 3-month ambulation recovery. Spaceflight-associated shift of myosin heavy chain phenotype from type I to II and atrophy of type I fibers were observed. In response to spaceflight, 17 genes were up-regulated and 13 genes were down-regulated vs. those in the laboratory control. Expression of 6 genes were up-regulated and that of 88 genes were down-regulated by 3-month exposure to 2-G vs. the age-matched cage control. In response to chronic hindlimb suspension, 4 and 20 genes were up- or down-regulated. Further, 98 genes responded

  14. Flow cytometric characterization of phenotype, DNA indices and p53 gene expression in 55 cases of acute leukemia.

    Science.gov (United States)

    Powari, Manish; Varma, Neelam; Varma, Subhash; Marwaha, Ram Kumar; Sandhu, Harpreet; Ganguly, Nirmal Kumar

    2002-06-01

    To characterize the phenotype of acute leukemia cases using flow cytometry, to detect mixed lineage cases and to use DNA index determination, including S-phase fraction (SPF) and p53 detection, to find if there was any correlation of SPF and p53 expression with outcome. Fifty-five cases of acute leukemia were enrolled in this study. A complete hemogram and routine bone marrow examination, including cytochemistry, was done. Mycloperoxidase-negative cases were evaluated on a flow cytometer using monoclonal antibodies. DNA indices were determined by flow cytometry in all cases, and p53 was detected immunohistochemically using the alkaline phosphatase/antialkaline phosphatase technique. Acute myeloblastic leukemia (AML) was diagnosed in 32 cases; acute lymphoblastic leukemia (ALL) was diagnosed in 18 (14 B lineage and 4 T line age). Four cases showed mixed lineage leukemia, and undifferentiated acute leukemia was diagnosed in one case. The mean/range of SPF for these groups were 3.76/0.33-6.91, 6.25/0.15-21.4, 2.89/0.35-10.64, 2.60/0.72-6.94 and 7.34, respectively. Aneuploidy was detected in two cases of B-lineage ALL and tetraploidy in a case of AML-M7, while all others were diploid p53. Was detected in 6 of 55 cases (10.90%). Follow-up was available for 24 patients. Five patients relapsed, and four had B-cell type ALL and were diploid and expressed no p53 gene. SPF% did not show any correlation with outcome. These data suggest that within acute leukemia subtypes, there is a wide variation in SPF. SPF does not seem to correlate with outcome. Immunophenotyping is essential to determine the lineage in myeloperoxidase-negative cases. It is perhaps the only way to diagnose mixed lineage leukemia and aberrant expression of markers presently. The p53 gene was detected less frequently. However, more studies are required from different centers with longer follow-up to evaluate prognostic significance.

  15. E-cadherin expression phenotypes associated with molecular subtypes in invasive non-lobular breast cancer: evidence from a retrospective study and meta-analysis.

    Science.gov (United States)

    Liu, Jiang-Bo; Feng, Chen-Yi; Deng, Miao; Ge, Dong-Feng; Liu, De-Chun; Mi, Jian-Qiang; Feng, Xiao-Shan

    2017-08-01

    This retrospective study and meta-analysis was designed to explore the relationship between E-cadherin (E-cad) expression and the molecular subtypes of invasive non-lobular breast cancer, especially in early-stage invasive ductal carcinoma (IDC). A total of 156 post-operative cases of early-stage IDCs were retrospectively collected for the immunohistochemistry (IHC) detection of E-cad expression. The association of E-cad expression with molecular subtypes of early-stage IDCs was analyzed. A literature search was conducted in March 2016 to retrieve publications on E-cad expression in association with molecular subtypes of invasive non-lobular breast cancer, and a meta-analysis was performed to estimate the relational statistics. E-cad was expressed in 82.7% (129/156) of early-stage IDCs. E-cad expression was closely associated with the molecular types of early-stage IDCs (P cancer (TNBC) than in other molecular subtypes (TNBC vs. luminal A: RR = 3.45, 95% CI = 2.79-4.26; TNBC vs. luminal B: RR = 2.41, 95% CI = 1.49-3.90; TNBC vs. HER2-enriched: RR = 1.95, 95% CI = 1.24-3.07). Early-stage IDCs or invasive non-lobular breast cancers with the TNBC molecular phenotype have a higher risk for the loss of E-cad expression than do tumors with non-TNBC molecular phenotypes, suggesting that E-cad expression phenotypes were closely related to molecular subtypes and further studies are needed to clarify the underlying mechanism.

  16. Arabidopsis MAP Kinase 4 regulates gene expression via transcription factor release in the nucleus

    DEFF Research Database (Denmark)

    Qiu, Jin-Long; Fiil, Berthe Katrine; Petersen, Klaus

    2008-01-01

    kinase 4 (MPK4) exists in nuclear complexes with the WRKY33 transcription factor. This complex depends on the MPK4 substrate MKS1. Challenge with Pseudomonas syringae or flagellin leads to the activation of MPK4 and phosphorylation of MKS1. Subsequently, complexes with MKS1 and WRKY33 are released from...... MPK4, and WRKY33 targets the promoter of PHYTOALEXIN DEFICIENT3 (PAD3) encoding an enzyme required for the synthesis of antimicrobial camalexin. Hence, wrky33 mutants are impaired in the accumulation of PAD3 mRNA and camalexin production upon infection. That WRKY33 is an effector of MPK4 is further...... supported by the suppression of PAD3 expression in mpk4-wrky33 double mutant backgrounds. Our data establish direct links between MPK4 and innate immunity and provide an example of how a plant MAP kinase can regulate gene expression by releasing transcription factors in the nucleus upon activation....

  17. Forkhead box protein A2, a pioneer factor for hepatogenesis, is involved in the expression of hepatic phenotype of alpha-fetoprotein-producing adenocarcinoma.

    Science.gov (United States)

    Yamamura, Nobuhisa; Fugo, Kazunori; Kishimoto, Takashi

    2017-09-01

    Alpha-fetoprotein (AFP)-producing adenocarcinoma is a high-malignant variant of adenocarcinoma with a hepatic or fetal-intestinal phenotype. The number of cases of AFP-producing adenocarcinomas is increasing, but the molecular mechanism underlying the aberrant production of AFP is unclear. Here we sought to assess the role of Forkhead box A (FoxA)2, which is a pioneer transcription factor in the differentiation of hepatoblasts. FoxA2 expression was investigated in five cases of AFP-producing gastric adenocarcinomas by immunohistochemistry, and all cases showed FoxA2 expression. Chromatin immunoprecipitation revealed the DNA binding of FoxA2 on the regulatory element of AFP gene in AFP-producing adenocarcinoma cells. The inhibition of FoxA2 expression with siRNA reduced the mRNA expression of liver-specific proteins, including AFP, albumin, and transferrin. The inhibition of FoxA2 also reduced the expressions of liver-enriched nuclear factors, i.e., hepatocyte nuclear factor (HNF) 4α and HNF6, although the expressions of HNF1α and HNF1β were not affected. The same effect as FoxA2 knockdown in AFP producing adenocarcinoma cells was also observed in hepatocellular carcinoma cells. Our results suggest that FoxA2 plays a key role in the expression of hepatic phenotype of AFP-producing adenocarcinomas. Copyright © 2017 Elsevier GmbH. All rights reserved.

  18. Low Fluid Shear Culture of Staphylococcus Aureus Represses hfq Expression and Induces an Attachment-Independent Biofilm Phenotype

    Science.gov (United States)

    Ott, C. Mark; Castro, S. L.; Nickerson, C. A.; Nelman-Gonzalez, M.

    2011-01-01

    Background: The opportunistic pathogen, Staphylococcus aureus, experiences fluctuations in fluid shear during infection and colonization of a human host. Colonization frequently occurs at mucus membrane sites such as in the gastrointestinal tract where the bacterium may experience low levels of fluid shear. The response of S. aureus to low fluid shear remains unclear. Methods: S. aureus was cultured to stationary phase using Rotating-Wall Vessel (RWV) bioreactors which produce a physiologically relevant low fluid shear environment. The bacterial aggregates that developed in the RWV were evaluated by electron microscopy as well as for antibiotic resistance and other virulence-associated stressors. Genetic expression profiles for the low-shear cultured S. aureus were determined by microarray analysis and quantitative real-time PCR. Results: Planktonic S. aureus cultures in the low-shear environment formed aggregates completely encased in high amounts of extracellular polymeric substances. In addition, these aggregates demonstrated increased antibiotic resistance indicating attachment-independent biofilm formation. Carotenoid production in the low-shear cultured S. aureus was significantly decreased, and these cultures displayed an increased susceptibility to oxidative stress and killing by whole blood. The hfq gene, associated with low-shear growth in Gram negative organisms, was also found to be down-regulated in S. aureus. Conclusions: Collectively, this data suggests that S. aureus decreases virulence characteristics in favor of a biofilm-dwelling colonization phenotype in response to a low fluid shear environment. Furthermore, the identification of an Hfq response to low-shear culture in S. aureus, in addition to the previously reported responses in Gram negative organisms, strongly suggests an evolutionarily conserved response to mechanical stimuli among structurally diverse prokaryotes.

  19. Mapping the fitness landscape of gene expression uncovers the cause of antagonism and sign epistasis between adaptive mutations.

    Directory of Open Access Journals (Sweden)

    Hsin-Hung Chou

    2014-02-01

    Full Text Available How do adapting populations navigate the tensions between the costs of gene expression and the benefits of gene products to optimize the levels of many genes at once? Here we combined independently-arising beneficial mutations that altered enzyme levels in the central metabolism of Methylobacterium extorquens to uncover the fitness landscape defined by gene expression levels. We found strong antagonism and sign epistasis between these beneficial mutations. Mutations with the largest individual benefit interacted the most antagonistically with other mutations, a trend we also uncovered through analyses of datasets from other model systems. However, these beneficial mutations interacted multiplicatively (i.e., no epistasis at the level of enzyme expression. By generating a model that predicts fitness from enzyme levels we could explain the observed sign epistasis as a result of overshooting the optimum defined by a balance between enzyme catalysis benefits and fitness costs. Knowledge of the phenotypic landscape also illuminated that, although the fitness peak was phenotypically far from the ancestral state, it was not genetically distant. Single beneficial mutations jumped straight toward the global optimum rather than being constrained to change the expression phenotypes in the correlated fashion expected by the genetic architecture. Given that adaptation in nature often results from optimizing gene expression, these conclusions can be widely applicable to other organisms and selective conditions. Poor interactions between individually beneficial alleles affecting gene expression may thus compromise the benefit of sex during adaptation and promote genetic differentiation.

  20. Expression of wild-type Rp1 protein in Rp1 knock-in mice rescues the retinal degeneration phenotype.

    Directory of Open Access Journals (Sweden)

    Qin Liu

    Full Text Available Mutations in the retinitis pigmentosa 1 (RP1 gene are a common cause of autosomal dominant retinitis pigmentosa (adRP, and have also been found to cause autosomal recessive RP (arRP in a few families. The 33 dominant mutations and 6 recessive RP1 mutations identified to date are all nonsense or frameshift mutations, and almost exclusively (38 out of 39 are located in the 4(th and final exon of RP1. To better understand the underlying disease mechanisms of and help develop therapeutic strategies for RP1 disease, we performed a series of human genetic and animal studies using gene targeted and transgenic mice. Here we report that a frameshift mutation in the 3(rd exon of RP1 (c.686delC; p.P229QfsX35 found in a patient with recessive RP1 disease causes RP in the homozygous state, whereas the heterozygous carriers are unaffected, confirming that haploinsufficiency is not the causative mechanism for RP1 disease. We then generated Rp1 knock-in mice with a nonsense Q662X mutation in exon 4, as well as Rp1 transgenic mice carrying a wild-type BAC Rp1 transgene. The Rp1-Q662X allele produces a truncated Rp1 protein, and homozygous Rp1-Q662X mice experience a progressive photoreceptor degeneration characterized disorganization of photoreceptor outer segments. This phenotype could be prevented by expression of a normal amount of Rp1 protein from the BAC transgene without removal of the mutant Rp1-Q662X protein. Over-expression of Rp1 protein in additional BAC Rp1 transgenic lines resulted in retinal degeneration. These findings suggest that the truncated Rp1-Q662X protein does not exert a toxic gain-of-function effect. These results also imply that in principle gene augmentation therapy could be beneficial for both recessive and dominant RP1 patients, but the levels of RP1 protein delivered for therapy will have to be carefully controlled.

  1. Human endothelial cell growth and phenotypic expression on three dimensional poly(lactide-co-glycolide) sintered microsphere scaffolds for bone tissue engineering.

    Science.gov (United States)

    Jabbarzadeh, Ehsan; Jiang, Tao; Deng, Meng; Nair, Lakshmi S; Khan, Yusuf M; Laurencin, Cato T

    2007-12-01

    Bone tissue engineering offers promising alternatives to repair and restore tissues. Our laboratory has employed poly(lactide-co-glycolide) PLAGA microspheres to develop a three dimensional (3-D) porous bioresorbable scaffold with a biomimetic pore structure. Osseous healing and integration with the surrounding tissue depends in part on new blood vessel formation within the porous structure. Since endothelial cells play a key role in angiogenesis (formation of new blood vessels from pre-existing vasculature), the purpose of this study was to better understand human endothelial cell attachment, viability, growth, and phenotypic expression on sintered PLAGA microsphere scaffold. Scanning electron microscopy (SEM) examination showed cells attaching to the surface of microspheres and bridging the pores between the microspheres. Cell proliferation studies indicated that cell number increased during early stages and reached a plateau between days 10 and 14. Immunofluorescent staining for actin showed that cells were proliferating three dimensionally through the scaffolds while staining for PECAM-1 (platelet endothelial cell adhesion molecule) displayed typical localization at cell-cell contacts. Gene expression analysis showed that endothelial cells grown on PLAGA scaffolds maintained their normal characteristic phenotype. The cell proliferation and phenotypic expression were independent of scaffold pore architecture. These results demonstrate that PLAGA sintered microsphere scaffolds can support the growth and biological functions of human endothelial cells. The insights from this study should aid future studies aimed at enhancing angiogenesis in three dimensional tissue engineered scaffolds.

  2. Effects of simulated microgravity on gene expression and biological phenotypes of a single generation Caenorhabditis elegans cultured on 2 different media.

    Science.gov (United States)

    Tee, Ling Fei; Neoh, Hui-Min; Then, Sue Mian; Murad, Nor Azian; Asillam, Mohd Fairos; Hashim, Mohd Helmy; Nathan, Sheila; Jamal, Rahman

    2017-11-01

    Studies of multigenerational Caenorhabditis elegans exposed to long-term spaceflight have revealed expression changes of genes involved in longevity, DNA repair, and locomotion. However, results from spaceflight experiments are difficult to reproduce as space missions are costly and opportunities are rather limited for researchers. In addition, multigenerational cultures of C. elegans used in previous studies contribute to mixture of gene expression profiles from both larvae and adult worms, which were recently reported to be different. Usage of different culture media during microgravity simulation experiments might also give rise to differences in the gene expression and biological phenotypes of the worms. In this study, we investigated the effects of simulated microgravity on the gene expression and biological phenotype profiles of a single generation of C. elegans worms cultured on 2 different culture media. A desktop Random Positioning Machine (RPM) was used to simulate microgravity on the worms for approximately 52 to 54 h. Gene expression profile was analysed using the Affymetrix GeneChip® C. elegans 1.0 ST Array. Only one gene (R01H2.2) was found to be downregulated in nematode growth medium (NGM)-cultured worms exposed to simulated microgravity. On the other hand, eight genes were differentially expressed for C. elegans Maintenance Medium (CeMM)-cultured worms in microgravity; six were upregulated, while two were downregulated. Five of the upregulated genes (C07E3.15, C34H3.21, C32D5.16, F35H8.9 and C34F11.17) encode non-coding RNAs. In terms of biological phenotype, we observed that microgravity-simulated worms experienced minimal changes in terms of lifespan, locomotion and reproductive capabilities in comparison with the ground controls. Taking it all together, simulated microgravity on a single generation of C. elegans did not confer major changes to their gene expression and biological phenotype. Nevertheless, exposure of the worms to microgravity

  3. Rethinking clinical language mapping approaches: discordant receptive and expressive hemispheric language dominance in epilepsy surgery candidates.

    Science.gov (United States)

    Gage, Nicole M; Eliashiv, Dawn S; Isenberg, Anna L; Fillmore, Paul T; Kurelowech, Lacey; Quint, Patti J; Chung, Jeffrey M; Otis, Shirley M

    2011-06-01

    Neuroimaging studies have shed light on cortical language organization, with findings implicating the left and right temporal lobes in speech processing converging to a left-dominant pattern. Findings highlight the fact that the state of theoretical language knowledge is ahead of current clinical language mapping methods, motivating a rethinking of these approaches. The authors used magnetoencephalography and multiple tasks in seven candidates for resective epilepsy surgery to investigate language organization. The authors scanned 12 control subjects to investigate the time course of bilateral receptive speech processes. Laterality indices were calculated for left and right hemisphere late fields ∼150 to 400 milliseconds. The authors report that (1) in healthy adults, speech processes activated superior temporal regions bilaterally converging to a left-dominant pattern, (2) in four of six patients, this was reversed, with bilateral processing converging to a right-dominant pattern, and (3) in three of four of these patients, receptive and expressive language processes were laterally discordant. Results provide evidence that receptive and expressive language may have divergent hemispheric dominance. Right-sided receptive language dominance in epilepsy patients emphasizes the need to assess both receptive and expressive language. Findings indicate that it is critical to use multiple tasks tapping separable aspects of language function to provide sensitive and specific estimates of language localization in surgical patients.

  4. Optimising parallel R correlation matrix calculations on gene expression data using MapReduce.

    Science.gov (United States)

    Wang, Shicai; Pandis, Ioannis; Johnson, David; Emam, Ibrahim; Guitton, Florian; Oehmichen, Axel; Guo, Yike

    2014-11-05

    High-throughput molecular profiling data has been used to improve clinical decision making by stratifying subjects based on their molecular profiles. Unsupervised clustering algorithms can be used for stratification purposes. However, the current speed of the clustering algorithms cannot meet the requirement of large-scale molecular data due to poor performance of the correlation matrix calculation. With high-throughput sequencing technologies promising to produce even larger datasets per subject, we expect the performance of the state-of-the-art statistical algorithms to be further impacted unless efforts towards optimisation are carried out. MapReduce is a widely used high performance parallel framework that can solve the problem. In this paper, we evaluate the current parallel modes for correlation calculation methods and introduce an efficient data distribution and parallel calculation algorithm based on MapReduce to optimise the correlation calculation. We studied the performance of our algorithm using two gene expression benchmarks. In the micro-benchmark, our implementation using MapReduce, based on the R package RHIPE, demonstrates a 3.26-5.83 fold increase compared to the default Snowfall and 1.56-1.64 fold increase compared to the basic RHIPE in the Euclidean, Pearson and Spearman correlations. Though vanilla R and the optimised Snowfall outperforms our optimised RHIPE in the micro-benchmark, they do not scale well with the macro-benchmark. In the macro-benchmark the optimised RHIPE performs 2.03-16.56 times faster than vanilla R. Benefiting from the 3.30-5.13 times faster data preparation, the optimised RHIPE performs 1.22-1.71 times faster than the optimised Snowfall. Both the optimised RHIPE and the optimised Snowfall successfully performs the Kendall correlation with TCGA dataset within 7 hours. Both of them conduct more than 30 times faster than the estimated vanilla R. The performance evaluation found that the new MapReduce algorithm and its

  5. Hypothalamic transcriptional expression of the kisspeptin system and sex steroid receptors differs among polycystic ovary syndrome rat models with different endocrine phenotypes.

    Science.gov (United States)

    Marcondes, Rodrigo Rodrigues; Carvalho, Kátia Cândido; Giannocco, Gisele; Duarte, Daniele Coelho; Garcia, Natália; Soares-Junior, José Maria; da Silva, Ismael Dale Cotrim Guerreiro; Maliqueo, Manuel; Baracat, Edmund Chada; Maciel, Gustavo Arantes Rosa

    2017-08-01

    Polycystic ovary syndrome is a heterogeneous endocrine disorder that affects reproductive-age women. The mechanisms underlying the endocrine heterogeneity and neuroendocrinology of polycystic ovary syndrome are still unclear. In this study, we investigated the expression of the kisspeptin system and gonadotropin-releasing hormone pulse regulators in the hypothalamus as well as factors related to luteinizing hormone secretion in the pituitary of polycystic ovary syndrome rat models induced by testosterone or estradiol. A single injection of testosterone propionate (1.25 mg) (n=10) or estradiol benzoate (0.5 mg) (n=10) was administered to female rats at 2 days of age to induce experimental polycystic ovary syndrome. Controls were injected with a vehicle (n=10). Animals were euthanized at 90-94 days of age, and the hypothalamus and pituitary gland were used for gene expression analysis. Rats exposed to testosterone exhibited increased transcriptional expression of the androgen receptor and estrogen receptor-β and reduced expression of kisspeptin in the hypothalamus. However, rats exposed to estradiol did not show any significant changes in hormone levels relative to controls but exhibited hypothalamic downregulation of kisspeptin, tachykinin 3 and estrogen receptor-α genes and upregulation of the gene that encodes the kisspeptin receptor. Testosterone- and estradiol-exposed rats with different endocrine phenotypes showed differential transcriptional expression of members of the kisspeptin system and sex steroid receptors in the hypothalamus. These differences might account for the different endocrine phenotypes found in testosterone- and estradiol-induced polycystic ovary syndrome rats.

  6. A population of human brain cells expressing phenotypic markers of more than one lineage can be induced in vitro to differentiate into mesenchymal cells

    International Nuclear Information System (INIS)

    Rieske, Piotr; Augelli, Brian J.; Stawski, Robert; Gaughan, John; Azizi, S. Ausim; Krynska, Barbara

    2009-01-01

    Proliferating astrocytic cells from germinal, as well as mature areas of brain parenchyma, have the characteristics of neural stem/progenitor cells and are capable of generating both neurons and glia. We previously reported that primary fetal human brain cells, designated as Normal Human Astrocytes (NHA), expressed, in addition to GFAP, Vimentin and Nestin, low levels of βIII-Tubulin, an early neuronal marker, and differentiated into neurons and astrocytes in vitro. Here, we showed that primary NHA cells co-express low levels of mesenchymal markers Fibronectin and Collagen-1 in culture. These cells transitioned into mesenchymal-like cells when cultured in adherent conditions in serum containing media. The mesenchymal-like derivatives of these cells were characterized based on their morphological changes, high expression of Vimentin and extracellular matrix (ECM) proteins, Collagen-1 and Fibronectin, and decline of neural markers. When incubated in osteogenic and adipogenic induction media, the mesenchymal-like cells differentiated into osteoblasts and adipocytes. Furthermore, NHA cells express markers of neural crest cells, SOX-10 and p75. These data support the idea of ectoderm-derived mesenchymal lineages. These findings suggest that a population of primitive fetal brain cells with neural/neural crest/mesenchymal phenotype, resembles the remarkable phenotypic plasticity of neural crest cells, and differentiates into adipocytes and osteocytes under the influence of environmental factors

  7. Normal p21Ras/MAP kinase pathway expression and function in PBMC from patients with polycystic ovary disease.

    Science.gov (United States)

    Buchs, A; Chagag, P; Weiss, M; Kish, E; Levinson, R; Aharoni, D; Rapoport, M J

    2004-04-01

    Polycystic ovary disease (PCOD) is associated with insulin resistance and increased prevalence of type II diabetes mellitus (T2DM). The p21Ras/MAP kinase is a major intracellular signaling pathway mediating insulin signaling in insulin responsive tissues. The expression, regulation and function of the p21Ras/MAP kinase pathway in PCOD patients were examined. Peripheral blood mononuclear cells (PBMC) were isolated from ten patients with PCOD and ten controls. The expression of p21Ras and its regulatory proteins; hSOS1 and p120GAP were studied. The basal and phytohemaglutinin (PHA) or insulin stimulated phosphorylation of MAP kinase was determined. Expression of p21Ras, and its regulatory proteins hSOS1 and p120GAP were similar in PCOD patients and controls. Basal, PHA and insulin stimulated phosphorylation of MAP kinase, were also comparable in the two groups as well as their PBMC proliferative response. These data indicate that the expression and overall function of the p21Ras/MAP kinase pathway remain intact in non-diabetic patients with PCOD.

  8. A mesenchymal-like phenotype and expression of CD44 predict lack of apoptotic response to sorafenib in liver tumor cells.

    Science.gov (United States)

    Fernando, Joan; Malfettone, Andrea; Cepeda, Edgar B; Vilarrasa-Blasi, Roser; Bertran, Esther; Raimondi, Giulia; Fabra, Àngels; Alvarez-Barrientos, Alberto; Fernández-Salguero, Pedro; Fernández-Rodríguez, Conrado M; Giannelli, Gianluigi; Sancho, Patricia; Fabregat, Isabel

    2015-02-15

    The multikinase inhibitor sorafenib is the only effective drug in advanced cases of hepatocellular carcinoma (HCC). However, response differs among patients and effectiveness only implies a delay. We have recently described that sorafenib sensitizes HCC cells to apoptosis. In this work, we have explored the response to this drug of six different liver tumor cell lines to define a phenotypic signature that may predict lack of response in HCC patients. Results have indicated that liver tumor cells that show a mesenchymal-like phenotype, resistance to the suppressor effects of transforming growth factor beta (TGF-β) and high expression of the stem cell marker CD44 were refractory to sorafenib-induced cell death in in vitro studies, which correlated with lack of response to sorafenib in nude mice xenograft models of human HCC. In contrast, epithelial-like cells expressing the stem-related proteins EpCAM or CD133 were sensitive to sorafenib-induced apoptosis both in vitro and in vivo. A cross-talk between the TGF-β pathway and the acquisition of a mesenchymal-like phenotype with up-regulation of CD44 expression was found in the HCC cell lines. Targeted CD44 knock-down in the mesenchymal-like cells indicated that CD44 plays an active role in protecting HCC cells from sorafenib-induced apoptosis. However, CD44 effect requires a TGF-β-induced mesenchymal background, since the only overexpression of CD44 in epithelial-like HCC cells is not sufficient to impair sorafenib-induced cell death. In conclusion, a mesenchymal profile and expression of CD44, linked to activation of the TGF-β pathway, may predict lack of response to sorafenib in HCC patients. © 2014 UICC.

  9. Long term storage in liquid nitrogen leads to only minor phenotypic and gene expression changes in the mammary carcinoma model cell line BT474.

    Science.gov (United States)

    Fazekas, Judit; Grunt, Thomas W; Jensen-Jarolim, Erika; Singer, Josef

    2017-05-23

    Cancer cell lines are indispensible surrogate models in cancer research, as they can be used off-the-shelf, expanded to the desired extent, easily modified and exchanged between research groups for affirmation, reproduction or follow-up experiments.As malignant cells are prone to genomic instability, phenotypical changes may occur after certain passages in culture. Thus, cell lines have to be regularly authenticated to ensure data quality. In between experiments these cell lines are often stored in liquid nitrogen for extended time periods.Although freezing of cells is a necessary evil, little research is performed on how long-term storage affects cancer cell lines. Therefore, this study investigated the effects of a 28-year long liquid nitrogen storage period on BT474 cells with regard to phenotypical changes, differences in cell-surface receptor expression as well as cytokine and gene expressional variations. Two batches of BT474 cells, one frozen in 1986, the other directly purchased from ATCC were investigated by light microscopy, cell growth analysis, flow cytometry and cytokine as well as whole-transcriptome expression profiling. The cell lines were morphologically indifferent and showed similar growth rates and similar cell-surface receptor expression. Transcriptome analysis revealed significant differences in only 26 of 40,716 investigated RefSeq transcripts with 4 of them being up-regulated and 22 down-regulated. This study demonstrates that even after very long periods of storage in liquid nitrogen, cancer cell lines display only minimal changes in their gene expression profiles. However, also such minor changes should be carefully assessed before continuation of experiments, especially if phenotypic alterations can be additionally observed.

  10. Expression of mRNAs for PPT, CGRP, NF-200, and MAP-2 in cocultures of dissociated DRG neurons and skeletal muscle cells in administration of NGF or NT-3

    Directory of Open Access Journals (Sweden)

    Weiwei Zhang

    2012-07-01

    Full Text Available Both neurotrophins (NTs and target skeletal muscle (SKM cells are essential for the maintenance of the function of neurons and nerve-muscle communication. However, much less is known about the association of target SKM cells with distinct NTs on the expression of mRNAs for preprotachykinin (PPT, calcitonin-gene related peptide (CGRP, neurofilament 200 (NF-200, and microtubule associated protein 2 (MAP-2 in dorsal root ganglion (DRG sensory neurons. In the present study, a neuromuscular coculture model of dissociated dorsal root ganglion (DRG neurons and SKM cells was established. The morphology of DRG neurons and SKM cells in coculture was observed with an inverted phase contrast microscope. The effects of nerve growth factor (NGF or neurotrophin-3 (NT-3 on the expression of mRNAs for PPT, CGRP, NF-200, and MAP-2 was analyzed by real time-PCR assay. The morphology of DRG neuronal cell bodies and SKM cells in neuromuscular coculture at different conditions was similar. The neurons presented evidence of dense neurite outgrowth in the presence of distinct NTs in neuromuscular cocultures. NGF and NT-3 increased mRNA levels of PPT, CGRP, and NF-200, but not MAP-2, in neuromuscular cocultures. These results offer new clues towards a better understanding of the association of target SKM cells with distinct NTs on the expression of mRNAs for PPT, CGRP, NF-200 and MAP-2, and implicate the association of target SKM cells and NTs with DRG sensory neuronal phenotypes.

  11. Insight into Genotype-Phenotype Associations through eQTL Mapping in Multiple Cell Types in Health and Immune-Mediated Disease.

    Directory of Open Access Journals (Sweden)

    James E Peters

    2016-03-01

    Full Text Available Genome-wide association studies (GWAS have transformed our understanding of the genetics of complex traits such as autoimmune diseases, but how risk variants contribute to pathogenesis remains largely unknown. Identifying genetic variants that affect gene expression (expression quantitative trait loci, or eQTLs is crucial to addressing this. eQTLs vary between tissues and following in vitro cellular activation, but have not been examined in the context of human inflammatory diseases. We performed eQTL mapping in five primary immune cell types from patients with active inflammatory bowel disease (n = 91, anti-neutrophil cytoplasmic antibody-associated vasculitis (n = 46 and healthy controls (n = 43, revealing eQTLs present only in the context of active inflammatory disease. Moreover, we show that following treatment a proportion of these eQTLs disappear. Through joint analysis of expression data from multiple cell types, we reveal that previous estimates of eQTL immune cell-type specificity are likely to have been exaggerated. Finally, by analysing gene expression data from multiple cell types, we find eQTLs not previously identified by database mining at 34 inflammatory bowel disease-associated loci. In summary, this parallel eQTL analysis in multiple leucocyte subsets from patients with active disease provides new insights into the genetic basis of immune-mediated diseases.

  12. Immunoprofiling of human uterine mast cells identifies three phenotypes and expression of ERβ and glucocorticoid receptor [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Bianca De Leo

    2017-05-01

    Full Text Available Background: Human mast cells (MCs are long-lived tissue-resident immune cells characterised by granules containing the proteases chymase and/or tryptase. Their phenotype is modulated by their tissue microenvironment. The human uterus has an outer muscular layer (the myometrium surrounding the endometrium, both of which play an important role in supporting a pregnancy. The endometrium is a sex steroid target tissue consisting of epithelial cells (luminal, glandular surrounded by a multicellular stroma, with the latter containing an extensive vascular compartment as well as fluctuating populations of immune cells that play an important role in regulating tissue function. The role of MCs in the human uterus is poorly understood with little known about their regulation or the impact of steroids on their differentiation status. The current study had two aims: 1 To investigate the spatial and temporal location of uterine MCs and determine their phenotype; 2 To determine whether MCs express receptors for steroids implicated in uterine function, including oestrogen (ERα, ERβ, progesterone (PR and glucocorticoids (GR. Methods: Tissue samples from women (n=46 were used for RNA extraction or fixed for immunohistochemistry. Results: Messenger RNAs encoded by TPSAB1 (tryptase and CMA1 (chymase were detected in endometrial tissue homogenates. Immunohistochemistry revealed the relative abundance of tryptase MCs was myometrium>basal endometrium>functional endometrium. We show for the first time that uterine MCs are predominantly of the classical MC subtypes: (positive, +; negative, - tryptase+/chymase- and tryptase+/chymase+, but a third subtype was also identified (tryptase-/chymase+. Tryptase+ MCs were of an ERβ+/ERα-/PR-/GR+ phenotype mirroring other uterine immune cell populations, including natural killer cells. Conclusions: Endometrial tissue resident immune MCs have three protease-specific phenotypes. Expression of both ERβ and GR in MCs mirrors

  13. Elevated mammaglobin (h-MAM) expression in breast cancer is associated with clinical and biological features defining a less aggressive tumour phenotype

    International Nuclear Information System (INIS)

    Núñez-Villar, MJ; Martínez-Arribas, F; Pollán, M; Lucas, AR; Sánchez, J; Tejerina, A; Schneider, J

    2003-01-01

    Mammaglobin (h-MAM) is expressed mainly by breast epithelial cells, and this feature has been used to detect circulating breast cancer cells and occult metastases in sentinel axillary lymph nodes of breast cancer patients. However, the biological role of mammaglobin is completely unknown. We studied 128 fresh-frozen breast cancer specimens by means of reverse transcriptase–polymerase chain reaction and quantified their h-MAM mRNA expression. This was then correlated with histological and nuclear grade, oestrogen and progesterone receptor expression, c-erb-B2 and mutant p53 expression, as well as with cellular proliferation measured by means of the Ki67 labelling index, DNA ploidy and S-phase, and finally with the presence or not of invaded axillary nodes in the mastectomy specimen. In the univariate analysis, high h-MAM expression (above the median for the whole group) correlated significantly (P < 0.05) with oestrogen and progesterone receptor expression, diploid DNA content, low Ki67 labelling index, low nuclear grade and almost significantly (P = 0.058) with the absence of axillary nodal invasion in the mastectomy specimen. In a final, multivariate model, only progesterone receptor expression, diploid DNA content and absence of nodal invasion were found to be independently associated with high h-MAM expression. All of the features associated with mammaglobin expression reflect, without exception, a less aggressive tumour phenotype. Further studies are needed to clarify whether this is attributable to h-MAM expression itself, or to another mechanism of which mammaglobin expression forms part

  14. A Single-Wing Removal Method to Assess Correspondence Between Gene Expression and Phenotype in Butterflies: The Case of Distal-less.

    Science.gov (United States)

    Adhikari, Kiran; Otaki, Joji M

    2016-02-01

    It is often desirable but difficult to retrieve information on the mature phenotype of an immature tissue sample that has been subjected to gene expression analysis. This problem cannot be ignored when individual variation within a species is large. To circumvent this problem in the butterfly wing system, we developed a new surgical method for removing a single forewing from a pupa using Junonia orithya; the operated pupa was left to develop to an adult without eclosion. The removed right forewing was subjected to gene expression analysis, whereas the non-removed left forewing was examined for color patterns. As a test case, we focused on Distal-less (Dll), which likely plays an active role in inducing elemental patterns, including eyespots. The Dll expression level in forewings was paired with eyespot size data from the same individual. One third of the operated pupae survived and developed wing color patterns. Dll expression levels were significantly higher in males than in females, although male eyespots were smaller in size than female eyespots. Eyespot size data showed weak but significant correlations with the Dll expression level in females. These results demonstrate that a single-wing removal method was successfully applied to the butterfly wing system and suggest the weak and non-exclusive contribution of Dll to eyespot size determination in this butterfly. Our novel methodology for establishing correspondence between gene expression and phenotype can be applied to other candidate genes for color pattern development in butterflies. Conceptually similar methods may also be applicable in other developmental systems.

  15. Co-ordinate expression of Th1/Th2 phenotypes in maternal and fetal blood: evidence for a transplacental nexus.

    Science.gov (United States)

    Tse, Doris B; Young, Bruce K

    2012-01-06

    If maternal atopy and environmental exposure affect prenatal Th cell development, the maternal and fetal immune systems should display common Th1/Th2 phenotypes. To test this hypothesis, we studied maternal and neonatal blood samples from mothers with total serum IgE ordinate IFN-γ production from paired maternal and fetal mononuclear cells, accompanied by co-ordinate increases in activated CD4+CD69+ cells that display the CCR4+Th2 and CXCR3+ Th1 phenotypes. Maternal and fetal CD4+CXCR3+ T cells were subsequently identified as the major producers of IFN-γ. The data established that a transplacental nexus exists during normal pregnancy and that fetal Th cell responses may be biased by the maternal immune system.

  16. Transgenic Fatal Familial Insomnia Mice Indicate Prion Infectivity-Independent Mechanisms of Pathogenesis and Phenotypic Expression of Disease

    OpenAIRE

    Bouybayoune, I.; Mantovani, S.; Del Gallo, F.; Bertani, I.; Restelli, E.; Comerio, L.; Tapella, L.; Baracchi, F.; Fernández-Borges, N.; Mangieri, M.; Bisighini, C.; Beznoussenko, G..V.; Paladini, A.; Balducci, C.; Micotti, E.

    2015-01-01

    Author Summary Genetic prion diseases are degenerative brain disorders caused by mutations in the gene encoding the prion protein (PrP). Different PrP mutations cause different diseases, including Creutzfeldt-Jakob disease (CJD) and fatal familial insomnia (FFI). The reason for this variability is not known, but assembly of the mutant PrPs into distinct aggregates that spread in the brain by promoting PrP aggregation may contribute to the disease phenotype. We previously generated transgenic ...

  17. Fine-scale mapping of natural variation in fly fecundity identifies neuronal domain of expression and function of an aquaporin.

    Directory of Open Access Journals (Sweden)

    Alan O Bergland

    Full Text Available To gain insight into the molecular genetic basis of standing variation in fitness related traits, we identify a novel factor that regulates the molecular and physiological basis of natural variation in female Drosophila melanogaster fecundity. Genetic variation in female fecundity in flies derived from a wild orchard population is heritable and largely independent of other measured life history traits. We map a portion of this variation to a single QTL and then use deficiency mapping to further refine this QTL to 5 candidate genes. Ubiquitous expression of RNAi against only one of these genes, an aquaporin encoded by Drip, reduces fecundity. Within our mapping population Drip mRNA level in the head, but not other tissues, is positively correlated with fecundity. We localize Drip expression to a small population of corazonin producing neurons located in the dorsolateral posterior compartments of the protocerebrum. Expression of Drip-RNAi using both the pan-neuronal ELAV-Gal4 and the Crz-Gal4 drivers reduces fecundity. Low-fecundity RILs have decreased Crz expression and increased expression of pale, the enzyme encoding the rate-limiting step in the production of dopamine, a modulator of insect life histories. Taken together these data suggest that natural variation in Drip expression in the corazonin producing neurons contributes to standing variation in fitness by altering the concentration of two neurohormones.

  18. Genome-wide survey and developmental expression mapping of zebrafish SET domain-containing genes.

    Directory of Open Access Journals (Sweden)

    Xiao-Jian Sun

    Full Text Available SET domain-containing proteins represent an evolutionarily conserved family of epigenetic regulators, which are responsible for most histone lysine methylation. Since some of these genes have been revealed to be essential for embryonic development, we propose that the zebrafish, a vertebrate model organism possessing many advantages for developmental studies, can be utilized to study the biological functions of these genes and the related epigenetic mechanisms during early development. To this end, we have performed a genome-wide survey of zebrafish SET domain genes. 58 genes total have been identified. Although gene duplication events give rise to several lineage-specific paralogs, clear reciprocal orthologous relationship reveals high conservation between zebrafish and human SET domain genes. These data were further subject to an evolutionary analysis ranging from yeast to human, leading to the identification of putative clusters of orthologous groups (COGs of this gene family. By means of whole-mount mRNA in situ hybridization strategy, we have also carried out a developmental expression mapping of these genes. A group of maternal SET domain genes, which are implicated in the programming of histone modification states in early development, have been identified and predicted to be responsible for all known sites of SET domain-mediated histone methylation. Furthermore, some genes show specific expression patterns in certain tissues at certain stages, suggesting the involvement of epigenetic mechanisms in the development of these systems. These results provide a global view of zebrafish SET domain histone methyltransferases in evolutionary and developmental dimensions and pave the way for using zebrafish to systematically study the roles of these genes during development.

  19. Mapping and expression studies of the mir17-92 cluster on pig chromosome 11

    DEFF Research Database (Denmark)

    Sawera, Milena; Gorodkin, Jan; Cirera, Susanna

    2005-01-01

    We have identified the first porcine microRNA (miRNA) cluster (the mir17-92 cluster) and localized it to the q-arm of pig Chromosome 11. The miRNA cluster was found by sequence similarity search with human miRNA sequences against the pig genomic data generated within the Sino-Danish pig genome...... from the human data. The expression profiles of seven studied miRNAs were analyzed by hybridization to Northern blots containing five porcine tissues: cerebellum, cortex, hippocampus, kidney, and liver. In order to determine the localization of the mir17-92 cluster in the pig genome, we mapped...... project. The resulting data contained three complete and two incomplete miRNA precursors of seven miRNAs from the human mir17-92 cluster. Because there is a 100% sequence identity between the four pig miRNAs and the corresponding human miRNAs, the sequences of three unavailable pig miRNAs were derived...

  20. Diverse bone morphogenetic protein expression profiles and smad pathway activation in different phenotypes of experimental canine mammary tumors.

    Directory of Open Access Journals (Sweden)

    Helena Wensman

    Full Text Available BACKGROUND: BMPs are currently receiving attention for their role in tumorigenesis and tumor progression. Currently, most BMP expression studies are performed on carcinomas, and not much is known about the situation in sarcomas. METHODOLOGY/PRINCIPAL FINDINGS: We have investigated the BMP expression profiles and Smad activation in clones from different spontaneous canine mammary tumors. Spindle cell tumor and osteosarcoma clones expressed high levels of BMPs, in particular BMP-2, -4 and -6. Clones from a scirrhous carcinoma expressed much lower BMP levels. The various clones formed different tumor types in nude mice but only clones that expressed high levels of BMP-6 gave bone formation. Phosphorylated Smad-1/5, located in the nucleus, was detected in tumors derived from clones expressing high levels of BMPs, indicating an active BMP signaling pathway and BMP-2 stimulation of mammary tumor cell clones in vitro resulted in activation of the Smad-1/5 pathway. In contrast BMP-2 stimulation did not induce phosphorylation of the non-Smad pathway p38 MAPK. Interestingly, an increased level of the BMP-antagonist chordin-like 1 was detected after BMP stimulation of non-bone forming clones. CONCLUSIONS/SIGNIFICANCE: We conclude that the specific BMP expression repertoire differs substantially between different types of mammary tumors and that BMP-6 expression most probably has a biological role in bone formation of canine mammary tumors.

  1. Mapping of gene expression reveals CYP27A1 as a susceptibility gene for sporadic ALS.

    Directory of Open Access Journals (Sweden)

    Frank P Diekstra

    Full Text Available Amyotrophic lateral sclerosis (ALS is a progressive, neurodegenerative disease characterized by loss of upper and lower motor neurons. ALS is considered to be a complex trait and genome-wide association studies (GWAS have implicated a few susceptibility loci. However, many more causal loci remain to be discovered. Since it has been shown that genetic variants associated with complex traits are more likely to be eQTLs than frequency-matched variants from GWAS platforms, we conducted a two-stage genome-wide screening for eQTLs associated with ALS. In addition, we applied an eQTL analysis to finemap association loci. Expression profiles using peripheral blood of 323 sporadic ALS patients and 413 controls were mapped to genome-wide genotyping data. Subsequently, data from a two-stage GWAS (3,568 patients and 10,163 controls were used to prioritize eQTLs identified in the first stage (162 ALS, 207 controls. These prioritized eQTLs were carried forward to the second sample with both gene-expression and genotyping data (161 ALS, 206 controls. Replicated eQTL SNPs were then tested for association in the second-stage GWAS data to find SNPs associated with disease, that survived correction for multiple testing. We thus identified twelve cis eQTLs with nominally significant associations in the second-stage GWAS data. Eight SNP-transcript pairs of highest significance (lowest p = 1.27 × 10(-51 withstood multiple-testing correction in the second stage and modulated CYP27A1 gene expression. Additionally, we show that C9orf72 appears to be the only gene in the 9p21.2 locus that is regulated in cis, showing the potential of this approach in identifying causative genes in association loci in ALS. This study has identified candidate genes for sporadic ALS, most notably CYP27A1. Mutations in CYP27A1 are causal to cerebrotendinous xanthomatosis which can present as a clinical mimic of ALS with progressive upper motor neuron loss, making it a plausible

  2. Differential expression pattern of heat shock protein 70 gene in tissues and heat stress phenotypes in goats during peak heat stress period.

    Science.gov (United States)

    Rout, P K; Kaushik, R; Ramachandran, N

    2016-07-01

    It has been established that the synthesis of heat shock protein 70 (Hsp70) is temperature-dependent. The Hsp70 response is considered as a cellular thermometer in response to heat stress and other stimuli. The variation in Hsp70 gene expression has been positively correlated with thermotolerance in Drosophila melanogaster, Caenorhabditis elegans, rodents and human. Goats have a wide range of ecological adaptability due to their anatomical and physiological characteristics; however, the productivity of the individual declines during thermal stress. The present study was carried out to analyze the expression of heat shock proteins in different tissues and to contrast heat stress phenotypes in response to chronic heat stress. The investigation has been carried out in Jamunapari, Barbari, Jakhrana and Sirohi goats. These breeds differ in size, coat colour and production performance. The heat stress assessment in goats was carried out at a temperature humidity index (THI) ranging from 85.36-89.80 over the period. Phenotyping for heat stress susceptibility was carried out by combining respiration rate (RR) and heart rate (HR). Based on the distribution of RR and HR over the breeds in the population, individual animals were recognized as heat stress-susceptible (HSS) and heat stress-tolerant (HST). Based on their physiological responses, the selected animals were slaughtered for tissue collection during peak heat stress periods. The tissue samples from different organs such as liver, spleen, heart, testis, brain and lungs were collected and stored at -70 °C for future use. Hsp70 concentrations were analyzed from tissue extract with ELISA. mRNA expression levels were evaluated using the SYBR green method. Kidney, liver and heart had 1.5-2.0-fold higher Hsp70 concentrations as compared to other organs in the tissue extracts. Similarly, the gene expression pattern of Hsp70 in different organs indicated that the liver, spleen, brain and kidney exhibited 5.94, 4.96, 5

  3. Effects of prenatal low protein and postnatal high fat diets on visceral adipose tissue macrophage phenotypes and IL-6 expression in Sprague Dawley rat offspring.

    Directory of Open Access Journals (Sweden)

    Linglin Xie

    Full Text Available Adipose tissue macrophages (ATM are implicated in adipose tissue inflammation and obesity-related insulin resistance. Maternal low protein models result in fetal programming of obesity. The study aims to answer whether maternal undernutrition by protein restriction affects the ATM M1 or M2 phenotype under postnatal high fat diet in F1 offspring. Using a rat model of prenatal low protein (LP, 8% protein diet followed by a postnatal high fat energy diet (HE, 45% fat or low fat normal energy diet (NE, 10% fat for 12 weeks, we investigated the effects of these diets on adiposity, programming of the offspring ATM phenotype, and the associated inflammatory response in adipose tissue. Fat mass in newborn and 12-week old LP fed offspring was lower than that of normal protein (20%; NP fed offspring; however, the adipose tissue growth rate was higher compared to the NP fed offspring. While LP did not affect the number of CD68+ or CD206+ cells in adipose tissue of NE offspring, it attenuated the number of these cells in offspring fed HE. In offspring fed HE, LP offspring had a lower percentage of CD11c+CD206+ ATMs, whose abundancy was correlated with the size of the adipocytes. Noteworthy, similar to HE treatment, LP increased gene expression of IL-6 within ATMs. Two-way ANOVA showed an interaction of prenatal LP and postnatal HE on IL-6 and IL-1β transcription. Overall, both LP and HE diets impact ATM phenotype by affecting the ratio of CD11c+CD206+ ATMs and the expression of IL-6.

  4. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in Brassica rapa Fast Plants

    Science.gov (United States)

    Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dósa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question “What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev),” we developed a 4-wk unit for an inquiry-based laboratory course focused on the inheritance and expression of a quantitative trait in varying environments. We utilized Brassica rapa Fast Plants as a model organism to study variation in the phenotype anthocyanin pigment intensity. As an initial curriculum assessment, we used free word association to examine students’ cognitive structures before and after the unit and explanations in students’ final research posters with particular focus on variation (Pv = Gv + Ev). Comparison of pre- and postunit word frequency revealed a shift in words and a pattern of co-occurring concepts indicative of change in cognitive structure, with particular focus on “variation” as a proposed threshold concept and primary goal for students’ explanations. Given review of 53 posters, we found ∼50% of students capable of intermediate to high-level explanations combining both Gv and Ev influence on expression of anthocyanin intensity (Pv). While far from “plug and play,” this conceptually rich, inquiry-based unit holds promise for effective integration of quantitative and Mendelian genetics. PMID:25185225

  5. A new mouse model for marfan syndrome presents phenotypic variability associated with the genetic background and overall levels of Fbn1 expression.

    Directory of Open Access Journals (Sweden)

    Bruno L Lima

    2010-11-01

    Full Text Available Marfan syndrome is an autosomal dominant disease of connective tissue caused by mutations in the fibrillin-1 encoding gene FBN1. Patients present cardiovascular, ocular and skeletal manifestations, and although being fully penetrant, MFS is characterized by a wide clinical variability both within and between families. Here we describe a new mouse model of MFS that recapitulates the clinical heterogeneity of the syndrome in humans. Heterozygotes for the mutant Fbn1 allele mgΔloxPneo, carrying the same internal deletion of exons 19-24 as the mgΔ mouse model, present defective microfibrillar deposition, emphysema, deterioration of aortic wall and kyphosis. However, the onset of a clinical phenotypes is earlier in the 129/Sv than in C57BL/6 background, indicating the existence of genetic modifiers of MFS between these two mouse strains. In addition, we characterized a wide clinical variability within the 129/Sv congenic heterozygotes, suggesting involvement of epigenetic factors in disease severity. Finally, we show a strong negative correlation between overall levels of Fbn1 expression and the severity of the phenotypes, corroborating the suggested protective role of normal fibrillin-1 in MFS pathogenesis, and supporting the development of therapies based on increasing Fbn1 expression.

  6. Production of a Marfan cellular phenotype by expressing a mutant human fibrillin allele on a normal human or murine genetic background

    Energy Technology Data Exchange (ETDEWEB)

    Eldadah, Z.A.; Dietz, H.C. [Johns Hopkins Univ. School of Medicine, Baltimore, MD (United States); Brenn, T. [Stanford Univ. Medical Center, CA (United States)] [and others

    1994-09-01

    The Marfan Syndrome (MFS) is a heritable disorder of connective tissue caused by defects in fibrillin (FBN1), a 350 kD glycoprotein and principal component of the extracellular microfibril. Previous correlations of mutant transcript level and disease severity suggested a dominant negative model of MFS pathogenesis. To address this hypothesis we assembled an expression construct containing the mutant allele from a patient with severe MFS. This mutation causes skipping of FBN1 exon 2 and a frame shift, leading to a premature termination codon in exon 4. The predicted peptide would thus consist of 55 wild type and 45 missense amino acids. The construct was stably transfected into cultured human and mouse fibroblasts, and several clonal cell populations were established. Human and mouse cells expressing the truncated peptide exhibited markedly diminished fibrillin deposition and disorganized microfibrillar architecture by immunofluorescence. Pulse-chase analysis of these cells demonstrated normal levels of fibrillin synthesis but substantially decreased fibrillin deposition into the extracellular matrix. These data illustrate that expression of a mutant FBN1 allele, on a background of two normal alleles, is sufficient to disrupt normal fibrillin aggregation and reproduce the MFS cellular phenotype. This provides confirmation of a dominant negative model of MFS pathogenesis and may offer mutant allele knockout as a strategy for gene therapy. In addition, these data underscore the importance of the FBN1 amino-terminus in normal multimer formation and suggest that expression of the human extreme 5{prime} FBN1 coding sequence may be sufficient, in isolation, to produce an animal model of MFS. Indeed, transgenic mice harboring this mutant allele have been produced, and phenotype analysis is currently in progress.

  7. Effects of lithium and valproic acid on gene expression and phenotypic markers in an NT2 neurosphere model of neural development.

    Directory of Open Access Journals (Sweden)

    Eric J Hill

    Full Text Available Mood stabilising drugs such as lithium (LiCl and valproic acid (VPA are the first line agents for treating conditions such as Bipolar disorder and Epilepsy. However, these drugs have potential developmental effects that are not fully understood. This study explores the use of a simple human neurosphere-based in vitro model to characterise the pharmacological and toxicological effects of LiCl and VPA using gene expression changes linked to phenotypic alterations in cells. Treatment with VPA and LiCl resulted in the differential expression of 331 and 164 genes respectively. In the subset of VPA targeted genes, 114 were downregulated whilst 217 genes were upregulated. In the subset of LiCl targeted genes, 73 were downregulated and 91 were upregulated. Gene ontology (GO term enrichment analysis was used to highlight the most relevant GO terms associated with a given gene list following toxin exposure. In addition, in order to phenotypically anchor the gene expression data, changes in the heterogeneity of cell subtype populations and cell cycle phase were monitored using flow cytometry. Whilst LiCl exposure did not significantly alter the proportion of cells expressing markers for stem cells/undifferentiated cells (Oct4, SSEA4, neurons (Neurofilament M, astrocytes (GFAP or cell cycle phase, the drug caused a 1.4-fold increase in total cell number. In contrast, exposure to VPA resulted in significant upregulation of Oct4, SSEA, Neurofilament M and GFAP with significant decreases in both G2/M phase cells and cell number. This neurosphere model might provide the basis of a human-based cellular approach for the regulatory exploration of developmental impact of potential toxic chemicals.

  8. Characterization of Chondrogenic Gene Expression and Cartilage Phenotype Differentiation in Human Breast Adipose-Derived Stem Cells Promoted by Ginsenoside Rg1 In Vitro

    Directory of Open Access Journals (Sweden)

    Fang-Tian Xu

    2015-11-01

    Full Text Available Background/Aims: Investigating and understanding chondrogenic gene expression during the differentiation of human breast adipose-derived stem cells (HBASCs into chondrogenic cells is a prerequisite for the application of this approach for cartilage repair and regeneration. In this study, we aim to characterize HBASCs and to examine chondrogenic gene expression in chondrogenic inductive culture medium containing ginsenoside Rg1. Methods: Human breast adipose-derived stem cells at passage 3 were evaluated based on specific cell markers and their multilineage differentiation capacity. Cultured HBASCs were treated either with basic chondrogenic inductive conditioned medium alone (group A, control or with basic chondrogenic inductive medium plus 10 µg/ml (group B, 50 µg/ml (group C, or 100µg/ml ginsenoside Rg1 (group D. Cell proliferation was assessed using the CCK-8 assay for a period of 9 days. Two weeks after induction, the expression of chondrogenic genes (collagen type II, collagen type XI, ACP, COMP and ELASTIN was determined using real-time PCR in all groups. Results: The different concentrations of ginsenoside Rg1 that were added to the basic chondrogenic inductive culture medium promoted the proliferation of HBASCs at earlier stages (groups B, C, and D but resulted in chondrogenic phenotype differentiation and higher mRNA expression of collagen type II (CO-II, collagen type XI (CO-XI, acid phosphatase (ACP, cartilage oligomeric matrix protein (COMP and ELASTIN compared with the control (group A at later stages. The results reveal an obvious positive dose-effect relationship between ginsenoside Rg1 and the proliferation and chondrogenic phenotype differentiation of HBASCs in vitro. Conclusions: Human breast adipose-derived stem cells retain stem cell characteristics after expansion in culture through passage 3 and serve as a feasible source of cells for cartilage regeneration in vitro. Chondrogenesis in HBASCs was found to be prominent

  9. Correlation of beta-catenin localization with cyclooxygenase-2 expression and CpG island methylator phenotype (CIMP) in colorectal cancer.

    Science.gov (United States)

    Kawasaki, Takako; Nosho, Katsuhiko; Ohnishi, Mutsuko; Suemoto, Yuko; Kirkner, Gregory J; Dehari, Reiko; Meyerhardt, Jeffrey A; Fuchs, Charles S; Ogino, Shuji

    2007-07-01

    The WNT/beta-catenin (CTNNB1) pathway is commonly activated in the carcinogenic process. Cross-talks between the WNT and cyclooxygenase-2 (COX-2 or PTGS2)/prostaglandin pathways have been suggested. The relationship between beta-catenin activation and microsatellite instability (MSI) in colorectal cancer has been controversial. The CpG island methylator phenotype (CIMP or CIMP-high) with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer, which is associated with MSI-high. However, no study has examined the relationship between beta-catenin activation and CIMP status. Using 832 population-based colorectal cancer specimens, we assessed beta-catenin localization by immunohistochemistry. We quantified DNA methylation in eight CIMP-specific promoters [CACNA1G, CDKN2A(p16), CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1] by real-time polymerase chain reaction (MethyLight). MSI-high, CIMP-high, and BRAF mutation were associated inversely with cytoplasmic and nuclear beta-catenin expressions (i.e., beta-catenin activation) and associated positively with membrane expression. The inverse relation between beta-catenin activation and CIMP was independent of MSI. COX-2 overexpression correlated with cytoplasmic beta-catenin expression (even after tumors were stratified by CIMP status), but did not correlate significantly with nuclear or membrane expression. In conclusion, beta-catenin activation is inversely associated with CIMP-high independent of MSI status. Cytoplasmic beta-catenin is associated with COX-2 overexpression, supporting the role of cytoplasmic beta-catenin in stabilizing PTGS2 (COX-2) mRNA.

  10. Correlation of β-Catenin Localization with Cyclooxygenase-2 Expression and CpG Island Methylator Phenotype (CIMP in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Takako Kawasaki

    2007-07-01

    Full Text Available The WNT/β-catenin (CTNNB1 pathway is commonly activated in the carcinogenic process. Cross-talks between the WNT and cyclooxygenase-2 (COX-2 or PTGS2/prostaglandin pathways have been suggested. The relationship between (3-catenin activation and microsatellite instability (MSI in colorectal cancer has been controversial. The CpG island methylator phenotype (CIMP or CIMP-high with widespread promoter methylation is a distinct epigenetic phenotype in colorectal cancer, which is associated with MSI-high. However, no study has examined the relationship between (β-catenin activation and CIMP status. Using 832 population-based colorectal cancer specimens, we assessed (3-catenin localization by immunohistochemistry. We quantified DNA methylation in eight CIMP-specific promoters [CACNA1G, CDKN2A(p16, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1] by real-time polymerase chain reaction (MethyLight. MSI-high, CIMP-high, and BRAF mutation were associated inversely with cytoplasmic and nuclear (β-catenin expressions (i.e., β-catenin activation and associated positively with membrane expression. The inverse relation between (β-catenin activation and CIMP was independent of MSI. COX-2 overexpression correlated with cytoplasmic (β-catenin expression (even after tumors were stratified by CIMP status, but did not correlate significantly with nuclear or membrane expression. In conclusion, β-catenin activation is inversely associated with CIMP-high independent of MSI status. Cytoplasmic β-catenin is associated with COX-2 overexpression, supporting the role of cytoplasmic β-catenin in stabilizing PTGS2(COX-2 mRNA.

  11. Apparent expression of flower colours and internal variation of enzyme activities in some typical phenotypes of dyer's saffron cultivars

    Directory of Open Access Journals (Sweden)

    Koshi Saito

    2014-01-01

    Full Text Available Phytochemical screening of four Carthamus pigments in phenotypically different cultivars of dyer's saffron was carried out by means of chromatographic techniques. The pigment composition in the floral part correlated well with the flower colour, supporting these components as idoneous chemotaxonomic markers. Among seven cultivars examined, three were orange-yellow and contained carthamin (red and precarthamin, safflor yellow A and safflor yellow B (orange-yellow (type 0. There were bright-yellow and also had the above four pigments (type Y. The seventh cultivar was ivory-white and produced no quinoidal chalcones in the florets (type W. Relative activities of three different enzymes were examined in soluble protein extracts from etiolated seedlings of the garden varieties. Monophenol monooxygenase (EC 1.14.18.1 and peroxidase (EC 1.11.1.7. were distributed over all cultivars tested. The relative level of the enzyme activities could be ordered as follows: type 0, type W and type Y. The activity of a carthamin-synthesizing enzyme was found in the protein extracts from all garden forms examined. Its activity was most prominent in type O. The activity level in type W was inferior to that of type O. The catalytic intensity in type Y was found to even lower. The results were discussed as to the composition of the phenotypic markers and the distribution of the enzyme activities in three different garden forms of dyer's saffron cultivars.

  12. A consensus genetic map for Pinus taeda and Pinus elliottii and extent of linkage disequilibrium in two genotype-phenotype discovery populations of Pinua taeda

    Science.gov (United States)

    Jared W. Westbrook; Vikram E. Chhatre; Le-Shin Wu; Srikar Chamala; Leandro Gomide Neves; Patricio Munoz; Pedro J. Martinez-Garcia; David B. Neale; Matias Kirst; Keithanne Mockaitis; C. Dana Nelson; Gary F. Peter; John M. Davis; Craig S. Echt

    2015-01-01

    A consensus genetic map for Pinus taeda (loblolly pine) and Pinus elliottii (slash pine) was constructed by merging three previously published P. taeda maps with a map from a pseudo-backcross between P. elliottii and P. taeda. The consensus map positioned 3856 markers via...

  13. GATA-4 and FOG-2 expression in pediatric ovarian sex cord-stromal tumors replicates embryonal gonadal phenotype: results from the TREP project.

    Science.gov (United States)

    Virgone, Calogero; Cecchetto, Giovanni; Ferrari, Andrea; Bisogno, Gianni; Donofrio, Vittoria; Boldrini, Renata; Collini, Paola; Dall'Igna, Patrizia; Alaggio, Rita

    2012-01-01

    GATA proteins are a family of zinc finger transcription factors regulating gene expression, differentiation and proliferation in various tissues. The expression of GATA-4 and FOG-2, one of its modulators, was studied in pediatric Sex Cord-Stromal tumors of the ovary, in order to evaluate their potential role as diagnostic markers and prognostic factors. Clinical and histological data of 15 patients, enrolled into the TREP Project since 2000 were evaluated. When available, immunostaines for FOG-2, GATA-4, α-Inhibin, Vimentin and Pancytokeratin were also analyzed. In our series there were 6 Juvenile Granulosa Cell Tumors (JGCT), 6 Sertoli-Leydig Cell Tumors (SLCT), 1 Cellular Fibroma, 1 Theca Cell Tumor and 1 Stromal Sclerosing Tumor (SST). Thirteen patients obtained a complete remission (CR), 1 reached a second CR after the removal of a metachronous tumor and 1 died of disease. Inhibin was detectable in 11/15, Vimentin in 13/15, Pancytokeratin in 6/15, GATA-4 in 5/13 and FOG-2 in 11/15. FOG-2 was highly expressed in 5/6 JGCT, while GATA-4 was weakly detectable only in 1 of the cases. SLCT expressed diffusely FOG-2 (4/6) and GATA-4 (3/5). GATA-4 and FOG-2 were detected in fibroma and thecoma but not in the SST. Pediatric granulosa tumors appear to express a FOG-2/GATA-4 phenotype in keeping with primordial ovarian follicles. High expression of GATA-4 does not correlate with aggressive behaviour as seen in adults, but it is probably involved in cell proliferation its absence can be associated with the better outcome of JGCT. SLCTs replicate the phenotype of Sertoli cells during embryogenesis in normal testis. In this group, the lack of expression of FOG-2 in tumors in advanced stages might reveal a hypothetical role in inhibiting GATA-4 cell proliferation pathway. In fibroma/thecoma group GATA-4 and FOG-2 point out the abnormal activation of GATA pathway and might be involved in the onset of these tumors.

  14. Co-expression of Cholinergic and Noradrenergic Phenotypes in Human and Non-Human Autonomic Nervous System

    OpenAIRE

    Weihe, Eberhard; Schütz, Burkhard; Hartschuh, Wolfgang; Anlauf, Martin; Schäfer, Martin K.; Eiden, Lee E.

    2005-01-01

    It has long been known that the sympathetic innervation of the sweat glands is cholinergic in most mammalian species, and that during development, rodent sympathetic cholinergic sweat gland innervation transiently expresses noradrenergic traits. We show here that some noradrenergic traits persist in cholinergic sympathetic innervation of the sweat glands in rodents, but that lack of expression of the vesicular monoamine transporter renders these cells functionally non-noradrenergic. Adult hum...

  15. CD133 Modulate HIF-1α Expression under Hypoxia in EMT Phenotype Pancreatic Cancer Stem-Like Cells

    Directory of Open Access Journals (Sweden)

    Koki Maeda

    2016-06-01

    Full Text Available Although CD133 is a known representative cancer stem cell marker, its function in tumor aggressiveness under hypoxia is not fully known. The aim of this study is to demonstrate that CD133 regulates hypoxia inducible factor (HIF-1α expression with tumor migration. The CD133+ pancreatic cancer cell line, Capan1M9, was compared with the CD133− cell line, shCD133M9, under hypoxia. HIF-1α expression levels were compared by Western blot, HIF-1α nucleus translocation assay and real-time (RT-PCR. The hypoxia responsive element (HRE was observed by luciferase assay. The migration ability was analyzed by migration and wound healing assays. Epithelial mesenchymal transition (EMT related genes were analyzed by real-time RT-PCR. HIF-1α was highly expressed in Capan1M9 compared to shCD133M9 under hypoxia because of the high activation of HRE. Furthermore, the migration ability of Capan1M9 was higher than that of shCD133M9 under hypoxia, suggesting higher expression of EMT related genes in Capan1M9 compared to shCD133M9. Conclusion: HIF-1α expression under hypoxia in CD133+ pancreatic cancer cells correlated with tumor cell migration through EMT gene expression. Understanding the function of CD133 in cancer aggressiveness provides a novel therapeutic approach to eradicate pancreatic cancer stem cells.

  16. SNPexp - A web tool for calculating and visualizing correlation between HapMap genotypes and gene expression levels

    Directory of Open Access Journals (Sweden)

    Franke Andre

    2010-12-01

    Full Text Available Abstract Background Expression levels for 47294 transcripts in lymphoblastoid cell lines from all 270 HapMap phase II individuals, and genotypes (both HapMap phase II and III of 3.96 million single nucleotide polymorphisms (SNPs in the same individuals are publicly available. We aimed to generate a user-friendly web based tool for visualization of the correlation between SNP genotypes within a specified genomic region and a gene of interest, which is also well-known as an expression quantitative trait locus (eQTL analysis. Results SNPexp is implemented as a server-side script, and publicly available on this website: http://tinyurl.com/snpexp. Correlation between genotype and transcript expression levels are calculated by performing linear regression and the Wald test as implemented in PLINK and visualized using the UCSC Genome Browser. Validation of SNPexp using previously published eQTLs yielded comparable results. Conclusions SNPexp provides a convenient and platform-independent way to calculate and visualize the correlation between HapMap genotypes within a specified genetic region anywhere in the genome and gene expression levels. This allows for investigation of both cis and trans effects. The web interface and utilization of publicly available and widely used software resources makes it an attractive supplement to more advanced bioinformatic tools. For the advanced user the program can be used on a local computer on custom datasets.

  17. High expression of hexokinase domain containing 1 is associated with poor prognosis and aggressive phenotype in hepatocarcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Zijian; Huang, Shanzhou [Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 (China); Wang, Huanyu [Department of Thyroid and Breast Surgery, Nanshan District People’s Hospital, Shenzhen, 518000 (China); Wu, Jian [Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 (China); Chen, Dong [Department of Biliopancreatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 (China); Peng, Baogang [Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 (China); Zhou, Qi, E-mail: hnzhouqi@163.com [Department of Hepatic Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080 (China)

    2016-06-10

    Rapid progress and metastasis remain the major treatment failure modes of hepatocarcinoma (HCC). Unfortunately, the underlying molecular mechanisms of hepatoma cell proliferation and migration are poorly understood. Metabolic abnormalities play critical roles in tumorigenesis and progression. Hexokinase domain containing 1 (HKDC1) catalyzes the phosphorylation of glucose. However, the functions and mechanisms of HKDC1 in cancer remain unknown. In this study, real-time RT-PCR and Western blotting assays were used to detect the HKDC1 expression levels in HCC tissues and cell lines. The Oncomine™ Cancer Microarray Database was applied to analysis the correlations between HKDC1 expression and HCC clinical characteristics. MTT and Transwell migration assays were performed to determine the functions of HKDC1 in HCC cells. The effect of HKDC1 on Wnt/β-catenin signaling pathway was assessed using Western blotting assay. In this study, we found that HKDC1 expression levels were elevated in HCC tissues compared with the adjacent tissues. HCC patients with high expression levels of HKDC1 had poor overall survival (OS). Furthermore, higher HKDC1 levels also predicted a worse OS of patients within solitary, elevated pre-operated serum alpha fetoprotein (AFP) level and higher tumor diameter. Moreover, silencing HKDC1 suppressed HCC cells proliferation and migration in vitro. Downregulated HKDC1 expression repressed β-Catenin and c-Myc expression, which indicates that silencing HKDC1 may reduce proliferation and migration via inhibiting the Wnt/β-catenin signaling pathway in HCC. In summary, HKDC1 provides further insight into HCC tumor progression and may provide a novel prognostic biomarker and therapeutic target for HCC treatment. -- Highlights: •HKDC1 is upregulated in HCC. •Patients with high HKDC1 expressions perform worse OS. •Silencing HKDC1 suppresses proliferation and migration. •Silencing HKDC1 represses Wnt/β-catenin signaling pathway.

  18. High expression of hexokinase domain containing 1 is associated with poor prognosis and aggressive phenotype in hepatocarcinoma

    International Nuclear Information System (INIS)

    Zhang, Zijian; Huang, Shanzhou; Wang, Huanyu; Wu, Jian; Chen, Dong; Peng, Baogang; Zhou, Qi

    2016-01-01

    Rapid progress and metastasis remain the major treatment failure modes of hepatocarcinoma (HCC). Unfortunately, the underlying molecular mechanisms of hepatoma cell proliferation and migration are poorly understood. Metabolic abnormalities play critical roles in tumorigenesis and progression. Hexokinase domain containing 1 (HKDC1) catalyzes the phosphorylation of glucose. However, the functions and mechanisms of HKDC1 in cancer remain unknown. In this study, real-time RT-PCR and Western blotting assays were used to detect the HKDC1 expression levels in HCC tissues and cell lines. The Oncomine™ Cancer Microarray Database was applied to analysis the correlations between HKDC1 expression and HCC clinical characteristics. MTT and Transwell migration assays were performed to determine the functions of HKDC1 in HCC cells. The effect of HKDC1 on Wnt/β-catenin signaling pathway was assessed using Western blotting assay. In this study, we found that HKDC1 expression levels were elevated in HCC tissues compared with the adjacent tissues. HCC patients with high expression levels of HKDC1 had poor overall survival (OS). Furthermore, higher HKDC1 levels also predicted a worse OS of patients within solitary, elevated pre-operated serum alpha fetoprotein (AFP) level and higher tumor diameter. Moreover, silencing HKDC1 suppressed HCC cells proliferation and migration in vitro. Downregulated HKDC1 expression repressed β-Catenin and c-Myc expression, which indicates that silencing HKDC1 may reduce proliferation and migration via inhibiting the Wnt/β-catenin signaling pathway in HCC. In summary, HKDC1 provides further insight into HCC tumor progression and may provide a novel prognostic biomarker and therapeutic target for HCC treatment. -- Highlights: •HKDC1 is upregulated in HCC. •Patients with high HKDC1 expressions perform worse OS. •Silencing HKDC1 suppresses proliferation and migration. •Silencing HKDC1 represses Wnt/β-catenin signaling pathway.

  19. Phenotyping and Target Expression Profiling of CD34+/CD38− and CD34+/CD38+ Stem- and Progenitor cells in Acute Lymphoblastic Leukemia

    Directory of Open Access Journals (Sweden)

    Katharina Blatt

    2018-06-01

    Full Text Available Leukemic stem cells (LSCs are an emerging target of curative anti-leukemia therapy. In acute lymphoblastic leukemia (ALL, LSCs frequently express CD34 and often lack CD38. However, little is known about markers and targets expressed in ALL LSCs. We have examined marker- and target expression profiles in CD34+/CD38− LSCs in patients with Ph+ ALL (n = 22 and Ph− ALL (n = 27 by multi-color flow cytometry and qPCR. ALL LSCs expressed CD19 (B4, CD44 (Pgp-1, CD123 (IL-3RA, and CD184 (CXCR4 in all patients tested. Moreover, in various subgroups of patients, LSCs also displayed CD20 (MS4A1 (10/41 = 24%, CD22 (12/20 = 60%, CD33 (Siglec-3 (20/48 = 42%, CD52 (CAMPATH-1 (17/40 = 43%, IL-1RAP (13/29 = 45%, and/or CD135 (FLT3 (4/20 = 20%. CD25 (IL-2RA and CD26 (DPPIV were expressed on LSCs in Ph+ ALL exhibiting BCR/ABL1p210, whereas in Ph+ ALL with BCR/ABL1p190, LSCs variably expressed CD25 but did not express CD26. In Ph− ALL, CD34+/CD38− LSCs expressed IL-1RAP in 6/18 patients (33%, but did not express CD25 or CD26. Normal stem cells stained negative for CD25, CD26 and IL-1RAP, and expressed only low amounts of CD52. In xenotransplantation experiments, CD34+/CD38− and CD34+/CD38+ cells engrafted NSG mice after 12–20 weeks, and targeting with antibodies against CD33 and CD52 resulted in reduced engraftment. Together, LSCs in Ph+ and Ph− ALL display unique marker- and target expression profiles. In Ph+ ALL with BCR/ABL1p210, the LSC-phenotype closely resembles the marker-profile of CD34+/CD38− LSCs in chronic myeloid leukemia, confirming the close biologic relationship of these neoplasms. Targeting of LSCs with specific antibodies or related immunotherapies may facilitate LSC eradication in ALL.

  20. Metabolomic analysis of the selection response of Drosophila melanogaster to environmental stress: are there links to gene expression and phenotypic traits?

    Science.gov (United States)

    Malmendal, Anders; Sørensen, Jesper Givskov; Overgaard, Johannes; Holmstrup, Martin; Nielsen, Niels Chr.; Loeschcke, Volker

    2013-05-01

    We investigated the global metabolite response to artificial selection for tolerance to stressful conditions such as cold, heat, starvation, and desiccation, and for longevity in Drosophila melanogaster. Our findings were compared to data from other levels of biological organization, including gene expression, physiological traits, and organismal stress tolerance phenotype. Overall, we found that selection for environmental stress tolerance changes the metabolomic 1H NMR fingerprint largely in a similar manner independent of the trait selected for, indicating that experimental evolution led to a general stress selection response at the metabolomic level. Integrative analyses across data sets showed little similarity when general correlations between selection effects at the level of the metabolome and gene expression were compared. This is likely due to the fact that the changes caused by these selection regimes were rather mild and/or that the dominating determinants for gene expression and metabolite levels were different. However, expression of a number of genes was correlated with the metabolite data. Many of the identified genes were general stress response genes that are down-regulated in response to selection for some of the stresses in this study. Overall, the results illustrate that selection markedly alters the metabolite profile and that the coupling between different levels of biological organization indeed is present though not very strong for stress selection at this level. The results highlight the extreme complexity of environmental stress adaptation and the difficulty of extrapolating and interpreting responses across levels of biological organization.

  1. Inverse Relationship of the CMKLR1 Relative Expression and Chemerin Serum Levels in Obesity with Dysmetabolic Phenotype and Insulin Resistance

    Directory of Open Access Journals (Sweden)

    Fernanda-Isadora Corona-Meraz

    2016-01-01

    Full Text Available Background. In obesity there is a subclinical chronic low-grade inflammatory response where insulin resistance (IR may develop. Chemerin is secreted in white adipose tissue and promotes low-grade inflammatory process, where it expressed CMKLR1 receptor. The role of chemerin and CMKLR1 in inflammatory process secondary to obesity is not defined yet. Methods. Cross-sectional study with 134 individuals classified as with and without obesity by body mass index (BMI and IR. Body fat storage measurements and metabolic and inflammatory markers were measured by routine methods. Soluble chemerin and basal levels of insulin by ELISA and relative expression of CMKLR1 were evaluated with qPCR and 2-ΔΔCT method. Results. Differences (P<0.05 were observed between obesity and lean individuals in body fat storage measurements and metabolic-inflammatory markers. Both CMKLR1 expression and chemerin levels were increased in obesity without IR. Soluble chemerin levels correlate with adiposity and metabolic markers (r=8.8% to 38.5%, P<0.05. Conclusion. The increment of CMKLR1 expression was associated with insulin production. Increased serum levels of chemerin in obesity were observed, favoring a dysmetabolic response. The results observed in this study suggest that both chemerin and CMKLR1 have opposite expression in the context of low-grade inflammatory response manifested in the development of IR.

  2. RBiomirGS: an all-in-one miRNA gene set analysis solution featuring target mRNA mapping and expression profile integration

    Directory of Open Access Journals (Sweden)

    Jing Zhang

    2018-01-01

    Full Text Available Background With the continuous discovery of microRNA’s (miRNA association with a wide range of biological and cellular processes, expression profile-based functional characterization of such post-transcriptional regulation is crucial for revealing its significance behind particular phenotypes. Profound advancement in bioinformatics has been made to enable in depth investigation of miRNA’s role in regulating cellular and molecular events, resulting in a huge quantity of software packages covering different aspects of miRNA functional analysis. Therefore, an all-in-one software solution is in demand for a comprehensive yet highly efficient workflow. Here we present RBiomirGS, an R package for a miRNA gene set (GS analysis. Methods The package utilizes multiple databases for target mRNA mapping, estimates miRNA effect on the target mRNAs through miRNA expression profile and conducts a logistic regression-based GS enrichment. Additionally, human ortholog Entrez ID conversion functionality is included for target mRNAs. Results By incorporating all the core steps into one package, RBiomirGS eliminates the need for switching between different software packages. The modular structure of RBiomirGS enables various access points to the analysis, with which users can choose the most relevant functionalities for their workflow. Conclusions With RBiomirGS, users are able to assess the functional significance of the miRNA expression profile under the corresponding experimental condition by minimal input and intervention. Accordingly, RBiomirGS encompasses an all-in-one solution for miRNA GS analysis. RBiomirGS is available on GitHub (http://github.com/jzhangc/RBiomirGS. More information including instruction and examples can be found on website (http://kenstoreylab.com/?page_id=2865.

  3. FXIIIA and TGF-beta over-expression produces normal musculo-skeletal phenotype in TG2-/- mice.

    Science.gov (United States)

    Tarantino, U; Oliva, F; Taurisano, G; Orlandi, A; Pietroni, V; Candi, E; Melino, G; Maffulli, N

    2009-04-01

    Transglutaminase (TGs) enzymes and proteins crosslinking have for long time been implicated in the formation of hard tissue development, matrix maturation and mineralization. Among the TGs family members, in the context of connective tissue formation, TG2 and Factor XIII are expressed in cartilage by hypertrophic chondrocytes. Here, we analyse the morphological consequences of TG2 deficiency, during the development of skeletal elements. When TG2 is absent, there are not gross abnormalities in the development of the skeletal system, probably from compensatory mechanisms resulting in increased expression of FXIIIA and TGF-beta 1. In vivo other TGs may be involved in promoting chondrocytes and osteoblast differentiation and matrix mineralisation.

  4. miRNA-135b Contributes to Triple Negative Breast Cancer Molecular Heterogeneity: Different Expression Profile in Basal-like Versus non-Basal-like Phenotypes.

    Science.gov (United States)

    Uva, Paolo; Cossu-Rocca, Paolo; Loi, Federica; Pira, Giovanna; Murgia, Luciano; Orrù, Sandra; Floris, Matteo; Muroni, Maria Rosaria; Sanges, Francesca; Carru, Ciriaco; Angius, Andrea; De Miglio, Maria Rosaria

    2018-01-01

    The clinical and genetic heterogeneity of Triple Negative Breast Cancer (TNBC) and the lack of unambiguous molecular targets contribute to the inadequacy of current therapeutic options for these variants. MicroRNAs (miRNA) are a class of small highly conserved regulatory endogenous non-coding RNA, which can alter the expression of genes encoding proteins and may play a role in the dysregulation of cellular pathways. Our goal was to improve the knowledge of the molecular pathogenesis of TNBC subgroups analyzing the miRNA expression profile, and to identify new prognostic and predictive biomarkers. We conducted a human miRNome analysis by TaqMan Low Density Array comparing different TNBC subtypes, defined by immunohistochemical basal markers EGFR and CK5/6. RT-qPCR confirmed differential expression of microRNAs. To inspect the function of the selected targets we perform Gene Ontology and KEGG enrichment analysis. We identified a single miRNA signature given by miR-135b expression level, which was strictly related to TNBC with basal-like phenotype. miR-135b target analysis revealed a role in the TGF-beta, WNT and ERBB pathways. A significant positive correlation was identified between neoplastic proliferative index and miR-135b expression. These findings confirm the oncogenic roles of miR-135b in the pathogenesis of TNBC expressing basal markers. A potential negative prognostic role of miR-135b overexpression might be related to the positive correlation with high proliferative index. Our study implies potential clinical applications: miR-135b could be a potential therapeutic target in basal-like TNBCs.

  5. Stable expression and phenotypic impact of attacin E transgene in orchard grown apple trees over a 12 year period.

    Science.gov (United States)

    Borejsza-Wysocka, Ewa; Norelli, John L; Aldwinckle, Herb S; Malnoy, Mickael

    2010-06-03

    Transgenic trees currently are being produced by Agrobacterium-mediated transformation and biolistics. The future use of transformed trees on a commercial basis depends upon thorough evaluation of the potential environmental and public health risk of the modified plants, transgene stability over a prolonged period of time and the effect of the gene on tree and fruit characteristics. We studied the stability of expression and the effect on resistance to the fire blight disease of the lytic protein gene, attacin E, in the apple cultivar 'Galaxy' grown in the field for 12 years. Using Southern and western blot analysis, we compared transgene copy number and observed stability of expression of this gene in the leaves and fruit in several transformed lines during a 12 year period. No silenced transgenic plant was detected. Also the expression of this gene resulted in an increase in resistance to fire blight throughout 12 years of orchard trial and did not affect fruit shape, size, acidity, firmness, weight or sugar level, tree morphology, leaf shape or flower morphology or color compared to the control. Overall, these results suggest that transgene expression in perennial species, such as fruit trees, remains stable in time and space, over extended periods and in different organs. This report shows that it is possible to improve a desirable trait in apple, such as the resistance to a pathogen, through genetic engineering, without adverse alteration of fruit characteristics and tree shape.

  6. The dwarf phenotype in GH240B mice, haploinsufficient for the autism candidate gene Neurobeachin, is caused by ectopic expression of recombinant human growth hormone.

    Science.gov (United States)

    Nuytens, Kim; Tuand, Krizia; Fu, Quili; Stijnen, Pieter; Pruniau, Vincent; Meulemans, Sandra; Vankelecom, Hugo; Creemers, John W M

    2014-01-01

    Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea) have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH) genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/- mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/- mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH) signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/- mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.

  7. The dwarf phenotype in GH240B mice, haploinsufficient for the autism candidate gene Neurobeachin, is caused by ectopic expression of recombinant human growth hormone.

    Directory of Open Access Journals (Sweden)

    Kim Nuytens

    Full Text Available Two knockout mouse models for the autism candidate gene Neurobeachin (Nbea have been generated independently. Although both models have similar phenotypes, one striking difference is the dwarf phenotype observed in the heterozygous configuration of the GH240B model that is generated by the serendipitous insertion of a promoterless human growth hormone (hGH genomic fragment in the Nbea gene. In order to elucidate this discrepancy, the dwarfism present in this Nbea mouse model was investigated in detail. The growth deficiency in Nbea+/- mice coincided with an increased percentage of fat mass and a decrease in bone mineral density. Low but detectable levels of hGH were detected in the pituitary and hypothalamus of Nbea+/- mice but not in liver, hippocampus nor in serum. As a consequence, several members of the mouse growth hormone (mGH signaling cascade showed altered mRNA levels, including a reduction in growth hormone-releasing hormone mRNA in the hypothalamus. Moreover, somatotrope cells were less numerous in the pituitary of Nbea+/- mice and both contained and secreted significantly less mGH resulting in reduced levels of circulating insulin-like growth factor 1. These findings demonstrate that the random integration of the hGH transgene in this mouse model has not only inactivated Nbea but has also resulted in the tissue-specific expression of hGH causing a negative feedback loop, mGH hyposecretion and dwarfism.

  8. Cellular phenotype-dependent and -independent effects of vitamin C on the renewal and gene expression of mouse embryonic fibroblasts.

    Directory of Open Access Journals (Sweden)

    Shiu-Ming Kuo

    Full Text Available Vitamin C has been shown to delay the cellular senescence and was considered a candidate for chemoprevention and cancer therapy. To understand the reported contrasting roles of vitamin C: growth-promoting in the primary cells and growth-inhibiting in cancer cells, primary mouse embryonic fibroblasts (MEF and their isogenic spontaneously immortalized fibroblasts with unlimited cell division potential were used as the model pair. We used microarray gene expression profiling to show that the immortalized MEF possess human cancer gene expression fingerprints including a pattern of up-regulation of inflammatory response-related genes. Using the MEF model, we found that a physiological treatment level of vitamin C (10(-5 M, but not other unrelated antioxidants, enhanced cell growth. The growth-promoting effect was associated with a pattern of enhanced expression of cell cycle- and cell division-related genes in both primary and immortalized cells. In the immortalized MEF, physiological treatment levels of vitamin C also enhanced the expression of immortalization-associated genes including a down-regulation of genes in the extracellular matrix functional category. In contrast, confocal immunofluorescence imaging of the primary MEF suggested an increase in collagen IV protein upon vitamin C treatment. Similar to the cancer cells, the growth-inhibitory effect of the redox-active form of vitamin C was preferentially observed in immortalized MEF. All effects of vitamin C required its intracellular presence since the transporter-deficient SVCT2-/- MEF did not respond to vitamin C. SVCT2-/- MEF divided and became immortalized readily indicating little dependence on vitamin C for the cell division. Immortalized SVCT2-/- MEF required higher concentration of vitamin C for the growth inhibition compared to the immortalized wildtype MEF suggesting an intracellular vitamin C toxicity. The relevance of our observation in aging and human cancer prevention was

  9. Ontogenic development of kidney, thymus and spleen and phenotypic expression of CD3 and CD4 receptors on the lymphocytes of cobia (Rachycentroncanadum

    Directory of Open Access Journals (Sweden)

    MARTA C. KLOSTERHOFF

    2015-12-01

    Full Text Available ABSTRACT In the present study was evaluated the ontogenic of immunocompetent organs of cobia up to 53 days after hatching (dah through histology and immunohistochemistry techniques. The kidney was the first lymphohematopoietic organ to appear, at 1 dah, followed by the spleen at 5 dah and the thymus at 7 dah. The first CD3 receptors on the lymphocytes were observed in 27% of the thymic tissue at 7 dah and in 99% at 53 dah. The phenotypic expression of CD3 receptors was registered in 10% of the kidney at 8 dah and in 32% at 53 dah. CD4 receptors were observed in 5% and 63% of the thymic area at 7 and 53 dah, respectively. In the kidney, T4 lymphocytes were first observed at 13 dah in 9% of the organ and in 28% at 53 dah, defining the functional development of the specific system associated with immunological memory capacity.

  10. Ontogenic development of kidney, thymus and spleen and phenotypic expression of CD3 and CD4 receptors on the lymphocytes of cobia (Rachycentroncanadum).

    Science.gov (United States)

    Klosterhoff, Marta C; Pereira Júnior, Joaber; Rodrigues, Ricardo V; Gusmão, Emeline P; Sampaio, Luís A; Tesser, Marcelo B; Romano, Luis A

    2015-01-01

    In the present study was evaluated the ontogenic of immunocompetent organs of cobia up to 53 days after hatching (dah) through histology and immunohistochemistry techniques. The kidney was the first lymphohematopoietic organ to appear, at 1 dah, followed by the spleen at 5 dah and the thymus at 7 dah. The first CD3 receptors on the lymphocytes were observed in 27% of the thymic tissue at 7 dah and in 99% at 53 dah. The phenotypic expression of CD3 receptors was registered in 10% of the kidney at 8 dah and in 32% at 53 dah. CD4 receptors were observed in 5% and 63% of the thymic area at 7 and 53 dah, respectively. In the kidney, T4 lymphocytes were first observed at 13 dah in 9% of the organ and in 28% at 53 dah, defining the functional development of the specific system associated with immunological memory capacity.

  11. JC Virus T-Antigen in Colorectal Cancer Is Associated with p53 Expression and Chromosomal Instability, Independent of CpG Island Methylator Phenotype

    Directory of Open Access Journals (Sweden)

    Katsuhiko Nosho

    2009-01-01

    Full Text Available JC virus has a transforming gene encoding JC virus T-antigen (JCVT. JCVT may inactivate wild-type p53, cause chromosomal instability (CIN, and stabilize β-catenin. A link between JCVT and CpG island methylator phenotype (CIMP has been suggested. However, no large-scale study has examined the relations of JCVT with molecular alterations, clinical outcome, or prognosis in colon cancer. We detected JCVT expression (by immunohistochemistry in 271 (35% of 766 colorectal cancers. We quantified DNA methylation in eight CIMP-specific promoters (CACNA1G, CDKN2A, CRABP1, IGF2, MLH1, NEUROG1, RUNX3, and SOCS1 and eight other loci (CHFR, HIC1, IGFBP3, MGMT, MINT1, MINT31, p14, WRN by MethyLight. We examined loss of heterozygosity in 2p, 5q, 17q, and 18q. JCVT was significantly associated with p53 expression (P < .0001, p21 loss (P < .0001, CIN (≥2 chromosomal segments with LOH; P < .0001, nuclear β-catenin (P = .006, LINE-1 hypomethylation (P = .002, and inversely with CIMP-high (P = .0005 and microsatellite instability (MSI (P < .0001, but not with PIK3CA mutation. In multivariate logistic regression analysis, the associations of JCVT with p53 [adjusted odds ratio (OR, 8.45; P < .0001], CIN (adjusted OR, 2.53; P = .003, cyclin D1 (adjusted OR, 1.57; P = .02, LINE-1 hypomethylation (adjusted OR, 1.97 for a 30% decline as a unit; P = .03, BRAF mutation (adjusted OR, 2.20; P = .04, and family history of colorectal cancer (adjusted OR, 0.64; P = .04 remained statistically significant. However, JCVT was no longer significantly associated with CIMP, MSI, β-catenin, or cyclooxygenase-2 expression in multivariate analysis. JCVT was unrelated with patient survival. In conclusion, JCVT expression in colorectal cancer is independently associated with p53 expression and CIN, which may lead to uncontrolled cell proliferation.

  12. Microarray analysis of altered gene expression in murine fibroblasts transformed by nickel(II) to nickel(II)-resistant malignant phenotype

    International Nuclear Information System (INIS)

    Kowara, Renata; Karaczyn, Aldona; Cheng, Robert Y.S.; Salnikow, Konstantin; Kasprzak, Kazimierz S.

    2005-01-01

    B200 cells are Ni(II)-transformed mouse BALB/c-3T3 fibroblasts displaying a malignant phenotype and increased resistance to Ni(II) toxicity. In an attempt to find genes whose expression has been altered by the transformation, the Atlas Mouse Stress/Toxicology cDNA Expression Array (Clontech Laboratories, Inc., Palo Alto, CA) was used to analyze the levels of gene expression in both parental and Ni(II)-transformed cells. Comparison of the results revealed a significant up- or downregulation of the expression of 62 of the 588 genes present in the array (approximately 10.5%) in B200 cells. These genes were assigned to different functional groups, including transcription factors and oncogenes (9/14; fractions in parentheses denote the number of up-regulated versus the total number of genes assigned to this group), stress and DNA damage response genes (11/12), growth factors and hormone receptors (6/9), metabolism (7/7), cell adhesion (2/7), cell cycle (3/6), apoptosis (3/4), and cell proliferation (2/3). Among those genes, overexpression of beta-catenin and its downstream targets c-myc and cyclin D1, together with upregulated cyclin G, points at the malignant character of B200 cells. While the increased expression of glutathione (GSH) synthetase, glutathione-S-transferase A4 (GSTA4), and glutathione-S-transferase theta (GSTT), together with high level of several genes responding to oxidative stress, suggests the enforcement of antioxidant defenses in Ni-transformed cells

  13. A genome-wide map of aberrantly expressed chromosomal islands in colorectal cancer

    Directory of Open Access Journals (Sweden)

    Castanos-Velez Esmeralda

    2006-09-01

    Full Text Available Abstract Background Cancer development is accompanied by genetic phenomena like deletion and amplification of chromosome parts or alterations of chromatin structure. It is expected that these mechanisms have a strong effect on regional gene expression. Results We investigated genome-wide gene expression in colorectal carcinoma (CRC and normal epithelial tissues from 25 patients using oligonucleotide arrays. This allowed us to identify 81 distinct chromosomal islands with aberrant gene expression. Of these, 38 islands show a gain in expression and 43 a loss of expression. In total, 7.892 genes (25.3% of all human genes are located in aberrantly expressed islands. Many chromosomal regions that are linked to hereditary colorectal cancer show deregulated expression. Also, many known tumor genes localize to chromosomal islands of misregulated expression in CRC. Conclusion An extensive comparison with published CGH data suggests that chromosomal regions known for frequent deletions in colon cancer tend to show reduced expression. In contrast, regions that are often amplified in colorectal tumors exhibit heterogeneous expression patterns: even show a decrease of mRNA expression. Because for several islands of deregulated expression chromosomal aberrations have never been observed, we speculate that additional mechanisms (like abnormal states of regional chromatin also have a substantial impact on the formation of co-expression islands in colorectal carcinoma.

  14. Beyond Punnett squares: Student word association and explanations of phenotypic variation through an integrative quantitative genetics unit investigating anthocyanin inheritance and expression in Brassica rapa Fast plants.

    Science.gov (United States)

    Batzli, Janet M; Smith, Amber R; Williams, Paul H; McGee, Seth A; Dósa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory course focused on the inheritance and expression of a quantitative trait in varying environments. We utilized Brassica rapa Fast Plants as a model organism to study variation in the phenotype anthocyanin pigment intensity. As an initial curriculum assessment, we used free word association to examine students' cognitive structures before and after the unit and explanations in students' final research posters with particular focus on variation (Pv = Gv + Ev). Comparison of pre- and postunit word frequency revealed a shift in words and a pattern of co-occurring concepts indicative of change in cognitive structure, with particular focus on "variation" as a proposed threshold concept and primary goal for students' explanations. Given review of 53 posters, we found ∼50% of students capable of intermediate to high-level explanations combining both Gv and Ev influence on expression of anthocyanin intensity (Pv). While far from "plug and play," this conceptually rich, inquiry-based unit holds promise for effective integration of quantitative and Mendelian genetics. © 2014 J. M. Batzli et al. CBE—Life Sciences Education © 2014 The American Society for Cell Biology. This article is distributed by The American Society for Cell Biology under license from the author(s). It is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0).

  15. Association of murine lupus and thymic full-length endogenous retroviral expression maps to a bone marrow stem cell

    International Nuclear Information System (INIS)

    Krieg, A.M.; Gourley, M.F.; Steinberg, A.D.

    1991-01-01

    Recent studies of thymic gene expression in murine lupus have demonstrated 8.4-kb (full-length size) modified polytropic (Mpmv) endogenous retroviral RNA. In contrast, normal control mouse strains do not produce detectable amounts of such RNA in their thymuses. Prior studies have attributed a defect in experimental tolerance in murine lupus to a bone marrow stem cell rather than to the thymic epithelium; in contrast, infectious retroviral expression has been associated with the thymic epithelium, rather than with the bone marrow stem cell. The present study was designed to determine whether the abnormal Mpmv expression associated with murine lupus mapped to thymic epithelium or to a marrow precursor. Lethally irradiated control and lupus-prone mice were reconstituted with T cell depleted bone marrow; one month later their thymuses were studied for endogenous retroviral RNA and protein expression. Recipients of bone marrow from nonautoimmune donors expressed neither 8.4-kb Mpmv RNA nor surface MCF gp70 in their thymuses. In contrast, recipients of bone marrow from autoimmune NZB or BXSB donors expressed thymic 8.4-kb Mpmv RNA and mink cell focus-forming gp70. These studies demonstrate that lupus-associated 8.4-kb Mpmv endogenous retroviral expression is determined by bone marrow stem cells

  16. Attachment, invasion, chemotaxis, and proteinase expression of B16-BL6 melanoma cells exhibiting a low metastatic phenotype after exposure to dietary restriction of tyrosine and phenylalanine.

    Science.gov (United States)

    Uhlenkott, C E; Huijzer, J C; Cardeiro, D J; Elstad, C A; Meadows, G G

    1996-03-01

    We previously reported that low levels of tyrosine (Tyr) and phenylalanine (Phe) alter the metastatic phenotype of B16-BL6 (BL6) murine melanoma and select for tumor cell populations with decreased lung colonizing ability. To more specifically characterize the effects of Tyr and Phe restriction on the malignant phenotype of BL6, we investigated in vitro attachment, invasion, proteinase expression, and chemotaxis of high and low metastatic BL6 variants. High metastatic variant cells were isolated from subcutaneous tumors of mice fed a nutritionally complete diet (ND cells) and low metastatic variant cells were isolated from mice fed a diet restricted in Tyr and Phe (LTP cells). Results indicate that attachment to reconstituted basement membrane (Matrigel) was significantly reduced in LTP cells as compared to ND cells. Attachment to collagen IV, laminin, and fibronectin were similar between the two variants. Invasion through Matrigel and growth factor-reduced Matrigel were significantly decreased in LTP cells as compared to ND cells. Zymography revealed the presence of M(r) 92,000 and M(r) 72,000 progelatinases, tissue plasminogen activator, and urokinase plasminogen activator in the conditioned medium of both variants; however, there were no differences in activity of these secreted proteinases between the two variants. Growth of the variants on growth factor-reduced Matrigel similarly induced expression of the M(r) 92,000 progelatinase. The variants exhibited similar chemotactic responses toward laminin. However, the chemotactic response toward fibronectin by LTP cells was significantly increased. MFR5, a monoclonal antibody which selectively blocks function of the alpha 5 chain of the alpha 5 beta 1 integrin, VLA-5, decreased the chemotactic response toward fibronectin of ND cells by 37%; the chemotactic response by LTP cells was reduced by 49%. This effect was specific for fibronectin-mediated chemotaxis since the chemotaxis toward laminin and invasion through

  17. JARID1B Expression Plays a Critical Role in Chemoresistance and Stem Cell-Like Phenotype of Neuroblastoma Cells.

    Directory of Open Access Journals (Sweden)

    Yung-Ting Kuo

    Full Text Available Neuroblastoma (NB is a common neural crest-derived extracranial solid cancer in children. Among all childhood cancers, NB causes devastating loss of young lives as it accounts for 15% of childhood cancer mortality. Neuroblastoma, especially high-risk stage 4 NB with MYCN amplification has limited treatment options and associated with poor prognosis. This necessitates the need for novel effective therapeutic strategy. JARID1B, also known as KDM5B, is a histone lysine demethylase, identified as an oncogene in many cancer types. Clinical data obtained from freely-accessible databases show a negative correlation between JARID1B expression and survival rates. Here, we demonstrated for the first time the role of JARID1B in the enhancement of stem cell-like activities and drug resistance in NB cells. We showed that JARID1B may be overexpressed in either MYCN amplification (SK-N-BE(2 or MYCN-non-amplified (SK-N-SH and SK-N-FI cell lines. JARID1B expression was found enriched in tumor spheres of SK-N-BE(2 and SK-N-DZ. Moreover, SK-N-BE(2 spheroids were more resistant to chemotherapeutics as compared to parental cells. In addition, we demonstrated that JARID1B-silenced cells acquired a decreased propensity for tumor invasion and tumorsphere formation, but increased sensitivity to cisplatin treatment. Mechanistically, reduced JARID1B expression led to the downregulation of Notch/Jagged signaling. Collectively, we provided evidence that JARID1B via modulation of stemness-related signaling is a putative novel therapeutic target for treating malignant NB.

  18. Mapping in an apple (Malus x domestica) F1 segregating population based on physical clustering of differentially expressed genes.

    Science.gov (United States)

    Jensen, Philip J; Fazio, Gennaro; Altman, Naomi; Praul, Craig; McNellis, Timothy W

    2014-04-04

    Apple tree breeding is slow and difficult due to long generation times, self-incompatibility, and complex genetics. The identification of molecular markers linked to traits of interest is a way to expedite the breeding process. In the present study, we aimed to identify genes whose steady-state transcript abundance was associated with inheritance of specific traits segregating in an apple (Malus × domestica) rootstock F1 breeding population, including resistance to powdery mildew (Podosphaera leucotricha) disease and woolly apple aphid (Eriosoma lanigerum). Transcription profiling was performed for 48 individual F1 apple trees from a cross of two highly heterozygous parents, using RNA isolated from healthy, actively-growing shoot tips and a custom apple DNA oligonucleotide microarray representing 26,000 unique transcripts. Genome-wide expression profiles were not clear indicators of powdery mildew or woolly apple aphid resistance phenotype. However, standard differential gene expression analysis between phenotypic groups of trees revealed relatively small sets of genes with trait-associated expression levels. For example, thirty genes were identified that were differentially expressed between trees resistant and susceptible to powdery mildew. Interestingly, the genes encoding twenty-four of these transcripts were physically clustered on chromosome 12. Similarly, seven genes were identified that were differentially expressed between trees resistant and susceptible to woolly apple aphid, and the genes encoding five of these transcripts were also clustered, this time on chromosome 17. In each case, the gene clusters were in the vicinity of previously identified major quantitative trait loci for the corresponding trait. Similar results were obtained for a series of molecular traits. Several of the differentially expressed genes were used to develop DNA polymorphism markers linked to powdery mildew disease and woolly apple aphid resistance. Gene expression profiling

  19. Fluoxetine induces lean phenotype in rat by increasing the brown/white adipose tissue ratio and UCP1 expression.

    Science.gov (United States)

    da Silva, A I; Braz, G R F; Pedroza, A A; Nascimento, L; Freitas, C M; Ferreira, D J S; Manhães de Castro, R; Lagranha, C J

    2015-08-01

    The serotonergic system plays a crucial role in the energy balance regulation. Energy balance is mediated by food intake and caloric expenditure. Thus, the present study investigated the mechanisms that might be associated with fluoxetine treatment-induced weight reduction. Wistar male rat pups received daily injections with subcutaneous fluoxetine (Fx-group) or vehicle solution (Ct-group) from day 1 until 21 days of age. Several analyses were conducted to verify the involvement of mitochondria in weight reduction. We found that body weight in the Fx-group was lower compared to control. In association to lower fat mass in the Fx-group (25%). Neither neonatal caloric intake nor food intake reveals significant differences. Evaluating caloric expenditure (locomotor activity and temperature after stimulus), we did not observe differences in locomotor activity. However, we observed that the Fx group had a higher capacity to maintain body temperature in a cold environment compared with the Ct-group. Since brown adipose tissue-(BAT) is specialized for heat production and the rate of heat production is related to mitochondrial function, we found that Fx-treatment increases respiration by 36%, although after addition of GDP respiration returned to Ct-levels. Examining ROS production we observe that Fx-group produced less ROS than control group. Evaluating uncoupling protein (UCP) expression we found that Fx-treatment increases the expression by 23%. Taken together, our results suggest that modulation of serotonin system results in positive modulation of UCP and mitochondrial bioenergetics in brown fat tissue.

  20. Genetic variation of temperature-regulated curd induction in cauliflower: elucidation of floral transition by genome-wide association mapping and gene expression analysis

    Science.gov (United States)

    Matschegewski, Claudia; Zetzsche, Holger; Hasan, Yaser; Leibeguth, Lena; Briggs, William; Ordon, Frank; Uptmoor, Ralf

    2015-01-01

    Cauliflower (Brassica oleracea var. botrytis) is a vernalization-responsive crop. High ambient temperatures delay harvest time. The elucidation of the genetic regulation of floral transition is highly interesting for a precise harvest scheduling and to ensure stable market supply. This study aims at genetic dissection of temperature-dependent curd induction in cauliflower by genome-wide association studies and gene expression analysis. To assess temperature-dependent curd induction, two greenhouse trials under distinct temperature regimes were conducted on a diversity panel consisting of 111 cauliflower commercial parent lines, genotyped with 14,385 SNPs. Broad phenotypic variation and high heritability (0.93) were observed for temperature-related curd induction within the cauliflower population. GWA mapping identified a total of 18 QTL localized on chromosomes O1, O2, O3, O4, O6, O8, and O9 for curding time under two distinct temperature regimes. Among those, several QTL are localized within regions of promising candidate flowering genes. Inferring population structure and genetic relatedness among the diversity set assigned three main genetic clusters. Linkage disequilibrium (LD) patterns estimated global LD extent of r2 = 0.06 and a maximum physical distance of 400 kb for genetic linkage. Transcriptional profiling of flowering genes FLOWERING LOCUS C (BoFLC) and VERNALIZATION 2 (BoVRN2) was performed, showing increased expression levels of BoVRN2 in genotypes with faster curding. However, functional relevance of BoVRN2 and BoFLC2 could not consistently be supported, which probably suggests to act facultative and/or might evidence for BoVRN2/BoFLC-independent mechanisms in temperature-regulated floral transition in cauliflower. Genetic insights in temperature-regulated curd induction can underpin genetically informed phenology models and benefit molecular breeding strategies toward the development of thermo-tolerant cultivars. PMID:26442034

  1. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    International Nuclear Information System (INIS)

    Talhouk, Rabih S.; Fares, Mohamed-Bilal; Rahme, Gilbert J.; Hariri, Hanaa H.; Rayess, Tina; Dbouk, Hashem A.; Bazzoun, Dana; Al-Labban, Dania; El-Sabban, Marwan E.

    2013-01-01

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF

  2. Context dependent reversion of tumor phenotype by connexin-43 expression in MDA-MB231 cells and MCF-7 cells: Role of β-catenin/connexin43 association

    Energy Technology Data Exchange (ETDEWEB)

    Talhouk, Rabih S., E-mail: rtalhouk@aub.edu.lb [Department of Biology, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon); Fares, Mohamed-Bilal; Rahme, Gilbert J.; Hariri, Hanaa H.; Rayess, Tina; Dbouk, Hashem A.; Bazzoun, Dana; Al-Labban, Dania [Department of Biology, Faculty of Arts and Sciences, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon); El-Sabban, Marwan E., E-mail: me00@aub.edu.lb [Department of Anatomy, Cell Biology and Physiology, Faculty of Medicine, American University of Beirut, P.O. Box 11-0236, Beirut (Lebanon)

    2013-12-10

    Connexins (Cx), gap junction (GJ) proteins, are regarded as tumor suppressors, and Cx43 expression is often down regulated in breast tumors. We assessed the effect of Cx43 over-expression in 2D and 3D cultures of two breast adenocarcinoma cell lines: MCF-7 and MDA-MB-231. While Cx43 over-expression decreased proliferation of 2D and 3D cultures of MCF-7 by 56% and 80% respectively, MDA-MB-231 growth was not altered in 2D cultures, but exhibited 35% reduction in 3D cultures. C-terminus truncated Cx43 did not alter proliferation. Untransfected MCF-7 cells formed spherical aggregates in 3D cultures, and MDA-MB-231 cells formed stellar aggregates. However, MCF-7 cells over-expressing Cx43 formed smaller sized clusters and Cx43 expressing MDA-MB-231 cells lost their stellar morphology. Extravasation ability of both MCF-7 and MDA-MB-231 cells was reduced by 60% and 30% respectively. On the other hand, silencing Cx43 in MCF10A cells, nonneoplastic human mammary cell line, increased proliferation in both 2D and 3D cultures, and disrupted acinar morphology. Although Cx43 over-expression did not affect total levels of β-catenin, α-catenin and ZO-2, it decreased nuclear levels of β-catenin in 2D and 3D cultures of MCF-7 cells, and in 3D cultures of MDA-MB-231 cells. Cx43 associated at the membrane with α-catenin, β-catenin and ZO-2 in 2D and 3D cultures of MCF-7 cells, and only in 3D conditions in MDA-MB-231 cells. This study suggests that Cx43 exerts tumor suppressive effects in a context-dependent manner where GJ assembly with α-catenin, β-catenin and ZO-2 may be implicated in reducing growth rate, invasiveness, and, malignant phenotype of 2D and 3D cultures of MCF-7 cells, and 3D cultures of MDA-MB-231 cells, by sequestering β-catenin away from nucleus. - Highlights: • Cx43 over-expressing MCF-7 and MDA-MB-231 were grown in 2D and 3D cultures. • Proliferation and growth morphology were affected in a context dependent manner. • Extravasation ability of both MCF

  3. Differential modulation of growth and phenotypic expression of chondrocytes in sparse and confluent cultures by growth factors in cartilage

    International Nuclear Information System (INIS)

    Hiraki, Y.; Inoue, H.; Asada, A.; Suzuki, F.

    1990-01-01

    The growth-promoting actions of cartilage extracts (CE) on rabbit cultured chondrocytes were studied to assess the role of local acting growth factors in the generation and expansion of highly differentiated cells. In the present study, DNA synthesis and proteoglycan synthesis in the cultured chondrocytes were monitored by flow cytofluorometry and double-isotope autoradiography by using ( 3 H)thymidine and ( 35 S)sulfate. We report here that actions of the same set of growth factors extracted from cartilage evokes differential cellular responses depending upon cell density. Growth factors in the optimal dose of CE (2 micrograms/ml) or epidermal growth factor (EGF, 40 ng/ml) did not reveal such a cell density-dependent effect on cellular proliferation. However, growth factors in CE induced proteoglycan synthesis selectively in nonproliferating and expressing cells in confluent culture

  4. Haplotyping, linkage mapping and expression analysis of barley genes regulated by terminal drought stress influencing seed quality

    Directory of Open Access Journals (Sweden)

    Wobus Ulrich

    2011-01-01

    Full Text Available Abstract Background The increasingly narrow genetic background characteristic of modern crop germplasm presents a challenge for the breeding of cultivars that require adaptation to the anticipated change in climate. Thus, high priority research aims at the identification of relevant allelic variation present both in the crop itself as well as in its progenitors. This study is based on the characterization of genetic variation in barley, with a view to enhancing its response to terminal drought stress. Results The expression patterns of drought regulated genes were monitored during plant ontogeny, mapped and the location of these genes was incorporated into a comprehensive barley SNP linkage map. Haplotypes within a set of 17 starch biosynthesis/degradation genes were defined, and a particularly high level of haplotype variation was uncovered in the genes encoding sucrose synthase (types I and II and starch synthase. The ability of a panel of 50 barley accessions to maintain grain starch content under terminal drought conditions was explored. Conclusion The linkage/expression map is an informative resource in the context of characterizing the response of barley to drought stress. The high level of haplotype variation among starch biosynthesis/degradation genes in the progenitors of cultivated barley shows that domestication and breeding have greatly eroded their allelic diversity in current elite cultivars. Prospective association analysis based on core drought-regulated genes may simplify the process of identifying favourable alleles, and help to understand the genetic basis of the response to terminal drought.

  5. Outcomes in Young Women With Breast Cancer of Triple-Negative Phenotype: The Prognostic Significance of CK19 Expression

    International Nuclear Information System (INIS)

    Parikh, Rahul R.; Yang Qifeng; Higgins, Susan A.; Haffty, Bruce G.

    2008-01-01

    Purpose: Basal-like carcinoma of the breast is associated with genetic instability and aggressive behavior. In this study, we evaluated the luminal cytokeratin marker CK-19 in young women with breast cancer treated with conservative surgery and radiation therapy (CS+RT). Methods: Primary tumor specimens from a cohort of 158 young premenopausal women (range, 25-49 years) treated with CS+RT with a median follow-up of 6.25 years were constructed into a tissue microarray. The array was stained for ER, PR, HER2, CK19, and p53. The molecular profiles were correlated with clinical-pathologic factors, overall, local, and distant relapse-free survival. The association between CK19, other co-variables, and outcome was assessed in a multivariate model. Results: Positive expression of ER, PR, HER-2/neu, CK19, and p53 were 33.1%, 34.5%, 10.0%, 79.5%, and 20.9%, respectively. With 20 local relapses and 38 distant metastases, the 10-year overall, breast relapse-free, and distant relapse-free survival were 79.65%, 87.29%, and 67.35%, respectively. Tumor stage and nodal status were associated with distant relapse-free and overall survival. In multivariate analysis, CK19 negativity was a predictor poor local (RR, 3.54; 95% CI, 1.87-7.65; p < 0.01) distant (RR, 1.44; 95% CI, 0.86-2.70; p = 0.17), and overall survival (RR, 1.89; 95% CI, 1.04-3.55; p = 0.03). Conclusions: Lack of CK19 expression identifies a subset of patients with a significantly higher risk of local relapse. Distant relapse and overall survival rates also correlated with CK19 negativity. Further evaluation of the prognostic significance of basal and luminal cytokeratins in young women with breast cancer is warranted

  6. Changes in Tonsil B Cell Phenotypes and EBV Receptor Expression in Children Under 5-Years-Old.

    Science.gov (United States)

    Wohlford, Eric M; Baresel, Paul C; Wilmore, Joel R; Mortelliti, Anthony J; Coleman, Carrie B; Rochford, Rosemary

    2018-03-01

    Palatine tonsils are principally B cell organs that are the initial line of defense against many oral pathogens, as well as the site of infection for others. While the size of palatine tonsils changes greatly in the first five years of life, the cellular changes during this period are not well studied. Epstein Barr virus (EBV) is a common orally transmitted virus that infects tonsillar B cells. Naïve B cells are thought to be the target of primary infection with EBV in vivo, suggesting that they are targeted by the virus. EBV enters B cells through CD21, but studies of older children and adults have not shown differences in surface CD21 between naïve B cells and other tonsil B cell populations. In this study, we used an 11-color flow cytometry panel to detail the changes in B cell subpopulations in human tonsils over the first five years of life from 33 healthy US children. We provide reference ranges for tonsil B cell subpopulations over this age range. We show that the frequency of naïve tonsil B cells decreases over the early years of life, and that naïve B cells expressed higher surface levels of CD21 relative to other tonsil B cell populations. We show that young children have a higher frequency of naïve tonsil B cells, and importantly that these cells express increased surface EBV receptor, suggesting that young children have a larger pool of cells that can be infected by the virus. © 2017 International Clinical Cytometry Society. © 2017 International Clinical Cytometry Society.

  7. Actin Nemaline Myopathy Mouse Reproduces Disease, Suggests Other Actin Disease Phenotypes and Provides Cautionary Note on Muscle Transgene Expression

    Science.gov (United States)

    Ravenscroft, Gianina; Jackaman, Connie; Sewry, Caroline A.; McNamara, Elyshia; Squire, Sarah E.; Potter, Allyson C.; Papadimitriou, John; Griffiths, Lisa M.; Bakker, Anthony J.; Davies, Kay E.; Laing, Nigel G.; Nowak, Kristen J.

    2011-01-01

    Mutations in the skeletal muscle α-actin gene (ACTA1) cause congenital myopathies including nemaline myopathy, actin aggregate myopathy and rod-core disease. The majority of patients with ACTA1 mutations have severe hypotonia and do not survive beyond the age of one. A transgenic mouse model was generated expressing an autosomal dominant mutant (D286G) of ACTA1 (identified in a severe nemaline myopathy patient) fused with EGFP. Nemaline bodies were observed in multiple skeletal muscles, with serial sections showing these correlated to aggregates of the mutant skeletal muscle α-actin-EGFP. Isolated extensor digitorum longus and soleus muscles were significantly weaker than wild-type (WT) muscle at 4 weeks of age, coinciding with the peak in structural lesions. These 4 week-old mice were ∼30% less active on voluntary running wheels than WT mice. The α-actin-EGFP protein clearly demonstrated that the transgene was expressed equally in all myosin heavy chain (MHC) fibre types during the early postnatal period, but subsequently became largely confined to MHCIIB fibres. Ringbinden fibres, internal nuclei and myofibrillar myopathy pathologies, not typical features in nemaline myopathy or patients with ACTA1 mutations, were frequently observed. Ringbinden were found in fast fibre predominant muscles of adult mice and were exclusively MHCIIB-positive fibres. Thus, this mouse model presents a reliable model for the investigation of the pathobiology of nemaline body formation and muscle weakness and for evaluation of potential therapeutic interventions. The occurrence of core-like regions, internal nuclei and ringbinden will allow analysis of the mechanisms underlying these lesions. The occurrence of ringbinden and features of myofibrillar myopathy in this mouse model of ACTA1 disease suggests that patients with these pathologies and no genetic explanation should be screened for ACTA1 mutations. PMID:22174871

  8. Molecular cloning and expression analyses of porcine MAP1LC3A in the granulosa cells of normal and miniature pig

    Directory of Open Access Journals (Sweden)

    Kim Sang H

    2013-02-01

    Full Text Available Abstract Background The members of the microtubule-associated protein 1 light chain (MAP1LC family, especially those of the LC3 family (MAP1LC3A, B, C, are known to induce autophagy upon localization onto the autophagosomal membrane. In this regard, LC3 can be utilized as a marker for the formation of autophagosomes during the process of autophagy. The aims of this study are to clone porcine MAP1LC3A, and analyze the pattern of its expression in the ovarian tissues of normal and miniature pig ovary in an attempt to understand the distinct mode of apoptosis between two strains. Methods Rapid amplification of cDNA ends (RACE were used to obtain the 5′ and 3′ ends of the porcine MAP1LC3A full length cDNA. Reverse-transcriptase-PCR (RT-PCR, real-time PCR, and western blot analysis were performed to examine the expression of porcine MAP1LC3A. The localization of MAP1LC3A in the ovary was determined by In situ Hybridization and Immunohistochemical staining. Results We cloned the full-length cDNA of porcine MAP1LC3A and identified an open reading frame of 980 bp encoding 121 amino acids. Based on its homology to known mammalian proteins (98% this novel cDNA was designated as porcine MAP1LC3A and registered to the GenBank (Accession No. GU272221. We compared the expression of MAP1LC3A in the Graafian follicles of normal and miniature pigs by in situ hybridization at day 15 of the estrus cycle. While normal pigs showed a stronger expression of MAP1LC3A mRNA than miniature pigs in the theca cell area, the expression was lower in the granulosa cells. Immunofluorescence analysis of the MAP1LC3A fusion reporter protein showed the subcellular localization of porcine MAP1LC3A and ATG5 as a punctate pattern in the cytoplasm of porcine granulosa cells under stress conditions. In addition, the expressions of MAP1LC3A and ATG5 were higher in normal pigs than in miniature pigs both in the presence and absence of rapamycin. Conclusions The newly cloned porcine

  9. Increased PTP1B expression and phosphatase activity in colorectal cancer results in a more invasive phenotype and worse patient outcome.

    Science.gov (United States)

    Hoekstra, Elmer; Das, Asha M; Swets, Marloes; Cao, Wanlu; van der Woude, C Janneke; Bruno, Marco J; Peppelenbosch, Maikel P; Kuppen, Peter J K; Ten Hagen, Timo L M; Fuhler, Gwenny M

    2016-04-19

    Cell signaling is dependent on the balance between phosphorylation of proteins by kinases and dephosphorylation by phosphatases. This balance if often disrupted in colorectal cancer (CRC), leading to increased cell proliferation and invasion. For many years research has focused on the role of kinases as potential oncogenes in cancer, while phosphatases were commonly assumed to be tumor suppressive. However, this dogma is currently changing as phosphatases have also been shown to induce cancer growth. One of these phosphatases is protein tyrosine phosphatase 1B (PTP1B). Here we report that the expression of PTP1B is increased in colorectal cancer as compared to normal tissue, and that the intrinsic enzymatic activity of the protein is also enhanced. This suggests a role for PTP1B phosphatase activity in CRC formation and progression. Furthermore, we found that increased PTP1B expression is correlated to a worse patient survival and is an independent prognostic marker for overall survival and disease free survival. Knocking down PTP1B in CRC cell lines results in a less invasive phenotype with lower adhesion, migration and proliferation capabilities. Together, these results suggest that inhibition of PTP1B activity is a promising new target in the treatment of colorectal cancer and the prevention of metastasis.

  10. Phenotypic Plasticity of HSP70s Gene Expression during Diapause: Signs of Evolutionary Responses to Cold Stress among Soybean Pod Borer Populations (Leguminivora glycinivorella) in Northeast of China

    Science.gov (United States)

    Han, Lanlan; Fan, Dong; Zhao, Kuijun

    2014-01-01

    The soybean pod borer (Leguminivora glycinivorella Matsumura) successfully survives the winter because of its high expression of 70-kDa heat shock proteins (HSP70s) during its overwintering diapause. The amount of HSP70s is different under different environmental stresses. In this study, inducible heat shock protein 70 and its constitutive heat shock cognate 70 were cloned by RT-PCR and RACE. These genes were named Lg-hsp70 and Lg-hsc70, respectively. Gene transcription and protein expression after cold stress treatment (5°C to −5°C) were analyzed by western blotting and by qRT-PCR for four populations that were sampled in the northeast region of China, including Shenyang, Gongzhuling, Harbin and Heihe, when the soybean pod borer was in diapause. As the cold shock temperature decreased, the levels of Lg-HSP70s were significantly up-regulated. The amount of cold-induced Lg-HSP70s was highest in the southernmost population (Shenyang, 41°50′N) and lowest in the northernmost population (Heihe, 50°22′N). These results support the hypothesis that the soybean pod borer in the northeast region of China displays phenotypic plasticity, and the accumulation of Lg-HSP70s is a strategy for overcoming environmental stress. These results also suggest that the induction of HSP70 synthesis, which is a complex physiological adaptation, can evolve quickly and inherit stability. PMID:25330365

  11. Significant expressivity of Wolfram syndrome: phenotypic assessment of two known and one novel mutation in the WFS1 gene in three Iranian families.

    Science.gov (United States)

    Sobhani, Maryam; Tabatabaiefar, Mohammad Amin; Rajab, Asadollah; Kajbafzadeh, Abdol-Mohammad; Noori-Daloii, Mohammad Reza

    2014-11-01

    Wolfram syndrome also known as DIDMOAD (Diabetes Insipidus, Diabetes Mellitus, Optic Atrophy, and Deafness) is a rare neurodegenerative autosomal recessive disorder. There is evidence of variable expressivity both in patients and heterozygous carriers. In this study, we describe three Persian Wolfram syndrome families with differences in the age of onset, signs and symptoms of the disease. We clinically evaluated affected families for verifying WS clinical diagnosis. After linkage analysis via 5 STR markers, molecular analysis for WFS1 was performed by direct sequencing for patients and available family members. Three homozygous mutations were identified including c.1885 C>T, c.2205C>A both in exon 8 and c.460+1G>A in intron 4. The mutation c.2205C>A was found to be novel. We report interesting phenotype-genotype correlations: homozygous c.1885C>T and c.2205C>A variants were correlated with quite different disease severity and onset in the siblings. We report a rare case of WS with homozygous c.1885C>T who is married and has a healthy child. c.460+1G>A showed a possible partial dominant inheritance put forth by a heterozygous parent showing partial WS symptoms while her daughter displayed typical WS symptoms. Due to variable expressivity, detailed clinical examination and molecular diagnostics should be used to confirm WS and a more exact recurrence risk data.

  12. Domestication-driven Gossypium profilin 1 (GhPRF1) gene transduces early flowering phenotype in tobacco by spatial alteration of apical/floral-meristem related gene expression.

    Science.gov (United States)

    Pandey, Dhananjay K; Chaudhary, Bhupendra

    2016-05-13

    Plant profilin genes encode core cell-wall structural proteins and are evidenced for their up-regulation under cotton domestication. Notwithstanding striking discoveries in the genetics of cell-wall organization in plants, little is explicit about the manner in which profilin-mediated molecular interplay and corresponding networks are altered, especially during cellular signalling of apical meristem determinacy and flower development. Here we show that the ectopic expression of GhPRF1 gene in tobacco resulted in the hyperactivation of apical meristem and early flowering phenotype with increased flower number in comparison to the control plants. Spatial expression alteration in CLV1, a key meristem-determinacy gene, is induced by the GhPRF1 overexpression in a WUS-dependent manner and mediates cell signalling to promote flowering. But no such expression alterations are recorded in the GhPRF1-RNAi lines. The GhPRF1 transduces key positive flowering regulator AP1 gene via coordinated expression of FT4, SOC1, FLC1 and FT1 genes involved in the apical-to-floral meristem signalling cascade which is consistent with our in silico profilin interaction data. Remarkably, these positive and negative flowering regulators are spatially controlled by the Actin-Related Protein (ARP) genes, specifically ARP4 and ARP6 in proximate association with profilins. This study provides a novel and systematic link between GhPRF1 gene expression and the flower primordium initiation via up-regulation of the ARP genes, and an insight into the functional characterization of GhPRF1 gene acting upstream to the flowering mechanism. Also, the transgenic plants expressing GhPRF1 gene show an increase in the plant height, internode length, leaf size and plant vigor. Overexpression of GhPRF1 gene induced early and increased flowering in tobacco with enhanced plant vigor. During apical meristem determinacy and flower development, the GhPRF1 gene directly influences key flowering regulators through ARP

  13. Co-expression of GAD67 and choline acetyltransferase reveals a novel neuronal phenotype in the mouse medulla oblongata.

    Science.gov (United States)

    Gotts, Jittima; Atkinson, Lucy; Edwards, Ian J; Yanagawa, Yuchio; Deuchars, Susan A; Deuchars, Jim

    2015-12-01

    GABAergic and cholinergic systems play an important part in autonomic pathways. To determine the distribution of the enzymes responsible for the production of GABA and acetylcholine in areas involved in autonomic control in the mouse brainstem, we used a transgenic mouse expressing green fluorescent protein (GFP) in glutamate decarboxylase 67 (GAD67) neurones, combined with choline acetyl transferase (ChAT) immunohistochemistry. ChAT-immunoreactive (IR) and GAD67-GFP containing neurones were observed throughout the brainstem. A small number of cells contained both ChAT-IR and GAD67-GFP. Such double labelled cells were observed in the NTS (predominantly in the intermediate and central subnuclei), the area postrema, reticular formation and lateral paragigantocellular nucleus. All ChAT-IR neurones in the area postrema contained GAD67-GFP. Double labelled neurones were not observed in the dorsal vagal motor nucleus, nucleus ambiguus or hypoglossal nucleus. Double labelled ChAT-IR/GAD67-GFP cells in the NTS did not contain neuronal nitric oxide synthase (nNOS) immunoreactivity, whereas those in the reticular formation and lateral paragigantocellular nucleus did. The function of these small populations of double labelled cells is currently unknown, however their location suggests a potential role in integrating signals involved in oromotor behaviours. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  14. Human alveolar bone cell proliferation, expression of osteoblastic phenotype, and matrix mineralization on porous titanium produced by powder metallurgy.

    Science.gov (United States)

    Rosa, Adalberto Luiz; Crippa, Grasiele Edilaine; de Oliveira, Paulo Tambasco; Taba, Mario; Lefebvre, Louis-Philippe; Beloti, Marcio Mateus

    2009-05-01

    This study aimed at investigating the influence of the porous titanium (Ti) structure on the osteogenic cell behaviour. Porous Ti discs were fabricated by the powder metallurgy process with the pore size typically between 50 and 400 microm and a porosity of 60%. Osteogenic cells obtained from human alveolar bone were cultured until subconfluence and subcultured on dense Ti (control) and porous Ti for periods of up to 17 days. Cultures grown on porous Ti exhibited increased cell proliferation and total protein content, and lower levels of alkaline phosphatase (ALP) activity than on dense Ti. In general, gene expression of osteoblastic markers-runt-related transcription factor 2, collagen type I, alkaline phosphatase, bone morphogenetic protein-7, and osteocalcin was lower at day 7 and higher at day 17 in cultures grown on porous Ti compared with dense Ti, a finding consistent with the enhanced growth rate for such cultures. The amount of mineralized matrix was greater on porous Ti compared with the dense one. These results indicate that the porous Ti is an appropriate substrate for osteogenic cell adhesion, proliferation, and production of a mineralized matrix. Because of the three-dimensional environment it provides, porous Ti should be considered an advantageous substrate for promoting desirable implant surface-bone interactions.

  15. Absence of Wdr13 Gene Predisposes Mice to Mild Social Isolation – Chronic Stress, Leading to Depression-Like Phenotype Associated With Differential Expression of Synaptic Proteins

    Science.gov (United States)

    Mitra, Shiladitya; Sameer Kumar, Ghantasala S.; Jyothi Lakshmi, B.; Thakur, Suman; Kumar, Satish

    2018-01-01

    We earlier reported that the male mice lacking the Wdr13 gene (Wdr13-/0) showed mild anxiety, better memory retention, and up-regulation of synaptic proteins in the hippocampus. With increasing evidences from parallel studies in our laboratory about the possible role of Wdr13 in stress response, we investigated its role in brain. We observed that Wdr13 transcript gets up-regulated in the hippocampus of the wild-type mice exposed to stress. To further dissect its function, we analyzed the behavioral and molecular phenotypes of Wdr13-/0 mice when subjected to mild chronic psychological stress, namely; mild (attenuated) social isolation. We employed iTRAQ based quantitative proteomics, real time PCR and western blotting to investigate molecular changes. Three weeks of social isolation predisposed Wdr13-/0 mice to anhedonia, heightened anxiety-measured by Open field test (OFT), increased behavior despair- measured by Forced swim test (FST) and reduced dendritic branching along with decreased spine density of hippocampal CA1 neurons as compared to wild-type counterparts. This depression-like-phenotype was however ameliorated when treated with anti-depressant imipramine. Molecular analysis revealed that out of 1002 quantified proteins [1% False discovery rate (FDR), at-least two unique peptides], strikingly, a significant proportion of synaptic proteins including, SYN1, CAMK2A, and RAB3A were down-regulated in the socially isolated Wdr13-/0 mice as compared to its wild-type counterparts. This was in contrast to the elevated levels of these proteins in non-stressed mutants as compared to the controls. We hypothesized that a de-regulated transcription factor upstream of the synaptic genes might be responsible for the observed phenotype. Indeed, in the socially isolated Wdr13-/0 mice, there was an up-regulation of GATA1 – a transcription factor that negatively regulates synaptic genes and has been associated with Major Depression (MD) in humans. The present study

  16. Development of a new comprehensive and reliable endometrial receptivity map (ER Map/ER Grade) based on RT-qPCR gene expression analysis.

    Science.gov (United States)

    Enciso, M; Carrascosa, J P; Sarasa, J; Martínez-Ortiz, P A; Munné, S; Horcajadas, J A; Aizpurua, J

    2018-02-01

    Is it possible to determine the receptivity status of an endometrium by combined quantitative reverse transcription PCR (RT-qPCR) expression analysis of genes involved in endometrial proliferation and immunity? The new ER Map®/ER Grade® test can predict endometrial receptivity status by RT-qPCR using a new panel of genes involved in endometrial proliferation and the maternal immune response associated to embryonic implantation. The human endometrium reaches a receptive status adequate for embryonic implantation around Days 19-21 of the menstrual cycle. During this period, known as the window of implantation (WOI), the endometrium shows a specific gene expression profile suitable for endometrial function evaluation. The number of molecular diagnostic tools currently available to characterize this process is very limited. In this study, a new system for human endometrial receptivity evaluation was optimized and presented for the first time. ER Map®/ER Grade® validation was achieved on 312 endometrial samples including fertile women and patients undergoing fertility treatment between July 2014 and March 2016. Expression analyses of 184 genes involved in endometrial receptivity and immune response were performed. Samples were additionally tested with an independent endometrial receptivity test. A total of 96 fertile women and 120 assisted reproduction treatment (ART) patients participated in the study. Endometrial biopsy samples were obtained at LH + 2 and LH + 7 days in fertile subjects in a natural cycle and at the window of implantation (WOI) in patients in a hormone-replacement therapy (HRT) cycle. Total RNA was purified, quality-checked and reverse-transcribed. Gene expression was quantified by high-throughput RT-qPCR and statistically analyzed. Informative genes were selected and used to classify samples into four different groups of endometrial receptivity status. Significantly different gene expression levels were found in 85 out of 184 selected genes when

  17. Extraction, Mapping, and Evaluation of Expressive Acoustic Features for Adaptive Digital Audio Effects

    DEFF Research Database (Denmark)

    Holfelt, Jonas; Csapo, Gergely; Andersson, Nikolaj Schwab

    2017-01-01

    This paper describes the design and implementation of a real-time adaptive digital audio effect with an emphasis on using expressive audio features that control effect param- eters. Research in adaptive digital audio effects is cov- ered along with studies about expressivity and important...

  18. Anatomical specificity of vascular endothelial growth factor expression in glioblastomas: a voxel-based mapping analysis

    Energy Technology Data Exchange (ETDEWEB)

    Fan, Xing [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); Wang, Yinyan [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); Capital Medical University, Department of Neuropathology, Beijing Neurosurgical Institute, Beijing (China); Wang, Kai; Ma, Jun; Li, Shaowu [Capital Medical University, Department of Neuroradiology, Beijing Tiantan Hospital, Beijing (China); Liu, Shuai [Chinese Academy of Medical Sciences and Peking Union Medical College, Departments of Neurosurgery, Peking Union Medical College Hospital, Beijing (China); Liu, Yong [Chinese Academy of Sciences, Brainnetome Center, Institute of Automation, Beijing (China); Jiang, Tao [Capital Medical University, Department of Neurosurgery, Beijing Tiantan Hospital, Beijing (China); Beijing Academy of Critical Illness in Brain, Department of Clinical Oncology, Beijing (China)

    2016-01-15

    The expression of vascular endothelial growth factor (VEGF) is a common genetic alteration in malignant gliomas and contributes to the angiogenesis of tumors. This study aimed to investigate the anatomical specificity of VEGF expression levels in glioblastomas using voxel-based neuroimaging analysis. Clinical information, MR scans, and immunohistochemistry stains of 209 patients with glioblastomas were reviewed. All tumor lesions were segmented manually and subsequently registered to standard brain space. Voxel-based regression analysis was performed to correlate the brain regions of tumor involvement with the level of VEGF expression. Brain regions identified as significantly associated with high or low VEGF expression were preserved following permutation correction. High VEGF expression was detected in 123 (58.9 %) of the 209 patients. Voxel-based statistical analysis demonstrated that high VEGF expression was more likely in tumors located in the left frontal lobe and the right caudate and low VEGF expression was more likely in tumors that occurred in the posterior region of the right lateral ventricle. Voxel-based neuroimaging analysis revealed the anatomic specificity of VEGF expression in glioblastoma, which may further our understanding of genetic heterogeneity during tumor origination. This finding provides primary theoretical support for potential future application of customized antiangiogenic therapy. (orig.)

  19. Anatomical specificity of vascular endothelial growth factor expression in glioblastomas: a voxel-based mapping analysis

    International Nuclear Information System (INIS)

    Fan, Xing; Wang, Yinyan; Wang, Kai; Ma, Jun; Li, Shaowu; Liu, Shuai; Liu, Yong; Jiang, Tao

    2016-01-01

    The expression of vascular endothelial growth factor (VEGF) is a common genetic alteration in malignant gliomas and contributes to the angiogenesis of tumors. This study aimed to investigate the anatomical specificity of VEGF expression levels in glioblastomas using voxel-based neuroimaging analysis. Clinical information, MR scans, and immunohistochemistry stains of 209 patients with glioblastomas were reviewed. All tumor lesions were segmented manually and subsequently registered to standard brain space. Voxel-based regression analysis was performed to correlate the brain regions of tumor involvement with the level of VEGF expression. Brain regions identified as significantly associated with high or low VEGF expression were preserved following permutation correction. High VEGF expression was detected in 123 (58.9 %) of the 209 patients. Voxel-based statistical analysis demonstrated that high VEGF expression was more likely in tumors located in the left frontal lobe and the right caudate and low VEGF expression was more likely in tumors that occurred in the posterior region of the right lateral ventricle. Voxel-based neuroimaging analysis revealed the anatomic specificity of VEGF expression in glioblastoma, which may further our understanding of genetic heterogeneity during tumor origination. This finding provides primary theoretical support for potential future application of customized antiangiogenic therapy. (orig.)

  20. Primary glia expressing the G93A-SOD1 mutation present a neuroinflammatory phenotype and provide a cellular system for studies of glial inflammation

    Directory of Open Access Journals (Sweden)

    Qi Min

    2006-01-01

    Full Text Available Abstract Detailed study of glial inflammation has been hindered by lack of cell culture systems that spontaneously demonstrate the "neuroinflammatory phenotype". Mice expressing a glycine → alanine substitution in cytosolic Cu, Zn-superoxide dismutase (G93A-SOD1 associated with familial amyotrophic lateral sclerosis (ALS demonstrate age-dependent neuroinflammation associated with broad-spectrum cytokine, eicosanoid and oxidant production. In order to more precisely study the cellular mechanisms underlying glial activation in the G93A-SOD1 mouse, primary astrocytes were cultured from 7 day mouse neonates. At this age, G93A-SOD1 mice demonstrated no in vivo hallmarks of neuroinflammation. Nonetheless astrocytes cultured from G93A-SOD1 (but not wild-type human SOD1-expressing transgenic mouse pups demonstrated a significant elevation in either the basal or the tumor necrosis alpha (TNFα-stimulated levels of proinflammatory eicosanoids prostaglandin E2 (PGE2 and leukotriene B4 (LTB4; inducible nitric oxide synthase (iNOS and •NO (indexed by nitrite release into the culture medium; and protein carbonyl products. Specific cytokine- and TNFα death-receptor-associated components were similarly upregulated in cultured G93A-SOD1 cells as assessed by multiprobe ribonuclease protection assays (RPAs for their mRNA transcripts. Thus, endogenous glial expression of G93A-SOD1 produces a metastable condition in which glia are more prone to enter an activated neuroinflammatory state associated with broad-spectrum increased production of paracrine-acting substances. These findings support a role for active glial involvement in ALS and may provide a useful cell culture tool for the study of glial inflammation.

  1. Discordant gene expression signatures and related phenotypic differences in lamin A- and A/C-related Hutchinson-Gilford progeria syndrome (HGPS.

    Directory of Open Access Journals (Sweden)

    Martina Plasilova

    Full Text Available Hutchinson-Gilford progeria syndrome (HGPS is a genetic disorder displaying features reminiscent of premature senescence caused by germline mutations in the LMNA gene encoding lamin A and C, essential components of the nuclear lamina. By studying a family with homozygous LMNA mutation (K542N, we showed that HGPS can also be caused by mutations affecting both isoforms, lamin A and C. Here, we aimed to elucidate the molecular mechanisms underlying the pathogenesis in both, lamin A- (sporadic and lamin A and C-related (hereditary HGPS. For this, we performed detailed molecular studies on primary fibroblasts of hetero- and homozygous LMNA K542N mutation carriers, accompanied with clinical examinations related to the molecular findings. By assessing global gene expression we found substantial overlap in altered transcription profiles (13.7%; 90/657 in sporadic and hereditary HGPS, with 83.3% (75/90 concordant and 16.7% (15/90 discordant transcriptional changes. Among the concordant ones we observed down-regulation of TWIST2, whose inactivation in mice and humans leads to loss of subcutaneous fat and dermal appendages, and loss of expression in dermal fibroblasts and periadnexial cells from a LMNA(K542N/K542N patient further confirming its pivotal role in skin development. Among the discordant transcriptional profiles we identified two key mediators of vascular calcification and bone metabolism, ENPP1 and OPG, which offer a molecular explanation for the major phenotypic differences in vascular and bone disease in sporadic and hereditary HGPS. Finally, this study correlates reduced TWIST2 and OPG expression with increased osteocalcin levels, thereby linking altered bone remodeling to energy homeostasis in hereditary HGPS.

  2. Phenotypically heterogeneous podoplanin-expressing cell populations are associated with the lymphatic vessel growth and fibrogenic responses in the acutely and chronically infarcted myocardium.

    Science.gov (United States)

    Cimini, Maria; Cannatá, Antonio; Pasquinelli, Gianandrea; Rota, Marcello; Goichberg, Polina

    2017-01-01

    Cardiac lymphatic vasculature undergoes substantial expansion in response to myocardial infarction (MI). However, there is limited information on the cellular mechanisms mediating post-MI lymphangiogenesis and accompanying fibrosis in the infarcted adult heart. Using a mouse model of permanent coronary artery ligation, we examined spatiotemporal changes in the expression of lymphendothelial and mesenchymal markers in the acutely and chronically infarcted myocardium. We found that at the time of wound granulation, a three-fold increase in the frequency of podoplanin-labeled cells occurred in the infarcted hearts compared to non-operated and sham-operated counterparts. Podoplanin immunoreactivity detected LYVE-1-positive lymphatic vessels, as well as masses of LYVE-1-negative cells dispersed between myocytes, predominantly in the vicinity of the infarcted region. Podoplanin-carrying populations displayed a mesenchymal progenitor marker PDGFRα, and intermittently expressed Prox-1, a master regulator of the lymphatic endothelial fate. At the stages of scar formation and maturation, concomitantly with the enlargement of lymphatic network in the injured myocardium, the podoplanin-rich LYVE-1-negative multicellular assemblies were apparent in the fibrotic area, aligned with extracellular matrix deposits, or located in immediate proximity to activated blood vessels with high VEGFR-2 content. Of note, these podoplanin-containing cells acquired the expression of PDGFRβ or a hematoendothelial epitope CD34. Although Prox-1 labeling was abundant in the area affected by MI, the podoplanin-presenting cells were not consistently Prox-1-positive. The concordance of podoplanin with VEGFR-3 similarly varied. Thus, our data reveal previously unknown phenotypic and structural heterogeneity within the podoplanin-positive cell compartment in the infarcted heart, and suggest an alternate ability of podoplanin-presenting cardiac cells to generate lymphatic endothelium and pro

  3. Phenotypically heterogeneous podoplanin-expressing cell populations are associated with the lymphatic vessel growth and fibrogenic responses in the acutely and chronically infarcted myocardium.

    Directory of Open Access Journals (Sweden)

    Maria Cimini

    Full Text Available Cardiac lymphatic vasculature undergoes substantial expansion in response to myocardial infarction (MI. However, there is limited information on the cellular mechanisms mediating post-MI lymphangiogenesis and accompanying fibrosis in the infarcted adult heart. Using a mouse model of permanent coronary artery ligation, we examined spatiotemporal changes in the expression of lymphendothelial and mesenchymal markers in the acutely and chronically infarcted myocardium. We found that at the time of wound granulation, a three-fold increase in the frequency of podoplanin-labeled cells occurred in the infarcted hearts compared to non-operated and sham-operated counterparts. Podoplanin immunoreactivity detected LYVE-1-positive lymphatic vessels, as well as masses of LYVE-1-negative cells dispersed between myocytes, predominantly in the vicinity of the infarcted region. Podoplanin-carrying populations displayed a mesenchymal progenitor marker PDGFRα, and intermittently expressed Prox-1, a master regulator of the lymphatic endothelial fate. At the stages of scar formation and maturation, concomitantly with the enlargement of lymphatic network in the injured myocardium, the podoplanin-rich LYVE-1-negative multicellular assemblies were apparent in the fibrotic area, aligned with extracellular matrix deposits, or located in immediate proximity to activated blood vessels with high VEGFR-2 content. Of note, these podoplanin-containing cells acquired the expression of PDGFRβ or a hematoendothelial epitope CD34. Although Prox-1 labeling was abundant in the area affected by MI, the podoplanin-presenting cells were not consistently Prox-1-positive. The concordance of podoplanin with VEGFR-3 similarly varied. Thus, our data reveal previously unknown phenotypic and structural heterogeneity within the podoplanin-positive cell compartment in the infarcted heart, and suggest an alternate ability of podoplanin-presenting cardiac cells to generate lymphatic endothelium

  4. Delta-9-tetrahydrocannabinol (THC) affects forelimb motor map expression but has little effect on skilled and unskilled behavior.

    Science.gov (United States)

    Scullion, K; Guy, A R; Singleton, A; Spanswick, S C; Hill, M N; Teskey, G C

    2016-04-05

    It has previously been shown in rats that acute administration of delta-9-tetrahydrocannabinol (THC) exerts a dose-dependent effect on simple locomotor activity, with low doses of THC causing hyper-locomotion and high doses causing hypo-locomotion. However the effect of acute THC administration on cortical movement representations (motor maps) and skilled learned movements is completely unknown. It is important to determine the effects of THC on motor maps and skilled learned behaviors because behaviors like driving place people at a heightened risk. Three doses of THC were used in the current study: 0.2mg/kg, 1.0mg/kg and 2.5mg/kg representing the approximate range of the low to high levels of available THC one would consume from recreational use of cannabis. Acute peripheral administration of THC to drug naïve rats resulted in dose-dependent alterations in motor map expression using high resolution short duration intracortical microstimulation (SD-ICMS). THC at 0.2mg/kg decreased movement thresholds and increased motor map size, while 1.0mg/kg had the opposite effect, and 2.5mg/kg had an even more dramatic effect. Deriving complex movement maps using long duration (LD)-ICMS at 1.0mg/kg resulted in fewer complex movements. Dosages of 1.0mg/kg and 2.5mg/kg THC reduced the number of reach attempts but did not affect percentage of success or the kinetics of reaching on the single pellet skilled reaching task. Rats that received 2.5mg/kg THC did show an increase in latency of forelimb removal on the bar task, while dose-dependent effects of THC on unskilled locomotor activity using the rotorod and horizontal ladder tasks were not observed. Rats may be employing compensatory strategies after receiving THC, which may account for the robust changes in motor map expression but moderate effects on behavior. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  5. Transient Cnp expression by early progenitors causes Cre-Lox-based reporter lines to map profoundly different fates.

    Science.gov (United States)

    Tognatta, Reshmi; Sun, Wenjing; Goebbels, Sandra; Nave, Klaus-Armin; Nishiyama, Akiko; Schoch, Susanne; Dimou, Leda; Dietrich, Dirk

    2017-02-01

    NG2 expressing oligodendroglial precursor cells are ubiquitous in the central nervous system and the only cell type cycling throughout life. Previous fate mapping studies have remained inconsistent regarding the question whether NG2 cells are capable of generating certain types of neurons. Here, we use CNP-Cre mice to map the fate of a sub-population of NG2 cells assumed to be close to differentiation. When crossing these mice with the ROSA26/YFP Cre-reporter line we discovered large numbers of reporter-expressing pyramidal neurons in the piriform and dorsal cortex. In contrast, when using Z/EG reporter mice to track the fate of Cnp-expressing NG2 cells only oligodendroglial cells were found reporter positive. Using BrdU-based birth dating protocols and inducible NG2CreER:ROSA26/YFP mice we show that YFP positive neurons are generated from radial glial cells and that these radial glial cells display temporary and low level activity of certain oligodendroglial genes sufficient to recombine the Cre-inducible reporter gene in ROSA26/YFP but not in Z/EG mice. Taken together, we did not obtain evidence for generation of neurons from NG2 cells. Our results suggest that with an appropriate reporter system Cnp activity can be used to define a proliferative subpopulation of NG2 cells committed to generate oligodendrocytes. However, the strikingly different results obtained from ROSA26/YFP versus Z/EG mice demonstrate that the choice of Cre-reporter line can be of crucial importance for fate mapping studies and other applications of the Cre-lox technology. GLIA 2017;65:342-359. © 2016 Wiley Periodicals, Inc.

  6. Combined lineage mapping and gene expression profiling of embryonic brain patterning using ultrashort pulse microscopy and image registration

    Science.gov (United States)

    Gibbs, Holly C.; Dodson, Colin R.; Bai, Yuqiang; Lekven, Arne C.; Yeh, Alvin T.

    2014-12-01

    During embryogenesis, presumptive brain compartments are patterned by dynamic networks of gene expression. The spatiotemporal dynamics of these networks, however, have not been characterized with sufficient resolution for us to understand the regulatory logic resulting in morphogenetic cellular behaviors that give the brain its shape. We have developed a new, integrated approach using ultrashort pulse microscopy [a high-resolution, two-photon fluorescence (2PF)-optical coherence microscopy (OCM) platform using 10-fs pulses] and image registration to study brain patterning and morphogenesis in zebrafish embryos. As a demonstration, we used time-lapse 2PF to capture midbrain-hindbrain boundary morphogenesis and a wnt1 lineage map from embryos during brain segmentation. We then performed in situ hybridization to deposit NBT/BCIP, where wnt1 remained actively expressed, and reimaged the embryos with combined 2PF-OCM. When we merged these datasets using morphological landmark registration, we found that the mechanism of boundary formation differs along the dorsoventral axis. Dorsally, boundary sharpening is dominated by changes in gene expression, while ventrally, sharpening may be accomplished by lineage sorting. We conclude that the integrated visualization of lineage reporter and gene expression domains simultaneously with brain morphology will be useful for understanding how changes in gene expression give rise to proper brain compartmentalization and structure.

  7. Vitamin B12-impaired metabolism produces apoptosis and Parkinson phenotype in rats expressing the transcobalamin-oleosin chimera in substantia nigra.

    Directory of Open Access Journals (Sweden)

    Carlos Enrique Orozco-Barrios

    Full Text Available BACKGROUND: Vitamin B12 is indispensable for proper brain functioning and cytosolic synthesis of S-adenosylmethionine. Whether its deficiency produces effects on viability and apoptosis of neurons remains unknown. There is a particular interest in investigating these effects in Parkinson disease where Levodopa treatment is known to increase the consumption of S-adenosylmethionine. To cause deprivation of vitamin B12, we have recently developed a cell model that produces decreased synthesis of S-adenosylmethionine by anchoring transcobalamin (TCII to the reticulum through its fusion with Oleosin (OLEO. METHODOLOGY: Gene constructs including transcobalamin-oleosin (TCII-OLEO and control constructs, green fluorescent protein-transcobalamin-oleosin (GFP-TCII-OLEO, oleosin-transcobalamin (OLEO-TCII, TCII and OLEO were used for expression in N1E-115 cells (mouse neuroblastoma and in substantia nigra of adult rats, using a targeted transfection with a Neurotensin polyplex system. We studied the viability and the apoptosis in the transfected cells and targeted tissue. The turning behavior was evaluated in the rats transfected with the different plasmids. PRINCIPAL FINDINGS: The transfection of N1E-115 cells by the TCII-OLEO-expressing plasmid significantly affected cell viability and increased immunoreactivity of cleaved Caspase-3. No change in propidium iodide uptake (used as a necrosis marker was observed. The transfected rats lost neurons immunoreactive to tyrosine hydroxylase. The expression of TCII-OLEO was observed in cells immunoreactive to tyrosine hydroxylase of the substantia nigra, with a superimposed expression of cleaved Caspase-3. These cellular and tissular effects were not observed with the control plasmids. Rats transfected with TCII-OLEO expressing plasmid presented with a significantly higher number of turns, compared with those transfected with the other plasmids. CONCLUSIONS/SIGNIFICANCE: In conclusion, the TCII-OLEO transfection

  8. Expression and Organization of Geographic Spatial Relations Based on Topic Maps

    Science.gov (United States)

    Liang, H. J.; Wang, H.; Cui, T. J.; Guo, J. F.

    2017-09-01

    Spatial Relation is one of the important components of Geographical Information Science and Spatial Database. There have been lots of researches on Spatial Relation and many different spatial relations have been proposed. The relationships among these spatial relations such as hierarchy and so on are complex and this brings some difficulties to the applications and teaching of these spatial relations. This paper summaries some common spatial relations, extracts the topic types, association types, resource types of these spatial relations using the technology of Topic Maps, and builds many different relationships among these spatial relations. Finally, this paper utilizes Java and Ontopia to build a topic map among these common spatial relations, forms a complex knowledge network of spatial relations, and realizes the effective management and retrieval of spatial relations.

  9. MAP17, a ROS-dependent oncogene

    International Nuclear Information System (INIS)

    Carnero, Amancio

    2012-01-01

    MAP17 is a small 17 kDa non-glycosylated membrane protein previously identified as being overexpressed in carcinomas. Breast tumor cells that overexpress MAP17 show an increased tumoral phenotype with enhanced proliferative capabilities both in the presence or the absence of contact inhibition, decreased apoptotic sensitivity, and increased migration. MAP17-expressing clones also grow better in nude mice. The increased malignant cell behavior induced by MAP17 is associated with an increase in reactive oxygen species (ROS) production, and the treatment of MAP17-expressing cells with antioxidants results in a reduction in the tumorigenic properties of these cells. The MAP17-dependent increase in ROS and tumorigenesis relies on its PDZ-binding domain because disruption of this sequence by point mutations abolishes the ability of MAP17 to enhance ROS production and tumorigenesis. MAP17 is overexpressed in a great variety of human carcinomas, including breast tumors. Immunohistochemical analysis of MAP17 during cancer progression demonstrates that overexpression of the protein strongly correlates with tumoral progression. Generalized MAP17 overexpression in human carcinomas indicates that MAP17 can be a good marker for tumorigenesis and, especially, for malignant progression.

  10. High-resolution temporal and regional mapping of MAPT expression and splicing in human brain development.

    Science.gov (United States)

    Hefti, Marco M; Farrell, Kurt; Kim, SoongHo; Bowles, Kathryn R; Fowkes, Mary E; Raj, Towfique; Crary, John F

    2018-01-01

    The microtubule associated protein tau plays a critical role in the pathogenesis of neurodegenerative disease. Recent studies suggest that tau also plays a role in disorders of neuronal connectivity, including epilepsy and post-traumatic stress disorder. Animal studies have shown that the MAPT gene, which codes for the tau protein, undergoes complex pre-mRNA alternative splicing to produce multiple isoforms during brain development. Human data, particularly on temporal and regional variation in tau splicing during development are however lacking. In this study, we present the first detailed examination of the temporal and regional sequence of MAPT alternative splicing in the developing human brain. We used a novel computational analysis of large transcriptomic datasets (total n = 502 patients), quantitative polymerase chain reaction (qPCR) and western blotting to examine tau expression and splicing in post-mortem human fetal, pediatric and adult brains. We found that MAPT exons 2 and 10 undergo abrupt shifts in expression during the perinatal period that are unique in the canonical human microtubule-associated protein family, while exon 3 showed small but significant temporal variation. Tau isoform expression may be a marker of neuronal maturation, temporally correlated with the onset of axonal growth. Immature brain regions such as the ganglionic eminence and rhombic lip had very low tau expression, but within more mature regions, there was little variation in tau expression or splicing. We thus demonstrate an abrupt, evolutionarily conserved shift in tau isoform expression during the human perinatal period that may be due to tau expression in maturing neurons. Alternative splicing of the MAPT pre-mRNA may play a vital role in normal brain development across multiple species and provides a basis for future investigations into the developmental and pathological functions of the tau protein.

  11. Upregulation of Haploinsufficient Gene Expression in the Brain by Targeting a Long Non-coding RNA Improves Seizure Phenotype in a Model of Dravet Syndrome.

    Science.gov (United States)

    Hsiao, J; Yuan, T Y; Tsai, M S; Lu, C Y; Lin, Y C; Lee, M L; Lin, S W; Chang, F C; Liu Pimentel, H; Olive, C; Coito, C; Shen, G; Young, M; Thorne, T; Lawrence, M; Magistri, M; Faghihi, M A; Khorkova, O; Wahlestedt, C

    2016-07-01

    Dravet syndrome is a devastating genetic brain disorder caused by heterozygous loss-of-function mutation in the voltage-gated sodium channel gene SCN1A. There are currently no treatments, but the upregulation of SCN1A healthy allele represents an appealing therapeutic strategy. In this study we identified a novel, evolutionary conserved mechanism controlling the expression of SCN1A that is mediated by an antisense non-coding RNA (SCN1ANAT). Using oligonucleotide-based compounds (AntagoNATs) targeting SCN1ANAT we were able to induce specific upregulation of SCN1A both in vitro and in vivo, in the brain of Dravet knock-in mouse model and a non-human primate. AntagoNAT-mediated upregulation of Scn1a in postnatal Dravet mice led to significant improvements in seizure phenotype and excitability of hippocampal interneurons. These results further elucidate the pathophysiology of Dravet syndrome and outline a possible new approach for the treatment of this and other genetic disorders with similar etiology. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  12. Upregulation of Haploinsufficient Gene Expression in the Brain by Targeting a Long Non-coding RNA Improves Seizure Phenotype in a Model of Dravet Syndrome

    Directory of Open Access Journals (Sweden)

    J. Hsiao

    2016-07-01

    Full Text Available Dravet syndrome is a devastating genetic brain disorder caused by heterozygous loss-of-function mutation in the voltage-gated sodium channel gene SCN1A. There are currently no treatments, but the upregulation of SCN1A healthy allele represents an appealing therapeutic strategy. In this study we identified a novel, evolutionary conserved mechanism controlling the expression of SCN1A that is mediated by an antisense non-coding RNA (SCN1ANAT. Using oligonucleotide-based compounds (AntagoNATs targeting SCN1ANAT we were able to induce specific upregulation of SCN1A both in vitro and in vivo, in the brain of Dravet knock-in mouse model and a non-human primate. AntagoNAT-mediated upregulation of Scn1a in postnatal Dravet mice led to significant improvements in seizure phenotype and excitability of hippocampal interneurons. These results further elucidate the pathophysiology of Dravet syndrome and outline a possible new approach for the treatment of this and other genetic disorders with similar etiology.

  13. Transfection with extracellularly UV-damaged DNA induces human and rat cells to express a mutator phenotype towards parvovirus H-1

    International Nuclear Information System (INIS)

    Dinsart, C.; Cornelis, J.J.; Klein, B.; van der Eb, A.J.; Rommelaere, J.

    1984-01-01

    Human and rat cells transfected with UV-irradiated linear double-stranded DNA from calf thymus displayed a mutator activity. This phenotype was identified by growing a lytic thermosensitive single-stranded DNA virus (parvovirus H-1) in those cells and determining viral reversion frequencies. Likewise, exogenous UV-irradiated closed circular DNAs, either double-stranded (simian virus 40) or single-stranded (phi X174), enhanced the ability of recipient cells to mutate parvovirus H-1. The magnitude of mutator activity expression increased along with the number of UV lesions present in the inoculated DNA up to a saturation level. Unirradiated DNA displayed little inducing capacity, irrespective of whether it was single or double stranded. Deprivation of a functional replication origin did not impede UV-irradiated simian virus 40 DNA from providing rat and human cells with a mutator function. Our data suggest that in mammalian cells a trans-acting mutagenic signal might be generated from UV-irradiated DNA without the necessity for damaged DNA to replicate

  14. Loss of RhoB expression enhances the myelodysplastic phenotype of mammalian diaphanous-related Formin mDia1 knockout mice.

    Directory of Open Access Journals (Sweden)

    Aaron D DeWard

    Full Text Available Myelodysplastic syndrome (MDS is characterized by ineffective hematopoiesis and hyperplastic bone marrow. Complete loss or interstitial deletions of the long arm of chromosome 5 occur frequently in MDS. One candidate tumor suppressor on 5q is the mammalian Diaphanous (mDia-related formin mDia1, encoded by DIAPH1 (5q31.3. mDia-family formins act as effectors for Rho-family small GTP-binding proteins including RhoB, which has also been shown to possess tumor suppressor activity. Mice lacking the Drf1 gene that encodes mDia1 develop age-dependent myelodysplastic features. We crossed mDia1 and RhoB knockout mice to test whether the additional loss of RhoB expression would compound the myelodysplastic phenotype. Drf1(-/-RhoB(-/- mice are fertile and develop normally. Relative to age-matched Drf1(-/-RhoB(+/- mice, the age of myelodysplasia onset was earlier in Drf1(-/-RhoB(-/- animals--including abnormally shaped erythrocytes, splenomegaly, and extramedullary hematopoiesis. In addition, we observed a statistically significant increase in the number of activated monocytes/macrophages in both the spleen and bone marrow of Drf1(-/-RhoB(-/- mice relative to Drf1(-/-RhoB(+/- mice. These data suggest a role for RhoB-regulated mDia1 in the regulation of hematopoietic progenitor cells.

  15. Inhibitory phenotype of HBV-specific CD4+ T-cells is characterized by high PD-1 expression but absent coregulation of multiple inhibitory molecules.

    Directory of Open Access Journals (Sweden)

    Bijan Raziorrouh

    Full Text Available T-cell exhaustion seems to play a critical role in CD8+ T-cell dysfunction during chronic viral infections. However, up to now little is known about the mechanisms underlying CD4+ T-cell dysfunction during chronic hepatitis B virus (CHB infection and the role of inhibitory molecules such as programmed death 1 (PD-1 for CD4+ T-cell failure.The expression of multiple inhibitory molecules such as PD-1, CTLA-4, TIM-3, CD244, KLRG1 and markers defining the grade of T-cell differentiation as CCR7, CD45RA, CD57 and CD127 were analyzed on virus-specific CD4+ T-cells from peripheral blood using a newly established DRB1*01-restricted MHC class II Tetramer. Effects of in vitro PD-L1/2 blockade were defined by investigating changes in CD4+ T-cell proliferation and cytokine production.CD4+ T-cell responses during chronic HBV infection was characterized by reduced Tetramer+CD4+ T-cell frequencies, effector memory phenotype, sustained PD-1 but low levels of CTLA-4, TIM-3, KLRG1 and CD244 expression. PD-1 blockade revealed individualized patterns of in vitro responsiveness with partly increased IFN-γ, IL-2 and TNF-α secretion as well as enhanced CD4+ T-cell expansion almost in treated patients with viral control.HBV-specific CD4+ T-cells are reliably detectable during different courses of HBV infection by MHC class II Tetramer technology. CD4+ T-cell dysfunction during chronic HBV is basically linked to strong PD-1 upregulation but absent coregulation of multiple inhibitory receptors. PD-L1/2 neutralization partly leads to enhanced CD4+ T-cell functionality with heterogeneous patterns of CD4+ T-cell rejunivation.

  16. Gene organization in rice revealed by full-length cDNA mapping and gene expression analysis through microarray.

    Directory of Open Access Journals (Sweden)

    Kouji Satoh

    Full Text Available Rice (Oryza sativa L. is a model organism for the functional genomics of monocotyledonous plants since the genome size is considerably smaller than those of other monocotyledonous plants. Although highly accurate genome sequences of indica and japonica rice are available, additional resources such as full-length complementary DNA (FL-cDNA sequences are also indispensable for comprehensive analyses of gene structure and function. We cross-referenced 28.5K individual loci in the rice genome defined by mapping of 578K FL-cDNA clones with the 56K loci predicted in the TIGR genome assembly. Based on the annotation status and the presence of corresponding cDNA clones, genes were classified into 23K annotated expressed (AE genes, 33K annotated non-expressed (ANE genes, and 5.5K non-annotated expressed (NAE genes. We developed a 60mer oligo-array for analysis of gene expression from each locus. Analysis of gene structures and expression levels revealed that the general features of gene structure and expression of NAE and ANE genes were considerably different from those of AE genes. The results also suggested that the cloning efficiency of rice FL-cDNA is associated with the transcription activity of the corresponding genetic locus, although other factors may also have an effect. Comparison of the coverage of FL-cDNA among gene families suggested that FL-cDNA from genes encoding rice- or eukaryote-specific domains, and those involved in regulatory functions were difficult to produce in bacterial cells. Collectively, these results indicate that rice genes can be divided into distinct groups based on transcription activity and gene structure, and that the coverage bias of FL-cDNA clones exists due to the incompatibility of certain eukaryotic genes in bacteria.

  17. A Herpes Simplex Virus Type 1 Mutant Expressing a Baculovirus Inhibitor of Apoptosis Gene in Place of Latency-Associated Transcript Has a Wild-Type Reactivation Phenotype in the Mouse

    Science.gov (United States)

    Jin, Ling; Perng, Guey-Chuen; Mott, Kevin R.; Osorio, Nelson; Naito, Julia; Brick, David J.; Carpenter, Dale; Jones, Clinton; Wechsler, Steven L.

    2005-01-01

    The latency-associated transcript (LAT) is essential for the wild-type herpes simplex virus type 1 (HSV-1) high-reactivation phenotype since LAT− mutants have a low-reactivation phenotype. We previously reported that LAT can decrease apoptosis and proposed that this activity is involved in LAT's ability to enhance the HSV-1 reactivation phenotype. The first 20% of the primary 8.3-kb LAT transcript is sufficient for enhancing the reactivation phenotype and for decreasing apoptosis, supporting this proposal. For this study, we constructed an HSV-1 LAT− mutant that expresses the baculovirus antiapoptosis gene product cpIAP under control of the LAT promoter and in place of the LAT region mentioned above. Mice were ocularly infected with this mutant, designated dLAT-cpIAP, and the reactivation phenotype was determined using the trigeminal ganglion explant model. dLAT-cpIAP had a reactivation phenotype similar to that of wild-type virus and significantly higher than that of (i) the LAT− mutant dLAT2903; (ii) dLAT1.5, a control virus containing the same LAT deletion as dLAT-cpIAP, but with no insertion of foreign DNA, thereby controlling for potential readthrough transcription past the cpIAP insert; and (iii) dLAT-EGFP, a control virus identical to dLAT-cpIAP except that it contained the enhanced green fluorescent protein open reading frame (ORF) in place of the cpIAP ORF, thereby controlling for expression of a random foreign gene instead of the cpIAP gene. These results show that an antiapoptosis gene with no sequence similarity to LAT can efficiently substitute for the LAT function involved in enhancing the in vitro-induced HSV-1 reactivation phenotype in the mouse. PMID:16160155

  18. Phenotypic approaches to gene mapping in platelet function disorders - identification of new variant of P2Y12, TxA2 and GPVI receptors.

    Science.gov (United States)

    Watson, S; Daly, M; Dawood, B; Gissen, P; Makris, M; Mundell, S; Wilde, J; Mumford, A

    2010-01-01

    Platelet number or function disorders cause a range of bleeding symptoms from mild to severe. Patients with platelet dysfunction but normal platelet number are the most prevalent and typically have mild bleeding symptoms. The study of this group of patients is particularly difficult because of the lack of a gold-standard test of platelet function and the variable penetrance of the bleeding phenotype among affected individuals. The purpose of this short review is to discuss the way in which this group of patients can be investigated through platelet phenotyping in combination with targeted gene sequencing. This approach has been used recently to identify patients with mutations in key platelet activation receptors, namely those for ADP, collagen and thromboxane A2 (TxA2). One interesting finding from this work is that for some patients, mild bleeding is associated with heterozygous mutations in platelet proteins that are co-inherited with other genetic disorders of haemostasis such as type 1 von Willebrand's disease. Thus, the phenotype of mild bleeding may be multifactorial in some patients and may be considered to be a complex trait.

  19. Global map of physical interactions among differentially expressed genes in multiple sclerosis relapses and remissions.

    Science.gov (United States)

    Tuller, Tamir; Atar, Shimshi; Ruppin, Eytan; Gurevich, Michael; Achiron, Anat

    2011-09-15

    Multiple sclerosis (MS) is a central nervous system autoimmune inflammatory T-cell-mediated disease with a relapsing-remitting course in the majority of patients. In this study, we performed a high-resolution systems biology analysis of gene expression and physical interactions in MS relapse and remission. To this end, we integrated 164 large-scale measurements of gene expression in peripheral blood mononuclear cells of MS patients in relapse or remission and healthy subjects, with large-scale information about the physical interactions between these genes obtained from public databases. These data were analyzed with a variety of computational methods. We find that there is a clear and significant global network-level signal that is related to the changes in gene expression of MS patients in comparison to healthy subjects. However, despite the clear differences in the clinical symptoms of MS patients in relapse versus remission, the network level signal is weaker when comparing patients in these two stages of the disease. This result suggests that most of the genes have relatively similar expression levels in the two stages of the disease. In accordance with previous studies, we found that the pathways related to regulation of cell death, chemotaxis and inflammatory response are differentially expressed in the disease in comparison to healthy subjects, while pathways related to cell adhesion, cell migration and cell-cell signaling are activated in relapse in comparison to remission. However, the current study includes a detailed report of the exact set of genes involved in these pathways and the interactions between them. For example, we found that the genes TP53 and IL1 are 'network-hub' that interacts with many of the differentially expressed genes in MS patients versus healthy subjects, and the epidermal growth factor receptor is a 'network-hub' in the case of MS patients with relapse versus remission. The statistical approaches employed in this study enabled us

  20. Arabidopsis female gametophyte gene expression map reveals similarities between plant and animal gametes.

    Science.gov (United States)

    Wuest, Samuel E; Vijverberg, Kitty; Schmidt, Anja; Weiss, Manuel; Gheyselinck, Jacqueline; Lohr, Miriam; Wellmer, Frank; Rahnenführer, Jörg; von Mering, Christian; Grossniklaus, Ueli

    2010-03-23

    The development of multicellular organisms is controlled by differential gene expression whereby cells adopt distinct fates. A spatially resolved view of gene expression allows the elucidation of transcriptional networks that are linked to cellular identity and function. The haploid female gametophyte of flowering plants is a highly reduced organism: at maturity, it often consists of as few as three cell types derived from a common precursor [1, 2]. However, because of its inaccessibility and small size, we know little about the molecular basis of cell specification and differentiation in the female gametophyte. Here we report expression profiles of all cell types in the mature Arabidopsis female gametophyte. Differentially expressed posttranscriptional regulatory modules and metabolic pathways characterize the distinct cell types. Several transcription factor families are overrepresented in the female gametophyte in comparison to other plant tissues, e.g., type I MADS domain, RWP-RK, and reproductive meristem transcription factors. PAZ/Piwi-domain encoding genes are upregulated in the egg, indicating a role of epigenetic regulation through small RNA pathways-a feature paralleled in the germline of animals [3]. A comparison of human and Arabidopsis egg cells for enrichment of functional groups identified several similarities that may represent a consequence of coevolution or ancestral gametic features. 2010 Elsevier Ltd. All rights reserved.

  1. Mapping the impairment in decoding static facial expressions of emotion in prosopagnosia.

    Science.gov (United States)

    Fiset, Daniel; Blais, Caroline; Royer, Jessica; Richoz, Anne-Raphaëlle; Dugas, Gabrielle; Caldara, Roberto

    2017-08-01

    Acquired prosopagnosia is characterized by a deficit in face recognition due to diverse brain lesions, but interestingly most prosopagnosic patients suffering from posterior lesions use the mouth instead of the eyes for face identification. Whether this bias is present for the recognition of facial expressions of emotion has not yet been addressed. We tested PS, a pure case of acquired prosopagnosia with bilateral occipitotemporal lesions anatomically sparing the regions dedicated for facial expression recognition. PS used mostly the mouth to recognize facial expressions even when the eye area was the most diagnostic. Moreover, PS directed most of her fixations towards the mouth. Her impairment was still largely present when she was instructed to look at the eyes, or when she was forced to look at them. Control participants showed a performance comparable to PS when only the lower part of the face was available. These observations suggest that the deficits observed in PS with static images are not solely attentional, but are rooted at the level of facial information use. This study corroborates neuroimaging findings suggesting that the Occipital Face Area might play a critical role in extracting facial features that are integrated for both face identification and facial expression recognition in static images. © The Author (2017). Published by Oxford University Press.

  2. Transcription mapping and expression patterns of genes in the major immediate-early region of Kaposi's sarcoma-associated herpesvirus.

    Science.gov (United States)

    Saveliev, Alexei; Zhu, Fan; Yuan, Yan

    2002-08-01

    Viral immediate-early (IE) genes are the first class of viral genes expressed during primary infection or reactivation from latency. They usually encode regulatory proteins that play crucial roles in viral life cycle. In a previous study, four regions in the KSHV genome were found to be actively transcribed in the immediate-early stage of viral reactivation in primary effusion lymphoma cells. Three immediate-early transcripts were characterized in these regions, as follows: mRNAs for ORF50 (KIE-1), ORF-45 (KIE-2), and ORF K4.2 (KIE-3) (F. X. Zhu, T. Cusano, and Y. Yuan, 1999, J. Virol. 73, 5556-5567). In the present study, we further analyzed the expression of genes in these IE regions in BC-1 and BCBL-1 cells. One of the immediate-early regions (KIE-1) that encompasses ORF50 and other genes was intensively studied to establish a detailed transcription map and expression patterns of genes in this region. This study led to identification of several novel IE transcripts in this region. They include a 2.6-kb mRNA which encodes ORF48/ORF29b, a family of transcripts that are complementary to ORF50 mRNA and a novel K8 IE mRNA of 1.5 kb. Together with the IE mRNA for ORF50 which was identified previously, four immediate-early genes have been mapped to KIE-1 region. Therefore, we would designate KIE-1 the major immediate-early region of KSHV. In addition, we showed that transcription of K8 gene is controlled by two promoters, yielding two transcripts, an immediate-early mRNA of 1.5 kb and a delayed-early mRNA of 1.3 kb.

  3. MAP kinase pathways and calcitonin influence CD44 alternate isoform expression in prostate cancer cells

    International Nuclear Information System (INIS)

    Robbins, Eric W; Travanty, Emily A; Yang, Kui; Iczkowski, Kenneth A

    2008-01-01

    Dysregulated expression and splicing of cell adhesion marker CD44 is found in many types of cancer. In prostate cancer (PC) specifically, the standard isoform (CD44s) has been found to be downregulated compared with benign tissue whereas predominant variant isoform CD44v7-10 is upregulated. Mitogen-activated protein kinase pathways and paracrine calcitonin are two common factors linked to dysregulated expression and splicing of CD44 in cancer. Calcitonin has been found to increase proliferation and invasion in PC acting through the protein kinase A pathway. In androgen-independent PC with known high CD44v7-10 expression, CD44 total and CD44v7-10 RNA or protein were assessed in response to exogenous and endogenous calcitonin and to inhibitors of protein kinase A, MEK, JNK, or p38 kinase. Benign cells and calcitonin receptor-negative PC cells were also tested. MEK or p38 but not JNK reduced CD44 total RNA by 40%–65% in cancer and benign cells. Inhibition of protein kinase A reduced CD44 total and v7-10 protein expression. In calcitonin receptor-positive cells only, calcitonin increased CD44 variant RNA and protein by 3 h and persisting to 48 h, apparently dependent on an uninhibited p38 pathway. Cells with constitutive CT expression showed an increase in CD44v7-10 mRNA but a decrease in CD44 total RNA. The MEK pathway increases CD44 RNA, while calcitonin, acting through the protein kinase A and p38 pathway, facilitates variant splicing. These findings could be used in the formulation of therapeutic methods for PC targeting CD44 alternate splicing

  4. Expression of a Recombinant Anti-HIV and Anti-Tumor Protein, MAP30, in Nicotiana tobacum Hairy Roots: A pH-Stable and Thermophilic Antimicrobial Protein.

    Directory of Open Access Journals (Sweden)

    Ali Moghadam

    Full Text Available In contrast to conventional antibiotics, which microorganisms can readily evade, it is nearly impossible for a microbial strain that is sensitive to antimicrobial proteins to convert to a resistant strain. Therefore, antimicrobial proteins and peptides that are promising alternative candidates for the control of bacterial infections are under investigation. The MAP30 protein of Momordica charantia is a valuable type I ribosome-inactivating protein (RIP with anti-HIV and anti-tumor activities. Whereas the antimicrobial activity of some type I RIPs has been confirmed, less attention has been paid to the antimicrobial activity of MAP30 produced in a stable, easily handled, and extremely cost-effective protein-expression system. rMAP30-KDEL was expressed in Nicotiana tobacum hairy roots, and its effect on different microorganisms was investigated. Analysis of the extracted total proteins of transgenic hairy roots showed that rMAP30-KDEL was expressed effectively and that this protein exhibited significant antibacterial activity in a dose-dependent manner. rMAP30-KDEL also possessed thermal and pH stability. Bioinformatic analysis of MAP30 and other RIPs regarding their conserved motifs, amino-acid contents, charge, aliphatic index, GRAVY value, and secondary structures demonstrated that these factors accounted for their thermophilicity. Therefore, RIPs such as MAP30 and its derived peptides might have promising applications as food preservatives, and their analysis might provide useful insights into designing clinically applicable antibiotic agents.

  5. A Complex Structural Variation on Chromosome 27 Leads to the Ectopic Expression of HOXB8 and the Muffs and Beard Phenotype in Chickens

    NARCIS (Netherlands)

    Guo, Ying; Gu, Xiaorong; Sheng, Zheya; Wang, Yanqiang; Luo, Chenglong; Liu, Ranran; Qu, Hao; Shu, Dingming; Wen, Jie; Crooijmans, Richard P.M.A.; Carlborg, Örjan; Zhao, Yiqiang; Hu, Xiaoxiang; Li, Ning

    2016-01-01

    Muffs and beard (Mb) is a phenotype in chickens where groups of elongated feathers gather from both sides of the face (muffs) and below the beak (beard). It is an autosomal, incomplete dominant phenotype encoded by the Muffs and beard (Mb) locus. Here we use genome-wide association (GWA)

  6. Mapping photothermally induced gene expression in living cells and tissues by nanorod-locked nucleic acid complexes.

    Science.gov (United States)

    Riahi, Reza; Wang, Shue; Long, Min; Li, Na; Chiou, Pei-Yu; Zhang, Donna D; Wong, Pak Kin

    2014-04-22

    The photothermal effect of plasmonic nanostructures has numerous applications, such as cancer therapy, photonic gene circuit, large cargo delivery, and nanostructure-enhanced laser tweezers. The photothermal operation can also induce unwanted physical and biochemical effects, which potentially alter the cell behaviors. However, there is a lack of techniques for characterizing the dynamic cell responses near the site of photothermal operation with high spatiotemporal resolution. In this work, we show that the incorporation of locked nucleic acid probes with gold nanorods allows photothermal manipulation and real-time monitoring of gene expression near the area of irradiation in living cells and animal tissues. The multimodal gold nanorod serves as an endocytic delivery reagent to transport the probes into the cells, a fluorescence quencher and a binding competitor to detect intracellular mRNA, and a plasmonic photothermal transducer to induce cell ablation. We demonstrate the ability of the gold nanorod-locked nucleic acid complex for detecting the spatiotemporal gene expression in viable cells and tissues and inducing photothermal ablation of single cells. Using the gold nanorod-locked nucleic acid complex, we systematically characterize the dynamic cellular heat shock responses near the site of photothermal operation. The gold nanorod-locked nucleic acid complex enables mapping of intracellular gene expressions and analyzes the photothermal effects of nanostructures toward various biomedical applications.

  7. CGI: Java software for mapping and visualizing data from array-based comparative genomic hybridization and expression profiling.

    Science.gov (United States)

    Gu, Joyce Xiuweu-Xu; Wei, Michael Yang; Rao, Pulivarthi H; Lau, Ching C; Behl, Sanjiv; Man, Tsz-Kwong

    2007-10-06

    With the increasing application of various genomic technologies in biomedical research, there is a need to integrate these data to correlate candidate genes/regions that are identified by different genomic platforms. Although there are tools that can analyze data from individual platforms, essential software for integration of genomic data is still lacking. Here, we present a novel Java-based program called CGI (Cytogenetics-Genomics Integrator) that matches the BAC clones from array-based comparative genomic hybridization (aCGH) to genes from RNA expression profiling datasets. The matching is computed via a fast, backend MySQL database containing UCSC Genome Browser annotations. This program also provides an easy-to-use graphical user interface for visualizing and summarizing the correlation of DNA copy number changes and RNA expression patterns from a set of experiments. In addition, CGI uses a Java applet to display the copy number values of a specific BAC clone in aCGH experiments side by side with the expression levels of genes that are mapped back to that BAC clone from the microarray experiments. The CGI program is built on top of extensible, reusable graphic components specifically designed for biologists. It is cross-platform compatible and the source code is freely available under the General Public License.

  8. CGI: Java Software for Mapping and Visualizing Data from Array-based Comparative Genomic Hybridization and Expression Profiling

    Directory of Open Access Journals (Sweden)

    Joyce Xiuweu-Xu Gu

    2007-01-01

    Full Text Available With the increasing application of various genomic technologies in biomedical research, there is a need to integrate these data to correlate candidate genes/regions that are identified by different genomic platforms. Although there are tools that can analyze data from individual platforms, essential software for integration of genomic data is still lacking. Here, we present a novel Java-based program called CGI (Cytogenetics-Genomics Integrator that matches the BAC clones from array-based comparative genomic hybridization (aCGH to genes from RNA expression profiling datasets. The matching is computed via a fast, backend MySQL database containing UCSC Genome Browser annotations. This program also provides an easy-to-use graphical user interface for visualizing and summarizing the correlation of DNA copy number changes and RNA expression patterns from a set of experiments. In addition, CGI uses a Java applet to display the copy number values of a specifi c BAC clone in aCGH experiments side by side with the expression levels of genes that are mapped back to that BAC clone from the microarray experiments. The CGI program is built on top of extensible, reusable graphic components specifically designed for biologists. It is cross-platform compatible and the source code is freely available under the General Public License.

  9. Gene Expression Profiling Soybean Stem Tissue Early Response to Sclerotinia sclerotiorum and In Silico Mapping in Relation to Resistance Markers

    Directory of Open Access Journals (Sweden)

    Bernarda Calla

    2009-07-01

    Full Text Available White mold, caused by (Lib. de Bary, can be a serious disease of crops grown under cool, moist environments. In many plants, such as soybean [ (L. Merr.], complete genetic resistance does not exist. To identify possible genes involved in defense against this pathogen, and to determine possible physiological changes that occur during infection, a microarray screen was conducted using stem tissue to evaluate changes in gene expression between partially resistant and susceptible soybean genotypes at 8 and 14 hours post inoculation. RNA from 15 day-old inoculated plants was labeled and hybridized to soybean cDNA microarrays. ANOVA identified 1270 significant genes from the comparison between time points and 105 genes from the comparison between genotypes. Selected genes were classified into functional categories. The analyses identified changes in cell-wall composition and signaling pathways, as well as suggesting a role for anthocyanin and anthocyanidin synthesis in the defense against . In-silico mapping of both the differentially expressed transcripts and of public markers associated with partial resistance to white mold, provided evidence of several differentially expressed genes being closely positioned to white mold resistance markers, with the two most promising genes encoding a PR-5 and anthocyanidin synthase.

  10. Phenotypic and genetic characterization of a novel phenotype in pigs characterized by juvenile hairlessness and age dependent emphysema

    DEFF Research Database (Denmark)

    Bruun, Camilla S.; Jørgensen, Claus B.; Bay, Lene

    2008-01-01

    Background: A pig phenotype characterized by juvenile hairlessness, thin skin and age dependent lung emphysema has been discovered in a Danish pig herd. The trait shows autosomal co-dominant inheritance with all three genotypes distinguishable. Since the phenotype shows resemblance to the integrin...... of musculi arrectores pili, and at puberty or later localized areas of emphysema are seen in the lungs. Comparative mapping predicted that the porcine ITGB6 and ITGAV orthologs map to SSC15. In an experimentall family (n=113), showing segregation of the trait, the candidate region was confirmed by linkage...... splicing of the ITGB6 pre-mRNA was detected. For both ITGB6 and ITGAV quantitative PCR revealed no significant difference in the expression levels in normal and affected animals. In a western blot, ITGB6 was detected in lung protein samples of all three genotypes. This result was supported by flow...

  11. Imputation of variants from the 1000 Genomes Project modestly improves known associations and can identify low-frequency variant-phenotype associations undetected by HapMap based imputation.

    Science.gov (United States)

    Wood, Andrew R; Perry, John R B; Tanaka, Toshiko; Hernandez, Dena G; Zheng, Hou-Feng; Melzer, David; Gibbs, J Raphael; Nalls, Michael A; Weedon, Michael N; Spector, Tim D; Richards, J Brent; Bandinelli, Stefania; Ferrucci, Luigi; Singleton, Andrew B; Frayling, Timothy M

    2013-01-01

    Genome-wide association (GWA) studies have been limited by the reliance on common variants present on microarrays or imputable from the HapMap Project data. More recently, the completion of the 1000 Genomes Project has provided variant and haplotype information for several million variants derived from sequencing over 1,000 individuals. To help understand the extent to which more variants (including low frequency (1% ≤ MAF 1000 Genomes imputation, respectively, and 9 and 11 that reached a stricter, likely conservative, threshold of P1000 Genomes genotype data modestly improved the strength of known associations. Of 20 associations detected at P1000 Genomes imputed data and one was nominally more strongly associated in HapMap imputed data. We also detected an association between a low frequency variant and phenotype that was previously missed by HapMap based imputation approaches. An association between rs112635299 and alpha-1 globulin near the SERPINA gene represented the known association between rs28929474 (MAF = 0.007) and alpha1-antitrypsin that predisposes to emphysema (P = 2.5×10(-12)). Our data provide important proof of principle that 1000 Genomes imputation will detect novel, low frequency-large effect associations.

  12. ERα and ERK1/2 MAP kinase expression in microdissected stromal and epithelial endometrial cells

    Directory of Open Access Journals (Sweden)

    Said Abu Alkhair Mohamed

    2014-03-01

    Total and phosphorylated levels for ERK1/2 and ERα were measured by quantitation of signals from Western blots using specific antibodies against the active and total forms of ERK1/2 and against ERα. When the level of the proteins was quantitated and normalized to β actin from microdissected stroma and epithelium, no significant difference was detected in the levels of these proteins between the two tissue compartments. There was a trend toward higher expression in the stroma vs. epithelium, respectively (active ERK1/2 0.45 ± 0.17 vs. 0.2 ± 0.65; total ERK1/2 0.54 ± 0.35 vs. 0.28 ± 0.23; ERα 0.82 ± 0.28 vs. 0.54 ± 0.18; n = 6. These data demonstrate that there are comparable levels of ERα (P = 0.41, total ERK1/2 (P = 0.18 and active ERK1/2 (P = 0.13 in the stroma and epithelium of proliferative phase endometrium with a trend toward higher expression of these proteins in the stromal compartment.

  13. Phenotypical analysis of the Lactobacillus rhamnosus GG fimbrial spaFED operon: surface expression and functional characterization of recombinant SpaFED pili in Lactococcus lactis.

    Directory of Open Access Journals (Sweden)

    Johanna Rintahaka

    Full Text Available A noticeable genomic feature of many piliated Gram-positive bacterial species is the presence of more than one pilus-encoding operon. Paradigmatically, the gut-adapted Lactobacillus rhamnosus GG strain contains two different fimbrial operons in its genome. However, whereas one of these operons (called spaCBA is encoding for the functionally mucus-/collagen-binding SpaCBA pilus, for the other operon (called spaFED any native expression of the SpaFED-called pili is still the subject of some uncertainty. Irrespective of such considerations, we decided it would be of relevance or interest to decipher the gross structure of this pilus type, and as well assess its functional capabilities for cellular adhesion and immunostimulation. For this, and by following the approach we had used previously to explicate the immuno-properties of SpaCBA pili, we constructed nisin-inducible expression clones producing either wild-type or SpaF pilin-deleted surface-assembled L. rhamnosus GG SpaFED pili on Lactococcus lactis cells. Using these piliated lactococcal constructs, we found that the pilin-polymerized architecture of a recombinant-produced SpaFED pilus coincides with sequence-based functional predictions of the related pilins, and in fact is prototypical of those other sortase-dependent pilus-like structures thus far characterized for piliated Gram-positive bacteria. Moreover, we confirmed that among the different pilin subunits encompassing spaFED operon-encoded pili, the SpaF pilin is a main adhesion determinant, and when present in the assembled structure can mediate pilus binding to mucus, certain extracellular matrix proteins, and different gut epithelial cell lines. However, somewhat unexpectedly, when recombinant SpaFED pili are surface-attached, we found that they could not potentiate the existing lactococcal cell-induced immune responses so elicited from intestinal- and immune-related cells, but rather instead, they could dampen them. Accordingly, we

  14. Phenotypical analysis of the Lactobacillus rhamnosus GG fimbrial spaFED operon: surface expression and functional characterization of recombinant SpaFED pili in Lactococcus lactis.

    Science.gov (United States)

    Rintahaka, Johanna; Yu, Xia; Kant, Ravi; Palva, Airi; von Ossowski, Ingemar

    2014-01-01

    A noticeable genomic feature of many piliated Gram-positive bacterial species is the presence of more than one pilus-encoding operon. Paradigmatically, the gut-adapted Lactobacillus rhamnosus GG strain contains two different fimbrial operons in its genome. However, whereas one of these operons (called spaCBA) is encoding for the functionally mucus-/collagen-binding SpaCBA pilus, for the other operon (called spaFED) any native expression of the SpaFED-called pili is still the subject of some uncertainty. Irrespective of such considerations, we decided it would be of relevance or interest to decipher the gross structure of this pilus type, and as well assess its functional capabilities for cellular adhesion and immunostimulation. For this, and by following the approach we had used previously to explicate the immuno-properties of SpaCBA pili, we constructed nisin-inducible expression clones producing either wild-type or SpaF pilin-deleted surface-assembled L. rhamnosus GG SpaFED pili on Lactococcus lactis cells. Using these piliated lactococcal constructs, we found that the pilin-polymerized architecture of a recombinant-produced SpaFED pilus coincides with sequence-based functional predictions of the related pilins, and in fact is prototypical of those other sortase-dependent pilus-like structures thus far characterized for piliated Gram-positive bacteria. Moreover, we confirmed that among the different pilin subunits encompassing spaFED operon-encoded pili, the SpaF pilin is a main adhesion determinant, and when present in the assembled structure can mediate pilus binding to mucus, certain extracellular matrix proteins, and different gut epithelial cell lines. However, somewhat unexpectedly, when recombinant SpaFED pili are surface-attached, we found that they could not potentiate the existing lactococcal cell-induced immune responses so elicited from intestinal- and immune-related cells, but rather instead, they could dampen them. Accordingly, we have now provided

  15. Genome-wide association mapping including phenotypes from relatives without genotypes in a single-step (ssGWAS for 6-week body weight in broiler chickens

    Directory of Open Access Journals (Sweden)

    Huiyu eWang

    2014-05-01

    Full Text Available The purpose of this study was to compare results obtained from various methodologies for genome-wide association studies, when applied to real data, in terms of number and commonality of regions identified and their genetic variance explained, computational speed, and possible pitfalls in interpretations of results. Methodologies include: two iteratively reweighted single-step genomic BLUP procedures (ssGWAS1 and ssGWAS2, a single-marker model (CGWAS, and BayesB. The ssGWAS methods utilize genomic breeding values (GEBVs based on combined pedigree, genomic and phenotypic information, while CGWAS and BayesB only utilize phenotypes from genotyped animals or pseudo-phenotypes. In this study, ssGWAS was performed by converting GEBVs to SNP marker effects. Unequal variances for markers were incorporated for calculating weights into a new genomic relationship matrix. SNP weights were refined iteratively. The data was body weight at 6 weeks on 274,776 broiler chickens, of which 4553 were genotyped using a 60k SNP chip. Comparison of genomic regions was based on genetic variances explained by local SNP regions (20 SNPs. After 3 iterations, the noise was greatly reduced of ssGWAS1 and results are similar to that of CGWAS, with 4 out of the top 10 regions in common. In contrast, for BayesB, the plot was dominated by a single region explaining 23.1% of the genetic variance. This same region was found by ssGWAS1 with the same rank, but the amount of genetic variation attributed to the region was only 3%. These finding emphasize the need for caution when comparing and interpreting results from various methods, and highlight that detected associations, and strength of association, strongly depends on methodologies and details of implementations. BayesB appears to overly shrink regions to zero, while overestimating the amount of genetic variation attributed to the remaining SNP effects. The real world is most likely a compromise between methods and remains to

  16. Fine-mapping identifies multiple prostate cancer risk loci at 5p15, one of which associates with TERT expression

    Science.gov (United States)

    Kote-Jarai, Zsofia; Saunders, Edward J.; Leongamornlert, Daniel A.; Tymrakiewicz, Malgorzata; Dadaev, Tokhir; Jugurnauth-Little, Sarah; Ross-Adams, Helen; Al Olama, Ali Amin; Benlloch, Sara; Halim, Silvia; Russel, Roslin; Dunning, Alison M.; Luccarini, Craig; Dennis, Joe; Neal, David E.; Hamdy, Freddie C.; Donovan, Jenny L.; Muir, Ken; Giles, Graham G.; Severi, Gianluca; Wiklund, Fredrik; Gronberg, Henrik; Haiman, Christopher A.; Schumacher, Fredrick; Henderson, Brian E.; Le Marchand, Loic; Lindstrom, Sara; Kraft, Peter; Hunter, David J.; Gapstur, Susan; Chanock, Stephen; Berndt, Sonja I.; Albanes, Demetrius; Andriole, Gerald; Schleutker, Johanna; Weischer, Maren; Canzian, Federico; Riboli, Elio; Key, Tim J.; Travis, Ruth C.; Campa, Daniele; Ingles, Sue A.; John, Esther M.; Hayes, Richard B.; Pharoah, Paul; Khaw, Kay-Tee; Stanford, Janet L.; Ostrander, Elaine A.; Signorello, Lisa B.; Thibodeau, Stephen N.; Schaid, Dan; Maier, Christiane; Vogel, Walther; Kibel, Adam S.; Cybulski, Cezary; Lubinski, Jan; Cannon-Albright, Lisa; Brenner, Hermann; Park, Jong Y.; Kaneva, Radka; Batra, Jyotsna; Spurdle, Amanda; Clements, Judith A.; Teixeira, Manuel R.; Govindasami, Koveela; Guy, Michelle; Wilkinson, Rosemary A.; Sawyer, Emma J.; Morgan, Angela; Dicks, Ed; Baynes, Caroline; Conroy, Don; Bojesen, Stig E.; Kaaks, Rudolf; Vincent, Daniel; Bacot, François; Tessier, Daniel C.; Easton, Douglas F.; Eeles, Rosalind A.

    2013-01-01

    Associations between single nucleotide polymorphisms (SNPs) at 5p15 and multiple cancer types have been reported. We have previously shown evidence for a strong association between prostate cancer (PrCa) risk and rs2242652 at 5p15, intronic in the telomerase reverse transcriptase (TERT) gene that encodes TERT. To comprehensively evaluate the association between genetic variation across this region and PrCa, we performed a fine-mapping analysis by genotyping 134 SNPs using a custom Illumina iSelect array or Sequenom MassArray iPlex, followed by imputation of 1094 SNPs in 22 301 PrCa cases and 22 320 controls in The PRACTICAL consortium. Multiple stepwise logistic regression analysis identified four signals in the promoter or intronic regions of TERT that independently associated with PrCa risk. Gene expression analysis of normal prostate tissue showed evidence that SNPs within one of these regions also associated with TERT expression, providing a potential mechanism for predisposition to disease. PMID:23535824

  17. Cluster analysis of obesity and asthma phenotypes.

    Directory of Open Access Journals (Sweden)

    E Rand Sutherland

    Full Text Available Asthma is a heterogeneous disease with variability among patients in characteristics such as lung function, symptoms and control, body weight, markers of inflammation, and responsiveness to glucocorticoids (GC. Cluster analysis of well-characterized cohorts can advance understanding of disease subgroups in asthma and point to unsuspected disease mechanisms. We utilized an hypothesis-free cluster analytical approach to define the contribution of obesity and related variables to asthma phenotype.In a cohort of clinical trial participants (n = 250, minimum-variance hierarchical clustering was used to identify clinical and inflammatory biomarkers important in determining disease cluster membership in mild and moderate persistent asthmatics. In a subset of participants, GC sensitivity was assessed via expression of GC receptor alpha (GCRα and induction of MAP kinase phosphatase-1 (MKP-1 expression by dexamethasone. Four asthma clusters were identified, with body mass index (BMI, kg/m(2 and severity of asthma symptoms (AEQ score the most significant determinants of cluster membership (F = 57.1, p<0.0001 and F = 44.8, p<0.0001, respectively. Two clusters were composed of predominantly obese individuals; these two obese asthma clusters differed from one another with regard to age of asthma onset, measures of asthma symptoms (AEQ and control (ACQ, exhaled nitric oxide concentration (F(ENO and airway hyperresponsiveness (methacholine PC(20 but were similar with regard to measures of lung function (FEV(1 (% and FEV(1/FVC, airway eosinophilia, IgE, leptin, adiponectin and C-reactive protein (hsCRP. Members of obese clusters demonstrated evidence of reduced expression of GCRα, a finding which was correlated with a reduced induction of MKP-1 expression by dexamethasoneObesity is an important determinant of asthma phenotype in adults. There is heterogeneity in expression of clinical and inflammatory biomarkers of asthma across obese individuals

  18. Mapping the transcription start points of the Staphylococcus aureus eap, emp, and vwb promoters reveals a conserved octanucleotide sequence that is essential for expression of these genes.

    Science.gov (United States)

    Harraghy, Niamh; Homerova, Dagmar; Herrmann, Mathias; Kormanec, Jan

    2008-01-01

    Mapping the transcription start points of the eap, emp, and vwb promoters revealed a conserved octanucleotide sequence (COS). Deleting this sequence abolished the expression of eap, emp, and vwb. However, electrophoretic mobility shift assays gave no evidence that this sequence was a binding site for SarA or SaeR, known regulators of eap and emp.

  19. Raman chemical mapping reveals site of action of HIV protease inhibitors in HPV16 E6 expressing cervical carcinoma cells.

    Science.gov (United States)

    Kim, Dong-Hyun; Jarvis, Roger M; Allwood, J William; Batman, Gavin; Moore, Rowan E; Marsden-Edwards, Emma; Hampson, Lynne; Hampson, Ian N; Goodacre, Royston

    2010-12-01

    It has been shown that the HIV protease inhibitors indinavir and lopinavir may have activity against the human papilloma virus (HPV) type 16 inhibiting HPV E6-mediated proteasomal degradation of p53 in cultured cervical carcinoma cells. However, their mode and site of action is unknown. HPV-negative C33A cervical carcinoma cells and the same cells stably transfected with E6 (C33AE6) were exposed to indinavir and lopinavir at concentrations of 1 mM and 30 μM, respectively. The intracellular distribution of metabolites and metabolic changes induced by these treatments were investigated by Raman microspectroscopic imaging combined with the analysis of cell fractionation products by liquid chromatography-mass spectrometry (LC-MS). A uniform cellular distribution of proteins was found in drug-treated cells irrespective of cell type. Indinavir was observed to co-localise with nucleic acid in the nucleus, but only in E6 expressing cells. Principal components analysis (PCA) score maps generated on the full Raman hypercube and the corresponding PCA loadings plots revealed that the majority of metabolic variations influenced by the drug exposure within the cells were associated with changes in nucleic acids. Analysis of cell fractionation products by LC-MS confirmed that the level of indinavir in nuclear extracts was approximately eight-fold greater than in the cytoplasm. These data demonstrate that indinavir undergoes enhanced nuclear accumulation in E6-expressing cells, which suggests that this is the most likely site of action for this compound against HPV.

  20. Time-dependent miR-16 serum fluctuations together with reciprocal changes in the expression level of miR-16 in mesocortical circuit contribute to stress resilient phenotype in chronic mild stress - An animal model of depression.

    Science.gov (United States)

    Zurawek, Dariusz; Kusmider, Maciej; Faron-Gorecka, Agata; Gruca, Piotr; Pabian, Paulina; Kolasa, Magdalena; Solich, Joanna; Szafran-Pilch, Kinga; Papp, Mariusz; Dziedzicka-Wasylewska, Marta

    2016-01-01

    MicroRNAs (miRNAs) are involved in stress-related pathologies. However, the molecular mechanisms underlying stress resilience are elusive. Using chronic mild stress (CMS), an animal model of depression, we identified animals exhibiting a resilient phenotype. We investigated serum levels of corticosterone, melatonin and 376 mature miRNAs to find peripheral biomarkers associated with the resilient phenotype. miR-16, selected during screening step, was assayed in different brain regions in order to find potential relationship between brain and peripheral alterations in response to stress. Two CMS experiments that lasted for 2 and 7 consecutive weeks were performed. During both CMS procedures, sucrose consumption levels were significantly decreased in anhedonic-like animals (panimals, whereas the drinking profiles of resilient rats did not change despite the rats being stressed. Serum corticosterone measurements indicated that anhedonic-like animals had blunted hypothalamic-pituitary-adrenal (HPA) axis activity, whereas resilient animals exhibited dynamic responses to stress. miRNA profiling revealed that resilient animals had elevated serum levels of miR-16 after 7 weeks of CMS (adjusted p-valueanimals exhibited reciprocal changes in miR-16 expression level in mesocortical pathway after 2 weeks of CMS (panimals can actively cope with stress on a biochemical level and miR-16 may contribute to a "stress-resistant" behavioral phenotype by pleiotropic modulation of the expression of genes involved in the function of the nervous system. Copyright © 2015 Elsevier B.V. and ECNP. All rights reserved.

  1. Fine time course expression analysis identifies cascades of activation and repression and maps a putative regulator of mammalian sex determination.

    Directory of Open Access Journals (Sweden)

    Steven C Munger

    Full Text Available In vertebrates, primary sex determination refers to the decision within a bipotential organ precursor to differentiate as a testis or ovary. Bifurcation of organ fate begins between embryonic day (E 11.0-E12.0 in mice and likely involves a dynamic transcription network that is poorly understood. To elucidate the first steps of sexual fate specification, we profiled the XX and XY gonad transcriptomes at fine granularity during this period and resolved cascades of gene activation and repression. C57BL/6J (B6 XY gonads showed a consistent ~5-hour delay in the activation of most male pathway genes and repression of female pathway genes relative to 129S1/SvImJ, which likely explains the sensitivity of the B6 strain to male-to-female sex reversal. Using this fine time course data, we predicted novel regulatory genes underlying expression QTLs (eQTLs mapped in a previous study. To test predictions, we developed an in vitro gonad primary cell assay and optimized a lentivirus-based shRNA delivery method to silence candidate genes and quantify effects on putative targets. We provide strong evidence that Lmo4 (Lim-domain only 4 is a novel regulator of sex determination upstream of SF1 (Nr5a1, Sox9, Fgf9, and Col9a3. This approach can be readily applied to identify regulatory interactions in other systems.

  2. Can the Five Factor Model of Personality Account for the Variability of Autism Symptom Expression? Multivariate Approaches to Behavioral Phenotyping in Adult Autism Spectrum Disorder

    Science.gov (United States)

    Schwartzman, Benjamin C.; Wood, Jeffrey J.; Kapp, Steven K.

    2016-01-01

    The present study aimed to: determine the extent to which the five factor model of personality (FFM) accounts for variability in autism spectrum disorder (ASD) symptomatology in adults, examine differences in average FFM personality traits of adults with and without ASD and identify distinct behavioral phenotypes within ASD. Adults (N = 828;…

  3. Driving gradual endogenous c-myc overexpression by flow-sorting: intracellular signaling and tumor cell phenotype correlate with oncogene expression

    DEFF Research Database (Denmark)

    Knudsen, Kasper Jermiin; Holm, G.M.N.; Krabbe, J.S.

    2009-01-01

    Insulin-exposed rat mammary cancer cells were flow sorted based on a c-myc reporter plasmid encoding a destabilized green fluorescent protein. Sorted cells exhibited gradual increases in c-myc levels. Cells overexpressing c-myc by only 10% exhibited phenotypic changes attributable to c-myc overex...

  4. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in "Brassica rapa" Fast Plants

    Science.gov (United States)

    Batzli, Janet M.; Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dosa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory…

  5. In Silico Analysis of Gene Expression Network Components Underlying Pigmentation Phenotypes in the Python Identified Evolutionarily Conserved Clusters of Transcription Factor Binding Sites

    Directory of Open Access Journals (Sweden)

    Kristopher J. L. Irizarry

    2016-01-01

    Full Text Available Color variation provides the opportunity to investigate the genetic basis of evolution and selection. Reptiles are less studied than mammals. Comparative genomics approaches allow for knowledge gained in one species to be leveraged for use in another species. We describe a comparative vertebrate analysis of conserved regulatory modules in pythons aimed at assessing bioinformatics evidence that transcription factors important in mammalian pigmentation phenotypes may also be important in python pigmentation phenotypes. We identified 23 python orthologs of mammalian genes associated with variation in coat color phenotypes for which we assessed the extent of pairwise protein sequence identity between pythons and mouse, dog, horse, cow, chicken, anole lizard, and garter snake. We next identified a set of melanocyte/pigment associated transcription factors (CREB, FOXD3, LEF-1, MITF, POU3F2, and USF-1 that exhibit relatively conserved sequence similarity within their DNA binding regions across species based on orthologous alignments across multiple species. Finally, we identified 27 evolutionarily conserved clusters of transcription factor binding sites within ~200-nucleotide intervals of the 1500-nucleotide upstream regions of AIM1, DCT, MC1R, MITF, MLANA, OA1, PMEL, RAB27A, and TYR from Python bivittatus. Our results provide insight into pigment phenotypes in pythons.

  6. Connectomic intermediate phenotypes for psychiatric disorders

    Directory of Open Access Journals (Sweden)

    Alex eFornito

    2012-04-01

    Full Text Available Psychiatric disorders are phenotypically heterogeneous entities with a complex genetic basis. To mitigate this complexity, many investigators study so-called intermediate phenotypes that putatively provide a more direct index of the physiological effects of candidate genetic risk variants than overt psychiatric syndromes. Magnetic resonance imaging (MRI is a particularly popular technique for measuring such phenotypes because it allows interrogation of diverse aspects of brain structure and function in vivo. Much of this work however, has focused on relatively simple measures that quantify variations in the physiology or tissue integrity of specific brain regions in isolation, contradicting an emerging consensus that most major psychiatric disorders do not arise from isolated dysfunction in one or a few brain regions, but rather from disturbed interactions within and between distributed neural circuits; i.e., they are disorders of brain connectivity. The recent proliferation of new MRI techniques for comprehensively mapping the entire connectivity architecture of the brain, termed the human connectome, has provided a rich repertoire of tools for understanding how genetic variants implicated in mental disorder impact distinct neural circuits. In this article, we review research using these connectomic techniques to understand how genetic variation influences the connectivity and topology of human brain networks. We highlight recent evidence from twin and imaging genetics studies suggesting that the penetrance of candidate risk variants for mental illness, such as those in SLC6A4, MAOA, ZNF804A and APOE, may be higher for intermediate phenotypes characterised at the level of distributed neural systems than at the level of spatially localised brain regions. The findings indicate that imaging connectomics provides a powerful framework for understanding how genetic risk for psychiatric disease is expressed through altered structure and function of

  7. The role of MAP kinases in the induction of iNOS expression in neutrophils exposed to NDMA: the involvement transcription factors.

    Science.gov (United States)

    Ratajczak-Wrona, W; Jablonska, E; Garley, M; Jablonski, J; Radziwon, P; Iwaniuk, A

    2013-01-01

    The role of MAP kinases in the activation of AP-1 (c-Jun, c-Fos) and NF-κB p65 engaged in the regulation of iNOS expression in human neutrophils (PMNs) exposed to N-nitrosodimethylamine (NDMA) was analyzed in the study. The study included a group of 20 healthy individuals. Isolated human PMN were incubated in the presence of NDMA. Selective MAP kinases inhibitors were used. The expression of proteins in the cytoplasmic and nuclear fractions was assessed using Western blot method. The results show that NDMA intensifies iNOS, c-Jun, NF-κB p65 and IκB-α expression in the analyzed PMNs. The blocking of the p38 pathway led to lower iNOS expression, and higher expression of c-Jun and c-Fos in the cytoplasmic fraction, and also lower c-Jun expression in the nuclear fraction of PMNs exposed to NDMA. A decrease in iNOS expression in the cytoplasmic fraction, and also c-Jun in both fractions of the examined cells, was observed as a result of JNK pathway inhibition. The blocking of the ERK5 pathway led to higher iNOS, c-Jun and c-Fos expression in the cytoplasmic fraction, and higher c-Jun expression in the nuclear fraction of PMNs exposed to NDMA. The study also demonstrated that blocking of the p38 and JNK pathways resulted in higher expression of NF-κB p65 and IκB-α in the cytoplasmic fraction and their lower expression in the nuclear fraction of these cells. Our data indicate the role of MAP kinases p38 and JNK in the activation of c-Jun and NF-κB p65 transcription factors engaged in the regulation of iNOS expression in human neutrophils exposed to NDMA. However ERK5 kinase is not involved in the regulation of iNOS and NO production by those cells.

  8. CRAVE: a database, middleware and visualization system for phenotype ontologies.

    Science.gov (United States)

    Gkoutos, Georgios V; Green, Eain C J; Greenaway, Simon; Blake, Andrew; Mallon, Ann-Marie; Hancock, John M

    2005-04-01

    A major challenge in modern biology is to link genome sequence information to organismal function. In many organisms this is being done by characterizing phenotypes resulting from mutations. Efficiently expressing phenotypic information requires combinatorial use of ontologies. However tools are not currently available to visualize combinations of ontologies. Here we describe CRAVE (Concept Relation Assay Value Explorer), a package allowing storage, active updating and visualization of multiple ontologies. CRAVE is a web-accessible JAVA application that accesses an underlying MySQL database of ontologies via a JAVA persistent middleware layer (Chameleon). This maps the database tables into discrete JAVA classes and creates memory resident, interlinked objects corresponding to the ontology data. These JAVA objects are accessed via calls through the middleware's application programming interface. CRAVE allows simultaneous display and linking of multiple ontologies and searching using Boolean and advanced searches.

  9. The Human Phenotype Ontology in 2017

    International Nuclear Information System (INIS)

    Köhler, Sebastian; Vasilevsky, Nicole A.; Engelstad, Mark; Foster, Erin; McMurry, Julie

    2016-01-01

    Deep phenotyping has been defined as the precise and comprehensive analysis of phenotypic abnormalities in which the individual components of the phenotype are observed and described. The three components of the Human PhenotypeOntology (HPO; www.human-phenotype-ontology.org) project are the phenotype vocabulary, disease-phenotype annotations and the algorithms that operate on these. These components are being used for computational deep phenotyping and precision medicine as well as integration of clinical data into translational research. The HPO is being increasingly adopted as a standard for phenotypic abnormalities by diverse groups such as international rare disease organizations, registries, clinical labs, biomedical resources, and clinical software tools and will thereby contribute toward nascent efforts at global data exchange for identifying disease etiologies. This update article reviews the progress of the HPO project since the debut Nucleic Acids Research database article in 2014, including specific areas of expansion such as common (complex) disease, new algorithms for phenotype driven genomic discovery and diagnostics, integration of cross-species mapping efforts with the Mammalian Phenotype Ontology, an improved quality control pipeline, and the addition of patient-friendly terminology.

  10. An Automated Pipeline for Engineering Many-Enzyme Pathways: Computational Sequence Design, Pathway Expression-Flux Mapping, and Scalable Pathway Optimization.

    Science.gov (United States)

    Halper, Sean M; Cetnar, Daniel P; Salis, Howard M

    2018-01-01

    Engineering many-enzyme metabolic pathways suffers from the design curse of dimensionality. There are an astronomical number of synonymous DNA sequence choices, though relatively few will express an evolutionary robust, maximally productive pathway without metabolic bottlenecks. To solve this challenge, we have developed an integrated, automated computational-experimental pipeline that identifies a pathway's optimal DNA sequence without high-throughput screening or many cycles of design-build-test. The first step applies our Operon Calculator algorithm to design a host-specific evolutionary robust bacterial operon sequence with maximally tunable enzyme expression levels. The second step applies our RBS Library Calculator algorithm to systematically vary enzyme expression levels with the smallest-sized library. After characterizing a small number of constructed pathway variants, measurements are supplied to our Pathway Map Calculator algorithm, which then parameterizes a kinetic metabolic model that ultimately predicts the pathway's optimal enzyme expression levels and DNA sequences. Altogether, our algorithms provide the ability to efficiently map the pathway's sequence-expression-activity space and predict DNA sequences with desired metabolic fluxes. Here, we provide a step-by-step guide to applying the Pathway Optimization Pipeline on a desired multi-enzyme pathway in a bacterial host.

  11. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  12. Plant phenomics and the need for physiological phenotyping across scales to narrow the genotype-to-phenotype knowledge gap

    Czech Academy of Sciences Publication Activity Database

    Grosskinsky, D. K.; Svensgaard, J.; Christensen, S.; Roitsch, Thomas

    2015-01-01

    Roč. 66, č. 18 (2015), s. 5429-5440 ISSN 0022-0957 Institutional support: RVO:67179843 Keywords : External phenotype * genome–environment–management interaction * genome–phenome map * internal phenotype * phenomics * physiological traits * physiology * plant phenotyping * predictors Subject RIV: EH - Ecology, Behaviour Impact factor: 5.677, year: 2015

  13. Human TRMU encoding the mitochondrial 5-methylaminomethyl-2-thiouridylate-methyltransferase is a putative nuclear modifier gene for the phenotypic expression of the deafness-associated 12S rRNA mutations

    International Nuclear Information System (INIS)

    Yan Qingfeng; Bykhovskaya, Yelena; Li Ronghua; Mengesha, Emebet; Shohat, Mordechai; Estivill, Xavier; Fischel-Ghodsian, Nathan; Guan Minxin

    2006-01-01

    Nuclear modifier genes have been proposed to modulate the phenotypic manifestation of human mitochondrial 12S rRNA A1491G mutation associated with deafness in many families world-wide. Here we identified and characterized the putative nuclear modifier gene TRMU encoding a highly conserved mitochondrial protein related to tRNA modification. A 1937 bp TRMU cDNA has been isolated and the genomic organization of TRMU has been elucidated. The human TRMU gene containing 11 exons encodes a 421 residue protein with a strong homology to the TRMU-like proteins of bacteria and other homologs. TRMU is ubiquitously expressed in various tissues, but abundantly in tissues with high metabolic rates including heart, liver, kidney, and brain. Immunofluorescence analysis of human 143B cells expressing TRMU-GFP fusion protein demonstrated that the human Trmu localizes and functions in mitochondrion. Furthermore, we show that in families with the deafness-associated 12S rRNA A1491G mutation there is highly suggestive linkage and linkage disequilibrium between microsatellite markers adjacent to TRMU and the presence of deafness. These observations suggest that human TRMU may modulate the phenotypic manifestation of the deafness-associated mitochondrial 12S rRNA mutations

  14. Hyper-Expression of PD-1 Is Associated with the Levels of Exhausted and Dysfunctional Phenotypes of Circulating CD161++TCR iVα7.2+ Mucosal-Associated Invariant T Cells in Chronic Hepatitis B Virus Infection

    Directory of Open Access Journals (Sweden)

    Yean K. Yong

    2018-03-01

    Full Text Available Mucosal-associated invariant T (MAIT cells, defined as CD161++TCR iVα7.2+ T cells, play an important role in the innate defense against bacterial infections, and their functionality is impaired in chronic viral infections. Here, we investigated the frequency and functional role of MAIT cells in chronic hepatitis B virus (HBV infection. The peripheral CD3+CD161++TCR iVα7.2+ MAIT cells in chronic HBV-infected patients and healthy controls were phenotypically characterized based on CD57, PD-1, TIM-3, and CTLA-4, as well as HLA-DR and CD38 expression. The frequency of MAIT cells was significantly decreased among chronic HBV-infected individuals as compared to controls. Expression of CD57, PD-1, CTLA-4, as well as HLA-DR and CD38 on MAIT cells was significantly elevated in chronic HBV-infected individuals relative to controls. The percentage of T cell receptor (TCR iVα7.2+ CD161+ MAIT cells did not correlate with HBV viral load but inversely with HLA-DR on CD4+ T cells and MAIT cells and with CD57 on CD8+ T cells suggesting that decrease of MAIT cells may not be attributed to direct infection by HBV but driven by HBV-induced chronic immune activation. The percentage and expression levels of PD-1 as well as CTLA-4 on MAIT cells inversely correlated with plasma HBV-DNA levels, which may suggest either a role for MAIT cells in the control of HBV infection or the effect of HBV replication in the liver on MAIT cell phenotype. We report that decrease of TCR iVα7.2+ MAIT cells in the peripheral blood and their functions were seemingly impaired in chronic HBV-infected patients likely because of the increased expression of PD-1.

  15. Complex chromosome rearrangements related 15q14 microdeletion plays a relevant role in phenotype expression and delineates a novel recurrent syndrome

    Directory of Open Access Journals (Sweden)

    Tomaiuolo Anna

    2011-04-01

    Full Text Available Abstract Complex chromosome rearrangements are constitutional structural rearrangements involving three or more chromosomes or having more than two breakpoints. These are rarely seen in the general population but their frequency should be much higher due to balanced states with no phenotypic presentation. These abnormalities preferentially occur de novo during spermatogenesis and are transmitted in families through oogenesis. Here, we report a de novo complex chromosome rearrangement that interests eight chromosomes in eighteen-year-old boy with an abnormal phenotype consisting in moderate developmental delay, cleft palate, and facial dysmorphisms. Standard G-banding revealed four apparently balanced traslocations involving the chromosomes 1;13, 3;19, 9;15 and 14;18 that appeared to be reciprocal. Array-based comparative genomic hybridization analysis showed no imbalances at all the breakpoints observed except for an interstitial microdeletion on chromosome 15. This deletion is 1.6 Mb in size and is located at chromosome band 15q14, distal to the Prader-Willi/Angelman region. Comparing the features of our patient with published reports of patients with 15q14 deletion this finding corresponds to the smallest genomic region of overlap. The deleted segment at 15q14 was investigated for gene content.

  16. Mapping of brain lipid binding protein (Blbp) in the brain of adult zebrafish, co-expression with aromatase B and links with proliferation.

    Science.gov (United States)

    Diotel, Nicolas; Vaillant, Colette; Kah, Olivier; Pellegrini, Elisabeth

    2016-01-01

    Adult fish exhibit a strong neurogenic capacity due to the persistence of radial glial cells. In zebrafish, radial glial cells display well-established markers such as the estrogen-synthesizing enzyme (AroB) and the brain lipid binding protein (Blbp), which is known to strongly bind omega-3 polyunsaturated fatty acids such as docosahexaenoic acid (DHA). While Blpb is mainly described in the telencephalon of adult zebrafish, its expression in the remaining regions of the brain is poorly documented. The present study was designed to further investigate Blbp expression in the brain, its co-expression with AroB, and its link with radial glial cells proliferation in zebrafish. We generated a complete and detailed mapping of Blbp expression in the whole brain and show its complete co-expression with AroB, except in some tectal and hypothalamic regions. By performing PCNA and Blbp immunohistochemistry on cyp19a1b-GFP (AroB-GFP) fish, we also demonstrated preferential Blbp expression in proliferative radial glial cells in almost all regions studied. To our knowledge, this is the first complete and detailed mapping of Blbp-expressing cells showing strong association between Blbp and radial glial cell proliferation in the adult brain of fish. Given that zebrafish is now recognized models for studying neurogenesis and brain repair, our data provide detailed characterization of Blbp in the entire brain and open up a broad field of research investigating the role of omega-3 polyunsaturated fatty acids in neural stem cell activity in fish. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. AthaMap web tools for the analysis of transcriptional and posttranscriptional regulation of gene expression in Arabidopsis thaliana.

    Science.gov (United States)

    Hehl, Reinhard; Bülow, Lorenz

    2014-01-01

    The AthaMap database provides a map of verified and predicted transcription factor (TF) and small RNA-binding sites for the A. thaliana genome. The database can be used for bioinformatic predictions of putative regulatory sites. Several online web tools are available that address specific questions. Starting with the identification of transcription factor-binding sites (TFBS) in any gene of interest, colocalizing TFBS can be identified as well as common TFBS in a set of user-provided genes. Furthermore, genes can be identified that are potentially targeted by specific transcription factors or small inhibitory RNAs. This chapter provides detailed information on how each AthaMap web tool can be used online. Examples on how this database is used to address questions in circadian and diurnal regulation are given. Furthermore, complementary databases and databases that go beyond questions addressed with AthaMap are discussed.

  18. Field performance of transgenic citrus trees: assessment of the long-term expression of uidA and nptII transgenes and its impact on relevant agronomic and phenotypic characteristics.

    Science.gov (United States)

    Pons, Elsa; Peris, Josep E; Peña, Leandro

    2012-07-15

    The future of genetic transformation as a tool for the improvement of fruit trees depends on the development of proper systems for the assessment of unintended effects in field-grown GM lines. In this study, we used eight transgenic lines of two different citrus types (sweet orange and citrange) transformed with the marker genes β-glucuronidase (uidA) and neomycin phosphotransferase II (nptII) as model systems to study for the first time in citrus the long-term stability of transgene expression and whether transgene-derived pleiotropic effects occur with regard to the morphology, development and fruit quality of orchard-grown GM citrus trees. The stability of the integration and expression of the transgenes was confirmed in 7-year-old, orchard-grown transgenic lines by Southern blot analysis and enzymatic assays (GUS and ELISA NPTII), respectively. Little seasonal variation was detected in the expression levels between plants of the same transgenic line in different organs and over the 3 years of analysis, confirming the absence of rearrangements and/or silencing of the transgenes after transferring the plants to field conditions. Comparisons between the GM citrus lines with their non-GM counterparts across the study years showed that the expression of these transgenes did not cause alterations of the main phenotypic and agronomic plant and fruit characteristics. However, when comparisons were performed between diploid and tetraploid transgenic citrange trees and/or between juvenile and mature transgenic sweet orange trees, significant and consistent differences were detected, indicating that factors other than their transgenic nature induced a much higher phenotypic variability. Our results indicate that transgene expression in GM citrus remains stable during long-term agricultural cultivation, without causing unexpected effects on crop characteristics. This study also shows that the transgenic citrus trees expressing the selectable marker genes that are most

  19. Can the Five Factor Model of Personality Account for the Variability of Autism Symptom Expression? Multivariate Approaches to Behavioral Phenotyping in Adult Autism Spectrum Disorder.

    Science.gov (United States)

    Schwartzman, Benjamin C; Wood, Jeffrey J; Kapp, Steven K

    2016-01-01

    The present study aimed to: determine the extent to which the five factor model of personality (FFM) accounts for variability in autism spectrum disorder (ASD) symptomatology in adults, examine differences in average FFM personality traits of adults with and without ASD and identify distinct behavioral phenotypes within ASD. Adults (N = 828; nASD = 364) completed an online survey with an autism trait questionnaire and an FFM personality questionnaire. FFM facets accounted for 70 % of variance in autism trait scores. Neuroticism positively correlated with autism symptom severity, while extraversion, openness to experience, agreeableness, and conscientiousness negatively correlated with autism symptom severity. Four FFM subtypes emerged within adults with ASD, with three subtypes characterized by high neuroticism and none characterized by lower-than-average neuroticism.

  20. Amplification and high-level expression of heat shock protein 90 marks aggressive phenotypes of human epidermal growth factor receptor 2 negative breast cancer.

    Science.gov (United States)

    Cheng, Qing; Chang, Jeffrey T; Geradts, Joseph; Neckers, Leonard M; Haystead, Timothy; Spector, Neil L; Lyerly, H Kim

    2012-04-17

    Although human epidermal growth factor receptor 2 (HER2) positive or estrogen receptor (ER) positive breast cancers are treated with clinically validated anti-HER2 or anti-estrogen therapies, intrinsic and acquired resistance to these therapies appears in a substantial proportion of breast cancer patients and new therapies are needed. Identification of additional molecular factors, especially those characterized by aggressive behavior and poor prognosis, could prioritize interventional opportunities to improve the diagnosis and treatment of breast cancer. We compiled a collection of 4,010 breast tumor gene expression data derived from 23 datasets that have been posted on the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database. We performed a genome-scale survival analysis using Cox-regression survival analyses, and validated using Kaplan-Meier Estimates survival and Cox Proportional-Hazards Regression survival analyses. We conducted a genome-scale analysis of chromosome alteration using 481 breast cancer samples obtained from The Cancer Genome Atlas (TCGA), from which combined expression and copy number data were available. We assessed the correlation between somatic copy number alterations and gene expression using analysis of variance (ANOVA). Increased expression of each of the heat shock protein (HSP) 90 isoforms, as well as HSP transcriptional factor 1 (HSF1), was correlated with poor prognosis in different subtypes of breast cancer. High-level expression of HSP90AA1 and HSP90AB1, two cytoplasmic HSP90 isoforms, was driven by chromosome coding region amplifications and were independent factors that led to death from breast cancer among patients with triple-negative (TNBC) and HER2-/ER+ subtypes, respectively. Furthermore, amplification of HSF1 was correlated with higher HSP90AA1 and HSP90AB1 mRNA expression among the breast cancer cells without amplifications of these two genes. A collection of HSP90AA1, HSP90AB1 and HSF

  1. MUTYH Associated Polyposis (MAP)

    DEFF Research Database (Denmark)

    Poulsen, Marie Louise Mølgaard; Bisgaard, M L

    2008-01-01

    Adenomatous Polyposis (FAP) and to a lesser extend Lynch Syndrome, which are caused by germline mutations in the APC and Mismatch Repair (MMR) genes, respectively.Here we review research findings regarding MUTYH interactions, genotypic and phenotypic characteristics of MAP, as well as surveillance......MUTYH Associated Polyposis (MAP), a Polyposis predisposition caused by biallelic mutations in the Base Excision Repair (BER) gene MUTYH, confers a marked risk of colorectal cancer (CRC). The MAP phenotype is difficult to distinguish from other hereditary CRC syndromes. Especially from Familial...

  2. Type 3 Fimbriae Encoded on Plasmids Are Expressed from a Unique Promoter without Affecting Host Motility, Facilitating an Exceptional Phenotype That Enhances Conjugal Plasmid Transfer

    DEFF Research Database (Denmark)

    Madsen, Jonas Stenlokke; Riber, Leise; Kot, Witold

    2016-01-01

    Horizontal gene transfer (HGT), the transmission of genetic material to a recipient that is not the progeny of the donor, is fundamental in bacterial evolution. HGT is often mediated by mobile genetic elements such as conjugative plasmids, which may be in conflict with the chromosomal elements...... of the genome because they are independent replicons that may petition their own evolutionary strategy. Here we study differences between type 3 fimbriae encoded on wild type plasmids and in chromosomes. Using known and newly characterized plasmids we show that the expression of type 3 fimbriae encoded...... on plasmids is systematically different, as MrkH, a c-di-GMP dependent transcriptional activator is not needed for strong expression of the fimbriae. MrkH is required for expression of type 3 fimbriae of the Klebsiella pneumoniae chromosome, wherefrom the fimbriae operon (mrkABCDF) of plasmids is believed...

  3. S(+)-ibuprofen destabilizes MYC/MYCN and AKT, increases p53 expression, and induces unfolded protein response and favorable phenotype in neuroblastoma cell lines.

    Science.gov (United States)

    Ikegaki, Naohiko; Hicks, Sakeenah L; Regan, Paul L; Jacobs, Joshua; Jumbo, Amina S; Leonhardt, Payton; Rappaport, Eric F; Tang, Xao X

    2014-01-01

    Neuroblastoma is a common pediatric solid tumor that exhibits a striking clinical bipolarity: favorable and unfavorable. The survival rate of children with unfavorable neuroblastoma remains low among all childhood cancers. MYCN and MYC play a crucial role in determining the malignancy of unfavorable neuroblastomas, whereas high-level expression of the favorable neuroblastoma genes is associated with a good disease outcome and confers growth suppression of neuroblastoma cells. A small fraction of neuroblastomas harbors TP53 mutations at diagnosis, but a higher proportion of the relapse cases acquire TP53 mutations. In this study, we investigated the effect of S(+)-ibuprofen on neuroblastoma cell lines, focusing on the expression of the MYCN, MYC, AKT, p53 proteins and the favorable neuroblastoma genes in vitro as biomarkers of malignancy. Treatment of neuroblastoma cell lines with S(+)-ibuprofen resulted in a significant growth suppression. This growth effect was accompanied by a marked decrease in the expression of MYC, MYCN, AKT and an increase in p53 expression in neuroblastoma cell lines without TP53 mutation. In addition, S(+)-ibuprofen enhanced the expression of some favorable neuroblastoma genes (EPHB6, CD44) and genes involved in growth suppression and differentiation (EGR1, EPHA2, NRG1 and SEL1L). Gene expression profile and Ingenuity pathway analyses using TP53-mutated SKNAS cells further revealed that S(+)-ibuprofen suppressed molecular pathways associated with cell growth and conversely enhanced those of cell cycle arrest and the unfolded protein response. Collectively, these results suggest that S(+)-ibuprofen or its related compounds may have the potential for therapeutic and/or palliative use for unfavorable neuroblastoma.

  4. Divergent frequencies of IGF-I receptor-expressing blood lymphocytes in monozygotic twin pairs discordant for Graves' disease: evidence for a phenotypic signature ascribable to nongenetic factors

    DEFF Research Database (Denmark)

    Douglas, Raymond S; Brix, Thomas H; Hwang, Catherine J

    2009-01-01

    CONTEXT: Graves' disease (GD) is an autoimmune process of the thyroid and orbital connective tissues. The fraction of T and B cells expressing IGF-I receptor (IGF-IR) is increased in GD. It is a potentially important autoantigen in GD. Susceptibility to GD arises from both genetic and acquired...

  5. STMN-1 is a potential marker of lymph node metastasis in distal esophageal adenocarcinomas and silencing its expression can reverse malignant phenotype of tumor cells

    International Nuclear Information System (INIS)

    Akhtar, Javed; Wang, Zhou; Yu, Che; Li, Chen-Sheng; Shi, Yu-Long; Liu, Hong-Jun

    2014-01-01

    Distal esophageal adenocarcinoma is a highly aggressive neoplasm. Despite advances in diagnosis and therapy, the prognosis is still poor. Stathmin (STMN-1) is a ubiquitously expressed microtubule destabilizing phosphoprotein. It promotes the disassembly of microtubules and prevents assembly. STMN-1 can cause uncontrolled cell proliferation when mutated and not functioning properly. Recently, found to be overexpressed in many types of human cancers. However, its clinical significance remains elusive in distal esophageal adenocarcinoma. Here, we reported for the first time that STMN-1 is highly overexpressed in adenocarcinomas of the distal esophagus and strongly associated with lymph node metastasis. STMN-1 expression in 63 cases of distal esophageal adenocarcinoma was analyzed by immunoblotting, while expression in esophageal adenocarcinoma cells was determined by immunocytochemistry, immunofluorescence, qRT-PCR and western blotting. Lentivirus-mediated RNAi was employed to knock-down STMN-1 expression in Human esophageal adenocarcinoma cells. The relationship between STMN-1 expression and lymph node metastasis in distal esophageal adenocarcinoma was determined by univariate and multivariate analyses. STMN-1 was detected in 31 (49.21%) of the 63 cases. STMN-1 was highly overexpressed in specimens with lymph node metastasis pN (+), but its expression was almost undetected in pN (−) status. Multivarian regression analysis demonstrated that STMN-1 overexpression is an independent factor for lymph node metastasis in distal esophageal adenocarcinoma. STMN-1 shRNA effectively reduced STMN-1 expression in esophageal adenocarcinoma cells (P < 0.05), which significantly suppressed proliferation (P < 0.05), increased migration (P < 0.05) and invasion ability (P < 0.05) and G1 phase arrest (P < 0.05) which lead to induction of apoptosis in esophageal adenocarcinoma cells in vitro. To verify the in vitro data, we conducted in vivo tumor xenograft studies. Esophageal

  6. Expression of ankyrin repeat and suppressor of cytokine signaling box protein 4 (Asb-4) in proopiomelanocortin neurons of the arcuate nucleus of mice produces a hyperphagic, lean phenotype.

    Science.gov (United States)

    Li, Ji-Yao; Chai, Biao-Xin; Zhang, Weizhen; Wang, Hui; Mulholland, Michael W

    2010-01-01

    Ankyrin repeat and suppressor of cytokine signaling box-containing protein 4 (Asb-4) is specifically expressed in the energy homeostasis-related brain areas and colocalizes with proopiomelanocortin (POMC) neurons of the arcuate nucleus (ARC). Injection of insulin into the third ventricle of the rat brain increased Asb-4 mRNA expression in the paraventricular nucleus but not in the ARC of the hypothalamus, whereas injection of leptin (ip) increased Asb-4 expression in both mouse paraventricular nucleus and ARC. A transgenic mouse in which Myc-tagged Asb-4 is specifically expressed in POMC neurons of the ARC was made and used to study the effects of Asb-4 on ingestive behavior and metabolic rate. Animals with overexpression of Asb-4 in POMC neurons demonstrated an increase in food intake. However, POMC-Asb-4 transgenic animals gained significantly less weight from 6-30 wk of age. The POMC-Asb-4 mice had reduced fat mass and increased lean mass and lower levels of blood leptin. The transgenic animals were resistant to high-fat diet-induced obesity. Transgenic mice had significantly higher rates of oxygen consumption and carbon dioxide production than wild-type mice during both light and dark periods. The locomotive activity of transgenic mice was increased. The overexpression of Asb-4 in POMC neurons increased POMC mRNA expression in the ARC. The transgenic animals had no observed effect on peripheral glucose metabolism and the activity of the autonomic nervous system. These results indicate that Asb-4 is a key regulatory protein in the central nervous system, involved in the control of feeding behavior and metabolic rate.

  7. Mapping the expression of the sex determining factor Doublesex1 in Daphnia magna using a knock-in reporter.

    Science.gov (United States)

    Nong, Quang Dang; Mohamad Ishak, Nur Syafiqah; Matsuura, Tomoaki; Kato, Yasuhiko; Watanabe, Hajime

    2017-11-02

    Sexually dimorphic traits are common and widespread among animals. The expression of the Doublesex-/Mab-3-domain (DM-domain) gene family has been widely studied in model organisms and has been proven to be essential for the development and maintenance of sex-specific traits. However, little is known about the detailed expression patterns in non-model organisms. In the present study, we demonstrated the spatiotemporal expression of the DM-domain gene, doublesex1 (dsx1), in the crustacean Daphnia magna, which parthenogenetically produces males in response to environmental cues. We developed a dsx1 reporter strain to track dsx1 activity in vivo by inserting the mCherry gene into the dsx1 locus using the TALEN-mediated knock-in approach. After confirming dsx1 expression in male-specific traits in juveniles and adults, we performed time-lapse imaging of embryogenesis. Shortly after gastrulation stage, a presumptive primary organiser, named cumulus, first showed male-specific dsx1 expression. This cell mass moved to the posterior growth zone that distributes dsx1-expressing progenitor cells across the body during axial elongation, before embryos start male-specific dsx1 expression in sexually dimorphic structures. The present study demonstrated the sex-specific dsx1 expression in cell populations involved in basal body formation.

  8. Complementation Studies of Bacteriophage λ O Amber Mutants by Allelic Forms of O Expressed from Plasmid, and O-P Interaction Phenotypes.

    Science.gov (United States)

    Hayes, Sidney; Rajamanickam, Karthic; Hayes, Connie

    2018-04-05

    λ genes O and P are required for replication initiation from the bacteriophage λ origin site, ori λ, located within gene O . Questions have persisted for years about whether O-defects can indeed be complemented in trans . We show the effect of original null mutations in O and the influence of four origin mutations (three are in-frame deletions and one is a point mutation) on complementation. This is the first demonstration that O proteins with internal deletions can complement for O activity, and that expression of the N-terminal portion of gene P can completely prevent O complementation. We show that O-P co-expression can limit the lethal effect of P on cell growth. We explore the influence of the contiguous small RNA OOP on O complementation and P-lethality.

  9. Punctuated Equilibrium in Statistical Models of Generalized Coevolutionary Resilience: How Sudden Ecosystem Transitions Can Entrain Both Phenotype Expression and Darwinian Selection

    Science.gov (United States)

    Wallace, Rodrick; Wallace, Deborah

    We argue that mesoscale ecosystem resilience shifts akin to sudden phase transitions in physical systems can entrain similarly punctuated events of gene expression on more rapid time scales, and, in part through such means, slower changes induced by selection pressure, triggering punctuated equilibrium Darwinian evolutionary transitions on geologic time scales. The approach reduces ecosystem, gene expression, and Darwinian genetic dynamics to a least common denominator of information sources interacting by crosstalk at markedly differing rates. Pettini's 'topological hypothesis', via a homology between information source uncertainty and free energy density, generates a regression-like class of statistical models of sudden coevolutionary phase transition based on the Rate Distortion and Shannon-McMillan Theorems of information theory which links all three levels. A mathematical treatment of Holling's extended keystone hypothesis regarding the particular role of mesoscale phenomena in entraining both slower and faster dynamical structures produces the result. A main theme is the necessity of a cognitive paradigm for gene expression, mirroring I. Cohen's cognitive approach to immune function. Invocation of the necessary conditions imposed by the asymptotic limit theorems of communication theory enables us to penetrate one layer more deeply before needing to impose an empirically-derived phenomenological system of 'Onsager relation' recursive coevolutionary stochastic differential equations. Extending the development to second order via a large deviations argument permits modeling the influence of human cultural structures on ecosystems as 'farming'.

  10. Aberrant expression of the S1P regulating enzymes, SPHK1 and SGPL1, contributes to a migratory phenotype in OSCC mediated through S1PR2.

    Science.gov (United States)

    Patmanathan, Sathya Narayanan; Johnson, Steven P; Lai, Sook Ling; Panja Bernam, Suthashini; Lopes, Victor; Wei, Wenbin; Ibrahim, Maha Hafez; Torta, Federico; Narayanaswamy, Pradeep; Wenk, Markus R; Herr, Deron R; Murray, Paul G; Yap, Lee Fah; Paterson, Ian C

    2016-05-10

    Oral squamous cell carcinoma (OSCC) is a lethal disease with a 5-year mortality rate of around 50%. Molecular targeted therapies are not in routine use and novel therapeutic targets are required. Our previous microarray data indicated sphingosine 1-phosphate (S1P) metabolism and signalling was deregulated in OSCC. In this study, we have investigated the contribution of S1P signalling to the pathogenesis of OSCC. We show that the expression of the two major enzymes that regulate S1P levels were altered in OSCC: SPHK1 was significantly upregulated in OSCC tissues compared to normal oral mucosa and low levels of SGPL1 mRNA correlated with a worse overall survival. In in vitro studies, S1P enhanced the migration/invasion of OSCC cells and attenuated cisplatin-induced death. We also demonstrate that S1P receptor expression is deregulated in primary OSCCs and that S1PR2 is over-expressed in a subset of tumours, which in part mediates S1P-induced migration of OSCC cells. Lastly, we demonstrate that FTY720 induced significantly more apoptosis in OSCC cells compared to non-malignant cells and that FTY720 acted synergistically with cisplatin to induce cell death. Taken together, our data show that S1P signalling promotes tumour aggressiveness in OSCC and identify S1P signalling as a potential therapeutic target.

  11. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways

    OpenAIRE

    Musungu, Bryan M.; Bhatnagar, Deepak; Brown, Robert L.; Payne, Gary A.; OBrian, Greg; Fakhoury, Ahmad M.; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flav...

  12. Cottonseed protein, oil, and mineral status in near-isogenic Gossypium hirsutum cotton lines expressing fuzzy/linted and fuzzless/linted seed phenotypes under field conditions

    Directory of Open Access Journals (Sweden)

    Nacer eBellaloui

    2015-03-01

    Full Text Available Cotton is an important crop in the world and is a major source of oil for human consumption and cotton meal for livestock. Cottonseed nutrition (seed composition: protein, oil, and minerals determine the quality of seeds. Therefore, maintaining optimum levels of cottonseed nutrition is critical. Physiological and genetic mechanisms controlling the levels of these constituents in cottonseed are still largely unknown. Our previous research conducted under greenhouse conditions showed that seed and leaf nutrition differed between fuzzless and fuzzy seed isolines. Therefore, the objective of this research was to investigate the seed fuzz phenotype (trait effects on seed protein, oil, N, C, S, and minerals in five sets of near-isogenic mutant cotton lines for seed fuzz in a two-year experiment under field condition to evaluate the stability of the effect of the trait on seed nutrition. The isolines (genotypes in each set differ for the seed fuzz trait (fuzzless/linted seed line, N lines, and fuzzy/linted seed line, F lines. Results showed that seed protein was higher in the fuzzy genotype in all sets, but seed oil was higher in fuzzless genotype in all sets. The concentrations of seed Ca and C were higher in all fuzzless genotypes, but N, S, B, Fe, and Zn were higher in most of the fuzzy genotypes. Generally, minerals were higher in leaves of F lines, suggesting the translocation of minerals from leaves to seeds was limited. The research demonstrated that fiber development could be involved in cottonseed composition. This may be due to the involvement of fiber development in carbon and nitrogen metabolism, and the mobility of nutrients from leaves (source to seed (sink. This information is beneficial to breeders to consider fuzzless cottonseed for potential protein and oil use and select for higher oil or higher protein content, and to physiologists to further understand the mobility of minerals to increase the quality of cottonseed nutrition for

  13. Combined Analysis of COX-2 and p53 Expressions Reveals Synergistic Inverse Correlations with Microsatellite Instability and CpG Island Methylator Phenotype in Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Shuji Ogino

    2006-06-01

    Full Text Available Cyclooxygenase-2 (COX-2 overexpression and mutations of p53 (a known COX-2 regulator are inversely associated with microsatellite instability—high (MSI-H and CpG island methylator phenotype (CIMP, characterized by extensive promoter methylation, is associated with MSI-H. However, no studies have comprehensively examined interrelations between COX-2, p53, MSI, and CIMP. Using MethyLight, we measured DNA methylation in five CIMP-specific gene promoters [CACNA1G, CDKN2A (p16/INK4A, CRABP1, MLH1, and NEUROG1] in relatively unbiased samples of 751 colorectal cancer cases obtained from two large prospective cohorts; 115 (15% tumors were CIMP-high (≥ 4 of 5 methylated promoters, 251 (33% were CIMP-low (1 to 3 methylated promoters, and the remaining 385 (51% were CIMP-0 (no methylated promoters. CIMP-high tumors were much less frequent in COX-2+/p53+ tumors (4.6% than in COX-2+/p53- tumors (19%; P < .0001, COX-2-/p53+ tumors (17%; P = .04, and COX-2-/p53- tumors (28%; P < .0001. In addition, COX-2+/p53+ tumors were significantly less common in MSI-H CIMP-high tumors (9.7% than in non-MSI-H CIMP-low/CIMP-0 tumors (44–47%; P < .0001. In conclusion, COX-2 and p53 alterations were synergistically inversely correlated with both MSI-H and CIMP-high. Our data suggest that a combined analysis of COX-2 and p53 may be more useful for the molecular classification of colorectal cancer than either COX-2 or p53 analysis alone.

  14. Tandemly arranged chalcone synthase A genes contribute to the spatially regulated expression of siRNA and the natural bicolor floral phenotype in Petunia hybrida.

    Science.gov (United States)

    Morita, Yasumasa; Saito, Ryoko; Ban, Yusuke; Tanikawa, Natsu; Kuchitsu, Kazuyuki; Ando, Toshio; Yoshikawa, Manabu; Habu, Yoshiki; Ozeki, Yoshihiro; Nakayama, Masayoshi

    2012-06-01

    The natural bicolor floral traits of the horticultural petunia (Petunia hybrida) cultivars Picotee and Star are caused by the spatial repression of the chalcone synthase A (CHS-A) gene, which encodes an anthocyanin biosynthetic enzyme. Here we show that Picotee and Star petunias carry the same short interfering RNA (siRNA)-producing locus, consisting of two intact CHS-A copies, PhCHS-A1 and PhCHS-A2, in a tandem head-to-tail orientation. The precursor CHS mRNAs are transcribed from the two CHS-A copies throughout the bicolored petals, but the mature CHS mRNAs are not found in the white tissues. An analysis of small RNAs revealed the accumulation of siRNAs of 21 nucleotides that originated from the exon 2 region of both CHS-A copies. This accumulation is closely correlated with the disappearance of the CHS mRNAs, indicating that the bicolor floral phenotype is caused by the spatially regulated post-transcriptional silencing of both CHS-A genes. Linkage between the tandemly arranged CHS-A allele and the bicolor floral trait indicates that the CHS-A allele is a necessary factor to confer the trait. We suppose that the spatially regulated production of siRNAs in Picotee and Star flowers is triggered by another putative regulatory locus, and that the silencing mechanism in this case may be different from other known mechanisms of post-transcriptional gene silencing in plants. A sequence analysis of wild Petunia species indicated that these tandem CHS-A genes originated from Petunia integrifolia and/or Petunia inflata, the parental species of P. hybrida, as a result of a chromosomal rearrangement rather than a gene duplication event. © 2012 The Authors. The Plant Journal © 2012 Blackwell Publishing Ltd.

  15. Comprehensive analysis of CpG island methylator phenotype (CIMP)-high, -low, and -negative colorectal cancers based on protein marker expression and molecular features.

    Science.gov (United States)

    Zlobec, Inti; Bihl, Michel; Foerster, Anja; Rufle, Alex; Lugli, Alessandro

    2011-11-01

    CpG island methylator phenotype (CIMP) is being investigated for its role in the molecular and prognostic classification of colorectal cancer patients but is also emerging as a factor with the potential to influence clinical decision-making. We report a comprehensive analysis of clinico-pathological and molecular features (KRAS, BRAF and microsatellite instability, MSI) as well as of selected tumour- and host-related protein markers characterizing CIMP-high (CIMP-H), -low, and -negative colorectal cancers. Immunohistochemical analysis for 48 protein markers and molecular analysis of CIMP (CIMP-H: ≥ 4/5 methylated genes), MSI (MSI-H: ≥ 2 instable genes), KRAS, and BRAF were performed on 337 colorectal cancers. Simple and multiple regression analysis and receiver operating characteristic (ROC) curve analysis were performed. CIMP-H was found in 24 cases (7.1%) and linked (p CIMP-low or -negative cases. Of the 48 protein markers, decreased levels of RKIP (p = 0.0056), EphB2 (p = 0.0045), CK20 (p = 0.002), and Cdx2 (p CIMP-H, independently of MSI status. In addition to the expected clinico-pathological and molecular associations, CIMP-H colorectal cancers are characterized by a loss of protein markers associated with differentiation, and metastasis suppression, and have increased CD8+ T-lymphocytes regardless of MSI status. In particular, Cdx2 loss seems to strongly predict CIMP-H in both microsatellite-stable (MSS) and MSI-H colorectal cancers. Cdx2 is proposed as a surrogate marker for CIMP-H. Copyright © 2011 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.

  16. EXPRESS

    International Nuclear Information System (INIS)

    Ancelin, C.; Le, P.; DeSaint-Quentin, S.; Villatte, N.

    1987-01-01

    This paper presents EXPRESS, an expert system developed for the automation of reliability studies. The first part consists in the description of the method for static thermohydraulic systems. In this step, the authors define the knowledge representation based on the two inference engines - ALOUETTE and LCR developed by EDF. They explain all the process to construct a fault tree from a topological and functional description of the system. Numerous examples are exhibited in illustration of the method. This is followed by the lessons derived from the studies performed on some safety systems of the PALUEL nuclear plant. The development of the same approach for electric power systems is described, insisting on the difference resulting from the sequential nature of these systems. Finally, they show the main advantages identified during the studies

  17. Maps & minds : mapping through the ages

    Science.gov (United States)

    ,

    1984-01-01

    Throughout time, maps have expressed our understanding of our world. Human affairs have been influenced strongly by the quality of maps available to us at the major turning points in our history. "Maps & Minds" traces the ebb and flow of a few central ideas in the mainstream of mapping. Our expanding knowledge of our cosmic neighborhood stems largely from a small number of simple but grand ideas, vigorously pursued.

  18. Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA of Lactobacillus plantarum 423, monitored with real-time PCR.

    Science.gov (United States)

    Ramiah, K; van Reenen, C A; Dicks, L M T

    2007-05-30

    Expression of the mucus adhesion genes Mub and MapA, adhesion-like factor EF-Tu and bacteriocin gene plaA by Lactobacillus plantarum 423, grown in the presence of bile, pancreatin and at low pH, was studied by real-time PCR. Mub, MapA and EF-Tu were up-regulated in the presence of mucus, proportional to increasing concentrations. Expression of MapA was up-regulated in the presence of 3.0 g/l bile and 3.0 g/l pancreatin at pH 6.5. Similar results were recorded in the presence of 10.0 g/l bile and 10.0 g/l pancreatin at pH 6.5. Expression of Mub was down-regulated in the presence of bile and pancreatin, whilst the expression of EF-Tu and plaA remained unchanged. Expression of Mub and MapA remained unchanged at pH 4.0, whilst expression of EF-Tu and plaA were up-regulated. Expression of MapA was down-regulated in the presence of 1.0 g/l l-cysteine HCl, suggesting that the gene is regulated by transcription attenuation that involves cysteine.

  19. Selection and validation of potato candidate genes for maturity corrected resistance to Phytophthora infestans based on differential expression combined with SNP association and linkage mapping

    Directory of Open Access Journals (Sweden)

    Meki Shehabu Muktar

    2015-09-01

    Full Text Available Late blight of potato (Solanum tuberosum L. caused by the oomycete Phytophthora infestans (Mont. de Bary, is one of the most important bottlenecks of potato production worldwide. Cultivars with high levels of durable, race unspecific, quantitative resistance are part of a solution to this problem. However, breeding for quantitative resistance is hampered by the correlation between resistance and late plant maturity, which is an undesirable agricultural attribute. The objectives of our research are (i the identification of genes that condition quantitative resistance to P. infestans not compromised by late plant maturity and (ii the discovery of diagnostic single nucleotide polymorphism (SNP markers to be used as molecular tools to increase efficiency and precision of resistance breeding. Twenty two novel candidate genes were selected based on comparative transcript profiling by SuperSAGE (serial analysis of gene expression in groups of plants with contrasting levels of maturity corrected resistance (MCR. Reproducibility of differential expression was tested by quantitative real time PCR and allele specific pyrosequencing in four new sets of genotype pools with contrasting late blight resistance levels, at three infection time points and in three independent infection experiments. Reproducibility of expression patterns ranged from 28% to 97%. Association mapping in a panel of 184 tetraploid cultivars identified SNPs in five candidate genes that were associated with MCR. These SNPs can be used in marker-assisted resistance breeding. Linkage mapping in two half-sib families (n = 111 identified SNPs in three candidate genes that were linked with MCR. The differentially expressed genes that showed association and/or linkage with MCR putatively function in phytosterol synthesis, fatty acid synthesis, asparagine synthesis, chlorophyll synthesis, cell wall modification and in the response to pathogen elicitors.

  20. Analysis of gene expression data from non-small cell lung carcinoma cell lines reveals distinct sub-classes from those identified at the phenotype level.

    Directory of Open Access Journals (Sweden)

    Andrew R Dalby

    Full Text Available Microarray data from cell lines of Non-Small Cell Lung Carcinoma (NSCLC can be used to look for differences in gene expression between the cell lines derived from different tumour samples, and to investigate if these differences can be used to cluster the cell lines into distinct groups. Dividing the cell lines into classes can help to improve diagnosis and the development of screens for new drug candidates. The micro-array data is first subjected to quality control analysis and then subsequently normalised using three alternate methods to reduce the chances of differences being artefacts resulting from the normalisation process. The final clustering into sub-classes was carried out in a conservative manner such that sub-classes were consistent across all three normalisation methods. If there is structure in the cell line population it was expected that this would agree with histological classifications, but this was not found to be the case. To check the biological consistency of the sub-classes the set of most strongly differentially expressed genes was be identified for each pair of clusters to check if the genes that most strongly define sub-classes have biological functions consistent with NSCLC.

  1. Childhood asthma-predictive phenotype.

    Science.gov (United States)

    Guilbert, Theresa W; Mauger, David T; Lemanske, Robert F

    2014-01-01

    Wheezing is a fairly common symptom in early childhood, but only some of these toddlers will experience continued wheezing symptoms in later childhood. The definition of the asthma-predictive phenotype is in children with frequent, recurrent wheezing in early life who have risk factors associated with the continuation of asthma symptoms in later life. Several asthma-predictive phenotypes were developed retrospectively based on large, longitudinal cohort studies; however, it can be difficult to differentiate these phenotypes clinically as the expression of symptoms, and risk factors can change with time. Genetic, environmental, developmental, and host factors and their interactions may contribute to the development, severity, and persistence of the asthma phenotype over time. Key characteristics that distinguish the childhood asthma-predictive phenotype include the following: male sex; a history of wheezing, with lower respiratory tract infections; history of parental asthma; history of atopic dermatitis; eosinophilia; early sensitization to food or aeroallergens; or lower lung function in early life. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  2. Gene expression profiling in susceptible interaction of grapevine with its fungal pathogen Eutypa lata: Extending MapMan ontology for grapevine

    Directory of Open Access Journals (Sweden)

    Usadel Björn

    2009-08-01

    Full Text Available Abstract Background Whole genome transcriptomics analysis is a very powerful approach because it gives an overview of the activity of genes in certain cells or tissue types. However, biological interpretation of such results can be rather tedious. MapMan is a software tool that displays large datasets (e.g. gene expression data onto diagrams of metabolic pathways or other processes and thus enables easier interpretation of results. The grapevine (Vitis vinifera genome sequence has recently become available bringing a new dimension into associated research. Two microarray platforms were designed based on the TIGR Gene Index database and used in several physiological studies. Results To enable easy and effective visualization of those and further experiments, annotation of Vitis vinifera Gene Index (VvGI version 5 to MapMan ontology was set up. Due to specificities of grape physiology, we have created new pictorial representations focusing on three selected pathways: carotenoid pathway, terpenoid pathway and phenylpropanoid pathway, the products of these pathways being important for wine aroma, flavour and colour, as well as plant defence against pathogens. This new tool was validated on Affymetrix microarrays data obtained during berry ripening and it allowed the discovery of new aspects in process regulation. We here also present results on transcriptional profiling of grape plantlets after exposal to the fungal pathogen Eutypa lata using Operon microarrays including visualization of results with MapMan. The data show that the genes induced in infected plants, encode pathogenesis related proteins and enzymes of the flavonoid metabolism, which are well known as being responsive to fungal infection. Conclusion The extension of MapMan ontology to grapevine together with the newly constructed pictorial representations for carotenoid, terpenoid and phenylpropanoid metabolism provide an alternative approach to the analysis of grapevine gene expression

  3. Tamm-Horsfall Glycoprotein Enhances PMN Phagocytosis by Binding to Cell Surface-Expressed Lactoferrin and Cathepsin G That Activates MAP Kinase Pathway

    Directory of Open Access Journals (Sweden)

    Chia-Li Yu

    2011-03-01

    Full Text Available The molecular basis of polymorphonuclear neutrophil (PMN phagocytosis-enhancing activity (PEA by human purified urinary Tamm-Horsfall glyco- protein (THP has not been elucidated. In this study, we found human THP bound to lactoferrin (LF and cathepsin G (CG expressed on the surface of PMN, identified by a proteomic study with MALDI-TOF- LC/LC/mass spectrometric analysis. Pre-incubation of 10% SDS-PAGE electrophoresed PMN lysates with monoclonal anti-LF or anti-CG antibody reduced the binding with THP. To elucidate the signaling pathway of THP on PMN activation, we found THP enhanced ERK1/2 phosphorylation, reduced p38 MAP kinase phosphorylation, but had no effect on DNA binding of the five NF-kB family members in PMN. To further clarify whether the carbohydrate-side chains or protein-core structure in THP molecule is responsible for THP-PEA, THP was cleaved by different degrading enzymes with carbohydrate specificity (neuraminidase and β-galactosidase, protein specificity (V8 protease and proteinase K or glycoconjugate specificity (carboxylpeptidase Y and O-sialoglycoprotein endopeptidase. We clearly demonstrated that the intact protein-core structure in THP molecule was more important for THP-PEA than carbohydrate-side chains. Putting these results together, we conclude that THP adheres to surface-expressed LF and CG on PMN and transduces signaling via the MAP kinase pathway to enhance PMN phagocytosis.

  4. Single-base resolution maps of cultivated and wild rice methylomes and regulatory roles of DNA methylation in plant gene expression

    Directory of Open Access Journals (Sweden)

    Li Xin

    2012-07-01

    Full Text Available Abstract Background DNA methylation plays important biological roles in plants and animals. To examine the rice genomic methylation landscape and assess its functional significance, we generated single-base resolution DNA methylome maps for Asian cultivated rice Oryza sativa ssp. japonica, indica and their wild relatives, Oryza rufipogon and Oryza nivara. Results The overall methylation level of rice genomes is four times higher than that of Arabidopsis. Consistent with the results reported for Arabidopsis, methylation in promoters represses gene expression while gene-body methylation generally appears to be positively associated with gene expression. Interestingly, we discovered that methylation in gene transcriptional termination regions (TTRs can significantly repress gene expression, and the effect is even stronger than that of promoter methylation. Through integrated analysis of genomic, DNA methylomic and transcriptomic differences between cultivated and wild rice, we found that primary DNA sequence divergence is the major determinant of methylational differences at the whole genome level, but DNA methylational difference alone can only account for limited gene expression variation between the cultivated and wild rice. Furthermore, we identified a number of genes with significant difference in methylation level between the wild and cultivated rice. Conclusions The single-base resolution methylomes of rice obtained in this study have not only broadened our understanding of the mechanism and function of DNA methylation in plant genomes, but also provided valuable data for future studies of rice epigenetics and the epigenetic differentiation between wild and cultivated rice.

  5. ESPRIT: an automated, library-based method for mapping and soluble expression of protein domains from challenging targets.

    Science.gov (United States)

    Yumerefendi, Hayretin; Tarendeau, Franck; Mas, Philippe J; Hart, Darren J

    2010-10-01

    Expression of sufficient quantities of soluble protein for structural biology and other applications is often a very difficult task, especially when multimilligram quantities are required. In order to improve yield, solubility or crystallisability of a protein, it is common to subclone shorter genetic constructs corresponding to single- or multi-domain fragments. However, it is not always clear where domain boundaries are located, especially when working on novel targets with little or no sequence similarity to other proteins. Several methods have been described employing aspects of directed evolution to the recombinant expression of challenging proteins. These combine the construction of a random library of genetic constructs of a target with a screening or selection process to identify solubly expressing protein fragments. Here we review several datasets from the ESPRIT (Expression of Soluble Proteins by Random Incremental Truncation) technology to provide a view on its capabilities. Firstly, we demonstrate how it functions using the well-characterised NF-kappaB p50 transcription factor as a model system. Secondly, application of ESPRIT to the challenging PB2 subunit of influenza polymerase has led to several novel atomic resolution structures; here we present an overview of the screening phase of that project. Thirdly, analysis of the human kinase TBK1 is presented to show how the ESPRIT technology rapidly addresses the compatibility of challenging targets with the Escherichia coli expression system.

  6. In vitro and in vivo inhibition of proangiogenic retinal phenotype by an antisense oligonucleotide downregulating uPAR expression.

    Science.gov (United States)

    Lulli, Matteo; Cammalleri, Maurizio; Granucci, Irene; Witort, Ewa; Bono, Silvia; Di Gesualdo, Federico; Lupia, Antonella; Loffredo, Rosa; Casini, Giovanni; Dal Monte, Massimo; Capaccioli, Sergio

    2017-08-26

    Neoangiogenesis is the main pathogenic event involved in a variety of retinal diseases. It has been recently demonstrated that inhibiting the urokinase-type plasminogen activator receptor (uPAR) results in reduced angiogenesis in a mouse model of oxygen-induced retinopathy (OIR), establishing uPAR as a therapeutic target in proliferative retinopathies. Here, we evaluated in cultured human retinal endothelial cells (HRECs) and in OIR mice the potential of a specific antisense oligodeoxyribonucleotide (ASO) in blocking the synthesis of uPAR and in providing antiangiogenic effects. uPAR expression in HRECs was inhibited by lipofection with the phosphorotioated 5'-CGGCGGGTGACCCATGTG-3' ASO-uPAR, complementary to the initial translation site of uPAR mRNA. Inhibition of uPAR expression via ASO-uPAR was evaluated in HRECs by analyzing VEGF-induced tube formation and migration. In addition, the well-established and reproducible murine OIR model was used to induce retinal neovascularization in vivo. OIR mice were injected intraperitoneally with ASO-uPAR and retinopathy was evaluated considering the extent of the avascular area in the central retina and neovascular tuft formation. The ASO-uPAR specifically decreased uPAR mRNA and protein levels in HRECs and mitigated VEGF-induced tube formation and cell migration. Noteworthy, in OIR mice ASO-uPAR administration reduced both the avascular area and the formation of neovascular tufts. In conclusion, although the extrapolation of these experimental findings to the clinic is not straightforward, ASO-uPAR may be considered a potential therapeutic tool for treatment of proliferative retinal diseases. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Canine Distemper Virus Infection Leads to an Inhibitory Phenotype of Monocyte-Derived Dendritic Cells In Vitro with Reduced Expression of Co-Stimulatory Molecules and Increased Interleukin-10 Transcription

    Science.gov (United States)

    Herder, Vanessa; Stein, Veronika M.; Tipold, Andrea; Urhausen, Carola; Günzel-Apel, Anne-Rose; Rohn, Karl; Baumgärtner, Wolfgang; Beineke, Andreas

    2014-01-01

    Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper. PMID:24769532

  8. Canine distemper virus infection leads to an inhibitory phenotype of monocyte-derived dendritic cells in vitro with reduced expression of co-stimulatory molecules and increased interleukin-10 transcription.

    Directory of Open Access Journals (Sweden)

    Visar Qeska

    Full Text Available Canine distemper virus (CDV exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs, responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper.

  9. Canine distemper virus infection leads to an inhibitory phenotype of monocyte-derived dendritic cells in vitro with reduced expression of co-stimulatory molecules and increased interleukin-10 transcription.

    Science.gov (United States)

    Qeska, Visar; Barthel, Yvonne; Herder, Vanessa; Stein, Veronika M; Tipold, Andrea; Urhausen, Carola; Günzel-Apel, Anne-Rose; Rohn, Karl; Baumgärtner, Wolfgang; Beineke, Andreas

    2014-01-01

    Canine distemper virus (CDV) exhibits a profound lymphotropism that causes immunosuppression and increased susceptibility of affected dogs to opportunistic infections. Similar to human measles virus, CDV is supposed to inhibit terminal differentiation of dendritic cells (DCs), responsible for disturbed repopulation of lymphoid tissues and diminished antigen presenting function in dogs. In order to testify the hypothesis that CDV-infection leads to an impairment of professional antigen presenting cells, canine DCs have been generated from peripheral blood monocytes in vitro and infected with CDV. Virus infection was confirmed and quantified by transmission electron microscopy, CDV-specific immunofluorescence, and virus titration. Flow cytometric analyses revealed a significant down-regulation of the major histocompatibility complex class II and co-stimulatory molecules CD80 and CD86 in CDV-infected DCs, indicative of disturbed antigen presenting capacity. Molecular analyses revealed an increased expression of the immune inhibitory cytokine interleukin-10 in DCs following infection. Results of the present study demonstrate that CDV causes phenotypical changes and altered cytokine expression of DCs, which represent potential mechanisms to evade host immune responses and might contribute to immune dysfunction and virus persistence in canine distemper.

  10. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene

    International Nuclear Information System (INIS)

    Li, YanHua; Li, AiHua; Yang, Z.Q.

    2016-01-01

    Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the most significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were

  11. Molecular cloning, genomic organization, chromosome mapping, tissues expression pattern and identification of a novel splicing variant of porcine CIDEb gene

    Energy Technology Data Exchange (ETDEWEB)

    Li, YanHua, E-mail: liyanhua.1982@aliyun.com [Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, China International Science and Technology Cooperation base of Child development and Critical Disorders, Children’s Hospital of Chongqing Medical University, Chongqing 400014 (China); Li, AiHua [Chongqing Cancer Institute & Hospital & Cancer Center, Chongqing 404100 (China); Yang, Z.Q. [Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China)

    2016-09-09

    Cell death-inducing DNA fragmentation factor-α-like effector b (CIDEb) is a member of the CIDE family of apoptosis-inducing factors, CIDEa and CIDEc have been reported to be Lipid droplets (LDs)-associated proteins that promote atypical LD fusion in adipocytes, and responsible for liver steatosis under fasting and obese conditions, whereas CIDEb promotes lipid storage under normal diet conditions [1], and promotes the formation of triacylglyceride-enriched VLDL particles in hepatocytes [2]. Here, we report the gene cloning, chromosome mapping, tissue distribution, genetic expression analysis, and identification of a novel splicing variant of the porcine CIDEb gene. Sequence analysis shows that the open reading frame of the normal porcine CIDEb isoform covers 660bp and encodes a 219-amino acid polypeptide, whereas its alternative splicing variant encodes a 142-amino acid polypeptide truncated at the fourth exon and comprised of the CIDE-N domain and part of the CIDE-C domain. The deduced amino acid sequence of normal porcine CIDEb shows an 85.8% similarity to the human protein and 80.0% to the mouse protein. The CIDEb genomic sequence spans approximately 6KB comprised of five exons and four introns. Radiation hybrid mapping demonstrated that porcine CIDEb is located at chromosome 7q21 and at a distance of 57cR from the most significantly linked marker, S0334, regions that are syntenic with the corresponding region in the human genome. Tissue expression analysis indicated that normal CIDEb mRNA is ubiquitously expressed in many porcine tissues. It was highly expressed in white adipose tissue and was observed at relatively high levels in the liver, lung, small intestine, lymphatic tissue and brain. The normal version of CIDEb was the predominant form in all tested tissues, whereas the splicing variant was expressed at low levels in all examined tissues except the lymphatic tissue. Furthermore, genetic expression analysis indicated that CIDEb mRNA levels were

  12. Decomposing phenotype descriptions for the human skeletal phenome.

    Science.gov (United States)

    Groza, Tudor; Hunter, Jane; Zankl, Andreas

    2013-01-01

    Over the course of the last few years there has been a significant amount of research performed on ontology-based formalization of phenotype descriptions. The intrinsic value and knowledge captured within such descriptions can only be expressed by taking advantage of their inner structure that implicitly combines qualities and anatomical entities. We present a meta-model (the Phenotype Fragment Ontology) and a processing pipeline that enable together the automatic decomposition and conceptualization of phenotype descriptions for the human skeletal phenome. We use this approach to showcase the usefulness of the generic concept of phenotype decomposition by performing an experimental study on all skeletal phenotype concepts defined in the Human Phenotype Ontology.

  13. Increased expression of interleukin-1β in triglyceride-induced macrophage cell death is mediated by p38 MAP kinase.

    Science.gov (United States)

    Sung, Ho Joong; Son, Sin Jee; Yang, Seung-ju; Rhee, Ki-Jong; Kim, Yoon Suk

    2012-07-01

    Triglycerides (TG) are implicated in the development of atherosclerosis through formation of foam cells and induction of macrophage cell death. In this study, we report that addition of exogenous TG induced cell death in phorbol 12-myristate 13-acetate-differentiated THP-1 human macrophages. TG treatment induced a dramatic decrease in interleukin-1β (IL-1β) mRNA expression in a dose- and time-dependent manner. The expression of granulocyte macrophage colony-stimulating factor and platelet endothelial cell adhesion molecule remained unchanged. To identify signaling pathways involved in TG-induced downregulation of IL-1β, we added p38 MAPK, protein kinase C (PKC) or c-Raf1 specific inhibitors. We found that inhibition of p38 MAPK alleviated the TG-induced downregulation of IL-1β, whereas inhibition of PKC and c-Raf1 had no effect. This is the first report showing decreased IL-1β expression during TG-induced cell death in a human macrophage line. Our results suggest that downregulation of IL-1β expression by TG-treated macrophages may play a role during atherogenesis.

  14. Changes in the reproductive function and developmental phenotypes in mice following intramuscular injection of an activin betaA-expressing plasmid

    Directory of Open Access Journals (Sweden)

    Mayo Kelly E

    2008-12-01

    Full Text Available Abstract Background The TGF-beta family protein activin has numerous reported activities with some uncertainty in the reproductive axis and development. The precise roles of activin in in vivo system were investigated using a transient gain of function model. Methods To this end, an expression plasmid, pCMV-rAct, with the activin betaA cDNA fused to the cytomegalovirus promoter, was introduced into muscle of the female adult mice by direct injection. Results Activin betaA mRNA was detected in the muscle by RT-PCR and subsequent Southern blot analysis. Activin betaA was also detected, and western blot analysis revealed a relatively high level of serum activin with correspondingly increased FSH. In the pCMV-rAct-injected female mice, estrus stage within the estrous cycle was extended. Moreover, increased numbers of corpora lutea and a thickened granulosa cell layer with a small antrum in tertiary follicles within the ovary were observed. When injected female mice were mated with males of proven fertility, a subset of embryos died in utero, and most of those that survived exhibited increased body weight. Conclusion Taken together, our data reveal that activin betaA can directly influence the estrous cycle, an integral part of the reproduction in female mice and activin betaA can also influence the embryo development as an endocrine fashion.

  15. Expression of ALS/FTD-linked mutant CCNF in zebrafish leads to increased cell death in the spinal cord and an aberrant motor phenotype.

    Science.gov (United States)

    Hogan, Alison L; Don, Emily K; Rayner, Stephanie L; Lee, Albert; Laird, Angela S; Watchon, Maxinne; Winnick, Claire; Tarr, Ingrid S; Morsch, Marco; Fifita, Jennifer A; Gwee, Serene S L; Formella, Isabel; Hortle, Elinor; Yuan, Kristy C; Molloy, Mark P; Williams, Kelly L; Nicholson, Garth A; Chung, Roger S; Blair, Ian P; Cole, Nicholas J

    2017-07-15

    Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, fatal neurodegenerative disease characterised by the death of upper and lower motor neurons. Approximately 10% of cases have a known family history of ALS and disease-linked mutations in multiple genes have been identified. ALS-linked mutations in CCNF were recently reported, however the pathogenic mechanisms associated with these mutations are yet to be established. To investigate possible disease mechanisms, we developed in vitro and in vivo models based on an ALS-linked missense mutation in CCNF. Proteomic analysis of the in vitro models identified the disruption of several cellular pathways in the mutant model, including caspase-3 mediated cell death. Transient overexpression of human CCNF in zebrafish embryos supported this finding, with fish expressing the mutant protein found to have increased levels of cleaved (activated) caspase-3 and increased cell death in the spinal cord. The mutant CCNF fish also developed a motor neuron axonopathy consisting of shortened primary motor axons and increased frequency of aberrant axonal branching. Importantly, we demonstrated a significant correlation between the severity of the CCNF-induced axonopathy and a reduced motor response to a light stimulus (photomotor response). This is the first report of an ALS-linked CCNF mutation in vivo and taken together with the in vitro model identifies the disruption of cell death pathways as a significant consequence of this mutation. Additionally, this study presents a valuable new tool for use in ongoing studies investigating the pathobiology of ALS-linked CCNF mutations. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  16. Phenotypical and genotypical expression of Wolfram syndrome in 12 patients from a Sicilian district where this syndrome might not be so infrequent as generally expected.

    Science.gov (United States)

    Lombardo, F; Salzano, G; Di Bella, C; Aversa, T; Pugliatti, F; Cara, S; Valenzise, M; De Luca, F; Rigoli, L

    2014-02-01

    Since the original description, there have been only few epidemiological studies of Wolfram syndrome (WS). Aims of the present paper are to ascertain WS prevalence and expression in a district of North-eastern Sicily, i.e. a geographic area where consanguineous unions are not very unusual. Prevalence rates of WS in the Messina district were calculated by taking into consideration both the total population (653,737) and the populations included within the 0-30 year age range (202,681). We estimated the relative prevalence of WS among patients with youth-onset insulin-dependent diabetes mellitus (DM) who are currently aged under 30 years (256). Global WS prevalence in our district is 1:54,478, whereas prevalence among individuals under 30 is 1:16,890 and relative prevalence among patients with juvenile-onset insulin-dependent DM is 1:22.3. When compared with the patients with insulin-dependent DM of Messina district, WS patients did not exhibit significant differences in terms of biochemical features at DM onset, whereas age at DM diagnosis was significantly earlier in WS group. (a) WS prevalence is not so infrequent as generally expected; (b) in our series, DM presented before 10 years in 11/12 patients and ten cases have already developed all the four peculiar manifestations of WS by 26 years; (c) 9/12 patients exhibited a homozygous frameshift/truncation mutation (Y454_L459del_fsX454), which is the one most frequently found also in patients from other Italian regions; (d) age at DM diagnosis was significantly earlier in WS group than in the patients with insulin-dependent DM of Messina district.

  17. Porcine EEF1A1 and EEF1A2 genes: genomic structure, polymorphism, mapping and expression

    Czech Academy of Sciences Publication Activity Database

    Svobodová, K.; Horák, Pavel; Stratil, Antonín; Bartenschlager, H.; Van Poucke, M.; Chalupová, P.; Dvořáková, Věra; Knorr, Ch.; Stupka, R.; Čítek, J.; Šprysl, M.; Palánová, Anna; Peelman, L. J.; Geldermann, H.; Knoll, A.

    2015-01-01

    Roč. 42, č. 8 (2015), s. 1257-1264 ISSN 0301-4851 R&D Projects: GA ČR(CZ) GA523/06/1302; GA ČR GA523/09/0844 Institutional support: RVO:67985904 Keywords : EEF1A1 * EEF1A2 * gene expression Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.698, year: 2015

  18. Identification of an IL-1-induced gene expression pattern in AR+ PCa cells that mimics the molecular phenotype of AR- PCa cells.

    Science.gov (United States)

    Thomas-Jardin, Shayna E; Kanchwala, Mohammed S; Jacob, Joan; Merchant, Sana; Meade, Rachel K; Gahnim, Nagham M; Nawas, Afshan F; Xing, Chao; Delk, Nikki A

    2018-06-01

    In immunosurveillance, bone-derived immune cells infiltrate the tumor and secrete inflammatory cytokines to destroy cancer cells. However, cancer cells have evolved mechanisms to usurp inflammatory cytokines to promote tumor progression. In particular, the inflammatory cytokine, interleukin-1 (IL-1), is elevated in prostate cancer (PCa) patient tissue and serum, and promotes PCa bone metastasis. IL-1 also represses androgen receptor (AR) accumulation and activity in PCa cells, yet the cells remain viable and tumorigenic; suggesting that IL-1 may also contribute to AR-targeted therapy resistance. Furthermore, IL-1 and AR protein levels negatively correlate in PCa tumor cells. Taken together, we hypothesize that IL-1 reprograms AR positive (AR + ) PCa cells into AR negative (AR - ) PCa cells that co-opt IL-1 signaling to ensure AR-independent survival and tumor progression in the inflammatory tumor microenvironment. LNCaP and PC3 PCa cells were treated with IL-1β or HS-5 bone marrow stromal cell (BMSC) conditioned medium and analyzed by RNA sequencing and RT-QPCR. To verify genes identified by RNA sequencing, LNCaP, MDA-PCa-2b, PC3, and DU145 PCa cell lines were treated with the IL-1 family members, IL-1α or IL-1β, or exposed to HS-5 BMSC in the presence or absence of Interleukin-1 Receptor Antagonist (IL-1RA). Treated cells were analyzed by western blot and/or RT-QPCR. Comparative analysis of sequencing data from the AR + LNCaP PCa cell line versus the AR - PC3 PCa cell line reveals an IL-1-conferred gene suite in LNCaP cells that is constitutive in PC3 cells. Bioinformatics analysis of the IL-1 regulated gene suite revealed that inflammatory and immune response pathways are primarily elicited; likely facilitating PCa cell survival and tumorigenicity in an inflammatory tumor microenvironment. Our data supports that IL-1 reprograms AR + PCa cells to mimic AR - PCa gene expression patterns that favor AR-targeted treatment resistance and cell survival. © 2018 Wiley

  19. Swine Influenza Virus PA and Neuraminidase Gene Reassortment into Human H1N1 Influenza Virus Is Associated with an Altered Pathogenic Phenotype Linked to Increased MIP-2 Expression.

    Science.gov (United States)

    Dlugolenski, Daniel; Jones, Les; Howerth, Elizabeth; Wentworth, David; Tompkins, S Mark; Tripp, Ralph A

    2015-05-01

    Swine are susceptible to infection by both avian and human influenza viruses, and this feature is thought to contribute to novel reassortant influenza viruses. In this study, the influenza virus reassortment rate in swine and human cells was determined. Coinfection of swine cells with 2009 pandemic H1N1 virus (huH1N1) and an endemic swine H1N2 (A/swine/Illinois/02860/09) virus (swH1N2) resulted in a 23% reassortment rate that was independent of α2,3- or α2,6-sialic acid distribution on the cells. The reassortants had altered pathogenic phenotypes linked to introduction of the swine virus PA and neuraminidase (NA) into huH1N1. In mice, the huH1N1 PA and NA mediated increased MIP-2 expression early postinfection, resulting in substantial pulmonary neutrophilia with enhanced lung pathology and disease. The findings support the notion that swine are a mixing vessel for influenza virus reassortants independent of sialic acid distribution. These results show the potential for continued reassortment of the 2009 pandemic H1N1 virus with endemic swine viruses and for reassortants to have increased pathogenicity linked to the swine virus NA and PA genes which are associated with increased pulmonary neutrophil trafficking that is related to MIP-2 expression. Influenza A viruses can change rapidly via reassortment to create a novel virus, and reassortment can result in possible pandemics. Reassortments among subtypes from avian and human viruses led to the 1957 (H2N2 subtype) and 1968 (H3N2 subtype) human influenza pandemics. Recent analyses of circulating isolates have shown that multiple genes can be recombined from human, avian, and swine influenza viruses, leading to triple reassortants. Understanding the factors that can affect influenza A virus reassortment is needed for the establishment of disease intervention strategies that may reduce or preclude pandemics. The findings from this study show that swine cells provide a mixing vessel for influenza virus reassortment

  20. Global mapping of transposon location.

    Directory of Open Access Journals (Sweden)

    Abram Gabriel

    2006-12-01

    Full Text Available Transposable genetic elements are ubiquitous, yet their presence or absence at any given position within a genome can vary between individual cells, tissues, or strains. Transposable elements have profound impacts on host genomes by altering gene expression, assisting in genomic rearrangements, causing insertional mutations, and serving as sources of phenotypic variation. Characterizing a genome's full complement of transposons requires whole genome sequencing, precluding simple studies of the impact of transposition on interindividual variation. Here, we describe a global mapping approach for identifying transposon locations in any genome, using a combination of transposon-specific DNA extraction and microarray-based comparative hybridization analysis. We use this approach to map the repertoire of endogenous transposons in different laboratory strains of Saccharomyces cerevisiae and demonstrate that transposons are a source of extensive genomic variation. We also apply this method to mapping bacterial transposon insertion sites in a yeast genomic library. This unique whole genome view of transposon location will facilitate our exploration of transposon dynamics, as well as defining bases for individual differences and adaptive potential.

  1. How to perform RT-qPCR accurately in plant species? A case study on flower colour gene expression in an azalea (Rhododendron simsii hybrids) mapping population.

    Science.gov (United States)

    De Keyser, Ellen; Desmet, Laurence; Van Bockstaele, Erik; De Riek, Jan

    2013-06-24

    Flower colour variation is one of the most crucial selection criteria in the breeding of a flowering pot plant, as is also the case for azalea (Rhododendron simsii hybrids). Flavonoid biosynthesis was studied intensively in several species. In azalea, flower colour can be described by means of a 3-gene model. However, this model does not clarify pink-coloration. The last decade gene expression studies have been implemented widely for studying flower colour. However, the methods used were often only semi-quantitative or quantification was not done according to the MIQE-guidelines. We aimed to develop an accurate protocol for RT-qPCR and to validate the protocol to study flower colour in an azalea mapping population. An accurate RT-qPCR protocol had to be established. RNA quality was evaluated in a combined approach by means of different techniques e.g. SPUD-assay and Experion-analysis. We demonstrated the importance of testing noRT-samples for all genes under study to detect contaminating DNA. In spite of the limited sequence information available, we prepared a set of 11 reference genes which was validated in flower petals; a combination of three reference genes was most optimal. Finally we also used plasmids for the construction of standard curves. This allowed us to calculate gene-specific PCR efficiencies for every gene to assure an accurate quantification. The validity of the protocol was demonstrated by means of the study of six genes of the flavonoid biosynthesis pathway. No correlations were found between flower colour and the individual expression profiles. However, the combination of early pathway genes (CHS, F3H, F3'H and FLS) is clearly related to co-pigmentation with flavonols. The late pathway genes DFR and ANS are to a minor extent involved in differentiating between coloured and white flowers. Concerning pink coloration, we could demonstrate that the lower intensity in this type of flowers is correlated to the expression of F3'H. Currently in plant

  2. Expression and purification of functional JNK2beta2: perspectives on high-level production of recombinant MAP kinases.

    Science.gov (United States)

    Savopoulos, John W; Dowd, Stephen; Armour, Carolyn; Carter, Paul S; Greenwood, Catherine J; Mills, David; Powell, David; Pettman, Gary R; Jenkins, Owen; Walsh, Frank S; Philpott, Karen L

    2002-02-01

    The mitogen-activated protein (MAP) kinases are a group of serine/threonine kinases that mediate intracellular signal transduction in response to environmental stimuli including stress, growth factors, and various cytokines. Of this family, the c-Jun N-terminal kinases (JNKs) are members which, depending on cell type, have been shown to activate the transcription of genes involved in the inflammatory response, apoptosis, and hypertrophy. Here we report the use Baculovirus/Sf9 cells to produce milligram quantities of recombinant JNK2beta2 substrate which could be purified to >90% as judged by SDS-PAGE. In addition, we report a novel method for the site-specific biotinylation for this enzyme and demonstrate that the biotinylated product is an authentic substrate of the upstream kinases MKK4 and 7 and can phosphorylate a downstream target, ATF-2. We also show that the phosphorylated product can be captured efficiently on streptavidin-coated beads for use in scintillation proximity assays. Copyright 2002 Elsevier Science (USA).

  3. Integrating phenotype ontologies with PhenomeNET

    KAUST Repository

    Rodriguez-Garcia, Miguel Angel

    2017-12-19

    Background Integration and analysis of phenotype data from humans and model organisms is a key challenge in building our understanding of normal biology and pathophysiology. However, the range of phenotypes and anatomical details being captured in clinical and model organism databases presents complex problems when attempting to match classes across species and across phenotypes as diverse as behaviour and neoplasia. We have previously developed PhenomeNET, a system for disease gene prioritization that includes as one of its components an ontology designed to integrate phenotype ontologies. While not applicable to matching arbitrary ontologies, PhenomeNET can be used to identify related phenotypes in different species, including human, mouse, zebrafish, nematode worm, fruit fly, and yeast. Results Here, we apply the PhenomeNET to identify related classes from two phenotype and two disease ontologies using automated reasoning. We demonstrate that we can identify a large number of mappings, some of which require automated reasoning and cannot easily be identified through lexical approaches alone. Combining automated reasoning with lexical matching further improves results in aligning ontologies. Conclusions PhenomeNET can be used to align and integrate phenotype ontologies. The results can be utilized for biomedical analyses in which phenomena observed in model organisms are used to identify causative genes and mutations underlying human disease.

  4. Altered phenotypic expression of immunoglobulin heavy-chain variable-region (VH) genes in Alicia rabbits probably reflects a small deletion in the VH genes closest to the joining region.

    Science.gov (United States)

    Allegrucci, M; Newman, B A; Young-Cooper, G O; Alexander, C B; Meier, D; Kelus, A S; Mage, R G

    1990-07-01

    Rabbits of the Alicia strain have a mutation (ali) that segregates with the immunoglobulin heavy-chain (lgh) locus and has a cis effect upon the expression of heavy-chain variable-region (VH) genes encoding the a2 allotype. In heterozygous a1/ali or a3/ali rabbits, serum immunoglobulins are almost entirely the products of the normal a1 or a3 allele and only traces of a2 immunoglobulin are detectable. Adult homozygous ali/ali rabbits likewise have normal immunoglobulin levels resulting from increased production of a-negative immunoglobulins and some residual ability to produce the a2 allotype. By contrast, the majority of the immunoglobulins of wild-type a2 rabbits are a2-positive and only a small percentage are a-negative. Genomic DNAs from homozygous mutant and wild-type animals were indistinguishable by Southern analyses using a variety of restriction enzyme digests and lgh probes. However, when digests with infrequently cutting enzymes were analyzed by transverse alternating-field electrophoresis, the ali DNA fragments were 10-15 kilobases smaller than the wild type. These fragments hybridized to probes both for VH and for a region of DNA a few kilobases downstream of the VH genes nearest the joining region. We suggest that this relatively small deletion affects a segment containing 3' VH genes with important regulatory functions, the loss of which leads to the ali phenotype. These results, and the fact that the 3' VH genes rearrange early in B-cell development, indicate that the 3' end of the VH locus probably plays a key role in regulation of VH gene expression.

  5. Mapping out Map Libraries

    Directory of Open Access Journals (Sweden)

    Ferjan Ormeling

    2008-09-01

    Full Text Available Discussing the requirements for map data quality, map users and their library/archives environment, the paper focuses on the metadata the user would need for a correct and efficient interpretation of the map data. For such a correct interpretation, knowledge of the rules and guidelines according to which the topographers/cartographers work (such as the kind of data categories to be collected, and the degree to which these rules and guidelines were indeed followed are essential. This is not only valid for the old maps stored in our libraries and archives, but perhaps even more so for the new digital files as the format in which we now have to access our geospatial data. As this would be too much to ask from map librarians/curators, some sort of web 2.0 environment is sought where comments about data quality, completeness and up-to-dateness from knowledgeable map users regarding the specific maps or map series studied can be collected and tagged to scanned versions of these maps on the web. In order not to be subject to the same disadvantages as Wikipedia, where the ‘communis opinio’ rather than scholarship, seems to be decisive, some checking by map curators of this tagged map use information would still be needed. Cooperation between map curators and the International Cartographic Association ( ICA map and spatial data use commission to this end is suggested.

  6. Asthma phenotypes in childhood.

    Science.gov (United States)

    Reddy, Monica B; Covar, Ronina A

    2016-04-01

    This review describes the literature over the past 18 months that evaluated childhood asthma phenotypes, highlighting the key aspects of these studies, and comparing these studies to previous ones in this area. Recent studies on asthma phenotypes have identified new phenotypes on the basis of statistical analyses (using cluster analysis and latent class analysis methodology) and have evaluated the outcomes and associated risk factors of previously established early childhood asthma phenotypes that are based on asthma onset and patterns of wheezing illness. There have also been investigations focusing on immunologic, physiologic, and genetic correlates of various phenotypes, as well as identification of subphenotypes of severe childhood asthma. Childhood asthma remains a heterogeneous condition, and investigations into these various presentations, risk factors, and outcomes are important since they can offer therapeutic and prognostic relevance. Further investigation into the immunopathology and genetic basis underlying childhood phenotypes is important so therapy can be tailored accordingly.

  7. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways

    Science.gov (United States)

    Musungu, Bryan M.; Bhatnagar, Deepak; Brown, Robert L.; Payne, Gary A.; OBrian, Greg; Fakhoury, Ahmad M.; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus, a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays, and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays, there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus. Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus. PMID:27917194

  8. A Network Approach of Gene Co-expression in the Zea mays/Aspergillus flavus Pathosystem to Map Host/Pathogen Interaction Pathways.

    Science.gov (United States)

    Musungu, Bryan M; Bhatnagar, Deepak; Brown, Robert L; Payne, Gary A; OBrian, Greg; Fakhoury, Ahmad M; Geisler, Matt

    2016-01-01

    A gene co-expression network (GEN) was generated using a dual RNA-seq study with the fungal pathogen Aspergillus flavus and its plant host Zea mays during the initial 3 days of infection. The analysis deciphered novel pathways and mapped genes of interest in both organisms during the infection. This network revealed a high degree of connectivity in many of the previously recognized pathways in Z. mays such as jasmonic acid, ethylene, and reactive oxygen species (ROS). For the pathogen A. flavus , a link between aflatoxin production and vesicular transport was identified within the network. There was significant interspecies correlation of expression between Z. mays and A. flavus for a subset of 104 Z. mays , and 1942 A. flavus genes. This resulted in an interspecies subnetwork enriched in multiple Z. mays genes involved in the production of ROS. In addition to the ROS from Z. mays , there was enrichment in the vesicular transport pathways and the aflatoxin pathway for A. flavus . Included in these genes, a key aflatoxin cluster regulator, AflS, was found to be co-regulated with multiple Z. mays ROS producing genes within the network, suggesting AflS may be monitoring host ROS levels. The entire GEN for both host and pathogen, and the subset of interspecies correlations, is presented as a tool for hypothesis generation and discovery for events in the early stages of fungal infection of Z. mays by A. flavus .

  9. Stormbow: A Cloud-Based Tool for Reads Mapping and Expression Quantification in Large-Scale RNA-Seq Studies.

    Science.gov (United States)

    Zhao, Shanrong; Prenger, Kurt; Smith, Lance

    2013-01-01

    RNA-Seq is becoming a promising replacement to microarrays in transcriptome profiling and differential gene expression study. Technical improvements have decreased sequencing costs and, as a result, the size and number of RNA-Seq datasets have increased rapidly. However, the increasing volume of data from large-scale RNA-Seq studies poses a practical challenge for data analysis in a local environment. To meet this challenge, we developed Stormbow, a cloud-based software package, to process large volumes of RNA-Seq data in parallel. The performance of Stormbow has been tested by practically applying it to analyse 178 RNA-Seq samples in the cloud. In our test, it took 6 to 8 hours to process an RNA-Seq sample with 100 million reads, and the average cost was $3.50 per sample. Utilizing Amazon Web Services as the infrastructure for Stormbow allows us to easily scale up to handle large datasets with on-demand computational resources. Stormbow is a scalable, cost effective, and open-source based tool for large-scale RNA-Seq data analysis. Stormbow can be freely downloaded and can be used out of box to process Illumina RNA-Seq datasets.

  10. Cloning, expression, and mapping of allergenic determinants of alphaS1-casein, a major cow's milk allergen.

    Science.gov (United States)

    Schulmeister, Ulrike; Hochwallner, Heidrun; Swoboda, Ines; Focke-Tejkl, Margarete; Geller, Beate; Nystrand, Mats; Härlin, Annika; Thalhamer, Josef; Scheiblhofer, Sandra; Keller, Walter; Niggemann, Bodo; Quirce, Santiago; Ebner, Christoph; Mari, Adriano; Pauli, Gabrielle; Herz, Udo; Valenta, Rudolf; Spitzauer, Susanne

    2009-06-01

    Milk is one of the first components introduced into human diet. It also represents one of the first allergen sources, which induces IgE-mediated allergies in childhood ranging from gastrointestinal, skin, and respiratory manifestations to severe life-threatening manifestations, such as anaphylaxis. Here we isolated a cDNA coding for a major cow's milk allergen, alphaS1-casein, from a bovine mammary gland cDNA library with allergic patients' IgE Abs. Recombinant alphaS1-casein was expressed in Escherichia coli, purified, and characterized by circular dichroism as a folded protein. IgE epitopes of alphaS1-casein were determined with recombinant fragments and synthetic peptides spanning the alphaS1-casein sequence using microarrayed components and sera from 66 cow's milk-sensitized patients. The allergenic activity of ralphaS1-casein and the alphaS1-casein-derived peptides was determined using rat basophil leukemia cells transfected with human FcepsilonRI, which had been loaded with the patients' serum IgE. Our results demonstrate that ralphaS1-casein as well as alphaS1-casein-derived peptides exhibit IgE reactivity, but mainly the intact ralphaS1-casein induced strong basophil degranulation.