WorldWideScience

Sample records for expression induces type

  1. Nutrient Induced Type 2 and Chemical Induced Type 1 Experimental Diabetes Differently Modulate Gastric GLP-1 Receptor Expression

    Directory of Open Access Journals (Sweden)

    Olga Bloch

    2015-01-01

    Full Text Available T2DM patients demonstrate reduced GLP-1 receptor (GLP-1R expression in their gastric glands. Whether induced T2DM and T1DM differently affect the gastric GLP-1R expression is not known. This study assessed extrapancreatic GLP-1R system in glandular stomach of rodents with different types of experimental diabetes. T2DM and T1DM were induced in Psammomys obesus (PO by high-energy (HE diet and by streptozotocin (STZ in Sprague Dawly (SD rats, respectively. GLP-1R expression was determined in glandular stomach by RT PCR and immunohistomorphological analysis. The mRNA expression and cellular association of the GLP-1R in principal glands were similar in control PO and SD rats. However, nutrient and chemical induced diabetes resulted in opposite alterations of glandular GLP-1R expression. Diabetic PO demonstrated increased GLP-1R mRNA expression, intensity of cellular GLP-1R immunostaining, and frequency of GLP-1R positive cells in the neck area of principal glands compared with controls. In contrast, SD diabetic rats demonstrated decreased GLP-1 mRNA, cellular GLP-1R immunoreactivity, and frequency of GLP-1R immunoreactive cells in the neck area compared with controls. In conclusion, nutrient and chemical induced experimental diabetes result in distinct opposite alterations of GLP-1R expression in glandular stomach. These results suggest that induced T1DM and T2DM may differently modulate GLP-1R system in enteropancreatic axis.

  2. Low density lipoprotein induces upregulation of vasoconstrictive endothelin type B receptor expression

    DEFF Research Database (Denmark)

    Xu, Cang-Bao; Zheng, Jian-Pu; Zhang, Wei

    2014-01-01

    Vasoconstrictive endothelin type B (ET(B)) receptors promote vasospasm and ischemic cerebro- and cardiovascular diseases. The present study was designed to examine if low density lipoprotein (LDL) induces upregulation of vasoconstrictive ET(B) receptor expression and if extracellular signal...

  3. Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis

    International Nuclear Information System (INIS)

    Yano, Hiroyuki; Hamanaka, Ryoji; Nakamura, Miki; Sumiyoshi, Hideaki; Matsuo, Noritaka; Yoshioka, Hidekatsu

    2012-01-01

    Highlights: ► We examine how radiation affects the expression level and signal pathway of collagen. ► TGF-β1 mRNA is elevated earlier than those of collagen genes after irradiation. ► Smad pathway mediates the expression of collagen in radiation induced fibrosis. ► MAPK pathways are not affected in the expression of collagen after irradiation. -- Abstract: Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Real time RT-RCR showed that both α1and α2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-β1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-β receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of α2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.

  4. Smad, but not MAPK, pathway mediates the expression of type I collagen in radiation induced fibrosis

    Energy Technology Data Exchange (ETDEWEB)

    Yano, Hiroyuki [Department of Matrix Medicine, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593 (Japan); Division of Radioisotope Research, Department of Research Support, Research Promotion Project, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593 (Japan); Hamanaka, Ryoji; Nakamura, Miki [Cell Biology, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593 (Japan); Sumiyoshi, Hideaki; Matsuo, Noritaka [Department of Matrix Medicine, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593 (Japan); Yoshioka, Hidekatsu, E-mail: hidey@oita-u.ac.jp [Department of Matrix Medicine, Oita University, 1-1 Idaigaoka Hasama-machi, Yufu, Oita 879-5593 (Japan)

    2012-02-17

    Highlights: Black-Right-Pointing-Pointer We examine how radiation affects the expression level and signal pathway of collagen. Black-Right-Pointing-Pointer TGF-{beta}1 mRNA is elevated earlier than those of collagen genes after irradiation. Black-Right-Pointing-Pointer Smad pathway mediates the expression of collagen in radiation induced fibrosis. Black-Right-Pointing-Pointer MAPK pathways are not affected in the expression of collagen after irradiation. -- Abstract: Radiation induced fibrosis occurs following a therapeutic or accidental radiation exposure in normal tissues. Tissue fibrosis is the excessive accumulation of collagen and other extracellular matrix components. This study investigated how ionizing radiation affects the expression level and signal pathway of type I collagen. Real time RT-RCR showed that both {alpha}1and {alpha}2 chain of type I collagen mRNA were elevated from 48 h after irradiation with 10 Gy in NIH3T3 cells. The relative luciferase activities of both genes and type I collagen marker were elevated at 72 h. TGF-{beta}1 mRNA was elevated earlier than those of type I collagen genes. A Western blot analysis showed the elevation of Smad phosphorylation at 72 h. Conversely, treatment with TGF-{beta} receptor inhibitor inhibited the mRNA and relative luciferase activity of type I collagen. The phosphorylation of Smad was repressed with the inhibitor, and the luciferase activity was cancelled using a mutant construct of Smad binding site of {alpha}2(I) collagen gene. However, the MAPK pathways, p38, ERK1/2 and JNK, were not affected with specific inhibitors or siRNA. The data showed that the Smad pathway mediated the expression of type I collagen in radiation induced fibrosis.

  5. 17β-Hydroxysteroid Dehydrogenase Type 2 Expression Is Induced by Androgen Signaling in Endometrial Cancer

    Directory of Open Access Journals (Sweden)

    Chiaki Hashimoto

    2018-04-01

    Full Text Available Endometrial cancer is one of the most common female pelvic cancers and has been considered an androgen-related malignancy. Several studies have demonstrated the anti-cell proliferative effect of androgen on endometrial cancer cells; however, the mechanisms of the anti-cancer effect of androgen remain largely unclear. 17β-hydroxysteroid dehydrogenase type 2 (17β-HSD2, which catalyzes the conversion of E2 to E1, is known to be upregulated by androgen treatment in breast cancer cells. In this study, we therefore focused on the role of androgen on estrogen dependence in endometrial cancer. Dihydrotestosterone (DHT was found to induce 17β-HSD2 mRNA and protein expression in HEC-1B endometrial cancer cells. DHT could also inhibit cell proliferation of HEC-1B when induced by estradiol treatment. In 19 endometrioid endometrial adenocarcinoma (EEA tissues, intratumoral DHT concentration was measured by liquid chromatography/electrospray tandem mass spectrometry and was found to be significantly correlated with 17β-HSD2 immunohistochemical status. We further examined the correlations between 17β-HSD2 immunoreactivity and clinicopathological parameters in 53 EEA tissues. 17β-HSD2 status was inversely associated with the histological grade, clinical stage, and cell proliferation marker Ki-67, and positively correlated with progesterone receptor expression. 17β-HSD2 status tended to be positively associated with androgen receptor status. In 53 EEA cases, the 17β-HSD2-positive group tended to have better prognosis than that for the negative group with respect to progression-free survival and endometrial cancer-specific survival. These findings suggest that androgen suppresses the estrogen dependence of endometrial cancer through the induction of 17β-HSD2 in endometrial cancer.

  6. Transforming growth factor β1 induces the expression of collagen type I by DNA methylation in cardiac fibroblasts.

    Directory of Open Access Journals (Sweden)

    Xiaodong Pan

    Full Text Available Transforming growth factor-beta (TGF-β, a key mediator of cardiac fibroblast activation, has a major influence on collagen type I production. However, the epigenetic mechanisms by which TGF-β induces collagen type I alpha 1 (COL1A1 expression are not fully understood. This study was designed to examine whether or not DNA methylation is involved in TGF-β-induced COL1A1 expression in cardiac fibroblasts. Cells isolated from neonatal Sprague-Dawley rats were cultured and stimulated with TGF-β1. The mRNA levels of COL1A1 and DNA methyltransferases (DNMTs were determined via quantitative polymerase chain reaction and the protein levels of collagen type I were determined via Western blot as well as enzyme-linked immunosorbent assay. The quantitative methylation of the COL1A1 promoter region was analyzed using the MassARRAY platform of Sequenom. Results showed that TGF-β1 upregulated the mRNA expression of COL1A1 and induced the synthesis of cell-associated and secreted collagen type I in cardiac fibroblasts. DNMT1 and DNMT3a expressions were significantly downregulated and the global DNMT activity was inhibited when treated with 10 ng/mL of TGF-β1 for 48 h. TGF-β1 treatment resulted in a significant reduction of the DNA methylation percentage across multiple CpG sites in the rat COL1A1 promoter. Thus, TGF-β1 can induce collagen type I expression through the inhibition of DNMT1 and DNMT3a expressions as well as global DNMT activity, thereby resulting in DNA demethylation of the COL1A1 promoter. These findings suggested that the DNMT-mediated DNA methylation is an important mechanism in regulating the TGF-β1-induced COL1A1 gene expression.

  7. Hydroxychloroquine induces inhibition of collagen type II and oligomeric matrix protein COMP expression in chondrocytes

    Directory of Open Access Journals (Sweden)

    Tao Li

    2016-06-01

    Full Text Available The aim of this study was to investigate the effect of hydroxychloroquine on the level of collagen type II and oligomeric matrix protein COMP expression in chondrocytes of knee osteoarthritis. The rate of growth in cartilage cells was analyzed using MTT assay whereas the Col-2 and COMP expression levels were detected by RT-PCR and Western blotting analyses. For the determination of MMP-13 expression, ELISA test was used. The results revealed no significant change in the rate of cartilage cell proliferation in hydroxychloroquine-treated compared to untreated cells. Hydroxychloro-quine treatment exhibited concentration- and time-dependent effect on the inhibition of collagen type II and COMP expression in chondrocytes. However, its treatment caused a significant enhancement in the expression levels of MMP-13 compared to the untreated cells. Therefore, hydroxychloro-quine promotes expression of MMP-13 and reduces collagen type II and COMP expression levels in chondrocytes without any significant change in the growth of cells.

  8. Xenotropic type C virus expression in murine thymomas induced by radiation or 3-methylcholanthrene

    International Nuclear Information System (INIS)

    Mayer, A.; Duran-Reynals, M.L.

    1981-01-01

    Thymic lymphoma incidence and thymic expression of MuLV with xenotropic infectivity was monitored in AKR, RF, and reciprocal F 1 mice of the AKR X RF cross after treatment with either γ radiation or the chemical carcinogen 3-methylcholanthrene (MCA). These two inbred strains and the F 1 hybrids developed similary high incidences of thymoma, and lymphomatous cells from AKR mice and (ARK] X RF∫)F 1 mice were observed to be expressing MuLV with xenotropic host range. However, lymphoma cells from RF mice and (RF] X AKR∫)F 1 mice did not shed xenotropic MuLV. Thymic xenotropic virus expression was therefore not correlated with a high incidence of radiation or chemically induced thymoma, but rather appeared to be a phenotype genetically transmitted by AKR mice to F 1 mice of the AKR X RF cross as a dominant trait in induced thymomas. In addition, a maternal effect on thymic xenotropic virus expression in induced thymomas was observed by the comparison of reciprocal F 1 hybrids in this cross

  9. Bioinformatics analysis of the factors controlling type I IFN gene expression in autoimmune disease and virus-induced immunity

    Directory of Open Access Journals (Sweden)

    Di eFeng

    2013-09-01

    Full Text Available Patients with systemic lupus erythematosus (SLE and Sjögren's syndrome (SS display increased levels of type I IFN-induced genes. Plasmacytoid dendritic cells (PDCs are natural interferon producing cells and considered to be a primary source of IFN-α in these two diseases. Differential expression patterns of type I IFN inducible transcripts can be found in different immune cell subsets and in patients with both active and inactive autoimmune disease. A type I IFN gene signature generally consists of three groups of IFN-induced genes - those regulated in response to virus-induced type I IFN, those regulated by the IFN-induced mitogen-activated protein kinase/extracellular-regulated kinase (MAPK/ERK pathway, and those by the IFN-induced phosphoinositide-3 kinase (PI-3K pathway. These three groups of type I IFN-regulated genes control important cellular processes such as apoptosis, survival, adhesion, and chemotaxis, that when dysregulated, contribute to autoimmunity. With the recent generation of large datasets in the public domain from next-generation sequencing and DNA microarray experiments, one can perform detailed analyses of cell type-specific gene signatures as well as identify distinct transcription factors that differentially regulate these gene signatures. We have performed bioinformatics analysis of data in the public domain and experimental data from our lab to gain insight into the regulation of type I IFN gene expression. We have found that the genetic landscape of the IFNA and IFNB genes are occupied by transcription factors, such as insulators CTCF and cohesin, that negatively regulate transcription, as well as IRF5 and IRF7, that positively and distinctly regulate IFNA subtypes. A detailed understanding of the factors controlling type I IFN gene transcription will significantly aid in the identification and development of new therapeutic strategies targeting the IFN pathway in autoimmune disease.

  10. Arsenic-induced alteration in the expression of genes related to type 2 diabetes mellitus

    International Nuclear Information System (INIS)

    Diaz-Villasenor, Andrea; Burns, Anna L.; Hiriart, Marcia; Cebrian, Mariano E.; Ostrosky-Wegman, Patricia

    2007-01-01

    Chronic exposure to high concentrations of arsenic in drinking water is associated with an increased risk for developing type 2 diabetes. The present revision focuses on the effect of arsenic on tissues that participate directly in glucose homeostasis, integrating the most important published information about the impairment of the expression of genes related to type 2 diabetes by arsenic as one of the possible mechanisms by which it leads to the disease. Many factors are involved in the manner in which arsenic contributes to the occurrence of diabetes. The reviewed studies suggest that arsenic might increase the risk for type 2 diabetes via multiple mechanisms, affecting a cluster of regulated events, which in conjunction trigger the disease. Arsenic affects insulin sensitivity in peripheral tissue by modifying the expression of genes involved in insulin resistance and shifting away cells from differentiation to the proliferation pathway. In the liver arsenic disturbs glucose production, whereas in pancreatic beta-cells arsenic decreases insulin synthesis and secretion and reduces the expression of antioxidant enzymes. The consequences of these changes in gene expression include the reduction of insulin secretion, induction of oxidative stress in the pancreas, alteration of gluconeogenesis, abnormal proliferation and differentiation pattern of muscle and adipocytes as well as peripheral insulin resistance

  11. Prednisolone-induced differential gene expression in mouse liver carrying wild type or a dimerization-defective glucocorticoid receptor

    Directory of Open Access Journals (Sweden)

    Dokter Wim

    2010-06-01

    Full Text Available Abstract Background Glucocorticoids (GCs control expression of a large number of genes via binding to the GC receptor (GR. Transcription may be regulated either by binding of the GR dimer to DNA regulatory elements or by protein-protein interactions of GR monomers with other transcription factors. Although the type of regulation for a number of individual target genes is known, the relative contribution of both mechanisms to the regulation of the entire transcriptional program remains elusive. To study the importance of GR dimerization in the regulation of gene expression, we performed gene expression profiling of livers of prednisolone-treated wild type (WT and mice that have lost the ability to form GR dimers (GRdim. Results The GR target genes identified in WT mice were predominantly related to glucose metabolism, the cell cycle, apoptosis and inflammation. In GRdim mice, the level of prednisolone-induced gene expression was significantly reduced compared to WT, but not completely absent. Interestingly, for a set of genes, involved in cell cycle and apoptosis processes and strongly related to Foxo3a and p53, induction by prednisolone was completely abolished in GRdim mice. In contrast, glucose metabolism-related genes were still modestly upregulated in GRdim mice upon prednisolone treatment. Finally, we identified several novel GC-inducible genes from which Fam107a, a putative histone acetyltransferase complex interacting protein, was most strongly dependent on GR dimerization. Conclusions This study on prednisolone-induced effects in livers of WT and GRdim mice identified a number of interesting candidate genes and pathways regulated by GR dimers and sheds new light onto the complex transcriptional regulation of liver function by GCs.

  12. Simultaneous human papilloma virus type 16 E7 and cdk inhibitor p21 expression induces apoptosis and cathepsin B activation

    International Nuclear Information System (INIS)

    Kaznelson, Dorte Wissing; Bruun, Silas; Monrad, Astrid; Gjerloev, Simon; Birk, Jesper; Roepke, Carsten; Norrild, Bodil

    2004-01-01

    Human papillomavirus type 16 (HPV-16) is the major risk factor for development of cervical cancer. The major oncoprotein E7 enhances cell growth control. However, E7 has in some reports been shown to induce apoptosis suggesting that there is a delicate balance between cell proliferation and induction of cell death. We have used the osteosarcoma cell line U2OS cells provided with E7 and the cdk2 inhibitor p21 (cip1/waf1) under inducible control, as a model system for the analysis of E7-mediated apoptosis. Our data shows that simultaneous expression of E7 and p21 proteins induces cell death, possibly because of conflicting growth control. Interestingly, E7/p21-induced cell death is associated with the activation of a newly identified mediator of apoptosis, namely cathepsin B. Activation of the cellular caspases is undetectable in cells undergoing E7/p21-induced apoptosis. To our knowledge, this is the first time a role for cathepsin B is reported in HPV-induced apoptotic signalling

  13. Pinus densiflora extract protects human skin fibroblasts against UVB-induced photoaging by inhibiting the expression of MMPs and increasing type I procollagen expression

    Directory of Open Access Journals (Sweden)

    Hoe-Yune Jung

    2014-01-01

    Full Text Available Exposure to ultraviolet (UV light can cause skin photoaging, which is associated with upregulation of matrix metalloproteinases (MMPs and downregulation of collagen synthesis. It has been reported that MMPs, especially MMP-1, MMP-3 and MMP-9, decrease the elasticity of the dermis by degrading collagen. In this study, we assessed the effects of Pinus densiflora extract (PDE on photoaging and investigated its mechanism of action in human skin fibroblast (Hs68 cells after UVB exposure using real-time polymerase chain reaction, Western blot analysis, and enzymatic activity assays. PDE exhibited an antioxidant activity and inhibited elastase activities in vitro. We also found that PDE inhibited UVB-induced cytotoxicity, MMP-1 production and expression of MMP-1, -3 and -9 mRNA in Hs68 cells. In addition, PDE decreased UVB-induced MMP-2 activity and MMP-2 mRNA expression. Moreover, PDE prevented the decrease of type I procollagen mediated by exposure to UVB irradiation, an effect that is linked to the upregulation and downregulation of Smad3 and Smad7, respectively. Another effect of UV irradiation is to stimulate activator protein 1 (AP-1 activity via overexpression of c-Jun/c-Fos, which, in turn, upregulates MMP-1, -3, and -9. In this study, we found that PDE suppressed UV-induced c-Jun and c-Fos mRNA expression. Taken together, these results demonstrate that PDE regulates UVB-induced expression of MMPs and type I procollagen synthesis by inhibiting AP-1 activity and restoring impaired Smad signaling, suggesting that PDE may be useful as an effective anti-photoaging agent.

  14. Expression of the sweetpotato R2R3-type IbMYB1a gene induces anthocyanin accumulation in Arabidopsis.

    Science.gov (United States)

    Chu, Hyosub; Jeong, Jae Cheol; Kim, Wook-Jin; Chung, Dong Min; Jeon, Hyo Kon; Ahn, Young Ock; Kim, Sun Ha; Lee, Haeng-Soon; Kwak, Sang-Soo; Kim, Cha Young

    2013-06-01

    R2R3-type MYB transcription factors (TFs) play important roles in transcriptional regulation of anthocyanins. The R2R3-type IbMYB1 is known to be a key regulator of anthocyanin biosynthesis in the storage roots of sweetpotato. We previously showed that transient expression of IbMYB1a led to anthocyanin pigmentation in tobacco leaves. In this article, we generated transgenic Arabidopsis plants expressing the IbMYB1a gene under the control of CaMV 35S promoter, and the sweetpotato SPO and SWPA2 promoters. Overexpression of IbMYBa in transgenic Arabidopsis produced strong anthocyanin pigmentation in seedlings and generated a deep purple color in leaves, stems and seeds. Reverse transcription-polymerase chain reaction analysis showed that IbMYB1a expression induced upregulation of several structural genes in the anthocyanin biosynthetic pathway, including 4CL, CHI, F3'H, DFR, AGT, AAT and GST. Furthermore, overexpression of IbMYB1a led to enhanced expression of the AtTT8 (bHLH) and PAP1/AtMYB75 genes. high-performance liquid chromatography analysis revealed that IbMYB1a expression led to the production of cyanidin as a major core molecule of anthocyanidins in Arabidopsis, as occurs in the purple leaves of sweetpotato (cv. Sinzami). This result shows that the IbMYB1a TF is sufficient to induce anthocyanin accumulation in seedlings, leaves, stems and seeds of Arabidopsis plants. Copyright © Physiologia Plantarum 2012.

  15. Gene expression profiling associated with angiotensin II type 2 receptor-induced apoptosis in human prostate cancer cells.

    Directory of Open Access Journals (Sweden)

    Nana Pei

    Full Text Available Increased expression of angiotensin II type 2 receptor (AT2R induces apoptosis in numerous tumor cell lines, with either Angiotensin II-dependent or Angiotensin II-independent regulation, but its molecular mechanism remains poorly understood. Here, we used PCR Array analysis to determine the gene and microRNA expression profiles in human prostate cancer cell lines transduced with AT2R recombinant adenovirus. Our results demonstrated that AT2R over expression leads to up-regulation of 6 apoptosis-related genes (TRAIL-R2, BAG3, BNIPI, HRK, Gadd45a, TP53BP2, 2 cytokine genes (IL6 and IL8 and 1 microRNA, and down-regulation of 1 apoptosis-related gene TNFSF10 and 2 cytokine genes (BMP6, BMP7 in transduced DU145 cells. HRK was identified as an up-regulated gene in AT2R-transduced PC-3 cells by real-time RT-PCR. Next, we utilized siRNAs to silence the up-regulated genes to further determine their roles on AT2R overexpression mediated apoptosis. The results showed downregulation of Gadd45a reduced the apoptotic effect by ∼30% in DU145 cells, downregulation of HRK reduced AT2R-mediated apoptosis by more than 50% in PC-3 cells, while downregulation of TRAIL-R2 enhanced AT2R-mediated apoptosis more than 4 times in DU145 cells. We also found that the effects on AT2R-mediated apoptosis caused by downregulation of Gadd45a, TRAIL-R2 and HRK were independent in activation of p38 MAPK, p44/42 MAPK and p53. Taken together, our results demonstrated that TRAIL-R2, Gadd45a and HRK may be novel target genes for further study of the mechanism of AT2R-mediated apoptosis in prostate cancer cells.

  16. Human CD40 ligand-expressing type 3 innate lymphoid cells induce IL-10-producing immature transitional regulatory B cells.

    Science.gov (United States)

    Komlósi, Zsolt I; Kovács, Nóra; van de Veen, Willem; Kirsch, Anna Isabella; Fahrner, Heinz Benedikt; Wawrzyniak, Marcin; Rebane, Ana; Stanic, Barbara; Palomares, Oscar; Rückert, Beate; Menz, Günter; Akdis, Mübeccel; Losonczy, György; Akdis, Cezmi A

    2017-09-20

    Type 3 innate lymphoid cells (ILC3s) are involved in maintenance of mucosal homeostasis; however, their role in immunoregulation has been unknown. Immature transitional regulatory B (itBreg) cells are innate-like B cells with immunosuppressive properties, and the in vivo mechanisms by which they are induced have not been fully clarified. We aimed to investigate the ILC3-B-cell interaction that probably takes place in human tonsils. ILC3s were isolated from peripheral blood and palatine tonsils, expanded, and cocultured with naive B cells. Tonsillar ILC3s and regulatory B cells were visualized with immunofluorescence histology. ILC3 frequencies were measured in tonsil tissue of allergic and nonallergic patients and in peripheral blood of allergic asthmatic patients and healthy control subjects. A mutually beneficial relationship was revealed between ILC3s and B cells: ILC3s induced IL-15 production in B cells through B cell-activating factor receptor, whereas IL-15, a potent growth factor for ILC3s, induced CD40 ligand (CD40L) expression on circulating and tonsillar ILC3s. IL-15-activated CD40L + ILC3s helped B-cell survival, proliferation, and differentiation of IL-10-secreting, PD-L1-expressing functional itBreg cells in a CD40L- and B cell-activating factor receptor-dependent manner. ILC3s and regulatory B cells were in close connection with each other in palatine tonsils. ILC3 frequency was reduced in tonsil tissue of allergic patients and in peripheral blood of allergic asthmatic patients. Human CD40L + ILC3s provide innate B-cell help and are involved in an innate immunoregulatory mechanism through induction of itBreg cell differentiation, which takes place in palatine tonsils in vivo. This mechanism, which can contribute to maintenance of immune tolerance, becomes insufficient in allergic diseases. Copyright © 2017 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  17. Global gene expression profiles of MT knockout and wild-type mice in the condition of doxorubicin-induced cardiomyopathy.

    Science.gov (United States)

    Shuai, Yi; Guo, Jun; Dong, Yansheng; Zhong, Weijian; Xiao, Ping; Zhou, Tong; Zhang, Lishi; Peng, Shuangqing

    2011-01-15

    Increasing evidence from in vivo and in vitro studies has indicated that MT exerts protective effects against DOX-induced cardiotoxicity; however the underlying precise mechanisms still remain an enigma. Therefore, the present study was designed using MT knockout mice in concert with genomic approaches to explore the possible molecular and cellular mechanisms in terms of the genetic network changes. MT-I/II null (MT⁻/⁻) mice and corresponding wild-type mice (MT+/+) were administrated with a single dose of DOX (15 mg/kg, i.p.) or equal volume of saline. Animals were sacrificed on the 4th day after DOX administration and samples were collected for further analyses. Global gene expression profiles of cardiac mRNA from two genotype mice revealed that 381 characteristically MT-responsive genes were identified between MT+/+ mice and MT⁻/⁻ mice in response to DOX, including fos, ucp3, car3, atf3, map3k6, etc. Functional analysis implied MAPK signaling pathway, p53 signaling pathway, Jak-STAT signaling pathway, PPAR signaling pathway, Wnt signaling pathway, etc. might be involved to mediate the protection of DOX cardiomyopathy by MT. Results from the present study not only validated the previously reported possible mechanisms of MT protection against DOX toxicity, but also provided new clues into the molecular mechanisms involved in this process. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Simultaneous human papilloma virus type 16 E7 and cdk inhibitor p21 expression induces apoptosis and cathepsin B activation

    DEFF Research Database (Denmark)

    Kaznelson, Dorte Wissing; Bruun, Silas; Monrad, Astrid

    2004-01-01

    Human papillomavirus type 16 (HPV-16) is the major risk factor for development of cervical cancer. The major oncoprotein E7 enhances cell growth control. However, E7 has in some reports been shown to induce apoptosis suggesting that there is a delicate balance between cell proliferation and induc......Human papillomavirus type 16 (HPV-16) is the major risk factor for development of cervical cancer. The major oncoprotein E7 enhances cell growth control. However, E7 has in some reports been shown to induce apoptosis suggesting that there is a delicate balance between cell proliferation......, possibly because of conflicting growth control. Interestingly, E7/p21-induced cell death is associated with the activation of a newly identified mediator of apoptosis, namely cathepsin B. Activation of the cellular caspases is undetectable in cells undergoing E7/p21-induced apoptosis. To our knowledge...

  19. Poly(ADP-ribose) polymerase inhibitors suppress UV-induced human immunodeficiency virus type 1 gene expression at the posttranscriptional level

    International Nuclear Information System (INIS)

    Yamagoe, S.; Kohda, T.; Oishi, M.

    1991-01-01

    Gene expression of human immunodeficiency virus type 1 (HIV-1) is induced not only by trans activation mediated through a gene product (tat) encoded by the virus but also by treatment of virus-carrying cells with DNA-damaging agents such as UV light. Employing an artificially constructed DNA in which the chloramphenicol acetyltransferase gene was placed under the control of the HIV-1 long terminal repeat, we analyzed the induction process in HeLa cells and found that inhibitors of poly(ADP-ribose) polymerase suppressed UV-induced HIV-1 gene expression but not tat-mediated expression. We also found that suppression occurs at the posttranscriptional level. These results indicate that HIV-1 gene expression is activated by at least two different mechanisms, one of which involves poly-ADP ribosylation. A possible new role of poly-ADP ribosylation in the regulation of specific gene expression is also discussed

  20. Pirfenidone inhibits TGF-β1-induced over-expression of collagen type I and heat shock protein 47 in A549 cells

    Directory of Open Access Journals (Sweden)

    Hisatomi Keiko

    2012-06-01

    Full Text Available Abstract Background Pirfenidone is a novel anti-fibrotic and anti-inflammatory agent that inhibits the progression of fibrosis in animal models and in patients with idiopathic pulmonary fibrosis (IPF. We previously showed that pirfenidone inhibits the over-expression of collagen type I and of heat shock protein (HSP 47, a collagen-specific molecular chaperone, in human lung fibroblasts stimulated with transforming growth factor (TGF-β1 in vitro. The increased numbers of HSP47-positive type II pneumocytes as well as fibroblasts were also diminished by pirfenidone in an animal model of pulmonary fibrosis induced by bleomycin. The present study evaluates the effects of pirfenidone on collagen type I and HSP47 expression in the human alveolar epithelial cell line, A549 cells in vitro. Methods The expression of collagen type I, HSP47 and E-cadherin mRNAs in A549 cells stimulated with TGF-β1 was evaluated by Northern blotting or real-time PCR. The expression of collagen type I, HSP47 and fibronectin proteins was assessed by immunocytochemical staining. Results TGF-β1 stimulated collagen type I and HSP47 mRNA and protein expression in A549 cells, and pirfenidone significantly inhibited this process. Pirfenidone also inhibited over-expression of the fibroblast phenotypic marker fibronectin in A549 cells induced by TGF-β1. Conclusion We concluded that the anti-fibrotic effects of pirfenidone might be mediated not only through the direct inhibition of collagen type I expression but also through the inhibition of HSP47 expression in alveolar epithelial cells, which results in reduced collagen synthesis in lung fibrosis. Furthermore, pirfenidone might partially inhibit the epithelial-mesenchymal transition.

  1. Acute heat stress induces differential gene expressions in the testes of a broiler-type strain of Taiwan country chickens.

    Science.gov (United States)

    Wang, Shih-Han; Cheng, Chuen-Yu; Tang, Pin-Chi; Chen, Chih-Feng; Chen, Hsin-Hsin; Lee, Yen-Pai; Huang, San-Yuan

    2015-01-01

    The expression of testicular genes following acute heat stress has been reported in layer-type roosters, but few similar studies have been conducted on broilers. This study investigated the effect of acute heat stress on the gene expression in the testes of a broiler-type strain of Taiwan country chickens. Roosters were subjected to acute heat stress (38°C) for 4 h, and then exposed to 25°C, with testes collected 0, 2, and 6 h after the cessation of heat stress, using non-heat-stressed roosters as controls (n = 3 roosters per group). The body temperature and respiratory rate increased significantly (pstress. The numbers of apoptotic cells increased 2 h after the acute heat stress (79 ± 7 vs. 322 ± 192, control vs. heat stress; pstressed chickens from those of the controls, including genes involved in the response to stimulus, protein metabolism, signal transduction, cell adhesion, transcription, and apoptosis. The mRNA expressions of upregulated genes, including HSP25, HSP90AA1, HSPA2, and LPAR2, and of downregulated genes, including CDH5, CTNNA3, EHF, CIRBP, SLA, and NTF3, were confirmed through quantitative real-time polymerase chain reaction (qRT-PCR). Moreover, numerous transcripts in the testes exhibited distinct expressions between the heat-stressed broiler-type and layer-type chickens. We concluded that the transcriptional responses of testes to acute heat stress may differ between the broiler-type and layer-type roosters. Whether the differential expression patterns associate with the heat-tolerance in the strains require a further exploration.

  2. Reducing αENaC expression in kidney connecting tubule induces pseudohypoaldosteronism type 1 symptoms during K+ loading

    DEFF Research Database (Denmark)

    Poulsen, Søren Brandt; Praetorius, Jeppe; Damkier, Helle H

    2015-01-01

    Genetic inactivation of the epithelial Na(+) channel α-subunit (αENaC) in the renal collecting duct (CD) does not interfere with Na(+) and K(+) homeostasis in mice. However, inactivation in the CD and a part of the connecting tubule (CNT) induces autosomal recessive pseudohypoaldosteronism type 1...

  3. FGF-2 potently induces both proliferation and DSP expression in collagen type I gel cultures of adult incisor immature pulp cells

    International Nuclear Information System (INIS)

    Nakao, Kazuhisa; Itoh, Makoto; Tomita, Yusuke; Tomooka, Yasuhiro; Tsuji, Takashi

    2004-01-01

    We investigated the effects of both cytokines and extracellular matrices on the proliferation and differentiation of immature adult rat incisor dental pulp cells. These immature cells, which have a high-proliferative potency in vitro and do not express mRNAs for dentin non-collagenous proteins such as dentin sialoprotein (DSP), bone sialoprotein (BSP), and osteocalcin, exist in the root regions of adult rat incisors. Fibroblast growth factor-2 (FGF-2) stimulated the proliferation of these immature cells and the subsequent production of mineralized calcium was induced by β-glycerophosphate treatment. Additionally, FGF-2 dramatically induced the expression of DSP and BSP mRNAs, but only in collagen type I gel cultures, whereas neither plate-coated collagen type I nor fibronectin, laminin or collagen type IV cultures could produce this effect and generate sufficient physiological levels of these transcripts. Although bone morphogenetic protein-4 could not induce the proliferation of immature dental pulp cells nor upregulate DSP mRNA expression, it had a synergistic effect upon DSP transcript levels in conjunction with FGF-2. These results suggest that both the presence of FGF-2 and the three-dimensional formation of immature dental pulp cells in collagen type I gel cultures are essential for both DSP expression and odontoblast differentiation. These observations provide valuable information concerning the study of the commitment and differentiation of odontoblast lineages, and also provide a basis for the rational design of cytokine and extracellular matrix based compounds for regenerative therapies in new dental treatments

  4. Protective effects of tocotrienols against lipid-induced nephropathy in experimental type-2 diabetic rats by modulation in TGF-β expression

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Shabeena [Department of Biochemistry, Lipid Metabolism Laboratory, Jamia Hamdard (Hamdard University), New Delhi 110062 (India); Ahsan, Haseeb [Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025 (India); Khan, Mohammad Rashid [Department of Biochemistry, Lipid Metabolism Laboratory, Jamia Hamdard (Hamdard University), New Delhi 110062 (India); Siddiqui, Waseem A., E-mail: wasiddiqui01@gmail.com [Department of Biochemistry, Lipid Metabolism Laboratory, Jamia Hamdard (Hamdard University), New Delhi 110062 (India)

    2013-12-01

    Dyslipidemia is common in patients with diabetes mellitus (DM) and is considered a risk factor for the progression of diabetic nephropathy (DN). Hyperlipidemia and hyperglycemia act synergistically to induce renal injury. The present study was designed to investigate the protective effects of tocotrienols as tocotrienol-rich fraction (TRF) extracted from palm (PO) and rice bran oils (RBO) against lipid induced nephropathy in type-2 diabetic rats and its probable molecular mechanism. Male Wistar rats (175–200 g) were divided into four groups. The first group served as diabetic control, while the second and third groups received PO-TRF and RBO-TRF, respectively by gavage over a period of sixteen weeks post-induction of diabetes. The fourth group comprised of age-matched rats that served as normal control. The effects of TRF on serum lipid profile, oxidative stress markers, expression of TGF-β, fibronectin and collagen type IV were analyzed in the kidney of diabetic rats. Treatment with PO-TRF and RBO-TRF significantly improved glycemic status, serum lipid profile and renal function in type-2 diabetic rats. In addition, TRF supplementation down-regulated the expression of TGF-β, fibronectin and collagen type IV in the kidney of diabetic rats. Transforming growth factor-β (TGF-β) plays a critical role in progression of DN, but its modulation by tocotrienols in DN remains unexplored. TRF ameliorated lipid induced nephropathy in type-2 diabetes by its hypoglycemic, hypolipidemic and antioxidant activities as well as by modulation of TGF-β to prevent increased expression of collagen type IV and fibrinogen. We finally propose a mechanism for the expression of molecular markers that are significant in the events leading to diabetic nephropathy and its modulation by tocotrienols/TRF. - Highlights: • The nephroprotective effect of TRF in type-2 diabetic rats was investigated. • Treatment with TRF improved glycemic status, lipid profile and renal functions in rats

  5. Protective effects of tocotrienols against lipid-induced nephropathy in experimental type-2 diabetic rats by modulation in TGF-β expression

    International Nuclear Information System (INIS)

    Siddiqui, Shabeena; Ahsan, Haseeb; Khan, Mohammad Rashid; Siddiqui, Waseem A.

    2013-01-01

    Dyslipidemia is common in patients with diabetes mellitus (DM) and is considered a risk factor for the progression of diabetic nephropathy (DN). Hyperlipidemia and hyperglycemia act synergistically to induce renal injury. The present study was designed to investigate the protective effects of tocotrienols as tocotrienol-rich fraction (TRF) extracted from palm (PO) and rice bran oils (RBO) against lipid induced nephropathy in type-2 diabetic rats and its probable molecular mechanism. Male Wistar rats (175–200 g) were divided into four groups. The first group served as diabetic control, while the second and third groups received PO-TRF and RBO-TRF, respectively by gavage over a period of sixteen weeks post-induction of diabetes. The fourth group comprised of age-matched rats that served as normal control. The effects of TRF on serum lipid profile, oxidative stress markers, expression of TGF-β, fibronectin and collagen type IV were analyzed in the kidney of diabetic rats. Treatment with PO-TRF and RBO-TRF significantly improved glycemic status, serum lipid profile and renal function in type-2 diabetic rats. In addition, TRF supplementation down-regulated the expression of TGF-β, fibronectin and collagen type IV in the kidney of diabetic rats. Transforming growth factor-β (TGF-β) plays a critical role in progression of DN, but its modulation by tocotrienols in DN remains unexplored. TRF ameliorated lipid induced nephropathy in type-2 diabetes by its hypoglycemic, hypolipidemic and antioxidant activities as well as by modulation of TGF-β to prevent increased expression of collagen type IV and fibrinogen. We finally propose a mechanism for the expression of molecular markers that are significant in the events leading to diabetic nephropathy and its modulation by tocotrienols/TRF. - Highlights: • The nephroprotective effect of TRF in type-2 diabetic rats was investigated. • Treatment with TRF improved glycemic status, lipid profile and renal functions in rats

  6. Protective effects of tocotrienols against lipid-induced nephropathy in experimental type-2 diabetic rats by modulation in TGF-β expression

    Energy Technology Data Exchange (ETDEWEB)

    Siddiqui, Shabeena [Department of Biochemistry, Lipid Metabolism Laboratory, Jamia Hamdard (Hamdard University), New Delhi 110062 (India); Ahsan, Haseeb [Department of Biochemistry, Faculty of Dentistry, Jamia Millia Islamia, New Delhi 110025 (India); Khan, Mohammad Rashid [Department of Biochemistry, Lipid Metabolism Laboratory, Jamia Hamdard (Hamdard University), New Delhi 110062 (India); Siddiqui, Waseem A., E-mail: wasiddiqui01@gmail.com [Department of Biochemistry, Lipid Metabolism Laboratory, Jamia Hamdard (Hamdard University), New Delhi 110062 (India)

    2013-12-01

    Dyslipidemia is common in patients with diabetes mellitus (DM) and is considered a risk factor for the progression of diabetic nephropathy (DN). Hyperlipidemia and hyperglycemia act synergistically to induce renal injury. The present study was designed to investigate the protective effects of tocotrienols as tocotrienol-rich fraction (TRF) extracted from palm (PO) and rice bran oils (RBO) against lipid induced nephropathy in type-2 diabetic rats and its probable molecular mechanism. Male Wistar rats (175–200 g) were divided into four groups. The first group served as diabetic control, while the second and third groups received PO-TRF and RBO-TRF, respectively by gavage over a period of sixteen weeks post-induction of diabetes. The fourth group comprised of age-matched rats that served as normal control. The effects of TRF on serum lipid profile, oxidative stress markers, expression of TGF-β, fibronectin and collagen type IV were analyzed in the kidney of diabetic rats. Treatment with PO-TRF and RBO-TRF significantly improved glycemic status, serum lipid profile and renal function in type-2 diabetic rats. In addition, TRF supplementation down-regulated the expression of TGF-β, fibronectin and collagen type IV in the kidney of diabetic rats. Transforming growth factor-β (TGF-β) plays a critical role in progression of DN, but its modulation by tocotrienols in DN remains unexplored. TRF ameliorated lipid induced nephropathy in type-2 diabetes by its hypoglycemic, hypolipidemic and antioxidant activities as well as by modulation of TGF-β to prevent increased expression of collagen type IV and fibrinogen. We finally propose a mechanism for the expression of molecular markers that are significant in the events leading to diabetic nephropathy and its modulation by tocotrienols/TRF. - Highlights: • The nephroprotective effect of TRF in type-2 diabetic rats was investigated. • Treatment with TRF improved glycemic status, lipid profile and renal functions in rats

  7. Regeneration of alveolar type I and II cells from Scgb1a1-expressing cells following severe pulmonary damage induced by bleomycin and influenza.

    Directory of Open Access Journals (Sweden)

    Dahai Zheng

    Full Text Available The lung comprises an extensive surface of epithelia constantly exposed to environmental insults. Maintaining the integrity of the alveolar epithelia is critical for lung function and gaseous exchange. However, following severe pulmonary damage, what progenitor cells give rise to alveolar type I and II cells during the regeneration of alveolar epithelia has not been fully determined. In this study, we have investigated this issue by using transgenic mice in which Scgb1a1-expressing cells and their progeny can be genetically labeled with EGFP. We show that following severe alveolar damage induced either by bleomycin or by infection with influenza virus, the majority of the newly generated alveolar type II cells in the damaged parenchyma were labeled with EGFP. A large proportion of EGFP-expressing type I cells were also observed among the type II cells. These findings strongly suggest that Scgb1a1-expressing cells, most likely Clara cells, are a major cell type that gives rise to alveolar type I and II cells during the regeneration of alveolar epithelia in response to severe pulmonary damage in mice.

  8. Expression of LIGHT/TNFSF14 Combined with Vaccination against Human Papillomavirus Type 16 E7 Induces Significant Tumor Regression

    Science.gov (United States)

    Kanodia, Shreya; Da Silva, Diane M.; Karamanukyan, Tigran; Bogaert, Lies; Fu, Yang-Xin; Kast, W. Martin

    2010-01-01

    LIGHT, a ligand for the lymphotoxin-beta receptor, establishes lymphoid-like tissues inside tumor sites and recruits naïve T-cells into the tumor. However, whether these infiltrating T-cells are specific for tumor antigens is not known. We hypothesized that therapy with LIGHT can expand functional tumor-specific CD8+ T-cells that can be boosted using HPV16E6E7-Venezuelan Equine Encephalitis Virus Replicon Particles (HPV16-VRP) and that this combined therapy can eradicate HPV16-induced tumors. Our data show that forced expression of LIGHT in tumors results in an increase in expression of interferon gamma (IFNg) and chemottractant cytokines such as IL-1a, MIG and MIP-2 within the tumor and that this tumor microenvironment correlates with an increase in frequency of tumor-infiltrating CD8+ T-cells. Forced expression of LIGHT also results in the expansion of functional T-cells that recognize multiple tumor-antigens, including HPV16 E7, and these T-cells prevent the outgrowth of tumors upon secondary challenge. Subsequent boosting of E7-specific T-cells by vaccination with HPV16-VRP significantly increases their frequency in both the periphery and the tumor, and leads to the eradication of large well-established tumors, for which either treatment alone is not successful. These data establish the safety of Ad-LIGHT as a therapeutic intervention in pre-clinical studies and suggest that patients with HPV16+ tumors may benefit from combined immunotherapy with LIGHT and antigen-specific vaccination. PMID:20460520

  9. Autoimmunity and inflammation are independent of class II transactivator type PIV-dependent class II major histocompatibility complex expression in peripheral tissues during collagen-induced arthritis.

    Science.gov (United States)

    Waldburger, Jean-Marc; Palmer, Gaby; Seemayer, Christian; Lamacchia, Celine; Finckh, Axel; Christofilopoulos, Panayiotis; Baeten, Dominique; Reith, Walter; Gabay, Cem

    2011-11-01

    To determine the regulation of class II major histocompatibility complex (MHC) expression in fibroblast-like synoviocytes (FLS) in order to investigate their role as nonprofessional antigen-presenting cells in collagen-induced arthritis (CIA). Expression of class II MHC, class II MHC transactivator (CIITA), and Ciita isoforms PI, PIII, and PIV was examined by real-time quantitative polymerase chain reaction, immunohistochemistry, and flow cytometry in human synovial tissues, arthritic mouse joints, and human and murine FLS. CIA was induced in mice in which isoform PIV of Ciita was knocked out (PIV(-/-) ), in PIV(-/-) mice transgenic for CIITA in the thymus (K14 CIITA), and in their control littermates. HLA-DRA, total CIITA, and CIITA PIII messenger RNA levels were significantly increased in synovial tissue samples from patients with rheumatoid arthritis compared with the levels in tissue from patients with osteoarthritis. Human FLS expressed surface class II MHC via CIITA PIII and PIV, while class II MHC expression in murine FLS was entirely mediated by PIV. Mice with a targeted deletion of CIITA PIV lack CD4+ T cells and were protected against CIA. The expression of CIITA was restored in the thymus of PIV(-/-) K14 CIITA-transgenic mice, which had a normal CD4+ T cell repertoire and normal surface levels of class II MHC on professional antigen-presenting cells, but did not induce class II MHC on FLS. Synovial inflammation and immune responses against type II collagen were similar in PIV(-/-) K14 CIITA-transgenic mice and control mice with CIA, but bone erosion was significantly reduced in the absence of PIV. Overexpression of class II MHC is tightly correlated with CIITA expression in arthritic synovium and in FLS. Selective targeting of Ciita PIV in peripheral tissues abrogates class II MHC expression by murine FLS but does not protect against inflammation and autoimmune responses in CIA. Copyright © 2011 by the American College of Rheumatology.

  10. Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function

    Energy Technology Data Exchange (ETDEWEB)

    Jiang, Xin; Bai, Yang; Zhang, Zhiguo [The First Hospital of Jilin University, Changchun 130021 (China); KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202 (United States); Xin, Ying, E-mail: xiny@jlu.edu.cn [KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202 (United States); Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun 130021 (China); Cai, Lu, E-mail: l0cai001@louisville.edu [The First Hospital of Jilin University, Changchun 130021 (China); KCHRI at the Department of Pediatrics, The University of Louisville, Louisville 40202 (United States)

    2014-09-01

    Diabetes-induced testicular apoptosis is predominantly due to increased oxidative stress. The nuclear factor-erythroid 2-related factor 2 (Nrf2), as a master transcription factor in controlling anti-oxidative systems, is able to be induced by sulforaphane (SFN). To examine whether SFN prevents testicular apoptosis, type 1 diabetic mouse model was induced with multiple low-dose streptozotocin. Diabetic and age-matched control mice were treated with and without SFN at 0.5 mg/kg daily in five days of each week for 3 months and then kept until 6 months. Diabetes significantly increased testicular apoptosis that was associated with endoplasmic reticulum stress and mitochondrial cell death pathways, shown by the increased expression of C/EBP homologous protein (CHOP), cleaved caspase-12, Bax to Bcl2 expression ratio, and cleaved caspase-3. Diabetes also significantly increased testicular oxidative damage, inflammation and fibrosis, and decreased germ cell proliferation. All these diabetic effects were significantly prevented by SFN treatment for the first 3 months, and the protective effect could be sustained at 3 months after SFN treatment. SFN was able to up-regulate Nrf2 expression and function. The latter was reflected by the increased phosphorylation of Nrf2 at Ser40 and expression of Nrf2 downstream antioxidants at mRNA and protein levels. These results suggest that type 1 diabetes significantly induced testicular apoptosis and damage along with increasing oxidative stress and cell death and suppressing Nrf2 expression and function. SFN is able to prevent testicular oxidative damage and apoptosis in type 1 diabetes mice, which may be associated with the preservation of testicular Nrf2 expression and function under diabetic condition. - Highlights: • Sulforaphane (SFN) could attenuate diabetes-induced germ cell apoptosis. • SFN could preserve germ cell proliferation under diabetic conditions. • SFN testicular protection was sustained until 3 months after

  11. Protection by sulforaphane from type 1 diabetes-induced testicular apoptosis is associated with the up-regulation of Nrf2 expression and function

    International Nuclear Information System (INIS)

    Jiang, Xin; Bai, Yang; Zhang, Zhiguo; Xin, Ying; Cai, Lu

    2014-01-01

    Diabetes-induced testicular apoptosis is predominantly due to increased oxidative stress. The nuclear factor-erythroid 2-related factor 2 (Nrf2), as a master transcription factor in controlling anti-oxidative systems, is able to be induced by sulforaphane (SFN). To examine whether SFN prevents testicular apoptosis, type 1 diabetic mouse model was induced with multiple low-dose streptozotocin. Diabetic and age-matched control mice were treated with and without SFN at 0.5 mg/kg daily in five days of each week for 3 months and then kept until 6 months. Diabetes significantly increased testicular apoptosis that was associated with endoplasmic reticulum stress and mitochondrial cell death pathways, shown by the increased expression of C/EBP homologous protein (CHOP), cleaved caspase-12, Bax to Bcl2 expression ratio, and cleaved caspase-3. Diabetes also significantly increased testicular oxidative damage, inflammation and fibrosis, and decreased germ cell proliferation. All these diabetic effects were significantly prevented by SFN treatment for the first 3 months, and the protective effect could be sustained at 3 months after SFN treatment. SFN was able to up-regulate Nrf2 expression and function. The latter was reflected by the increased phosphorylation of Nrf2 at Ser40 and expression of Nrf2 downstream antioxidants at mRNA and protein levels. These results suggest that type 1 diabetes significantly induced testicular apoptosis and damage along with increasing oxidative stress and cell death and suppressing Nrf2 expression and function. SFN is able to prevent testicular oxidative damage and apoptosis in type 1 diabetes mice, which may be associated with the preservation of testicular Nrf2 expression and function under diabetic condition. - Highlights: • Sulforaphane (SFN) could attenuate diabetes-induced germ cell apoptosis. • SFN could preserve germ cell proliferation under diabetic conditions. • SFN testicular protection was sustained until 3 months after

  12. Co-ordinate expression of activin A and its type I receptor mRNAs during phorbol ester-induced differentiation of human K562 erythroleukemia cells.

    Science.gov (United States)

    Hildén, K; Tuuri, T; Erämaa, M; Ritvos, O

    1999-07-20

    Activins were originally isolated based on their ability to stimulate follicle-stimulating hormone secretion but later they have been shown to regulate a number of different cellular functions such as nerve cell survival, mesoderm induction during early embryogenesis as well as hematopoiesis. We studied the regulation of activin A, a homodimer of betaA-subunits, mRNA and protein in K562 erythroleukemia cells, which are known to be induced toward the erythroid lineage in response to activin or TGF-beta or toward the megakaryocytic lineage by the phorbol ester protein kinase C activator 12-O-tetradecanoylphorbol-13-acetate (TPA). Here we show by Northern blot analysis as well as by Western and ligand blotting that TPA strongly promotes activin betaA-subunit mRNA and activin A protein expression in K562 cells in time- and concentration dependent manner. In contrast, neither activin A nor TGF-beta induced betaA-subunit mRNA expression during erythroid differentiation in K562 cells. Interestingly, whereas activin type II receptors are not regulated during K562 cell differentiation (Hilden et al. (1994) Blood 83, 2163-2170), we now show that the activin type I and IB receptor mRNAs are clearly induced by TPA but not by activin or TGF-beta. We also show that the inducing effect of TPA on expression of activin betaA-subunit mRNA is potentiated by the protein kinase A activator 8-bromo-cAMP. We conclude that activin A and its type I receptors appear to be co-ordinately up-regulated during megakaryocytic differentiation of K562 cells.

  13. Human T Cell Leukemia Virus Type I Tax-Induced IκB-ζ Modulates Tax-Dependent and Tax-Independent Gene Expression in T Cells

    Directory of Open Access Journals (Sweden)

    Ryuichiro Kimura

    2013-09-01

    Full Text Available Human T cell leukemia virus type I (HTLV-I is the etiologic agent of adult T cell leukemia (ATL and various inflammatory disorders including HTLV-I-associated myelopathy/tropical spastic paraparesis. HTLV-I oncoprotein Tax is known to cause permanent activation of many cellular transcription factors including nuclear factor-κB (NF-κB, cyclic adenosine 3′,5′-monophosphate response element-binding protein, and activator protein 1 (AP-1. Here, we show that NF-κB-binding cofactor inhibitor of NF-κB-ζ (IκB-ζ is constitutively expressed in HTLV-I-infected T cell lines and ATL cells, and Tax transactivates the IκB-ζ gene, mainly through NF-κB. Microarray analysis of IκB-ζ-expressing uninfected T cells demonstrated that IκB-ζ induced the expression of NF-κB. and interferon-regulatory genes such as B cell CLL/lymphoma 3 (Bcl3, guanylate-binding protein 1, and signal transducer and activator of transcription 1. The transcriptional activation domain, nuclear localization signal, and NF-κB-binding domain of IκB-ζ were required for Bcl3 induction, and IκB-ζ synergistically enhanced Tax-induced Bcl3 transactivation in an NF-κB-dependent manner. Interestingly, IκB-ζ inhibited Tax-induced NF-κB, AP-1 activation, and HTLV-I transcription. Furthermore, IκB-ζ interacted with Tax in vitro and this interaction was also observed in an HTLV-I-transformed T cell line. These results suggest that IκB-ζ modulates Tax-dependent and Tax-independent gene transcription in T cells. The function of IκB-ζ may be of significance in ATL genesis and pathogenesis of HTLV-I-associated diseases.

  14. Human T Cell Leukemia Virus Type I Tax-Induced IκB-ζ Modulates Tax-Dependent and Tax-Independent Gene Expression in T Cells1

    Science.gov (United States)

    Kimura, Ryuichiro; Senba, Masachika; Cutler, Samuel J; Ralph, Stephen J; Xiao, Gutian; Mori, Naoki

    2013-01-01

    Human T cell leukemia virus type I (HTLV-I) is the etiologic agent of adult T cell leukemia (ATL) and various inflammatory disorders including HTLV-I-associated myelopathy/tropical spastic paraparesis. HTLV-I oncoprotein Tax is known to cause permanent activation of many cellular transcription factors including nuclear factor-κB (NF-κB), cyclic adenosine 3′,5′-monophosphate response element-binding protein, and activator protein 1 (AP-1). Here, we show that NF-κB-binding cofactor inhibitor of NF-κB-ζ (IκB-ζ) is constitutively expressed in HTLV-I-infected T cell lines and ATL cells, and Tax transactivates the IκB-ζ gene, mainly through NF-κB. Microarray analysis of IκB-ζ-expressing uninfected T cells demonstrated that IκB-ζ induced the expression of NF-κB. and interferon-regulatory genes such as B cell CLL/lymphoma 3 (Bcl3), guanylate-binding protein 1, and signal transducer and activator of transcription 1. The transcriptional activation domain, nuclear localization signal, and NF-κB-binding domain of IκB-ζ were required for Bcl3 induction, and IκB-ζ synergistically enhanced Tax-induced Bcl3 transactivation in an NF-κB-dependent manner. Interestingly, IκB-ζ inhibited Tax-induced NF-κB, AP-1 activation, and HTLV-I transcription. Furthermore, IκB-ζ interacted with Tax in vitro and this interaction was also observed in an HTLV-I-transformed T cell line. These results suggest that IκB-ζ modulates Tax-dependent and Tax-independent gene transcription in T cells. The function of IκB-ζ may be of significance in ATL genesis and pathogenesis of HTLV-I-associated diseases. PMID:24027435

  15. Human papillomavirus type 16 E6-specific antitumor immunity is induced by oral administration of HPV16 E6-expressing Lactobacillus casei in C57BL/6 mice.

    Science.gov (United States)

    Lee, Tae-Young; Kim, Yang-Hyun; Lee, Kyung-Soon; Kim, Jeong-Ki; Lee, Il-Han; Yang, Jai-Myung; Sung, Moon-Hee; Park, Jong-Sup; Poo, Haryoung

    2010-11-01

    Given that local cell-mediated immunity (CMI) against the human papillomavirus type 16 E6 (HPV16 E6) protein is important for eradication of HPV16 E6-expressing cancer cells in the cervical mucosa, the HPV16 E6 protein may be a target for the mucosal immunotherapy of cervical cancer. Here, we expressed the HPV16 E6 antigen on Lactobacillus casei (L. casei) and investigated E6-specific CMI following oral administration of the L. casei-PgsA-E6 to mice. Surface expression of HPV16 E6 antigens was confirmed and mice were orally inoculated with the L. casei-PgsA or the L. casei-PgsA-E6. Compared to the L. casei-PgsA-treated mice, significantly higher levels of serum IgG and mucosal IgA were observed in L. casei-PgsA-E6-immunized mice; these differences were significantly enhanced after boost. Consistent with this, systemic and local CMI were significantly increased after the boost, as shown by increased counts of IFN-gamma-secreting cells in splenocytes, mesenteric lymph nodes (MLN), and vaginal samples. Furthermore, in the TC-1 tumor model, animals receiving the orally administered L. casei-PgsA-E6 showed reduced tumor size and increased survival rate versus mice receiving control (L. casei-PgsA) immunization. We also found that L. casei-PgsA-E6-induced antitumor effect was decreased by in vivo depletion of CD4(+) or CD8(+) T cells. Collectively, these results indicate that the oral administration of lactobacilli bearing the surface-displayed E6 protein induces T cell-mediated cellular immunity and antitumor effects in mice.

  16. Deletion of Protein Tyrosine Phosphatase 1B (PTP1B Enhances Endothelial Cyclooxygenase 2 Expression and Protects Mice from Type 1 Diabetes-Induced Endothelial Dysfunction.

    Directory of Open Access Journals (Sweden)

    David J Herren

    Full Text Available Protein tyrosine phosphatase 1B (PTP1B dephosphorylates receptors tyrosine kinase and acts as a molecular brake on insulin signaling pathway. Conditions of metabolic dysfunction increase PTP1B, when deletion of PTP1B protects against metabolic disorders by increasing insulin signaling. Although vascular insulin signaling contributes to the control of glucose disposal, little is known regarding the direct role of PTP1B in the control of endothelial function. We hypothesized that metabolic dysfunctions increase PTP1B expression in endothelial cells and that PTP1B deletion prevents endothelial dysfunction in situation of diminished insulin secretion. Type I diabetes (T1DM was induced in wild-type (WT and PTP1B-deficient mice (KO with streptozotocin (STZ injection. After 28 days of T1DM, KO mice exhibited a similar reduction in body weight and plasma insulin levels and a comparable increase in glycemia (WT: 384 ± 20 vs. Ko: 432 ± 29 mg/dL, cholesterol and triglycerides, as WT mice. T1DM increased PTP1B expression and impaired endothelial NO-dependent relaxation, in mouse aorta. PTP1B deletion did not affect baseline endothelial function, but preserved endothelium-dependent relaxation, in T1DM mice. NO synthase inhibition with L-NAME abolished endothelial relaxation in control and T1DM WT mice, whereas L-NAME and the cyclooxygenases inhibitor indomethacin were required to abolish endothelium relaxation in T1DM KO mice. PTP1B deletion increased COX-2 expression and PGI2 levels, in mouse aorta and plasma respectively, in T1DM mice. In parallel, simulation of diabetic conditions increased PTP1B expression and knockdown of PTP1B increased COX-2 but not COX-1 expression, in primary human aortic endothelial cells. Taken together these data indicate that deletion of PTP1B protected endothelial function by compensating the reduction in NO bioavailability by increasing COX-2-mediated release of the vasodilator prostanoid PGI2, in T1DM mice.

  17. Exercise induced regulation of muscular Na+,K+ pump, FXYD1, and NHE1 mRNA and protein expression: importance of training status, intensity, and muscle type

    DEFF Research Database (Denmark)

    Rasmussen, Martin Krøyer; Juel, Carsten; Nordsborg, Nikolai Baastrup

    2011-01-01

    It is investigated if exercise induced mRNA changes cause similar protein expression changes of Na(+), K(+) pump isoforms (a1, a2, ß1, ß2), FXYD1 and NHE1 in rat skeletal muscle. Expression was evaluated (n=8 per group) in Soleus and EDL after 1 day, 3 days and 3 weeks (5 sessions per week...

  18. Dysregulated miR-103 and miR-143 expression in peripheral blood mononuclear cells from induced prediabetes and type 2 diabetes rats.

    Science.gov (United States)

    Vatandoost, Nasimeh; Amini, Masoud; Iraj, Bijan; Momenzadeh, Sedigheh; Salehi, Rasoul

    2015-11-01

    The progression from normal glucose tolerance (NGT) to type 2 diabetes (T2D) occurs through an intermediate state of glucose intolerance known as pre-diabetes. This transition is usually a gradual phenomenon that occurs over 5-10 years. Among the routinely practiced T2D screening criteria, like, FPG, IFG, IGT or HbA1c, still the issue of a preferable one is debated. The newly emerged microRNAs are created much hope to act as a class of suitable diabetes gene signature detectable at an early stage of the disease development. Although T2D related miRNA fluctuations are reported from the main insulin target organs, sampling of these organs for the sake of screening due to its invasive nature is not practicable. Peripheral blood mononuclear cells (PBMCs) are in constant touch with all body organs hence may exhibit the trace of miRNA changes which take place in insulin target organs. In this study we have evaluated miR-103 and miR-143 expression in three groups of rats namely; normal control, high fat diet (HFD) which is corresponding to prediabetes state, and high fat diet/streptozotocin (STZ) induced T2D. Quantitative real time PCR was used for profiling the selected miRNA expression at various time intervals of the three defined groups of rats. In prediabetes and overt diabetes stages, miR-103 showed significantly elevated expression in PBMC specimens compared to the normal healthy control group. Overexpression pattern of mir-143 was statistically significant in T2D compared to non-diabetic controls. However in HFD (prediabetic) rats also we observed an increasing pattern of miR-143 compared to the normal controls but it was not statistically significant. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Oxidized Low-density Lipoprotein (ox-LDL) Cholesterol Induces the Expression of miRNA-223 and L-type Calcium Channel Protein in Atrial Fibrillation

    Science.gov (United States)

    He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang

    2016-08-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease.

  20. Two types of Tet-On transgenic lines for doxycycline-inducible gene expression in zebrafish rod photoreceptors and a gateway-based tet-on toolkit.

    Directory of Open Access Journals (Sweden)

    Leah J Campbell

    Full Text Available The ability to control transgene expression within specific tissues is an important tool for studying the molecular and cellular mechanisms of development, physiology, and disease. We developed a Tet-On system for spatial and temporal control of transgene expression in zebrafish rod photoreceptors. We generated two transgenic lines using the Xenopus rhodopsin promoter to drive the reverse tetracycline-controlled transcriptional transactivator (rtTA, one with self-reporting GFP activity and one with an epitope tagged rtTA. The self-reporting line includes a tetracycline response element (TRE-driven GFP and, in the presence of doxycycline, expresses GFP in larval and adult rods. A time-course of doxycycline treatment demonstrates that maximal induction of GFP expression, as determined by the number of GFP-positive rods, is reached within approximately 24 hours of drug treatment. The epitope-tagged transgenic line eliminates the need for the self-reporting GFP activity by expressing a FLAG-tagged rtTA protein. Both lines demonstrate strong induction of TRE-driven transgenes from plasmids microinjected into one-cell embryos. These results show that spatial and temporal control of transgene expression can be achieved in rod photoreceptors. Additionally, system components are constructed in Gateway compatible vectors for the rapid cloning of doxycycline-inducible transgenes and use in other areas of zebrafish research.

  1. Effects of Traumatic Stress Induced in the Juvenile Period on the Expression of Gamma-Aminobutyric Acid Receptor Type A Subunits in Adult Rat Brain

    Directory of Open Access Journals (Sweden)

    Cui Yan Lu

    2017-01-01

    Full Text Available Studies have found that early traumatic experience significantly increases the risk of posttraumatic stress disorder (PTSD. Gamma-aminobutyric acid (GABA deficits were proposed to be implicated in development of PTSD, but the alterations of GABA receptor A (GABAAR subunits induced by early traumatic stress have not been fully elucidated. Furthermore, previous studies suggested that exercise could be more effective than medications in reducing severity of anxiety and depression but the mechanism is unclear. This study used inescapable foot-shock to induce PTSD in juvenile rats and examined their emotional changes using open-field test and elevated plus maze, memory changes using Morris water maze, and the expression of GABAAR subunits (γ2, α2, and α5 in subregions of the brain in the adulthood using western blotting and immunohistochemistry. We aimed to observe the role of GABAAR subunits changes induced by juvenile trauma in the pathogenesis of subsequent PTSD in adulthood. In addition, we investigated the protective effects of exercise for 6 weeks and benzodiazepine (clonazepam for 2 weeks. This study found that juvenile traumatic stress induced chronic anxiety and spatial memory loss and reduced expression of GABAAR subunits in the adult rat brains. Furthermore, exercise led to significant improvement as compared to short-term BZ treatment.

  2. Comparison of clastogen-induced gene expression profiles in wild-type and DNA repair-deficient Rad54/Rad54B cells

    Directory of Open Access Journals (Sweden)

    van Benthem Jan

    2010-01-01

    Full Text Available Abstract Background Previously we found that Rad54/Rad54B cells are more sensitive towards mitomycin C (MMC as compared to wild-type (WT cells. This difference in sensitivity was absent upon exposure to other clastogens like bleomycin (BLM and γ-radiation. In order to get further insight into possible underlying mechanisms, gene expression changes in WT and Rad54/Rad54B MEFs (mouse embryonic fibroblasts after exposure to the clastogens MMC and BLM were investigated. Exposures of these cells to mutagens (N-ac-AAF and ENU and vehicle were taken as controls. Results Most exposures resulted in an induction of DNA damage signaling and apoptosis genes and a reduced expression of cell division genes in cells of both genotypes. As expected, responses to N-ac-AAF were very similar in both genotypes. ENU exposure did not lead to significant gene expression changes in cells of both genotypes, presumably due to its short half-life. Gene expression responses to clastogens, however, showed a genotype-dependent effect for BLM and MMC. MMC treated Rad54/Rad54B MEFs showed no induction of p53-signaling, DNA damage response and apoptosis as seen for all the other treatments. Conclusion These data support our finding that different types of clastogens exist and that responses to these types depend on the DNA repair status of the cells.

  3. Distinct cell clusters touching islet cells induce islet cell replication in association with over-expression of Regenerating Gene (REG protein in fulminant type 1 diabetes.

    Directory of Open Access Journals (Sweden)

    Kaoru Aida

    Full Text Available BACKGROUND: Pancreatic islet endocrine cell-supporting architectures, including islet encapsulating basement membranes (BMs, extracellular matrix (ECM, and possible cell clusters, are unclear. PROCEDURES: The architectures around islet cell clusters, including BMs, ECM, and pancreatic acinar-like cell clusters, were studied in the non-diabetic state and in the inflamed milieu of fulminant type 1 diabetes in humans. RESULT: Immunohistochemical and electron microscopy analyses demonstrated that human islet cell clusters and acinar-like cell clusters adhere directly to each other with desmosomal structures and coated-pit-like structures between the two cell clusters. The two cell-clusters are encapsulated by a continuous capsule composed of common BMs/ECM. The acinar-like cell clusters have vesicles containing regenerating (REG Iα protein. The vesicles containing REG Iα protein are directly secreted to islet cells. In the inflamed milieu of fulminant type 1 diabetes, the acinar-like cell clusters over-expressed REG Iα protein. Islet endocrine cells, including beta-cells and non-beta cells, which were packed with the acinar-like cell clusters, show self-replication with a markedly increased number of Ki67-positive cells. CONCLUSION: The acinar-like cell clusters touching islet endocrine cells are distinct, because the cell clusters are packed with pancreatic islet clusters and surrounded by common BMs/ECM. Furthermore, the acinar-like cell clusters express REG Iα protein and secrete directly to neighboring islet endocrine cells in the non-diabetic state, and the cell clusters over-express REG Iα in the inflamed milieu of fulminant type 1 diabetes with marked self-replication of islet cells.

  4. Staurosporine induces ganglion cell differentiation in part by stimulating urokinase-type plasminogen activator expression and activation in the developing chick retina

    International Nuclear Information System (INIS)

    Kim, Yeoun-Hee; Chang, Yongmin; Jung, Jae-Chang

    2012-01-01

    Highlights: ► Staurosporine mediates stimulation of RGC differentiation in vitro cultured retinal neuroblasts. ► Staurosporine mediates uPA activation during RGC differentiation in vitro. ► Inhibition of uPA blocks the staurosporine mediated RGC differentiation both in vitro and in ovo. ► Thus, uPA may play a role in the staurosporine-mediated stimulation of RGC differentiation. -- Abstract: Here, we investigated whether staurosporine-mediated urokinase-type plasminogen activator (uPA) activation is involved in retinal ganglion cell (RGC) differentiation. Retinal cells were isolated from developing chick retinas at embryonic day 6 (E6). Relatively few control cells grown in serum-free medium started to form processes by 12 h. In contrast, staurosporine-treated cells had processes within 3 h, and processes were evident at 8 h. Immunofluorescence staining showed that Tuj-1-positive cells with shorter neurites could be detected in control cultures at 18 h, whereas numerous Tuj-1 positive ganglion cells with longer neuritic extensions were seen in staurosporine-treated cultures. BrdU-positive proliferating cells were more numerous in control cultures than in staurosporine-treated cultures, and the BrdU staining was not detected in post-mitotic Tuj-1 positive ganglion cells. Western blotting of cell lysates showed that staurosporine induced high levels of the active form of uPA. The staurosporine-induced uPA signal was localized predominantly in the soma, neurites and axons of Tuj-1-positive ganglion cells. Amiloride, an inhibitor of uPA, markedly reduced staurosporine-induced Tuj-1 staining, neurite length, neurite number, and uPA staining versus controls. In developing retinas in ovo, amiloride administration remarkably reduced the staurosporine-induced uPA staining and RGC differentiation. Taken together, our in vitro and in vivo data collectively indicate that uPA plays a role in the staurosporine-mediated stimulation of RGC differentiation.

  5. Human Tear Fluid Reduces Culturability of Contact Lens Associated Pseudomonas aeruginosa Biofilms but Induces Expression of the Virulence Associated Type III Secretion System

    Science.gov (United States)

    Wu, Yvonne T.; Tam, Connie; Zhu, Lucia S.; Evans, David J.; Fleiszig, Suzanne M. J.

    2017-01-01

    Purpose The type III secretion system (T3SS) is a significant virulence determinant for Pseudomonas aeruginosa. Using a rodent model, we found that contact lens (CL)-related corneal infections were associated with lens surface biofilms. Here, we studied the impact of human tear fluid on CL-associated biofilm growth and T3SS expression. Methods P. aeruginosa biofilms were formed on contact lenses for up to 7 days with or without human tear fluid, then exposed to tear fluid for 5 or 24 h. Biofilms were imaged using confocal microscopy. Bacterial culturability was quantified by viable counts, and T3SS gene expression measured by RT-qPCR. Controls included trypticase soy broth, PBS and planktonic bacteria. Results With or without tear fluid, biofilms grew to ~108 cfu viable bacteria by 24 h. Exposing biofilms to tear fluid after they had formed without it on lenses reduced bacterial culturability ~180-fold (pbacteria [5.46 ± 0.24-fold for T3SS transcriptional activitor exsA (p=.02), and 3.76 ± 0.36-fold for T3SS effector toxin exoS (p=.01)]. Tear fluid further enhanced exsA and exoS expression in CL-grown biofilms, but not planktonic bacteria, by 2.09 ± 0.38-fold (p = 0.04) and 1.89 ± 0.26-fold (p<.001), respectively. Conclusions Considering the pivitol role of the T3SS in P. aeruginosa infections, its induction in CL-grown P. aeruginosa biofilms by tear fluid might contribute to the pathogenesis of CL-related P. aeruginosa keratitis. PMID:27670247

  6. Lithium ions induce prestalk-associated gene expression and inhibit prespore gene expression in Dictyostelium discoideum

    NARCIS (Netherlands)

    Peters, Dorien J.M.; Lookeren Campagne, Michiel M. van; Haastert, Peter J.M. van; Spek, Wouter; Schaap, Pauline

    1989-01-01

    We investigated the effect of Li+ on two types of cyclic AMP-regulated gene expression and on basal and cyclic AMP-stimulated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) levels. Li+ effectively inhibits cyclic AMP-induced prespore gene expression, half-maximal inhibition occurring at about 2mM-LiCl.

  7. Profiles of Gene Expression Induced by Ionizing Radiation in Different Human Cell Types. Doctoral thesis prepared at SCK-CEN and defended in 2005

    International Nuclear Information System (INIS)

    Mori, M.

    2006-01-01

    Ionizing radiation disrupts chemical bonds in biomolecules, such as proteins and DNA, which result in important cellular damage. Exposure to relatively high doses of ionizing radiation such as those delivered to the tumor in a radiotherapy protocol is generally lethal for the cell. However, non-lethal dose of ionizing radiation can be delivered during radiotherapy to the healthy tissue surrounding the tumor. Although the effects of ionizing radiation at the cellular level are quite well established (cell cycle arrest, senescence, apoptosis, mitotic catastrophe), questions remain concerning the molecular pathways regulating these cellular responses, including those differentiating the responses between tumor and normal cells. In normal cells, the p53 protein plays a central role. However, the efficacy of radiation treatments on tumor cells is often reduced because of the frequent inactivation of the p53 protein in those cells. Our study used the microarray technology to investigate the molecular pathways induced by irradiation in transformed and nontransformed human cells. Profiles of gene expression obtained with cDNA microarrays were regarded as steps to characterize the general response to ionizing radiation and, possibly also, differentiating the response between transformed and nontransformed cells. Possible implications of such research include the development of radiosensitizing (to maximize the effect of radiotherapeutic irradiation) and of radioprotecting strategies. Transcriptional profiles were investigated in transformed (Jurkat, HL60) and non-transformed (freshly isolated lymphocyte subpopulations) cells of hematopoietic origin. Also, because HeLa carcinoma-derived cells expressing human papilloma virus (HPV) 18 derived E2 protein represent a reliable model to study the p53 pathway, which is normally activated in response to radiation, molecular profiles were obtained to characterize this pathway in these cells

  8. Comparative study of the effects of PM1-induced oxidative stress on autophagy and surfactant protein B and C expressions in lung alveolar type II epithelial MLE-12 cells.

    Science.gov (United States)

    Bai, Ru; Guan, Longfei; Zhang, Wei; Xu, Jinxia; Rui, Wei; Zhang, Fang; Ding, Wenjun

    2016-12-01

    There is a strong link between smaller air pollution particles and a range of serious health conditions. Thus, there is a need for understanding the impacts of airborne fine particulate matter (PM) with an aerodynamic diameter of PM1) on lung alveolar epithelial cells. In the present study, mouse lung epithelial type II cell MLE-12 cells were used to examine the intracellular oxidative responses and the surfactant protein expressions after exposure to various concentrations of PM1 collected from an urban site and a steel-factory site (referred as uPM1 and sPM1 hereafter, respectively). Physicochemical characterization of PM1 was performed by using scanning electron microscopy and transmission electron microscopy. Cytotoxicity and autophagy induced by PM1 were assessed by using comprehensive approaches after MLE-12 cells were exposed to different concentrations of PM1 for various times. Expression of surfactant proteins B and C in MLE-12 cells was determined by Western blotting. All of the tested PM1 induced cytotoxicity evidenced by significant decrease of cell viability and increase of lactate dehydrogenase (LDH) release in a time- and concentration-dependent manner in the exposed cells compared with the unexposed cells. A similar pattern of increase of intercellular reactive oxygen species (ROS) generation and decrease of superoxide dismutase (SOD) and catalase (CAT) activities was also observed. PM1-induced autophagy was evidenced by an increase in microtubule-associated protein light chain-3 (LC3) puncta, accumulation of LC3II, and increased levels of beclin1. Data from Western blotting showed significant decrease of surfactant protein B and C expressions. Relatively high concentrations of transition metals, including Fe, Cu and Mn, may be responsible for the higher toxicity of sPM1 compared with uPM1. Moreover, pretreatment with N-acetylcysteine (NAC) or Chelex (a metal chelating agent, which removes a large suite of metals from PM1) prevented the increase of

  9. Tamoxifen-inducible gene deletion reveals a distinct cell type associated with trabecular bone, and direct regulation of PTHrP expression and chondrocyte morphology by Ihh in growth region cartilage.

    Science.gov (United States)

    Hilton, Matthew J; Tu, Xiaolin; Long, Fanxin

    2007-08-01

    Indian hedgehog (Ihh) controls multiple aspects of endochondral skeletal development by signaling to both chondrocytes and perichondrial cells. Previous efforts to delineate direct effects of Ihh on chondrocytes by Col2-Cre-mediated ablation of Smoothened (Smo, encoding a transmembrane protein indispensable for Ihh signaling) has been only partially successful, due to the inability to discriminate between chondrocytes and perichondrial cells. Here we report a transgenic line (Col2-Cre) expressing under the control of the Colalpha1(II) promoter an inert form of Cre that is activatable by exogenous tamoxifen (TM); TM administration at proper times during embryogenesis induced Cre activity in chondrocytes but not in the perichondrium. By using this mouse line, we deleted Smo within subsets of chondrocytes without affecting the perichondrium and found that Smo removal led to localized disruption of the expression of parathyroid hormone-related protein (PTHrP) and the morphology of chondrocytes. Unexpectedly, TM invariably induced Cre activity in a subset of cells associated with the trabecular bone surface of long bones. These cells, when genetically marked and cultured in vitro, were capable of producing bone nodules. Expression of the Col2-Cre transgene in these cells likely reflected the endogenous Colalpha1(II) promoter activity as similar cells were found to express the IIA isoform of Colalpha1(II) mRNA endogenously. In summary, the present study has not only provided evidence that Ihh signaling directly controls PTHrP expression and chondrocyte morphology in the growth region cartilage, but has also uncovered a distinct cell type associated with the trabecular bone that appears to possess osteogenic potential.

  10. Ameloblasts express type I collagen during amelogenesis.

    Science.gov (United States)

    Assaraf-Weill, N; Gasse, B; Silvent, J; Bardet, C; Sire, J Y; Davit-Béal, T

    2014-05-01

    Enamel and enameloid, the highly mineralized tooth-covering tissues in living vertebrates, are different in their matrix composition. Enamel, a unique product of ameloblasts, principally contains enamel matrix proteins (EMPs), while enameloid possesses collagen fibrils and probably receives contributions from both odontoblasts and ameloblasts. Here we focused on type I collagen (COL1A1) and amelogenin (AMEL) gene expression during enameloid and enamel formation throughout ontogeny in the caudate amphibian, Pleurodeles waltl. In this model, pre-metamorphic teeth possess enameloid and enamel, while post-metamorphic teeth possess enamel only. In first-generation teeth, qPCR and in situ hybridization (ISH) on sections revealed that ameloblasts weakly expressed AMEL during late-stage enameloid formation, while expression strongly increased during enamel deposition. Using ISH, we identified COL1A1 transcripts in ameloblasts and odontoblasts during enameloid formation. COL1A1 expression in ameloblasts gradually decreased and was no longer detected after metamorphosis. The transition from enameloid-rich to enamel-rich teeth could be related to a switch in ameloblast activity from COL1A1 to AMEL synthesis. P. waltl therefore appears to be an appropriate animal model for the study of the processes involved during enameloid-to-enamel transition, especially because similar events probably occurred in various lineages during vertebrate evolution.

  11. Polymerized-Type I Collagen Induces Upregulation of Foxp3-Expressing CD4 Regulatory T Cells and Downregulation of IL-17-Producing CD4+ T Cells (Th17 Cells in Collagen-Induced Arthritis

    Directory of Open Access Journals (Sweden)

    Janette Furuzawa-Carballeda

    2012-01-01

    Full Text Available Previous studies showed that polymerized-type I collagen (polymerized collagen exhibits potent immunoregulatory properties. This work evaluated the effect of intramuscular administration of polymerized collagen in early and established collagen-induced arthritis (CIA in mice and analyzed changes in Th subsets following therapy. Incidence of CIA was of 100% in mice challenged with type II collagen. Clinimorphometric analysis showed a downregulation of inflammation after administration of all treatments (P<0.05. Histological analysis showed that the CIA-mice group had extensive bone erosion, pannus and severe focal inflammatory infiltrates. In contrast, there was a remarkable reduction in the severity of arthritis in mice under polymerized collagen, methotrexate or methotrexate/polymerized collagen treatment. Polymerized Collagen but not methotrexate induced tissue joint regeneration. Polymerized Collagen and methotrexate/polymerized collagen but not methotrexate alone induces downregulation of CD4+/IL17A+ T cells and upregulation of Tregs and CD4+/IFN-γ+ T cells. Thus, Polymerized Collagen could be an effective therapeutic agent in early and established rheumatoid arthritis by exerting downregulation of autoimmune inflammation.

  12. Expression of extracellular matrix metalloproteinase inducer in odontogenic cysts.

    Science.gov (United States)

    Ali, Mohammad Abdulhadi Abbas

    2008-08-01

    Extracellular matrix metalloproteinase inducer (EMMPRIN) is known to induce matrix metalloproteinase (MMP) production. The expression of EMMPRIN in odontogenic cysts has not been previously studied. This study was done to determine the presence and the variability of EMMPRIN expression in various types of odontogenic cysts. An immunohistochemical study using a polyclonal anti-EMMPRIN antibody was done using 48 odontogenic cyst cases: 13 odontogenic keratocysts (OKCs), 18 dentigerous cysts (DCs), and 17 periapical cysts (PAs). Twelve cases of normal dental follicles (DFs) were also included in this study for comparison. EMMPRIN immunoreactivity was detected in all of the cysts and DFs studied. In odontogenic cysts, EMMPRIN immunoreactivity was generally higher in basal cells than in suprabasal cells. The overall EMMPRIN expression in the epithelial lining of the 3 different types of odontogenic cyst was significantly higher than in the DFs. Overall EMMPRIN expression was also found to be significantly higher in the epithelial lining of OKCs than in the other types of cysts. This study confirmed that EMMPRIN is present in odontogenic cysts and DFs. The higher EMMPRIN expression in OKCs suggests that it may be involved in the aggressive behavior of this type of cyst.

  13. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    Energy Technology Data Exchange (ETDEWEB)

    Kubota, Akira [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Bainy, Afonso C.D. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Departamento de Bioquímica, CCB, Universidade Federal de Santa Catarina, Florianopolis, SC 88040-900 (Brazil); Woodin, Bruce R.; Goldstone, Jared V. [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Stegeman, John J., E-mail: jstegeman@whoi.edu [Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2013-10-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with

  14. The cytochrome P450 2AA gene cluster in zebrafish (Danio rerio): Expression of CYP2AA1 and CYP2AA2 and response to phenobarbital-type inducers

    International Nuclear Information System (INIS)

    Kubota, Akira; Bainy, Afonso C.D.; Woodin, Bruce R.; Goldstone, Jared V.; Stegeman, John J.

    2013-01-01

    The cytochrome P450 (CYP) 2 gene family is the largest and most diverse CYP gene family in vertebrates. In zebrafish, we have identified 10 genes in a new subfamily, CYP2AA, which does not show orthology to any human or other mammalian CYP genes. Here we report evolutionary and structural relationships of the 10 CYP2AA genes and expression of the first two genes, CYP2AA1 and CYP2AA2. Parsimony reconstruction of the tandem duplication pattern for the CYP2AA cluster suggests that CYP2AA1, CYP2AA2 and CYP2AA3 likely arose in the earlier duplication events and thus are most diverged in function from the other CYP2AAs. On the other hand, CYP2AA8 and CYP2AA9 are genes that arose in the latest duplication event, implying functional similarity between these two CYPs. A molecular model of CYP2AA1 showing the sequence conservation across the CYP2AA cluster reveals that the regions with the highest variability within the cluster map onto CYP2AA1 near the substrate access channels, suggesting differing substrate specificities. Zebrafish CYP2AA1 transcript was expressed predominantly in the intestine, while CYP2AA2 was most highly expressed in the kidney, suggesting differing roles in physiology. In the liver CYP2AA2 expression but not that of CYP2AA1, was increased by 1,4-bis [2-(3,5-dichloropyridyloxy)] benzene (TCPOBOP) and, to a lesser extent, by phenobarbital (PB). In contrast, pregnenolone 16α-carbonitrile (PCN) increased CYP2AA1 expression, but not CYP2AA2 in the liver. The results identify a CYP2 subfamily in zebrafish that includes genes apparently induced by PB-type chemicals and PXR agonists, the first concrete in vivo evidence for a PB-type response in fish. - Highlights: • A tandemly duplicated cluster of ten CYP2AA genes was described in zebrafish. • Parsimony and duplication analyses suggest pathways to CYP2AA diversity. • Homology models reveal amino acid positions possibly related to functional diversity. • The CYP2AA locus does not share synteny with

  15. Drug-induced regulation of target expression

    DEFF Research Database (Denmark)

    Iskar, Murat; Campillos, Monica; Kuhn, Michael

    2010-01-01

    Drug perturbations of human cells lead to complex responses upon target binding. One of the known mechanisms is a (positive or negative) feedback loop that adjusts the expression level of the respective target protein. To quantify this mechanism systems-wide in an unbiased way, drug......-induced differential expression of drug target mRNA was examined in three cell lines using the Connectivity Map. To overcome various biases in this valuable resource, we have developed a computational normalization and scoring procedure that is applicable to gene expression recording upon heterogeneous drug treatments....... In 1290 drug-target relations, corresponding to 466 drugs acting on 167 drug targets studied, 8% of the targets are subject to regulation at the mRNA level. We confirmed systematically that in particular G-protein coupled receptors, when serving as known targets, are regulated upon drug treatment. We...

  16. Tax Protein-induced Expression of Antiapoptotic Bfl-1 Protein Contributes to Survival of Human T-cell Leukemia Virus Type 1 (HTLV-1)-infected T-cells*♦

    Science.gov (United States)

    Macaire, Héloïse; Riquet, Aurélien; Moncollin, Vincent; Biémont-Trescol, Marie-Claude; Duc Dodon, Madeleine; Hermine, Olivier; Debaud, Anne-Laure; Mahieux, Renaud; Mesnard, Jean-Michel; Pierre, Marlène; Gazzolo, Louis; Bonnefoy, Nathalie; Valentin, Hélène

    2012-01-01

    Human T lymphotropic virus type 1 (HTLV-1) is the etiologic agent of adult T-cell leukemia/lymphoma (ATLL). ATLL is a severe malignancy with no effective treatment. HTLV-1 regulatory proteins Tax and HTLV-1 basic leucine zipper factor (HBZ) play a major role in ATLL development, by interfering with cellular functions such as CD4+ T-cell survival. In this study, we observed that the expression of Bfl-1, an antiapoptotic protein of the Bcl-2 family, is restricted to HTLV-1-infected T-cell lines and to T-cells expressing both Tax and HBZ proteins. We showed that Tax-induced bfl-1 transcription through the canonical NF-κB pathway. Moreover, we demonstrated that Tax cooperated with c-Jun or JunD, but not JunB, transcription factors of the AP-1 family to stimulate bfl-1 gene activation. By contrast, HBZ inhibited c-Jun-induced bfl-1 gene activation, whereas it increased JunD-induced bfl-1 gene activation. We identified one NF-κB, targeted by RelA, c-Rel, RelB, p105/p50, and p100/p52, and two AP-1, targeted by both c-Jun and JunD, binding sites in the bfl-1 promoter of T-cells expressing both Tax and HBZ. Analyzing the potential role of antiapoptotic Bcl-2 proteins in HTLV-1-infected T-cell survival, we demonstrated that these cells are differentially sensitive to silencing of Bfl-1, Bcl-xL, and Bcl-2. Indeed, both Bfl-1 and Bcl-xL knockdowns decreased the survival of HTLV-1-infected T-cell lines, although no cell death was observed after Bcl-2 knockdown. Furthermore, we demonstrated that Bfl-1 knockdown sensitizes HTLV-1-infected T-cells to ABT-737 or etoposide treatment. Our results directly implicate Bfl-1 and Bcl-xL in HTLV-1-infected T-cell survival and suggest that both Bfl-1 and Bcl-xL represent potential therapeutic targets for ATLL treatment. PMID:22553204

  17. Exercise-induced metallothionein expression in human skeletal muscle fibres

    DEFF Research Database (Denmark)

    Penkowa, Milena; Keller, Pernille; Keller, Charlotte

    2005-01-01

    in both type I and II muscle fibres. This is the first report demonstrating that MT-I + II are significantly induced in human skeletal muscle fibres following exercise. As MT-I + II are antioxidant factors that protect various tissues during pathological conditions, the MT-I + II increases post exercise......Exercise induces free oxygen radicals that cause oxidative stress, and metallothioneins (MTs) are increased in states of oxidative stress and possess anti-apoptotic effects. We therefore studied expression of the antioxidant factors metallothionein I and II (MT-I + II) in muscle biopsies obtained...... in response to 3 h of bicycle exercise performed by healthy men and in resting controls. Both MT-I + II proteins and MT-II mRNA expression increased significantly in both type I and II muscle fibres after exercise. Moreover, 24 h after exercise the levels of MT-II mRNA and MT-I + II proteins were still highly...

  18. Development of inducer-free expression plasmids based on IPTG-inducible promoters for Bacillus subtilis.

    Science.gov (United States)

    Tran, Dinh Thi Minh; Phan, Trang Thi Phuong; Huynh, Thanh Kieu; Dang, Ngan Thi Kim; Huynh, Phuong Thi Kim; Nguyen, Tri Minh; Truong, Tuom Thi Tinh; Tran, Thuoc Linh; Schumann, Wolfgang; Nguyen, Hoang Duc

    2017-07-25

    the inducible vector using the same promoter. Finally, we used gfp as a reporter gene in combination with the two promoters Pgrac01 and Pgrac100 to test the new vector types. The GFP expression levels could be repressed at least 1.5 times for the Pgrac01-gfp+ inducer-free construct in E. coli. The inducer-free constructs Pgrac01-gfp+ and Pgrac100-gfp+ allowed GFP expression at high levels from 23 × 10 4 to 32 × 10 4 RFU units and 9-13% of total intracellular proteins. We could reconfirm the two major advantages of the new inducer-free expression plasmids: (1) Strong repression of the target gene expression in the E. coli cloning strain, and (2) production of the target protein at high levels in B. subtilis in the absence of the inducer. We propose a general strategy to generate inducer-free expression vector by using IPTG-inducible vectors, and more specifically we developed inducer-free expression plasmids using IPTG-inducible promoters in the absence of the LacI repressor. These plasmids could be an excellent choice for high-level production of recombinant proteins in B. subtilis without the addition of inducer and at the same time maintaining a low basal level of the recombinant proteins in E. coli. The repression of the recombinant gene expression would facilitate cloning of genes that potentially inhibit the growth of E. coli cloning strains. The inducer-free expression plasmids will be extended versions of the current available IPTG-inducible expression vectors for B. subtilis, in which all these vectors use the same cognate promoters. These inducer-free and previously developed IPTG-inducible expression plasmids will be a useful cassette to study gene expression at a small scale up to a larger scale up for the production of recombinant proteins.

  19. Expression of Wnt/β-Catenin Signaling Pathway and Its Regulatory Role in Type I Collagen with TGF-β1 in Scleral Fibroblasts from an Experimentally Induced Myopia Guinea Pig Model

    Directory of Open Access Journals (Sweden)

    Min Li

    2016-01-01

    Full Text Available Background. To investigate Wnt/β-catenin signaling pathway expression and its regulation of type I collagen by TGF-β1 in scleral fibroblasts from form-deprivation myopia (FDM guinea pig model. Methods. Wnt isoforms were examined using genome microarrays. Scleral fibroblasts from FDM group and self-control (SC group were cultured. Wnt isoforms, β-catenin, TGF-β1, and type I collagen expression levels were examined in the two groups with or without DKK-1 or TGF-β1 neutralizing antibody. Results. For genome microarrays, the expression of Wnt3 in FDM group was significantly greater as confirmed in retinal and scleral tissue. The expression of Wnt3 and β-catenin significantly increased in FDM group and decreased significantly with DKK-1. TGF-β1 expression level decreased significantly in FDM group and increased significantly with DKK-1. Along with morphological misalignment inside and outside cells, the amount of type I collagen decreased in FDM group. Furthermore, type I collagen increased and became regular in DKK-1 intervention group, whereas it decreased and rearranged more disorder in TGF-β1 neutralizing antibody intervention group. Conclusions. The activation of Wnt3/β-catenin signaling pathway was demonstrated in primary scleral fibroblasts in FDM. This pathway further reduced the expression of type I collagen by TGF-β1, which ultimately played a role in scleral remodeling during myopia development.

  20. Angiotensin II type 1 receptor blockade by telmisartan prevents stress-induced impairment of memory via HPA axis deactivation and up-regulation of brain-derived neurotrophic factor gene expression.

    Science.gov (United States)

    Wincewicz, D; Juchniewicz, A; Waszkiewicz, N; Braszko, J J

    2016-09-01

    Physical and psychological aspects of chronic stress continue to be a persistent clinical problem for which new pharmacological treatment strategies are aggressively sought. By the results of our previous work it has been demonstrated that telmisartan (TLM), an angiotensin type 1 receptor (AT1) blocker (ARB) and partial agonist of peroxisome proliferator-activated receptor gamma (PPARγ), alleviates stress-induced cognitive decline. Understanding of mechanistic background of this phenomenon is hampered by both dual binding sites of TLM and limited data on the consequences of central AT1 blockade and PPARγ activation. Therefore, a critical need exists for progress in the characterization of this target for pro-cognitive drug discovery. An unusual ability of novel ARBs to exert various PPARγ binding activities is commonly being viewed as predominant over angiotensin blockade in terms of neuroprotection. Here we aimed to verify this hypothesis using an animal model of chronic psychological stress (Wistar rats restrained 2.5h daily for 21days) with simultaneous oral administration of TLM (1mg/kg), GW9662 - PPARγ receptor antagonist (0.5mg/kg), or both in combination, followed by a battery of behavioral tests (open field, elevated plus maze, inhibitory avoidance - IA, object recognition - OR), quantitative determination of serum corticosterone (CORT) and evaluation of brain-derived neurotrophic factor (BDNF) gene expression in the medial prefrontal cortex (mPFC) and hippocampus (HIP). Stressed animals displayed decreased recall of the IA behavior (pBDNF in the mPFC (paxis deactivation associated with changes in primarily cortical gene expression. This study confirms the dual activities of TLM that controls hypertension and cognition through AT1 blockade. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Expression of cyclin D{sub 1} during endotoxin-induced aleveolar type II cell hyperplasia in rat lung and the detection of apoptotic cells during the remodeling process

    Energy Technology Data Exchange (ETDEWEB)

    Tesfaigzi, J.; Wood, M.B.; Johnson, N.F.

    1995-12-01

    Our studies have shown that endotoxin intratracheally instilled into the rat lung induces proliferation of alveolar type II cells. In that study, the alveolar type II cells. In that study, the alveolar type II cell hyperplasia occurred 2 d after instillation of endotoxin and persisted for a further 2 d. After hyperplasia, the lung remodeled and returned to a normal state within 24-48 h. Understanding the mechanisms involved in the remodeling process of this transient hyperplasia may be useful to identify molecular changes that are altered in neoplasia. The purpose of the present study was to corroborate induction of epithelial cell hyperplasia by endotoxin and to delineate mechanisms involved in tissue remodeling after endotoxin-induced alveolar type II cell hyperplasia. In conclusion, immonostaining with cyclin D1 and cytokeratin shows that endotoxin induced epithelial cell proliferation and resulted in hyperplasia in the lung which persisted through 4 d post-instillation.

  2. Mechanoactive scaffold induces tendon remodeling and expression of fibrocartilage markers.

    Science.gov (United States)

    Spalazzi, Jeffrey P; Vyner, Moira C; Jacobs, Matthew T; Moffat, Kristen L; Lu, Helen H

    2008-08-01

    Biological fixation of soft tissue-based grafts for anterior cruciate ligament (ACL) reconstruction poses a major clinical challenge. The ACL integrates with subchondral bone through a fibrocartilage enthesis, which serves to minimize stress concentrations and enables load transfer between two distinct tissue types. Functional integration thus requires the reestablishment of this fibrocartilage interface on reconstructed ACL grafts. We designed and characterized a novel mechanoactive scaffold based on a composite of poly-alpha-hydroxyester nanofibers and sintered microspheres; we then used the scaffold to test the hypothesis that scaffold-induced compression of tendon grafts would result in matrix remodeling and the expression of fibrocartilage interface-related markers. Histology coupled with confocal microscopy and biochemical assays were used to evaluate the effects of scaffold-induced compression on tendon matrix collagen distribution, cellularity, proteoglycan content, and gene expression over a 2-week period. Scaffold contraction resulted in over 15% compression of the patellar tendon graft and upregulated the expression of fibrocartilage-related markers such as Type II collagen, aggrecan, and transforming growth factor-beta3 (TGF-beta3). Additionally, proteoglycan content was higher in the compressed tendon group after 1 day. The data suggest the potential of a mechanoactive scaffold to promote the formation of an anatomic fibrocartilage enthesis on tendon-based ACL reconstruction grafts.

  3. Gene expression profiling reveals multiple toxicity endpoints induced by hepatotoxicants

    Energy Technology Data Exchange (ETDEWEB)

    Huang Qihong; Jin Xidong; Gaillard, Elias T.; Knight, Brian L.; Pack, Franklin D.; Stoltz, James H.; Jayadev, Supriya; Blanchard, Kerry T

    2004-05-18

    Microarray technology continues to gain increased acceptance in the drug development process, particularly at the stage of toxicology and safety assessment. In the current study, microarrays were used to investigate gene expression changes associated with hepatotoxicity, the most commonly reported clinical liability with pharmaceutical agents. Acetaminophen, methotrexate, methapyrilene, furan and phenytoin were used as benchmark compounds capable of inducing specific but different types of hepatotoxicity. The goal of the work was to define gene expression profiles capable of distinguishing the different subtypes of hepatotoxicity. Sprague-Dawley rats were orally dosed with acetaminophen (single dose, 4500 mg/kg for 6, 24 and 72 h), methotrexate (1 mg/kg per day for 1, 7 and 14 days), methapyrilene (100 mg/kg per day for 3 and 7 days), furan (40 mg/kg per day for 1, 3, 7 and 14 days) or phenytoin (300 mg/kg per day for 14 days). Hepatic gene expression was assessed using toxicology-specific gene arrays containing 684 target genes or expressed sequence tags (ESTs). Principal component analysis (PCA) of gene expression data was able to provide a clear distinction of each compound, suggesting that gene expression data can be used to discern different hepatotoxic agents and toxicity endpoints. Gene expression data were applied to the multiplicity-adjusted permutation test and significantly changed genes were categorized and correlated to hepatotoxic endpoints. Repression of enzymes involved in lipid oxidation (acyl-CoA dehydrogenase, medium chain, enoyl CoA hydratase, very long-chain acyl-CoA synthetase) were associated with microvesicular lipidosis. Likewise, subsets of genes associated with hepatotocellular necrosis, inflammation, hepatitis, bile duct hyperplasia and fibrosis have been identified. The current study illustrates that expression profiling can be used to: (1) distinguish different hepatotoxic endpoints; (2) predict the development of toxic endpoints; and

  4. Reversal of tolerance induced by transplantation of skin expressing the immunodominant T cell epitope of rat type II collagen entitles development of collagen-induced arthritis but not graft rejection

    DEFF Research Database (Denmark)

    Bäcklund, Johan; Treschow, Alexandra; Firan, Mihail

    2002-01-01

    rejection or instead to tolerance and arthritis protection. Interestingly, TSC grafts were accepted and not even immunization of recipient mice with CII in adjuvant induced graft rejection. Instead, TSC skin recipients displayed a reduced T and B cell response to CII and were also protected from arthritis...... collagen (CI), e.g. in skin, are tolerized against rat CII and resistant to CIA. In this study we transplanted skin from TSC transgenic mice onto non-transgenic CIA-susceptible littermates to investigate whether introduction of this epitope to a naïve immune system would lead to T cell priming and graft....... However, additional priming could break arthritis protection and was accompanied by an increased T cell response to the grafted epitope. Strikingly, despite the regained T cell response, development of arthritis was not accompanied by graft rejection, showing that these immune-mediated inflammatory...

  5. Anger Expression Types and Interpersonal Problems in Nurses.

    Science.gov (United States)

    Han, Aekyung; Won, Jongsoon; Kim, Oksoo; Lee, Sang E

    2015-06-01

    The purpose of this study was to investigate the anger expression types in nurses and to analyze the differences between the anger expression types and interpersonal problems. The data were collected from 149 nurses working in general hospitals with 300 beds or more in Seoul or Gyeonggi province, Korea. For anger expression type, the anger expression scale from the Korean State-Trait Anger Expression Inventory was used. For interpersonal problems, the short form of the Korean Inventory of Interpersonal Problems Circumplex Scales was used. Data were analyzed using descriptive statistics, cluster analysis, multivariate analysis of variance, and Duncan's multiple comparisons test. Three anger expression types in nurses were found: low-anger expression, anger-in, and anger-in/control type. From the results of multivariate analysis of variance, there were significant differences between anger expression types and interpersonal problems (Wilks lambda F = 3.52, p interpersonal problems by Duncan's post hoc test (p interpersonal problems. Copyright © 2015. Published by Elsevier B.V.

  6. Effects of IFN-β1a and IFN-β1b treatment on the expression of cytokines, inducible NOS (NOS type II), and myelin proteins in animal model of multiple sclerosis.

    Science.gov (United States)

    Lubina-Dąbrowska, Natalia; Stepień, Adam; Sulkowski, Grzegorz; Dąbrowska-Bouta, Beata; Langfort, Józef; Chalimoniuk, Małgorzata

    2017-08-01

    The aim of this study was to investigate the effects of interferon (IFN)-β1a and IFN-β1b treatment on inflammatory factors and myelin protein levels in the brain cortex of the Lewis rat experimental autoimmune encephalomyelitis (EAE), animal model of multiple sclerosis. To induce EAE, rat were immunized with inoculums containing spinal cord guinea pig homogenized in phosphate-buffered saline and emulsified in Freund's complete adjuvant containing 110 µg of the appropriate antigen in 100 µl of an emulsion and additionally 4-mg/ml Mycobacterium tuberculosis (H37Ra). The rats were treated three times per week with subcutaneous applications of 300,000 units IFN-β1a or IFN-β1b. The treatments were started 8 days prior to immunization and continued until day 14 after immunization. The rats were killed on the 14th day of the experiment. EAE induced dramatic increase in interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-concentrations and inducible nitric oxide synthase (iNOS) expression in the brain, which closely corresponded to the course of neurological symptoms and the loss of weight. Both IFN-β1b and IFN-β1a treatments inhibited the pro-inflammatory cytokines (IL-6, IL-1β, TNF-α and IFN-γ), decreased the activation of astrocytes, increased the myelin protein level in the brain cortex, and improved the neurological status of EAE rats by different mechanisms; IFN-β1a reduced iNOS expression, at least in part, by the enhancement of IL-10, while IFN-β1b diminished IL-10 concentration and did not decrease EAE-induced iNOS expression.

  7. HIV-1 induces DCIR expression in CD4+ T cells.

    Directory of Open Access Journals (Sweden)

    Alexandra A Lambert

    2010-11-01

    Full Text Available The C-type lectin receptor DCIR, which has been shown very recently to act as an attachment factor for HIV-1 in dendritic cells, is expressed predominantly on antigen-presenting cells. However, this concept was recently challenged by the discovery that DCIR can also be detected in CD4(+ T cells found in the synovial tissue from rheumatoid arthritis (RA patients. Given that RA and HIV-1 infections share common features such as a chronic inflammatory condition and polyclonal immune hyperactivation status, we hypothesized that HIV-1 could promote DCIR expression in CD4(+ T cells. We report here that HIV-1 drives DCIR expression in human primary CD4(+ T cells isolated from patients (from both aviremic/treated and viremic/treatment naive persons and cells acutely infected in vitro (seen in both virus-infected and uninfected cells. Soluble factors produced by virus-infected cells are responsible for the noticed DCIR up-regulation on uninfected cells. Infection studies with Vpr- or Nef-deleted viruses revealed that these two viral genes are not contributing to the mechanism of DCIR induction that is seen following acute infection of CD4(+ T cells with HIV-1. Moreover, we report that DCIR is linked to caspase-dependent (induced by a mitochondria-mediated generation of free radicals and -independent intrinsic apoptotic pathways (involving the death effector AIF. Finally, we demonstrate that the higher surface expression of DCIR in CD4(+ T cells is accompanied by an enhancement of virus attachment/entry, replication and transfer. This study shows for the first time that HIV-1 induces DCIR membrane expression in CD4(+ T cells, a process that might promote virus dissemination throughout the infected organism.

  8. Transgenic chickens expressing human urokinase-type plasminogen activator.

    Science.gov (United States)

    Lee, Sung Ho; Gupta, Mukesh Kumar; Ho, Young Tae; Kim, Teoan; Lee, Hoon Taek

    2013-09-01

    Urokinase-type plasminogen activator is a serine protease that is clinically used in humans for the treatment of thrombolytic disorders and vascular diseases such as acute ischemic stroke and acute peripheral arterial occlusion. This study explored the feasibility of using chickens as a bioreactor for producing human urokinase-type plasminogen activator (huPA). Recombinant huPA gene, under the control of a ubiquitous Rous sarcoma virus promoter, was injected into the subgerminal cavity of freshly laid chicken eggs at stage X using the replication-defective Moloney murine leukemia virus (MoMLV)-based retrovirus vectors encapsidated with VSV-G (vesicular stomatitis virus G) glycoprotein. A total of 38 chicks, out of 573 virus-injected eggs, hatched and contained the huPA gene in their various body parts. The mRNA transcript of the huPA gene was present in various organs, including blood and egg, and was germ-line transmitted to the next generation. The level of active huPA protein was 16-fold higher in the blood of the transgenic chicken than in the nontransgenic chicken (P huPA protein in eggs increased from 7.82 IU/egg in the G0 generation to 17.02 IU/egg in the G1 generation. However, huPA-expressing embryos had reduced survival and hatchability at d 18 and 21 of incubation, respectively, and the blood clotting time was significantly higher in transgenic chickens than their nontransgenic counterparts (P huPA transgenic chickens could be successfully produced by the retroviral vector system. Transgenic chickens, expressing the huPA under the control of a ubiquitous promoter, may not only be used as a bioreactor for pharming of the huPA drug but also be useful for studying huPA-induced bleeding and other disorders.

  9. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko

    2015-12-23

    Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis-eQTLs. Expression

  10. Adult-type hypolactasia and regulation of lactase expression

    DEFF Research Database (Denmark)

    Troelsen, Jesper Thorvald

    2005-01-01

    , the main carbohydrate in milk. Individuals with adult-type hypolactasia lose their lactase expression before adulthood and consequently often become lactose intolerant with associated digestive problems (e.g. diarrhoea). In contrast, lactase persistent individuals have a lifelong lactase expression......A common genetically determined polymorphism in the human population leads to two distinct phenotypes in adults, lactase persistence and adult-type hypolactasia (lactase non-persistence). All healthy newborn children express high levels of lactase and are able to digest large quantities of lactose...... and are able to digest lactose as adults. Lactase persistence can be regarded as the mutant phenotype since other mammals down-regulate their lactase expression after weaning (the postweaning decline). This phenomenon does not occur in lactase persistent individuals. The regulation of lactase expression...

  11. New Theoretical Expressions for the Five Adsorption Type Isotherms ...

    African Journals Online (AJOL)

    New Theoretical Expressions for the Five Adsorption Type Isotherms Classified by Bet Basing on Statistical Physics Treatment. ... that we have proposed, basing on statistical physics treatment, are rather powerful to better understand and interpret the various five physical adsorption Type isotherms at a microscopic level.

  12. High dietary fat-induced obesity in Wistar rats and type 2 diabetes in nonobese Goto-Kakizaki rats differentially affect retinol binding protein 4 expression and vitamin A metabolism.

    Science.gov (United States)

    Shirai, Tomomi; Shichi, Yuta; Sato, Miyuki; Tanioka, Yuri; Furusho, Tadasu; Ota, Toru; Tadokoro, Tadahiro; Suzuki, Tsukasa; Kobayashi, Ken-Ichi; Yamamoto, Yuji

    2016-03-01

    Obesity is a major risk factor for type 2 diabetes, which is caused mainly by insulin resistance. Retinol binding protein 4 (RBP4) is the only specific transport protein for retinol in the serum. RBP4 level is increased in the diabetic state and high-fat condition, indicating that retinol metabolism may be affected under these conditions. However, the precise effect of diabetes and high fat-induced obesity on retinol metabolism is unknown. In this study, we examined differences in retinol metabolite levels in rat models of diet-induced obesity and type 2 diabetes (Goto-Kakizaki [GK] rat). Four-week-old male Wistar and GK rats were given either a control diet (AIN-93G) or a high-fat diet (HFD, 40% fat kJ). After 15 weeks of feeding, the RBP4 levels increased by 2-fold in the serum of GK rats but not HFD-fed rats. The hepatic retinol concentration of HFD-fed rats was approximately 50% that of the controls (P type 2 diabetes mellitus. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Regulated gene expression in cultured type II cells of adult human lung.

    Science.gov (United States)

    Ballard, Philip L; Lee, Jae W; Fang, Xiaohui; Chapin, Cheryl; Allen, Lennell; Segal, Mark R; Fischer, Horst; Illek, Beate; Gonzales, Linda W; Kolla, Venkatadri; Matthay, Michael A

    2010-07-01

    Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at approximately 95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days on collagen-coated dishes with or without DCI for the final 3 days. In freshly isolated cells, highly expressed genes included SFTPA/B/C, SCGB1A, IL8, CXCL2, and SFN in addition to ubiquitously expressed genes. Transcript abundance was correlated between fetal and adult cells (r = 0.88), with a subset of 187 genes primarily related to inflammation and immunity that were expressed >10-fold higher in adult cells. During control culture, expression increased for 8.1% of expressed genes and decreased for approximately 4% including 118 immune response and 10 surfactant-related genes. DCI treatment promoted lamellar body production and increased expression of approximately 3% of probed genes by > or =1.5-fold; 40% of these were also induced in fetal cells. Highly induced genes (> or =10-fold) included PGC, ZBTB16, DUOX1, PLUNC, CIT, and CRTAC1. Twenty-five induced genes, including six genes related to surfactant (SFTPA/B/C, PGC, CEBPD, and ADFP), also had decreased expression during control culture and thus are candidates for hormonal regulation in vivo. Our results further define the adult human type II cell molecular phenotype and demonstrate that a subset of genes remains hormone responsive in cultured adult cells.

  14. Stress-induced changes in the expression of the clock protein PERIOD1 in the rat limbic forebrain and hypothalamus: role of stress type, time of day, and predictability.

    Directory of Open Access Journals (Sweden)

    Sherin Al-Safadi

    Full Text Available Stressful events can disrupt circadian rhythms in mammals but mechanisms underlying this disruption remain largely unknown. One hypothesis is that stress alters circadian protein expression in the forebrain, leading to functional dysregulation of the brain circadian network and consequent disruption of circadian physiological and behavioral rhythms. Here we characterized the effects of several different stressors on the expression of the core clock protein, PER1 and the activity marker, FOS in select forebrain and hypothalamic nuclei in rats. We found that acute exposure to processive stressors, restraint and forced swim, elevated PER1 and FOS expression in the paraventricular and dorsomedial hypothalamic nuclei and piriform cortex but suppressed PER1 and FOS levels exclusively in the central nucleus of the amygdala (CEAl and oval nucleus of the bed nucleus of the stria terminalis (BNSTov. Conversely, systemic stressors, interleukin-1β and 2-Deoxy-D-glucose, increased PER1 and FOS levels in all regions studied, including the CEAl and BNSTov. PER1 levels in the suprachiasmatic nucleus (SCN, the master pacemaker, were unaffected by any of the stress manipulations. The effect of stress on PER1 and FOS was modulated by time of day and, in the case of daily restraint, by predictability. These results demonstrate that the expression of PER1 in the forebrain is modulated by stress, consistent with the hypothesis that PER1 serves as a link between stress and the brain circadian network. Furthermore, the results show that the mechanisms that control PER1 and FOS expression in CEAl and BNSTov are uniquely sensitive to differences in the type of stressor. Finally, the finding that the effect of stress on PER1 parallels its effect on FOS supports the idea that Per1 functions as an immediate-early gene. Our observations point to a novel role for PER1 as a key player in the interface between stress and circadian rhythms.

  15. Histone deacetylase inhibitors restore IL-10 expression in lipopolysaccharide-induced cell inflammation and reduce IL-1β and IL-6 production in breast silicone implant in C57BL/6J wild-type murine model.

    Science.gov (United States)

    Di Liddo, Rosa; Valente, Sergio; Taurone, Samanta; Zwergel, Clemens; Marrocco, Biagina; Turchetta, Rosaria; Conconi, Maria Teresa; Scarpa, Carlotta; Bertalot, Thomas; Schrenk, Sandra; Mai, Antonello; Artico, Marco

    2016-01-20

    Among epigenetic enzymes, histone deacetylases (HDACs) are responsible for regulating the expression of an extensive array of genes by reversible deacetylation of nuclear histones as well as a large number of non-histone proteins. Initially proposed for cancer therapy, recently the interest for HDAC inhibitors (HDACi) as orally active, safe, and anti-inflammatory agents is rising due to their ability in reducing the severity of inflammatory and autoimmune diseases. In particular, selective HDAC3, HDAC6, and HDAC8 inhibitors have been described to downregulate the expression of pro-inflammatory cytokines (TNF-α, TGF-β, IL-1β, and IL-6). Herein, using KB31, C2C12, and 3T3-J2 cell lines, we demonstrated that, under lipopolysaccharide-induced in vitro inflammation, HDAC3/6/8 inhibitor MC2625 and HDAC6-selective inhibitor MC2780 were effective at a concentration of 30 ng/mL to downregulate mRNA expression of pro-inflammatory cytokines (IL-1β and IL-6) and to promote the transcription of IL-10 gene, without affecting the cell viability. Afterwards, we investigated by immunohistochemistry the activity of MC2625 and MC2780 at a concentration of 60 ng/kg animal weight to regulate silicone-triggered immune response in C57BL/6J female mice. Our findings evidenced the ability of such inhibitors to reduce host inflammation in silicone implants promoting a thickness reduction of peri-implant fibrous capsule, upregulating IL-10 expression, and reducing the production of both IL-1β and IL-6. These results underline the potential application of MC2625 and MC2780 in inflammation-related diseases.

  16. Notes on Type I Subjective Motion Expressions in English

    OpenAIRE

    Onozuka, Hiromi

    2012-01-01

    In this paper we deal with what Matsumoto calls Type I subjective motion expressions in English. According to Matsumoto they cannot occur with frequency adverbs and do not generally allow the progressive aspect. We show that his observation is not valid by presenting naturally occurring examples of the expressions which involve frequency adverbs and the progressive aspect, respectively. Further we investigate how the frequency adverbs are allowed and what functions the progressive aspect has....

  17. Freedom of expression: cell-type-specific gene profiling.

    Science.gov (United States)

    Otsuki, Leo; Cheetham, Seth W; Brand, Andrea H

    2014-01-01

    Cell fate and behavior are results of differential gene regulation, making techniques to profile gene expression in specific cell types highly desirable. Many methods now enable investigation at the DNA, RNA and protein level. This review introduces the most recent and popular techniques, and discusses key issues influencing the choice between these such as ease, cost and applicability of information gained. Interdisciplinary collaborations will no doubt contribute further advances, including not just in single cell type but single-cell expression profiling. © 2014 Wiley Periodicals, Inc.

  18. Wound-induced expression of horseradish peroxidase.

    Science.gov (United States)

    Kawaoka, A; Kawamoto, T; Ohta, H; Sekine, M; Takano, M; Shinmyo, A

    1994-01-01

    Peroxidases have been implicated in the responses of plants to physiological stress and to pathogens. Wound-induced peroxidase of horseradish (Armoracia rusticana) was studied. Total peroxidase activity was increased by wounding in cell wall fractions extracted from roots, stems and leaves of horseradish. On the other hand, wounding decreased the peroxidase activity in the soluble fraction from roots. The enzyme activities of the basic isozymes were induced by wounding in horseradish leaves based on data obtained by fractionation of crude enzyme in isoelectric focusing gel electrophoresis followed by activity staining. We have previously isolated genomic clones for four peroxidase genes, namely, prxC1a, prxC1b, prxC2 and prxC3. Northern blot analysis using gene-specific probes showed that mRNA of prxC2, which encodes a basic isozyme, accumulated by wounding, while the mRNAs for other peroxidase genes were not induced. Tobacco (Nicotiana tabacum) plants were transformed with four chimeric gene constructs, each consisting of a promoter from one of the peroxidase genes and the β-glucuronidase (GUS) structural gene. High level GUS activity induced in response to wounding was observed in tobacco plants containing the prxC2-GUS construct.

  19. Ligand Binding Domain Protein in Tetracycline-Inducible Expression

    African Journals Online (AJOL)

    Purpose: To investigate tetracycline-inducible expression system for producing clinically usable, highquality liver X receptor ligand-binding domain recombinant protein. Methods: In this study, we have expressed and purified the recombinant liver X receptor β-ligand binding domain proteins in E. coli using a tetracycline ...

  20. Differential expression of ozone-induced gene during exposures to ...

    African Journals Online (AJOL)

    Differential expression of ozone-induced gene during exposures to salt stress in Polygonum sibiricum Laxm leaves, stem and underground stem. ... PcOZI-1 mRNA in untreated plants was detected at low levels in underground stem, leaves and at higher levels in stem. PcOZI-1 mRNA accumulation was transiently induced ...

  1. Muscle fiber type specific induction of slow myosin heavy chain 2 gene expression by electrical stimulation

    International Nuclear Information System (INIS)

    Crew, Jennifer R.; Falzari, Kanakeshwari; DiMario, Joseph X.

    2010-01-01

    Vertebrate skeletal muscle fiber types are defined by a broad array of differentially expressed contractile and metabolic protein genes. The mechanisms that establish and maintain these different fiber types vary throughout development and with changing functional demand. Chicken skeletal muscle fibers can be generally categorized as fast and fast/slow based on expression of the slow myosin heavy chain 2 (MyHC2) gene in fast/slow muscle fibers. To investigate the cellular and molecular mechanisms that control fiber type formation in secondary or fetal muscle fibers, myoblasts from the fast pectoralis major (PM) and fast/slow medial adductor (MA) muscles were isolated, allowed to differentiate in vitro, and electrically stimulated. MA muscle fibers were induced to express the slow MyHC2 gene by electrical stimulation, whereas PM muscle fibers did not express the slow MyHC2 gene under identical stimulation conditions. However, PM muscle fibers did express the slow MyHC2 gene when electrical stimulation was combined with inhibition of inositol triphosphate receptor (IP3R) activity. Electrical stimulation was sufficient to increase nuclear localization of expressed nuclear-factor-of-activated-T-cells (NFAT), NFAT-mediated transcription, and slow MyHC2 promoter activity in MA muscle fibers. In contrast, both electrical stimulation and inhibitors of IP3R activity were required for these effects in PM muscle fibers. Electrical stimulation also increased levels of peroxisome-proliferator-activated receptor-γ co-activator-1 (PGC-1α) protein in PM and MA muscle fibers. These results indicate that MA muscle fibers can be induced by electrical stimulation to express the slow MyHC2 gene and that fast PM muscle fibers are refractory to stimulation-induced slow MyHC2 gene expression due to fast PM muscle fiber specific cellular mechanisms involving IP3R activity.

  2. Type II and III Taste Bud Cells Preferentially Expressed Kainate Glutamate Receptors in Rats.

    Science.gov (United States)

    Lee, Sang-Bok; Lee, Cil-Han; Kim, Se-Nyun; Chung, Ki-Myung; Cho, Young-Kyung; Kim, Kyung-Nyun

    2009-12-01

    Glutamate-induced cobalt uptake reveals that non-NMDA glutamate receptors (GluRs) are present in rat taste bud cells. Previous studies involving glutamate induced cobalt staining suggest this uptake mainly occurs via kainate type GluRs. It is not known which of the 4 types of taste bud cells express subunits of kainate GluR. Circumvallate and foliate papillae of Sprague-Dawley rats (45~60 days old) were used to search for the mRNAs of subunits of non-NMDA GluRs using RT-PCR with specific primers for GluR1-7, KA1 and KA2. We also performed RT-PCR for GluR5, KA1, PLCbeta2, and NCAM/SNAP 25 in isolated single cells from taste buds. Taste epithelium, including circumvallate or foliate papilla, express mRNAs of GluR5 and KA1. However, non-taste tongue epithelium expresses no subunits of non-NMDA GluRs. Isolated single cell RT-PCR reveals that the mRNAs of GluR5 and KA1 are preferentially expressed in Type II and Type III cells over Type I cells.

  3. Neuroinflammation induces glial aromatase expression in the uninjured songbird brain

    Directory of Open Access Journals (Sweden)

    Saldanha Colin J

    2011-07-01

    Full Text Available Abstract Background Estrogens from peripheral sources as well as central aromatization are neuroprotective in the vertebrate brain. Under normal conditions, aromatase is only expressed in neurons, however following anoxic/ischemic or mechanical brain injury; aromatase is also found in astroglia. This increased glial aromatization and the consequent estrogen synthesis is neuroprotective and may promote neuronal survival and repair. While the effects of estradiol on neuroprotection are well studied, what induces glial aromatase expression remains unknown. Methods Adult male zebra finches (Taeniopygia guttata were given a penetrating injury to the entopallium. At several timepoints later, expression of aromatase, IL-1β-like, and IL-6-like were examined using immunohisotchemistry. A second set of zebra birds were exposed to phytohemagglutinin (PHA, an inflammatory agent, directly on the dorsal surface of the telencephalon without creating a penetrating injury. Expression of aromatase, IL-1β-like, and IL-6-like were examined using both quantitative real-time polymerase chain reaction to examine mRNA expression and immunohistochemistry to determine cellular expression. Statistical significance was determined using t-test or one-way analysis of variance followed by the Tukey Kramers post hoc test. Results Following injury in the zebra finch brain, cytokine expression occurs prior to aromatase expression. This temporal pattern suggests that cytokines may induce aromatase expression in the damaged zebra finch brain. Furthermore, evoking a neuroinflammatory response characterized by an increase in cytokine expression in the uninjured brain is sufficient to induce glial aromatase expression. Conclusions These studies are among the first to examine a neuroinflammatory response in the songbird brain following mechanical brain injury and to describe a novel neuroimmune signal to initiate aromatase expression in glia.

  4. Increased hepatic CD36 expression contributes to dyslipidemia associated with diet-induced obesity

    Science.gov (United States)

    The etiology of type 2 diabetes often involves diet-induced obesity (DIO), which is associated with elevated plasma fatty acids and lipoprotein associated triglycerides. Since aberrant hepatic fatty acid uptake may contribute to this, we investigated whether increased expression of a fatty acid tran...

  5. Transcriptional regulator GntR of Brucella abortus regulates cytotoxicity, induces the secretion of inflammatory cytokines and affects expression of the type IV secretion system and quorum sensing system in macrophages.

    Science.gov (United States)

    Li, Zhiqiang; Wang, Shuli; Zhang, Hui; Zhang, Jinliang; Xi, Li; Zhang, Junbo; Chen, Chuangfu

    2017-03-01

    The pathogenic mechanisms of Brucella are still poorly understood. GntR is a transcriptional regulator and plays an important role in the intracellular survival of Brucella. To investigate whether GntR is involved in the cytotoxicity of Brucella abortus (B. abortus), we created a 2308ΔgntR mutant of B. abortus 2308 (S2308). Lactate dehydrogenase (LDH) cytotoxicity assays using a murine macrophage cell line (RAW 264.7) show that high-dose infection with the parental strain produces a high level of cytotoxicity to macrophages, but the 2308ΔgntR mutant exhibits a very low level of cytotoxicity, indicating that mutation of GntR impairs the cytotoxicity of B. abortus to macrophages. After the macrophages are infected with 2308ΔgntR, the levels of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6) and interleukin-8 (IL-8) increase and are slightly higher than that for the S2308 infected group, indicating that the 2308ΔgntR mutant could induce the secretion of inflammatory cytokines. The virulence factor detection experiments indicate that genes involved in the type IV secretion system (T4SS) and quorum sensing system (QSS) are down-regulated in 2308ΔgntR. The lower levels of survival of 2308ΔgntR under various stress conditions and the increased sensitivity of 2308ΔgntR to polymyxin B suggest that GntR is a virulence factor and that deletion of gntR reduces of B. abortus to stress conditions. Taken together, our results demonstrate that GntR is involved in the cytotoxicity, virulence and intracellular survival of B. abortus during its infection.

  6. Epidermal growth factor receptor expression in radiation-induced dog lung tumors by immunocytochemical localization

    Energy Technology Data Exchange (ETDEWEB)

    Leung, F.L.; Park, J.F.; Dagle, G.E.

    1993-06-01

    In studies to determine the role of growth factors in radiation-induced lung cancer, epidermal growth factor (EGFR) expression was examined by immunocytochemistry in 51 lung tumors from beagle dogs exposed to inhaled plutonium; 21 of 51 (41%) tumors were positive for EGFR. The traction of tumors positive for EGFR and the histological type of EGFR-positive tumors in the plutonium-exposed dogs were not different from spontaneous dog lung tumors, In which 36% were positive for EGFR. EGFR involvement in Pu-induced lung tumors appeared to be similar to that in spontaneous lung tumors. However, EGFR-positive staining was observed in only 1 of 16 tumors at the three lowest Pu exposure levels, compared to 20 of 35 tumors staining positive at the two highest Pu exposure levels. The results in dogs were in good agreement with the expression of EGFR reported in human non-small cell carcinoma of the lung, suggesting that Pu-induced lung tumors in the dog may be a suitable animal model to investigate the role of EGFR expression in lung carcinogenesis. In humans, EGFR expression in lung tumors has been primarily related to histological tumor types. In individual dogs with multiple primary lung tumors, the tumors were either all EGFR positive or EGFR negative, suggesting that EGFR expression may be related to the response of the individual dog as well as to the histological type of tumor.

  7. Tetracycline-inducible gene expression system in Leishmania mexicana

    Czech Academy of Sciences Publication Activity Database

    Kraeva, N.; Ishemgulova, A.; Lukeš, Julius; Yurchenko, Vyacheslav

    2014-01-01

    Roč. 198, č. 1 (2014), s. 11-13 ISSN 0166-6851 R&D Projects: GA MŠk(CZ) EE2.3.30.0032 Institutional support: RVO:60077344 Keywords : Leishmania mexicana * Gene expression * Tet-inducible system Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.787, year: 2014

  8. Identification of salt-stress induced differentially expressed genes in ...

    African Journals Online (AJOL)

    Identification of salt-stress induced differentially expressed genes in barley leaves using the annealingcontrol- primer-based GeneFishing technique. S Lee, K Lee, K Kim, GJ Choi, SH Yoon, HC Ji, S Seo, YC Lim, N Ahsan ...

  9. PIDDosome Expression and the Role of Caspase-2 Activation for Chemotherapy-Induced Apoptosis in RCCs

    Directory of Open Access Journals (Sweden)

    Sebastian Heikaus

    2010-01-01

    Full Text Available Background: The importance of caspase-2 activation for mediating apoptosis in cancer is not clear and seems to differ between different tumour types. Furthermore, only few data have been obtained concerning the expression of caspase-2, which can be alternatively spliced into caspase-2L and caspase-2S, and the other PIDDosome members PIDD and RAIDD in human tumours in vivo. We, therefore, investigated their expression in renal cell carcinomas (RCCs of the clear cell type in vivo and analysed the role of caspase-2 in chemotherapy-induced apoptosis in RCCs in vitro.

  10. Inflammatory Cytokines Induce Podoplanin Expression at the Tumor Invasive Front.

    Science.gov (United States)

    Kunita, Akiko; Baeriswyl, Vanessa; Meda, Claudia; Cabuy, Erik; Takeshita, Kimiko; Giraudo, Enrico; Wicki, Andreas; Fukayama, Masashi; Christofori, Gerhard

    2018-05-01

    Tumor invasion is a critical first step in the organismic dissemination of cancer cells and the formation of metastasis in distant organs, the most important prognostic factor and the actual cause of death in most of the cancer patients. We report herein that the cell surface protein podoplanin (PDPN), a potent inducer of cancer cell invasion, is conspicuously expressed by the invasive front of squamous cell carcinomas (SCCs) of the cervix in patients and in the transgenic human papillomavirus/estrogen mouse model of cervical cancer. Laser capture microscopy combined with gene expression profiling reveals that the expression of interferon-responsive genes is up-regulated in PDPN-expressing cells at the tumor invasive front, which are exposed to CD45-positive inflammatory cells. Indeed, PDPN expression can be induced in cultured SCC cell lines by single or combined treatments with interferon-γ, transforming growth factor-β, and/or tumor necrosis factor-α. Notably, shRNA-mediated ablation of either PDPN or STAT1 in A431 SCC cells repressed cancer cell invasion on s.c. transplantation into immunodeficient mice. The results highlight the induction of tumor cell invasion by the inflammatory cytokine-stimulated expression of PDPN in the outermost cell layers of cervical SCC. Copyright © 2018 American Society for Investigative Pathology. Published by Elsevier Inc. All rights reserved.

  11. Expression of intracisternal A-particles in radiation-induced murine osteosarcomas

    International Nuclear Information System (INIS)

    Seidel, E.

    1989-01-01

    The expression of intracisternal A-type particles (IAPs) and the distribution of the corresponding type I and type II genes was investigated in radiation induced osteosarcomas of Balb/c, NMRI and CBA mice. The results can be summarized as follows: 1. Slot blot analysis showed that 9 out of 23 (i.e. 39%) of the examined tumours had enhanced IAP expression as compared to normal tissues. None of the CBA tumours were enhanced in IAP expression - only tumours of the strains Balb/c and NMRI expressed higher levels of IAP RNA. 2. Northern blot analysis of RNA from osteosarcomas revealed that the two IAP transcrips (7.2 kb and 5.4 kb) had the same mobility in these tissues as in normal tissue. Some tumours showed a higher level of expression of the 7.2 kb transcript as compared to normal tissues. This 7.2 kb transcript encodes the major structural protein p 73 of IAPs. 3. Hybridization of Southern blots of mouse DNA using the IAP type I specific probe revealed a unique fragment in three of the investigated Balb/c osteosarcomas. 4. Although it could not directly be shown that IAPs were involved in the genesis of osteosarcomas, the changes in IAP expression and the unique fragments suggest a possible correlation with tumour progression. In this light the level of IAP expression may serve as a marker for the degree of the malignancy of the tumour. (orig.) [de

  12. Cigarette smoke modulates expression of human rhinovirus-induced airway epithelial host defense genes.

    Directory of Open Access Journals (Sweden)

    David Proud

    Full Text Available Human rhinovirus (HRV infections trigger acute exacerbations of chronic obstructive pulmonary disease (COPD and asthma. The human airway epithelial cell is the primary site of HRV infection and responds to infection with altered expression of multiple genes, the products of which could regulate the outcome to infection. Cigarette smoking aggravates asthma symptoms, and is also the predominant risk factor for the development and progression of COPD. We, therefore, examined whether cigarette smoke extract (CSE modulates viral responses by altering HRV-induced epithelial gene expression. Primary cultures of human bronchial epithelial cells were exposed to medium alone, CSE alone, purified HRV-16 alone or to HRV-16+ CSE. After 24 h, supernatants were collected and total cellular RNA was isolated. Gene array analysis was performed to examine mRNA expression. Additional experiments, using real-time RT-PCR, ELISA and/or western blotting, validated altered expression of selected gene products. CSE and HRV-16 each induced groups of genes that were largely independent of each other. When compared to gene expression in response to CSE alone, cells treated with HRV+CSE showed no obvious differences in CSE-induced gene expression. By contrast, compared to gene induction in response to HRV-16 alone, cells exposed to HRV+CSE showed marked suppression of expression of a number of HRV-induced genes associated with various functions, including antiviral defenses, inflammation, viral signaling and airway remodeling. These changes were not associated with altered expression of type I or type III interferons. Thus, CSE alters epithelial responses to HRV infection in a manner that may negatively impact antiviral and host defense outcomes.

  13. Effect of enhanced expression of connexin 43 on sunitinib-induced cytotoxicity in mesothelioma cells

    Directory of Open Access Journals (Sweden)

    Miaki Uzu

    2015-05-01

    Full Text Available Connexin (Cx makes up a type of intercellular channel called gap junction (GJ. GJ plays a regulatory role in cellular physiology. The Cx expression level is often decreased in cancer cells compared to that in healthy ones, and the restoration of its expression has been shown to exert antiproliferative effects. This work aims to evaluate the effect of the restoration of connexin 43 (Cx43 (the most ubiquitous Cx subtype expression on sunitinib (SU-induced cytotoxicity in malignant mesothelioma (MM cells. Increased Cx43 expression in an MM cell line (H28 improved the ability of SU to inhibit receptor tyrosine kinase (RTK signaling. Moreover, higher Cx43 expression promoted SU-induced apoptosis. The cell viability test revealed that Cx43 enhanced the cytotoxic effect of SU in a GJ-independent manner. The effect of Cx43 on a proapoptotic factor, Bax, was then investigated. The interaction between Cx43 and Bax was confirmed by immunoprecipitation. Furthermore, higher Cx43 expression increased the production of a cleaved (active form of Bax during SU-induced apoptosis with no alteration in total Bax expression. These findings indicate that Cx43 most likely increases sensitivity to SU in H28 through direct interaction with Bax. In conclusion, we found that Cx43 overcame the chemoresistance of MM cells.

  14. Pregnancy-induced gene expression changes in vivo among women with rheumatoid arthritis: a pilot study.

    Science.gov (United States)

    Goin, Dana E; Smed, Mette Kiel; Pachter, Lior; Purdom, Elizabeth; Nelson, J Lee; Kjærgaard, Hanne; Olsen, Jørn; Hetland, Merete Lund; Zoffmann, Vibeke; Ottesen, Bent; Jawaheer, Damini

    2017-05-25

    Little is known about gene expression changes induced by pregnancy in women with rheumatoid arthritis (RA) and healthy women because the few studies previously conducted did not have pre-pregnancy samples available as baseline. We have established a cohort of women with RA and healthy women followed prospectively from a pre-pregnancy baseline. In this study, we tested the hypothesis that pregnancy-induced changes in gene expression among women with RA who improve during pregnancy (pregDAS improved ) overlap substantially with changes observed among healthy women and differ from changes observed among women with RA who worsen during pregnancy (pregDAS worse ). Global gene expression profiles were generated by RNA sequencing (RNA-seq) from 11 women with RA and 5 healthy women before pregnancy (T0) and at the third trimester (T3). Among the women with RA, eight showed an improvement in disease activity by T3, whereas three worsened. Differential expression analysis was used to identify genes demonstrating significant changes in expression within each of the RA and healthy groups (T3 vs T0), as well as between the groups at each time point. Gene set enrichment was assessed in terms of Gene Ontology processes and protein networks. A total of 1296 genes were differentially expressed between T3 and T0 among the 8 pregDAS improved women, with 161 genes showing at least two-fold change (FC) in expression by T3. The majority (108 of 161 genes) were also differentially expressed among healthy women (qexpression between the pregDAS improved and pregDAS worse groups, all of which were inducible by type I interferon (IFN). These IFN-inducible genes were over-expressed at T3 compared to the T0 baseline among the pregDAS improved women. In our pilot RNA-seq dataset, increased pregnancy-induced expression of type I IFN-inducible genes was observed among women with RA who improved during pregnancy, but not among women who worsened. These findings warrant further investigation into

  15. Differential hexosamine biosynthetic pathway gene expression with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Megan Coomer

    2014-01-01

    Full Text Available The hexosamine biosynthetic pathway (HBP culminates in the attachment of O-linked β-N-acetylglucosamine (O-GlcNAc onto serine/threonine residues of target proteins. The HBP is regulated by several modulators, i.e. O-linked β-N-acetylglucosaminyl transferase (OGT and β-N-acetylglucosaminidase (OGA catalyze the addition and removal of O-GlcNAc moieties, respectively; while flux is controlled by the rate-limiting enzyme glutamine:fructose-6-phosphate amidotransferase (GFPT, transcribed by two genes, GFPT1 and GFPT2. Since increased HBP flux is glucose-responsive and linked to insulin resistance/type 2 diabetes onset, we hypothesized that diabetic individuals exhibit differential expression of HBP regulatory genes. Volunteers (n = 60; n = 20 Mixed Ancestry, n = 40 Caucasian were recruited from Stellenbosch and Paarl (Western Cape, South Africa and classified as control, pre- or diabetic according to fasting plasma glucose and HbA1c levels, respectively. RNA was purified from leukocytes isolated from collected blood samples and OGT, OGA, GFPT1 and GFPT2 expressions determined by quantitative real-time PCR. The data reveal lower OGA expression in diabetic individuals (P < 0.01, while pre- and diabetic subjects displayed attenuated OGT expression vs. controls (P < 0.01 and P < 0.001, respectively. Moreover, GFPT2 expression decreased in pre- and diabetic Caucasians vs. controls (P < 0.05 and P < 0.01, respectively. We also found ethnic differences, i.e. Mixed Ancestry individuals exhibited a 2.4-fold increase in GFPT2 expression vs. Caucasians, despite diagnosis (P < 0.01. Gene expression of HBP regulators differs between diabetic and non-diabetic individuals, together with distinct ethnic-specific gene profiles. Thus differential HBP gene regulation may offer diagnostic utility and provide candidate susceptibility genes for different ethnic groupings.

  16. Plasticity-Related Gene Expression During Eszopiclone-Induced Sleep.

    Science.gov (United States)

    Gerashchenko, Dmitry; Pasumarthi, Ravi K; Kilduff, Thomas S

    2017-07-01

    Experimental evidence suggests that restorative processes depend on synaptic plasticity changes in the brain during sleep. We used the expression of plasticity-related genes to assess synaptic plasticity changes during drug-induced sleep. We first characterized sleep induced by eszopiclone in mice during baseline conditions and during the recovery from sleep deprivation. We then compared the expression of 18 genes and two miRNAs critically involved in synaptic plasticity in these mice. Gene expression was assessed in the cerebral cortex and hippocampus by the TaqMan reverse transcription polymerase chain reaction and correlated with sleep parameters. Eszopiclone reduced the latency to nonrapid eye movement (NREM) sleep and increased NREM sleep amounts. Eszopiclone had no effect on slow wave activity (SWA) during baseline conditions but reduced the SWA increase during recovery sleep (RS) after sleep deprivation. Gene expression analyses revealed three distinct patterns: (1) four genes had higher expression either in the cortex or hippocampus in the group of mice with increased amounts of wakefulness; (2) a large proportion of plasticity-related genes (7 out of 18 genes) had higher expression during RS in the cortex but not in the hippocampus; and (3) six genes and the two miRNAs showed no significant changes across conditions. Even at a relatively high dose (20 mg/kg), eszopiclone did not reduce the expression of plasticity-related genes during RS period in the cortex. These results indicate that gene expression associated with synaptic plasticity occurs in the cortex in the presence of a hypnotic medication. © Sleep Research Society 2017. Published by Oxford University Press on behalf of the Sleep Research Society. All rights reserved. For permissions, please e-mail journals.permissions@oup.com.

  17. Protective effects of L-selenomethionine on space radiation induced changes in gene expression.

    Science.gov (United States)

    Stewart, J; Ko, Y-H; Kennedy, A R

    2007-06-01

    Ionizing radiation can produce adverse biological effects in astronauts during space travel. Of particular concern are the types of radiation from highly energetic, heavy, charged particles known as HZE particles. The aims of our studies are to characterize HZE particle radiation induced biological effects and evaluate the effects of L-selenomethionine (SeM) on these adverse biological effects. In this study, microarray technology was used to measure HZE radiation induced changes in gene expression, as well as to evaluate modulation of these changes by SeM. Human thyroid epithelial cells (HTori-3) were irradiated (1 GeV/n iron ions) in the presence or in the absence of 5 microM SeM. At 6 h post-irradiation, all cells were harvested for RNA isolation. Gene Chip U133Av2 from Affymetrix was used for the analysis of gene expression, and ANOVA and EASE were used for a determination of the genes and biological processes whose differential expression is statistically significant. Results of this microarray study indicate that exposure to small doses of radiation from HZE particles, 10 and 20 cGy from iron ions, induces statistically significant differential expression of 196 and 610 genes, respectively. In the presence of SeM, differential expression of 77 out of 196 genes (exposure to 10 cGy) and 336 out of 610 genes (exposure to 20 cGy) is abolished. In the presence or in the absence of SeM, radiation from HZE particles induces differential expression of genes whose products have roles in the induction of G1/S arrest during the mitotic cell cycle, as well as heat shock proteins. Some of the genes, whose expressions were affected by radiation from HZE particles and were unchanged in irradiated cells treated with SeM, have been shown to have altered expression levels in cancer cells. The conclusions of this report are that radiation from HZE particles can induce differential expression of many genes, some of which are known to play roles in the same processes that have

  18. Cancer-type dependent expression of CK2 transcripts.

    Directory of Open Access Journals (Sweden)

    Melissa M J Chua

    Full Text Available A multitude of proteins are aberrantly expressed in cancer cells, including the oncogenic serine-threonine kinase CK2. In a previous report, we found increases in CK2 transcript expression that could explain the increased CK2 protein levels found in tumors from lung and bronchus, prostate, breast, colon and rectum, ovarian and pancreatic cancers. We also found that, contrary to the current notions about CK2, some CK2 transcripts were downregulated in several cancers. Here, we investigate all other cancers using Oncomine to determine whether they also display significant CK2 transcript dysregulation. As anticipated from our previous analysis, we found cancers with all CK2 transcripts upregulated (e.g. cervical, and cancers where there was a combination of upregulation and/or downregulation of the CK2 transcripts (e.g. sarcoma. Unexpectedly, we found some cancers with significant downregulation of all CK2 transcripts (e.g. testicular cancer. We also found that, in some cases, CK2 transcript levels were already dysregulated in benign lesions (e.g. Barrett's esophagus. We also found that CK2 transcript upregulation correlated with lower patient survival in most cases where data was significant. However, there were two cancer types, glioblastoma and renal cell carcinoma, where CK2 transcript upregulation correlated with higher survival. Overall, these data show that the expression levels of CK2 genes is highly variable in cancers and can lead to different patient outcomes.

  19. Simvastatin enhances bone morphogenetic protein receptor type II expression

    International Nuclear Information System (INIS)

    Hu Hong; Sung, Arthur; Zhao, Guohua; Shi, Lingfang; Qiu Daoming; Nishimura, Toshihiko; Kao, Peter N.

    2006-01-01

    Statins confer therapeutic benefits in systemic and pulmonary vascular diseases. Bone morphogenetic protein (BMP) receptors serve essential signaling functions in cardiovascular development and skeletal morphogenesis. Mutations in BMP receptor type II (BMPR2) are associated with human familial and idiopathic pulmonary arterial hypertension, and pathologic neointimal proliferation of vascular endothelial and smooth muscle cells within small pulmonary arteries. In severe experimental pulmonary hypertension, simvastatin reversed disease and conferred a 100% survival advantage. Here, modulation of BMPR2 gene expression by simvastatin is characterized in human embryonic kidney (HEK) 293T, pulmonary artery smooth muscle, and lung microvascular endothelial cells (HLMVECs). A 1.4 kb BMPR2 promoter containing Egr-1 binding sites confers reporter gene activation in 293T cells which is partially inhibited by simvastatin. Simvastatin enhances steady-state BMPR2 mRNA and protein expression in HLMVEC, through posttranscriptional mRNA stabilization. Simvastatin induction of BMPR2 expression may improve BMP-BMPR2 signaling thereby enhancing endothelial differentiation and function

  20. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon

    Science.gov (United States)

    Fernández de Marco, María del Mar; Alejo, Alí; Hudson, Paul; Damon, Inger K.; Alcami, Antonio

    2010-01-01

    Variola virus (VARV) caused smallpox, one of the most devastating human diseases and the first to be eradicated, but its deliberate release represents a dangerous threat. Virulent orthopoxviruses infecting humans, such as monkeypox virus (MPXV), could fill the niche left by smallpox eradication and the cessation of vaccination. However, immunomodulatory activities and virulence determinants of VARV and MPXV remain largely unexplored. We report the molecular characterization of the VARV- and MPXV-secreted type I interferon-binding proteins, which interact with the cell surface after secretion and prevent type I interferon responses. The proteins expressed in the baculovirus system have been purified, and their interferon-binding properties characterized by surface plasmon resonance. The ability of these proteins to inhibit a broad range of interferons was investigated to identify potential adaptation to the human immune system. Furthermore, we demonstrate by Western blot and activity assays the expression of the type I interferon inhibitor during VARV and MPXV infections. These findings are relevant for the design of new vaccines and therapeutics to smallpox and emergent virulent orthopoxviruses because the type I interferon-binding protein is a major virulence factor in animal models, vaccination with this protein induces protective immunity, and its neutralization prevents disease progression.—Fernández de Marco, M. M., Alejo, A., Hudson, P., Damon, I. K., Alcami, A. The highly virulent variola and monkeypox viruses express secreted inhibitors of type I interferon. PMID:20019241

  1. Effects of angiotensin II type 1 receptor blocker on bones in mice with type 1 diabetes induced by streptozotocin.

    Science.gov (United States)

    Zhang, Yan; Diao, Teng-Yue; Gu, Sa-Sa; Wu, Shu-Yan; Gebru, Yoseph A; Chen, Xi; Wang, Jing-Yu; Ran, Shu; Wong, Man-Sau

    2014-09-01

    This study was performed to address the pathological roles of the skeletal renin-angiotensin system (RAS) in type 1 diabetes-induced osteoporosis and the effects of the angiotensin II type 1 receptor blocker losartan on bones in diabetic mice. Bone histomorphology was detected by H&E staining, Safranin O staining and X-ray radiography. Micro-CT was performed for the analysis of bone parameters. Gene and protein expression were determined by RT-PCR and immunoblotting. Type 1 diabetic mice displayed osteopenia phenotype, and losartan treatment had no osteoprotective effects on diabetic mice as shown by the reduction of bone mineral density and microarchitectural parameters at the proximal metaphysis of the tibia. The mRNA expression of AGT, renin receptor and ACE, and protein expression of renin and AT1R were markedly up-regulated in the bones of vehicle-treated diabetic mice compared to those of non-diabetic mice. The treatment with losartan further significantly increased the expression of AGT, renin, angiotensin II and AT1R, and reduced the expression of AT2R receptor as compared to those of diabetic mice. Local bone RAS functionally played a role in the development of type 1 diabetic osteoporosis, and losartan had no bone-sparing function in diabetes mice because of enhance skeletal RAS activity. © The Author(s) 2013.

  2. Microarray-based screening of differentially expressed genes in glucocorticoid-induced avascular necrosis

    Science.gov (United States)

    Huang, Gangyong; Wei, Yibing; Zhao, Guanglei; Xia, Jun; Wang, Siqun; Wu, Jianguo; Chen, Feiyan; Chen, Jie; Shi, Jingshen

    2017-01-01

    The underlying mechanisms of glucocorticoid (GC)-induced avascular necrosis of the femoral head (ANFH) have yet to be fully understood, in particular the mechanisms associated with the change of gene expression pattern. The present study aimed to identify key genes with a differential expression pattern in GC-induced ANFH. E-MEXP-2751 microarray data were downloaded from the ArrayExpress database. Differentially expressed genes (DEGs) were identified in 5 femoral head samples of steroid-induced ANFH rats compared with 5 placebo-treated rat samples. Gene Ontology (GO) and pathway enrichment analyses were performed upon these DEGs. A total 93 DEGs (46 upregulated and 47 downregulated genes) were identified in GC-induced ANFH samples. These DEGs were enriched in different GO terms and pathways, including chondrocyte differentiation and detection of chemical stimuli. The enrichment map revealed that skeletal system development was interconnected with several other GO terms by gene overlap. The literature mined network analysis revealed that 5 upregulated genes were associated with femoral necrosis, including parathyroid hormone receptor 1 (PTHR1), vitamin D (1,25-Dihydroxyvitamin D3) receptor (VDR), collagen, type II, α1, proprotein convertase subtilisin/kexin type 6 and zinc finger protein 354C (ZFP354C). In addition, ZFP354C and VDR were identified to transcription factors. Furthermore, PTHR1 was revealed to interact with VDR, and α-2-macroglobulin (A2M) interacted with fibronectin 1 (FN1) in the PPI network. PTHR1 may be involved in GC-induced ANFH via interacting with VDR. A2M may also be involved in the development of GC-induced ANFH through interacting with FN1. An improved understanding of the molecular mechanisms underlying GC-induced ANFH may provide novel targets for diagnostics and therapeutic treatment. PMID:28393228

  3. Microarray‑based screening of differentially expressed genes in glucocorticoid‑induced avascular necrosis.

    Science.gov (United States)

    Huang, Gangyong; Wei, Yibing; Zhao, Guanglei; Xia, Jun; Wang, Siqun; Wu, Jianguo; Chen, Feiyan; Chen, Jie; Shi, Jingshen

    2017-06-01

    The underlying mechanisms of glucocorticoid (GC)‑induced avascular necrosis of the femoral head (ANFH) have yet to be fully understood, in particular the mechanisms associated with the change of gene expression pattern. The present study aimed to identify key genes with a differential expression pattern in GC‑induced ANFH. E‑MEXP‑2751 microarray data were downloaded from the ArrayExpress database. Differentially expressed genes (DEGs) were identified in 5 femoral head samples of steroid‑induced ANFH rats compared with 5 placebo‑treated rat samples. Gene Ontology (GO) and pathway enrichment analyses were performed upon these DEGs. A total 93 DEGs (46 upregulated and 47 downregulated genes) were identified in GC‑induced ANFH samples. These DEGs were enriched in different GO terms and pathways, including chondrocyte differentiation and detection of chemical stimuli. The enrichment map revealed that skeletal system development was interconnected with several other GO terms by gene overlap. The literature mined network analysis revealed that 5 upregulated genes were associated with femoral necrosis, including parathyroid hormone receptor 1 (PTHR1), vitamin D (1,25‑Dihydroxyvitamin D3) receptor (VDR), collagen, type II, α1, proprotein convertase subtilisin/kexin type 6 and zinc finger protein 354C (ZFP354C). In addition, ZFP354C and VDR were identified to transcription factors. Furthermore, PTHR1 was revealed to interact with VDR, and α‑2‑macroglobulin (A2M) interacted with fibronectin 1 (FN1) in the PPI network. PTHR1 may be involved in GC‑induced ANFH via interacting with VDR. A2M may also be involved in the development of GC‑induced ANFH through interacting with FN1. An improved understanding of the molecular mechanisms underlying GC‑induced ANFH may provide novel targets for diagnostics and therapeutic treatment.

  4. Tissue-specific expression of type IX collagen

    International Nuclear Information System (INIS)

    Nishimura, I.; Muragaki, Y.; Ninomiya, Y.; Olsen, B.R.; Hayashi, M.

    1990-01-01

    This paper reports on the tissue-specific expression of type IX collagen, a major component of cartilage fibrils. It contains molecules with three genetically distinct subunits. The subunits form three triple-helical (CO) domains separated by non-triple-helical (NC) sequences. One of the subunits in cartilage, α1(IX), contains a large amino-terminal globular domain, NC4, while a second subunit, α2(IX), contains a covalently attached chondroitin sulfate chain. The site of attachment for this chain is located within the non-triple-helical sequence NC3, which separates the amino-terminal and central triple-helical domains of the type IX molecules. The NC3 region is 5 amino acid residues longer in the α2(IX) chain than in the α1(IX) and α3(IX) chains. This may explain why type IX molecules tend to show a sharp angle in the NC3 region, and why monoclonal antibody molecules that are specific for the stub left after chondroitinase ABC digestion of the chondroitin sulfate side chain always are located on the outside of the angle

  5. Src Induces Podoplanin Expression to Promote Cell Migration*

    Science.gov (United States)

    Shen, Yongquan; Chen, Chen-Shan; Ichikawa, Hitoshi; Goldberg, Gary S.

    2010-01-01

    Nontransformed cells can force tumor cells to assume a normal morphology and phenotype by the process of contact normalization. Transformed cells must escape this process to become invasive and malignant. However, mechanisms underlying contact normalization have not been elucidated. Here, we have identified genes that are affected by contact normalization of Src-transformed cells. Tumor cells must migrate to become invasive and malignant. Src must phosphorylate the adaptor protein Cas (Crk-associated substrate) to promote tumor cell motility. We report here that Src utilizes Cas to induce podoplanin (Pdpn) expression to promote tumor cell migration. Pdpn is a membrane-bound extracellular glycoprotein that associates with endogenous ligands to promote tumor cell migration leading to cancer invasion and metastasis. In fact, Pdpn expression accounted for a major part of the increased migration seen in Src-transformed cells. Moreover, nontransformed cells suppressed Pdpn expression in adjacent Src-transformed cells. Of >39,000 genes, Pdpn was one of only 23 genes found to be induced by transforming Src activity and suppressed by contact normalization of Src-transformed cells. In addition, we found 16 genes suppressed by Src and induced by contact normalization. These genes encode growth factor receptors, adaptor proteins, and products that have not yet been annotated and may play important roles in tumor cell growth and migration. PMID:20123990

  6. Hypoxic-induced stress protein expression in rat cardiac myocytes

    International Nuclear Information System (INIS)

    Howard, G.; Geoghegan, T.E.

    1986-01-01

    Mammalian stress proteins can be induced in cells and tissues exposed to a variety of conditions including hyperthermia and diminished O 2 supply. The authors have previously shown that the expression of three stress proteins (71, 85, and 95 kDa) was induced in cardiac tissue from mice exposed to hypoxic conditions. The expression of mRNAs coding for the 85 and 95 kDa proteins increase with time of exposure to hypoxia, while the mRNA coding for the 71 kDa protein is transiently induced. The authors extended these studies to investigate the expression of stress proteins in isolated rat cardiac myocytes. Freshly prepared myocytes were exposed to control, hypoxic, anoxic, or heat-shock environments for up to 16 h. The proteins were then labeled for 6 hours with [ 35 S]methionine. Analysis of the solubilized proteins by SDS-PAGE and autoradiography showed that there was a 6-fold increase in synthesis of the 85 kDa protein upon exposure to hypoxia but not heat-shock conditions. The 71 kDa protein was present at high levels in both control and treated myocyte protein preparations, and presumably had been induced during the isolation procedure. Total RNA isolated from intact rat heart and isolated myocytes was compared by cell-free translation analysis and showed induction of RNAs coding for several stress proteins in the myocyte preparation. The induced proteins at 85 and 95 kDa have molecular weights similar to reported cell stress and/or glucose-regulated proteins

  7. Fetuin-A induces cytokine expression and suppresses adiponectin production.

    Directory of Open Access Journals (Sweden)

    Anita M Hennige

    Full Text Available BACKGROUND: The secreted liver protein fetuin-A (AHSG is up-regulated in hepatic steatosis and the metabolic syndrome. These states are strongly associated with low-grade inflammation and hypoadiponectinemia. We, therefore, hypothesized that fetuin-A may play a role in the regulation of cytokine expression, the modulation of adipose tissue expression and plasma concentration of the insulin-sensitizing and atheroprotective adipokine adiponectin. METHODOLOGY AND PRINCIPAL FINDINGS: Human monocytic THP1 cells and human in vitro differenttiated adipocytes as well as C57BL/6 mice were treated with fetuin-A. mRNA expression of the genes encoding inflammatory cytokines and the adipokine adiponectin (ADIPOQ was assessed by real-time RT-PCR. In 122 subjects, plasma levels of fetuin-A, adiponectin and, in a subgroup, the multimeric forms of adiponectin were determined. Fetuin-A treatment induced TNF and IL1B mRNA expression in THP1 cells (p<0.05. Treatment of mice with fetuin-A, analogously, resulted in a marked increase in adipose tissue Tnf mRNA as well as Il6 expression (27- and 174-fold, respectively. These effects were accompanied by a decrease in adipose tissue Adipoq mRNA expression and lower circulating adiponectin levels (p<0.05, both. Furthermore, fetuin-A repressed ADIPOQ mRNA expression of human in vitro differentiated adipocytes (p<0.02 and induced inflammatory cytokine expression. In humans in plasma, fetuin-A correlated positively with high-sensitivity C-reactive protein, a marker of subclinical inflammation (r = 0.26, p = 0.01, and negatively with total- (r = -0.28, p = 0.02 and, particularly, high molecular weight adiponectin (r = -0.36, p = 0.01. CONCLUSIONS AND SIGNIFICANCE: We provide novel evidence that the secreted liver protein fetuin-A induces low-grade inflammation and represses adiponectin production in animals and in humans. These data suggest an important role of fatty liver in the pathophysiology of insulin resistance and

  8. Inducible expression of trehalose synthase in Bacillus licheniformis.

    Science.gov (United States)

    Li, Youran; Gu, Zhenghua; Zhang, Liang; Ding, Zhongyang; Shi, Guiyang

    2017-02-01

    Trehalose synthase (TreS) could transform maltose into trehalose via isomerization. It is a crucial enzyme in the process of trehalose enzymatical transformation. In this study, plasmid-based inducible expression systems were constructed to produce Thermomonospora curvata TreS in B. licheniformis. Xylose operons from B. subtilis, B. licheniformis and B. megaterium were introduced to regulate the expression of the gene encoding TreS. It was functionally expressed, and the BlsTs construct yielded the highest enzyme activity (12.1 U/mL). Furthermore, the effect of different cultural conditions on the inducible expression of BlsTs was investigated, and the optimal condition was as follows: 4% maltodextrin, 0.4% soybean powder, 1% xylose added after 10 h of growth and an induction time of 12 h at 37 °C. As a result, the maximal yield reached 24.7 U/mL. This study contributes to the industrial application of B. licheniformis, a GRAS workhorse for enzyme production. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Altered gene expression profiles in the hippocampus and prefrontal cortex of type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Abdul-Rahman Omar

    2012-02-01

    Full Text Available Abstract Background There has been an increasing body of epidemiologic and biochemical evidence implying the role of cerebral insulin resistance in Alzheimer-type dementia. For a better understanding of the insulin effect on the central nervous system, we performed microarray-based global gene expression profiling in the hippocampus, striatum and prefrontal cortex of streptozotocin-induced and spontaneously diabetic Goto-Kakizaki rats as model animals for type 1 and type 2 diabetes, respectively. Results Following pathway analysis and validation of gene lists by real-time polymerase chain reaction, 30 genes from the hippocampus, such as the inhibitory neuropeptide galanin, synuclein gamma and uncoupling protein 2, and 22 genes from the prefrontal cortex, e.g. galanin receptor 2, protein kinase C gamma and epsilon, ABCA1 (ATP-Binding Cassette A1, CD47 (Cluster of Differentiation 47 and the RET (Rearranged During Transfection protooncogene, were found to exhibit altered expression levels in type 2 diabetic model animals in comparison to non-diabetic control animals. These gene lists proved to be partly overlapping and encompassed genes related to neurotransmission, lipid metabolism, neuronal development, insulin secretion, oxidative damage and DNA repair. On the other hand, no significant alterations were found in the transcriptomes of the corpus striatum in the same animals. Changes in the cerebral gene expression profiles seemed to be specific for the type 2 diabetic model, as no such alterations were found in streptozotocin-treated animals. Conclusions According to our knowledge this is the first characterization of the whole-genome expression changes of specific brain regions in a diabetic model. Our findings shed light on the complex role of insulin signaling in fine-tuning brain functions, and provide further experimental evidence in support of the recently elaborated theory of type 3 diabetes.

  10. Characterization of a type-A response regulator differentially expressed during adventitious caulogenesis in Pinus pinaster.

    Science.gov (United States)

    Alvarez, José M; Cortizo, Millán; Ordás, Ricardo J

    2012-12-15

    The molecular cloning and characterization of PipsRR1, a type-A response regulator in Pinus pinaster, is reported here. Type-A response regulators mediate downstream responses to cytokinin and act as negative feedback regulators of the signal transduction pathway. Some type-A response regulators in Arabidopsis have been related to de novo meristem formation. However, little information exists in Pinus spp. The PipsRR1 gene contains 5 exons, as do all type-A response regulators in Arabidopsis, and the deduced protein contains a receiver domain with the conserved DDK residues and a short C terminal extension. Expression analysis showed that the PipsRR1 gene is differentially expressed during the first phases of adventitious caulogenesis induced by benzyladenine in P. pinaster cotyledons, suggesting that PipsRR1 plays a role in caulogenesis in conifers. Additionally, a binary vector carrying the PipsRR1 promoter driving GFP:GUS expression was constructed to analyze the promoter activity in P. pinaster somatic embryos. The results of genetic transformation showed GUS activity during somatic embryo mass proliferation and embryo maturation. Copyright © 2012 Elsevier GmbH. All rights reserved.

  11. Differentially expressed genes in iron-induced prion protein conversion

    International Nuclear Information System (INIS)

    Kim, Minsun; Kim, Eun-hee; Choi, Bo-Ran; Woo, Hee-Jong

    2016-01-01

    The conversion of the cellular prion protein (PrP C ) to the protease-resistant isoform is the key event in chronic neurodegenerative diseases, including transmissible spongiform encephalopathies (TSEs). Increased iron in prion-related disease has been observed due to the prion protein-ferritin complex. Additionally, the accumulation and conversion of recombinant PrP (rPrP) is specifically derived from Fe(III) but not Fe(II). Fe(III)-mediated PK-resistant PrP (PrP res ) conversion occurs within a complex cellular environment rather than via direct contact between rPrP and Fe(III). In this study, differentially expressed genes correlated with prion degeneration by Fe(III) were identified using Affymetrix microarrays. Following Fe(III) treatment, 97 genes were differentially expressed, including 85 upregulated genes and 12 downregulated genes (≥1.5-fold change in expression). However, Fe(II) treatment produced moderate alterations in gene expression without inducing dramatic alterations in gene expression profiles. Moreover, functional grouping of identified genes indicated that the differentially regulated genes were highly associated with cell growth, cell maintenance, and intra- and extracellular transport. These findings showed that Fe(III) may influence the expression of genes involved in PrP folding by redox mechanisms. The identification of genes with altered expression patterns in neural cells may provide insights into PrP conversion mechanisms during the development and progression of prion-related diseases. - Highlights: • Differential genes correlated with prion degeneration by Fe(III) were identified. • Genes were identified in cell proliferation and intra- and extracellular transport. • In PrP degeneration, redox related genes were suggested. • Cbr2, Rsad2, Slc40a1, Amph and Mvd were expressed significantly.

  12. Increased serum levels of MRP-8/14 in type 1 diabetes induce an increased expression of CD11b and an enhanced adhesion of circulating monocytes to fibronectin

    NARCIS (Netherlands)

    G. Bouma (Gerben); W.K. Lam-Tse; A.F. Wierenga-Wolf (Annet); H.A. Drexhage (Hemmo); M.A. Versnel (Marjan)

    2004-01-01

    textabstractThe recruitment of monocytes from the bloodstream is crucial in the accumulation of macrophages and dendritic cells in type 1 diabetic pancreases. Adhesion via integrins to endothelium and extracellular matrix proteins, such as fibronectin (FN), and the production of

  13. Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization

    International Nuclear Information System (INIS)

    Song, Yao; Baba, Tomohisa; Li, Ying-Yi; Furukawa, Kaoru; Tanabe, Yamato; Matsugo, Seiichi; Sasaki, Soichiro; Mukaida, Naofumi

    2015-01-01

    Patients with pancreatic ductal adenocarcinoma (PDAC) are frequently complicated with metastatic disease or locally advanced tumors, and consequently need chemotherapy. Gemcitabine is commonly used for PDAC treatment, but with limited efficacy. The capacity of gemcitabine to generate reactive oxygen species (ROS) in human pancreatic cancer cells, prompted us to examine its effects on the expression of pro-inflammatory cytokines and chemokines. We observed that gemcitabine enhanced selectively the expression of CXCL8 in human pancreatic cancer cells through ROS generation and NF-κB activation. In vitro blocking of CXCL8 failed to modulate gemcitabine-mediated inhibition of cell proliferation in human pancreatic cancer cells. Gemcitabine also enhanced CXCL8 expression in pancreatic cancer cells in xenografted tumor tissues. Moreover, anti-CXCL8 antibody treatment in vivo attenuated tumor formation as well as intra-tumoral vascularity in nude mice, which were transplanted with Miapaca-2 cells and treated with gemcitabine. Thus, gemcitabine-induced CXCL8 may counteract the drug through inducing neovascularization. - Highlights: • Gemcitabine induced CXCL8 expression in human pancreatic cancer cells. • CXCL8 expression required ROS generation and NF-κB activation. • CXCL8 did not affect in vitro proliferation of human pancreatic cancer cells. • CXCL8 in vivo counteracted gemcitabine by inducing neovascularization

  14. Gemcitabine-induced CXCL8 expression counteracts its actions by inducing tumor neovascularization

    Energy Technology Data Exchange (ETDEWEB)

    Song, Yao; Baba, Tomohisa [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Li, Ying-Yi [Cancer Research Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai (China); Furukawa, Kaoru; Tanabe, Yamato [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); School of Natural System Bioengineering Course, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa (Japan); Matsugo, Seiichi [School of Natural System Bioengineering Course, College of Science and Engineering, Kanazawa University, Kanazawa, Ishikawa (Japan); Sasaki, Soichiro [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan); Mukaida, Naofumi, E-mail: mukaida@staff.kanazawa-u.ac.jp [Division of Molecular Bioregulation, Cancer Research Institute, Kanazawa University, Kanazawa, Ishikawa 920-1192 (Japan)

    2015-03-06

    Patients with pancreatic ductal adenocarcinoma (PDAC) are frequently complicated with metastatic disease or locally advanced tumors, and consequently need chemotherapy. Gemcitabine is commonly used for PDAC treatment, but with limited efficacy. The capacity of gemcitabine to generate reactive oxygen species (ROS) in human pancreatic cancer cells, prompted us to examine its effects on the expression of pro-inflammatory cytokines and chemokines. We observed that gemcitabine enhanced selectively the expression of CXCL8 in human pancreatic cancer cells through ROS generation and NF-κB activation. In vitro blocking of CXCL8 failed to modulate gemcitabine-mediated inhibition of cell proliferation in human pancreatic cancer cells. Gemcitabine also enhanced CXCL8 expression in pancreatic cancer cells in xenografted tumor tissues. Moreover, anti-CXCL8 antibody treatment in vivo attenuated tumor formation as well as intra-tumoral vascularity in nude mice, which were transplanted with Miapaca-2 cells and treated with gemcitabine. Thus, gemcitabine-induced CXCL8 may counteract the drug through inducing neovascularization. - Highlights: • Gemcitabine induced CXCL8 expression in human pancreatic cancer cells. • CXCL8 expression required ROS generation and NF-κB activation. • CXCL8 did not affect in vitro proliferation of human pancreatic cancer cells. • CXCL8 in vivo counteracted gemcitabine by inducing neovascularization.

  15. Photobiomodulation changes type 1 collagen gene expression by pulp fibroblasts

    Science.gov (United States)

    Lourenço Ribeiro Vitor, Luciana; Tavares Oliveira Prado, Mariel; Lourenço Neto, Natalino; Cardoso de Oliveira, Rodrigo; Ferreira Santos, Carlos; Moreira Machado, Maria Aparecida Andrade; Marchini Oliveira, Thais

    2018-06-01

    This study aimed to evaluate type 1 collagen (COL1) gene expression by human pulp fibroblasts from primary teeth (HPF) after the variation of photobiomodulation (PBM) parameters. HPF were obtained from a biorepository, used at 4th passage, and irradiated (InGaAlP—660 nm) varying the power and application time according to the following groups: G1: 1.2 J cm‑2–05 mW–10 s G2: 2.5 J cm‑2–05 mW–20 s G3: 3.7 J cm‑2–05 mW–30 s G4: 5.0 J cm‑2–05 mW–40 s G5: 6.2 J cm‑2–05 mW–50 s G6: 2.5 J cm‑2–10 mW–10 s G7: 3.7 J cm‑2–15 mW–10 s G8: 5.0 J cm‑2–20 mW–10 s G9: 6.2 J cm‑2–25 mW–10 s. The control group (G10) was not irradiated and maintained with DMEM  +  10% SFB. RT-PCR was used to evaluate COL1 gene expression at 6, 12, and 24 h after irradiation. Intra- and intergroup comparisons were performed by two-way ANOVA followed by Tukey test (p  differences among periods (p  differences (p  >  0.05). The energy densities from 2.5 to 5 J cm‑2, regardless of the variation in PBM parameters, biomodulated the COL1 gene expression. At the energy density of 6.2 J cm‑2, longer application time and smaller power changed the pattern of COL1 gene expression by pulp fibroblasts from human primary teeth.

  16. Low doses of neutrons induce changes in gene expression

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Chang-Liu, C.M.; Panozzo, J.; Libertin, C.R.

    1993-01-01

    Studies were designed to identify genes induced following low-dose neutron but not following γ-ray exposure in fibroblasts. Our past work had shown differences in the expression of β-protein kinase C and c-fos genes, both being induced following γ-ray but not neutron exposure. We have identified two genes that are induced following neutron, but not γ-ray, exposure: Rp-8 (a gene induced by apoptosis) and the long terminal repeat (LTR) of the human immunodeficiency (HIV). Rp-8 mRNA induction was demonstrated in Syrian hamster embryo fibroblasts and was found to be induced in cells exposed to neutrons administered at low (0.5 cGy/min) and at high dose rate (12 cGy/min). The induction of transcription from the LTR of HIV was demonstrated in HeLa cells bearing a transfected construct of the chloramphenicol acetyl transferase (CAT) gene driven by the HIV-LTR promoter. Measures of CAT activity and CAT transcripts following irradiation demonstrated an unresponsiveness to γ rays over a broad range of doses. Twofold induction of the HIV-LTR was detected following neutron exposure (48 cGy) administered at low (0.5 cGy/min) but not high (12 cGy/min) dose rates. Ultraviolet-mediated HIV-LTR induction was inhibited by low-dose-rate neutron exposure

  17. EGR-1 regulates Ho-1 expression induced by cigarette smoke

    International Nuclear Information System (INIS)

    Chen, Huaqun; Wang, Lijuan; Gong, Tao; Yu, Yang; Zhu, Chunhua; Li, Fen; Wang, Li; Li, Chaojun

    2010-01-01

    As an anti-oxidant molecule, heme oxygenase-1 (HO-1) has been implicated in the protection of lung injury by cigarette smoke (CS). The mechanisms regulating its expression have not been defined. In this report, the role of early growth response 1 (EGR-1) in the regulation of Ho-1 expression was investigated. In C57BL/6 mice with CS exposure, HO-1 was greatly increased in bronchial epithelial cells and alveolar inflammatory cells. In primary cultured mouse lung fibroblasts and RAW264.7 cells exposed to cigarette smoke water extract (CSE), an increase in HO-1 protein level was detected. In addition, CSE induced HO-1 expression was decreased in Egr-1 deficient mouse embryo fibroblasts (Egr-1 -/- MEFs). Nuclear localization of EGR-1 was examined in mouse lung fibroblasts after exposure to CSE. Luciferase reporter activity assays showed that the enhancer region of the Ho-1 gene containing a proposed EGR-1 binding site was responsible for the induction of HO-1. A higher increase of alveolar mean linear intercept (Lm) was observed in lung tissues, and a larger increase in the number of total cells and monocytes/macrophages from bronchial alveolar lavage fluid was found in CS-exposed mice by loss of function of EGR-1 treatment. In summary, the present data demonstrate that EGR-1 plays a critical role in HO-1 production induced by CS.

  18. Lipopolysaccharide induces autotaxin expression in human monocytic THP-1 cells

    International Nuclear Information System (INIS)

    Li Song; Zhang Junjie

    2009-01-01

    Autotaxin (ATX) is a secreted enzyme with lysophospholipase D (lysoPLD) activity, which converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), a bioactive phospholipid involved in numerous biological activities, including cell proliferation, differentiation, and migration. In the present study, we found that bacterial lipopolysaccharide (LPS), a well-known initiator of the inflammatory response, induced ATX expression in monocytic THP-1 cells. The activation of PKR, JNK, and p38 MAPK was required for the ATX induction. The LPS-induced ATX in THP-1 cells was characterized as the β isoform. In the presence of LPC, ATX could promote the migrations of THP-1 and Jurkat cells, which was inhibited by pertussis toxin (PTX), an inhibitor of Gi-mediated LPA receptor signaling. In summary, LPS induces ATX expression in THP-1 cells via a PKR, JNK and p38 MAPK-mediated mechanism, and the ATX induction is likely to enhance immune cell migration in proinflammatory response by regulating LPA levels in the microenvironment.

  19. Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori

    2015-01-01

    Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue

  20. Interferon-γ induces expression of MHC class II on intestinal epithelial cells and protects mice from colitis.

    Directory of Open Access Journals (Sweden)

    Christoph Thelemann

    Full Text Available Immune responses against intestinal microbiota contribute to the pathogenesis of inflammatory bowel diseases (IBD and involve CD4(+ T cells, which are activated by major histocompatibility complex class II (MHCII molecules on antigen-presenting cells (APCs. However, it is largely unexplored how inflammation-induced MHCII expression by intestinal epithelial cells (IEC affects CD4(+ T cell-mediated immunity or tolerance induction in vivo. Here, we investigated how epithelial MHCII expression is induced and how a deficiency in inducible epithelial MHCII expression alters susceptibility to colitis and the outcome of colon-specific immune responses. Colitis was induced in mice that lacked inducible expression of MHCII molecules on all nonhematopoietic cells, or specifically on IECs, by continuous infection with Helicobacter hepaticus and administration of interleukin (IL-10 receptor-blocking antibodies (anti-IL10R mAb. To assess the role of interferon (IFN-γ in inducing epithelial MHCII expression, the T cell adoptive transfer model of colitis was used. Abrogation of MHCII expression by nonhematopoietic cells or IECs induces colitis associated with increased colonic frequencies of innate immune cells and expression of proinflammatory cytokines. CD4(+ T-helper type (Th1 cells - but not group 3 innate lymphoid cells (ILCs or Th17 cells - are elevated, resulting in an unfavourably altered ratio between CD4(+ T cells and forkhead box P3 (FoxP3(+ regulatory T (Treg cells. IFN-γ produced mainly by CD4(+ T cells is required to upregulate MHCII expression by IECs. These results suggest that, in addition to its proinflammatory roles, IFN-γ exerts a critical anti-inflammatory function in the intestine which protects against colitis by inducing MHCII expression on IECs. This may explain the failure of anti-IFN-γ treatment to induce remission in IBD patients, despite the association of elevated IFN-γ and IBD.

  1. Ozone-induced gene expression occurs via ethylene-dependent and -independent signalling.

    Science.gov (United States)

    Grimmig, Bernhard; Gonzalez-Perez, Maria N; Leubner-Metzger, Gerhard; Vögeli-Lange, Regina; Meins, Fred; Hain, Rüdiger; Penuelas, Josep; Heidenreich, Bernd; Langebartels, Christian; Ernst, Dieter; Sandermann, Heinrich

    2003-03-01

    Recent studies suggest that ethylene is involved in signalling ozone-induced gene expression. We show here that application of ozone increased glucuronidase (GUS) expression of chimeric reporter genes regulated by the promoters of the tobacco class I beta-1,3-glucanases (GLB and Gln2) and the grapevine resveratrol synthase (Vst1) genes in transgenic tobacco leaves. 5'-deletion analysis of the class I beta-1,3-glucanase promoter revealed that ozone-induced gene regulation is mainly mediated by the distal enhancer region containing the positively acting ethylene-responsive element (ERE). In addition, application of 1-methylcyclopropene (1-MCP), an inhibitor of ethylene action, blocked ozone-induced class I beta-1,3-glucanase promoter activity. Enhancer activity and ethylene-responsiveness depended on the integrity of the GCC boxes, cis-acting elements present in the ERE of the class I beta-1,3-glucanase and the basic-type pathogenesis-related PR-1 protein (PRB-1b) gene promoters. The minimal PRB-1b promoter containing only the ERE with intact GCC boxes, was sufficient to confer 10-fold ozone inducibility to a GUS-reporter gene, while a substitution mutation in the GCC box abolished ozone responsiveness. The ERE region of the class I beta-1,3-glucanase promoter containing two intact GCC boxes confered strong ozone inducibility to a minimal cauliflower mosaic virus (CaMV) 35S RNA promoter, whereas two single-base substitution in the GCC boxes resulted in a complete loss of ozone inducibility. Taken together, these datastrongly suggest that ethylene is signalling ozone-induced expression of class I beta-l,3-glucanase and PRB-1b genes. Promoter analysis of the stilbene synthase Vst1 gene unravelled different regions for ozone and ethylene-responsiveness. Application of 1-MCP blocked ethylene-induced Vst1 induction, but ozone induction was not affected. This shows that ozone-induced gene expression occurs via at least two different signalling mechanisms and suggests an

  2. Ecstasy-Induced Caspase Expression Alters Following Ginger Treatment

    Directory of Open Access Journals (Sweden)

    Sara Soleimani Asl

    2013-11-01

    Full Text Available Introduction: Exposure to 3-4, methylenedioxymethamphetamine (MDMA leads to cell death. Herein, we studied the protective effects of ginger on MDMA- induced apoptosis. Methods: 15 Sprague dawley male rats were administrated with 0, 10 mg/kg MDMA, or MDMA along with 100mg/kg ginger, IP for 7 days. Brains were removed to study the caspase 3, 8, and 9 expressions in the hippocampus by RT-PCR. Data was analyzed by SPSS 16 software using the one-way ANOVA test. Results: MDMA treatment resulted in a significant increase in caspase 3, 8, and 9 as compared to the sham group (p<0.001. Ginger administration however, appeared to significantly decrease the same (p<0.001. Discussion: Our findings suggest that ginger consumption may lead to the improvement of MDMA-induced neurotoxicity.

  3. Glutamine deprivation induces interleukin-8 expression in ataxia telangiectasia fibroblasts.

    Science.gov (United States)

    Kim, Min-Hyun; Kim, Aryung; Yu, Ji Hoon; Lim, Joo Weon; Kim, Hyeyoung

    2014-05-01

    To investigate whether glutamine deprivation induces expression of inflammatory cytokine interleukin-8 (IL-8) by determining NF-κB activity and levels of oxidative indices (ROS, reactive oxygen species; hydrogen peroxide; GSH, glutathione) in fibroblasts isolated from patients with ataxia telangiectasia (A-T). We used A-T fibroblasts stably transfected with empty vector (Mock) or with human full-length ataxia telangiectasia mutated (ATM) cDNA (YZ5) and mouse embryonic fibroblasts (MEFs) transiently transfected with ATM small interfering RNA (siRNA) or with non-specific control siRNA. The cells were cultured with or without glutamine or GSH. ROS levels were determined using a fluorescence reader and confocal microscopy. IL-8 or murine IL-8 homolog, keratinocyte chemoattractant (KC), and hydrogen peroxide levels in the medium were determined by enzyme-linked immunosorbent assay and colorimetric assay. GSH level was assessed by enzymatic assay, while IL-8 (KC) mRNA level was measured by reverse transcription-polymerase chain reaction (RT-PCR) and/or quantitative real-time PCR. NF-κB DNA-binding activity was determined by electrophoretic mobility shift assay. Catalase activity and ATM protein levels were determined by O2 generation and Western blotting. While glutamine deprivation induced IL-8 expression and increased NF-κB DNA-binding activity in Mock cells, both processes were decreased by treatment of cells with glutamine or GSH or both glutamine and GSH. Glutamine deprivation had no effect on IL-8 expression or NF-κB DNA-binding activity in YZ5 cells. Glutamine-deprived Mock cells had higher oxidative stress indices (increases in ROS and hydrogen peroxide, reduction in GSH) than glutamine-deprived YZ5 cells. In Mock cells, glutamine deprivation-induced oxidative stress indices were suppressed by treatment with glutamine or GSH or both glutamine and GSH. GSH levels and catalase activity were lower in Mock cells than YZ5 cells. MEFs transfected with ATM siRNA and

  4. Decreased inducibility of TNF expression in lipid-loaded macrophages

    Directory of Open Access Journals (Sweden)

    Kallin Bengt

    2002-10-01

    Full Text Available Abstract Background Inflammation and immune responses are considered to be very important in the pathogenesis of atherosclerosis. Lipid accumulation in macrophages of the arterial intima is a characteristic feature of atherosclerosis which can influence the inflammatory potential of macrophages. We studied the effects of lipid loading on the regulation of TNF expression in human monocyte-derived macrophages. Results In macrophages incubated with acetylated low density lipoprotein (ac-LDL for 2 days, mRNA expression of TNF in cells stimulated with TNF decreased by 75%. In cell cultures stimulated over night with IL-1β, lipid loading decreased secretion of TNF into culture medium by 48%. These results suggest that lipid accumulation in macrophages makes them less responsive to inflammatory stimuli. Decreased basal activity and inducibility of transcription factor AP-1 was observed in lipid-loaded cells, suggesting a mechanism for the suppression of cytokine expression. NF-κB binding activity and inducibility were only marginally affected by ac-LDL. LDL and ac-LDL did not activate PPARγ. In contrast, oxidized LDL stimulated AP-1 and PPARγ but inhibited NF-κB, indicating that the effects of lipid loading with ac-LDL were not due to oxidation of lipids. Conclusions Accumulation of lipid, mainly cholesterol, results in down-regulation of TNF expression in macrophages. Since monocytes are known to be activated by cell adhesion, these results suggest that foam cells in atherosclerotic plaques may contribute less potently to an inflammatory reaction than newly arrived monocytes/macrophages.

  5. Anger Expression Types and Interpersonal Problems in Nurses

    Directory of Open Access Journals (Sweden)

    Aekyung Han, RN, PhD

    2015-06-01

    Conclusions: Based on this research, the development of an anger expression intervention program for nurses is recommended to establish the means of expressing the suppressed emotions, which would help the nurses experience less interpersonal problems.

  6. Radiation-induced gene expression in human subcutaneous fibroblasts is predictive of radiation-induced fibrosis

    DEFF Research Database (Denmark)

    Rødningen, Olaug Kristin; Børresen-Dale, Anne-Lise; Alsner, Jan

    2008-01-01

    BACKGROUND AND PURPOSE: Breast cancer patients show a large variation in normal tissue reactions after ionizing radiation (IR) therapy. One of the most common long-term adverse effects of ionizing radiotherapy is radiation-induced fibrosis (RIF), and several attempts have been made over the last...... years to develop predictive assays for RIF. Our aim was to identify basal and radiation-induced transcriptional profiles in fibroblasts from breast cancer patients that might be related to the individual risk of RIF in these patients. MATERIALS AND METHODS: Fibroblast cell lines from 31 individuals......-treated fibroblasts. Transcriptional differences in basal and radiation-induced gene expression profiles were investigated using 15K cDNA microarrays, and results analyzed by both SAM and PAM. RESULTS: Sixty differentially expressed genes were identified by applying SAM on 10 patients with the highest risk of RIF...

  7. Indian Hedgehog Signaling Regulates Transcription and Expression of Collagen Type X via Runx2/Smads Interactions*

    Science.gov (United States)

    Amano, Katsuhiko; Densmore, Michael; Nishimura, Riko; Lanske, Beate

    2014-01-01

    Indian hedgehog (Ihh) is essential for chondrocyte differentiation and endochondral ossification and acts with parathyroid hormone-related peptide in a negative feedback loop to regulate early chondrocyte differentiation and entry to hypertrophic differentiation. Independent of this function, we and others recently reported independent Ihh functions to promote chondrocyte hypertrophy and matrix mineralization in vivo and in vitro. However, the molecular mechanisms for these actions and their functional significance are still unknown. We recently discovered that Ihh overexpression in chondrocytes stimulated the expression of late chondrocyte differentiation markers and induced matrix mineralization. Focusing on collagen type X (Col10α1) expression and transcription, we observed that hedgehog downstream transcription factors GLI-Krüppel family members (Gli) 1/2 increased COL10A1 promoter activity and identified a novel Gli1/2 response element in the 250-bp basic promoter. In addition, we found that Ihh induced Runx2 expression in chondrocytes without up-regulating other modulators of chondrocyte maturation such as Mef2c, Foxa2, and Foxa3. Runx2 promoted Col10α1 expression in cooperation with Ihh. Further analyses using promoter assays, immunofluorescence, and binding assays showed the interaction of Gli1/2 in a complex with Runx2/Smads induces chondrocyte differentiation. Finally, we could demonstrate that Ihh promotes in vitro matrix mineralization using similar molecular mechanisms. Our data provide an in vitro mechanism for Ihh signaling to positively regulate Col10α1 transcription. Thus, Ihh signaling could be an important player for not only early chondrocyte differentiation but maturation and calcification of chondrocytes. PMID:25028519

  8. One week's holiday sun exposure induces expression of photoaging biomarkers.

    Science.gov (United States)

    Lesiak, Aleksandra; Rogowski-Tylman, Michal; Danilewicz, Marian; Wozniacka, Anna; Narbutt, Joanna

    2016-01-01

    Skin aging is accompanied by the upregulation of the expression of various matrix metalloproteinases (MMPs). It was shown that exposure to ultraviolet radiation (UVR) may induce skin expression of MMPs and dysregulation of the transforming growth factor beta (TGF-β)/Smad pathway. The aim of our study was to compare the effects of short holiday UVR exposure and lifetime UVR exposure, on the expression of MMP-8, TGF-β1, and Smad2 in human skin biopsies. Skin biopsies were taken from the outer upper arm of 15 elderly people with significant photoaging (mean age 64.1 years) (Group 1) and from 15 healthy young adult volunteers (mean age 24.1 y) who participated in a six-day sun holiday. Biopsies were taken twice: 24 hours before leaving for holiday (Group 2a) and 24 hours after returning (Group 2b). The expression of TGF-β1, Smad2, and MMP-8 was examined by immunochemistry and measured semiquantitatively by two independent pathologists. The mean expression of TGF-β1 in dermal fibroblasts and keratinocytes in Group 1 and Group 2b was significantly lower than in Group 2a (0.54% ± 0.44% and 0.48% ± 0.51% vs. 1.48% ± 0.72%, respectively). The percentage of Smad2 (+) cells in Group 1 and Group 2b was lower than in Group 2a (2.13% ± 1.39% and 1.81% ± 1.16% vs. 4.13% ± 1.58%, respectively). The MMP-8 expression in Group 2b was 1.36% ± 0.68% and was significantly higher than in Group 1 (0.34% ± 0.42%) and Group 2a in which the protein was not detected (p < 0.001). We conclude that the decrease in the expression of TGF-β1 and Smad2 is a persistent biomarker of skin photoaging, while the increased expression of MMP-8 in keratinocytes can be regarded as a marker of acute sun exposure.

  9. Importance of correlation between gene expression levels: application to the type I interferon signature in rheumatoid arthritis.

    Science.gov (United States)

    Reynier, Frédéric; Petit, Fabien; Paye, Malick; Turrel-Davin, Fanny; Imbert, Pierre-Emmanuel; Hot, Arnaud; Mougin, Bruno; Miossec, Pierre

    2011-01-01

    The analysis of gene expression data shows that many genes display similarity in their expression profiles suggesting some co-regulation. Here, we investigated the co-expression patterns in gene expression data and proposed a correlation-based research method to stratify individuals. Using blood from rheumatoid arthritis (RA) patients, we investigated the gene expression profiles from whole blood using Affymetrix microarray technology. Co-expressed genes were analyzed by a biclustering method, followed by gene ontology analysis of the relevant biclusters. Taking the type I interferon (IFN) pathway as an example, a classification algorithm was developed from the 102 RA patients and extended to 10 systemic lupus erythematosus (SLE) patients and 100 healthy volunteers to further characterize individuals. We developed a correlation-based algorithm referred to as Classification Algorithm Based on a Biological Signature (CABS), an alternative to other approaches focused specifically on the expression levels. This algorithm applied to the expression of 35 IFN-related genes showed that the IFN signature presented a heterogeneous expression between RA, SLE and healthy controls which could reflect the level of global IFN signature activation. Moreover, the monitoring of the IFN-related genes during the anti-TNF treatment identified changes in type I IFN gene activity induced in RA patients. In conclusion, we have proposed an original method to analyze genes sharing an expression pattern and a biological function showing that the activation levels of a biological signature could be characterized by its overall state of correlation.

  10. Hepatocyte growth factor limits autoimmune neuroinflammation via glucocorticoid-induced leucine zipper expression in dendritic cells.

    Science.gov (United States)

    Benkhoucha, Mahdia; Molnarfi, Nicolas; Dunand-Sauthier, Isabelle; Merkler, Doron; Schneiter, Gregory; Bruscoli, Stefano; Riccardi, Carlo; Tabata, Yasuhiko; Funakoshi, Hiroshi; Nakamura, Toshikazu; Reith, Walter; Santiago-Raber, Marie-Laure; Lalive, Patrice H

    2014-09-15

    Autoimmune neuroinflammation, including multiple sclerosis and its animal model, experimental autoimmune encephalomyelitis (EAE), a prototype for T cell-mediated autoimmunity, is believed to result from immune tolerance dysfunction leading to demyelination and substantial neurodegeneration. We previously showed that CNS-restricted expression of hepatocyte growth factor (HGF), a potent neuroprotective factor, reduced CNS inflammation and clinical deficits associated with EAE. In this study, we demonstrate that systemic HGF treatment ameliorates EAE through the development of tolerogenic dendritic cells (DCs) with high expression levels of glucocorticoid-induced leucine zipper (GILZ), a transcriptional repressor of gene expression and a key endogenous regulator of the inflammatory response. RNA interference-directed neutralization of GILZ expression by DCs suppressed the induction of tolerance caused by HGF. Finally, adoptive transfer of HGF-treated DCs from wild-type but not GILZ gene-deficient mice potently mediated functional recovery in recipient mice with established EAE through effective modulation of autoaggressive T cell responses. Altogether, these results show that by inducing GILZ in DCs, HGF reproduces the mechanism of immune regulation induced by potent immunomodulatory factors such as IL-10, TGF-β1, and glucocorticoids and therefore that HGF therapy may have potential in the treatment of autoimmune dysfunctions. Copyright © 2014 by The American Association of Immunologists, Inc.

  11. Alpha particles induce expression of immunogenic markers on tumour cells

    International Nuclear Information System (INIS)

    Gorin, J.B.; Gouard, S.; Cherel, M.; Davodeau, F.; Gaschet, J.; Morgenstern, A.; Bruchertseifer, F.

    2013-01-01

    The full text of the publication follows. Radioimmunotherapy (RIT) is an approach aiming at targeting the radioelements to tumours, usually through the use of antibodies specific for tumour antigens. The radiations emitted by the radioelements then induce direct killing of the targeted cells as well as indirect killing through bystander effect. Interestingly, it has been shown that ionizing radiations, in some settings of external radiotherapy, can foster an immune response directed against tumour cells. Our research team is dedicated to the development of alpha RIT, i.e RIT using alpha particle emitters, we therefore decided to study the effects of such particles on tumour cells in regards to their immunogenicity. First, we studied the effects of bismuth 213, an alpha emitter, on cellular death and autophagy in six different tumour cell lines. Then, we measured the expression of 'danger' signals and MHC molecules at the cell surface to determine whether irradiation with 213 Bi could cause the tumour cells to be recognized by the immune system. Finally a co-culture of dendritic cells with irradiated tumour cells was performed to test whether it would induce dendritic cells to mature. No apoptosis was detected within 48 hours after irradiation in any cell line, however half of them exhibited signs of autophagy. No increase in membrane expression of 'danger' signals was observed after treatment with 213 Bi, but we showed an increase in expression of MHC class I and II for some cell lines. Moreover, the co-culture experiment indicated that the immunogenicity of a human adenocarcinoma cell line (LS 174T) was enhanced in vitro after irradiation with alpha rays. These preliminary data suggest that alpha particles could be of interest in raising an immune response associated to RIT. (authors)

  12. The level of CD147 expression correlates with cyclophilin-induced signalling and chemotaxis

    Directory of Open Access Journals (Sweden)

    Constant Stephanie

    2011-10-01

    Full Text Available Abstract Background Previous studies identified CD147 as the chemotactic receptor on inflammatory leukocytes for extracellular cyclophilins (eCyp. However, CD147 is not known to associate with signal transducing molecules, so other transmembrane proteins, such as proteoglycans, integrins, and CD98, were suggested as receptor or co-receptor for eCyp. CD147 is ubiquitously expressed on many cell types, but relationship between the level of CD147 expression and cellular responses to eCyp has never been analyzed. Given the role of eCyp in pathogenesis of many diseases, it is important to know whether cellular responses to eCyp are regulated at the level of CD147 expression. Results Here, we manipulated CD147 expression levels on HeLa cells using RNAi and investigated the signalling and chemotactic responses to eCypA. Both Erk activation and chemotaxis correlated with the level of CD147 expression, with cells exhibiting low level expression being practically unresponsive to eCypA. Conclusions Our results provide the first demonstration of a chemotactic response of HeLa cells to eCypA, establish a correlation between the level of CD147 expression and the magnitude of cellular responses to eCypA, and indicate that CD147 may be a limiting factor in the receptor complex determining cyclophilin-induced Erk activation and cell migration.

  13. Genistein-induced alterations of radiation-responsive gene expression

    Energy Technology Data Exchange (ETDEWEB)

    Grace, M.B. [Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)], E-mail: grace@afrri.usuhs.mil; Blakely, W.F.; Landauer, M.R. [Armed Forces Radiobiology Research Institute, 8901 Wisconsin Avenue, Bethesda, MD 20889-5603 (United States)

    2007-07-15

    In order to clarify the molecular mechanism of radioprotection and understand biological dosimetry in the presence of medical countermeasure-radioprotectants, their effects on ionizing radiation (IR)-responsive molecular biomarkers must be examined. We used genistein in a radiation model system and measured gene expression by multiplex QRT-PCR assay in drug-treated healthy human blood cultures. Genistein has been demonstrated to be a radiosensitizer of malignant cells and a radioprotector against IR-induced lethality in a mouse model. Whole-blood cultures were supplemented with 50, 100, and 200{mu}M concentrations of genistein, 16 h prior to receiving a 2-Gy ({sup 60}Co-{gamma} rays, 10 cGy/min) dose of IR. Total RNA was isolated from whole blood 24 h postirradiation for assessments. Combination treatments of genistein and IR resulted in no significant genistein effects on ddb2 and bax downstream transcripts to p53, or proliferating cell-nuclear antigen, pcna, necessary for DNA synthesis and cell-cycle progression. Use of these radiation-responsive targets would be recommended for dose-assessment applications. We also observed decreased expression of pro-survival transcript, bcl-2. Genistein and IR-increased expression of cdkn1a and gadd45a, showing that genistein also stimulates p53 transcriptional activity. These results confirm published molecular signatures for genistein in numerous in vitro models. Evaluation of gene biomarkers may be further exploited for devising novel radiation countermeasure and/or therapeutic strategies.

  14. Supplementary Material for: Global expression differences and tissue specific expression differences in rice evolution result in two contrasting types of differentially expressed genes

    KAUST Repository

    Horiuchi, Youko; Harushima, Yoshiaki; Fujisawa, Hironori; Mochizuki, Takako; Fujita, Masahiro; Ohyanagi, Hajime; Kurata, Nori

    2015-01-01

    Abstract Background Since the development of transcriptome analysis systems, many expression evolution studies characterized evolutionary forces acting on gene expression, without explicit discrimination between global expression differences and tissue specific expression differences. However, different types of gene expression alteration should have different effects on an organism, the evolutionary forces that act on them might be different, and different types of genes might show different types of differential expression between species. To confirm this, we studied differentially expressed (DE) genes among closely related groups that have extensive gene expression atlases, and clarified characteristics of different types of DE genes including the identification of regulating loci for differential expression using expression quantitative loci (eQTL) analysis data. Results We detected differentially expressed (DE) genes between rice subspecies in five homologous tissues that were verified using japonica and indica transcriptome atlases in public databases. Using the transcriptome atlases, we classified DE genes into two types, global DE genes and changed-tissues DE genes. Global type DE genes were not expressed in any tissues in the atlas of one subspecies, however changed-tissues type DE genes were expressed in both subspecies with different tissue specificity. For the five tissues in the two japonica-indica combinations, 4.6 ± 0.8 and 5.9 ± 1.5 % of highly expressed genes were global and changed-tissues DE genes, respectively. Changed-tissues DE genes varied in number between tissues, increasing linearly with the abundance of tissue specifically expressed genes in the tissue. Molecular evolution of global DE genes was rapid, unlike that of changed-tissues DE genes. Based on gene ontology, global and changed-tissues DE genes were different, having no common GO terms. Expression differences of most global DE genes were regulated by cis

  15. Induction of NFATc2 expression by interleukin 6 promotes T helper type 2 differentiation.

    Science.gov (United States)

    Diehl, Sean; Chow, Chi-Wing; Weiss, Linda; Palmetshofer, Alois; Twardzik, Thomas; Rounds, Laura; Serfling, Edgar; Davis, Roger J; Anguita, Juan; Rincón, Mercedes

    2002-07-01

    Interleukin (IL)-6 is produced by professional antigen-presenting cells (APCs) such as B cells, macrophages, and dendritic cells. It has been previously shown that APC-derived IL-6 promotes the differentiation of naive CD4+ T cells into effector T helper type 2 (Th2) cells. Here, we have studied the molecular mechanism for IL-6-mediated Th2 differentiation. During the activation of CD4+ T cells, IL-6 induces the production of IL-4, which promotes the differentiation of these cells into effector Th2 cells. Regulation of IL-4 gene expression by IL-6 is mediated by nuclear factor of activated T cells (NFAT), as inhibition of NFAT prevents IL-6-driven IL-4 production and Th2 differentiation. IL-6 upregulates NFAT transcriptional activity by increasing the levels of NFATc2. The ability of IL-6 to promote Th2 differentiation is impaired in CD4+ T cells that lack NFATc2, demonstrating that NFATc2 is required for regulation of IL-4 gene expression by IL-6. Regulation of NFATc2 expression and NFAT transcriptional activity represents a novel pathway by which IL-6 can modulate gene expression.

  16. Anti-inflammatory effect of resveratrol on TNF-α-induced MCP-1 expression in adipocytes

    International Nuclear Information System (INIS)

    Zhu Jian; Yong Wei; Wu Xiaohong; Yu Ying; Lv Jinghuan; Liu Cuiping; Mao Xiaodong; Zhu Yunxia; Xu Kuanfeng; Han Xiao; Liu Chao

    2008-01-01

    Chronic low-grade inflammation characterized by adipose tissue macrophage accumulation and abnormal cytokine production is a key feature of obesity and type 2 diabetes. Adipose-tissue-derived monocyte chemoattractant protein (MCP)-1, induced by cytokines, has been shown to play an essential role in the early events during macrophage infiltration into adipose tissue. In this study we investigated the effects of resveratrol upon both tumor necrosis factor (TNF)-α-induced MCP-1 gene expression and its underlying signaling pathways in 3T3-L1 adipoctyes. Resveratrol was found to inhibit TNF-α-induced MCP-1 secretion and gene transcription, as well as promoter activity, which based on down-regulation of TNF-α-induced MCP-1 transcription. Nuclear factor (NF)-κB was determined to play a major role in the TNF-α-induced MCP-1 expression. Further analysis showed that resveratrol inhibited DNA binding activity of the NF-κB complex and subsequently suppressed NF-κB transcriptional activity in TNF-α-stimulated cells. Finally, the inhibition of MCP-1 may represent a novel mechanism of resveratrol in preventing obesity-related pathologies

  17. A radiation-induced compact type Granny Smith apple mutation

    International Nuclear Information System (INIS)

    Hurter, N.; Van Tonder, M.J.

    1982-01-01

    More successful compact mutant clones of Granny Smith apple are being sought, for those that have so far arisen naturally have undesirable tree and fruit charateristics. For this purpose, gamma rays from a Cobalt-60 radiation unit were used to induce mutant types artificially. One compact mutation of Granny Smith was produced via re-irradiation

  18. Ectopic ERK Expression Induces Phenotypic Conversion of C10 Cells and Alters DNA Methyltransferase Expression

    Energy Technology Data Exchange (ETDEWEB)

    Sontag, Ryan L.; Weber, Thomas J.

    2012-05-04

    In some model systems constitutive extracellular signal regulated kinase (ERK) activation is sufficient to promote an oncogenic phenotype. Here we investigate whether constitutive ERK expression influences phenotypic conversion in murine C10 type II alveolar epithelial cells. C10 cells were stably transduced with an ERK1-green fluorescent protein (ERK1-GFP) chimera or empty vector and ectopic ERK expression was associated with the acquisition of soft agar focus-forming potential in late passage, but not early passage cells. Late passage ERK1-GFP cells exhibited a significant increase in the expression of DNA methyl transferases (DNMT1 and 3b) and a marked increase in sensitivity to 5-azacytidine (5-azaC)-mediated toxicity, relative to early passage ERK1-GFP cells and vector controls. The expression of xeroderma pigmentosum complementation group A (XPA) and DNA-dependent protein kinase catalytic subunit (DNA-PKcs) were significantly increased in late passage cells, suggesting enhanced DNA damage recognition and repair activity which we interpret as a reflection of genomic instability. Phospho-ERK levels were dramatically decreased in late passage ERK1-GFP cells, relative to early passage and vector controls, and phospho-ERK levels were restored by treatment with sodium orthovanadate, indicating a role for phosphatase activity in this response. Collectively these observations suggest that ectopic ERK expression promotes phenotypic conversion of C10 cells that is associated with latent effects on epigenetic programming and phosphatase activities.

  19. Human Cementum Protein 1 induces expression of bone and cementum proteins by human gingival fibroblasts

    International Nuclear Information System (INIS)

    Carmona-Rodriguez, Bruno; Alvarez-Perez, Marco Antonio; Narayanan, A. Sampath; Zeichner-David, Margarita; Reyes-Gasga, Jose; Molina-Guarneros, Juan; Garcia-Hernandez, Ana Lilia; Suarez-Franco, Jose Luis; Chavarria, Ivet Gil; Villarreal-Ramirez, Eduardo; Arzate, Higinio

    2007-01-01

    We recently presented evidence showing that a human cementoblastoma-derived protein, named Cementum Protein 1 (CEMP1) may play a role as a local regulator of cementoblast differentiation and cementum-matrix mineralization. This protein was shown to be expressed by cementoblasts and progenitor cells localized in the periodontal ligament. In this study we demonstrate that transfection of CEMP1 into human gingival fibroblasts (HGF) induces mineralization and expression of bone and cementum-matrix proteins. The transfected HGF cells had higher alkaline phosphatase activity and proliferation rate and they expressed genes for alkaline phosphatase, bone sialoprotein, osteocalcin, osteopontin, the transcription factor Runx2/Cbfa1, and cementum attachment protein (CAP). They also produced biological-type hydroxyapatite. These findings indicate that the CEMP1 might participate in differentiation and mineralization of nonosteogenic cells, and that it might have a potential function in cementum and bone formation

  20. Induction of expression of two phenotypic markers of pulmonary type II cells in a cultured cell line

    International Nuclear Information System (INIS)

    Henderson, R.F.; Waide, J.J.; Scott, G.G.

    1994-01-01

    The functions of pulmonary type II cells, such as synthesis of pulmonary surfactant and metabolism of inhaled xenobiotics, can be studied in primary isolates of lung cells. However, isolated type II cells, when cultured, quickly lose the phenotypic expressions characteristics of type II cells, including surfactant lipid and protein synthesis and alkaline phosphatase (AP) activity. A cultured cell line that maintained expression of type II cell markers of differentiation would be advantageous for the study of such functions as surfactant synthesis and secretion. Such a cell line would allow generation of a large number of homogeneous cells for study. The purpose of the current study was to induce markers of differentiated type II cells in a cultured cell line to facilitate studies of factors that control surfactant synthesis and secretion

  1. PPARα deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPARγ activation in the liver

    International Nuclear Information System (INIS)

    Oishi, Katsutaka; Uchida, Daisuke; Ohkura, Naoki; Horie, Shuichi

    2010-01-01

    Research highlights: → PPARα deficiency augments a ketogenic diet-induced circadian PAI-1 expression. → Hepatic expressions of PPARγ and PCG-1α are induced by a ketogenic diet. → PPARγ antagonist attenuates a ketogenic diet-induced PAI-1 expression. → Ketogenic diet advances the phase of circadian clock in a PPARα-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor α (PPARα) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPARα-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPARα-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPARα target genes such as Cyp4A10 and FGF21 was damped in PPARα-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPARα-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPARα activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPARγ and its coactivator PCG-1α were more effectively induced in PPARα-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPARγ antagonist, in both WT and PPARα-null mice. PPARγ activation seems to be involved in KD-induced hypofibrinolysis by augmenting PAI-1 gene expression

  2. Variation in Protein Intake Induces Variation in Spider Silk Expression

    Science.gov (United States)

    Blamires, Sean J.; Wu, Chun-Lin; Tso, I-Min

    2012-01-01

    Background It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved. Methodology/Principal Findings We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake. Conclusions Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics. PMID:22363691

  3. CREB activity in dopamine D1 receptor expressing neurons regulates cocaine-induced behavioral effects

    Science.gov (United States)

    Bilbao, Ainhoa; Rieker, Claus; Cannella, Nazzareno; Parlato, Rosanna; Golda, Slawomir; Piechota, Marcin; Korostynski, Michal; Engblom, David; Przewlocki, Ryszard; Schütz, Günther; Spanagel, Rainer; Parkitna, Jan R.

    2014-01-01

    It is suggested that striatal cAMP responsive element binding protein (CREB) regulates sensitivity to psychostimulants. To test the cell-specificity of this hypothesis we examined the effects of a dominant-negative CREB protein variant expressed in dopamine receptor D1 (D1R) neurons on cocaine-induced behaviors. A transgenic mouse strain was generated by pronuclear injection of a BAC-derived transgene harboring the A-CREB sequence under the control of the D1R gene promoter. Compared to wild-type, drug-naïve mutants showed moderate alterations in gene expression, especially a reduction in basal levels of activity-regulated transcripts such as Arc and Egr2. The behavioral responses to cocaine were elevated in mutant mice. Locomotor activity after acute treatment, psychomotor sensitization after intermittent drug injections and the conditioned locomotion after saline treatment were increased compared to wild-type littermates. Transgenic mice had significantly higher cocaine conditioned place preference, displayed normal extinction of the conditioned preference, but showed an augmented cocaine-seeking response following priming-induced reinstatement. This enhanced cocaine-seeking response was associated with increased levels of activity-regulated transcripts and prodynorphin. The primary reinforcing effects of cocaine were not altered in the mutant mice as they did not differ from wild-type in cocaine self-administration under a fixed ratio schedule at the training dose. Collectively, our data indicate that expression of a dominant-negative CREB variant exclusively in neurons expressing D1R is sufficient to recapitulate the previously reported behavioral phenotypes associated with virally expressed dominant-negative CREB. PMID:24966820

  4. Gene expression profiling in wild-type and metallothionein mutant fibroblast cell lines

    Directory of Open Access Journals (Sweden)

    ÁNGELA D ARMENDÁRIZ

    2006-01-01

    Full Text Available The role of metallothioneins (MT in copper homeostasis is of great interest, as it appears to be partially responsible for the regulation of intracellular copper levels during adaptation to extracellular excess of the metal. To further investigate a possible role of MTs in copper metabolism, a genomics approach was utilized to evaluate the role of MT on gene expression. Microarray analysis was used to examine the effects of copper overload in fibroblast cells from normal and MT I and II double knock-out mice (MT-/-. As a first step, we compared genes that were significantly upregulated in wild-type and MT-/- cells exposed to copper. Even though wild-type and mutant cells are undistinguishable in terms of their morphological features and rates of growth, our results show that MT-/- cells do not respond with induction of typical markers of cellular stress under copper excess conditions, as observed in the wild-type cell line, suggesting that the transcription initiation rate or the mRNA stability of stress genes is affected when there is an alteration in the copper store capacity. The functional classification of other up-regulated genes in both cell lines indicates that a large proportion (>80% belong to two major categories: 1 metabolism; and 2 cellular physiological processes, suggesting that at the transcriptional level copper overload induces the expression of genes associated with diverse molecular functions. These results open the possibility to understand how copper homeostasis is being coordinated with other metabolic pathways.

  5. Podoplanin expression in primary brain tumors induces platelet aggregation and increases risk of venous thromboembolism.

    Science.gov (United States)

    Riedl, Julia; Preusser, Matthias; Nazari, Pegah Mir Seyed; Posch, Florian; Panzer, Simon; Marosi, Christine; Birner, Peter; Thaler, Johannes; Brostjan, Christine; Lötsch, Daniela; Berger, Walter; Hainfellner, Johannes A; Pabinger, Ingrid; Ay, Cihan

    2017-03-30

    Venous thromboembolism (VTE) is common in patients with brain tumors, and underlying mechanisms are unclear. We hypothesized that podoplanin, a sialomucin-like glycoprotein, increases the risk of VTE in primary brain tumors via its ability to induce platelet aggregation. Immunohistochemical staining against podoplanin and intratumoral platelet aggregates was performed in brain tumor specimens of 213 patients (mostly high-grade gliomas [89%]) included in the Vienna Cancer and Thrombosis Study, a prospective observational cohort study of patients with newly diagnosed cancer or progressive disease aimed at identifying patients at risk of VTE. Platelet aggregation in response to primary human glioblastoma cells was investigated in vitro. During 2-year follow-up, 29 (13.6%) patients developed VTE. One-hundred fifty-one tumor specimens stained positive for podoplanin (33 high expression, 47 medium expression, 71 low expression). Patients with podoplanin-positive tumors had lower peripheral blood platelet counts ( P < .001) and higher D-dimer levels ( P < .001). Podoplanin staining intensity was associated with increasing levels of intravascular platelet aggregates in tumor specimens ( P < .001). High podoplanin expression was associated with an increased risk of VTE (hazard ratio for high vs no podoplanin expression: 5.71; 95% confidence interval, 1.52-21.26; P = 010), independent of age, sex, and tumor type. Podoplanin-positive primary glioblastoma cells induced aggregation of human platelets in vitro, which could be abrogated by an antipodoplanin antibody. In conclusion, high podoplanin expression in primary brain tumors induces platelet aggregation, correlates with hypercoagulability, and is associated with increased risk of VTE. Our data indicate novel insights into the pathogenesis of VTE in primary brain tumors. © 2017 by The American Society of Hematology.

  6. Targeting of macrophage galactose-type C-type lectin (MGL) induces DC signaling and activation

    DEFF Research Database (Denmark)

    Napoletano, Chiara; Zizzari, Ilaria G; Rughetti, Aurelia

    2012-01-01

    NAc or Tn)-carrying tumor-associated antigens to improve DC performance. MGL expressed by ex vivo-generated iDCs from healthy donors was engaged by a 60-mer MUC1(9Tn) -glycopeptide as a Tn-carrying tumor-associated antigen, and an anti-MGL antibody, as a specific MGL binder. We demonstrated that MGL......Dendritic cells (DCs) sense the microenvironment through several types of receptors recognizing pathogen-associated molecular patterns. In particular, C-type lectins, expressed by distinct subsets of DCs, recognize and internalize specific carbohydrate antigen in a Ca(2+) -dependent manner....... Targeting of these receptors is becoming an efficient strategy of delivering antigens in DC-based anticancer immunotherapy. Here we investigated the role of the macrophage galactose type C-lectin receptor (MGL), expressed by immature DCs (iDCs), as a molecular target for a-N-acetylgalactosamine (Gal...

  7. [Expression and activity determination of recombinant capsid protein VP2 gene of enterovirus type 71].

    Science.gov (United States)

    Huang, Xueyong; Liu, Guohua; Hu, Xiaoning; Du, Yanhua; Li, Xingle; Xu, Yuling; Chen, Haomin; Xu, Bianli

    2014-04-01

    To clone and express the recombinant capsid protein VP2 of enterovirus type 71 (EV71) and to identify the immune activity of expressed protein in order to build a basis for the investigation work of vaccine and diagnostic antigen. VP2 gene of EV71 was amplified by PCR, and then was cut by restriction enzyme and inserted into expression vector pMAL-c2X. The positive recombinants were transferred into E.coli TB1, the genetically engineered bacteria including pMAL-c2X-VP2 plasmids were induced by isopropyl thiogalactoside ( IPTG) , and the expression products were analyzed by SDS-PAGE and western blotting method. EV71 IgM antibody detection method by ELISA was set up, and the sensitivity and specificity of this method was assessed; 60 neutralizing antibody positive serum samples from hand foot and mouth disease (HFMD) patients were determined, of which 52 samples were positive and 8 samples were negative; a total of 88 acute phase serum samples of HFMD patients diagnosed in clinical were also detected. VP2 gene of 762 bp was obtained by PCR, the gene segment inserted into the recombinant vector was identified using restriction enzyme digestion. The recombinant vector could express a specific about 71 500 fusion protein in E.coli by SDS-PAGE. The purified recombinant protein of EV71-VP2 can react with the serum of HFMD patients to produce a specific band by western blotting. The sensitivity and specificity of ELISA was 87% and 83%, respectively. Of the 88 acute phase serum samples from children with HFMD, 48 samples (55%) were positive by the ELISA assay. VP2 gene of EV71 has been cloned and a prokaryotic high expression system for VP2 gene was successfully constructed in the present study. The recombination EV71-VP2 has well antigenicity, which could be useful for developing diagnose reagent or vaccine of EV71.

  8. Cell type-specific roles of Jak3 in IL-2-induced proliferative signal transduction

    International Nuclear Information System (INIS)

    Fujii, Hodaka

    2007-01-01

    Binding of interleukin-2 (IL-2) to its specific receptor induces activation of two members of Jak family protein tyrosine kinases, Jak1 and Jak3. An IL-2 receptor (IL-2R)-reconstituted NIH 3T3 fibroblast cell line proliferates in response to IL-2 only when hematopoietic lineage-specific Jak3 is ectopically expressed. However, the mechanism of Jak3-dependent proliferation in the fibroblast cell line is not known. Here, I showed that Jak3 expression is dispensable for IL-2-induced activation of Jak1 and Stat proteins and expression of nuclear proto-oncogenes in the IL-2R-reconstituted fibroblast cell line. Jak3 expression markedly enhanced these IL-2-induced signaling events. In contrast, Jak3 expression was essential for induction of cyclin genes involved in the G1-S transition. These data suggest a critical role of Jak3 in IL-2 signaling in the fibroblast cell line and may provide further insight into the cell type-specific mechanism of cytokine signaling

  9. Cell type-specific roles of Jak3 in IL-2-induced proliferative signal transduction

    Science.gov (United States)

    Fujii, Hodaka

    2007-01-01

    Binding of IL-2 to its specific receptor induces activation of two members of Jak family protein tyrosine kinases, Jak1 and Jak3. An IL-2R-reconstituted NIH 3T3 fibroblast cell line proliferates in response to IL-2 only when hematopoietic lineage-specific Jak3 is ectopically expressed. However, the mechanism of Jak3-dependent proliferation in the fibroblast cell line is not known. Here, I showed that Jak3 expression is dispensable for IL-2-induced activation of Jak1 and Stat proteins and expression of nuclear proto-oncogenes in the IL-2R-reconstituted fibroblast cell line. However, Jak3 expression markedly enhanced these IL-2-induced signaling events. In contrast, Jak3 expression was essential for induction of cyclin genes involved in the G1-S transition. These data suggest a critical role of Jak3 in IL-2 signaling in the fibroblast cell line and may provide further insight into the cell type-specific mechanism of cytokine signaling. PMID:17266928

  10. Impact of cell type and epitope tagging on heterologous expression of G protein-coupled receptor: a systematic study on angiotensin type II receptor.

    Directory of Open Access Journals (Sweden)

    Lili Jiang

    Full Text Available Despite heterologous expression of epitope-tagged GPCR is widely adopted for functional characterization, there is lacking of systematic analysis of the impact of expression host and epitope tag on GPCR expression. Angiotensin type II (AT2 receptor displays agonist-dependent and -independent activities, coupling to a spectrum of signaling molecules. However, consensus has not been reached on the subcellular distributions, signaling cascades and receptor-mediated actions. To examine the contributions of host cell and epitope tag on receptor expression and activity, epitope-tagged AT2 receptor variants were transiently or stably expressed in HEK293, CHO-K1 and PC12 cells. The epitope-tagged AT2 receptor variants were detected both on the cell membrane and in the perinuclear region. In transiently transfected HEK293 cells, Myc-AT2 existed predominantly as monomer. Additionally, a ladder of ubiquitinated AT2 receptor proteins was detected. By contrast, stably expressed epitope-tagged AT2 receptor variants existed as both monomer and high molecular weight complexes, and the latter was enriched in cell surface. Glycosylation promoted cell surface expression of Myc-AT2 but had no effect on AT2-GFP in HEK293 cells. In cells that stably expressed Myc-AT2, serum starvation induced apoptosis in CHO-K1 cells but not in HEK293 or PC12 cells. Instead, HEK293 and PC12 cells stably expressing Myc-AT2 exhibited partial cell cycle arrest with cells accumulating at G1 and S phases, respectively. Taken together, these results suggest that expression levels, subcellular distributions and ligand-independent constitutive activities of AT2 receptor were cell type-dependent while posttranslational processing of nascent AT2 receptor protein was modulated by epitope tag and mode of expression.

  11. Expression and Quorum Sensing Regulation of Type III Secretion System Genes of Vibrio harveyi during Infection of Gnotobiotic Brine Shrimp.

    Directory of Open Access Journals (Sweden)

    H A Darshanee Ruwandeepika

    Full Text Available Type III secretion systems enable pathogens to inject their virulence factors directly into the cytoplasm of the host cells. The type III secretion system of Vibrio harveyi, a major pathogen of aquatic organisms and a model species in quorum sensing studies, is repressed by the quorum sensing master regulator LuxR. In this study, we found that during infection of gnotobiotic brine shrimp larvae, the expression levels of three type III secretion operons in V. harveyi increased within the first 12h after challenge and decreased again thereafter. The in vivo expression levels were highest in a mutant with a quorum sensing system that is locked in low cell density configuration (minimal LuxR levels and lowest in a mutant with a quorum sensing system that is locked in the high cell density configuration (maximal LuxR levels, which is consistent with repression of type III secretion by LuxR. Remarkably, in vivo expression levels of the type III secretion system genes were much (> 1000 fold higher than the in vitro expression levels, indicating that (currently unknown host factors significantly induce the type III secretion system. Given the fact that type III secretion is energy-consuming, repression by the quorum sensing master regulators might be a mechanism to save energy under conditions where it does not provide an advantage to the cells.

  12. A BAC-based transgenic mouse specifically expresses an inducible Cre in the urothelium.

    Directory of Open Access Journals (Sweden)

    Tian Huai Shen

    Full Text Available Cre-loxp mediated conditional knockout strategy has played critical roles for revealing functions of many genes essential for development, as well as the causal relationships between gene mutations and diseases in the postnatal adult mice. One key factor of this strategy is the availability of mice with tissue- or cell type-specific Cre expression. However, the success of the traditional molecular cloning approach to generate mice with tissue specific Cre expression often depends on luck. Here we provide a better alternative by using bacterial artificial chromosome (BAC-based recombineering to insert iCreERT2 cDNA at the ATG start of the Upk2 gene. The BAC-based transgenic mice express the inducible Cre specifically in the urothelium as demonstrated by mRNA expression and staining for LacZ expression after crossing with a Rosa26 reporter mouse. Taking into consideration the size of the gene of interest and neighboring genes included in a BAC, this method should be widely applicable for generation of mice with tissue specific gene expression or deletions in a more specific manner than previously reported.

  13. Cell-type-specific roles for COX-2 in UVB-induced skin cancer

    Science.gov (United States)

    Herschman, Harvey

    2014-01-01

    In human tumors, and in mouse models, cyclooxygenase-2 (COX-2) levels are frequently correlated with tumor development/burden. In addition to intrinsic tumor cell expression, COX-2 is often present in fibroblasts, myofibroblasts and endothelial cells of the tumor microenvironment, and in infiltrating immune cells. Intrinsic cancer cell COX-2 expression is postulated as only one of many sources for prostanoids required for tumor promotion/progression. Although both COX-2 inhibition and global Cox-2 gene deletion ameliorate ultraviolet B (UVB)-induced SKH-1 mouse skin tumorigenesis, neither manipulation can elucidate the cell type(s) in which COX-2 expression is required for tumorigenesis; both eliminate COX-2 activity in all cells. To address this question, we created Cox-2 flox/flox mice, in which the Cox-2 gene can be eliminated in a cell-type-specific fashion by targeted Cre recombinase expression. Cox-2 deletion in skin epithelial cells of SKH-1 Cox-2 flox/flox;K14Cre + mice resulted, following UVB irradiation, in reduced skin hyperplasia and increased apoptosis. Targeted epithelial cell Cox-2 deletion also resulted in reduced tumor incidence, frequency, size and proliferation rate, altered tumor cell differentiation and reduced tumor vascularization. Moreover, Cox-2 flox/flox;K14Cre + papillomas did not progress to squamous cell carcinomas. In contrast, Cox-2 deletion in SKH-1 Cox-2 flox/flox; LysMCre + myeloid cells had no effect on UVB tumor induction. We conclude that (i) intrinsic epithelial COX-2 activity plays a major role in UVB-induced skin cancer, (ii) macrophage/myeloid COX-2 plays no role in UVB-induced skin cancer and (iii) either there may be another COX-2-dependent prostanoid source(s) that drives UVB skin tumor induction or there may exist a COX-2-independent pathway(s) to UVB-induced skin cancer. PMID:24469308

  14. The Arabidopsis histone chaperone FACT is required for stress-induced expression of anthocyanin biosynthetic genes.

    Science.gov (United States)

    Pfab, Alexander; Breindl, Matthias; Grasser, Klaus D

    2018-03-01

    The histone chaperone FACT is involved in the expression of genes encoding anthocyanin biosynthetic enzymes also upon induction by moderate high-light and therefore contributes to the stress-induced plant pigmentation. The histone chaperone FACT consists of the SSRP1 and SPT16 proteins and associates with transcribing RNAPII (RNAPII) along the transcribed region of genes. FACT can promote transcriptional elongation by destabilising nucleosomes in the path of RNA polymerase II, thereby facilitating efficient transcription of chromatin templates. Transcript profiling of Arabidopsis plants depleted in SSRP1 or SPT16 demonstrates that only a small subset of genes is differentially expressed relative to wild type. The majority of these genes is either up- or down-regulated in both the ssrp1 and spt16 plants. Among the down-regulated genes, those encoding enzymes of the biosynthetic pathway of the plant secondary metabolites termed anthocyanins (but not regulators of the pathway) are overrepresented. Upon exposure to moderate high-light stress several of these genes are up-regulated to a lesser extent in ssrp1/spt16 compared to wild type plants, and accordingly the mutant plants accumulate lower amounts of anthocyanin pigments. Moreover, the expression of SSRP1 and SPT16 is induced under these conditions. Therefore, our findings indicate that FACT is a novel factor required for the accumulation of anthocyanins in response to light-induction.

  15. Chemical memory reactions induced bursting dynamics in gene expression.

    Science.gov (United States)

    Tian, Tianhai

    2013-01-01

    Memory is a ubiquitous phenomenon in biological systems in which the present system state is not entirely determined by the current conditions but also depends on the time evolutionary path of the system. Specifically, many memorial phenomena are characterized by chemical memory reactions that may fire under particular system conditions. These conditional chemical reactions contradict to the extant stochastic approaches for modeling chemical kinetics and have increasingly posed significant challenges to mathematical modeling and computer simulation. To tackle the challenge, I proposed a novel theory consisting of the memory chemical master equations and memory stochastic simulation algorithm. A stochastic model for single-gene expression was proposed to illustrate the key function of memory reactions in inducing bursting dynamics of gene expression that has been observed in experiments recently. The importance of memory reactions has been further validated by the stochastic model of the p53-MDM2 core module. Simulations showed that memory reactions is a major mechanism for realizing both sustained oscillations of p53 protein numbers in single cells and damped oscillations over a population of cells. These successful applications of the memory modeling framework suggested that this innovative theory is an effective and powerful tool to study memory process and conditional chemical reactions in a wide range of complex biological systems.

  16. Casein gene expression in mouse mammary epithelial cell lines: Dependence upon extracellular matrix and cell type

    International Nuclear Information System (INIS)

    Medina, D.; Oborn, C.J.; Li, M.L.; Bissell, M.J.

    1987-01-01

    The COMMA-D mammary cell line exhibits mammary-specific functional differentiation under appropriate conditions in cell culture. The cytologically heterogeneous COMMA-D parental line and the clonal lines DB-1, TA-5, and FA-1 derived from the COMMA-D parent were examined for similar properties of functional differentiation. In monolayer cell culture, the cell lines DB-1, TA-5, FA-1, and MA-4 were examined for expression of mammary-specific and epithelial-specific proteins by an indirect immunofluorescence assay. The clonal cell lines were relatively homogeneous in their respective staining properties and seemed to represent three subpopulations found in the heterogeneous parental COMMA-D lines. None of the four clonal lines appeared to represent myoepithelial cells. The cell lines were examined for expression of β-casein mRNA in the presence or absence of prolactin. The inducibility of β-casein in the COMMA-D cell line was further enhanced by a reconstituted basement membrane preparation enriched in laminin, collagen IV, and proteoglycans. These results support the hypothesis that the functional response of inducible mammary cell populations is a result of interaction among hormones, multiple extracellular matrix components, and specific cell types

  17. Transcriptome analysis of trichothecene-induced gene expression in barley.

    Science.gov (United States)

    Boddu, Jayanand; Cho, Seungho; Muehlbauer, Gary J

    2007-11-01

    Fusarium head blight, caused primarily by Fusarium graminearum, is a major disease problem on barley (Hordeum vulgare L.). Trichothecene mycotoxins produced by the fungus during infection increase the aggressiveness of the fungus and promote infection in wheat (Triticum aestivum L.). Loss-of-function mutations in the TRI5 gene in F. graminearum result in the inability to synthesize trichothecenes and in reduced virulence on wheat. We examined the impact of pathogen-derived trichothecenes on virulence and the transcriptional differences in barley spikes infected with a trichothecene-producing wild-type strain and a loss-of-function tri5 trichothecene nonproducing mutant. Disease severity, fungal biomass, and floret necrosis and bleaching were reduced in spikes inoculated with the tri5 mutant strain compared with the wild-type strain, indicating that the inability to synthesize trichothecenes results in reduced virulence in barley. We detected 63 transcripts that were induced during trichothecene accumulation, including genes encoding putative trichothecene detoxification and transport proteins, ubiquitination-related proteins, programmed cell death-related proteins, transcription factors, and cytochrome P450s. We also detected 414 gene transcripts that were designated as basal defense response genes largely independent of trichothecene accumulation. Our results show that barley exhibits a specific response to trichothecene accumulation that can be separated from the basal defense response. We propose that barley responds to trichothecene accumulation by inducing at least two general responses. One response is the induction of genes encoding trichothecene detoxification and transport activities that may reduce the impact of trichothecenes. The other response is to induce genes encoding proteins associated with ubiquitination and cell death which may promote successful establishment of the disease.

  18. Epithelial Cell Gene Expression Induced by Intracellular Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Xianglu Li

    2009-01-01

    Full Text Available HEp-2 cell monolayers were cocultured with intracellular Staphylococcus aureus, and changes in gene expression were profiled using DNA microarrays. Intracellular S. aureus affected genes involved in cellular stress responses, signal transduction, inflammation, apoptosis, fibrosis, and cholesterol biosynthesis. Transcription of stress response and signal transduction-related genes including atf3, sgk, map2k1, map2k3, arhb, and arhe was increased. In addition, elevated transcription of proinflammatory genes was observed for tnfa, il1b, il6, il8, cxcl1, ccl20, cox2, and pai1. Genes involved in proapoptosis and fibrosis were also affected at transcriptional level by intracellular S. aureus. Notably, intracellular S. aureus induced strong transcriptional down-regulation of several cholesterol biosynthesis genes. These results suggest that epithelial cells respond to intracellular S. aureus by inducing genes affecting immunity and in repairing damage caused by the organism, and are consistent with the possibility that the organism exploits an intracellular environment to subvert host immunity and promote colonization.

  19. Follicular thyroglobulin induces cathepsin H expression and activity in thyrocytes

    International Nuclear Information System (INIS)

    Oda, Kenzaburo; Luo, Yuqian; Yoshihara, Aya; Ishido, Yuko; Sekihata, Kengo

    2017-01-01

    Thyroglobulin (Tg) stored in thyroid follicles exerts a potent negative-feedback effect on each step of pre-hormone biosynthesis, including Tg gene transcription and iodine uptake and organification, by suppressing the expression of specific transcription factors that regulate these steps. Pre-hormones are stored in the follicular colloid before being reabsorbed. Following lysosomal proteolysis of its precursor, thyroid hormone (TH) is released from thyroid follicles. Although the suppressive effects of follicular Tg on each step of pre-hormone biosynthesis have been extensively characterized, whether follicular Tg accumulation also affects hormone reabsorption, proteolysis, and secretion is unclear. In this study we explored whether follicular Tg can regulate the expression and function of the lysosomal endopeptidases cathepsins. We found that in the rat thyroid cell line FRTL-5 follicular Tg induced cathepsin H mRNA and protein expression, as well as cathepsin H enzyme activity. Double immunofluorescence staining showed that Tg endocytosis promoted cathepsin H translocalization into lysosomes where it co-localized with internalized Tg. These results suggest that cathepsin H is an active participant in lysosome-mediated pre-hormone degradation, and that follicular Tg stimulates mobilization of pre-hormones by activating cathepsin H-associated proteolysis pathways. - Highlights: • Follicular Tg increases cathepsin H mRNA and protein levels in rat thyroid cells. • Follicular Tg increases cathepsin H enzyme activity in rat thyroid cells. • After Tg stimulation cathepsin H co-localizes to lysosomes with follicular Tg. • Cathepsin H promotes hormone secretion by lysosome-mediated mechanisms.

  20. High Frequency Electromagnetic Field Induces Lipocalin 2 Expression in

    Directory of Open Access Journals (Sweden)

    Amaneh Mohammadi Roushandeh

    2010-06-01

    Full Text Available Objective(sNeutrophil gelatinase-associated lipocalin (NGAL/Lcn2, comprise a group of small extracellular proteins with a common β-sheet-dominated 3-dimensional structure. In the past, it was assumed that the predominant role of lipocalin was acting as transport proteins. Recently it has been found that oxidative stress induces Lcn2 expression. It has been also proved that electromagnetic field (EMF produces reactive oxygen species (ROS in different tissues. Expression of Lcn2 following exposure to electromagnetic field has been investigated in this study. Materials and MethodsBalb/c mice (8 weeks old were exposed to 3 mT, 50 HZ EMF for 2 months, 4 hr/day. Afterwards, the mice were sacrificed by cervical dislocation and livers were removed. The liver specimens were stained with Haematoxylin- Eosin (H&E and analyzed under an optical microscope. Total RNA was extracted from liver and reverse transcription was performed by SuperScript III reverse transcriptase with 1 µg of total RNA. Assessment of Lcn2 expression was performed by semiquantitative and real time- PCR.ResultsThe light microscopic studies revealed that the number of lymphocyte cells was increased compared to control and dilation of sinosoids was observed in the liver. Lcn2 was up-regulated in the mice exposed to EMF both in mRNA and protein levels.ConclusionTo the extent of our knowledge, this is the first report dealing with up-regulation of Lcn2 in liver after exposure to EMF. The up-regulation might be a compensatory response that involves cell defense pathways and protective effects against ROS. However, further and complementary studies are required in this regards.

  1. Prolactin, TNF alpha and nitric oxide expression in nitroso-N-methylurea-induced-mammary tumours

    Directory of Open Access Journals (Sweden)

    Vegh Irene

    2007-11-01

    Full Text Available Abstract Background The N-Nitrosomethylurea breast cancer model induced in rats is used for the study of carcinogenesis in mammary cancer, prostate, pancreas, etc. This model is very similar to human neoplastic disease. Methods The present experimental study was designed to assess whether metoclopramide administration has any effect on development of MNU-induced tumours, and evaluate the treatment of goserelin acetate on PRL, TNF alpha and NO expression. NMU was administered to female Wistar rats on 2 occasions (5 mg/100 g body w/rat. PRL and TNF alpha were performed by immune-assay. Nitric Oxide by semi automated-assay and ploidy analyses by flow cytometry. Results The administration of metoclopramide made the induction time shorter and increased the incidence and average of tumours per rat. Tumours development was inhibited by a goserelin chronic administration. The ploidy of adenocarcinoma was polyploid-aneuploid type (average S = 60%. It was higher basal PRL plasma levels in rats with NMU induced tumours than in basal controls without tumour (p Conclusion The increase of blood PRL levels in NMU-induced rats may be an indicator of a poor prognosis of mammary cancer evolution. The metoclopramide administration accelerates tumour growth. However goserelin administration achieves regression in tumour development associated to inhibition PRL, TNF alpha and NO expression.

  2. Reflection-type electromagnetically induced transparency analogue in terahertz metamaterials

    International Nuclear Information System (INIS)

    Ding Chun-Feng; Zhang Ya-Ting; Yao Jian-Quan; Xu De-Gang; Zhang Gui-Zhong; Sun Chong-Ling

    2014-01-01

    A reflection-type electromagnetically induced transparency (EIT) metamaterial is proposed, which is composed of a dielectric spacer sandwiched with metallic patterns and metallic plane. Experimental results of THz time domain spectrum (THz-TDS) exhibit a typical reflection of EIT at 0.865 THz, which are in excellent agreement with the full-wave simulations. A multi-reflection theory is adopted to analyze the physical mechanism of the reflection-type EIT, showing that the reflection-type EIT is a superposition of multiple reflection of the transmission EIT. Such a reflection-type EIT provides many applications based on the EIT effect, such as slow light devices and nonlinear elements. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  3. Gene Expression Programs in Response to Hypoxia: Cell Type Specificity and Prognostic Significance in Human Cancers.

    Directory of Open Access Journals (Sweden)

    2006-01-01

    Full Text Available BACKGROUND: Inadequate oxygen (hypoxia triggers a multifaceted cellular response that has important roles in normal physiology and in many human diseases. A transcription factor, hypoxia-inducible factor (HIF, plays a central role in the hypoxia response; its activity is regulated by the oxygen-dependent degradation of the HIF-1alpha protein. Despite the ubiquity and importance of hypoxia responses, little is known about the variation in the global transcriptional response to hypoxia among different cell types or how this variation might relate to tissue- and cell-specific diseases. METHODS AND FINDINGS: We analyzed the temporal changes in global transcript levels in response to hypoxia in primary renal proximal tubule epithelial cells, breast epithelial cells, smooth muscle cells, and endothelial cells with DNA microarrays. The extent of the transcriptional response to hypoxia was greatest in the renal tubule cells. This heightened response was associated with a uniquely high level of HIF-1alpha RNA in renal cells, and it could be diminished by reducing HIF-1alpha expression via RNA interference. A gene-expression signature of the hypoxia response, derived from our studies of cultured mammary and renal tubular epithelial cells, showed coordinated variation in several human cancers, and was a strong predictor of clinical outcomes in breast and ovarian cancers. In an analysis of a large, published gene-expression dataset from breast cancers, we found that the prognostic information in the hypoxia signature was virtually independent of that provided by the previously reported wound signature and more predictive of outcomes than any of the clinical parameters in current use. CONCLUSIONS: The transcriptional response to hypoxia varies among human cells. Some of this variation is traceable to variation in expression of the HIF1A gene. A gene-expression signature of the cellular response to hypoxia is associated with a significantly poorer prognosis

  4. A Recombinant Adenovirus Expressing Ovine Interferon Tau Prevents Influenza Virus-Induced Lethality in Mice.

    Science.gov (United States)

    Martín, V; Pascual, E; Avia, M; Rangel, G; de Molina, A; Alejo, A; Sevilla, N

    2016-01-06

    Ovine interferon tau (IFN-τ) is a unique type I interferon with low toxicity and a broad host range in vivo. We report the generation of a nonreplicative recombinant adenovirus expressing biologically active IFN-τ. Using the B6.A2G-Mx1 mouse model, we showed that single-dose intranasal administration of recombinant Ad5-IFN-τ can effectively prevent lethality and disease induced by highly virulent hv-PR8 influenza virus by activating the interferon response and preventing viral replication. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. Expression profiling feline peripheral blood monocytes identifies a transcriptional signature associated with type two diabetes mellitus.

    Science.gov (United States)

    O'Leary, Caroline A; Sedhom, Mamdouh; Reeve-Johnson, Mia; Mallyon, John; Irvine, Katharine M

    2017-04-01

    Diabetes mellitus is a common disease of cats and is similar to type 2 diabetes (T2D) in humans, especially with respect to the role of obesity-induced insulin resistance, glucose toxicity, decreased number of pancreatic β-cells and pancreatic amyloid deposition. Cats have thus been proposed as a valuable translational model of T2D. In humans, inflammation associated with adipose tissue is believed to be central to T2D development, and peripheral blood monocytes (PBM) are important in the inflammatory cascade which leads to insulin resistance and β-cell failure. PBM may thus provide a useful window to study the pathogenesis of diabetes mellitus in cats, however feline monocytes are poorly characterised. In this study, we used the Affymetrix Feline 1.0ST array to profile peripheral blood monocytes from 3 domestic cats with T2D and 3 cats with normal glucose tolerance. Feline monocytes were enriched for genes expressed in human monocytes, and, despite heterogeneous gene expression, we identified a T2D-associated expression signature associated with cell cycle perturbations, DNA repair and the unfolded protein response, oxidative phosphorylation and inflammatory responses. Our data provide novel insights into the feline monocyte transcriptome, and support the hypothesis that inflammatory monocytes contribute to T2D pathogenesis in cats as well as in humans. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Expression of Ambra1 in mouse brain during physiological and Alzheimer type aging.

    Science.gov (United States)

    Sepe, Sara; Nardacci, Roberta; Fanelli, Francesca; Rosso, Pamela; Bernardi, Cinzia; Cecconi, Francesco; Mastroberardino, Pier G; Piacentini, Mauro; Moreno, Sandra

    2014-01-01

    Autophagy is a major protein degradation pathway, essential for stress-induced and constitutive protein turnover. In nervous tissue, autophagy is constitutively active and crucial to neuronal survival. The efficiency of the autophagic pathway reportedly undergoes age-related decline, and autophagy defects are observed in neurodegenerative diseases. Since Ambra1 plays a fundamental role in regulating the autophagic process in developing nervous tissue, we investigated the expression of this protein in mature mouse brain and during physiological and Alzheimer type aging. The present study accomplished the first complete map of Ambra1 protein distribution in the various brain areas, and highlights differential expression in neuronal/glial cell populations. Differences in Ambra1 content are possibly related to specific neuronal features and properties, particularly concerning susceptibility to neurodegeneration. Furthermore, the analysis of Ambra1 expression in physiological and pathological brain aging supports important, though conflicting, functions of autophagy in neurodegenerative processes. Thus, novel therapeutic approaches, based on autophagy modulation, should also take into account the age-dependent roles of this mechanism in establishing, promoting, or counteracting neurodegeneration. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Increased expression of vascular endothelin type B and angiotensin type 1 receptors in patients with ischemic heart disease

    DEFF Research Database (Denmark)

    Dimitrijevic, Ivan; Edvinsson, Lars; Chen, Qingwen

    2009-01-01

    expression in subcutaneous arteries from patients with different degrees of ischemic heart disease. METHODS: Subcutaneous arteries were obtained, by biopsy from the abdomen, from patients undergoing coronary artery bypass graft (CABG) surgery because of ischemic heart disease (n = 15), patients with angina...... pectoris without established myocardial infarction (n = 15) and matched cardiovascular healthy controls (n = 15). Endothelin type A (ETA) and type B (ETB), and angiotensin type 1 (AT1) and type 2 (AT2) receptors expression and function were examined using immunohistochemistry, Western blot and in vitro...

  8. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    Energy Technology Data Exchange (ETDEWEB)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Roskams, Tania [Department of Morphology and Molecular Pathology, University of Leuven (Belgium); Oben, Jude A., E-mail: j.oben@ucl.ac.uk [University College London, Centre for Hepatology, Royal Free Hospital, London NW3 2PF (United Kingdom); Department of Gastroenterology and Hepatology, Guy' s and St Thomas' Hospital, London SE1 7EH (United Kingdom)

    2012-01-06

    Highlights: Black-Right-Pointing-Pointer Cigarette smoke may induce liver fibrosis via nicotine receptors. Black-Right-Pointing-Pointer Nicotine induces proliferation of hepatic stellate cells (HSCs). Black-Right-Pointing-Pointer Nicotine activates hepatic fibrogenic pathways. Black-Right-Pointing-Pointer Nicotine receptor antagonists attenuate HSC proliferation. Black-Right-Pointing-Pointer Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine - which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed - RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-{alpha}2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-{beta}1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type ({alpha}1, {beta}1, delta and epsilon) and neuronal type ({alpha}3, {alpha}6, {alpha}7, {beta}2 and {beta}4) nAChR subunits at the mRNA level. Among these subunits, {alpha}3, {alpha}7, {beta}1 and {epsilon} were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-{alpha}2 and TGF-{beta}1 mRNA expression were significantly upregulated by nicotine and inhibited by

  9. Nicotine induces fibrogenic changes in human liver via nicotinic acetylcholine receptors expressed on hepatic stellate cells

    International Nuclear Information System (INIS)

    Soeda, Junpei; Morgan, Maelle; McKee, Chad; Mouralidarane, Angelina; Lin, ChingI; Roskams, Tania; Oben, Jude A.

    2012-01-01

    Highlights: ► Cigarette smoke may induce liver fibrosis via nicotine receptors. ► Nicotine induces proliferation of hepatic stellate cells (HSCs). ► Nicotine activates hepatic fibrogenic pathways. ► Nicotine receptor antagonists attenuate HSC proliferation. ► Nicotinic receptor antagonists may have utility as novel anti-fibrotic agents. -- Abstract: Background and aims: Cigarette smoke (CS) may cause liver fibrosis but possible involved mechanisms are unclear. Among the many chemicals in CS is nicotine – which affects cells through nicotinic acetylcholine receptors (nAChR). We studied the effects of nicotine, and involved pathways, on human primary hepatic stellate cells (hHSCs), the principal fibrogenic cells in the liver. We then determined possible disease relevance by assaying nAChR in liver samples from human non-alcoholic steatohepatitis (NASH). Methods: hHSC were isolated from healthy human livers and nAChR expression analyzed – RT-PCR and Western blotting. Nicotine induction of hHSC proliferation, upregulation of collagen1-α2 and the pro-fibrogenic cytokine transforming growth factor beta 1 (TGF-β1) was determined along with involved intracellular signaling pathways. nAChR mRNA expression was finally analyzed in whole liver biopsies obtained from patients diagnosed with non-alcoholic steatohepatitis (NASH). Results: hHSCs express muscle type (α1, β1, delta and epsilon) and neuronal type (α3, α6, α7, β2 and β4) nAChR subunits at the mRNA level. Among these subunits, α3, α7, β1 and ε were predominantly expressed as confirmed by Western blotting. Nicotine induced hHSC proliferation was attenuated by mecamylamine (p < 0.05). Additionally, collagen1-α2 and TGF-β1 mRNA expression were significantly upregulated by nicotine and inhibited by mecamylamine. α1 and α3-nAChR mRNA expression was significantly upregulated in NASH fibrosis compared to normal livers. Conclusion: Nicotine at levels in smokers’ blood is pro-fibrogenic, through

  10. Design of a Type-1 Diabetes Vaccine Candidate Using Edible Plants Expressing a Major Autoantigen

    Directory of Open Access Journals (Sweden)

    Edoardo Bertini

    2018-05-01

    Full Text Available Type-1 diabetes (T1D is a metabolic disease involving the autoimmune destruction of insulin-producing pancreatic beta cells. It is often diagnosed by the detection of autoantibodies, typically those recognizing insulin itself or the 65-kDa isoform of glutamic acid decarboxylase (GAD65. Oral insulin can be used to induce systemic immunological tolerance and thus prevent or delay the onset of T1D, suggesting that combination treatments with other autoantigens such as GAD65 could be even more successful. GAD65 has induced oral tolerance and prevented T1D in preclinical studies but it is difficult to produce in sufficient quantities for clinical testing. Here we combined edible plant systems, namely spinach (Spinacia oleracea cv Industra and red beet (Beta vulgaris cv Moulin Rouge, with the magnICON® expression system to develop a safe, cost-effective and environmentally sustainable platform for the large-scale production of GAD65. The superior red beet platform was extensively characterized in terms of recombinant protein yields and bioequivalence to wild-type plants, and the product was tested for its ability to resist simulated gastric digestion. Our results indicate that red beet plants are suitable for the production of a candidate oral vaccine based on GAD65 for the future preclinical and clinical testing of T1D immunotherapy approaches.

  11. Establishment of an inducing medium for type III effector secretion in Xanthomonas campestris pv. campestris

    Directory of Open Access Journals (Sweden)

    Guo-Feng Jiang

    2013-09-01

    Full Text Available It is well known that the type III secretion system (T3SS and type III (T3 effectors are essential for the pathogenicity of most bacterial phytopathogens and that the expression of T3SS and T3 effectors is suppressed in rich media but induced in minimal media and plants. To facilitate in-depth studies on T3SS and T3 effectors, it is crucial to establish a medium for T3 effector expression and secretion. Xanthomonas campestris pv. campestris (Xcc is a model bacterium for studying plant-pathogen interactions. To date no medium for Xcc T3 effector secretion has been defined. Here, we compared four minimal media (MME, MMX, XVM2, and XOM2 which are reported for T3 expression induction in Xanthomonas spp. and found that MME is most efficient for expression and secretion of Xcc T3 effectors. By optimization of carbon and nitrogen sources and pH value based on MME, we established XCM1 medium, which is about 3 times stronger than MME for Xcc T3 effectors secretion. We further optimized the concentration of phosphate, calcium, and magnesium in XCM1 and found that XCM1 with a lower concentration of magnesium (renamed as XCM2 is about 10 times as efficient as XCM1 (meanwhile, about 30 times stronger than MME. Thus, we established an inducing medium XCM2 which is preferred for T3 effector secretion in Xcc.

  12. Virus-Induced Type I Interferon Deteriorates Control of Systemic Pseudomonas Aeruginosa Infection

    Directory of Open Access Journals (Sweden)

    Katja Merches

    2015-07-01

    Full Text Available Background: Type I interferon (IFN-I predisposes to bacterial superinfections, an important problem during viral infection or treatment with interferon-alpha (IFN-α. IFN-I-induced neutropenia is one reason for the impaired bacterial control; however there is evidence that more frequent bacterial infections during IFN-α-treatment occur independently of neutropenia. Methods: We analyzed in a mouse model, whether Pseudomonas aeruginosa control is influenced by co-infection with the lymphocytic choriomeningitis virus (LCMV. Bacterial titers, numbers of neutrophils and the gene-expression of liver-lysozyme-2 were determined during a 24 hours systemic infection with P. aeruginosa in wild-type and Ifnar-/- mice under the influence of LCMV or poly(I:C. Results: Virus-induced IFN-I impaired the control of Pseudomonas aeruginosa. This was associated with neutropenia and loss of lysozyme-2-expression in the liver, which had captured P. aeruginosa. A lower release of IFN-I by poly(I:C-injection also impaired the bacterial control in the liver and reduced the expression of liver-lysozyme-2. Low concentration of IFN-I after infection with a virulent strain of P. aeruginosa alone impaired the bacterial control and reduced lysozyme-2-expression in the liver as well. Conclusion: We found that during systemic infection with P. aeruginosa Kupffer cells quickly controlled the bacteria in cooperation with neutrophils. Upon LCMV-infection this cooperation was disturbed.

  13. Resveratrol reverses morphine-induced neuroinflammation in morphine-tolerant rats by reversal HDAC1 expression

    Directory of Open Access Journals (Sweden)

    Ru-Yin Tsai

    2016-06-01

    Conclusion: Resveratrol restores the antinociceptive effect of morphine by reversing morphine infusion-induced spinal cord neuroinflammation and increase in TNFR1 expression. The reversal of the morphine-induced increase in TNFR1 expression by resveratrol is partially due to reversal of the morphine infusion-induced increase in HDAC1 expression. Resveratrol pretreatment can be used as an adjuvant in clinical pain management for patients who need long-term morphine treatment or with neuropathic pain.

  14. Oncogenic tyrosine kinase NPM-ALK induces expression of the growth-promoting receptor ICOS

    DEFF Research Database (Denmark)

    Zhang, Qian; Wang, HongYi; Kantekure, Kanchan

    2011-01-01

    Here we report that T-cell lymphoma cells carrying the NPM-ALK fusion protein (ALK(+) TCL) frequently express the cell-stimulatory receptor ICOS. ICOS expression in ALK(+) TCL is moderate and strictly dependent on the expression and enzymatic activity of NPM-ALK. NPM-ALK induces ICOS expression v...

  15. FORMALDEHYDE-INDUCED GENE EXPRESSION IN F344 RAT NASAL RESPIRATORY EPITHELIUM.

    Science.gov (United States)

    Formaldehyde-induced gene expression in F344 rat nasal respiratory epithelium ABSTRACTFormaldehyde, an occupational and environmental toxicant used extensively in the manufacturing of many household and personal use products, is known to induce squamous cell carci...

  16. Radiation-induced pulmonary gene expression changes are attenuated by the CTGF antibody Pamrevlumab.

    Science.gov (United States)

    Sternlicht, Mark D; Wirkner, Ute; Bickelhaupt, Sebastian; Lopez Perez, Ramon; Tietz, Alexandra; Lipson, Kenneth E; Seeley, Todd W; Huber, Peter E

    2018-01-18

    Fibrosis is a delayed side effect of radiation therapy (RT). Connective tissue growth factor (CTGF) promotes the development of fibrosis in multiple settings, including pulmonary radiation injury. To better understand the cellular interactions involved in RT-induced lung injury and the role of CTGF in these responses, microarray expression profiling was performed on lungs of irradiated and non-irradiated mice, including mice treated with the anti-CTGF antibody pamrevlumab (FG-3019). Between group comparisons (Welch's t-tests) and principal components analyses were performed in Genespring. At the mRNA level, the ability of pamrevlumab to prolong survival and ameliorate RT-induced radiologic, histologic and functional lung deficits was correlated with the reversal of a clear enrichment in mast cell, macrophage, dendritic cell and mesenchymal gene signatures. Cytokine, growth factor and matrix remodeling genes that are likely to contribute to RT pneumonitis and fibrosis were elevated by RT and attenuated by pamrevlumab, and likely contribute to the cross-talk between enriched cell-types in injured lung. CTGF inhibition had a normalizing effect on select cell-types, including immune cells not typically regarded as being regulated by CTGF. These results suggest that interactions between RT-recruited cell-types are critical to maintaining the injured state; that CTGF plays a key role in this process; and that pamrevlumab can ameliorate RT-induced lung injury in mice and may provide therapeutic benefit in other immune and fibrotic disorders.

  17. Herbivory-induced glucose transporter gene expression in the brown planthopper, Nilaparvata lugens.

    Science.gov (United States)

    Kikuta, Shingo; Nakamura, Yuki; Hattori, Makoto; Sato, Ryoichi; Kikawada, Takahiro; Noda, Hiroaki

    2015-09-01

    Nilaparvata lugens, the brown planthopper (BPH) feeds on rice phloem sap, containing high amounts of sucrose as a carbon source. Nutrients such as sugars in the digestive tract are incorporated into the body cavity via transporters with substrate selectivity. Eighteen sugar transporter genes of BPH (Nlst) were reported and three transporters have been functionally characterized. However, individual characteristics of NlST members associated with sugar transport remain poorly understood. Comparative gene expression analyses using oligo-microarray and quantitative RT-PCR revealed that the sugar transporter gene Nlst16 was markedly up-regulated during BPH feeding. Expression of Nlst16 was induced 2 h after BPH feeding on rice plants. Nlst16, mainly expressed in the midgut, appears to be involved in carbohydrate incorporation from the gut cavity into the hemolymph. Nlst1 (NlHT1), the most highly expressed sugar transporter gene in the midgut was not up-regulated during BPH feeding. The biochemical function of NlST16 was shown as facilitative glucose transport along gradients. Glucose uptake activity by NlST16 was higher than that of NlST1 in the Xenopus oocyte expression system. At least two NlST members are responsible for glucose uptake in the BPH midgut, suggesting that the midgut of BPH is equipped with various types of transporters having diversified manner for sugar uptake. Copyright © 2015 Elsevier Ltd. All rights reserved.

  18. Stat3 induces oncogenic Skp2 expression in human cervical carcinoma cells

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Hanhui [Shanghai Medical College of Fudan University, Shanghai 200032 (China); Zhao, Wenrong [Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai 200011 (China); Yang, Dan, E-mail: yangdandr@gmail.com [Department of Gynecology, Shanghai First Maternity and Infant Hospital, Tongji University, Shanghai 200040 (China)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Upregulation of Skp2 by IL-6 or Stat3 activation. Black-Right-Pointing-Pointer Stat3 activates Skp2 expression through bound to its promoter region. Black-Right-Pointing-Pointer Stat3 activates Skp2 expression through recruitment of P300. Black-Right-Pointing-Pointer Stat3 activation decreases the P27 stability. -- Abstract: Dysregulated Skp2 function promotes cell proliferation, which is consistent with observations of Skp2 over-expression in many types of human cancers, including cervical carcinoma (CC). However, the molecular mechanisms underlying elevated Skp2 expression have not been fully explored. Interleukin-6 (IL-6) induced Stat3 activation is viewed as crucial for multiple tumor growth and metastasis. Here, we demonstrate that Skp2 is a direct transcriptional target of Stat3 in the human cervical carcinoma cells. Our data show that IL-6 administration or transfection of a constitutively activated Stat3 in HeLa cells activates Skp2 mRNA transcription. Using luciferase reporter and ChIP assays, we show that Stat3 binds to the promoter region of Skp2 and promotes its activity through recruiting P300. As a result of the increase of Skp2 expression, endogenous p27 protein levels are markedly decreased. Thus, our results suggest a previously unknown Stat3-Skp2 molecular network controlling cervical carcinoma development.

  19. Analysis of tanshinone IIA induced cellular apoptosis in leukemia cells by genome-wide expression profiling

    Directory of Open Access Journals (Sweden)

    Liu Chang

    2012-01-01

    Full Text Available Abstract Background Tanshinone IIA (Tan IIA is a diterpene quinone extracted from the root of Salvia miltiorrhiza, a Chinese traditional herb. Although previous studies have reported the anti-tumor effects of Tan IIA on various human cancer cells, the underlying mechanisms are not clear. The current study was undertaken to investigate the molecular mechanisms of Tan IIA's apoptotic effects on leukemia cells in vitro. Methods The cytotoxicity of Tan IIA on different types of leukemia cell lines was evaluated by the 3-[4,5-dimethylthiazol-2,5]-diphenyl tetrazolium bromide (MTT assay on cells treated without or with Tan IIA at different concentrations for different time periods. Cellular apoptosis progression with and without Tan IIA treatment was analyzed by Annexin V and Caspase 3 assays. Gene expression profiling was used to identify the genes regulated after Tan IIA treatment and those differentially expressed among the five cell lines. Confirmation of these expression regulations was carried out using real-time quantitative PCR and ELISA. The antagonizing effect of a PXR inhibitor L-SFN on Tan IIA treatment was tested using Colony Forming Unit Assay. Results Our results revealed that Tan IIA had different cytotoxic activities on five types of leukemia cells, with the highest toxicity on U-937 cells. Tan IIA inhibited the growth of U-937 cells in a time- and dose-dependent manner. Annexin V and Caspase-3 assays showed that Tan IIA induced apoptosis in U-937 cells. Using gene expression profiling, 366 genes were found to be significantly regulated after Tan IIA treatment and differentially expressed among the five cell lines. Among these genes, CCL2 was highly expressed in untreated U-937 cells and down-regulated significantly after Tan IIA treatment in a dose-dependent manner. RT-qPCR analyses validated the expression regulation of 80% of genes. Addition of L- sulforaphane (L-SFN, an inhibitor of Pregnane × receptor (PXR significantly

  20. Involvement of mitogen-activated protein kinases and NFκB in LPS-induced CD40 expression on human monocytic cells

    International Nuclear Information System (INIS)

    Wu Weidong; Alexis, Neil E.; Chen Xian; Bromberg, Philip A.; Peden, David B.

    2008-01-01

    CD40 is a costimulatory molecule linking innate and adaptive immune responses to bacterial stimuli, as well as a critical regulator of functions of other costimulatory molecules. The mechanisms regulating lipopolysaccharide (LPS)-induced CD40 expression have not been adequately characterized in human monocytic cells. In this study we used a human monocytic cell line, THP-1, to investigate the possible mechanisms of CD40 expression following LPS exposure. Exposure to LPS resulted in a dose- and time-dependent increase in CD40 expression. Further studies using immunoblotting and pharmacological inhibitors revealed that mitogen-activated protein kinases (MAPKs) and NFκB were activated by LPS exposure and involved in LPS-induced CD40 expression. Activation of MAPKs was not responsible for LPS-induced NFκB activation. TLR4 was expressed on THP-1 cells and pretreatment of cells with a Toll-like receptor 4 (TLR4) neutralizing antibody (HTA125) significantly blunted LPS-induced MAPK and NFκB activation and ensuing CD40 expression. Additional studies with murine macrophages expressing wild type and mutated TLR4 showed that TLR4 was implicated in LPS-induced ERK and NFκB activation, and CD40 expression. Moreover, blockage of MAPK and NFκB activation inhibited LPS-induced TLR4 expression. In summary, LPS-induced CD40 expression in monocytic cells involves MAPKs and NFκB

  1. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    Science.gov (United States)

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. 16 CFR 500.16 - Measurement of container type commodities, how expressed.

    Science.gov (United States)

    2010-01-01

    ... commodities shall be expressed as follows: (1) For bag type commodities, in terms of count followed by linear... a dimension of 2 feet or more will be expressed in feet with any remainder in terms of inches or...) When the unit bag is gussetted, the dimensions will be expressed as width, depth and length in terms of...

  3. DMPD: Signalling pathways mediating type I interferon gene expression. [Dynamic Macrophage Pathway CSML Database

    Lifescience Database Archive (English)

    Full Text Available 17904888 Signalling pathways mediating type I interferon gene expression. Edwards M...hways mediating type I interferon gene expression. PubmedID 17904888 Title Signalling pathways...R, Slater L, Johnston SL. Microbes Infect. 2007 Sep;9(11):1245-51. Epub 2007 Jul 1. (.png) (.svg) (.html) (.csml) Show Signalling pat

  4. Expression of synaptogyrin-1 in T1R2-expressing type II taste cells and type III taste cells of rat circumvallate taste buds.

    Science.gov (United States)

    Kotani, Takeshi; Toyono, Takashi; Seta, Yuji; Kitou, Ayae; Kataoka, Shinji; Toyoshima, Kuniaki

    2013-09-01

    Synaptogyrins are conserved components of the exocytic apparatus and function as regulators of Ca(2+)-dependent exocytosis. The synaptogyrin family comprises three isoforms: two neuronal (synaptogyrin-1 and -3) and one ubiquitous (synaptogyrin-2) form. Although the expression patterns of the exocytic proteins synaptotagmin-1, SNAP-25, synaptobrevin-2 and synaptophysin have been elucidated in taste buds, the function and expression pattern of synaptogyrin-1 in rat gustatory tissues have not been determined. Therefore, we examined the expression patterns of synaptogyrin-1 and several cell-specific markers of type II and III cells in rat gustatory tissues. Reverse transcription/polymerase chain reaction assays and immunoblot analysis revealed the expression of synaptogyrin-1 mRNA and its protein in circumvallate papillae. In fungiform, foliate and circumvallate papillae, the antibody against synaptogyrin-1 immunolabeled a subset of taste bud cells and intra- and subgemmal nerve processes. Double-labeling experiments revealed the expression of synaptogyrin-1 in most taste cells immunoreactive for aromatic L-amino acid decarboxylase and the neural cell adhesion molecule. A subset of synaptogyrin-1-immunoreactive taste cells also expressed phospholipase Cβ2, gustducin, or sweet taste receptor (T1R2). In addition, most synaptogyrin-1-immunoreactive taste cells expressed synaptobrevin-2. These results suggest that synaptogyrin-1 plays a regulatory role in transmission at the synapses of type III cells and is involved in exocytic function with synaptobrevin-2 in a subset of type II cells in rat taste buds.

  5. [Rhein promotes the expression of SIRT1 in kidney tissues of type 2 diabetic rat].

    Science.gov (United States)

    Chen, Weidong; Chang, Baochao; Zhang, Yan; Yang, Ping; Liu, Lei

    2015-05-01

    To observe the effect of rhein on the expression of SIRT1(Sirtuin 1) in kidney of diabetic rats, and to explore the role of rhein in protecting rat kidney against diabetic nephropathy and possible mechanism. The type 2 diabetic rats were induced by high-glucose and high-fat diet combined with streptozotocin (35 mg/kg body mass). Seventy-five eight-week-old male SD rats were randomly divided into 6 groups: normal group, diabetic group, low-, medium- and high-dose (50, 100, 150 mg/kg) rhein treatment groups and 10 mg/kg pioglitazone treatment group. The rats were given corresponding substances intragastrically once a day. At the end of the 16th week, the fasting plasma glucose (FPG), fasting insulin (FINS), triglycerides (TG), total cholesterol (TC), serum creatinine (Scr) and 24 hours urine protein (24 h U-PRO) were determined. The renal hypertrophy index (KM/BM), insulin resistance index (HOMA-IR) were calculated. The pathological changes in renal tissues were examined by PAS staining under a light microscopy. The mean glomerular area (MGA) and mean glomerular volume (MGV) were measured by pathological image analysis system. Western blotting and real-time quantitative PCR were used to determine the expression of SIRT1 in renal tissues at protein and mRNA levels, respectively. The expression of SIRT1 was down-regulated in the kidney of diabetic rats. The levels of FPG, FINS, HOMA-IR, TG, TC, Scr, 24 h U-PRO, KM/BM, MGA and MGV significantly decreased and the histopathology of renal tissues were significantly improved in all treatment groups compared with diabetic group. The expression of SIRT1 mRNA and protein markedly increased in rhein treatment groups and pioglitazone treatment group compared with diabetic group. The indicators in high-dose rhein treatment group were improved more significantly than those in the other groups. Correlation analysis showed that the expression of SIRT1 was negatively correlated with 24 h U-PRO and MGV. The expression of SIRT1 was

  6. Carbon monoxide induced PPARγ SUMOylation and UCP2 block inflammatory gene expression in macrophages.

    Directory of Open Access Journals (Sweden)

    Arvand Haschemi

    Full Text Available Carbon monoxide (CO dampens pro-inflammatory responses in a peroxisome proliferator-activated receptor-γ (PPARγ and p38 mitogen-activated protein kinase (MAPK dependent manner. Previously, we demonstrated that CO inhibits lipopolysaccharide (LPS-induced expression of the proinflammatory early growth response-1 (Egr-1 transcription factor in macrophages via activation of PPARγ. Here, we further characterize the molecular mechanisms by which CO modulates the activity of PPARγ and Egr-1 repression. We demonstrate that CO enhances SUMOylation of PPARγ which we find was attributed to mitochondrial ROS generation. Ectopic expression of a SUMOylation-defective PPARγ-K365R mutant partially abolished CO-mediated suppression of LPS-induced Egr-1 promoter activity. Expression of a PPARγ-K77R mutant did not impair the effect of CO. In addition to PPARγ SUMOylation, CO-activated p38 MAPK was responsible for Egr-1 repression. Blocking both CO-induced PPARγ SUMOylation and p38 activation, completely reversed the effects of CO on inflammatory gene expression. In primary macrophages isolated form C57/BL6 male mice, we identify mitochondrial ROS formation by CO as the upstream trigger for the observed effects on Egr-1 in part through uncoupling protein 2 (UCP2. Macrophages derived from bone marrow isolated from Ucp2 gene Knock-Out C57/BL6 mice (Ucp2(-/-, produced significantly less ROS with CO exposure versus wild-type macrophages. Moreover, absence of UCP2 resulted in a complete loss of CO mediated Egr-1 repression. Collectively, these results indentify p38 activation, PPARγ-SUMOylation and ROS formation via UCP2 as a cooperative system by which CO impacts the inflammatory response.

  7. Peroxisome proliferator-activated receptor α agonist-induced down-regulation of hepatic glucocorticoid receptor expression in SD rats

    International Nuclear Information System (INIS)

    Chen Xiang; Li Ming; Sun Weiping; Bi Yan; Cai Mengyin; Liang Hua; Yu Qiuqiong; He Xiaoying; Weng Jianping

    2008-01-01

    It was reported that glucocorticoid production was inhibited by fenofibrate through suppression of type-1 11β-hydroxysteroid dehydrogenase gene expression in liver. The inhibition might be a negative-feedback regulation of glucocorticoid receptor (GR) activity by peroxisome proliferator-activated receptor alpha (PPARα), which is quickly induced by glucocorticoid in the liver. However, it is not clear if GR expression is changed by fenofibrate-induced PPARα activation. In this study, we tested this possibility in the liver of Sprague-Dawley rats. GR expression was reduced by fenofibrate in a time- and does-dependent manner. The inhibition was observed in liver, but not in fat and muscle. The corticosterone level in the blood was increased significantly by fenofibrate. These effects of fenofibrate were abolished by PPARα inhibitor MK886, suggesting that fenofibrate activated through PPARα. In conclusion, inhibition of GR expression may represent a new molecular mechanism for the negative feedback regulation of GR activity by PPARα

  8. Gene expression and hormone autonomy in radiation-induced tumors of Arabidopsis thaliana

    International Nuclear Information System (INIS)

    Persinger, S.M.; Town, C.D.

    1989-01-01

    In order to study the molecular genetics of factor controlling plant cell growth, we have isolated a group of radiation-induced tumors from Arabidopsis thaliana. Tumors appeared on plants derived from 60 Co gamma-irradiated seed or seedlings, and are capable of hormone-autonomous growth in culture. We have used vertebrate oncogene probes to explore the hypothesis that the tumors arose by the radiation-induced activation of growth-regulating plant oncogenes. One probe, int-2, was used to isolate cDNA clones representing an mRNA differentially expressed between tumors and hormone-dependent callus tissue. The genomic organization and function of this and other differentially expressed Arabidopsis sequences are being further characterized. A second area of study concerns the hormonal status of individual tumors. Tumor tissue varies in color, texture, and degree of differentiation: while some tumors appear undifferentiated, one consistently produces roots, and others occasionally develop shoots or leaflets. The tumors have characteristic growth rates on hormone-free medium, and growth in response to exogenous hormones differs among the tumors themselves and from wild-type. Characterization of the relationships between hormonal status, morphogenesis, and gene expression should yield valuable insights into the mechanisms regulating plant growth and development

  9. Glucocorticoid-induced tumor necrosis factor receptor expression in patients with cervical human papillomavirus infection

    Directory of Open Access Journals (Sweden)

    Cacilda Tezelli Junqueira Padovani

    2013-06-01

    Full Text Available Introduction The progression of human papillomavirus (HPV infection in the anogenital tract has been associated with the involvement of cells with regulatory properties. Evidence has shown that glucocorticoid-induced tumor necrosis factor receptor (GITR is an important surface molecule for the characterization of these cells and proposes that GITR ligand may constitute a rational treatment for many cancer types. We aimed to detect the presence of GITR and CD25 in cervical stroma cells with and without pathological changes or HPV infection to better understand the immune response in the infected tissue microenvironment. Methods We subjected 49 paraffin-embedded cervical tissue samples to HPV DNA detection and histopathological analysis, and subsequently immunohistochemistry to detect GITR and CD25 in lymphocytes. Results We observed that 76.9% of all samples with high GITR expression were HPV-positive regardless of histopathological findings. High GITR expression (77.8% was predominant in samples with ≥1,000 RLU/PCB. Of the HPV-positive samples negative for intraepithelial lesion and malignancy, 62.5% had high GITR expression. High GITR expression was observed in both carcinoma and high-grade squamous intraepithelial lesion (HSIL samples (p = 0.16. CD25 was present in great quantities in all samples. Conclusions The predominance of high GITR expression in samples with high viral load that were classified as HSIL and carcinoma suggests that GITR+ cells can exhibit regulatory properties and may contribute to the progression of HPV-induced cervical neoplasia, emphasizing the importance of GITR as a potential target for immune therapy of cervical cancer and as a disease evolution biomarker.

  10. Blood group antigen A type 3 expression is a favorable prognostic factor in advanced NSCLC.

    Science.gov (United States)

    Schmidt, L H; Kuemmel, A; Schliemann, C; Schulze, A; Humberg, J; Mohr, M; Görlich, D; Hartmann, W; Bröckling, S; Marra, A; Hillejan, L; Goletz, S; Karsten, U; Berdel, W E; Spieker, T; Wiewrodt, R

    2016-02-01

    Several blood group-related carbohydrate antigens are prognosis-relevant markers of tumor tissues. A type 3 (repetitive A) is a blood group antigen specific for A1 erythrocytes. Its potential expression in tumor tissues has so far not been examined. We have evaluated its expression in normal lung and in lung cancer using a novel antibody (A69-A/E8). For comparison an anti-A antibody specific to A types 1 and 2 was used, because its expression on lung cancer tissue has been previously reported to be of prognostic relevance. Resected tissue samples of 398 NSCLC patients were analyzed in immunohistochemistry using tissue microarrays. Expression of A type 3 was not observed in non-malignant lung tissues. A type 3 was expressed on tumor cells of around half of NSCLC patients of blood group A1 (ptype 1/2 antigen was observed (p=0.562), the expression of A type 3 by tumor cells indicated a highly significant favorable prognosis among advanced NSCLC patients (p=0.011) and in NSCLC patients with lymphatic spread (p=0.014). Univariate prognostic results were confirmed in a Cox proportional hazards model. In this study we present for the first time prognostic data for A type 3 antigen expression in lung cancer patients. Prospective studies should be performed to confirm the prognostic value of A type 3 expression for an improved risk stratification in NSCLC patients. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  11. Molecular characterization of Legionella pneumophila-induced interleukin-8 expression in T cells

    Directory of Open Access Journals (Sweden)

    Mukaida Naofumi

    2010-01-01

    Full Text Available Abstract Background Legionella pneumophila is the causative agent of human Legionnaire's disease. During infection, the bacterium invades macrophages and lung epithelial cells, and replicates intracellularly. However, little is known about its interaction with T cells. We investigated the ability of L. pneumophila to infect and stimulate the production of interleukin-8 (IL-8 in T cells. The objective of this study was to assess whether L. pneumophila interferes with the immune system by interacting and infecting T cells. Results Wild-type L. pneumophila and flagellin-deficient Legionella, but not L. pneumophila lacking a functional type IV secretion system Dot/Icm, replicated in T cells. On the other hand, wild-type L. pneumophila and Dot/Icm-deficient Legionella, but not flagellin-deficient Legionella or heat-killed Legionella induced IL-8 expression. L. pneumophila activated an IL-8 promoter through the NF-κB and AP-1 binding regions. Wild-type L. pneumophila but not flagellin-deficient Legionella activated NF-κB, p38 mitogen-activated protein kinase (MAPK, Jun N-terminal kinase (JNK, and transforming growth factor β-associated kinase 1 (TAK1. Transfection of dominant negative mutants of IκBα, IκB kinase, NF-κB-inducing kinase, TAK1, MyD88, and p38 MAPK inhibited L. pneumophila-induced IL-8 activation. Inhibitors of NF-κB, p38 MAPK, and JNK blocked L. pneumophila-induced IL-8 expression. In addition, c-Jun, JunD, cyclic AMP response element binding protein, and activating transcription factor 1, which are substrates of p38 MAPK and JNK, bound to the AP-1 site of the IL-8 promoter. Conclusions Taken together, L. pneumophila induced a flagellin-dependent activation of TAK1, p38 MAPK, and JNK, as well as NF-κB and AP-1, which resulted in IL-8 production in human T cells, presumably contributing to the immune response in Legionnaire's disease.

  12. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    International Nuclear Information System (INIS)

    Fukuyama, Yoshiko; Tokuhara, Daisuke; Sekine, Shinichi; Kataoka, Kosuke; Markham, Jonathan D.; Irwin, Allyson R.; Moon, Grace H.; Tokuhara, Yuka; Fujihashi, Keiko; Davydova, Julia; Yamamoto, Masato; Gilbert, Rebekah S.; Fujihashi, Kohtaro

    2012-01-01

    Highlights: ► Nasal Ad-FL effectively up-regulates APC function by CD11c + DCs in mucosal tissues. ► Nasal Ad-FL induces Notch ligand (L)-expressing CD11c + DCs. ► Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c + dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c + DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c + DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c + DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4 + T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-γ, IL-2 and IL-4 producing CD4 + T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch–Notch-L pathway. These results show that Ad-FL induces CD11c + DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.

  13. Notch-ligand expression by NALT dendritic cells regulates mucosal Th1- and Th2-type responses

    Energy Technology Data Exchange (ETDEWEB)

    Fukuyama, Yoshiko; Tokuhara, Daisuke [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Division of Mucosal Immunology, Institute of Medical Science, University of Tokyo, Tokyo 108-8639 (Japan); Sekine, Shinichi [Department of Preventive Dentistry, Graduate School of Dentistry, Osaka University, Osaka 565-0871 (Japan); Kataoka, Kosuke [Department of Preventive Dentistry, Institute of Health Biosciences, The University of Tokushima Graduate School, Tokushima 770-8504 (Japan); Markham, Jonathan D.; Irwin, Allyson R.; Moon, Grace H.; Tokuhara, Yuka; Fujihashi, Keiko [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Davydova, Julia; Yamamoto, Masato [Department of Surgery, University of Minnesota, Minneapolis, MN 55455 (United States); Gilbert, Rebekah S. [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States); Fujihashi, Kohtaro, E-mail: kohtarof@uab.edu [Department of Pediatric Dentistry, The Immunobiology Vaccine Center, The Institute of Oral Health Research, The University of Alabama at Birmingham, Birmingham, AL 35294-0007 (United States)

    2012-02-03

    Highlights: Black-Right-Pointing-Pointer Nasal Ad-FL effectively up-regulates APC function by CD11c{sup +} DCs in mucosal tissues. Black-Right-Pointing-Pointer Nasal Ad-FL induces Notch ligand (L)-expressing CD11c{sup +} DCs. Black-Right-Pointing-Pointer Notch L-expressing DCs support the induction of Th1- and Th2-type cytokine responses. -- Abstract: Our previous studies showed that an adenovirus (Ad) serotype 5 vector expressing Flt3 ligand (Ad-FL) as nasal adjuvant activates CD11c{sup +} dendritic cells (DCs) for the enhancement of antigen (Ag)-specific IgA antibody (Ab) responses. In this study, we examined the molecular mechanism for activation of CD11c{sup +} DCs and their roles in induction of Ag-specific Th1- and Th2-cell responses. Ad-FL activated CD11c{sup +} DCs expressed increased levels of the Notch ligand (L)-expression and specific mRNA. When CD11c{sup +} DCs from various mucosal and systemic lymphoid tissues of mice given nasal OVA plus Ad-FL were cultured with CD4{sup +} T cells isolated from non-immunized OVA TCR-transgenic (OT II) mice, significantly increased levels of T cell proliferative responses were noted. Furthermore, Ad-FL activated DCs induced IFN-{gamma}, IL-2 and IL-4 producing CD4{sup +} T cells. Of importance, these APC functions by Ad-FL activated DCs were down-regulated by blocking Notch-Notch-L pathway. These results show that Ad-FL induces CD11c{sup +} DCs to the express Notch-ligands and these activated DCs regulate the induction of Ag-specific Th1- and Th2-type cytokine responses.

  14. Influence of Term of Exposure to High-Fat Diet-Induced Obesity on Myocardial Collagen Type I and III

    International Nuclear Information System (INIS)

    Silva, Danielle Cristina Tomaz da; Lima-Leopoldo, Ana Paula; Leopoldo, André Soares; Campos, Dijon Henrique Salomé de; Nascimento, André Ferreira do; Oliveira, Sílvio Assis Junior de; Padovani, Carlos Roberto; Cicogna, Antonio Carlos

    2014-01-01

    Obesity is a risk factor for many medical complications; medical research has shown that hemodynamic, morphological and functional abnormalities are correlated with the duration and severity of obesity. Present study determined the influence of term of exposure to high-fat diet-induced obesity on myocardial collagen type I and III. Thirty-day-old male Wistar rats were randomly distributed into two groups: a control (C) group fed a standard rat chow and an obese (Ob) group alternately fed one of four palatable high-fat diets. Each diet was changed daily, and the rats were maintained on their respective diets for 15 (C 15 and Ob 15 ) and 30 (C 30 and Ob 30 ) consecutive weeks. Obesity was determined by adiposity index. The Ob 15 group was similar to the C 15 group regarding the expression of myocardial collagen type I; however, expression in the Ob 30 group was less than C 30 group. The time of exposure to obesity was associated with a reduction in collagen type I in Ob 30 when compared with Ob 15 . Obesity did not affect collagen type III expression. This study showed that the time of exposure to obesity for 30 weeks induced by unsaturated high-fat diet caused a reduction in myocardial collagen type I expression in the obese rats. However, no effect was seen on myocardial collagen type III expression

  15. Influence of Term of Exposure to High-Fat Diet-Induced Obesity on Myocardial Collagen Type I and III

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Danielle Cristina Tomaz da [Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Lima-Leopoldo, Ana Paula; Leopoldo, André Soares [Departamento de Esportes, Centro de Educação Física e Desportos da Universidade Federal do Espírito Santo (UFES), Vitória, ES (Brazil); Campos, Dijon Henrique Salomé de; Nascimento, André Ferreira do [Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Oliveira, Sílvio Assis Junior de [Escola de Fisioterapia da Universidade Federal de Mato Grosso do Sul (UFMS), Campo Grande, MS (Brazil); Padovani, Carlos Roberto [Departamento de Bioestatística do Instituto de Ciências Biológicas da Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil); Cicogna, Antonio Carlos, E-mail: dany.tomaz@gmail.com [Departamento de Clínica Médica, Faculdade de Medicina de Botucatu, Universidade Estadual Paulista (UNESP), Botucatu, SP (Brazil)

    2014-02-15

    Obesity is a risk factor for many medical complications; medical research has shown that hemodynamic, morphological and functional abnormalities are correlated with the duration and severity of obesity. Present study determined the influence of term of exposure to high-fat diet-induced obesity on myocardial collagen type I and III. Thirty-day-old male Wistar rats were randomly distributed into two groups: a control (C) group fed a standard rat chow and an obese (Ob) group alternately fed one of four palatable high-fat diets. Each diet was changed daily, and the rats were maintained on their respective diets for 15 (C{sub 15} and Ob{sub 15}) and 30 (C{sub 30} and Ob{sub 30}) consecutive weeks. Obesity was determined by adiposity index. The Ob{sub 15} group was similar to the C{sub 15} group regarding the expression of myocardial collagen type I; however, expression in the Ob{sub 30} group was less than C{sub 30} group. The time of exposure to obesity was associated with a reduction in collagen type I in Ob{sub 30} when compared with Ob{sub 15}. Obesity did not affect collagen type III expression. This study showed that the time of exposure to obesity for 30 weeks induced by unsaturated high-fat diet caused a reduction in myocardial collagen type I expression in the obese rats. However, no effect was seen on myocardial collagen type III expression.

  16. Modulation of iridovirus-induced apoptosis by endocytosis, early expression, JNK, and apical caspase

    International Nuclear Information System (INIS)

    Chitnis, Nilesh S.; D'Costa, Susan M.; Paul, Eric R.; Bilimoria, Shaen L.

    2008-01-01

    Chilo iridescent virus (CIV) is the type species for the family Iridoviridae, which are large, isometric, cytoplasmic dsDNA viruses. We examined the mechanism of apoptosis induction by CIV. High CIV doses (CIV XS ; 400 μg/ml), UV-irradiated virus (CIV UV ; 10 μg/ml) and CVPE (CIV protein extract; 10 μg/ml) induced apoptosis in 60% of treated Choristoneura fumiferana (IPRI-CF-124T) cells. Normal doses of infectious CIV (10 μg/ml) induced apoptosis in only 10% of C. fumiferana (CF) cells. Apoptosis was inhibited by Z-IETD-FMK, an apical caspase inhibitor, indicating that CIV-induced apoptosis requires caspase activity. The putative caspase in CF cells was designated Cf-caspase-i. CIV UV or CVPE enhanced Cf-caspase-i activity by 80% at 24 h relative to mock-treated cells. Since the MAP kinase pathway induces or inhibits apoptosis depending on the context, we used JNK inhibitor SP600125 and demonstrated drastic suppression of CVPE-induced apoptosis. Thus, the JNK signaling pathway is significant for apoptosis in this system. Virus interaction with the cell surface was not sufficient for apoptosis since CIV UV particles bound to polysterene beads failed to induce apoptosis. Endocytosis inhibitors (bafilomycin or ammonium chloride) negated apoptosis induction by CIV UV , CIV XS or CVPE indicating that entry through this mode is required. Given the weak apoptotic response to infectious CIV, we postulated that viral gene expression inhibited apoptosis. CIV infection of cells pretreated with cycloheximide induced apoptosis in 69% of the cells compared to 10% in normal infections. Furthermore, blocking viral DNA replication with aphidicolin or phosphonoacetic acid suppressed apoptosis and Cf-caspase-i activity, indicating that early viral expression is necessary for inhibition of apoptosis, and de novo synthesis of viral proteins is not required for induction. We show for the first time that, in a member of the family Iridoviridae, apoptosis: (i) requires entry and

  17. Regulated gene expression in cultured type II cells of adult human lung

    OpenAIRE

    Ballard, Philip L.; Lee, Jae W.; Fang, Xiaohui; Chapin, Cheryl; Allen, Lennell; Segal, Mark R.; Fischer, Horst; Illek, Beate; Gonzales, Linda W.; Kolla, Venkatadri; Matthay, Michael A.

    2010-01-01

    Alveolar type II cells have multiple functions, including surfactant production and fluid clearance, which are critical for lung function. Differentiation of type II cells occurs in cultured fetal lung epithelial cells treated with dexamethasone plus cAMP and isobutylmethylxanthine (DCI) and involves increased expression of 388 genes. In this study, type II cells of human adult lung were isolated at ∼95% purity, and gene expression was determined (Affymetrix) before and after culturing 5 days...

  18. ΔNp63α induces the expression of FAT2 and Slug to promote tumor invasion

    Science.gov (United States)

    Dang, Tuyen T.; Westcott, Jill M.; Maine, Erin A.; Kanchwala, Mohammed; Xing, Chao; Pearson, Gray W.

    2016-01-01

    Tumor invasion can be induced by changes in gene expression that alter cell phenotype. The transcription factor ΔNp63α promotes basal-like breast cancer (BLBC) migration by inducing the expression of the mesenchymal genes Slug and Axl, which confers cells with a hybrid epithelial/mesenchymal state. However, the extent of the ΔNp63α regulated genes that support invasive behavior is not known. Here, using gene expression analysis, ChIP-seq, and functional testing, we find that ΔNp63α promotes BLBC motility by inducing the expression of the atypical cadherin FAT2, the vesicular binding protein SNCA, the carbonic anhydrase CA12, the lipid binding protein CPNE8 and the kinase NEK1, along with Slug and Axl. Notably, lung squamous cell carcinoma migration also required ΔNp63α dependent FAT2 and Slug expression, demonstrating that ΔNp63α promotes migration in multiple tumor types by inducing mesenchymal and non-mesenchymal genes. ΔNp63α activation of FAT2 and Slug influenced E-cadherin localization to cell-cell contacts, which can restrict spontaneous cell movement. Moreover, live-imaging of spheroids in organotypic culture demonstrated that ΔNp63α, FAT2 and Slug were essential for the extension of cellular protrusions that initiate collective invasion. Importantly, ΔNp63α is co-expressed with FAT2 and Slug in patient tumors and the elevated expression of ΔNp63α, FAT2 and Slug correlated with poor patient outcome. Together, these results reveal how ΔNp63α promotes cell migration by directly inducing the expression of a cohort of genes with distinct cellular functions and suggest that FAT2 is a new regulator of collective invasion that may influence patient outcome. PMID:27081041

  19. RIG-1 expression is associated with sexual malfunctions of female type 2 diabetic patients

    Directory of Open Access Journals (Sweden)

    Batool Hajebrahimi

    2017-03-01

    Full Text Available Introduction: The patients with type 2 diabetes (T2D suffer from the malfunctions of the sexual behaviors, and several mechanisms have been proposed to describe these disorders. The innate immunity may be involved in the malfunctions of T2D patients. Melanoma differentiation-associated protein 5 (MDA5 and retinoic acid (RA-inducible gene 1 (RIG-1, as the innate immunity receptors, are the responsible molecules for the activation of some intracellular signaling pathways and the induction of inflammation. Thus, this study aimed to examine the molecules which may participate in the induction/stimulation of sexual malfunctions in the female T2D patients. Methods: Sexual functions were evaluated in 41 female T2D patients using the Female Sexual Function Index (FSFI questionnaire. Real-time polymerase chain reaction (PCR technique was used to quantify MDA5 and RIG-1 mRNA levels. Results: Results showed that increased RIG-1 mRNA levels were significantly associated with the bad orgasm in the female T2D patients compared to the female patients with good orgasm. Expression of RIG-1 and MDA5 levels were not associated with other sexual functions’ criteria. Conclusion: The findings of this study demonstrated that bad orgasm is associated with the increased RIG-1 expression. Consequently, the correlation between inflammation and bad orgasm in a RIG-1 dependent manner is suggested.

  20. PIF4 Promotes Expression of LNG1 and LNG2 to Induce Thermomorphogenic Growth in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Geonhee Hwang

    2017-07-01

    Full Text Available Arabidopsis plants adapt to high ambient temperature by a suite of morphological changes including elongation of hypocotyls and petioles and leaf hyponastic growth. These morphological changes are collectively called thermomorphogenesis and are believed to increase leaf cooling capacity by enhancing transpiration efficiency, thereby increasing tolerance to heat stress. The bHLH transcription factor PHYTOCHROME INTERACTING FACTOR4 (PIF4 has been identified as a major regulator of thermomorphogenic growth. Here, we show that PIF4 promotes the expression of two homologous genes LONGIFOLIA1 (LNG1 and LONGIFOLIA2 (LNG2 that have been reported to regulate leaf morphology. ChIP-Seq analyses and ChIP assays showed that PIF4 directly binds to the promoters of both LNG1 and LNG2. The expression of LNG1 and LNG2 is induced by high temperature in wild type plants. However, the high temperature activation of LNG1 and LNG2 is compromised in the pif4 mutant, indicating that PIF4 directly regulates LNG1 and LNG2 expression in response to high ambient temperatures. We further show that the activities of LNGs support thermomorphogenic growth. The expression of auxin biosynthetic and responsive genes is decreased in the lng quadruple mutant, implying that LNGs promote thermomorphogenic growth by activating the auxin pathway. Together, our results demonstrate that LNG1 and LNG2 are directly regulated by PIF4 and are new components for the regulation of thermomorphogenesis.

  1. PGC-1alpha mediates exercise-induced skeletal muscle VEGF expression in mice

    DEFF Research Database (Denmark)

    Leick, Lotte; Hellsten, Ylva; Fentz, Joachim

    2009-01-01

    The aim of the present study was to test the hypothesis that PGC-1alpha is required for exercise-induced VEGF expression in both young and old mice and that AMPK activation leads to increased VEGF expression through a PGC-1alpha-dependent mechanism. Whole body PGC-1alpha knockout (KO......) and littermate wild-type (WT) mice were submitted to either 1) 5 wk of exercise training, 2) lifelong (from 2 to 13 mo of age) exercise training in activity wheel, 3) a single exercise bout, or 4) 4 wk of daily subcutaneous AICAR or saline injections. In skeletal muscle of PGC-1alpha KO mice, VEGF protein...... expression was approximately 60-80% lower and the capillary-to-fiber ratio approximately 20% lower than in WT. Basal VEGF mRNA expression was similar in WT and PGC-1alpha KO mice, but acute exercise and AICAR treatment increased the VEGF mRNA content in WT mice only. Exercise training of young mice increased...

  2. Inducible nitric oxide expression correlates with the level of inflammation in periapical cysts.

    Science.gov (United States)

    Matsumoto, Mariza Akemi; Ribeiro, Daniel Araki

    2007-10-01

    In an attempt to elucidate if inducible nitric oxide expression (iNOS) is correlated with the level of inflammation in periapical cysts with accuracy, the goal of this study was to evaluate the expression of iNOS in these ones. 30 cases were included in this study being iNOS evaluated by means of immunohistochemistry. Statistical analysis was performed by Kruskal-Wallis non-parametric test followed by the post-hoc Dunn's test. iNOS stain was detected throughout the epithelium, subepithelial fibroblasts and macrophages in all cases, indistinctly. Nevertheless, iNOS immunostaining in periapical cysts was different according to the levels of inflammation, being the strongest effect associated with intense inflammatory infiltrate. Taken together, our results indicate that immunoreactivity of iNOS was expressed in several cellular types present in periapical cyst, being positively correlated with the level of inflammation. Therefore, iNOS expression plays an important role in the pathogenesis of periapical cysts.

  3. Biochemical mechanisms involved in the endotoxin-induced type II cell hyperplasia in F344 rat lung

    International Nuclear Information System (INIS)

    Tesfaigzi, J.; Johnson, N.F.; Lechner, J.F.

    1994-01-01

    Proliferative lesions and pulmonary epithelial neoplasms induced in the rat by plutonium inhalation have been shown to be of type II cell origin. Defining the gene changes responsible for the development of the type II proliferative lesions would help to elucidate the genetic events involved in the expansion of initiated type II cells into fully transformed tumor cells. One problem in identifying these gene alterations is dissociating changes in gene expression linked to cell replication or repair from those involved in tumor initiation and progression. The long-term goals of these investigations are to first develop and characterize a model of transient type II cell hyperplasia. Second, changes in gene expression associated with remodeling epithelium will be compared to gene changes exhibited by the 239 Pu-induced hyperplastic lesions

  4. Effect of Botulinum Toxin Type A on TGF-β/Smad Pathway Signaling: Implications for Silicone-Induced Capsule Formation.

    Science.gov (United States)

    Kim, Sena; Ahn, Moonsang; Piao, Yibo; Ha, Yooseok; Choi, Dae-Kyoung; Yi, Min-Hee; Shin, Nara; Kim, Dong Woon; Oh, Sang-Ha

    2016-11-01

    One of the most serious complications of breast surgery using implants is capsular contracture. Several preventive treatments have been introduced; however, the mechanism of capsule formation has not been resolved completely. The authors previously identified negative effects of botulinum toxin type A on capsule formation, expression of transforming growth factor (TGF)-β1, and differentiation of fibroblasts into myofibroblasts. Thus, the authors investigated how to prevent capsule formation by using botulinum toxin type A, particularly by means of TGF-β1 signaling, in human fibroblasts. In vitro, cultured human fibroblasts were treated with TGF-β1 and/or botulinum toxin type A. Expression of collagen, matrix metalloproteinase, and Smad was examined by Western blotting. The activation of matrix metalloproteinase was observed by gelatin zymography. In vivo, the effect of botulinum toxin type A on the phosphorylation of Smad2 in silicone-induced capsule formation was evaluated by immunocytochemistry. In vitro, the phosphorylation of Smad2 was inhibited by botulinum toxin type A treatment. The expression levels of collagen types 1 and 3 were inhibited by botulinum toxin type A treatment, whereas those of matrix metalloproteinase-2 and matrix metalloproteinase-9 were enhanced. Gelatin zymography experiments confirmed enhanced matrix metalloproteinase-2 activity in collagen degradation. In vivo, botulinum toxin type A treatment reduced capsule thickness and Smad2 phosphorylation in silicone-induced capsules. This study suggests that botulinum toxin type A plays an important role in the inhibition of capsule formation through the TGF-β/Smad signaling pathway. Therapeutic, V.

  5. PecS regulates the urate-responsive expression of type 1 fimbriae in Klebsiella pneumoniae CG43.

    Science.gov (United States)

    Wang, Zhe-Chong; Liu, Chia-Jui; Huang, Ying-Jung; Wang, Yu-Seng; Peng, Hwei-Ling

    2015-12-01

    In the Klebsiella pneumoniae CG43 genome, the divergently transcribed genes coding for PecS, the MarR-type transcription factor, and PecM, the drug metabolite transporter, are located between the type 1 and type 3 fimbrial gene clusters. The intergenic sequence pecO between pecS and pecM contains three putative PecS binding sites and a CpxR box. Electrophoretic mobility shift assay revealed that the recombinant PecS and CpxR could specifically bind to the pecO sequence, and the specific interaction of PecS and pecO could be attenuated by urate. The expression of pecS and pecM was negatively regulated by CpxAR and PecS, and was inducible by exogenous urate in the absence of cpxAR. Compared with CG43S3ΔcpxAR, the derived mutants CG43S3ΔcpxARΔpecS and CG43S3ΔcpxARΔpecSΔpecM exerted similar levels of sensitivity to H2O2 or paraquat, but higher levels of mannose-sensitive yeast agglutination activity and FimA production. The promoter activity and transcript levels of fimA in CG43S3ΔcpxAR were also increased by deleting pecS. However, no binding activity between PecS and the fimA promoter could be observed. Nevertheless, PecS deletion could reduce the expression of the global regulator HNS and release the negative effect of HNS on FimA expression. In CG43S3ΔcpxAR, the expression of FimA as well as PecS was inducible by urate, whilst urate-induced FimA expression was inhibited by the deletion of pecS. Taken together, we propose that K. pneumoniae PecS indirectly and negatively regulates the expression of type 1 fimbriae, and the regulation is urate-inducible in the absence of CpxAR.

  6. Root-Expressed Maize Lipoxygenase 3 Negatively Regulates Induced Systemic Resistance to Colletotrichum graminicola in Shoots

    Directory of Open Access Journals (Sweden)

    Nasie eConstantino

    2013-12-01

    Full Text Available We have previously reported that disruption of a maize root-expressed 9-lipoxygenase (9-LOX gene, ZmLOX3, results in dramatic increase in resistance to diverse leaf and stalk pathogens. Despite evident economic significance of these findings, the mechanism behind this increased resistance remained elusive. In this study, we show that increased resistance of the lox3-4 mutants is due to constitutive activation of induced systemic resistance (ISR signaling. We showed that ZmLOX3 lacked expression in leaves in response to anthracnose leaf blight pathogen Colletotrichum graminicola, but was expressed constitutively in the roots, thus prompting our hypothesis: the roots of lox3-4 mutants are the source of increased resistance in leaves. Supporting this hypothesis, treatment of wild-type plants (WT with xylem sap of lox3-4 mutant induced resistance to C. graminicola to the levels comparable to those observed in lox3-4 mutant. Moreover, treating mutants with the sap collected from WT plants partially restored the susceptibility to C. graminicola. lox3-4 mutants showed primed defense responses upon infection, which included earlier and greater induction of defense-related PAL and GST genes compared to WT. In addition to the greater expression of the octadecanoid pathway genes, lox3-4 mutant responded earlier and with a greater accumulation of H2O2 in response to C. graminicola infection or treatment with alamethicin. These findings suggest that lox3-4 mutants display constitutive ISR-like signaling. In support of this idea, root colonization by Trichoderma virens strain GV29-8 induced the same level of disease resistance in WT as the treatment with the mutant sap, but had no additional resistance effect in lox3-4 mutant. While treatment with T. virens GV29 strongly and rapidly suppressed ZmLOX3 expression in hydroponically grown WT roots, T. virens Δsml mutant, which is deficient in ISR induction, was unable to suppress expression of ZmLOX3, thus

  7. Cytokine-induced killer cells are type II natural killer T cells

    Directory of Open Access Journals (Sweden)

    Schmidt-Wolf, Ingo G.H.

    2007-09-01

    Full Text Available Background: Until now, cytokine-induced killer (CIK cells were assumed to be part of the type I natural killer T (NKT cell population, but it was not yet investigated if this is correct. Methods: For analysis, CIK cells were generated by various culture conditions. Human type I NKT cells express a T cell receptor (TCR composed of an invariant Vα24-JαQ chain combined with one of several Vβ chains. The Vα24 is a reliable marker for the presence of these TCRs. Results: While comparing cultures stimulated with different substances, we observed the lack of any Vα24 on the surface of CIK culture cells. Conclusion: We conclude that CIK cells do not belong to the type I NKT cells.

  8. Regulation of type III iodothyronine deiodinase expression in human cell lines

    NARCIS (Netherlands)

    Kester, Monique H. A.; Kuiper, George G. J. M.; Versteeg, Rogier; Visser, Theo J.

    2006-01-01

    Type I iodothyronine deiodinase (D1) and type II iodothyronine deiodinase (D2) catalyze the activation of the prohormone T4 to the active hormone T3; type III iodothyronine deiodinase (D3) catalyzes the inactivation of T4 and T3. D3 is highly expressed in brain, placenta, pregnant uterus, and fetal

  9. Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading

    Science.gov (United States)

    Carlson, C. J.; Booth, F. W.; Gordon, S. E.

    1999-01-01

    Transgenic mice lacking a functional myostatin (MSTN) gene demonstrate greater skeletal muscle mass resulting from muscle fiber hypertrophy and hyperplasia (McPherron, A. C., A. M. Lawler, and S. -J. Lee. Nature 387: 83-90, 1997). Therefore, we hypothesized that, in normal mice, MSTN may act as a negative regulator of muscle mass. Specifically, we hypothesized that the predominately slow (type I) soleus muscle, which demonstrates greater atrophy than the fast (type II) gastrocnemius-plantaris complex (Gast/PLT), would show more elevation in MSTN mRNA abundance during hindlimb unloading (HU). Surprisingly, MSTN mRNA was not detectable in weight-bearing or HU soleus muscle, which atrophied 42% by the 7th day of HU in female ICR mice. In contrast, MSTN mRNA was present in weight-bearing Gast/PLT muscle and was significantly elevated (67%) at 1 day but not at 3 or 7 days of HU. However, the Gast/PLT muscle had only atrophied 17% by the 7th day of HU. Because the soleus is composed only of type I and IIa fibers, whereas the Gast/PLT expresses type IId/x and IIb in addition to type I and IIa, it was necessary to perform a more careful analysis of the relationship between MSTN mRNA levels and myosin heavy-chain (MHC) isoform expression (as a marker of fiber type). A significant correlation (r = 0.725, P < 0. 0005) was noted between the percentage of MHC isoform IIb expression and MSTN mRNA abundance in several muscles of the mouse hindlimb. These results indicate that MSTN expression is not strongly associated with muscle atrophy induced by HU; however, it is strongly associated with MHC isoform IIb expression in normal muscle.

  10. Lineage relationship of prostate cancer cell types based on gene expression

    Directory of Open Access Journals (Sweden)

    Ware Carol B

    2011-05-01

    Full Text Available Abstract Background Prostate tumor heterogeneity is a major factor in disease management. Heterogeneity could be due to multiple cancer cell types with distinct gene expression. Of clinical importance is the so-called cancer stem cell type. Cell type-specific transcriptomes are used to examine lineage relationship among cancer cell types and their expression similarity to normal cell types including stem/progenitor cells. Methods Transcriptomes were determined by Affymetrix DNA array analysis for the following cell types. Putative prostate progenitor cell populations were characterized and isolated by expression of the membrane transporter ABCG2. Stem cells were represented by embryonic stem and embryonal carcinoma cells. The cancer cell types were Gleason pattern 3 (glandular histomorphology and pattern 4 (aglandular sorted from primary tumors, cultured prostate cancer cell lines originally established from metastatic lesions, xenografts LuCaP 35 (adenocarcinoma phenotype and LuCaP 49 (neuroendocrine/small cell carcinoma grown in mice. No detectable gene expression differences were detected among serial passages of the LuCaP xenografts. Results Based on transcriptomes, the different cancer cell types could be clustered into a luminal-like grouping and a non-luminal-like (also not basal-like grouping. The non-luminal-like types showed expression more similar to that of stem/progenitor cells than the luminal-like types. However, none showed expression of stem cell genes known to maintain stemness. Conclusions Non-luminal-like types are all representatives of aggressive disease, and this could be attributed to the similarity in overall gene expression to stem and progenitor cell types.

  11. Vitamin K3 Induces the Expression of the Stenotrophomonas maltophilia SmeVWX Multidrug Efflux Pump.

    Science.gov (United States)

    Blanco, P; Corona, F; Sánchez, M B; Martínez, J L

    2017-05-01

    Stenotrophomonas maltophilia is an opportunistic pathogen with increasing prevalence, which is able to cause infections in immunocompromised patients or in those with a previous pathology. The treatment of the infections caused by this bacterium is often complicated due to the several intrinsic antibiotic resistance mechanisms that it presents. Multidrug efflux pumps are among the best-studied mechanisms of S. maltophilia antibiotic resistance. Some of these efflux pumps have a basal expression level but, in general, their expression is often low and only reaches high levels when the local regulator is mutated or bacteria are in the presence of an effector. In the current work, we have developed a yellow fluorescent protein (YFP)-based sensor with the aim to identify effectors able to trigger the expression of SmeVWX, an efflux pump that confers resistance to quinolones, chloramphenicol, and tetracycline when it is expressed at high levels. With this purpose in mind, we tested a variety of different compounds and analyzed the fluorescence signal given by the expression of YFP under the control of the smeVWX promoter. Among the tested compounds, vitamin K 3 , which is a compound belonging to the 2-methyl-1,4-naphthoquinone family, is produced by plants in defense against infection, and has increasing importance in human therapy, was able to induce the expression of the SmeVWX efflux pump. In addition, a decrease in the susceptibility of S. maltophilia to ofloxacin and chloramphenicol was observed in the presence of vitamin K 3 , in both wild-type and smeW -deficient strains. Copyright © 2017 American Society for Microbiology.

  12. Differential expression of glutamate transporters EAAT1 and EAAT2 in mice deficient for PACAP-type I receptor.

    Science.gov (United States)

    Zink, M; Schmitt, A; Henn, F A; Gass, P

    2004-12-01

    Pituitary adenylate cyclase-activating polypeptide (PACAP) modulates glutamatergic neurotransmission and induces the expression of glutamate transporters EAAT1 and EAAT2 in newborn mouse astroglial cell cultures. Since nanomolar concentrations of PACAP exert this effect, signal transduction via the high affinity PACAP-type I-receptor PAC1 was assumed. To test this hypothesis and to assess the importance of PAC1-signalling in vivo, we analyzed glutamate transporter expression in mice with a PAC1 knockout. EAAT1 and EAAT2 expression was investigated in the hippocampus and the cerebral cortex of PAC1 mutant mice and wildtype littermates by semiquantitative in-situ-hybridization. PAC1-knockout mice show a subtle but significant reduction of EAAT1 expression in the dentate gyrus. In contrast, reduced expression levels of EAAT1 in the cerebral cortex did not reach statistical significance and EAAT2 expression was unchanged in CA3 and cerebral cortex of PAC1 mutant mice. Our data confirm the previously reported in-vitro-regulation of EAAT1 in the adult nervous system in vivo. EAAT2 expression, however, is unchanged in PAC1 knockout mice, most likely due to counterbalancing factors.

  13. Gene expression in skin tumors induced in hairless mice by chronic exposure to ultraviolet B irradiation

    International Nuclear Information System (INIS)

    Sato, Hiromi; Tanaka, Misao; Kobayashi, Shizuko; Suzuki, Junko S.; Ogiso, Manabu; Tohyama, Chiharu

    1997-01-01

    We investigated the expressions of c-Ha-ras, c-jun, c-fos, c-myc genes and p53 protein in the development of skin tumours induced by chronic exposure to UVB without a photosensitizer using hairless mice. When mice were exposed to UVB at a dose of 2 kJ/m 2 three times a week, increased c-Ha-ras and c-myc transcripts were detected after only 5 weeks of exposure, while no tumour appeared on the exposed skin. The increase in gene expression continued until 25 weeks, when tumours, identified pathologically as mainly squamous cell carcinomas (SCC), developed in the dorsal skin. In these SCC, overexpression of c-fos mRNA was also observed along with the increases in c-Ha-ras and c-myc. A single dose of UVB (2 kJ/m 2 ) applied to the backs of hairless mice transiently induced overexpression of the early event genes c-fos, c-jun and c-myc, but not c-Ha-ras, in the exposed area of skin. Accumulation of p53 protein was determined by Western blotting analysis of immunohistochemistry using monoclonal antibodies PAb 240 or 246, which recognize mutant or wide type, respectively. In the SCC, a mutant p53 protein accumulated in the cytoplasm and nucleus. After single-dose irradiation, the increased wild-type p53 protein was observed in the nuclei of epidermal cells. The present results suggest that overexpression of the c-fos, c-myc and c-Ha-ras genes, and the mutational changes in p53 protein might be associated with skin photocarcinogenesis. Moreover, overexpression of the c-Ha-ras and c-myc genes might be an early event in the development of UVB-induced skin tumors in mice. (author)

  14. RNA editing is induced by type I interferon in esophageal squamous cell carcinoma.

    Science.gov (United States)

    Zhang, Jinyao; Chen, Zhaoli; Tang, Zefang; Huang, Jianbing; Hu, Xueda; He, Jie

    2017-07-01

    In recent years, abnormal RNA editing has been shown to play an important role in the development of esophageal squamous cell carcinoma, as such abnormal editing is catalyzed by ADAR (adenosine deaminases acting on RNA). However, the regulatory mechanism of ADAR1 in esophageal squamous cell carcinomas remains largely unknown. In this study, we investigated ADAR1 expression and its association with RNA editing in esophageal squamous cell carcinomas. RNA sequencing applied to esophageal squamous cell carcinoma clinical samples showed that ADAR1 expression was correlated with the expression of STAT1, STAT2, and IRF9. In vitro experiments showed that the abundance of ADAR1 protein was associated with the induced activation of the JAK/STAT pathway by type I interferon. RNA sequencing results showed that treatment with type I interferon caused an increase in the number and degree of RNA editing in esophageal squamous cell carcinoma cell lines. In conclusion, the activation of the JAK/STAT pathway is a regulatory mechanism of ADAR1 expression and causes abnormal RNA editing profile in esophageal squamous cell carcinoma. This mechanism may serve as a new target for esophageal squamous cell carcinoma therapy.

  15. Transgenic mice for a tamoxifen-induced, conditional expression of the Cre recombinase in osteoclasts.

    Directory of Open Access Journals (Sweden)

    Maria Arantzazu Sanchez-Fernandez

    Full Text Available BACKGROUND: Studies on osteoclasts, the bone resorbing cells, have remained limited due to the lack of transgenic mice allowing the conditional knockout of genes in osteoclasts at any time during development or adulthood. METHODOLOGY/PRINCIPAL FINDING: We report here on the generation of transgenic mice which specifically express a tamoxifen-inducible Cre recombinase in osteoclasts. These mice, generated on C57BL/6 and FVB background, express a fusion Cre recombinase-ERT2 protein whose expression is driven by the promoter of cathepsin K (CtsK, a gene highly expressed in osteoclasts. We tested the cellular specificity of Cre activity in CtsKCreERT2 strains by breeding with Rosa26LacZ reporter mice. PCR and histological analyses of the CtsKCreERT2LacZ positive adult mice and E17.5 embryos show that Cre activity is restricted largely to bone tissue. In vitro, primary osteoclasts derived from the bone marrow of CtsKCreERT2+/-LacZ+/- adult mice show a Cre-dependent β-galactosidase activity after tamoxifen stimulation. CONCLUSIONS/SIGNIFICANCE: We have generated transgenic lines that enable the tamoxifen-induced, conditional deletion of loxP-flanked genes in osteoclasts, thus circumventing embryonic and postnatal gene lethality and avoiding gene deletion in other cell types. Such CtsKCreERT2 mice provide a convenient tool to study in vivo the different facets of osteoclast function in bone physiology during different developmental stages and adulthood of mice.

  16. Tissue specific promoters improve the localization of radiation-inducible gene expression

    International Nuclear Information System (INIS)

    Hallahan, Dennis; Kataoka, Yasushi; Kuchibhotla, Jaya; Virudachalam, Subbu; Weichselbaum, Ralph

    1996-01-01

    expression was quantified in vascular endothelial cells from large vessel (HUVEC) and small vessels (HMEC). We found cell-type specificity of radiation-induction. The promoter region from the ELAM gene gave no expression in cells that were not of endothelial cell origin and x-ray-induction of ELAM in the endothelium required the NFkB binding cis-acting element. ELAM induction was achieved at doses as low as 1 Gy, whereas induction of other radiation inducible genes required 5 to 10 Gy. Cells transfected with the minimal promoter (plasmid pTK-CAT) demonstrated no radiation induction. Expression of the CMV-LacZ genetic construct that was used as a negative control in each transfection was not altered by x-irradiation. Moreover, intravenous administration of liposomes containing a reporter gene linked to the ELAM promoter and a transcriptional amplification system were induced specifically at sites of x-irradiation in an animal model. Conclusions: Activation of transcription of the ELAM-1 promoter by ionizing radiation is a means of activating gene therapy within the vascular endothelium and demonstrates the feasibility of treating vascular lesions with noninvasive procedures. Tissue specific promoters (e. g., ELAM-1) combined with radiation inducible gene therapy improves the localization of gene therapy expression. These results have applications in intravascular brachytherapy for the prevention of blood vessel restenosis

  17. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types.

    Science.gov (United States)

    Heinemeier, K M; Olesen, J L; Haddad, F; Langberg, H; Kjaer, M; Baldwin, K M; Schjerling, P

    2007-08-01

    Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle-tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-beta-1 (TGF-beta-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7-9 per group) of the medial gastrocnemius, by stimulation of the sciatic nerve. RNA was extracted from medial gastrocnemius and Achilles tendon tissue 24 h after the last training bout, and mRNA levels for collagens I and III, TGF-beta-1, connective tissue growth factor (CTGF), lysyl oxidase (LOX), metalloproteinases (MMP-2 and -9) and their inhibitors (TIMP-1 and 2) were measured by Northern blotting and/or real-time PCR. In tendon, expression of TGF-beta-1 and collagens I and III (but not CTGF) increased in response to all types of training. Similarly, enzymes/factors involved in collagen processing were induced in tendon, especially LOX (up to 37-fold), which could indicate a loading-induced increase in cross-linking of tendon collagen. In skeletal muscle, a similar regulation of gene expression was observed, but in contrast to the tendon response, the effect of eccentric training was significantly greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-beta-1 in loading-induced collagen synthesis in the muscle-tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon to the specific mechanical stimulus.

  18. 27-Oxygenated cholesterol induces expression of CXCL8 in macrophages via NF-κB and CD88

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Sun-Mi, E-mail: lala1647@hanmail.net [Department of Pharmacology, Pusan National University, School of Medicine, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Lee, Chung Won, E-mail: vasculardoctorlee@gmail.com [Department of Thoracic and Cardiovascular Surgery, Pusan National University Hospital, Pusan 602-739 (Korea, Republic of); Kim, Bo-Young, E-mail: kimboyoung@pusan.ac.kr [Department of Pharmacology, Pusan National University, School of Medicine, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Jung, Young-Suk, E-mail: youngjung@pusan.ac.kr [College of Pharmacy, Pusan National University, Busan 609-735 (Korea, Republic of); Eo, Seong-Kug, E-mail: vetvirus@chonbuk.ac.kr [College of Veterinary Medicine and Bio-Safety Research Institute, Chonbuk National University, Iksan, Jeonbuk 570-752 (Korea, Republic of); Park, Young Chul, E-mail: ycpark@pusan.ac.kr [Department of Microbiology & Immunology, Pusan National University, School of Medicine, Yangsan, Gyeongnam 626-870 (Korea, Republic of); Kim, Koanhoi, E-mail: koanhoi@pusan.ac.kr [Department of Pharmacology, Pusan National University, School of Medicine, Yangsan, Gyeongnam 626-870 (Korea, Republic of)

    2015-08-07

    We attempted to determine the effects of a milieu rich in cholesterol molecules on expression of chemokine CXCL8. A high-cholesterol diet led to an increased transcription of the IL-8 gene in the arteries and elevated levels of CXCL8 in sera of ApoE{sup −/−} mice, compared with those of wild-type C57BL/6 mice. Treatment of THP-1 monocyte/macrophage cells with 27-hydroxycholesterol (27OHChol) resulted in transcription of the IL-8 gene and increased secretion of its corresponding gene product whereas cholesterol did not induce expression of CXCL8 in THP-1 cells. 27OHChol-induced transcription of the IL-8 gene was blocked by cycloheximide, but not by polymyxin B. Treatment of THP-1 cells with 27OHChol caused translocation of p65 NF-κB subunit into the nucleus and up-regulation of CD88. Inhibition of NF-κB and CD88 using SN50 and W-54011, respectively, resulted in reduced transcription of the IL-8 gene and attenuated secretion of CXCL8 induced by 27OHChol. We propose that oxidatively modified cholesterol like 27OHChol, rather than cholesterol, is responsible for sustained expression of CXCL8 in monocytes/macrophages in atherosclerotic arteries. - Highlights: • Consumption of a high-cholesterol diet leads to increased CXCL8 expression in ApoE{sup −/−} mice. • 27OHChol, but not cholesterol, up-regulates expression of CXCL8 in macrophages. • 27OHChol enhances nuclear translocation of NF-κB and expression of CD88 in macrophages. • Inhibition of NF-κB or CD88 results in decreased CXCL8 expression induced by 27OHChol. • 27OHChol up-regulates CXCL8 expression via NF-κB and CD88 in macrophages.

  19. Effects of telmisartan on the expression of NADPH oxidase subunits in the myocardium of type 2 diabetic rats

    Directory of Open Access Journals (Sweden)

    Jia-wei LI

    2011-10-01

    Full Text Available Objective To explore the effect of telmisartan on the expression of NADPH oxidase subunits p22phox and NOX4 in the myocardiam of type 2 diabetic rats.Methods Thirty-six male Wistar rats were randomly divided into two groups: normal control group(group A,n=10,diabetic model group(n=26.Type 2 diabetic model was established by high-fat and high-sugar diet followed by intraperitoneal injection of a low dose of streptozotocin(STZ.After the model was reproduced successfully,20 diabetic rats were randomly divided into diabetic subgroup(group B,n=10 and telmisartan-treated subgroup(group C,n=10.Rats in group C were orally administered telmisartan(5mg/kg/d,and rats in group A and B were given equivalent volume of normal saline.All rats were sacrificed 12 weeks after treatment.The mRNA expressions of myocardial p22phox and NOX4 were detected by real-time fluorescence quantitative PCR,and the protein expressions of myocardial connective tissue growth factor(CTGF and copper-zinc-superoxide dismutase(Cu-Zn-SOD were detected by immunohistochemical staining.Results Compared with group A,the ratio of heart/body weight,the mRNA expression of myocardial p22phox and NOX4,and the protein expression of myocardial CTGF increased significantly in group B,and the protein expression of myocardial Cu-Zn-SOD decreased significantly(P 0.05.Conclusions Telmisartan can down-regulate the over-expression of myocardial NOX4 and p22phox mRNA in type 2 diabetic rats,lessen the myocardial damage induced by oxidative stress,thus plays a protective role in the myocardium of diabetic rats.

  20. Expression of collagen and related growth factors in rat tendon and skeletal muscle in response to specific contraction types

    DEFF Research Database (Denmark)

    Heinemeier, K M; Olesen, J L; Haddad, F

    2007-01-01

    greater than the effect of concentric training on the expression of several transcripts. In conclusion, the study supports an involvement of TGF-beta-1 in loading-induced collagen synthesis in the muscle-tendon unit and importantly, it indicates that muscle tissue is more sensitive than tendon......Acute exercise induces collagen synthesis in both tendon and muscle, indicating an adaptive response in the connective tissue of the muscle-tendon unit. However, the mechanisms of this adaptation, potentially involving collagen-inducing growth factors (such as transforming growth factor-beta-1 (TGF......-beta-1)), as well as enzymes related to collagen processing, are not clear. Furthermore, possible differential effects of specific contraction types on collagen regulation have not been investigated. Female Sprague-Dawley rats were subjected to 4 days of concentric, eccentric or isometric training (n = 7...

  1. Establishment of diffuse type stomach carcinoma orthotopic-implanted model and study on apoptosis induced by X-ray

    International Nuclear Information System (INIS)

    Lu Yi; Qian Haixin

    2003-01-01

    To observe whether ionizing radiation could induce up - regulation of Fas receptor expression and apoptosis in diffuse type stomach carcinoma. To investigate the relationship among ionizing radiation, apoptosis and the expression of Fas in stomach carcinoma. Methods: Firstly, the experimental model of SGC - 7901 cell lines was set up and diffuse type stomach carcinoma orthotopically implanted in nude mice. Then 21 model mice were randomized into three groups equally i.e., the control group ( group A ) and two irradiation groups ( group B and group C, executed at 24 hours and 48 hours after irradiation respectively ). The mice in group B and group C were irradiated with 6 MV X-rays at a dose of 20 Gy. By using the methods of TUNEL and immunohistochemical staining, the changes of apoptosis index and Fas expression in tumor tissues were examined. Results: (1) The spontaneous apoptosis index (AI) of tumor tissues was significantly lower than that of mucosa tissues (P 0.05). (3) The Fas LI of tumor tissues increased after irradiation compared with the control group (P<0.05). (4) The changes of AI and Fas LI in all groups with similar tendency showed positive correlation (P<0.01). Conclusion: The apoptosis of diffuse type stomach carcinoma is seriously restrained. Ionizing radiation can induce apoptosis and up - regulate the expression of Fas in diffuse type stomach carcinoma. The apoptosis induced by irradiation maybe depend on the up - regulating of Fas after irradiation

  2. A chimeric antigen receptor for TRAIL-receptor 1 induces apoptosis in various types of tumor cells.

    Science.gov (United States)

    Kobayashi, Eiji; Kishi, Hiroyuki; Ozawa, Tatsuhiko; Hamana, Hiroshi; Nakagawa, Hidetoshi; Jin, Aishun; Lin, Zhezhu; Muraguchi, Atsushi

    2014-10-31

    Tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL) and its associated receptors (TRAIL-R/TR) are attractive targets for cancer therapy because TRAIL induces apoptosis in tumor cells through TR while having little cytotoxicity on normal cells. Therefore, many agonistic monoclonal antibodies (mAbs) specific for TR have been produced, and these induce apoptosis in multiple tumor cell types. However, some TR-expressing tumor cells are resistant to TR-specific mAb-induced apoptosis. In this study, we constructed a chimeric antigen receptor (CAR) of a TRAIL-receptor 1 (TR1)-specific single chain variable fragment (scFv) antibody (TR1-scFv-CAR) and expressed it on a Jurkat T cell line, the KHYG-1 NK cell line, and human peripheral blood lymphocytes (PBLs). We found that the TR1-scFv-CAR-expressing Jurkat cells killed target cells via TR1-mediated apoptosis, whereas TR1-scFv-CAR-expressing KHYG-1 cells and PBLs killed target cells not only via TR1-mediated apoptosis but also via CAR signal-induced cytolysis, resulting in cytotoxicity on a broader range if target cells than with TR1-scFv-CAR-expressing Jurkat cells. The results suggest that TR1-scFv-CAR could be a new candidate for cancer gene therapy. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Digital sorting of complex tissues for cell type-specific gene expression profiles.

    Science.gov (United States)

    Zhong, Yi; Wan, Ying-Wooi; Pang, Kaifang; Chow, Lionel M L; Liu, Zhandong

    2013-03-07

    Cellular heterogeneity is present in almost all gene expression profiles. However, transcriptome analysis of tissue specimens often ignores the cellular heterogeneity present in these samples. Standard deconvolution algorithms require prior knowledge of the cell type frequencies within a tissue or their in vitro expression profiles. Furthermore, these algorithms tend to report biased estimations. Here, we describe a Digital Sorting Algorithm (DSA) for extracting cell-type specific gene expression profiles from mixed tissue samples that is unbiased and does not require prior knowledge of cell type frequencies. The results suggest that DSA is a specific and sensitivity algorithm in gene expression profile deconvolution and will be useful in studying individual cell types of complex tissues.

  4. Ghrelin inhibits proliferation and increases T-type Ca2+ channel expression in PC-3 human prostate carcinoma cells

    International Nuclear Information System (INIS)

    Diaz-Lezama, Nundehui; Hernandez-Elvira, Mariana; Sandoval, Alejandro; Monroy, Alma; Felix, Ricardo; Monjaraz, Eduardo

    2010-01-01

    Research highlights: → Ghrelin decreases prostate carcinoma PC-3 cells proliferation. → Ghrelin favors apoptosis in PC-3 cells. → Ghrelin increase in intracellular free Ca 2+ levels in PC-3 cells. → Grelin up-regulates expression of T-type Ca 2+ channels in PC-3 cells. → PC-3 cells express T-channels of the Ca V 3.1 and Ca V 3.2 subtype. -- Abstract: Ghrelin is a multifunctional peptide hormone with roles in growth hormone release, food intake and cell proliferation. With ghrelin now recognized as important in neoplastic processes, the aim of this report is to present findings from a series of in vitro studies evaluating the cellular mechanisms involved in ghrelin regulation of proliferation in the PC-3 human prostate carcinoma cells. The results showed that ghrelin significantly decreased proliferation and induced apoptosis. Consistent with a role in apoptosis, an increase in intracellular free Ca 2+ levels was observed in the ghrelin-treated cells, which was accompanied by up-regulated expression of T-type voltage-gated Ca 2+ channels. Interestingly, T-channel antagonists were able to prevent the effects of ghrelin on cell proliferation. These results suggest that ghrelin inhibits proliferation and may promote apoptosis by regulating T-type Ca 2+ channel expression.

  5. Isosteviol has beneficial effects on palmitate-induced α-cell dysfunction and gene expression.

    Directory of Open Access Journals (Sweden)

    Xiaoping Chen

    Full Text Available BACKGROUND: Long-term exposure to high levels of fatty acids impairs insulin secretion and exaggerates glucagon secretion. The aim of this study was to explore if the antihyperglycemic agent, Isosteviol (ISV, is able to counteract palmitate-induced α-cell dysfunction and to influence α-cell gene expression. METHODOLOGY/PRINCIPAL FINDINGS: Long-term incubation studies with clonal α-TC1-6 cells were performed in the presence of 0.5 mM palmitate with or without ISV. We investigated effects on glucagon secretion, glucagon content, cellular triglyceride (TG content, cell proliferation, and expression of genes involved in controlling glucagon synthesis, fatty acid metabolism, and insulin signal transduction. Furthermore, we studied effects of ISV on palmitate-induced glucagon secretion from isolated mouse islets. Culturing α-cells for 72-h with 0.5 mM palmitate in the presence of 18 mM glucose resulted in a 56% (p<0.01 increase in glucagon secretion. Concomitantly, the TG content of α-cells increased by 78% (p<0.01 and cell proliferation decreased by 19% (p<0.05. At 18 mM glucose, ISV (10(-8 and 10(-6 M reduced palmitate-stimulated glucagon release by 27% (p<0.05 and 27% (p<0.05, respectively. ISV (10(-6 M also counteracted the palmitate-induced hypersecretion of glucagon in mouse islets. ISV (10(-6 M reduced α-TC1-6 cell proliferation rate by 25% (p<0.05, but ISV (10(-8 and 10(-6 M had no effect on TG content in the presence of palmitate. Palmitate (0.5 mM increased Pcsk2 (p<0.001, Irs2 (p<0.001, Fasn (p<0.001, Srebf2 (p<0.001, Acaca (p<0.01, Pax6 (p<0.05 and Gcg mRNA expression (p<0.05. ISV significantly (p<0.05 up-regulated Insr, Irs1, Irs2, Pik3r1 and Akt1 gene expression in the presence of palmitate. CONCLUSIONS/SIGNIFICANCE: ISV counteracts α-cell hypersecretion and apparently contributes to changes in expression of key genes resulting from long-term exposure to palmitate. ISV apparently acts as a glucagonostatic drug with potential as a

  6. Site-specific effects of apolipoprotein E expression on diet-induced obesity and white adipose tissue metabolic activation.

    Science.gov (United States)

    Hatziri, Aikaterini; Kalogeropoulou, Christina; Xepapadaki, Eva; Birli, Eleni; Karavia, Eleni A; Papakosta, Eugenia; Filou, Serafoula; Constantinou, Caterina; Kypreos, Kyriakos E

    2018-02-01

    Apolipoprotein E (APOE) has been strongly implicated in the development of diet induced obesity. In the present study, we investigated the contribution of brain and peripherally expressed human apolipoprotein E3 (APOE3), the most common human isoform, to diet induced obesity. In our studies APOE3 knock-in (Apoe3 knock-in ), Apoe-deficient (apoe -/- ) and brain-specific expressing APOE3 (Apoe3 brain ) mice were fed western-type diet for 12week and biochemical analyses were performed. Moreover, AAV-mediated gene transfer of APOE3 to apoe -/- mice was employed, as a means to achieve APOE3 expression selectively in periphery, since peripherally expressed APOE does not cross blood brain barrier (BBB) or blood-cerebrospinal fluid barrier (BCSFB). Our data suggest a bimodal role of APOE3 in visceral white adipose tissue (WAT) mitochondrial metabolic activation that is highly dependent on its site of expression and independent of postprandial dietary lipid deposition. Our findings indicate that brain APOE3 expression is associated with a potent inhibition of visceral WAT mitochondrial oxidative phosphorylation, leading to significantly reduced substrate oxidation, increased fat accumulation and obesity. In contrast, peripherally expressed APOE3 is associated with a notable shift of substrate oxidation towards non-shivering thermogenesis in visceral WAT mitochondria, leading to resistance to obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Analysis of cell-type-specific gene expression during mouse spermatogenesis

    DEFF Research Database (Denmark)

    Almstrup, Kristian; Nielsen, John E; Hansen, Martin Asser

    2004-01-01

    In rodents, changes in gene expression during spermatogenesis can be monitored by sampling testis from each day during postnatal development. However, changes in gene expression at the tissue level can reflect changes in the concentration of an mRNA in a specific cell type, changes in volume of s...

  8. Constitutive and inducible expression of SKALP/elafin provides anti-elastase defense in human epithelia.

    Science.gov (United States)

    Pfundt, R; van Ruissen, F; van Vlijmen-Willems, I M; Alkemade, H A; Zeeuwen, P L; Jap, P H; Dijkman, H; Fransen, J; Croes, H; van Erp, P E; Schalkwijk, J

    1996-01-01

    Skin-derived antileukoproteinase (SKALP), also known as elafin, is a serine proteinase inhibitor first discovered in keratinocytes from hyperproliferative human epidermis. In addition to the proteinase inhibiting domain which is directed against polymorphonuclear leukocyte (PMN) derived enzymes such as elastase and proteinase 3, SKALP contains multiple transglutaminase (TGase) substrate domains which enable crosslinking to extracellular and cell envelope proteins. Here we show that SKALP is constitutively expressed in several epithelia that are continuously subjected to inflammatory stimuli, such as the oral cavity and the vagina where it co-localizes with type 1 TGase. All epithelia from sterile body cavities are negative for SKALP. In general, stratified squamous epithelia are positive, whereas pseudostratified epithelia, simple/glandular epithelia and normal epidermis are negative. SKALP was found in fetal tissues of the oral cavity from 17 wk gestation onwards where it continued to be expressed up to adult life. Remarkably, in fetal epidermis SKALP was found from week 28 onwards, but was downregulated to undetectable levels in neonatal skin within three months, suggesting a role during pregnancy in feto-maternal interactions or in the early maturation phase of the epidermis. Immunoelectron microscopy revealed the presence of SKALP in secretory vesicles including the lamellar granules. In culture models for epidermal keratinocytes we found that expression of the endogenous SKALP gene provided protection against cell detachment caused by purified elastase or activated PMNs. Addition of exogenous recombinant SKALP fully protected the keratinocytes against PMN-dependent detachment whereas superoxide dismutase and catalase were only marginally effective. These findings strongly suggest that the constitutive expression of SKALP in squamous epithelia, and the inducible expression in epidermis participate in the control of epithelial integrity, by inhibiting PMN

  9. Thymoquinone inhibits phorbol ester-induced activation of NF-κB and expression of COX-2, and induces expression of cytoprotective enzymes in mouse skin in vivo

    International Nuclear Information System (INIS)

    Kundu, Joydeb Kumar; Liu, Lijia; Shin, Jun-Wan; Surh, Young-Joon

    2013-01-01

    Highlights: •Thymoquinone inhibits phorbol ester-induced COX-2 expression in mouse skin. •Thymoquinone attenuates phosphorylation of IκBα and DNA binding of NF-κB in mouse skin. •Thymoquinone inhibits phosphorylation of p38 MAP kinase, JNK and Akt in mouse skin. •Thymoquinone induces the expression of cytoprotective proteins in mouse skin. -- Abstract: Thymoquinone (TQ), the active ingredient of Nigella sativa, has been reported to possess anti-inflammatory and chemopreventive properties. The present study was aimed at elucidating the molecular mechanisms of anti-inflammatory and antioxidative activities of thymoquinone in mouse skin. Pretreatment of female HR-1 hairless mouse skin with TQ attenuated 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced expression of cyclooxygenase-2 (COX-2). TQ diminished nuclear translocation and the DNA binding of nuclear factor-kappaB (NF-κB) via the blockade of phosphorylation and subsequent degradation of IκBα in TPA-treated mouse skin. Pretreatment with TQ attenuated the phosphorylation of Akt, c-Jun-N-terminal kinase and p38 mitogen-activated protein kinase, but not that of extracellular signal-regulated kinase-1/2. Moreover, topical application of TQ induced the expression of heme oxygenase-1, NAD(P)H-quinoneoxidoreductase-1, glutathione-S-transferase and glutamate cysteine ligase in mouse skin. Taken together, the inhibitory effects of TQ on TPA-induced COX-2 expression and NF-κB activation, and its ability to induce the expression of cytoprotective proteins provide a mechanistic basis of anti-inflammatory and antioxidative effects of TQ in hairless mouse skin

  10. A quantitative comparison of cell-type-specific microarray gene expression profiling methods in the mouse brain.

    Directory of Open Access Journals (Sweden)

    Benjamin W Okaty

    Full Text Available Expression profiling of restricted neural populations using microarrays can facilitate neuronal classification and provide insight into the molecular bases of cellular phenotypes. Due to the formidable heterogeneity of intermixed cell types that make up the brain, isolating cell types prior to microarray processing poses steep technical challenges that have been met in various ways. These methodological differences have the potential to distort cell-type-specific gene expression profiles insofar as they may insufficiently filter out contaminating mRNAs or induce aberrant cellular responses not normally present in vivo. Thus we have compared the repeatability, susceptibility to contamination from off-target cell-types, and evidence for stress-responsive gene expression of five different purification methods--Laser Capture Microdissection (LCM, Translating Ribosome Affinity Purification (TRAP, Immunopanning (PAN, Fluorescence Activated Cell Sorting (FACS, and manual sorting of fluorescently labeled cells (Manual. We found that all methods obtained comparably high levels of repeatability, however, data from LCM and TRAP showed significantly higher levels of contamination than the other methods. While PAN samples showed higher activation of apoptosis-related, stress-related and immediate early genes, samples from FACS and Manual studies, which also require dissociated cells, did not. Given that TRAP targets actively translated mRNAs, whereas other methods target all transcribed mRNAs, observed differences may also reflect translational regulation.

  11. Mating-type genes from the homothallic fungus Sordaria macrospora are functionally expressed in a heterothallic ascomycete.

    Science.gov (United States)

    Pöggeler, S; Risch, S; Kück, U; Osiewacz, H D

    1997-10-01

    Homokaryons from the homothallic ascomycte Sordaria macrospora are able to enter the sexual pathway and to form fertile fruiting bodies. To analyze the molecular basis of homothallism and to elucidate the role of mating-products during fruiting body development, we cloned and sequenced the entire S. macrospora mating-type locus. Comparison of the Sordaria mating-type locus with mating-type idiomorphs from the heterothallic ascomycetes Neurospora crassa and Podospora anserina revealed that sequences from both idiomorphs (A/a and mat-/mat+, respectively) are contiguous in S. macrospora. DNA sequencing of the S. macrospora mating-type region allowed the identification of four open reading frames (ORFs), which were termed Smt-a1, SmtA-1, SmtA-2 and SmtA-3. While Smt-a1, SmtA-1, and SmtA-2 show strong sequence similarities with the corresponding N. crassa mating-type ORFs, SmtA-3 has a chimeric character. It comprises sequences that are similar to the A and a mating-type idiomorph from N. crassa. To determine functionality of the S. macrospora mating-type genes, we show that all ORFs are transcriptionally expressed. Furthermore, we transformed the S. macrospora mating-type genes into mat- and mat+ strains of the closely related heterothallic fungus P. anserina. The transformation experiments show that mating-type genes from S. macrospora induce fruiting body formation in P. anserina.

  12. HTLV-1 bZIP factor induces inflammation through labile Foxp3 expression.

    Directory of Open Access Journals (Sweden)

    Nanae Yamamoto-Taguchi

    2013-09-01

    Full Text Available Human T-cell leukemia virus type 1 (HTLV-1 causes both a neoplastic disease and inflammatory diseases, including HTLV-1-associated myelopathy/tropical spastic paraparesis (HAM/TSP. The HTLV-1 basic leucine zipper factor (HBZ gene is encoded in the minus strand of the proviral DNA and is constitutively expressed in infected cells and ATL cells. HBZ increases the number of regulatory T (Treg cells by inducing the Foxp3 gene transcription. Recent studies have revealed that some CD4⁺Foxp3⁺ T cells are not terminally differentiated but have a plasticity to convert to other T-cell subsets. Induced Treg (iTreg cells tend to lose Foxp3 expression, and may acquire an effector phenotype accompanied by the production of inflammatory cytokines, such as interferon-γ (IFN-γ. In this study, we analyzed a pathogenic mechanism of chronic inflammation related with HTLV-1 infection via focusing on HBZ and Foxp3. Infiltration of lymphocytes was observed in the skin, lung and intestine of HBZ-Tg mice. As mechanisms, adhesion and migration of HBZ-expressing CD4⁺ T cells were enhanced in these mice. Foxp3⁻CD4⁺ T cells produced higher amounts of IFN-γ compared to those from non-Tg mice. Expression of Helios was reduced in Treg cells from HBZ-Tg mice and HAM/TSP patients, indicating that iTreg cells are predominant. Consistent with this finding, the conserved non-coding sequence 2 region of the Foxp3 gene was hypermethylated in Treg cells of HBZ-Tg mice, which is a characteristic of iTreg cells. Furthermore, Treg cells in the spleen of HBZ-transgenic mice tended to lose Foxp3 expression and produced an excessive amount of IFN-γ, while Foxp3 expression was stable in natural Treg cells of the thymus. HBZ enhances the generation of iTreg cells, which likely convert to Foxp3⁻T cells producing IFN-γ. The HBZ-mediated proinflammatory phenotype of CD4⁺ T cells is implicated in the pathogenesis of HTLV-1-associated inflammation.

  13. Activity deprivation induces neuronal cell death: mediation by tissue-type plasminogen activator.

    Directory of Open Access Journals (Sweden)

    Eldi Schonfeld-Dado

    Full Text Available Spontaneous activity is an essential attribute of neuronal networks and plays a critical role in their development and maintenance. Upon blockade of activity with tetrodotoxin (TTX, neurons degenerate slowly and die in a manner resembling neurodegenerative diseases-induced neuronal cell death. The molecular cascade leading to this type of slow cell death is not entirely clear. Primary post-natal cortical neurons were exposed to TTX for up to two weeks, followed by molecular, biochemical and immunefluorescence analysis. The expression of the neuronal marker, neuron specific enolase (NSE, was down-regulated, as expected, but surprisingly, there was a concomitant and striking elevation in expression of tissue-type plasminogen activator (tPA. Immunofluorescence analysis indicated that tPA was highly elevated inside affected neurons. Transfection of an endogenous tPA inhibitor, plasminogen activator inhibitor-1 (PAI-1, protected the TTX-exposed neurons from dying. These results indicate that tPA is a pivotal player in slowly progressing activity deprivation-induced neurodegeneration.

  14. Expression weighted cell type enrichments reveal genetic and cellular nature of major brain disorders

    Directory of Open Access Journals (Sweden)

    Nathan Gerald Skene

    2016-01-01

    Full Text Available The cell types that trigger the primary pathology in many brain diseases remain largely unknown. One route to understanding the primary pathological cell type for a particular disease is to identify the cells expressing susceptibility genes. Although this is straightforward for monogenic conditions where the causative mutation may alter expression of a cell type specific marker, methods are required for the common polygenic disorders. We developed the Expression Weighted Cell Type Enrichment (EWCE method that uses single cell transcriptomes to generate the probability distribution associated with a gene list having an average level of expression within a cell type. Following validation, we applied EWCE to human genetic data from cases of epilepsy, Schizophrenia, Autism, Intellectual Disability, Alzheimer’s disease, Multiple Sclerosis and anxiety disorders. Genetic susceptibility primarily affected microglia in Alzheimer’s and Multiple Sclerosis; was shared between interneurons and pyramidal neurons in Autism and Schizophrenia; while intellectual disabilities and epilepsy were attributable to a range of cell-types, with the strongest enrichment in interneurons. We hypothesised that the primary cell type pathology could trigger secondary changes in other cell types and these could be detected by applying EWCE to transcriptome data from diseased tissue. In Autism, Schizophrenia and Alzheimer’s disease we find evidence of pathological changes in all of the major brain cell types. These findings give novel insight into the cellular origins and progression in common brain disorders. The methods can be applied to any tissue and disorder and have applications in validating mouse models.

  15. Suppression of interleukin-6-induced C-reactive protein expression by FXR agonists

    International Nuclear Information System (INIS)

    Zhang Songwen; Liu Qiangyuan; Wang Juan; Harnish, Douglas C.

    2009-01-01

    C-reactive protein (CRP), a human acute-phase protein, is a risk factor for future cardiovascular events and exerts direct pro-inflammatory and pro-atherogenic properties. The farnesoid X receptor (FXR), a member of the nuclear hormone receptor superfamily, plays an essential role in the regulation of enterohepatic circulation and lipid homeostasis. In this study, we report that two synthetic FXR agonists, WAY-362450 and GW4064, suppressed interleukin-6-induced CRP expression in human Hep3B hepatoma cells. Knockdown of FXR by short interfering RNA attenuated the inhibitory effect of the FXR agonists and also increased the ability of interleukin-6 to induce CRP production. Furthermore, treatment of wild type C57BL/6 mice with the FXR agonist, WAY-362450, attenuated lipopolysaccharide-induced serum amyloid P component and serum amyloid A3 mRNA levels in the liver, whereas no effect was observed in FXR knockout mice. These data provide new evidence for direct anti-inflammatory properties of FXR.

  16. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract

    DEFF Research Database (Denmark)

    Connell, Hugh; Agace, William; Klemm, Per

    1996-01-01

    of Escherichia coli for the urinary tract by promoting bacterial persistence and enhancing the inflammatory responce to infection. In a clinical study, we observed that disease severity was greater in children infected with E. coli O1:K1:H7 isolates expressing type 1 fimbriae than in those infected with type 1...... negative isolates of the same serotype. The E. coli O1:K1:H7 isolates had the same electrophoretic type, were hemolysin-negative, expressed P fimbriae, and carried the fim DNA sequences. When tested in a mouse urinary tract infection model, the type 1-positive E. coli O1:K1:H7 isolates survived inhigher...... urinary tract infection model. E. coli CN1016 reconstituted with type 1 fimbriae had restored virulence similar to that of the wild-type parent strain. These results show that type 1 fimbriae in the genetic background of a uropathogenic strain contribute to the pathogenesis of E. coli in the urinary tract....

  17. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum.

    Science.gov (United States)

    Heiss, Silvia; Hörmann, Angelika; Tauer, Christopher; Sonnleitner, Margot; Egger, Esther; Grabherr, Reingard; Heinl, Stefan

    2016-03-10

    Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl β-D-thiogalactopyranoside) and IPTG (isopropyl β-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a

  18. Gene expression profiling distinguishes between spontaneous and radiation-induced rat mammary carcinomas

    International Nuclear Information System (INIS)

    Imaoka, Tatsuhiko; Nishimura, Mayumi; Kakinuma, Shizuko; Shimada, Yoshiya; Yamashita, Satoshi; Ushijima, Toshikazu

    2008-01-01

    The ability to distinguish between spontaneous and radiation-induced cancers in humans is expected to improve the resolution of estimated risk from low dose radiation. Mammary carcinomas were obtained from Sprague-Dawley rats that were either untreated (n=45) or acutely γ-irradiated (1 Gy; n=20) at seven weeks of age. Gene expression profiles of three spontaneous and four radiation-induced carcinomas, as well as those of normal mammary glands, were analyzed by microarrays. Differential expression of identified genes of interest was then verified by quantitative polymerase chain reaction (qPCR). Cluster analysis of global gene expression suggested that spontaneous carcinomas were distinguished from a heterogeneous population of radiation-induced carcinomas, though most gene expressions were common. We identified 50 genes that had different expression levels between spontaneous and radiogenic carcinomas. We then selected 18 genes for confirmation of the microarray data by qPCR analysis and obtained the following results: high expression of Plg, Pgr and Wnt4 was characteristic to all spontaneous carcinomas; Tnfsf11, Fgf10, Agtr1a, S100A9 and Pou3f3 showed high expression in a subset of radiation-induced carcinomas; and increased Gp2, Areg and Igf2 expression, as well as decreased expression of Ca3 and noncoding RNA Mg1, were common to all carcinomas. Thus, gene expression analysis distinguished between spontaneous and radiogenic carcinomas, suggesting possible differences in their carcinogenic mechanism. (author)

  19. Behavioral experience induces zif268 expression in mature granule cells but suppresses its expression in immature granule cells

    Science.gov (United States)

    Huckleberry, Kylie A.; Kane, Gary A.; Mathis, Rita J.; Cook, Sarah G.; Clutton, Jonathan E.; Drew, Michael R.

    2015-01-01

    Thousands of neurons are born each day in the dentate gyrus (DG), but many of these cells die before reaching maturity. Both death and survival of adult-born neurons are regulated by neuronal activity in the DG. The immediate-early gene (IEG) zif268 appears to be an important mediator of these effects, as its expression can be induced by neural activity and knockout of zif268 impairs survival of adult-born neurons (Richardson et al., 1992; Veyrac et al., 2013). Despite the apparent importance of zif268 for adult neurogenesis, its behavior-induced expression has not been fully characterized in adult-born neurons. Here we characterize behavior-evoked expression of zif268 in mature and newborn dentate granule cells (DGCs). We first quantified zif268 expression in doublecortin-positive (DCX+) immature neurons and in the general granule cell population after brief exposure to a novel environment (NE). In the general granule cell population, zif268 expression peaked 1 h after NE exposure and returned to baseline by 8 h post-exposure. However, in the DCX+ cells, zif268 expression was suppressed relative to home cage for at least 8 h post-exposure. We next asked whether suppression of zif268 in DCX+ immature cells occurs in other behavioral paradigms that recruit the hippocampus. Exposure to Morris water maze (MWM) training, an enriched environment, or a NE caused approximately equal suppression of zif268 expression in DCX+ cells and approximately equal activation of zif268 expression among the general granule cell population. The same behavioral procedures activated zif268 expression in 6-week-old BrdU-labeled adult-born neurons, indicating that zif268 suppression is specific to immature neurons. Finally, we asked whether zif268 suppression varied as a function of age within the DCX+ population, which ranges in age from 0 to approximately 4 weeks. NE exposure had no significant effect on zif268 expression in 2- or 4-week-old BrdU-labeled neurons, but it significantly

  20. [Intervention of pyrrolidine dithiocarbamate on expressions of connective tissue growth factor, type I collagen, and type III collage in acute paraquat poisoned rats].

    Science.gov (United States)

    Huang, Min; Yang, Hui-fang; Zhang, Ping; Chang, Xiu-li; Zhou, Zhi-jun

    2013-01-01

    To observe the changes in the expression of connective tissue growth factor (CTGF), type I collagen (Col I), and type III collagen (Col III) among the rats with acute paraquat (PQ) poisoning and the intervention effect of pyrrolidine dithiocarbamate (PDTC) on their expression, and to investigate the mechanism of PQ-induced pulmonary fibrosis and the intervention effect of PDTC on the disease. Sprague-Dawley rats were randomly divided into control group (n = 6), PQ group (n = 36), and PQ + PDTC group (n = 36). The PQ group and PQ + PDTC group were given a single dose of saline-diluted PQ (80 mg/kg) by gavage; 2 h later, the PQ + PDTC group was intraperitoneally injected with a single dose of PDTC (100 mg/kg), and the PQ group was intraperitoneally injected with the same amount of saline. The control group was given saline (1 ml/kg) by gavage and was intraperitoneally injected with the same amount of saline 2h later. At 1, 3, 7, 14, 25, and 56 days after operation, the protein expression of CTGF was evaluated by Western blot; the mRNA expression of CTGF, Col I, and Col III was analyzed by real-time quantitative PCR; the content of hydroxyproline in lung tissue was measured, and the pathological changes of lung tissue of the poisoned rats were observed. The protein expression of CTGF in the PQ group increased as the time went on, slowly from the 3rd to the 14th day and rapidly from the 28th to the 56th day, significantly higher than that in the control group at each time point (P < 0.05 or P < 0.01). The mRNA expression of CTGF in the PQ group began to rise markedly on the 1st day, increased rapidly from the 3rd to the 14th day, and remained at a relatively high level from the 28th to the 56th day, significantly higher than that in the control group at each time point (P < 0.01). The mRNA expression of Col I in the PQ group changed little on the 1st and 3rd day, increased slightly on the 7th day, and increased greatly from the 14th to the 56th day, significantly

  1. IL-1 receptor antagonism and muscle gene expression in patients with type 2 diabetes

    DEFF Research Database (Denmark)

    Berchtold, L. A.; Larsen, C. M.; Vaag, A.

    2009-01-01

    ). To investigate the effects of IL-1Ra in insulin-sensitive tissue, gene expression levels in skeletal muscle from type 2 diabetic patients treated with IL-1Ra were analysed. Methods. Gene expression profiles in vastus lateralis muscle biopsies from five obese patients (BMI>27) were determined before and after 13......RT-PCR, were significantly altered when comparing the number of transcripts before and after treatment for each individual. Conclusion. Treatment with IL-1Ra did not significantly affect gene expression levels in skeletal muscle in this limited and selected sample of obese patients with type 2 diabetes. Larger...

  2. Comments on Georgeff's Transformation and Reduction Strategies for Typed Lambda Expressions

    DEFF Research Database (Denmark)

    Nielson, Flemming; Nielson, Hanne Riis

    1986-01-01

    In his recent paper, Georgeff [1] considers the evaluation of lambda expres sions (with reducing reflexive types) on a variant of Landin's SECD machine. It is observed that for so-called simple expressions the SECD machine will construct stack-like environment structures, whereas, in general......, they are tree-like. Georgeff then explores the idea of transforming any (typed) lambda expression into simple form and then using the SECD machine for these expressions. However, such transformations might be undesirable if the language is going to be interpreted directly. This leads Georgeff to modify the SECD...

  3. Method to induce a conductivity type in a semiconductor

    International Nuclear Information System (INIS)

    Aboaf, J.A.; Sedgwick, T.O.

    1977-01-01

    The invention deals with a method in which one can produce a region of a desired type of conductivity in a semiconductor as is required for, e.g., field effect transistors. A metal oxide layer combination consisting of several metal oxides is thus deposited on the semiconductor. This is carried out according to the invention in a non-oxidizing atmosphere at temperatures at which the metal oxides do not diffuse into the semiconductor. The sign and degree of the induced conductivity type is adjusted by dosed depositing of the individual metal oxides related to one another. The gaseous metal oxides due to heating, mixed with a non-oxidizing gas are added in compounds to the semiconductor heated to depositing temperature. These compounds decompose at the depositing temperature into the metal oxide and a gaseous residual component. The semiconductor consists of silicon, and nitrogen is used as carrier gas; when depositing aluminium oxide, gaseous aluminium isopropoxide is added; when depositing silicon dioxide, gaseous tetra-ethyl orthosilicate. (ORU) [de

  4. Mucosal Progranulin expression is induced by H. pylori, but independent of Secretory Leukocyte Protease Inhibitor (SLPI expression

    Directory of Open Access Journals (Sweden)

    Treiber Gerhard

    2011-05-01

    Full Text Available Abstract Background Mucosal levels of Secretory Leukocyte Protease Inhibitor (SLPI are specifically reduced in relation to H. pylori-induced gastritis. Progranulin is an epithelial growth factor that is proteolytically degraded into fragments by elastase (the main target of SLPI. Considering the role of SLPI for regulating the activity of elastase, we studied whether the H. pylori-induced reduction of SLPI and the resulting increase of elastase-derived activity would reduce the Progranulin protein levels both ex vivo and in vitro. Methods The expression of Progranulin was studied in biopsies of H. pylori-positive, -negative and -eradicated subjects as well as in the gastric tumor cell line AGS by ELISA, immunohistochemistry and real-time RT-PCR. Results H. pylori-infected subjects had about 2-fold increased antral Progranulin expression compared to H. pylori-negative and -eradicated subjects (P H. pylori infection; both epithelial and infiltrating immune cells contributed to the higher Progranulin expression levels. The H. pylori-induced upregulation of Progranulin was verified in AGS cells infected by H. pylori. The down-regulation of endogenous SLPI expression in AGS cells by siRNA methodology did not affect the Progranulin expression independent of the infection by H. pylori. Conclusions Taken together, Progranulin was identified as novel molecule that is upregulated in context to H. pylori infection. In contrast to other diseases, SLPI seems not to have a regulatory role for Progranulin in H. pylori-mediated gastritis.

  5. Effect of GLP-1 on the expression of NADPH oxidase subunits in the kidney of type 1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Jin-jin LIU

    2013-09-01

    Full Text Available Objective To observe the effect of exenatide, a glucagon-like peptide-1 (GLP-1 receptor agonist, on the expression of NADPH oxidase subunits NOX4 and p22phox and connective tissue growth factor (CTGF in the kidney of streptozotocin (STZ-induced type 1 diabetic rats, and explore the protective effects and mechanisms of exenatide on the kidney of diabetic rats. Methods Thirty male Sprague-Dawley (SD rats were divided into control group (group A, n=7 and diabetic model group (n=23. Type 1 diabetic model was reproduced by intraperitoneal injection of streptozotocin. It was successful in 19 rats. Diabetic rats were randomly divided into diabetic control group (group B, n=10 and diabetic with treatment of exenatide group (group C, n=9. Rats in group C were injected subcutaneously with exenatide in dose of 5μg/kg twice daily. Rats in group A and B were given equivalent volume of normal saline by subcutaneous injection. All rats were sacrificed after eight weeks. The mRNA expression of renal p22phox and NOX4 were detected by real-time fluorescence quantitative PCR. The protein expression of CTGF was detected by immunohistochemical staining. Results The levels of blood glucose, lipids, creatinine, and urea nitrogen, the albumin excretion rate, kidney index, the mRNA expressions of renal NOX4 and p22phox, and the protein expression of renal CTGF were significantly increased in group B compared with that in group A (P0.05. Conclusion Exenatide can decrease the expressions of renal NOX4, p22phox and CTGF, decline the index of urinary protein, and alleviate the kidney hypertrophy in type 1 diabetic rats, implying that exenatide exerted a protective effect on the kidney.

  6. Synthetic triterpenoid induces 15-PGDH expression and suppresses inflammation-driven colon carcinogenesis.

    Science.gov (United States)

    Choi, Sung Hee; Kim, Byung-Gyu; Robinson, Janet; Fink, Steve; Yan, Min; Sporn, Michael B; Markowitz, Sanford D; Letterio, John J

    2014-06-01

    Colitis-associated colon cancer (CAC) develops as a result of inflammation-induced epithelial transformation, which occurs in response to inflammatory cytokine-dependent downregulation of 15-hydroxyprostaglandin dehydrogenase (15-PGDH) and subsequent suppression of prostaglandin metabolism. Agents that both enhance 15-PGDH expression and suppress cyclooxygenase-2 (COX-2) production may more effectively prevent CAC. Synthetic triterpenoids are a class of small molecules that suppress COX-2 as well as inflammatory cytokine signaling. Here, we found that administration of the synthetic triterpenoid 2-cyano-3,12-dioxooleana-1,9(11)-dien-C28-methyl ester (CDDO-Me) suppresses CAC in mice. In a spontaneous, inflammation-driven intestinal neoplasia model, deletion of Smad4 specifically in T cells led to progressive production of inflammatory cytokines, including TNF-α, IFN-γ, iNOS, IL-6, IL-1β; as well as activation of STAT1 and STAT3; along with suppression of 15-PGDH expression. Oral administration of CDDO-Me to mice with SMAD4-deficient T cells increased survival and suppressed intestinal epithelial neoplasia by decreasing production of inflammatory mediators and increasing expression of 15-PGDH. Induction of 15-PGDH by CDDO-Me was dose dependent in epithelial cells and was abrogated following treatment with TGF-β signaling inhibitors in vitro. Furthermore, CDDO-Me-dependent 15-PGDH induction was not observed in Smad3-/- mice. Similarly, CDDO-Me suppressed azoxymethane plus dextran sodium sulfate-induced carcinogenesis in wild-type animals, highlighting the potential of small molecules of the triterpenoid family as effective agents for the chemoprevention of CAC in humans.

  7. Fatty acid induced changes in gene expression in cultured L6 rat muscle cells : An in vitro model on high dietary fat-induced insulin resistance in red gastrocnemius rat muscle in vivo

    OpenAIRE

    Breivik, Børge

    2004-01-01

    ABSTRACT Type 2 diabetes is a serious cause of morbidity and mortality and the disease is reaching epidemic proportions in the developed world. A core defect in type 2 diabetes is insulin resistance in skeletal muscle. Previous global gene expression experiments conducted at the Garvan Medical Research Institute has shown that 3 weeks high fat feeding induced increased expression of stress related genes in rat muscle. These stress-related genes could be involved in the devel...

  8. Induced resistance and gene expression in wheat against leaf rust ...

    African Journals Online (AJOL)

    uvp

    2013-05-15

    May 15, 2013 ... 2Department of Soil, Crop and Climate Sciences, University of the Free State, P.O Box ... Key words: Wheat leaf rust, induced resistance, priming, gene ..... transformation: susceptibility of transgenic Nicotiana sylvestris plants.

  9. Ligand Binding Domain Protein in Tetracycline-Inducible Expression ...

    African Journals Online (AJOL)

    binding domain proteins in E. coli using a tetracycline inducible system. To allow for ... development of molecular ligands with improved therapeutic windows. Keywords: Nuclear receptor ..... functional recombinant cannabinoid receptor CB2 in ...

  10. Glycosyltransferase Gene Expression Profiles Classify Cancer Types and Propose Prognostic Subtypes

    Science.gov (United States)

    Ashkani, Jahanshah; Naidoo, Kevin J.

    2016-05-01

    Aberrant glycosylation in tumours stem from altered glycosyltransferase (GT) gene expression but can the expression profiles of these signature genes be used to classify cancer types and lead to cancer subtype discovery? The differential structural changes to cellular glycan structures are predominantly regulated by the expression patterns of GT genes and are a hallmark of neoplastic cell metamorphoses. We found that the expression of 210 GT genes taken from 1893 cancer patient samples in The Cancer Genome Atlas (TCGA) microarray data are able to classify six cancers; breast, ovarian, glioblastoma, kidney, colon and lung. The GT gene expression profiles are used to develop cancer classifiers and propose subtypes. The subclassification of breast cancer solid tumour samples illustrates the discovery of subgroups from GT genes that match well against basal-like and HER2-enriched subtypes and correlates to clinical, mutation and survival data. This cancer type glycosyltransferase gene signature finding provides foundational evidence for the centrality of glycosylation in cancer.

  11. Do cysteine residues regulate transient receptor potential canonical type 6 (TRPC6) channel protein expression?

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Krueger, Katharina

    2012-01-01

    The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed that patie......The regulation of calcium influx through transient receptor potential canonical type 6 channel is mandatory for the activity of human monocytes. We submit the first evidence that cysteine residues of homocysteine or acetylcysteine affect TRPC6 expression in human monocytes. We observed...... that patients with chronic renal failure had significantly elevated homocysteine levels and TRPC6 mRNA expression levels in monocytes compared to control subjects. We further observed that administration of homocysteine or acetylcysteine significantly increased TRPC6 channel protein expression compared...... to control conditions. We therefore hypothesize that cysteine residues increase TRPC6 channel protein expression in humans....

  12. Expression and purification of sea raven type II antifreeze protein from Drosophila melanogaster S2 cells.

    Science.gov (United States)

    Scotter, Andrew J; Kuntz, Douglas A; Saul, Michelle; Graham, Laurie A; Davies, Peter L; Rose, David R

    2006-06-01

    We present a system for the expression and purification of recombinant sea raven type II antifreeze protein, a cysteine-rich, C-type lectin-like globular protein that has proved to be a difficult target for recombinant expression and purification. The cDNAs encoding the pro- and mature forms of the sea raven protein were cloned into a modified pMT Drosophila expression vector. These constructs produced N-terminally His(6)-tagged pro- and mature forms of the type II antifreeze protein under the control of a metallothionein promoter when transfected into Drosophila melanogaster S2 cells. Upon induction of stable cell lines the two proteins were expressed at high levels and secreted into the medium. The proteins were then purified from the cell medium in a simple and rapid protocol using immobilized metal affinity chromatography and specific protease cleavage by tobacco etch virus protease. The proteins demonstrated antifreeze activity indistinguishable from that of wild-type sea raven antifreeze protein purified from serum as illustrated by ice affinity purification, ice crystal morphology, and their ability to inhibit ice crystal growth. This expression and purification system gave yields of 95 mg/L of fully active mature sea raven type II AFP and 9.6 mg/L of the proprotein. This surpasses all previous attempts to express this protein in Escherichia coli, baculovirus-infected fall armyworm cells and Pichia pastoris and will provide sufficient protein for structural analysis.

  13. Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis.

    Science.gov (United States)

    Postigo, Jorge; Iglesias, Marcos; Cerezo-Wallis, Daniela; Rosal-Vela, Antonio; García-Rodríguez, Sonia; Zubiaur, Mercedes; Sancho, Jaime; Merino, Ramón; Merino, Jesús

    2012-01-01

    CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice) indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II) immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA). We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1β and IL-6 expression, by the lack of induction of IFNγ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT) cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses.

  14. Mice deficient in CD38 develop an attenuated form of collagen type II-induced arthritis.

    Directory of Open Access Journals (Sweden)

    Jorge Postigo

    Full Text Available CD38, a type II transmembrane glycoprotein expressed in many cells of the immune system, is involved in cell signaling, migration and differentiation. Studies in CD38 deficient mice (CD38 KO mice indicate that this molecule controls inflammatory immune responses, although its involvement in these responses depends on the disease model analyzed. Here, we explored the role of CD38 in the control of autoimmune responses using chicken collagen type II (col II immunized C57BL/6-CD38 KO mice as a model of collagen-induced arthritis (CIA. We demonstrate that CD38 KO mice develop an attenuated CIA that is accompanied by a limited joint induction of IL-1β and IL-6 expression, by the lack of induction of IFNγ expression in the joints and by a reduction in the percentages of invariant NKT (iNKT cells in the spleen. Immunized CD38 KO mice produce high levels of circulating IgG1 and low of IgG2a anti-col II antibodies in association with reduced percentages of Th1 cells in the draining lymph nodes. Altogether, our results show that CD38 participates in the pathogenesis of CIA controlling the number of iNKT cells and promoting Th1 inflammatory responses.

  15. Transcriptional Enhancers Induce Insertional Gene Deregulation Independently From the Vector Type and Design

    Science.gov (United States)

    Maruggi, Giulietta; Porcellini, Simona; Facchini, Giulia; Perna, Serena K; Cattoglio, Claudia; Sartori, Daniela; Ambrosi, Alessandro; Schambach, Axel; Baum, Christopher; Bonini, Chiara; Bovolenta, Chiara; Mavilio, Fulvio; Recchia, Alessandra

    2009-01-01

    The integration characteristics of retroviral (RV) vectors increase the probability of interfering with the regulation of cellular genes, and account for a tangible risk of insertional mutagenesis in treated patients. To assess the potential genotoxic risk of conventional or self-inactivating (SIN) γ-RV and lentiviral (LV) vectors independently from the biological consequences of the insertion event, we developed a quantitative assay based on real-time reverse transcriptase—PCR on low-density arrays to evaluate alterations of gene expression in individual primary T-cell clones. We show that the Moloney leukemia virus long terminal repeat (LTR) enhancer has the strongest activity in both a γ-RV and a LV vector context, while an internal cellular promoter induces deregulation of gene expression less frequently, at a shorter range and to a lower extent in both vector types. Downregulation of gene expression was observed only in the context of LV vectors. This study indicates that insertional gene activation is determined by the characteristics of the transcriptional regulatory elements carried by the vector, and is largely independent from the vector type or design. PMID:19293778

  16. Bupivacaine-induced apoptosis independently of WDR35 expression in mouse neuroblastoma Neuro2a cells

    Science.gov (United States)

    2012-01-01

    Background Bupivacaine-induced neurotoxicity has been shown to occur through apoptosis. Recently, bupivacaine was shown to elicit reactive oxygen species (ROS) production and induce apoptosis accompanied by activation of p38 mitogen-activated protein kinase (MAPK) in a human neuroblastoma cell line. We have reported that WDR35, a WD40-repeat protein, may mediate apoptosis through caspase-3 activation. The present study was undertaken to test whether bupivacaine induces apoptosis in mouse neuroblastoma Neuro2a cells and to determine whether ROS, p38 MAPK, and WDR35 are involved. Results Our results showed that bupivacaine induced ROS generation and p38 MAPK activation in Neuro2a cells, resulting in apoptosis. Bupivacaine also increased WDR35 expression in a dose- and time-dependent manner. Hydrogen peroxide (H2O2) also increased WDR35 expression in Neuro2a cells. Antioxidant (EUK-8) and p38 MAPK inhibitor (SB202190) treatment attenuated the increase in caspase-3 activity, cell death and WDR35 expression induced by bupivacaine or H2O2. Although transfection of Neuro2a cells with WDR35 siRNA attenuated the bupivacaine- or H2O2-induced increase in expression of WDR35 mRNA and protein, in contrast to our previous studies, it did not inhibit the increase in caspase-3 activity in bupivacaine- or H2O2-treated cells. Conclusions In summary, our results indicated that bupivacaine induced apoptosis in Neuro2a cells. Bupivacaine induced ROS generation and p38 MAPK activation, resulting in an increase in WDR35 expression, in these cells. However, the increase in WDR35 expression may not be essential for the bupivacaine-induced apoptosis in Neuro2a cells. These results may suggest the existence of another mechanism of bupivacaine-induced apoptosis independent from WDR35 expression in Neuro2a cells. PMID:23227925

  17. Hypoxia-independent upregulation of placental hypoxia inducible factor-1α gene expression contributes to the pathogenesis of preeclampsia.

    Science.gov (United States)

    Iriyama, Takayuki; Wang, Wei; Parchim, Nicholas F; Song, Anren; Blackwell, Sean C; Sibai, Baha M; Kellems, Rodney E; Xia, Yang

    2015-06-01

    Accumulation of hypoxia inducible factor-1α (HIF-1α) is commonly an acute and beneficial response to hypoxia, whereas chronically elevated HIF-1α is associated with multiple disease conditions, including preeclampsia, a serious hypertensive disease of pregnancy. However, the molecular basis underlying the persistent elevation of placental HIF-1α in preeclampsia and its role in the pathogenesis of preeclampsia are poorly understood. Here we report that Hif-1α mRNA and HIF-1α protein were elevated in the placentas of pregnant mice infused with angiotensin II type I receptor agonistic autoantibody, a pathogenic factor in preeclampsia. Knockdown of placental Hif-1α mRNA by specific siRNA significantly attenuated hallmark features of preeclampsia induced by angiotensin II type I receptor agonistic autoantibody in pregnant mice, including hypertension, proteinuria, kidney damage, impaired placental vasculature, and elevated maternal circulating soluble fms-like tyrosine kinase-1 levels. Next, we discovered that Hif-1α mRNA levels and HIF-1α protein levels were induced in an independent preeclampsia model with infusion of the inflammatory cytokine tumor necrosis factor superfamily member 14 (LIGHT). SiRNA knockdown experiments also demonstrated that elevated HIF-1α contributed to LIGHT-induced preeclampsia features. Translational studies with human placentas showed that angiotensin II type I receptor agonistic autoantibody or LIGHT is capable of inducing HIF-1α in a hypoxia-independent manner. Moreover, increased HIF-1α was found to be responsible for angiotensin II type I receptor agonistic autoantibody or LIGHT-induced elevation of Flt-1 gene expression and production of soluble fms-like tyrosine kinase-1 in human villous explants. Overall, we demonstrated that hypoxia-independent stimulation of HIF-1α gene expression in the placenta is a common pathogenic mechanism promoting disease progression. Our findings reveal new insight to preeclampsia and highlight

  18. Distinctive expression pattern of OCT4 variants in different types of breast cancer.

    Science.gov (United States)

    Soheili, Saamaaneh; Asadi, Malek Hossein; Farsinejad, Alireza

    2017-01-01

    OCT4 is a key regulator of self-renewal and pluripotency in embryonic stem cells which can potentially encode three spliced variants designated OCT4A, OCT4B and OCT4B1. Based on cancer stem cell concept, it is suggested that the stemness factors misexpressed in cancer cells and potentially is involved in tumorigenesis. Accordingly, in this study, we investigated the potential expression of OCT4 variants in breast cancer tissues. A total of 94 tumoral and peritumoral breast specimens were evaluated with respect to the expression of OCT4 variants using quantitative RT-PCR and immunohistochemical (IHC) analysis. We detected the expression of OCT4 variants in breast tumor tissues with no or very low levels of expression in peritumoral samples of the same patients. While OCT4B was highly expressed in lobular type of breast cancer, OCT4A and OCTB1 variants are highly expressed in low grade (I and II) ductal tumors. Furthermore, the results of this study revealed a considerable association between the expression level of OCT4 variants and the expression of ER, PR, Her2 and P53 factors. All data demonstrated a distinctive expression pattern of OCT4 spliced variants in different types of breast cancer and provide further evidence for the involvement of embryonic genes in carcinogenesis.

  19. Effects of acute dietary iron overload in pigs (Sus scrofa) with induced type 2 diabetes mellitus.

    Science.gov (United States)

    Espinoza, A; Morales, S; Arredondo, M

    2014-06-01

    Epidemiological studies have reported an association between high iron (Fe) levels and elevated risk of developing type 2 diabetes mellitus (T2D). It is believed that the formation of Fe-catalyzed hydroxyl radicals may contribute to the development of diabetes. Our goal was to determine the effect of a diet with a high Fe content on type 2 diabetic pigs. Four groups of piglets were studied: (1) control group, basal diet; (2) Fe group, basal diet with 3,000 ppm ferrous sulfate; (3) diabetic group (streptozotocin-induced type 2 diabetes) with basal diet; (4) diabetic/Fe group, diabetic animals/3,000 ppm ferrous sulfate. For 2 months, biochemical and hematological parameters were evaluated. Tissue samples of liver and duodenum were obtained to determine mRNA relative abundance of DMT1, ferroportin (Fpn), ferritin (Fn), hepcidin (Hpc), and transferrin receptor by qRT-PCR. Fe group presented increased levels of hematological (erythrocytes, hematocrit, and hemoglobin) and iron parameters. Diabetic/Fe group showed similar behavior as Fe group but in lesser extent. The relative abundance of different genes in the four study groups yielded a different expression pattern. DMT1 showed a lower expression in the two iron groups compared with control and diabetic animals, and Hpc showed an increased on its expression in Fe and diabetic/Fe groups. Diabetic/Fe group presents greater expression of Fn and Fpn. These results suggest that there is an interaction between Fe nutrition, inflammation, and oxidative stress in the diabetes development.

  20. Activation of Adiponectin Receptor Regulates Proprotein Convertase Subtilisin/Kexin Type 9 Expression and Inhibits Lesions in ApoE-Deficient Mice.

    Science.gov (United States)

    Sun, Lei; Yang, Xiaoxiao; Li, Qi; Zeng, Peng; Liu, Ying; Liu, Lipei; Chen, Yuanli; Yu, Miao; Ma, Chuanrui; Li, Xiaoju; Li, Yan; Zhang, Rongxin; Zhu, Yan; Miao, Qing Robert; Han, Jihong; Duan, Yajun

    2017-07-01

    The reduced adiponectin levels are associated with atherosclerosis. Adiponectin exerts its functions by activating adiponectin receptor (AdipoR). Proprotein convertase subtilisin kexin type 9 (PCSK9) degrades LDLR protein (low-density lipoprotein receptor) to increase serum LDL-cholesterol levels. PCSK9 expression can be regulated by PPARγ (peroxisome proliferator-activated receptor γ) or SREBP2 (sterol regulatory element-binding protein 2). The effects of AdipoR agonists on PCSK9 and LDLR expression, serum lipid profiles, and atherosclerosis remain unknown. At cellular levels, AdipoR agonists (ADP355 and AdipoRon) induced PCSK9 transcription/expression that solely depended on activation of PPAR-responsive element in the PCSK9 promoter. AdipoR agonists induced PPARγ expression; thus, the AdipoR agonist-activated PCSK9 expression/production was impaired in PPARγ deficient hepatocytes. Meanwhile, AdipoR agonists transcriptionally activated LDLR expression by activating SRE in the LDLR promoter. Moreover, AMP-activated protein kinase α (AMPKα) was involved in AdipoR agonist-activated PCSK9 expression. In wild-type mice, ADP355 increased PCSK9 and LDLR expression and serum PCSK9 levels, which was associated with activation of PPARγ, AMPKα and SREBP2 and reduction of LDL-cholesterol levels. In contrast, ADP355 reduced PCSK9 expression/secretion in apoE-deficient (apoE -/- ) mice, but it still activated hepatic LDLR, PPARγ, AMPKα, and SREBP2. More importantly, ADP355 inhibited lesions in en face aortas and sinus lesions in aortic root in apoE -/- mice with amelioration of lipid profiles. Our study demonstrates that AdipoR activation by agonists regulated PCSK9 expression differently in wild-type and apoE -/- mice. However, ADP355 activated hepatic LDLR expression and ameliorated lipid metabolism in both types of mice and inhibited atherosclerosis in apoE -/- mice. © 2017 American Heart Association, Inc.

  1. Direct evidence of fiber type-dependent GLUT-4 expression in human skeletal muscle

    DEFF Research Database (Denmark)

    Gaster, M; Poulsen, P; Handberg, A

    2000-01-01

    GLUT-4 expression in individual fibers of human skeletal muscles in younger and older adults was studied. Furthermore, the dependency of insulin-stimulated glucose uptake on fiber type distribution was investigated. Fiber type distribution was determined in cryosections of muscle biopsies from 8...... of slow fibers in the young (r = -0.45, P > 0.25) or in the elderly (r = 0. 11, P > 0.75) subjects. In conclusion, in human skeletal muscle, GLUT-4 expression is fiber type dependent and decreases with age, particularly in fast muscle fibers....

  2. Ebola virus infection induces irregular dendritic cell gene expression.

    Science.gov (United States)

    Melanson, Vanessa R; Kalina, Warren V; Williams, Priscilla

    2015-02-01

    Filoviruses subvert the human immune system in part by infecting and replicating in dendritic cells (DCs). Using gene arrays, a phenotypic profile of filovirus infection in human monocyte-derived DCs was assessed. Monocytes from human donors were cultured in GM-CSF and IL-4 and were infected with Ebola virus Kikwit variant for up to 48 h. Extracted DC RNA was analyzed on SuperArray's Dendritic and Antigen Presenting Cell Oligo GEArray and compared to uninfected controls. Infected DCs exhibited increased expression of cytokine, chemokine, antiviral, and anti-apoptotic genes not seen in uninfected controls. Significant increases of intracellular antiviral and MHC I and II genes were also noted in EBOV-infected DCs. However, infected DCs failed to show any significant difference in co-stimulatory T-cell gene expression from uninfected DCs. Moreover, several chemokine genes were activated, but there was sparse expression of chemokine receptors that enabled activated DCs to home to lymph nodes. Overall, statistically significant expression of several intracellular antiviral genes was noted, which may limit viral load but fails to stop replication. EBOV gene expression profiling is of vital importance in understanding pathogenesis and devising novel therapeutic treatments such as small-molecule inhibitors.

  3. Mast cells infiltration and decreased E-cadherin expression in ketamine-induced cystitis

    Directory of Open Access Journals (Sweden)

    Mengqiang Li

    2015-01-01

    Conclusions: Increased mast cells in bladder wall and downregulated expression of E-cadherin junction protein in epithelial cells were probably associated with interstitial inflammation and fissures in mucosa. It implied that ketamine induced an interstitial cystitis.

  4. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  5. Radiation induced changes in the expression of fibronectin, Pai-1, MMP in rat glomerular epithelial cell

    Energy Technology Data Exchange (ETDEWEB)

    Park, Woo Yoon; Kim, Won Dong; Zheng, Ying; Ha, Tae Sun [Chungbuk National University, Cheongju (Korea, Republic of); Kim, Jae Sung [Seoul National University, Seoul (Korea, Republic of); Cho, Moon June [Chungnam National University, Daejeon (Korea, Republic of)

    2006-03-15

    Renal irradiation can lead to the development of radiation nephropathy, and this is characterized by the accumulation of extracellular matrix and final fibrosis. To determine the possible role of the glomerular epithelial cell, the radiation-induced changes in the expression of its genes associated with the extracellular matrix were analyzed. Rat glomerular epithelial cells (GEpC) were irradiated with a single dose of 0, 2, 5, 10 and 20 Gy with using 6 MV LINAC (Siemens, USA), and the samples were collected 6, 24, 48 and 72 hours post-irradiation, respectively. Northern blotting, western blotting and zymography were used to measure the expression level of fibronectin (Fn), plasminogen activator inhibitor-1 (Pai-1), matrix metalloproteinases-2, 9 (MMP-2, 9), tissue inhibitor of metalloproteinases-2 (TIMP-2), tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA). Irradiation with a single dose of 10 Gy resulted in a significant increase in Fn mRNA since 24 hours post-irradiation, and a single dose of 5 and 10 Gy significantly increased the Fn immunoreactive protein measured 48 hours post-irradiation. An increase in Pai-mRNA and protein was also observed and especially, a single dose of 10 Gy significantly increased the mRNA measured 24 and 48 hours post-irradiation. The active MMP-2 measured 24 hours post-irradiation slightly increased in a dose dependent manner, but this increase did not reach statistical significance. The levels of MMP-9, TIMP-2, t-PA and u-PA appeared unaltered after irradiation. Irradiation of the glomerular epithelial cells altered the expression of genes associated with the extracellular matrix, implying that the glomerular epithelial cell may be involved in the development of radiation nephropathy.

  6. Radiation induced changes in the expression of fibronectin, Pai-1, MMP in rat glomerular epithelial cell

    International Nuclear Information System (INIS)

    Park, Woo Yoon; Kim, Won Dong; Zheng, Ying; Ha, Tae Sun; Kim, Jae Sung; Cho, Moon June

    2006-01-01

    Renal irradiation can lead to the development of radiation nephropathy, and this is characterized by the accumulation of extracellular matrix and final fibrosis. To determine the possible role of the glomerular epithelial cell, the radiation-induced changes in the expression of its genes associated with the extracellular matrix were analyzed. Rat glomerular epithelial cells (GEpC) were irradiated with a single dose of 0, 2, 5, 10 and 20 Gy with using 6 MV LINAC (Siemens, USA), and the samples were collected 6, 24, 48 and 72 hours post-irradiation, respectively. Northern blotting, western blotting and zymography were used to measure the expression level of fibronectin (Fn), plasminogen activator inhibitor-1 (Pai-1), matrix metalloproteinases-2, 9 (MMP-2, 9), tissue inhibitor of metalloproteinases-2 (TIMP-2), tissue-type plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA). Irradiation with a single dose of 10 Gy resulted in a significant increase in Fn mRNA since 24 hours post-irradiation, and a single dose of 5 and 10 Gy significantly increased the Fn immunoreactive protein measured 48 hours post-irradiation. An increase in Pai-mRNA and protein was also observed and especially, a single dose of 10 Gy significantly increased the mRNA measured 24 and 48 hours post-irradiation. The active MMP-2 measured 24 hours post-irradiation slightly increased in a dose dependent manner, but this increase did not reach statistical significance. The levels of MMP-9, TIMP-2, t-PA and u-PA appeared unaltered after irradiation. Irradiation of the glomerular epithelial cells altered the expression of genes associated with the extracellular matrix, implying that the glomerular epithelial cell may be involved in the development of radiation nephropathy

  7. Insulin decreases atherosclerosis by inducing endothelin receptor B expression

    DEFF Research Database (Denmark)

    Park, Kyoungmin; Mima, Akira; Li, Qian

    2016-01-01

    Endothelial cell (EC) insulin resistance and dysfunction, caused by diabetes, accelerates atherosclerosis. It is unknown whether specifically enhancing EC-targeted insulin action can decrease atherosclerosis in diabetes. Accordingly, overexpressing insulin receptor substrate-1 (IRS1...... induction of NO action, which increases endothelin receptor B (EDNRB) expression and intracellular [Ca(2+)]. Using the mice with knockin mutation of eNOS, which had Ser1176 mutated to alanine (AKI), deleting the only known mechanism for insulin to activate eNOS/NO pathway, we observed that IRS1...... overexpression in the endothelia of Aki/ApoE(-/-) mice significantly decreased atherosclerosis. Interestingly, endothelial EDNRB expression was selectively reduced in intima of arteries from diabetic patients and rodents. However, endothelial EDNRB expression was upregulated by insulin via P13K/Akt pathway...

  8. Acute Heat Stress Changes Protein Expression in the Testes of a Broiler-Type Strain of Taiwan Country Chickens.

    Science.gov (United States)

    Wang, Shih-Han; Cheng, Chuen-Yu; Chen, Chao-Jung; Chan, Hong-Lin; Chen, Hsin-Hsin; Tang, Pin-Chi; Chen, Chih-Feng; Lee, Yen-Pai; Huang, San-Yuan

    2018-03-19

    Heat stress leads to decreased fertility in roosters. This study investigated the global protein expression in response to acute heat stress in the testes of a broiler-type strain of Taiwan country chickens (TCCs). Twelve 45-week-old roosters were randomly allocated to the control group maintained at 25°C, and three groups subjected to acute heat stress at 38°C for 4 h, with 0, 2, and 6 h of recovery, respectively. Testis samples were collected for hematoxylin and eosin staining, apoptosis assay, and protein analysis. The results revealed 101 protein spots that differed significantly from the control following exposure to acute heat stress. The proteins that were differentially expressed participated mainly in protein metabolism and other metabolic processes, responses to stimuli, apoptosis, cellular organization, and spermatogenesis. Proteins that negatively regulate apoptosis were downregulated and proteins involved in autophagy and major heat shock proteins (HSP90α, HSPA5, and HSPA8) were upregulated in the testes of heat-stressed chickens. In conclusion, acute heat stress causes a change in protein expression in the testes of broiler-type B strain TCCs and may thus impair cell morphology, spermatogenesis, and apoptosis. The expression of heat shock proteins increased to attenuate the testicular injury induced by acute heat stress.

  9. Nitrate induces a type 1 diabetic profile in alligator hatchlings.

    Science.gov (United States)

    Edwards, Thea M; Hamlin, Heather J; Freymiller, Haley; Green, Stephen; Thurman, Jenna; Guillette, Louis J

    2018-01-01

    Type 1 diabetes (T1D) is a chronic autoimmune disease that affects 1 in 300 children by age 18. T1D is caused by inflammation-induced loss of insulin-producing pancreatic beta cells, leading to high blood glucose and a host of downstream complications. Although multiple genes are associated with T1D risk, only 5% of genetically susceptible individuals actually develop clinical disease. Moreover, a growing number of T1D cases occur in geographic clusters and among children with low risk genotypes. These observations suggest that environmental factors contribute to T1D etiology. One potential factor, supported primarily by epidemiological studies, is the presence of nitrate and nitrite in drinking water. To test this hypothesis, female hatchling alligators were exposed to environmentally relevant concentrations of nitrate in their tank water (reference, 10mg/L, or 100mg/L NO 3 -N) from hatch through 5 weeks or 5 months of age. At each time point, endpoints related to T1D were investigated: plasma levels of glucose, triglycerides, testosterone, estradiol, and thyroxine; pancreas, fat body, and thyroid weights; weight gain or loss; presence of immune cells in the pancreas; and pancreatic beta cell number, assessed by antibody staining of nkx6.1 protein. Internal dosing of nitrate was confirmed by measuring plasma and urine nitrate levels and whole blood methemoglobin. Cluster analysis indicated that high nitrate exposure (most animals exposed to 100mg/L NO3-N and one alligator exposed to 10mg/L NO3-N) induced a profile of endpoints consistent with early T1D that could be detected after 5 weeks and was more strongly present after 5 months. Our study supports epidemiological data correlating elevated nitrate with T1D onset in humans, and highlights nitrate as a possible environmental contributor to the etiology of T1D, possibly through its role as a nitric oxide precursor. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. A new maltose-inducible high-performance heterologous expression system in Bacillus subtilis.

    Science.gov (United States)

    Yue, Jie; Fu, Gang; Zhang, Dawei; Wen, Jianping

    2017-08-01

    To improve heterologous proteins production, we constructed a maltose-inducible expression system in Bacillus subtilis. An expression system based on the promoter for maltose utilization constructed in B. subtilis. Successively, to improve the performance of the P malA -derived system, mutagenesis was employed by gradually shortening the length of P malA promoter and altering the spacing between the predicted MalR binding site and the -35 region. Furthermore, deletion of the maltose utilization genes (malL and yvdK) improved the P malA promoter activity. Finally, using this efficient maltose-inducible expression system, we enhanced the production of luciferase and D-aminoacylase, compared with the P hpaII system. A maltose-inducible expression system was constructed and evaluated. It could be used for high level expression of heterologous proteins production.

  11. Inhibition of interleukin-6 decreases atrogene expression and ameliorates tail suspension-induced skeletal muscle atrophy

    Science.gov (United States)

    Yakabe, Mitsutaka; Ota, Hidetaka; Iijima, Katsuya; Eto, Masato; Ouchi, Yasuyoshi; Akishita, Masahiro

    2018-01-01

    Background Interleukin-6 (IL-6) is an inflammatory cytokine. Whether systemic IL-6 affects atrogene expression and disuse-induced skeletal muscle atrophy is unclear. Methods Tail-suspended mice were used as a disuse-induced muscle atrophy model. We administered anti-mouse IL-6 receptor antibody, beta-hydroxy-beta-methylbutyrate (HMB) and vitamin D to the mice and examined the effects on atrogene expression and muscle atrophy. Results Serum IL-6 levels were elevated in the mice. Inhibition of IL-6 receptor suppressed muscle RING finger 1 (MuRF1) expression and prevented muscle atrophy. HMB and vitamin D inhibited the serum IL-6 surge, downregulated the expression of MuRF1 and atrogin-1 in the soleus muscle, and ameliorated atrophy in the mice. Conclusion Systemic IL-6 affects MuRF1 expression and disuse-induced muscle atrophy. PMID:29351340

  12. Inhibition of interleukin-6 decreases atrogene expression and ameliorates tail suspension-induced skeletal muscle atrophy.

    Directory of Open Access Journals (Sweden)

    Mitsutaka Yakabe

    Full Text Available Interleukin-6 (IL-6 is an inflammatory cytokine. Whether systemic IL-6 affects atrogene expression and disuse-induced skeletal muscle atrophy is unclear.Tail-suspended mice were used as a disuse-induced muscle atrophy model. We administered anti-mouse IL-6 receptor antibody, beta-hydroxy-beta-methylbutyrate (HMB and vitamin D to the mice and examined the effects on atrogene expression and muscle atrophy.Serum IL-6 levels were elevated in the mice. Inhibition of IL-6 receptor suppressed muscle RING finger 1 (MuRF1 expression and prevented muscle atrophy. HMB and vitamin D inhibited the serum IL-6 surge, downregulated the expression of MuRF1 and atrogin-1 in the soleus muscle, and ameliorated atrophy in the mice.Systemic IL-6 affects MuRF1 expression and disuse-induced muscle atrophy.

  13. Visceral adipose tissue macrophage-targeted TACE silencing to treat obesity-induced type 2 diabetes.

    Science.gov (United States)

    Yong, Seok-Beom; Song, Yoonsung; Kim, Yong-Hee

    2017-12-01

    Obesity is an increasingly prevalent global health problem. Due to its close relations with metabolic diseases and cancer, new therapeutic approaches for treating obesity and obesity-induced metabolic diseases are required. Visceral white adipose tissue (WAT) has been closely associated with obesity-induced inflammation and adipose tissue macrophages (ATMs) are responsible for obesity-induced inflammation by releasing inflammatory cytokines such as tumor necrosis factor-α (TNF-α) and interleukin-6. TNF-α converting enzyme (TACE) is a transmembrane enzyme that induces the enzymatic cleavage and release of inflammatory cytokines. In this study, we developed a nonviral gene delivery system consisting of an oligopeptide (ATS-9R) that can selectively target visceral ATMs. In here we shows visceral adipose tissue-dominant inflammatory gene over-expressions in obese mouse and our strategy enabled the preferential delivery of therapeutic genes to visceral ATMs and successfully achieved ATM-targeted gene silencing. Finally, ATS-9R-mediated TACE gene silencing in visceral ATMs alleviated visceral fat inflammation and improved type 2 diabetes by reducing whole body inflammation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Estradiol-induced gene expression in largemouth bass (Micropterus salmoides)

    Science.gov (United States)

    Bowman, C.J.; Kroll, K.J.; Gross, T.G.; Denslow, N.D.

    2002-01-01

    Vitellogenin (Vtg) and estrogen receptor (ER) gene expression levels were measured in largemouth bass to evaluate the activation of the ER-mediated pathway by estradiol (E2). Single injections of E2 ranging from 0.0005 to 5 mg/kg up-regulated plasma Vtg in a dose-dependent manner. Vtg and ER mRNAs were measured using partial cDNA sequences corresponding to the C-terminal domain for Vtg and the ligand-binding domain of ER?? sequences. After acute E2-exposures (2 mg/kg), Vtg and ER mRNAs and plasma Vtg levels peaked after 2 days. The rate of ER mRNA accumulation peaked 36-42 h earlier than Vtg mRNA. The expression window for ER defines the primary response to E2 in largemouth bass and that for Vtg a delayed primary response. The specific effect of E2 on other estrogen-regulated genes was tested during these same time windows using differential display RT-PCR. Specific up-regulated genes that are expressed in the same time window as Vtg were ERp72 (a membrane-bound disulfide isomerase) and a gene with homology to an expressed gene identified in zebrafish. Genes that were expressed in a pattern that mimics the ER include the gene for zona radiata protein ZP2, and a gene with homology to an expressed gene found in winter flounder. One gene for fibrinogen ?? was down-regulated and an unidentified gene was transiently up-regulated after 12 h of exposure and returned to basal levels by 48 h. Taken together these studies indicate that the acute molecular response to E2 involves a complex network of responses over time. ?? 2002 Elsevier Science Ireland Ltd. All rights reserved.

  15. Differential Gene Expression Patterns in Chicken Cardiomyocytes during Hydrogen Peroxide-Induced Apoptosis.

    Science.gov (United States)

    Wan, Chunyun; Xiang, Jinmei; Li, Youwen; Guo, Dingzong

    2016-01-01

    Hydrogen peroxide (H2O2) is both an exogenous and endogenous cytotoxic agent that can reliably induce apoptosis in numerous cell types for studies on apoptosis signaling pathways. However, little is known of these apoptotic processes in myocardial cells of chicken, a species prone to progressive heart failure. Sequencing of mRNA transcripts (RNA-Seq) allows for the identification of differentially expressed genes under various physiological and pathological conditions to elucidate the molecular pathways involved, including cellular responses to exogenous and endogenous toxins. We used RNA-seq to examine genes differentially expressed during H2O2-induced apoptosis in primary cultures of embryonic chicken cardiomyocytes. Following control or H2O2 treatment, RNA was extracted and sequencing performed to identify novel transcripts up- or downregulated in the H2O2 treatment group and construct protein-protein interaction networks. Of the 19,268 known and 2,160 novel transcripts identified in both control and H2O2 treatment groups, 4,650 showed significant differential expression. Among them, 55.63% were upregulated and 44.37% downregulated. Initiation of apoptosis by H2O2 was associated with upregulation of caspase-8, caspase-9, and caspase-3, and downregulation of anti-apoptotic genes API5 and TRIA1. Many other differentially expressed genes were associated with metabolic pathways (including 'Fatty acid metabolism', 'Alanine, aspartate, and glutamate metabolism', and 'Biosynthesis of unsaturated fatty acids') and cell signaling pathways (including 'PPAR signaling pathway', 'Adipocytokine signaling pathway', 'TGF-beta signaling pathway', 'MAPK signaling pathway', and 'p53 signaling pathway'). In chicken cardiomyocytes, H2O2 alters the expression of numerous genes linked to cell signaling and metabolism as well as genes directly associated with apoptosis. In particular, H2O2 also affects the biosynthesis and processing of proteins and unsaturated fatty acids. These

  16. Connexin43 gene and its irradiation-induced expression

    International Nuclear Information System (INIS)

    Long Xianhui; Zhou Pingkun

    2005-01-01

    Gap junctions, composed of connexin protein subunits, provide the important channel for the intercellular communication. Connexin43, the most popular component of the connexin protein family, is widely expressed in multiple tissues and cell lines and plays an important role in cell proliferation, differention and tissue homeostasis. Recently it was reported that the expression of connexin43 gene is remarkedly up-regulated by low dose ionizing radiation, the available data suggest connexin43 gene to be a poten-tial sensitive bio-marker in radiation damage. (authors)

  17. Cell lineage of timed cohorts of Tbx6-expressing cells in wild-type and Tbx6 mutant embryos

    Directory of Open Access Journals (Sweden)

    Daniel Concepcion

    2017-07-01

    Full Text Available Tbx6 is a T-box transcription factor with multiple roles in embryonic development as evidenced by dramatic effects on mesoderm cell fate determination, left/right axis determination, and somite segmentation in mutant mice. The expression of Tbx6 is restricted to the primitive streak and presomitic mesoderm, but some of the phenotypic features of mutants are not easily explained by this expression pattern. We have used genetically-inducible fate mapping to trace the fate of Tbx6-expressing cells in wild-type and mutant embryos to explain some of the puzzling features of the mutant phenotype. We created an inducible Tbx6-creERT2 transgenic mouse in which cre expression closely recapitulates endogenous Tbx6 expression both temporally and spatially. Using a lacZ-based Cre reporter and timed tamoxifen injections, we followed temporally overlapping cohorts of cells that had expressed Tbx6 and found contributions to virtually all mesodermally-derived embryonic structures as well as the extraembryonic allantois. Contribution to the endothelium of major blood vessels may account for the embryonic death of homozygous mutant embryos. In mutant embryos, Tbx6-creERT2-traced cells contributed to the abnormally segmented anterior somites and formed the characteristic ectopic neural tubes. Retention of cells in the mutant tail bud indicates a deficiency in migratory behavior of the mutant cells and the presence of Tbx6-creERT2-traced cells in the notochord, a node derivative provides a possible explanation for the heterotaxia seen in mutant embryos.

  18. The role of radiation types and dose in induced genomic instability

    International Nuclear Information System (INIS)

    Kadhim Munira, A.

    2007-01-01

    Complete text of publication follows. Genomic Instability (GI) is defined as long-term alterations induced by low-dose exposure to a variety of genotoxic agents in mammalian cells that act to increase the 'apparent' spontaneous mutation frequency.GI is a hallmark of tumorigenic progression and is observed in the progeny of irradiated and bystander cells as the delayed and stochastic appearance of de novo chromosomal aberrations, gene mutations and delayed lethal mutations both in vitro and in vivo. It occurs at a frequency several orders of magnitude greater than would be expected for mutation in a single gene, implying that GI is a multigenic phenomenon. The expression of GI can be influenced by genotype, cell type and radiation quality; however the underlying mechanisms are not fully understood. While several studies have demonstrated GI induction by high and low LET radiation, our work on human and mouse primary cell systems has shown significant differences in the capacity to induce GI and the spectrum of alterations depending on LET. These differences might be attributed to differences in radiation track structure, radiation dose and radiation exposure regime (distribution of hit and un hit cells). In this presentation I shall review the role of radiation quality; describe the possible mechanisms underlining the observed differences between radiation type and present results of experiments demonstrating that the dose of low LET radiation might be the most significant factor in determining the role of radiation type in the induction of GI.

  19. Electroacupuncture preconditioning-induced neuroprotection may be mediated by glutamate transporter type 2.

    Science.gov (United States)

    Zhu, Xiaoling; Yin, Jinbo; Li, Liaoliao; Ma, Lei; Tan, Hongying; Deng, Jiao; Chen, Shaoyang; Zuo, Zhiyi

    2013-10-01

    Electroacupuncture has been shown to induce a preconditioning effect in the brain. The mechanisms for this protection are not fully elucidated. We hypothesize that this protection is mediated by excitatory amino acid transporters (EAATs) that have been shown to be neuroprotective. To test this hypothesis, two-month old male Sprague-Dawley rats and EAAT type 3 (EAAT3) knockout mice received or did not receive 30-min electroacupuncture once a day for five consecutive days. They were subjected to a 120-min middle cerebral arterial occlusion (MCAO) at 24h after the last electroacupuncture. Neurological outcome was assessed 2days after the MCAO. Brain tissues were harvested at 24h after the last electroacupuncture for Western blotting. Rats subjected to electroacupuncture at the Baihui acupoint had smaller brain infarct volumes and better neurological deficit scores than control rats. Electroacupuncture increased EAAT type 2 (EAAT2) in the cerebral cortex, tended to increase EAAT3 in the hippocampus, and had no effect on EAAT type 1 expression. Dihydrokainate, an EAAT2 inhibitor, worsened the neurological outcome of rats with electroacupuncture pretreatment. Electroacupuncture pretreatment at the Baihui acupoint increased EAAT2 in the cerebral cortex and improved the neurological outcome of EAAT3 knockout mice. Together, our results suggest that EAAT2 may mediate the electroacupuncture preconditioning-induced neuroprotection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. GPBAR1/TGR5 mediates bile acid-induced cytokine expression in murine Kupffer cells.

    Directory of Open Access Journals (Sweden)

    Guiyu Lou

    Full Text Available GPBAR1/TGR5 is a novel plasma membrane-bound G protein-coupled bile acid (BA receptor. BAs are known to induce the expression of inflammatory cytokines in the liver with unknown mechanism. Here we show that without other external stimuli, TGR5 activation alone induced the expression of interleukin 1β (IL-1β and tumor necrosis factor-α (TNF-α in murine macrophage cell line RAW264.7 or murine Kupffer cells. The TGR5-mediated increase of pro-inflammatory cytokine expression was suppressed by JNK inhibition. Moreover, the induced pro-inflammatory cytokine expression in mouse liver by 1% cholic acid (CA diet was blunted in JNK-/- mice. TGR5 activation by its ligands enhanced the phosphorylation levels, DNA-binding and trans-activities of c-Jun and ATF2 transcription factors. Finally, the induced pro-inflammatory cytokine expression in Kupffer cells by TGR5 activation correlated with the suppression of Cholesterol 7α-hydroxylase (Cyp7a1 expression in murine hepatocytes. These results suggest that TGR5 mediates the BA-induced pro-inflammatory cytokine production in murine Kupffer cells through JNK-dependent pathway. This novel role of TGR5 may correlate to the suppression of Cyp7a1 expression in hepatocytes and contribute to the delicate BA feedback regulation.

  1. Function and regulation of ATF 3 expression induced by ionizing radiation

    International Nuclear Information System (INIS)

    Fan, Feiyue; Wang, Yong; Du, Liqin; Zhan, Qimin

    2008-01-01

    Full text: Ionizing radiation results in a series of damages of mammalian cells as a genotoxic stress. There are some genes expressed after cells damaged, in which ATF 3, a member of ATF/CREB family of transcription factors, is one of them. In this report, we demonstrate that ATF 3 can be induced by ionizing radiation. The induction of ATF 3 protein requires normal status of p53 function in cells. There are some quantitative relationships between ATF 3 induction and dosages of radiation or time post-irradiation. In another word, ATF 3 expression induced by ionizing radiation present dose- and time-dependent. The regulation of ATF 3 expression refers to program of promoter and transcription. Radiation induces ATF 3 expression by activating the promoter and RNA transcription. In method of tetracycline-inducible system (tet-off), we have found that over-expression of ATF 3 protein brings caspase/PARP proteins into cleavage, which induces cell programmed death, and suppresses cell growth. Meanwhile, it was found that ATF 3 expression could slow down progression of cell from G 1 to S phase. It indicates ATF 3 protein might play a negative role in the control of cell cycle progression. It is very excited that expression of ATF 3 protein did not only suppress cell growth, but also demonstrated protecting effect of cell growth suppression resulting from ionizing radiation. It is suggested that ATF 3 protein might take part in the damage repair process of cells. (author)

  2. Regulatable Transgene Expression for Prevention of Chemotherapy-Induced Peripheral Neuropathy

    Directory of Open Access Journals (Sweden)

    Daisuke Kawata

    2017-09-01

    Full Text Available Chemotherapy-induced peripheral neuropathy (CIPN is a debilitating complication associated with drug treatment of cancer for which there are no effective strategies of prevention or treatment. In this study, we examined the effect of intermittent expression of neurotophin-3 (NT-3 or interleukin-10 (IL-10 from replication-defective herpes simplex virus (HSV-based regulatable vectors delivered by subcutaneous inoculation to the dorsal root ganglion (DRG on the development of paclitaxel-induced peripheral neuropathy. We constructed two different tetracycline (tet-on-based regulatable HSV vectors, one expressing NT-3 and the other expressing IL-10, in which the transactivator expression in the tet-on system was under the control of HSV latency-associated promoter 2 (LAP-2, and expression of the transgene was controlled by doxycycline (DOX. We examined the therapeutic effect of intermittent expression of the transgene in animals with paclitaxel-induced peripheral neuropathy modeled by intraperitoneal injection of paclitaxel (16 mg/kg once a week for 5 weeks. Intermittent expression of either NT-3 or IL-10 3 days before and 1 day after paclitaxel administration protected animals against paclitaxel-induced peripheral neuropathy over the course of 5 weeks. These results suggest the potential of regulatable vectors for prevention of chemotherapy-induced peripheral neuropathy.

  3. Regulatable Transgene Expression for Prevention of Chemotherapy-Induced Peripheral Neuropathy.

    Science.gov (United States)

    Kawata, Daisuke; Wu, Zetang

    2017-09-15

    Chemotherapy-induced peripheral neuropathy (CIPN) is a debilitating complication associated with drug treatment of cancer for which there are no effective strategies of prevention or treatment. In this study, we examined the effect of intermittent expression of neurotophin-3 (NT-3) or interleukin-10 (IL-10) from replication-defective herpes simplex virus (HSV)-based regulatable vectors delivered by subcutaneous inoculation to the dorsal root ganglion (DRG) on the development of paclitaxel-induced peripheral neuropathy. We constructed two different tetracycline (tet)-on-based regulatable HSV vectors, one expressing NT-3 and the other expressing IL-10, in which the transactivator expression in the tet-on system was under the control of HSV latency-associated promoter 2 (LAP-2), and expression of the transgene was controlled by doxycycline (DOX). We examined the therapeutic effect of intermittent expression of the transgene in animals with paclitaxel-induced peripheral neuropathy modeled by intraperitoneal injection of paclitaxel (16 mg/kg) once a week for 5 weeks. Intermittent expression of either NT-3 or IL-10 3 days before and 1 day after paclitaxel administration protected animals against paclitaxel-induced peripheral neuropathy over the course of 5 weeks. These results suggest the potential of regulatable vectors for prevention of chemotherapy-induced peripheral neuropathy.

  4. Cardiac Glycoside Glucoevatromonoside Induces Cancer Type-Specific Cell Death

    Directory of Open Access Journals (Sweden)

    Naira F. Z. Schneider

    2018-03-01

    Full Text Available Cardiac glycosides (CGs are natural compounds used traditionally to treat congestive heart diseases. Recent investigations repositioned CGs as potential anticancer agents. To discover novel cytotoxic CG scaffolds, we selected the cardenolide glucoevatromonoside (GEV out of 46 CGs for its low nanomolar anti-lung cancer activity. GEV presented reduced toxicity toward non-cancerous cell types (lung MRC-5 and PBMC and high-affinity binding to the Na+/K+-ATPase α subunit, assessed by computational docking. GEV-induced cell death was caspase-independent, as investigated by a multiparametric approach, and culminates in severe morphological alterations in A549 cells, monitored by transmission electron microscopy, live cell imaging and flow cytometry. This non-canonical cell death was not preceded or accompanied by exacerbation of autophagy. In the presence of GEV, markers of autophagic flux (e.g. LC3I-II conversion were impacted, even in presence of bafilomycin A1. Cell death induction remained unaffected by calpain, cathepsin, parthanatos, or necroptosis inhibitors. Interestingly, GEV triggered caspase-dependent apoptosis in U937 acute myeloid leukemia cells, witnessing cancer-type specific cell death induction. Differential cell cycle modulation by this CG led to a G2/M arrest, cyclin B1 and p53 downregulation in A549, but not in U937 cells. We further extended the anti-cancer potential of GEV to 3D cell culture using clonogenic and spheroid formation assays and validated our findings in vivo by zebrafish xenografts. Altogether, GEV shows an interesting anticancer profile with the ability to exert cytotoxic effects via induction of different cell death modalities.

  5. Ozone-Induced Nasal Type 2 Immunity in Mice Is Dependent on Innate Lymphoid Cells.

    Science.gov (United States)

    Kumagai, Kazuyoshi; Lewandowski, Ryan; Jackson-Humbles, Daven N; Li, Ning; Van Dyken, Steven J; Wagner, James G; Harkema, Jack R

    2016-06-01

    Epidemiological studies suggest that elevated ambient concentrations of ozone are associated with activation of eosinophils in the nasal airways of atopic and nonatopic children. Mice repeatedly exposed to ozone develop eosinophilic rhinitis and type 2 immune responses. In this study, we determined the role of innate lymphoid cells (ILCs) in the pathogenesis of ozone-induced eosinophilic rhinitis by using lymphoid-sufficient C57BL/6 mice, Rag2(-/-) mice that are devoid of T cells and B cells, and Rag2(-/-)Il2rg(-/-) mice that are depleted of all lymphoid cells including ILCs. The animals were exposed to 0 or 0.8 ppm ozone for 9 consecutive weekdays (4 h/d). Mice were killed 24 hours after exposure, and nasal tissues were selected for histopathology and gene expression analysis. ILC-sufficient C57BL/6 and Rag2(-/-) mice exposed to ozone developed marked eosinophilic rhinitis and epithelial remodeling (e.g., epithelial hyperplasia and mucous cell metaplasia). Chitinase-like proteins and alarmins (IL-33, IL-25, and thymic stromal lymphopoietin) were also increased morphometrically in the nasal epithelium of ozone-exposed C57BL/6 and Rag2(-/-) mice. Ozone exposure elicited increased expression of Il4, Il5, Il13, St2, eotaxin, MCP-2, Gob5, Arg1, Fizz1, and Ym2 mRNA in C57BL/6 and Rag2(-/-) mice. In contrast, ozone-exposed ILC-deficient Rag2(-/-)Il2rg(-/-) mice had no nasal lesions or overexpression of Th2- or ILC2-related transcripts. These results indicate that ozone-induced eosinophilic rhinitis, nasal epithelial remodeling, and type 2 immune activation are dependent on ILCs. To the best of our knowledge, this is the first study to demonstrate that ILCs play an important role in the nasal pathology induced by repeated ozone exposure.

  6. Microarray Gene Expression Analysis to Evaluate Cell Type Specific Expression of Targets Relevant for Immunotherapy of Hematological Malignancies.

    Directory of Open Access Journals (Sweden)

    M J Pont

    Full Text Available Cellular immunotherapy has proven to be effective in the treatment of hematological cancers by donor lymphocyte infusion after allogeneic hematopoietic stem cell transplantation and more recently by targeted therapy with chimeric antigen or T-cell receptor-engineered T cells. However, dependent on the tissue distribution of the antigens that are targeted, anti-tumor responses can be accompanied by undesired side effects. Therefore, detailed tissue distribution analysis is essential to estimate potential efficacy and toxicity of candidate targets for immunotherapy of hematological malignancies. We performed microarray gene expression analysis of hematological malignancies of different origins, healthy hematopoietic cells and various non-hematopoietic cell types from organs that are often targeted in detrimental immune responses after allogeneic stem cell transplantation leading to graft-versus-host disease. Non-hematopoietic cells were also cultured in the presence of IFN-γ to analyze gene expression under inflammatory circumstances. Gene expression was investigated by Illumina HT12.0 microarrays and quality control analysis was performed to confirm the cell-type origin and exclude contamination of non-hematopoietic cell samples with peripheral blood cells. Microarray data were validated by quantitative RT-PCR showing strong correlations between both platforms. Detailed gene expression profiles were generated for various minor histocompatibility antigens and B-cell surface antigens to illustrate the value of the microarray dataset to estimate efficacy and toxicity of candidate targets for immunotherapy. In conclusion, our microarray database provides a relevant platform to analyze and select candidate antigens with hematopoietic (lineage-restricted expression as potential targets for immunotherapy of hematological cancers.

  7. Decitabine induces delayed reactive oxygen species (ROS) accumulation in leukemia cells and induces the expression of ROS generating enzymes.

    Science.gov (United States)

    Fandy, Tamer E; Jiemjit, Anchalee; Thakar, Manjusha; Rhoden, Paulette; Suarez, Lauren; Gore, Steven D

    2014-03-01

    Azanucleoside DNA methyltransferase (DNMT) inhibitors are currently approved by the U.S. Food and Drug Administration for treatment of myelodysplastic syndrome. The relative contributions of DNMT inhibition and other off-target effects to their clinical efficacy remain unclear. Data correlating DNA methylation reversal and clinical response have been conflicting. Consequently, it is necessary to investigate so-called off-target effects and their impact on cell survival and differentiation. Flow cytometry was used for cell cycle, apoptosis, and reactive oxygen species (ROS) accumulation analysis. Gene expression analysis was performed using real-time PCR. DNA methylation was detected by methylation-specific PCR. Mitochondrial membrane potential was analyzed using JC-1 dye staining. Western blotting was used for quantitative protein expression analysis. 5-Aza-2'-deoxycytidine (DAC) induced cell-cycle arrest and apoptosis in leukemia cells. p53 expression was dispensable for DAC-induced apoptosis. DAC induced delayed ROS accumulation in leukemia cells but not in solid tumor cells and p53 expression was dispensable for ROS increase. ROS increase was deoxycytidine kinase dependent, indicating that incorporation of DAC into nuclear DNA is required for ROS generation. ROS accumulation by DAC was caspase-independent and mediated the dissipation of the mitochondrial membrane potential. Concordantly, ROS scavengers diminished DAC-induced apoptosis. DAC induced the expression of different NADPH oxidase isoforms and upregulated Nox4 protein expression in an ATM-dependent manner, indicating the involvement of DNA damage signaling in Nox4 upregulation. These data highlight the importance of mechanisms other than DNA cytosine demethylation in modulating gene expression and suggest investigating the relevance of ROS accumulation to the clinical activity of DAC. ©2014 AACR

  8. Inducible Hsp70 in the Regulation of Cancer Cell Survival: Analysis of Chaperone Induction, Expression and Activity

    Energy Technology Data Exchange (ETDEWEB)

    Zorzi, Elisa [OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova (Italy); Bonvini, Paolo, E-mail: paolo.bonvini@unipd.it [OncoHematology Clinic of Pediatrics, University-Hospital of Padova, 35100 Padova (Italy); Fondazione Città della Speranza, 36030 Monte di Malo, Vicenza (Italy)

    2011-10-21

    Understanding the mechanisms that control stress is central to realize how cells respond to environmental and physiological insults. All the more important is to reveal how tumour cells withstand their harsher growth conditions and cope with drug-induced apoptosis, since resistance to chemotherapy is the foremost complication when curing cancer. Intensive research on tumour biology over the past number of years has provided significant insights into the molecular events that occur during oncogenesis, and resistance to anti-cancer drugs has been shown to often rely on stress response and expression of inducible heat shock proteins (HSPs). However, with respect to the mechanisms guarding cancer cells against proteotoxic stresses and the modulatory effects that allow their survival, much remains to be defined. Heat shock proteins are molecules responsible for folding newly synthesized polypeptides under physiological conditions and misfolded proteins under stress, but their role in maintaining the transformed phenotype often goes beyond their conventional chaperone activity. Expression of inducible HSPs is known to correlate with limited sensitivity to apoptosis induced by diverse cytotoxic agents and dismal prognosis of several tumour types, however whether cancer cells survive because of the constitutive expression of heat shock proteins or the ability to induce them when adapting to the hostile microenvironment remains to be elucidated. Clear is that tumours appear nowadays more “addicted” to heat shock proteins than previously envisaged, and targeting HSPs represents a powerful approach and a future challenge for sensitizing tumours to therapy. This review will focus on the anti-apoptotic role of heat shock 70kDa protein (Hsp70), and how regulatory factors that control inducible Hsp70 synthesis, expression and activity may be relevant for response to stress and survival of cancer cells.

  9. Inducible Hsp70 in the Regulation of Cancer Cell Survival: Analysis of Chaperone Induction, Expression and Activity

    Science.gov (United States)

    Zorzi, Elisa; Bonvini, Paolo

    2011-01-01

    Understanding the mechanisms that control stress is central to realize how cells respond to environmental and physiological insults. All the more important is to reveal how tumour cells withstand their harsher growth conditions and cope with drug-induced apoptosis, since resistance to chemotherapy is the foremost complication when curing cancer. Intensive research on tumour biology over the past number of years has provided significant insights into the molecular events that occur during oncogenesis, and resistance to anti-cancer drugs has been shown to often rely on stress response and expression of inducible heat shock proteins (HSPs). However, with respect to the mechanisms guarding cancer cells against proteotoxic stresses and the modulatory effects that allow their survival, much remains to be defined. Heat shock proteins are molecules responsible for folding newly synthesized polypeptides under physiological conditions and misfolded proteins under stress, but their role in maintaining the transformed phenotype often goes beyond their conventional chaperone activity. Expression of inducible HSPs is known to correlate with limited sensitivity to apoptosis induced by diverse cytotoxic agents and dismal prognosis of several tumour types, however whether cancer cells survive because of the constitutive expression of heat shock proteins or the ability to induce them when adapting to the hostile microenvironment remains to be elucidated. Clear is that tumours appear nowadays more “addicted” to heat shock proteins than previously envisaged, and targeting HSPs represents a powerful approach and a future challenge for sensitizing tumours to therapy. This review will focus on the anti-apoptotic role of heat shock 70kDa protein (Hsp70), and how regulatory factors that control inducible Hsp70 synthesis, expression and activity may be relevant for response to stress and survival of cancer cells. PMID:24213118

  10. 10-Hydroxy-2-decenoic acid prevents ultraviolet A-induced damage and matrix metalloproteinases expression in human dermal fibroblasts.

    Science.gov (United States)

    Zheng, Jinfen; Lai, Wei; Zhu, Guoxing; Wan, Miaojian; Chen, Jian; Tai, Yan; Lu, Chun

    2013-10-01

    10-Hydroxy-2-decenoic acid (10-HDA) is a major fatty acid component of royal jelly, which has been reported to have a variety of beneficial pharmacological characteristics. However, the effects of 10-HDA on skin photoageing and its potential mechanism of action are unclear. We investigated the protective effects of 10-HDA on ultraviolet (UV) A-induced damage in human dermal fibroblasts (HDFs). We then explored the inhibitory effects of 10-HDA on UVA-induced matrix metalloproteinases (MMPs) expression and elucidated the signalling pathways controlling MMPs inhibition. Primary human dermal fibroblasts were exposed to UVA. Cell proliferation, cellular senescent state and collagen content were analysed using CCK-8, senescence-associated β-galactosidase staining and Sircol collagen assay, respectively. Fluorometric assays were performed to detect the formation of reactive oxygen species (ROS) in the cells. The mRNA levels of MMP-1, MMP-3 and type I (α1) collagen were determined by quantitative real-time PCR. Western blot was applied to detect the expression of MMP-1, MMP-3, JNK and p38 MAPK. HDFs treated with 10-HDA were significantly protected from UVA-induced cytotoxicity, ROS, cellular senescence and stimulated collagen production. Moreover, 10-HDA suppressed the UVA-induced expression of MMP-1 and MMP-3 at both the transcriptional and protein levels. Treatment with 10-HDA also reduced the UVA-induced activation of the JNK and p38 MAPK pathways. The data obtained in this study provide evidence that 10-HDA could prevent UVA-induced damage and inhibit MMP-1 and MMP-3 expressions. Therefore, 10-HDA may be a potential agent for the prevention and treatment of skin photoageing. © 2012 The Authors. Journal of the European Academy of Dermatology and Venereology © 2012 European Academy of Dermatology and Venereology.

  11. RNA interference prevents lipopolysaccharide-induced preprotachykinin gene expression

    International Nuclear Information System (INIS)

    Lai, Y.-L.; Yu, S.C.; Chen, M.-J.

    2003-01-01

    We showed previously that lipopolysaccharide (LPS) induces noncholinergic airway hyperreactivity to capsaicin via an upregulation of tachykinin synthesis. This study was designed to test whether double-stranded preprotachykinin (ds PPT) RNA, RNA interference (RNAi), prevents the LPS-induced alterations. First, cultured primary nodose ganglial cells of newborn Brown-Norway rats were divided into four groups: control; LPS; LPS+RNAi; and LPS+RNAi+liposome. Second, young Brown-Norway rats for the in vivo study were divided into three groups (control; LPS; and LPS+RNAi), and ds PPT RNA was microinjected bilaterally into the nodose ganglia in the LPS+RNAi group. Then, ganglial cells were collected from the culture whereas the nodose ganglia and lungs were sampled from the animals, and PPT mRNA and substance P (SP) levels were analyzed. Also, airway reactivity to capsaicin was performed in vivo. LPS induced significant increases in PPT mRNA and SP levels in vitro and in vivo and an increase in airway reactivity to capsaicin in vivo. However, ds PPT RNA, but not scrambled RNA, prevented all LPS-induced alterations. The effect of ds PPT RNA was not enhanced by liposome in vitro. Therefore, we demonstrated that the local application of RNAi prevents effectively the activation of the noncholinergic system modulating the lungs/airways

  12. Septal Glucagon-Like Peptide 1 Receptor Expression Determines Suppression of Cocaine-Induced Behavior

    Science.gov (United States)

    Harasta, Anne E; Power, John M; von Jonquieres, Georg; Karl, Tim; Drucker, Daniel J; Housley, Gary D; Schneider, Miriam; Klugmann, Matthias

    2015-01-01

    Glucagon-like peptide 1 (GLP-1) and its receptor GLP-1R are a key component of the satiety signaling system, and long-acting GLP-1 analogs have been approved for the treatment of type-2 diabetes mellitus. Previous reports demonstrate that GLP-1 regulates glucose homeostasis alongside the rewarding effects of food. Both palatable food and illicit drugs activate brain reward circuitries, and pharmacological studies suggest that central nervous system GLP-1 signaling holds potential for the treatment of addiction. However, the role of endogenous GLP-1 in the attenuation of reward-oriented behavior, and the essential domains of the mesolimbic system mediating these beneficial effects, are largely unknown. We hypothesized that the central regions of highest Glp-1r gene activity are essential in mediating responses to drugs of abuse. Here, we show that Glp-1r-deficient (Glp-1r−/−) mice have greatly augmented cocaine-induced locomotor responses and enhanced conditional place preference compared with wild-type (Glp-1r+/+) controls. Employing mRNA in situ hybridization we located peak Glp-1r mRNA expression in GABAergic neurons of the dorsal lateral septum, an anatomical site with a crucial function in reward perception. Whole-cell patch-clamp recordings of dorsal lateral septum neurons revealed that genetic Glp-1r ablation leads to increased excitability of these cells. Viral vector-mediated Glp-1r gene delivery to the dorsal lateral septum of Glp-1r−/− animals reduced cocaine-induced locomotion and conditional place preference to wild-type levels. This site-specific genetic complementation did not affect the anxiogenic phenotype observed in Glp-1r−/− controls. These data reveal a novel role of GLP-1R in dorsal lateral septum function driving behavioral responses to cocaine. PMID:25669605

  13. STAT5 induces miR-21 expression in cutaneous T cell lymphoma

    DEFF Research Database (Denmark)

    Lindahl, Lise M; Fredholm, Simon; Joseph, Claudine

    2016-01-01

    was inhibited by Tofacitinib (CP-690550), a clinical-grade JAK3 inhibitor. Chromatin immunoprecipitation (ChIP) analysis showed direct binding of STAT5 to the miR-21 promoter. Cytokine starvation ex vivo triggered a decrease in miR-21 expression, whereas IL-2 induced an increased miR-21 expression in primary SS...

  14. Nitric oxide is involved in the down-regulation of sost expression induced by mechanical loading

    NARCIS (Netherlands)

    Delgado-Calle, J.; Riancho, J.A.; Klein-Nulend, J.

    2014-01-01

    Mechanical stimulation reduces sclerostin expression in rodents. However, few data are available about the effect of physical stimuli in human systems. Recently we observed that the demethylating agent AzadC induces SOST expression in bone cells. This allowed us in this study to explore the effect

  15. Behavioral experience induces zif268 expression in mature granule cells but suppresses its expression in immature granule cells

    Directory of Open Access Journals (Sweden)

    Kylie A. Huckleberry

    2015-08-01

    Full Text Available Thousands of neurons are born each day in the dentate gyrus (DG, but many of these cells die before reaching maturity. Both death and survival of adult-born neurons are regulated by neuronal activity in DG. The immediate-early gene (IEG zif268 is an important mediator of these effects, as its expression is induced by neural activity and knockout of zif268 impairs survival of adult-born neurons (Veyrac et al., 2013. Despite the apparent importance of zif268 for adult neurogenesis, its behavior-induced expression has not been fully characterized in adult-born neurons. Here we characterize behavior-evoked expression of zif268 in mature and newborn dentate granule cells (DGCs. In the general granule cell population, zif268 expression peaked 1 hour after novel environment exposure and returned to baseline by 8 hours post-exposure. However, in the doublecortin-positive (DCX+ immature neurons, zif268 expression was suppressed relative to home cage for at least 8 hours post-exposure. We next determined that exposure to water maze training, an enriched environment, or a novel environment caused approximately equal suppression of zif268 expression in DCX+ cells and approximately equal activation of zif268 in the general DGC population and in 6-week-old adult-born neurons. Finally, we asked whether zif268 suppression varied as a function of age within the DCX+ population, which ranges in age from 0 to approximately 4 weeks. Novel environment exposure had no significant effect on zif268 expression in 2- or 4-week-old BrdU-labeled neurons, but it significantly suppressed zif268 expression in 3-week-old neurons. In summary, behavioral experience transiently activated expression of zif268 in mature DGCs but caused a more long-lasting suppression of zif268 expression in immature, adult-born DGCs. We hypothesize that zif268 suppression inhibits memory-related synaptic plasticity in immature DGCs or mediates learning-induced apoptosis of immature adult

  16. Plant type improvement of indigenous rice cultivars through induced mutations

    International Nuclear Information System (INIS)

    Kihupi, A.

    1997-01-01

    A high yielding, locally adapted cultivar 'Afaa Mwanza 1/159' of rice (Oryza sativa L.) which is tall and late in maturity, was irradiated with gamma rays at doses of 170, 210 and 250 Gy to shorten plant height and time of maturity. Twelve mutants were selected, and evaluated for yield performance in field trials from M 6 to M 9 generations. All the mutants were shorter in plant height, and gave higher mean yield than the parent. Correlation coefficient analysis showed that the number of productive tillers, number of panicles per square meter and grain filling in the panicle were important characters which influenced yield. On the other hand, panicle length had negative influence on yield. Cv. 'Supa India' and 'Salama' were also irradiated with doses of 170, 210, 240 Gy gamma rays. Analysis of M 2 populations of these cultivars indicated that mutagenesis created a lot of variation in plant height, maturity, spikelet fertility and panicle length. The induced variation shall be useful in selecting desired plant types. (author). 16 refs, 12 tabs

  17. Plant type improvement of indigenous rice cultivars through induced mutations

    Energy Technology Data Exchange (ETDEWEB)

    Kihupi, A [Department of Crop Science and Production, Sokoine Univ. of Agriculture, Morogoro (Tanzania)

    1997-07-01

    A high yielding, locally adapted cultivar `Afaa Mwanza 1/159` of rice (Oryza sativa L.) which is tall and late in maturity, was irradiated with gamma rays at doses of 170, 210 and 250 Gy to shorten plant height and time of maturity. Twelve mutants were selected, and evaluated for yield performance in field trials from M{sub 6} to M{sub 9} generations. All the mutants were shorter in plant height, and gave higher mean yield than the parent. Correlation coefficient analysis showed that the number of productive tillers, number of panicles per square meter and grain filling in the panicle were important characters which influenced yield. On the other hand, panicle length had negative influence on yield. Cv. `Supa India` and `Salama` were also irradiated with doses of 170, 210, 240 Gy gamma rays. Analysis of M{sub 2} populations of these cultivars indicated that mutagenesis created a lot of variation in plant height, maturity, spikelet fertility and panicle length. The induced variation shall be useful in selecting desired plant types. (author). 16 refs, 12 tabs.

  18. Implementation of the agmatine-controlled expression system for inducible gene expression in Lactococcus lactis.

    Science.gov (United States)

    Linares, Daniel M; Alvarez-Sieiro, Patricia; del Rio, Beatriz; Ladero, Victor; Redruello, Begoña; Martin, Ma Cruz; Fernandez, Maria; Alvarez, Miguel A

    2015-12-30

    Lactococcus lactis has been safely consumed in fermented foods for millennia. This Gram-positive bacterium has now become of industrial importance as an expression host for the overproduction of lipopolysaccharide-free recombinant proteins used as food ingredients, therapeutic proteins and biotechnological enzymes. This paper reports an agmatine-controlled expression (ACE) system for L. lactis, comprising the lactococcal agmatine-sensor/transcriptional activator AguR and its target promoter P(aguB). The usefulness and efficiency of this system was checked via the reporter gene gfp and by producing PEP (Myxococcus xanthus prolyl-endopeptidase), an enzyme of biomedical interest able to degrade the immunotoxic peptides produced during the gastrointestinal breakdown of gluten. The ACE system developed in this work was suitable for the efficient expression of the functional recombinant proteins GFP and PEP. The expression system was tightly regulated by the agmatine concentration and allowed high protein production without leakiness.

  19. ADAMTS13 expression in human chondrosarcoma cells induced by insulin

    Directory of Open Access Journals (Sweden)

    Rıdvan Fırat

    2014-06-01

    Full Text Available Objectives: A Disintegrin-like Metalloproteinase with Thrombospondin Motifs (ADAMTS proteins is a proteinase enzyme group that primarily located in the extracellular matrix (ECM. Insulin has been known to stimulate proteoglycan biosynthesis in chondrosarcoma chondrocytes and thereby the levels of ADAMTS proteins. The aim of this study is to evaluate the time-dependent effects of insulin on the ADAMTS13 expression in OUMS-27 human chondrosarcoma cell line to test the hypothesis that insulin diminishes ADAMTS13 expression because of its anabolic effects. Methods: To test this hypothesis OUMS-27 cells were cultured in Dulbecco’s modified Eagle’ medium (DMEM containing 10μg/mL insulin. The medium containing insulin was changed every other day up to 11th day. Cells were harvested at 1, 3, 7, and 11th days and protein and RNA isolations were performed at the proper times. The levels of RNA expression of ADAMTS13 was quantified by qRT-PCR using appropriate primers while protein levels was detected by Western blot technique using anti-ADAMTS13 antibody. Results: Although there was a decrease in both RNA and protein levels in insulin-applied groups compared to the control cells, it was not statistically significant. Conclusion: Under the light of our findings, it is suggested that insulin does not participate in regulation of ADAMTS13 in OUMS-27 chondrosarcoma cells. J Clin Exp Invest 2014; 5 (2: 226-232

  20. Radiation-induced genomic instability and bystander effects: related inflammatory-type responses to radiation-induced stress and injury? A review.

    Science.gov (United States)

    Lorimore, S A; Wright, E G

    2003-01-01

    To review studies of radiation responses in the haemopoietic system in the context of radiation-induced genomic instability, bystander effects and inflammatory-type processes. There is considerable evidence that cells that themselves are not exposed to ionizing radiation but are the progeny of cells irradiated many cell divisions previously may express a high frequency of gene mutations, chromosomal aberrations and cell death. These effects are collectively known as radiation-induced genomic instability. A second untargeted effect results in non-irradiated cells exhibiting responses typically associated with direct radiation exposure but occurs as a consequence of contact with irradiated cells or by receiving soluble signals from irradiated cells. These effects are collectively known as radiation-induced bystander effects. Reported effects include increases or decreases in damage-inducible and stress-related proteins; increases or decreases in reactive oxygen species, cell death or cell proliferation, and induction of mutations and chromosome aberrations. This array of responses is reminiscent of effects mediated by cytokines and other similar regulatory factors that may involve, but do not necessarily require, gap junction-mediated transfer, have multiple inducers and a variety of context-dependent consequences in different cell systems. That chromosomal instability in haemopoietic cells can be induced by an indirect bystander-type mechanism both in vitro and in vivo provides a potential link between these two untargeted effects and there are radiation responses in vivo consistent with the microenvironment contributing secondary cell damage as a consequence of an inflammatory-type response to radiation-induced injury. Intercellular signalling, production of cytokines and free radicals are features of inflammatory responses that have the potential for both bystander-mediated and persisting damage as well as for conferring a predisposition to malignancy. The

  1. CAR expression and inducibility of CYP2B genes in liver of rats treated with PB-like inducers

    International Nuclear Information System (INIS)

    Pustylnyak, Vladimir O.; Gulyaeva, Lyudmila F.; Lyakhovich, Vyacheslav V.

    2005-01-01

    The expression of the CAR gene and inducibility of CYP2B protein in the liver of male Wistar rats treated with phenobarbital (PB) and triphenyldioxane (TPD) were investigated. To clarify the role of phosphorylation/dephosphorylation in these processes, rats were treated with inhibitors of Ca 2+ /calmodulin-dependent kinase II (W 7 ) or protein phosphatases PP1 and PP2A (OA) before induction. Constitutive expression of the CAR gene in livers of untreated rats was detected by multiplex RT-PCR. Treatment with W 7 resulted in a 2.8-fold induction of CAR gene expression, whereas OA led to a 2.4-fold decrease of the mRNA level. The same results were obtained for CYP2B genes expression, which were increased by W 7 treatment (two-fold) and decreased by OA (2.3-fold). PB-induction did not lead to significant alteration in the level of CAR gene expression, although CYP2B genes expression was enhanced two-fold over control values. TPD caused a two-fold increase of both CAR and CYP2B mRNA levels. Both inducers reduced the effects of inhibitors on CAR gene expression. Results of EMSA showed that PB, TPD or W 7 alone induced formation of complexes of NR1 with nuclear proteins. Appearance of the complexes correlated with an increase in CYP2B expression, and their intensities were modulated by the protein kinase inhibitors. Thus, our results demonstrate that constitutive expressions of CAR as well as CYP2B during induction are regulated by phosphorylation/dephosphorylation processes

  2. Imaging Herpes Simplex Virus Type 1 Amplicon Vector–Mediated Gene Expression in Human Glioma Spheroids

    OpenAIRE

    Christine Kaestle; Alexandra Winkeler; Raphaela Richter; Heinrich Sauer; Jürgen Hescheler; Cornel Fraefel; Maria Wartenberg; Andreas H. Jacobs

    2011-01-01

    Vectors derived from herpes simplex virus type 1 (HSV-1) have great potential for transducing therapeutic genes into the central nervous system; however, inefficient distribution of vector particles in vivo may limit their therapeutic potential in patients with gliomas. This study was performed to investigate the extent of HSV-1 amplicon vector–mediated gene expression in a three-dimensional glioma model of multicellular spheroids by imaging highly infectious HSV-1 virions expressing green fl...

  3. Muscle myeloid type I interferon gene expression may predict therapeutic responses to rituximab in myositis patients.

    Science.gov (United States)

    Nagaraju, Kanneboyina; Ghimbovschi, Svetlana; Rayavarapu, Sree; Phadke, Aditi; Rider, Lisa G; Hoffman, Eric P; Miller, Frederick W

    2016-09-01

    To identify muscle gene expression patterns that predict rituximab responses and assess the effects of rituximab on muscle gene expression in PM and DM. In an attempt to understand the molecular mechanism of response and non-response to rituximab therapy, we performed Affymetrix gene expression array analyses on muscle biopsy specimens taken before and after rituximab therapy from eight PM and two DM patients in the Rituximab in Myositis study. We also analysed selected muscle-infiltrating cell phenotypes in these biopsies by immunohistochemical staining. Partek and Ingenuity pathway analyses assessed the gene pathways and networks. Myeloid type I IFN signature genes were expressed at higher levels at baseline in the skeletal muscle of rituximab responders than in non-responders, whereas classic non-myeloid IFN signature genes were expressed at higher levels in non-responders at baseline. Also, rituximab responders have a greater reduction of the myeloid and non-myeloid type I IFN signatures than non-responders. The decrease in the type I IFN signature following administration of rituximab may be associated with the decreases in muscle-infiltrating CD19(+) B cells and CD68(+) macrophages in responders. Our findings suggest that high levels of myeloid type I IFN gene expression in skeletal muscle predict responses to rituximab in PM/DM and that rituximab responders also have a greater decrease in the expression of these genes. These data add further evidence to recent studies defining the type I IFN signature as both a predictor of therapeutic responses and a biomarker of myositis disease activity. Published by Oxford University Press on behalf British Society for Rheumatology 2016. This work is written by US Government employees and is in the public domain in the US.

  4. UV-induced changes in cell cycle and gene expression within rabbit lens epithelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Sidjanin, D. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences; Grdina, D. [Argonne National Lab., IL (United States); Woloschak, G.E. [Northern Illinois Univ., De Kalb, IL (United States). Dept. of Biological Sciences

    1994-11-01

    Damage to lens epithelial cells is a probable initiation process in cataract formation induced by ultraviolet radiation. These experiments investigated the ability of 254 nm radiation on cell cycle progression and gene expression in rabbit lens epithelial cell line N/N1003A. No changes in expression of c-fos, c-jun, alpha- tubulin, or vimentin was observed following UV exposure. Using flow cytometry, an accumulation of cells in G1/S phase of the cell cycle 1 hr following exposure. The observed changes in gene expression, especially the decreased histone transcripts reported here may play a role in UV induced inhibition of cell cycle progression.

  5. Primary EBV infection induces an expression profile distinct from other viruses but similar to hemophagocytic syndromes.

    Directory of Open Access Journals (Sweden)

    Samantha K Dunmire

    Full Text Available Epstein-Barr Virus (EBV causes infectious mononucleosis and establishes lifelong infection associated with cancer and autoimmune disease. To better understand immunity to EBV, we performed a prospective study of natural infection in healthy humans. Transcriptome analysis defined a striking and reproducible expression profile during acute infection but no lasting gene changes were apparent during latent infection. Comparing the EBV response profile to multiple other acute viral infections, including influenza A (influenza, respiratory syncytial virus (RSV, human rhinovirus (HRV, attenuated yellow fever virus (YFV, and Dengue fever virus (DENV, revealed similarity only to DENV. The signature shared by EBV and DENV was also present in patients with hemophagocytic syndromes, suggesting these two viruses cause uncontrolled inflammatory responses. Interestingly, while EBV induced a strong type I interferon response, a subset of interferon induced genes, including MX1, HERC5, and OAS1, were not upregulated, suggesting a mechanism by which viral antagonism of immunity results in a profound inflammatory response. These data provide an important first description of the response to a natural herpesvirus infection in humans.

  6. Primary EBV Infection Induces an Expression Profile Distinct from Other Viruses but Similar to Hemophagocytic Syndromes

    Science.gov (United States)

    Dunmire, Samantha K.; Odumade, Oludare A.; Porter, Jean L.; Reyes-Genere, Juan; Schmeling, David O.; Bilgic, Hatice; Fan, Danhua; Baechler, Emily C.; Balfour, Henry H.; Hogquist, Kristin A.

    2014-01-01

    Epstein-Barr Virus (EBV) causes infectious mononucleosis and establishes lifelong infection associated with cancer and autoimmune disease. To better understand immunity to EBV, we performed a prospective study of natural infection in healthy humans. Transcriptome analysis defined a striking and reproducible expression profile during acute infection but no lasting gene changes were apparent during latent infection. Comparing the EBV response profile to multiple other acute viral infections, including influenza A (influenza), respiratory syncytial virus (RSV), human rhinovirus (HRV), attenuated yellow fever virus (YFV), and Dengue fever virus (DENV), revealed similarity only to DENV. The signature shared by EBV and DENV was also present in patients with hemophagocytic syndromes, suggesting these two viruses cause uncontrolled inflammatory responses. Interestingly, while EBV induced a strong type I interferon response, a subset of interferon induced genes, including MX1, HERC5, and OAS1, were not upregulated, suggesting a mechanism by which viral antagonism of immunity results in a profound inflammatory response. These data provide an important first description of the response to a natural herpesvirus infection in humans. PMID:24465555

  7. Spexin peptide is expressed in human endocrine and epithelial tissues and reduced after glucose load in type 2 diabetes.

    Science.gov (United States)

    Gu, Liping; Ma, Yuhang; Gu, Mingyu; Zhang, Ying; Yan, Shuai; Li, Na; Wang, Yufan; Ding, Xiaoying; Yin, Jiajing; Fan, Nengguang; Peng, Yongde

    2015-09-01

    Spexin mRNA and protein are widely expressed in rat tissues and associate with weight loss in rodents of diet-induced obesity. Its location in endocrine and epithelial cells has also been suggested. Spexin is a novel peptide that involves weight loss in rodents of diet-induced obesity. Therefore, we aimed to examine its expression in human tissues and test whether spexin could have a role in glucose and lipid metabolism in type 2 diabetes mellitus (T2DM). The expression of the spexin gene and immunoreactivity in the adrenal gland, skin, stomach, small intestine, liver, thyroid, pancreatic islets, visceral fat, lung, colon, and kidney was higher than that in the muscle and connective tissue. Immunoreactive serum spexin levels were reduced in T2DM patients and correlated with fasting blood glucose (FBG, r=-0.686, Pepithelial tissues, indicating that spexin may be involved in physiological functions of endocrine and in several other tissues. Circulating spexin levels are low in T2DM patients and negatively related to blood glucose and lipids suggesting that the peptide may play a role in glucose and lipid metabolism in T2DM. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  8. Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation

    International Nuclear Information System (INIS)

    Kim, Kook Hwan; Jeong, Yeon Taek; Kim, Seong Hun; Jung, Hye Seung; Park, Kyong Soo; Lee, Hae-Youn; Lee, Myung-Shik

    2013-01-01

    Highlights: •Metformin induces FGF21 expression in an AMPK independent manner. •Metformin enhances FGF21 expression by inhibiting mitochondrial complex I activity. •The PERK-eIF2α-ATF4 axis is required for metformin-induced FGF21 expression. •Metformin activates the ATF4-FGF21 axis in the liver of mouse. •Metformin increases serum FGF21 level in diabetic human subjects. -- Abstract: Fibroblast growth factor 21 (FGF21) is an endocrine hormone that exhibits anti-obesity and anti-diabetes effects. Because metformin is widely used as a glucose-lowering agent in patients with type 2 diabetes (T2D), we investigated whether metformin modulates FGF21 expression in cell lines, and in mice or human subjects. We found that metformin increased the expression and release of FGF21 in a diverse set of cell types, including rat hepatoma FaO, primary mouse hepatocytes, and mouse embryonic fibroblasts (MEFs). Intriguingly, AMP-activated protein kinase (AMPK) was dispensable for the induction of FGF21 by metformin. Mammalian target of rapamycin complex 1 (mTORC1) and peroxisome proliferator-activated receptor α (PPARα), which are additional targets of metformin, were not involved in metformin-induced FGF21 expression. Importantly, inhibition of mitochondrial complex I activity by metformin resulted in FGF21 induction through PKR-like ER kinase (PERK)-eukaryotic translation factor 2α (eIF2α)-activating transcription factor 4 (ATF4). We showed that metformin activated ATF4 and increased FGF21 expression in the livers of mice, which led to increased serum levels of FGF21. We also found that serum FGF21 level was increased in human subjects with T2D after metformin therapy for 6 months. In conclusion, our results indicate that metformin induced expression of FGF21 through an ATF4-dependent mechanism by inhibiting mitochondrial respiration independently of AMPK. Therefore, FGF21 induction by metformin might explain a portion of the beneficial metabolic effects of metformin

  9. Metformin-induced inhibition of the mitochondrial respiratory chain increases FGF21 expression via ATF4 activation

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Kook Hwan [Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong Gangnam-gu, Seoul 135-710 (Korea, Republic of); Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, 50 Irwon-dong Gangnam-gu, Seoul 135-710 (Korea, Republic of); Jeong, Yeon Taek [Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong Gangnam-gu, Seoul 135-710 (Korea, Republic of); Kim, Seong Hun [Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, 50 Irwon-dong Gangnam-gu, Seoul 135-710 (Korea, Republic of); Jung, Hye Seung; Park, Kyong Soo [Department of Internal Medicine, Seoul National University College of Medicine, 28 Yongon-dong Chongno-gu, Seoul 110-744 (Korea, Republic of); Lee, Hae-Youn [Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong Gangnam-gu, Seoul 135-710 (Korea, Republic of); Lee, Myung-Shik, E-mail: mslee0923@skku.edu [Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-dong Gangnam-gu, Seoul 135-710 (Korea, Republic of); Samsung Advanced Institute for Health Sciences and Technology, Sungkyunkwan University School of Medicine, 50 Irwon-dong Gangnam-gu, Seoul 135-710 (Korea, Republic of)

    2013-10-11

    Highlights: •Metformin induces FGF21 expression in an AMPK independent manner. •Metformin enhances FGF21 expression by inhibiting mitochondrial complex I activity. •The PERK-eIF2α-ATF4 axis is required for metformin-induced FGF21 expression. •Metformin activates the ATF4-FGF21 axis in the liver of mouse. •Metformin increases serum FGF21 level in diabetic human subjects. -- Abstract: Fibroblast growth factor 21 (FGF21) is an endocrine hormone that exhibits anti-obesity and anti-diabetes effects. Because metformin is widely used as a glucose-lowering agent in patients with type 2 diabetes (T2D), we investigated whether metformin modulates FGF21 expression in cell lines, and in mice or human subjects. We found that metformin increased the expression and release of FGF21 in a diverse set of cell types, including rat hepatoma FaO, primary mouse hepatocytes, and mouse embryonic fibroblasts (MEFs). Intriguingly, AMP-activated protein kinase (AMPK) was dispensable for the induction of FGF21 by metformin. Mammalian target of rapamycin complex 1 (mTORC1) and peroxisome proliferator-activated receptor α (PPARα), which are additional targets of metformin, were not involved in metformin-induced FGF21 expression. Importantly, inhibition of mitochondrial complex I activity by metformin resulted in FGF21 induction through PKR-like ER kinase (PERK)-eukaryotic translation factor 2α (eIF2α)-activating transcription factor 4 (ATF4). We showed that metformin activated ATF4 and increased FGF21 expression in the livers of mice, which led to increased serum levels of FGF21. We also found that serum FGF21 level was increased in human subjects with T2D after metformin therapy for 6 months. In conclusion, our results indicate that metformin induced expression of FGF21 through an ATF4-dependent mechanism by inhibiting mitochondrial respiration independently of AMPK. Therefore, FGF21 induction by metformin might explain a portion of the beneficial metabolic effects of metformin.

  10. Light-dependent expression of flg22-induced defense genes in Arabidopsis

    Directory of Open Access Journals (Sweden)

    Satoshi eSano

    2014-10-01

    Full Text Available Chloroplasts have been reported to generate retrograde immune signals that activate defense gene expression in the nucleus. However, the roles of light and photosynthesis in plant immunity remain largely elusive. In this study, we evaluated the effects of light on the expression of defense genes induced by flg22, a peptide derived from bacterial flagellins which acts as a potent elicitor in plants. Whole-transcriptome analysis of flg22-treated Arabidopsis thaliana seedlings under light and dark conditions for 30 min revealed that a number of (30% genes strongly induced by flg22 (>4.0 require light for their rapid expression, whereas flg22-repressed genes include a significant number of genes that are down-regulated by light. Furthermore, light is responsible for the flg22-induced accumulation of salicylic acid, indicating that light is indispensable for basal defense responses in plants. To elucidate the role of photosynthesis in defense, we further examined flg22-induced defense gene expression in the presence of specific inhibitors of photosynthetic electron transport: 3-(3,4-dichlorophenyl-1,1-dimethylurea (DCMU and 2,5-dibromo-3-methyl-6-isopropyl-benzoquinone (DBMIB. Light-dependent expression of defense genes was largely suppressed by DBMIB, but only partially suppressed by DCMU. These findings suggest that photosynthetic electron flow plays a role in controling the light-dependent expression of flg22-inducible defense genes.

  11. HIF1 Contributes to Hypoxia-Induced Pancreatic Cancer Cells Invasion via Promoting QSOX1 Expression

    Directory of Open Access Journals (Sweden)

    Chen-Ye Shi

    2013-08-01

    Full Text Available Background: Quiescin sulfhydryl oxidase 1 (QSOX1, which oxidizes sulfhydryl groups to form disulfide bonds in proteins, is found to be over-expressed in various pancreatic cancer cell lines and patients. QSOX1 promotes invasion of pancreatic cancer cells by activating MMP-2 and MMP-9. However, its regulatory mechanism remains largely undefined. Methods: Real-time PCR and Western blot were employed to detect the expression of QSOX1 in human pancreatic cancer cell lines under hypoxic condition. Luciferase reporter and ChIP assays were used to assess the regulation of QSOX1 by hypoxia-inducible factor 1 (HIF-1. Small interfering RNA (siRNA was applied to knock down endogenous expression of QSOX1. Matrigel-coated invasion chamber essays were conducted to detect the invasion capacity of QSOX1-depleted cells. Results: Both hypoxia and hypoxia mimicking reagent up-regulated the expression of QSOX1 in human pancreatic cancer cell lines. Knockdown of HIF-1α eliminated hypoxia induced QSOX1 expression. HIF-1α was found directly bound to two hypoxia-response elements (HRE of QSOX1 gene, both of which were required for HIF-1 induced QSOX1 expression. Moreover, QSOX1 silencing blocked hypoxia-induced pancreatic cancer cells invasion. Conclusion: QSOX1 is a direct target of HIF-1 and may contribute to hypoxia-induced pancreatic cancer cells invasion.

  12. Leptin deficiency-induced obesity exacerbates ultraviolet B radiation-induced cyclooxygenase-2 expression and cell survival signals in ultraviolet B-irradiated mouse skin

    International Nuclear Information System (INIS)

    Sharma, Som D.; Katiyar, Santosh K.

    2010-01-01

    Obesity has been implicated in several inflammatory diseases and in different types of cancer. Chronic inflammation induced by exposure to ultraviolet (UV) radiation has been implicated in various skin diseases, including melanoma and nonmelanoma skin cancers. As the relationship between obesity and susceptibility to UV radiation-caused inflammation is not clearly understood, we assessed the role of obesity on UVB-induced inflammation, and mediators of this inflammatory response, using the genetically obese (leptin-deficient) mouse model. Leptin-deficient obese (ob/ob) mice and wild-type counterparts (C57/BL6 mice) were exposed to UVB radiation (120 mJ/cm 2 ) on alternate days for 1 month. The mice were then euthanized and skin samples collected for analysis of biomarkers of inflammatory responses using immunohistochemistry, western blotting, ELISA and real-time PCR. Here, we report that the levels of inflammatory responses were higher in the UVB-exposed skin of the ob/ob obese mice than those in the UVB-exposed skin of the wild-type non-obese mice. The levels of UVB-induced cyclooxygenase-2 expression, prostaglandin-E 2 production, proinflammatory cytokines (i.e., tumor necrosis factor-α, interleukin-1β, interleukin-6), and proliferating cell nuclear antigen and cell survival signals (phosphatidylinositol-3-kinase and p-Akt-Ser 473 ) were higher in the skin of the ob/ob obese mice than the those in skin of their wild-type non-obese counterparts. Compared with the wild-type non-obese mice, the leptin-deficient obese mice also exhibited greater activation of NF-κB/p65 and fewer apoptotic cells in the UVB-irradiated skin. Our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced inflammatory responses and, therefore, obesity may increase susceptibility to UVB-induced inflammation-associated skin diseases, including the risk of skin cancer.

  13. Opposite Expression of SPARC between the Liver and Pancreas in Streptozotocin-Induced Diabetic Rats.

    Directory of Open Access Journals (Sweden)

    Kanikkai Raja Aseer

    Full Text Available Secreted protein acidic and rich in cysteine (SPARC is a matricellular protein that regulates several cellular events, including inflammation and tissue remodelling. In this study, we investigated the tissue-specific expression of SPARC in streptozotocin (STZ-induced diabetes, and found that SPARC was significantly up-regulated in the liver while down-regulated in the pancreas of STZ-induced diabetic rats. Chronic inflammation occurred in the diabetic pancreas accompanied by up-regulation of CCAAT/enhancer-binding protein beta (C/EBPβ and its targets (TNFα, Il6, CRP, and Fn1 as well as myeloperoxidase (Mpo and C-X-C chemokine receptor type 2 (Cxcr2. Diabetic liver showed significant up-regulation of Tgfb1 as well as moderately less up-regulated TNFα and reduced Fn1, resulting in elevated fibrogenesis. PARP-1 was not up-regulated during CD95-mediated apoptosis, resulting in restoration of high ATP levels in the diabetic liver. On the contrary, CD95-dependent apoptosis was not observed in the diabetic pancreas due to up-regulation of PARP-1 and ATP depletion, resulting in necrosis. The cytoprotective machinery was damaged by pancreatic inflammation, whereas adequate antioxidant capacity indicates low oxidative stress in the diabetic liver. High and low cellular insulin content was found in the diabetic liver and pancreas, respectively. Furthermore, we identified six novel interacting partner proteins of SPARC by co-immunoprecipitation in the diabetic liver and pancreas, and their interactions with SPARC were predicted by bioinformatics tools. Taken together, opposite expression of SPARC in the diabetic liver and pancreas may be related to inflammation and immune cell infiltration, degrees of apoptosis and fibrosis, cytoprotective machinery, and cellular insulin levels.

  14. Opposite Expression of SPARC between the Liver and Pancreas in Streptozotocin-Induced Diabetic Rats

    Science.gov (United States)

    Aseer, Kanikkai Raja; Kim, Sang Woo; Choi, Myung-Sook; Yun, Jong Won

    2015-01-01

    Secreted protein acidic and rich in cysteine (SPARC) is a matricellular protein that regulates several cellular events, including inflammation and tissue remodelling. In this study, we investigated the tissue-specific expression of SPARC in streptozotocin (STZ)-induced diabetes, and found that SPARC was significantly up-regulated in the liver while down-regulated in the pancreas of STZ-induced diabetic rats. Chronic inflammation occurred in the diabetic pancreas accompanied by up-regulation of CCAAT/enhancer-binding protein beta (C/EBPβ) and its targets (TNFα, Il6, CRP, and Fn1) as well as myeloperoxidase (Mpo) and C-X-C chemokine receptor type 2 (Cxcr2). Diabetic liver showed significant up-regulation of Tgfb1 as well as moderately less up-regulated TNFα and reduced Fn1, resulting in elevated fibrogenesis. PARP-1 was not up-regulated during CD95-mediated apoptosis, resulting in restoration of high ATP levels in the diabetic liver. On the contrary, CD95-dependent apoptosis was not observed in the diabetic pancreas due to up-regulation of PARP-1 and ATP depletion, resulting in necrosis. The cytoprotective machinery was damaged by pancreatic inflammation, whereas adequate antioxidant capacity indicates low oxidative stress in the diabetic liver. High and low cellular insulin content was found in the diabetic liver and pancreas, respectively. Furthermore, we identified six novel interacting partner proteins of SPARC by co-immunoprecipitation in the diabetic liver and pancreas, and their interactions with SPARC were predicted by bioinformatics tools. Taken together, opposite expression of SPARC in the diabetic liver and pancreas may be related to inflammation and immune cell infiltration, degrees of apoptosis and fibrosis, cytoprotective machinery, and cellular insulin levels. PMID:26110898

  15. Increased Expression of the Innate Immune Receptor TLR10 in Obesity and Type-2 Diabetes: Association with ROS-Mediated Oxidative Stress.

    Science.gov (United States)

    Sindhu, Sardar; Akhter, Nadeem; Kochumon, Shihab; Thomas, Reeby; Wilson, Ajit; Shenouda, Steve; Tuomilehto, Jaakko; Ahmad, Rasheed

    2018-01-01

    Metabolic diseases such as obesity and type-2 diabetes (T2D) are known to be associated with chronic low-grade inflammation called metabolic inflammation together with an oxidative stress milieu found in the expanding adipose tissue. The innate immune Toll-like receptors (TLR) such as TLR2 and TLR4 have emerged as key players in metabolic inflammation; nonetheless, TLR10 expression in the adipose tissue and its significance in obesity/T2D remain unclear. TLR10 gene expression was determined in the adipose tissue samples from healthy non-diabetic and T2D individuals, 13 each, using real-time RT-PCR. TLR10 protein expression was determined by immunohistochemistry, confocal microscopy, and flow cytometry. Regarding in vitro studies, THP-1 cells, peripheral blood mononuclear cells (PBMC), or primary monocytes were treated with hydrogen peroxide (H2O2) for induction of reactive oxygen species (ROS)-mediated oxidative stress. Superoxide dismutase (SOD) activity was measured using a commercial kit. Data (mean±SEM) were compared using unpaired student's t-test and Pobesity as well as T2D which correlated with body mass index (BMI). ROS-mediated oxidative stress induced high levels of TLR10 gene/protein expression in monocytic cells and PBMC. In these cells, oxidative stress induced a time-dependent increase in SOD activity. Pre-treatment of cells with anti-oxidants/ROS scavengers diminished the expression of TLR10. ROS-induced TLR10 expression involved the nuclear factor-kappaB (NF-κB)/mitogen activated protein kinase (MAPK) signaling as well as endoplasmic reticulum (ER) stress. H2O2-induced oxidative stress interacted synergistically with palmitate to trigger the expression of TLR10 which associated with enhanced expression of proinflammatory cytokines/chemokine. Oxidative stress induces the expression of TLR10 which may represent an immune marker for metabolic inflammation. © 2018 The Author(s). Published by S. Karger AG, Basel.

  16. When Do Types Induce the Same Belief Hierarchy?

    Directory of Open Access Journals (Sweden)

    Andrés Perea

    2016-10-01

    Full Text Available Type structures are a simple device to describe higher-order beliefs. However, how can we check whether two types generate the same belief hierarchy? This paper generalizes the concept of a type morphism and shows that one type structure is contained in another if and only if the former can be mapped into the other using a generalized type morphism. Hence, every generalized type morphism is a hierarchy morphism and vice versa. Importantly, generalized type morphisms do not make reference to belief hierarchies. We use our results to characterize the conditions under which types generate the same belief hierarchy.

  17. Age-related modifications of type I collagen impair DDR1-induced apoptosis in non-invasive breast carcinoma cells.

    Science.gov (United States)

    Charles, Saby; Hassan, Rammal; Kevin, Magnien; Emilie, Buache; Sylvie, Brassart-Pasco; Laurence, Van-Gulick; Pierre, Jeannesson; Erik, Maquoi; Hamid, Morjani

    2018-05-07

    Type I collagen and DDR1 axis has been described to decrease cell proliferation and to initiate apoptosis in non-invasive breast carcinoma in three-dimensional cell culture matrices. Moreover, MT1-MMP down-regulates these effects. Here, we address the effect of type I collagen aging and MT1-MMP expression on cell proliferation suppression and induced-apoptosis in non-invasive MCF-7 and ZR-75-1 breast carcinoma. We provide evidence for a decrease in cell growth and an increase in apoptosis in the presence of adult collagen when compared to old collagen. This effect involves a differential activation of DDR1, as evidenced by a higher DDR1 phosphorylation level in adult collagen. In adult collagen, inhibition of DDR1 expression and kinase function induced an increase in cell growth to a level similar to that observed in old collagen. The impact of aging on the sensitivity of collagen to MT1-MMP has been reported recently. We used the MT1-MMP expression strategy to verify whether, by degrading adult type I collagen, it could lead to the same phenotype observed in old collagen 3D matrix. MT1-MMP overexpression abrogated the proliferation suppression and induced-apoptosis effects only in the presence of adult collagen. This suggests that differential collagen degradation by MT1-MMP induced a structural disorganization of adult collagen and inhibits DDR1 activation. This could in turn impair DDR1-induced cell growth suppression and apoptosis. Taken together, our data suggest that modifications of collagen structural organization, due to aging, contribute to the loss of the growth suppression and induced apoptosis effect of collagen in luminal breast carcinoma. MT1-MMP-dependent degradation and aging of collagen have no additive effects on these processes.

  18. Trivalent Human Papillomavirus (HPV) VLP vaccine covering HPV type 58 can elicit high level of humoral immunity but also induce immune interference among component types.

    Science.gov (United States)

    Zhang, Ting; Xu, Yufei; Qiao, Liang; Wang, Youchun; Wu, Xueling; Fan, Dongsheng; Peng, Qinglin; Xu, Xuemei

    2010-04-26

    Both Human Papillomavirus (HPV) type 16/18 bivalent vaccine and type 16/18/6/11 quadrivalent vaccine have been proved to be safe and effective, and licensed for public use. However, these two vaccines do not quite match the distribution of HPV types in China, Southeast Asia and Latin America, where HPV 58 is highly prevalent. Here we produced three types of virus-like particles (VLPs) in baculovirus expression system, formulated a trivalent vaccine containing HPV 16, 18, and 58 L1 VLPs and examined its in vitro neutralizing titers. This vaccine could induce high level and long-term humoral immunity against the component types. But immune interference was observed when comparing type specific neutralizing antibody levels induced by trivalent vaccine to those by corresponding monovalent vaccines. This kind of interference would become more obvious when formulating more types of VLPs into multivalent vaccines, but could be greatly overcome by decreasing the antigen dosage and adding a proper adjuvant. Copyright 2010 Elsevier Ltd. All rights reserved.

  19. Artichoke, Cynarin and Cyanidin Downregulate the Expression of Inducible Nitric Oxide Synthase in Human Coronary Smooth Muscle Cells

    Directory of Open Access Journals (Sweden)

    Ning Xia

    2014-03-01

    Full Text Available Artichoke (Cynara scolymus L. is one of the world’s oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC. Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1–100 µg/mL, 6 h or 24 h. Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

  20. Artichoke, cynarin and cyanidin downregulate the expression of inducible nitric oxide synthase in human coronary smooth muscle cells.

    Science.gov (United States)

    Xia, Ning; Pautz, Andrea; Wollscheid, Ursula; Reifenberg, Gisela; Förstermann, Ulrich; Li, Huige

    2014-03-24

    Artichoke (Cynara scolymus L.) is one of the world's oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects of artichoke on iNOS expression in human coronary artery smooth muscle cells (HCASMC). Incubation of HCASMC with a cytokine mixture led to an induction of iNOS mRNA expression. This iNOS induction was concentration- and time-dependently inhibited by an artichoke leaf extract (1-100 µg/mL, 6 h or 24 h). Consistently, the artichoke leaf extract also reduced cytokine-induced iNOS promoter activation and iNOS protein expression. In addition, treatment of HCASMC with four well-known artichoke compounds (cynarin > cyanidin > luteolin ≈ cynaroside) led to a downregulation iNOS mRNA and protein expression, with cynarin being the most potent one. In conclusion, artichoke contains both eNOS-upregulating and iNOS-downregulating compounds. Such compounds may contribute to the beneficial effects of artichoke and may per se have therapeutic potentials.

  1. Effects of C-phycocyanin and Spirulina on Salicylate-Induced Tinnitus, Expression of NMDA Receptor and Inflammatory Genes

    Science.gov (United States)

    Hwang, Juen-Haur; Chen, Jin-Cherng; Chan, Yin-Ching

    2013-01-01

    Effects of C-phycocyanin (C-PC), the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B), tumor necrosis factor–α (TNF-α), interleukin-1β (IL-1β), and cyclooxygenase type 2 (COX-2) genes in the cochlea and inferior colliculus (IC) of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment) caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes. PMID:23533584

  2. Effects of C-phycocyanin and Spirulina on salicylate-induced tinnitus, expression of NMDA receptor and inflammatory genes.

    Directory of Open Access Journals (Sweden)

    Juen-Haur Hwang

    Full Text Available Effects of C-phycocyanin (C-PC, the active component of Spirulina platensis water extract on the expressions of N-methyl D-aspartate receptor subunit 2B (NR2B, tumor necrosis factor-α (TNF-α, interleukin-1β (IL-1β, and cyclooxygenase type 2 (COX-2 genes in the cochlea and inferior colliculus (IC of mice were evaluated after tinnitus was induced by intraperitoneal injection of salicylate. The results showed that 4-day salicylate treatment (unlike 4-day saline treatment caused a significant increase in NR2B, TNF-α, and IL-1β mRNAs expression in the cochlea and IC. On the other hand, dietary supplementation with C-PC or Spirulina platensis water extract significantly reduced the salicylate-induced tinnitus and down-regulated the mRNAs expression of NR2B, TNF-α, IL-1β mRNAs, and COX-2 genes in the cochlea and IC of mice. The changes of protein expression levels were generally correlated with those of mRNAs expression levels in the IC for above genes.

  3. Construction and Development of a Cardiac Tissue-Specific and Hypoxia-Inducible Expression Vector

    Directory of Open Access Journals (Sweden)

    Shahrooz Ghaderi

    2018-03-01

    Full Text Available Purpose: Cardiovascular gene therapy is a sophisticated approach, thanks to the safety of vectors, stable transgene expression, delivery method, and different layers of the heart. To date, numerous expression vectors have been introduced in biotechnology and biopharmacy industries in relation to genetic manipulation. Despite the rapid growth of these modalities, they must be intelligently designed, addressing the cardiac-specific transgene expression and less side effects. Herein, we conducted a pilot project aiming to design a cardiac-specific hypoxia-inducible expression cassette. Methods: We explored a new approach to design an expression cassette containing cardiac specific enhancer, hypoxia response elements (HRE, cardiac specific promoter, internal ribosome entry site (IRES, and beta globin poly A sequence to elicit specific and inducible expression of the gene of interest. Enhanced green fluorescent protein (eGFP was sub-cloned by BglII and NotI into the cassette. The specificity and inducible expression of the cassette was determined in both mouse myoblast C2C12 and mammary glandular tumor 4T1 as ‘twin’ cells. eGFP expression was evaluated by immunofluorescence microscope and flow cytometry at 520 nm emission peak. Results: Our data revealed that the designed expression cassette provided tissue specific and hypoxia inducible (O2<1% transgene expression. Conclusion: It is suggested that cardiac-specific enhancer combined with cardiac-specific promoter are efficient for myoblast specific gene expression. As well, this is for the first time that HRE are derived from three well known hypoxia-regulated promoters. Therefore, there is no longer need to overlap PCR process for one repeated sequence just in one promoter.

  4. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    International Nuclear Information System (INIS)

    Wu, Hsu-Pin; Hsu, Shu-Yuan; Wu, Wen-Ai; Hu, Ji-Wei; Ouyang, Pin

    2014-01-01

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB +/− mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity

  5. Transgenic mice expressing mutant Pinin exhibit muscular dystrophy, nebulin deficiency and elevated expression of slow-type muscle fiber genes

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Hsu-Pin; Hsu, Shu-Yuan [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Wu, Wen-Ai; Hu, Ji-Wei [Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Ouyang, Pin, E-mail: ouyang@mail.cgu.edu.tw [Department of Anatomy, Chang Gung University Medical College, Taiwan (China); Transgenic Mouse Core Laboratory, Chang Gung University, Taiwan (China); Molecular Medicine Research Center, Chang Gung University, Taiwan (China)

    2014-01-03

    Highlights: •Pnn CCD domain functions as a dominant negative mutant regulating Pnn expression and function. •Pnn CCD mutant Tg mice have a muscle wasting phenotype during development and show dystrophic histological features. •Pnn mutant muscles are susceptible to slow fiber type gene transition and NEB reduction. •The Tg mouse generated by overexpression of the Pnn CCD domain displays many characteristics resembling NEB{sup +/−} mice. -- Abstract: Pinin (Pnn) is a nuclear speckle-associated SR-like protein. The N-terminal region of the Pnn protein sequence is highly conserved from mammals to insects, but the C-terminal RS domain-containing region is absent in lower species. The N-terminal coiled-coil domain (CCD) is, therefore, of interest not only from a functional point of view, but also from an evolutionarily standpoint. To explore the biological role of the Pnn CCD in a physiological context, we generated transgenic mice overexpressing Pnn mutant in skeletal muscle. We found that overexpression of the CCD reduces endogenous Pnn expression in cultured cell lines as well as in transgenic skeletal muscle fibers. Pnn mutant mice exhibited reduced body mass and impaired muscle function during development. Mutant skeletal muscles show dystrophic histological features with muscle fibers heavily loaded with centrally located myonuclei. Expression profiling and pathway analysis identified over-representation of genes in gene categories associated with muscle contraction, specifically those related to slow type fiber. In addition nebulin (NEB) expression level is repressed in Pnn mutant skeletal muscle. We conclude that Pnn downregulation in skeletal muscle causes a muscular dystrophic phenotype associated with NEB deficiency and the CCD domain is incapable of replacing full length Pnn in terms of functional capacity.

  6. Expression of interleukin-15 in human skeletal muscle effect of exercise and muscle fibre type composition

    DEFF Research Database (Denmark)

    Nielsen, Anders Rinnov; Mounier, Remi; Plomgaard, Peter

    2007-01-01

    The cytokine interleukin-15 (IL-15) has been demonstrated to have anabolic effects in cell culture systems. We tested the hypothesis that IL-15 is predominantly expressed by type 2 skeletal muscle fibres, and that resistance exercise regulates IL-15 expression in muscle. Triceps brachii, vastus...... lateralis quadriceps and soleus muscle biopsies were obtained from normally physically active, healthy, young male volunteers (n = 14), because these muscles are characterized by having different fibre-type compositions. In addition, healthy, normally physically active male subjects (n = 8) not involved...

  7. Glucose-induced serum- and glucocorticoid-regulated kinase activation in oncofetal fibronectin expression

    International Nuclear Information System (INIS)

    Khan, Zia A.; Barbin, Yousef P.; Farhangkhoee, Hana; Beier, Norbert; Scholz, Wolfgang; Chakrabarti, Subrata

    2005-01-01

    Preferential expression of oncofetal extra domain-B fibronectin (EDB + FN), a proposed angiogenic marker, has been shown in proliferative diabetic retinopathy. High levels of glucose also increase EDB + FN expression in endothelial cells (ECs) via transforming growth factor-β1 (TGF-β1) and endothelin-1 (ET-1). The present study was aimed at elucidating the role of serum- and glucocorticoid-regulated kinase (SGK-1) in glucose-induced EDB + FN expression. Using human macro- and microvascular ECs, we show that high levels of glucose, TGF-β1, and ET-1 increase the EDB + FN expression via SGK-1 alteration at the mRNA, protein, and activity levels. Inhibition of TGF-β1 and ET-1 prevented glucose-induced SGK-1 activation and the EDB + FN expression. Furthermore, using siRNA-mediated SGK-1 gene silencing, we show that glucose-induced EDB + FN expression can be completely prevented. These findings provide first evidence of glucose-induced SGK-1 activation in altered EDB + FN expression and provide novel avenues for therapeutic modalities

  8. Beta3 subunits promote expression and nicotine-induced up-regulation of human nicotinic alpha6* nicotinic acetylcholine receptors expressed in transfected cell lines.

    Science.gov (United States)

    Tumkosit, Prem; Kuryatov, Alexander; Luo, Jie; Lindstrom, Jon

    2006-10-01

    Nicotinic acetylcholine receptors (AChRs) containing alpha6 subunits are typically found at aminergic nerve endings where they play important roles in nicotine addiction and Parkinson's disease. alpha6* AChRs usually contain beta3 subunits. beta3 subunits are presumed to assemble only in the accessory subunit position within AChRs where they do not participate in forming acetylcholine binding sites. Assembly of subunits in the accessory position may be a critical final step in assembly of mature AChRs. Human alpha6 AChRs subtypes were permanently transfected into human tsA201 human embryonic kidney (HEK) cell lines. alpha6beta2beta3 and alpha6beta4beta3 cell lines were found to express much larger amounts of AChRs and were more sensitive to nicotine-induced increase in the amount of AChRs than were alpha6beta2 or alpha6beta4 cell lines. The increased sensitivity to nicotine-induced up-regulation was due not to a beta3-induced increase in affinity for nicotine but probably to a direct effect on assembly of AChR subunits. HEK cells express only a small amount of mature alpha6beta2 AChRs, but many of these subunits are on the cell surface. This contrasts with Xenopus laevis oocytes, which express a large amount of incorrectly assembled alpha6beta2 subunits that bind cholinergic ligands but form large amorphous intracellular aggregates. Monoclonal antibodies (mAbs) were made to the alpha6 and beta3 subunits to aid in the characterization of these AChRs. The alpha6 mAbs bind to epitopes C-terminal of the extracellular domain. These data demonstrate that both cell type and the accessory subunit beta3 can play important roles in alpha6* AChR expression, stability, and up-regulation by nicotine.

  9. Low dose radiation induced protein and its effect on expression of CD25 molecule in lymphocytes

    International Nuclear Information System (INIS)

    Lu Duicai; Su Liaoyuan

    2001-01-01

    Objective: To find the substantial basis for effects of low dose radiation, on development, extraction, and the biogical activity of the low-dose radiation-induced proteins, and the effects of LDR induced proteins on CD25 molecule expression of human lymphocytes. Methods: 1. Healthy Kumning male mice exposed to radiation of 226 Ra γ-rays at 5, 10 and 15 cGy respectively. The mice were killed 2 hours after exposure, the spleen cells were broken with ultrasonic energy and then ultra-centrifugalized at low temperature (4 degree C). The LDR-induced proteins were obtained in the supernatant solution. Then the changes of CD25 molecule was measured by flow cytometry (FCM) with immunofluorescence technique, which was used to reflect the effect of LDR induced proteins on CD25 molecule expression of human lymphocytes. Results: LDR induced proteins were obtained from spleen cells in mice exposed to 5-15 cGy whole body radiation. Conclusion: The expression of CD25 molecule of lymphocytes was increased significantly after use of LDR induced proteins. LDR induced proteins can enhance expression of CD25 molecule of lymphocytes slightly

  10. Mucosal Progranulin expression is induced by H. pylori, but independent of Secretory Leukocyte Protease Inhibitor (SLPI) expression.

    Science.gov (United States)

    Wex, Thomas; Kuester, Doerthe; Schönberg, Cornelius; Schindele, Daniel; Treiber, Gerhard; Malfertheiner, Peter

    2011-05-26

    Mucosal levels of Secretory Leukocyte Protease Inhibitor (SLPI) are specifically reduced in relation to H. pylori-induced gastritis. Progranulin is an epithelial growth factor that is proteolytically degraded into fragments by elastase (the main target of SLPI). Considering the role of SLPI for regulating the activity of elastase, we studied whether the H. pylori-induced reduction of SLPI and the resulting increase of elastase-derived activity would reduce the Progranulin protein levels both ex vivo and in vitro. The expression of Progranulin was studied in biopsies of H. pylori-positive, -negative and -eradicated subjects as well as in the gastric tumor cell line AGS by ELISA, immunohistochemistry and real-time RT-PCR. H. pylori-infected subjects had about 2-fold increased antral Progranulin expression compared to H. pylori-negative and -eradicated subjects (P Progranulin and SLPI levels were identified. Immunohistochemical analysis confirmed the upregulation of Progranulin in relation to H. pylori infection; both epithelial and infiltrating immune cells contributed to the higher Progranulin expression levels. The H. pylori-induced upregulation of Progranulin was verified in AGS cells infected by H. pylori. The down-regulation of endogenous SLPI expression in AGS cells by siRNA methodology did not affect the Progranulin expression independent of the infection by H. pylori. Taken together, Progranulin was identified as novel molecule that is upregulated in context to H. pylori infection. In contrast to other diseases, SLPI seems not to have a regulatory role for Progranulin in H. pylori-mediated gastritis.

  11. Exercise-induced liver chemokine CXCL-1 expression is linked to muscle-derived interleukin-6 expression

    DEFF Research Database (Denmark)

    Pedersen, Line; Pilegaard, Henriette; Hansen, Jakob

    2011-01-01

    interleukin-6 (IL-6) and muscle IL-6 mRNA. In contrast, exercise-induced regulation of liver CXCL-1 mRNA expression was completely blunted in IL-6 knockout mice. Based on these findings, we examined the possible existence of a muscle-to-liver axis by overexpressing IL-6 in muscles. This resulted in increases...... in serum CXCL-1 (5-fold) and liver CXCL-1 mRNA expression (24-fold) compared with control. Because IL-6 expression and release are known to be augmented during exercise in glycogen-depleted animals, CXCL-1 and IL-6 expression were examined after exercise in overnight-fasted mice.We found that fasting...... significantly augmented serum CXCL-1, and CXCL-1 expression in liver and muscle. Taken together, these data indicate that liver is the main source of serum CXCL-1 during exercise in mice, and that the CXCL-1 expression in the liver is regulated by muscle-derived IL-6....

  12. Genetic expression of induced rice sterility under alien-cytoplasm

    International Nuclear Information System (INIS)

    Wang Naiyuan; Cai Zhijun; Liang Kangjing; Li Yu

    2005-01-01

    Rice restorer lines were treated with 60 Co γ-ray and 4 male sterile mutants obtained with the fertility of controlled by 4 non-allelic recessive genes, respectively. Sixty combinations were made by using male sterile plants/fertile plants as male parents, and 15 different cytoplasmic substitution lines of the same cell nucleus as female parents. The result showed that F 1 spikelets were normal and fertile, and different numbers of male sterile plants were segregated in F 2 . Complete fertility genotype was not found among interactions between induced male sterile genes and alien-cytoplasms. (authors)

  13. Retinal neuroprotection by hypoxic preconditioning is independent of hypoxia-inducible factor-1 alpha expression in photoreceptors.

    Science.gov (United States)

    Thiersch, Markus; Lange, Christina; Joly, Sandrine; Heynen, Severin; Le, Yun Zheng; Samardzija, Marijana; Grimm, Christian

    2009-06-01

    Hypoxic preconditioning stabilizes hypoxia-inducible factor (HIF) 1 alpha in the retina and protects photoreceptors against light-induced cell death. HIF-1 alpha is one of the major transcription factors responding to low oxygen tension and can differentially regulate a large number of target genes. To analyse whether photoreceptor-specific expression of HIF-1 alpha is essential to protect photoreceptors by hypoxic preconditioning, we knocked down expression of HIF-1 alpha specifically in photoreceptor cells, using the cyclization recombinase (Cre)-lox system. The Cre-mediated knockdown caused a 20-fold reduced expression of Hif-1 alpha in the photoreceptor cell layer. In the total retina, RNA expression was reduced by 65%, and hypoxic preconditioning led to only a small increase in HIF-1 alpha protein levels. Accordingly, HIF-1 target gene expression after hypoxia was significantly diminished. Retinas of Hif-1 alpha knockdown animals did not show any pathological alterations, and tolerated hypoxic exposure in a comparable way to wild-type retinas. Importantly, the strong neuroprotective effect of hypoxic preconditioning against light-induced photoreceptor degeneration persisted in knockdown mice, suggesting that hypoxia-mediated survival of light exposure does not depend on an autocrine action of HIF-1 alpha in photoreceptor cells. Hypoxia-mediated stabilization of HIF-2 alpha and phosphorylation of signal transducer and activator of transcription 3 (STAT 3) were not affected in the retinas of Hif-1 alpha knockdown mice. Thus, these factors are candidates for regulating the resistance of photoreceptors to light damage after hypoxic preconditioning, along with several potentially neuroprotective genes that were similarly induced in hypoxic knockdown and control mice.

  14. Attenuated Human Parainfluenza Virus Type 1 Expressing Ebola Virus Glycoprotein GP Administered Intranasally Is Immunogenic in African Green Monkeys.

    Science.gov (United States)

    Lingemann, Matthias; Liu, Xueqiao; Surman, Sonja; Liang, Bo; Herbert, Richard; Hackenberg, Ashley D; Buchholz, Ursula J; Collins, Peter L; Munir, Shirin

    2017-05-15

    The recent 2014-2016 Ebola virus (EBOV) outbreak prompted increased efforts to develop vaccines against EBOV disease. We describe the development and preclinical evaluation of an attenuated recombinant human parainfluenza virus type 1 (rHPIV1) expressing the membrane-anchored form of EBOV glycoprotein GP, as an intranasal (i.n.) EBOV vaccine. GP was codon optimized and expressed either as a full-length protein or as an engineered chimeric form in which its transmembrane and cytoplasmic tail (TMCT) domains were replaced with those of the HPIV1 F protein in an effort to enhance packaging into the vector particle and immunogenicity. GP was inserted either preceding the N gene (pre-N) or between the N and P genes (N-P) of rHPIV1 bearing a stabilized attenuating mutation in the P/C gene (C Δ170 ). The constructs grew to high titers and efficiently and stably expressed GP. Viruses were attenuated, replicating at low titers over several days, in the respiratory tract of African green monkeys (AGMs). Two doses of candidates expressing GP from the pre-N position elicited higher GP neutralizing serum antibody titers than the N-P viruses, and unmodified GP induced higher levels than its TMCT counterpart. Unmodified EBOV GP was packaged into the HPIV1 particle, and the TMCT modification did not increase packaging or immunogenicity but rather reduced the stability of GP expression during in vivo replication. In conclusion, we identified an attenuated and immunogenic i.n. vaccine candidate expressing GP from the pre-N position. It is expected to be well tolerated in humans and is available for clinical evaluation. IMPORTANCE EBOV hemorrhagic fever is one of the most lethal viral infections and lacks a licensed vaccine. Contact of fluids from infected individuals, including droplets or aerosols, with mucosal surfaces is an important route of EBOV spread during a natural outbreak, and aerosols also might be exploited for intentional virus spread. Therefore, vaccines that protect

  15. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study

    Directory of Open Access Journals (Sweden)

    Hermanova Marketa

    2010-05-01

    Full Text Available Abstract Background We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2 and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA and inhibitors of lipoxygenases (LOX and cyclooxygenases (COX. This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. Methods Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. Results Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2 or SH-SY5Y after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX in combination with ATRA in both cell lines. Conclusions Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

  16. Enhancement of ATRA-induced differentiation of neuroblastoma cells with LOX/COX inhibitors: an expression profiling study.

    Science.gov (United States)

    Chlapek, Petr; Redova, Martina; Zitterbart, Karel; Hermanova, Marketa; Sterba, Jaroslav; Veselska, Renata

    2010-05-11

    We performed expression profiling of two neuroblastoma cell lines, SK-N-BE(2) and SH-SY5Y, after combined treatment with all-trans retinoic acid (ATRA) and inhibitors of lipoxygenases (LOX) and cyclooxygenases (COX). This study is a continuation of our previous work confirming the possibility of enhancing ATRA-induced cell differentiation in these cell lines by the application of LOX/COX inhibitors and brings more detailed information concerning the mechanisms of the enhancement of ATRA-induced differentiation of neuroblastoma cells. Caffeic acid, as an inhibitor of 5-lipoxygenase, and celecoxib, as an inhibitor on cyclooxygenase-2, were used in this study. Expression profiling was performed using Human Cancer Oligo GEArray membranes that cover 440 cancer-related genes. Cluster analyses of the changes in gene expression showed the concentration-dependent increase in genes known to be involved in the process of retinoid-induced neuronal differentiation, especially in cytoskeleton remodeling. These changes were detected in both cell lines, and they were independent of the type of specific inhibitors, suggesting a common mechanism of ATRA-induced differentiation enhancement. Furthermore, we also found overexpression of some genes in the same cell line (SK-N-BE(2) or SH-SY5Y) after combined treatment with both ATRA and CA, or ATRA and CX. Finally, we also detected that gene expression was changed after treatment with the same inhibitor (CA or CX) in combination with ATRA in both cell lines. Obtained results confirmed our initial hypothesis of the common mechanism of enhancement in ATRA-induced cell differentiation via inhibition of arachidonic acid metabolic pathway.

  17. Placental triglyceride accumulation in maternal type 1 diabetes is associated with increased lipase gene expression

    DEFF Research Database (Denmark)

    Lindegaard, Marie Louise Skakkebæk; Damm, Peter; Mathiesen, Elisabeth R

    2006-01-01

    Maternal diabetes can cause fetal macrosomia and increased risk of obesity, diabetes, and cardiovascular disease in adulthood of the offspring. Although increased transplacental lipid transport could be involved, the impact of maternal type 1 diabetes on molecular mechanisms for lipid transport...... in placenta is largely unknown. To examine whether maternal type 1 diabetes affects placental lipid metabolism, we measured lipids and mRNA expression of lipase-encoding genes in placentas from women with type 1 diabetes (n = 27) and a control group (n = 21). The placental triglyceride (TG) concentration....... These results suggest that maternal type 1 diabetes is associated with TG accumulation and increased EL and HSL gene expression in placenta and that optimal metabolic control reduces these effects....

  18. Engineering an efficient and tight D-amino acid-inducible gene expression system in Rhodosporidium/Rhodotorula species.

    Science.gov (United States)

    Liu, Yanbin; Koh, Chong Mei John; Ngoh, Si Te; Ji, Lianghui

    2015-10-26

    Rhodosporidium and Rhodotorula are two genera of oleaginous red yeast with great potential for industrial biotechnology. To date, there is no effective method for inducible expression of proteins and RNAs in these hosts. We have developed a luciferase gene reporter assay based on a new codon-optimized LUC2 reporter gene (RtLUC2), which is flanked with CAR2 homology arms and can be integrated into the CAR2 locus in the nuclear genome at >90 % efficiency. We characterized the upstream DNA sequence of a D-amino acid oxidase gene (DAO1) from R. toruloides ATCC 10657 by nested deletions. By comparing the upstream DNA sequences of several putative DAO1 homologs of Basidiomycetous fungi, we identified a conserved DNA motif with a consensus sequence of AGGXXGXAGX11GAXGAXGG within a 0.2 kb region from the mRNA translation initiation site. Deletion of this motif led to strong mRNA transcription under non-inducing conditions. Interestingly, DAO1 promoter activity was enhanced about fivefold when the 108 bp intron 1 was included in the reporter construct. We identified a conserved CT-rich motif in the intron with a consensus sequence of TYTCCCYCTCCYCCCCACWYCCGA, deletion or point mutations of which drastically reduced promoter strength under both inducing and non-inducing conditions. Additionally, we created a selection marker-free DAO1-null mutant (∆dao1e) which displayed greatly improved inducible gene expression, particularly when both glucose and nitrogen were present in high levels. To avoid adding unwanted peptide to proteins to be expressed, we converted the original translation initiation codon to ATC and re-created a translation initiation codon at the start of exon 2. This promoter, named P DAO1-in1m1 , showed very similar luciferase activity to the wild-type promoter upon induction with D-alanine. The inducible system was tunable by adjusting the levels of inducers, carbon source and nitrogen source. The intron 1-containing DAO1 promoters coupled with a DAO1 null

  19. PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression possibly through PPAR{gamma} activation in the liver

    Energy Technology Data Exchange (ETDEWEB)

    Oishi, Katsutaka, E-mail: k-ooishi@aist.go.jp [Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Uchida, Daisuke [Biological Clock Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki (Japan); Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki (Japan); Ohkura, Naoki [Department of Clinical Molecular Biology, Faculty of Pharmaceutical Sciences, Teikyo University, Sagamihara, Kanagawa (Japan); Horie, Shuichi [Department of Clinical Biochemistry, Kagawa Nutrition University, Sakado, Saitama (Japan)

    2010-10-15

    Research highlights: {yields} PPAR{alpha} deficiency augments a ketogenic diet-induced circadian PAI-1 expression. {yields} Hepatic expressions of PPAR{gamma} and PCG-1{alpha} are induced by a ketogenic diet. {yields} PPAR{gamma} antagonist attenuates a ketogenic diet-induced PAI-1 expression. {yields} Ketogenic diet advances the phase of circadian clock in a PPAR{alpha}-independent manner. -- Abstract: An increased level of plasminogen activator inhibitor-1 (PAI-1) is considered a risk factor for cardiovascular diseases, and PAI-1 gene expression is under the control of molecular circadian clocks in mammals. We recently showed that PAI-1 expression is augmented in a phase-advanced circadian manner in mice fed with a ketogenic diet (KD). To determine whether peroxisome proliferator-activated receptor {alpha} (PPAR{alpha}) is involved in hypofibrinolytic status induced by a KD, we examined the expression profiles of PAI-1 and circadian clock genes in PPAR{alpha}-null KD mice. Chronic administration of bezafibrate induced the PAI-1 gene expression in a PPAR{alpha}-dependent manner. Feeding with a KD augmented the circadian expression of PAI-1 mRNA in the hearts and livers of wild-type (WT) mice as previously described. The KD-induced mRNA expression of typical PPAR{alpha} target genes such as Cyp4A10 and FGF21 was damped in PPAR{alpha}-null mice. However, plasma PAI-1 concentrations were significantly more elevated in PPAR{alpha}-null KD mice in accordance with hepatic mRNA levels. These observations suggest that PPAR{alpha} activation is dispensable for KD-induced PAI-1 expression. We also found that hyperlipidemia, fatty liver, and the hepatic expressions of PPAR{gamma} and its coactivator PCG-1{alpha} were more effectively induced in PPAR{alpha}-null, than in WT mice on a KD. Furthermore, KD-induced hepatic PAI-1 expression was significantly suppressed by supplementation with bisphenol A diglycidyl ether, a PPAR{gamma} antagonist, in both WT and PPAR

  20. Genome-wide analysis of drought induced gene expression changes in flax (Linum usitatissimum).

    Science.gov (United States)

    Dash, Prasanta K; Cao, Yongguo; Jailani, Abdul K; Gupta, Payal; Venglat, Prakash; Xiang, Daoquan; Rai, Rhitu; Sharma, Rinku; Thirunavukkarasu, Nepolean; Abdin, Malik Z; Yadava, Devendra K; Singh, Nagendra K; Singh, Jas; Selvaraj, Gopalan; Deyholos, Mike; Kumar, Polumetla Ananda; Datla, Raju

    2014-01-01

    A robust phenotypic plasticity to ward off adverse environmental conditions determines performance and productivity in crop plants. Flax (linseed), is an important cash crop produced for natural textile fiber (linen) or oilseed with many health promoting products. This crop is prone to drought stress and yield losses in many parts of the world. Despite recent advances in drought research in a number of important crops, related progress in flax is very limited. Since, response of this plant to drought stress has not been addressed at the molecular level; we conducted microarray analysis to capture transcriptome associated with induced drought in flax. This study identified 183 differentially expressed genes (DEGs) associated with diverse cellular, biophysical and metabolic programs in flax. The analysis also revealed especially the altered regulation of cellular and metabolic pathways governing photosynthesis. Additionally, comparative transcriptome analysis identified a plethora of genes that displayed differential regulation both spatially and temporally. These results revealed co-regulated expression of 26 genes in both shoot and root tissues with implications for drought stress response. Furthermore, the data also showed that more genes are upregulated in roots compared to shoots, suggesting that roots may play important and additional roles in response to drought in flax. With prolonged drought treatment, the number of DEGs increased in both tissue types. Differential expression of selected genes was confirmed by qRT-PCR, thus supporting the suggested functional association of these intrinsic genes in maintaining growth and homeostasis in response to imminent drought stress in flax. Together the present study has developed foundational and new transcriptome data sets for drought stress in flax.

  1. Bacterial feeding, Leishmania infection and distinct infection routes induce differential defensin expression in Lutzomyia longipalpis.

    Science.gov (United States)

    Telleria, Erich L; Sant'Anna, Maurício R Viana; Alkurbi, Mohammad O; Pitaluga, André N; Dillon, Rod J; Traub-Csekö, Yara M

    2013-01-11

    Phlebotomine insects harbor bacterial, viral and parasitic pathogens that can cause diseases of public health importance. Lutzomyia longipalpis is the main vector of visceral leishmaniasis in the New World. Insects can mount a powerful innate immune response to pathogens. Defensin peptides take part in this response and are known to be active against Gram-positive and Gram-negative bacteria, and some parasites. We studied the expression of a defensin gene from Lutzomyia longipalpis to understand its role in sand fly immune response. We identified, sequenced and evaluated the expression of a L. longipalpis defensin gene by semi-quantitative RT-PCR. The gene sequence was compared to other vectors defensins and expression was determined along developmental stages and after exposure of adult female L. longipalpis to bacteria and Leishmania. Phylogenetic analysis showed that the L. longipalpis defensin is closely related to a defensin from the Old World sand fly Phlebotomus duboscqi. Expression was high in late L4 larvae and pupae in comparison to early larval stages and newly emerged flies. Defensin expression was modulated by oral infection with bacteria. The Gram-positive Micrococcus luteus induced early high defensin expression, whilst the Gram-negative entomopathogenic Serratia marcescens induced a later response. Bacterial injection also induced defensin expression in adult insects. Female sand flies infected orally with Leishmania mexicana showed no significant difference in defensin expression compared to blood fed insects apart from a lower defensin expression 5 days post Leishmania infection. When Leishmania was introduced into the hemolymph by injection there was no induction of defensin expression until 72 h later. Our results suggest that L. longipalpis modulates defensin expression upon bacterial and Leishmania infection, with patterns of expression that are distinct among bacterial species and routes of infection.

  2. Physiological type I collagen organization induces the formation of a novel class of linear invadosomes

    Science.gov (United States)

    Juin, Amélie; Billottet, Clotilde; Moreau, Violaine; Destaing, Olivier; Albiges-Rizo, Corinne; Rosenbaum, Jean; Génot, Elisabeth; Saltel, Frédéric

    2012-01-01

    Invadosomes are F-actin structures capable of degrading the matrix through the activation of matrix metalloproteases. As fibrillar type I collagen promotes pro-matrix metalloproteinase 2 activation by membrane type 1 matrix metalloproteinase, we aimed at investigating the functional relationships between collagen I organization and invadosome induction. We found that fibrillar collagen I induced linear F-actin structures, distributed along the fibrils, on endothelial cells, macrophages, fibroblasts, and tumor cells. These structures share features with conventional invadosomes, as they express cortactin and N-WASP and accumulate the scaffold protein Tks5, which proved essential for their formation. On the basis of their ability to degrade extracellular matrix elements and their original architecture, we named these structures “linear invadosomes.” Interestingly, podosomes or invadopodia were replaced by linear invadosomes upon contact of the cells with fibrillar collagen I. However, linear invadosomes clearly differ from classical invadosomes, as they do not contain paxillin, vinculin, and β1/β3 integrins. Using knockout mouse embryonic fibroblasts and RGD peptide, we demonstrate that linear invadosome formation and activity are independent of β1 and β3 integrins. Finally, linear invadosomes also formed in a three-dimensional collagen matrix. This study demonstrates that fibrillar collagen I is the physiological inducer of a novel class of invadosomes. PMID:22114353

  3. Cell individuality: the bistable gene expression of the type III secretion system in Dickeya dadantii 3937.

    Science.gov (United States)

    Zeng, Quan; Laiosa, Michael D; Steeber, Douglas A; Biddle, Eulandria M; Peng, Quan; Yang, Ching-Hong

    2012-01-01

    Dickeya dadantii 3937 is a gram-negative phytopathogenic bacterium that expresses genes encoding a type III secretion system (T3SS) in a bistable pattern when cultured in a homogeneous minimal media. In this work, we further characterized the bistable gene expression of T3SS at the single-cell level. We demonstrated that bistable expression of the HrpL-regulon genes, such as hrpA and hrpN, is controlled by the same regulatory mechanism. We also showed that the expression level of the T3SS master regulatory gene hrpL plays an important role in the development of the bistable expression of hrpA. A high expression level of hrpL is required but unable to guarantee the high-state expression of hrpA in a cell. In addition, bistable expression patterns of T3SS genes in other gram-negative pathogens of the Enterobacteriaceae and Pseudomonadaceae families were also described in this study. This suggests that the T3SS bistability might be a conserved population behavior in several gram-negative bacterial pathogens.

  4. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract.

    OpenAIRE

    Connell, I; Agace, W; Klemm, P; Schembri, M; Mărild, S; Svanborg, C

    1996-01-01

    Type 1 fimbriae are adhesion organelles expressed by many Gram-negative bacteria. They facilitate adherence to mucosal surfaces and inflammatory cells in vitro, but their contribution to virulence has not been defined. This study presents evidence that type 1 fimbriae increase the virulence of Escherichia coli for the urinary tract by promoting bacterial persistence and enhancing the inflammatory response to infection. In a clinical study, we observed that disease severity was greater in chil...

  5. Dragon (Repulsive Guidance Molecule RGMb) Inhibits E-cadherin Expression and Induces Apoptosis in Renal Tubular Epithelial Cells*

    Science.gov (United States)

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y.; Xia, Yin

    2013-01-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45–66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo. PMID:24052264

  6. Dragon (repulsive guidance molecule RGMb) inhibits E-cadherin expression and induces apoptosis in renal tubular epithelial cells.

    Science.gov (United States)

    Liu, Wenjing; Li, Xiaoling; Zhao, Yueshui; Meng, Xiao-Ming; Wan, Chao; Yang, Baoxue; Lan, Hui-Yao; Lin, Herbert Y; Xia, Yin

    2013-11-01

    Dragon is one of the three members of the repulsive guidance molecule (RGM) family, i.e. RGMa, RGMb (Dragon), and RGMc (hemojuvelin). We previously identified the RGM members as bone morphogenetic protein (BMP) co-receptors that enhance BMP signaling. Our previous studies found that Dragon is highly expressed in the tubular epithelial cells of mouse kidneys. However, the roles of Dragon in renal epithelial cells are yet to be defined. We now show that overexpression of Dragon increased cell death induced by hypoxia in association with increased cleaved poly(ADP-ribose) polymerase and cleaved caspase-3 levels in mouse inner medullary collecting duct (IMCD3) cells. Dragon also inhibited E-cadherin expression but did not affect epithelial-to-mesenchymal transition induced by TGF-β in IMCD3 cells. Previous studies suggest that the three RGM members can function as ligands for the receptor neogenin. Interestingly, our present study demonstrates that the Dragon actions on apoptosis and E-cadherin expression in IMCD3 cells were mediated by the neogenin receptor but not through the BMP pathway. Dragon expression in the kidney was up-regulated by unilateral ureteral obstruction in mice. Compared with wild-type mice, heterozygous Dragon knock-out mice exhibited 45-66% reduction in Dragon mRNA expression, decreased epithelial apoptosis, and increased tubular E-cadherin expression and had attenuated tubular injury after unilateral ureteral obstruction. Our results suggest that Dragon may impair tubular epithelial integrity and induce epithelial apoptosis both in vitro and in vivo.

  7. Impact of blood collection and processing on peripheral blood gene expression profiling in type 1 diabetes.

    Science.gov (United States)

    Yip, Linda; Fuhlbrigge, Rebecca; Atkinson, Mark A; Fathman, C Garrison

    2017-08-18

    The natural history of type 1 diabetes (T1D) is challenging to investigate, especially as pre-diabetic individuals are difficult to identify. Numerous T1D consortia have been established to collect whole blood for gene expression analysis from individuals with or at risk to develop T1D. However, with no universally accepted protocol for their collection, differences in sample processing may lead to variances in the results. Here, we examined whether the choice of blood collection tube and RNA extraction kit leads to differences in the expression of genes that are changed during the progression of T1D, and if these differences could be minimized by measuring gene expression directly from the lysate of whole blood. Microarray analysis showed that the expression of 901 genes is highly influenced by sample processing using the PAXgene versus the Tempus system. These included a significant number of lymphocyte-specific genes and genes whose expression has been reported to differ in the peripheral blood of at-risk and T1D patients compared to controls. We showed that artificial changes in gene expression occur when control and T1D samples were processed differently. The sample processing-dependent differences in gene expression were largely due to loss of transcripts during the RNA extraction step using the PAXgene system. The majority of differences were not observed when gene expression was measured in whole blood lysates prepared from blood collected in PAXgene and Tempus tubes. We showed that the gene expression profile of samples processed using the Tempus system is more accurate than that of samples processed using the PAXgene system. Variation in sample processing can result in misleading changes in gene expression. However, these differences can be minimized by measuring gene expression directly in whole blood lysates.

  8. Molecular Signatures of Hepatitis C Virus (HCV-Induced Type II Mixed Cryoglobulinemia (MCII

    Directory of Open Access Journals (Sweden)

    Roberto Burioni

    2012-11-01

    Full Text Available The role of hepatitis C virus (HCV infection in the induction of type II mixed cryoglobulinemia (MCII and the possible establishment of related lymphoproliferative disorders, such as B-cell non-Hodgkin lymphoma (B-NHL, is well ascertained. However, the molecular pathways involved and the factors predisposing to the development of these HCV-related extrahepatic complications deserve further consideration and clarification. To date, several host- and virus-related factors have been implicated in the progression to MCII, such as the virus-induced expansion of selected subsets of B-cell clones expressing discrete immunoglobulin variable (IgV gene subfamilies, the involvement of complement factors and the specific role of some HCV proteins. In this review, we will analyze the host and viral factors taking part in the development of MCII in order to give a general outlook of the molecular mechanisms implicated.

  9. Ethylene induces combinatorial effects of histone H3 acetylation in gene expression in Arabidopsis.

    Science.gov (United States)

    Wang, Likai; Zhang, Fan; Rode, Siddharth; Chin, Kevin K; Ko, Eun Esther; Kim, Jonghwan; Iyer, Vishwanath R; Qiao, Hong

    2017-07-17

    Histone acetylation and deacetylation are essential for gene regulation and have been implicated in the regulation of plant hormone responses. Many studies have indicated the role of histone acetylation in ethylene signaling; however, few studies have investigated how ethylene signaling regulates the genomic landscape of chromatin states. Recently, we found that ethylene can specifically elevate histone H3K14 acetylation and the non-canonical histone H3K23 acetylation in etiolated seedlings and the gene activation is positively associated with the elevation of H3K14Ac and H3K23Ac in response to ethylene. To assess the role of H3K9, H3K14, and H3K23 histone modifications in the ethylene response, we examined how ethylene regulates histone acetylation and the transcriptome at global level and in ethylene regulated genes both in wild type (Col-0) and ein2-5 seedlings. Our results revealed that H3K9Ac, H3K14Ac, and H3K23Ac are preferentially enriched around the transcription start sites and are positively correlated with gene expression levels in Col-0 and ein2-5 seedlings both with and without ethylene treatment. In the absence of ethylene, no combinatorial effect of H3K9Ac, H3K14Ac, and H3K23Ac on gene expression was detected. In the presence of ethylene, however, combined enrichment of the three histone acetylation marks was associated with high gene expression levels, and this ethylene-induced change was EIN2 dependent. In addition, we found that ethylene-regulated genes are expressed at medium or high levels, and a group of ethylene regulated genes are marked by either one of H3K9Ac, H3K14Ac or H3K23Ac. In this group of genes, the levels of H3K9Ac were altered by ethylene, but in the absence of ethylene the levels of H3K9Ac and peak breadths are distinguished in up- and down- regulated genes. In the presence of ethylene, the changes in the peak breadths and levels of H3K14Ac and H3K23Ac are required for the alteration of gene expressions. Our study reveals that

  10. Gene Expression of Type VI Secretion System Associated with Environmental Survival in Acidovorax avenae subsp. avenae by Principle Component Analysis

    Directory of Open Access Journals (Sweden)

    Zhouqi Cui

    2015-09-01

    Full Text Available Valine glycine repeat G (VgrG proteins are regarded as one of two effectors of Type VI secretion system (T6SS which is a complex multi-component secretion system. In this study, potential biological roles of T6SS structural and VgrG genes in a rice bacterial pathogen, Acidovorax avenae subsp. avenae (Aaa RS-1, were evaluated under seven stress conditions using principle component analysis of gene expression. The results showed that growth of the pathogen was reduced by H2O2 and paraquat-induced oxidative stress, high salt, low temperature, and vgrG mutation, compared to the control. However, pathogen growth was unaffected by co-culture with a rice rhizobacterium Burkholderia seminalis R456. In addition, expression of 14 T6SS structural and eight vgrG genes was significantly changed under seven conditions. Among different stress conditions, high salt, and low temperature showed a higher effect on the expression of T6SS gene compared with host infection and other environmental conditions. As a first report, this study revealed an association of T6SS gene expression of the pathogen with the host infection, gene mutation, and some common environmental stresses. The results of this research can increase understanding of the biological function of T6SS in this economically-important pathogen of rice.

  11. Gene Expression of Type VI Secretion System Associated with Environmental Survival in Acidovorax avenae subsp. avenae by Principle Component Analysis.

    Science.gov (United States)

    Cui, Zhouqi; Jin, Guoqiang; Li, Bin; Kakar, Kaleem Ullah; Ojaghian, Mohammad Reza; Wang, Yangli; Xie, Guanlin; Sun, Guochang

    2015-09-11

    Valine glycine repeat G (VgrG) proteins are regarded as one of two effectors of Type VI secretion system (T6SS) which is a complex multi-component secretion system. In this study, potential biological roles of T6SS structural and VgrG genes in a rice bacterial pathogen, Acidovorax avenae subsp. avenae (Aaa) RS-1, were evaluated under seven stress conditions using principle component analysis of gene expression. The results showed that growth of the pathogen was reduced by H₂O₂ and paraquat-induced oxidative stress, high salt, low temperature, and vgrG mutation, compared to the control. However, pathogen growth was unaffected by co-culture with a rice rhizobacterium Burkholderia seminalis R456. In addition, expression of 14 T6SS structural and eight vgrG genes was significantly changed under seven conditions. Among different stress conditions, high salt, and low temperature showed a higher effect on the expression of T6SS gene compared with host infection and other environmental conditions. As a first report, this study revealed an association of T6SS gene expression of the pathogen with the host infection, gene mutation, and some common environmental stresses. The results of this research can increase understanding of the biological function of T6SS in this economically-important pathogen of rice.

  12. Radiation-induced gene expression in the nematode caenorhabditis elegans

    International Nuclear Information System (INIS)

    Nelson, G.A.; Jones, T.A.; Chesnut, A.; Smith, A.L.

    2002-01-01

    We used the nematode C. elegans to characterize the genotoxic and cytotoxic effects of ionizing radiation in a simple animal model emphasizing the unique effects of charged particle radiation. Here we demonstrate by reverse transcription polymerase chain reaction (RT-PCR) differential display and whole genome microarray hybridization experiments that gamma rays, accelerated protons and iron ions at the same physical dose lead to unique transcription profiles. 599 of 17871 genes analyzed (3.4%) showed differential expression 3 hrs after exposure to 3 Gy of radiation. 193 were up-regulated, 406 were down-regulated and 90% were affected only by a single species of radiation. A novel statistical clustering technique identified the regulatory relationships between the radiation-modulated genes and showed that genes affected by each radiation species were associated with unique regulatory clusters. This suggests that independent homeostatic mechanisms are activated in response to radiation exposure as a function of track structure or ionization density. (author)

  13. Allergen-Induced Increases in Interleukin-25 and Interleukin-25 Receptor Expression in Mature Eosinophils from Atopic Asthmatics.

    Science.gov (United States)

    Tang, Wei; Smith, Steven G; Salter, Brittany; Oliveria, John Paul; Mitchell, Patrick; Nusca, Graeme M; Howie, Karen; Gauvreau, Gail M; O'Byrne, Paul M; Sehmi, Roma

    2016-01-01

    Interleukin (IL)-25 plays a pivotal role in type 2 immune responses. In a baseline cross-sectional study, we previously showed that IL-25 plasma levels and IL-25 receptor (IL-25R: IL-17RA, IL-17RB, and IL-17RA/RB) expression on mature blood eosinophils are increased in atopic asthmatics compared to normal nonatopic controls. This study investigated allergen-induced changes in IL-25 and IL-25R expression in eosinophils from asthmatics. Dual responder atopic asthmatics (n = 14) were enrolled in this randomized diluent-controlled crossover allergen challenge study. Blood was collected before and 24 h after the challenge. The surface expression of IL-25R was evaluated by flow cytometry on eosinophils and Th2 memory cells. In addition, plasma levels of IL-25 were measured by ELISA, and functional responses to IL-25 including type 2 cytokine expression, degranulation, and the migrational responsiveness of eosinophils were evaluated in vitro. Following the allergen but not the diluent inhalation challenge, significant increases in the expression of IL-17RB and IL-17RA/B were found on eosinophils but not on Th2 memory cells. IL-25 plasma levels and the number of eosinophils but not of Th2 memory cells expressing intracellular IL-25 increased significantly in response to the allergen but not the diluent challenge. Stimulation with physiologically relevant concentrations of IL-25 in vitro caused (i) degranulation of eosinophils (measured by eosinophil peroxidase release), (ii) enhanced intracellular expression of IL-5 and IL-13, and (iii) priming of eosinophil migration to eotaxin. IL-25 stimulated intracellular cytokine expression, and the migration of eosinophils was blocked in the presence of a neutralizing IL-25 antibody. Our findings suggest that the IL-25/IL-25R axis may play an important role in promoting the recruitment and proinflammatory function of eosinophils in allergic asthma. © 2016 S. Karger AG, Basel.

  14. 17β-estradiol induces stearoyl-CoA desaturase-1 expression in estrogen receptor-positive breast cancer cells

    International Nuclear Information System (INIS)

    Belkaid, Anissa; Duguay, Sabrina R.; Ouellette, Rodney J.; Surette, Marc E.

    2015-01-01

    To sustain cell growth, cancer cells exhibit an altered metabolism characterized by increased lipogenesis. Stearoyl-CoA desaturase-1 (SCD-1) catalyzes the production of monounsaturated fatty acids that are essential for membrane biogenesis, and is required for cell proliferation in many cancer cell types. Although estrogen is required for the proliferation of many estrogen-sensitive breast carcinoma cells, it is also a repressor of SCD-1 expression in liver and adipose. The current study addresses this apparent paradox by investigating the impact of estrogen on SCD-1 expression in estrogen receptor-α-positive breast carcinoma cell lines. MCF-7 and T47D mammary carcinomas cells and immortalized MCF-10A mammary epithelial cells were hormone-starved then treated or not with 17β-estradiol. SCD-1 activity was assessed by measuring cellular monounsaturated/saturated fatty acid (MUFA/SFA) ratios, and SCD-1 expression was measured by qPCR, immunoblot, and immunofluorescence analyses. The role of SCD-1 in cell proliferation was measured following treatment with the SCD-1 inhibitor A959372 and following SCD-1 silencing using siRNA. The involvement of IGF-1R on SCD-1 expression was measured using the IGF-1R antagonist AG1024. The expression of SREBP-1c, a transcription factor that regulates SCD-1, was measured by qPCR, and by immunoblot analyses. 17β-estradiol significantly induced cell proliferation and SCD-1 activity in MCF-7 and T47D cells but not MCF-10A cells. Accordingly, 17β-estradiol significantly increased SCD-1 mRNA and protein expression in MCF-7 and T47D cells compared to untreated cells. Treatment of MCF-7 cells with 4-OH tamoxifen or siRNA silencing of estrogen receptor-α largely prevented 17β-estradiol-induced SCD-1 expression. 17β-estradiol increased SREBP-1c expression and induced the mature active 60 kDa form of SREBP-1. The selective SCD-1 inhibitor or siRNA silencing of SCD-1 blocked the 17β-estradiol-induced cell proliferation and increase in

  15. Proinsulin-expressing dendritic cells in type 2 neuropathic diabetic patients with and without foot lesions.

    Science.gov (United States)

    Sambataro, Maria; Sambado, Luisa; Trevisiol, Enrica; Cacciatore, Matilde; Furlan, Anna; Stefani, Piero Maria; Seganfreddo, Elena; Durante, Elisabetta; Conte, Stefania; Della Bella, Silvia; Paccagnella, Agostino; Dei Tos, Angelo Paolo

    2018-02-12

    Diabetic neuropathy is the most common complication of diabetes and is frequently associated with foot ischemia and infection, but its pathogenesis is controversial. We hypothesized that proinsulin expression in peripheral blood mononuclear cells is a process relevant to this condition and could represent a link among hyperglycemia, nerve susceptibility, and diabetic foot lesions. We assessed proinsulin expression by using flow cytometry in dendritic cells from control participants and patients with type 2 diabetic with or without peripheral neuropathy or accompanied by diabetic foot. Among 32 non-neuropathic and 120 neuropathic patients with type 2 diabetic, we performed leg electromyography and found average sensory sural nerve conduction velocities of 48 ± 4 and 30 ± 4 m/s, respectively ( P foot lesions, and 39 had neuroischemic foot lesions (allux oximetry diabetic population, but not in nondiabetic participants, a progressively increasing level of peripheral blood dendritic cell proinsulin expression was detected, which directly correlated with circulating TNF-α levels ( P diabetes, proinsulin-expressing blood cells, possibly via their involvement in innate immunity, may play a role in diabetic peripheral neuropathy and foot lesions.-Sambataro, M., Sambado, L., Trevisiol, E., Cacciatore, M., Furlan, A., Stefani, P. M., Seganfreddo, E., Durante, E., Conte, S., Della Bella, S., Paccagnella, A., dei Tos, A. P. Proinsulin-expressing dendritic cells in type 2 neuropathic diabetic patients with and without foot lesions.

  16. Expression of adenylyl cyclase types III and VI in human hyperfunctioning thyroid nodules.

    Science.gov (United States)

    Celano, M; Arturi, F; Presta, I; Bruno, R; Scarpelli, D; Calvagno, M G; Cristofaro, C; Bulotta, S; Giannasio, P; Sacco, R; Filetti, S; Russo, D

    2003-05-30

    Hyperfunctioning thyroid nodules are characterized by the presence of spontaneous somatic mutations responsible for constitutive activation of the cAMP pathway. However, alterations affecting other elements of the cAMP signaling system may counteract the effects of the mutations. In this study, the expression of the adenylyl cyclase (AC) types III and VI was investigated by Western blot in 18 hyperfunctioning thyroid nodules; in 12 samples, we also assessed the presence of TSH receptor (TSHR) or gsp mutations and levels of AC VI and III mRNA. We found that the expression of nodular AC VI (but not AC III) was significantly lower (85.1% of normal, P=0.014) than the expression of both adenylyl cycles types of perinodular tissue from the same patients. Slightly, but not significant differences were detected in nodules with or without mutations and AC protein levels generally showed correlation with the levels of the transcripts detected by RT-PCR. In addition, AC III and AC VI expression levels within a given nodule were characterized by a significant positive correlation. These findings indicate that a diminished expression of AC type VI may be part of the mechanisms occurring in the hyperfunctioning nodules, independently of the presence of TSHR or gsp mutations, which influence the resulting phenotype.

  17. Retnla (relmalpha/fizz1 suppresses helminth-induced Th2-type immunity.

    Directory of Open Access Journals (Sweden)

    John T Pesce

    2009-04-01

    Full Text Available Retnla (Resistin-like molecule alpha/FIZZ1 is induced during Th2 cytokine immune responses. However, the role of Retnla in Th2-type immunity is unknown. Here, using Retnla(-/- mice and three distinct helminth models, we show that Retnla functions as a negative regulator of Th2 responses. Pulmonary granuloma formation induced by the eggs of the helminth parasite Schistosoma mansoni is dependent on IL-4 and IL-13 and associated with marked increases in Retnla expression. We found that both primary and secondary pulmonary granuloma formation were exacerbated in the absence of Retlna. The number of granuloma-associated eosinophils and serum IgE titers were also enhanced. Moreover, when chronically infected with S. mansoni cercariae, Retnla(-/- mice displayed significant increases in granulomatous inflammation in the liver and the development of fibrosis and progression to hepatosplenic disease was markedly augmented. Finally, Retnla(-/- mice infected with the gastrointestinal (GI parasite Nippostrongylus brasiliensis had intensified lung pathology to migrating larvae, reduced fecundity, and accelerated expulsion of adult worms from the intestine, suggesting Th2 immunity was enhanced. When their immune responses were compared, helminth infected Retnla(-/- mice developed stronger Th2 responses, which could be reversed by exogenous rRelmalpha treatment. Studies with several cytokine knockout mice showed that expression of Retnla was dependent on IL-4 and IL-13 and inhibited by IFN-gamma, while tissue localization and cell isolation experiments indicated that eosinophils and epithelial cells were the primary producers of Retnla in the liver and lung, respectively. Thus, the Th2-inducible gene Retnla suppresses resistance to GI nematode infection, pulmonary granulomatous inflammation, and fibrosis by negatively regulating Th2-dependent responses.

  18. Botulinum neurotoxin type A induces TLR2-mediated inflammatory responses in macrophages.

    Directory of Open Access Journals (Sweden)

    Yun Jeong Kim

    Full Text Available Botulinum neurotoxin type A (BoNT/A is the most potent protein toxin and causes fatal flaccid muscle paralysis by blocking neurotransmission. Application of BoNT/A has been extended to the fields of therapeutics and biodefense. Nevertheless, the global response of host immune cells to authentic BoNT/A has not been reported. Employing microarray analysis, we performed global transcriptional profiling of RAW264.7 cells, a murine alveolar macrophage cell line. We identified 70 genes that were modulated following 1 nM BoNT/A treatment. The altered genes were mainly involved in signal transduction, immunity and defense, protein metabolism and modification, neuronal activities, intracellular protein trafficking, and muscle contraction. Microarray data were validated with real-time RT-PCR for seven selected genes including tlr2, tnf, inos, ccl4, slpi, stx11, and irg1. Proinflammatory mediators such as nitric oxide (NO and tumor necrosis factor alpha (TNFα were induced in a dose-dependent manner in BoNT/A-stimulated RAW264.7 cells. Increased expression of these factors was inhibited by monoclonal anti-Toll-like receptor 2 (TLR2 and inhibitors specific to intracellular proteins such as c-Jun N-terminal kinase (JNK, extracellular signal-regulated kinase (ERK, and p38 mitogen-activated protein kinase (MAPK. BoNT/A also suppressed lipopolysaccharide-induced NO and TNFα production from RAW264.7 macrophages at the transcription level by blocking activation of JNK, ERK, and p38 MAPK. As confirmed by TLR2-/- knock out experiments, these results suggest that BoNT/A induces global gene expression changes in host immune cells and that host responses to BoNT/A proceed through a TLR2-dependent pathway, which is modulated by JNK, ERK, and p38 MAPK.

  19. Cell-type-specific expression of NFIX in the developing and adult cerebellum.

    Science.gov (United States)

    Fraser, James; Essebier, Alexandra; Gronostajski, Richard M; Boden, Mikael; Wainwright, Brandon J; Harvey, Tracey J; Piper, Michael

    2017-07-01

    Transcription factors from the nuclear factor one (NFI) family have been shown to play a central role in regulating neural progenitor cell differentiation within the embryonic and post-natal brain. NFIA and NFIB, for instance, promote the differentiation and functional maturation of granule neurons within the cerebellum. Mice lacking Nfix exhibit delays in the development of neuronal and glial lineages within the cerebellum, but the cell-type-specific expression of this transcription factor remains undefined. Here, we examined the expression of NFIX, together with various cell-type-specific markers, within the developing and adult cerebellum using both chromogenic immunohistochemistry and co-immunofluorescence labelling and confocal microscopy. In embryos, NFIX was expressed by progenitor cells within the rhombic lip and ventricular zone. After birth, progenitor cells within the external granule layer, as well as migrating and mature granule neurons, expressed NFIX. Within the adult cerebellum, NFIX displayed a broad expression profile, and was evident within granule cells, Bergmann glia, and interneurons, but not within Purkinje neurons. Furthermore, transcriptomic profiling of cerebellar granule neuron progenitor cells showed that multiple splice variants of Nfix are expressed within this germinal zone of the post-natal brain. Collectively, these data suggest that NFIX plays a role in regulating progenitor cell biology within the embryonic and post-natal cerebellum, as well as an ongoing role within multiple neuronal and glial populations within the adult cerebellum.

  20. In Vivo Imaging of Local Gene Expression Induced by Magnetic Hyperthermia

    Directory of Open Access Journals (Sweden)

    Olivier Sandre

    2017-02-01

    Full Text Available The present work aims to demonstrate that colloidal dispersions of magnetic iron oxide nanoparticles stabilized with dextran macromolecules placed in an alternating magnetic field can not only produce heat, but also that these particles could be used in vivo for local and noninvasive deposition of a thermal dose sufficient to trigger thermo-induced gene expression. Iron oxide nanoparticles were first characterized in vitro on a bio-inspired setup, and then they were assayed in vivo using a transgenic mouse strain expressing the luciferase reporter gene under transcriptional control of a thermosensitive promoter. Iron oxide nanoparticles dispersions were applied topically on the mouse skin or injected subcutaneously with Matrigel™ to generate so-called pseudotumors. Temperature was monitored continuously with a feedback loop to control the power of the magnetic field generator and to avoid overheating. Thermo-induced luciferase expression was followed by bioluminescence imaging 6 h after heating. We showed that dextran-coated magnetic iron oxide nanoparticle dispersions were able to induce in vivo mild hyperthermia compatible with thermo-induced gene expression in surrounding tissues and without impairing cell viability. These data open new therapeutic perspectives for using mild magnetic hyperthermia as noninvasive modulation of tumor microenvironment by local thermo-induced gene expression or drug release.

  1. Coffee induces breast cancer resistance protein expression in Caco-2 cells.

    Science.gov (United States)

    Isshiki, Marina; Umezawa, Kazuo; Tamura, Hiroomi

    2011-01-01

    Coffee is a beverage that is consumed world-wide on a daily basis and is known to induce a series of metabolic and pharmacological effects, especially in the digestive tract. However, little is known concerning the effects of coffee on transporters in the gastrointestinal tract. To elucidate the effect of coffee on intestinal transporters, we investigated its effect on expression of the breast cancer resistance protein (BCRP/ABCG2) in a human colorectal cancer cell line, Caco-2. Coffee induced BCRP gene expression in Caco-2 cells in a coffee-dose dependent manner. Coffee treatment of Caco-2 cells also increased the level of BCRP protein, which corresponded to induction of gene expression, and also increased cellular efflux activity, as judged by Hoechst33342 accumulation. None of the major constituents of coffee tested could induce BCRP gene expression. The constituent of coffee that mediated this induction was extractable with ethyl acetate and was produced during the roasting process. Dehydromethylepoxyquinomicin (DHMEQ), an inhibitor of nuclear factor (NF)-κB, inhibited coffee-mediated induction of BCRP gene expression, suggesting involvement of NF-κB in this induction. Our data suggest that daily consumption of coffee might induce BCRP expression in the gastrointestinal tract and may affect the bioavailability of BCRP substrates.

  2. Experimental study of the occurence and properties of C-type retroviruses in radiation-induced osteosarcomas in mice

    International Nuclear Information System (INIS)

    Erfle, V.

    1981-01-01

    In the radiation induced osteosarcomas of the C 3 Hx101/F 1 -mouse C-type virus particles had been found regularly with a density of 1.16 g/cm 3 , with high molecular RNA, a reverse transcriptase and the murine group-specific antigen p 30. Osteosarcomas of the NMRI-mouse, however, had only p 30 protein and so-called intra-cisternal A-type particles. After 'in vitro' cultivation retroviruses had been liberated from the osteosarcoma cells of the C 3 Hx101/F 1 -mice as well as from the NMRI-mice type C. During the tumour latency period a virus expression of the C-type retroviruses had been found for a certain period in the first month after irradiation of the bone tissue had begun; then followed an antibody-reaction which continued to persist until the 8th month. Another virus expression was observed in the skeleton during the period when the osteosarcomas appeared. This virus expression was accompanied by a decrease in antibodies and a temporary increase of the viral p 30 protein in the serum. The viruses which had been isolated from the radiation induced osteosarcomas showed the properties which are typical for ecotropic C-type retroviruses of mice. After infection of new-born mice these viruses produced fibrosarcomas (C 3 Hx 101/F 1 -mice) or lymphomas and osteomas (NMRI-mice). The results make it obvious that the endogenetic C-type retroviruses participate in the formation of radiation-induced sarcomas in mice. (orig./MG) [de

  3. Differences in gene expression profiles and signaling pathways in rhabdomyolysis-induced acute kidney injury.

    Science.gov (United States)

    Geng, Xiaodong; Wang, Yuanda; Hong, Quan; Yang, Jurong; Zheng, Wei; Zhang, Gang; Cai, Guangyan; Chen, Xiangmei; Wu, Di

    2015-01-01

    Rhabdomyolysis is a threatening syndrome because it causes the breakdown of skeletal muscle. Muscle destruction leads to the release of myoglobin, intracellular proteins, and electrolytes into the circulation. The aim of this study was to investigate the differences in gene expression profiles and signaling pathways upon rhabdomyolysis-induced acute kidney injury (AKI). In this study, we used glycerol-induced renal injury as a model of rhabdomyolysis-induced AKI. We analyzed data and relevant information from the Gene Expression Omnibus database (No: GSE44925). The gene expression data for three untreated mice were compared to data for five mice with rhabdomyolysis-induced AKI. The expression profiling of the three untreated mice and the five rhabdomyolysis-induced AKI mice was performed using microarray analysis. We examined the levels of Cyp3a13, Rela, Aldh7a1, Jun, CD14. And Cdkn1a using RT-PCR to determine the accuracy of the microarray results. The microarray analysis showed that there were 1050 downregulated and 659 upregulated genes in the rhabdomyolysis-induced AKI mice compared to the control group. The interactions of all differentially expressed genes in the Signal-Net were analyzed. Cyp3a13 and Rela had the most interactions with other genes. The data showed that Rela and Aldh7a1 were the key nodes and had important positions in the Signal-Net. The genes Jun, CD14, and Cdkn1a were also significantly upregulated. The pathway analysis classified the differentially expressed genes into 71 downregulated and 48 upregulated pathways including the PI3K/Akt, MAPK, and NF-κB signaling pathways. The results of this study indicate that the NF-κB, MAPK, PI3K/Akt, and apoptotic pathways are regulated in rhabdomyolysis-induced AKI.

  4. Type 3 Deiodinase Is Highly Expressed in Infiltrating Neutrophilic Granulocytes in Response to Acute Bacterial Infection

    NARCIS (Netherlands)

    Boelen, Anita; Boorsma, Jeffrey; Kwakkel, Joan; Wieland, Catharina W.; Renckens, Rosemarijn; Visser, Theo J.; Fliers, Eric; Wiersinga, Wilmar M.

    2008-01-01

    Background: Macrophages and polymorphonuclear cells (PMNs) play an important role in the first line of defense against bacteria by infiltrating the infected organ in order to clear the harmful pathogen. Our earlier studies showed that granulocytes express type 3 deiodinase (D3) when activated during

  5. Discretization of Gene Expression Data Unmasks Molecular Subgroups Recurring in Different Human Cancer Types.

    Directory of Open Access Journals (Sweden)

    Manfred Beleut

    Full Text Available Despite the individually different molecular alterations in tumors, the malignancy associated biological traits are strikingly similar. Results of a previous study using renal cell carcinoma (RCC as a model pointed towards cancer-related features, which could be visualized as three groups by microarray based gene expression analysis. In this study, we used a mathematic model to verify the presence of these groups in RCC as well as in other cancer types. We developed an algorithm for gene-expression deviation profiling for analyzing gene expression data of a total of 8397 patients with 13 different cancer types and normal tissues. We revealed three common Cancer Transcriptomic Profiles (CTPs which recurred in all investigated tumors. Additionally, CTPs remained robust regardless of the functions or numbers of genes analyzed. CTPs may represent common genetic fingerprints, which potentially reflect the closely related biological traits of human cancers.

  6. RAE-1 expression is induced during experimental autoimmune encephalomyelitis and is correlated with microglia cell proliferation.

    Science.gov (United States)

    Djelloul, Mehdi; Popa, Natalia; Pelletier, Florence; Raguénez, Gilda; Boucraut, José

    2016-11-01

    Retinoic acid early induced transcript-1 (RAE-1) glycoproteins are ligands of the activating immune receptor NKG2D. They are known as stress molecules induced in pathological conditions. We previously reported that progenitor cells express RAE-1 in physiological conditions and we described a correlation between RAE-1 expression and cell proliferation. In addition, we showed that Raet1 transcripts are induced in the spinal cord of experimental autoimmune encephalomyelitis (EAE) mice. EAE is a model for multiple sclerosis which is accompanied by microglia proliferation and activation, recruitment of immune cells and neurogenesis. We herein studied the time course expression of the two members of the Raet1 gene family present in C57BL/6 mice, namely Raet1d and Raet1e, in the spinal cord during EAE. We report that Raet1d and Raet1e genes are induced early upon EAE onset and reach a maximal expression at the peak of the pathology. We show that myeloid cells, i.e. macrophages as well as microglia, are cellular sources of Raet1 transcripts. We also demonstrate that only Raet1d expression is induced in microglia, whereas macrophages expressed both Raet1d and Raet1e. Furthermore, we investigated the dynamics of RAE-1 expression in microglia cultures. RAE-1 induction correlated with cell proliferation but not with M1/M2 phenotypic orientation. We finally demonstrate that macrophage colony-stimulating factor (M-CSF) is a major factor controlling RAE-1 expression in microglia. Copyright © 2016 Elsevier Inc. All rights reserved.

  7. Integrating microRNA and mRNA expression profiles in response to radiation-induced injury in rat lung

    International Nuclear Information System (INIS)

    Xie, Ling; Zhou, Jundong; Zhang, Shuyu; Chen, Qing; Lai, Rensheng; Ding, Weiqun; Song, ChuanJun; Meng, XingJun; Wu, Jinchang

    2014-01-01

    Exposure to radiation provokes cellular responses, which are likely regulated by gene expression networks. MicroRNAs are small non-coding RNAs, which regulate gene expression by promoting mRNA degradation or inhibiting protein translation. The expression patterns of both mRNA and miRNA during the radiation-induced lung injury (RILI) remain less characterized and the role of miRNAs in the regulation of this process has not been studied. The present study sought to evaluate miRNA and mRNA expression profiles in the rat lung after irradiation. Male Wistar rats were subjected to single dose irradiation with 20 Gy using 6 MV x-rays to the right lung. (A dose rate of 5 Gy/min was applied). Rats were sacrificed at 3, 12 and 26 weeks after irradiation, and morphological changes in the lung were examined by haematoxylin and eosin. The miRNA and mRNA expression profiles were evaluated by microarrays and followed by quantitative RT-PCR analysis. A cDNA microarray analysis found 2183 transcripts being up-regulated and 2917 transcripts down-regulated (P ≤ 0.05, ≥2.0 fold change) in the lung tissues after irradiation. Likewise, a miRNAs microarray analysis indicated 15 miRNA species being up-regulated and 8 down-regulated (P ≤ 0.05). Subsequent bioinformatics anal -yses of the differentially expressed mRNA and miRNAs revealed that alterations in mRNA expression following irradiation were negatively correlated with miRNAs expression. Our results provide evidence indicating that irradiation induces alterations of mRNA and miRNA expression in rat lung and that there is a negative correlation of mRNA and miRNA expression levels after irradiation. These findings significantly advance our understanding of the regulatory mechanisms underlying the pathophysiology of radiation-induced lung injury. In summary, RILI does not develop gradually in a linear process. In fact, different cell types interact via cytokines in a very complex network. Furthermore, this study suggests that

  8. Endogenous α-crystallin inhibits expression of caspase-3 induced by hypoxia in retinal neurons.

    Science.gov (United States)

    Ying, Xi; Peng, Yanli; Zhang, Jiaping; Wang, Xingli; Wu, Nan; Zeng, Yuxiao; Wang, Yi

    2014-08-28

    To investigate the expression of endogenous, hypoxic stress-induced α-crystallin and caspase-3 in rat retinal neurons in vitro. Retinal neurons were cultured from Long-Evans rats. The expression of endogenous α-crystallin was analyzed by immunohistochemistry and reverse transcriptase-polymerase chain reaction (RT-PCR). Furthermore, hypoxic exposure was performed in cultured cells, and the expression of endogenous α-crystallin and caspase-3 was assayed by Western blotting. Positive α-crystallin staining was observed in cultured retinal neurons, and expression of endogenous α-crystallin mRNA peaked 3-5d after inoculation (Pendogenous, hypoxic stress-induced α-crystallin expression increased gradually, peaking 6h after hypoxia. The expression was more abundant compared to the control (Pendogenous α-crystallin in retinal neurons, especially over-expression induced by hypoxic stress, results in the down regulation of caspase-3. The data suggest that endogenous α-crystallin may act as an endogenous neuroprotective factor in retinal neurons. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Cocaine-induced behavioral sensitization decreases the expression of endocannabinoid signaling-related proteins in the mouse hippocampus.

    Science.gov (United States)

    Blanco, Eduardo; Galeano, Pablo; Palomino, Ana; Pavón, Francisco J; Rivera, Patricia; Serrano, Antonia; Alen, Francisco; Rubio, Leticia; Vargas, Antonio; Castilla-Ortega, Estela; Decara, Juan; Bilbao, Ainhoa; de Fonseca, Fernando Rodríguez; Suárez, Juan

    2016-03-01

    In the reward mesocorticolimbic circuits, the glutamatergic and endocannabinoid systems are implicated in neurobiological mechanisms underlying cocaine addiction. However, the involvement of both systems in the hippocampus, a critical region to process relational information relevant for encoding drug-associated memories, in cocaine-related behaviors remains unknown. In the present work, we studied whether the hippocampal gene/protein expression of relevant glutamate signaling components, including glutamate-synthesizing enzymes and metabotropic and ionotropic receptors, and the hippocampal gene/protein expression of cannabinoid type 1 (CB1) receptor and endocannabinoid metabolic enzymes were altered following acute and/or repeated cocaine administration resulting in conditioned locomotion and locomotor sensitization. Results showed that acute cocaine administration induced an overall down-regulation of glutamate-related gene expression and, specifically, a low phosphorylation level of GluA1. In contrast, locomotor sensitization to cocaine produced an up-regulation of several glutamate receptor-related genes and, specifically, an increased protein expression of the GluN1 receptor subunit. Regarding the endocannabinoid system, acute and repeated cocaine administration were associated with an increased gene/protein expression of CB1 receptors and a decreased gene/protein expression of the endocannabinoid-synthesis enzymes N-acyl phosphatidylethanolamine D (NAPE-PLD) and diacylglycerol lipase alpha (DAGLα). These changes resulted in an overall decrease in endocannabinoid synthesis/degradation ratios, especially NAPE-PLD/fatty acid amide hydrolase and DAGLα/monoacylglycerol lipase, suggesting a reduced endocannabinoid production associated with a compensatory up-regulation of CB1 receptor. Overall, these findings suggest that repeated cocaine administration resulting in locomotor sensitization induces a down-regulation of the endocannabinoid signaling that could

  10. Gene Expression Profiling in Slow-Type Calf Soleus Muscle of 30 Days Space-Flown Mice.

    Directory of Open Access Journals (Sweden)

    Guido Gambara

    Full Text Available Microgravity exposure as well as chronic disuse are two main causes of skeletal muscle atrophy in animals and humans. The antigravity calf soleus is a reference postural muscle to investigate the mechanism of disuse-induced maladaptation and plasticity of human and rodent (rats or mice skeletal musculature. Here, we report microgravity-induced global gene expression changes in space-flown mouse skeletal muscle and the identification of yet unknown disuse susceptible transcripts found in soleus (a mainly slow phenotype but not in extensor digitorum longus (a mainly fast phenotype dorsiflexor as functional counterpart to soleus. Adult C57Bl/N6 male mice (n = 5 flew aboard a biosatellite for 30 days on orbit (BION-M1 mission, 2013, a sex and age-matched cohort were housed in standard vivarium cages (n = 5, or in a replicate flight habitat as ground control (n = 5. Next to disuse atrophy signs (reduced size and myofiber phenotype I to II type shift as much as 680 differentially expressed genes were found in the space-flown soleus, and only 72 in extensor digitorum longus (only 24 genes in common compared to ground controls. Altered expression of gene transcripts matched key biological processes (contractile machinery, calcium homeostasis, muscle development, cell metabolism, inflammatory and oxidative stress response. Some transcripts (Fzd9, Casq2, Kcnma1, Ppara, Myf6 were further validated by quantitative real-time PCR (qRT-PCR. Besides previous reports on other leg muscle types we put forth for the first time a complete set of microgravity susceptible gene transcripts in soleus of mice as promising new biomarkers or targets for optimization of physical countermeasures and rehabilitation protocols to overcome disuse atrophy conditions in different clinical settings, rehabilitation and spaceflight.

  11. Increased transient receptor potential vanilloid type 1 (TRPV1) channel expression in hypertrophic heart

    DEFF Research Database (Denmark)

    Thilo, Florian; Liu, Ying; Schulz, Nico

    2010-01-01

    The aim of this study was to compare the expression of transient receptor potential vanilloid type 1 (TRPV1) channels in hypertrophic hearts from transgenic mice showing overexpression of the catalytic subunit alpha of protein phosphatase 2A alpha (PP2Ac alpha) with wild-type mice and with TRPV1-...... alpha transgenic mice compared to wild-type mice and TRPV1-/- mice (8.6±1.3mg/g; 5.4±0.3mg/g; and 5.4±0.4mg/g; respectively; p...

  12. FIVPET Flow-Induced Vibration Test Report (1) - Candidate Spacer Grid Type I (Optimized H Type)

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kang Hee; Kang, Heung Seok; Yoon, Kyung Ho; Song, Kee Nam; Kim, Jae Yong

    2006-03-15

    The flow-induced vibration (FIV) test using a 5x5 partial fuel assembly was performed to evaluate mechanical/structural performance of the candidate spacer grid type I (Optimized H shape). From the measured vibration response of the test bundle and the flow parameters, design features of the spacer strap can be analyzed in the point of vibration and hydraulic aspect, and also compared with other spacer strap in simple comparative manner. Furthermore, the FIV test will contributes to understand behaviors of nuclear fuel in operating reactor. The FIV test results will be used to verify the theoretical model of fuel rod and assembly vibration. The aim of this report is to present the results of the FIV test of partial fuel assembly and to introduce the detailed test methodology and analysis procedure. In chapter 2, the overall configuration of test bundle and instrumented tube is remarked and chapter 3 will introduce the test facility (FIVPET) and test section. Chapter 4 deals with overall test condition and procedure, measurement and data acquisition devices, instrumentation equipment and calibration, and error analysis. Finally, test result of vibration and pressure fluctuation is presented and discussed in chapter 5.

  13. Down-regulation of procaspase-8 expression by focal adhesion kinase protects HL-60 cells from TRAIL-induced apoptosis

    International Nuclear Information System (INIS)

    Tamagiku, Yuji; Sonoda, Yoshiko; Kunisawa, Mari; Ichikawa, Daiju; Murakami, Yayoi; Aizu-Yokota, Eriko; Kasahara, Tadashi

    2004-01-01

    We have demonstrated that focal adhesion kinase (FAK)-overexpressed (HL-60/FAK) cells have marked resistance against various apoptotic stimuli such as hydrogen peroxide, etoposide, and ionizing radiation compared with the vector-transfected (HL-60/Vect) cells. HL-60/FAK cells are highly resistant to TRAIL-induced apoptosis, while original HL-60 or HL-60/Vect cells were sensitive. TRAIL at 500 ng/ml induced significant DNA fragmentation, activation of caspase-8 and 3, the processing of a proapoptotic BID, and mitochondrial release of cytochrome c in HL-60/Vect cells, whereas no such events were observed in the HL-60/FAK cells. In particular, the expression of procaspase-8 gene and subsequent cleavage of caspase-8 were markedly reduced in HL-60/FAK cells, while expression of TRAIL-receptor 2 and 3, TRADD, and FADD was equivalent in both types of cells. In HL-60/FAK cells, the phosphoinositide 3 (PI3)-kinase/Akt survival pathway was constitutively activated, accompanied by significant induction of inhibitor-of-apoptosis proteins, XIAP, RIP, and Bcl-XL. The introduction of FAK siRNA in HL-60/FAK cells sensitized them against TRAIL-induced apoptosis, confirming that overexpressed FAK downregulates procaspase-8 expression, which subsequently inhibits downstream apoptosis pathway in the HL-60/FAK cells

  14. Mutant PIK3CA Induces EMT in a Cell Type Specific Manner.

    Directory of Open Access Journals (Sweden)

    Divya Bhagirath

    Full Text Available Breast cancer is characterized into different molecular subtypes, and each subtype is characterized by differential gene expression that are associated with distinct survival outcomes in patients. PIK3CA mutations are commonly associated with most breast cancer subtypes. More recently PIK3CA mutations have been shown to induce tumor heterogeneity and are associated with activation of EGFR-signaling and reduced relapse free survival in basal subtype of breast cancer. Thus, understanding what determines PIK3CA induced heterogeneity and oncogenesis, is an important area of investigation. In this study, we assessed the effect of mutant PIK3CA together with mutant Ras plus mutant p53 on oncogenic behavior of two distinct stem/progenitor breast cell lines, designated as K5+/K19- and K5+/K19+. Constructs were ectopically overexpressed in K5+/K19- and K5+/K19+ stem/progenitor cells, followed by various in-vitro and in-vivo analyses. Oncogene combination m-Ras/m-p53/m-PIK3CA efficiently transformed both K5+/K19- and K5+/K19+ cell lines in-vitro, as assessed by anchorage-independent soft agar colony formation assay. Significantly, while this oncogene combination induced a complete epithelial-to-mesenchymal transition (EMT in K5+/K19- cell line, mostly epithelial phenotype with minor EMT component was seen in K5+/K19+ cell line. However, both K5+/K19- and K5+/K19+ transformed cells exhibited increased invasion and migration abilities. Analyses of CD44 and CD24 expression showed both cell lines had tumor-initiating CD44+/CD24low cell population, however transformed K5+/K19- cells had more proportion of these cells. Significantly, both cell types exhibited in-vivo tumorigenesis, and maintained their EMT and epithelial nature in-vivo in mice tumors. Notably, while both cell types exhibited increase in tumor-initiating cell population, differential EMT phenotype was observed in these cell lines. These results suggest that EMT is a cell type dependent

  15. 2'-Hydroxycinnamaldehyde induces apoptosis through HSF1-mediated BAG3 expression.

    Science.gov (United States)

    Nguyen, Hai-Anh; Kim, Soo-A

    2017-01-01

    BAG3, a member of BAG co-chaperone family, is induced by stressful stimuli such as heat shock and heavy metals. Through interaction with various binding partners, BAG3 is thought to play a role in cellular adaptive responses against stressful conditions in normal and neoplastic cells. 2'-Hydroxycinnamaldehyde (HCA) is a natural derivative of cinnamaldehyde and has antitumor activity in various cancer cells. In the present study, for the first time, we identified that HCA induced BAG3 expression and BAG3-mediated apoptosis in cancer cells. The apoptotic cell death induced by HCA was demonstrated by caspase-7, -9 and PARP activation, and confirmed by Annexin V staining in both SW480 and SW620 colon cancer cells. Notably, both the mRNA and protein levels of BAG3 were largely induced by HCA in a dose- and time-dependent manner. By showing transcription factor HSF1 activation, we demonstrated that HCA induces the expression of BAG3 through HSF1 activation. More importantly, knockdown of BAG3 expression using siRNA largely inhibited HCA-induced apoptosis, suggesting that BAG3 is actively involved in HCA-induced cancer cell death. Considering the importance of the stress response mechanism in cancer progression, our results strongly suggest that BAG3 could be a potential target for anticancer therapy.

  16. Hypoxia-inducible factor-1α expression requires PI 3-kinase activity and correlates with Akt1 phosphorylation in invasive breast carcinomas

    NARCIS (Netherlands)

    Gort, E.H.; Groot, A.J.; Derks van de Ven, T.L.P.; Groep, P. van der; Verlaan, I.; Laar, T. van; Diest, P.J. van; Wall, E. van der; Shvarts, A.

    2006-01-01

    Hypoxia-inducible factor-1 alpha (HIF-1a) is the regulatory subunit of the heterodimeric transcription factor HIF-1 and the key factor in cellular response to low oxygen tension. Expression of HIF-1a protein is associated with poor patient survival and therapy resistance in many types of solid

  17. Placental triglyceride accumulation in maternal type 1 diabetes is associated with increased lipase gene expression

    DEFF Research Database (Denmark)

    Lindegaard, Marie Louise Skakkebæk; Damm, Peter; Mathiesen, Elisabeth R

    2006-01-01

    Maternal diabetes can cause fetal macrosomia and increased risk of obesity, diabetes, and cardiovascular disease in adulthood of the offspring. Although increased transplacental lipid transport could be involved, the impact of maternal type 1 diabetes on molecular mechanisms for lipid transport...... in placenta is largely unknown. To examine whether maternal type 1 diabetes affects placental lipid metabolism, we measured lipids and mRNA expression of lipase-encoding genes in placentas from women with type 1 diabetes (n = 27) and a control group (n = 21). The placental triglyceride (TG) concentration......RNA expression of lipoprotein lipase and lysosomal lipase were similar in women with diabetes and the control group. Immunohistochemistry showed EL protein in syncytiotrophoblasts facing the maternal blood and endothelial cells facing the fetal blood in placentas from both normal women and women with diabetes...

  18. Dopamine D2 Receptor Is Involved in Alleviation of Type II Collagen-Induced Arthritis in Mice.

    Science.gov (United States)

    Lu, Jian-Hua; Liu, Yi-Qian; Deng, Qiao-Wen; Peng, Yu-Ping; Qiu, Yi-Hua

    2015-01-01

    Human and murine lymphocytes express dopamine (DA) D2-like receptors including DRD2, DRD3, and DRD4. However, their roles in rheumatoid arthritis (RA) are less clear. Here we showed that lymphocyte DRD2 activation alleviates both imbalance of T-helper (Th)17/T-regulatory (Treg) cells and inflamed symptoms in a mouse arthritis model of RA. Collagen-induced arthritis (CIA) was prepared by intradermal injection of chicken collagen type II (CII) in tail base of DBA/1 mice or Drd2 (-/-) C57BL/6 mice. D2-like receptor agonist quinpirole downregulated expression of proinflammatory Th17-related cytokines interleukin- (IL-) 17 and IL-22 but further upregulated expression of anti-inflammatory Treg-related cytokines transforming growth factor- (TGF-) β and IL-10 in lymphocytes in vitro and in ankle joints in vivo in CIA mice. Quinpirole intraperitoneal administration reduced both clinical arthritis score and serum anti-CII IgG level in CIA mice. However, Drd2 (-/-) CIA mice manifested more severe limb inflammation and higher serum anti-CII IgG level and further upregulated IL-17 and IL-22 expression and downregulated TGF-β and IL-10 expression than wild-type CIA mice. In contrast, Drd1 (-/-) CIA mice did not alter limb inflammation or anti-CII IgG level compared with wild-type CIA mice. These results suggest that DRD2 activation is involved in alleviation of CIA symptoms by amelioration of Th17/Treg imbalance.

  19. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    Energy Technology Data Exchange (ETDEWEB)

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do, E-mail: ydjung@chonnam.ac.kr

    2012-03-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H{sub 2}O{sub 2}) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H{sub 2}O{sub 2} increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells

  20. Nicotine stimulates urokinase-type plasminogen activator receptor expression and cell invasiveness through mitogen-activated protein kinase and reactive oxygen species signaling in ECV304 endothelial cells

    International Nuclear Information System (INIS)

    Khoi, Pham Ngoc; Park, Jung Sun; Kim, Nam Ho; Jung, Young Do

    2012-01-01

    Urokinase-type plasminogen activator receptor (uPAR) expression is elevated during inflammation, tissue remodeling and in many human cancers. This study investigated the effect of nicotine, a major alkaloid in tobacco, on uPAR expression and cell invasiveness in ECV304 endothelial cells. Nicotine stimulated uPAR expression in a dose-dependent manner and activated extracellular signal-regulated kinases-1/2 (Erk-1/2), c-Jun amino-terminal kinase (JNK) and p38 mitogen activated protein kinase (MAPK). Specific inhibitors of MEK-1 (PD98059) and JNK (SP600125) inhibited the nicotine-induced uPAR expression, while the p38 MAPK inhibitor SB203580 did not. Expression vectors encoding dominant negative MEK-1 (pMCL-K97M) and JNK (TAM67) also prevented nicotine-induced uPAR promoter activity. The intracellular hydrogen peroxide (H 2 O 2 ) content was increased by nicotine treatment. The antioxidant N-acetylcysteine prevented nicotine-activated production of reactive oxygen species (ROS) and uPAR expression. Furthermore, exogenous H 2 O 2 increased uPAR mRNA expression. Deleted and site-directed mutagenesis demonstrated the involvement of the binding sites of transcription factor nuclear factor-kappaB (NF-κB) and activator protein (AP)-1 in the nicotine-induced uPAR expression. Studies with expression vectors encoding mutated NF-κB signaling molecules and AP-1 decoy confirmed that NF-κB and AP-1 were essential for the nicotine-stimulated uPAR expression. MAPK (Erk-1/2 and JNK) and ROS functioned as upstream signaling molecules in the activation of AP-1 and NF-κB, respectively. In addition, ECV304 endothelial cells treated with nicotine displayed markedly enhanced invasiveness, which was partially abrogated by uPAR neutralizing antibodies. The data indicate that nicotine induces uPAR expression via the MAPK/AP-1 and ROS/NF-κB signaling pathways and, in turn, stimulates invasiveness in human ECV304 endothelial cells. -- Highlights: ► Endothelial cells treated with nicotine

  1. Protective Effects of Vildagliptin against Pioglitazone-Induced Bone Loss in Type 2 Diabetic Rats.

    Science.gov (United States)

    Eom, Young Sil; Gwon, A-Ryeong; Kwak, Kyung Min; Kim, Ju-Young; Yu, Seung Hee; Lee, Sihoon; Kim, Yeun Sun; Park, Ie Byung; Kim, Kwang-Won; Lee, Kiyoung; Kim, Byung-Joon

    2016-01-01

    Long-term use of thiazolidinediones (TZDs) is associated with bone loss and an increased risk of fracture in patients with type 2 diabetes (T2DM). Incretin-based drugs (glucagon-like peptide-1 (GLP-1) agonists and dipeptidylpeptidase-4 (DPP-4) inhibitors) have several benefits in many systems in addition to glycemic control. In a previous study, we reported that exendin-4 might increase bone mineral density (BMD) by decreasing the expression of SOST/sclerostin in osteocytes in a T2DM animal model. In this study, we investigated the effects of a DPP-4 inhibitor on TZD-induced bone loss in a T2DM animal model. We randomly divided 12-week-old male Zucker Diabetic Fatty (ZDF) rats into four groups; control, vildagliptin, pioglitazone, and vildagliptin and pioglitazone combination. Animals in each group received the respective treatments for 5 weeks. We performed an intraperitoneal glucose tolerance test (IPGTT) before and after treatment. BMD and the trabecular micro-architecture were measured by DEXA and micro CT, respectively, at the end of the treatment. The circulating levels of active GLP-1, bone turnover markers, and sclerostin were assayed. Vildagliptin treatment significantly increased BMD and trabecular bone volume. The combination therapy restored BMD, trabecular bone volume, and trabecular bone thickness that were decreased by pioglitazone. The levels of the bone formation marker, osteocalcin, decreased and that of the bone resorption marker, tartrate-resistant acid phosphatase (TRAP) 5b increased in the pioglitazone group. These biomarkers were ameliorated and the pioglitazone-induced increase in sclerostin level was lowered to control values by the addition of vildagliptin. In conclusion, our results indicate that orally administered vildagliptin demonstrated a protective effect on pioglitazone-induced bone loss in a type 2 diabetic rat model.

  2. Cimetidine attenuates vinorelbine-induced phlebitis in mice by militating E-selectin expression.

    Science.gov (United States)

    Wang, Zhuo; Ma, Lijuan; Wang, Xuebin; Cai, Heping; Huang, Jin; Liu, Jiyong; Hu, Jinhong; Su, Dingfeng

    2014-08-01

    We investigated E-selectin expression in mice and rabbits with vinorelbine-induced phlebitis and the effect of cimetidine. To find the relationship between E-selectin expression and vinorelbine-induced phlebitis. Mouse and rabbit model of vinorelbine-induced phlebitis was established by intravenous infusion of vinorelbine. Pathological observation, molecular-biological determination of E-selectin and protein function of it was evaluated. Grossly, we observed swelling, edema and cord-like vessel changes in mice receiving vinorelbine but only mild edema in mice pretreated with cimetidine. Pathological scoring yielded a total score of 37 for vinorelbine-treated mice and 17 for mice pretreated with cimetidine (P phlebitis in mice probably by suppressing increased expression of E-selectin.

  3. Salicylic acid inhibits UV- and Cis-Pt-induced human immunodeficiency virus expression

    International Nuclear Information System (INIS)

    Woloschak, G.E.; Panozzo, J.; Libertin, C.R.; Schreck, S.; South Carolina Univ., Columbia, SC

    1994-01-01

    Previous studies have shown that exposure of HeLa cells stably transfected with a human immunodeficiency virus-long terminal repeat-chloramphenicol acetyl transferase (HIV-LTR-CAT) construct to UV light-induced expression from the HIV LTR. By culturing the cells with salicylic acid we demonstrated dose-dependent repression of this induced HIV expression. Repression was evident if salicylic acid was administered 2 h before, at the same time as, or up to 6 h after exposure to the DNA-damaging agent. The kinetics were similar for UV- and for cis-Pt-induced HIV expression, and induction was dependent on the UV dose or cis-Pt concentration added to the culture. These results suggest a role for the prostaglandins or the cyclooxygenase pathway or both in HIV induction mediated by DNA-damaging agents

  4. Expression of C-type lectin receptor mRNA in chronic otitis media with cholesteatoma.

    Science.gov (United States)

    Kim, Sang Hoon; Han, Seung-Ho; Byun, Jae Yong; Park, Moon Suh; Kim, Young Il; Yeo, Seung Geun

    2017-06-01

    The levels of expression of various C-type lectin receptors (CLRs) messenger ribo nucleic acids (mRNAs) were significantly higher in cholesteatomas than in normal skin, suggesting that these CLRs may be involved in the pathogenesis of cholesteatoma. Altered expression of pattern recognition receptors may be associated with immune responses in patients with cholesteatoma. This study assessed the levels of expression of CLR mRNAs in normal skin and in cholesteatoma. Cholesteatoma specimens were obtained from 38 patients with acquired cholesteatoma. The levels of expression of various CLR mRNAs were assessed quantitatively using real-time RT-PCR (Reverse transcription polymerase chain reaction) and correlated with age, sex, the presence of bacteria, hearing level, frequency of surgery, and degree of ossicle destruction. The levels of CD206 (cluster of differentiation 206), DEC-205 (Dendritic and epithelial cell-205), MGL (monoacylglycerol lipase), CLEC5A (C-type lectin domain family 5 member A), Dectin-2 (dendrite cell-associated C-type lectin-2), BDCA2 (Blood dendritic cell antigen 2), Mincle, DCIR (dendritic cell immunoreceptor), Dectin-1, MICL (Myeloid inhibitory C type-like lectin), and CLEC12B (C-type lectin domain family 12, member B) mRNAs were significantly higher in cholesteatoma than in control skin samples (p C-type lectin domain family 5 member) and Dectin-1 mRNAs were significantly higher in cholesteatomas with ≥2 than ≤1 destroyed ossicles (p < 0.05), and the levels of MGL, Mincle, Dectin-1, and CLEC12B mRNAs were significantly higher in recurrent than initial cholesteatoma specimens (p < 0.05). The level of CLEC5A mRNAs was significantly higher in patients with severe than mild-to-moderate hearing loss (p < 0.05).

  5. Expanding the molecular toolbox for Lactococcus lactis: construction of an inducible thioredoxin gene fusion expression system

    LENUS (Irish Health Repository)

    Douillard, Francois P

    2011-08-09

    Abstract Background The development of the Nisin Inducible Controlled Expression (NICE) system in the food-grade bacterium Lactococcus lactis subsp. cremoris represents a cornerstone in the use of Gram-positive bacterial expression systems for biotechnological purposes. However, proteins that are subjected to such over-expression in L. lactis may suffer from improper folding, inclusion body formation and\\/or protein degradation, thereby significantly reducing the yield of soluble target protein. Although such drawbacks are not specific to L. lactis, no molecular tools have been developed to prevent or circumvent these recurrent problems of protein expression in L. lactis. Results Mimicking thioredoxin gene fusion systems available for E. coli, two nisin-inducible expression vectors were constructed to over-produce various proteins in L. lactis as thioredoxin fusion proteins. In this study, we demonstrate that our novel L. lactis fusion partner expression vectors allow high-level expression of soluble heterologous proteins Tuc2009 ORF40, Bbr_0140 and Tuc2009 BppU\\/BppL that were previously insoluble or not expressed using existing L. lactis expression vectors. Over-expressed proteins were subsequently purified by Ni-TED affinity chromatography. Intact heterologous proteins were detected by immunoblotting analyses. We also show that the thioredoxin moiety of the purified fusion protein was specifically and efficiently cleaved off by enterokinase treatment. Conclusions This study is the first description of a thioredoxin gene fusion expression system, purposely developed to circumvent problems associated with protein over-expression in L. lactis. It was shown to prevent protein insolubility and degradation, allowing sufficient production of soluble proteins for further structural and functional characterization.

  6. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure

    International Nuclear Information System (INIS)

    Ye, Lusi; Jiang, Ying; Zuo, Xiaoxia

    2015-01-01

    Objective: The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Methods and results: Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAH (4 weeks) and RHF (7 weeks) Sprague–Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. Conclusions: The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. - Highlights: • FXR was expressed in rat lung and heart tissues. • FXR expression increased sharply in the lung tissues of PAH and RHF rats. • FXR expression was reduced in PAH and RHF rat RV tissue. • FXR expression was unaltered in PAH LV but reduced in RHF rat LV tissue. • FXR expression was prominent in the neovascularization region.

  7. Farnesoid-X-receptor expression in monocrotaline-induced pulmonary arterial hypertension and right heart failure

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Lusi [Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 (China); Department of Rheumatology, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325015 (China); Jiang, Ying [Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 (China); Zuo, Xiaoxia, E-mail: susanzuo@hotmail.com [Department of Rheumatology, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha, Hunan 410008 (China)

    2015-11-06

    Objective: The farnesoid-X-receptor (FXR) is a metabolic nuclear receptor superfamily member that is highly expressed in enterohepatic tissue and is also expressed in the cardiovascular system. Multiple nuclear receptors, including FXR, play a pivotal role in cardiovascular disease (CVD). Pulmonary arterial hypertension (PAH) is an untreatable cardiovascular system disease that leads to right heart failure (RHF). However, the potential physiological/pathological roles of FXR in PAH and RHF are unknown. We therefore compared FXR expression in the cardiovascular system in PAH, RHF and a control. Methods and results: Hemodynamic parameters and morphology were assessed in blank solution-exposed control, monocrotaline (MCT)-exposed PAH (4 weeks) and RHF (7 weeks) Sprague–Dawley rats. Real-time reverse transcription polymerase chain reaction (real-time RT-PCR), Western blot (WB), immunohistochemistry (IHC) analysis and immunofluorescence (IF) analysis were performed to assess FXR levels in the lung and heart tissues of MCT-induced PAH and RHF rats. In normal rats, low FXR levels were detected in the heart, and nearly no FXR was expressed in rat lungs. However, FXR expression was significantly elevated in PAH and RHF rat lungs but reduced in PAH and RHF rat right ventricular (RV) tissues. FXR expression was reduced only in RHF rat left ventricular (LV) tissues. Conclusions: The differential expression of FXR in MCT-induced PAH lungs and heart tissues in parallel with PAH pathophysiological processes suggests that FXR contributes to PAH. - Highlights: • FXR was expressed in rat lung and heart tissues. • FXR expression increased sharply in the lung tissues of PAH and RHF rats. • FXR expression was reduced in PAH and RHF rat RV tissue. • FXR expression was unaltered in PAH LV but reduced in RHF rat LV tissue. • FXR expression was prominent in the neovascularization region.

  8. Expression of manganese superoxide dismutase in rat blood, heart and brain during induced systemic hypoxia

    Directory of Open Access Journals (Sweden)

    Septelia I. Wanandi

    2011-02-01

    Full Text Available Background: Hypoxia results in an increased generation of ROS. Until now, little is known about the role of MnSOD - a major endogenous antioxidant enzyme - on the cell adaptation response against hypoxia. The aim of this study was to  determine the MnSOD mRNA expression and levels of specific activity in blood, heart and brain of rats during induced systemic hypoxia.Methods: Twenty-five male Sprague Dawley rats were subjected to systemic hypoxia in an hypoxic chamber (at 8-10% O2 for 0, 1, 7, 14 and 21 days, respectively. The mRNA relative expression of MnSOD was analyzed using Real Time RT-PCR. MnSOD specific activity was determined using xanthine oxidase inhibition assay.Results: The MnSOD mRNA relative expression in rat blood and heart was decreased during early induced systemic hypoxia (day 1 and increased as hypoxia continued, whereas the mRNA expression in brain was increased since day 1 and reached its maximum level at day 7. The result of MnSOD specific activity during early systemic hypoxia was similar to the mRNA expression. Under very late hypoxic condition (day 21, MnSOD specific activity in blood, heart and brain was significantly decreased. We demonstrate a positive correlation between MnSOD mRNA expression and specific activity in these 3 tissues during day 0-14 of induced systemic hypoxia. Furthermore, mRNA expression and specific activity levels in heart strongly correlate with those in blood.Conclusion: The MnSOD expression at early and late phases of induced systemic hypoxia is distinctly regulated. The MnSOD expression in brain differs from that in blood and heart revealing that brain tissue can  possibly survive better from induced systemic hypoxia than heart and blood. The determination of MnSOD expression in blood can be used to describe its expression in heart under systemic hypoxic condition. (Med J Indones 2011; 20:27-33Keywords: MnSOD, mRNA expression, ROS, specific activity, systemic hypoxia

  9. Increased Tim-3 expression alleviates liver injury by regulating macrophage activation in MCD-induced NASH mice.

    Science.gov (United States)

    Du, Xianhong; Wu, Zhuanchang; Xu, Yong; Liu, Yuan; Liu, Wen; Wang, Tixiao; Li, Chunyang; Zhang, Cuijuan; Yi, Fan; Gao, Lifen; Liang, Xiaohong; Ma, Chunhong

    2018-05-07

    As an immune checkpoint, Tim-3 plays roles in the regulation of both adaptive and innate immune cells including macrophages and is greatly involved in chronic liver diseases. However, the precise roles of Tim-3 in nonalcoholic steatohepatitis (NASH) remain unstated. In the current study, we analyzed Tim-3 expression on different subpopulations of liver macrophages and further investigated the potential roles of Tim-3 on hepatic macrophages in methionine and choline-deficient diet (MCD)-induced NASH mice. The results of flow cytometry demonstrated the significantly increased expression of Tim-3 on all detected liver macrophage subsets in MCD mice, including F4/80 + CD11b + , F4/80 + CD68 + , and F4/80 + CD169 + macrophages. Remarkably, Tim-3 knockout (KO) significantly accelerated MCD-induced liver steatosis, displaying higher serum ALT, larger hepatic vacuolation, more liver lipid deposition, and more severe liver fibrosis. Moreover, compared with wild-type C57BL/6 mice, Tim-3 KO MCD mice demonstrated an enhanced expression of NOX2, NLRP3, and caspase-1 p20 together with increased generation of IL-1β and IL-18 in livers. In vitro studies demonstrated that Tim-3 negatively regulated the production of reactive oxygen species (ROS) and related downstream pro-inflammatory cytokine secretion of IL-1β and IL-18 in macrophages. Exogenous administration of N-Acetyl-L-cysteine (NAC), a small molecular inhibitor of ROS, remarkably suppressed caspase-1 p20 expression and IL-1β and IL-18 production in livers of Tim-3 KO mice, thus significantly reducing the severity of steatohepatitis induced by MCD. In conclusion, Tim-3 is a promising protector in MCD-induced steatohepatitis by controlling ROS and the associated pro-inflammatory cytokine production in macrophages.

  10. Muscle-specific expression of hypoxia-inducible factor in human skeletal muscle

    DEFF Research Database (Denmark)

    Mounier, Rémi; Pedersen, Bente Klarlund; Plomgaard, Peter

    2010-01-01

    fibres that possess unique patterns of protein and gene expression, producing different capillarization and energy metabolism systems. In this work, we analysed HIF-1alpha mRNA and protein expression related to the fibre-type composition in untrained human skeletal muscle by obtaining muscle biopsies...... from triceps brachii (characterized by a high proportion of type II fibres), from soleus (characterized by a high proportion of type I fibres) and from vastus lateralis (characterized by an equal proportion of type I and II fibres). The hypothesis was that type I muscle fibres would have lower HIF-1......alpha protein level. Interestingly, none of the HIF-1alpha target genes, like the most studied angiogenic factor involved in muscle angiogenesis, vascular endothelial growth factor (VEGF), exhibited a muscle fibre-specific-related mRNA expression at rest in normoxia. However, soleus presented...

  11. SIRT-1 regulates TGF-β-induced dermal fibroblast migration via modulation of Cyr61 expression.

    Science.gov (United States)

    Kwon, Eun-Jeong; Park, Eun-Jung; Yu, Hyeran; Huh, Jung-Sik; Kim, Jinseok; Cho, Moonjae

    2018-05-01

    SIRT1 is a NAD-dependent protein deacetylase that participates in cellular regulation. The increased migration of fibroblasts is an important phenotype in fibroblast activation. The role of SIRT1 in cell migration remains controversial as to whether SIRT1 acts as an activator or suppressor of cell migration. Therefore, we have established the role of SIRT1 in the migration of human dermal fibroblasts and explored targets of SIRT1 during dermal fibroblast migration. SIRT1 and Cyr61 were expressed in human dermal fibroblasts and the stimulation with TGF-β further induced their expression. Treatment with resveratrol (RSV), a SIRT1 agonist, or overexpression of SIRT1 also promoted the expression Cyr61 in human dermal fibroblasts, whereas the inhibition of SIRT1 activity by nicotinamide or knockdown of SIRT1 decreased the level of Cyr61, as well as TGF-β or RSV-induced Cyr61 expression. Blocking of ERK signaling by PD98509 reduced the expression of Cyr61 induced by TGF-β or RSV. TGF-β, RSV, or SIRT1 overexpression enhanced β-catenin as well as Cyr61 expression. This stimulation was reduced by the Wnt inhibitor XAV939. RSV increased migration and nicotinamide attenuated RSV-induced migration of human dermal fibroblasts. Furthermore, SIRT1 overexpression promoted cell migration, whereas blocking Cyr61 attenuated SIRT1-stimulated migration of human dermal fibroblasts. SIRT1 increased cell migration by stimulating Cyr61 expression and the ERK and Wnt/β-catenin signaling. SIRT1-induced Cyr61 activity is very important for human dermal fibroblasts migration.

  12. BMP-2 Induced Expression of Alx3 That Is a Positive Regulator of Osteoblast Differentiation.

    Directory of Open Access Journals (Sweden)

    Takashi Matsumoto

    Full Text Available Bone morphogenetic proteins (BMPs regulate many aspects of skeletal development, including osteoblast and chondrocyte differentiation, cartilage and bone formation, and cranial and limb development. Among them, BMP-2, one of the most potent osteogenic signaling molecules, stimulates osteoblast differentiation, while it inhibits myogenic differentiation in C2C12 cells. To evaluate genes involved in BMP-2-induced osteoblast differentiation, we performed cDNA microarray analyses to compare BMP-2-treated and -untreated C2C12 cells. We focused on Alx3 (aristaless-like homeobox 3 which was clearly induced during osteoblast differentiation. Alx3, a homeobox gene related to the Drosophilaaristaless gene, has been linked to developmental functions in craniofacial structures and limb development. However, little is known about its direct relationship with bone formation. In the present study, we focused on the mechanisms of Alx3 gene expression and function during osteoblast differentiation induced by BMP-2. In C2C12 cells, BMP-2 induced increase of Alx3 gene expression in both time- and dose-dependent manners through the BMP receptors-mediated SMAD signaling pathway. In addition, silencing of Alx3 by siRNA inhibited osteoblast differentiation induced by BMP-2, as showed by the expressions of alkaline phosphatase (Alp, Osteocalcin, and Osterix, while over-expression of Alx3 enhanced osteoblast differentiation induced by BMP-2. These results indicate that Alx3 expression is enhanced by BMP-2 via the BMP receptors mediated-Smad signaling and that Alx3 is a positive regulator of osteoblast differentiation induced by BMP-2.

  13. Agonist-induced desensitization of human β3-adrenoceptors expressed in human embryonic kidney cells

    NARCIS (Netherlands)

    Michel-Reher, Martina B.; Michel, Martin C.

    2013-01-01

    β3-Adrenoceptors are resistant to agonist-induced desensitization in some cell types but susceptible in others including transfected human embryonic kidney (HEK) cells. Therefore, we have studied cellular and molecular changes involved in agonist-induced β3-adrenoceptor desensitization in HEK cells.

  14. Human T cell leukemia virus type I prevents cell surface expression of the T cell receptor through down-regulation of the CD3-gamma, -delta, -epsilon, and -zeta genes

    NARCIS (Netherlands)

    de Waal Malefyt, R.; Yssel, H.; Spits, H.; de Vries, J. E.; Sancho, J.; Terhorst, C.; Alarcon, B.

    1990-01-01

    Infection and transformation by human T cell leukemia virus type I (HTLV-I) up-regulates expression of several inducible genes including those coding for cytokines involved in the proliferation of normal and leukemic T cells. We demonstrate that HTLV-I can also shut off expression of the CD3-gamma,

  15. Endogenous brain IL-1 mediates LPS-induced anorexia and hypothalamic cytokine expression.

    Science.gov (United States)

    Layé, S; Gheusi, G; Cremona, S; Combe, C; Kelley, K; Dantzer, R; Parnet, P

    2000-07-01

    The present study was designed to determine the role of endogenous brain interleukin (IL)-1 in the anorexic response to lipopolysaccharide (LPS). Intraperitoneal administration of LPS (5-10 microgram/mouse) induced a dramatic, but transient, decrease in food intake, associated with an enhanced expression of proinflammatory cytokine mRNA (IL-1beta, IL-6, and tumor necrosis factor-alpha) in the hypothalamus. This dose of LPS also increased plasma levels of IL-1beta. Intracerebroventricular pretreatment with IL-1 receptor antagonist (4 microgram/mouse) attenuated LPS-induced depression of food intake and totally blocked the LPS-induced enhanced expression of proinflammatory cytokine mRNA measured in the hypothalamus 1 h after treatment. In contrast, LPS-induced increases in plasma levels of IL-1beta were not altered. These findings indicate that endogenous brain IL-1 plays a pivotal role in the development of the hypothalamic cytokine response to a systemic inflammatory stimulus.

  16. Precise integration of inducible transcriptional elements (PrIITE) enables absolute control of gene expression

    DEFF Research Database (Denmark)

    Pinto, Rita; Hansen, Lars; Hintze, John

    2017-01-01

    to be a limitation. Here, we report that the combined use of genome editing tools and last generation Tet-On systems can resolve these issues. Our principle is based on precise integration of inducible transcriptional elements (coined PrIITE) targeted to: (i) exons of an endogenous gene of interest (GOI) and (ii......Tetracycline-based inducible systems provide powerful methods for functional studies where gene expression can be controlled. However, the lack of tight control of the inducible system, leading to leakiness and adverse effects caused by undesirable tetracycline dosage requirements, has proven......) a safe harbor locus. Using PrIITE cells harboring a GFP reporter or CDX2 transcription factor, we demonstrate discrete inducibility of gene expression with complete abrogation of leakiness. CDX2 PrIITE cells generated by this approach uncovered novel CDX2 downstream effector genes. Our results provide...

  17. Growth hormone-releasing factor induces c-fos expression in cultured primary pituitary cells

    DEFF Research Database (Denmark)

    Billestrup, Nils; Mitchell, R L; Vale, W

    1987-01-01

    GH-releasing factor (GRF) and somatostatin regulates the secretion and biosynthesis of GH as well as the proliferation of GH-producing cells. In order to further characterize the mitogenic effect of GRF, we studied the expression of the proto-oncogene c-fos in primary pituitary cells. Maximal...... induction of c-fos mRNA was observed 20-60 min after stimulation with 5 nM GRF, returning to basal levels after 2 h. Somatostatin-14 (5 nM) partially inhibited the GRF induced c-fos expression. Forskolin and phorbol 12, 13 dibutyrate induced c-fos gene in cultured primary pituitary cells with similar...

  18. Apoptosis induced by radionuclide 153Sm and expression of relevant genes in three different cancer cells

    International Nuclear Information System (INIS)

    Zou Baomin; Duan Xiaoyi; Chen Wei; Hu Guoying

    2003-01-01

    To study apoptosis of PC-3, ER-75-30 and A549 cells induced by radionuclide 153 Sm and the expression of bcl-2, bax in apoptosis cells, MTT assay was used to detect the anti-tumor effect, light microscope, transmission electron microscope, flow cytometer were used to detect apoptosis, while image analysis was used to detect the expression of bcl-2 and bax. 153 Sm showed anti-tumor effect and could induce tumor cell apoptosis. Both bcl-2 and bax played an important role in apoptosis. Different kind of cells had different sensitivity to 153 Sm

  19. Estimation of Ship Long-term Wave-induced Bending Moment using Closed-Form Expressions

    DEFF Research Database (Denmark)

    Jensen, Jørgen Juncher; Mansour, A. E.

    2002-01-01

    A semi-analytical approach is used to derive frequency response functions and standard deviations for the wave-induced bending moment amidships for mono-hull ships. The results are given as closed-form expressions and the required input information for the procedure is restricted to the main......-empirical closed-form expression for the skewness. The effect of whipping is included by assuming that whipping and wave-induced responses are conditionally independent given Hs. The procedure is simple and can be used to make quick estimates of the design wave bending moment at the conceptual design phase...

  20. TRPA1 channels: expression in non-neuronal murine lung tissues and dispensability for hyperoxia-induced alveolar epithelial hyperplasia.

    Science.gov (United States)

    Kannler, Martina; Lüling, Robin; Yildirim, Ali Önder; Gudermann, Thomas; Steinritz, Dirk; Dietrich, Alexander

    2018-05-12

    Transient receptor potential A1 (TRPA1) channels were originally characterized in neuronal tissues but also identified in lung epithelium by staining with fluorescently coupled TRPA1 antibodies. Its exact function in non-neuronal tissues, however, is elusive. TRPA1 is activated in vitro by hypoxia and hyperoxia and is therefore a promising TRP candidate for sensing hyperoxia in pulmonary epithelial cells and for inducing alveolar epithelial hyperplasia. Here, we isolated tracheal, bronchial, and alveolar epithelial cells and show low but detectable TRPA1 mRNA levels in all these cells as well as TRPA1 protein by Western blotting in alveolar type II (AT II) cells. We quantified changes in intracellular Ca 2+ ([Ca 2+ ] i ) levels induced by application of hyperoxic solutions in primary tracheal epithelial, bronchial epithelial, and AT II cells isolated from wild-type (WT) and TRPA1-deficient (TRPA1-/-) mouse lungs. In all cell types, we detected hyperoxia-induced rises in [Ca 2+ ] i levels, which were not significantly different in TRPA1-deficient cells compared to WT cells. We also tested TRPA1 function in a mouse model for hyperoxia-induced alveolar epithelial hyperplasia. A characteristic significant increase in thickening of alveolar tissues was detected in mouse lungs after exposure to hyperoxia, but not in normoxic WT and TRPA1-/- controls. Quantification of changes in lung morphology in hyperoxic WT and TRPA1-/- mice, however, again revealed no significant changes. Therefore, TRPA1 expression does neither appear to be a key player for hyperoxia-induced changes in [Ca 2+ ] i levels in primary lung epithelial cells, nor being essential for the development of hyperoxia-induced alveolar epithelial hyperplasia.

  1. The effect of streptozotocin-induced diabetes on phenylalanine hydroxylase expression in rat liver.

    OpenAIRE

    Taylor, D S; Dahl, H H; Mercer, J F; Green, A K; Fisher, M J

    1989-01-01

    The impact of experimentally induced diabetes on the expression of rat liver phenylalanine hydroxylase has been investigated. A significant elevation in maximal enzymic activity was observed in diabetes. This was associated with significant increases in the amount of enzyme, the phenylalanine hydroxylase-specific translational activity of hepatic RNA and the abundance of phenylalanine hydroxylase-specific mRNA. These changes in phenylalanine hydroxylase expression were not observed when diabe...

  2. 2-Chlorohexadecanal and 2-chlorohexadecanoic acid induce COX-2 expression in human coronary artery endothelial cells

    OpenAIRE

    Messner, Maria C.; Albert, Carolyn J.; Ford, David A.

    2008-01-01

    2-Chlorohexadecanal (2-ClHDA), a 16-carbon chain chlorinated fatty aldehyde that is produced by reactive chlorinating species attack of plasmalogens, is elevated in atherosclerotic plaques, infarcted myocardium, and activated leukocytes. We tested the hypothesis that 2-ClHDA and its metabolites, 2-chlorohexadecanoic acid (2-ClHA) and 2-chlorohexadecanol (2-ClHOH), induce COX-2 expression in human coronary artery endothelial cells (HCAEC). COX-2 protein expression increased in response to 2-Cl...

  3. Uterine and placental expression of canine oxytocin receptor during pregnancy and normal and induced parturition.

    OpenAIRE

    Gram A Boos A Kowalewski MP.

    2014-01-01

    Abstract Oxytocin (OT) plays an important role as an inducer of uterine contractility acting together with its receptor (OTR) to increase synthesis of prostaglandins. Although OT is commonly used in the treatment for dystocia and uterine inertia in the bitch little attention has been paid to the role of OT in mechanisms regulating parturition in the dog so that knowledge about the expression of OTR in the canine uterus and placenta is sparse. Consequently the expression and cellular localizat...

  4. Artichoke, Cynarin and Cyanidin Downregulate the Expression of Inducible Nitric Oxide Synthase in Human Coronary Smooth Muscle Cells

    OpenAIRE

    Ning Xia; Andrea Pautz; Ursula Wollscheid; Gisela Reifenberg; Ulrich Förstermann; Huige Li

    2014-01-01

    Artichoke (Cynara scolymus L.) is one of the world’s oldest medicinal plants with multiple health benefits. We have previously shown that artichoke leaf extracts and artichoke flavonoids upregulate the gene expression of endothelial-type nitric oxide synthase (eNOS) in human endothelial cells. Whereas NO produced by the eNOS is a vasoprotective molecule, NO derived from the inducible iNOS plays a pro-inflammatory role in the vasculature. The present study was aimed to investigate the effects ...

  5. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression

    International Nuclear Information System (INIS)

    Xu, Hongliang; Wang, Zhaoxia; Jin, Suqin; Hao, Hongjun; Zheng, Lemin; Zhou, Boda; Zhang, Wei; Lv, He; Yuan, Yun

    2014-01-01

    Highlights: • Dux4 induced TE671 cell proliferation defect and G1 phase arrest. • Dux4 upregulated p21 expression without activating p53. • Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. • Sp1 binding site was required for Dux4-induced p21 promoter activation. - Abstract: It has been implicated that Dux4 plays crucial roles in development of facioscapulohumeral dystrophy. But the underlying myopathic mechanisms and related down-stream events of this retrogene were far from clear. Here, we reported that overexpression of Dux4 in a cell model TE671 reduced cell proliferation rate, and increased G1 phase accumulation. We also determined the impact of Dux4 on p53/p21 signal pathway, which controls the checkpoint in cell cycle progression. Overexpression of Dux4 increased p21 mRNA and protein level, while expression of p53, phospho-p53 remained unchanged. Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. Furthermore, we demonstrated that enhanced Dux4 expression increased p21 promoter activity and elevated expression of Sp1 transcription factor. Mutation of Sp1 binding site decreased dux4 induced p21 promoter activation. Chromatin immunoprecipitation (ChIP) assays confirmed the Dux4-induced binding of Sp1 to p21 promoter in vivo. These results suggest that Dux4 might induce proliferation inhibition and G1 phase arrest through upregulation of p21

  6. Dux4 induces cell cycle arrest at G1 phase through upregulation of p21 expression

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Hongliang; Wang, Zhaoxia; Jin, Suqin; Hao, Hongjun [Department of Neurology, Peking University First Hospital, Beijing 100034 (China); Zheng, Lemin [The Institute of Cardiovascular Sciences, Peking University Health Science Center, Key Laboratory of Molecular Cardiovascular Sciences of Education Ministry, Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides of Health Ministry, Beijing 100191 (China); Zhou, Boda [The Department of Cardiology, Peking University Third Hospital, Beijing 100191 (China); Zhang, Wei; Lv, He [Department of Neurology, Peking University First Hospital, Beijing 100034 (China); Yuan, Yun, E-mail: yuanyun2002@sohu.com [Department of Neurology, Peking University First Hospital, Beijing 100034 (China)

    2014-03-28

    Highlights: • Dux4 induced TE671 cell proliferation defect and G1 phase arrest. • Dux4 upregulated p21 expression without activating p53. • Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. • Sp1 binding site was required for Dux4-induced p21 promoter activation. - Abstract: It has been implicated that Dux4 plays crucial roles in development of facioscapulohumeral dystrophy. But the underlying myopathic mechanisms and related down-stream events of this retrogene were far from clear. Here, we reported that overexpression of Dux4 in a cell model TE671 reduced cell proliferation rate, and increased G1 phase accumulation. We also determined the impact of Dux4 on p53/p21 signal pathway, which controls the checkpoint in cell cycle progression. Overexpression of Dux4 increased p21 mRNA and protein level, while expression of p53, phospho-p53 remained unchanged. Silencing p21 rescued Dux4 mediated proliferation defect and cell cycle arrest. Furthermore, we demonstrated that enhanced Dux4 expression increased p21 promoter activity and elevated expression of Sp1 transcription factor. Mutation of Sp1 binding site decreased dux4 induced p21 promoter activation. Chromatin immunoprecipitation (ChIP) assays confirmed the Dux4-induced binding of Sp1 to p21 promoter in vivo. These results suggest that Dux4 might induce proliferation inhibition and G1 phase arrest through upregulation of p21.

  7. Noscapine induced apoptosis via downregulation of survivin in human neuroblastoma cells having wild type or null p53.

    Directory of Open Access Journals (Sweden)

    Shiwang Li

    Full Text Available Neuroblastoma is the most common extracranial solid tumor of childhood. It accounts for 15% of pediatric cancer deaths. Chemotherapy is the mainstay of treatment in children with advanced neuroblastoma. Noscapine, a nontoxic natural compound, can trigger apoptosis in many cancer types. We now show that p53 is dispensable for Noscapine-induced cell death in neuroblastoma cell lines, proapoptotic response to this promising chemopreventive agent is mediated by suppression of survivin protein expression. The Noscapine treatment increased levels of total and Ser(15-phosphorylated p53 protein in SK-SY5Y cells, but the proapoptotic response to this agent was maintained even after knockdown of the p53 protein level. Exposure of SK-SY5Y and LA1-5S cells to Noscapine resulted in a marked decrease in protein and mRNA level of survivin as early as 12 hours after treatment. Ectopic expression of survivin conferred statistically significant protection against Noscapine-mediated cytoplasmic histone-associated apoptotic DNA fragmentation. Also, the Noscapine-induced apoptosis was modestly but statistically significantly augmented by RNA interference of survivin in both cell lines. Furthermore, Noscapine-induced apoptotic cell death was associated with activation of caspase-3 and cleavage of PARP. In conclusion, the present study provides novel insight into the molecular circuitry of Noscapine-induced apoptosis to indicate suppression of survivin expression as a critical mediator of this process.

  8. Identification of the intestinal type gastric adenocarcinoma transcriptomic markers using bioinformatic and gene expression analysis

    Directory of Open Access Journals (Sweden)

    V. V. Volkomorov

    2017-01-01

    Full Text Available Introduction. Searching for specific and sensitive molecular tumor markers is one of the important tasks of modern oncology. These markers can be used for early tumor diagnosis and prognosis as well as for prediction of therapeutic response, estimation of tumor volume or to assess disease recurrence through monitoring. Gene expression data base mining followed by experimental validation of results obtained is one of the promising approaches for searching of that kind.Objective: to identify several membrane proteins which can be used for serum diagnosis of intestinal type of gastric adenocarcinoma.Materials and methods. We used bioinformatic-driven search using Gene Ontology and The Cancer Genome Atlas (TCGA data to identify mRNA up-regulated in gastric cancer (GC. Then, the expression levels of the mRNAs in 55 pare clinical specimens were investigated using reverse transcription polymerase chain reaction.Results. Comparative analysis of the mRNA levels in normal and tumor tissues using a new bioinformatics algorithm allowed to identify 3 high-copy transcripts (SULF1, PMEPA1 and SPARC, intracellular content of which markedly increased in GC. Expression analysis of these genes in clinical specimens showed significantly higher mRNA levels of PMEPA1 and SPARC in tumor as compared to normal gastric tissue. Interestingly more than twofold increase in expression level of these genes was observed in 75 % of intestinal-type GC. The same results were found only in 25 and 38 % of diffuse-type GC respectively.Conclusions. As a result of original bioinforamtic analysis using TCGA data base two genes (PMEPA1 and SPARC were shown to be significantly upregulated in intestinal-type gastric adenocarcinoma. The findings show the importance of further investigation to clarify the clinical value of their expression level in stomach tumors as well as their role in carcinogenesis.

  9. Whole genome expression and biochemical correlates of extreme constitutional types defined in Ayurveda.

    Science.gov (United States)

    Prasher, Bhavana; Negi, Sapna; Aggarwal, Shilpi; Mandal, Amit K; Sethi, Tav P; Deshmukh, Shailaja R; Purohit, Sudha G; Sengupta, Shantanu; Khanna, Sangeeta; Mohammad, Farhan; Garg, Gaurav; Brahmachari, Samir K; Mukerji, Mitali

    2008-09-09

    Ayurveda is an ancient system of personalized medicine documented and practiced in India since 1500 B.C. According to this system an individual's basic constitution to a large extent determines predisposition and prognosis to diseases as well as therapy and life-style regime. Ayurveda describes seven broad constitution types (Prakritis) each with a varying degree of predisposition to different diseases. Amongst these, three most contrasting types, Vata, Pitta, Kapha, are the most vulnerable to diseases. In the realm of modern predictive medicine, efforts are being directed towards capturing disease phenotypes with greater precision for successful identification of markers for prospective disease conditions. In this study, we explore whether the different constitution types as described in Ayurveda has molecular correlates. Normal individuals of the three most contrasting constitutional types were identified following phenotyping criteria described in Ayurveda in Indian population of Indo-European origin. The peripheral blood samples of these individuals were analysed for genome wide expression levels, biochemical and hematological parameters. Gene Ontology (GO) and pathway based analysis was carried out on differentially expressed genes to explore if there were significant enrichments of functional categories among Prakriti types. Individuals from the three most contrasting constitutional types exhibit striking differences with respect to biochemical and hematological parameters and at genome wide expression levels. Biochemical profiles like liver function tests, lipid profiles, and hematological parameters like haemoglobin exhibited differences between Prakriti types. Functional categories of genes showing differential expression among Prakriti types were significantly enriched in core biological processes like transport, regulation of cyclin dependent protein kinase activity, immune response and regulation of blood coagulation. A significant enrichment of

  10. Endogenous interferon-β-inducible gene expression and interferon-β-treatment are associated with reduced T cell responses to myelin basic protein in multiple sclerosis

    DEFF Research Database (Denmark)

    Börnsen, Lars; Christensen, Jeppe Romme; Ratzer, Rikke

    2015-01-01

    Autoreactive CD4+ T-cells are considered to play a major role in the pathogenesis of multiple sclerosis. In experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, exogenous and endogenous type I interferons restrict disease severity. Recombinant interferon-β is used for......-induced CD4+ T-cell autoreactivity in interferon-β-treated multiple sclerosis patients may be mediated by monocyte-derived interleukin-10.......Autoreactive CD4+ T-cells are considered to play a major role in the pathogenesis of multiple sclerosis. In experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis, exogenous and endogenous type I interferons restrict disease severity. Recombinant interferon-β is used...... for treatment of multiple sclerosis, and some untreated multiple sclerosis patients have increased expression levels of type I interferon-inducible genes in immune cells. The role of endogenous type I interferons in multiple sclerosis is controversial: some studies found an association of high expression levels...

  11. Vitamin K2 alleviates type 2 diabetes in rats by induction of osteocalcin gene expression.

    Science.gov (United States)

    Hussein, Atef G; Mohamed, Randa H; Shalaby, Sally M; Abd El Motteleb, Dalia M

    2018-03-01

    The biological mechanisms behind the association between vitamin K (Vit K) and glucose metabolism are uncertain. We aimed to analyze the expression of insulin 1 (Ins 1), insulin 2 (Ins 2) and cyclin D2, the expression of adiponectin and UCP-1 . In addition, we aimed to estimate the doses of Vit K2 able to affect various aspects of glucose and energy metabolism in type 2 diabetes. Thirty adult male rats were allocated equally into five groups: control group, diabetes mellitus group, and groups 3, 4, and 5, which received Vit K 2 at three daily dose levels (10, 15, and 30 mg/kg, respectively) for 8 wk. At the end of the study, blood samples were collected to quantify total osteocalcin, fasting plasma glucose, fasting insulin, and relevant variables. The expression of OC, Ins 1, Ins 2, cyclin D2, adiponectin, UCP-1 genes was analyzed by real-time polymerase chain reaction. After administration of Vit K 2 , a dose-dependent decrease in fasting plasma glucose, hemoglobin A1c and homeostatic model assessment method insulin resistance, and a dose-dependent increase in fasting insulin and homeostatic model assessment method β cell function levels, when compared with diabetes mellitus rats, were detected. There was significant upregulation of OC, Ins 1, Ins 2, or cyclin D2 gene expression in the three treated groups in a dose-dependent manner when compared with the diabetic rats. However, expression of adiponectin and UCP-1 were significantly increased at the highest dose (30 mg/kg daily) only. Vit K 2 administration could improve glycemic status in type 2 diabetic rats by induction of OC gene expression. Osteocalcin could increase β-cell proliferation, energy expenditure, and adiponectin expression. Different concentrations of Vit K 2 were required to affect glucose metabolism and insulin sensitivity. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Transient expression of P-type ATPases in tobacco epidermal cells

    DEFF Research Database (Denmark)

    Pedas, Lisbeth Rosager; Palmgren, Michael Broberg; Lopez Marques, Rosa Laura

    2016-01-01

    Transient expression in tobacco cells is a convenient method for several purposes such as analysis of protein-protein interactions and the subcellular localization of plant proteins. A suspension of Agrobacterium tumefaciens cells carrying the plasmid of interest is injected into the intracellula...... for example protein-protein interaction studies. In this chapter, we describe the procedure to transiently express P-type ATPases in tobacco epidermal cells, with focus on subcellular localization of the protein complexes formed by P4-ATPases and their β-subunits....

  13. Development of a Method to Monitor Gene Expression in Single Bacterial Cells During the Interaction With Plants and Use to Study the Expression of the Type III Secretion System in Single Cells of Dickeya dadantii in Potato

    Directory of Open Access Journals (Sweden)

    Zhouqi Cui

    2018-06-01

    Full Text Available Dickeya dadantii is a bacterial plant pathogen that causes soft rot disease on a wide range of host plants. The type III secretion system (T3SS is an important virulence factor in D. dadantii. Expression of the T3SS is induced in the plant apoplast or in hrp-inducing minimal medium (hrp-MM, and is repressed in nutrient-rich media. Despite the understanding of induction conditions, how individual cells in a clonal bacterial population respond to these conditions and modulate T3SS expression is not well understood. In our previous study, we reported that in a clonal population, only a small proportion of bacteria highly expressed T3SS genes while the majority of the population did not express T3SS genes under hrp-MM condition. In this study, we developed a method that enabled in situ observation and quantification of gene expression in single bacterial cells in planta. Using this technique, we observed that the expression of the T3SS genes hrpA and hrpN is restricted to a small proportion of D. dadantii cells during the infection of potato. We also report that the expression of T3SS genes is higher at early stages of infection compared to later stages. This expression modulation is achieved through adjusting the ratio of T3SS ON and T3SS OFF cells and the expression intensity of T3SS ON cells. Our findings not only shed light into how bacteria use a bi-stable gene expression manner to modulate an important virulence factor, but also provide a useful tool to study gene expression in individual bacterial cells in planta.

  14. Transient expression of collagen type II at epitheliomesenchymal interfaces during morphogenesis of the cartilaginous neurocranium.

    Science.gov (United States)

    Thorogood, P; Bee, J; von der Mark, K

    1986-08-01

    In the avian embryo a matrix-mediated tissue interaction between retinal pigmented epithelium and neural crest-derived periocular mesenchyme leads to the differentiation of (scleral) cartilage. The composition of the extracellular matrix at the interface between these two tissues has been examined immunohistochemically, both during and after the interaction has taken place. Of the matrix components studied (fibronectin, laminin, and collagen types I, II, IV, and V) only collagen type II displayed a dramatic change in distribution between the two stages. During the interaction, at stage 15, type II was present in the extracellular compartment basal to the epithelium. After completion of the interaction, collagen type II was no longer detectable at the interface even though it was readily detectable in the vitreous humor, cornea, and perinotochordal sheath, and subsequently will be expressed by the chondrogenic tissue itself as overt differentiation commences. These results suggest that collagen type II might be causally involved in this particular epitheliomesenchymal interaction. Examination of the spatial and temporal patterns of collagen type II expression elsewhere in the developing craniofacial complex revealed a hitherto unreported pattern of distribution. In addition to its predictable locations (i.e., cornea, vitreous, and perinotochordal sheath) it was found to be present at certain other sites, for example, at the basal surfaces of some neuroepithelia. These additional locations are all known to be sites of chondrogenesis-promoting tissue interactions which result in the formation of the elements of the cartilaginous neurocranium (e.g., otic vesicle). Furthermore this spatial distribution exhibits a changing temporal pattern in that it is detectable at the time that the interactions are known to be taking place, but subsequently is no longer detectable by the immunohistochemical means employed. This definable pattern of transient collagen type II

  15. Ketamine induces brain-derived neurotrophic factor expression via phosphorylation of histone deacetylase 5 in rats.

    Science.gov (United States)

    Choi, Miyeon; Lee, Seung Hoon; Park, Min Hyeop; Kim, Yong-Seok; Son, Hyeon

    2017-08-05

    Ketamine shows promise as a therapeutic agent for the treatment of depression. The increased expression of brain-derived neurotrophic factor (BDNF) has been associated with the antidepressant-like effects of ketamine, but the mechanism of BDNF induction is not well understood. In the current study, we demonstrate that the treatment of rats with ketamine results in the dose-dependent rapid upregulation of Bdnf promoter IV activity and expression of Bdnf exon IV mRNAs in rat hippocampal neurons. Transfection of histone deacetylase 5 (HDAC5) into rat hippocampal neurons similarly induces Bdnf mRNA expression in response to ketamine, whereas transfection of a HDAC5 phosphorylation-defective mutant (Ser259 and Ser498 replaced by Ala259 and Ala498), results in the suppression of ketamine-mediated BDNF promoter IV transcriptional activity. Viral-mediated hippocampal knockdown of HDAC5 induces Bdnf mRNA and protein expression, and blocks the enhancing effects of ketamine on BDNF expression in both unstressed and stressed rats, and thereby providing evidence for the role of HDAC5 in the regulation of Bdnf expression. Taken together, our findings implicate HDAC5 in the ketamine-induced transcriptional regulation of Bdnf, and suggest that the phosphorylation of HDAC5 regulates the therapeutic actions of ketamine. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Effect of obesity and exercise on the expression of the novel myokines, Myonectin and Fibronectin type III domain containing 5

    Directory of Open Access Journals (Sweden)

    Jonathan M. Peterson

    2014-09-01

    Full Text Available Metabolic dysfunction in skeletal muscle is a major contributor to the development of type 2 diabetes. Endurance exercise training has long been established as an effective means to directly restore skeletal muscle glucose and lipid uptake and metabolism. However, in addition to the direct effects of skeletal muscle on glucose and lipids, there is renewed interest in the ability of skeletal muscle to coordinate metabolic activity of other tissues, such as adipose tissue and liver. The purpose of this study was to examine the effects of endurance exercise on the expression level of two novel muscle-derived secreted factors, or myokines, Myonectin and Fibronectin type III domain containing 5 (FNDC5, the precursor for Irisin.Methods. We performed immunoblot analysis and quantitative real-time PCR analysis of Myonectin and FNDC5 in the diaphragm muscles of obese Zucker rat (OZR and lean Zucker rat (LZR with 9 weeks of aerobic training on a motorized treadmill.Results. We show that myonectin gene expression is increased in the OZR model of obesity and decreases with exercise in both lean and obese Zucker rats. Conversely, myonectin protein concentration was elevated with exercise. Similarly, FNDC5 mRNA levels are significantly higher in the OZR, however exercise training had no effect on the expression level of FNDC5 in either the LZR or OZR. We did not observe any difference in muscle protein content of Irisin with obesity or exercise.Conclusion. Our data shows that exercise training does not increase either FNDC5 or myonectin gene expression, indicating that increased transcriptional regulation of these myokines is not induced by exercise. However, our data also indicates a yet to be explored disconnect between myonectin gene expression and protein content. Further, this report highlights the importance of verifying reference genes when completing gene expression analysis. We found that many commonly used reference genes varied significantly by

  17. Dissecting the logical types of network control in gene expression profiles

    Directory of Open Access Journals (Sweden)

    Geertz Marcel

    2008-02-01

    Full Text Available Abstract Background In the bacterium Escherichia coli the transcriptional regulation of gene expression involves both dedicated regulators binding specific DNA sites with high affinity and also global regulators – abundant DNA architectural proteins of the bacterial nucleoid binding multiple sites with a wide range of affinities and thus modulating the superhelical density of DNA. The first form of transcriptional regulation is predominantly pairwise and specific, representing digitial control, while the second form is (in strength and distribution continuous, representing analog control. Results Here we look at the properties of effective networks derived from significant gene expression changes under variation of the two forms of control and find that upon limitations of one type of control (caused e.g. by mutation of a global DNA architectural factor the other type can compensate for compromised regulation. Mutations of global regulators significantly enhance the digital control, whereas in the presence of global DNA architectural proteins regulation is mostly of the analog type, coupling spatially neighboring genomic loci. Taken together our data suggest that two logically distinct – digital and analog – types of control are balancing each other. Conclusion By revealing two distinct logical types of control, our approach provides basic insights into both the organizational principles of transcriptional regulation and the mechanisms buffering genetic flexibility. We anticipate that the general concept of distinguishing logical types of control will apply to many complex biological networks.

  18. Construction of Egr1-mediated human truncated apoptosis inducing factor expression vector and its expression regularity induced by radiation in breast cancer MCF-7 cells

    International Nuclear Information System (INIS)

    Wang Jianfeng; Gong Shouliang; Wang Zhicheng; Fang Fang; Liu Yang; Wu Jiahui

    2012-01-01

    Objective: To clone human truncated apoptosis inducing factor (AIF) cDNA sequence, and to construct early growth response 1 (Egr1)-mediated recombinant expression vector pcDNA 3.1-Egr1-AIF Δ1-480 (pEgr1-AIFΔ 1-480 ), and to observe its regularity induced by radiation in human breast cancer MCF-7 cells. Methods: The total mRNA extracted from human leukemia Jurkat cells used as template, and the human AIFΔ 1-480 was acquired by RT-PCR, and it was linked to pMD18T vector for sequencing. Egr1 fragment was digested from pMD19T-Egr1 by restrictive enzyme, and the Egr1-mediated expression plasmid pEgr1-AIFΔ 1-480 was constructed by gene recombination. There were control group, pcDNA3.1 group, pAIFΔ 1-480 group and pEgr1-AIFΔ 1-480 group in the experiment. After the plasmids in various groups were transfected into human breast cancer MCF-7 cells, the AIF and AIFΔ 1-480 protein expression time-effect (0, 2, 4, 12, 24 and 48 h after 2.0 Gy irradiation) and dose-effect (24 h after 0, 0.2, 0.5, 1.0, 2.0 and 5.0 Gy irradiation) regularity were measured by Western blotting method. Results: The sequencing results showed that the AIFΔ 1-480 acquired by RT-PCR was consistent with the sequence expected, the pEgr-AIFΔ 1-480 was confirmed by PCR and restrictive enzyme digestion. After 0-48 h the MCF-7 cells were irradiated by 2.0 Gy, and the AIF protein expressed in the cells in each group, and it increased significantly from 4 h and the AIF expressions in 4, 12, 24 and 48 h groups were higher than that in 0 h group (P<0.05), and it reached to maximum value at 48 h. But the AIFΔ 1-480 protein expressed in the cells in pAIFΔ 1-480 and pEgr1-AIFΔ 1-480 groups from 2 h (P<0.05), and it reached to peak value at 24 h. The AIFΔ 1-480 expressions in pEgr1-AIFΔ 1-480 group were higher than those in pAIFΔ 1-480 group at and 48 h (P<0.05). After the MCF-7 cells were irradiated by 0-5 Gy for 24 h, the AIF protein expressed in the cells in each group, but the AIFΔ 1-480 protein

  19. (+-Rutamarin as a dual inducer of both GLUT4 translocation and expression efficiently ameliorates glucose homeostasis in insulin-resistant mice.

    Directory of Open Access Journals (Sweden)

    Yu Zhang

    Full Text Available Glucose transporter 4 (GLUT4 is a principal glucose transporter in response to insulin, and impaired translocation or decreased expression of GLUT4 is believed to be one of the major pathological features of type 2 diabetes mellitus (T2DM. Therefore, induction of GLUT4 translocation or/and expression is a promising strategy for anti-T2DM drug discovery. Here we report that the natural product (+-Rutamarin (Rut functions as an efficient dual inducer on both insulin-induced GLUT4 translocation and expression. Rut-treated 3T3-L1 adipocytes exhibit efficiently enhanced insulin-induced glucose uptake, while diet-induced obese (DIO mice based assays further confirm the Rut-induced improvement of glucose homeostasis and insulin sensitivity in vivo. Subsequent investigation of Rut acting targets indicates that as a specific protein tyrosine phosphatase 1B (PTP1B inhibitor Rut induces basal GLUT4 translocation to some extent and largely enhances insulin-induced GLUT4 translocation through PI3 kinase-AKT/PKB pathway, while as an agonist of retinoid X receptor α (RXRα, Rut potently increases GLUT4 expression. Furthermore, by using molecular modeling and crystallographic approaches, the possible binding modes of Rut to these two targets have been also determined at atomic levels. All our results have thus highlighted the potential of Rut as both a valuable lead compound for anti-T2DM drug discovery and a promising chemical probe for GLUT4 associated pathways exploration.

  20. Exercise-Induced Hypertrophic and Oxidative Signaling Pathways and Myokine Expression in Fast Muscle of Adult Zebrafish

    Directory of Open Access Journals (Sweden)

    Mireia Rovira

    2017-12-01

    Full Text Available Skeletal muscle is a plastic tissue that undergoes cellular and metabolic adaptations under conditions of increased contractile activity such as exercise. Using adult zebrafish as an exercise model, we previously demonstrated that swimming training stimulates hypertrophy and vascularization of fast muscle fibers, consistent with the known muscle growth-promoting effects of exercise and with the resulting increased aerobic capacity of this tissue. Here we investigated the potential involvement of factors and signaling mechanisms that could be responsible for exercise-induced fast muscle remodeling in adult zebrafish. By subjecting zebrafish to swimming-induced exercise, we observed an increase in the activity of mammalian target of rapamycin (mTOR and Mef2 protein levels in fast muscle. We also observed an increase in the protein levels of the mitotic marker phosphorylated histone H3 that correlated with an increase in the protein expression levels of Pax7, a satellite-like cell marker. Furthermore, the activity of AMP-activated protein kinase (AMPK was also increased by exercise, in parallel with an increase in the mRNA expression levels of pgc1α and also of pparda, a β-oxidation marker. Changes in the mRNA expression levels of slow and fast myosin markers further supported the notion of an exercise-induced aerobic phenotype in zebrafish fast muscle. The mRNA expression levels of il6, il6r, apln, aplnra and aplnrb, sparc, decorin and igf1, myokines known in mammals to be produced in response to exercise and to signal through mTOR/AMPK pathways, among others, were increased in fast muscle of exercised zebrafish. These results support the notion that exercise increases skeletal muscle growth and myogenesis in adult zebrafish through the coordinated activation of the mTOR-MEF2 and AMPK-PGC1α signaling pathways. These results, coupled with altered expression of markers for oxidative metabolism and fast-to-slow fiber-type switch, also suggest

  1. Sialoadhesin expressed on IFN-induced monocytes binds HIV-1 and enhances infectivity.

    Directory of Open Access Journals (Sweden)

    Hans Rempel

    2008-04-01

    Full Text Available HIV-1 infection dysregulates the immune system and alters gene expression in circulating monocytes. Differential gene expression analysis of CD14(+ monocytes from subjects infected with HIV-1 revealed increased expression of sialoadhesin (Sn, CD169, Siglec 1, a cell adhesion molecule first described in a subset of macrophages activated in chronic inflammatory diseases.We analyzed sialoadhesin expression on CD14(+ monocytes by flow cytometry and found significantly higher expression in subjects with elevated viral loads compared to subjects with undetectable viral loads. In cultured CD14(+ monocytes isolated from healthy individuals, sialoadhesin expression was induced by interferon-alpha and interferon-gamma but not tumor necrosis factor-alpha. Using a stringent binding assay, sialoadhesin-expressing monocytes adsorbed HIV-1 through interaction with the sialic acid residues on the viral envelope glycoprotein gp120. Furthermore, monocytes expressing sialoadhesin facilitated HIV-1 trans infection of permissive cells, which occurred in the absence of monocyte self-infection.Increased sialoadhesin expression on CD14(+ monocytes occurred in response to HIV-1 infection with maximum expression associated with high viral load. We show that interferons induce sialoadhesin in primary CD14(+ monocytes, which is consistent with an antiviral response during viremia. Our findings suggest that circulating sialoadhesin-expressing monocytes are capable of binding HIV-1 and effectively delivering virus to target cells thereby enhancing the distribution of HIV-1. Sialoadhesin could disseminate HIV-1 to viral reservoirs during monocyte immunosurveillance or migration to sites of inflammation and then facilitate HIV-1 infection of permissive cells.

  2. Enhanced human papillomavirus type 8 oncogene expression levels are crucial for skin tumorigenesis in transgenic mice

    International Nuclear Information System (INIS)

    Hufbauer, M.; Lazic, D.; Akguel, B.; Brandsma, J.L.; Pfister, H.; Weissenborn, S.J.

    2010-01-01

    Human papillomavirus 8 (HPV8) is involved in skin cancer development in epidermodysplasia verruciformis patients. Transgenic mice expressing HPV8 early genes (HPV8-CER) developed papillomas, dysplasias and squamous cell carcinomas. UVA/B-irradiation and mechanical wounding of HPV8-CER mouse skin led to prompt papilloma induction in about 3 weeks. The aim of this study was to analyze the kinetics and level of transgene expression in response to skin irritations. Transgene expression was already enhanced 1 to 2 days after UVA/B-irradiation or tape-stripping and maintained during papilloma development. The enhanced transgene expression could be assigned to UVB and not to UVA. Papilloma development was thus always paralleled by an increased transgene expression irrespective of the type of skin irritation. A knock-down of E6 mRNA by tattooing HPV8-E6-specific siRNA led to a delay and a lower incidence of papilloma development. This indicates that the early increase of viral oncogene expression is crucial for induction of papillomatosis.

  3. Cytokine expression in patients with bladder pain syndrome/interstitial cystitis ESSIC type 3C.

    Science.gov (United States)

    Logadottir, Yr; Delbro, Dick; Fall, Magnus; Gjertsson, Inger; Jirholt, Pernilla; Lindholm, Catharina; Peeker, Ralph

    2014-11-01

    Bladder wall nitric oxide production in patients with bladder pain syndrome type 3C is increased compared to undetectable nitric oxide in patients with nonHunner bladder pain syndrome and healthy controls. However, the underlying mechanism/s of the increased nitric oxide production is largely unknown. We compared mRNA expression of a select group of cytokines in patients with bladder pain syndrome/interstitial cystitis type 3C and in pain-free controls. Cold cup biopsies from 7 patients with bladder pain syndrome type 3C and 6 healthy subjects were analyzed. mRNA expression of IL-4, 6, 10 and 17A, iNOS, TNF-α, TGF-β and IFN-γ was estimated by real-time polymerase chain reaction. IL-17 protein expression was determined by immunohistochemistry. Mast cells were labeled with tryptase to evaluate cell appearance and count. IL-6, 10 and 17A, and iNOS mRNA levels as well as the number of mast cells infiltrating the bladder mucosa were significantly increased in patients with bladder pain syndrome type 3C compared to healthy controls. TNF-α, TGF-β and IFN-γ mRNA levels were similar in patients and controls. IL-17A expression at the protein level was up-regulated and localized to inflammatory cells and urothelium in patients with bladder pain syndrome type 3C. Patients with bladder pain syndrome/interstitial cystitis had increased mRNA levels of IL-17A, 10 and 6, and iNOS. IL-17A might be important in the inflammatory process. To our knowledge the increase in IL-17A is a novel finding that may have new treatment implications. Copyright © 2014 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  4. A robust approach to identifying tissue-specific gene expression regulatory variants using personalized human induced pluripotent stem cells.

    Directory of Open Access Journals (Sweden)

    Je-Hyuk Lee

    2009-11-01

    Full Text Available Normal variation in gene expression due to regulatory polymorphisms is often masked by biological and experimental noise. In addition, some regulatory polymorphisms may become apparent only in specific tissues. We derived human induced pluripotent stem (iPS cells from adult skin primary fibroblasts and attempted to detect tissue-specific cis-regulatory variants using in vitro cell differentiation. We used padlock probes and high-throughput sequencing for digital RNA allelotyping and measured allele-specific gene expression in primary fibroblasts, lymphoblastoid cells, iPS cells, and their differentiated derivatives. We show that allele-specific expression is both cell type and genotype-dependent, but the majority of detectable al