Generalized etale cohomology theories
Jardine, John F
1997-01-01
A generalized etale cohomology theory is a theory which is represented by a presheaf of spectra on an etale site for an algebraic variety, in analogy with the way an ordinary spectrum represents a cohomology theory for spaces. Examples include etale cohomology and etale K-theory. This book gives new and complete proofs of both Thomason's descent theorem for Bott periodic K-theory and the Nisnevich descent theorem. In doing so, it exposes most of the major ideas of the homotopy theory of presheaves of spectra, and generalized etale homology theories in particular. The treatment includes, for the purpose of adequately dealing with cup product structures, a development of stable homotopy theory for n-fold spectra, which is then promoted to the level of presheaves of n-fold spectra. This book should be of interest to all researchers working in fields related to algebraic K-theory. The techniques presented here are essentially combinatorial, and hence algebraic. An extensive background in traditional stable hom...
Beyond generalized Proca theories
Energy Technology Data Exchange (ETDEWEB)
Heisenberg, Lavinia, E-mail: lavinia.heisenberg@eth-its.ethz.ch [Institute for Theoretical Studies, ETH Zurich, Clausiusstrasse 47, 8092 Zurich (Switzerland); Kase, Ryotaro; Tsujikawa, Shinji [Department of Physics, Faculty of Science, Tokyo University of Science, 1-3, Kagurazaka, Shinjuku-ku, Tokyo 162-8601 (Japan)
2016-09-10
We consider higher-order derivative interactions beyond second-order generalized Proca theories that propagate only the three desired polarizations of a massive vector field besides the two tensor polarizations from gravity. These new interactions follow the similar construction criteria to those arising in the extension of scalar–tensor Horndeski theories to Gleyzes–Langlois–Piazza–Vernizzi (GLPV) theories. On the isotropic cosmological background, we show the existence of a constraint with a vanishing Hamiltonian that removes the would-be Ostrogradski ghost. We study the behavior of linear perturbations on top of the isotropic cosmological background in the presence of a matter perfect fluid and find the same number of propagating degrees of freedom as in generalized Proca theories (two tensor polarizations, two transverse vector modes, and two scalar modes). Moreover, we obtain the conditions for the avoidance of ghosts and Laplacian instabilities of tensor, vector, and scalar perturbations. We observe key differences in the scalar sound speed, which is mixed with the matter sound speed outside the domain of generalized Proca theories.
General Theories of Regulation
Hertog, J.A. den
1999-01-01
This chapter makes a distinction between three types of theories of regulation: public interest theories, the Chicago theory of regulation and the public choice theories. The Chicago theory is mainly directed at the explanation of economic regulation; public interest theories and public choice
GENERAL THEORY OF THE UNIVERSE
Directory of Open Access Journals (Sweden)
B. A. Astafyev
2012-01-01
Full Text Available The World Creation and World genetic, energy and information Unity Theory is created. Created on its basis is a theory of the Creator’s Self-creation and of the Creation by Him of the World Basic Genome as basis for World evolution and his General Laws. Conclusion is made that in order to provide for its life and evolution, mankind community is toorganize own vital activities so as to follow the General World Laws.
Transition operators in electromagnetic-wave diffraction theory - General theory
Hahne, G. E.
1992-01-01
A formal theory is developed for the scattering of time-harmonic electromagnetic waves from impenetrable immobile obstacles with given linear, homogeneous, and generally nonlocal boundary conditions of Leontovich (impedance) type for the wave of the obstacle's surface. The theory is modeled on the complete Green's function and the transition (T) operator in time-independent formal scattering theory of nonrelativistic quantum mechanics. An expression for the differential scattering cross section for plane electromagnetic waves is derived in terms of certain matrix elements of the T operator for the obstacle.
Algebraic K-theory of generalized schemes
DEFF Research Database (Denmark)
Anevski, Stella Victoria Desiree
and geometry over the field with one element. It also permits the construction of important Arakelov theoretical objects, such as the completion \\Spec Z of Spec Z. In this thesis, we prove a projective bundle theorem for the eld with one element and compute the Chow rings of the generalized schemes Sp\\ec ZN......Nikolai Durov has developed a generalization of conventional scheme theory in which commutative algebraic monads replace commutative unital rings as the basic algebraic objects. The resulting geometry is expressive enough to encompass conventional scheme theory, tropical algebraic geometry......, appearing in the construction of \\Spec Z....
Gestalt Therapy and General System Theory.
Whitner, Phillip A.
While General Systems Theory (GST) concepts appear to be applicable in explaining some of the phenomena that occur in a Gestalt Therapy group, research is needed to support this assumption. General Systems Theory may not be a group theory per se. Instead, GST may be a theory about groups. A meta-theory exists where its value and usefulness is…
Generalized Lorenz-Mie theories
Gouesbet, Gérard
2017-01-01
This book explores generalized Lorenz–Mie theories when the illuminating beam is an electromagnetic arbitrary shaped beam relying on the method of separation of variables. The new edition includes an additional chapter covering the latest advances in both research and applications, which are highly relevant for readers. Although it particularly focuses on the homogeneous sphere, the book also considers other regular particles. It discusses in detail the methods available for evaluating beam shape coefficients describing the illuminating beam. In addition it features applications used in many fields such as optical particle sizing and, more generally, optical particle characterization, morphology-dependent resonances and the mechanical effects of light for optical trapping, optical tweezers and optical stretchers. Furthermore, it provides various computer programs relevant to the content.
The Faraday effect revisited General theory
Cornean, H D; Pedersen, T G
2005-01-01
This paper is the first in a series revisiting the Faraday effect, or more generally, the theory of electronic quantum transport/optical response in bulk media in the presence of a constant magnetic field. The independent electron approximation is assumed. For free electrons, the transverse conductivity can be explicitly computed and coincides with the classical result. In the general case, using magnetic perturbation theory, the conductivity tensor is expanded in powers of the strength of the magnetic field $B$. Then the linear term in $B$ of this expansion is written down in terms of the zero magnetic field Green function and the zero field current operator. In the periodic case, the linear term in $B$ of the conductivity tensor is expressed in terms of zero magnetic field Bloch functions and energies. No derivatives with respect to the quasimomentum appear and thereby all ambiguities are removed, in contrast to earlier work.
The Faraday effect revisited: General theory
DEFF Research Database (Denmark)
Cornean, Horia Decebal; Nenciu, Gheorghe; Pedersen, Thomas Garm
conductivity can be explicitly computed and coincides with the classical result. In the general case, using magnetic perturbation theory, the conductivity tensor is expanded in powers of the strength of the magnetic field B. Then the linear term in B of this expansion is written down in terms of the zero...... magnetic field Green function and the zero field current operator. In the periodic case, the linear term in B of the conductivity tensor is expressed in terms of zero magnetic field Bloch functions and energies. No derivatives with respect to the quasimomentum appear and thereby all ambiguities are removed...
Toposes in General Theory of Relativity
Guts, Alexandr K.; Grinkevich, Egor B.
1996-01-01
We study in this paper different topos-theoretical approaches to the problem of construction of General Theory of Relativity. In general case the resulting space-time theory will be non-classical, different from that of the usual Einstein theory of space-time. This is a new theory of space-time, created in a purely logical manner. Four possibitities are investigated: axiomatic approach to causal theory of space-time, the smooth toposes as a models of Theory of Relativity, Synthetic Theory of ...
General Systems Theory and Instructional Design.
Salisbury, David F.
The use of general systems theory in the field of instructional systems design (ISD) is explored in this paper. Drawing on work by Young, the writings of 12 representative ISD writers and researchers were surveyed to determine the use of 60 general systems theory concepts by the individual authors. The average number of concepts used by these…
Victimization and the general theory of crime.
Nofziger, Stacey
2009-01-01
Theories of victimization developed independently of theories of offending, in spite of consistent findings of similarities between offenders and victims of crime. This study examines whether Gottfredson and Hirschi's (1990) general theory of crime, typically used to predict offending, also has relevance in understanding juvenile victimization. The data for this project are drawn from a sample of over 1,200 middle and high school students. Using structural equation models, the findings suggest that higher self-control does directly decrease victimization and that self-control also affects victimization indirectly though opportunities (peer deviance). Implications for the studies of victimization as well as the general theory of crime are discussed.
On general Earth's rotation theory
Brumberg, V.; Ivanova, T.
2009-09-01
This paper dealing with the general problem of the rigid-body rotation of the three-axial Earth represents a straightforward extension of (Brumberg and Ivanova, 2007) where the simplified Poisson equations of rotation of the axially symmetrical Earth have been considered. The aim of the present paper is to reduce the equations of the translatory motion of the major planets and the Moon and the equations of the Earth's rotation around its centre of mass to the secular system describing the evolution of the planetary and lunar orbits (independent of the Earth's rotation) and the evolution of the Earth's rotation (depending on the planetary and lunar evolution).
Grounded Theory as a General Research Methodology
Judith A. Holton, Ph.D.
2008-01-01
Since its inception over forty years ago, grounded theory has achieved canonical status in the research world (Locke, 2001, p.1). Qualitative researchers, in particular, have embraced grounded theory although often without sufficient scholarship in the methodology (Partington, 2000, p.93; 2002, p.136). The embrace renders many researchers unable to perceive grounded theory as a general methodology and an alternative to the dominant qualitative and quantitative research paradigms. The result i...
Six strategies for generalizing software engineering theories
Wieringa, Roelf J.; Daneva, Maia
General theories of software engineering must balance between providing full understanding of a single case and providing partial understanding of many cases. In this paper we argue that for theories to be useful in practice, they should give sufficient understanding of a sufficiently large class of
The Faraday effect revisited: General theory
Cornean, Horia Decebal; Nenciu, Gheorghe; Pedersen, Thomas Garm
2005-01-01
This paper is the first in a series revisiting the Faraday effect, or more generally, the theory of electronic quantum transport/optical response in bulk media in the presence of a constant magnetic field. The independent electron approximation is assumed. For free electrons, the transverse conductivity can be explicitly computed and coincides with the classical result. In the general case, using magnetic perturbation theory, the conductivity tensor is expanded in powers of the strength of th...
Generalized extended Navier-Stokes theory
DEFF Research Database (Denmark)
Hansen, J. S.; Daivis, Peter J.; Dyre, Jeppe C.
2013-01-01
and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies......The extended Navier-Stokes theory accounts for the coupling between the translational and rotational molecular degrees of freedom. In this paper, we generalize this theory to non-zero frequencies and wavevectors, which enables a new study of spatio-temporal correlation phenomena present...... in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime...
Sturmians and generalized sturmians in quantum theory
DEFF Research Database (Denmark)
Avery, John Scales; Avery, James Emil
2012-01-01
The theory of Sturmians and generalized Sturmians is reviewed. It is shown that when generalized Sturmians are used as basis functions, calculations on the spectra and physical properties of few-electron atoms can be performed with great ease and good accuracy. The use of many-center Coulomb...
A theory of generalized Bloch oscillations
DEFF Research Database (Denmark)
Duggen, Lars; Lew Yan Voon, L. C.; Lassen, Benny
2016-01-01
Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact cal...... oscillations. We stipulate that the presented theory of generalized Bloch oscillations can be extended to other systems such as acoustics and photonics.......Bloch oscillations of electrons are shown to occur for cases when the energy spectrum does not consist of the traditional evenly-spaced ladders and the potential gradient does not result from an external electric field. A theory of such generalized Bloch oscillations is presented and an exact...... calculation is given to confirm this phenomenon. Our results allow for a greater freedom of design for experimentally observing Bloch oscillations. For strongly coupled oscillator systems displaying Bloch oscillations, it is further demonstrated that reordering of oscillators leads to destruction of Bloch...
Generalized extended Navier-Stokes theory
DEFF Research Database (Denmark)
Hansen, J. S.; Daivis, Peter J.; Dyre, Jeppe C.
2013-01-01
in molecular fluids. To discuss these phenomena in detail, molecular dynamics simulations of molecular chlorine are performed for three different state points. In general, the theory captures the behavior for small wavevector and frequencies as expected. For example, in the hydrodynamic regime...... and for molecular fluids with small moment of inertia like chlorine, the theory predicts that the longitudinal and transverse intrinsic angular velocity correlation functions are almost identical, which is also seen in the molecular dynamics simulations. However, the theory fails at large wavevector and frequencies...... and translational velocity for large frequencies in the gas phase; this is not observed for the supercritical fluid and liquid state points....
Generalized continued fractions and ergodic theory
Pustyl'nikov, L. D.
2003-02-01
In this paper a new theory of generalized continued fractions is constructed and applied to numbers, multidimensional vectors belonging to a real space, and infinite-dimensional vectors with integral coordinates. The theory is based on a concept generalizing the procedure for constructing the classical continued fractions and substantially using ergodic theory. One of the versions of the theory is related to differential equations. In the finite-dimensional case the constructions thus introduced are used to solve problems posed by Weyl in analysis and number theory concerning estimates of trigonometric sums and of the remainder in the distribution law for the fractional parts of the values of a polynomial, and also the problem of characterizing algebraic and transcendental numbers with the use of generalized continued fractions. Infinite-dimensional generalized continued fractions are applied to estimate sums of Legendre symbols and to obtain new results in the classical problem of the distribution of quadratic residues and non-residues modulo a prime. In the course of constructing these continued fractions, an investigation is carried out of the ergodic properties of a class of infinite-dimensional dynamical systems which are also of independent interest.
Theory of generalized inverses over commutative rings
Bhaskara Rao, KPS
2003-01-01
The theory of generalized inverses of real or complex matrices has been expertly developed and documented. But the generalized inverses of matrices over rings have received comprehensive treatment only recently. In this book, the author, who contributed to the research and development of the theory, explains his results. He explores regular elements in a ring, regular matrices over principal ideal rings, and regular matrices over commutative rings. Students, mathematicians working in g-inverses of matrices, along with algebraists, and control theorists will find new and indispensable data, presented with clarity and insight. This book is also well suited to graduate courses on g-inverses in algebra.
General Relativity As an Aether Theory
Dupre, Maurice J
2010-01-01
Most early twentieth century relativists --- Lorentz, Einstein, Eddington, for examples --- claimed that general relativity was merely a theory of the aether. We shall confirm this claim by deriving the Einstein equations using aether theory. We shall use a combination of Lorentz's and Kelvin's conception of the aether. Our derivation of the Einstein equations will not use the vanishing of the covariant divergence of the stress-energy tensor, but instead equate the Ricci tensor to the sum of the usual stress-energy tensor and a stress-energy tensor for the aether, a tensor based on Kelvin's aether theory. A crucial first step is generalizing the Cartan formalism of Newtonian gravity to allow spatial curvature, as conjectured by Gauss and Riemann.
Generalized locally Toeplitz sequences theory and applications
Garoni, Carlo
2017-01-01
Based on their research experience, the authors propose a reference textbook in two volumes on the theory of generalized locally Toeplitz sequences and their applications. This first volume focuses on the univariate version of the theory and the related applications in the unidimensional setting, while the second volume, which addresses the multivariate case, is mainly devoted to concrete PDE applications. This book systematically develops the theory of generalized locally Toeplitz (GLT) sequences and presents some of its main applications, with a particular focus on the numerical discretization of differential equations (DEs). It is the first book to address the relatively new field of GLT sequences, which occur in numerous scientific applications and are especially dominant in the context of DE discretizations. Written for applied mathematicians, engineers, physicists, and scientists who (perhaps unknowingly) encounter GLT sequences in their research, it is also of interest to those working in the fields of...
Performativity: The Special and the General Theory
Directory of Open Access Journals (Sweden)
Sonia Reverter-Bañón
2017-07-01
Full Text Available If in Gender Trouble (1990 Butler presented a proposal of the theory of performativity of speech acts applied to the construction of gender, in her last book, Notes towards a Performative Theory of Assembly (2015, she articulates a theory of performativity applied to collective and concerted action of minorities or populations that are estimated to be “disposable”. The interest of the proposal that we present in this paper is to analyze how the theory of performativity of gender is now extended to the forms of democratic action; going from being a structure that explains the possibilities of gender to explain the possibilities for a livable life. It is what we call here the extension of performativity, from the special case of gender to the general case of a livable life.
General Systems Theory and Instructional Systems Design.
Salisbury, David F.
1990-01-01
Describes basic concepts in the field of general systems theory (GST) and identifies commonalities that exist between GST and instructional systems design (ISD). Models and diagrams that depict system elements in ISD are presented, and two matrices that show how GST has been used in ISD literature are included. (11 references) (LRW)
General Systems Theory and Counterplan Competition.
Madsen, Arnie
1989-01-01
Discusses the trend in academic debate on policy questions toward a wide acceptance of counterplans, encouraging combinations of proposals which appear at face value able to coexist but upon deeper analysis are incompatible. Argues in opposition to this trend by applying concepts from general systems theory to competition. (KEH)
Educational Interpretations of General Systems Theory.
Hug, William E.; King, James E.
This chapter discusses General Systems Theory as it applies to education, classrooms, innovations, and instructional design. The principles of equifinality, open and closed systems, the individual as the key system, hierarchical structures, optimization, stability, cooperation, and competition are discussed, and their relationship to instructional…
General conditions for predictivity in learning theory.
Poggio, Tomaso; Rifkin, Ryan; Mukherjee, Sayan; Niyogi, Partha
2004-03-25
Developing theoretical foundations for learning is a key step towards understanding intelligence. 'Learning from examples' is a paradigm in which systems (natural or artificial) learn a functional relationship from a training set of examples. Within this paradigm, a learning algorithm is a map from the space of training sets to the hypothesis space of possible functional solutions. A central question for the theory is to determine conditions under which a learning algorithm will generalize from its finite training set to novel examples. A milestone in learning theory was a characterization of conditions on the hypothesis space that ensure generalization for the natural class of empirical risk minimization (ERM) learning algorithms that are based on minimizing the error on the training set. Here we provide conditions for generalization in terms of a precise stability property of the learning process: when the training set is perturbed by deleting one example, the learned hypothesis does not change much. This stability property stipulates conditions on the learning map rather than on the hypothesis space, subsumes the classical theory for ERM algorithms, and is applicable to more general algorithms. The surprising connection between stability and predictivity has implications for the foundations of learning theory and for the design of novel algorithms, and provides insights into problems as diverse as language learning and inverse problems in physics and engineering.
Generalized density-functional theory: Conquering the ...
Indian Academy of Sciences (India)
Home; Journals; Journal of Chemical Sciences; Volume 117; Issue 5. Generalized density-functional theory: Conquering the -representability problem with exact functionals for the electron pair density and the second-order reduced density matrix. Paul W Ayers Mel Levy. Volume 117 Issue 5 September 2005 pp 507-514 ...
Microcanonical thermodynamics in general physical theories
Chiribella, Giulio; Scandolo, Carlo Maria
2017-12-01
Microcanonical thermodynamics studies the operations that can be performed on systems with well-defined energy. So far, this approach has been applied to classical and quantum systems. Here we extend it to arbitrary physical theories, proposing two requirements for the development of a general microcanonical framework. We then formulate three resource theories, corresponding to three different sets of basic operations: (i) random reversible operations, resulting from reversible dynamics with fluctuating parameters, (ii) noisy operations, generated by the interaction with ancillas in the microcanonical state, and (iii) unital operations, defined as the operations that preserve the microcanonical state. We focus our attention on a class of physical theories, called sharp theories with purification, where these three sets of operations exhibit remarkable properties. Firstly, each set is contained into the next. Secondly, the convertibility of states by unital operations is completely characterised by a majorisation criterion. Thirdly, the three sets are equivalent in terms of state convertibility if and only if the dynamics allowed by theory satisfy a suitable condition, which we call unrestricted reversibility. Under this condition, we derive a duality between the resource theories of microcanonical thermodynamics and the resource theory of pure bipartite entanglement.
REQUIREMENTS FOR A GENERAL INTERPRETATION THEORY
Directory of Open Access Journals (Sweden)
Anda Laura Lungu Petruescu
2013-06-01
Full Text Available Time has proved that Economic Analysis is not enough as to ensure all the needs of the economic field. The present study wishes to propose a new approach method of the economic phenomena and processes based on the researches made outside the economic space- a new general interpretation theory- which is centered on the human being as the basic actor of economy. A general interpretation theory must assure the interpretation of the causalities among the economic phenomena and processes- causal interpretation; the interpretation of the correlations and dependencies among indicators- normative interpretation; the interpretation of social and communicational processes in economic organizations- social and communicational interpretation; the interpretation of the community status of companies- transsocial interpretation; the interpretation of the purposes of human activities and their coherency – teleological interpretation; the interpretation of equilibrium/ disequilibrium from inside the economic systems- optimality interpretation. In order to respond to such demands, rigor, pragmatism, praxiology and contextual connectors are required. In order to progress, the economic science must improve its language, both its syntax and its semantics. The clarity of exposure requires a language clarity and the scientific theory progress asks for the need of hypotheses in the building of the theories. The switch from the common language to the symbolic one means the switch from ambiguity to rigor and rationality, that is order in thinking. But order implies structure, which implies formalization. Our paper should be a plea for these requirements, requirements which should be fulfilled by a modern interpretation theory.
Relativity the special and the general theory
Einstein, Albert
2015-01-01
After completing the final version of his general theory of relativity in November 1915, Albert Einstein wrote a book about relativity for a popular audience. His intention was "to give an exact insight into the theory of relativity to those readers who, from a general scientific and philosophical point of view, are interested in the theory, but who are not conversant with the mathematical apparatus of theoretical physics." The book remains one of the most lucid explanations of the special and general theories ever written. In the early 1920s alone, it was translated into ten languages, and fifteen editions in the original German appeared over the course of Einstein's lifetime. This new edition of Einstein's celebrated book features an authoritative English translation of the text along with an introduction and a reading companion by Hanoch Gutfreund and Jürgen Renn that examines the evolution of Einstein's thinking and casts his ideas in a broader present-day context. A special chapter explores the history...
The general principles of quantum theory
Temple, George
2014-01-01
Published in 1934, this monograph was one of the first introductory accounts of the principles which form the physical basis of the Quantum Theory, considered as a branch of mathematics. The exposition is restricted to a discussion of general principles and does not attempt detailed application to the wide domain of atomic physics, although a number of special problems are considered in elucidation of the principles. The necessary fundamental mathematical methods - the theory of linear operators and of matrics - are developed in the first chapter so this could introduce anyone to the new theor
Toward a general evolutionary theory of oncogenesis.
Ewald, Paul W; Swain Ewald, Holly A
2013-01-01
We propose an evolutionary framework, the barrier theory of cancer, which is based on the distinction between barriers to oncogenesis and restraints. Barriers are defined as mechanisms that prevent oncogenesis. Restraints, which are more numerous, inhibit but do not prevent oncogenesis. Processes that compromise barriers are essential causes of cancer; those that interfere with restraints are exacerbating causes. The barrier theory is built upon the three evolutionary processes involved in oncogenesis: natural selection acting on multicellular organisms to mold barriers and restraints, natural selection acting on infectious organisms to abrogate these protective mechanisms, and oncogenic selection which is responsible for the evolution of normal cells into cancerous cells. The barrier theory is presented as a first step toward the development of a general evolutionary theory of cancer. Its attributes and implications for intervention are compared with those of other major conceptual frameworks for understanding cancer: the clonal diversification model, the stem cell theory and the hallmarks of cancer. The barrier theory emphasizes the practical value of distinguishing between essential and exacerbating causes. It also stresses the importance of determining the scope of infectious causation of cancer, because individual pathogens can be responsible for multiple essential causes in infected cells.
Andrade, F M; Beims, M W; Luz, M G E
2003-01-01
From the poles of a generalized semiclassical Green's function we derive expressions for the eigenvalues of 1D multiple well potentials. In the case of asymmetric and symmetric double wells, we also obtain analytical formulae for, respectively, the shift and splitting of energies. Our results are better than some approximations in the literature because they take more properly into account the tunnelling through the barriers forming the multiple well and depend on energy-dependent Maslov indices. We illustrate the good numerical precision of the method by discussing some case tests on double wells.
Possibilistic systems within a general information theory
Energy Technology Data Exchange (ETDEWEB)
Joslyn, C.
1999-06-01
The author surveys possibilistic systems theory and place it in the context of Imprecise Probabilities and General Information Theory (GIT). In particular, he argues that possibilistic systems hold a distinct position within a broadly conceived, synthetic GIT. The focus is on systems and applications which are semantically grounded by empirical measurement methods (statistical counting), rather than epistemic or subjective knowledge elicitation or assessment methods. Regarding fuzzy measures as special provisions, and evidence measures (belief and plausibility measures) as special fuzzy measures, thereby he can measure imprecise probabilities directly and empirically from set-valued frequencies (random set measurement). More specifically, measurements of random intervals yield empirical fuzzy intervals. In the random set (Dempster-Shafer) context, probability and possibility measures stand as special plausibility measures in that their distributionality (decomposability) maps directly to an aggregable structure of the focal classes of their random sets. Further, possibility measures share with imprecise probabilities the ability to better handle open world problems where the universe of discourse is not specified in advance. In addition to empirically grounded measurement methods, possibility theory also provides another crucial component of a full systems theory, namely prediction methods in the form of finite (Markov) processes which are also strictly analogous to the probabilistic forms.
Module theory, extending modules and generalizations
Tercan, Adnan
2016-01-01
The main focus of this monograph is to offer a comprehensive presentation of known and new results on various generalizations of CS-modules and CS-rings. Extending (or CS) modules are generalizations of injective (and also semisimple or uniform) modules. While the theory of CS-modules is well documented in monographs and textbooks, results on generalized forms of the CS property as well as dual notions are far less present in the literature. With their work the authors provide a solid background to module theory, accessible to anyone familiar with basic abstract algebra. The focus of the book is on direct sums of CS-modules and classes of modules related to CS-modules, such as relative (injective) ejective modules, (quasi) continuous modules, and lifting modules. In particular, matrix CS-rings are studied and clear proofs of fundamental decomposition results on CS-modules over commutative domains are given, thus complementing existing monographs in this area. Open problems round out the work and establish the...
Effective Biot theory and its generalization to poroviscoelastic models
Liu, Xu; Greenhalgh, Stewart; Zhou, Bing; Greenhalgh, Mark
2018-02-01
A method is suggested to express the effective bulk modulus of the solid frame of a poroelastic material as a function of the saturated bulk modulus. This method enables effective Biot theory to be described through the use of seismic dispersion measurements or other models developed for the effective saturated bulk modulus. The effective Biot theory is generalized to a poroviscoelastic model of which the moduli are represented by the relaxation functions of the generalized fractional Zener model. The latter covers the general Zener and the Cole-Cole models as special cases. A global search method is described to determine the parameters of the relaxation functions, and a simple deterministic method is also developed to find the defining parameters of the single Cole-Cole model. These methods enable poroviscoelastic models to be constructed, which are based on measured seismic attenuation functions, and ensure that the model dispersion characteristics match the observations.
Dilemmas in a General Theory of Fieldwork
Calogero, Pietro
2009-01-01
Rittel and Webber’s article “Dilemmas in a general theory of planning” serves as a valuable guide today as Western planners increasingly study and work in the global South. In addition to the complex processes within each city and urban regime, and the challenge of studying and trying to understand those processes, there is the “wicked” ethical problem of the Western planners own role and commitments within cities set off as different. For instance, how does the Western planner reconcile a de...
Schumpeter's general theory of social evolution
DEFF Research Database (Denmark)
Andersen, Esben Sloth
The recent neo-Schumpeterian and evolutionary economics appears to cover a much smaller range of topics than Joseph Schumpeter confronted. Thus, it has hardly been recognised that Schumpeter wanted to develop a general theory that served the analysis of evolution in any sector of social life...... as well as the analysis of the evolution of social life as a whole. This paper demonstrates this ambition by studying his first two books (from 1908 and 1912, partly available in recent English translations). Schumpeter's starting point was the Walrasian System, which he generalised for the study of any...
100 Years of General Theory of Relativity
2015-01-01
The Symposium will celebrate the 100th anniversary of Einstein's four papers on General Relativity, which he submitted to the Preussische Akademie der Wissenschaften during November 1915. A review of the history of the creation of Einstein's masterpiece, from its roots in Bern, the important steps forward in Zurich and up to its completion in Berlin will be followed by an extensive overview covering the later developments up to present-day research. This will include discussions on the impact of the theory on our view of the universe as well as on progress in technology for everyday life.
The general equilibrium theory as economic metatheory
Directory of Open Access Journals (Sweden)
MAURICIO MARTINELLI LUPERI
2015-06-01
Full Text Available Many economists show certain nonconformity relative to the excessive mathematical formalization of economics. This stems from dissatisfaction with the old debate about the lack of correspondence between mainstream theoretical models and reality. Although we do not propose to settle this debate here, this article seeks to associate the mismatch of mathematized models with the reality of the adoption of the hypothetical-deductive method as reproduced by general equilibrium. We begin by defining the main benefits of the mathematization of economics. Secondly, we address traditional criticism leveled against it. We then focus on more recent criticism from Gillies (2005 and Bresser-Pereira (2008. Finally, we attempt to associate the reproduction of the hypothetical-deductive method with a metatheoretical process triggered by Debreu's general equilibrium theory. In this respect, we appropriate the ideas of Weintraub (2002, Punzo (1991, and mainly Woo (1986 to support our hypothesis.
Generalized theory of diffusion based on kinetic theory
Schäfer, T.
2016-10-01
We propose to use spin hydrodynamics, a two-fluid model of spin propagation, as a generalization of the diffusion equation. We show that in the dense limit spin hydrodynamics reduces to Fick's law and the diffusion equation. In the opposite limit spin hydrodynamics is equivalent to a collisionless Boltzmann treatment of spin propagation. Spin hydrodynamics avoids unphysical effects that arise when the diffusion equation is used to describe to a strongly interacting gas with a dilute corona. We apply spin hydrodynamics to the problem of spin diffusion in a trapped atomic gas. We find that the observed spin relaxation rate in the high-temperature limit [Sommer et al., Nature (London) 472, 201 (2011), 10.1038/nature09989] is consistent with the diffusion constant predicted by kinetic theory.
Directory of Open Access Journals (Sweden)
Hong Qin
2014-04-01
Full Text Available The dynamics of charged particles in general linear focusing lattices with quadrupole, skew-quadrupole, dipole, and solenoidal components, as well as torsion of the fiducial orbit and variation of beam energy is parametrized using a generalized Courant-Snyder (CS theory, which extends the original CS theory for one degree of freedom to higher dimensions. The envelope function is generalized into an envelope matrix, and the phase advance is generalized into a 4D symplectic rotation, or a U(2 element. The 1D envelope equation, also known as the Ermakov-Milne-Pinney equation in quantum mechanics, is generalized to an envelope matrix equation in higher dimensions. Other components of the original CS theory, such as the transfer matrix, Twiss functions, and CS invariant (also known as the Lewis invariant all have their counterparts, with remarkably similar expressions, in the generalized theory. The gauge group structure of the generalized theory is analyzed. By fixing the gauge freedom with a desired symmetry, the generalized CS parametrization assumes the form of the modified Iwasawa decomposition, whose importance in phase space optics and phase space quantum mechanics has been recently realized. This gauge fixing also symmetrizes the generalized envelope equation and expresses the theory using only the generalized Twiss function β. The generalized phase advance completely determines the spectral and structural stability properties of a general focusing lattice. For structural stability, the generalized CS theory enables application of the Krein-Moser theory to greatly simplify the stability analysis. The generalized CS theory provides an effective tool to study coupled dynamics and to discover more optimized lattice designs in the larger parameter space of general focusing lattices.
Léon Rosenfeld's general theory of constrained Hamiltonian dynamics
Salisbury, Donald; Sundermeyer, Kurt
2017-04-01
This commentary reflects on the 1930 general theory of Léon Rosenfeld dealing with phase-space constraints. We start with a short biography of Rosenfeld and his motivation for this article in the context of ideas pursued by W. Pauli, F. Klein, E. Noether. We then comment on Rosenfeld's General Theory dealing with symmetries and constraints, symmetry generators, conservation laws and the construction of a Hamiltonian in the case of phase-space constraints. It is remarkable that he was able to derive expressions for all phase space symmetry generators without making explicit reference to the generator of time evolution. In his Applications, Rosenfeld treated the general relativistic example of Einstein-Maxwell-Dirac theory. We show, that although Rosenfeld refrained from fully applying his general findings to this example, he could have obtained the Hamiltonian. Many of Rosenfeld's discoveries were re-developed or re-discovered by others two decades later, yet as we show there remain additional firsts that are still not recognized in the community.
The quest for a general theory of aging and longevity.
Gavrilov, Leonid A; Gavrilova, Natalia S
2003-07-16
Extensive studies of phenomena related to aging have produced many diverse findings, which require a general theoretical framework to be organized into a comprehensive body of knowledge. As demonstrated by the success of evolutionary theories of aging, quite general theoretical considerations can be very useful when applied to research on aging. In this theoretical study, we attempt to gain insight into aging by applying a general theory of systems failure known as reliability theory. Considerations of this theory lead to the following conclusions: (i) Redundancy is a concept of crucial importance for understanding aging, particularly the systemic nature of aging. Systems that are redundant in numbers of irreplaceable elements deteriorate (that is, age) over time, even if they are built of elements that do not themselves age. (ii) An apparent aging rate or expression of aging is higher for systems that have higher levels of redundancy. (iii) Redundancy exhaustion over the life course explains a number of observations about mortality, including mortality convergence at later life (when death rates are becoming relatively similar at advanced ages for different populations of the same species) as well as late-life mortality deceleration, leveling off, and mortality plateaus. (iv) Living organisms apparently contain a high load of initial damage from the early stages of development, and therefore their life span and aging patterns may be sensitive to early-life conditions that determine this initial damage load. Thus, the reliability theory provides a parsimonious explanation for many important aging-related phenomena and suggests a number of interesting testable predictions. We therefore suggest adding the reliability theory to the arsenal of methodological approaches applied to research on aging.
Theory of Nonlocal Point Transformations in General Relativity
Directory of Open Access Journals (Sweden)
Massimo Tessarotto
2016-01-01
Full Text Available A discussion of the functional setting customarily adopted in General Relativity (GR is proposed. This is based on the introduction of the notion of nonlocal point transformations (NLPTs. While allowing the extension of the traditional concept of GR-reference frame, NLPTs are important because they permit the explicit determination of the map between intrinsically different and generally curved space-times expressed in arbitrary coordinate systems. For this purpose in the paper the mathematical foundations of NLPT-theory are laid down and basic physical implications are considered. In particular, explicit applications of the theory are proposed, which concern (1 a solution to the so-called Einstein teleparallel problem in the framework of NLPT-theory; (2 the determination of the tensor transformation laws holding for the acceleration 4-tensor with respect to the group of NLPTs and the identification of NLPT-acceleration effects, namely, the relationship established via general NLPT between particle 4-acceleration tensors existing in different curved space-times; (3 the construction of the nonlocal transformation law connecting different diagonal metric tensors solution to the Einstein field equations; and (4 the diagonalization of nondiagonal metric tensors.
Generalization of the Activated Complex Theory of Reaction Rates. II. Classical Mechanical Treatment
Marcus, R. A.
1964-01-01
In its usual classical form activated complex theory assumes a particular expression for the kinetic energy of the reacting system -- one associated with a rectilinear motion along the reaction coordinate. The derivation of the rate expression given in the present paper is based on the general kinetic energy expression.
Optimality theory as a general cognitive architecture
Biró, T.; Gervain, J.
2011-01-01
It was exactly 25 years ago that Paul Smolensky introduced Harmony Theory (Smolensky, 1986), a framework that would pursue an exciting, but certainly not straight path through linguistics (namely, Optimality Theory) and other cognitive domains. The goal of this workshop is not so much to look back
Generalizing Prototype Theory: A Formal Quantum Framework
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2016-01-01
Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper. PMID:27065436
Generalizing Prototype Theory: A Formal Quantum Framework
Directory of Open Access Journals (Sweden)
Diederik eAerts
2016-03-01
Full Text Available Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper.
Generalizing Prototype Theory: A Formal Quantum Framework.
Aerts, Diederik; Broekaert, Jan; Gabora, Liane; Sozzo, Sandro
2016-01-01
Theories of natural language and concepts have been unable to model the flexibility, creativity, context-dependence, and emergence, exhibited by words, concepts and their combinations. The mathematical formalism of quantum theory has instead been successful in capturing these phenomena such as graded membership, situational meaning, composition of categories, and also more complex decision making situations, which cannot be modeled in traditional probabilistic approaches. We show how a formal quantum approach to concepts and their combinations can provide a powerful extension of prototype theory. We explain how prototypes can interfere in conceptual combinations as a consequence of their contextual interactions, and provide an illustration of this using an intuitive wave-like diagram. This quantum-conceptual approach gives new life to original prototype theory, without however making it a privileged concept theory, as we explain at the end of our paper.
Towards a General Theory of Immunity?
Eberl, Gérard; Pradeu, Thomas
2017-12-08
Theories are indispensable to organize immunological data into coherent, explanatory, and predictive frameworks. We propose to combine different models to develop a unifying theory of immunity which situates immunology in the wider context of physiology. We believe that the immune system will be increasingly understood as a central component of a network of partner physiological systems that interconnect to maintain homeostasis. Copyright © 2017 Elsevier Ltd. All rights reserved.
MACCIA, ELIZABETH S.; AND OTHERS
AN ANNOTATED BIBLIOGRAPHY OF 20 ITEMS AND A DISCUSSION OF ITS SIGNIFICANCE WAS PRESENTED TO DESCRIBE CURRENT UTILIZATION OF SUBJECT THEORIES IN THE CONSTRUCTION OF AN EDUCATIONAL THEORY. ALSO, A THEORY MODEL WAS USED TO DEMONSTRATE CONSTRUCTION OF A SCIENTIFIC EDUCATIONAL THEORY. THE THEORY MODEL INCORPORATED SET THEORY (S), INFORMATION THEORY…
Ramsey Theory on Generalized Baire Space
Hathaway, Dan
2017-01-01
We show that although the Galvin-Prikry Theorem does not hold on generalized Baire space with the standard topology, there are similar theorems which do hold on generalized Baire space with certain coarser topologies.
Bozkaya, Uǧur
2014-09-01
General analytic gradient expressions (with the frozen-core approximation) are presented for density-fitted post-HF methods. An efficient implementation of frozen-core analytic gradients for the second-order Møller-Plesset perturbation theory (MP2) with the density-fitting (DF) approximation (applying to both reference and correlation energies), which is denoted as DF-MP2, is reported. The DF-MP2 method is applied to a set of alkanes, conjugated dienes, and noncovalent interaction complexes to compare the computational cost of single point analytic gradients with MP2 with the resolution of the identity approach (RI-MP2) [F. Weigend and M. Häser, Theor. Chem. Acc. 97, 331 (1997); R. A. Distasio, R. P. Steele, Y. M. Rhee, Y. Shao, and M. Head-Gordon, J. Comput. Chem. 28, 839 (2007)]. In the RI-MP2 method, the DF approach is used only for the correlation energy. Our results demonstrate that the DF-MP2 method substantially accelerate the RI-MP2 method for analytic gradient computations due to the reduced input/output (I/O) time. Because in the DF-MP2 method the DF approach is used for both reference and correlation energies, the storage of 4-index electron repulsion integrals (ERIs) are avoided, 3-index ERI tensors are employed instead. Further, as in case of integrals, our gradient equation is completely avoid construction or storage of the 4-index two-particle density matrix (TPDM), instead we use 2- and 3-index TPDMs. Hence, the I/O bottleneck of a gradient computation is significantly overcome. Therefore, the cost of the generalized-Fock matrix (GFM), TPDM, solution of Z-vector equations, the back transformation of TPDM, and integral derivatives are substantially reduced when the DF approach is used for the entire energy expression. Further application results show that the DF approach introduce negligible errors for closed-shell reaction energies and equilibrium bond lengths.
General theory eh ondulyatornyh induction acceleration systems
Directory of Open Access Journals (Sweden)
В.В. Куліш
2006-01-01
Full Text Available Universal theoretical model within which it is possible quantitative description of ЕН-accelerators and similar devices on their basis is built (ЕН-systems. Description of such universal model is offered to realize within the theory of hierarhial ossilations and waves. For solution of nonlinear tasks of theory of the ЕН-systems is offered to use the hierarchical versions of method of Bogolubov, method of averaged equation for the current density and method of hierarchical transformation of coordinates.
A general theory of comic entertainment
DEFF Research Database (Denmark)
Grodal, Torben Kragh
2014-01-01
The article claims that comic entertainment consists of five elements 1. priming of the comic events to come 2. some comic entertainment inputs that creates arousal 3. Entertainment-internal signals of the playful nature of the comic input 4. Appraisal processes in audience members that evaluate...... the input as 'not real but playful', 5. this leads to a change in hedonic tone, and arousal is combined with the release of endorphins (a morphine-based neurotransmitter) that makes the arousal pleasant. The theory of comic entertainment accords with the PECMA flow theory proposed in Grodal: Embodied...
Toward a General Theory of Consultation
Blake, Robert R.; Mouton, Jane Srygley
1978-01-01
Consultation needs a sound basis for an integration of its parts in order to become a scientific discipline. Help givers have concentrated on specializing to the detriment of solidarity of consultation. Studying and evaluating consultation behavior results in a coherent and systematic basis for a consultation theory. (Author/MFD)
Generalized projection dynamics in evolutionary game theory
Joosten, Reinoud A.M.G.; Roorda, Berend
2009-01-01
We introduce the ray-projection dynamics in evolutionary game theory by employing a ray projection of the relative �tness (vector) function both locally and globally. By global (local) ray projection we mean a projection of the vector (close to the unit simplex) unto the unit simplex along a ray
General Relativity Revisited: Generalized Nordstr\\"om Theory
Bengtsson, Johan
2016-01-01
In 1945 Einstein concluded that [1]: 'The present theory of relativity is based on a division of physical reality into a metric field (gravitation) on the one hand, and into an electromagnetic field and matter on the other hand. In reality space will probably be of a uniform character and the present theory be valid only as a limiting case. For large densities of field and of matter, the field equations and even the field variables which enter into them will have no real significance.'. The dichotomy can be resolved by introducing a scalar field/potential algebraically related to the Ricci tensor for which the corresponding metric is free of additional singularities. Hence, although a fundamentally nonlinear theory, the scalar field/potential provides an analytic framework for interacting particles; described by linear superposition. The stress tensor for the scalar field includes both the sources of and the energy-momentum for the gravitational field, and has zero covariant and ordinary divergence. Hence, th...
General Theory versus ENA Theory: Comparing Their Predictive Accuracy and Scope.
Ellis, Lee; Hoskin, Anthony; Hartley, Richard; Walsh, Anthony; Widmayer, Alan; Ratnasingam, Malini
2015-12-01
General theory attributes criminal behavior primarily to low self-control, whereas evolutionary neuroandrogenic (ENA) theory envisions criminality as being a crude form of status-striving promoted by high brain exposure to androgens. General theory predicts that self-control will be negatively correlated with risk-taking, while ENA theory implies that these two variables should actually be positively correlated. According to ENA theory, traits such as pain tolerance and muscularity will be positively associated with risk-taking and criminality while general theory makes no predictions concerning these relationships. Data from Malaysia and the United States are used to test 10 hypotheses derived from one or both of these theories. As predicted by both theories, risk-taking was positively correlated with criminality in both countries. However, contrary to general theory and consistent with ENA theory, the correlation between self-control and risk-taking was positive in both countries. General theory's prediction of an inverse correlation between low self-control and criminality was largely supported by the U.S. data but only weakly supported by the Malaysian data. ENA theory's predictions of positive correlations between pain tolerance, muscularity, and offending were largely confirmed. For the 10 hypotheses tested, ENA theory surpassed general theory in predictive scope and accuracy. © The Author(s) 2014.
Client-Controlled Case Information: A General System Theory Perspective
Fitch, Dale
2004-01-01
The author proposes a model for client control of case information via the World Wide Web built on principles of general system theory. It incorporates the client into the design, resulting in an information structure that differs from traditional human services information-sharing practices. Referencing general system theory, the concepts of…
General relativistic quantum theories Foundations. Expanding Universes
Parmeggiani, Claudio
2015-07-01
Here the space-time is represented by the usual, four-dimensional manifold and at every space-time point is assigned an infinite-dimensional Hilbert space, seat of a (local) quantum description: states, probabilities and expectations. On the space-time manifold is assigned a metric tensor and it is assumed that the quantum fields commutations relations do not only depend on the metric tensor but also on its Ricci tensor: this is a fundamental postulate. This assumption has many relevant consequences: the theory is regularized; the commutators and the propagators are well defined functions and, applying the theory to electroweak interactions, we can obtain a finite and discrete specter of leptons masses.
Monetary Policy in the General Theory
National Research Council Canada - National Science Library
EKİNCİ, Nazım Kadri
2008-01-01
... varlık fiyatları servetin gelire dönüşme oranını belirler. Para politikasının neyi yapıp neyi yapamayacağı tartışması açısından bu nokta önemli olabilir. The theory of interest rate is central to Keynesian macroeconomic...
Hypermass generalization of Einstein's gravitation theory
Edmonds, J. D., Jr.
1973-01-01
The curvilinear invariant quaternion formalism is examined for curved space time. Einstein's gravitation equation is shown to have a simple and natural form in this notation. The hypermass generalization of particle mass, which was generated in our studies of the Dirac equation, is incorporated in gravitation by generalizing Einstein's equation. Covariance requires that the gravitational constant be generalized to an invariant quaternion when the mass is. The modification appears minor and of no importance cosmologically, unless one begins considering time and mass dependence of G.
The Faraday effect revisited: General theory
DEFF Research Database (Denmark)
Cornean, Horia Decebal; Nenciu, Gheorghe; Pedersen, Thomas Garm
2006-01-01
of the strength of the magnetic field B. Then the linear term in B of this expansion is written down in terms of the zero magnetic field Green function and the zero field current operator. In the periodic case, the linear term in B of the conductivity tensor is expressed in terms of zero magnetic field Bloch...
Flexible and generalized uncertainty optimization theory and methods
Lodwick, Weldon A
2017-01-01
This book presents the theory and methods of flexible and generalized uncertainty optimization. Particularly, it describes the theory of generalized uncertainty in the context of optimization modeling. The book starts with an overview of flexible and generalized uncertainty optimization. It covers uncertainties that are both associated with lack of information and that more general than stochastic theory, where well-defined distributions are assumed. Starting from families of distributions that are enclosed by upper and lower functions, the book presents construction methods for obtaining flexible and generalized uncertainty input data that can be used in a flexible and generalized uncertainty optimization model. It then describes the development of such a model in detail. All in all, the book provides the readers with the necessary background to understand flexible and generalized uncertainty optimization and develop their own optimization model. .
General Conceptual View on Resource Advantage Theory
Bilal Yalcin
2010-01-01
In order to continue for an organization to exist it needs to finance itself for its own resource on the other hand service with considering consumers need and expectations by present them lowest price and highest quality also. Under these conditions these kind of organizations need to analyze the behaviour (nature) of the rival organizations and position themselves accordingly in order to get advantage on the rival organizations. In this study, a general conceptual view on resource advantage...
Generalized vector wave theory for ultrahigh resolution confocal optical microscopy.
Yang, Ken; Xie, Xiangsheng; Zhou, Jianying
2017-01-01
Polarization modulation of a tightly focused beam in a confocal imaging scheme is considered for incident and collected light fields. Rigorous vector wave theory of a confocal optical microscopy is developed, which provides clear physical pictures without the requirement for fragmentary calculations. Multiple spatial modulations on polarization, phase, or amplitude of the illuminating and the detected beams can be mathematically described by a uniform expression. Linear and nonlinear excitation schemes are derived with tailored excitation and detection fields within this generalized theory, whose results show that the ultimate resolution achieved with the linear excitation can reach one-fifth of the excitation wavelength (or λ/5), while the nonlinear excitation scheme gives rise to a resolution better than λ/12 for two-photon fluorescence excitation and λ/20 for three-photon fluorescence excitation. Hence the resolution of optical microscopy with a near-infrared excitation can routinely reach sub-60 nm. In addition, simulations for confocal laser scanning microscopy are carried out with the linear excitation scheme and the fluorescent one, respectively.
A general field-covariant formulation of quantum field theory
Energy Technology Data Exchange (ETDEWEB)
Anselmi, Damiano [Universita di Pisa, Dipartimento di Fisica ' ' Enrico Fermi' ' , Pisa (Italy)
2013-03-15
In all nontrivial cases renormalization, as it is usually formulated, is not a change of integration variables in the functional integral, plus parameter redefinitions, but a set of replacements, of actions and/or field variables and parameters. Because of this, we cannot write simple identities relating bare and renormalized generating functionals, or generating functionals before and after nonlinear changes of field variables. In this paper we investigate this issue and work out a general field-covariant approach to quantum field theory, which allows us to treat all perturbative changes of field variables, including the relation between bare and renormalized fields, as true changes of variables in the functional integral, under which the functionals Z and W=lnZ behave as scalars. We investigate the relation between composite fields and changes of field variables, and we show that, if J are the sources coupled to the elementary fields, all changes of field variables can be expressed as J-dependent redefinitions of the sources L coupled to the composite fields. We also work out the relation between the renormalization of variable-changes and the renormalization of composite fields. Using our transformation rules it is possible to derive the renormalization of a theory in a new variable frame from the renormalization in the old variable frame, without having to calculate it anew. We define several approaches, useful for different purposes, in particular a linear approach where all variable changes are described as linear source redefinitions. We include a number of explicit examples. (orig.)
Lederman, Linda Costigan; Rogers, Don
The two papers in this document focus on general systems theory. In her paper, Linda Lederman discusses the emergence and evolution of general systems theory, defines its central concepts, and draws some conclusions regarding the nature of the theory and its value as an epistemology. Don Rogers, in his paper, relates some of the important features…
The mathematical theory of general relativity
Katkar, L N
2014-01-01
This book is prepared for M. Sc. Students of Mathematics and Physics. The aim of writing this book is to give the reader a feeling for the necessity and beauty of the laws of general relativity. The contents of the book will attract both mathematicians and physicists which provides motivation and applications of many ideas and powerful mathematical methods of modern analysis and differential geometry. An attempt has been made to make the presentation comprehensive, rigorous and yet simple. Most calculations and transformations have been carried out in great detail. KEY FEATURE: Numerous solved examples using the well known mathematical techniques viz., the tensors and the differential forms in each chapter.
A proof theory for general unification
Snyder, Wayne
1991-01-01
In this monograph we study two generalizations of standard unification, E-unification and higher-order unification, using an abstract approach orig inated by Herbrand and developed in the case of standard first-order unifi cation by Martelli and Montanari. The formalism presents the unification computation as a set of non-deterministic transformation rules for con verting a set of equations to be unified into an explicit representation of a unifier (if such exists). This provides an abstract and mathematically elegant means of analysing the properties of unification in various settings by providing a clean separation of the logical issues from the specification of procedural information, and amounts to a set of 'inference rules' for unification, hence the title of this book. We derive the set of transformations for general E-unification and higher order unification from an analysis of the sense in which terms are 'the same' after application of a unifying substitution. In both cases, this results in a...
The general theory of relativity a mathematical exposition
Das, Anadijiban
2012-01-01
The General Theory of Relativity: A Mathematical Exposition will serve readers as a modern mathematical introduction to the general theory of relativity. Throughout the book, examples, worked-out problems, and exercises (with hints and solutions) are furnished. Topics in this book include, but are not limited to: • tensor analysis • the special theory of relativity • the general theory of relativity and Einstein’s field equations • spherically symmetric solutions and experimental confirmations • static and stationary space-time domains • black holes • cosmological models • algebraic classifications and the Newman-Penrose equations • the coupled Einstein-Maxwell-Klein-Gordon equations • appendices covering mathematical supplements and special topics Mathematical rigor, yet very clear presentation of the topics make this book a unique text for both university students and research scholars. Anadijiban Das has taught courses on Relativity Theory at The University College of Dublin, Irelan...
DEFF Research Database (Denmark)
Johansen, Peter Meincke
1996-01-01
New uniform closed-form expressions for physical theory of diffraction equivalent edge currents are derived for truncated incremental wedge strips. In contrast to previously reported expressions, the new expressions are well-behaved for all directions of incidence and observation and take a finite...... value for zero strip length. Consequently, the new equivalent edge currents are, to the knowledge of the author, the first that are well-suited for implementation in general computer codes...
General Strain Theory, Peer Rejection, and Delinquency/Crime
Higgins, George E.; Piquero, Nicole L.; Piquero, Alex R.
2011-01-01
The development of general strain theory (GST) has led to a renewed focus on the influence of negative life experiences on antisocial behavior. Although a number of studies have generated an impressive array of support for the theory, several avenues remain open for research. In this article, we examine how a specific noxious stimuli, peer…
General Systems Theory Approaches to Organizations: Some Problems in Application
Peery, Newman S., Jr.
1975-01-01
Considers the limitations of General Systems Theory (GST) as a major paradigm within administrative theory and concludes that most systems formulations overemphasize growth and show little appreciation for intraorganizational conflict, diversity of values, and political action within organizations. Suggests that these limitations are mainly due to…
Get with the System: General Systems Theory for Business Officials.
Graczyk, Sandra L.
1993-01-01
An introduction to general systems theory and an overview of vocabulary and concepts are presented to introduce school business officials to systems thinking and to foster its use as an analytical tool. The theory is then used to analyze a sample problem: planning changes to a district's administrative computer system. (eight references) (MLF)
Do People Use Their Implicit Theories of Creativity as General Theories?
Lee, Hong; Kim, Jungsik; Ryu, Yeonjae; Song, Seokjong
2015-01-01
This study examines whether people use the general implicit theories of creativity or not when applying them to themselves and others. On the basis of the actor-observer asymmetry theory, the authors propose that conception of creativity would be differently constructed depending on the targets of attention: general, self, and other. Three studies…
On the mathematical theory of classical fields and general relativity
Klainerman, S
1993-01-01
From the perspective of an analyst, like myself, the General Theory of Relativity provides an extrordinary rich and vastly virgin territory. It is the aim of my lecture to provide, ﬁrst, an account of those aspects of the theory which attract me most and second a perspective of what has been accomplished so far in that respect. In trying to state our main objectives it helps to view General Relativity in the broader context of Classical Field Theory. EinsteiniVacuum equations, or shortly E—V, is already sufﬁciently complicated. I will thus restrict my attention to them.
Bitopological spaces theory, relations with generalized algebraic structures and applications
Dvalishvili, Badri
2005-01-01
This monograph is the first and an initial introduction to the theory of bitopological spaces and its applications. In particular, different families of subsets of bitopological spaces are introduced and various relations between two topologies are analyzed on one and the same set; the theory of dimension of bitopological spaces and the theory of Baire bitopological spaces are constructed, and various classes of mappings of bitopological spaces are studied. The previously known results as well the results obtained in this monograph are applied in analysis, potential theory, general topology, a
Generalized-ray theory for electromagnetic fields in layered media
tumpf, M.; De Hoop, A.T.; Vandenbosch, G.A.E.
2013-01-01
Generalized-ray theory for time-domain electromagnetic fields in a horizontally layered medium is developed. After introducing appropriate integral transformations and source-type field representations in vertically inhomogeneous media, the solution is written out in terms of generalized ray
General Theory of Relativity-The Power of Speculative Thought
Indian Academy of Sciences (India)
Home; Journals; Resonance – Journal of Science Education; Volume 11; Issue 4. General Theory of Relativity – The Power of Speculative Thought. Asit Banerjee. General Article Volume 11 Issue 4 April 2006 pp 45-55. Fulltext. Click here to view fulltext PDF. Permanent link:
Derivation of Einstein-Cartan theory from general relativity
Petti, Richard J
2013-01-01
General relativity cannot describe exchange of intrinsic and orbital angular momentum. In 1922 E. Cartan proposed extending general relativity by including affine torsion, which resolves this problem. In 1986 the author published a derivation of Einstein Cartan theory from general relativity with classical spin, with no additional assumptions. This paper summarizes the derivation and adds simpler explanations of the derivation and correction of a factor of 2.
General theory of light propagation and imaging through the atmosphere
McKechnie, T Stewart
2016-01-01
This book lays out a new, general theory of light propagation and imaging through Earth’s turbulent atmosphere. Current theory is based on the – now widely doubted – assumption of Kolmogorov turbulence. The new theory is based on a generalized atmosphere, the turbulence characteristics of which can be established, as needed, from readily measurable properties of point-object, or star, images. The pessimistic resolution predictions of Kolmogorov theory led to lax optical tolerance prescriptions for large ground-based astronomical telescopes which were widely adhered to in the 1970s and 1980s. Around 1990, however, it became clear that much better resolution was actually possible, and Kolmogorov tolerance prescriptions were promptly abandoned. Most large telescopes built before 1990 have had their optics upgraded (e.g., the UKIRT instrument) and now achieve, without adaptive optics (AO), almost an order of magnitude better resolution than before. As well as providing a more comprehensive and precise under...
Analysis of General Power Counting Rules in Effective Field Theory
Gavela, B M; Manohar, A V; Merlo, L
2016-01-01
We derive the general counting rules for a quantum effective field theory (EFT) in $\\mathsf{d}$ dimensions. The rules are valid for strongly and weakly coupled theories, and predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. The size of cross sections is controlled by the $\\Lambda$ power counting of EFT, not by chiral counting, even for chiral perturbation theory ($\\chi$PT). The relation between $\\Lambda$ and $f$ is generalized to $\\mathsf{d}$ dimensions. We show that the naive dimensional analysis $4\\pi$ counting is related to $\\hbar$ counting. The EFT counting rules are applied to $\\chi$PT, to Standard Model EFT and to the non-trivial case of Higgs EFT, which combines the $\\Lambda$ and chiral counting rules within a single theory.
Chiral perturbation theory for nucleon generalized parton distributions
Energy Technology Data Exchange (ETDEWEB)
Diehl, M. [Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany); Manashov, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik]|[Sankt-Petersburg State Univ. (Russian Federation). Dept. of Theoretical Physics; Schaefer, A. [Regensburg Univ. (Germany). Inst. fuer Physik 1 - Theoretische Physik
2006-08-15
We analyze the moments of the isosinglet generalized parton distributions H, E, H, E of the nucleon in one-loop order of heavy-baryon chiral perturbation theory. We discuss in detail the construction of the operators in the effective theory that are required to obtain all corrections to a given order in the chiral power counting. The results will serve to improve the extrapolation of lattice results to the chiral limit. (orig.)
Theory of functional systems and human general pathology.
Khitrov, N K; Saltykov, A B
2003-07-01
We analyze the role of the theory of functional systems for human general pathology and the necessity of integration of this theory with the concepts of pathological and ambivalent systems. Multiple (qualitatively heterogeneous) nature of system-forming factors and principle possibility of the formation of physiological, pathological, and ambivalent systems by the same factors are discussed. These theses broaden the application of the theory of functional systems as the fundamental basis for studies of informational mechanisms of vital activity under normal and pathological conditions.
Set Matrix Theory as a Physically Motivated Generalization of Zermelo-Fraenkel Set Theory
Cabbolet, Marcoen J. T. F.; de Swart, Harrie C. M.
2012-01-01
Recently, the Elementary Process Theory (EPT) has been developed as a set of fundamental principles that might underlie a gravitational repulsion of matter and antimatter. This paper presents set matrix theory (SMT) as the foundation of the mathematical-logical framework in which the EPT has been formalized: Zermelo-Fraenkel set theory (ZF), namely, cannot be used as such. SMT is a generalization of ZF: whereas ZF uses only sets as primitive objects, in the framework of SMT finite matrices wi...
Coexistence on reflecting hyperplane in generalized probability theories
Kobayshi, Masatomo
2017-08-01
The coexistence of effects in a certain class of generalized probability theories is investigated. The effect space corresponding to an even-sided regular polygon state space has a central hyperplane that contains all the nontrivial extremal effects. The existence of such a hyperplane, called a reflecting hyperplane, is closely related to the point symmetry of the corresponding state space. The effects on such a hyperplane can be regarded as the (generalized) unbiased effects. A necessary and sufficient condition for a pair of unbiased effects in the even-sided regular polygon theories is presented. This result reproduces a low-dimensional analogue of known results of qubit effects in a certain limit.
How General is General Strain Theory? Assessing Determinacy and Indeterminacy across Life Domains
De Coster, Stacy; Kort-Butler, Lisa
2006-01-01
This article explores how assumptions of determinacy and indeterminacy apply to general strain theory. Theories assuming determinacy assert that motivational conditions determine specific forms of deviant adaptations, whereas those assuming indeterminacy propose that a given social circumstance can predispose a person toward many forms of…
General Relativistic Mean Field Theory for rotating nuclei
Energy Technology Data Exchange (ETDEWEB)
Madokoro, Hideki [Kyushu Univ., Fukuoka (Japan). Dept. of Physics; Matsuzaki, Masayuki
1998-03-01
The {sigma}-{omega} model Lagrangian is generalized to an accelerated frame by using the technique of general relativity which is known as tetrad formalism. We apply this model to the description of rotating nuclei within the mean field approximation, which we call General Relativistic Mean Field Theory (GRMFT) for rotating nuclei. The resulting equations of motion coincide with those of Munich group whose formulation was not based on the general relativistic transformation property of the spinor fields. Some numerical results are shown for the yrast states of the Mg isotopes and the superdeformed rotational bands in the A {approx} 60 mass region. (author)
Reshetnyak, A. A.
2003-01-01
In the framework of started in Ref.[1] construction procedure of the general superfield quantization method for gauge theories in Lagrangian formalism the rules for Hamiltonian formulation of general superfield theory of fields (GSTF) are introduced and are on the whole considered. Mathematical means developed in [1] for Lagrangian formulation of GSTF are extended to use in Hamiltonian one. Hamiltonization for Lagrangian formulation of GSTF via Legendre transform of superfunction $S_{L}\\bigl(...
Analysis of general power counting rules in effective field theory
Energy Technology Data Exchange (ETDEWEB)
Gavela, Belen; Merlo, Luca [Universidad Autonoma de Madrid, Instituto de Fisica Teorica, IFT-UAM/CSIC, Madrid (Spain); Jenkins, Elizabeth E.; Manohar, Aneesh V. [University of California at San Diego, Department of Physics, La Jolla, CA (United States); CERN TH Division, Geneva 23 (Switzerland)
2016-09-15
We derive the general counting rules for a quantum effective field theory (EFT) in d dimensions. The rules are valid for strongly and weakly coupled theories, and they predict that all kinetic energy terms are canonically normalized. They determine the energy dependence of scattering cross sections in the range of validity of the EFT expansion. We show that the size of the cross sections is controlled by the Λ power counting of EFT, not by chiral counting, even for chiral perturbation theory (χPT). The relation between Λ and f is generalized to d dimensions. We show that the naive dimensional analysis 4π counting is related to ℎ counting. The EFT counting rules are applied to χPT, low-energy weak interactions, Standard Model EFT and the non-trivial case of Higgs EFT. (orig.)
Generalized ensemble theory with non-extensive statistics
Shen, Ke-Ming; Zhang, Ben-Wei; Wang, En-Ke
2017-12-01
The non-extensive canonical ensemble theory is reconsidered with the method of Lagrange multipliers by maximizing Tsallis entropy, with the constraint that the normalized term of Tsallis' q -average of physical quantities, the sum ∑ pjq, is independent of the probability pi for Tsallis parameter q. The self-referential problem in the deduced probability and thermal quantities in non-extensive statistics is thus avoided, and thermodynamical relationships are obtained in a consistent and natural way. We also extend the study to the non-extensive grand canonical ensemble theory and obtain the q-deformed Bose-Einstein distribution as well as the q-deformed Fermi-Dirac distribution. The theory is further applied to the generalized Planck law to demonstrate the distinct behaviors of the various generalized q-distribution functions discussed in literature.
Eu, Byung Chan
2016-01-01
This book presents the fundamentals of irreversible thermodynamics for nonlinear transport processes in gases and liquids, as well as for generalized hydrodynamics extending the classical hydrodynamics of Navier, Stokes, Fourier, and Fick. Together with its companion volume on relativistic theories, it provides a comprehensive picture of the kinetic theory formulated from the viewpoint of nonequilibrium ensembles in both nonrelativistic and, in Vol. 2, relativistic contexts. Theories of macroscopic irreversible processes must strictly conform to the thermodynamic laws at every step and in all approximations that enter their derivation from the mechanical principles. Upholding this as the inviolable tenet, the author develops theories of irreversible transport processes in fluids (gases or liquids) on the basis of irreversible kinetic equations satisfying the H theorem. They apply regardless of whether the processes are near to or far removed from equilibrium, or whether they are linear or nonlinear with respe...
General theory of spontaneous emission near exceptional points.
Pick, Adi; Zhen, Bo; Miller, Owen D; Hsu, Chia W; Hernandez, Felipe; Rodriguez, Alejandro W; Soljačić, Marin; Johnson, Steven G
2017-05-29
We present a general theory of spontaneous emission at exceptional points (EPs)-exotic degeneracies in non-Hermitian systems. Our theory extends beyond spontaneous emission to any light-matter interaction described by the local density of states (e.g., absorption, thermal emission, and nonlinear frequency conversion). Whereas traditional spontaneous-emission theories imply infinite enhancement factors at EPs, we derive finite bounds on the enhancement, proving maximum enhancement of 4 in passive systems with second-order EPs and significantly larger enhancements (exceeding 400×) in gain-aided and higher-order EP systems. In contrast to non-degenerate resonances, which are typically associated with Lorentzian emission curves in systems with low losses, EPs are associated with non-Lorentzian lineshapes, leading to enhancements that scale nonlinearly with the resonance quality factor. Our theory can be applied to dispersive media, with proper normalization of the resonant modes.
The Generalized Optic Acceleration Cancellation Theory of Catching
McLeod, Peter; Reed, Nick; Dienes, Zoltan
2006-01-01
The generalized optic acceleration cancellation (GOAC) theory of catching proposes that the path of a fielder running to catch a ball is determined by the attempt to satisfy 2 independent constraints. The 1st is to keep the angle of elevation of gaze to the ball increasing at a decreasing rate. The 2nd is to control the rate of horizontal rotation…
Anisotropic cosmological models and generalized scalar tensor theory
Indian Academy of Sciences (India)
Abstract. In this paper generalized scalar tensor theory has been considered in the background of anisotropic cosmological models, namely, axially symmetric Bianchi-I, Bianchi-III and Kortowski–. Sachs space-time. For bulk viscous fluid, both exponential and power-law solutions have been stud- ied and some assumptions ...
Variational analysis and generalized differentiation I basic theory
Mordukhovich, Boris S
2006-01-01
Contains a study of the basic concepts and principles of variational analysis and generalized differentiation in both finite-dimensional and infinite-dimensional spaces. This title presents many applications to problems in optimization, equilibria, stability and sensitivity, control theory, economics, mechanics, and more.
Towards a General Theory of Bilingual Legal Lexicography
DEFF Research Database (Denmark)
Nielsen, Sandro
2003-01-01
As the need for intercultural communication in the field of law has increased, the foundation of a general theory of bilingual legal lexicography must be given priority. This paper introduces, describes and explains the elements necessary for compiling the optimal bilingual law dictionary...
What Should Instructional Designers Know about General Systems Theory?
Salisbury, David F.
1989-01-01
Describes basic concepts in the field of general systems theory (GST) and explains the relationship between instructional systems design (ISD) and GST. Benefits of integrating GST into the curriculum of ISD graduate programs are discussed, and a short bibliography on GST is included. (LRW)
An Application of General System Theory (GST) to Group Therapy.
Matthews, Charles O.
1992-01-01
Demonstrates the compatibility of General System Theory (GST) with the traditional counseling literature in explicating a therapy group's progression through Tuckman's (1965, 1977) developmental stages (forming, storming, norming, performing, and adjourning). Description uses both traditional group literature and GST concepts. (Author/NB)
Gender, General Strain Theory, Negative Emotions, and Disordered Eating
Piquero, Nicole Leeper; Fox, Kristan; Piquero, Alex R.; Capowich, George; Mazerolle, Paul
2010-01-01
Much of the prior work on General Strain Theory (GST) has focused on how strain and negative emotions interrelate to produce criminal--especially violent--activity. Very little research has extended GST to examine other types of non-criminal, negative behavior, such as self-harming behaviors associated with disordered eating, a traditionally…
Solvation of polymers as mutual association. I. General theory
Dudowicz, Jacek; Freed, Karl F.; Douglas, Jack F.
2013-04-01
A Flory-Huggins (FH) type lattice theory of self-assembly is generalized to describe the equilibrium solvation of long polymer chains B by small solvent molecules A. Solvation is modeled as a thermally reversible mutual association between the polymer and a relatively low molar mass solvent. The FH Helmholtz free energy F is derived for a mixture composed of the A and B species and the various possible mutual association complexes AiB, and F is then used to generate expressions for basic thermodynamic properties of solvated polymer solutions, including the size distribution of the solvated clusters, the fraction of solvent molecules contained in solvated states (an order parameter for solvation), the specific heat (which exhibits a maximum at the solvation transition), the second and the third osmotic virial coefficients, and the boundaries for phase stability of the mixture. Special attention is devoted to the analysis of the "entropic" contribution χs to the FH interaction parameter χ of polymer solutions, both with and without associative interactions. The entropic χs parameter arises from correlations associated with polymer chain connectivity and disparities in molecular structure between the components of the mixture. Our analysis provides the first explanation of the longstanding enigma of why χs for polymer solutions significantly exceeds χs for binary polymer blends. Our calculations also reveal that χs becomes temperature dependent when interactions are strong, in sharp contrast to models currently being used for fitting thermodynamic data of associating polymer-solvent mixtures, where χs is simply assumed to be an adjustable constant based on experience with solutions of homopolymers in nonassociating solvents.
The general class of the vacuum spherically symmetric equations of the general relativity theory
Energy Technology Data Exchange (ETDEWEB)
Karbanovski, V. V., E-mail: Karbanovski_V_V@mail.ru; Sorokin, O. M.; Nesterova, M. I.; Bolotnyaya, V. A.; Markov, V. N., E-mail: Markov_Victor@mail.ru; Kairov, T. V.; Lyash, A. A.; Tarasyuk, O. R. [Murmansk State Pedagogical University (Russian Federation)
2012-08-15
The system of the spherical-symmetric vacuum equations of the General Relativity Theory is considered. The general solution to a problem representing two classes of line elements with arbitrary functions g{sub 00} and g{sub 22} is obtained. The properties of the found solutions are analyzed.
The gyromagnetic factor in electrodynamics, quantum theory and general relativity
Pfister, H D
2003-01-01
Starting with some basic facts about the gyromagnetic factor g in Maxwell's theory, we review the special role played by a g factor g=2 in quantum mechanics and elementary particle physics, and we draw attention to the same value g=2 for the black holes and many other (electro-)vacuum solutions of general relativity. We strengthen and extend this special role of g=2 in general relativity by considering a class of slowly rotating, charged mass shells, showing that the black-hole value g=2 is extremely robust. Therefrom, we advance the hypothesis that the coincidence between these preferred g values signifies a deep common root of quantum theory and general relativity.
Gravitation experiments at Stanford. [using general relativity theory
Lipa, J. A.
1980-01-01
The experimental situation in post-Newtonian gravitation is briefly reviewed in order to reexamine the extent to which experiment supports or refutes general relativity. A description is given of the equivalence principle project, the gyroscope experiment, and the search for gravity waves. It is noted that even though some doubt has been cast on the value of the perihelion advance and the gravitational redshift as precise tests of general relativity in the past few years, many competing theories have been ruled out; in particular, the results from the Viking mission significantly reduce the credibility of the Brans-Dicke theory (Brans and Dicke, 1961). The dimensionless constant omega in this theory is now forced to exceed 50, while the value originally proposed was 6 (omega being infinity in general relativity). It is noted that the gyro experiment described is capable of putting much tighter limits on this parameter, and together with the other experiments in progress will help place gravitational theory on a firmer experimental footing.
Generalized conifolds and four dimensional $N=1$ superconformal theories
Gubser, Steven; Shatashvili, Samson; Gubser, Steven; Nekrasov, Nikita; Shatashvili, Samson
1999-01-01
We consider D3-branes placed at singularities of Calabi-Yau threefolds which generalize the conifold singularity and have an ADE classification. The $\\CN=1$ superconformal theories dictating their low-energy dynamics are infrared fixed points arising from deforming the corresponding ADE $\\CN=2$ superconformal field theories by mass terms for adjoint chiral fields. We probe the geometry by a single $D3$-brane and discuss the near-horizon supergravity solution for a large number $N$ of coincident $D3$-branes.
Communication complexity of channels in general probabilistic theories.
Montina, A; Pfaffhauser, M; Wolf, S
2013-10-18
The communication complexity of a quantum channel is the minimal amount of classical communication required for classically simulating the process of preparation, transmission through the channel, and subsequent measurement of a quantum state. At present, only little is known about this quantity. In this Letter, we present a procedure for systematically evaluating the communication complexity of channels in any general probabilistic theory, in particular, quantum theory. The procedure is constructive and provides the most efficient classical protocols. We illustrate this procedure by evaluating the communication complexity of a quantum depolarizing channel with some finite sets of quantum states and measurements.
Generalized absorber theory and the Einstein-Podolsky-Rosen paradox
Energy Technology Data Exchange (ETDEWEB)
Cramer, J.G.
1980-07-15
A generalized form of Wheeler-Feynman absorber theory is used to explain the quantum-mechanical paradox proposed by Einstein, Podolsky, and Rosen (EPR). The advanced solutions of the electromagnetic wave equation and of relativistic quantum-mechanical wave equations are shown to play the role of ''verifier'' in quantum-mechanical ''transactions,'' providing microscopic communication paths between detectors across spacelike intervals in violation of the EPR locality postulate. The principle of causality is discussed in the context of this approach, and possibilities for experimental tests of the theory are examined.
Distinguishing f( R) theories from general relativity by gravitational lensing effect
Liu, Hongguang; Wang, Xin; Li, Haida; Ma, Yongge
2017-11-01
The post-Newtonian formulation of a general class of f( R) theories is set up in a third-order approximation. It turns out that the information of a specific form of f( R) gravity is encoded in the Yukawa potential, which is contained in the perturbative expansion of the metric components. Although the Yukawa potential is canceled in the second-order expression of the effective refraction index of light, detailed analysis shows that the difference of the lensing effect between the f( R) gravity and general relativity does appear at the third order when √{f''(0)/f'(0)} is larger than the distance d_0 to the gravitational source. However, the difference between these two kinds of theories will disappear in the axially symmetric spacetime region. Therefore only in very rare case the f( R) theories are distinguishable from general relativity by gravitational lensing effect in a third-order post-Newtonian approximation.
Towards defending a semantic theory of expression in art: Revisiting ...
African Journals Online (AJOL)
Nelson Goodman's attempt to analyse the expressiveness of artworks in semantic terms has been widely criticised. In this paper I try to show how the use of an adapted version of his concept of exemplification, as proposed by Mark Textor, can help to alleviate the worst problems with his theory of expression.
Koga, Jun-ichirou; Maeda, Kei-ichi
1998-01-01
We analyze black hole thermodynamics in a generalized theory of gravity whose Lagrangian is an arbitrary function of the metric, the Ricci tensor and a scalar field. We can convert the theory into the Einstein frame via a "Legendre" transformation or a conformal transformation. We calculate thermodynamical variables both in the original frame and in the Einstein frame, following the Iyer--Wald definition which satisfies the first law of thermodynamics. We show that all thermodynamical variabl...
General Contingency Theory of Organizations: An Alternative to Open Systems Theory.
1982-08-01
genetic and mechanical open systems. We have recently proposed a general contingency theory (GCT) of management (Luthans and Stewart, 1977) which promises...developed in response to the need for an integrative theory of management that incorporates the environment (in the open systems sense. and begins to...subsystem (M) ( concepts and techniques of management practice) 7 Secondary level: situation E x R organization M x R performance criteria M x E
Smalley, L. L.
1983-01-01
The proper framework for testing Rastall's theory and its generalizations is in the case of non-negligible (i.e. discernible) gravitational effects such as gravity gradients. These theories have conserved integral four-momentum and angular momentum. The Nordtvedt effect then provides limits on the parameters which arise as the result of the non-zero divergence of the energy-momentum tensor.
Generalized second law of thermodynamic in modified teleparallel theory
Energy Technology Data Exchange (ETDEWEB)
Zubair, M. [COMSATS Institute of Information Technology, Department of Mathematics, Lahore (Pakistan); Bahamonde, Sebastian [University College London, Department of Mathematics, London (United Kingdom); Jamil, Mubasher [National University of Sciences and Technology (NUST), Department of Mathematics, School of Natural Sciences (SNS), Islamabad (Pakistan)
2017-07-15
This study is conducted to examine the validity of the generalized second law of thermodynamics (GSLT) in flat FRW for modified teleparallel gravity involving coupling between a scalar field with the torsion scalar T and the boundary term B = 2∇{sub μ}T{sup μ}. This theory is very useful, since it can reproduce other important well-known scalar field theories in suitable limits. The validity of the first and second law of thermodynamics at the apparent horizon is discussed for any coupling. As examples, we have also explored the validity of those thermodynamics laws in some new cosmological solutions under the theory. Additionally, we have also considered the logarithmic entropy corrected relation and discuss the GSLT at the apparent horizon. (orig.)
LeGare, M
1987-04-01
The general designations of neural systems and their levels of organization as presently applied in the neurosciences are described as being at variance with rigorous systems thinking. It is proposed that the rule-driven use of systems terminology and hierarchies would facilitate investigations of neural functioning in the natural case. General systems theory with its major propositions for hierarchical organization, open systems, and equifinality, is presented as providing the guidelines for developing systems-type theories for neuroscience investigations. General systems theory as metatheory is also used to evaluate hierarchies and systems designations in the neurosciences as these concepts are now applied in theories, models, and research. The metatheory is comprised of three sets of rules: the criteria for hierarchies; the properties of the open biological system; the criteria for the final conditions of open biological systems. The notion of the discovery of neural systems is contrasted with the apparent design of systems as frequently practiced by neuroscientists. The metatheory is summarized as directions for developing theories and as questions directed toward any neuroscience theory proposing levels of organization and systems.
A General Theory of Markovian Time Inconsistent Stochastic Control Problems
DEFF Research Database (Denmark)
Björk, Tomas; Murgochi, Agatha
. For a general controlled Markov process and a fairly general objective functional we derive an extension of the standard Hamilton-Jacobi-Bellman equation, in the form of a system of on-linear equations, for the determination for the equilibrium strategy as well as the equilibrium value function. All known......We develop a theory for stochastic control problems which, in various ways, are time inconsistent in the sense that they do not admit a Bellman optimality principle. We attach these problems by viewing them within a game theoretic framework, and we look for Nash subgame perfect equilibrium points...... examples of time inconsistency in the literature are easily seen to be special cases of the present theory. We also prove that for every time inconsistent problem, there exists an associated time consistent problem such that the optimal control and the optimal value function for the consistent problem...
Moon, Byongook; Hwang, Hye-Won; McCluskey, John D.
2011-01-01
A growing number of studies indicate the ubiquity of school bullying: It is a global concern, regardless of cultural differences. Little previous research has examined whether leading criminological theories can explain bullying, despite the commonality between bullying and delinquency. The current investigation uses longitudinal data on 655…
Ward identities and gauge independence in general chiral gauge theories
Anselmi, Damiano
2015-07-01
Using the Batalin-Vilkovisky formalism, we study the Ward identities and the equations of gauge dependence in potentially anomalous general gauge theories, renormalizable or not. A crucial new term, absent in manifestly nonanomalous theories, is responsible for interesting effects. We prove that gauge invariance always implies gauge independence, which in turn ensures perturbative unitarity. Precisely, we consider potentially anomalous theories that are actually free of gauge anomalies thanks to the Adler-Bardeen theorem. We show that when we make a canonical transformation on the tree-level action, it is always possible to re-renormalize the divergences and re-fine-tune the finite local counterterms, so that the renormalized Γ functional of the transformed theory is also free of gauge anomalies, and is related to the renormalized Γ functional of the starting theory by a canonical transformation. An unexpected consequence of our results is that the beta functions of the couplings may depend on the gauge-fixing parameters, although the physical quantities remain gauge independent. We discuss nontrivial checks of high-order calculations based on gauge independence and determine how powerful they are.
Stringy horizons and generalized FZZ duality in perturbation theory
Energy Technology Data Exchange (ETDEWEB)
Giribet, Gaston [Martin Fisher School of Physics, Brandeis University,Waltham, Massachusetts 02453 (United States); Departamento de Física, Universidad de Buenos Aires FCEN-UBA and IFIBA-CONICET,Ciudad Universitaria, Pabellón I, 1428, Buenos Aires (Argentina)
2017-02-14
We study scattering amplitudes in two-dimensional string theory on a black hole bakground. We start with a simple derivation of the Fateev-Zamolodchikov-Zamolodchikov (FZZ) duality, which associates correlation functions of the sine-Liouville integrable model on the Riemann sphere to tree-level string amplitudes on the Euclidean two-dimensional black hole. This derivation of FZZ duality is based on perturbation theory, and it relies on a trick originally due to Fateev, which involves duality relations between different Selberg type integrals. This enables us to rewrite the correlation functions of sine-Liouville theory in terms of a special set of correlators in the gauged Wess-Zumino-Witten (WZW) theory, and use this to perform further consistency checks of the recently conjectured Generalized FZZ (GFZZ) duality. In particular, we prove that n-point correlation functions in sine-Liouville theory involving n−2 winding modes actually coincide with the correlation functions in the SL(2,ℝ)/U(1) gauged WZW model that include n−2 oscillator operators of the type described by Giveon, Itzhaki and Kutasov in reference https://www.doi.org/10.1007/JHEP10(2016)157. This proves the GFZZ duality for the case of tree level maximally winding violating n-point amplitudes with arbitrary n. We also comment on the connection between GFZZ and other marginal deformations previously considered in the literature.
Hairy black-hole solutions in generalized Proca theories
Heisenberg, Lavinia; Kase, Ryotaro; Minamitsuji, Masato; Tsujikawa, Shinji
2017-10-01
We present a family of exact black-hole solutions on a static spherically symmetric background in second-order generalized Proca theories with derivative vector-field interactions coupled to gravity. We also derive nonexact solutions in power-law coupling models including vector Galileons and numerically show the existence of regular black holes with a primary hair associated with the longitudinal propagation. The intrinsic vector-field derivative interactions generally give rise to a secondary hair induced by nontrivial field profiles. The deviation from General Relativity is most significant around the horizon and hence there is a golden opportunity for probing the Proca hair by the measurements of gravitational waves (GWs) in the regime of strong gravity.
A New Look at Generalized Rewriting in Type Theory
Directory of Open Access Journals (Sweden)
Matthieu Sozeau
2009-01-01
Full Text Available Rewriting is an essential tool for computer-based reasoning, both automated and assisted. This is because rewriting is a general notion that permits modeling a wide range of problems and provides a means to effectively solve them. In a proof assistant, rewriting can be used to replace terms in arbitrary contexts, generalizing the usual equational reasoning to reasoning modulo arbitrary relations. This can be done provided the necessary proofs that functions appearing in goals are congruent with respect to specific relations. We present a new implementation of generalized rewriting in the Coq proof assistant, making essential use of the expressive power of dependent types and the recently implemented type class mechanism. The new rewrite tactic improves on and generalizes previous versions by natively supporting higher-order functions, polymorphism and subrelations. The type class system inspired by Haskell provides a perfect interface between the user and the tactic, making it easily extensible.
Generalized Effective Medium Theory for Particulate Nanocomposite Materials
Directory of Open Access Journals (Sweden)
Muhammad Usama Siddiqui
2016-08-01
Full Text Available The thermal conductivity of particulate nanocomposites is strongly dependent on the size, shape, orientation and dispersion uniformity of the inclusions. To correctly estimate the effective thermal conductivity of the nanocomposite, all these factors should be included in the prediction model. In this paper, the formulation of a generalized effective medium theory for the determination of the effective thermal conductivity of particulate nanocomposites with multiple inclusions is presented. The formulated methodology takes into account all the factors mentioned above and can be used to model nanocomposites with multiple inclusions that are randomly oriented or aligned in a particular direction. The effect of inclusion dispersion non-uniformity is modeled using a two-scale approach. The applications of the formulated effective medium theory are demonstrated using previously published experimental and numerical results for several particulate nanocomposites.
Theory and interpretation in qualitative studies from general practice
DEFF Research Database (Denmark)
Malterud, Kirsti
2016-01-01
of the interpretative paradigm. Associations between paradigms, philosophies, methodologies and methods are examined and different strategies for theoretical commitment presented. Finally, I discuss the impact of theory for interpretation and the development of general practice knowledge. Main points: A scientific...... theory is a consistent and soundly based set of assumptions about a specific aspect of the world, predicting or explaining a phenomenon. Qualitative research is situated in an interpretative paradigm where notions about particular human experiences in context are recognized from different subject...... positions. Basic theoretical features from the philosophy of science explain why and how this is different from positivism. Reflexivity, including theoretical awareness and consistency, demonstrates interpretative assumptions, accounting for situated knowledge. Different types of theoretical commitment...
Superconformal indices of generalized Argyres-Douglas theories from 2d TQFT
Energy Technology Data Exchange (ETDEWEB)
Song, Jaewon [Department of Physics, University of California, San Diego,9500 Gilman Dr, La Jolla, CA 92093 (United States)
2016-02-05
We study superconformal indices of 4d N=2 class S theories with certain irregular punctures called type I{sub k,N}. This class of theories include generalized Argyres-Douglas theories of type (A{sub k−1},A{sub N−1}) and more. We conjecture the superconformal indices in certain simplified limits based on the TQFT structure of the class S theories by writing an expression for the wave function corresponding to the puncture I{sub k,N}. We write the Schur limit of the wave function when k and N are coprime. When k=2, we also conjecture a closed-form expression for the Hall-Littlewood index and the Macdonald index for odd N. From the index, we argue that certain short-multiplet which can appear in the OPE of the stress-energy tensor is absent in the (A{sub 1},A{sub 2n}) theory. We also discuss the mixed Schur indices for the N=1 class S theories with irregular punctures.
Nonextensive kinetic theory and H-theorem in general relativity
Santos, A. P.; Silva, R.; Alcaniz, J. S.; Lima, J. A. S.
2017-11-01
The nonextensive kinetic theory for degenerate quantum gases is discussed in the general relativistic framework. By incorporating nonadditive modifications in the collisional term of the relativistic Boltzmann equation and entropy current, it is shown that Tsallis entropic framework satisfies a H-theorem in the presence of gravitational fields. Consistency with the 2nd law of thermodynamics is obtained only whether the entropic q-parameter lies in the interval q ∈ [ 0 , 2 ] . As occurs in the absence of gravitational fields, it is also proved that the local collisional equilibrium is described by the extended Bose-Einstein (Fermi-Dirac) q-distributions.
Arrow of electromagnetic time and the generalized absorber theory
Energy Technology Data Exchange (ETDEWEB)
Cramer, J.G.
1983-09-01
The problem of the direction of electromagnetic time, i.e., the complete dominance of retarded electromagnetic radiation over advanced radiation in the universe, is considered in the context of a generalized form of the Wheeler--Feynman absorber theory in an open expanding universe with a singularity at T = 0. It is shown that the application of a four-vector reflection boundary condition at the singularity leads to the observed dominance of retarded radiation; it also clarifies the role of advanced and retarded waves in the emission of very weakly absorbed radiation such as neutrinos.
Thick brane models in generalized theories of gravity
Directory of Open Access Journals (Sweden)
D. Bazeia
2015-04-01
Full Text Available This work deals with thick braneworld models, in an environment where the Ricci scalar is changed to accommodate the addition of two extra terms, one depending on the Ricci scalar itself, and the other, which takes into account the trace of the energy–momentum tensor of the scalar field that sources the braneworld scenario. We suppose that the scalar field engenders standard kinematics, and we show explicitly that the gravity sector of this new braneworld scenario is linearly stable. We illustrate the general results investigating two distinct models, focusing on how the brane profile is changed in the modified theories.
The trouble with psychopathy as a general theory of crime.
Walters, Glenn D
2004-04-01
The concept of psychopathy, as defined by Robert Hare, is reviewed with respect to its status as a general theory of crime. A hybrid of the medical pathology model and personality trait approach, the psychopathy concept proposes that a significant portion of serious crime is committed by psychopathic individuals. Hare's version of psychopathy, besides demonstrating weak applicability and a propensity for tautology, is subject to labeling effects, oversimplicity, reductionism, the fundamental attributional error, inattention to context, and disregard for the dynamic nature of human behavior. It is concluded that the psychopathy concept is substantially limited with respect to its ability to describe and clarify general criminal behavior but that it may still have value as a partial explanation for certain types of non-criminal predatory behavior.
General Theory of Relativity: Will It Survive the Next Decade?
Bertolami, Orfeu; Paramos, Jorge; Turyshev, Slava G.
2006-01-01
The nature of gravity is fundamental to our understanding of our own solar system, the galaxy and the structure and evolution of the Universe. Einstein's general theory of relativity is the standard model that is used for almost ninety years to describe gravitational phenomena on these various scales. We review the foundations of general relativity, discuss the recent progress in the tests of relativistic gravity, and present motivations for high-accuracy gravitational experiments in space. We also summarize the science objectives and technology needs for the laboratory experiments in space with laboratory being the entire solar system. We discuss the advances in our understanding of fundamental physics anticipated in the near future and evaluate discovery potential for the recently proposed gravitational experiments.
A Theory of the Perturbed Consumer with General Budgets
DEFF Research Database (Denmark)
McFadden, Daniel L; Fosgerau, Mogens
We consider demand systems for utility-maximizing consumers facing general budget constraints whose utilities are perturbed by additive linear shifts in marginal utilities. Budgets are required to be compact but are not required to be convex. We define demand generating functions (DGF) whose...... subgradients with respect to these perturbations are convex hulls of the utility-maximizing demands. We give necessary as well as sufficient conditions for DGF to be consistent with utility maximization, and establish under quite general conditions that utility-maximizing demands are almost everywhere single......-valued and smooth in their arguments. We also give sufficient conditions for integrability of perturbed demand. Our analysis provides a foundation for applications of consumer theory to problems with nonlinear budget constraints....
Expressions for third-order aberration theory for holographic images
Indian Academy of Sciences (India)
Expressions for third-order aberration theory for holographic images. S K Tripathy S Ananda Rao. Brief Reports Volume 60 Issue 1 January 2003 pp 151-157 ... Author Affiliations. S K Tripathy1 S Ananda Rao1. Department of Physics, Jagannath Institute for Technology and Management, Parlakhemundi 761 200, India ...
Einstein's general theory of relativity with modern applications in cosmology
Grøn, Øyvind
2007-01-01
Many of us have experienced the same; fallen and broken something. Yet supposedly, gravity is the weakest of the fundamental forces; it is claimed to be 10-15 times weaker than electromagnetism. Still, every one of us has more or less had a personal relationship with gravity. Einstein’s General Theory of Relativity: With Modern Applications in Cosmology by Oyvind Gron and Sigbjorn Hervik is about gravity and the concept of gravity as Albert Einstein saw it- curved spaces, four-dimensional manifolds and geodesics. The book starts with the 1st principals of relativity and an introduction to Einstein’s field equations. Next up are the three classical tests of the relativity theory and an introduction to black holes. The book contains several topics not found in other textbooks, such as Kaluza-Klein theory, anisotropic models of the universe, and new developments involving brane cosmology. Gron and Hervik have included a part in the book called "Advanced Topics." These topics range from the very edge of resea...
Analytic theory of curvature effects for wave problems with general boundary conditions
DEFF Research Database (Denmark)
Willatzen, Morten; Gravesen, Jens; Voon, L. C. Lew Yan
2010-01-01
A formalism based on a combination of differential geometry and perturbation theory is used to obtain analytic expressions for confined eigenmode changes due to general curvature effects. In cases of circular-shaped and helix-shaped structures, where alternative analytic solutions can be found......, the perturbative solution is shown to yield the same result. The present technique allows the generalization of earlier results to arbitrary boundary conditions. The power of the method is illustrated using examples based on Maxwell’s and Schrödinger’s equations for applications in photonics and nanoelectronics....
Generalization of the Schrödinger theory of electrons.
Sahni, Viraht
2017-08-01
The Schrödinger theory for a system of electrons in the presence of both a static and time-dependent electromagnetic field is generalized so as to exhibit the intrinsic self-consistent nature of the corresponding Schrödinger equations. This is accomplished by proving that the Hamiltonian in the stationary-state and time-dependent cases {Ĥ;Ĥ(t)} are exactly known functionals of the corresponding wave functions {Ψ;Ψ(t)}, that is, Ĥ=Ĥ[Ψ] and Ĥ(t)=Ĥ[Ψ(t)]. Thus, the Schrödinger equations may be written as Ĥ[Ψ]Ψ=E[Ψ]Ψ and Ĥ[Ψ(t)]Ψ(t)=i∂Ψ(t)/∂t. As a consequence the eiegenfunctions and energy eigenvalues {Ψ,E} of the stationary-state equation, and the wave function Ψ(t) of the temporal equation, can be determined self-consistently. The proofs are based on the "Quantal Newtonian" first and second laws which are the equations of motion for the individual electron amongst the sea of electrons in the external fields. The generalization of the Schrödinger equation in this manner leads to additional new physics. The traditional description of the Schrödinger theory of electrons with the Hamiltonians {Ĥ;Ĥ(t)} known constitutes a special case. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Young infants' generalization of emotional expressions: effects of familiarity.
Walker-Andrews, Arlene S; Krogh-Jespersen, Sheila; Mayhew, Estelle M Y; Coffield, Caroline N
2011-08-01
From birth, infants are exposed to a wealth of emotional information in their interactions. Much research has been done to investigate the development of emotion perception, and factors influencing that development. The current study investigates the role of familiarity on 3.5-month-old infants' generalization of emotional expressions. Infants were assigned to one of two habituation sequences: in one sequence, infants were visually habituated to parental expressions of happy or sad. At test, infants viewed either a continuation of the habituation sequence, their mother depicting a novel expression, an unfamiliar female depicting the habituated expression, or an unfamiliar female depicting a novel expression. In the second sequence, a new sample of infants was matched to the infants in the first sequence. These infants viewed the same habituation and test sequences, but the actors were unfamiliar to them. Only those infants who viewed their own mothers and fathers during the habituation sequence increased looking. They dishabituated looking to maternal novel expressions, the unfamiliar female's novel expression, and the unfamiliar female depicting the habituated expression, especially when sad parental expressions were followed by an expression change to happy or to a change in person. Infants are guided in their recognition of emotional expressions by the familiarity of their parents, before generalizing to others. 2011 APA, all rights reserved
General Systems Theory: Application To The Design Of Speech Communication Courses
Tucker, Raymond K.
1971-01-01
General systems theory can be applied to problems in the teaching of speech communication courses. The author describes general systems theory as it is applied to the designing, conducting and evaluation of speech communication courses. (Author/MS)
Generalized polarizabilities of the nucleon in baryon chiral perturbation theory
Lensky, Vadim; Pascalutsa, Vladimir; Vanderhaeghen, Marc
2017-02-01
The nucleon generalized polarizabilities (GPs), probed in virtual Compton scattering (VCS), describe the spatial distribution of the polarization density in a nucleon. They are accessed experimentally via the process of electron-proton bremsstrahlung (ep→ epγ ) at electron-beam facilities, such as MIT-Bates, CEBAF (Jefferson Lab), and MAMI (Mainz). We present the calculation of the nucleon GPs and VCS observables at next-to-leading order in baryon chiral perturbation theory (Bχ PT), and confront the results with the empirical information. At this order our results are predictions, in the sense that all the parameters are well known from elsewhere. Within the relatively large uncertainties of our calculation we find good agreement with the experimental observations of VCS and the empirical extractions of the GPs. We find large discrepancies with previous chiral calculations - all done in heavy-baryon χ PT (HBχ PT) - and discuss the differences between Bχ PT and HBχ PT responsible for these discrepancies.
Effective gravitational couplings for cosmological perturbations in generalized Proca theories
De Felice, Antonio; Kase, Ryotaro; Mukohyama, Shinji; Tsujikawa, Shinji; Zhang, Ying-li
2016-01-01
We consider the finite interactions of the generalized Proca theory including the sixth-order Lagrangian and derive the full linear perturbation equations of motion on the flat Friedmann-Lema\\^{i}tre-Robertson-Walker background in the presence of a matter perfect fluid. By construction, the propagating degrees of freedom (besides the matter perfect fluid) are two transverse vector perturbations, one longitudinal scalar, and two tensor polarizations. The Lagrangians associated with intrinsic vector modes neither affect the background equations of motion nor the second-order action of tensor perturbations, but they do give rise to non-trivial modifications to the no-ghost condition of vector perturbations and to the propagation speeds of vector and scalar perturbations. We derive the effective gravitational coupling $G_{\\rm eff}$ with matter density perturbations under a quasi-static approximation on scales deep inside the sound horizon. We find that the existence of intrinsic vector modes allows a possibility ...
A GENERAL THEORY OF THE MALAY AKAL BUDI
Directory of Open Access Journals (Sweden)
A.L. SAMIAN
2015-11-01
Full Text Available What does it mean to be a Malay? Or rather what is ‘malayness’ of a Malay? Apart from the physiological aspect that could be clearly observed, it is the cognitive, affective and spiritual aspect that warrants further examination. While being a Malay certainly hinges on a necessary spatiotemporal existence, there should be some commonalities of being a Malay that satisfy the sufficient requirements of more than being human; the Malay conscientiousness for instance. In this paper, the author examines the Malay Akal Budi in light of the human hierarchy of existence and levels of reality of the cosmos. A general theory of the Malay Akal Budi is formulated towards the end.
The linear model and hypothesis a general unifying theory
Seber, George
2015-01-01
This book provides a concise and integrated overview of hypothesis testing in four important subject areas, namely linear and nonlinear models, multivariate analysis, and large sample theory. The approach used is a geometrical one based on the concept of projections and their associated idempotent matrices, thus largely avoiding the need to involve matrix ranks. It is shown that all the hypotheses encountered are either linear or asymptotically linear, and that all the underlying models used are either exactly or asymptotically linear normal models. This equivalence can be used, for example, to extend the concept of orthogonality in the analysis of variance to other models, and to show that the asymptotic equivalence of the likelihood ratio, Wald, and Score (Lagrange Multiplier) hypothesis tests generally applies.
A supplementary note on constructing the general Earth's rotation theory
Brumberg, Victor A.; Ivanova, Tamara V.
2014-07-01
Representing a post-scriptum supplementary to a previous paper of the authors Brumberg & Ivanova (2011) this note aims to simplify the practical development of the Earth's rotation theory, in the framework of the general planetary theory, avoiding the non-physical secular terms and involving the separation of the fast and slow angular variables, both for planetary-lunar motion and Earth's rotation. In this combined treatment of motion and rotation, the fast angular terms are related to the mean orbital longitudes of the bodies, the diurnal and Euler rotations of the Earth. The slow angular terms are due to the motions of pericenters and nodes, as well as the precession of the Earth. The combined system of the equations of motion for the principal planets and the Moon and the equations of the Earth's rotation is reduced to the autonomous secular system with theoretically possible solution in a trigonometric form. In the above-mentioned paper, the Earth's rotation has been treated in Euler parameters. The trivial change of the Euler parameters to their small declinations from some nominal values may improve the practical efficiency of the normalization of the Earth's rotation equations. This technique may be applied to any three-axial rigid planet. The initial terms of the corresponding expansions are given in the Appendix.
Automated discovery of functional generality of human gene expression programs.
Directory of Open Access Journals (Sweden)
Georg K Gerber
2007-08-01
Full Text Available An important research problem in computational biology is the identification of expression programs, sets of co-expressed genes orchestrating normal or pathological processes, and the characterization of the functional breadth of these programs. The use of human expression data compendia for discovery of such programs presents several challenges including cellular inhomogeneity within samples, genetic and environmental variation across samples, uncertainty in the numbers of programs and sample populations, and temporal behavior. We developed GeneProgram, a new unsupervised computational framework based on Hierarchical Dirichlet Processes that addresses each of the above challenges. GeneProgram uses expression data to simultaneously organize tissues into groups and genes into overlapping programs with consistent temporal behavior, to produce maps of expression programs, which are sorted by generality scores that exploit the automatically learned groupings. Using synthetic and real gene expression data, we showed that GeneProgram outperformed several popular expression analysis methods. We applied GeneProgram to a compendium of 62 short time-series gene expression datasets exploring the responses of human cells to infectious agents and immune-modulating molecules. GeneProgram produced a map of 104 expression programs, a substantial number of which were significantly enriched for genes involved in key signaling pathways and/or bound by NF-kappaB transcription factors in genome-wide experiments. Further, GeneProgram discovered expression programs that appear to implicate surprising signaling pathways or receptor types in the response to infection, including Wnt signaling and neurotransmitter receptors. We believe the discovered map of expression programs involved in the response to infection will be useful for guiding future biological experiments; genes from programs with low generality scores might serve as new drug targets that exhibit minimal
Generalized theory of mixed pole machines with a general rotor configuration
Directory of Open Access Journals (Sweden)
Ayman S. Abdel-khalik
2013-03-01
Full Text Available This paper introduces a generalized theory for the operation of mixed pole machines (MPMs. The MPM has two stator windings, namely the main winding with pole pairs P1 and the control winding with pole pairs P2. The MPM has shown promise in the field of adjustable speed drives for large machines and in the field of wind energy electrical generation. The operation of MPM relies on the interaction between the two fields produced by the two stator windings through the intermediate action of a specially designed rotor (nested-cage or reluctance rotor. The machine theory is described from a physical aspect rather than mathematical derivations. A simple representation is also presented, from which the machine d–q model can be readily deduced. The effect of mechanical loading on the relative positions of the machine fields is also presented.
General theory of excitation energy transfer in donor-mediator-acceptor systems.
Kimura, Akihiro
2009-04-21
General theory of the excitation energy transfer (EET) in the case of donor-mediator-acceptor system was constructed by using generalized master equation (GME). In this theory, we consider the direct and indirect transitions in the EET consistently. Hence, our theory includes the quantum mechanical interference between the direct and indirect transitions automatically. Memory functions in the GME were expressed by the overlap integrals among the time-dependent emission spectrum of the donor, the absorption spectrum of the mediator, the time-dependent emission spectrum of the mediator, and the absorption spectrum of the acceptor. In the Markov limit of the memory functions, we obtained the rate of EET which consists of three terms due to the direct transition, the indirect transition, and the interference between them. We found that the interference works effectively in the limit of slow thermalization at the intermediate state. The formula of EET rate in this limit was expressed by the convolution of the EET interaction and optical spectra. The interference effect strongly depends on the width of the absorption spectrum of mediator molecule and the energy gap between the donor and the mediator molecules.
A general theory of multimetric indices and their properties
Schoolmaster, Donald R.; Grace, James B.; Schweiger, E. William
2012-01-01
1. Stewardship of biological and ecological resources requires the ability to make integrative assessments of ecological integrity. One of the emerging methods for making such integrative assessments is multimetric indices (MMIs). These indices synthesize data, often from multiple levels of biological organization, with the goal of deriving a single index that reflects the overall effects of human disturbance. Despite the widespread use of MMIs, there is uncertainty about why this approach can be effective. An understanding of MMIs requires a quantitative theory that illustrates how the properties of candidate metrics relates to MMIs generated from those metrics. 2. We present the initial basis for such a theory by deriving the general mathematical characteristics of MMIs assembled from metrics. We then use the theory to derive quantitative answers to the following questions: Is there an optimal number of metrics to comprise an index? How does covariance among metrics affect the performance of the index derived from those metrics? And what are the criteria to decide whether a given metric will improve the performance of an index? 3. We find that the optimal number of metrics to be included in an index depends on the theoretical distribution of signal of the disturbance gradient contained in each metric. For example, if the rank-ordered parameters of a metric-disturbance regression can be described by a monotonically decreasing function, then an optimum number of metrics exists and can often be derived analytically. We derive the conditions by which adding a given metric can be expected to improve an index. 4. We find that the criterion defining such conditions depends nonlinearly of the signal of the disturbance gradient, the noise (error) of the metric and the correlation of the metric errors. Importantly, we find that correlation among metric errors increases the signal required for the metric to improve the index. 5. The theoretical framework presented in this
On the general theory of the origins of retroviruses
Directory of Open Access Journals (Sweden)
Wayengera Misaki
2010-02-01
Full Text Available Abstract Background The order retroviridae comprises viruses based on ribonucleic acids (RNA. Some, such as HIV and HTLV, are human pathogens. Newly emerged human retroviruses have zoonotic origins. As far as has been established, both repeated infections (themselves possibly responsible for the evolution of viral mutations (Vm and host adaptability (Ha; along with interplay between inhibitors and promoters of cell tropism, are needed to effect retroviral cross-species transmissions. However, the exact modus operadi of intertwine between these factors at molecular level remains to be established. Knowledge of such intertwine could lead to a better understanding of retrovirology and possibly other infectious processes. This study was conducted to derive the mathematical equation of a general theory of the origins of retroviruses. Methods and results On the basis of an arbitrarily non-Euclidian geometrical "thought experiment" involving the cross-species transmission of simian foamy virus (sfv from a non-primate species Xy to Homo sapiens (Hs, initially excluding all social factors, the following was derived. At the port of exit from Xy (where the species barrier, SB, is defined by the Index of Origin, IO, sfv shedding is (1 enhanced by two transmitting tensors (Tt, (i virus-specific immunity (VSI and (ii evolutionary defenses such as APOBEC, RNA interference pathways, and (when present expedited therapeutics (denoted e2D; and (2 opposed by the five accepting scalars (At: (a genomic integration hot spots, gIHS, (b nuclear envelope transit (NMt vectors, (c virus-specific cellular biochemistry, VSCB, (d virus-specific cellular receptor repertoire, VSCR, and (e pH-mediated cell membrane transit, (↓pH CMat. Assuming As and Tt to be independent variables, IO = Tt/As. The same forces acting in an opposing manner determine SB at the port of sfv entry (defined here by the Index of Entry, IE = As/Tt. Overall, If sfv encounters no unforeseen effects on
On the general theory of the origins of retroviruses
2010-01-01
Background The order retroviridae comprises viruses based on ribonucleic acids (RNA). Some, such as HIV and HTLV, are human pathogens. Newly emerged human retroviruses have zoonotic origins. As far as has been established, both repeated infections (themselves possibly responsible for the evolution of viral mutations (Vm) and host adaptability (Ha)); along with interplay between inhibitors and promoters of cell tropism, are needed to effect retroviral cross-species transmissions. However, the exact modus operadi of intertwine between these factors at molecular level remains to be established. Knowledge of such intertwine could lead to a better understanding of retrovirology and possibly other infectious processes. This study was conducted to derive the mathematical equation of a general theory of the origins of retroviruses. Methods and results On the basis of an arbitrarily non-Euclidian geometrical "thought experiment" involving the cross-species transmission of simian foamy virus (sfv) from a non-primate species Xy to Homo sapiens (Hs), initially excluding all social factors, the following was derived. At the port of exit from Xy (where the species barrier, SB, is defined by the Index of Origin, IO), sfv shedding is (1) enhanced by two transmitting tensors (Tt), (i) virus-specific immunity (VSI) and (ii) evolutionary defenses such as APOBEC, RNA interference pathways, and (when present) expedited therapeutics (denoted e2D); and (2) opposed by the five accepting scalars (At): (a) genomic integration hot spots, gIHS, (b) nuclear envelope transit (NMt) vectors, (c) virus-specific cellular biochemistry, VSCB, (d) virus-specific cellular receptor repertoire, VSCR, and (e) pH-mediated cell membrane transit, (↓pH CMat). Assuming As and Tt to be independent variables, IO = Tt/As. The same forces acting in an opposing manner determine SB at the port of sfv entry (defined here by the Index of Entry, IE = As/Tt). Overall, If sfv encounters no unforeseen effects on transit
In–out propagator in de Sitter space from general boundary quantum field theory
Directory of Open Access Journals (Sweden)
Daniele Colosi
2015-09-01
Full Text Available The general boundary formulation of quantum theory is applied to quantize a real massive scalar field in de Sitter space. The space–time region where the dynamics of the field takes place is bounded by one spacelike hypersurface of constant conformal de Sitter time. The computation of the amplitude in the presence of a linear interaction with a source field with compact support in the region considered provides the expression of the Feynman propagator which coincides with the so-called in–out propagator.
Theory of mind and hypomanic traits in general population.
Terrien, Sarah; Stefaniak, Nicolas; Blondel, Marine; Mouras, Harold; Morvan, Yannick; Besche-Richard, Chrystel
2014-03-30
Theory of Mind (ToM) is the ability to assign a set of mental states to yourself and others. In bipolar disorders, alteration of social relationship can be explained by the impairment of the functioning of ToM. Deficit in ToM could be a trait marker of bipolar disorder and people in the general population with high hypomanic personality scores would be more likely to develop bipolar disorders. This study examined 298 participants. Measures of hypomanic personality were evaluated using the Hypomanic Personality Scale. ToM was explored using the Yoni task. Participants also completed the BDI-II. Forward multiple regressions were performed to examine the effect of components of the HPS on the total score in the ToM task. In the women's group, no subscales of the HPS were included in the model. Conversely, the analyses performed on men revealed that the mood vitality and excitement subscale was a significant predictor of ToM abilities. Our study is the first to show the impact of certain dimensions of hypomanic personality on performance in ToM in a male sample. This result supports the idea that deficits in ToM can be a trait marker of bipolar disorder in a healthy male population. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
A generalization to the Rastall theory and cosmic eras
Energy Technology Data Exchange (ETDEWEB)
Moradpour, H. [Research Institute for Astronomy and Astrophysics of Maragha (RIAAM), Maragha (Iran, Islamic Republic of); Heydarzade, Y.; Darabi, F. [Azarbaijan Shahid Madani University, Department of Physics, Tabriz (Iran, Islamic Republic of); Salako, Ines G. [Universite de Porto-Novo, Institut de Mathematiques et de Sciences Physiques (IMSP), 01 BP 613, Porto-Novo (Benin); Universite d' Agriculture de Ketou, Departement de Physique, BP 13, Ketou (Benin); African Institute for Mathematical Sciences(AIMS), Muizenberg (South Africa)
2017-04-15
A generalized version for the Rastall theory is proposed showing the agreement with the cosmic accelerating expansion. In this regard, a coupling between geometry and the pressureless matter fields is derived which may play the role of dark energy, responsible for the current accelerating expansion phase. Moreover, our study also shows that the radiation field may not be coupled to the geometry in a non-minimal way which represents that the ordinary energy-momentum conservation law is respected by the radiation source. It is also shown that the primary inflationary era may be justified by the ability of the geometry to couple to the energy-momentum source in an empty flat FRW universe. In fact, this ability is independent of the existence of the energy-momentum source and may compel the empty flat FRW universe to expand exponentially. Finally, we consider a flat FRW universe field by a spatially homogeneous scalar field evolving in potential V(φ), and study the results of applying the slow-roll approximation to the system which may lead to an inflationary phase for the universe expansion. (orig.)
Cognitive performance modeling based on general systems performance theory.
Kondraske, George V
2010-01-01
General Systems Performance Theory (GSPT) was initially motivated by problems associated with quantifying different aspects of human performance. It has proved to be invaluable for measurement development and understanding quantitative relationships between human subsystem capacities and performance in complex tasks. It is now desired to bring focus to the application of GSPT to modeling of cognitive system performance. Previous studies involving two complex tasks (i.e., driving and performing laparoscopic surgery) and incorporating measures that are clearly related to cognitive performance (information processing speed and short-term memory capacity) were revisited. A GSPT-derived method of task analysis and performance prediction termed Nonlinear Causal Resource Analysis (NCRA) was employed to determine the demand on basic cognitive performance resources required to support different levels of complex task performance. This approach is presented as a means to determine a cognitive workload profile and the subsequent computation of a single number measure of cognitive workload (CW). Computation of CW may be a viable alternative to measuring it. Various possible "more basic" performance resources that contribute to cognitive system performance are discussed. It is concluded from this preliminary exploration that a GSPT-based approach can contribute to defining cognitive performance models that are useful for both individual subjects and specific groups (e.g., military pilots).
Generalized Heisenberg-Euler formula in Abelian gauge theory with parity violation
Yamashita, Kimiko; Fan, Xing; Kamioka, Shusei; Asai, Shoji; Sugamoto, Akio
2017-12-01
A generalized Heisenberg-Euler formula is given for an Abelian gauge theory having vector as well as axial vector couplings to a massive fermion. So, the formula is applicable to a parity-violating theory. The gauge group is chosen to be U(1). The formula is quite similar to that in quantum electrodynamics, but there is a complexity in which one factor (related to spin) is expressed in terms of the expectation value. The expectation value is evaluated by the contraction with the one-dimensional propagator in a given background field. The formula affords a basis to the vacuum magnetic birefringence experiment, which aims to probe the dark sector, where the interactions of the light fermions with the gauge fields are not necessarily parity conserving.
Gauge field theories spin one and spin two : 100 years after general relativity
Scharf, Gunter
2016-01-01
One of the main problems of theoretical physics concerns the unification of gravity with quantum theory. This monograph examines unification by means of the appropriate formulation of quantum gauge invariance. Topics include free fields, causal perturbation theory, spin-1 gauge theories involving both massless and massive gauge fields, spin-2 gauge theories, and non-geometric general relativity.
[The issue of feasibility of a general theory of aging I. Generalized Gompertz-Makeham Law].
Golubev, A G
2009-01-01
Aging and longevity are interrelated so intimately that they should be treated with a unified theory. The longevity of every single cohort of living beings is determined by the rate of their dying-out. In most cases, mortality rates increase in accelerated fashions to reach values making the bulk of each finite cohort completely exhausted within a relatively narrow time interval shifted to the end of its resulting lifespan. Among simple functions with biologically interpretable parameters, the best fit to this pattern is demonstrated by the Gompertz-Makeham Law (GML): mu = C + lambda x e(gamma x t). A generalized form of GML mu = C(t) + lambda x e(-E(t)) is suggested and interpreted as a law of the dependency of mortality upon vitality rather than on age. It is reduced to the conventional GML when E depends linearly on t, that the age is an observable correlate of unobservable vitality. C(t) captures the inherently irresistible causes of death. The generalized GML can accommodate any mode of age-dependent functional decline, which should be placed into the exponent index to be translated into changes in mortality rate, and is compatible with any sort of cohort heterogeneity, which may be captured by substituting of GML parameters with relevant distributions or by combining of several generalized GML models. The generalized GML is suggested to result from the origin of life from the chemical world, which was associated with the transition of the role of the main variable in the Arrhenius equation k = A x exp[-Ea/(R x T)] for the dependency of chemical disintegration on temperature from T to Ea upon the transition from molecular to multimolecular prebiotic entities. Thus, the generalized GML is not a result of biological evolution but is a sort of chemical legacy of biology, which makes an important condition for life to evolve.
A general theory for bandgap estimation in locally resonant metastructures
Sugino, C.; Xia, Y.; Leadenham, S.; Ruzzene, M.; Erturk, A.
2017-10-01
Locally resonant metamaterials are characterized by bandgaps at wavelengths that are much larger than the lattice size, enabling low-frequency vibration attenuation. Typically, bandgap analyses and predictions rely on the assumption of traveling waves in an infinite medium, and do not take advantage of modal representations typically used for the analysis of the dynamic behavior of finite structures. Recently, we developed a method for understanding the locally resonant bandgap in uniform finite metamaterial beams using modal analysis. Here we extend that framework to general locally resonant 1D and 2D metastructures (i.e. locally resonant metamaterial-based finite structures) with specified boundary conditions using a general operator formulation. Using this approach, along with the assumption of an infinite number of resonators tuned to the same frequency, the frequency range of the locally resonant bandgap is easily derived in closed form. Furthermore, the bandgap expression is shown to be the same regardless of the type of vibration problem under consideration, depending only on the added mass ratio and target frequency. For practical designs with a finite number of resonators, it is shown that the number of resonators required for the bandgap to appear increases with increased target frequency, i.e. more resonators are required for higher vibration modes. Additionally, it is observed that there is an optimal, finite number of resonators which gives a bandgap that is wider than the infinite-resonator bandgap, and that the optimal number of resonators increases with target frequency and added mass ratio. As the number of resonators becomes sufficiently large, the bandgap converges to the derived infinite-resonator bandgap. Furthermore, the derived bandgap edge frequencies are shown to agree with results from dispersion analysis using the plane wave expansion method. The model is validated experimentally for a locally resonant cantilever beam under base
A Theory of Frozen Light According to the General Theory of Relativity
Rabounski, Dmitri; Borissova, Larissa
2011-03-01
We suggest a theory to frozen light, which was first registered in 2000 by Lene Hau. Frozen light is explained here as a new state of matter. The explanation is given through space-time terms of the General Theory of Relativity. We consider a fully degenerate region of space (space-time), which is the ultimate case of the isotropic region (home of photons), where the metric is particularly degenerate. Both the space-time interval, the observable time interval, and the observable three-dimensional interval are zero in a fully degenerate region. Therefore, we refer to such a region and particles which inhabit it as zero-space and zero-particles. Moving to the coordinate quantities inside zero-space shows that real speed therein is that of light, depending on the gravitational potential and the rotation of space. It is shown that the eikonal equation for zero-particles is a standing wave equation: zero-particles are standing light waves, while zero-space is filled with a system of standing light waves (light-like hologram). With these, zero-particles appear to a regular (external) observer as mere stopped light. This paper has been submitted to The Abraham Zelmanov Journal.
Florentina Xhelili Krasniqi; Rahmie Topxhiu; Donat Rexha
2016-01-01
Nobel Laureates with their contributions to the development of the theory of general equilibrium have enabled this theory to be one of the most important for theoretical and practical analysis of the overall economy and the efficient use of economic resources. Results of the research showing that contributions of Nobel Laureates in the economy belong to two main frameworks of development of the general equilibrium theory: one was the mathematical model of general equilibrium developed by J...
Generalized Random Matrix Theory:. a Mathematical Probe for Complexity
Shukla, Pragya
2012-07-01
The ubiquitous presence of complexity in nature makes it necessary to seek new mathematical tools which can probe physical systems beyond linear or perturbative approximations. The random matrix theory is one such tool in which the statistical behavior of a system is modeled by an ensemble of its replicas. This paper is an attempt to review the basic aspects of the theory in a simplified language, aimed at students from diverse areas of physics.
Directory of Open Access Journals (Sweden)
Stefan Hollands
2009-09-01
Full Text Available In this paper, we propose a new framework for quantum field theory in terms of consistency conditions. The consistency conditions that we consider are ''associativity'' or ''factorization'' conditions on the operator product expansion (OPE of the theory, and are proposed to be the defining property of any quantum field theory. Our framework is presented in the Euclidean setting, and is applicable in principle to any quantum field theory, including non-conformal ones. In our framework, we obtain a characterization of perturbations of a given quantum field theory in terms of a certain cohomology ring of Hochschild-type. We illustrate our framework by the free field, but our constructions are general and apply also to interacting quantum field theories. For such theories, we propose a new scheme to construct the OPE which is based on the use of non-linear quantized field equations.
Generalized uncertainty principle as a consequence of the effective field theory
Energy Technology Data Exchange (ETDEWEB)
Faizal, Mir, E-mail: mirfaizalmir@gmail.com [Irving K. Barber School of Arts and Sciences, University of British Columbia – Okanagan, Kelowna, British Columbia V1V 1V7 (Canada); Department of Physics and Astronomy, University of Lethbridge, Lethbridge, Alberta T1K 3M4 (Canada); Ali, Ahmed Farag, E-mail: ahmed.ali@fsc.bu.edu.eg [Department of Physics, Faculty of Science, Benha University, Benha, 13518 (Egypt); Netherlands Institute for Advanced Study, Korte Spinhuissteeg 3, 1012 CG Amsterdam (Netherlands); Nassar, Ali, E-mail: anassar@zewailcity.edu.eg [Department of Physics, Zewail City of Science and Technology, 12588, Giza (Egypt)
2017-02-10
We will demonstrate that the generalized uncertainty principle exists because of the derivative expansion in the effective field theories. This is because in the framework of the effective field theories, the minimum measurable length scale has to be integrated away to obtain the low energy effective action. We will analyze the deformation of a massive free scalar field theory by the generalized uncertainty principle, and demonstrate that the minimum measurable length scale corresponds to a second more massive scale in the theory, which has been integrated away. We will also analyze CFT operators dual to this deformed scalar field theory, and observe that scaling of the new CFT operators indicates that they are dual to this more massive scale in the theory. We will use holographic renormalization to explicitly calculate the renormalized boundary action with counter terms for this scalar field theory deformed by generalized uncertainty principle, and show that the generalized uncertainty principle contributes to the matter conformal anomaly.
Numerial calculations in the general dynamical theory of gravitional ...
African Journals Online (AJOL)
It is well known that, Einsten's Geometrical Principles and Laws of Gravitation may be used to construct a corresponding theory of Gravitational Time Dilation. In (Howusu, 1991) paper, it was shown how to extend Newton's Dynamical Principles and Laws based upon the experimental facts of inertia, active and passive ...
On the construction of a psychologically based, general theory of observation: an introduction
Nyman, Göte
2013-01-01
The perception-related origins of physical measures and standards are considered within the framework of the general observer theory. The impact of observer characteristics on the development of observer-centric physics, physical concepts and metrics are analyzed. A preliminary theoretical approach is suggested for the construction of a general observer theory and formulation of its relationship to observer-centered physical concepts and theories. The approach makes it possible to construct a theory of the observer, intrinsic in any theory of physics.
Extended theory of harmonic maps connects general relativity to chaos and quantum mechanism
Ren, Gang; Duan, Yi-Shi
2017-10-01
General relativity and quantum mechanism are two separate rules of modern physics explaining how nature works. Both theories are accurate, but the direct connection between two theories was not yet clarified. Recently, researchers blur the line between classical and quantum physics by connecting chaos and entanglement. Here, we showed the early reported extended HM theory that included the general relativity can also be used to recover the classic chaos equations and even the Schrodinger equation in quantum physics, suggesting the extended theory of harmonic maps may act as a universal theory of physics.
The solution to Slavnov--Taylor identities in a general four dimensional supersymmetric theory
Kondrashuk, Igor
2001-01-01
A solution to Slavnov-Taylor identities in a general four dimensional N=1 supersymmetric Yang-Mills theory containing arbitrary matter superfields is proposed. The solution proposed appears just a simple generalization of an analogous solution in the pure supersymmetric Yang-Mills theory.
The Nature of Living Systems: An Exposition of the Basic Concepts in General Systems Theory.
Miller, James G.
General systems theory is a set of related definitions, assumptions, and propositions which deal with reality as an integrated hierarchy of organizations of matter and energy. In this paper, the author defines the concepts of space, time, matter, energy, and information in terms of their meaning in general systems theory. He defines a system as a…
Suicidality among Students: An Experiment of Agnew\\\\\\'s General Strain Theory
Akbar Aliverdinia; Neda Usefi
2014-01-01
Introduction Agnew's general strain theory is one of the best known theories of criminology. The popularity of this theory is derived from its scope and breadth which allows researchers to investigate about the effects of a variety of structural and psychological stressors on a range of deleterious outcomes. Although this theory is developed and tested to explain crime, it can also be applied to explain behaviors such as substance abuse and suicide. The main objective of this study is to p...
Evolution of generalized couple-stress continuum theories: a critical analysis
Hadjesfandiari, Ali R.; Dargush, Gary F.
2014-01-01
In this paper, we examine different generalized couple-stress continuum mechanics theories, including couple stress, strain gradient and micropolar theories. First, we investigate the fundamental requirements in any consistent size-dependent couple stress continuum mechanics, for which satisfying basic rules of mathematics and mechanics are crucial to establish a consistent theory. As a result, we show that continuum couple stress theory must be based on the displacement field and its corresp...
Matrix theory from generalized inverses to Jordan form
Piziak, Robert
2007-01-01
Each chapter ends with a list of references for further reading. Undoubtedly, these will be useful for anyone who wishes to pursue the topics deeper. … the book has many MATLAB examples and problems presented at appropriate places. … the book will become a widely used classroom text for a second course on linear algebra. It can be used profitably by graduate and advanced level undergraduate students. It can also serve as an intermediate course for more advanced texts in matrix theory. This is a lucidly written book by two authors who have made many contributions to linear and multilinear algebra.-K.C. Sivakumar, IMAGE, No. 47, Fall 2011Always mathematically constructive, this book helps readers delve into elementary linear algebra ideas at a deeper level and prepare for further study in matrix theory and abstract algebra.-L'enseignement Mathématique, January-June 2007, Vol. 53, No. 1-2.
A General Euclidean Geometric Representation for the Classical Detection Theory
Bayramoglu, Muhammet Fatih
2010-01-01
We propose an Euclidean geometric representation for the classical detection theory. The proposed representation is so generic that can be employed to almost all communication problems. The hypotheses and observations are mapped into R^N in such a way that a posteriori probability of an hypothesis given an observation decreases exponentially with the square of the Euclidean distance between the vectors corresponding to the hypothesis and the observation.
Ageing of trees: application of general ageing theories.
Brutovská, Eva; Sámelová, Andrea; Dušička, Jozef; Mičieta, Karol
2013-09-01
The main questions posed in ageing theories are how ageing evolved and whether or not it is programmed. While these questions have not yet been clearly resolved, several groups of possible theories have been published on this topic. However, most of these theories do not consider plants, and the specific traits involved in their ageing mechanisms. The first trait covers clonality and sectoriality and the second concerns the lack of a differentiated germ line. The lack of a germ line prevents telomere shortening which can lead to the transfer of somatic mutations into sexual offspring, while sectoriality in trees causes isolation of potentially catastrophic events in one tree part, thus creating a population of more or less independent modules within one axis. The processes of population dynamics, including ageing, can act within the framework of an individual tree as well as in that of the population as a whole, although the processes involved differ and consequently result in different effects. Copyright © 2013 Elsevier B.V. All rights reserved.
Generalized second law of thermodynamic in modified teleparallel theory
Zubair, M.; Bahamonde, Sebastian; Jamil, Mubasher
2017-07-01
This study is conducted to examine the validity of the generalized second law of thermodynamics (GSLT) in flat FRW for modified teleparallel gravity involving coupling between a scalar field with the torsion scalar T and the boundary term B=2\
Dalarsson, Mariana
2017-10-01
The introduction of metamaterials and transformation optics has brought the possibilities for manipulating electromagnetic waves to an unprecedented level, suggesting applications like super-resolution imaging, cloaking, subwavelength focusing, and field localization. The refractive index of metamaterial structures in transformation optics typically has to be spatially graded. This paper presents a full analytical method for description of the field propagation through composites with gradient refractive index. The remarkable property of this approach is that it gives explicit general expressions for the field intensity and transmission and reflection coefficients, without reference to any boundary conditions. This opens a possibility for a novel fundamental theory of a number of important electromagnetic phenomena. The method enables calculation of wave propagation parameters within structures with arbitrary losses, arbitrary spectral dispersions, and arbitrary slopes of permittivity and permeability gradients, from mild to abrupt.
Luo, Feng; Yang, Yunfeng; Zhong, Jianxin; Gao, Haichun; Khan, Latifur; Thompson, Dorothea K; Zhou, Jizhong
2007-01-01
Background Large-scale sequencing of entire genomes has ushered in a new age in biology. One of the next grand challenges is to dissect the cellular networks consisting of many individual functional modules. Defining co-expression networks without ambiguity based on genome-wide microarray data is difficult and current methods are not robust and consistent with different data sets. This is particularly problematic for little understood organisms since not much existing biological knowledge can be exploited for determining the threshold to differentiate true correlation from random noise. Random matrix theory (RMT), which has been widely and successfully used in physics, is a powerful approach to distinguish system-specific, non-random properties embedded in complex systems from random noise. Here, we have hypothesized that the universal predictions of RMT are also applicable to biological systems and the correlation threshold can be determined by characterizing the correlation matrix of microarray profiles using random matrix theory. Results Application of random matrix theory to microarray data of S. oneidensis, E. coli, yeast, A. thaliana, Drosophila, mouse and human indicates that there is a sharp transition of nearest neighbour spacing distribution (NNSD) of correlation matrix after gradually removing certain elements insider the matrix. Testing on an in silico modular model has demonstrated that this transition can be used to determine the correlation threshold for revealing modular co-expression networks. The co-expression network derived from yeast cell cycling microarray data is supported by gene annotation. The topological properties of the resulting co-expression network agree well with the general properties of biological networks. Computational evaluations have showed that RMT approach is sensitive and robust. Furthermore, evaluation on sampled expression data of an in silico modular gene system has showed that under-sampled expressions do not affect the
Luo, Feng; Yang, Yunfeng; Zhong, Jianxin; Gao, Haichun; Khan, Latifur; Thompson, Dorothea K; Zhou, Jizhong
2007-08-14
Large-scale sequencing of entire genomes has ushered in a new age in biology. One of the next grand challenges is to dissect the cellular networks consisting of many individual functional modules. Defining co-expression networks without ambiguity based on genome-wide microarray data is difficult and current methods are not robust and consistent with different data sets. This is particularly problematic for little understood organisms since not much existing biological knowledge can be exploited for determining the threshold to differentiate true correlation from random noise. Random matrix theory (RMT), which has been widely and successfully used in physics, is a powerful approach to distinguish system-specific, non-random properties embedded in complex systems from random noise. Here, we have hypothesized that the universal predictions of RMT are also applicable to biological systems and the correlation threshold can be determined by characterizing the correlation matrix of microarray profiles using random matrix theory. Application of random matrix theory to microarray data of S. oneidensis, E. coli, yeast, A. thaliana, Drosophila, mouse and human indicates that there is a sharp transition of nearest neighbour spacing distribution (NNSD) of correlation matrix after gradually removing certain elements insider the matrix. Testing on an in silico modular model has demonstrated that this transition can be used to determine the correlation threshold for revealing modular co-expression networks. The co-expression network derived from yeast cell cycling microarray data is supported by gene annotation. The topological properties of the resulting co-expression network agree well with the general properties of biological networks. Computational evaluations have showed that RMT approach is sensitive and robust. Furthermore, evaluation on sampled expression data of an in silico modular gene system has showed that under-sampled expressions do not affect the recovery of gene
Jung, Jaewoon; Sugita, Yuji; Ten-no, S.
2010-02-01
An analytic gradient expression is formulated and implemented for the second-order Møller-Plesset perturbation theory (MP2) based on the generalized hybrid orbital QM/MM method. The method enables us to obtain an accurate geometry at a reasonable computational cost. The performance of the method is assessed for various isomers of alanine dipepetide. We also compare the optimized structures of fumaramide-derived [2]rotaxane and cAMP-dependent protein kinase with experiment.
Bose-Einstein condensation of light: general theory.
Sob'yanin, Denis Nikolaevich
2013-08-01
A theory of Bose-Einstein condensation of light in a dye-filled optical microcavity is presented. The theory is based on the hierarchical maximum entropy principle and allows one to investigate the fluctuating behavior of the photon gas in the microcavity for all numbers of photons, dye molecules, and excitations at all temperatures, including the whole critical region. The master equation describing the interaction between photons and dye molecules in the microcavity is derived and the equivalence between the hierarchical maximum entropy principle and the master equation approach is shown. The cases of a fixed mean total photon number and a fixed total excitation number are considered, and a much sharper, nonparabolic onset of a macroscopic Bose-Einstein condensation of light in the latter case is demonstrated. The theory does not use the grand canonical approximation, takes into account the photon polarization degeneracy, and exactly describes the microscopic, mesoscopic, and macroscopic Bose-Einstein condensation of light. Under certain conditions, it predicts sub-Poissonian statistics of the photon condensate and the polarized photon condensate, and a universal relation takes place between the degrees of second-order coherence for these condensates. In the macroscopic case, there appear a sharp jump in the degrees of second-order coherence, a sharp jump and kink in the reduced standard deviations of the fluctuating numbers of photons in the polarized and whole condensates, and a sharp peak, a cusp, of the Mandel parameter for the whole condensate in the critical region. The possibility of nonclassical light generation in the microcavity with the photon Bose-Einstein condensate is predicted.
General proof of entropy principle in Einstein-Maxwell theory
Fang, Xiongjun
2015-01-01
We consider a static self-gravitating charged perfect fluid system in the Einstein-Maxwell theory. Assume Maxwell's equation and the Einstein constraint equation are satisfied, and the temperature of the fluid obeys Tolman's law. Then we prove that the total entropy of the fluid achieves an extremum implies other components of Einstein's equation for any variations of metric and electrical potential with fixed boundary values. Conversely, if Einstein's equation and Maxwell's equations hold, the total entropy achieves an extremum. Our work suggests that the maximum entropy principle is consistent with Einstein's equation when electric field is taken into account.
Nonequilibrium optical conductivity: General theory and application to transient phases
Kennes, D. M.; Wilner, E. Y.; Reichman, D. R.; Millis, A. J.
2017-08-01
A nonequilibrium theory of optical conductivity of dirty-limit superconductors and commensurate charge density wave is presented. We discuss the current response to different experimentally relevant light-field probe pulses and show that a single frequency definition of the optical conductivity σ (ω )≡j (ω )/E (ω ) is difficult to interpret out of the adiabatic limit. We identify characteristic time-domain signatures distinguishing between superconducting, normal-metal, and charge density wave states. We also suggest a route to directly address the instantaneous superfluid stiffness of a superconductor by shaping the probe light field.
The General Theory of Homogenization A Personalized Introduction
Tartar, Luc
2010-01-01
Homogenization is not about periodicity, or Gamma-convergence, but about understanding which effective equations to use at macroscopic level, knowing which partial differential equations govern mesoscopic levels, without using probabilities (which destroy physical reality); instead, one uses various topologies of weak type, the G-convergence of Sergio Spagnolo, the H-convergence of Francois Murat and the author, and some responsible for the appearance of nonlocal effects, which many theories in continuum mechanics or physics guessed wrongly. For a better understanding of 20th century science,
Special Issue on Second Generation General System Theory
Directory of Open Access Journals (Sweden)
Gianfranco Minati
2014-12-01
Full Text Available The aim of this editorial is to briefly introduce some papers of different nature presented by the contributors to the special issue on “Second Generation General System Theory”. These contributions have been focused on the need for building a post-Bertalanffy Systemics, based on new problems, representations, and approaches to complexity. Furthermore, such new Systemics is expected to be able to theoretically generalize new related systemic concepts and approaches introduced by different disciplines. Such a theoretical generalization is going to coincide with a new kind of interdisciplinarity. The latter should substitute the classical one, based on considering problems and solutions within a discipline as equivalent to problems and solutions within another one. This equivalence was used within the framework of general systemic concepts like Anticipation, Completeness, Feedback, Finality, Forecast, Separability, Openness, and Reversibility. The contributions contained in this special issue constitute very interesting examples of new approaches and of their possibilities of theoretical generalization. Therefore, the issue itself can be considered as a window on the new Systemics and its challenges.
Life stress, anger and anxiety, and delinquency: an empirical test of general strain theory.
Aseltine, R H; Gore, S; Gordon, J
2000-09-01
General strain theory (Agnew 1992) departs from traditional strain theories by emphasizing the role of the individual's affective responses to negative life experiences in fostering deviant behavior. In this analysis, we examine the central hypotheses of general strain theory using data from a three-wave panel study of high school youths in the Boston metropolitan area (N = 939). Covariance structure models reveal that anger and hostility in response to negative life events do play a causal role in fostering more aggressive forms of delinquency, but are not significantly related to either nonaggressive delinquency or marijuana use. Furthermore, the conditional effects predicted by general strain theory, in which the impact of strain on delinquency varies by youths' personal and social resources, are inconsistent. Discussion centers on the prospect of increasing the utility of general strain theory by further imbuing it with concepts and perspectives from the sociology of mental illness.
Extension of Einstein's Planetary Theory Based on Generalized ...
African Journals Online (AJOL)
In this article, the generalized Einstein's radial equation of motion in the equatorial plane of the Sun is transformed to obtain additional correction terms to all order of C2 to Einstein's planetary equation of motion and hence to the planetary parameters. Keywords: Radial Equation; Planetary Equation; Planetary parameters ...
A General Field Theory for Vortex Structure and Interaction,
1983-10-03
that the ’field strength’ existed everywhere and it was a mere accident that the material particle was needed for the demonstration of its existence...application of a simple two part vortex to a model of the two dimensional general circualtion for the inner planets, including earth. Appendix C outlines a
Learning Theory Estimates with Observations from General Stationary Stochastic Processes.
Hang, Hanyuan; Feng, Yunlong; Steinwart, Ingo; Suykens, Johan A K
2016-12-01
This letter investigates the supervised learning problem with observations drawn from certain general stationary stochastic processes. Here by general, we mean that many stationary stochastic processes can be included. We show that when the stochastic processes satisfy a generalized Bernstein-type inequality, a unified treatment on analyzing the learning schemes with various mixing processes can be conducted and a sharp oracle inequality for generic regularized empirical risk minimization schemes can be established. The obtained oracle inequality is then applied to derive convergence rates for several learning schemes such as empirical risk minimization (ERM), least squares support vector machines (LS-SVMs) using given generic kernels, and SVMs using gaussian kernels for both least squares and quantile regression. It turns out that for independent and identically distributed (i.i.d.) processes, our learning rates for ERM recover the optimal rates. For non-i.i.d. processes, including geometrically [Formula: see text]-mixing Markov processes, geometrically [Formula: see text]-mixing processes with restricted decay, [Formula: see text]-mixing processes, and (time-reversed) geometrically [Formula: see text]-mixing processes, our learning rates for SVMs with gaussian kernels match, up to some arbitrarily small extra term in the exponent, the optimal rates. For the remaining cases, our rates are at least close to the optimal rates. As a by-product, the assumed generalized Bernstein-type inequality also provides an interpretation of the so-called effective number of observations for various mixing processes.
Towards a General Theory of Stochastic Hybrid Systems
Bujorianu, L.M.; Lygeros, J.; Bujorianu, M.C.
2008-01-01
In this paper we set up a mathematical structure, called Markov string, to obtaining a very general class of models for stochastic hybrid systems. Markov Strings are, in fact, a class of Markov processes, obtained by a mixing mechanism of stochastic processes, introduced by Meyer. We prove that
Toward a General Theory of Stochastic Hybrid Systems
Bujorianu, L.M.; Lygeros, J.; Blom, H.A.P.; Lygeros, J.
In this chapter we set up a mathematical structure, called Markov string, to obtaining a very general class of models for stochastic hybrid systems. Markov Strings are, in fact, a class of Markov processes, obtained by a mixing mechanism of stochastic processes, introduced by Meyer. We prove that
Generalizations of Karp's theorem to elastic scattering theory
Tuong, Ha-Duong
Karp's theorem states that if the far field pattern corresponding to the scattering of a time-harmonic acoustic plane wave by a sound-soft obstacle in R2 is invariant under the group of rotations, then the scatterer is a circle. The theorem is generalized to the elastic scattering problems and the axisymmetric scatterers in R3.
A general theory of two-wave mixing in nonlinear media
DEFF Research Database (Denmark)
Chi, Mingjun; Huignard, Jean-Pierre; Petersen, Paul Michael
2009-01-01
A general theory of two-wave mixing in nonlinear media is presented. Assuming a gain (or absorption) grating and a refractive index grating are generated because of the nonlinear process in a nonlinear medium, the coupled-wave equations of two-wave mixing are derived based on the Maxwell’s wave...... to the previous theory of two-wave mixing, the theory presented here is more general and the application of the theory to the photorefractive materials, Kerr media and semiconductor broad-area amplifiers are described....
Generalized Potts-Models and their Relevance for Gauge Theories
Directory of Open Access Journals (Sweden)
Andreas Wipf
2007-01-01
Full Text Available We study the Polyakov loop dynamics originating from finite-temperature Yang-Mills theory. The effective actions contain center-symmetric terms involving powers of the Polyakov loop, each with its own coupling. For a subclass with two couplings we perform a detailed analysis of the statistical mechanics involved. To this end we employ a modified mean field approximation and Monte Carlo simulations based on a novel cluster algorithm. We find excellent agreement of both approaches. The phase diagram exhibits both first and second order transitions between symmetric, ferromagnetic and antiferromagnetic phases with phase boundaries merging at three tricritical points. The critical exponents ν and γ at the continuous transition between symmetric and antiferromagnetic phases are the same as for the 3-state spin Potts model.
General framework for fluctuating dynamic density functional theory
Durán-Olivencia, Miguel A.; Yatsyshin, Peter; Goddard, Benjamin D.; Kalliadasis, Serafim
2017-12-01
We introduce a versatile bottom-up derivation of a formal theoretical framework to describe (passive) soft-matter systems out of equilibrium subject to fluctuations. We provide a unique connection between the constituent-particle dynamics of real systems and the time evolution equation of their measurable (coarse-grained) quantities, such as local density and velocity. The starting point is the full Hamiltonian description of a system of colloidal particles immersed in a fluid of identical bath particles. Then, we average out the bath via Zwanzig’s projection-operator techniques and obtain the stochastic Langevin equations governing the colloidal-particle dynamics. Introducing the appropriate definition of the local number and momentum density fields yields a generalisation of the Dean–Kawasaki (DK) model, which resembles the stochastic Navier–Stokes description of a fluid. Nevertheless, the DK equation still contains all the microscopic information and, for that reason, does not represent the dynamical law of observable quantities. We address this controversial feature of the DK description by carrying out a nonequilibrium ensemble average. Adopting a natural decomposition into local-equilibrium and nonequilibrium contribution, where the former is related to a generalised version of the canonical distribution, we finally obtain the fluctuating-hydrodynamic equation governing the time-evolution of the mesoscopic density and momentum fields. Along the way, we outline the connection between the ad hoc energy functional introduced in previous DK derivations and the free-energy functional from classical density-functional theory. The resultant equation has the structure of a dynamical density-functional theory (DDFT) with an additional fluctuating force coming from the random interactions with the bath. We show that our fluctuating DDFT formalism corresponds to a particular version of the fluctuating Navier–Stokes equations, originally derived by Landau and
On the generalization of attitude accessibility after repeated attitude expression.
Descheemaeker, Mathilde; Spruyt, Adriaan; Fazio, Russell H; Hermans, Dirk
2017-02-01
The more accessible an attitude is, the stronger is its influence on information processing and behavior. Accessibility can be increased through attitude rehearsal, but it remains unknown whether attitude rehearsal also affects the accessibility of related attitudes. To investigate this hypothesis, participants in an experimental condition repeatedly expressed their attitudes towards exemplars of several semantic categories during an evaluative categorization task. Participants in a control condition performed a non-evaluative task with the same exemplars and evaluated unrelated attitude objects. After a 30-minute interval, participants in the experimental condition were faster than controls to evaluate not only the original exemplars but also novel exemplars of the same categories. This finding suggests that the effect of attitude rehearsal on accessibility generalizes to attitudes towards untrained but semantically related attitude objects. © 2016 The Authors. European Journal of Social Psychology published by John Wiley & Sons, Ltd.
A General Conceptual View on Resource Advantage Theory
Yalcin, Bilal
2010-01-01
In order to continue for an organization to exist it needs to finance itself for its own resource on the other hand service with considering consumers need and expectations by present them lowest price and highest quality also. Under these conditions these kind of organizations need to analyze the behaviour (nature) of the rival organizations and position themselves accordingly in order to get advantage on the rival organizations. In this study, a general conceptual view on resource advantage...
Fuzzy Ordering Theory and Its Use in Filter Generalization
Directory of Open Access Journals (Sweden)
Barner Kenneth E
2001-01-01
Full Text Available The rank ordering of samples is widely used in robust nonlinear signal processing. Recent advances in nonlinear filtering algorithms have focused on combining spatial and rank (SR order information into the filtering process to allow spatial correlations to be exploited while retaining the robust characteristics of strict rank order methods. Further generalization can be achieved by replacing the crisp, or binary, SR information utilized by most methods with more general fuzzy SR information. Indeed, by exploiting fuzzy methodologies real valued SR orderings can be defined that not only relate the spatial and rank orderings of samples, but also includes information on sample spread. This paper utilizes this approach to define fuzzy ranking and fuzzy order statistics. Properties of these concepts are discussed and several previously defined filters are generalized by including fuzzy concepts. Specifically, the fuzzy median, fuzzy rank conditioned rank selection, and fuzzy weighted median filters are defined. Optimization of the parameters for these filters are discussed. Simulation results are presented to show the advantages of these fuzzy filters over their crisp counterparts.
Univariate and multivariate general linear models theory and applications with SAS
Kim, Kevin
2006-01-01
Reviewing the theory of the general linear model (GLM) using a general framework, Univariate and Multivariate General Linear Models: Theory and Applications with SAS, Second Edition presents analyses of simple and complex models, both univariate and multivariate, that employ data sets from a variety of disciplines, such as the social and behavioral sciences.With revised examples that include options available using SAS 9.0, this expanded edition divides theory from applications within each chapter. Following an overview of the GLM, the book introduces unrestricted GLMs to analyze multiple regr
Towards a General Theory of Extremes for Observables of Chaotic Dynamical Systems.
Lucarini, Valerio; Faranda, Davide; Wouters, Jeroen; Kuna, Tobias
2014-01-01
In this paper we provide a connection between the geometrical properties of the attractor of a chaotic dynamical system and the distribution of extreme values. We show that the extremes of so-called physical observables are distributed according to the classical generalised Pareto distribution and derive explicit expressions for the scaling and the shape parameter. In particular, we derive that the shape parameter does not depend on the chosen observables, but only on the partial dimensions of the invariant measure on the stable, unstable, and neutral manifolds. The shape parameter is negative and is close to zero when high-dimensional systems are considered. This result agrees with what was derived recently using the generalized extreme value approach. Combining the results obtained using such physical observables and the properties of the extremes of distance observables, it is possible to derive estimates of the partial dimensions of the attractor along the stable and the unstable directions of the flow. Moreover, by writing the shape parameter in terms of moments of the extremes of the considered observable and by using linear response theory, we relate the sensitivity to perturbations of the shape parameter to the sensitivity of the moments, of the partial dimensions, and of the Kaplan-Yorke dimension of the attractor. Preliminary numerical investigations provide encouraging results on the applicability of the theory presented here. The results presented here do not apply for all combinations of Axiom A systems and observables, but the breakdown seems to be related to very special geometrical configurations.
Transcriptional Bursting in Gene Expression: Analytical Results for General Stochastic Models.
Kumar, Niraj; Singh, Abhyudai; Kulkarni, Rahul V
2015-10-01
Gene expression in individual cells is highly variable and sporadic, often resulting in the synthesis of mRNAs and proteins in bursts. Such bursting has important consequences for cell-fate decisions in diverse processes ranging from HIV-1 viral infections to stem-cell differentiation. It is generally assumed that bursts are geometrically distributed and that they arrive according to a Poisson process. On the other hand, recent single-cell experiments provide evidence for complex burst arrival processes, highlighting the need for analysis of more general stochastic models. To address this issue, we invoke a mapping between general stochastic models of gene expression and systems studied in queueing theory to derive exact analytical expressions for the moments associated with mRNA/protein steady-state distributions. These results are then used to derive noise signatures, i.e. explicit conditions based entirely on experimentally measurable quantities, that determine if the burst distributions deviate from the geometric distribution or if burst arrival deviates from a Poisson process. For non-Poisson arrivals, we develop approaches for accurate estimation of burst parameters. The proposed approaches can lead to new insights into transcriptional bursting based on measurements of steady-state mRNA/protein distributions.
Transcriptional Bursting in Gene Expression: Analytical Results for General Stochastic Models
Kumar, Niraj; Singh, Abhyudai; Kulkarni, Rahul V.
2015-01-01
Gene expression in individual cells is highly variable and sporadic, often resulting in the synthesis of mRNAs and proteins in bursts. Such bursting has important consequences for cell-fate decisions in diverse processes ranging from HIV-1 viral infections to stem-cell differentiation. It is generally assumed that bursts are geometrically distributed and that they arrive according to a Poisson process. On the other hand, recent single-cell experiments provide evidence for complex burst arrival processes, highlighting the need for analysis of more general stochastic models. To address this issue, we invoke a mapping between general stochastic models of gene expression and systems studied in queueing theory to derive exact analytical expressions for the moments associated with mRNA/protein steady-state distributions. These results are then used to derive noise signatures, i.e. explicit conditions based entirely on experimentally measurable quantities, that determine if the burst distributions deviate from the geometric distribution or if burst arrival deviates from a Poisson process. For non-Poisson arrivals, we develop approaches for accurate estimation of burst parameters. The proposed approaches can lead to new insights into transcriptional bursting based on measurements of steady-state mRNA/protein distributions. PMID:26474290
Using niche breadth theory to explain generalization in mutualisms.
Batstone, Rebecca T; Carscadden, Kelly A; Afkhami, Michelle E; Frederickson, Megan E
2018-02-17
For a mutualism to remain evolutionarily stable, theory predicts that mutualists should limit their associations to high-quality partners. However, most mutualists either simultaneously or sequentially associate with multiple partners that confer the same type of reward. By viewing mutualisms through the lens of niche breadth evolution, we outline how the environment shapes partner availability and relative quality, and ultimately a focal mutualist's partner breadth. We argue that mutualists that associate with multiple partners may have a selective advantage compared to specialists for many reasons, including sampling, complementarity, and portfolio effects, as well as the possibility that broad partner breadth increases breadth along other niche axes. Furthermore, selection for narrow partner breadth is unlikely to be strong when the environment erodes variation in partner quality, reduces the costs of interacting with low-quality partners, spatially structures partner communities, or decreases the strength of mutualism. Thus, we should not be surprised that most mutualists have broad partner breadth, even if it allows for ineffective partners to persist. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Toward a general theory of momentum-like effects.
Hubbard, Timothy L
2017-08-01
The future actions, behaviors, and outcomes of objects, individuals, and processes can often be anticipated, and some of these anticipations have been hypothesized to result from momentum-like effects. Five types of momentum-like effects (representational momentum, operational momentum, attentional momentum, behavioral momentum, psychological momentum) are briefly described. Potential similarities involving properties of momentum-like effects (continuation, coherence, role of chance or guessing, role of sensory processing, imperviousness to practice or error feedback, shifts in memory for position, effects of changes in velocity, rapid occurrence, effects of retention interval, attachment to an object rather than an abstract frame of reference, nonrigid transformation) are described, and potential constraints on a future theory of momentum-like effects (dynamic representation, nature of extrapolation, sensitivity to environmental contingencies, bridging gaps between stimulus and response, increasing adaptiveness to the environment, serving as a heuristic for perception and action, insensitivity to stimulus format, importance of subjective consequences, role of knowledge and belief, automaticity of occurrence, properties of functional architecture) are discussed. The similarity and ubiquity of momentum-like effects suggests such effects might result from a single or small number of mechanisms that operate over different dimensions, modalities, and time-scales and provide a fundamental adaptation for perception and action. Copyright © 2017. Published by Elsevier B.V.
General Linearized Theory of Quantum Fluctuations around Arbitrary Limit Cycles.
Navarrete-Benlloch, Carlos; Weiss, Talitha; Walter, Stefan; de Valcárcel, Germán J
2017-09-29
The theory of Gaussian quantum fluctuations around classical steady states in nonlinear quantum-optical systems (also known as standard linearization) is a cornerstone for the analysis of such systems. Its simplicity, together with its accuracy far from critical points or situations where the nonlinearity reaches the strong coupling regime, has turned it into a widespread technique, being the first method of choice in most works on the subject. However, such a technique finds strong practical and conceptual complications when one tries to apply it to situations in which the classical long-time solution is time dependent, a most prominent example being spontaneous limit-cycle formation. Here, we introduce a linearization scheme adapted to such situations, using the driven Van der Pol oscillator as a test bed for the method, which allows us to compare it with full numerical simulations. On a conceptual level, the scheme relies on the connection between the emergence of limit cycles and the spontaneous breaking of the symmetry under temporal translations. On the practical side, the method keeps the simplicity and linear scaling with the size of the problem (number of modes) characteristic of standard linearization, making it applicable to large (many-body) systems.
General Linearized Theory of Quantum Fluctuations around Arbitrary Limit Cycles
Navarrete-Benlloch, Carlos; Weiss, Talitha; Walter, Stefan; de Valcárcel, Germán J.
2017-09-01
The theory of Gaussian quantum fluctuations around classical steady states in nonlinear quantum-optical systems (also known as standard linearization) is a cornerstone for the analysis of such systems. Its simplicity, together with its accuracy far from critical points or situations where the nonlinearity reaches the strong coupling regime, has turned it into a widespread technique, being the first method of choice in most works on the subject. However, such a technique finds strong practical and conceptual complications when one tries to apply it to situations in which the classical long-time solution is time dependent, a most prominent example being spontaneous limit-cycle formation. Here, we introduce a linearization scheme adapted to such situations, using the driven Van der Pol oscillator as a test bed for the method, which allows us to compare it with full numerical simulations. On a conceptual level, the scheme relies on the connection between the emergence of limit cycles and the spontaneous breaking of the symmetry under temporal translations. On the practical side, the method keeps the simplicity and linear scaling with the size of the problem (number of modes) characteristic of standard linearization, making it applicable to large (many-body) systems.
A superconducting gyroscope to test Einstein's general theory of relativity
Everitt, C. W. F.
1978-01-01
Schiff (1960) proposed a new test of general relativity based on measuring the precessions of the spin axes of gyroscopes in earth orbit. Since 1963 a Stanford research team has been developing an experiment to measure the two effects calculated by Schiff. The gyroscope consists of a uniform sphere of fused quartz 38 mm in diameter, coated with superconductor, electrically suspended and spinning at about 170 Hz in vacuum. The paper describes the proposed flight apparatus and the current state of development of the gyroscope, including techniques for manufacturing and measuring the gyro rotor and housing, generating ultralow magnetic fields, and mechanizing the readout.
Toward a generalized theory of epidemic awareness in social networks
Wu, Qingchu; Zhu, Wenfang
We discuss the dynamics of a susceptible-infected-susceptible (SIS) model with local awareness in networks. Individual awareness to the infectious disease is characterized by a general function of epidemic information in its neighborhood. We build a high-accuracy approximate equation governing the spreading dynamics and derive an approximate epidemic threshold above which the epidemic spreads over the whole network. Our results extend the previous work and show that the epidemic threshold is dependent on the awareness function in terms of one infectious neighbor. Interestingly, when a pow-law awareness function is chosen, the epidemic threshold can emerge in infinite networks.
Convergence of scalar-tensor theories towards general relativity and primordial nucleosynthesis
Serna, A; Navarro, A
2002-01-01
In this paper, we analyse the conditions for convergence towards general relativity of scalar-tensor gravity theories defined by an arbitrary coupling function alpha (in the Einstein frame). We show that, in general, the evolution of the scalar field (phi) is governed by two opposite mechanisms: an attraction mechanism which tends to drive scalar-tensor models towards Einstein's theory, and a repulsion mechanism which has the contrary effect. The attraction mechanism dominates the recent epochs of the universe evolution if, and only if, the scalar field and its derivative satisfy certain boundary conditions. Since these conditions for convergence towards general relativity depend on the particular scalar-tensor theory used to describe the universe evolution, the nucleosynthesis bounds on the present value of the coupling function, alpha sub 0 , strongly differ from some theories to others. For example, in theories defined by alpha propor to |phi| analytical estimates lead to very stringent nucleosynthesis bou...
The spectral theory of the Schrodinger operator on general graphs
Zheng, Lukun
The goal of this dissertation is to give the sufficient conditions for the absence of a.c.spectrum or existence of the pure point (p.p.) spectrum for the deterministic or random Schrodinger operators on the general graphs. For the particular situations of "non-percolating" graphs like Sierpinski lattice and Quasi-1 dimensional tree, we'll prove the Simon-Spencer type results and the localization theorem for Anderson Hamiltonians. Technical tools here are the extensions of the real-analytic methods presented for the 1D lattice Z1 and corresponding Schrodinger operators. The central moment is the cluster expansion of the resolvent with respect to appropriate partition of the graph.
The Intersectional Potential of Queer Theory: An Example from a General Education Course in English
Carlin, Deborah
2011-01-01
In this chapter, the author describes how a pedagogical approach utilizing insights and principles from queer theory facilitated an intersectional analysis in a large lecture, general education course on "Gender, Sexuality, Literature and Culture" at the University of Massachusetts Amherst. Her goal in using queer theory's deconstructive…
A Partial Test of Agnew's General Theory of Crime and Delinquency
Zhang, Yan; Day, George; Cao, Liqun
2012-01-01
In 2005, Agnew introduced a new integrated theory, which he labels a general theory of crime and delinquency. He proposes that delinquency is more likely to occur when constraints against delinquency are low and motivations for delinquency are high. In addition, he argues that constraints and motivations are influenced by variables in five life…
Quantum Gravity in Everyday Life: General Relativity as an Effective Field Theory.
Burgess, Cliff P
2004-01-01
This article is meant as a summary and introduction to the ideas of effective field theory as applied to gravitational systems, ideas which provide the theoretical foundations for the modern use of general relativity as a theory from which precise predictions are possible.
General System Theory: Toward a Conceptual Framework for Science and Technology Education for All.
Chen, David; Stroup, Walter
1993-01-01
Suggests using general system theory as a unifying theoretical framework for science and technology education for all. Five reasons are articulated: the multidisciplinary nature of systems theory, the ability to engage complexity, the capacity to describe system dynamics, the ability to represent the relationship between microlevel and…
Principles of General Systems Theory: Some Implications for Higher Education Administration
Gilliland, Martha W.; Gilliland, J. Richard
1978-01-01
Three principles of general systems theory are presented and systems theory is distinguished from systems analysis. The principles state that all systems tend to become more disorderly, that they must be diverse in order to be stable, and that only those maximizing their resource utilization for doing useful work will survive. (Author/LBH)
General Theory of Harmonics Generation thru Energy Transformation
Czyzyk, Don
2013-04-01
Energy, whatever its form, can be converted into an electrical signal. When analyzed is found to be comprised of a continuum of sinusoidal frequencies called a harmonic spectrum H/S. This paper addresses the question of how/why, in general, are these sinusoidal frequencies (harmonics) generated and in particular how they are produced in electronic circuits. To address this question many varied experiments were performed. Some experiments used just batteries while others used mechanical, acoustic, pneumatic, thermal, magnetic, hydraulic or photonic devices. All these devices were used to investigate the nature of harmonic generation from the perspective of the en masse movement of conduction electrons. Primarily performing electronic experiments on the envelope of a single pulse revealed that a pulse of one wavelength can be separated into basic individual segments. The energy of each individual segment, when absorbed by conduction electrons, is transformed into a unique H/S. Recombining all the individual segments that comprise a pulse envelope, involves the constructive or destructive interactions of their harmonic spectrums leading to the amplitudes of some harmonics being increased and others reduced or eliminated. The result is a pulse envelope with a different harmonic series.
Directory of Open Access Journals (Sweden)
Alba Lucero López Díaz
2006-09-01
Full Text Available Objetivos: caracterizar y analizar artículos que utilizan la Teoría General de Enfermería de Orem en el período de 1992 a 2001. Diseño y metodología: estudio documental sobre 108 artículos encontrados en las bases de datos: MEDLINE, OVID, PROQUEST y el Catálogo Colectivo Nacional de Publicaciones Seriadas- Hemeroteca Nacional (Colombia. Fueron seleccionados 74 artículos que utilizaron alguna de las teorías de Orem o conceptos de la Teoría General de Orem. Resultados: la Teoría General de Orem ha sido utilizada en cuatro continentes; 38 (51,3% estudios la aplican en el ámbito institucional y 21 (28,4% en la comunidad. Los adultos y ancianos son los grupos de edad con mayor reporte en los estudios (47,3%. Los métodos cuantitativos de investigación son los más utilizados (69 estudios, 93,2%. Conclusión: los estudios exploran o correlacionan conceptos de la Teoría General de Orem, el desarrollo de instrumentos y la validación de constructos teóricos. La evidencia empírica sobre la aplicación de la Teoría General de Orem muestra su importancia en el desarrollo del conocimiento en enfermería e indica su gran utilidad para la investigación y práctica de enfermería.Objective: analysis and characterization of articles about Orem General Theory used between 1992 to 2001. Methodology and Materials: documental study about 108 articles recorded in Medline, Ovid, Proquest databases and in the National Colective Catalogue of Periodicals Colombian newspapers library. Seventy four articles using some Orem’s General Theory were selected. Results: Orem’s General Theory has been applied in four continents. Thirty eight studies (51.3% use it in the institutional environment and 21 (28.4% in the community. Adults and senior citizens are the age groups more reported (47.3%. Quantitative research methods are the most common. Conclusions: sixty nine studies explore or correlate concepts from Orem’s General Theory, the development of
Slob, Wout
2017-04-01
A general theory on effect size for continuous data predicts a relationship between maximum response and within-group variation of biological parameters, which is empirically confirmed by results from dose-response analyses of 27 different biological parameters. The theory shows how effect sizes observed in distinct biological parameters can be compared and provides a basis for a generic definition of small, intermediate and large effects. While the theory is useful for experimental science in general, it has specific consequences for risk assessment: it solves the current debate on the appropriate metric for the Benchmark response in continuous data. The theory shows that scaling the BMR expressed as a percent change in means to the maximum response (in the way specified) automatically takes "natural variability" into account. Thus, the theory supports the underlying rationale of the BMR 1 SD. For various reasons, it is, however, recommended to use a BMR in terms of a percent change that is scaled to maximum response and/or within group variation (averaged over studies), as a single harmonized approach.
The present situation in quantum theory and its merging with general relativity
Khrennikov, Andrei
2017-01-01
We discuss the problems of quantum theory (QT) complicating its merging with general relativity (GR). QT is treated as a general theory of micro-phenomena - a bunch of models. Quantum mechanics (QM) and quantum field theory (QFT) are the most widely known (but, e.g., Bohmian mechanics is also a part of QT). The basic problems of QM and QFT are considered in interrelation. For QM, we stress its nonrelativistic character and the presence of spooky action at a distance. For QFT, we highlight the...
Cheung, Nicole W. T.; Cheung, Yuet W.
2008-01-01
The objectives of this study were to test the predictive power of self-control theory for delinquency in a Chinese context, and to explore if social factors as predicted in social bonding theory, differential association theory, general strain theory, and labeling theory have effects on delinquency in the presence of self-control. Self-report data…
General relativity the most beautiful of theories : applications and trends after 100 years
2015-01-01
Generalising Newton's law of gravitation, general relativity is one of the pillars of modern physics. On the occasion of general relativity's centennial, leading scientists in the different branches of gravitational research review the history and recent advances in the main fields of applications of the theory, which was referred to by Lev Landau as “the most beautiful of the existing physical theories”.
Wave propagation and shock formation in the most general scalar-tensor theories
Tanahashi, Norihiro; Ohashi, Seiju
2017-11-01
This work studies wave propagation in the most general covariant scalar-tensor theories with second-order field equations, particularly focusing on the causal structure realized in these theories and also the shock formation process induced by nonlinear effects. For these studies we use the Horndeski theory and its generalization to the two scalar field case. We show that propagation speeds of the gravitational wave and scalar field wave in these theories may differ from the light speed depending on background field configuration, and find that a Killing horizon becomes a boundary of causal domain if the scalar fields share the symmetry of the background spacetime. With regard to the shock formation, we focus on transport of discontinuity in second derivatives of the metric and scalar field in the shift-symmetric Horndeski theory. We find that amplitude of the discontinuity generically diverges within finite time, which corresponds to shock formation. It turns out that the canonical scalar field and the scalar DBI model, among other theories described by the Horndeski theory, are free from such shock formation even when the background geometry and scalar field configuration are nontrivial. We also observe that the gravitational wave is protected against shock formation when the background has some symmetries at least. This fact may indicate that the gravitational wave in this theory is more well-behaved compared to the scalar field, which typically suffers from shock formation.
Directory of Open Access Journals (Sweden)
Florentina Xhelili Krasniqi
2016-12-01
Full Text Available Nobel Laureates with their contributions to the development of the theory of general equilibrium have enabled this theory to be one of the most important for theoretical and practical analysis of the overall economy and the efficient use of economic resources. Results of the research showing that contributions of Nobel Laureates in the economy belong to two main frameworks of development of the general equilibrium theory: one was the mathematical model of general equilibrium developed by John R. Hicks (1939, Kenneth J.Arrow (1951 and Gerard Debreu (1954 and second frames of general equilibrium belongs to Paul A. Samuelson (1958. To highlight the contributions of these Nobel laureates in the development of the theory of general equilibrium have been selected and are presented in the paper some views, estimates and assumptions that have contributed not only in solving concrete problems, but also to the development of economic science in general. Their works represent a synthesis of theoretical and practical aspects of treatment of general equilibrium which are the starting point for further research in this field.
Generalization of the Activated Complex Theory of Reaction Rates. I. Quantum Mechanical Treatment
Marcus, R. A.
1964-01-01
In its usual form activated complex theory assumes a quasi-equilibrium between reactants and activated complex, a separable reaction coordinate, a Cartesian reaction coordinate, and an absence of interaction of rotation with internal motion in the complex. In the present paper a rate expression is derived without introducing the Cartesian assumption. The expression bears a formal resemblance to the usual one and reduces to it when the added assumptions of the latter are introduced.
A general theory of non-equilibrium dynamics of lipid-protein fluid membranes
DEFF Research Database (Denmark)
Lomholt, Michael Andersen; Hansen, Per Lyngs; Miao, L.
2005-01-01
We present a general and systematic theory of non-equilibrium dynamics of multi-component fluid membranes, in general, and membranes containing transmembrane proteins, in particular. Developed based on a minimal number of principles of statistical physics and designed to be a meso....../macroscopic-scale effective description, the theory is formulated in terms of a set of equations of hydrodynamics and linear constitutive relations. As a particular emphasis of the theory, the equations and the constitutive relations address both the thermodynamic and the hydrodynamic consequences of the unconventional...... material characteristics of lipid-protein membranes and contain proposals as well as predictions which have not yet been made in already existing work on membrane hydrodynamics and which may have experimental relevance. The framework structure of the theory makes possible its applications to a range of non...
General laser interaction theory in atom-diatom systems for both adiabatic and nonadiabatic cases.
Li, Xuan; Brue, Daniel A; Parker, Gregory A; Chang, Sin-Tarng
2006-04-27
This paper develops the general theory for laser fields interacting with bimolecular systems. In this study, we choose to use the multipolar gauge on the basis of gauge invariance. We consider both the adiabatic and nonadiabatic cases and find they produce similar interaction pictures. As an application of this theory, we present the study of rovibrational energy transfer in Ar + CO collisions in the presence of an intense laser field.
On the covariant description of spontaneously broken symmetry in general field theory
Joos, H
1976-01-01
Reducible fields A(x) with degenerate vacuum which allow the unitary- symmetry transformation U/sup -1/(c)A(x)U(c)=A(x)+c are analysed. The mathematical properties of the 'charge integral' related to the conserved current of this spontaneously broken symmetry are described. The structure of the S-matrix theory is discussed in such a generalized field theory as a guide-line for the treatment of more complex examples of spontaneously broken symmetries. (42 refs).
General Relativity: The most beautiful of theories. Applications and trends after 100 years
Rovelli, Carlo
2015-02-01
Generalising Newton's law of gravitation, general relativity is one of the pillars of modern physics. While applications in the beginning were restricted to isolated effects such as a proper understanding of Mercury's orbit, the second half of the twentieth century saw a massive development of applications. These include cosmology, gravitational waves, and even very practical results for satellite based positioning systems as well as different approaches to unite general relativity with another very successful branch of physics - quantum theory. On the occassion of general relativity's centennial, leading scientists in the different branches of gravitational research review the history and recent advances in the main fields of applications of the theory, which was referred to by Lev Landau as "the most beautiful of the existing physical theories".
Gurbatov, S N; Saichev, A I
2012-01-01
"Waves and Structures in Nonlinear Nondispersive Media: General Theory and Applications to Nonlinear Acoustics” is devoted completely to nonlinear structures. The general theory is given here in parallel with mathematical models. Many concrete examples illustrate the general analysis of Part I. Part II is devoted to applications to nonlinear acoustics, including specific nonlinear models and exact solutions, physical mechanisms of nonlinearity, sawtooth-shaped wave propagation, self-action phenomena, nonlinear resonances and engineering application (medicine, nondestructive testing, geophysics, etc.). This book is designed for graduate and postgraduate students studying the theory of nonlinear waves of various physical nature. It may also be useful as a handbook for engineers and researchers who encounter the necessity of taking nonlinear wave effects into account of their work. Dr. Gurbatov S.N. is the head of Department, and Vice Rector for Research of Nizhny Novgorod State University. Dr. Rudenko O.V. is...
Criticism of generally accepted fundamentals and methodologies of traffic and transportation theory
Energy Technology Data Exchange (ETDEWEB)
Kerner, Boris S. [Physics of Transportation and Traffic, University Duisburg-Essen, 47048 Duisburg (Germany)
2015-03-10
It is explained why the set of the fundamental empirical features of traffic breakdown (a transition from free flow to congested traffic) should be the empirical basis for any traffic and transportation theory that can be reliable used for control and optimization in traffic networks. It is shown that generally accepted fundamentals and methodologies of traffic and transportation theory are not consistent with the set of the fundamental empirical features of traffic breakdown at a highway bottleneck. To these fundamentals and methodologies of traffic and transportation theory belong (i) Lighthill-Whitham-Richards (LWR) theory, (ii) the General Motors (GM) model class (for example, Herman, Gazis et al. GM model, Gipps’s model, Payne’s model, Newell’s optimal velocity (OV) model, Wiedemann’s model, Bando et al. OV model, Treiber’s IDM, Krauß’s model), (iii) the understanding of highway capacity as a particular stochastic value, and (iv) principles for traffic and transportation network optimization and control (for example, Wardrop’s user equilibrium (UE) and system optimum (SO) principles). Alternatively to these generally accepted fundamentals and methodologies of traffic and transportation theory, we discuss three-phase traffic theory as the basis for traffic flow modeling as well as briefly consider the network breakdown minimization (BM) principle for the optimization of traffic and transportation networks with road bottlenecks.
Traversa, Fabio L; Di Ventra, Massimiliano; Bonani, Fabrizio
2013-04-26
Floquet theory is a powerful tool in the analysis of many physical phenomena, and extended to spatial coordinates provides the basis for Bloch's theorem. However, in its original formulation it is limited to linear systems with periodic coefficients. Here, we extend the theory by proving a theorem for the general class of systems including linear operators commuting with the period-shift operator. The present theorem greatly expands the range of applicability of Floquet theory to a multitude of phenomena that were previously inaccessible with this type of analysis, such as dynamical systems with memory. As an important extension, we also prove Bloch's theorem for nonlocal potentials.
Unitary theories in the work of Mira Fernandes (beyond general relativity and differential geometry)
Lemos, José P S
2010-01-01
An analysis of the work of Mira Fernandes on unitary theories is presented. First it is briefly mentioned the Portuguese scientific context of the 1920s. A short analysis of the extension of Riemann geometries to new generalized geometries with new affine connections, such as those of Weyl and Cartan, is given. Based on these new geometries, the unitary theories of the gravitational and electromagnetic fields, proposed by Weyl, Eddington, Einstein, and others are then explained. Finally, the book and one paper on connections and two papers on unitary theories, all written by Mira Fernandes, are analyzed and put in context.
"This is who I am": Identity expressiveness and the theory of planned behavior
Thorbjørnsen, Helge; Pedersen, Per Egil; Nysveen, Herbjørn
2007-01-01
- Peer reviewed This paper explores the role of self-identity expressiveness and social identity expressiveness in the context of Multimedia Messaging (MMS) adoption. An extended version of the Theory of Planned Behavior (TPB) including a wider array of identity and social influences is developed and tested. As hypothesized, self-identity expressiveness and social identity expressiveness prove to be significant determinants of intentions to use. Moreover, the extended TPB model explains 62...
Expressions for third-order aberration theory for holographic images
Indian Academy of Sciences (India)
holds for the phase of reference wave φR, with (xo yo zo) replaced by (xr yr zr). Similarly if a point source at (xc yc zc) supplies reconstruction wave, its phase is given by the same expression with the substitution of (xc yc zc) for (xo yo zo) and λc, the re- constructing wavelength for λo. Thus the expression for φv can be ...
[The issue of feasibility of a general theory of aging. II. The parametabolic theory of aging].
Golubev, A G
2009-01-01
Life on Earth has evolved from the chemical world, so nothing of chemistry has disappeared in biology even though of might become unapparent being obscured or counteracted by some other chemistry according to the biological design. Living bodies incorporate molecules involved in biological functions with all their potencies, not only those implicated in the respective functions. The useful properties are exploited by enzymatic catalysis. The excessive properties have manifestations that accompany the enzymatic processes and may be not only irrelevant but even overtly adverse. The accumulation of damage caused by these multiple parametabolic processes results in the reduction of vitality generally known as aging. Another chemical legacy is the exponential dependency of mortality rate on age, which emerged because, in the multimolecular prebiotic aggregates, the role of the main variable in the Arrhenius equation for their decomposition shifted from temperature to activation barrier, which was compromised by the parametabolic processes. This resulted in the shift of the effect of the ever-acting parametabolic damage, as it is manifested in changes in mortality, to later ages. Numerical modelling shows that, in this case, the evolutionary acquisition of new functions that increase resistance to the causes of death may be associated with increased rate of functional decline and reduced cohort lifespan yet increased investment of resources into progeny and thus increased overall fitness, favoured by natural selection.
Energy Technology Data Exchange (ETDEWEB)
Schmalian, J. [University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois 61801 (United States); Pines, D. [University of Illinois at Urbana-Champaign, Loomis Laboratory of Physics, 1110 West Green Street, Urbana, Illinois 61801 (United States)]|[Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Stojkovic, B. [Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States)
1999-07-01
We use a solution of the spin fermion model which is valid in the quasistatic limit {pi}T{gt}{omega}{sub sf}, found in the intermediate (pseudoscaling) regime of the magnetic phase diagram of cuprate superconductors, to obtain results for the temperature and doping dependence of the single particle spectral density, the electron-spin fluctuation vertex function, and the low frequency dynamical spin susceptibility. The resulting strong anisotropy of the spectral density and the vertex function lead to the qualitatively different behavior of {ital hot} [around {bold k}=({pi},0)] and {ital cold} [around {bold k}=({pi}/2,{pi}/2)] quasiparticles seen in ARPES experiments. We find that the broad high energy features found in ARPES measurements of the spectral density of the underdoped cuprate superconductors are determined by strong antiferromagnetic (AF) correlations and incoherent precursor effects of an SDW state, with reduced renormalized effective coupling constant. Due to this transfer of spectral weight to higher energies, the low frequency spectral weight of {ital hot} states is strongly reduced but couples very strongly to the spin excitations of the system. For realistic values of the antiferromagnetic correlation length, their Fermi surface changes its general shape only slightly but the strong scattering of hot states makes the Fermi surface crossing invisible above a pseudogap temperature T{sub {asterisk}}. The electron spin-fluctuation vertex function, i.e., the effective interaction of low energy quasiparticles and spin degrees of freedom, is found to be strongly anisotropic and enhanced for hot quasiparticles; the corresponding charge-fluctuation vertex is considerably diminished. We thus demonstrate that, once established, strong AF correlations act to reduce substantially the effective electron-phonon coupling constant in cuprate superconductors. {copyright} {ital 1999} {ital The American Physical Society}
Generalized plane waves in Poincaré gauge theory of gravity
Blagojević, Milutin; Cvetković, Branislav; Obukhov, Yuri N.
2017-09-01
A family of exact vacuum solutions, representing generalized plane waves propagating on the (anti-)de Sitter background, is constructed in the framework of Poincaré gauge theory. The wave dynamics is defined by the general Lagrangian that includes all parity even and parity odd invariants up to the second order in the gauge field strength. The structure of the solution shows that the wave metric significantly depends on the spacetime torsion.
The perfect theory a century of geniuses and the battle over general relativity
Ferreira, Pedro G
2014-01-01
Physicists have been exploring, debating, and questioning the general theory of relativity ever since Albert Einstein first presented it in 1915. Their work has uncovered a number of the universe’s more surprising secrets, and many believe further wonders remain hidden within the theory’s tangle of equations, waiting to be exposed. In this sweeping narrative of science and culture, astrophysicist Pedro Ferreira brings general relativity to life through the story of the brilliant physicists, mathematicians, and astronomers who have taken up its challenge. For these scientists, the theory has been both a treasure trove and an enigma, fueling a century of intellectual struggle and triumph.. Einstein’s theory, which explains the relationships among gravity, space, and time, is possibly the most perfect intellectual achievement of modern physics, yet studying it has always been a controversial endeavor. Relativists were the target of persecution in Hitler’s Germany, hounded in Stalin’s Russia, and disdai...
A New Conformal Theory of Semi-Classical Quantum General Relativity
Directory of Open Access Journals (Sweden)
Suhendro I.
2007-10-01
Full Text Available We consider a new four-dimensional formulation of semi-classical quantum general relativity in which the classical space-time manifold, whose intrinsic geometric properties give rise to the effects of gravitation, is allowed to evolve microscopically by means of a conformal function which is assumed to depend on some quantum mechanical wave function. As a result, the theory presented here produces a unified field theory of gravitation and (microscopic electromagnetism in a somewhat simple, effective manner. In the process, it is seen that electromagnetism is actually an emergent quantum field originating in some kind of stochastic smooth extension (evolution of the gravitational field in the general theory of relativity.
The origin of life on earth: A new general dynamic theory
Snooks, Graeme Donald
It is well known by those concerned with the origin of life on Earth that Darwinian evolutionary theory has significant limitations. The most important of these, it is argued here, is a mismatch between the central dogma of natural selection and the competitive conditions associated not only with the emergence of life but also with its recovery from major extinction episodes. To resolve this problem, a new general dynamic theory - the "dynamic-strategy theory" - has been proposed. This realist theory not only casts light on the way life first emerged on earth, it also explains and predicts the systematically fluctuating fortunes of both nature and human society. The Snooks-Panov algorithm is employed to justify this integrated approach.
Supersymmetry, quantum gauge anomalies and generalized Chern-Simons terms in chiral gauge theory
Energy Technology Data Exchange (ETDEWEB)
Schmidt, Torsten
2009-05-13
The purpose of this thesis is to investigate the interplay of anomaly cancellation and generalized Chern-Simons terms in four-dimensional chiral gauge theory. We start with a detailed discussion of generalized Chern-Simons terms with the canellation of anomalies via the Green-Schwarz mechanism. With this at hand, we investigate the situation in general N=1 supersymmetric field theories with generalized Chern-Simons terms. Two simple consistency conditions are shown to encode strong constraints on the allowed anomalies for different types of gauge groups. In one major part of this thesis we are going to display to what extent one has to modify the existing formalism in order to allow for the cancellation of quantum gauge anomalies via the Green-Schwarz mechanism. At the end of this thesis we comment on a puzzle in the literature on supersymmetric field theories with massive tensor fields. The potential contains a term that does not arise from eliminating an auxiliary field. We clarify the origin of this term and display the relation to standard D-term potential. In an appendix it is explicitly shown how these low energy effective actions might be connected to the formulation of four-dimensional gauge theories discussed at earlier stages of this thesis. (orig.)
Quaternion based generalization of Chern–Simons theories in arbitrary dimensions
Directory of Open Access Journals (Sweden)
Alessandro D'Adda
2017-08-01
Full Text Available A generalization of Chern–Simons gauge theory is formulated in any dimension and arbitrary gauge group where gauge fields and gauge parameters are differential forms of any degree. The quaternion algebra structure of this formulation is shown to be equivalent to a three Z2-gradings structure, thus clarifying the quaternion role in the previous formulation.
General theory of three-dimensional radiance measurements with optical microprobes RID A-1977-2009
DEFF Research Database (Denmark)
FukshanskyKazarinova, N.; Fukshansky, L.; Kuhl, M.
1997-01-01
Measurements of the radiance distribution and fluence rate within turbid samples with fiber-optic radiance microprobes contain a large variable instrumental error caused by the nonuniform directional sensitivity of the microprobes. A general theory of three-dimensional radiance measurements...
Quaternion based generalization of Chern-Simons theories in arbitrary dimensions
D'Adda, Alessandro; Kawamoto, Noboru; Shimode, Naoki; Tsukioka, Takuya
2017-08-01
A generalization of Chern-Simons gauge theory is formulated in any dimension and arbitrary gauge group where gauge fields and gauge parameters are differential forms of any degree. The quaternion algebra structure of this formulation is shown to be equivalent to a three Z2-gradings structure, thus clarifying the quaternion role in the previous formulation.
Generalized WDVV equations for F4 pure N=2 Super-Yang-Mills theory
Hoevenaars, L.K.; Kersten, P.H.M.; Martini, Ruud
2000-01-01
An associative algebra of holomorphic differential forms is constructed associated with pure N=2 Super-Yang-Mills theory for the Lie algebra $F_4$ . Existence and associativity of this algebra, combined with the general arguments in the work of Marshakov, Mironov and Morozov, proves that the
Generalized WDVV equations for F4 pure N=2 Super-Yang-Mills theory
Hoevenaars, L.K.; Kersten, P.H.M.; Martini, Ruud
2001-01-01
An associative algebra of holomorphic differential forms is constructed associated with pure N=2 super-Yang–Mills theory for the Lie algebra F4. Existence and associativity of this algebra, combined with the general arguments in the work of Marshakov, Mironov and Morozov, proves that the
General Strain Theory as a Basis for the Design of School Interventions
Moon, Byongook; Morash, Merry
2013-01-01
The research described in this article applies general strain theory to identify possible points of intervention for reducing delinquency of students in two middle schools. Data were collected from 296 youths, and separate negative binomial regression analyses were used to identify predictors of violent, property, and status delinquency. Emotional…
General Strain Theory and Delinquency: Extending a Popular Explanation to American Indian Youth
Eitle, David; Eitle, Tamela McNulty
2016-01-01
Despite evidence that American Indian (AI) adolescents are disproportionately involved in crime and delinquent behavior, there exists scant research exploring the correlates of crime among this group. We posit that Agnew's General Strain Theory (GST) is well suited to explain AI delinquent activity. Using the National Longitudinal Study of…
A Test of Gottfredson and Hirschi's General Theory of Crime in African American Adolescents
Vazsonyi, Alexander T.; Crosswhite, Jennifer M.
2004-01-01
Considerable empirical support exists for "The General Theory of Crime". However, little work has been completed on members of minority populations in the United States. The current investigation examined whether low self-control predicted deviance in a sample of African American adolescents (n = 661; 55.1 percent female; mean age = 15.7 years).…
Superfield generalization of the classical action-at-a-distance theory
Energy Technology Data Exchange (ETDEWEB)
Tugai, V.V. (Scientific Physicotechnological Center, 310145 Kharkov (Ukraine)); Zheltukhin, A.A. (Kharkov Physicotechnical Institute, 310108 Kharkov (Ukraine))
1995-04-15
A generalization of the Fokker-Schwarzschild-Tetrode-Wheeler-Feynman electromagnetic theory onto superspace is considered. The classical vector and spinor fields belonging to the Maxwell supermultiplet are built of the world-line coordinates of the charged particles in superspace.
Chaos and Crisis: Propositions for a General Theory of Crisis Communication.
Seeger, Matthew W.
2002-01-01
Presents key concepts of chaos theory (CT) as a general framework for describing organizational crisis and crisis communication. Discusses principles of predictability, sensitive dependence on initial conditions, bifurcation as system breakdown, emergent self-organization, and fractals and strange attractors as principles of organization. Explores…
Vos, Hans J.
1994-01-01
Describes the construction of a model of computer-assisted instruction using a qualitative block diagram based on general systems theory (GST) as a framework. Subject matter representation is discussed, and appendices include system variables and system equations of the GST model, as well as an example of developing flexible courseware. (Contains…
Gulyaev, Sergei A.; Stonyer, Heather R.
2002-01-01
Develops an integrated approach based on the use of general systems theory (GST) and the concept of 'mapping' scientific knowledge to provide students with tools for a more holistic understanding of science. Uses GST as the core methodology for understanding science and its complexity. Discusses the role of scientific community in producing…
Organisational change theory and the use of indicators in general practice.
Rhydderch, S.M.; Elwyn, G.; Marshall, M.N.; Grol, R.P.T.M.
2004-01-01
General practices are making greater use of indicators to help shape and develop organisational arrangements supporting the delivery of health care. Debate continues concerning what exactly such indicators should measure and how they should be used to achieve improvement. Organisational theories can
Developmental Predictors of Violent Extremist Attitudes : A Test of General Strain Theory
Nivette, Amy; Eisner, Manuel; Ribeaud, Denis
2017-01-01
Objectives: This study examines the influence of collective strain on support for violent extremism among an ethnically diverse sample of Swiss adolescents. This study explores two claims derived from general strain theory: (1) Exposure to collective strain is associated with higher support for
Communication: The simplified generalized entropy theory of glass-formation in polymer melts.
Freed, Karl F
2015-08-07
While a wide range of non-trivial predictions of the generalized entropy theory (GET) of glass-formation in polymer melts agree with a large number of observed universal and non-universal properties of these glass-formers and even for the dependence of these properties on monomer molecular structure, the huge mathematical complexity of the theory precludes its extension to describe, for instance, the perplexing, complex behavior observed for technologically important polymer films with thickness below ∼100 nm and for which a fundamental molecular theory is lacking for the structural relaxation. The present communication describes a hugely simplified version of the theory, called the simplified generalized entropy theory (SGET) that provides one component necessary for devising a theory for the structural relaxation of thin polymer films and thereby supplements the first required ingredient, the recently developed Flory-Huggins level theory for the thermodynamic properties of thin polymer films, before the concluding third step of combining all the components into the SGET for thin polymer films. Comparisons between the predictions of the SGET and the full GET for the four characteristic temperatures of glass-formation provide good agreement for a highly non-trivial model system of polymer melts with chains of the structure of poly(n-α olefins) systems where the GET has produced good agreement with experiment. The comparisons consider values of the relative backbone and side group stiffnesses such that the glass transition temperature decreases as the amount of excess free volume diminishes, contrary to general expectations but in accord with observations for poly(n-alkyl methacrylates). Moreover, the SGET is sufficiently concise to enable its discussion in a standard course on statistical mechanics or polymer physics.
A generalized DEMATEL theory with a shrinkage coefficient for an indirect relation matrix
Directory of Open Access Journals (Sweden)
Liu Hsiang-Chuan
2017-01-01
Full Text Available In this paper, a novel decision-making trial and evaluation laboratory (DEMATEL theory with a shrinkage coefficient of indirect relation matrix is proposed, and a useful validity index, called Liu’s validity index, is also proposed for evaluating the performance of any DEMATEL model. If the shrinkage coefficient of an indirect relation matrix is equal to 1, then this new theory is identical to the traditional theory; in other words, it is a generalization of the traditional theory. Furthermore, the indirect relation is always considerably greater than the direct one in traditional DEMATEL theory, which is unreasonable and unfair because it overemphasizes the influence of the indirect relation. We prove in this paper that if the shrinkage coefficient is equal to 0.5, then the indirect relation is less than its direct relation. Because the shrinkage coefficient belongs to [0.5, 1], according to Liu’s validity index, we can find a more appropriate shrinkage coefficient to obtain a more efficient DEMATEL method. Some crucial properties of this new theory are discussed, and a simple example is provided to illustrate the advantages of the proposed theory.
Gender, general theory of crime and computer crime: an empirical test.
Moon, Byongook; McCluskey, John D; McCluskey, Cynthia P; Lee, Sangwon
2013-04-01
Regarding the gender gap in computer crime, studies consistently indicate that boys are more likely than girls to engage in various types of computer crime; however, few studies have examined the extent to which traditional criminology theories account for gender differences in computer crime and the applicability of these theories in explaining computer crime across gender. Using a panel of 2,751 Korean youths, the current study tests the applicability of the general theory of crime in explaining the gender gap in computer crime and assesses the theory's utility in explaining computer crime across gender. Analyses show that self-control theory performs well in predicting illegal use of others' resident registration number (RRN) online for both boys and girls, as predicted by the theory. However, low self-control, a dominant criminogenic factor in the theory, fails to mediate the relationship between gender and computer crime and is inadequate in explaining illegal downloading of software in both boy and girl models. Theoretical implication of the findings and the directions for future research are discussed.
Non-supersymmetric matrix strings from generalized Yang-Mills theory on arbitrary Riemann surfaces
Billó, M.; D'Adda, A.; Provero, P.
2000-06-01
We quantize pure 2d Yang-Mills theory on an arbitrary Riemann surface in the gauge where the field strength is diagonal. Twisted sectors originate, as in Matrix string theory, from permutations of the eigenvalues around homotopically non-trivial loops. These sectors, that must be discarded in the usual quantization due to divergences occurring when two eigenvalues coincide, can be consistently kept if one modifies the action by introducing a coupling of the field strength to the space-time curvature. This leads to a generalized Yang-Mills theory whose action reduces to the usual one in the limit of zero curvature. After integrating over the non-diagonal components of the gauge fields, the theory becomes a free string theory (sum over unbranched coverings) with a U (1) gauge theory on the world-sheet. This is shown to be equivalent to a lattice theory with a gauge group which is the semi-direct product of S N and U (1) N. By using well known results on the statistics of coverings, the partition function on arbitrary Riemann surfaces and the kernel functions on surfaces with boundaries are calculated. Extensions to include branch points and non-abelian groups on the world-sheet are briefly commented upon.
On the generalization of attitude accessibility after repeated attitude expression
Descheemaeker, Mathilde; Spruyt, Adriaan; Fazio, Russell H.; Hermans, Dirk
2017-01-01
Abstract The more accessible an attitude is, the stronger is its influence on information processing and behavior. Accessibility can be increased through attitude rehearsal, but it remains unknown whether attitude rehearsal also affects the accessibility of related attitudes. To investigate this hypothesis, participants in an experimental condition repeatedly expressed their attitudes towards exemplars of several semantic categories during an evaluative categorization task. Participants in a ...
Energy Technology Data Exchange (ETDEWEB)
Ludyk, Guenter [Bremen Univ. (Germany). Physics and Electrical Engineering
2013-11-01
Derives the fundamental equations of Einstein's theory of special and general relativity using matrix calculus, without the help of tensors. Provides necessary mathematical tools in a user-friendly way, either directly in the text or in the appendices. Appendices contain an introduction to classical dynamics as a refresher of known fundamental physics. Rehearses vector and matrix calculus, differential geometry, and some special solutions of general relativity in the appendices. This book is an introduction to the theories of Special and General Relativity. The target audience are physicists, engineers and applied scientists who are looking for an understandable introduction to the topic - without too much new mathematics. The fundamental equations of Einsteins theory of Special and General Relativity are derived using matrix calculus, without the help of tensors. This feature makes the book special and a valuable tool for scientists and engineers with no experience in the field of tensor calculus. In part I the foundations of Special Relativity are developed, part II describes the structure and principle of General Relativity. Part III explains the Schwarzschild solution of spherical body gravity and examines the ''Black Hole'' phenomenon. Any necessary mathematical tools are user friendly provided, either directly in the text or in the appendices.
On multifield Born and Born-Infeld theories and their non-Abelian generalizations
Energy Technology Data Exchange (ETDEWEB)
Cerchiai, Bianca L. [Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi,P.zza del Viminale 1, I-00184 Roma (Italy); DISAT, Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino,via P. Giuria, 1, 20125 Torino (Italy); Trigiante, Mario [DISAT, Politecnico di Torino,Corso Duca degli Abruzzi 24, I-10129 Torino (Italy); Istituto Nazionale di Fisica Nucleare (INFN), Sezione di Torino,via P. Giuria, 1, 20125 Torino (Italy)
2016-10-28
Starting from a recently proposed linear formulation in terms of auxiliary fields, we study n-field generalizations of Born and Born-Infeld theories. In this description the Lagrangian is quadratic in the vector field strengths and the symmetry properties (including the characteristic self-duality) of the corresponding non-linear theory are manifest as on-shell duality symmetries and depend on the choice of the (homogeneous) manifold spanned by the auxiliary scalar fields and the symplectic frame. By suitably choosing these defining properties of the quadratic Lagrangian, we are able to reproduce some known multi-field Born-Infeld theories and to derive new non-linear models, such as the n-field Born theory. We also discuss non-Abelian generalizations of these theories obtained by choosing the vector fields in the adjoint representation of an off-shell compact global symmetry group K and replacing them by non-Abelian, K-covariant field strengths, thus promoting K to a gauge group.
A generalization of random matrix theory and its application to statistical physics
Wang, Duan; Zhang, Xin; Horvatic, Davor; Podobnik, Boris; Eugene Stanley, H.
2017-02-01
To study the statistical structure of crosscorrelations in empirical data, we generalize random matrix theory and propose a new method of cross-correlation analysis, known as autoregressive random matrix theory (ARRMT). ARRMT takes into account the influence of auto-correlations in the study of cross-correlations in multiple time series. We first analytically and numerically determine how auto-correlations affect the eigenvalue distribution of the correlation matrix. Then we introduce ARRMT with a detailed procedure of how to implement the method. Finally, we illustrate the method using two examples taken from inflation rates for air pressure data for 95 US cities.
Bloom, Elana; Heath, Nancy
2010-01-01
Children with nonverbal learning disabilities (NVLD) have been found to be worse at recognizing facial expressions than children with verbal learning disabilities (LD) and without LD. However, little research has been done with adolescents. In addition, expressing and understanding facial expressions is yet to be studied among adolescents with LD…
General theory of experiment containing reproducible data: The reduction to an ideal experiment
Nigmatullin, Raoul R.; Zhang, Wei; Striccoli, Domenico
2015-10-01
The authors suggest a general theory for consideration of all experiments associated with measurements of reproducible data in one unified scheme. The suggested algorithm does not contain unjustified suppositions and the final function that is extracted from these measurements can be compared with hypothesis that is suggested by the theory adopted for the explanation of the object/phenomenon studied. This true function is free from the influence of the apparatus (instrumental) function and when the "best fit", or the most acceptable hypothesis, is absent, can be presented as a segment of the Fourier series. The discrete set of the decomposition coefficients describes the final function quantitatively and can serve as an intermediate model that coincides with the amplitude-frequency response (AFR) of the object studied. It can be used by theoreticians also for comparison of the suggested theory with experimental observations. Two examples (Raman spectra of the distilled water and exchange by packets between two wireless sensor nodes) confirm the basic elements of this general theory. From this general theory the following important conclusions follow: 1. The Prony's decomposition should be used in detection of the quasi-periodic processes and for quantitative description of reproducible data. 2. The segment of the Fourier series should be used as the fitting function for description of observable data corresponding to an ideal experiment. The transition from the initial Prony's decomposition to the conventional Fourier transform implies also the elimination of the apparatus function that plays an important role in the reproducible data processing. 3. The suggested theory will be helpful for creation of the unified metrological standard (UMS) that should be used in comparison of similar data obtained from the same object studied but in different laboratories with the usage of different equipment. 4. Many cases when the conventional theory confirms the experimental
Directory of Open Access Journals (Sweden)
Nureev Rustem, M.
2016-03-01
Full Text Available The paper was prepared for the 80-th anniversary of publishing of John Maynard Keynes’ “General Theory of Employment, Interest and Money”. It discusses the stages of the economist’s life, the main books written prior to "The General Theory ...". Particular attention is devoted to the development issues of the monetary policy in the works of "Indian Currency and Finance", ”A Tract on Monetary Reform” and "A Treatise on Money". A special section is dedicated to the analysis of Keynes’ methodology, its logic and structure, influenced by John. E. Moore. The paper reveals the unity and the difference in approaches of A. Marshall and John M. Keynes, and explores new categories of behavioral economics and marginal analysis, which established the success of "General Theory of Employment, Interest and Money", shows the value of Keynes's theory for the further development of macroeconomics. Particular attention is paid to the popularization of Keynes's ideas from the initial interpretations of "The General Theory ..." to the neoclassical synthesis and further to neo-Keynesianism and post-Keynesianism. The paper studies the unity and the distinction between Hicks’ and American Keynesianism. Hicksian assumptions of a savings-investment function have determined the features of the IS-LM model. The contributions to the development of Keynesianism A. Hansen and P. A. Samuelson are also shown, as well as the history of the "Keynesian Cross". A comparative analysis of the neoclassical and Keynesian models of general economic equilibrium is given and analyzes the institutional reasons explaining differences between neoclassical and Keynesian paradigms. A special section is devoted to the Keynesian theory of growth, showing unity and difference of R. Harrod and E. Domar models, along with their impact on the creation of Development Economics. Simplified understanding of Keynes's legacy has caused the emergence of unorthodox Keynesianism. The paper
Energy Technology Data Exchange (ETDEWEB)
Kober, Martin
2010-07-01
The specific content of the present thesis is presented in the following way. First the most important contents of quantum theory and general relativity theory are presented. In connection with the general relativity theory the mathematical property of the diffeomorphism invariance plays the deciding role, while concerning the quantum theory starting from the Copenhagen interpretation first the measurement problem is treated, before basing on the analysis of concrete phenomena and the mathematical apparatus of quantum theory the nonlocality is brought into focus as an important property. This means that both theories suggest a relationalistic view of the nature of the space. This analysis of the theoretical foundations of quantum theory and general relativity theory in relation to the nature of the space obtains only under inclusion of Kant's philosophy and his analysis of the terms space and time as fundamental forms of perception its full persuasive power. Then von Weizsaeckers quantum theory of the ur-alternatives is presented. Finally attempts are made to apply the obtained knowledge to the question of the quantum-theoretical formulation of general relativity theory.
Nigmatullin, Raoul R.; Maione, Guido; Lino, Paolo; Saponaro, Fabrizio; Zhang, Wei
2017-01-01
In this paper, we suggest a general theory that enables to describe experiments associated with reproducible or quasi-reproducible data reflecting the dynamical and self-similar properties of a wide class of complex systems. Under complex system we understand a system when the model based on microscopic principles and suppositions about the nature of the matter is absent. This microscopic model is usually determined as ;the best fit" model. The behavior of the complex system relatively to a control variable (time, frequency, wavelength, etc.) can be described in terms of the so-called intermediate model (IM). One can prove that the fitting parameters of the IM are associated with the amplitude-frequency response of the segment of the Prony series. The segment of the Prony series including the set of the decomposition coefficients and the set of the exponential functions (with k = 1,2,…,K) is limited by the final mode K. The exponential functions of this decomposition depend on time and are found by the original algorithm described in the paper. This approach serves as a logical continuation of the results obtained earlier in paper [Nigmatullin RR, W. Zhang and Striccoli D. General theory of experiment containing reproducible data: The reduction to an ideal experiment. Commun Nonlinear Sci Numer Simul, 27, (2015), pp 175-192] for reproducible experiments and includes the previous results as a partial case. In this paper, we consider a more complex case when the available data can create short samplings or exhibit some instability during the process of measurements. We give some justified evidences and conditions proving the validity of this theory for the description of a wide class of complex systems in terms of the reduced set of the fitting parameters belonging to the segment of the Prony series. The elimination of uncontrollable factors expressed in the form of the apparatus function is discussed. To illustrate how to apply the theory and take advantage of its
The process of patient enablement in general practice nurse consultations: a grounded theory study.
Desborough, Jane; Banfield, Michelle; Phillips, Christine; Mills, Jane
2017-05-01
The aim of this study was to gain insight into the process of patient enablement in general practice nursing consultations. Enhanced roles for general practice nurses may benefit patients through a range of mechanisms, one of which may be increasing patient enablement. In studies with general practitioners enhanced patient enablement has been associated with increases in self-efficacy and skill development. This study used a constructivist grounded theory design. In-depth interviews were conducted with 16 general practice nurses and 23 patients from 21 general practices between September 2013 - March 2014. Data generation and analysis were conducted concurrently using constant comparative analysis and theoretical sampling focussing on the process and outcomes of patient enablement. Use of the storyline technique supported theoretical coding and integration of the data into a theoretical model. A clearly defined social process that fostered and optimised patient enablement was constructed. The theory of 'developing enabling healthcare partnerships between nurses and patients in general practice' incorporates three stages: triggering enabling healthcare partnerships, tailoring care and the manifestation of patient enablement. Patient enablement was evidenced through: 1. Patients' understanding of their unique healthcare requirements informing their health seeking behaviours and choices; 2. Patients taking an increased lead in their partnership with a nurse and seeking choices in their care and 3. Patients getting health care that reflected their needs, preferences and goals. This theoretical model is in line with a patient-centred model of health care and is particularly suited to patients with chronic disease. © 2016 John Wiley & Sons Ltd.
Improved theory of generalized meteo-ballistic weighting factor functions and their use
Directory of Open Access Journals (Sweden)
Vladimir Cech
2016-06-01
Full Text Available It follows from the analysis of artillery fire errors that approximately two-thirds of the inaccuracy of indirect artillery fire is caused by inaccuracies in the determination of the meteo parameters included in fire error budget model. Trajectories calculated under non-standard conditions are considered to be perturbed. The tools utilized for the analysis of perturbed trajectories are weighting factor functions (WFFs which are a special kind of sensitivity functions. WFFs are used for calculation of meteo ballistic elements µB (ballistic wind wB, density ρB, virtual temperature τB, pressure pB as well. We have found that the existing theory of WFF calculation has several significant shortcomings. The aim of the article is to present a new, improved theory of generalized WFFs that eliminates the deficiencies found. Using this theory will improve methods for designing firing tables, fire control systems algorithms, and meteo message generation algorithms.
When West Meets East: Generalizing Theory and Expanding the Conceptual Toolkit of Criminology.
Messner, Steven F
2015-06-01
This paper considers the ways in which established criminological theories born and nurtured in the West might need to be transformed to be applicable to the context of East Asian societies. The analyses focus on two theoretical perspectives-Situational Action Theory and Institutional Anomie Theory-that are located at opposite ends of the continuum with respect to levels of analysis. I argue that the accumulated evidence from cross-cultural psychology and criminological research in East Asian societies raises serious questions about the feasibility of simply transporting these perspectives from the West to the East. Instead, my analyses suggest that the formulation of theoretical explanations of crime that are truly universal will require criminologists to create and incorporate new concepts that are more faithful to the social realities of non-Western societies, societies such as those in East Asia and Asia more generally.
Non-cooperative stochastic differential game theory of generalized Markov jump linear systems
Zhang, Cheng-ke; Zhou, Hai-ying; Bin, Ning
2017-01-01
This book systematically studies the stochastic non-cooperative differential game theory of generalized linear Markov jump systems and its application in the field of finance and insurance. The book is an in-depth research book of the continuous time and discrete time linear quadratic stochastic differential game, in order to establish a relatively complete framework of dynamic non-cooperative differential game theory. It uses the method of dynamic programming principle and Riccati equation, and derives it into all kinds of existence conditions and calculating method of the equilibrium strategies of dynamic non-cooperative differential game. Based on the game theory method, this book studies the corresponding robust control problem, especially the existence condition and design method of the optimal robust control strategy. The book discusses the theoretical results and its applications in the risk control, option pricing, and the optimal investment problem in the field of finance and insurance, enriching the...
2015-01-01
This modern translation of Sophus Lie's and Friedrich Engel's “Theorie der Transformationsgruppen Band I” will allow readers to discover the striking conceptual clarity and remarkably systematic organizational thought of the original German text. Volume I presents a comprehensive introduction to the theory and is mainly directed towards the generalization of ideas drawn from the study of examples. The major part of the present volume offers an extremely clear translation of the lucid original. The first four chapters provide not only a translation, but also a contemporary approach, which will help present day readers to familiarize themselves with the concepts at the heart of the subject. The editor's main objective was to encourage a renewed interest in the detailed classification of Lie algebras in dimensions 1, 2 and 3, and to offer access to Sophus Lie's monumental Galois theory of continuous transformation groups, established at the end of the 19th Century. Lie groups are widespread in mathematics, p...
Fundamentals of the fuzzy logic-based generalized theory of decisions
Aliev, Rafik Aziz
2013-01-01
Every day decision making and decision making in complex human-centric systems are characterized by imperfect decision-relevant information. Main drawback of the existing decision theories is namely incapability to deal with imperfect information and modeling vague preferences. Actually, a paradigm of non-numerical probabilities in decision making has a long history and arose also in Keynes’s analysis of uncertainty. There is a need for further generalization – a move to decision theories with perception-based imperfect information described in NL. The languages of new decision models for human-centric systems should be not languages based on binary logic but human-centric computational schemes able to operate on NL-described information. Development of new theories is now possible due to an increased computational power of information processing systems which allows for computations with imperfect information, particularly, imprecise and partially true information, which are much more complex than comput...
Liu, Xu; Greenhalgh, Stewart; Zhou, Bing; Heinson, Graham
2016-12-01
A method using modified attenuation factor function is suggested to determine the parameters of the generalized Zener model approximating the attenuation factor function. This method is applied to constitute the poroviscoelastic model based on the effective Biot theory which considers the attenuative solid frame of reservoir. In the poroviscoelastic model, frequency-dependent bulk modulus and shear modulus of solid frame are represented by generalized Zener models. As an application, the borehole logging dispersion equations from Biot theory are extended to include effects from the intrinsic body attenuation in formation media in full-frequency range. The velocity dispersions of borehole guided waves are calculated to investigate the influence from attenuative bore fluid, attenuative solid frame of the formation and impermeable bore wall.
Generalized Weyl solutions in d=5 Einstein-Gauss-Bonnet theory: the static black ring
Kleihaus, Burkhard; Radu, Eugen
2009-01-01
We argue that the Weyl coordinates and the rod-structure employed to construct static axisymmetric solutions in higher dimensional Einstein gravity can be generalized to the Einstein-Gauss-Bonnet theory. As a concrete application of the general formalism, we present numerical evidence for the existence of static black ring solutions in Einstein-Gauss-Bonnet theory in five spacetime dimensions. They approach asymptotically the Minkowski background and are supported against collapse by a conical singularity in the form of a disk. An interesting feature of these solutions is that the Gauss-Bonnet term reduces the conical excess of the static black rings. Analogous to the Einstein-Gauss-Bonnet black strings, for a given mass the static black rings exist up to a maximal value of the Gauss-Bonnet coupling constant $\\alpha'$. Moreover, in the limit of large ring radius, the suitably rescaled black ring maximal value of $\\alpha'$ and the black string maximal value of $\\alpha'$ agree.
Generalized second law of thermodynamics in f(R,T) theory of gravity
Momeni, D.; Moraes, P. H. R. S.; Myrzakulov, R.
2016-07-01
We present a study of the generalized second law of thermodynamics in the scope of the f(R,T) theory of gravity, with R and T representing the Ricci scalar and trace of the energy-momentum tensor, respectively. From the energy-momentum tensor equation for the f(R,T)=R+f(T) case, we calculate the form of the geometric entropy in such a theory. Then, the generalized second law of thermodynamics is quantified and some relations for its obedience in f(R,T) gravity are presented. Those relations depend on some cosmological quantities, as the Hubble and deceleration parameters, and also on the form of f(T).
Generalized second law of thermodynamics in f(R,T) theory of gravity
Momeni, D; Myrzakulov, R
2015-01-01
We present a study of the generalized second law of thermodynamics in the scope of the f(R,T) theory of gravity, with R and T representing the Ricci scalar and trace of the energy-momentum tensor, respectively. From the energy-momentum tensor equation for the f(R,T) = R + f(T) case, we calculate the form of the geometric entropy in such a theory. Then, the generalized second law of thermodynamics is quantified and some relations for its obedience in f(R,T) gravity are presented. Those relations depend on some cosmological quantities, as the Hubble and deceleration parameters, and on the form of f(T).
Directory of Open Access Journals (Sweden)
Wei Bin ZHANG
2016-02-01
Full Text Available This paper generalizes the dynamic growth model with wealth accumulation and human capital accumulation proposed by Zhang (2013 by making all the parameters as time-dependent parameters. The original model is an extension of the Uzawa-Lucas model to a heterogeneous household economy with multiple ways of human capital accumulation. It synthesizes the basic ideas of the Walrasian general equilibrium theory, Arrow’s learning by producing, Zhang’s learning by consuming (creative learning, the neoclassical growth theory, and the Uzawa-Lucas two-sector model. The behavior of the household is described with an alternative approach to household behavior. The economic system consists of one production sector and one education sector. Households are different in propensities to save, to obtain education and to consume, and in learning abilities. We simulate the model to demonstrate existence of equilibrium points, motion of the dynamic system, and oscillations due to different exogenous shocks.
Heterogeneity in the Strehler-Mildvan general theory of mortality and aging.
Zheng, Hui; Yang, Yang; Land, Kenneth C
2011-02-01
This study examines and further develops the classic Strehler-Mildvan (SM) general theory of mortality and aging. Three predictions from the SM theory are tested by examining the age dependence of mortality patterns for 42 countries (including developed and developing countries) over the period 1955-2003. By applying finite mixture regression models, principal component analysis, and random-effects panel regression models, we find that (1) the negative correlation between the initial adulthood mortality rate and the rate of increase in mortality with age derived in the SM theory exists but is not constant; (2) within the SM framework, the implied age of expected zero vitality (expected maximum survival age) also is variable over time; (3) longevity trajectories are not homogeneous among the countries; (4) Central American and Southeast Asian countries have higher expected age of zero vitality than other countries in spite of relatively disadvantageous national ecological systems; (5) within the group of Central American and Southeast Asian countries, a more disadvantageous national ecological system is associated with a higher expected age of zero vitality; and (6) larger agricultural and food productivities, higher labor participation rates, higher percentages of population living in urban areas, and larger GDP per capita and GDP per unit of energy use are important beneficial national ecological system factors that can promote survival. These findings indicate that the SM theory needs to be generalized to incorporate heterogeneity among human populations.
Directory of Open Access Journals (Sweden)
Suren Zolyan
2016-01-01
Full Text Available We suggest to reconsider the generally accepted conceptions on the relationship between the general theory of language, on the one hand, and the poetic semantics and linguistic poetics, on the other. Based on the concepts of ekspressema, createma and evristema were introduced by V.P.Grigoryev we try to demonstrate the inadequacy of the traditional dichotomy between the poetic usage of language - as if it were the only creative sphere of linguistic activity - and all another types. The matter is that the text-oriented methods of linguistic poetics have anticipated the lexical-oriented approaches in the general linguistic theory. Thus, linguistic poetics and poetic semantics are grounded on the idea that text is a basic unit of processing and lexical meanings are dependent on contextual and intertextual connections. In accordance of this approach V. Grigoryev had coined the new terminology and elaborated the special principles of compiling the dictionary of the Russian poetry. This was considered as a manifestation of the peculiarity of poetic language. Meanwhile, in the modern corpus linguistics the notion of any lexical unit is treated on similar way. Using the experience of poetic semantics, we put forward some principles of the text-oriented theory of language where word is not seen as a constant semantic entity predetermined through lexicon, but as a context-dependent variable. If meaning is identified as a function dependent on text, intertext and context, so the language proficiency is considered as a creative ability to determine what meaning can express the given word, including neologisms, in a particular context.
School truancy among Turkish high school students: A test of General Strain Theory
Ozgur Solakoglu; Ugur Orak
2016-01-01
School absenteeism is a complicated problem with a variety of causes. It has been shown to be one of the main predictors of school drop-outs as well as leading to delinquency and criminal behavior in adulthood. This study examines the applicability of General Strain Theory on educational factors by considering truancy as a risk behavior. In this empirical study, we test the explanatory powers of certain kinds of strain, including school strain, economic deprivation, negative life events, ange...
Quantum Bayesianism as the basis of general theory of decision-making.
Khrennikov, Andrei
2016-05-28
We discuss the subjective probability interpretation of the quantum-like approach to decision making and more generally to cognition. Our aim is to adopt the subjective probability interpretation of quantum mechanics, quantum Bayesianism (QBism), to serve quantum-like modelling and applications of quantum probability outside of physics. We analyse the classical and quantum probabilistic schemes of probability update, learning and decision-making and emphasize the role of Jeffrey conditioning and its quantum generalizations. Classically, this type of conditioning and corresponding probability update is based on the formula of total probability-one the basic laws of classical probability theory. © 2016 The Author(s).
LIGO GW150914 and GW151226 gravitational wave detection and generalized gravitation theory (MOG
Directory of Open Access Journals (Sweden)
J.W. Moffat
2016-12-01
Full Text Available The nature of gravitational waves in a generalized gravitation theory is investigated. The linearized field equations and the metric tensor quadrupole moment power and the decrease in radius of an inspiralling binary system of two compact objects are derived. The generalized Kerr metric describing a spinning black hole is determined by its mass M and the spin parameter a=cS/GM2. The LIGO-Virgo collaboration data is fitted with smaller binary black hole masses in agreement with the current electromagnetic, observed X-ray binary upper bound for a black hole mass, M≲10M⊙.
Ullmann, R Thomas; Ullmann, G Matthias
2011-01-27
We present a generalized free energy perturbation theory that is inspired by Monte Carlo techniques and based on a microstate description of a transformation between two states of a physical system. It is shown that the present free energy perturbation theory stated by the Zwanzig equation follows as a special case of our theory. Our method uses a stochastic mapping of the end states that associates a given microstate from one ensemble with a microstate from the adjacent ensemble according to a probability distribution. In contrast, previous free energy perturbation methods use a static, deterministic mapping that associates fixed pairs of microstates from the two ensembles. The advantages of our approach are that end states of differing configuration space volume can be treated easily also in the case of discrete configuration spaces and that the method does not require the potentially cumbersome search for an optimal deterministic mapping. The application of our theory is illustrated by some example problems. We discuss practical applications for which our findings could be relevant and point out perspectives for further development of the free energy perturbation theory.
Conformal Generally Covariant Quantum Field Theory: The Scalar Field and its Wick Products
Pinamonti, Nicola
2009-06-01
In this paper we generalize the construction of generally covariant quantum theories given in [BFV03] to encompass the conformal covariant case. After introducing the abstract framework, we discuss the massless conformally coupled Klein Gordon field theory, showing that its quantization corresponds to a functor between two certain categories. At the abstract level, the ordinary fields, could be thought of as natural transformations in the sense of category theory. We show that the Wick monomials without derivatives (Wick powers) can be interpreted as fields in this generalized sense, provided a non-trivial choice of the renormalization constants is given. A careful analysis shows that the transformation law of Wick powers is characterized by a weight, and it turns out that the sum of fields with different weights breaks the conformal covariance. At this point there is a difference between the previously given picture due to the presence of a bigger group of covariance. It is furthermore shown that the construction does not depend upon the scale μ appearing in the Hadamard parametrix, used to regularize the fields. Finally, we briefly discuss some further examples of more involved fields.
Carmeli, Moshe
2000-01-01
This is the only book on the subject of group theory and Einstein's theory of gravitation. It contains an extensive discussion on general relativity from the viewpoint of group theory and gauge fields. It also puts together in one volume many scattered, original works, on the use of group theory in general relativity theory.There are twelve chapters in the book. The first six are devoted to rotation and Lorentz groups, and their representations. They include the spinor representation as well as the infinite-dimensional representations. The other six chapters deal with the application of groups
Colosi, Daniele; Dohse, Max
2017-04-01
We use the General Boundary Formulation (GBF) of Quantum Field Theory to compute the S-matrix for a general interacting scalar field in a wide class of curved spacetimes. As a by-product we obtain the general expression of the Feynman propagator for the scalar field, defined in the following three types of spacetime regions. First, there are the familiar interval regions (e.g. a time interval times all of space). Second, we consider the rod hypercylinder regions (all of time times a solid ball in space). Third, the tube hypercylinders (all of time times a solid shell in space) are related to interval regions, and result from removing a smaller rod from a concentric larger one. Using the Schrödinger representation for the quantum states combined with Feynman's path integral quantization, we obtain the S-matrix as the asymptotic limit of the GBF amplitude associated with finite interval, and rod regions. For interval regions, whose boundary consists of two Cauchy surfaces, the asymptotic GBF-amplitude becomes the standard S-matrix. Our work generalizes previous results (obtained in Minkowski, Rindler, de Sitter, and Anti de Sitter spacetimes) to a wide class of curved spacetimes.
The Present Situation in Quantum Theory and its Merging with General Relativity
Khrennikov, Andrei
2017-08-01
We discuss the problems of quantum theory (QT) complicating its merging with general relativity (GR). QT is treated as a general theory of micro-phenomena—a bunch of models. Quantum mechanics (QM) and quantum field theory (QFT) are the most widely known (but, e.g., Bohmian mechanics is also a part of QT). The basic problems of QM and QFT are considered in interrelation. For QM, we stress its nonrelativistic character and the presence of spooky action at a distance. For QFT, we highlight the old problem of infinities. And this is the main point of the paper: it is meaningless to try to unify QFT so heavily suffering of infinities with GR. We also highlight difficulties of the QFT-treatment of entanglement. We compare the QFT and QM based measurement theories by presenting both theoretical and experimental viewpoints. Then we discuss two basic mathematical constraints of both QM and QFT, namely, the use of real (and, hence, complex) numbers and the Hilbert state space. We briefly present non-archimedean and non-hilbertian approaches to QT and their consequences. Finally, we claim that, in spite of the Bell theorem, it is still possible to treat quantum phenomena on the basis of a classical-like causal theory. We present a random field model generating the QM and QFT formalisms. This emergence viewpoint can serve as the basis for unification of novel QT (may be totally different from presently powerful QM and QFT) and GR. (It may happen that the latter would also be revolutionary modified.)
Zhang, Jinwu; Liu, Jianhong; Wang, Xin; Zou, Anquan
2017-08-01
General Strain Theory delineates different types of strain and intervening processes from strain to deviance and crime. In addition to explaining individual strain-crime relationship, a contextualized version of general strain theory, which is called the Macro General Strain Theory, has been used to analyze how aggregate variables influence aggregate and individual deviance and crime. Using a sample of 1,852 students (Level 1) nested in 52 schools (Level 2), the current study tests the Macro General Strain Theory using Chinese data. The results revealed that aggregate life stress and strain have influences on aggregate and individual deviance, and reinforce the individual stress-deviance association. The current study contributes by providing the first Macro General Strain Theory test based on Chinese data and offering empirical evidence for the multilevel intervening processes from strain to deviance. Limitations and future research directions are discussed.
Chen, Zehua; Zhang, Du; Jin, Ye; Yang, Yang; Su, Neil Qiang; Yang, Weitao
2017-09-21
To describe static correlation, we develop a new approach to density functional theory (DFT), which uses a generalized auxiliary system that is of a different symmetry, such as particle number or spin, from that of the physical system. The total energy of the physical system consists of two parts: the energy of the auxiliary system, which is determined with a chosen density functional approximation (DFA), and the excitation energy from an approximate linear response theory that restores the symmetry to that of the physical system, thus rigorously leading to a multideterminant description of the physical system. The electron density of the physical system is different from that of the auxiliary system and is uniquely determined from the functional derivative of the total energy with respect to the external potential. Our energy functional is thus an implicit functional of the physical system density, but an explicit functional of the auxiliary system density. We show that the total energy minimum and stationary states, describing the ground and excited states of the physical system, can be obtained by a self-consistent optimization with respect to the explicit variable, the generalized Kohn-Sham noninteracting density matrix. We have developed the generalized optimized effective potential method for the self-consistent optimization. Among options of the auxiliary system and the associated linear response theory, reformulated versions of the particle-particle random phase approximation (pp-RPA) and the spin-flip time-dependent density functional theory (SF-TDDFT) are selected for illustration of principle. Numerical results show that our multireference DFT successfully describes static correlation in bond dissociation and double bond rotation.
Toward a general theory of unconscious processes in psychoanalysis and anesthesiology.
Mashour, George A
2008-03-01
Psychoanalysis and anesthesiology appear radically different in their clinical practice, yet they share a focus of inquiry: unconscious processes. Despite this common domain, there has been no exploration of the relationship between "the unconscious" as conceived by psychoanalysts and "surgical unconsciousness" as conceived by anesthesiologists. This is likely due to the fact that general anesthesia has been assumed to be a state in which the brain is simply "turned off." More recent neuroscientific data invalidate this assumption by demonstrating that the anesthetized brain is both cognitively dynamic and capable of implicit learning. Current perspectives on anesthetic mechanisms suggest that general anesthesia is characterized not simply by the absence of cognitive activity, but by the disintegration of cognitive activity. The cognitive unbinding paradigm of general anesthesia is discussed and its application to Wilfred Bion's theory of thinking, as well as his concept of attacks on linking, is elucidated. Based on the common structure and function of unconscious processes in psychoanalysis and anesthesiology, the foundation of a general theory is established.
Wen, Xueda; Matsuura, Shunji; Ryu, Shinsei
Topological entanglement entropy of (2+1) dimensional Chern-Simons gauge theories on a general manifold is usually calculated with Witten's method of surgeries and replica trick, in which the spacetime manifold under consideration is very complicated. In this work, we develop an edge theory approach, which greatly simplifies the calculation of topological entanglement entropy of a Chern-Simons theory. Our approach applies to a general manifold with arbitrary genus. The effect of braiding and fusion of Wilson lines can be straightforwardly calculated within our framework. In addition, our method can be generalized to the study of other entanglement measures such as mutual information and entanglement negativity of a topological quantum field theory on a general manifold.
Uncertainty Quantification of Composite Laminate Damage with the Generalized Information Theory
Energy Technology Data Exchange (ETDEWEB)
J. Lucero; F. Hemez; T. Ross; K.Kline; J.Hundhausen; T. Tippetts
2006-05-01
This work presents a survey of five theories to assess the uncertainty of projectile impact induced damage on multi-layered carbon-epoxy composite plates. Because the types of uncertainty dealt with in this application are multiple (variability, ambiguity, and conflict) and because the data sets collected are sparse, characterizing the amount of delamination damage with probability theory alone is possible but incomplete. This motivates the exploration of methods contained within a broad Generalized Information Theory (GIT) that rely on less restrictive assumptions than probability theory. Probability, fuzzy sets, possibility, and imprecise probability (probability boxes (p-boxes) and Dempster-Shafer) are used to assess the uncertainty in composite plate damage. Furthermore, this work highlights the usefulness of each theory. The purpose of the study is not to compare directly the different GIT methods but to show that they can be deployed on a practical application and to compare the assumptions upon which these theories are based. The data sets consist of experimental measurements and finite element predictions of the amount of delamination and fiber splitting damage as multilayered composite plates are impacted by a projectile at various velocities. The physical experiments consist of using a gas gun to impact suspended plates with a projectile accelerated to prescribed velocities, then, taking ultrasound images of the resulting delamination. The nonlinear, multiple length-scale numerical simulations couple local crack propagation implemented through cohesive zone modeling to global stress-displacement finite element analysis. The assessment of damage uncertainty is performed in three steps by, first, considering the test data only; then, considering the simulation data only; finally, performing an assessment of total uncertainty where test and simulation data sets are combined. This study leads to practical recommendations for reducing the uncertainty and
Directory of Open Access Journals (Sweden)
Jiao Sujuan
2008-01-01
Full Text Available The spectral element matrix is derived for a straight and uniform beam element having an arbitrary cross-section. The general higher-order beam theory is used, which accurately accounts for the transverse shear deformation out of the cross-sectional plane and antielastic-type deformation within the cross-sectional plane. Two coupled equations of motion are derived by use of Hamilton's principle along with the full three-dimensional constitutive relations. The theoretical expressions of the spectral element matrix are formulated from the exact solutions of the coupled governing equations. The developed spectral element matrix is directly applied to calculate the exact natural frequencies and mode shapes of the illustrative examples. Numerical results of the thick isotropic beams with rectangular and elliptical cross-sections are presented for a wide variety of cross-section aspect ratios.
Theory of non-local point transformations - Part 2: General form and Gedanken experiment
Tessarotto, Massimo
2016-01-01
The problem is posed of further extending the axiomatic construction proposed in Part 1 for non-local point transformations mapping in each other different curved space times. The new transformations apply to curved space times when expressed in arbitrary coordinate systems. It is shown that the solution permits to achieve an ideal (Gedanken) experiment realizing a suitable kind of phase-space transformation on point-particle classical dynamical systems. Applications of the theory are discussed both for diagonal and non-diagonal metric tensors.
Pototzky, Anthony S; Murphy, Patrick C.
2014-01-01
Improving aerodynamic models for adverse loss-of-control conditions in flight is an area being researched under the NASA Aviation Safety Program. Aerodynamic models appropriate for loss of control conditions require a more general mathematical representation to predict nonlinear unsteady behaviors. As more general aerodynamic models are studied that include nonlinear higher order effects, the possibility of measurements that confound aerodynamic and structural responses are probable. In this study an initial step is taken to look at including structural flexibility in analysis of rigid-body forced-oscillation testing that accounts for dynamic rig, sting and balance flexibility. Because of the significant testing required and associated costs in a general study, it makes sense to capitalize on low cost analytical methods where possible, especially where structural flexibility can be accounted for by a low cost method. This paper provides an initial look at using linear lifting surface theory applied to rigid-body aircraft roll forced-oscillation tests.
IS IT NECESSARY TO TEACH THE THEORY OF RELATIVITY IN GENERAL PHYSICS COURSE
Directory of Open Access Journals (Sweden)
Sergey N. Kolgatin
2015-01-01
Full Text Available The aim of the present investigation is to discuss and study the general structure of the course of Physics at the high school in an extended sense. In a narrower sense, the author wonders about the necessity for inclusion of the section «Theory of Relativity» in the General Physics course, and discusses the possible site of this issue in the order of presentation.Methods. A method for designing Physics course in modern conditions requires certain sophistication from a lecturer. This is due to the strong reduction of Physics course occurred in recent years, and due to a number of objective and subjective reasons. Planning the course structure, one has to make the selection of most significant questions sacrificing minor and less significant issues. This process is particularly exacerbated by severe restrictions on the time allowed for the subject. It is necessary to re-examine the content of the course due to the recent reduction in lecture hours on Physics. In this case, it would be undesirable to neglect the substantial parts of the subject content which are important conceptually or in its applications, e.g. the Relativity Theory. The author discusses two ways of disposition of the relevant material in the course structure, and correlates them with the required level of Physics teaching. In the first approach the Relativity Theory course is considered as a part of Modern Mechanics and is placed in the first semester immediately following Kinematics. In the second approach, Relativistic Physics is presented as a result of deduction, as a generalized theory explaining the unity of the world and the objective existence of physical laws; in this case, the section is better to locate after Optics, immediately before Atomic Physics.Results. As a result of consideration, the author proves the conclusion that the inclusion of the Relativistic Theory course in a number of sections of General Physics is necessary. The author offers a list of
BOUNDED RATIONALITY: AN ANALYSIS OF TEACHING MANUALS OF MANAGEMENT GENERAL THEORY
Directory of Open Access Journals (Sweden)
Daniela Teixeira Dias
2016-08-01
Full Text Available The objective of this article was to analyze how the concept of bounded rationality has been treated in the educational manuals of General Theory of Management, with the objective to analyze its quality, in terms of quality and complexity. Therefore, three educational manuals provided by the Central Library of the Alfa Federal University were used: “General Theory of Administration” authored by Motta and Vasconcelos (Manual A; “Introduction to Management” by Chiavenato (Manual B, and “Management: Theory and Processes” by Caravantes, Caravantes, and Kloeckener (Manual C. These were observed from the content analysis in four dimensions defined a priori: delimitation of the approach and quality of the references; historical-concrete dimension; relationship dimension; and theoretical dimension. The results showed that all manuals presented considerations about the bounded rationality assumption and made reference to Simon and Barnard, although they have not discussed their work and their contribution more widely. Manual A was the most complete in the axes analysis herein. Manual B turned to a summarized and synthetic theoretical discussion. Whereas C Manual defined and conceptualized bounded rationality and was the only one to describe the types of rationality presented by Simon.
Bays, Harold
2005-05-01
Excessive fat (adiposity) and dysfunctional fat (adiposopathy) constitute the most common worldwide epidemics of our time -- and perhaps of all time. Ongoing efforts to explain how the micro (adipocyte) and macro (body organ) biologic systems interact through function and dysfunction in promoting Type 2 diabetes mellitus, hypertension and dyslipidemia are not unlike the mechanistic and philosophical thinking processes involved in reconciling the micro (quantum physics) and macro (general relativity) theories in physics. Currently, the term metabolic syndrome refers to a constellation of consequences often associated with excess body fat and is an attempt to unify the associations known to exist between the four fundamental metabolic diseases of obesity, hyperglycemia (including Type 2 diabetes mellitus), hypertension and dyslipidemia. However, the association of adiposity with these metabolic disorders is not absolute and the metabolic syndrome does not describe underlying causality, nor does the metabolic syndrome necessarily reflect any reasonably related pathophysiologic process. Just as with quantum physics, general relativity and the four fundamental forces of the universe, the lack of an adequate unifying theory of micro causality and macro consequence is unsatisfying, and in medicine, impairs the development of agents that may globally improve both obesity and obesity-related metabolic disease. Emerging scientific and clinical evidence strongly supports the novel concept that it is not adiposity alone, but rather it is adiposopathy that is the underlying cause of most cases of Type 2 diabetes mellitus, hypertension and dyslipidemia. Adiposopathy is a plausible Theory of Everything for mankind's greatest metabolic epidemics.
Sex-specific demography and generalization of the Trivers-Willard theory
Schindler, Susanne; Gaillard, Jean-Michel; Grüning, André; Neuhaus, Peter; Traill, Lochran W.; Tuljapurkar, Shripad; Coulson, Tim
2015-10-01
The Trivers-Willard theory proposes that the sex ratio of offspring should vary with maternal condition when it has sex-specific influences on offspring fitness. In particular, mothers in good condition in polygynous and dimorphic species are predicted to produce an excess of sons, whereas mothers in poor condition should do the opposite. Despite the elegance of the theory, support for it has been limited. Here we extend and generalize the Trivers-Willard theory to explain the disparity between predictions and observations of offspring sex ratio. In polygynous species, males typically have higher mortality rates, different age-specific reproductive schedules and more risk-prone life history tactics than females; however, these differences are not currently incorporated into the Trivers-Willard theory. Using two-sex models parameterized with data from free-living mammal populations with contrasting levels of sex differences in demography, we demonstrate how sex differences in life history traits over the entire lifespan can lead to a wide range of sex allocation tactics, and show that correlations between maternal condition and offspring sex ratio alone are insufficient to conclude that mothers adaptively adjust offspring sex ratio.
General expression for spectrum of magnetic anomaly due to long tabular body and its characteristics
Digital Repository Service at National Institute of Oceanography (India)
Mishra, D.C.; Murthy, K.S.R.; Rao, T.C.S.
A general expression for spectrum of magnetic anomalies-vertical, horizontal and total intensity - due to a long tabular body is derived which is used to estimate the body parameters. The analysis is extended to a marine magnetic anomaly recorded...
Keller-Margulis, Milena A.; Mercer, Sterett H.; Thomas, Erin L.
2016-01-01
The purpose of this study was to examine the reliability of written expression curriculum-based measurement (WE-CBM) in the context of universal screening from a generalizability theory framework. Students in second through fifth grade (n = 145) participated in the study. The sample included 54% female students, 49% White students, 23% African…
Chiral perturbation theory for generalized parton distributions and baryon distribution amplitudes
Energy Technology Data Exchange (ETDEWEB)
Wein, Philipp
2016-05-06
In this thesis we apply low-energy effective field theory to the first moments of generalized parton distributions and to baryon distribution amplitudes, which are both highly relevant for the parametrization of the nonperturbative part in hard processes. These quantities yield complementary information on hadron structure, since the former treat hadrons as a whole and, thus, give information about the (angular) momentum carried by an entire parton species on average, while the latter parametrize the momentum distribution within an individual Fock state. By performing one-loop calculations within covariant baryon chiral perturbation theory, we obtain sensible parametrizations of the quark mass dependence that are ideally suited for the subsequent analysis of lattice QCD data.
Pfalzgraff, William C; Kelly, Aaron; Markland, Thomas E
2015-12-03
The development of methods that can efficiently and accurately treat nonadiabatic dynamics in quantum systems coupled to arbitrary atomistic environments remains a significant challenge in problems ranging from exciton transport in photovoltaic materials to electron and proton transfer in catalysis. Here we show that our recently introduced MF-GQME approach, which combines Ehrenfest mean field theory with the generalized quantum master equation framework, is able to yield quantitative accuracy over a wide range of charge-transfer regimes in fully atomistic environments. This is accompanied by computational speed-ups of up to 3 orders of magnitude over a direct application of Ehrenfest theory. This development offers the opportunity to efficiently investigate the atomistic details of nonadiabatic quantum relaxation processes in regimes where obtaining accurate results has previously been elusive.
A general theory on the graphical representation of antenna-radiation fields
Kark, Klaus W.; Dill, Roland
1990-02-01
A general theory for graphical representation of antenna radiated fields is developed. The application of the method to the special case of a transverse electromagnetic-mode-excited biconical antenna is investigated in detail. Electric field lines in the r-theta plane of a spherical coordinate system are presented in a manner such that the same electric flux is always carried between two neighboring field lines. Thus, their mutual distance is a criterion for the strength of the local electric field. The differential equations which govern the displacement of a field point are derived and solved. The time-dependent evolution of a field-line pattern is examined in detail. The new theory for graphical field representation permits, in an elegant manner, the analysis of the transmission and receiving mechanism of arbitrary antenna configurations. Thus, it is suggested that an iterative graphical synthesis procedure could, in the future, be applied to the computer-aided design modeling of antenna shapes.
Why flying dogs are rare: A general theory of luck in evolutionary transitions.
Fleming, Leonore; Brandon, Robert
2015-02-01
There is a worry that the 'major transitions in evolution' represent an arbitrary group of events. This worry is warranted, and we show why. We argue that the transition to a new level of hierarchy necessarily involves a nonselectionist chance process. Thus any unified theory of evolutionary transitions must be more like a general theory of fortuitous luck, rather than a rigid formulation of expected events. We provide a systematic account of evolutionary transitions based on a second-order regularity of chance events, as stipulated by the ZFEL (Zero Force Evolutionary Law). And in doing so, we make evolutionary transitions explainable and predictable, and so not entirely contingent after all. Copyright © 2014 Elsevier Ltd. All rights reserved.
Generalized theory of porous gas electrodes (PGE) hypothesis IV, 09-14 September 2001, Stralsund
Energy Technology Data Exchange (ETDEWEB)
Pshenichnikov, A.G. [Rossijskaya Akademiya Nauk, Moscow (Russian Federation). Inst. Ehlektrokhimii
2001-07-01
Generalized theory of porous gas electrodes (PGE) is developed for gas generating and gas consuming operation regimes. The theory is useful for evaluation of characteristic parameters of highly active dispersed electrocatalysts based on platinum group metals. A simple two-coordinate PGE model consisting of ''chink'' - shape gas pores and filled with liquid quasihomogeneous catalytic layer (QHCL) between them is used. Dissolved gas reagent (or product) diffuses from (or into) QHCL. In accordance with solution of Poisson equation describing the processes in QHCL it is possible to consider QHCL as a whole working in kinetic or diffusion regimes, which change from one to another at certain potential. From parameters of experimental Tafel polarization curves it is possible to obtain the information about catalyst activity, reaction mechanism and structure characteristics of QHCL. (orig.)
A theory of solving TAP equations for Ising models with general invariant random matrices
DEFF Research Database (Denmark)
Opper, Manfred; Çakmak, Burak; Winther, Ole
2016-01-01
We consider the problem of solving TAP mean field equations by iteration for Ising models with coupling matrices that are drawn at random from general invariant ensembles. We develop an analysis of iterative algorithms using a dynamical functional approach that in the thermodynamic limit yields...... an effective dynamics of a single variable trajectory. Our main novel contribution is the expression for the implicit memory term of the dynamics for general invariant ensembles. By subtracting these terms, that depend on magnetizations at previous time steps, the implicit memory terms cancel making...
General properties of the n-point functions in local quantum field theory
Epstein, H; Stora, Raymond Félix
1976-01-01
One of the most satisfactory aspects of relativistic local quantum field theory is the asymptotic theory of Haag and Ruelle: starting from a few simple hypotheses (locality, relativistic invariance, and spectrum, including the explicit exclusion of zero-mass states) the existence of the scattering operator S and of scattering amplitudes is established: these amplitudes can then be expressed through the 'reduction formulae' of L.S.Z. (rigorously proved in the framework of the Haag-Ruelle theory by Hepp for Wightman fields, and by Araki for bounded local observables) as the restrictions to the mass-shell of the Fourier transforms of (amputated) chronological functions. The latter, through the interplay of locality and spectrum, can be shown to be boundary values of certain analytic functions (Green functions), and this is the origin of analyticity properties of the scattering amplitudes. The purpose of these lectures is to set the scene for the study of such analyticity properties by giving a description of the...
Directory of Open Access Journals (Sweden)
Noriaki Kamiya
2014-01-01
Full Text Available We define Hermitian (ϵ,δ-Freudenthal-Kantor triple systems and prove a structure theorem. We also give some examples of triple systems that are generalizations of the u(N⊕u(M and sp(2N⊕u(1 Hermitian 3-algebras. We apply a *-generalized Jordan triple system to a field theory and obtain a Chern-Simons gauge theory. We find that the novel Higgs mechanism works, where the Chern-Simons gauge theory reduces to a Yang-Mills theory in a certain limit.
Limit cycles of the generalized Li'enard differential equation via averaging theory
Directory of Open Access Journals (Sweden)
Sabrina Badi
2012-05-01
Full Text Available We apply the averaging theory of first and second order to a generalized Lienard differential equation. Our main result shows that for any $n,m geq 1$ there are differential equations $ddot{x}+f(x,dot{x}dot{x}+ g(x=0$, with f and g polynomials of degree n and m respectively, having at most $[n/2]$ and $max{[(n-1/2]+[m/2], [n+(-1^{n+1}/2]}$ limit cycles, where $[cdot]$ denotes the integer part function.
General N=1 supersymmetric flux vacua of massive type IIA string theory.
Behrndt, Klaus; Cvetic, Mirjam
2005-07-08
We derive conditions for the existence of four-dimensional N=1 supersymmetric flux vacua of massive type IIA string theory with general supergravity fluxes turned on. For an SU(3) singlet Killing spinor, we show that such flux vacua exist when the internal geometry is nearly Kähler. The geometry is not warped, all the allowed fluxes are proportional to the mass parameter, and the dilaton is fixed by a ratio of (quantized) fluxes. The four-dimensional cosmological constant, while negative, becomes small in the vacuum with the weak string coupling.
Einstein's creative thinking and the general theory of relativity: a documented report.
Rothenberg, A
1979-01-01
A document written by Albert Einstein has recently come to light in which the eminent scientist described the actual sequence of his thoughts leading to the development of the general theory of relativity. The key creative thought was an instance of a type of creative cognition the author has previously designated "Janusian thinking," Janusian thinking consists of actively conceiving two or more opposite or antithetical concepts, ideas, or images simultaneously. This form of high-level secondary process cognition has been found to operate widely in art, science, and other fields.
Bianchi type-II universe with wet dark fluid in general theory of relativity
Mahanta, Chandra Rekha; Sheikh, Azizur Rahman
2017-09-01
In this paper, dark energy models of the universe filled with wet dark fluid are constructed in the frame work of LRS Bianchi type-II space-time in General Theory of Relativity. A new equation of state modeled on the equation of state p = γ ( ρ - ρ_{*} ), which can describe liquid including water, is used. The exact solutions of Einstein's field equations are obtained in quadrature form and the models corresponding to the cases γ = 0 and γ = 1 are discussed in details.
Directory of Open Access Journals (Sweden)
A. M. Abd El-Latief
2016-01-01
Full Text Available The fractional mathematical model of Maxwell’s equations in an electromagnetic field and the fractional generalized thermoelastic theory associated with two relaxation times are applied to a 1D problem for a thick plate. Laplace transform is used. The solution in Laplace transform domain has been obtained using a direct method and its inversion is calculated numerically using a method based on Fourier series expansion technique. Finally, the effects of the two fractional parameters (thermo and magneto on variable fields distributions are made. Numerical results are represented graphically.
Vortex creep and the internal temperature of neutron stars. I - General theory
Alpar, M. A.; Pines, D.; Anderson, P. W.; Shaham, J.
1984-01-01
The theory of a neutron star superfluid coupled to normal matter via thermal creep against pinning forces is developed in some detail. General equations of motion for a pinned rotating superfluid and their form for vortex creep are given. Steady state creep and the way in which the system approaches the steady state are discussed. The developed formalism is applied to the postglitch relaxation of a pulsar, and detailed models are developed which permit explicit calculation of the postglitch response. The energy dissipation associated with creep and glitches is considered.
Lin, Wen-Hsu; Cochran, John K; Mieczkowski, Thomas
2011-01-01
Using a national probability sample of adolescents (12–17), this study applies general strain theory to how violent victimization, vicarious violent victimization, and dual violent victimization affect juvenile violent/property crime and drug use. In addition, the mediating effect and moderating effect of depression, low social control, and delinquent peer association on the victimization–delinquency relationship is also examined. Based on SEM analyses and contingency tables, the results indicate that all three types of violent victimization have significant and positive direct effects on violent/property crime and drug use. In addition, the expected mediating effects and moderating effects are also found. Limitations and future directions are discussed.
Generalized Rate Theory for Void and Bubble Swelling and its Application to Plutonium Metal Alloys
Energy Technology Data Exchange (ETDEWEB)
Allen, P. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolfer, W. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2015-10-16
In the classical rate theory for void swelling, vacancies and self-interstitials are produced by radiation in equal numbers, and in addition, thermal vacancies are also generated at the sinks, primarily at edge dislocations, at voids, and at grain boundaries. In contrast, due to the high formation energy of self-interstitials for normal metals and alloys, their thermal generation is negligible, as pointed out by Bullough and Perrin. However, recent DFT calculations of the formation energy of self-interstitial atoms in bcc metals have revealed that the sum of formation and migration energies for self-interstitials atoms (SIA) is of the same order of magnitude as for vacancies. The ratio of the activation energies for thermal generation of SIA and vacancies is presented. For fcc metals, this ratio is around three, but for bcc metals it is around 1.5. Reviewing theoretical predictions of point defect properties in δ-Pu, this ratio could possibly be less than one. As a result, thermal generation of SIA in bcc metals and in plutonium must be taken into considerations when modeling the growth of voids and of helium bubbles, and the classical rate theory (CRT) for void and bubble swelling must be extended to a generalized rate theory (GRT).
Martland, Jarrad; Chamberlain, Diane; Hutton, Alison; Smigielski, Michael
2016-11-01
Objective Patients commonly show signs and symptoms of deterioration for hours or days before cardiorespiratory arrest. Rapid response teams (RRT) were created to improve recognition and response to patient deterioration in these situations. Activation criteria include vital signs or 'general concern' by a clinician or family member. The general concern criterion for RRT activation accounts for nearly one-third of all RRT activity, and although it is well established that communication deficits between staff can contribute to poorer outcomes for patients, there is little evidence pertaining to communication and its effects on the general concern RRT activation. Thus, the aim of the present study was to develop a substantive grounded theory related to the communication process between clinicians that preceded the activation of an RRT when general concern criterion was used. Methods Qualitative grounded theory involved collection of three types of data details namely personal notes from participants in focus groups with white board notes from discussions and audio recordings of the focus groups sessions. Focus groups were conducted with participants exploring issues associated with clinician communication and how it related to the activation of an RRT using the general concern criterion. Results The three main phases of coding (i.e. open, axial and selective coding) analysis identified 322 separate open codes. The strongest theme contributed to a theory of ineffective communication and decreased psychological safety, namely that 'In the absence of effective communication there is a subsequent increase in anxiety, fear or concern that can be directly attributed to the activation of an RRT using the 'general concern' criterion'. The RRT filled cultural and process deficiencies in the compliance with an escalation protocol. Issues such as 'not for resuscitation documentation' and 'inability to establish communication with and between medical or nursing personnel' rated
The application of foraging theory to the information searching behaviour of general practitioners
Directory of Open Access Journals (Sweden)
Dowell Anthony C
2011-08-01
Full Text Available Abstract Background General Practitioners (GPs employ strategies to identify and retrieve medical evidence for clinical decision making which take workload and time constraints into account. Optimal Foraging Theory (OFT initially developed to study animal foraging for food is used to explore the information searching behaviour of General Practitioners. This study is the first to apply foraging theory within this context. Study objectives were: 1. To identify the sequence and steps deployed in identifiying and retrieving evidence for clinical decision making. 2. To utilise Optimal Foraging Theory to assess the effectiveness and efficiency of General Practitioner information searching. Methods GPs from the Wellington region of New Zealand were asked to document in a pre-formatted logbook the steps and outcomes of an information search linked to their clinical decision making, and fill in a questionnaire about their personal, practice and information-searching backgrounds. Results A total of 115/155 eligible GPs returned a background questionnaire, and 71 completed their information search logbook. GPs spent an average of 17.7 minutes addressing their search for clinical information. Their preferred information sources were discussions with colleagues (38% of sources and books (22%. These were the two most profitable information foraging sources (15.9 min and 9.5 min search time per answer, compared to 34.3 minutes in databases. GPs nearly always accessed another source when unsuccessful (95% after 1st source, and frequently when successful (43% after 2nd source. Use of multiple sources accounted for 41% of searches, and increased search success from 70% to 89%. Conclusions By consulting in foraging terms the most 'profitable' sources of information (colleagues, books, rapidly switching sources when unsuccessful, and frequently double checking, GPs achieve an efficient trade-off between maximizing search success and information reliability, and
The application of foraging theory to the information searching behaviour of general practitioners.
Dwairy, Mai; Dowell, Anthony C; Stahl, Jean-Claude
2011-08-23
General Practitioners (GPs) employ strategies to identify and retrieve medical evidence for clinical decision making which take workload and time constraints into account. Optimal Foraging Theory (OFT) initially developed to study animal foraging for food is used to explore the information searching behaviour of General Practitioners. This study is the first to apply foraging theory within this context.Study objectives were: 1. To identify the sequence and steps deployed in identifiying and retrieving evidence for clinical decision making. 2. To utilise Optimal Foraging Theory to assess the effectiveness and efficiency of General Practitioner information searching. GPs from the Wellington region of New Zealand were asked to document in a pre-formatted logbook the steps and outcomes of an information search linked to their clinical decision making, and fill in a questionnaire about their personal, practice and information-searching backgrounds. A total of 115/155 eligible GPs returned a background questionnaire, and 71 completed their information search logbook. GPs spent an average of 17.7 minutes addressing their search for clinical information. Their preferred information sources were discussions with colleagues (38% of sources) and books (22%). These were the two most profitable information foraging sources (15.9 min and 9.5 min search time per answer, compared to 34.3 minutes in databases). GPs nearly always accessed another source when unsuccessful (95% after 1st source), and frequently when successful (43% after 2nd source). Use of multiple sources accounted for 41% of searches, and increased search success from 70% to 89%. By consulting in foraging terms the most 'profitable' sources of information (colleagues, books), rapidly switching sources when unsuccessful, and frequently double checking, GPs achieve an efficient trade-off between maximizing search success and information reliability, and minimizing searching time. As predicted by foraging theory, GPs
Muscettola, Nicola; Smith, Steven S.
1996-09-01
This final report summarizes research performed under NASA contract NCC 2-531 toward generalization of constraint-based scheduling theories and techniques for application to space telescope observation scheduling problems. Our work into theories and techniques for solution of this class of problems has led to the development of the Heuristic Scheduling Testbed System (HSTS), a software system for integrated planning and scheduling. Within HSTS, planning and scheduling are treated as two complementary aspects of the more general process of constructing a feasible set of behaviors of a target system. We have validated the HSTS approach by applying it to the generation of observation schedules for the Hubble Space Telescope. This report summarizes the HSTS framework and its application to the Hubble Space Telescope domain. First, the HSTS software architecture is described, indicating (1) how the structure and dynamics of a system is modeled in HSTS, (2) how schedules are represented at multiple levels of abstraction, and (3) the problem solving machinery that is provided. Next, the specific scheduler developed within this software architecture for detailed management of Hubble Space Telescope operations is presented. Finally, experimental performance results are given that confirm the utility and practicality of the approach.
Generalized slow roll in the unified effective field theory of inflation
Motohashi, Hayato; Hu, Wayne
2017-07-01
We provide a compact and unified treatment of power spectrum observables for the effective field theory (EFT) of inflation with the complete set of operators that lead to second-order equations of motion in metric perturbations in both space and time derivatives, including Horndeski and Gleyzes-Langlois-Piazza-Vernizzi theories. We relate the EFT operators in ADM form to the four additional free functions of time in the scalar and tensor equations. Using the generalized slow-roll formalism, we show that each power spectrum can be described by an integral over a single source that is a function of its respective sound horizon. With this correspondence, existing model independent constraints on the source function can be simply reinterpreted in the more general inflationary context. By expanding these sources around an optimized freeze-out epoch, we also provide characterizations of these spectra in terms of five slow-roll hierarchies whose leading-order forms are compact and accurate as long as EFT coefficients vary only on time scales greater than an e -fold. We also clarify the relationship between the unitary gauge observables employed in the EFT and the comoving gauge observables of the postinflationary universe.
Mitri, Farid
2014-11-01
The generalized theory of resonance scattering (GTRS) by an elastic spherical target in acoustics is extended to describe the arbitrary scattering of a finite beam using the addition theorem for the spherical wave functions of the first kind under a translation of the coordinate origin. The advantage of the proposed method over the standard discrete spherical harmonics transform previously used in the GTRS formalism is the computation of the off-axial beam-shape coefficients (BSCs) stemming from a closed-form partial-wave series expansion representing the axial BSCs in spherical coordinates. With this general method, the arbitrary acoustical scattering can be evaluated for any particle shape and size, whether the particle is partially or completely illuminated by the incident beam. Numerical examples for the axial and off-axial resonance scattering from an elastic sphere placed arbitrarily in the field of a finite circular piston transducer with uniform vibration are provided. Moreover, the 3-D resonance directivity patterns illustrate the theory and reveal some properties of the scattering. Numerous applications involving the scattering phenomenon in imaging, particle manipulation, and the characterization of multiphase flows can benefit from the present analysis because all physically realizable beams radiate acoustical waves from finite transducers as opposed to waves of infinite extent.
Dynamics of controlled release systems based on water-in-water emulsions: a general theory.
Sagis, Leonard M C
2008-10-06
Phase-separated biopolymer solutions, and aqueous dispersions of hydrogel beads, liposomes, polymersomes, aqueous polymer microcapsules, and colloidosomes are all examples of water-in-water emulsions. These systems can be used for encapsulation and controlled release purposes, in for example food or pharmaceutical applications. The stress-deformation behavior of the droplets in these systems is very complex, and affected by mass transfer across the interface. The relaxation time of a deformation of a droplet may depend on interfacial properties such as surface tension, bending rigidity, spontaneous curvature, permeability, and interfacial viscoelasticity. It also depends on bulk viscoelasticity and composition. A non-equilibrium thermodynamic model is developed for the dynamic behavior of these systems, which incorporates all these parameters, and is based on the interfacial transport phenomena (ITP) formalism. The ITP formalism allows us to describe all water-in-water emulsions with one general theory. Phase-separated biopolymer solutions, and dispersions of hydrogel beads, liposomes, polymersomes, polymer microcapsules, and colloidosomes are basically limiting cases of this general theory with respect to bulk and interfacial rheological behavior.
Muscettola, Nicola; Smith, Steven S.
1996-01-01
This final report summarizes research performed under NASA contract NCC 2-531 toward generalization of constraint-based scheduling theories and techniques for application to space telescope observation scheduling problems. Our work into theories and techniques for solution of this class of problems has led to the development of the Heuristic Scheduling Testbed System (HSTS), a software system for integrated planning and scheduling. Within HSTS, planning and scheduling are treated as two complementary aspects of the more general process of constructing a feasible set of behaviors of a target system. We have validated the HSTS approach by applying it to the generation of observation schedules for the Hubble Space Telescope. This report summarizes the HSTS framework and its application to the Hubble Space Telescope domain. First, the HSTS software architecture is described, indicating (1) how the structure and dynamics of a system is modeled in HSTS, (2) how schedules are represented at multiple levels of abstraction, and (3) the problem solving machinery that is provided. Next, the specific scheduler developed within this software architecture for detailed management of Hubble Space Telescope operations is presented. Finally, experimental performance results are given that confirm the utility and practicality of the approach.
Strategic Human Resource Metrics: A Perspective of the General Systems Theory
Directory of Open Access Journals (Sweden)
Chux Gervase Iwu
2016-04-01
Full Text Available Measuring and quantifying strategic human resource outcomes in relation to key performance criteria is essential to developing value-adding metrics. Objectives This paper posits (using a general systems lens that strategic human resource metrics should interpret the relationship between attitudinal human resource outcomes and performance criteria such as profitability, quality or customer service. Approach Using the general systems model as underpinning theory, the study assesses the variation in response to a Likert type questionnaire with twenty-four (24 items measuring the major attitudinal dispositions of HRM outcomes (employee commitment, satisfaction, engagement and embeddedness. Results A Chi-square test (Chi-square test statistic = 54.898, p=0.173 showed that variation in responses to the attitudinal statements occurred due to chance. This was interpreted to mean that attitudinal human resource outcomes influence performance as a unit of system components. The neutral response was found to be associated with the ‘reject’ response than the ‘acceptance’ response. Value The study offers suggestion on the determination of strategic HR metrics and recommends the use of systems theory in HRM related studies. Implications This study provides another dimension to human resource metrics by arguing that strategic human resource metrics should measure the relationship between attitudinal human resource outcomes and performance using a systems perspective.
Revisit to the helicity and the generalized self-organization theory
Energy Technology Data Exchange (ETDEWEB)
Kondoh, Y.; Takahashi, T. [Dept. of Electronic Engineering, Gunma Univ., Kiryu, Gunma (Japan); Momota, H. [Illinois Univ., Illinois (United States)
2000-09-01
It is clarified that the so-caned 'helicity conservation law' is never the conservation equation of the helicity K itself', but is merely 'the time change rate equation of K', which is passively and resultantly determined by the mutually independent volume and surface integral terms. It is shown that since the total helicity K can never be conserved in the real experimental systems, the conjecture of the total helicity invariance is not physically available to real magnetized plasmas in an exact sense. The well-known relaxation theory by Dr. J. B. Taylor is clarified to be neither the variational principle nor the energy principle, but be merely a mathematical calculation, using the variational calculus in order to find the minimum magnetic energy solution from the set of solutions having the same value of K. With the use of auto-correlations for physical quantities, it is presented that a novel basic formulation of an extended generalized self-organization theory, which is not based on neither the variational principle nor the energy principle. It is clarified that conservation equations concerning with all physical quantities for the dynamic system of interest are naturally embedded in the formulation of the generalized self-organization theory. The self-organized states of every physical quantities of interest may be realized during their own phases and the dynamical system may evolve repeatedly those out of phase organizations, depending on boundary conditions and input powers. It is shown that the conservation laws can be used to extend conventional methods of plasma current drives by energy injections with use of various types of energies, such as magnetic energies, electromagnetic wave energies, internal energies of plasmoids by plasma guns, which induce the thermal plasma flow velocity, various particle beam energies, and so on. (author)
Energy Technology Data Exchange (ETDEWEB)
Kim, Do Heon; Choi, Hang Bok
2001-01-01
A generalized perturbation theory (GPT) program, GENOVA, has been developed for the purpose of various applications to Canadian deuterium uranium (CANDU) reactor physics analyses. GENOVA was written under the framework of CANDU physics design and analysis code, RFSP. A sensitivity method based on the GPT was implemented in GENOVA to estimate various sensitivity coefficients related to the movement of zone controller units (ZCUs) existing in the CANDU reactor. The numerical algorithm for the sensitivity method was verified by a simple 2 x 2 node problem. The capability of predicting ZCU levels upon a refueling perturbation was validated for a CANDU-6 reactor problem. The applicability of GENOVA to the CANDU-6 core physics analysis has been demonstrated with the optimum refueling simulation and the uncertainty analysis problems. For the optimum refueling simulation, an optimum channel selection strategy has been proposed, using the ZCU level predicted by GENOVA. The refueling simulation of a CANDU-6 natural uranium core has shown that the ZCU levels are successfully controlled within the operating range while the channel and bundle powers are satisfying the license limits. An uncertainty analysis has been performed for the fuel composition heterogeneity of a CANDU DUPIC core, using the sensitivity coefficients generated by GENOVA. The results have shown that the uncertainty of the core performance parameter can be reduced appreciably when the contents of the major fissile isotopes are tightly controlled. GENOVA code has been successfully explored to supplement the weak points of the current design and analysis code, such as the incapacity of performing an optimum refueling simulation and uncertainty analysis. The sample calculations have shown that GENOVA has strong potential to be used for CANDU core analysis combined with the current design and analysis code, RFSP, especially for the development of advanced CANDU fuels.
Moon, Byongook; Morash, Merry
2017-01-01
The present study of 659 Korean adolescents tests General Strain Theory's (GST) utility in explaining gender differences in delinquency causation. It models the effects of key strains, negative emotions, and a composite measure of several conditioning factors separately for boys and girls and for delinquency. Consistent with the theory, males and…
Ellwanger, Steven J.
2007-01-01
This article enhances our knowledge of general strain theory (GST) by applying it to the context of traffic delinquency. It does so by first describing and confirming the development of a social-psychological measure allowing for a test of GST. Structural regression analysis is subsequently employed to test the theory within this context across a…
Sarabia, José María; Jordá, Vanesa
2014-12-01
The importance of the Pietra index in socioeconomic systems and econophysics has been highlighted by Eliazar and Sokolov (2010). In this paper, we obtain closed expressions for the Pietra index for the generalized function for the size of income proposed by McDonald (1984). This family is composed of three classes of distributions: the generalized gamma distribution (GG), the generalized beta of the first kind (GB1) and the generalized beta of the second kind (GB2). For the different distributions, we obtain closed and simple expressions of the Pietra index, which can be easily computed. We also obtain the Pietra index for other relevant income models including finite mixtures of distributions and the κ-generalized distribution (Clementi et al., 2008). Finally, two empirical applications with real income data are given.
Hoare, Karen J; Mills, Jane; Francis, Karen
2013-07-01
Practice nursing in New Zealand is not well described in the literature. One survey illustrated that most of the New Zealand practice nurses sampled did not know of the country's two premier evidence-based health websites. A recent review compared general practice in the UK, New Zealand and Australia and found that whereas there had been significant developments in empowering the practice nurse workforce to run nurse-led clinics in the UK, New Zealand and Australia lagged behind. The aim of this reported constructivist grounded theory study was to investigate practice nurses' use of information. Conducted in Auckland, New Zealand, data were collected through ethnographic techniques in one general practice between September 2009 and January 2010 to enhance theoretical sensitivity to the area of information use. Subsequently, six experienced practice nurses (one twice after moving jobs) and five new graduate nurses from five different general practices were interviewed, using open-ended questions, between January 2010 and August 2011. Concurrent data collection and analysis occurred throughout the study period. The use of memos, the constant comparative method, data categorisation and finally, data abstraction resulted in the final theory of reciprocal role modelling. Experienced practice nurses role modelled clinical skills to new graduate nurses. Unexpectedly, new graduate nurses were unconscious experts at sourcing information and role modelled this skill to experienced practice nurses. Once this attribute was acknowledged by the experienced practice nurse, mutual learning occurred that enabled both groups of nurses to become better practitioners. Graduate nurses of the millennial generation were identified as a resource for experienced practice nurses who belong to the baby boomer generation and generation X. © 2013 John Wiley & Sons Ltd.
Directory of Open Access Journals (Sweden)
Ashworth Mark
2010-11-01
Full Text Available Abstract Background Non-adherence to clinical guidelines has been identified as a consistent finding in general practice. The purpose of this study was to develop theory-informed, computer-delivered interventions to promote the implementation of guidelines in general practice. Specifically, our aim was to develop computer-delivered prompts to promote guideline adherence for antibiotic prescribing in respiratory tract infections (RTIs, and adherence to recommendations for secondary stroke prevention. Methods A qualitative design was used involving 33 face-to-face interviews with general practitioners (GPs. The prompts used in the interventions were initially developed using aspects of social cognitive theory, drawing on nationally recommended standards for clinical content. The prompts were then presented to GPs during interviews, and iteratively modified and refined based on interview feedback. Inductive thematic analysis was employed to identify responses to the prompts and factors involved in the decision to use them. Results GPs reported being more likely to use the prompts if they were perceived as offering support and choice, but less likely to use them if they were perceived as being a method of enforcement. Attitudes towards using the prompts were also related to anticipated patient outcomes, individual prescriber differences, accessibility and presentation of prompts and acceptability of guidelines. Comments on the prompts were largely positive after modifying them based on participant feedback. Conclusions Acceptability and satisfaction with computer-delivered prompts to follow guidelines may be increased by working with practitioners to ensure that the prompts will be perceived as valuable tools that can support GPs' practice.
2014-11-19
The Generalized Empirical Interpolation Method: stability theory on Hilbert spaces with an application to the Stokes equation Maday, Y.a,b,c,e, Mula...interpolant (the Lebesgue constant) by relating it to an inf-sup problem in the case of Hilbert spaces . In the second part of the paper, it will be explained...SUBTITLE The Generalized Empirical Interpolation Method: stability theory on Hilbert spaces with an application to the Stokes equation 5a. CONTRACT
The Mechanics of Spacetime - A Solid Mechanics Perspective on the Theory of General Relativity
Tenev, T G
2016-01-01
We present an elastic constitutive model of General Relativity where we identify the vacuum of three-dimensional space with a Cosmic Fabric embedded in four-dimensional spacetime and having a small thickness along the time dimension. We show a correspondence between the gravitational phenomena described by General Relativity and the kinematic and kinetic properties of the Cosmic Fabric. We propose, in agreement with modern cosmological observations (Collier, 2012; Perlmutter et al., 1999; Riess et al., 1998) and with theoretical results from Quantum Field Theory (Rugh and Zinkernagel, 2002), that the space vacuum is really not a vacuum in the purest sense but is a Cosmic Fabric that has energy density and as such mass density. We further propose that the Cosmic Fabric deforms due to matter in space, which acts as inclusions, in a manner analogous to the deformation of a conventional thin plate (Efrati et al., 2008). By introducing a constitutive model for General Relativity, we lay the groundwork for subseque...
Host allometry influences the evolution of parasite host-generalism: theory and meta-analysis.
Walker, Josephine G; Hurford, Amy; Cable, Jo; Ellison, Amy R; Price, Stephen J; Cressler, Clayton E
2017-05-05
Parasites vary widely in the diversity of hosts they infect: some parasite species are specialists-infecting just a single host species, while others are generalists, capable of infecting many. Understanding the factors that drive parasite host-generalism is of basic biological interest, but also directly relevant to predicting disease emergence in new host species, identifying parasites that are likely to have unidentified additional hosts, and assessing transmission risk. Here, we use mathematical models to investigate how variation in host body size and environmental temperature affect the evolution of parasite host-generalism. We predict that parasites are more likely to evolve a generalist strategy when hosts are large-bodied, when variation in host body size is large, and in cooler environments. We then explore these predictions using a newly updated database of over 20 000 fish-macroparasite associations. Within the database we see some evidence supporting these predictions, but also highlight mismatches between theory and data. By combining these two approaches, we establish a theoretical basis for interpreting empirical data on parasites' host specificity and identify key areas for future work that will help untangle the drivers of parasite host-generalism.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Authors.
Toward a general theory of conical intersections in systems of identical nuclei
Keating, Sean P.; Mead, C. Alden
1987-02-01
It has been shown previously that the Herzberg-Longuet-Higgins sign change produced in Born-Oppenheimer electronic wave functions when the nuclei traverse a closed path around a conical intersection has implications for the symmetry of wave functions under permutations of identical nuclei. For systems of three or four identical nuclei, there are special features present which have facilitated the detailed analysis. The present paper reports progress toward a general theory for systems of n nuclei. For n=3 or 4, the two key functions which locate conical intersections and define compensating phase factors can conveniently be defined so as to transform under permutations according to a two-dimensional irreducible representation of the permutation group. Since such representations do not exist for n>4, we have chosen to develop a formalism in terms of lab-fixed electronic basis functions, and we show how to define the two key functions in principle. The functions so defined both turn out to be totally symmetric under permutations. We show how they can be used to define compensating phase factors so that all modified electronic wave functions are either totally symmetric or totally antisymmetric under permutations. A detailed analysis is made to cyclic permutations in the neighborhood of Dnh symmetry, which can be extended by continuity arguments to more general configurations, and criteria are obtained for sign changes. There is a qualitative discussion of the treatment of more general permutations.
Directory of Open Access Journals (Sweden)
Tandarić Neven
2015-03-01
Full Text Available Ever since its beginnings, landscape ecology has been developing in two different directions: the bioecological and the geoecological. While the bioecological approach is focused on the relationship between organisms and their abiotic environment, the geoecological approach is based on the relationship between human society and its, primarily abiotic, environment. Therefore, the geoecological approach can be applied in planning human use of the environment in a long term sustainable manner, while the bioecological approach could represent the basis for the planning of conservational and environmental usage. The merging of these two approaches will result in a comprehensive and more holistic landscape ecology, which will thus gain the potential for coordinating interdisciplinary landscape research and a more prominent role in contributing to spatial planning. The merge will also enhance attempts to create a general theory of landscape systems.
A generalized number theory problem applied to ideal liquids and to terminological lexis
Maslov, V. P.; Maslova, T. V.
2017-01-01
We consider the notion of number of degrees of freedom in number theory and thermodynamics. This notion is applied to notions of terminology such as terms, slogans, themes, rules, and regulations. Prohibitions are interpreted as restrictions on the number of degrees of freedom. We present a theorem on the small number of degrees of freedom as a consequence of the generalized partitio numerorum problem. We analyze the relationship between thermodynamically ideal liquids with the lexical background that a term acquires in the process of communication. Examples showing how this background may be enhanced are considered. We discuss the question of the coagulation of drops in connection with the forecast of analogs of the gas-ideal liquid phase transition in social-political processes.
General theories of linear gravitational perturbations to a Schwarzschild black hole
Tattersall, Oliver J.; Ferreira, Pedro G.; Lagos, Macarena
2018-02-01
We use the covariant formulation proposed by Tattersall, Lagos, and Ferreira [Phys. Rev. D 96, 064011 (2017), 10.1103/PhysRevD.96.064011] to analyze the structure of linear perturbations about a spherically symmetric background in different families of gravity theories, and hence study how quasinormal modes of perturbed black holes may be affected by modifications to general relativity. We restrict ourselves to single-tensor, scalar-tensor and vector-tensor diffeomorphism-invariant gravity models in a Schwarzschild black hole background. We show explicitly the full covariant form of the quadratic actions in such cases, which allow us to then analyze odd parity (axial) and even parity (polar) perturbations simultaneously in a straightforward manner.
Tracking the evolution of the disaster management cycle: A general system theory approach
Directory of Open Access Journals (Sweden)
Christo Coetzee
2012-06-01
Full Text Available Officials and scholars have used the disaster management cycle for the past 30 years to explain and manage impacts. Although very little understanding and agreement exist in terms of where the concept originated it is the purpose of this article to address the origins of the disaster management cycle. To achieve this, general system theory concepts of isomorphisms, equifinality, open systems and feedback arrangements were applied to linear disaster phase research (which emerged in the 1920s and disaster management cycles. This was done in order to determine whether they are related concepts with procedures such as emergency, relief, recovery and rehabilitation.
Childhood abuse and criminal behavior: testing a general strain theory model.
Watts, Stephen J; McNulty, Thomas L
2013-10-01
This article draws on general strain theory (GST) to develop and test a model of the childhood abuse-crime relationship. Using data from the National Longitudinal Study of Adolescent Health (Add Health),(1) we find that early childhood physical and sexual abuse are robust predictors of offending in adolescence, for the full sample and in equations disaggregated by gender. GST is partially supported in that the effects of childhood physical abuse on offending for both females and males are mediated by an index of depression symptoms, whereas the effect of sexual abuse among females appears to be mediated largely by closeness to mother. The effect of childhood sexual abuse among males, however, is more robust than among females and it persists despite controls for low self-control, ties to delinquent peers, school attachment, and closeness to mother. Theoretical implications of the findings are discussed.
Hoots, F. R.; Fitzpatrick, P. M.
1979-01-01
The classical Poisson equations of rotational motion are used to study the attitude motions of an earth orbiting, rapidly spinning gyroscope perturbed by the effects of general relativity (Einstein theory). The center of mass of the gyroscope is assumed to move about a rotating oblate earth in an evolving elliptic orbit which includes all first-order oblateness effects produced by the earth. A method of averaging is used to obtain a transformation of variables, for the nonresonance case, which significantly simplifies the Poisson differential equations of motion of the gyroscope. Long-term solutions are obtained by an exact analytical integration of the simplified transformed equations. These solutions may be used to predict both the orientation of the gyroscope and the motion of its rotational angular momentum vector as viewed from its center of mass. The results are valid for all eccentricities and all inclinations not near the critical inclination.
General momentum theory for wind turbines at low tip speed ratios
DEFF Research Database (Denmark)
Sørensen, Jens Nørkær; van Kuik, Gijs A. M.
2011-01-01
General momentum theory is used to study the behaviour of the ‘classical’ free vortex wake model of Joukowsky. This model has recently attained considerable attention as it shows the possibility of achieving a power performance that greatly exceeds the Lanchester‐Betz limit for rotors running...... at low tip speed ratios. This behaviour is confirmed even when including the effect of a centre vortex, allowing azimuthal velocities and the associated radial pressure gradient to be taken into account in the axial momentum balance without any simplifying assumptions. It is shown that the most likely...... explanation for the anomalous behaviour at small tip speed ratios is that the influence of the lateral component of pressure and friction is neglected in the axial momentum theorem. A refined model is proposed that remedies the problem of using the axial momentum theorem and by which the power coefficient...
Calculation of generalized Lorenz-Mie theory based on the localized beam models
Jia, Xiaowei; Shen, Jianqi; Yu, Haitao
2017-07-01
It has been proved that localized approximation (LA) is the most efficient way to evaluate the beam shape coefficients (BSCs) in generalized Lorenz-Mie theory (GLMT). The numerical calculation of relevant physical quantities is a challenge for its practical applications due to the limit of computer resources. The study presents an improved algorithm of the GLMT calculation based on the localized beam models. The BSCs and the angular functions are calculated by multiplying them with pre-factors so as to keep their values in a reasonable range. The algorithm is primarily developed for the original localized approximation (OLA) and is further extended to the modified localized approximation (MLA). Numerical results show that the algorithm is efficient, reliable and robust.
Suppression of matter couplings with a vector field in generalized Proca theories
Nakamura, Shintaro; Kase, Ryotaro; Tsujikawa, Shinji
2017-10-01
In the context of generalized Proca theories, we derive the profile of a vector field Aμ whose squared AμAμ is coupled to the trace T of matter on a static and spherically symmetric background. The cubic Galileon self-interaction leads to the suppression of a longitudinal vector component due to the operation of the Vainshtein mechanism. For quartic and sixth-order derivative interactions, the solutions consistent with those in the continuous limit of small derivative couplings correspond to the branch with the vanishing longitudinal mode. We compute the corrections to gravitational potentials outside a compact body induced by the vector field in the presence of cubic, quartic, and sixth-order derivative couplings, and show that the models can be consistent with local gravity constraints under mild bounds on the temporal vector component. The quintic vector Galileon does not allow regular solutions of the longitudinal mode for a rapidly decreasing matter density outside the body.
Zhao, W
2000-01-01
My dissertation consists of three different topics. In the first topic, I consider the generalizations of two dimensional genus zero or tree level conformal field theory to the setting of locally trivialized holomorphic vector bundles and principal GC -bundles over the Riemann sphere, where G is any connected and simply connected semi-simple Lie group G and GC is the complexification of G. With the sewing operations of bundles and the permutations of symmetric groups on the local trivializations, the moduli spaces of locally trivialized holomorphic vector bundles and principal GC -bundles over the Riemann sphere form analytic partial operads. First, we study the holomorphic operadic structure on the moduli spaces of locally trivialized holomorphic vector bundles and principal GC -bundles over the Riemann sphere and their relations with the loop groups, the group Dif f+(S 1) as well as the infinite dimensional Grassmannians. Secondly, we classify and construct explicitly all 1-dimensional modular functors over...
Generalized Case ``Van Kampen theory for electromagnetic oscillations in a magnetized plasma
Bairaktaris, F.; Hizanidis, K.; Ram, A. K.
2017-10-01
The Case-Van Kampen theory is set up to describe electrostatic oscillations in an unmagnetized plasma. Our generalization to electromagnetic oscillations in magnetized plasma is formulated in the relativistic position-momentum phase space of the particles. The relativistic Vlasov equation includes the ambient, homogeneous, magnetic field, and space-time dependent electromagnetic fields that satisfy Maxwell's equations. The standard linearization technique leads to an equation for the perturbed distribution function in terms of the electromagnetic fields. The eigenvalues and eigenfunctions are obtained from three integrals `` each integral being over two different components of the momentum vector. Results connecting phase velocity, frequency, and wave vector will be presented. Supported in part by the Hellenic National Programme on Controlled Thermonuclear Fusion associated with the EUROfusion Consortium, and by DoE Grant DE-FG02-91ER-54109.
Generalized Rate Theory for Void and Bubble Swelling and its Application to Delta-Plutonium
Energy Technology Data Exchange (ETDEWEB)
Allen, P. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wall, M. A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wolfer, W. G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
2016-10-04
A rate theory for void and bubble swelling is derived that allows both vacancies and self-interstitial atoms to be generated by thermal activation at all sinks. In addition, they can also be produced by displacement damage from external and internal radiation. This generalized rate theory (GRT) is applied to swelling of gallium-stabilized δ-plutonium in which α-decay causes the displacement damage. Since the helium atoms produced also become trapped in vacancies, a distinction is made between empty and occupied vacancies. The growth of helium bubbles observed by transmission electron microscopy (TEM) in weapons-grade and in material enriched with Pu238 is analyzed, using different values for the formation energy of self-interstitial atoms (SIA) and two different sets of relaxation volumes for the vacancy and for the SIA. One set allows preferential capture of SIA at dislocations, while the other set gives equal preference to both vacancy and SIA. It is found that the helium bubble diameters observed are in better agreement with GRT predictions if no preferential capture occurs at dislocations. Therefore, helium bubbles in δ-plutonium will not evolve into voids. The helium density within the bubbles remains sufficiently high to cause thermal emission of SIA. Based on a helium density between two to three helium atoms per vacant site, the sum of formation and migration energies must be around 2.0 eV for SIA in δ-plutonium.
Cudmore, Rebecca M; Cuevas, Carlos A; Sabina, Chiara
2015-07-24
Although criminological research has provided support for general strain theory (GST), there is still little known about the relationship between victimization and delinquency among Latino adolescents. This study seeks to fill the gap in the literature by examining the association between a broader measure of victimization (i.e., polyvictimization) and delinquent behavior using data from the Dating Violence Among Latino Adolescents (DAVILA) Study, a national sample of Latino youth. Logistic regression analyses were conducted to examine two issues: (a) whether polyvictimization is associated with self-reported delinquent behavior and (b) whether anger mediates the relationship between polyvictimization and delinquency. Our findings provided partial support for GST among Latino youth. Specifically, the effect of polyvictimization on delinquency was explained in part by its effect on anger. Contrary to the theory's hypothesis, the effect of polyvictimization was not conditional on the effect of social support. Overall, findings suggested that GST is a promising framework for understanding the relationship between polyvictimization and delinquency among Latino youth. © The Author(s) 2015.
Wu, Chung-Hua
1993-01-01
This report represents a general theory applicable to axial, radial, and mixed flow turbomachines operating at subsonic and supersonic speeds with a finite number of blades of finite thickness. References reflect the evolution of computational methods used, from the inception of the theory in the 50's to the high-speed computer era of the 90's. Two kinds of relative stream surfaces, S(sub 1) and S(sub 2), are introduced for the purpose of obtaining a three-dimensional flow solution through the combination of two-dimensional flow solutions. Nonorthogonal curvilinear coordinates are used for the governing equations. Methods of computing transonic flow along S(sub 1) and S(sub 2) stream surfaces are given for special cases as well as for fully three-dimensional transonic flows. Procedures pertaining to the direct solutions and inverse solutions are presented. Information on shock wave locations and shapes needed for computations are discussed. Experimental data from a Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e.V. (DFVLR) rotor and from a Chinese Academy of Sciences (CAS) transonic compressor rotor are compared with the computed flow properties.
Glatzel, P M
1995-02-01
The cybernetic model of interaction of the early system therapy was derived from the concept of feedback mechanisms. It is based upon the assumption that living beings interact with each other as open systems and thereby exchange information. The model can easily be used for the description and explanation of the therapeutic interactions in all schools of psychotherapy, but it is very abstract. In contrast, in the biosystem theory of Maturana living beings as autopoietic systems are operationally and cognitively closed. Exchange of information among them is not possible. Together with the so-called "radical constructivism" this theory has increasingly influenced system therapy over the past ten years and stimulated the development of an alternative model by which the interaction between therapist and client can be described differently and explained in a new way. The model does not only allow the pragmatic integration of all methods of psychotherapy, but also the design of a therapeutic approach including all schools, which is roughly sketched here and called "general system therapy".
PyR@TE. Renormalization group equations for general gauge theories
Lyonnet, F.; Schienbein, I.; Staub, F.; Wingerter, A.
2014-03-01
Although the two-loop renormalization group equations for a general gauge field theory have been known for quite some time, deriving them for specific models has often been difficult in practice. This is mainly due to the fact that, albeit straightforward, the involved calculations are quite long, tedious and prone to error. The present work is an attempt to facilitate the practical use of the renormalization group equations in model building. To that end, we have developed two completely independent sets of programs written in Python and Mathematica, respectively. The Mathematica scripts will be part of an upcoming release of SARAH 4. The present article describes the collection of Python routines that we dubbed PyR@TE which is an acronym for “Python Renormalization group equations At Two-loop for Everyone”. In PyR@TE, once the user specifies the gauge group and the particle content of the model, the routines automatically generate the full two-loop renormalization group equations for all (dimensionless and dimensionful) parameters. The results can optionally be exported to LaTeX and Mathematica, or stored in a Python data structure for further processing by other programs. For ease of use, we have implemented an interactive mode for PyR@TE in form of an IPython Notebook. As a first application, we have generated with PyR@TE the renormalization group equations for several non-supersymmetric extensions of the Standard Model and found some discrepancies with the existing literature. Catalogue identifier: AERV_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AERV_v1_0.html Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 924959 No. of bytes in distributed program, including test data, etc.: 495197 Distribution format: tar.gz Programming language: Python. Computer
Tyc, Katarzyna M; Herwald, Sanna E; Hogan, Jennifer A; Pierce, Jessica V; Klipp, Edda; Kumamoto, Carol A
2016-03-01
The fungal pathogen Candida albicans colonizes the gastrointestinal (GI) tract of mammalian hosts as a benign commensal. However, in an immunocompromised host, the fungus is capable of causing life-threatening infection. We previously showed that the major transcription factor Efg1p is differentially expressed in GI-colonizing C. albicans cells dependent on the host immune status. To understand the mechanisms that underlie this host-dependent differential gene expression, we utilized mathematical modeling to dissect host-pathogen interactions. Specifically, we used principles of evolutionary game theory to study the mechanism that governs dynamics of EFG1 expression during C. albicans colonization. Mathematical modeling predicted that down-regulation of EFG1 expression within individual fungal cells occurred at different average rates in different hosts. Rather than using relatively transient signaling pathways to adapt to a new environment, we demonstrate that C. albicans overcomes the host defense strategy by modulating the activity of diverse fungal histone modifying enzymes that control EFG1 expression. Based on our modeling and experimental results we conclude that C. albicans cells sense the local environment of the GI tract and respond to differences by altering EFG1 expression to establish optimal survival strategies. We show that the overall process is governed via modulation of epigenetic regulators of chromatin structure.
Finite automata, their algebras and grammars towards a theory of formal expressions
Büchi, J Richard
1989-01-01
The author, who died in 1984, is well-known both as a person and through his research in mathematical logic and theoretical computer science. In the first part of the book he presents the new classical theory of finite automata as unary algebras which he himself invented about 30 years ago. Many results, like his work on structure lattices or his characterization of regular sets by generalized regular rules, are unknown to a wider audience. In the second part of the book he extends the theory to general (non-unary, many-sorted) algebras, term rewriting systems, tree automata, and pushdown automata. Essentially Büchi worked independent of other rersearch, following a novel and stimulating approach. He aimed for a mathematical theory of terms, but could not finish the book. Many of the results are known by now, but to work further along this line presents a challenging research program on the borderline between universal algebra, term rewriting systems, and automata theory. For the whole book and aga...
Ruddick, Kristie R.; Parrill, Abby L.; Petersen, Richard L.
2012-01-01
In this study, a computational molecular orbital theory experiment was implemented in a first-semester honors general chemistry course. Students used the GAMESS (General Atomic and Molecular Electronic Structure System) quantum mechanical software (as implemented in ChemBio3D) to optimize the geometry for various small molecules. Extended Huckel…
Gamal, G. L. Nashed
2011-11-01
A theory of (4+1)-dimensional gravity is developed on the basis of the teleparallel theory equivalent to general relativity. The fundamental gravitational field variables are the five-dimensional vector fields (pentad), defined globally on a manifold M, and gravity is attributed to the torsion. The Lagrangian density is quadratic in the torsion tensor. We then give the exact five-dimensional solution. The solution is a generalization of the familiar Schwarzschild and Kerr solutions of the four-dimensional teleparallel equivalent of general relativity. We also use the definition of the gravitational energy to calculate the energy and the spatial momentum.
Assessing Expressive Movement: Measuring Student Learning Outcomes in the General Music Classroom
Butke, Marla A.
2014-01-01
Expressive movement, created by students to demonstrate musical elements and artistry, provides a valid assessment opportunity for general music teachers. This purposeful movement, "plastique animée", was developed by Swiss composer, Émile Jaques-Dalcroze, in the early 20th century. "Plastique animée" can serve as a useful…
Directory of Open Access Journals (Sweden)
Maike Schindler
2016-12-01
Full Text Available Giftedness is an increasingly important research topic in educational sciences and mathematics education in particular. In this paper, we contribute to further theorizing mathematical giftedness through illustrating how networking processes can be conducted and illustrating their potential benefits. The paper focuses on two theories: Renzulli’s domain-general theory on giftedness as an interplay of creativity, above-average ability, and task commitment; and Krutetskii’s mathematics-specific theory on gifted students’ abilities. In a “proof of concept”, we illustrate how the abilities offered in Krutetskii’s theory can be mapped to the three traits described by Renzulli. This is realized through a mapping process in which two raters independently mapped the abilities offered by Krutetskii to Renzulli’s traits. The results of this mapping give first insights into (a possible mappings of Krutetskii’s abilities to Renzulli’s traits and, thus, (b a possible domain-specific specification of Renzulli’s theory. This mapping hints at interesting potential phenomena: in Krutetskii’s theory, above-average ability appears to be the trait that predominantly is addressed, whereas creativity and especially task-commitment seem less represented. Our mapping demonstrates what a mathematics-specific specification of Renzulli’s theory can look like. Finally, we elaborate on the consequences of our findings, restrictions of our methodology, and on possible future research.
Bayesian inference in an item response theory model with a generalized student t link function
Azevedo, Caio L. N.; Migon, Helio S.
2012-10-01
In this paper we introduce a new item response theory (IRT) model with a generalized Student t-link function with unknown degrees of freedom (df), named generalized t-link (GtL) IRT model. In this model we consider only the difficulty parameter in the item response function. GtL is an alternative to the two parameter logit and probit models, since the degrees of freedom (df) play a similar role to the discrimination parameter. However, the behavior of the curves of the GtL is different from those of the two parameter models and the usual Student t link, since in GtL the curve obtained from different df's can cross the probit curves in more than one latent trait level. The GtL model has similar proprieties to the generalized linear mixed models, such as the existence of sufficient statistics and easy parameter interpretation. Also, many techniques of parameter estimation, model fit assessment and residual analysis developed for that models can be used for the GtL model. We develop fully Bayesian estimation and model fit assessment tools through a Metropolis-Hastings step within Gibbs sampling algorithm. We consider a prior sensitivity choice concerning the degrees of freedom. The simulation study indicates that the algorithm recovers all parameters properly. In addition, some Bayesian model fit assessment tools are considered. Finally, a real data set is analyzed using our approach and other usual models. The results indicate that our model fits the data better than the two parameter models.
Schindler, Maike; Rott, Benjamin
2017-01-01
Giftedness is an increasingly important research topic in educational sciences and mathematics education in particular. In this paper, we contribute to further theorizing mathematical giftedness through illustrating how networking processes can be conducted and illustrating their potential benefits. The paper focuses on two theories: Renzulli's…
Calculation of positron binding energies using the generalized any particle propagator theory
Energy Technology Data Exchange (ETDEWEB)
Romero, Jonathan; Charry, Jorge A. [Department of Chemistry, Universidad Nacional de Colombia, Av. Cra. 30 #45-03, Bogotá (Colombia); Flores-Moreno, Roberto [Departamento de Química, Universidad de Guadalajara, Blvd. Marcelino García Barragán 1421, Guadalajara Jal., C. P. 44430 (Mexico); Varella, Márcio T. do N. [Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP (Brazil); Reyes, Andrés, E-mail: areyesv@unal.edu.co [Department of Chemistry, Universidad Nacional de Colombia, Av. Cra. 30 #45-03, Bogotá (Colombia); Instituto de Física, Universidade de São Paulo, CP 66318, 05315-970 São Paulo, SP (Brazil)
2014-09-21
We recently extended the electron propagator theory to any type of quantum species based in the framework of the Any-Particle Molecular Orbital (APMO) approach [J. Romero, E. Posada, R. Flores-Moreno, and A. Reyes, J. Chem. Phys. 137, 074105 (2012)]. The generalized any particle molecular orbital propagator theory (APMO/PT) was implemented in its quasiparticle second order version in the LOWDIN code and was applied to calculate nuclear quantum effects in electron binding energies and proton binding energies in molecular systems [M. Díaz-Tinoco, J. Romero, J. V. Ortiz, A. Reyes, and R. Flores-Moreno, J. Chem. Phys. 138, 194108 (2013)]. In this work, we present the derivation of third order quasiparticle APMO/PT methods and we apply them to calculate positron binding energies (PBEs) of atoms and molecules. We calculated the PBEs of anions and some diatomic molecules using the second order, third order, and renormalized third order quasiparticle APMO/PT approaches and compared our results with those previously calculated employing configuration interaction (CI), explicitly correlated and quantum Montecarlo methodologies. We found that renormalized APMO/PT methods can achieve accuracies of ∼0.35 eV for anionic systems, compared to Full-CI results, and provide a quantitative description of positron binding to anionic and highly polar species. Third order APMO/PT approaches display considerable potential to study positron binding to large molecules because of the fifth power scaling with respect to the number of basis sets. In this regard, we present additional PBE calculations of some small polar organic molecules, amino acids and DNA nucleobases. We complement our numerical assessment with formal and numerical analyses of the treatment of electron-positron correlation within the quasiparticle propagator approach.
Hehl, Friedrich W.; McCrea, J. Dermott
1986-03-01
Automatic conservation of energy-momentum and angular momentum is guaranteed in a gravitational theory if, via the field equations, the conservation laws for the material currents are reduced to the contracted Bianchi identities. We first execute an irreducible decomposition of the Bianchi identities in a Riemann-Cartan space-time. Then, starting from a Riemannian space-time with or without torsion, we determine those gravitational theories which have automatic conservation: general relativity and the Einstein-Cartan-Sciama-Kibble theory, both with cosmological constant, and the nonviable pseudoscalar model. The Poincaré gauge theory of gravity, like gauge theories of internal groups, has no automatic conservation in the sense defined above. This does not lead to any difficulties in principle. Analogies to 3-dimensional continuum mechanics are stressed throughout the article.
Energy Technology Data Exchange (ETDEWEB)
Chamati, H; Tonchev, N S [Institute of Solid State Physics, 72 Tzarigradsko Chaussee, 1784 Sofia (Bulgaria)
2006-01-20
The difficulties arising in the investigation of finite-size scaling in d-dimensional O(n) systems with strong anisotropy and/or long-range interaction, decaying with the interparticle distance r as r{sup -d-{sigma}}(0 < {sigma} {<=} 2), are discussed. Some integral representations aiming at the simplification of the investigations are presented for the classical and quantum lattice sums that take place in the theory. Special attention is paid to a more general form allowing to treat both cases on an equal footing and in addition cases with strong anisotropic interactions and different geometries. The analysis is simplified further by expressing this general form in terms of a generalization of the Mittag-Leffler special functions. This turned out to be very useful for the extraction of asymptotic finite-size behaviours of the thermodynamic functions.
Generalized entropy theory of glass-formation in fully flexible polymer melts
Xu, Wen-Sheng; Douglas, Jack F.; Freed, Karl F.
2016-12-01
The generalized entropy theory (GET) offers many insights into how molecular parameters influence polymer glass-formation. Given the fact that chain rigidity often plays a critical role in understanding the glass-formation of polymer materials, the GET was originally developed based on models of semiflexible chains. Consequently, all previous calculations within the GET considered polymers with some degree of chain rigidity. Motivated by unexpected results from computer simulations of fully flexible polymer melts concerning the dependence of thermodynamic and dynamic properties on the cohesive interaction strength (ɛ), the present paper employs the GET to explore the influence of ɛ on glass-formation in models of polymer melts with a vanishing bending rigidity, i.e., fully flexible polymer melts. In accord with simulations, the GET for fully flexible polymer melts predicts that basic dimensionless thermodynamic properties (such as the reduced thermal expansion coefficient and isothermal compressibility) are universal functions of the temperature scaled by ɛ in the regime of low pressures. Similar scaling behavior is also found for the configurational entropy density in the GET for fully flexible polymer melts. Moreover, we find that the characteristic temperatures of glass-formation increase linearly with ɛ and that the fragility is independent of ɛ in fully flexible polymer melts, predictions that are again consistent with simulations of glass-forming polymer melts composed of fully flexible chains. Beyond an explanation of these general trends observed in simulations, the GET for fully flexible polymer melts predicts the presence of a positive residual configurational entropy at low temperatures, indicating a return to Arrhenius relaxation in the low temperature glassy state.
Mitri, Farid G
2012-08-01
This work presents the general theory of resonance scattering (GTRS) by an elastic spherical shell immersed in a nonviscous fluid and placed arbitrarily in an acoustic beam. The GTRS formulation is valid for a spherical shell of any size and material regardless of its location relative to the incident beam. It is shown here that the scattering coefficients derived for a spherical shell immersed in water and placed in an arbitrary beam equal those obtained for plane wave incidence. Numerical examples for an elastic shell placed in the field of acoustical Bessel beams of different types, namely, a zero-order Bessel beam and first-order Bessel vortex and trigonometric (nonvortex) beams are provided. The scattered pressure is expressed using a generalized partial-wave series expansion involving the beam-shape coefficients (BSCs), the scattering coefficients of the spherical shell, and the half-cone angle of the beam. The BSCs are evaluated using the numerical discrete spherical harmonics transform (DSHT). The far-field acoustic resonance scattering directivity diagrams are calculated for an albuminoidal shell immersed in water and filled with perfluoropropane gas, by subtracting an appropriate background from the total far-field form function. The properties related to the arbitrary scattering are analyzed and discussed. The results are of particular importance in acoustical scattering applications involving imaging and beam-forming for transducer design. Moreover, the GTRS method can be applied to investigate the scattering of any beam of arbitrary shape that satisfies the source-free Helmholtz equation, and the method can be readily adapted to viscoelastic spherical shells or spheres.
Gao, Yunjiao; Wong, Dennis S W; Yu, Yanping
2016-01-01
Using a sample of 1,163 adolescents from four middle schools in China, this study explores the intervening process of how adolescent maltreatment is related to delinquency within the framework of general strain theory (GST) by comparing two models. The first model is Agnew's integrated model of GST, which examines the mediating effects of social control, delinquent peer affiliation, state anger, and depression on the relationship between maltreatment and delinquency. Based on this model, with the intent to further explore the mediating effects of state anger and depression and to investigate whether their effects on delinquency can be demonstrated more through delinquent peer affiliation and social control, an extended model (Model 2) is proposed by the authors. The second model relates state anger to delinquent peer affiliation and state depression to social control. By comparing the fit indices and the significance of the hypothesized paths of the two models, the study found that the extended model can better reflect the mechanism of how maltreatment contributes to delinquency, whereas the original integrated GST model only receives partial support because of its failure to find the mediating effects of state negative emotions. © The Author(s) 2014.
Generalized extended Navier-Stokes theory: Multiscale spin relaxation in molecular fluids
DEFF Research Database (Denmark)
Hansen, Jesper Schmidt
2013-01-01
This paper studies the relaxation of the molecular spin angular velocity in the framework of generalized extended Navier-Stokes theory. Using molecular dynamics simulations, it is shown that for uncharged diatomic molecules the relaxation time decreases with increasing molecular moment of inertia...... per unit mass. In the regime of large moment of inertia the fast relaxation is wave-vector independent and dominated by the coupling between spin and the fluid streaming velocity, whereas for small inertia the relaxation is slow and spin diffusion plays a significant role. The fast wave......-vector-independent relaxation is also observed for highly packed systems. The transverse and longitudinal spin modes have, to a good approximation, identical relaxation, indicating that the longitudinal and transverse spin viscosities have same value. The relaxation is also shown to be isomorphic invariant. Finally, the effect...... of the coupling in the zero frequency and wave-vector limit is quantified by a characteristic length scale; if the system dimension is comparable to this length the coupling must be included into the fluid dynamical description. It is found that the length scale is independent of moment of inertia but dependent...
Unification of dark matter-dark energy in generalized Galileon theories
Koutsoumbas, George; Ntrekis, Konstantinos; Papantonopoulos, Eleftherios; Saridakis, Emmanuel N.
2018-02-01
We present a unified description of the dark matter and the dark energy sectors, in the framework of shift-symmetric generalized Galileon theories. Considering a particular combination of terms in the Horndeski Lagrangian in which we have not introduced a cosmological constant or a matter sector, we obtain an effective unified cosmic fluid whose equation of state wU is zero during the whole matter era, namely from redshifts z ~ 3000 up to z ~ 2–3. Then at smaller redshifts it starts decreasing, passing the bound wU = ‑1/3, which marks the onset of acceleration, at around z ~ 0.5. At present times it acquires the value wU = ‑0.7. Finally, it tends toward a de-Sitter phase in the far future. This behaviour is in excellent agreement with observations. Additionally, confrontation with Supernovae type Ia data leads to a very efficient fit. Examining the model at the perturbative level, we show that it is free from pathologies such as ghosts and Laplacian instabilities, at both scalar and tensor sectors, at all times.
Ferguson, Brian S
2013-01-01
This paper puts John Maynard Keynes’ "The General Theory of Employment, Interest and Money" into its historical context, both in terms of economic history and in terms of the history of economics. It discusses the post-World War I period as background to the General Theory, looks at the influence of other economists of the period on the evolution of Keynes’ thought and considers the parallels between the post-World War period and the post-Napoleonic War period, when Ricardo and Malthus were d...
Directory of Open Access Journals (Sweden)
Fawn T. Ngo
2014-01-01
Full Text Available This study presents a partial test of Agnew’s general theory of crime and delinquency. Relying on a sample of adolescents and employing measures of the self, family, school, and peers domains, this study examines the contemporaneous and lagged effects of these four life domains on the likelihood of consuming alcohol and using marijuana. This study also assesses the contemporaneous and lagged effects of the life domain variables on themselves and on one another. Overall, the results lend support for Agnew’s general theory. The results also reveal several notable puzzles and underscore the complexity of this potentially important contemporary theoretical perspective.
Threshold selection in gene co-expression networks using spectral graph theory techniques.
Perkins, Andy D; Langston, Michael A
2009-10-08
Gene co-expression networks are often constructed by computing some measure of similarity between expression levels of gene transcripts and subsequently applying a high-pass filter to remove all but the most likely biologically-significant relationships. The selection of this expression threshold necessarily has a significant effect on any conclusions derived from the resulting network. Many approaches have been taken to choose an appropriate threshold, among them computing levels of statistical significance, accepting only the top one percent of relationships, and selecting an arbitrary expression cutoff. We apply spectral graph theory methods to develop a systematic method for threshold selection. Eigenvalues and eigenvectors are computed for a transformation of the adjacency matrix of the network constructed at various threshold values. From these, we use a basic spectral clustering method to examine the set of gene-gene relationships and select a threshold dependent upon the community structure of the data. This approach is applied to two well-studied microarray data sets from Homo sapiens and Saccharomyces cerevisiae. This method presents a systematic, data-based alternative to using more artificial cutoff values and results in a more conservative approach to threshold selection than some other popular techniques such as retaining only statistically-significant relationships or setting a cutoff to include a percentage of the highest correlations.
Isaacson, Sven; Luo, Feng; Feltus, Frank A.; Smith, Melissa C.
2013-01-01
The study of gene relationships and their effect on biological function and phenotype is a focal point in systems biology. Gene co-expression networks built using microarray expression profiles are one technique for discovering and interpreting gene relationships. A knowledge-independent thresholding technique, such as Random Matrix Theory (RMT), is useful for identifying meaningful relationships. Highly connected genes in the thresholded network are then grouped into modules that provide insight into their collective functionality. While it has been shown that co-expression networks are biologically relevant, it has not been determined to what extent any given network is functionally robust given perturbations in the input sample set. For such a test, hundreds of networks are needed and hence a tool to rapidly construct these networks. To examine functional robustness of networks with varying input, we enhanced an existing RMT implementation for improved scalability and tested functional robustness of human (Homo sapiens), rice (Oryza sativa) and budding yeast (Saccharomyces cerevisiae). We demonstrate dramatic decrease in network construction time and computational requirements and show that despite some variation in global properties between networks, functional similarity remains high. Moreover, the biological function captured by co-expression networks thresholded by RMT is highly robust. PMID:23409071
Explicit expressions for European option pricing under a generalized skew normal distribution
Doostparast, Mahdi
2017-01-01
Under a generalized skew normal distribution we consider the problem of European option pricing. Existence of the martingale measure is proved. An explicit expression for a given European option price is presented in terms of the cumulative distribution function of the univariate skew normal and the bivariate standard normal distributions. Some special cases are investigated in a greater detail. To carry out the sensitivity of the option price to the skew parameters, numerical methods are app...
One rule to grow them all: a general theory of neuronal branching and its practical application.
Directory of Open Access Journals (Sweden)
Hermann Cuntz
2010-08-01
Full Text Available Understanding the principles governing axonal and dendritic branching is essential for unravelling the functionality of single neurons and the way in which they connect. Nevertheless, no formalism has yet been described which can capture the general features of neuronal branching. Here we propose such a formalism, which is derived from the expression of dendritic arborizations as locally optimized graphs. Inspired by Ramón y Cajal's laws of conservation of cytoplasm and conduction time in neural circuitry, we show that this graphical representation can be used to optimize these variables. This approach allows us to generate synthetic branching geometries which replicate morphological features of any tested neuron. The essential structure of a neuronal tree is thereby captured by the density profile of its spanning field and by a single parameter, a balancing factor weighing the costs for material and conduction time. This balancing factor determines a neuron's electrotonic compartmentalization. Additions to this rule, when required in the construction process, can be directly attributed to developmental processes or a neuron's computational role within its neural circuit. The simulations presented here are implemented in an open-source software package, the "TREES toolbox," which provides a general set of tools for analyzing, manipulating, and generating dendritic structure, including a tool to create synthetic members of any particular cell group and an approach for a model-based supervised automatic morphological reconstruction from fluorescent image stacks. These approaches provide new insights into the constraints governing dendritic architectures. They also provide a novel framework for modelling and analyzing neuronal branching structures and for constructing realistic synthetic neural networks.
Wolff, J Gerard
2016-01-01
This paper summarises how the "SP theory of intelligence" and its realisation in the "SP computer model" simplifies and integrates concepts across artificial intelligence and related areas, and thus provides a promising foundation for the development of a general, human-level thinking machine, in accordance with the main goal of research in artificial general intelligence. The key to this simplification and integration is the powerful concept of "multiple alignment", borrowed and adapted from...
Filippov, A. T.
2013-11-01
We briefly describe the simplest class of affine theories of gravity in multidimensional space-times with symmetric connections and their reductions to two-dimensional dilaton-vecton gravity field theories. The distinctive feature of these theories is the presence of an absolutely neutral massive (or tachyonic) vector field (vecton) with an essentially nonlinear coupling to the dilaton gravity. We emphasize that the vecton field in dilaton-vecton gravity can be consistently replaced by a new effectively massive scalar field (scalaron) with an unusual coupling to the dilaton gravity. With this vecton-scalaron duality, we can use the methods and results of the standard dilaton gravity coupled to usual scalars in more complex dilaton-scalaron gravity theories equivalent to dilaton-vecton gravity. We present the dilaton-vecton gravity models derived by reductions of multidimensional affine theories and obtain one-dimensional dynamical systems simultaneously describing cosmological and static states in any gauge. Our approach is fully applicable to studying static and cosmological solutions in multidimensional theories and also in general one-dimensional dilaton-scalaron gravity models. We focus on general and global properties of the models, seeking integrals and analyzing the structure of the solution space. In integrable cases, it can be usefully visualized by drawing a "topological portrait" resembling the phase portraits of dynamical systems and simply exposing the global properties of static and cosmological solutions, including horizons, singularities, etc. For analytic approximations, we also propose an integral equation well suited for iterations.
Sayyed-Ahmad, Abdallah; Tuncay, Kagan; Ortoleva, Peter J
2007-01-01
Background Gene expression microarray and other multiplex data hold promise for addressing the challenges of cellular complexity, refined diagnoses and the discovery of well-targeted treatments. A new approach to the construction and quantification of transcriptional regulatory networks (TRNs) is presented that integrates gene expression microarray data and cell modeling through information theory. Given a partial TRN and time series data, a probability density is constructed that is a functional of the time course of transcription factor (TF) thermodynamic activities at the site of gene control, and is a function of mRNA degradation and transcription rate coefficients, and equilibrium constants for TF/gene binding. Results Our approach yields more physicochemical information that compliments the results of network structure delineation methods, and thereby can serve as an element of a comprehensive TRN discovery/quantification system. The most probable TF time courses and values of the aforementioned parameters are obtained by maximizing the probability obtained through entropy maximization. Observed time delays between mRNA expression and activity are accounted for implicitly since the time course of the activity of a TF is coupled by probability functional maximization, and is not assumed to be proportional to expression level of the mRNA type that translates into the TF. This allows one to investigate post-translational and TF activation mechanisms of gene regulation. Accuracy and robustness of the method are evaluated. A kinetic formulation is used to facilitate the analysis of phenomena with a strongly dynamical character while a physically-motivated regularization of the TF time course is found to overcome difficulties due to omnipresent noise and data sparsity that plague other methods of gene expression data analysis. An application to Escherichia coli is presented. Conclusion Multiplex time series data can be used for the construction of the network of
Directory of Open Access Journals (Sweden)
Tuncay Kagan
2007-01-01
Full Text Available Abstract Background Gene expression microarray and other multiplex data hold promise for addressing the challenges of cellular complexity, refined diagnoses and the discovery of well-targeted treatments. A new approach to the construction and quantification of transcriptional regulatory networks (TRNs is presented that integrates gene expression microarray data and cell modeling through information theory. Given a partial TRN and time series data, a probability density is constructed that is a functional of the time course of transcription factor (TF thermodynamic activities at the site of gene control, and is a function of mRNA degradation and transcription rate coefficients, and equilibrium constants for TF/gene binding. Results Our approach yields more physicochemical information that compliments the results of network structure delineation methods, and thereby can serve as an element of a comprehensive TRN discovery/quantification system. The most probable TF time courses and values of the aforementioned parameters are obtained by maximizing the probability obtained through entropy maximization. Observed time delays between mRNA expression and activity are accounted for implicitly since the time course of the activity of a TF is coupled by probability functional maximization, and is not assumed to be proportional to expression level of the mRNA type that translates into the TF. This allows one to investigate post-translational and TF activation mechanisms of gene regulation. Accuracy and robustness of the method are evaluated. A kinetic formulation is used to facilitate the analysis of phenomena with a strongly dynamical character while a physically-motivated regularization of the TF time course is found to overcome difficulties due to omnipresent noise and data sparsity that plague other methods of gene expression data analysis. An application to Escherichia coli is presented. Conclusion Multiplex time series data can be used for the
Directory of Open Access Journals (Sweden)
Vladimir Burtman
2015-07-01
Full Text Available One of the major tasks of the petroleum resource-efficient technologies (pREFFIT is the development and improvement of the methods of exploration for energy resources. This review paper summarizes the results of the research on induced polarization (IP effect in reservoir rocks conducted by the University of Utah Consortium for Electromagnetic Modeling and Inversion (CEMI and TechnoImaging. The electrical IP effect in hydrocarbon (HC bearing reservoir rocks having nonmetallic minerals is usually associated with membrane polarization, which is caused by a variation in the mobility of the ions throughout the rock structure. This mobility is related to the size and shape of the pores filled with electrolyte and the double electrical layers. We have studied the IP response of multiphase porous systems by conducting complex resistivity (CR frequency-domain IP measurements for two different groups of samples: sands and sandstones containing salt water in pores and those whose unsaturated pores were filled with synthetic oil. We have also studied selected carbonate reservoir formations, typical of some major HC deposits. The generalized effective-medium theory of induced polarization (GEMTIP was used to analyze the IP parameters of the measured responses. This paper presents a conceptual model of polarizing clusters to explain the observed IP phenomena. The results of this study show that the HC bearing sands and sandstone samples and carbonate rocks are characterized by a significant IP response. These experimental observations, compared with the theoretical modeling based on the GEMTIP approach, confirm earlier geophysical experiments with the application of the IP method for HC exploration.
The complexity of managing COPD exacerbations: a grounded theory study of European general practice.
Risør, Mette Bech; Spigt, Mark; Iversen, R; Godycki-Cwirko, M; Francis, N; Altiner, A; Andreeva, E; Kung, K; Melbye, H
2013-12-05
To understand the concerns and challenges faced by general practitioners (GPs) and respiratory physicians about primary care management of acute exacerbations in patients with chronic obstructive pulmonary disease (COPD). 21 focus group discussions (FGDs) were performed in seven countries with a Grounded Theory approach. Each country performed three rounds of FGDs. Primary and secondary care in Norway, Germany, Wales, Poland, Russia, The Netherlands, China (Hong Kong). 142 GPs and respiratory physicians were chosen to include urban and rural GPs as well as hospital-based and out patient-clinic respiratory physicians. Management of acute COPD exacerbations is dealt with within a scope of concerns. These concerns range from 'dealing with comorbidity' through 'having difficult patients' to 'confronting a hopeless disease'. The first concern displays medical uncertainty regarding diagnosis, medication and hospitalisation. These clinical processes become blurred by comorbidity and the social context of the patient. The second concern shows how patients receive the label 'difficult' exactly because they need complex attention, but even more because they are time consuming, do not take responsibility and are non-compliant. The third concern relates to the emotional reactions by the physicians when confronted with 'a hopeless disease' due to the fact that most of the patients do not improve and the treatment slows down the process at best. GPs and respiratory physicians balance these concerns with medical knowledge and practical, situational knowledge, trying to encompass the complexity of a medical condition. Knowing the patient is essential when dealing with comorbidities as well as with difficult relations in the consultations on exacerbations. This study suggests that it is crucial to improve the collaboration between primary and secondary care, in terms of, for example, shared consultations and defined work tasks, which may enhance shared knowledge of patients
[Juvenile criminality: general strain theory and the reactive-proactive aggression trait].
Greco, Romy; Curci, Antonietta; Grattagliano, Ignazio
2009-01-01
The aims of the present study are to test General Strain Theory's (GST) assumptions, and to integrate the model including the proactive-reactive aggression trait. GST hypothesizes crime to be enacted in response to extra-personal stimuli (strain) and their subsequent negative emotions, especially anger. However, there exist also internally-driven manifestations of crime (instrumental or proactive), motivated by stimuli that are of an intrapersonal origin. Further, individuals differ to each other in the tendency to commit reactive or proactive or both manifestations of crime. With the goal to gain a more comprehensive model, GST variables and the reactive-proactive aggression trait are together tested as to their ability to predict criminal behaviour. Participants in the present research are 68 adolescent males with age ranging from 14 to 19 (M = 16.94, SD = 0.95). Half of the participants were jailed adolescents at the Fornelli Juvenile Detention Centre in Bari, while the remaining were adolescents with no criminal record, matched for age and level of education with the former group. An interview was administered to assess the experienced strain events, anger, and crime committed by the participants in the three months preceding the interview and also before. The reactive-proactive aggression trait was additionally measured. Results of the present study supported GST's assumptions, and confirmed the utility of integrating the model to include the proactive-reactive aggression trait. Strain events experienced in three-month time were found to influence property and violent offences committed by participants in the same time-interval as well as over this time. Furthermore,jailed participants were more likely to react with anger, and violence to strain events than non-jailed individuals, although the number of events experienced by both groups in the preceding months is similar. Finally, the results of the present study showed that proactive aggression is a strong
Multiscale modeling and general theory of non-equilibrium plasma-assisted ignition and combustion
Yang, Suo; Nagaraja, Sharath; Sun, Wenting; Yang, Vigor
2017-11-01
A self-consistent framework for modeling and simulations of plasma-assisted ignition and combustion is established. In this framework, a ‘frozen electric field’ modeling approach is applied to take advantage of the quasi-periodic behaviors of the electrical characteristics to avoid the re-calculation of electric field for each pulse. The correlated dynamic adaptive chemistry (CO-DAC) method is employed to accelerate the calculation of large and stiff chemical mechanisms. The time-step is dynamically updated during the simulation through a three-stage multi-time scale modeling strategy, which utilizes the large separation of time scales in nanosecond pulsed plasma discharges. A general theory of plasma-assisted ignition and combustion is then proposed. Nanosecond pulsed plasma discharges for ignition and combustion can be divided into four stages. Stage I is the discharge pulse, with time scales of O (1-10 ns). In this stage, input energy is coupled into electron impact excitation and dissociation reactions to generate charged/excited species and radicals. Stage II is the afterglow during the gap between two adjacent pulses, with time scales of O (1 0 0 ns). In this stage, quenching of excited species dissociates O2 and fuel molecules, and provides fast gas heating. Stage III is the remaining gap between pulses, with time scales of O (1-100 µs). The radicals generated during Stages I and II significantly enhance exothermic reactions in this stage. The cumulative effects of multiple pulses is seen in Stage IV, with time scales of O (1-1000 ms), which include preheated gas temperatures and a large pool of radicals and fuel fragments to trigger ignition. For flames, plasma could significantly enhance the radical generation and gas heating in the pre-heat zone, thereby enhancing the flame establishment.
Energy Technology Data Exchange (ETDEWEB)
Garcia, Vanessa S. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Programa de Pos-Graduacao em Modelagem Computacional em Ciencia e Tecnologia; Silva, Fernando C.; Silva, Ademir X., E-mail: fernando@con.ufrj.b, E-mail: ademir@con.ufrj.b [Coordenacao dos Programas de Pos-Graduacao de Engenharia (PEN/COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Alvarez, Gustavo B. [Universidade Federal Fluminense (EEIMVR/UFF-RJ), Volta Redonda, RJ (Brazil). Escola de Engenharia Industrial e Metalurgica. Dept. de Ciencias Exatas
2011-07-01
Boron neutron capture therapy - BNCT - is a binary cancer treatment used in brain tumors. The tumor is loaded with a boron compound and subsequently irradiated by thermal neutrons. The therapy is based on the {sup 10}B (n, {alpha}) {sup 7}Li nuclear reaction, which emits two types of high-energy particles, {alpha} particle and the {sup 7}Li nuclei. The total kinetic energy released in this nuclear reaction, when deposited in the tumor region, destroys the cancer cells. Since the success of the BNCT is linked to the different selectivity between the tumor and healthy tissue, it is necessary to carry out a sensitivity analysis to determinate the boron concentration. Computational simulations are very important in this context because they help in the treatment planning by calculating the lowest effective absorbed dose rate to reduce the damage to healthy tissue. The objective of this paper is to present a deterministic method based on generalized perturbation theory (GPT) to perform sensitivity analysis with respect to the {sup 10}B concentration and to estimate the absorbed dose rate by patients undergoing this therapy. The advantage of the method is a significant reduction in computational time required to perform these calculations. To simulate the neutron flux in all brain regions, the method relies on a two-dimensional neutron transport equation whose spatial, angular and energy variables are discretized by the diamond difference method, the discrete ordinate method and multigroup formulation, respectively. The results obtained through GPT are consistent with those obtained using other methods, demonstrating the efficacy of the proposed method. (author)
The complexity of managing COPD exacerbations: a grounded theory study of European general practice
Risør, Mette Bech; Spigt, Mark; Iversen, R; Godycki-Cwirko, M; Francis, N; Altiner, A; Andreeva, E; Kung, K; Melbye, H
2013-01-01
Objectives To understand the concerns and challenges faced by general practitioners (GPs) and respiratory physicians about primary care management of acute exacerbations in patients with chronic obstructive pulmonary disease (COPD). Design 21 focus group discussions (FGDs) were performed in seven countries with a Grounded Theory approach. Each country performed three rounds of FGDs. Setting Primary and secondary care in Norway, Germany, Wales, Poland, Russia, The Netherlands, China (Hong Kong). Participants 142 GPs and respiratory physicians were chosen to include urban and rural GPs as well as hospital-based and out patient-clinic respiratory physicians. Results Management of acute COPD exacerbations is dealt with within a scope of concerns. These concerns range from ‘dealing with comorbidity’ through ‘having difficult patients’ to ‘confronting a hopeless disease’. The first concern displays medical uncertainty regarding diagnosis, medication and hospitalisation. These clinical processes become blurred by comorbidity and the social context of the patient. The second concern shows how patients receive the label ‘difficult’ exactly because they need complex attention, but even more because they are time consuming, do not take responsibility and are non-compliant. The third concern relates to the emotional reactions by the physicians when confronted with ‘a hopeless disease’ due to the fact that most of the patients do not improve and the treatment slows down the process at best. GPs and respiratory physicians balance these concerns with medical knowledge and practical, situational knowledge, trying to encompass the complexity of a medical condition. Conclusions Knowing the patient is essential when dealing with comorbidities as well as with difficult relations in the consultations on exacerbations. This study suggests that it is crucial to improve the collaboration between primary and secondary care, in terms of, for example, shared consultations
Cheung, Him; Hsuan-Chih, Chen; Creed, Nikki; Ng, Lisa; Ping Wang, Sui; Mo, Lei
2004-01-01
Complex complements are clausal objects containing tensed verbs (e.g., that she cried) or infinitives (e.g., to cry), following main verbs of communication or mental activities (e.g., say, want). This research examined whether English- and Cantonese-speaking 4-year-olds' complement understanding uniquely predicts their representation of other minds (i.e., theory of mind). Results showed that neither meaning of main verbs (communication vs. desire) nor complement structure (tensed vs. infinitival) affected the correlation between complement understanding and theory of mind. More important, the correlation became insignificant after controlling for general language comprehension. These findings led to the conclusion that the syntax of complement per se does not contribute uniquely to theory-of-mind development; general language comprehension is a more important factor to consider. Copyright 2004 Society for Research in Child Development, Inc.
Directory of Open Access Journals (Sweden)
Robin Haring
Full Text Available Despite observational evidence from epidemiological and clinical studies associating sex hormones with various cardiometabolic risk factors or diseases, pathophysiological explanations are sparse to date. To reveal putative functional insights, we analyzed associations between sex hormone levels and whole blood gene expression profiles.We used data of 991 individuals from the population-based Study of Health in Pomerania (SHIP-TREND with whole blood gene expression levels determined by array-based transcriptional profiling and serum concentrations of total testosterone (TT, sex hormone-binding globulin (SHBG, free testosterone (free T, dehydroepiandrosterone sulfate (DHEAS, androstenedione (AD, estradiol (E2, and estrone (E1 measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS and immunoassay. Associations between sex hormone concentrations and gene expression profiles were analyzed using sex-specific regression models adjusted for age, body mass index, and technical covariables.In men, positive correlations were detected between AD and DDIT4 mRNA levels, as well as between SHBG and the mRNA levels of RPIA, RIOK3, GYPB, BPGM, and RAB2B. No additional significant associations were observed.Besides the associations between AD and DDIT4 expression and SHBG and the transcript levels of RPIA, RIOK3, GYPB, BPGM, and RAB2B, the present study did not indicate any association between sex hormone concentrations and whole blood gene expression profiles in men and women from the general population.
Kunzel, Carol; Kaur, Satvir; Ahluwalia, Kavita; Darlington, Tanya; Kularatne, Piyumika; Burkett, Sandra; Hou, Derek; Sanogo, Moussa; Murrman, Marita; Edelstein, Burton
2010-01-01
Columbia University College of Dental Medicine, in partnership with the Harlem United Community AIDS Center, has developed a service-learning (SL) program for use in the training of Advanced Education in General Dentistry (AEGD) residents. This article presents basic tenets of SL, their applicability for dentistry, and our experience implementing SL in care of people living with HIV/AIDS. It proposes that social-behavioral theory, when incorporated into the basic components of SL, can play a useful role in resolving a number of challenges inherent in competency-based training programs. Although the article provides examples of how a particular theory, the Theory of Planned Behavior, might be applied in the SL context, opportunities for the application of other social-behavioral theories potentially exist.
Soleimani, Habib; Moinnzadeh, Ahmad; Kassaian, Zohreh; Ketabi, Saeed
2012-01-01
The purpose of the present study is investigating the effect of instruction based on Multiple intelligence (MI) theory on attitude and learning of General English course among students of Islamic Azad University, Kermanshah Branch in the second semester of educational year of 2010-2011. 61 male and female students in two different classes…
Generalized WDVV equations for B_r and C_r pure N=2 Super-Yang-Mills theory
Hoevenaars, L.K.; Martini, Ruud
2001-01-01
A proof that the prepotential for pure N = 2 Super-Yang–Mills theory associated with Lie algebras B r and C r satisfies the generalized WDVV (Witten–Dijkgraaf–Verlinde–Verlinde) system was given by Marshakov, Mironov, and Morozov. Among other things, they use an associative algebra of holomorphic
Nyachwaya, James M.; Gillaspie, Merry
2016-01-01
The goals of this study were (1) determine the prevalence of various features of representations in five general chemistry textbooks used in the United States, and (2) use cognitive load theory to draw implications of the various features of analyzed representations. We adapted the Graphical Analysis Protocol (GAP) (Slough et al., 2010) to look at…
Garg, Deepti; Garg, Ajay K.
2007-01-01
This study applied the Theory of Reasoned Action and the Technology Acceptance Model to measure outcomes of general education courses (GECs) under the University of Botswana Computer and Information Skills (CIS) program. An exploratory model was validated for responses from 298 students. The results suggest that resources currently committed to…
Vey Mestdagh, C.; Rijgersberg, R.
2010-01-01
The following exposition sets out to identify the basic theoretical and empirical building blocks for a general theory of self-regulation. It uses the Internet as an empirical basis since its global reach and technical characteristics create interdependencies between actors that transcend national
Bao, Wan-Ning; Haas, Ain; Chen, Xiaojin; Pi, Yijun
2014-01-01
In Agnew's general strain theory, repeated strains can generate crime and delinquency by reducing social control and fostering social learning of crime. Using a sample of 615 middle-and high-school students in China, this study examines how social control and social learning variables mediate the effect of repeated strains in school and at home on…
Moon, Byongook; Morash, Merry; McCluskey, Cynthia Perez; Hwang, Hye-Won
2009-01-01
Using longitudinal data on South Korean youth, the authors addressed limitations of previous tests of general strain theory (GST), focusing on the relationships among key strains, situational- and trait-based negative emotions, conditioning factors, and delinquency. Eight types of strain previously shown most likely to result in delinquency,…
Sinnott, Jan D.
This paper discusses the utility of a general systems theory paradigm for psychology. The paradigm can be used for conceptualizing such complex phenomena as change over time in living systems, person-society interactions, and the epistemology of multiply determined changes. Consideration is also given to applications of the approach to…
Wingo, Aliza P; Gibson, Greg
2015-01-01
Prospective epidemiological studies found that generalized anxiety disorder (GAD) can impair immune function and increase risk for cardiovascular disease or events. Mechanisms underlying the physiological reverberations of anxiety, however, are still elusive. Hence, we aimed to investigate molecular processes mediating effects of anxiety on physical health using blood gene expression profiles of 336 community participants (157 anxious and 179 control). We examined genome-wide differential gene expression in anxiety, as well as associations between nine major modules of co-regulated transcripts in blood gene expression and anxiety. No significant differential expression was observed in women, but 631 genes were differentially expressed between anxious and control men at the false discovery rate of 0.1 after controlling for age, body mass index, race, and batch effect. Gene set enrichment analysis (GSEA) revealed that genes with altered expression levels in anxious men were involved in response of various immune cells to vaccination and to acute viral and bacterial infection, and in a metabolic network affecting traits of metabolic syndrome. Further, we found one set of 260 co-regulated genes to be significantly associated with anxiety in men after controlling for the relevant covariates, and demonstrate its equivalence to a component of the stress-related conserved transcriptional response to adversity profile. Taken together, our results suggest potential molecular pathways that can explain negative effects of GAD observed in epidemiological studies. Remarkably, even mild anxiety, which most of our participants had, was associated with observable changes in immune-related gene expression levels. Our findings generate hypotheses and provide incremental insights into molecular mechanisms mediating negative physiological effects of GAD. Published by Elsevier Inc.
General overview of the theories used in assessment: AMEE Guide No. 57.
Schuwirth, L.W.; Vleuten, C.P.M. van der
2011-01-01
There are no scientific theories that are uniquely related to assessment in medical education. There are many theories in adjacent fields, however, that can be informative for assessment in medical education, and in the recent decades they have proven their value. In this AMEE Guide we discuss
Bounds on the power of proofs and advice in general physical theories.
Lee, Ciarán M; Hoban, Matty J
2016-06-01
Quantum theory presents us with the tools for computational and communication advantages over classical theory. One approach to uncovering the source of these advantages is to determine how computation and communication power vary as quantum theory is replaced by other operationally defined theories from a broad framework of such theories. Such investigations may reveal some of the key physical features required for powerful computation and communication. In this paper, we investigate how simple physical principles bound the power of two different computational paradigms which combine computation and communication in a non-trivial fashion: computation with advice and interactive proof systems. We show that the existence of non-trivial dynamics in a theory implies a bound on the power of computation with advice. Moreover, we provide an explicit example of a theory with no non-trivial dynamics in which the power of computation with advice is unbounded. Finally, we show that the power of simple interactive proof systems in theories where local measurements suffice for tomography is non-trivially bounded. This result provides a proof that [Formula: see text] is contained in [Formula: see text], which does not make use of any uniquely quantum structure-such as the fact that observables correspond to self-adjoint operators-and thus may be of independent interest.
General Iib Pp-wave Backgrounds, D-branes And Massive Two-dimensional Field Theories
Tirziu, A
2004-01-01
This thesis consists of three parts. In the first part we analyze the spectrum of the N = (2, 2) supersymmetric Landau-Ginzburg theory in two dimensions with superpotential W = X n+2 − λX 2. We find the full BPS spectrum of this theory by exploiting the direct connection between the UV and IR limits of the theory. This computation requires utilizing results from the Picard-Lefschetz theory of singularities and its extension to boundary singularities. The additional fact that this theory is integrable requires that the BPS states do not close under scattering. This observation fixes the masses of non-BPS states as well. In the second part we consider superstring theories on pp-wave backgrounds which result in an integrable N = (2, 2) supersymmetric Landau-Ginzburg theory on the worldsheet. We obtain exact eigenvalues of the light-cone gauge superstring hamiltonian in the massive and interacting world-sheet theory with superpotential Z3–Z. We find the modes of the supergrav...
Attard, Phil; Gray-Weale, Angus
2008-03-21
A Brownian particle subject to a time- and space-varying force is studied with the second entropy theory for nonequilibrium statistical mechanics. A fluctuation expression is obtained for the second entropy of the path, and this is maximized to obtain the most likely path of the particle. Two approaches are used, one based on the velocity correlation function and one based on the position correlation function. The approaches are a perturbation about the free particle result and are exact for weak external forces. They provide a particularly simple way of including memory effects in time-varying driven diffusion. The theories are tested against computer simulation data for a Brownian particle trapped in an oscillating parabolic well. They accurately predict the phase lag and amplitude as a function of drive frequency, and they account quantitatively for the memory effects that are important at high frequencies and that are missing in the simplest Langevin equation.
General approach for solving the density gradient theory in the interfacial tension calculations
DEFF Research Database (Denmark)
Liang, Xiaodong; Michelsen, Michael Locht
2017-01-01
Within the framework of the density gradient theory, the interfacial tension can be calculated by finding the density profiles that minimize an integral of two terms over the system of infinite width. It is found that the two integrands exhibit a constant difference along the interface for a finite...... property evaluations compared to other methods. The performance of the algorithm with recommended parameters is analyzed for various systems, and the efficiency is further compared with the geometric-mean density gradient theory, which only needs to solve nonlinear algebraic equations. The results show...... that the algorithm is only 5-10 times less efficient than solving the geometric-mean density gradient theory....
Matthew N. Luzzetti; Lee E. Ohanian
2010-01-01
This paper studies why the General Theory had so much impact on the economics profession through the 1960s, why that impact began to wane in the 1970s, and why many economic policymakers cling to many of the tenets of the General Theory. We discuss three key elements along these lines, including the fact macroeconomic time series through the 1960s seemed to conform qualitatively to patterns discussed in the General Theory, that econometric developments in the area of simultaneous equations ma...
Expression of caspase-3, p53 and Bcl-2 in generalized aggressive periodontitis
Directory of Open Access Journals (Sweden)
Özdemir B Handan
2006-06-01
Full Text Available Abstract Background Apoptosis, or programmed cell death is a form of physiological cell death. It is increased or decreased in the presence of infection, inflammation or tissue remodelling. Previous studies suggest that apoptosis is involved in the pathogenesis of inflammatory periodontal disease. The aim of the present study was to investigate the clinical features and known indicators of apoptosis (p53, Bcl-2, Caspase-3 in patients with generalized aggressive periodontitis (GAP Methods Eight patients with GAP, who had sites with probing depths (PD > 5 mm, and 10 periodontally-healthy persons were included in the study. Clinical examinations and PD were performed, and the plaque index and gingival index were recorded. Gingival tissues biopsies were obtained from active site of each patient and from healthy individuals. The expression of caspase-3, Bcl-2, and p53 was evaluated by immunohistochemistry Results There were no significant differences between GAP and control group with respect to levels of caspase-3 and p53 expression (P > 0.05. Contrary, the frequency of grade 3 expression of Bcl-2 was higher in GAP group than the control group. Conclusion The higher frequency of Bcl-2 expression in GAP group indicates and delayed apoptosis can lead to increasing resident inflammatory cells in periodontal tissues and resulting in progressive periodontal destruction.
Nakai, Junko; VanDerWijngaart, Rob F.
2003-01-01
Markets are often considered superior to other global scheduling mechanisms for distributed computing systems. This claim is supported by: a casual observation from our every-day life that markets successfully equilibrate supply and demand, and the features of markets which originate in the general equilibrium theory, e.g., efficiency and the lack of necessity of 2 central controller. This paper describes why such beliefs in markets are not warranted. It does so by examining the general equilibrium theory, in terms of scope, abstraction, and interpretation. Not only does the general equilibrium theory fail to provide a satisfactory explanation of actual economies, including a computing-resource economy, it also falls short of supplying theoretical foundations for commonly held views of market desirability. This paper also points out that the argument for the desirability of markets involves circular reasoning and that the desirability can be established only vis-a-vis a scheduling goal. Finally, recasting the conclusion of Arrow's Impossibility Theorem as that for global scheduling, we conclude that there exists no market-based scheduler that is rational (in the sense defined in microeconomic theory), takes into account utility of more than one user, and yet yields a Pareto-optimal outcome for arbitrary user utility functions.
National Research Council Canada - National Science Library
Dennis, John E; El-Alem, Mahmoud; Maciel, Maria C
1995-01-01
.... The normal Component need not be computed accurately. The theory requires a quasi-normal component to satisfy a fraction of Cauchy decrease condition on the quadratic model of the linearized constraints...
A generalization of Grobner bases helps to compute singularity theory transformations
Lunter, G
2001-01-01
According to singularity theory, many functions admit (local) normal forms under suitable equivalence transformations. Motivated by a dynamical systems problem, where we are interested in symbolically computing bifurcation curves, our goal is to compute the normalizing transformation explicitly.
The problem of interaction in a dynamical theory of particles (general questions). 2
Sannikov-Proskuryakov, S S
2002-01-01
We continue the consideration of the interaction problem in the frame of a new field particle theory. Here a new correspondence principle and the connection between bilocal and usual local fields are discussed. The method of second quantization of bilocal fields is formulated and a scattering matrix is built. Explicit form of smearing operators and formfactors is found. Comparison of a new particle field theory with the old (local) axiomatic approach is given.
When West Meets East: Generalizing Theory and Expanding the Conceptual Toolkit of Criminology
Messner, Steven F.
2014-01-01
This paper considers the ways in which established criminological theories born and nurtured in the West might need to be transformed to be applicable to the context of East Asian societies. The analyses focus on two theoretical perspectives—Situational Action Theory and Institutional Anomie Theory—that are located at opposite ends of the continuum with respect to levels of analysis. I argue that the accumulated evidence from cross-cultural psychology and criminological research in East Asian...
Lusanna, Luca
1995-01-01
A review is given of the presymplectic approach to relativistic physical systems and of the determination of their Dirac's observables. After relativistic mechanics and Nambu string, the Dirac's observables of Yang-Mills theory with fermions are given for the case of massless vector bosons (like in QED). A Dirac-Yukawa-like intrinsic ultraviolet cut-off is identified from the study of the covariantization of Hamiltonian classical field theory in the Dirac-Tomonaga-Schwinger sens. The implicat...
Dirac's and Generalized Faddeev-Jackiw brackets for Einstein's theory in G $\\rightarrow 0$ limit
Escalante, Alberto; Rodríguez-Tzompantzi, Omar
2015-01-01
In this paper the Dirac and Faddeev-Jackiw formulation for Einstein's theory in the $G \\rightarrow 0$ limit is performed; the fundamental Dirac's and Faddeev-Jackiw brackets for the theory are obtained. First, the Dirac brackets are constructed by eliminating the second class constraints remaining the first class ones, then we fix the gauge and we convert the first class constraints into second class constraints and the new fundamental Dirac's brackets are computed. Alternatively, we reproduc...
Getino, J.; Escapa, A.; Miguel, D.
2010-05-01
This paper is the first part of an investigation where we will present an analytical general theory of the rotation of the non-rigid Earth at the second order, which considers the effects of the interaction of the rotation of the Earth with itself, also named as the spin-spin coupling. Here, and as a necessary step in the development of that theory, we derive complete, explicit, analytical formulae of the rigid Earth rotation that account for the second-order rotation-rotation interaction. These expressions are not provided in this form by any current rigid Earth model. Working within the Hamiltonian framework established by Kinoshita, we study the second-order effects arising from the interaction of the main term in the Earth geopotential expansion with itself, and with the complementary term arising when referring the rotational motion to the moving ecliptic. To this aim, we apply a canonical perturbation method to solve analytically the canonical equations at the second order, determining the expressions that provide the nutation-precession, the polar motion, and the length of day. In the case of the motion of the equatorial plane, nutation-precession, we compare our general approach with the particular study for this motion developed by Souchay et al., showing the existence of new terms whose numerical values are within the truncation level of 0.1 μas adopted by those authors. These terms emerge as a consequence of not assuming in this work the same restrictive simplifications taken by Souchay et al. The importance of these additional contributions is that, as the analytical formulae show, they depend on the Earth model considered, in such a way that the fluid core resonance could amplify them significatively when extending this theory to the non-rigid Earth models.
Rubio-Osornio, Carmen; Eguiluz-Meléndez, Aldo; Trejo-Solís, Cristina; Custodio, Veronica; Rubio-Osornio, Moises; Rosiles-Abonce, Artemio; Martínez-Lazcano, Juan C; González, Edith; Paz, Carlos
2016-01-01
The single feature of all malformations in cortical development is the clinical association with epilepsy. It has been proven that Sox-1 expression is essential during neurodevelopment and it is reported that Sox-1 knockout mice present spontaneous generalized seizures. Particularly in cerebellum, Sox-1 plays a key role in the Bergmann´s glia (BG) function, which allows the correct function of the Purkinje cells (PC). The targets of PC are the dentate and interpositus nuclei, which form the main cerebellar efferents involved in the physiopathology of epilepsy. Here we present the Sox-1 expression in cerebellum of rats during electric amygdala-kindling. We obtained seizures and once they had 3, 15 and 45 electric stimuli, the animals were sacrificed; the cerebellum was processed for inmunohistochemistry and Western blot analysis was performed to determine Sox-1 expression. Liquid chromatography was performed to examine gammaaminobutyric acid (GABA) and glutamate concentration. According to the literature, a progressive increase was observed in the electrographic and behavioral parameters. We found that Sox-1 expression in 15 and 45-stimuli groups had a statistically significant decrease as compared with controls, while the 3-stimuli group was similar to the control group. The concentration of glutamate was increased in rats with 45 stimuli. We can conclude that Sox-1 expression decreases as the number of seizures increases, and this is probably due to an altered glutamate regulation by a dysfunctional BG. In this way, we can suggest this mechanism as a one possible explanation of how the cerebellum participates in the pathophysiology of epilepsy.
Directory of Open Access Journals (Sweden)
Zulfiqar Ali
2013-01-01
Full Text Available We find exact solutions of the Generalized Modified Boussinesq (GMB equation, the Kuromoto-Sivashinsky (KS equation the and, Camassa-Holm (CH equation by utilizing the double reduction theory related to conserved vectors. The fourth order GMB equation involves the arbitrary function and mixed derivative terms in highest derivative. The partial Noether’s approach yields seven conserved vectors for GMB equation and one conserved for vector KS equation. Due to presence of mixed derivative term the conserved vectors for GMB equation derived by the Noether like theorem do not satisfy the divergence relationship. The extra terms that constitute the trivial part of conserved vectors are adjusted and the resulting conserved vectors satisfy the divergence property. The double reduction theory yields two independent solutions and one reduction for GMB equation and one solution for KS equation. For CH equation two independent solutions are obtained elsewhere by double reduction theory with the help of conserved Vectors.
A general test of self-control theory: has its importance been exaggerated?
Cretacci, Michael A
2008-10-01
Self-control theory has been tested for 2 decades. However, mixed results and measurement problems have made it difficult to ascertain its true utility. This study addresses recent concerns and includes variables such as risk, consequences, criminal opportunity, an interaction term, and bond controls in one complete test. It also addresses self-control's ability to explain different forms of crime and whether the support that it has garnered has been exaggerated. Results of both cross-sectional and semilongitudinal tests indicate that self-control significantly predicts a higher probability of involvement in property and drug crime but is virtually silent in its ability to explain violence. Furthermore, it can be tentatively stated that support for the theory wanes over time. Finally, neglected concepts such as opportunity, risk, consequences, and bond controls may be important to the theory's ability to explain crime, and further negligence of these concepts may hamper a true understanding of its impact.
Gravity Amplitudes as Generalized Double Copies of Gauge-Theory Amplitudes
Bern, Zvi; Carrasco, John Joseph; Chen, Wei-Ming; Johansson, Henrik; Roiban, Radu
2017-05-01
Whenever the integrand of a gauge-theory loop amplitude can be arranged into a form where the Bern-Carrasco-Johansson duality between color and kinematics is manifest, a corresponding gravity integrand can be obtained simply via the double-copy procedure. However, finding such gauge-theory representations can be challenging, especially at high loop orders. Here, we show that we can, instead, start from generic gauge-theory integrands, where the duality is not manifest, and apply a modified double-copy procedure to obtain gravity integrands that include contact terms generated by violations of dual Jacobi identities. We illustrate this with three-, four- and five-loop examples in N =8 supergravity.
An assessment of four-noded plate finite elements based on a generalized third-order theory
Averill, R. C.; Reddy, J. N.
1992-01-01
Plate finite elements based on the generalized third-order theory of Reddy and the first-order shear deformation theory are analyzed and compared on the basis of thick and thin plate modeling behavior, distortion sensitivity, overall accuracy, reliability, and efficiency. In particular, several four-noded Reddy-type elements and the nine-noded Lagrangian and heterosis (Mindlin-type) plate elements are analyzed to assess their behavior in bending, vibration, and stability of isotropic and laminated composite plates. A four-noded Reddy-type element is identified which is free of all spurious stiffness and zero energy modes, computationally efficient, and suitable for use in any general-purpose finite element program.
Bai, Yeon K; Dinour, Lauren M
2017-11-01
A proper assessment of multidimensional needs for breastfeeding mothers in various settings is crucial to facilitate and support breastfeeding and its exclusivity. The theory of planned behavior (TPB) has been used frequently to measure factors associated with breastfeeding. Full utility of the TPB requires accurate measurement of theory constructs. Research aim: This study aimed to develop and confirm the psychometric properties of an instrument, Milk Expression on Campus, based on the TPB and to establish the reliability and validity of the instrument. In spring 2015, 218 breastfeeding (current or in the recent past) employees and students at one university campus in northern New Jersey completed the online questionnaire containing demography and theory-based items. Internal consistency (α) and split-half reliability ( r) tests and factor analyses established and confirmed the reliability and construct validity of this instrument. Milk Expression on Campus showed strong and significant reliabilities as a full scale (α = .78, r = .74, p theory construct subscales. Validity was confirmed as psychometric properties corresponded to the factors extracted from the scale. Four factors extracted from the direct construct subscales accounted for 79.49% of the total variability. Four distinct factors from the indirect construct subscales accounted for 73.68% of the total variability. Milk Expression on Campus can serve as a model TPB-based instrument to examine factors associated with women's milk expression behavior. The utility of this instrument extends to designing effective promotion programs to foster breastfeeding and milk expression behaviors in diverse settings.
Directory of Open Access Journals (Sweden)
Lodowski Kerrie H
2009-01-01
Full Text Available Gene expression time course data can be used not only to detect differentially expressed genes but also to find temporal associations among genes. The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from transcriptomic data is addressed. A network reconstruction algorithm was developed that uses statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. The multinomial hypothesis testing-based network reconstruction allows for explicit specification of the false-positive rate, unique from all extant network inference algorithms. The method is superior to dynamic Bayesian network modeling in a simulation study. Temporal gene expression data from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol are used for modeling. Genes from major neuronal pathways are identified as putative components of the alcohol response mechanism. Nine of these genes have associations with alcohol reported in literature. Several other potentially relevant genes, compatible with independent results from literature mining, may play a role in the response to alcohol. Additional, previously unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.
General Strain Theory and School Bullying: An Empirical Test in South Korea
Moon, Byongook; Morash, Merry; McCluskey, John D.
2012-01-01
Despite recognition of bullying as a serious school and social problem with negative effects on students' well-being and safety, and the overlap between aggressive bullying acts and delinquent behavior, few empirical studies test the applicability of criminological theories to explaining bullying. This limitation in research is especially evident…
Krupić, D.; Corr, P.J.; Ručević, S.; Križanić, V.; Gracanin, A.
2016-01-01
There are six purpose-built Reinforcement Sensitivity Theory (RST) personality questionnaires currently in use to measure the fight-flight-freeze system (FFFS), the behavioural inhibition system (BIS), and the behavioural approach system (BAS). They differ in their conceptualizations and operational
Towards a general theory of mixed zones: The role of congestion
Kantor, Y.; van Ommeren, J.N.; Rietveld, P.
2014-01-01
Mixed commercial and residential land use is observed in most cities around the world. Despite its ubiquity, urban economic theory is rather silent on the formation of mixed land use. In particular, standard bid rent models typically predict complete segregation of land use. The two main exceptions
General Theory of Nuclear Scattering: the Feshbach Kerman-Koonin Approach
Arbanas, Goran
1995-01-01
We extend the Feshbach-Kerman-Koonin theory (1) of low and medium energy (10-200 MeV) nucleon-nucleus scattering to describe multi-particle emission processes. The original FKK considered processes with only a single outgoing particle. However, multi-particle emission processes become significant at energies as low as 50 MeV and grow in importance at higher energies. Besides augmenting the Feshbach-Kerman-Koonin theory by adding a description of multi-particle processes, we have improved the theory at the low energy end (10-30 MeV) by uncovering a new class of multistep compound processes. We have developed a formalism within the Feshbach-Kerman-Koonin framework to describe these processes while retaining the elegant structure of the Feshbach-Kerman-Koonin theory. We use this formalism to analyze the 14 MeV ^ {93}Nb(n, n^' ) reaction and find an improved agreement between the theoretical prediction and the experimental data. (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617-253-5668; Fax 617-253 -1690.).
A generalized non-local optical response theory for plasmonic nanostructures
DEFF Research Database (Denmark)
Mortensen, N. Asger; Raza, Søren; Wubs, Martijn
2014-01-01
mechanism that even dominates the widely anticipated short circuiting by quantum tunnelling. We anticipate that our theory can be successfully applied in plasmonics to a wide class of conducting media, including doped semiconductors and low-dimensional materials such as graphene...
Bullying Victimization and Adolescent Self-Harm: Testing Hypotheses from General Strain Theory
Hay, Carter; Meldrum, Ryan
2010-01-01
Self-harm is widely recognized as a significant adolescent social problem, and recent research has begun to explore its etiology. Drawing from Agnew's (1992) social psychological strain theory of deviance, this study considers this issue by testing three hypotheses about the effects of traditional and cyber bullying victimization on deliberate…
General beliefs and the theory of planned behavior : The role of environmental concerns in the TPB
de Groot, Judith; Steg, Linda
This study tested whether the theory of planned behavior (TPB; Ajzen, 1985) could explain people's intention to use a park-and-ride facility (transferium) in Groningen, The Netherlands. We extended the TPB by including egoistic, altruistic, and biospheric concerns. A questionnaire study was
Möller, Jens; Müller-Kalthoff, Hanno; Helm, Friederike; Nagy, Nicole; Marsh, Herb W.
2016-01-01
The dimensional comparison theory (DCT) focuses on the effects of internal, dimensional comparisons (e.g., "How good am I in math compared to English?") on academic self-concepts with widespread consequences for students' self-evaluation, motivation, and behavioral choices. DCT is based on the internal/external frame of reference model…
The Fixed-Point Theory of Strictly Contracting Functions on Generalized Ultrametric Semilattices
Directory of Open Access Journals (Sweden)
Eleftherios Matsikoudis
2013-08-01
Full Text Available We introduce a new class of abstract structures, which we call generalized ultrametric semilattices, and in which the meet operation of the semilattice coexists with a generalized distance function in a tightly coordinated way. We prove a constructive fixed-point theorem for strictly contracting functions on directed-complete generalized ultrametric semilattices, and introduce a corresponding induction principle. We cite examples of application in the semantics of logic programming and timed computation, where, until now, the only tool available has been the non-constructive fixed-point theorem of Priess-Crampe and Ribenboim for strictly contracting functions on spherically complete generalized ultrametric semilattices.
Directory of Open Access Journals (Sweden)
Georgii Chuzhyk
2017-02-01
Full Text Available We offer an evolutionary and alternative solution to the problem of the Universe. The theory involves the formation of the Universe by means of all the sequences of energies and energy of consciousness with gradual structural wrapping by energy shells recording and accumulating them; formation of the core dispatch centers performing energetic and informational communication with a single rhythm among all space objects that form civilizations. We outline a way of human consciousness formation. The theory explains how the first objectively appeared sparks of human consciousness energy were evolving, accumulating and being recorded, formed the Earth’s noosphere in its core dispatch center. The consciousness energy structure has not yet been discovered and that inhibits the science, which is wary of those who define it as a stream of multi-super large reflection objectively reflecting the highest degree of manifestation of civilization collective creativity, named by John Wheeler as a substance of the information — “It from Bit.” Core dispatching centers of all cosmic objects consciousness energies such as the Earth are combined into the Universe core dispatcher center of which called the Cosmic Consciousness. Many hundreds of billions of years the Cosmic Consciousness absorbed and only recorded the sequences, experience of which ended strictly following the laws of nature, formed a unique quality — for each new sequence by its energetic and informational signal it can highlight, express from its archive the evolution of similar Roadmap, which had been already passed by a similar sequence. The Cosmic Consciousness indirectly provides the most important thing in the Universe — not interfering, it retains all its evolutionary integrity and harmony. All of them constantly and continuously follow and check it through bioinformational communication, without deviation move toward their goal. Life of the Earth civilization is also moving
A completeness criterion for Kaniadakis, Abe and two-parameter generalized statistical theories
Oikonomou, Thomas; Baris Bagci, G.
2010-08-01
We recently provided a criterion of completeness valid for any generalized thermostatistics to check whether they form a bijection from ℝ +/ℝ (set of positive real numbers/all real numbers) to ℝ/ℝ + in a previous paper. In the current work, we apply this criterion to Kaniadakis, Abe and two-parameter generalized functions and obtain their respective validity ranges.
Piccardo, Matteo; Bloino, Julien; Barone, Vincenzo
2015-08-05
Models going beyond the rigid-rotor and the harmonic oscillator levels are mandatory for providing accurate theoretical predictions for several spectroscopic properties. Different strategies have been devised for this purpose. Among them, the treatment by perturbation theory of the molecular Hamiltonian after its expansion in power series of products of vibrational and rotational operators, also referred to as vibrational perturbation theory (VPT), is particularly appealing for its computational efficiency to treat medium-to-large systems. Moreover, generalized (GVPT) strategies combining the use of perturbative and variational formalisms can be adopted to further improve the accuracy of the results, with the first approach used for weakly coupled terms, and the second one to handle tightly coupled ones. In this context, the GVPT formulation for asymmetric, symmetric, and linear tops is revisited and fully generalized to both minima and first-order saddle points of the molecular potential energy surface. The computational strategies and approximations that can be adopted in dealing with GVPT computations are pointed out, with a particular attention devoted to the treatment of symmetry and degeneracies. A number of tests and applications are discussed, to show the possibilities of the developments, as regards both the variety of treatable systems and eligible methods. © 2015 Wiley Periodicals, Inc.
Indian Academy of Sciences (India)
Page S20: NMR compound 4i. Page S22: NMR compound 4j. General: Chemicals were purchased from Fluka, Merck and Aldrich Chemical Companies. All the products were characterized by comparison of their IR, 1H NMR and 13C NMR spectroscopic data and their melting points with reported values. General procedure ...
Donier, J.; Bouchaud, J.-P.
2016-12-01
In standard Walrasian auctions, the price of a good is defined as the point where the supply and demand curves intersect. Since both curves are generically regular, the response to small perturbations is linearly small. However, a crucial ingredient is absent of the theory, namely transactions themselves. What happens after they occur? To answer the question, we develop a dynamic theory for supply and demand based on agents with heterogeneous beliefs. When the inter-auction time is infinitely long, the Walrasian mechanism is recovered. When transactions are allowed to happen in continuous time, a peculiar property emerges: close to the price, supply and demand vanish quadratically, which we empirically confirm on the Bitcoin. This explains why price impact in financial markets is universally observed to behave as the square root of the excess volume. The consequences are important, as they imply that the very fact of clearing the market makes prices hypersensitive to small fluctuations.
Time-Sliced Perturbation Theory for Large Scale Structure I: General Formalism
Blas, Diego; Ivanov, Mikhail M.; Sibiryakov, Sergey
2016-01-01
We present a new analytic approach to describe large scale structure formation in the mildly non-linear regime. The central object of the method is the time-dependent probability distribution function generating correlators of the cosmological observables at a given moment of time. Expanding the distribution function around the Gaussian weight we formulate a perturbative technique to calculate non-linear corrections to cosmological correlators, similar to the diagrammatic expansion in a three-dimensional Euclidean quantum field theory, with time playing the role of an external parameter. For the physically relevant case of cold dark matter in an Einstein--de Sitter universe, the time evolution of the distribution function can be found exactly and is encapsulated by a time-dependent coupling constant controlling the perturbative expansion. We show that all building blocks of the expansion are free from spurious infrared enhanced contributions that plague the standard cosmological perturbation theory. This pave...
DEFF Research Database (Denmark)
Wubs, Martijn; Yan, Wei; Amooghorban, Ehsan
2013-01-01
A well-known challenge for fabricating metamaterials is to make unit cells significantly smaller than the operating wavelength of light, so one can be sure that effective-medium theories apply. But do they apply? Here we show that nonlocal response in the metal constituents of the metamaterial...... leads to modified effective parameters for strongly subwavelength unit cells. For infinite hyperbolic metamaterials, nonlocal response gives a very large finite upper bound to the optical density of states that otherwise would diverge. Moreover, for finite hyperbolic metamaterials we show that nonlocal...... response affects their operation as superlenses, and interestingly that sometimes nonlocal theory predicts the better imaging. Finally, we discuss how to describe metamaterials effectively in quantum optics. Media with loss or gain have associated quantum noise, and the question is whether the effective...
Nuclear superfluorescence: A feasibility study based on the generalized Haake-Reibold theory
Balko, B.; Kay, I. W.; Neuberger, J. W.
1995-07-01
A theory of nuclear superfluorescence (SF) is presented which includes electronic attenuation, competing transitions, homogeneous and inhomogeneous broadening, and finite pumping times. The effects of the nuclear and atomic parameters on the expected emitted SF pulse shape are analyzed in physically realizable regimes. A number of explicit calculations are made to illustrate the behavior of the pulse under various conditions. The feasibility of observing superfluorescence using the 58.59 keV transition in 60Co, is examined.
Periodic orbit theory for the continuum of general mixed-dynamical systems
Kaidel, Jörg; Winkler, Peter; Brack, Matthias
2004-01-01
We investigate the resonance spectrum of the H\\\\\\'enon-Heiles potential up to twice the barrier energy. The quantum spectrum is obtained by the method of complex coordinate rotation. We use periodic orbit theory to approximate the oscillating part of the resonance spectrum semiclassically and Strutinsky smoothing to obtain its smooth part. Although the system in this energy range is almost chaotic, it still contains stable periodic orbits. Using Gutzwiller\\'s trace formula, complemented by a ...
1985-05-01
emotions , hints, hunches, attempts which led to failure, etc., which reflect the subjective aspect of scientific reasearch is carefully shunned and... Zeman [3] and Prior [41 define operators Mz as "possibility" and Lz as "necessity" where Mz N LN. These can also be incorporated within the presen theory...modal logic (see Zeman [3] and Prior [4]). One defines operators LZ = T + n (for necessity truth) and MZ = T - n (for possible truth). It is easy to
Muzrukova, E B
1997-01-01
A. Weismann's theory of germ plasm is of special importance in the history of theoretical biology. Its meaning was not confined by presenting of neoperformistic ideas on the new level of science. In fact it predicted reduction division, the continuing of germ plasm and the significance of chromosomes in heredity. For the first time it brought a new methodology to the experimental genetics and the idea of interdisciplinary synthesis.
Implications of extreme flatness in a general f(R theory
Directory of Open Access Journals (Sweden)
Michał Artymowski
2016-09-01
Full Text Available We discuss a modified gravity theory defined by f(R=∑nlαnM2(1−nRn. We consider both finite and infinite number of terms in the series while requiring that the Einstein frame potential of the theory has a flat area around any of its stationary points. We show that the requirement of maximally flat stationary point leads to the existence of the saddle point (local maximum for even (odd l. In both cases for l→∞ one obtains the Starobinsky model with small, exponentially suppressed corrections. Besides the GR minimum the Einstein frame potential has an anti de Sitter vacuum. However we argue that the GR vacuum is absolutely stable and AdS can be reached neither via classical evolution nor via quantum tunnelling. Our results show that a Starobinsky-like model is the only possible realisation of f(R theory with an extremely flat area in the Einstein frame potential.
Colonnesi, C.; Nikolić, M.; de Vente, W.; Bögels, S.M.
Children’s early onset of social anxiety may be associated with their social understanding, and their ability to express emotions adaptively. We examined whether social anxiety in 48-month-old children (N = 110; 54 boys) was related to: a) a lower level of theory of mind (ToM); b) a lower proclivity
Yilmaz, Ferkan
2014-04-01
The main idea in the moment generating function (MGF) approach is to alternatively express the conditional bit error probability (BEP) in a desired exponential form so that possibly multi-fold performance averaging is readily converted into a computationally efficient single-fold averaging - sometimes into a closed-form - by means of using the MGF of the signal-to-noise ratio. However, as presented in [1] and specifically indicated in [2] and also to the best of our knowledge, there does not exist an MGF-based approach in the literature to represent Wojnar\\'s generic BEP expression in a desired exponential form. This paper presents novel MGF-based expressions for calculating the average BEP of binary signalling over generalized fading channels, specifically by expressing Wojnar\\'s generic BEP expression in a desirable exponential form. We also propose MGF-based expressions to explore the amount of dispersion in the BEP for binary signalling over generalized fading channels.
Keller-Margulis, Milena A; Mercer, Sterett H; Thomas, Erin L
2016-09-01
The purpose of this study was to examine the reliability of written expression curriculum-based measurement (WE-CBM) in the context of universal screening from a generalizability theory framework. Students in second through fifth grade (n = 145) participated in the study. The sample included 54% female students, 49% White students, 23% African American students, 17% Hispanic students, 8% Asian students, and 3% of students identified as 2 or more races. Of the sample, 8% were English Language Learners and 6% were students receiving special education. Three WE-CBM probes were administered for 7 min each at 3 time points across 1 year. Writing samples were scored for commonly used WE-CBM metrics (e.g., correct minus incorrect word sequences; CIWS). Results suggest that nearly half the variance in WE-CBM is related to unsystematic error and that conventional screening procedures (i.e., the use of one 3-min sample) do not yield scores with adequate reliability for relative or absolute decisions about student performance. In most grades, three 3-min writing samples (or 2 longer duration samples) were required for adequate reliability for relative decisions, and three 7-min writing samples would not yield adequate reliability for relative decisions about within-year student growth. Implications and recommendations are discussed. (PsycINFO Database Record (c) 2016 APA, all rights reserved).
Feature selection in gene expression data using principal component analysis and rough set theory.
Mishra, Debahuti; Dash, Rajashree; Rath, Amiya Kumar; Acharya, Milu
2011-01-01
In many fields such as data mining, machine learning, pattern recognition and signal processing, data sets containing huge number of features are often involved. Feature selection is an essential data preprocessing technique for such high-dimensional data classification tasks. Traditional dimensionality reduction approach falls into two categories: Feature Extraction (FE) and Feature Selection (FS). Principal component analysis is an unsupervised linear FE method for projecting high-dimensional data into a low-dimensional space with minimum loss of information. It discovers the directions of maximal variances in the data. The Rough set approach to feature selection is used to discover the data dependencies and reduction in the number of attributes contained in a data set using the data alone, requiring no additional information. For selecting discriminative features from principal components, the Rough set theory can be applied jointly with PCA, which guarantees that the selected principal components will be the most adequate for classification. We call this method Rough PCA. The proposed method is successfully applied for choosing the principal features and then applying the Upper and Lower Approximations to find the reduced set of features from a gene expression data.
Shi, Jinfei; Zhu, Songqing; Chen, Ruwen
2017-12-01
An order selection method based on multiple stepwise regressions is proposed for General Expression of Nonlinear Autoregressive model which converts the model order problem into the variable selection of multiple linear regression equation. The partial autocorrelation function is adopted to define the linear term in GNAR model. The result is set as the initial model, and then the nonlinear terms are introduced gradually. Statistics are chosen to study the improvements of both the new introduced and originally existed variables for the model characteristics, which are adopted to determine the model variables to retain or eliminate. So the optimal model is obtained through data fitting effect measurement or significance test. The simulation and classic time-series data experiment results show that the method proposed is simple, reliable and can be applied to practical engineering.
Energy Technology Data Exchange (ETDEWEB)
Song, Mingzhou (Joe) [New Mexico State University, Las Cruces; Lewis, Chris K. [New Mexico State University, Las Cruces; Lance, Eric [New Mexico State University, Las Cruces; Chesler, Elissa J [ORNL; Kirova, Roumyana [Bristol-Myers Squibb Pharmaceutical Research & Development, NJ; Langston, Michael A [University of Tennessee, Knoxville (UTK); Bergeson, Susan [Texas Tech University, Lubbock
2009-01-01
The problem of reconstructing generalized logical networks to account for temporal dependencies among genes and environmental stimuli from high-throughput transcriptomic data is addressed. A network reconstruction algorithm was developed that uses the statistical significance as a criterion for network selection to avoid false-positive interactions arising from pure chance. Using temporal gene expression data collected from the brains of alcohol-treated mice in an analysis of the molecular response to alcohol, this algorithm identified genes from a major neuronal pathway as putative components of the alcohol response mechanism. Three of these genes have known associations with alcohol in the literature. Several other potentially relevant genes, highlighted and agreeing with independent results from literature mining, may play a role in the response to alcohol. Additional, previously-unknown gene interactions were discovered that, subject to biological verification, may offer new clues in the search for the elusive molecular mechanisms of alcoholism.
Noise Resistant Generalized Parametric Validity Index of Clustering for Gene Expression Data.
Fa, Rui; Nandi, Asoke K
2014-01-01
Validity indices have been investigated for decades. However, since there is no study of noise-resistance performance of these indices in the literature, there is no guideline for determining the best clustering in noisy data sets, especially microarray data sets. In this paper, we propose a generalized parametric validity (GPV) index which employs two tunable parameters α and β to control the proportions of objects being considered to calculate the dissimilarities. The greatest advantage of the proposed GPV index is its noise-resistance ability, which results from the flexibility of tuning the parameters. Several rules are set to guide the selection of parameter values. To illustrate the noise-resistance performance of the proposed index, we evaluate the GPV index for assessing five clustering algorithms in two gene expression data simulation models with different noise levels and compare the ability of determining the number of clusters with eight existing indices. We also test the GPV in three groups of real gene expression data sets. The experimental results suggest that the proposed GPV index has superior noise-resistance ability and provides fairly accurate judgements.
NICOLAS MALEBRANCHE: FROM THE THEORY OF “GENERAL WILL” TO THE CONCEPT OF “INCLINATION”
Directory of Open Access Journals (Sweden)
CRISTIAN MOISUC
2014-11-01
Full Text Available The period between 1670 and 1740 is considered a time of “crisis of Christian rationalism” (A. McKenna or a time of “skepticism” (V.Cousin, since the Christian apologetics, trapped between Protestantism and the Rationalism, are gradually reduced to a row of inefficient and traditional “proofs” for the existence and kindness of God. In 1680, Nicolas Malebranche publishes the Treatise on Nature and Grace, following to explain the way in which God granted His grace to all mankind. In order to fight the skeptical thesis according to which God takes not directly part in this world, Malebranche refers the action of God to the concept of “general/divine will”. If such a theory is useful at a certain metaphysical level in explaining the presence of the evil in the world (God does not create but allows the evil, it raises some anthropological issues, especially concerning the nature of the human free will. If anything in the world emerges as a direct consequence of God’s “general will”, how can be conceived a real free human will? The theory of God’s general will generates an unexpected anthropological consequence (the dissolution of the human free will that Malebranche tries to hide it by inventing the concept of “inclination of the will”: God does not interfere (by causation with the human will, but He influences it (by inclination. Is it philosophically defensible? The aim of the article is to analyze some philosophical and methodological difficulties related to the new Malebranchist concept of “inclination of human will” in order to prove that the passage from the occasionalist theory of general will to an inquiry about the human will is quite problematic.
Chang, Zhiwei; Halle, Bertil
2016-02-28
In aqueous systems with immobilized macromolecules, including biological tissue, the longitudinal spin relaxation of water protons is primarily induced by exchange-mediated orientational randomization (EMOR) of intra- and intermolecular magnetic dipole-dipole couplings. We have embarked on a systematic program to develop, from the stochastic Liouville equation, a general and rigorous theory that can describe relaxation by the dipolar EMOR mechanism over the full range of exchange rates, dipole coupling strengths, and Larmor frequencies. Here, we present a general theoretical framework applicable to spin systems of arbitrary size with symmetric or asymmetric exchange. So far, the dipolar EMOR theory is only available for a two-spin system with symmetric exchange. Asymmetric exchange, when the spin system is fragmented by the exchange, introduces new and unexpected phenomena. Notably, the anisotropic dipole couplings of non-exchanging spins break the axial symmetry in spin Liouville space, thereby opening up new relaxation channels in the locally anisotropic sites, including longitudinal-transverse cross relaxation. Such cross-mode relaxation operates only at low fields; at higher fields it becomes nonsecular, leading to an unusual inverted relaxation dispersion that splits the extreme-narrowing regime into two sub-regimes. The general dipolar EMOR theory is illustrated here by a detailed analysis of the asymmetric two-spin case, for which we present relaxation dispersion profiles over a wide range of conditions as well as analytical results for integral relaxation rates and time-dependent spin modes in the zero-field and motional-narrowing regimes. The general theoretical framework presented here will enable a quantitative analysis of frequency-dependent water-proton longitudinal relaxation in model systems with immobilized macromolecules and, ultimately, will provide a rigorous link between relaxation-based magnetic resonance image contrast and molecular parameters.
Glassmeier, K.-H.; Tsurutani, B. T.
2014-02-01
This is a translation of the Allgemeine Theorie des Erdmagnetismus published by Carl Friedrich Gauss in 1839 in the Resultate aus den Beobachtungen des Magnetischen Vereins im Jahre 1838. The current translation is based on an earlier translation by Elizabeth Juliana Sabine published in 1841. This earlier translation has been revised, corrected, and extended. Numerous biographical comments on the scientists named in the original text have been added as well as further information on the observational material used by Carl Friedrich Gauss. An attempt is made to provide a readable text to a wider scientific community, a text laying the foundation of today's understanding of planetary magnetic fields.
Directory of Open Access Journals (Sweden)
Fabian A. Soto
2017-05-01
Full Text Available Determining whether perceptual properties are processed independently is an important goal in perceptual science, and tools to test independence should be widely available to experimental researchers. The best analytical tools to test for perceptual independence are provided by General Recognition Theory (GRT, a multidimensional extension of signal detection theory. Unfortunately, there is currently a lack of software implementing GRT analyses that is ready-to-use by experimental psychologists and neuroscientists with little training in computational modeling. This paper presents grtools, an R package developed with the explicit aim of providing experimentalists with the ability to perform full GRT analyses using only a couple of command lines. We describe the software and provide a practical tutorial on how to perform each of the analyses available in grtools. We also provide advice to researchers on best practices for experimental design and interpretation of results when applying GRT and grtools
Phillips, Steven; Wilson, William H
2011-08-01
A complete theory of cognitive architecture (i.e., the basic processes and modes of composition that together constitute cognitive behaviour) must explain the systematicity property--why our cognitive capacities are organized into particular groups of capacities, rather than some other, arbitrary collection. The classical account supposes: (1) syntactically compositional representations; and (2) processes that are sensitive to--compatible with--their structure. Classical compositionality, however, does not explain why these two components must be compatible; they are only compatible by the ad hoc assumption (convention) of employing the same mode of (concatenative) compositionality (e.g., prefix/postfix, where a relation symbol is always prepended/appended to the symbols for the related entities). Architectures employing mixed modes do not support systematicity. Recently, we proposed an alternative explanation without ad hoc assumptions, using category theory. Here, we extend our explanation to domains that are quasi-systematic (e.g., aspects of most languages), where the domain includes some but not all possible combinations of constituents. The central category-theoretic construct is an adjunction involving pullbacks, where the primary focus is on the relationship between processes modelled as functors, rather than the representations. A functor is a structure-preserving map (or construction, for our purposes). An adjunction guarantees that the only pairings of functors are the systematic ones. Thus, (quasi-)systematicity is a necessary consequence of a categorial cognitive architecture whose basic processes are functors that participate in adjunctions.
1968-01-01
5 The symposium was held in Freudenstadt from 28\\h to 31 \\ ofAugust st nd 1967 and in Stuttgart from 1 to 2 of September 1967. The proposal to hold this symposium originated with the German Society of Applied Mathematics and Mechanics (GAMM) late in 1964 and was examined by a committee of IUTAM especially appointed for this purpose. The basis of this examination was a report in which the present situation in the field and the possible aims of the symposium were surveyed. Briefly, the aims of the symposium were stated to be 1. the unification of the various approaches developed in recent years with the aim of penetrating into the microscopic world of matter by means of continuum theories; 2. the bridging of the gap between microscopic (or atomic) research on mechanics on one hand, and the phenomenological (or continuum mechanical) approach on the other hand; 3. the physical interpretation and the relation to actual material behaviour of the quantities and laws introduced into the new theories, together with ap...
Silva, Walter A.
1993-01-01
A methodology for modeling nonlinear unsteady aerodynamic responses, for subsequent use in aeroservoelastic analysis and design, using the Volterra-Wiener theory of nonlinear systems is presented. The methodology is extended to predict nonlinear unsteady aerodynamic responses of arbitrary frequency. The Volterra-Wiener theory uses multidimensional convolution integrals to predict the response of nonlinear systems to arbitrary inputs. The CAP-TSD (Computational Aeroelasticity Program - Transonic Small Disturbance) code is used to generate linear and nonlinear unit impulse responses that correspond to each of the integrals for a rectangular wing with a NACA 0012 section with pitch and plunge degrees of freedom. The computed kernels then are used to predict linear and nonlinear unsteady aerodynamic responses via convolution and compared to responses obtained using the CAP-TSD code directly. The results indicate that the approach can be used to predict linear unsteady aerodynamic responses exactly for any input amplitude or frequency at a significant cost savings. Convolution of the nonlinear terms results in nonlinear unsteady aerodynamic responses that compare reasonably well with those computed using the CAP-TSD code directly but at significant computational cost savings.
Theory of aberration fields for general optical systems with freeform surfaces.
Fuerschbach, Kyle; Rolland, Jannick P; Thompson, Kevin P
2014-11-03
This paper utilizes the framework of nodal aberration theory to describe the aberration field behavior that emerges in optical systems with freeform optical surfaces, particularly φ-polynomial surfaces, including Zernike polynomial surfaces, that lie anywhere in the optical system. If the freeform surface is located at the stop or pupil, the net aberration contribution of the freeform surface is field constant. As the freeform optical surface is displaced longitudinally away from the stop or pupil of the optical system, the net aberration contribution becomes field dependent. It is demonstrated that there are no new aberration types when describing the aberration fields that arise with the introduction of freeform optical surfaces. Significantly it is shown that the aberration fields that emerge with the inclusion of freeform surfaces in an optical system are exactly those that have been described by nodal aberration theory for tilted and decentered optical systems. The key contribution here lies in establishing the field dependence and nodal behavior of each freeform term that is essential knowledge for effective application to optical system design. With this development, the nodes that are distributed throughout the field of view for each aberration type can be anticipated and targeted during optimization for the correction or control of the aberrations in an optical system with freeform surfaces. This work does not place any symmetry constraints on the optical system, which could be packaged in a fully three dimensional geometry, without fold mirrors.
DEFF Research Database (Denmark)
Wirz, Lukas; Schwerdtfeger, Peter; Avery, James Emil
2018-01-01
is correct and complete. The worst case runtime complexity is for general N-vertex polyhedral graphs, with J the sum of all jump lengths. When the number of faces of any particular size is bounded by a constant, such as the case for fullerenes, this reduces to . We have calculated canonical general spirals...... polyhedral molecules, and an especially compact form for the special class of fullerenes. A unique numbering of vertices is obtained as a byproduct of the spiral algorithm. This is required to denote modifications of the parent cage in IUPAC naming schemes. Similarly, the symmetry group of the molecule can...
Smith, Albert B.
The growth of research in the community college field is reviewed. The need for a general systems approach to classifying and organizing research designs is stressed. A taxonomy is proposed with major categories of input, process, and outcome variables. A community college is considered ideal for "open systems." The practical value of this…
Generalized Christoffel-Darboux formula for skew-orthogonal polynomials and random matrix theory
Energy Technology Data Exchange (ETDEWEB)
Ghosh, Saugata [Abdus Salam ICTP, Strada Costiera 11, 34100, Trieste (Italy)
2006-07-14
We obtain a generalized Christoffel-Darboux (GCD) formula for skew-orthogonal polynomials. Using this, we present an alternative derivation of the level density and two-point function for Gaussian orthogonal ensembles and Gaussian symplectic ensembles of random matrices.
Eremin, Yu. A.; Sveshnikov, A. G.
2017-07-01
Energy relations are used to generalize the Optical Theorem to the case of a local body excited by a multipole source, including in the presence of a half-space. It is shown that the extinction cross section can be represented in an explicit analytical form. This circumstance considerably facilitates the computation of the fluorescence quantum yield or the efficiency of an optical antenna.
Correlated basis functions theory of light nuclei. Pt. 1. General description and ground states
Energy Technology Data Exchange (ETDEWEB)
Bosca, M.C.; Guardiola, R.
1988-01-18
The correlated basis functions theory is applied to the description of light (p-shell) nuclei. The interaction used is the Reid potential, in the V8 (central, spin, tensor and spin-orbit) and V6 (no spin-orbit term) forms. Our work includes state-dependent correlation functions, and their radial components are determined by solving the corresponding Euler-Lagrange equations with a healing condition at distance d and with a null derivative; in addition, we impose the sequential condition or the Pauli condition so as to insure convergence. We present results corresponding to the ground state of all nuclei in the p-shell. Our results present a good qualitative behaviour, but are in clear disagreement with experimental values.
Mimetic Theory for Cell-Centered Lagrangian Finite Volume Formulation on General Unstructured Grids
Energy Technology Data Exchange (ETDEWEB)
Sambasivan, Shiv Kumar [Los Alamos National Laboratory; Shashkov, Mikhail J. [Los Alamos National Laboratory; Burton, Donald E. [Los Alamos National Laboratory; Christon, Mark A. [Los Alamos National Laboratory
2012-07-19
A finite volume cell-centered Lagrangian scheme for solving large deformation problems is constructed based on the hypo-elastic model and using the mimetic theory. Rigorous analysis in the context of gas and solid dynamics, and arbitrary polygonal meshes, is presented to demonstrate the ability of cell-centered schemes in mimicking the continuum properties and principles at the discrete level. A new mimetic formulation based gradient evaluation technique and physics-based, frame independent and symmetry preserving slope limiters are proposed. Furthermore, a physically consistent dissipation model is employed which is both robust and inexpensive to implement. The cell-centered scheme along with these additional new features are applied to solve solids undergoing elasto-plastic deformation.
Energy Technology Data Exchange (ETDEWEB)
B. A. Kashiwa; W. B. VanderHeyden
2000-12-01
A formalism for developing multiphase turbulence models is introduced by analogy to the phenomenological method used for single-phase turbulence. A sample model developed using the formalism is given in detail. The procedure begins with ensemble averaging of the exact conservation equations, with closure accomplished by using a combination of analytical and experimental results from the literature. The resulting model is applicable to a wide range of common multiphase flows including gas-solid, liquid-solid and gas-liquid (bubbly) flows. The model is positioned for ready extension to three-phase turbulence, or for use in two-phase turbulence in which one phase is accounted for in multiple size classes, representing polydispersivity. The formalism is expected to suggest directions toward a more fundamentally based theory, similar to the way that early work in single-phase turbulence has led to the spectral theory. The approach is unique in that a portion of the total energy decay rate is ascribed to each phase, as is dictated by the exact averaged equations, and results in a transport equation for energy decay rate associated with each phase. What follows is a straightforward definition of a turbulent viscosity for each phase, and accounts for the effect of exchange of fluctuational energy among phases on the turbulent shear viscosity. The model also accounts for the effect of slip momentum transfer among the phases on the production of turbulence kinetic energy and on the tensor character of the Reynolds stress. Collisional effects, when appropriate, are included by superposition. The model reduces to a standard form in limit of a single, pure material, and is expected to do a credible job of describing multiphase turbulent flows in a wide variety of regimes using a single set of coefficients.
An Application of the General Theory of Verbal Humor to Kurt Vonnegut’s “Cat’s Cradle”
Alexandru OLTEAN
2013-01-01
The following article represents a step in an ongoing work to determine the nature of humor in the works of Kurt Vonnegut. Here I focus on “Cat’s Cradle” – perhaps the author’s first work of significant success – and seek to create a formal model of the novel, outlining only the fragments of text which are humorous. The methodology used is based primarily on the General Theory of Verbal Humor (GTVH) created by Salvatore Attardo and Victor Raskin, which the authors claim can be applied to any ...
Wong, Ho-Po Crystal
2013-01-01
I examine John Maynard Keynes' struggle with the doctrine of the classical forced saving during the period 1924-1936 from when he worked on A Treatise on Money to the completion of his General Theory. The forced saving notion has been developed as a key mechanism of how monetary expansion results in wealth redistribution and change in production in the classical school. I primarily focus on the role of discussion and criticism in the development of Keynes' thought. I investigate what led John...
Energy Technology Data Exchange (ETDEWEB)
Stotland, Alexander; Peer, Tal; Cohen, Doron [Department of Physics, Ben-Gurion University, Beer-Sheva 84005 (Israel); Budoyo, Rangga; Kottos, Tsampikos [Department of Physics, Wesleyan University, Middletown, CT 06459 (United States)
2008-07-11
The calculation of the conductance of disordered rings requires a theory that goes beyond the Kubo-Drude formulation. Assuming 'mesoscopic' circumstances the analysis of the electro-driven transitions shows similarities with a percolation problem in energy space. We argue that the texture and the sparsity of the perturbation matrix dictate the value of the conductance, and study its dependence on the disorder strength, ranging from the ballistic to the Anderson localization regime. An improved sparse random matrix model is introduced to capture the essential ingredients of the problem, and leads to a generalized variable range hopping picture. (fast track communication)
Selvam, A. M.
2005-01-01
Non-local connections, i. e. long-range space-time correlations intrinsic to the observed subatomic dynamics of quantum systems is also exhibited by macro-scale dynamical systems as selfsimilar fractal space-time fluctuations and is identified as self-organized criticality. The author has developed a general systems theory for the observed self-organized criticality applicable to dynamical systems of all space-time scales based on the concept that spatial integration of enclosed small-scale f...
Directory of Open Access Journals (Sweden)
Wang-Xia Wang
2014-02-01
Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.
Nonlinear Viscoelastic Analysis of Orthotropic Beams Using a General Third-Order Theory
2012-06-20
constitutive equation is expanded in a Prony series for the mechanical analogue models used. For more on the constitutive equations and the number of...material model em- ployed. In this study, we express each one of them using a Prony series of order n as EðtÞ ¼ E0 þ Xn l¼1 Ele t sE l ; GðtÞ ¼ G0 þ Xn l¼1...sponse only at t = 0. This Prony series representation of the visco- elastic relaxation moduli is critical in developing the recurrence scheme and to
Giona, Massimiliano; Brasiello, Antonio; Crescitelli, Silvestro
2017-08-01
This article introduces the notion of generalized Poisson-Kac (GPK) processes which generalize the class of ‘telegrapher’s noise dynamics’ introduced by Kac (1974 Rocky Mount. J. Math. 4 497) in 1974, using Poissonian stochastic perturbations. In GPK processes the stochastic perturbation acts as a switching amongst a set of stochastic velocity vectors controlled by a Markov-chain dynamics. GPK processes possess trajectory regularity (almost everywhere) and asymptotic Kac limit, namely the convergence towards Brownian motion (and to stochastic dynamics driven by Wiener perturbations), which characterizes also the long-term/long-distance properties of these processes. In this article we introduce the structural properties of GPK processes, leaving all the physical implications to part II and part III (Giona et al 2016a J. Phys. A: Math. Theor., 2016b J. Phys. A: Math. Theor.).
Entangled States and Quantum Causality Threshold in General Theory of Relativity
Rabounski, Dmitri; Smarandache, Florentin
2009-10-01
This article shows, Synge-Weber's classical problem statement about two particles interacting by a signal can be reduced to the case where the same particle is located in two different points A and B of the basic space-time in the same moment of time, so the states A and B are entangled. This particle, being actual two particles in the entangled states A and B, can interact with itself radiating a photon (signal) in the point A and absorbing it in the point B. That is our goal, to introduce entangled states into General Relativity. Under specific physical conditions the entangled particles in General Relativity can reach a state where neither particle A nor particle B can be the cause of future events. We call this specific state Quantum Causality Threshold.
Al-Wahaibi, Ahmed; Almahrezi, Abdulaziz
2009-04-01
This article discusses the crucial role of teaching and learning communication skills for general practitioners, based on the theory of experiential and self-directed learning. It also outlines the proposed ways and methods to teach these communication skills in this project.The patient-doctor interview or what is known as office visit in some countries and consultation in others is the cornerstone of the entire General Practice (GP) or Family Medicine. It is from this process and outcome that the reputation is gained or destroyed. The analysis of the consultation is complicated and varied but is most usefully employed to assess effecacy in terms of achieving the means that are mutually desired by patients and their carers.
Energy Technology Data Exchange (ETDEWEB)
Chankowski, Piotr H. [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland); Lewandowski, Adrian [Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut),Mühlenberg 1, D-14476 Potsdam (Germany); Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland); Meissner, Krzysztof A. [Institute of Theoretical Physics, Faculty of Physics, University of Warsaw,Pasteura 5, 02-093 Warsaw (Poland)
2016-11-18
We perform a systematic one-loop renormalization of a general renormalizable Yang-Mills theory coupled to scalars and fermions using a regularization scheme with a smooth momentum cutoff Λ (implemented through an exponential damping factor). We construct the necessary finite counterterms restoring the BRST invariance of the effective action by analyzing the relevant Slavnov-Taylor identities. We find the relation between the renormalized parameters in our scheme and in the conventional (MS)-bar scheme which allow us to obtain the explicit two-loop renormalization group equations in our scheme from the known two-loop ones in the (MS)-bar scheme. We calculate in our scheme the divergences of two-loop vacuum graphs in the presence of a constant scalar background field which allow us to rederive the two-loop beta functions for parameters of the scalar potential. We also prove that consistent application of the proposed regularization leads to counterterms which, together with the original action, combine to a bare action expressed in terms of bare parameters. This, together with treating Λ as an intrinsic scale of a hypothetical underlying finite theory of all interactions, offers a possibility of an unconventional solution to the hierarchy problem if no intermediate scales between the electroweak scale and the Planck scale exist.
Directory of Open Access Journals (Sweden)
Bondarescu Ruxandra
2015-01-01
Full Text Available The successful miniaturisation of extremely accurate atomic clocks and atom interferometers invites prospects for satellite missions to perform precision experiments. We discuss the effects predicted by general relativity and alternative theories of gravity that can be detected by a clock, which orbits the Earth. Our experiment relies on the precise tracking of the spacecraft using its observed tick-rate. The spacecraft’s reconstructed four-dimensional trajectory will reveal the nature of gravitational perturbations in Earth’s gravitational field, potentially differentiating between different theories of gravity. This mission can measure multiple relativistic effects all during the course of a single experiment, and constrain the Parametrized Post-Newtonian Parameters around the Earth. A satellite carrying a clock of fractional timing inaccuracy of Δ f / f ∼ 10−16 in an elliptic orbit around the Earth would constrain the PPN parameters |β − 1|, |γ − 1| ≲ 10−6. We also briefly review potential constraints by atom interferometers on scalar tensor theories and in particular on Chameleon and dilaton models.
Mirigian, Stephen; Schweizer, Kenneth S
2014-05-21
We generalize the force-level nonlinear Langevin equation theory of single particle hopping to include collective effects associated with long range elastic distortion of the liquid. The activated alpha relaxation event is of a mixed spatial character, involving two distinct, but inter-related, local and collective barriers. There are no divergences at volume fractions below jamming or temperatures above zero Kelvin. The ideas are first developed and implemented analytically and numerically in the context of hard sphere fluids. In an intermediate volume fraction crossover regime, the local cage process is dominant in a manner consistent with an apparent Arrhenius behavior. The super-Arrhenius collective barrier is more strongly dependent on volume fraction, dominates the highly viscous regime, and is well described by a nonsingular law below jamming. The increase of the collective barrier is determined by the amplitude of thermal density fluctuations, dynamic shear modulus or transient localization length, and a growing microscopic jump length. Alpha relaxation time calculations are in good agreement with recent experiments and simulations on dense fluids and suspensions of hard spheres. Comparisons of the theory with elastic models and entropy crisis ideas are explored. The present work provides a foundation for constructing a quasi-universal, fit-parameter-free theory for relaxation in thermal molecular liquids over 14 orders of magnitude in time.
West, Eva; Wallin, Anita
2013-04-01
Learning abstract concepts such as sound often involves an ontological shift because to conceptualize sound transmission as a process of motion demands abandoning sound transmission as a transfer of matter. Thus, for students to be able to grasp and use a generalized model of sound transmission poses great challenges for them. This study involved 199 students aged 10-14. Their views about sound transmission were investigated before and after teaching by comparing their written answers about sound transfer in different media. The teaching was built on a research-based teaching-learning sequence (TLS), which was developed within a framework of design research. The analysis involved interpreting students' underlying theories of sound transmission, including the different conceptual categories that were found in their answers. The results indicated a shift in students' understandings from the use of a theory of matter before the intervention to embracing a theory of process afterwards. The described pattern was found in all groups of students irrespective of age. Thus, teaching about sound and sound transmission is fruitful already at the ages of 10-11. However, the older the students, the more advanced is their understanding of the process of motion. In conclusion, the use of a TLS about sound, hearing and auditory health promotes students' conceptualization of sound transmission as a process in all grades. The results also imply some crucial points in teaching and learning about the scientific content of sound.
Generally Covariant Maxwell Theory for Media with a Local Response: Progress since 2000
Hehl, Friedrich W; Obukhov, Yuri N
2016-01-01
In the recent decades, it became more and more popular for engineers, physicists, and mathematicians alike to put the Maxwell equations into a generally covariant form. This is particularly useful for understanding the fundamental structure of electrodynamics (conservation of electric charge and magnetic flux). Moreover, it is ideally suited for applying it to media with local (and mainly linear) response behavior. We try to collect the new knowledge that grew out of this development. We would like to ask the participants of EMTS 2016 to inform us of work that we may have overlooked in our review.
A theory of solving TAP equations for Ising models with general invariant random matrices
DEFF Research Database (Denmark)
Opper, Manfred; Çakmak, Burak; Winther, Ole
2016-01-01
We consider the problem of solving TAP mean field equations by iteration for Ising models with coupling matrices that are drawn at random from general invariant ensembles. We develop an analysis of iterative algorithms using a dynamical functional approach that in the thermodynamic limit yields...... the iteration dependent on a Gaussian distributed field only. The TAP magnetizations are stable fixed points if a de Almeida–Thouless stability criterion is fulfilled. We illustrate our method explicitly for coupling matrices drawn from the random orthogonal ensemble....
DEFF Research Database (Denmark)
Thomas, Stefan; Matyssek, Christian; Hergert, Wolfram
2015-01-01
Technical applications of plasmonic nanostructures require a careful structural optimization with respect to the desired functionality. The success of such optimizations strongly depends on the applied method. We extend the generalized multiparticle Mie (GMM) computational electromagnetic method...... and use it to excite a system of plasmonic nanoparticles with an electron beam. This method is applied to EELS calculations of a gold dimer and compared to other methods. It is demonstrated that the GMM method is so efficient, that it can be used in the context of structural optimization...
Energy Technology Data Exchange (ETDEWEB)
Aidun, J.B.; Addessio, F.L.
1995-11-01
The theoretical basis of the homogenization technique developed by Aboudi is presented and assessed. Given the constitutive relations of the constituents, this technique provides an equivalent, homogeneous, constitutive model of unidirectional, continuous-fiber-reinforced composites. The expressions that comprise the first-order version of the technique are given special attention as this treatment has considerable practical value. Nonlinear elasticity effects are added to it. This extension increases the accuracy of numerical simulations of high strain-rate loadings. It is particularly important for any dynamic loading in which shock waves might be produced, including crash safety, armor, and munitions applications. Examples illustrate that elastic nonlinearity can make substantial contributions at strains of only a few per cent. These contributions are greatest during post-yield inelastic deformation. The micromechanics-based homogenization technique is shown to facilitate use of an efficient approximate treatment of elastic nonlinearity in composites with isotropic matrix materials.
Cochran, John K
2017-08-01
Recently, Robert Agnew introduced a new general theory of crime and delinquency in which he attempted to corral the vast array of theoretical "causes" of criminal conduct into a more parsimonious statement organized into one of five life domains: self, family, peers, school, and work as well as constraints against crime and motivation for it. These domains are depicted as the source of constraints and motivations and whose effects are, in part, mediated by these constraints and motivations. Based on self-report data on academic dishonesty from a sample of college students, the present study attempts to test this general theory. While several of the life domain variables had significant effects of cheating in the baseline model, all of these effects were fully mediated by constraints and motivations. In the final model, academic dishonesty was observed to be most significantly affected by the perceived severity of formal sanction threats, the number of credit hours enrolled, the frequency of skipping classes, and pressure from friends.
Energy Technology Data Exchange (ETDEWEB)
Schunert, Sebastian; Wang, Congjian; Wang, Yaqi; Kong, Fande; Ortensi, Javier; Baker, Benjamin; Gleicher, Frederick; DeHart, Mark; Martineau, Richard
2017-04-01
Rattlesnake and MAMMOTH are the designated TREAT analysis tools currently being developed at the Idaho National Laboratory. Concurrent with development of the multi-physics, multi-scale capabilities, sensitivity analysis and uncertainty quantification (SA/UQ) capabilities are required for predicitive modeling of the TREAT reactor. For steady-state SA/UQ, that is essential for setting initial conditions for the transients, generalized perturbation theory (GPT) will be used. This work describes the implementation of a PETSc based solver for the generalized adjoint equations that constitute a inhomogeneous, rank deficient problem. The standard approach is to use an outer iteration strategy with repeated removal of the fundamental mode contamination. The described GPT algorithm directly solves the GPT equations without the need of an outer iteration procedure by using Krylov subspaces that are orthogonal to the operator’s nullspace. Three test problems are solved and provide sufficient verification for the Rattlesnake’s GPT capability. We conclude with a preliminary example evaluating the impact of the Boron distribution in the TREAT reactor using perturbation theory.
Prodan, Emil; Schulz-Baldes, Hermann
2016-11-01
We use constructive bounded Kasparov K-theory to investigate the numerical invariants stemming from the internal Kasparov products Ki(𝒜) × KKi(𝒜,ℬ) → K 0(ℬ) → ℝ, i = 0, 1, where the last morphism is provided by a tracial state. For the class of properly defined finitely-summable Kasparov (𝒜,ℬ)-cycles, the invariants are given by the pairing of K-theory of ℬ with an element of the periodic cyclic cohomology of ℬ, which we call the generalized Connes-Chern character. When 𝒜 is a twisted crossed product of ℬ by ℤk, 𝒜 = ℬ ⋊ξθℤk, we derive a local formula for the character corresponding to the fundamental class of a properly defined Dirac cycle. Furthermore, when ℬ = C(Ω) ⋊ξ‧ϕℤj, with C(Ω) the algebra of continuous functions over a disorder configuration space, we show that the numerical invariants are connected to the weak topological invariants of the complex classes of topological insulators, defined in the physics literature. The end products are generalized index theorems for these weak invariants, which enable us to predict the range of the invariants and to identify regimes of strong disorder in which the invariants remain stable. The latter will be reported in a subsequent publication.
Maharjan, Rijan; Brown, Eric
2017-12-01
We investigated the transient relaxation of a discontinuous shear thickening (DST) suspension of cornstarch in water. We performed two types of relaxation experiments starting from a steady shear in a parallel-plate rheometer, followed either by stopping the top plate rotation and measuring the transient torque relaxation or by removing the torque on the plate and measuring the transient rotation of the tool. We found that at low effective weight fraction ϕeff<58.8 ±0.4 % , the suspensions exhibited a relaxation behavior consistent with a generalized Newtonian fluid in which the relaxation is determined by the steady-state relationship between shear stress and shear rate. However, for larger weight fraction 58.8 %<ϕeff<61.0 % , near the liquid-solid transition ϕc=61.0 ±0.7 % , we found relaxation behaviors qualitatively and quantitatively different from the generalized Newtonian model. The regime where the relaxation was inconsistent with the generalized Newtonian model was the same where we found positive normal stress during relaxation, and in some cases we found an oscillatory response, suggestive of a solidlike structure consisting of a system-spanning contact network of particles. This regime also corresponds to the same packing fraction range where we consistently found discontinuous shear thickening in rate-controlled, steady-state measurements. The relaxation time in this range scales with the inverse of the critical shear rate at the onset of shear thickening, which may correspond to a contact relaxation time for nearby particles in the structure to flow away from each other. In this range, the relaxation time was the same in both stress- and rate-controlled relaxation experiments, indicating the relaxation time is more intrinsic than an effective viscosity in this range and is needed in addition to the steady-state viscosity function to describe transient flows. The discrepancy between the measured relaxation times and the generalized Newtonian
General model of phospholipid bilayers in fluid phase within the single chain mean field theory
Energy Technology Data Exchange (ETDEWEB)
Guo, Yachong; Baulin, Vladimir A. [Departament d’Enginyeria Química, Universitat Rovira i Virgili, Av. dels Paisos Catalans 26, 43007 Tarragona (Spain); Pogodin, Sergey [Institute of Chemical Research of Catalonia, ICIQ, Av. Paisos Catalans 16, 43007 Tarragona (Spain)
2014-05-07
Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description of equilibrium and mechanical properties of a range of saturated lipid molecules that differ only in length of their hydrophobic tails and unsaturated (POPC, DOPC) phospholipids which have double bonds in the tails. A double bond is modeled with a fixed angle of 120°, while the rest of the parameters are kept the same as saturated lipids. The thickness of the bilayer and its hydrophobic core, the compressibility, and the equilibrium area per lipid correspond to experimentally measured values for each lipid, changing linearly with the length of the tail. The model for unsaturated phospholipids also fetches main thermodynamical properties of the bilayers. This model is used for an accurate estimation of the free energies of the compressed or stretched bilayers in stacks or multilayers and gives reasonable estimates for free energies. The proposed model may further be used for studies of mixtures of lipids, small molecule inclusions, interactions of bilayers with embedded proteins.
Marn, Nina; Kooijman, S A L M; Jusup, Marko; Legović, Tarzan; Klanjšček, Tin
2017-05-01
Loggerhead turtle is an endangered sea turtle species with a migratory lifestyle and worldwide distribution, experiencing markedly different habitats throughout its lifetime. Environmental conditions, especially food availability and temperature, constrain the acquisition and the use of available energy, thus affecting physiological processes such as growth, maturation, and reproduction. These physiological processes at the population level determine survival, fecundity, and ultimately the population growth rate-a key indicator of the success of conservation efforts. As a first step towards the comprehensive understanding of how environment shapes the physiology and the life cycle of a loggerhead turtle, we constructed a full life cycle model based on the principles of energy acquisition and utilization embedded in the Dynamic Energy Budget (DEB) theory. We adapted the standard DEB model using data from published and unpublished sources to obtain parameter estimates and model predictions that could be compared with data. The outcome was a successful mathematical description of ontogeny and life history traits of the loggerhead turtle. Some deviations between the model and the data existed (such as an earlier age at sexual maturity and faster growth of the post-hatchlings), yet probable causes for these deviations were found informative and discussed in great detail. Physiological traits such as the capacity to withstand starvation, trade-offs between reproduction and growth, and changes in the energy budget throughout the ontogeny were inferred from the model. The results offer new insights into physiology and ecology of loggerhead turtle with the potential to lead to novel approaches in conservation of this endangered species. Copyright © 2017 Elsevier Ltd. All rights reserved.
Saunders, Benjamin; Bartlam, Bernadette; Foster, Nadine E; Hill, Jonathan C; Cooper, Vince; Protheroe, Joanne
2016-08-31
Stratified primary care involves changing General Practitioners' (GPs) clinical behaviour in treating patients, away from the current stepped care approach to instead identifying early treatment options that are matched to patients' risk of persistent disabling pain. This article explores the perspectives of UK-based GPs and patients about a prognostic stratified care model being developed for patients with the five most common primary care musculoskeletal pain presentations. The focus was on views about acceptability, and anticipated barriers and facilitators to the use of stratified care in routine practice. Four focus groups and six semi-structured telephone interviews were conducted with GPs (n = 23), and three focus groups with patients (n = 20). Data were analysed thematically; and identified themes examined in relation to the Theoretical Domains Framework (TDF), which facilitates comprehensive identification of behaviour change determinants. A critical approach was taken in using the TDF, examining the nuanced interrelationships between theoretical domains. Four key themes were identified: Acceptability of clinical decision-making guided by stratified care; impact on the therapeutic relationship; embedding a prognostic approach within a biomedical model; and practical issues in using stratified care. Whilst within each theme specific findings are reported, common across themes was the identified relationships between the theoretical domains of knowledge, skills, professional role and identity, environmental context and resources, and goals. Through analysis of these identified relationships it was found that, for GPs and patients to perceive stratified care as being acceptable, it must be seen to enhance GPs' knowledge and skills, not undermine GPs' and patients' respective identities and be integrated within the environmental context of the consultation with minimal disruption. Findings highlight the importance of taking into account the context of
Theory and applications of the generalized Born solvation model in macromolecular simulations.
Tsui, V; Case, D A
Generalized Born (GB) models provide an attractive way to include some thermodynamic aspects of aqueous solvation into simulations that do not explicitly model the solvent molecules. Here we discuss our recent experience with this model, presenting in detail the way it is implemented and parallelized in the AMBER molecular modeling code. We compare results using the GB model (or GB plus a surface-area based "hydrophobic" term) to explicit solvent simulations for a 10 base-pair DNA oligomer, and for the 108-residue protein thioredoxin. A slight modification of our earlier suggested parameters makes the GB results more like those found in explicit solvent, primarily by slightly increasing the strength of NH [bond] O and NH [bond] N internal hydrogen bonds. Timing and energy stability results are reported, with an eye toward using these model for simulations of larger macromolecular systems and longer time scales. Copyright 2001 John Wiley & Sons, Inc. Biopolymers (Nucleic Acid Sci) 56: 275-291, 2001
Wallace, Colin S.; Prather, Edward E.; Duncan, Douglas K.
2012-01-01
This is the third of five papers detailing our national study of general education astronomy students' conceptual and reasoning difficulties with cosmology. In this paper, we use item response theory to analyze students' responses to three out of the four conceptual cosmology surveys we developed. The specific item response theory model we use is…
Jang, Seogjoo; Voth, Gregory A
2017-05-07
Despite the fact that quantum mechanical principles do not allow the establishment of an exact quantum analogue of the classical transition state theory (TST), the development of a quantum TST (QTST) with a proper dynamical justification, while recovering the TST in the classical limit, has been a long standing theoretical challenge in chemical physics. One of the most recent efforts of this kind was put forth by Hele and Althorpe (HA) [J. Chem. Phys. 138, 084108 (2013)], which can be specified for any cyclically invariant dividing surface defined in the space of the imaginary time path integral. The present work revisits the issue of the non-uniqueness of QTST and provides a detailed theoretical analysis of HA-QTST for a general class of such path integral dividing surfaces. While we confirm that HA-QTST reproduces the result based on the ring polymer molecular dynamics (RPMD) rate theory for dividing surfaces containing only a quadratic form of low frequency Fourier modes, we find that it produces different results for those containing higher frequency imaginary time paths which accommodate greater quantum fluctuations. This result confirms the assessment made in our previous work [Jang and Voth, J. Chem. Phys. 144, 084110 (2016)] that HA-QTST does not provide a derivation of RPMD-TST in general and points to a new ambiguity of HA-QTST with respect to its justification for general cyclically invariant dividing surfaces defined in the space of imaginary time path integrals. Our analysis also offers new insights into similar path integral based QTST approaches.
Re-evaluating the general dynamic theory of oceanic island biogeography
Directory of Open Access Journals (Sweden)
Manuel Jonas Steinbauer
2013-10-01
Full Text Available The general dynamic model of oceanic island biogeography integrates temporal changes in ecological circumstances with diversification processes, and has stimulated current research in island biogeography. In the original publication, a set of testable hypotheses was analysed using regression models: specifically, whether island data for four diversity indices are consistent with the ‘B~ATT2’ model, in which B is a diversity index, A is log(area and T is time. The four indices were species richness, the number and percentage of single‐island endemic species, and a diversification index. Whether the relationships between these indices and time are unimodal (i.e., ‘hump‐shaped’ was a key focus, based on the characteristic ontogeny of a volcanic oceanic island. However, the significance testing unintentionally used zero, rather than the mean of the diversity index, as the null hypothesis, greatly inflating F‐ values and reducing P‐values compared with the standard regression approach. Here we first re‐analyze the data used to evaluate the general dynamic model in the seminal paper, using the standard null hypothesis, to provide an important qualification of its empirical results. This supports the significance of about half the original tests, the rest becoming non‐significant but mostly suggestive of the hypothesized relationship. Then we expand the original analysis by testing additional, theoretically derived functional relationships between the diversity indices, island area and time, within the framework of the ATT2 model and using a mixed‐effects modelling approach. This shows that species richness peaks earlier in island life‐cycles than endemism. Area has a greater effect on species richness and the number of single‐island endemics than on the proportion of single‐island endemics and the diversification index, and was always better fit as a log–log relationship than as a semi‐log one. Finally, the richness
Directory of Open Access Journals (Sweden)
João Sicsú
2008-09-01
Full Text Available This short chapter aims to make an adaptation to a small and financially integrated economy of the monetary / financial model presented by J. M. Keynes in his General Theory of Employment, interest and money. So, this has as a goal, particularly, to adapt the chapters 15 and 17 of the General Theory basically concerned to the speculative motivations to define the composition of the assets portfolio.
On the General Theory of Thermal and Gravitational Excitation of Atmospheric Oscillations
Directory of Open Access Journals (Sweden)
f. Mariani
1959-06-01
Full Text Available In questo lavoro si considera in forma generale la teoria delle oscillazionidi marea della atmosfera, di origine sia gravitazionale sia termica,assumendo la corretta variazione con la quota della accelerazione di aravità g e del raggio vettore R. La equazione fondamentale che descrive il fenomenodi marea viene risolta separatamente nei due casi di oscillazionipuramente gravitazionali e di oscillazioni puramente termiche, per un modellodi atmosfera {fig. 1 ottenuto approssimando con tratti lineari la effettivavariazione con la quota della scala delle altezze H.Rispetto al caso classico che g ed R non variino con la quota, si constatanel caso puramente gravitazionale un aumento del periodo di risonanzadella atmosfera di qualche minuto-, la ampiezza di risonanza al suoloè invece circa 1.5 volte inferiore-, il più notevole effetto è tuttavia un notevoleinnalzamento, da circa 35 a circa 80 km, della quota a cui la oscillazionedi pressione cambia di segno. Risultati sostanzialmente analoghi valgonoper la oscillazione di origine puramente termica, in quanto in condizionidi risonanza le oscillazioni della pressione nei due casi tendono aidentificarsi.Si calcola infine la ampiezza di oscillazione della temperatura prodottadalla oscillazione di pressione e si trova che essa è dell'ordine dei decimidi grado centigrado, in accordo con le indicazioni sperimentali.
Zhang, Jiayi; Yao, Zheng; Lu, Mingquan
2016-07-20
In order to provide better navigation service for a wide range of applications, modernized global navigation satellite systems (GNSS) employs increasingly advanced and complicated techniques in modulation and multiplexing of signals. This trend correspondingly increases the complexity of signal despreading at the receiver when matched receiving is used. Considering the numerous low-end receiver who can hardly afford such receiving complexity, it is feasible to apply some receiving strategies, which uses simplified forms of local despreading signals, which is termed unmatched despreading. However, the mismatch between local signal and received signal causes performance loss in code tracking, which is necessary to be considered in the theoretical evaluation methods of signals. In this context, we generalize the theoretical signal evaluation model for unmatched receiving. Then, a series of evaluation criteria are proposed, which are decoupled from unrelated influencing factors and concentrates on the key factors related to the signal and its receiving, thus better revealing the inherent performance of signals. The proposed evaluation criteria are used to study two GNSS signals, from which constructive guidance are derived for receivers and signal designer.
A Generalized Theory Explains the Anomalous Suns–Voc Response of Si Heterojunction Solar Cells
Chavali, Raghu Vamsi Krishna
2016-11-30
Suns–Voc measurements exclude parasitic series resistance effects and are, therefore, frequently used to study the intrinsic potential of a given photovoltaic technology. However, when applied to a-Si/c-Si heterojunction (SHJ) solar cells, the Suns–Voc curves often feature a peculiar turnaround at high illumination intensities. Generally, this turn-around is attributed to extrinsic Schottky contacts that should disappear with process improvement. In this paper, we demonstrate that this voltage turnaround may be an intrinsic feature of SHJ solar cells, arising from the heterojunction (HJ), as well as its associated carrier-transport barriers, inherent to SHJ devices. We use numerical simulations to explore the full current–voltage (J–V) characteristics under different illumination and ambient temperature conditions. Using these characteristics, we establish the voltage and illumination-intensity bias, as well as temperature conditions necessary to observe the voltage turnaround in these cells. We validate our turnaround hypothesis using an extensive set of experiments on a high-efficiency SHJ solar cell and a molybdenum oxide (MoOx) based hole collector HJ solar cell. Our work consolidates Suns–Voc as a powerful characterization tool for extracting the cell parameters that limit efficiency in HJ devices.
Piovan, Cristiano; Gava, Laura; Campeol, Mara
2016-01-01
Over past few decades, studies displayed Theory of Mind (ToM) as a system, including cognitive and affective features, rather than an unitary process. Within domains defining social cognition, ToM stands for the best predictor of poor social functioning in schizophrenia. The current study aimed to explore competence in ToM tasks, in metaphorical and idiomatic language identification tasks and in a conversational rules observance test, as well as relationship with social functioning, in a group of outpatients suffering from schizophrenia. METHODS.: 30 outpatients diagnosed with schizophrenia and 24 healthy subjects have been recruited. Both groups underwent TIB as premorbid IQ evaluation, PANSS, Theory of Mind Picture Sequencing Task, a metaphors and idiomatic expressions comprehension test and a conversational test. Social functioning was assessed with PSP. Results.Mean values of premorbid IQ showed no significant difference between patients and control group. In ToM and pragmatic competence tasks, differences between groups resulted in high significance, due to patients' lower performance. A correlation between metaphors and idiomatic expressions comprehension and second order false beliefs was detected. PSP showed a correlation with PANSS and cognitive-ToM, whereas leaving aside affective-ToM. Results showed how people affected with schizophrenia, in stable clinical condition, do have clear impairments in ToM and figurative language comprehension assignments. In our theoretical framework, correlation arisen between cognitive-ToM, pragmatic deficits, clinical status and social functioning level suggests usefulness of rehabilitative interventions to recover metacognitive functions and pragmatic abilities, in order to reduce social disability in schizophrenia.
Pääkkönen, Virve; Bleicher, Françoise; Carrouel, Florence; Vuoristo, Jussi T; Salo, Tuula; Wappler, Ilka; Couble, Marie-Lise; Magloire, Henry; Peters, Heiko; Tjäderhane, Leo
2009-01-01
Odontoblasts play a central role during the dentin formation by organic matrix production and mineralisation. Recently, suitable in vitro techniques for studying mature primary odontoblasts and the newly differentiated odontoblasts have been developed. Firstly, the gene expression profiles of native and cultured odontoblasts were compared at large-scale to investigate the similarities and differences between the samples. Secondly, differential expression levels of the genes encoding neuronal proteins were analyzed to study odontoblasts sensory function. Microarray analysis was performed to mature native and cultured pulp-derived odontoblast-like cells to compare their transcriptome. Then, the probes positive only in one sample were divided into gene ontology categories. Expression levels of selected neuronal proteins were further studied with quantitative PCR, and at the protein level by immunofluorescence of mature and newly differentiated odontoblasts in developing tooth. Remarkable similarities between the general and neuronal protein gene expression profiles were observed. Higher cortistatin, galanin, somatostatin receptor 1 (SSTR1) and tyrosine phosphatase receptor type Z1 (PTPRZ1) expression was detected in native than in cultured odontoblast at the mRNA level. Pronociceptin was more abundantly expressed in cultured than in native odontoblasts. Immunofluorescence of mature and newly differentiated odontoblasts on human tooth germs confirmed the results. Cultured odontoblasts used in this study have similar general gene expression pattern to native odontoblasts, and therefore offer a valuable tool for the in vitro odontoblast studies. The expression of PTPRZ1 and galanin, which participate in sensory signal transduction, supports the previously suggested role of odontoblasts as sensory cells.
Digital speech and democratic culture: a theory of freedom of expression for the information society
National Research Council Canada - National Science Library
Balkin, Jack M
2004-01-01
In this essay, Professor Balkin argues that digital technologies alter the social conditions of speech and therefore should change the focus of free speech theory, from a Meiklejohnian or republican...