WorldWideScience

Sample records for expressing processed capsid

  1. Low levels of foot-and-mouth disease virus 3C protease expression are required to achieve optimal capsid protein expression and processing in mammalian cells

    DEFF Research Database (Denmark)

    Polacek, Charlotta; Gullberg, Maria; Li, Jiong

    2013-01-01

    transient-expression assays, within mammalian cells, it is possible to modify the relative amounts of the substrate and protease. It has now been shown that optimal production of the processed capsid proteins from P1-2A is achieved with reduced levels of 3Cpro expression, relative to the P1-2A, compared...... detected by FMDV antigen detection assays. Furthermore, the P1-2A and the processed forms each bind to the integrin αvβ6, the major FMDV receptor. These results contribute to the development of systems which efficiently express the components of empty capsid particles and may represent the basis for safer...... production of diagnostic reagents and improved vaccines against foot-and-mouth disease....

  2. The Cellular Chaperone Heat Shock Protein 90 Is Required for Foot-and-Mouth Disease Virus Capsid Precursor Processing and Assembly of Capsid Pentamers.

    Science.gov (United States)

    Newman, Joseph; Asfor, Amin S; Berryman, Stephen; Jackson, Terry; Curry, Stephen; Tuthill, Tobias J

    2018-03-01

    Productive picornavirus infection requires the hijacking of host cell pathways to aid with the different stages of virus entry, synthesis of the viral polyprotein, and viral genome replication. Many picornaviruses, including foot-and-mouth disease virus (FMDV), assemble capsids via the multimerization of several copies of a single capsid precursor protein into a pentameric subunit which further encapsidates the RNA. Pentamer formation is preceded by co- and posttranslational modification of the capsid precursor (P1-2A) by viral and cellular enzymes and the subsequent rearrangement of P1-2A into a structure amenable to pentamer formation. We have developed a cell-free system to study FMDV pentamer assembly using recombinantly expressed FMDV capsid precursor and 3C protease. Using this assay, we have shown that two structurally different inhibitors of the cellular chaperone heat shock protein 90 (hsp90) impeded FMDV capsid precursor processing and subsequent pentamer formation. Treatment of FMDV permissive cells with the hsp90 inhibitor prior to infection reduced the endpoint titer by more than 10-fold while not affecting the activity of a subgenomic replicon, indicating that translation and replication of viral RNA were unaffected by the drug. IMPORTANCE FMDV of the Picornaviridae family is a pathogen of huge economic importance to the livestock industry due to its effect on the restriction of livestock movement and necessary control measures required following an outbreak. The study of FMDV capsid assembly, and picornavirus capsid assembly more generally, has tended to be focused upon the formation of capsids from pentameric intermediates or the immediate cotranslational modification of the capsid precursor protein. Here, we describe a system to analyze the early stages of FMDV pentameric capsid intermediate assembly and demonstrate a novel requirement for the cellular chaperone hsp90 in the formation of these pentameric intermediates. We show the added complexity

  3. Vaccination of mice with plasmids expressing processed capsid protein of foot-and-mouth disease virus - Importance of dominant and subdominant epitopes for antigenicity and protection

    DEFF Research Database (Denmark)

    Frimann, Tine; Barfoed, Annette Malene; Aasted, Bent

    2007-01-01

    The capsid of foot-and-mouth disease virus (FMDV) displays several independent B cell epitopes, which stimulate the production of neutralising antibodies. Some of these epitopes are highly variable between virus strains, but dominate the immune response. The site A on VP1 is the most prominent...

  4. Assembly and characterization of foot-and-mouth disease virus empty capsid particles expressed within mammalian cells

    DEFF Research Database (Denmark)

    Gullberg, Maria; Muszynski, Bartosz; Organtini, Lindsey J.

    2013-01-01

    The foot-and-mouth disease virus (FMDV) structural protein precursor, P1-2A, is cleaved by the virus-encoded 3C protease (3Cpro) into the capsid proteins VP0, VP1 and VP3 (and 2A). In some systems, it is difficult to produce large amounts of these processed capsid proteins since 3Cpro can be toxic...... (from serotypes O and A) and 3Cpro were expressed from monocistronic cDNA cassettes as P1-2A-3C, or from dicistronic cassettes with the 3Cpro expression dependent on a mutant FMDV internal ribosome entry site (IRES) (designated P1-2A-mIRES-3C). The effects of using a mutant 3Cpro with reduced catalytic....... These products self-assembled to form FMDV empty capsid particles, which have a related, but distinct, morphology (as determined by electron microscopy and reconstruction) from that determined previously by X-ray crystallography. The assembled empty capsids bind, in a divalent cation-dependent manner, to the RGD...

  5. Transient Bluetongue virus serotype 8 capsid protein expression in Nicotiana benthamiana

    Directory of Open Access Journals (Sweden)

    Albertha R. van Zyl

    2016-03-01

    Full Text Available Bluetongue virus (BTV causes severe disease in domestic and wild ruminants, and has recently caused several outbreaks in Europe. Current vaccines include live-attenuated and inactivated viruses; while these are effective, there is risk of reversion to virulence by mutation or reassortment with wild type viruses. Subunit or virus-like particle (VLP vaccines are safer options: VLP vaccines produced in insect cells by expression of the four BTV capsid proteins are protective against challenge; however, this is a costly production method. We investigated production of BTV VLPs in plants via Agrobacterium-mediated transient expression, an inexpensive production system very well suited to developing country use. Leaves infiltrated with recombinant pEAQ-HT vectors separately encoding the four BTV-8 capsid proteins produced more proteins than recombinant pTRA vectors. Plant expression using the pEAQ-HT vector resulted in both BTV-8 core-like particles (CLPs and VLPs; differentially controlling the concentration of infiltrated bacteria significantly influenced yield of the VLPs. In situ localisation of assembled particles was investigated by using transmission electron microscopy (TEM and it was shown that a mixed population of core-like particles (CLPs, consisting of VP3 and VP7 and VLPs were present as paracrystalline arrays in the cytoplasm of plant cells co-expressing all four capsid proteins.

  6. Processing of the VP1/2A junction is not necessary for production of foot-and-mouth disease virus empty capsids and infectious viruses: characterization of "self-tagged" particles.

    Science.gov (United States)

    Gullberg, Maria; Polacek, Charlotta; Bøtner, Anette; Belsham, Graham J

    2013-11-01

    The foot-and-mouth disease virus (FMDV) capsid protein precursor, P1-2A, is cleaved by 3C(pro) to generate VP0, VP3, VP1, and the peptide 2A. The capsid proteins self-assemble into empty capsid particles or viruses which do not contain 2A. In a cell culture-adapted strain of FMDV (O1 Manisa [Lindholm]), three different amino acid substitutions (E83K, S134C, and K210E) were identified within the VP1 region of the P1-2A precursor compared to the field strain (wild type [wt]). Expression of the O1 Manisa P1-2A (wt or with the S134C substitution in VP1) plus 3C(pro), using a transient expression system, resulted in efficient capsid protein production and self-assembly of empty capsid particles. Removal of the 2A peptide from the capsid protein precursor had no effect on capsid protein processing or particle assembly. However, modification of E83K alone abrogated particle assembly with no apparent effect on protein processing. Interestingly, the K210E substitution, close to the VP1/2A junction, completely blocked processing by 3C(pro) at this cleavage site, but efficient assembly of "self-tagged" empty capsid particles, containing the uncleaved VP1-2A, was observed. These self-tagged particles behaved like the unmodified empty capsids in antigen enzyme-linked immunosorbent assays and integrin receptor binding assays. Furthermore, mutant viruses with uncleaved VP1-2A could be rescued in cells from full-length FMDV RNA transcripts encoding the K210E substitution in VP1. Thus, cleavage of the VP1/2A junction is not essential for virus viability. The production of such engineered self-tagged empty capsid particles may facilitate their purification for use as diagnostic reagents and vaccines.

  7. [Expression and activity determination of recombinant capsid protein VP2 gene of enterovirus type 71].

    Science.gov (United States)

    Huang, Xueyong; Liu, Guohua; Hu, Xiaoning; Du, Yanhua; Li, Xingle; Xu, Yuling; Chen, Haomin; Xu, Bianli

    2014-04-01

    To clone and express the recombinant capsid protein VP2 of enterovirus type 71 (EV71) and to identify the immune activity of expressed protein in order to build a basis for the investigation work of vaccine and diagnostic antigen. VP2 gene of EV71 was amplified by PCR, and then was cut by restriction enzyme and inserted into expression vector pMAL-c2X. The positive recombinants were transferred into E.coli TB1, the genetically engineered bacteria including pMAL-c2X-VP2 plasmids were induced by isopropyl thiogalactoside ( IPTG) , and the expression products were analyzed by SDS-PAGE and western blotting method. EV71 IgM antibody detection method by ELISA was set up, and the sensitivity and specificity of this method was assessed; 60 neutralizing antibody positive serum samples from hand foot and mouth disease (HFMD) patients were determined, of which 52 samples were positive and 8 samples were negative; a total of 88 acute phase serum samples of HFMD patients diagnosed in clinical were also detected. VP2 gene of 762 bp was obtained by PCR, the gene segment inserted into the recombinant vector was identified using restriction enzyme digestion. The recombinant vector could express a specific about 71 500 fusion protein in E.coli by SDS-PAGE. The purified recombinant protein of EV71-VP2 can react with the serum of HFMD patients to produce a specific band by western blotting. The sensitivity and specificity of ELISA was 87% and 83%, respectively. Of the 88 acute phase serum samples from children with HFMD, 48 samples (55%) were positive by the ELISA assay. VP2 gene of EV71 has been cloned and a prokaryotic high expression system for VP2 gene was successfully constructed in the present study. The recombination EV71-VP2 has well antigenicity, which could be useful for developing diagnose reagent or vaccine of EV71.

  8. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein

    OpenAIRE

    Bertagnoli, Stéphane; Gelfi, Jacqueline; Le Gall, Ghislaine; Boilletot, Eric; Vautherot, Jean-François; Rasschaert, Denis; Laurent, Sylvie; Petit, Frédérique; Boucraut-Baralon, Corine; Milon, Alain

    1996-01-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma vir...

  9. Observations on the expression of human papillomavirus major capsid protein in HeLa cells.

    Science.gov (United States)

    Xiao, Chang-Yi; Fu, Bing-Bing; Li, Zhi-Ying; Mushtaq, Gohar; Kamal, Mohammad Amjad; Li, Jia-Hua; Tang, Gui-Cheng; Xiao, Shuo-Shuang

    2015-01-01

    The goal of this study was to identify the nature of the inclusion bodies that have been found in HeLa cells (cervical cancer immortal cell line) by electron microscope and to determine whether the major capsid protein (L1) of human papillomavirus (HPV) can be expressed in HPV-positive uterine cervix cancer cells. HPV L1 protein expression in HeLa cells was detected with anti-HPV L1 multivalent mice monoclonal antibody and rabbit polyclonal anti-HPV L1 antibody by ELISA, light microscope immunohistochemistry, electron microscope immunocytochemistry and Western blotting assays. Reverse transcriptional PCR (RT-PCR) was performed to detect the transcription of L1 mRNA in HeLa cells. The immortalized human keratinocyte HeCat was used as the negative control. HPV L1 proteins reacted positively in the lysate of HeLa cells by ELISA assays. HRP labeled light microscope immunohistochemistry assay showed that there was a strong HPV L1 positive reaction in HeLa cells. Under the electron microscope, irregular shaped inclusion bodies, assembled by many small and uniform granules, had been observed in the cytoplasm of some HeLa cells. These granules could be labeled by the colloidal gold carried by HPV L1 antibody. The Western blotting assay showed that there was a L1 reaction strap at 80-85 kDa in the HeLa cell lysates, hence demonstrating the existence of HPV18 L1 in HeLa cells. RT-PCR assay showed that the L1 mRNA was transcribed in HeLa cells. The inclusion bodies found in the cytoplasm of HeLa cells are composed of HPV18 L1 protein. Since HeLa cell line is a type of cervical cancer cells, this implies that HeLa cells have the ability to express HPV L1 proteins.

  10. Expression and purification of capsid proteins of Aichi virus and in vitro reassembly of empty virion

    Czech Academy of Sciences Publication Activity Database

    Smola, Miroslav; Dubánková, Anna; Šilhán, Jan; Bouřa, Evžen

    2017-01-01

    Roč. 284, Suppl 1 (2017), s. 107 ISSN 1742-464X. [FEBS Congress /42./ From Molecules to Cells and Back. 10.09.2017-14.09.2017, Jerusalem] R&D Projects: GA ČR GJ15-21030Y; GA MŠk LO1302 Institutional support: RVO:61388963 Keywords : Aichi virus * capsid proteins Subject RIV: CE - Biochemistry

  11. Protection against myxomatosis and rabbit viral hemorrhagic disease with recombinant myxoma viruses expressing rabbit hemorrhagic disease virus capsid protein.

    Science.gov (United States)

    Bertagnoli, S; Gelfi, J; Le Gall, G; Boilletot, E; Vautherot, J F; Rasschaert, D; Laurent, S; Petit, F; Boucraut-Baralon, C; Milon, A

    1996-08-01

    Two myxoma virus-rabbit hemorrhagic disease virus (RHDV) recombinant viruses were constructed with the SG33 strain of myxoma virus to protect rabbits against myxomatosis and rabbit viral hemorrhagic disease. These recombinant viruses expressed the RHDV capsid protein (VP60). The recombinant protein, which is 60 kDa in size, was antigenic, as revealed by its reaction in immunoprecipitation with antibodies raised against RHDV. Both recombinant viruses induced high levels of RHDV- and myxoma virus-specific antibodies in rabbits after immunization. Inoculations by the intradermal route protected animals against virulent RHDV and myxoma virus challenges.

  12. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle

    Science.gov (United States)

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O,A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutral...

  13. Foot-and-mouth disease virus capsid proteins; analysis of protein processing, assembly and utility as vaccines

    DEFF Research Database (Denmark)

    Belsham, Graham

    Foot-and-mouth disease (FMD) remains one of the most economically important infectious diseases of production animals globally. The infection is caused by foot-and-mouth disease virus (FMDV), a member of the picornavirus family. The positive sense RNA genome of the virus includes a single, large......, open reading frame that encodes a polyprotein. The intact polyprotein is never observed as it is processed, both during and after translation, to 15 different mature proteins plus a variety of precursors. The FMDV capsid protein precursor, P1-2A, is cleaved by the virus encoded 3C protease (3Cpro......) to generate VP0, VP3, VP1 and the peptide 2A. Sixty copies of each of the capsid proteins “self-assemble” into empty capsid particles or with the RNA genome into infectious viruses. These particles normally lack 2A but it is possible to construct and isolate mutant FMDVs in which the cleavage of the VP1/2A...

  14. The porcine circovirus type 1 capsid gene promoter improves antigen expression and immunogenicity in a HIV-1 plasmid vaccine

    Directory of Open Access Journals (Sweden)

    Burger Marieta

    2011-02-01

    Full Text Available Abstract Background One of the promising avenues for development of vaccines against Human immunodeficiency virus type 1 (HIV-1 and other human pathogens is the use of plasmid-based DNA vaccines. However, relatively large doses of plasmid must be injected for a relatively weak response. We investigated whether genome elements from Porcine circovirus type 1 (PCV-1, an apathogenic small ssDNA-containing virus, had useful expression-enhancing properties that could allow dose-sparing in a plasmid vaccine. Results The linearised PCV-1 genome inserted 5' of the CMV promoter in the well-characterised HIV-1 plasmid vaccine pTHgrttnC increased expression of the polyantigen up to 2-fold, and elicited 3-fold higher CTL responses in mice at 10-fold lower doses than unmodified pTHgrttnC. The PCV-1 capsid gene promoter (Pcap alone was equally effective. Enhancing activity was traced to a putative composite host transcription factor binding site and a "Conserved Late Element" transcription-enhancing sequence previously unidentified in circoviruses. Conclusions We identified a novel PCV-1 genome-derived enhancer sequence that significantly increased antigen expression from plasmids in in vitro assays, and improved immunogenicity in mice of the HIV-1 subtype C vaccine plasmid, pTHgrttnC. This should allow significant dose sparing of, or increased responses to, this and other plasmid-based vaccines. We also report investigations of the potential of other circovirus-derived sequences to be similarly used.

  15. Vaccination with Recombinant Baculovirus Expressing Ranavirus Major Capsid Protein Induces Protective Immunity in Chinese Giant Salamander, Andrias davidianus

    Directory of Open Access Journals (Sweden)

    Xiaoyuan Zhou

    2017-07-01

    Full Text Available The Chinese giant salamander iridovirus (CGSIV, belonging to the genus Ranavirus in the family Iridoviridae, is the causative agent of an emerging infectious disease causing high mortality of more than 90% and economic losses in Chinese giant salamanders in China. In this study, a recombinant baculovirus-based vaccine expressing the CGSIV major capsid protein (MCP was developed and its protective immunity in Chinese giant salamanders was evaluated. The recombinant Autographa californica nucleopolyhedrosis virus (AcNPV, expressing CGSIV MCP, designated as AcNPV-MCP, was generated with the highest titers of 1 × 108 plaque forming units/mL (PFU/mL and confirmed by Western blot and indirect immunofluorescence (IIF assays. Western blot analysis revealed that the expressed MCP reacted with mouse anti-MCP monoclonal antibodies at the band of about 53 kDa. The results of IIF indicated that the MCP was expressed in the infected Spodoptera frugiperda 9 (Sf9 cells with the recombinant baculovirus, and the Chinese giant salamander muscle cells also transduced with the AcNPV-MCP. Immunization with the recombinant baculovirus of AcNPV-MCP elicited robust specific humoral immune responses detected by ELISA and neutralization assays and potent cellular immune responses in Chinese giant salamanders. Importantly, the effective immunization conferred highly protective immunity for Chinese giant salamanders against CGSIV challenge and produced a relative percent of survival rate of 84%. Thus, the recombinant baculovirus expressing CGSIV MCP can induce significant immune responses involving both humoral and cell-mediated immunity in Chinese giant salamanders and might represent a potential baculovirus based vaccine candidate for Chinese giant salamanders against CGSIV.

  16. Self-assembly of virus-like particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli

    Directory of Open Access Journals (Sweden)

    Cai Xuepeng

    2010-07-01

    Full Text Available Abstract Background Porcine circovirus 2 (PCV2 is a serious problem to the swine industry and can lead to significant negative impacts on profitability of pork production. Syndrome associated with PCV2 is known as porcine circovirus closely associated with post-weaning multisystemic wasting syndrome (PMWS. The capsid (Cap protein of PCV2 is a major candidate antigen for development of recombinant vaccine and serological diagnostic method. The recombinant Cap protein has the ability to self-assemble into virus-like particles (VLPs in vitro, it is particularly opportunity to develop the PV2 VLPs vaccine in Escherichia coli,(E.coli , because where the cost of the vaccine must be weighed against the value of the vaccinated pig, when it was to extend use the VLPs vaccine of PCV2. Results In this report, a highly soluble Cap-tag protein expressed in E.coli was constructed with a p-SMK expression vector with a fusion tag of small ubiquitin-like modifiers (SUMO. The recombinant Cap was purified using Ni2+ affinity resins, whereas the tag was used to remove the SUMO protease. Simultaneously, the whole native Cap protein was able to self-assemble into VLPs in vitro when viewed under an electron microscope. The Cap-like particles had a size and shape that resembled the authentic Cap. The result could also be applied in the large-scale production of VLPs of PCV2 and could be used as a diagnostic antigen or a potential VLP vaccine against PCV2 infection in pigs. Conclusion we have, for the first time, utilized the SUMO fusion motif to successfully express the entire authentic Cap protein of PCV2 in E. coli. After the cleavage of the fusion motif, the nCap protein has the ability to self-assemble into VLPs, which can be used as as a potential vaccine to protect pigs from PCV2-infection.

  17. Self-assembly of virus-like particles of porcine circovirus type 2 capsid protein expressed from Escherichia coli

    Science.gov (United States)

    2010-01-01

    Background Porcine circovirus 2 (PCV2) is a serious problem to the swine industry and can lead to significant negative impacts on profitability of pork production. Syndrome associated with PCV2 is known as porcine circovirus closely associated with post-weaning multisystemic wasting syndrome (PMWS). The capsid (Cap) protein of PCV2 is a major candidate antigen for development of recombinant vaccine and serological diagnostic method. The recombinant Cap protein has the ability to self-assemble into virus-like particles (VLPs) in vitro, it is particularly opportunity to develop the PV2 VLPs vaccine in Escherichia coli,(E.coli ), because where the cost of the vaccine must be weighed against the value of the vaccinated pig, when it was to extend use the VLPs vaccine of PCV2. Results In this report, a highly soluble Cap-tag protein expressed in E.coli was constructed with a p-SMK expression vector with a fusion tag of small ubiquitin-like modifiers (SUMO). The recombinant Cap was purified using Ni2+ affinity resins, whereas the tag was used to remove the SUMO protease. Simultaneously, the whole native Cap protein was able to self-assemble into VLPs in vitro when viewed under an electron microscope. The Cap-like particles had a size and shape that resembled the authentic Cap. The result could also be applied in the large-scale production of VLPs of PCV2 and could be used as a diagnostic antigen or a potential VLP vaccine against PCV2 infection in pigs. Conclusion we have, for the first time, utilized the SUMO fusion motif to successfully express the entire authentic Cap protein of PCV2 in E. coli. After the cleavage of the fusion motif, the nCap protein has the ability to self-assemble into VLPs, which can be used as as a potential vaccine to protect pigs from PCV2-infection. PMID:20646322

  18. Expression of Aleutian mink disease parvovirus capsid proteins in defined segments: localization of immunoreactive sites and neutralizing epitopes to specific regions.

    Science.gov (United States)

    Bloom, M E; Martin, D A; Oie, K L; Huhtanen, M E; Costello, F; Wolfinbarger, J B; Hayes, S F; Agbandje-McKenna, M

    1997-01-01

    The capsid proteins of the ADV-G isolate of Aleutian mink disease parvovirus (ADV) were expressed in 10 nonoverlapping segments as fusions with maltose-binding protein in pMAL-C2 (pVP1, pVP2a through pVP2i). The constructs were designed to capture the VP1 unique sequence and the portions analogous to the four variable surface loops of canine parvovirus (CPV) in individual fragments (pVP2b, pVP2d, pVP2e, and pVP2g, respectively). The panel of fusion proteins was immunoblotted with sera from mink infected with ADV. Seropositive mink infected with either ADV-TR, ADV-Utah, or ADV-Pullman reacted preferentially against certain segments, regardless of mink genotype or virus inoculum. The most consistently immunoreactive regions were pVP2g, pVP2e, and pVP2f, the segments that encompassed the analogs of CPV surface loops 3 and 4. The VP1 unique region was also consistently immunoreactive. These findings indicated that infected mink recognize linear epitopes that localized to certain regions of the capsid protein sequence. The segment containing the hypervariable region (pVP2d), corresponding to CPV loop 2, was also expressed from ADV-Utah. An anti-ADV-G monoclonal antibody and a rabbit anti-ADV-G capsid antibody reacted exclusively with the ADV-G pVP2d segment but not with the corresponding segment from ADV-Utah. Mink infected with ADV-TR or ADV-Utah also preferentially reacted with the pVP2d sequence characteristic of that virus. These results suggested that the loop 2 region may contain a type-specific linear epitope and that the epitope may also be specifically recognized by infected mink. Heterologous antisera were prepared against the VP1 unique region and the four segments capturing the variable surface loops of CPV. The antisera against the proteins containing loop 3 or loop 4, as well as the anticapsid antibody, neutralized ADV-G infectivity in vitro and bound to capsids in immune electron microscopy. These results suggested that regions of the ADV capsid proteins

  19. Transient gene expression in serum-free suspension-growing mammalian cells for the production of foot-and-mouth disease virus empty capsids.

    Directory of Open Access Journals (Sweden)

    Ana Clara Mignaqui

    Full Text Available Foot-and-mouth disease (FMD is a highly contagious disease of cloven-hoofed animals. It produces severe economic losses in the livestock industry. Currently available vaccines are based on inactivated FMD virus (FMDV. The use of empty capsids as a subunit vaccine has been reported to be a promising candidate because it avoids the use of virus in the vaccine production and conserves the conformational epitopes of the virus. In this report, we explored transient gene expression (TGE in serum-free suspension-growing mammalian cells for the production of FMDV recombinant empty capsids as a subunit vaccine. The recombinant proteins produced, assembled into empty capsids and induced protective immune response against viral challenge in mice. Furthermore, they were recognized by anti-FMDV bovine sera. By using this technology, we were able to achieve expression levels that are compatible with the development of a vaccine. Thus, TGE of mammalian cells is an easy to perform, scalable and cost-effective technology for the production of a recombinant subunit vaccine against FMDV.

  20. Expression of enterovirus 71 capsid protein VP1 in Escherichia coli and its clinical application

    Directory of Open Access Journals (Sweden)

    Mei Shi

    2013-12-01

    Full Text Available The VPl gene of enterovirus 71 (EV71 was synthesized, construct a recombinant plasmid pET15b/VP1 and expressed in E. coli BL21. The recombinant VP1 protein could specifically react with EV71-infected patient sera without the cross-reaction with serum antibodies of coxsackievirus A16 (CA16, A4, A5, B3 and B5 as well as echovirus 6. In acute and convalescent phases, IgM and IgG antibodies of 182 serum samples were detected by ELISA with recombinant VP1 protein as a coated antigen. The results showed that the sensitivity, specificity, positive predictive value (PPV and negative predictive value (NPV of IgM antibodies in serum samples for the diagnosis of EV71 infection were 90.1, 98.4, 98.8 and 88.7%, respectively; similarly, those of IgG antibodies in serum samples were 82.4, 89.1, 91.5 and 78.1%, respectively. Five of 80 samples (6.25% from CA16infected patients were detected positive by ELISA with recombinant VP1 protein in which indicated the cross reactions and 0 of 5 samples from patients infected with other enteroviruses including CA4, CA5, CB3, CB5 and echovirus 6. Therefore, the recombinant VP1 protein of EV7l may provide a theoretical reference for establishing an effective antibody screening of IgM for EV71-infected patients with clinically suspected hand, foot, and mouth disease (HFMD.

  1. Exploiting the yeast L-A viral capsid for the in vivo assembly of chimeric VLPs as platform in vaccine development and foreign protein expression.

    Directory of Open Access Journals (Sweden)

    Frank Powilleit

    Full Text Available A novel expression system based on engineered variants of the yeast (Saccharomyces cerevisiae dsRNA virus L-A was developed allowing the in vivo assembly of chimeric virus-like particles (VLPs as a unique platform for a wide range of applications. We show that polypeptides fused to the viral capsid protein Gag self-assemble into isometric VLP chimeras carrying their cargo inside the capsid, thereby not only effectively preventing proteolytic degradation in the host cell cytosol, but also allowing the expression of a per se cytotoxic protein. Carboxyterminal extension of Gag by T cell epitopes from human cytomegalovirus pp65 resulted in the formation of hybrid VLPs that strongly activated antigen-specific CD8(+ memory T cells ex vivo. Besides being a carrier for polypeptides inducing antigen-specific immune responses in vivo, VLP chimeras were also shown to be effective in the expression and purification of (i a heterologous model protein (GFP, (ii a per se toxic protein (K28 alpha-subunit, and (iii a particle-associated and fully recyclable biotechnologically relevant enzyme (esterase A. Thus, yeast viral Gag represents a unique platform for the in vivo assembly of chimeric VLPs, equally attractive and useful in vaccine development and recombinant protein production.

  2. Herpesvirus capsid assembly and DNA packaging

    Science.gov (United States)

    Heming, Jason D.; Conway, James F.; Homa, Fred L.

    2017-01-01

    Herpes simplex virus type I (HSV-1) is the causative agent of several pathologies ranging in severity from the common cold sore to life-threatening encephalitic infection. During productive lytic infection, over 80 viral proteins are expressed in a highly regulated manner, resulting in the replication of viral genomes and assembly of progeny virions. The virion of all herpesviruses consists of an external membrane envelope, a proteinaceous layer called the tegument, and an icosahedral capsid containing the double-stranded linear DNA genome. The capsid shell of HSV-1 is built from four structural proteins: a major capsid protein, VP5, which forms the capsomers (hexons and pentons), the triplex consisting of VP19C and VP23 found between the capsomers, and VP26 which binds to VP5 on hexons but not pentons. In addition, the dodecameric pUL6 portal complex occupies one of the 12 capsid vertices, and the capsid vertex specific component (CVSC), a heterotrimer complex of pUL17, pUL25 and pUL36 binds specifically to the triplexes adjacent to each penton. The capsid is assembled in the nucleus where the viral genome is packaged into newly assembled closed capsid shells. Cleavage and packaging of replicated, concatemeric viral DNA requires the seven viral proteins encoded by the UL6, UL15, UL17, UL25, UL28, UL32, and UL33 genes. Considerable advances have been made in understanding the structure of the herpesvirus capsid and the function of several of the DNA packaging proteins by applying biochemical, genetic, and structural techniques. This review is a summary of recent advances with respect to the structure of the HSV-1 virion capsid and what is known about the function of the seven packaging proteins and their interactions with each other and with the capsid shell. PMID:28528442

  3. L2, the minor capsid protein of papillomavirus

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Joshua W. [Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287 (United States); Roden, Richard B.S., E-mail: roden@jhmi.edu [Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287 (United States); Department of Oncology, The Johns Hopkins University, Baltimore, MD 21287 (United States); Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, MD 21287 (United States)

    2013-10-15

    The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ∼8 kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 is not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2. - Highlights: • L2 is the minor antigen of the non-enveloped T=7d icosahedral Papillomavirus capsid. • L2 is a nuclear protein that can traffic to ND-10 and facilitate genome encapsidation. • L2 is critical for infection and must be cleaved by furin. • L2 is a broadly protective vaccine antigen recognized by neutralizing antibodies.

  4. L2, the minor capsid protein of papillomavirus

    International Nuclear Information System (INIS)

    Wang, Joshua W.; Roden, Richard B.S.

    2013-01-01

    The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ∼8 kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 is not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2. - Highlights: • L2 is the minor antigen of the non-enveloped T=7d icosahedral Papillomavirus capsid. • L2 is a nuclear protein that can traffic to ND-10 and facilitate genome encapsidation. • L2 is critical for infection and must be cleaved by furin. • L2 is a broadly protective vaccine antigen recognized by neutralizing antibodies

  5. Functional characterization of Kaposi's sarcoma-associated herpesvirus small capsid protein by bacterial artificial chromosome-based mutagenesis

    International Nuclear Information System (INIS)

    Sathish, Narayanan; Yuan Yan

    2010-01-01

    A systematic investigation of interactions amongst KSHV capsid proteins was undertaken in this study to comprehend lesser known KSHV capsid assembly mechanisms. Interestingly the interaction patterns of the KSHV small capsid protein, ORF65 suggested its plausible role in viral capsid assembly pathways. Towards further understanding this, ORF65-null recombinant mutants (BAC-Δ65 and BAC-stop65) employing a bacterial artificial chromosome (BAC) system were generated. No significant difference was found in both overall viral gene expression and lytic DNA replication between stable monolayers of 293T-BAC36 (wild-type) and 293T-BAC-ORF65-null upon induction with 12-O-tetradecanoylphorbol-13-acetate, though the latter released 30-fold fewer virions to the medium than 293T-BAC36 cells. Sedimentation profiles of capsid proteins of ORF65-null recombinant mutants were non-reflective of their organization into the KSHV capsids and were also undetectable in cytoplasmic extracts compared to noticeable levels in nuclear extracts. These observations collectively suggested the pivotal role of ORF65 in the KSHV capsid assembly processes.

  6. Highly conserved serine residue 40 in HIV-1 p6 regulates capsid processing and virus core assembly

    Directory of Open Access Journals (Sweden)

    Solbak Sara MØ

    2011-02-01

    Full Text Available Abstract Background The HIV-1 p6 Gag protein regulates the final abscission step of nascent virions from the cell membrane by the action of two late assembly (L- domains. Although p6 is located within one of the most polymorphic regions of the HIV-1 gag gene, the 52 amino acid peptide binds at least to two cellular budding factors (Tsg101 and ALIX, is a substrate for phosphorylation, ubiquitination, and sumoylation, and mediates the incorporation of the HIV-1 accessory protein Vpr into viral particles. As expected, known functional domains mostly overlap with several conserved residues in p6. In this study, we investigated the importance of the highly conserved serine residue at position 40, which until now has not been assigned to any known function of p6. Results Consistently with previous data, we found that mutation of Ser-40 has no effect on ALIX mediated rescue of HIV-1 L-domain mutants. However, the only feasible S40F mutation that preserves the overlapping pol open reading frame (ORF reduces virus replication in T-cell lines and in human lymphocyte tissue cultivated ex vivo. Most intriguingly, L-domain mediated virus release is not dependent on the integrity of Ser-40. However, the S40F mutation significantly reduces the specific infectivity of released virions. Further, it was observed that mutation of Ser-40 selectively interferes with the cleavage between capsid (CA and the spacer peptide SP1 in Gag, without affecting cleavage of other Gag products. This deficiency in processing of CA, in consequence, led to an irregular morphology of the virus core and the formation of an electron dense extra core structure. Moreover, the defects induced by the S40F mutation in p6 can be rescued by the A1V mutation in SP1 that generally enhances processing of the CA-SP1 cleavage site. Conclusions Overall, these data support a so far unrecognized function of p6 mediated by Ser-40 that occurs independently of the L-domain function, but selectively

  7. High yield expression in a recombinant E. coli of a codon optimized chicken anemia virus capsid protein VP1 useful for vaccine development

    Directory of Open Access Journals (Sweden)

    You Bang-Jau

    2011-07-01

    Full Text Available Abstract Background Chicken anemia virus (CAV, the causative agent chicken anemia, is the only member of the genus Gyrovirus of the Circoviridae family. CAV is an immune suppressive virus and causes anemia, lymph organ atrophy and immunodeficiency. The production and biochemical characterization of VP1 protein and its use in a subunit vaccine or as part of a diagnostic kit would be useful to CAV infection prevention. Results Significantly increased expression of the recombinant full-length VP1 capsid protein from chicken anemia virus was demonstrated using an E. coli expression system. The VP1 gene was cloned into various different expression vectors and then these were expressed in a number of different E. coli strains. The expression of CAV VP1 in E. coli was significantly increased when VP1 was fused with GST protein rather than a His-tag. By optimizing the various rare amino acid codons within the N-terminus of the VP1 protein, the expression level of the VP1 protein in E. coli BL21(DE3-pLysS was further increased significantly. The highest protein expression level obtained was 17.5 g/L per liter of bacterial culture after induction with 0.1 mM IPTG for 2 h. After purification by GST affinity chromatography, the purified full-length VP1 protein produced in this way was demonstrated to have good antigenicity and was able to be recognized by CAV-positive chicken serum in an ELISA assay. Conclusions Purified recombinant VP1 protein with the gene's codons optimized in the N-terminal region has potential as chimeric protein that, when expressed in E. coli, may be useful in the future for the development of subunit vaccines and diagnostic tests.

  8. Assembly of recombinant Israeli Acute Paralysis Virus capsids.

    Directory of Open Access Journals (Sweden)

    Junyuan Ren

    Full Text Available The dicistrovirus Israeli Acute Paralysis Virus (IAPV has been implicated in the worldwide decline of honey bees. Studies of IAPV and many other bee viruses in pure culture are restricted by available isolates and permissive cell culture. Here we show that coupling the IAPV major structural precursor protein ORF2 to its cognate 3C-like processing enzyme results in processing of the precursor to the individual structural proteins in a number of insect cell lines following expression by a recombinant baculovirus. The efficiency of expression is influenced by the level of IAPV 3C protein and moderation of its activity is required for optimal expression. The mature IAPV structural proteins assembled into empty capsids that migrated as particles on sucrose velocity gradients and showed typical dicistrovirus like morphology when examined by electron microscopy. Monoclonal antibodies raised to recombinant capsids were configured into a diagnostic test specific for the presence of IAPV. Recombinant capsids for each of the many bee viruses within the picornavirus family may provide virus specific reagents for the on-going investigation of the causes of honeybee loss.

  9. Polarized DNA Ejection from the Herpesvirus Capsid

    Science.gov (United States)

    Newcomb, William W.; Cockrell, Shelley K.; Homa, Fred L.; Brown, Jay C.

    2009-01-01

    Ejection of DNA from the capsid is an early step in infection by all herpesviruses. Ejection or DNA uncoating occurs after a parental capsid has entered the host cell cytoplasm, migrated to the nucleus and bound to a nuclear pore. DNA exits the capsid through the portal vertex and proceeds by way of the nuclear pore complex into the nucleoplasm where it is transcribed and replicated. Here we describe use of an in vitro uncoating system to determine which genome end exits first from the herpes simplex virus (HSV-1) capsid. Purified DNA-containing capsids were bound to a solid surface and warmed under conditions in which some, but not all, of the DNA was ejected. Restriction endonuclease digestion was then used to identify the genomic origin of the ejected DNA. The results support the view that the S segment end exits the capsid first. Preferential release at the S end demonstrates that herpesvirus DNA uncoating conforms to the paradigm in dsDNA bacteriophage where the last end packaged is the first to be ejected. Release of HSV-1 DNA beginning at the S end causes the first gene to enter the host cell nucleus to be α4, a transcription factor required for expression of early genes. PMID:19631662

  10. Self-assembly of virus-like particles of canine parvovirus capsid protein expressed from Escherichia coli and application as virus-like particle vaccine.

    Science.gov (United States)

    Xu, Jin; Guo, Hui-Chen; Wei, Yan-Quan; Dong, Hu; Han, Shi-Chong; Ao, Da; Sun, De-Hui; Wang, Hai-Ming; Cao, Sui-Zhong; Sun, Shi-Qi

    2014-04-01

    Canine parvovirus disease is an acute infectious disease caused by canine parvovirus (CPV). Current commercial vaccines are mainly attenuated and inactivated; as such, problems concerning safety may occur. To resolve this problem, researchers developed virus-like particles (VLPs) as biological nanoparticles resembling natural virions and showing high bio-safety. This property allows the use of VLPs for vaccine development and mechanism studies of viral infections. Tissue-specific drug delivery also employs VLPs as biological nanomaterials. Therefore, VLPs derived from CPV have a great potential in medicine and diagnostics. In this study, small ubiquitin-like modifier (SUMO) fusion motif was utilized to express a whole, naturalVP2 protein of CPV in Escherichia coli. After the cleavage of the fusion motif, the CPV VP2 protein has self-assembled into VLPs. The VLPs had a size and shape that resembled the authentic virus capsid. However, the self-assembly efficiency of VLPs can be affected by different pH levels and ionic strengths. The mice vaccinated subcutaneously with CPV VLPs and CPV-specific immune responses were compared with those immunized with the natural virus. This result showed that VLPs can effectively induce anti-CPV specific antibody and lymphocyte proliferation as a whole virus. This result further suggested that the antigen epitope of CPV was correctly present on VLPs, thereby showing the potential application of a VLP-based CPV vaccine.

  11. Properties and Functions of the Dengue Virus Capsid Protein.

    Science.gov (United States)

    Byk, Laura A; Gamarnik, Andrea V

    2016-09-29

    Dengue virus affects hundreds of millions of people each year around the world, causing a tremendous social and economic impact on affected countries. The aim of this review is to summarize our current knowledge of the functions, structure, and interactions of the viral capsid protein. The primary role of capsid is to package the viral genome. There are two processes linked to this function: the recruitment of the viral RNA during assembly and the release of the genome during infection. Although particle assembly takes place on endoplasmic reticulum membranes, capsid localizes in nucleoli and lipid droplets. Why capsid accumulates in these locations during infection remains unknown. In this review, we describe available data and discuss new ideas on dengue virus capsid functions and interactions. We believe that a deeper understanding of how the capsid protein works during infection will create opportunities for novel antiviral strategies, which are urgently needed to control dengue virus infections.

  12. Large-scale functional purification of recombinant HIV-1 capsid.

    Directory of Open Access Journals (Sweden)

    Magdeleine Hung

    Full Text Available During human immunodeficiency virus type-1 (HIV-1 virion maturation, capsid proteins undergo a major rearrangement to form a conical core that protects the viral nucleoprotein complexes. Mutations in the capsid sequence that alter the stability of the capsid core are deleterious to viral infectivity and replication. Recently, capsid assembly has become an attractive target for the development of a new generation of anti-retroviral agents. Drug screening efforts and subsequent structural and mechanistic studies require gram quantities of active, homogeneous and pure protein. Conventional means of laboratory purification of Escherichia coli expressed recombinant capsid protein rely on column chromatography steps that are not amenable to large-scale production. Here we present a function-based purification of wild-type and quadruple mutant capsid proteins, which relies on the inherent propensity of capsid protein to polymerize and depolymerize. This method does not require the packing of sizable chromatography columns and can generate double-digit gram quantities of functionally and biochemically well-behaved proteins with greater than 98% purity. We have used the purified capsid protein to characterize two known assembly inhibitors in our in-house developed polymerization assay and to measure their binding affinities. Our capsid purification procedure provides a robust method for purifying large quantities of a key protein in the HIV-1 life cycle, facilitating identification of the next generation anti-HIV agents.

  13. A pseudotype baculovirus expressing the capsid protein of foot-and-mouth disease virus and a T-Cell immunogen shows enhanced immunogenicity in mice

    Directory of Open Access Journals (Sweden)

    Liu Xiangtao

    2011-02-01

    Full Text Available Abstract Background Foot-and-mouth disease (FMD is a highly contagious disease of livestock which causes severe economic loss in cloven-hoofed animals. Vaccination is still a major strategy in developing countries to control FMD. Currently, inactivated vaccine of FMDV has been used in many countries with limited success and safety concerns. Development of a novel effective vaccine is must. Methods In the present study, two recombinant pseudotype baculoviruses, one expressing the capsid of foot-and-mouth disease virus (FMDV under the control of a cytomegalovirus immediate early enhancer/promoter (CMV-IE, and the other the caspid plus a T-cell immunogen coding region under a CAG promoter were constructed, and their expression was characterized in mammalian cells. In addition, their immunogenicity in a mouse model was investigated. The humoral and cell-mediated immune responses induced by pseudotype baculovirus were compared with those of inactivated vaccine. Results Indirect immunofluorescence assay (IFA and indirect sandwich-ELISA (IS-ELISA showed both recombinant baculoviruses (with or without T-cell epitopes were transduced efficiently and expressed target proteins in BHK-21 cells. In mice, intramuscular inoculation of recombinants with 1 × 109 or 1 × 1010 PFU/mouse induced the production of FMDV-specific neutralizing antibodies and gamma interferon (IFN-γ. Furthermore, recombinant baculovirus with T-cell epitopes had better immunogenicity than the recombinant without T-cell epitopes as demonstrated by significantly enhanced IFN-γ production (P P Conclusions These results indicate that pseudotype baculovirus-mediated gene delivery could be a alternative strategy to develop a new generation of vaccines against FMDV infection.

  14. Directed chromosomal integration and expression of porcine rotavirus outer capsid protein VP4 in Lactobacillus casei ATCC393.

    Science.gov (United States)

    Yin, Ji-Yuan; Guo, Chao-Qun; Wang, Zi; Yu, Mei-Ling; Gao, Shuai; Bukhari, Syed M; Tang, Li-Jie; Xu, Yi-Gang; Li, Yi-Jing

    2016-11-01

    Using two-step plasmid integration in the presence of 5-fluorouracil (5-FU), we developed a stable and markerless Lactobacillus casei strain for vaccine antigen expression. The upp of L. casei, which encodes uracil phosphoribosyltransferase (UPRTase), was used as a counterselection marker. We employed the Δupp isogenic mutant, which is resistant to 5-FU, as host and a temperature-sensitive suicide plasmid bearing upp expression cassette as counterselectable integration vector. Extrachromosomal expression of UPRTase complemented the mutated chromosomal upp allele and restored sensitivity to 5-FU. The resultant genotype can either be wild type or recombinant. The efficacy of the system was demonstrated by insertion and expression of porcine rotavirus (PRV) VP4. To improve VP4 expression, we analyzed L. casei transcriptional profiles and selected the constitutive highly expressed enolase gene (eno). The VP4 inserted after the eno termination codon were screened in the presence of 5-FU. Using genomic PCR amplification, we confirmed that VP4 was successfully integrated and stably inherited for at least 50 generations. Western blot demonstrated that VP4 was steadily expressed in medium with different carbohydrates. RT-qPCR and ELISA analysis showed that VP4 expression from the chromosomal location was similar to that achieved by a plasmid expression system. Applying the recombinant strain to immunize BALB/c mice via oral administration revealed that the VP4-expressing L. casei could induce both specific local and systemic humoral immune responses in mice. Overall, the improved gene replacement system represents an efficient method for chromosome recombination in L. casei and provides a safe tool for vaccine production.

  15. Recombinant human adenovirus-5 expressing capsid proteins of Indian vaccine strains of foot-and-mouth disease virus elicits effective antibody response in cattle.

    Science.gov (United States)

    Sreenivasa, B P; Mohapatra, J K; Pauszek, S J; Koster, M; Dhanya, V C; Tamil Selvan, R P; Hosamani, M; Saravanan, P; Basagoudanavar, Suresh H; de Los Santos, T; Venkataramanan, R; Rodriguez, L L; Grubman, M J

    2017-05-01

    Recombinant adenovirus-5 vectored foot-and-mouth disease constructs (Ad5- FMD) were made for three Indian vaccine virus serotypes O, A and Asia 1. Constructs co-expressing foot-and- mouth disease virus (FMDV) capsid and viral 3C protease sequences, were evaluated for their ability to induce a neutralizing antibody response in indigenous cattle (Bos indicus). Purified Ad5-FMD viruses were inoculated in cattle as monovalent (5×10 9 pfu/animal) or trivalent (5×10 9 pfu/animal per serotype) vaccines. Animals vaccinated with monovalent Ad5-FMD vaccines were boosted 63days later with the same dose. After primary immunization, virus neutralization tests (VNT) showed seroconversion in 83, 67 and 33% of animals vaccinated with Ad5-FMD O, A and Asia 1, respectively. Booster immunization elicited seroconversion in all of the animals (100%) in the monovalent groups. When used in a trivalent form, the Ad5-FMD vaccine induced neutralizing antibodies in only 33, 50 and 16% of animals against serotypes O, A and Asia 1, respectively on primo-vaccination, and titers were significantly lower than when the same vectors were used in monovalent form. Neutralizing antibody titers differed by serotype for both Ad5-FMD monovalent and trivalent vaccines, with Asia 1 serotype inducing the lowest titers. Antibody response to Ad5 vector in immunized cattle was also assessed by VNT. It appeared that the vector immunity did not impact the recall responses to expressed FMDV antigens on booster immunization. In summary, the study suggested that the recombinant Ad5-FMD vaccine has a potential use in monovalent form, while its application in multivalent form is not currently encouraging. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Oral Vaccination with the Porcine Rotavirus VP4 Outer Capsid Protein Expressed by Lactococcus lactis Induces Specific Antibody Production

    Directory of Open Access Journals (Sweden)

    Yi-jing Li

    2010-01-01

    Full Text Available The objective of this study to design a delivery system resistant to the gastrointestinal environment for oral vaccine against porcine rotavirus. Lactococcus lactis NZ9000 was transformed with segments of vP4 of the porcine rotavirus inserted into the pNZ8112 surface-expression vector, and a recombinant L. lactis expressing VP4 protein was constructed. An approximately 27 kDa VP4 protein was confirmed by SDS-PAGE , Western blot and immunostaining analysis. BALB/c mice were immunized orally with VP4-expression recombinant L. lactis and cellular, mucosal and systemic humoral immune responses were examined. Specific anti-VP4 secretory IgA and IgG were found in feces, ophthalmic and vaginal washes and in serum. The induced antibodies demonstrated neutralizing effects on porcine rotavirus infection on MA104 cells. Our findings suggest that oral immunization with VP4-expressing L. lactis induced both specific local and systemic humoral and cellular immune responses in mice.

  17. Viral capsid assembly as a model for protein aggregation diseases: Active processes catalyzed by cellular assembly machines comprising novel drug targets.

    Science.gov (United States)

    Marreiros, Rita; Müller-Schiffmann, Andreas; Bader, Verian; Selvarajah, Suganya; Dey, Debendranath; Lingappa, Vishwanath R; Korth, Carsten

    2015-09-02

    Viruses can be conceptualized as self-replicating multiprotein assemblies, containing coding nucleic acids. Viruses have evolved to exploit host cellular components including enzymes to ensure their replicative life cycle. New findings indicate that also viral capsid proteins recruit host factors to accelerate their assembly. These assembly machines are RNA-containing multiprotein complexes whose composition is governed by allosteric sites. In the event of viral infection, the assembly machines are recruited to support the virus over the host and are modified to achieve that goal. Stress granules and processing bodies may represent collections of such assembly machines, readily visible by microscopy but biochemically labile and difficult to isolate by fractionation. We hypothesize that the assembly of protein multimers such as encountered in neurodegenerative or other protein conformational diseases, is also catalyzed by assembly machines. In the case of viral infection, the assembly machines have been modified by the virus to meet the virus' need for rapid capsid assembly rather than host homeostasis. In the case of the neurodegenerative diseases, it is the monomers and/or low n oligomers of the so-called aggregated proteins that are substrates of assembly machines. Examples for substrates are amyloid β peptide (Aβ) and tau in Alzheimer's disease, α-synuclein in Parkinson's disease, prions in the prion diseases, Disrupted-in-schizophrenia 1 (DISC1) in subsets of chronic mental illnesses, and others. A likely continuum between virus capsid assembly and cell-to-cell transmissibility of aggregated proteins is remarkable. Protein aggregation diseases may represent dysfunction and dysregulation of these assembly machines analogous to the aberrations induced by viral infection in which cellular homeostasis is pathologically reprogrammed. In this view, as for viral infection, reset of assembly machines to normal homeostasis should be the goal of protein aggregation

  18. Stochastic modeling of virus capsid assembly pathways

    Science.gov (United States)

    Schwartz, Russell

    2009-03-01

    Virus capsids have become a key model system for understanding self-assembly due to their high complexity, robust and efficient assembly processes, and experimental tractability. Our ability to directly examine and manipulate capsid assembly kinetics in detail nonetheless remains limited, creating a need for computer models that can infer experimentally inaccessible features of the assembly process and explore the effects of hypothetical manipulations on assembly trajectories. We have developed novel algorithms for stochastic simulation of capsid assembly [1,2] that allow us to model capsid assembly over broad parameter spaces [3]. We apply these methods to study the nature of assembly pathway control in virus capsids as well as their sensitivity to assembly conditions and possible experimental interventions. [4pt] [1] F. Jamalyaria, R. Rohlfs, and R. Schwartz. J Comp Phys 204, 100 (2005). [0pt] [2] N. Misra and R. Schwartz. J Chem Phys 129, in press (2008). [0pt] [3] B. Sweeney, T. Zhang, and R. Schwartz. Biophys J 94, 772 (2008).

  19. Heterologous expression of full-length capsid protein of porcine circovirus 2 in Escherichia coli and its potential use for detection of antibodies

    Czech Academy of Sciences Publication Activity Database

    Marčeková, Zuzana; Psikal, P.; Kosinová, E.; Benada, Oldřich; Šebo, Peter; Bumba, Ladislav

    2009-01-01

    Roč. 162, 1-2 (2009), s. 133-141 ISSN 0166-0934 R&D Projects: GA ČR GP310/07/P115; GA MŠk 2B06161 Institutional research plan: CEZ:AV0Z50200510 Keywords : PCV 2 * Porcine circovirus * Capsid protein Subject RIV: EE - Microbiology, Virology Impact factor: 2.133, year: 2009

  20. Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids

    Science.gov (United States)

    Roos, Wouter H.; Radtke, Kerstin; Kniesmeijer, Edward; Geertsema, Hylkje; Sodeik, Beate; Wuite, Gijs J. L.

    2009-01-01

    Herpes simplex virus type 1 (HSV1) capsids undergo extensive structural changes during maturation and DNA packaging. As a result, they become more stable and competent for nuclear egress. To further elucidate this stabilization process, we used biochemical and nanoindentation approaches to analyze the structural and mechanical properties of scaffold-containing (B), empty (A), and DNA-containing (C) nuclear capsids. Atomic force microscopy experiments revealed that A and C capsids were mechanically indistinguishable, indicating that the presence of DNA does not account for changes in mechanical properties during capsid maturation. Despite having the same rigidity, the scaffold-containing B capsids broke at significantly lower forces than A and C capsids. An extraction of pentons with guanidine hydrochloride (GuHCl) increased the flexibility of all capsids. Surprisingly, the breaking forces of the modified A and C capsids dropped to similar values as those of the GuHCl-treated B capsids, indicating that mechanical reinforcement occurs at the vertices. Nonetheless, it also showed that HSV1 capsids possess a remarkable structural integrity that was preserved after removal of pentons. We suggest that HSV1 capsids are stabilized after removal of the scaffold proteins, and that this stabilization is triggered by the packaging of DNA, but independent of the actual presence of DNA. PMID:19487681

  1. An elastic network model of HK97 capsid maturation.

    Science.gov (United States)

    Kim, Moon K; Jernigan, Robert L; Chirikjian, Gregory S

    2003-08-01

    The structure of the capsid of bacteriophage HK97 has been solved at various stages of maturity by crystallography and cryo-electron microscopy, and has been reported previously in the literature. Typically the capsid assembles through polymerization and maturation processes. Maturation is composed of proteolytic cleavages to the precursor capsid (called Prohead II), expansion triggered by DNA packaging (in which the largest conformational changes of the capsid appear), and covalent cross-links of neighboring subunits to create the mature capsid called Head II. We apply a coarse-grained elastic network interpolation (ENI) to generate a feasible pathway for conformational change from Prohead II to Head II. The icosahedral symmetry of the capsid structure offers a significant computational advantage because it is not necessary to consider the whole capsid structure but only an asymmetric unit consisting of one hexamer plus an additional subunit from an adjacent pentamer. We also analyze normal modes of the capsid structure using an elastic network model which is also subject to symmetry constraints. Using our model, we can visualize the smooth evolution of capsid expansion and revisit in more detail several interesting geometric changes recognized in early experimental works such as rigid body motion of two compact domains (A and P) with two refolding extensions (N-arm and E-loop) and track the approach of the two particular residues associated with isopeptide bonds that make hexagonal cross-links in Head II. The feasibility of the predicted pathway is also supported by the results of our normal mode analysis.

  2. Expression of foot-and-mouth disease virus capsid proteins in silkworm-baculovirus expression system and its utilization as a subunit vaccine.

    Directory of Open Access Journals (Sweden)

    Zhiyong Li

    Full Text Available BACKGROUND: Foot-and-mouth disease (FMD is a highly contagious disease of livestock that causes severe economic loss in susceptible cloven-hoofed animals. Although the traditional inactivated vaccine has been proved effective, it may lead to a new outbreak of FMD because of either incomplete inactivation of FMDV or the escape of live virus from vaccine production workshop. Thus, it is urgent to develop a novel FMDV vaccine that is safer, more effective and more economical than traditional vaccines. METHODOLOGY AND PRINCIPAL FINDINGS: A recombinant silkworm baculovirus Bm-P12A3C which contained the intact P1-2A and 3C protease coding regions of FMDV Asia 1/HNK/CHA/05 was developed. Indirect immunofluorescence test and sandwich-ELISA were used to verify that Bm-P12A3C could express the target cassette. Expression products from silkworm were diluted to 30 folds and used as antigen to immunize cattle. Specific antibody was induced in all vaccinated animals. After challenge with virulent homologous virus, four of the five animals were completely protected, and clinical symptoms were alleviated and delayed in the remaining one. Furthermore, a PD(50 (50% bovine protective dose test was performed to assess the bovine potency of the subunit vaccine. The result showed the subunit vaccine could achieve 6.34 PD(50 per dose. CONCLUSION: The results suggest that this strategy might be used to develop the new subunit FMDV vaccine.

  3. Efficient Capsid Antigen Presentation From Adeno-Associated Virus Empty Virions In Vivo.

    Science.gov (United States)

    Pei, Xiaolei; Earley, Lauriel Freya; He, Yi; Chen, Xiaojing; Hall, Nikita Elexa; Samulski, Richard Jude; Li, Chengwen

    2018-01-01

    Adeno-associated virus (AAV) vectors have been successfully applied in clinical trials for hemophilic patients. Although promising, the clinical results suggest that the capsid-specific CD8+T cell response has a negative effect on therapeutic success. In an in vitro analysis using an engineered AAV virus carrying immune-dominant SIINFEKL peptide in the capsid backbone, we have previously demonstrated that capsid antigen presentation from full (genome containing) AAV capsids requires endosome escape and is proteasome dependent and that no capsid antigen presentation is induced from empty virions. In the present study, we examined capsid antigen presentation from administration of empty virions in animal models. In wild-type mice, similar to AAV full particles, capsid antigen presentation from AAV empty virion infection was dose dependent, and the kinetics studies showed that antigen presentation was detected from 2 to 40 days after AAV empty virion administration. In the transporter associated with antigen processing 1 deficient (TAP-/-) mice, capsid antigen presentation was inhibited from both AAV full and empty virions, but higher inhibition was achieved from AAV full particle administration than that from empty virions. This indicates that the pathway of capsid antigen presentation from AAV transduction is dependent on proteasome-mediated degradation of AAV capsids (mainly for full particles) and that the endosomal pathway may also play a role in antigen presentation from empty particles but not full virions. The capsid antigen presentation efficiency from AAV preparations was positively correlated with the amount of empty virions contaminated with full particles. Collectively, the results indicate that contamination of AAV empty virions induces efficient antigen presentation in vivo and the mechanism of capsid antigen presentation from empty virions involves both endosomal and proteasomal pathways. The elucidation of capsid antigen presentation from AAV empty

  4. A Prime-Boost Vaccination Strategy in Cattle to Prevent Foot-and-Mouth Disease Using a "Single-Cycle" Alphavirus Vector and Empty Capsid Particles

    DEFF Research Database (Denmark)

    Gullberg, Maria; Lohse, Louise; Bøtner, Anette

    2016-01-01

    Foot-and-mouth disease (FMD) remains one of the most economically important infectious diseases of production animals globally. Vaccination can successfully control this disease, however, current vaccines are imperfect. They are made using chemically inactivated FMD virus (FMDV) that is produced...... in large-scale mammalian cell culture under high containment conditions. Here, we have expressed the FMDV capsid protein precursor (P1-2A) of strain O1 Manisa alone or with the FMDV 3C protease (3Cpro) using a "single cycle" packaged alphavirus self-replicating RNA based on Semliki Forest virus (SFV). When...... the FMDV P1-2A was expressed with 3Cpro then processing of the FMDV capsid precursor protein is observed within cells and the proteins assemble into empty capsid particles. The products interact with anti-FMDV antibodies in an ELISA and bind to the integrin αvβ6 (a cellular receptor for FMDV). In cattle...

  5. Parvovirus Capsid Structures Required for Infection: Mutations Controlling Receptor Recognition and Protease Cleavages.

    Science.gov (United States)

    Callaway, Heather M; Feng, Kurtis H; Lee, Donald W; Allison, Andrew B; Pinard, Melissa; McKenna, Robert; Agbandje-McKenna, Mavis; Hafenstein, Susan; Parrish, Colin R

    2017-01-15

    Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in infection or transduction

  6. Parvovirus Capsid Structures Required for Infection: Mutations Controlling Receptor Recognition and Protease Cleavages

    Science.gov (United States)

    Callaway, Heather M.; Feng, Kurtis H.; Lee, Donald W.; Pinard, Melissa; McKenna, Robert; Agbandje-McKenna, Mavis; Hafenstein, Susan

    2016-01-01

    ABSTRACT Parvovirus capsids are small but complex molecular machines responsible for undertaking many of the steps of cell infection, genome packing, and cell-to-cell as well as host-to-host transfer. The details of parvovirus infection of cells are still not fully understood, but the processes must involve small changes in the capsid structure that allow the endocytosed virus to escape from the endosome, pass through the cell cytoplasm, and deliver the single-stranded DNA (ssDNA) genome to the nucleus, where viral replication occurs. Here, we examine capsid substitutions that eliminate canine parvovirus (CPV) infectivity and identify how those mutations changed the capsid structure or altered interactions with the infectious pathway. Amino acid substitutions on the exterior surface of the capsid (Gly299Lys/Ala300Lys) altered the binding of the capsid to transferrin receptor type 1 (TfR), particularly during virus dissociation from the receptor, but still allowed efficient entry into both feline and canine cells without successful infection. These substitutions likely control specific capsid structural changes resulting from TfR binding required for infection. A second set of changes on the interior surface of the capsid reduced viral infectivity by >100-fold and included two cysteine residues and neighboring residues. One of these substitutions, Cys270Ser, modulates a VP2 cleavage event found in ∼10% of the capsid proteins that also was shown to alter capsid stability. A neighboring substitution, Pro272Lys, significantly reduced capsid assembly, while a Cys273Ser change appeared to alter capsid transport from the nucleus. These mutants reveal additional structural details that explain cell infection processes of parvovirus capsids. IMPORTANCE Parvoviruses are commonly found in both vertebrate and invertebrate animals and cause widespread disease. They are also being developed as oncolytic therapeutics and as gene therapy vectors. Most functions involved in

  7. Human Cytomegalovirus pUL47 Modulates Tegumentation and Capsid Accumulation at the Viral Assembly Complex

    Science.gov (United States)

    Cappadona, Ilaria; Villinger, Clarissa; Schutzius, Gabi; Mertens, Thomas

    2015-01-01

    ABSTRACT Human cytomegalovirus (HCMV) tegument protein pUL47 is an interaction partner of pUL48 and highly conserved among herpesviruses. It is closely associated with the capsid and has an important function early in infection. Here, we report a specific role of pUL47 in the tegumentation of capsids in the cytoplasm. A newly generated mutant virus (TB-47stop), in which expression of pUL47 is blocked, exhibited a severe impairment in cell-to-cell spread and release of infectivity from infected cells. Ultrastructural analysis of TB-47stop-infected cells clearly showed cytoplasmic accumulations of nonenveloped capsids that were only partially tegumented, indicating that these capsids failed to complete tegumentation. Nevertheless, these accumulations were positive for HCMV inner tegument proteins pp150 and pUL48, suggesting that their attachment to capsids occurs independently of pUL47. Despite these morphological alterations, fully enveloped virus particles were found in the extracellular space and at the viral assembly complex (vAC) of TB-47stop-infected cells, indicating that pUL47 is not essential for the generation of virions. We confirmed findings that incorporation of pUL48 into virions is impaired in the absence of pUL47. Interestingly, pUL47 exhibited a strong nuclear localization in transfected cells, whereas it was found exclusively at the vAC in the context of virus infection. Colocalization of pUL47 and pUL48 at the vAC is consistent with their interaction. We also found a shift to a more nuclear localization of pUL47 when the expression of pUL48 was reduced. Summarizing our results, we hypothesize that pUL48 directs pUL47 to the vAC to promote tegumentation and secondary envelopment of capsids. IMPORTANCE Generation of infectious HCMV particles requires an organized and multistep process involving the action of several viral and cellular proteins as well as protein-protein interactions. A better understanding of these processes is important for

  8. Varicella-zoster virus induces the formation of dynamic nuclear capsid aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Lebrun, Marielle [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Thelen, Nicolas; Thiry, Marc [University of Liege (ULg), GIGA-Neurosciences, Laboratory of Cellular and Tissular Biology, Liege (Belgium); Riva, Laura; Ote, Isabelle; Condé, Claude; Vandevenne, Patricia [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Di Valentin, Emmanuel [University of Liege (ULg), GIGA-Viral Vectors Platform, Liege (Belgium); Bontems, Sébastien [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium); Sadzot-Delvaux, Catherine, E-mail: csadzot@ulg.ac.be [University of Liege (ULg), GIGA-Infection Immunity and Inflammation, Laboratory of Virology and Immunology, Liege (Belgium)

    2014-04-15

    The first step of herpesviruses virion assembly occurs in the nucleus. However, the exact site where nucleocapsids are assembled, where the genome and the inner tegument are acquired, remains controversial. We created a recombinant VZV expressing ORF23 (homologous to HSV-1 VP26) fused to the eGFP and dually fluorescent viruses with a tegument protein additionally fused to a red tag (ORF9, ORF21 and ORF22 corresponding to HSV-1 UL49, UL37 and UL36). We identified nuclear dense structures containing the major capsid protein, the scaffold protein and maturing protease, as well as ORF21 and ORF22. Correlative microscopy demonstrated that the structures correspond to capsid aggregates and time-lapse video imaging showed that they appear prior to the accumulation of cytoplasmic capsids, presumably undergoing the secondary egress, and are highly dynamic. Our observations suggest that these structures might represent a nuclear area important for capsid assembly and/or maturation before the budding at the inner nuclear membrane. - Highlights: • We created a recombinant VZV expressing the small capsid protein fused to the eGFP. • We identified nuclear dense structures containing capsid and procapsid proteins. • Correlative microscopy showed that the structures correspond to capsid aggregates. • Procapsids and partial capsids are found within the aggregates of WT and eGFP-23 VZV. • FRAP and FLIP experiments demonstrated that they are dynamic structures.

  9. Lentiviral Gag assembly analyzed through the functional characterization of chimeric simian immunodeficiency viruses expressing different domains of the feline immunodeficiency virus capsid protein.

    Directory of Open Access Journals (Sweden)

    María J Esteva

    Full Text Available To gain insight into the functional relationship between the capsid (CA domains of the Gag polyproteins of simian and feline immunodeficiency viruses (SIV and FIV, respectively, we constructed chimeric SIVs in which the CA-coding region was partially or totally replaced by the equivalent region of the FIV CA. The phenotypic characterization of the chimeras allowed us to group them into three categories: the chimeric viruses that, while being assembly-competent, exhibit a virion-associated unstable FIV CA; a second group represented only by the chimeric SIV carrying the N-terminal domain (NTD of the FIV CA which proved to be assembly-defective; and a third group constituted by the chimeric viruses that produce virions exhibiting a mature and stable FIV CA protein, and which incorporate the envelope glycoprotein and contain wild-type levels of viral genome RNA and reverse transcriptase. Further analysis of the latter group of chimeric SIVs demonstrated that they are non-infectious due to a post-entry impairment, such as uncoating of the viral core, reverse transcription or nuclear import of the preintegration complex. Furthermore, we show here that the carboxyl-terminus domain (CTD of the FIV CA has an intrinsic ability to dimerize in vitro and form high-molecular-weight oligomers, which, together with our finding that the FIV CA-CTD is sufficient to confer assembly competence to the resulting chimeric SIV Gag polyprotein, provides evidence that the CA-CTD exhibits more functional plasticity than the CA-NTD. Taken together, our results provide relevant information on the biological relationship between the CA proteins of primate and nonprimate lentiviruses.

  10. AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes

    Directory of Open Access Journals (Sweden)

    Daniel J Hui

    Full Text Available Adeno-associated virus (AAV has become one of the most promising vectors in gene transfer in the last 10 years with successful translation to clinical trials in humans and even market approval for a first gene therapy product in Europe. Administration to humans, however, revealed that adaptive immune responses against the vector capsid can present an obstacle to sustained transgene expression due to the activation and expansion of capsid-specific T cells. The limited number of peripheral blood mononuclear cells (PBMCs obtained from samples within clinical trials allows for little more than monitoring of T-cell responses. We were able to identify immunodominant major histocompatibility complex (MHC class I epitopes for common human leukocyte antigen (HLA types by using spleens isolated from subjects undergoing splenectomy for non-malignant indications as a source of large numbers of lymphocytes and restimulating them with single AAV capsid peptides in vitro. Further experiments confirmed that these epitopes are naturally processed and functionally relevant. The design of more effective and less immunogenic AAV vectors, and precise immune monitoring of vector-infused subjects, are facilitated by these findings.

  11. AAV capsid CD8+ T-cell epitopes are highly conserved across AAV serotypes.

    Science.gov (United States)

    Hui, Daniel J; Edmonson, Shyrie C; Podsakoff, Gregory M; Pien, Gary C; Ivanciu, Lacramioara; Camire, Rodney M; Ertl, Hildegund; Mingozzi, Federico; High, Katherine A; Basner-Tschakarjan, Etiena

    2015-01-01

    Adeno-associated virus (AAV) has become one of the most promising vectors in gene transfer in the last 10 years with successful translation to clinical trials in humans and even market approval for a first gene therapy product in Europe. Administration to humans, however, revealed that adaptive immune responses against the vector capsid can present an obstacle to sustained transgene expression due to the activation and expansion of capsid-specific T cells. The limited number of peripheral blood mononuclear cells (PBMCs) obtained from samples within clinical trials allows for little more than monitoring of T-cell responses. We were able to identify immunodominant major histocompatibility complex (MHC) class I epitopes for common human leukocyte antigen (HLA) types by using spleens isolated from subjects undergoing splenectomy for non-malignant indications as a source of large numbers of lymphocytes and restimulating them with single AAV capsid peptides in vitro. Further experiments confirmed that these epitopes are naturally processed and functionally relevant. The design of more effective and less immunogenic AAV vectors, and precise immune monitoring of vector-infused subjects, are facilitated by these findings.

  12. The Mammalian Cell Cycle Regulates Parvovirus Nuclear Capsid Assembly

    Science.gov (United States)

    Riolobos, Laura; Domínguez, Carlos; Kann, Michael; Almendral, José M.

    2015-01-01

    It is unknown whether the mammalian cell cycle could impact the assembly of viruses maturing in the nucleus. We addressed this question using MVM, a reference member of the icosahedral ssDNA nuclear parvoviruses, which requires cell proliferation to infect by mechanisms partly understood. Constitutively expressed MVM capsid subunits (VPs) accumulated in the cytoplasm of mouse and human fibroblasts synchronized at G0, G1, and G1/S transition. Upon arrest release, VPs translocated to the nucleus as cells entered S phase, at efficiencies relying on cell origin and arrest method, and immediately assembled into capsids. In synchronously infected cells, the consecutive virus life cycle steps (gene expression, proteins nuclear translocation, capsid assembly, genome replication and encapsidation) proceeded tightly coupled to cell cycle progression from G0/G1 through S into G2 phase. However, a DNA synthesis stress caused by thymidine irreversibly disrupted virus life cycle, as VPs became increasingly retained in the cytoplasm hours post-stress, forming empty capsids in mouse fibroblasts, thereby impairing encapsidation of the nuclear viral DNA replicative intermediates. Synchronously infected cells subjected to density-arrest signals while traversing early S phase also blocked VPs transport, resulting in a similar misplaced cytoplasmic capsid assembly in mouse fibroblasts. In contrast, thymidine and density arrest signals deregulating virus assembly neither perturbed nuclear translocation of the NS1 protein nor viral genome replication occurring under S/G2 cycle arrest. An underlying mechanism of cell cycle control was identified in the nuclear translocation of phosphorylated VPs trimeric assembly intermediates, which accessed a non-conserved route distinct from the importin α2/β1 and transportin pathways. The exquisite cell cycle-dependence of parvovirus nuclear capsid assembly conforms a novel paradigm of time and functional coupling between cellular and virus life

  13. Monitoring of Biodistribution and Persistence of Conditionally Replicative Adenovirus in a Murine Model of Ovarian Cancer Using Capsid-Incorporated mCherry and Expression of Human Somatostatin Receptor Subtype 2 Gene

    Directory of Open Access Journals (Sweden)

    Igor P. Dmitriev

    2014-10-01

    Full Text Available A significant limiting factor to the human clinical application of conditionally replicative adenovirus (CRAd-based virotherapy is the inability to noninvasively monitor these agents and their potential persistence. To address this issue, we proposed a novel imaging approach that combines transient expression of the human somatostatin receptor (SSTR subtype 2 reporter gene with genetic labeling of the viral capsid with mCherry fluorescent protein. To test this dual modality system, we constructed the Ad5/3Δ24pIXcherry/SSTR CRAd and validated its capacity to generate fluorescent and nuclear signals in vitro and following intratumoral injection. Analysis of 64Cu-CB-TE2A-Y3-TATE biodistribution in mice revealed reduced uptake in tumors injected with the imaging CRAd relative to the replication-incompetent, Ad-expressing SSTR2 but significantly greater uptake compared to the negative CRAd control. Optical imaging demonstrated relative correlation of fluorescent signal with virus replication as determined by viral genome quantification in tumors. Positron emission tomography/computed tomography studies demonstrated that we can visualize radioactive uptake in tumors injected with imaging CRAd and the trend for greater uptake by standardized uptake value analysis compared to control CRAd. In the aggregate, the plasticity of our dual imaging approach should provide the technical basis for monitoring CRAd biodistribution and persistence in preclinical studies while offering potential utility for a range of clinical applications.

  14. SCHEMA computational design of virus capsid chimeras: calibrating how genome packaging, protection, and transduction correlate with calculated structural disruption.

    Science.gov (United States)

    Ho, Michelle L; Adler, Benjamin A; Torre, Michael L; Silberg, Jonathan J; Suh, Junghae

    2013-12-20

    Adeno-associated virus (AAV) recombination can result in chimeric capsid protein subunits whose ability to assemble into an oligomeric capsid, package a genome, and transduce cells depends on the inheritance of sequence from different AAV parents. To develop quantitative design principles for guiding site-directed recombination of AAV capsids, we have examined how capsid structural perturbations predicted by the SCHEMA algorithm correlate with experimental measurements of disruption in seventeen chimeric capsid proteins. In our small chimera population, created by recombining AAV serotypes 2 and 4, we found that protection of viral genomes and cellular transduction were inversely related to calculated disruption of the capsid structure. Interestingly, however, we did not observe a correlation between genome packaging and calculated structural disruption; a majority of the chimeric capsid proteins formed at least partially assembled capsids and more than half packaged genomes, including those with the highest SCHEMA disruption. These results suggest that the sequence space accessed by recombination of divergent AAV serotypes is rich in capsid chimeras that assemble into 60-mer capsids and package viral genomes. Overall, the SCHEMA algorithm may be useful for delineating quantitative design principles to guide the creation of libraries enriched in genome-protecting virus nanoparticles that can effectively transduce cells. Such improvements to the virus design process may help advance not only gene therapy applications but also other bionanotechnologies dependent upon the development of viruses with new sequences and functions.

  15. Production of mink enteritis parvovirus empty capsids by expression in a baculovirus vector system: a recombinant vaccine for mink enteritis parvovirus in mink

    DEFF Research Database (Denmark)

    Christensen, J; Alexandersen, Søren; Bloch, B.

    1994-01-01

    The VP-2 gene of mink enteritis parvovirus (MEV) was amplified by the polymerase chain reaction using MEV DNA isolated from the faeces of a naturally infected mink. Subsequently the VP-2 gene was cloned into a baculovirus expression vector. Recombinant baculo-viruses were isolated and the MEV VP-2...... protein was able to form parvovirus-like particles, which had haemagglutinating properties comparable with the wild-type MEV. The cloned VP-2 gene was sequenced and only five nucleotide differences were found after alignment with the known sequences of the MEV type 1 and type 2 isolates. Surprisingly...

  16. Porcine parvovirus capsid protein expressed in Escherichia coli self-assembles into virus-like particles with high immunogenicity in mice and guinea pigs.

    Science.gov (United States)

    Ji, Pengchao; Liu, Yunchao; Chen, Yumei; Wang, Aiping; Jiang, Dawei; Zhao, Baolei; Wang, Jvcai; Chai, Shujun; Zhou, Enmin; Zhang, Gaiping

    2017-03-01

    Porcine parvovirus (PPV) is a causative agent of reproductive failure in pregnant sows. Classical inactivated vaccine is extensively used to control PPV infection, but problems concerning safety, such as incomplete inactivation may occur. In this study, a novel subunit vaccine against PPV based on virus-like particles (VLPs) formed from the complete PPV VP2 protein expressed in a prokaryotic system with co-expressed chaperones is reported. The VLPs have a similar size, shape, and hemagglutination property to the PPV. Immunization with these VLPs stimulated the neutralization antibody and hemagglutination inhibition (HI) antibody responses in mice and guinea pigs. The lymphocyte proliferation response and cytokine secretion was also induced in immunized guinea pigs comparable to those immunized with PPV inactivated vaccine. In addition, immunization with VLPs also significantly reduced the PPV content in the spleen of guinea pigs 14 days after the challenge with intact virus. These studies suggest that PPV VLPs created as described here could be a potential candidate for vaccine development. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Eclipse Phase of Herpes Simplex Virus Type 1 Infection: Efficient Dynein-Mediated Capsid Transport without the Small Capsid Protein VP26

    Science.gov (United States)

    Döhner, Katinka; Radtke, Kerstin; Schmidt, Simone; Sodeik, Beate

    2006-01-01

    Cytoplasmic dynein,together with its cofactor dynactin, transports incoming herpes simplex virus type 1 (HSV-1) capsids along microtubules (MT) to the MT-organizing center (MTOC). From the MTOC, capsids move further to the nuclear pore, where the viral genome is released into the nucleoplasm. The small capsid protein VP26 can interact with the dynein light chains Tctex1 (DYNLT1) and rp3 (DYNLT3) and may recruit dynein to the capsid. Therefore, we analyzed nuclear targeting of incoming HSV1-ΔVP26 capsids devoid of VP26 and of HSV1-GFPVP26 capsids expressing a GFPVP26 fusion instead of VP26. To compare the cell entry of different strains, we characterized the inocula with respect to infectivity, viral genome content, protein composition, and particle composition. Preparations with a low particle-to-PFU ratio showed efficient nuclear targeting and were considered to be of higher quality than those containing many defective particles, which were unable to induce plaque formation. When cells were infected with HSV-1 wild type, HSV1-ΔVP26, or HSV1-GFPVP26, viral capsids were transported along MT to the nucleus. Moreover, when dynein function was inhibited by overexpression of the dynactin subunit dynamitin, fewer capsids of HSV-1 wild type, HSV1-ΔVP26, and HSV1-GFPVP26 arrived at the nucleus. Thus, even in the absence of the potential viral dynein receptor VP26, HSV-1 used MT and dynein for efficient nuclear targeting. These data suggest that besides VP26, HSV-1 encodes other receptors for dynein or dynactin. PMID:16873277

  18. A recombinant pseudorabies virus co-expressing capsid proteins precursor P1-2A of FMDV and VP2 protein of porcine parvovirus: a trivalent vaccine candidate.

    Science.gov (United States)

    Hong, Qi; Qian, Ping; Li, Xiang-Min; Yu, Xiao-Lan; Chen, Huan-Chun

    2007-11-01

    Pseudorabies (PR), foot-and-mouth disease (FMD), and porcine parvovirus disease are three important infectious diseases in swine worldwide. The gene-deleted pseudorabies virus (PRV) has been used as a live-viral vector to develop multivalent genetic engineering vaccine. In this study, a recombinant PRV, which could co-express protein precursor P1-2A of FMDV and VP2 protein of PPV, was constructed using PRV TK(-)/gE(-)/LacZ(+) mutant as the vector. After homologous recombination and plaque purification, recombinant virus PRV TK(-)/gE(-)/P1-2A-VP2 was acquired and identified. Immunogenicity, safety of the recombinant PRV and its protection against PRV were confirmed in a mouse model by indirect ELISA and serum neutralization test. The results show that the recombinant PRV is a candidate vaccine strain to develop a novel trivalent vaccine against PRV, FMDV and PPV in swine.

  19. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus

    International Nuclear Information System (INIS)

    Hespenheide, B M; Jacobs, D J; Thorpe, M F

    2004-01-01

    The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations

  20. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus

    Science.gov (United States)

    Hespenheide, B. M.; Jacobs, D. J.; Thorpe, M. F.

    2004-11-01

    The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations.

  1. Structural rigidity in the capsid assembly of cowpea chlorotic mottle virus

    Energy Technology Data Exchange (ETDEWEB)

    Hespenheide, B M [Department of Physics and Astronomy, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504 (United States); Jacobs, D J [Department of Physics and Astronomy, California State University, 18111 Nordhoff Street, Northridge, CA 91330-8268 (United States); Thorpe, M F [Department of Physics and Astronomy, Arizona State University, PO Box 871504, Tempe, AZ 85287-1504 (United States)

    2004-11-10

    The cowpea chlorotic mottle virus (CCMV) has a protein cage, or capsid, which encloses its genetic material. The structure of the capsid consists of 180 copies of a single protein that self-assemble inside a cell to form a complete capsid with icosahedral symmetry. The icosahedral surface can be naturally divided into pentagonal and hexagonal faces, and the formation of either of these faces has been proposed to be the first step in the capsid assembly process. We have used the software FIRST to analyse the rigidity of pentameric and hexameric substructures of the complete capsid to explore the viability of certain capsid assembly pathways. FIRST uses the 3D pebble game to determine structural rigidity, and a brief description of this algorithm, as applied to body-bar networks, is given here. We find that the pentameric substructure, which corresponds to a pentagonal face on the icosahedral surface, provides the best structural properties for nucleating the capsid assembly process, consistent with experimental observations.

  2. Processing of the VP1/2A Junction Is Not Necessary for Production of Foot-and-Mouth Disease Virus Empty Capsids and Infectious Viruses: Characterization of “Self-Tagged” Particles

    DEFF Research Database (Denmark)

    Gullberg, Maria; Polacek, Charlotta; Bøtner, Anette

    2013-01-01

    The foot-and-mouth disease virus (FMDV) capsid protein precursor, P1-2A, is cleaved by 3Cpro to generate VP0, VP3, VP1, and the peptide 2A. The capsid proteins self-assemble into empty capsid particles or viruses which do not contain 2A. In a cell culture-adapted strain of FMDV (O1 Manisa [Lindholm...... the unmodified empty capsids in antigen enzyme-linked immunosorbent assays and integrin receptor binding assays. Furthermore, mutant viruses with uncleaved VP1-2A could be rescued in cells from full-length FMDV RNA transcripts encoding the K210E substitution in VP1. Thus, cleavage of the VP1/2A junction...

  3. Purification of recombinant budgerigar fledgling disease virus VP1 capsid protein and its ability for in vitro capsid assembly

    Science.gov (United States)

    Rodgers, R. E.; Chang, D.; Cai, X.; Consigli, R. A.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    A recombinant system for the major capsid VP1 protein of budgerigar fledgling disease virus has been established. The VP1 gene was inserted into a truncated form of the pFlag-1 vector and expressed in Escherichia coli. The budgerigar fledgling disease virus VP1 protein was purified to near homogeneity by immunoaffinity chromatography. Fractions containing highly purified VP1 were pooled and found to constitute 3.3% of the original E. coli-expressed VP1 protein. Electron microscopy revealed that the VP1 protein was isolated as pentameric capsomeres. Electron microscopy also revealed that capsid-like particles were formed in vitro from purified VP1 capsomeres with the addition of Ca2+ ions and the removal of chelating and reducing agents.

  4. Ebselen, a Small-Molecule Capsid Inhibitor of HIV-1 Replication.

    Science.gov (United States)

    Thenin-Houssier, Suzie; de Vera, Ian Mitchelle S; Pedro-Rosa, Laura; Brady, Angela; Richard, Audrey; Konnick, Briana; Opp, Silvana; Buffone, Cindy; Fuhrmann, Jakob; Kota, Smitha; Billack, Blase; Pietka-Ottlik, Magdalena; Tellinghuisen, Timothy; Choe, Hyeryun; Spicer, Timothy; Scampavia, Louis; Diaz-Griffero, Felipe; Kojetin, Douglas J; Valente, Susana T

    2016-04-01

    The human immunodeficiency virus type 1 (HIV-1) capsid plays crucial roles in HIV-1 replication and thus represents an excellent drug target. We developed a high-throughput screening method based on a time-resolved fluorescence resonance energy transfer (HTS-TR-FRET) assay, using the C-terminal domain (CTD) of HIV-1 capsid to identify inhibitors of capsid dimerization. This assay was used to screen a library of pharmacologically active compounds, composed of 1,280in vivo-active drugs, and identified ebselen [2-phenyl-1,2-benzisoselenazol-3(2H)-one], an organoselenium compound, as an inhibitor of HIV-1 capsid CTD dimerization. Nuclear magnetic resonance (NMR) spectroscopic analysis confirmed the direct interaction of ebselen with the HIV-1 capsid CTD and dimer dissociation when ebselen is in 2-fold molar excess. Electrospray ionization mass spectrometry revealed that ebselen covalently binds the HIV-1 capsid CTD, likely via a selenylsulfide linkage with Cys198 and Cys218. This compound presents anti-HIV activity in single and multiple rounds of infection in permissive cell lines as well as in primary peripheral blood mononuclear cells. Ebselen inhibits early viral postentry events of the HIV-1 life cycle by impairing the incoming capsid uncoating process. This compound also blocks infection of other retroviruses, such as Moloney murine leukemia virus and simian immunodeficiency virus, but displays no inhibitory activity against hepatitis C and influenza viruses. This study reports the use of TR-FRET screening to successfully identify a novel capsid inhibitor, ebselen, validating HIV-1 capsid as a promising target for drug development. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  5. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    International Nuclear Information System (INIS)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M.

    2014-01-01

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8

  6. AAV8 capsid variable regions at the two-fold symmetry axis contribute to high liver transduction by mediating nuclear entry and capsid uncoating

    Energy Technology Data Exchange (ETDEWEB)

    Tenney, Rebeca M.; Bell, Christie L.; Wilson, James M., E-mail: wilsonjm@mail.med.upenn.edu

    2014-04-15

    Adeno-associated virus serotype 8 (AAV8) is a promising vector for liver-directed gene therapy. Although efficient uncoating of viral capsids has been implicated in AAV8's robust liver transduction, much about the biology of AAV8 hepatotropism remains unclear. Our study investigated the structural basis of AAV8 liver transduction efficiency by constructing chimeric vector capsids containing sequences derived from AAV8 and AAV2 – a highly homologous yet poorly hepatotropic serotype. Engineered vectors containing capsid variable regions (VR) VII and IX from AAV8 in an AAV2 backbone mediated near AAV8-like transduction in mouse liver, with higher numbers of chimeric genomes detected in whole liver cells and isolated nuclei. Interestingly, chimeric capsids within liver nuclei also uncoated similarly to AAV8 by 6 weeks after administration, in contrast with AAV2, of which a significantly smaller proportion were uncoated. This study links specific AAV capsid regions to the transduction ability of a clinically relevant AAV serotype. - Highlights: • We construct chimeric vectors to identify determinants of AAV8 liver transduction. • An AAV2-based vector with 17 AAV8 residues exhibited high liver transduction in mice. • This vector also surpassed AAV2 in cell entry, nuclear entry and onset of expression. • Most chimeric vector particles were uncoated at 6 weeks, like AAV8 and unlike AAV2. • Chimera retained heparin binding and was antigenically distinct from AAV2 and AAV8.

  7. Stabilising the Herpes Simplex Virus capsid by DNA packaging

    Science.gov (United States)

    Wuite, Gijs; Radtke, Kerstin; Sodeik, Beate; Roos, Wouter

    2009-03-01

    Three different types of Herpes Simplex Virus type 1 (HSV-1) nuclear capsids can be distinguished, A, B and C capsids. These capsids types are, respectively, empty, contain scaffold proteins, or hold DNA. We investigate the physical properties of these three capsids by combining biochemical and nanoindentation techniques. Atomic Force Microscopy (AFM) experiments show that A and C capsids are mechanically indistinguishable whereas B capsids already break at much lower forces. By extracting the pentamers with 2.0 M GuHCl or 6.0 M Urea we demonstrate an increased flexibility of all three capsid types. Remarkably, the breaking force of the B capsids without pentamers does not change, while the modified A and C capsids show a large drop in their breaking force to approximately the value of the B capsids. This result indicates that upon DNA packaging a structural change at or near the pentamers occurs which mechanically reinforces the capsids structure. The reported binding of proteins UL17/UL25 to the pentamers of the A and C capsids seems the most likely candidate for such capsids strengthening. Finally, the data supports the view that initiation of DNA packaging triggers the maturation of HSV-1 capsids.

  8. Stream Processing Using Grammars and Regular Expressions

    DEFF Research Database (Denmark)

    Rasmussen, Ulrik Terp

    disambiguation. The first algorithm operates in two passes in a semi-streaming fashion, using a constant amount of working memory and an auxiliary tape storage which is written in the first pass and consumed by the second. The second algorithm is a single-pass and optimally streaming algorithm which outputs...... as much of the parse tree as is semantically possible based on the input prefix read so far, and resorts to buffering as many symbols as is required to resolve the next choice. Optimality is obtained by performing a PSPACE-complete pre-analysis on the regular expression. In the second part we present...... Kleenex, a language for expressing high-performance streaming string processing programs as regular grammars with embedded semantic actions, and its compilation to streaming string transducers with worst-case linear-time performance. Its underlying theory is based on transducer decomposition into oracle...

  9. Intracellular Distribution of Capsid-Associated pUL77 of Human Cytomegalovirus and Interactions with Packaging Proteins and pUL93.

    Science.gov (United States)

    Köppen-Rung, Pánja; Dittmer, Alexandra; Bogner, Elke

    2016-07-01

    DNA packaging into procapsids is a common multistep process during viral maturation in herpesviruses. In human cytomegalovirus (HCMV), the proteins involved in this process are terminase subunits pUL56 and pUL89, which are responsible for site-specific cleavage and insertion of the DNA into the procapsid via portal protein pUL104. However, additional viral proteins are required for the DNA packaging process. We have shown previously that the plasmid that encodes capsid-associated pUL77 encodes another potential player during capsid maturation. Pulse-chase experiments revealed that pUL77 is stably expressed during HCMV infection. Time course analysis demonstrated that pUL77 is expressed in the early late part of the infectious cycle. The sequence of pUL77 was analyzed to find nuclear localization sequences (NLSs), revealing monopartite NLSm at the N terminus and bipartite NLSb in the middle of pUL77. The potential NLSs were inserted into plasmid pHM829, which encodes a chimeric protein with β-galactosidase and green fluorescent protein. In contrast to pUL56, neither NLSm nor NLSb was sufficient for nuclear import. Furthermore, we investigated by coimmunoprecipitation whether packaging proteins, as well as pUL93, the homologue protein of herpes simplex virus 1 pUL17, are interaction partners of pUL77. The interactions between pUL77 and packaging proteins, as well as pUL93, were verified. We showed that the capsid-associated pUL77 is another potential player during capsid maturation of HCMV. Protein UL77 (pUL77) is a conserved core protein of HCMV. This study demonstrates for the first time that pUL77 has early-late expression kinetics during the infectious cycle and an intrinsic potential for nuclear translocation. According to its proposed functions in stabilization of the capsid and anchoring of the encapsidated DNA during packaging, interaction with further DNA packaging proteins is required. We identified physical interactions with terminase subunits pUL56 and p

  10. Importin α1 is required for nuclear import of herpes simplex virus proteins and capsid assembly in fibroblasts and neurons

    Science.gov (United States)

    Anderson, Fenja; Rother, Franziska; Rudolph, Kathrin; Prank, Ute; Binz, Anne; Hügel, Stefanie; Hartmann, Enno; Bader, Michael; Bauerfeind, Rudolf; Sodeik, Beate

    2018-01-01

    Herpesviruses are large DNA viruses which depend on many nuclear functions, and therefore on host transport factors to ensure specific nuclear import of viral and host components. While some import cargoes bind directly to certain transport factors, most recruit importin β1 via importin α. We identified importin α1 in a small targeted siRNA screen to be important for herpes simplex virus (HSV-1) gene expression. Production of infectious virions was delayed in the absence of importin α1, but not in cells lacking importin α3 or importin α4. While nuclear targeting of the incoming capsids, of the HSV-1 transcription activator VP16, and of the viral genomes were not affected, the nuclear import of the HSV-1 proteins ICP4 and ICP0, required for efficient viral transcription, and of ICP8 and pUL42, necessary for DNA replication, were reduced. Furthermore, quantitative electron microscopy showed that fibroblasts lacking importin α1 contained overall fewer nuclear capsids, but an increased proportion of mature nuclear capsids indicating that capsid formation and capsid egress into the cytoplasm were impaired. In neurons, importin α1 was also not required for nuclear targeting of incoming capsids, but for nuclear import of ICP4 and for the formation of nuclear capsid assembly compartments. Our data suggest that importin α1 is specifically required for the nuclear localization of several important HSV1 proteins, capsid assembly, and capsid egress into the cytoplasm, and may become rate limiting in situ upon infection at low multiplicity or in terminally differentiated cells such as neurons. PMID:29304174

  11. Structural Studies of Adeno-Associated Virus Serotype 8 Capsid Transitions Associated with Endosomal Trafficking

    Energy Technology Data Exchange (ETDEWEB)

    Nam, Hyun-Joo; Gurda, Brittney L.; McKenna, Robert; Potter, Mark; Byrne, Barry; Salganik, Maxim; Muzyczka, Nicholas; Agbandje-McKenna, Mavis (Florida)

    2012-09-17

    The single-stranded DNA (ssDNA) parvoviruses enter host cells through receptor-mediated endocytosis, and infection depends on processing in the early to late endosome as well as in the lysosome prior to nuclear entry for replication. However, the mechanisms of capsid endosomal processing, including the effects of low pH, are poorly understood. To gain insight into the structural transitions required for this essential step in infection, the crystal structures of empty and green fluorescent protein (GFP) gene-packaged adeno-associated virus serotype 8 (AAV8) have been determined at pH values of 6.0, 5.5, and 4.0 and then at pH 7.5 after incubation at pH 4.0, mimicking the conditions encountered during endocytic trafficking. While the capsid viral protein (VP) topologies of all the structures were similar, significant amino acid side chain conformational rearrangements were observed on (i) the interior surface of the capsid under the icosahedral 3-fold axis near ordered nucleic acid density that was lost concomitant with the conformational change as pH was reduced and (ii) the exterior capsid surface close to the icosahedral 2-fold depression. The 3-fold change is consistent with DNA release from an ordering interaction on the inside surface of the capsid at low pH values and suggests transitions that likely trigger the capsid for genome uncoating. The surface change results in disruption of VP-VP interface interactions and a decrease in buried surface area between VP monomers. This disruption points to capsid destabilization which may (i) release VP1 amino acids for its phospholipase A2 function for endosomal escape and nuclear localization signals for nuclear targeting and (ii) trigger genome uncoating.

  12. Antimicrobial peptide capsids of de novo design.

    Science.gov (United States)

    De Santis, Emiliana; Alkassem, Hasan; Lamarre, Baptiste; Faruqui, Nilofar; Bella, Angelo; Noble, James E; Micale, Nicola; Ray, Santanu; Burns, Jonathan R; Yon, Alexander R; Hoogenboom, Bart W; Ryadnov, Maxim G

    2017-12-22

    The spread of bacterial resistance to antibiotics poses the need for antimicrobial discovery. With traditional search paradigms being exhausted, approaches that are altogether different from antibiotics may offer promising and creative solutions. Here, we introduce a de novo peptide topology that-by emulating the virus architecture-assembles into discrete antimicrobial capsids. Using the combination of high-resolution and real-time imaging, we demonstrate that these artificial capsids assemble as 20-nm hollow shells that attack bacterial membranes and upon landing on phospholipid bilayers instantaneously (seconds) convert into rapidly expanding pores causing membrane lysis (minutes). The designed capsids show broad antimicrobial activities, thus executing one primary function-they destroy bacteria on contact.

  13. Porcine circovirus-2 capsid protein induces cell death in PK15 cells

    Energy Technology Data Exchange (ETDEWEB)

    Walia, Rupali; Dardari, Rkia, E-mail: rdardari@ucalgary.ca; Chaiyakul, Mark; Czub, Markus

    2014-11-15

    Studies have shown that Porcine circovirus (PCV)-2 induces apoptosis in PK15 cells. Here we report that cell death is induced in PCV2b-infected PK15 cells that express Capsid (Cap) protein and this effect is enhanced in interferon gamma (IFN-γ)-treated cells. We further show that transient PCV2a and 2b-Cap protein expression induces cell death in PK15 cells at rate similar to PCV2 infection, regardless of Cap protein localization. These data suggest that Cap protein may have the capacity to trigger different signaling pathways involved in cell death. Although further investigation is needed to gain deeper insights into the nature of the pathways involved in Cap-induced cell death, this study provides evidence that PCV2-induced cell death in kidney epithelial PK15 cells can be mapped to the Cap protein and establishes the need for future research regarding the role of Cap-induced cell death in PCV2 pathogenesis. - Highlights: • IFN-γ enhances PCV2 replication that leads to cell death in PK15 cells. • IFN-γ enhances nuclear localization of the PCV2 Capsid protein. • Transient PCV2a and 2b-Capsid protein expression induces cell death. • Cell death is not dictated by specific Capsid protein sub-localization.

  14. Relevance of capsid structure in the buckling and maturation of spherical viruses

    International Nuclear Information System (INIS)

    Aznar, María; Luque, Antoni; Reguera, David

    2012-01-01

    The shape and mechanical properties of viral capsids play an important role in several biological processes during the virus life cycle. In particular, to become infective, many viruses require a maturation stage where the capsid undergoes a buckling transition, from an initial spherical procapsid into a final icosahedral faceted shell. Here we study, using a minimal physical model, how the capsid shape and the buckling transition depend on the triangulation number T and the icosahedral class P of the virus structure. We find that, for small shells, capsids with P = 1 are most likely to produce polyhedral shapes that minimize their energy and accumulated stress, whereas viruses with P = 3 prefer to remain spherical. For big capsids, all shells are more stable adopting an icosahedral shape, in agreement with continuum elastic theory. Moreover, spherical viruses show a buckling transition to polyhedral shells under expansion, in consonance with virus maturation. The resulting icosahedral shell is mechanically stiffer, tolerates larger expansions and withstands higher internal pressures before failing, which could explain why some dsDNA viruses, which rely on the pressurization of their genetic material to facilitate the infection, undergo a buckling transition. We emphasize that the results are general and could also be applied to non-biological systems. (paper)

  15. A molecular thermodynamic model for the stability of hepatitis B capsids

    Science.gov (United States)

    Kim, Jehoon; Wu, Jianzhong

    2014-06-01

    Self-assembly of capsid proteins and genome encapsidation are two critical steps in the life cycle of most plant and animal viruses. A theoretical description of such processes from a physiochemical perspective may help better understand viral replication and morphogenesis thus provide fresh insights into the experimental studies of antiviral strategies. In this work, we propose a molecular thermodynamic model for predicting the stability of Hepatitis B virus (HBV) capsids either with or without loading nucleic materials. With the key components represented by coarse-grained thermodynamic models, the theoretical predictions are in excellent agreement with experimental data for the formation free energies of empty T4 capsids over a broad range of temperature and ion concentrations. The theoretical model predicts T3/T4 dimorphism also in good agreement with the capsid formation at in vivo and in vitro conditions. In addition, we have studied the stability of the viral particles in response to physiological cellular conditions with the explicit consideration of the hydrophobic association of capsid subunits, electrostatic interactions, molecular excluded volume effects, entropy of mixing, and conformational changes of the biomolecular species. The course-grained model captures the essential features of the HBV nucleocapsid stability revealed by recent experiments.

  16. A molecular thermodynamic model for the stability of hepatitis B capsids

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jehoon; Wu, Jianzhong, E-mail: jwu@engr.ucr.edu [Department of Chemical and Environmental Engineering, University of California, Riverside, California 92521 (United States)

    2014-06-21

    Self-assembly of capsid proteins and genome encapsidation are two critical steps in the life cycle of most plant and animal viruses. A theoretical description of such processes from a physiochemical perspective may help better understand viral replication and morphogenesis thus provide fresh insights into the experimental studies of antiviral strategies. In this work, we propose a molecular thermodynamic model for predicting the stability of Hepatitis B virus (HBV) capsids either with or without loading nucleic materials. With the key components represented by coarse-grained thermodynamic models, the theoretical predictions are in excellent agreement with experimental data for the formation free energies of empty T4 capsids over a broad range of temperature and ion concentrations. The theoretical model predicts T3/T4 dimorphism also in good agreement with the capsid formation at in vivo and in vitro conditions. In addition, we have studied the stability of the viral particles in response to physiological cellular conditions with the explicit consideration of the hydrophobic association of capsid subunits, electrostatic interactions, molecular excluded volume effects, entropy of mixing, and conformational changes of the biomolecular species. The course-grained model captures the essential features of the HBV nucleocapsid stability revealed by recent experiments.

  17. Determination of prestress and elastic properties of virus capsids

    Science.gov (United States)

    Aggarwal, Ankush

    2018-03-01

    Virus capsids are protein shells that protect the virus genome, and determination of their mechanical properties has been a topic of interest because of their potential use in nanotechnology and therapeutics. It has been demonstrated that stresses exist in virus capsids, even in their equilibrium state, due to their construction. These stresses, termed "prestresses" in this study, closely affect the capsid's mechanical behavior. Three methods—shape-based metric, atomic force microscope indentation, and molecular dynamics—have been proposed to determine the capsid elastic properties without fully accounting for prestresses. In this paper, we theoretically analyze the three methods used for mechanical characterization of virus capsids and numerically investigate how prestresses affect the capsid's mechanical properties. We consolidate all the results and propose that by using these techniques collectively, it is possible to accurately determine both the mechanical properties and prestresses in capsids.

  18. Scaffold expulsion and genome packaging trigger stabilization of herpes simplex virus capsids

    NARCIS (Netherlands)

    Roos, W.H.; Radtke, K.; Kniesmeijer, E.G.R.; Geertsema, H.J.; Sodeik, B.; Wuite, G.J.L.

    2009-01-01

    Herpes simplex virus type 1 (HSV1) capsids undergo extensive structural changes during maturation and DNA packaging. As a result, they become more stable and competent for nuclear egress. To further elucidate this stabilization process, we used biochemical and nanoindentation approaches to analyze

  19. Scaffold expulsion and genome packaging trigger stabilization of Herpes Simplex Virus capsids

    NARCIS (Netherlands)

    Roos, W.H.; Radtke, K.; Kniesmeijer, E.; Geertsema, H.J.; Sodeik, B.; Wuite, G.J.L.

    2009-01-01

    Herpes simplex virus type 1 (HSV1) capsids undergo extensive structural changes during maturation and DNA packaging. As a result, they become more stable and competent for nuclear egress. To further elucidate this stabilization process, we used biochemical and nanoindentation approaches to analyze

  20. Virus Capsids as Targeted Nanoscale Delivery Vessels of Photoactive Compounds for Site-Specific Photodynamic Therapy

    Science.gov (United States)

    Cohen, Brian A.

    The research presented in this work details the use of a viral capsid as an addressable delivery vessel of photoactive compounds for use in photodynamic therapy. Photodynamic therapy is a treatment that involves the interaction of light with a photosensitizing molecule to create singlet oxygen, a reactive oxygen species. Overproduction of singlet oxygen in cells can cause oxidative damage leading to cytotoxicity and eventually cell death. Challenges with the current generation of FDA-approved photosensitizers for photodynamic therapy primarily stem from their lack of tissue specificity. This work describes the packaging of photoactive cationic porphyrins inside the MS2 bacteriophage capsid, followed by external modification of the capsid with cancer cell-targeting G-quadruplex DNA aptamers to generate a tumor-specific photosensitizing agent. First, a cationic porphyrin is loaded into the capsids via nucleotide-driven packaging, a process that involves charge interaction between the porphyrin and the RNA inside the capsid. Results show that over 250 porphyrin molecules associate with the RNA within each MS2 capsid. Removal of RNA from the capsid severely inhibits the packaging of the cationic porphyrins. Porphyrin-virus constructs were then shown to photogenerate singlet oxygen, and cytotoxicity in non-targeted photodynamic treatment experiments. Next, each porphyrin-loaded capsid is externally modified with approximately 60 targeting DNA aptamers by employing a heterobifunctional crosslinking agent. The targeting aptamer is known to bind the protein nucleolin, a ubiquitous protein that is overexpressed on the cell surface by many cancer cell types. MCF-7 human breast carcinoma cells and MCF-10A human mammary epithelial cells were selected as an in vitro model for breast cancer and normal tissue, respectively. Fluorescently tagged virus-aptamer constructs are shown to selectively target MCF-7 cells versus MCF-10A cells. Finally, results are shown in which porphyrin

  1. Effects of immunosuppression on circulating adeno-associated virus capsid-specific T cells in humans.

    Science.gov (United States)

    Parzych, Elizabeth M; Li, Hua; Yin, Xiangfan; Liu, Qin; Wu, Te-Lang; Podsakoff, Gregory M; High, Katherine A; Levine, Matthew H; Ertl, Hildegund C J

    2013-04-01

    In humans adeno-associated virus (AAV)-mediated gene transfer is followed by expansion of AAV capsid-specific T cells, evidence of cell damage, and loss of transgene product expression, implicating immunological rejection of vector-transduced cells, which may be prevented by immunosuppressive drugs. We undertook this study to assess the effect of immunosuppression (IS) used for organ transplantation on immune responses to AAV capsid antigens. Recipients of liver or kidney transplants were tested before and 4 weeks after induction of IS in comparison with matched samples from healthy human adults and an additional cohort with comorbid conditions similar to those of the transplant patients. Our data show that transplant patients and comorbid control subjects have markedly higher frequencies of circulating AAV capsid-specific T cells compared with healthy adults. On average, IS resulted in a reduction of AAV-specific CD4⁺ T cells, whereas numbers of circulating CD8⁺ effector and central memory T cells tended to increase. Independent of the type of transplant or the IS regimens, the trend of AAV capsid-specific T cell responses after drug treatment varied; in some patients responses were unaffected whereas others showed decreases or even pronounced increases, casting doubt on the usefulness of prophylactic IS for AAV vector recipients.

  2. Viral capsid is a pathogen-associated molecular pattern in adenovirus keratitis.

    Directory of Open Access Journals (Sweden)

    Ashish V Chintakuntlawar

    2010-04-01

    Full Text Available Human adenovirus (HAdV infection of the human eye, in particular serotypes 8, 19 and 37, induces the formation of corneal subepithelial leukocytic infiltrates. Using a unique mouse model of adenovirus keratitis, we studied the role of various virus-associated molecular patterns in subsequent innate immune responses of resident corneal cells to HAdV-37 infection. We found that neither viral DNA, viral gene expression, or viral replication was necessary for the development of keratitis. In contrast, empty viral capsid induced keratitis and a chemokine profile similar to intact virus. Transfected viral DNA did not induce leukocyte infiltration despite CCL2 expression similar to levels in virus infected corneas. Mice without toll-like receptor 9 (Tlr9 signaling developed clinical keratitis upon HAdV-37 infection similar to wild type mice, although the absolute numbers of activated monocytes in the cornea were less in Tlr9(-/- mice. Virus induced leukocytic infiltrates and chemokine expression in mouse cornea could be blocked by treatment with a peptide containing arginine glycine aspartic acid (RGD. These results demonstrate that adenovirus infection of the cornea induces chemokine expression and subsequent infiltration by leukocytes principally through RGD contact between viral capsid and the host cell, possibly through direct interaction between the viral capsid penton base and host cell integrins.

  3. Exploring the role of genome and structural ions in preventing viral capsid collapse during dehydration

    Science.gov (United States)

    Martín-González, Natalia; Guérin Darvas, Sofía M.; Durana, Aritz; Marti, Gerardo A.; Guérin, Diego M. A.; de Pablo, Pedro J.

    2018-03-01

    Even though viruses evolve mainly in liquid milieu, their horizontal transmission routes often include episodes of dry environment. Along their life cycle, some insect viruses, such as viruses from the Dicistroviridae family, withstand dehydrated conditions with presently unknown consequences to their structural stability. Here, we use atomic force microscopy to monitor the structural changes of viral particles of Triatoma virus (TrV) after desiccation. Our results demonstrate that TrV capsids preserve their genome inside, conserving their height after exposure to dehydrating conditions, which is in stark contrast with other viruses that expel their genome when desiccated. Moreover, empty capsids (without genome) resulted in collapsed particles after desiccation. We also explored the role of structural ions in the dehydration process of the virions (capsid containing genome) by chelating the accessible cations from the external solvent milieu. We observed that ion suppression helps to keep the virus height upon desiccation. Our results show that under drying conditions, the genome of TrV prevents the capsid from collapsing during dehydration, while the structural ions are responsible for promoting solvent exchange through the virion wall.

  4. Studies towards the sex pheromone of the green capsid bug

    NARCIS (Netherlands)

    Drijfhout, F.P.

    2001-01-01

    The green capsid bug, Lygocoris pabulinus (L.) (Heteroptera: Miridae) is a serious pest in fruit orchards, which is difficult to control. Because it is difficult to determine the actual population density, fruit growers apply insecticides against the green capsid bug on

  5. Processing emotional body expressions: state-of-the-art.

    Science.gov (United States)

    Enea, Violeta; Iancu, Sorina

    2016-10-01

    Processing emotional body expressions has become recently an important topic in affective and social neuroscience along with the investigation of facial expressions. The objective of the study is to review the literature on emotional body expressions in order to discuss the current state of knowledge on this topic and identify directions for future research. The following electronic databases were searched: PsychINFO, Ebsco, ERIC, ProQuest, Sagepub, and SCOPUS using terms such as "body," "bodily expression," "body perception," "emotions," "posture," "body recognition" and combinations of them. The synthesis revealed several research questions that were addressed in neuroimaging, electrophysiological and behavioral studies. Among them, one important question targeted the neural mechanisms of emotional processing of body expressions to specific subsections regarding the time course for the integration of emotional signals from face and body, as well as the role of context in the perception of emotional signals. Processing bodily expression of emotion is similar to processing facial expressions, and the holistic processing is extended to the whole person. The current state-of-the-art in processing emotional body expressions may lead to a better understanding of the underlying neural mechanisms of social behavior. At the end of the review, suggestions for future research directions are presented.

  6. Venture from the Interior-Herpesvirus pUL31 Escorts Capsids from Nucleoplasmic Replication Compartments to Sites of Primary Envelopment at the Inner Nuclear Membrane.

    Science.gov (United States)

    Bailer, Susanne M.

    2017-11-25

    Herpesviral capsid assembly is initiated in the nucleoplasm of the infected cell. Size constraints require that newly formed viral nucleocapsids leave the nucleus by an evolutionarily conserved vescular transport mechanism called nuclear egress. Mature capsids released from the nucleoplasm are engaged in a membrane-mediated budding process, composed of primary envelopment at the inner nuclear membrane and de-envelopment at the outer nuclear membrane. Once in the cytoplasm, the capsids receive their secondary envelope for maturation into infectious virions. Two viral proteins conserved throughout the herpesvirus family, the integral membrane protein pUL34 and the phosphoprotein pUL31, form the nuclear egress complex required for capsid transport from the infected nucleus to the cytoplasm. Formation of the nuclear egress complex results in budding of membrane vesicles revealing its function as minimal virus-encoded membrane budding and scission machinery. The recent structural analysis unraveled details of the heterodimeric nuclear egress complex and the hexagonal coat it forms at the inside of budding vesicles to drive primary envelopment. With this review, I would like to present the capsid-escort-model where pUL31 associates with capsids in nucleoplasmic replication compartments for escort to sites of primary envelopment thereby coupling capsid maturation and nuclear egress.

  7. Structure of the Triatoma virus capsid.

    Science.gov (United States)

    Squires, Gaëlle; Pous, Joan; Agirre, Jon; Rozas-Dennis, Gabriela S; Costabel, Marcelo D; Marti, Gerardo A; Navaza, Jorge; Bressanelli, Stéphane; Guérin, Diego M A; Rey, Felix A

    2013-06-01

    The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed.

  8. Revisiting the Relationship between the Processing of Gaze Direction and the Processing of Facial Expression

    Science.gov (United States)

    Ganel, Tzvi

    2011-01-01

    There is mixed evidence on the nature of the relationship between the perception of gaze direction and the perception of facial expressions. Major support for shared processing of gaze and expression comes from behavioral studies that showed that observers cannot process expression or gaze and ignore irrelevant variations in the other dimension.…

  9. Ultrastructural Localization and Molecular Associations of HCV Capsid Protein in Jurkat T Cells

    Directory of Open Access Journals (Sweden)

    Cecilia Fernández-Ponce

    2018-01-01

    Full Text Available Hepatitis C virus core protein is a highly basic viral protein that multimerizes with itself to form the viral capsid. When expressed in CD4+ T lymphocytes, it can induce modifications in several essential cellular and biological networks. To shed light on the mechanisms underlying the alterations caused by the viral protein, we have analyzed HCV-core subcellular localization and its associations with host proteins in Jurkat T cells. In order to investigate the intracellular localization of Hepatitis C virus core protein, we have used a lentiviral system to transduce Jurkat T cells and subsequently localize the protein using immunoelectron microscopy techniques. We found that in Jurkat T cells, Hepatitis C virus core protein mostly localizes in the nucleus and specifically in the nucleolus. In addition, we performed pull-down assays combined with Mass Spectrometry Analysis, to identify proteins that associate with Hepatitis C virus core in Jurkat T cells. We found proteins such as NOLC1, PP1γ, ILF3, and C1QBP implicated in localization and/or traffic to the nucleolus. HCV-core associated proteins are implicated in RNA processing and RNA virus infection as well as in functions previously shown to be altered in Hepatitis C virus core expressing CD4+ T cells, such as cell cycle delay, decreased proliferation, and induction of a regulatory phenotype. Thus, in the current work, we show the ultrastructural localization of Hepatitis C virus core and the first profile of HCV core associated proteins in T cells, and we discuss the functions and interconnections of these proteins in molecular networks where relevant biological modifications have been described upon the expression of Hepatitis C virus core protein. Thereby, the current work constitutes a necessary step toward understanding the mechanisms underlying HCV core mediated alterations that had been described in relevant biological processes in CD4+ T cells.

  10. Cardiomyocyte expression and cell-specific processing of procholecystokinin

    DEFF Research Database (Denmark)

    Gøtze, Jens P.; Johnsen, Anders H.; Kistorp, Caroline

    2015-01-01

    has only been suggested using transcriptional measures or methods, with the post-translational phase of gene expression unaddressed. In this study, we examined the cardiac expression of the CCK gene in adult mammals and its expression at the protein level. Using quantitative PCR, a library of sequence......-specific pro-CCK assays, peptide purification, and mass spectrometry, we demonstrate that the mammalian heart expresses pro-CCK in amounts comparable to natriuretic prohormones and processes it to a unique, triple-sulfated, and N-terminally truncated product distinct from intestinal and cerebral CCK peptides...

  11. Detection of LiveLock in BPMN Using Process Expression

    Science.gov (United States)

    Tantitharanukul, Nasi; Jumpamule, Watcharee

    Although the Business Process Modeling Notation (BPMN) is a popular tool for modeling business process in conceptual level, the result diagram may contain structural problem. One of the structural problems is livelock. In this problem, one token proceeds to end event, while other token is still in process with no progression. In this paper, we introduce an expression liked method to detect livelock in the BPMN diagram. Our approach utilizes the power of the declarative ability of expression to determine all of the possible process chains, and indicate whether there are livelock or not. As a result, we have shown that our method can detect livelock, if any.

  12. In vitro protease cleavage and computer simulations reveal the HIV-1 capsid maturation pathway

    Science.gov (United States)

    Ning, Jiying; Erdemci-Tandogan, Gonca; Yufenyuy, Ernest L.; Wagner, Jef; Himes, Benjamin A.; Zhao, Gongpu; Aiken, Christopher; Zandi, Roya; Zhang, Peijun

    2016-12-01

    HIV-1 virions assemble as immature particles containing Gag polyproteins that are processed by the viral protease into individual components, resulting in the formation of mature infectious particles. There are two competing models for the process of forming the mature HIV-1 core: the disassembly and de novo reassembly model and the non-diffusional displacive model. To study the maturation pathway, we simulate HIV-1 maturation in vitro by digesting immature particles and assembled virus-like particles with recombinant HIV-1 protease and monitor the process with biochemical assays and cryoEM structural analysis in parallel. Processing of Gag in vitro is accurate and efficient and results in both soluble capsid protein and conical or tubular capsid assemblies, seemingly converted from immature Gag particles. Computer simulations further reveal probable assembly pathways of HIV-1 capsid formation. Combining the experimental data and computer simulations, our results suggest a sequential combination of both displacive and disassembly/reassembly processes for HIV-1 maturation.

  13. Structure of the Triatoma virus capsid

    International Nuclear Information System (INIS)

    Squires, Gaëlle; Pous, Joan; Agirre, Jon; Rozas-Dennis, Gabriela S.; Costabel, Marcelo D.; Marti, Gerardo A.; Navaza, Jorge; Bressanelli, Stéphane; Guérin, Diego M. A.; Rey, Felix A.

    2013-01-01

    The crystallographic structure of TrV shows specific morphological and functional features that clearly distinguish it from the type species of the Cripavirus genus, CrPV. The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed

  14. Structure of the Triatoma virus capsid

    Energy Technology Data Exchange (ETDEWEB)

    Squires, Gaëlle; Pous, Joan [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France); Agirre, Jon [Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia (FBB) (Spain); Unidad de Biofísica (UBF, CSIC, UPV/EHU), PO Box 644, 48080 Bilbao (Spain); Rozas-Dennis, Gabriela S. [U.N.S., San Juan 670 (8000) Bahía Blanca (Argentina); U.N.S., Avenida Alem 1253 (8000) Bahía Blanca (Argentina); Costabel, Marcelo D. [U.N.S., Avenida Alem 1253 (8000) Bahía Blanca (Argentina); Marti, Gerardo A. [Centro de Estudios Parasitológicos y de Vectores (CEPAVE-CCT, La Plata, CONICET-UNLP), Calle 2 No. 584 (1900) La Plata (Argentina); Navaza, Jorge; Bressanelli, Stéphane [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France); Guérin, Diego M. A., E-mail: diego.guerin@ehu.es [Fundación Biofísica Bizkaia, Barrio Sarriena S/N, 48940 Leioa, Bizkaia (FBB) (Spain); Unidad de Biofísica (UBF, CSIC, UPV/EHU), PO Box 644, 48080 Bilbao (Spain); Rey, Felix A., E-mail: diego.guerin@ehu.es [Laboratoire de Virologie Moléculaire et Structurale, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette CEDEX (France)

    2013-06-01

    The crystallographic structure of TrV shows specific morphological and functional features that clearly distinguish it from the type species of the Cripavirus genus, CrPV. The members of the Dicistroviridae family are non-enveloped positive-sense single-stranded RNA (+ssRNA) viruses pathogenic to beneficial arthropods as well as insect pests of medical importance. Triatoma virus (TrV), a member of this family, infects several species of triatomine insects (popularly named kissing bugs), which are vectors for human trypanosomiasis, more commonly known as Chagas disease. The potential use of dicistroviruses as biological control agents has drawn considerable attention in the past decade, and several viruses of this family have been identified, with their targets covering honey bees, aphids and field crickets, among others. Here, the crystal structure of the TrV capsid at 2.5 Å resolution is reported, showing that as expected it is very similar to that of Cricket paralysis virus (CrPV). Nevertheless, a number of distinguishing structural features support the introduction of a new genus (Triatovirus; type species TrV) under the Dicistroviridae family. The most striking differences are the absence of icosahedrally ordered VP4 within the infectious particle and the presence of prominent projections that surround the fivefold axis. Furthermore, the structure identifies a second putative autoproteolytic DDF motif in protein VP3, in addition to the conserved one in VP1 which is believed to be responsible for VP0 cleavage during capsid maturation. The potential meaning of these new findings is discussed.

  15. Expression regulation of design process gene in product design

    DEFF Research Database (Denmark)

    Li, Bo; Fang, Lusheng; Li, Bo

    2011-01-01

    To improve the design process efficiency, this paper proposes the principle and methodology that design process gene controls the characteristics of design process under the framework of design process reuse and optimization based on design process gene. First, the concept of design process gene...... is proposed and analyzed, as well as its three categories i.e., the operator gene, the structural gene and the regulator gene. Second, the trigger mechanism that design objectives and constraints trigger the operator gene is constructed. Third, the expression principle of structural gene is analyzed...... with the example of design management gene. Last, the regulation mode that the regulator gene regulates the expression of the structural gene is established and it is illustrated by taking the design process management gene as an example. © (2011) Trans Tech Publications....

  16. Expression-dependent susceptibility to face distortions in processing of facial expressions of emotion.

    Science.gov (United States)

    Guo, Kun; Soornack, Yoshi; Settle, Rebecca

    2018-03-05

    Our capability of recognizing facial expressions of emotion under different viewing conditions implies the existence of an invariant expression representation. As natural visual signals are often distorted and our perceptual strategy changes with external noise level, it is essential to understand how expression perception is susceptible to face distortion and whether the same facial cues are used to process high- and low-quality face images. We systematically manipulated face image resolution (experiment 1) and blur (experiment 2), and measured participants' expression categorization accuracy, perceived expression intensity and associated gaze patterns. Our analysis revealed a reasonable tolerance to face distortion in expression perception. Reducing image resolution up to 48 × 64 pixels or increasing image blur up to 15 cycles/image had little impact on expression assessment and associated gaze behaviour. Further distortion led to decreased expression categorization accuracy and intensity rating, increased reaction time and fixation duration, and stronger central fixation bias which was not driven by distortion-induced changes in local image saliency. Interestingly, the observed distortion effects were expression-dependent with less deterioration impact on happy and surprise expressions, suggesting this distortion-invariant facial expression perception might be achieved through the categorical model involving a non-linear configural combination of local facial features. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Impact of cell culture process changes on endogenous retrovirus expression.

    Science.gov (United States)

    Brorson, Kurt; De Wit, Christina; Hamilton, Elizabeth; Mustafa, Mehnaz; Swann, Patrick G; Kiss, Robert; Taticek, Ron; Polastri, Gian; Stein, Kathryn E; Xu, Yuan

    2002-11-05

    Cell culture process changes (e.g., changes in scale, medium formulation, operational conditions) and cell line changes are common during the development life cycle of a therapeutic protein. To ensure that the impact of such process changes on product quality and safety is minimal, it is standard practice to compare critical product quality and safety attributes before and after the changes. One potential concern introduced by cell culture process improvements is the possibility of increased endogenous retrovirus expression to a level above the clearance capability of the subsequent purification process. To address this, retrovirus expression was measured in scaled down and full production scaled Chinese hamster ovary (CHO) cell cultures of four monoclonal antibodies and one recombinant protein before and after process changes. Two highly sensitive, quantitative (Q)-PCR-based assays were used to measure endogenous retroviruses. It is shown that cell culture process changes that primarily alter media components, nutrient feed volume, seed density, cell bank source (i.e., master cell bank vs. working cell bank), and vial size, or culture scale, singly or in combination, do not impact the rate of retrovirus expression to an extent greater than the variability of the Q-PCR assays (0.2-0.5 log(10)). Cell culture changes that significantly alter the metabolic state of the cells and/or rates of protein expression (e.g., pH and temperature shifts, NaButyrate addition) measurably impact the rate of retrovirus synthesis (up to 2 log(10)). The greatest degree of variation in endogenous retrovirus expression was observed between individual cell lines (up to 3 log(10)). These data support the practice of measuring endogenous retrovirus output for each new cell line introduced into manufacturing or after process changes that significantly increase product-specific productivity or alter the metabolic state, but suggest that reassessment of retrovirus expression after other

  18. Dengue Virus Capsid Protein Binds Core Histones and Inhibits Nucleosome Formation in Human Liver Cells

    Science.gov (United States)

    Colpitts, Tonya M.; Barthel, Sebastian; Wang, Penghua; Fikrig, Erol

    2011-01-01

    Dengue virus (DENV) is a member of the Flaviviridae and a globally (re)emerging pathogen that causes serious human disease. There is no specific antiviral or vaccine for dengue virus infection. Flavivirus capsid (C) is a structural protein responsible for gathering the viral RNA into a nucleocapsid that forms the core of a mature virus particle. Flaviviral replication is known to occur in the cytoplasm yet a large portion of capsid protein localizes to the nucleus during infection. The reasons for the nuclear presences of capsid are not completely understood. Here, we expressed mature DENV C in a tandem affinity purification assay to identify potential binding partners in human liver cells. DENV C targeted the four core histones, H2A, H2B, H3 and H4. DENV C bound recombinant histones in solution and colocalized with histones in the nucleus and cytoplasm of liver cells during DENV infection. We show that DENV C acts as a histone mimic, forming heterodimers with core histones, binding DNA and disrupting nucleosome formation. We also demonstrate that DENV infection increases the amounts of core histones in livers cells, which may be a cellular response to C binding away the histone proteins. Infection with DENV additionally alters levels of H2A phosphorylation in a time-dependent manner. The interactions of C and histones add an interesting new role for the presence of C in the nucleus during DENV infection. PMID:21909430

  19. Dengue Virus Uses a Non-Canonical Function of the Host GBF1-Arf-COPI System for Capsid Protein Accumulation on Lipid Droplets.

    Science.gov (United States)

    Iglesias, Nestor G; Mondotte, Juan A; Byk, Laura A; De Maio, Federico A; Samsa, Marcelo M; Alvarez, Cecilia; Gamarnik, Andrea V

    2015-09-01

    Dengue viruses cause the most important human viral disease transmitted by mosquitoes. In recent years, a great deal has been learned about molecular details of dengue virus genome replication; however, little is known about genome encapsidation and the functions of the viral capsid protein. During infection, dengue virus capsid progressively accumulates around lipid droplets (LDs) by an unknown mechanism. Here, we examined the process by which the viral capsid is transported from the endoplasmic reticulum (ER) membrane, where the protein is synthesized, to LDs. Using different methods of intervention, we found that the GBF1-Arf1/Arf4-COPI pathway is necessary for capsid transport to LDs, while the process is independent of both COPII components and Golgi integrity. The transport was sensitive to Brefeldin A, while a drug resistant form of GBF1 was sufficient to restore capsid subcellular distribution in infected cells. The mechanism by which LDs gain or lose proteins is still an open question. Our results support a model in which the virus uses a non-canonical function of the COPI system for capsid accumulation on LDs, providing new ideas for antiviral strategies. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Fluid Intelligence and Automatic Neural Processes in Facial Expression Perception

    DEFF Research Database (Denmark)

    Liu, Tongran; Xiao, Tong; Li, Xiaoyan

    2015-01-01

    The relationship between human fluid intelligence and social-emotional abilities has been a topic of considerable interest. The current study investigated whether adolescents with different intellectual levels had different automatic neural processing of facial expressions. Two groups of adolescent...... males were enrolled: a high IQ group and an average IQ group. Age and parental socioeconomic status were matched between the two groups. Participants counted the numbers of the central cross changes while paired facial expressions were presented bilaterally in an oddball paradigm. There were two.......2). Participants were required to concentrate on the primary task of counting the central cross changes and to ignore the expressions to ensure that facial expression processing was automatic. Event-related potentials (ERPs) were obtained during the tasks. The visual mismatch negativity (vMMN) components were...

  1. Investigating the thermal dissociation of viral capsid by lattice model

    Science.gov (United States)

    Chen, Jingzhi; Chevreuil, Maelenn; Combet, Sophie; Lansac, Yves; Tresset, Guillaume

    2017-11-01

    The dissociation of icosahedral viral capsids was investigated by a homogeneous and a heterogeneous lattice model. In thermal dissociation experiments with cowpea chlorotic mottle virus and probed by small-angle neutron scattering, we observed a slight shrinkage of viral capsids, which can be related to the strengthening of the hydrophobic interaction between subunits at increasing temperature. By considering the temperature dependence of hydrophobic interaction in the homogeneous lattice model, we were able to give a better estimate of the effective charge. In the heterogeneous lattice model, two sets of lattice sites represented different capsid subunits with asymmetric interaction strengths. In that case, the dissociation of capsids was found to shift from a sharp one-step transition to a gradual two-step transition by weakening the hydrophobic interaction between AB and CC subunits. We anticipate that such lattice models will shed further light on the statistical mechanics underlying virus assembly and disassembly.

  2. Women process multisensory emotion expressions more efficiently than men.

    Science.gov (United States)

    Collignon, O; Girard, S; Gosselin, F; Saint-Amour, D; Lepore, F; Lassonde, M

    2010-01-01

    Despite claims in the popular press, experiments investigating whether female are more efficient than male observers at processing expression of emotions produced inconsistent findings. In the present study, participants were asked to categorize fear and disgust expressions displayed auditorily, visually, or audio-visually. Results revealed an advantage of women in all the conditions of stimulus presentation. We also observed more nonlinear probabilistic summation in the bimodal conditions in female than male observers, indicating greater neural integration of different sensory-emotional informations. These findings indicate robust differences between genders in the multisensory perception of emotion expression.

  3. A theory for viral capsid assembly around electrostatic cores

    Science.gov (United States)

    Hagan, Michael F.

    2009-03-01

    We develop equilibrium and kinetic theories that describe the assembly of viral capsid proteins on a charged central core, as seen in recent experiments in which brome mosaic virus capsids assemble around nanoparticles functionalized with polyelectrolyte. We model interactions between capsid proteins and nanoparticle surfaces as the interaction of polyelectrolyte brushes with opposite charge using the nonlinear Poisson Boltzmann equation. The models predict that there is a threshold density of functionalized charge, above which capsids efficiently assemble around nanoparticles, and that light scatter intensity increases rapidly at early times without the lag phase characteristic of empty capsid assembly. These predictions are consistent with and enable interpretation of preliminary experimental data. However, the models predict a stronger dependence of nanoparticle incorporation efficiency on functionalized charge density than measured in experiments and do not completely capture a logarithmic growth phase seen in experimental light scatter. These discrepancies may suggest the presence of metastable disordered states in the experimental system. In addition to discussing future experiments for nanoparticle-capsid systems, we discuss broader implications for understanding assembly around charged cores such as nucleic acids.

  4. Processing SPARQL queries with regular expressions in RDF databases

    Science.gov (United States)

    2011-01-01

    Background As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org), SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users’ requests for extracting information from the RDF data as well as the lack of users’ knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. Results In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Conclusions Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns. PMID:21489225

  5. Processing SPARQL queries with regular expressions in RDF databases

    Directory of Open Access Journals (Sweden)

    Cho Hune

    2011-03-01

    Full Text Available Abstract Background As the Resource Description Framework (RDF data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf or Bio2RDF (bio2rdf.org, SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users’ requests for extracting information from the RDF data as well as the lack of users’ knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. Results In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1 We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2 We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3 We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Conclusions Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns.

  6. Processing SPARQL queries with regular expressions in RDF databases.

    Science.gov (United States)

    Lee, Jinsoo; Pham, Minh-Duc; Lee, Jihwan; Han, Wook-Shin; Cho, Hune; Yu, Hwanjo; Lee, Jeong-Hoon

    2011-03-29

    As the Resource Description Framework (RDF) data model is widely used for modeling and sharing a lot of online bioinformatics resources such as Uniprot (dev.isb-sib.ch/projects/uniprot-rdf) or Bio2RDF (bio2rdf.org), SPARQL - a W3C recommendation query for RDF databases - has become an important query language for querying the bioinformatics knowledge bases. Moreover, due to the diversity of users' requests for extracting information from the RDF data as well as the lack of users' knowledge about the exact value of each fact in the RDF databases, it is desirable to use the SPARQL query with regular expression patterns for querying the RDF data. To the best of our knowledge, there is currently no work that efficiently supports regular expression processing in SPARQL over RDF databases. Most of the existing techniques for processing regular expressions are designed for querying a text corpus, or only for supporting the matching over the paths in an RDF graph. In this paper, we propose a novel framework for supporting regular expression processing in SPARQL query. Our contributions can be summarized as follows. 1) We propose an efficient framework for processing SPARQL queries with regular expression patterns in RDF databases. 2) We propose a cost model in order to adapt the proposed framework in the existing query optimizers. 3) We build a prototype for the proposed framework in C++ and conduct extensive experiments demonstrating the efficiency and effectiveness of our technique. Experiments with a full-blown RDF engine show that our framework outperforms the existing ones by up to two orders of magnitude in processing SPARQL queries with regular expression patterns.

  7. Iterated Process Analysis over Lattice-Valued Regular Expressions

    DEFF Research Database (Denmark)

    Midtgaard, Jan; Nielson, Flemming; Nielson, Hanne Riis

    2016-01-01

    We present an iterated approach to statically analyze programs of two processes communicating by message passing. Our analysis operates over a domain of lattice-valued regular expressions, and computes increasingly better approximations of each process's communication behavior. Overall the work e...... extends traditional semantics-based program analysis techniques to automatically reason about message passing in a manner that can simultaneously analyze both values of variables as well as message order, message content, and their interdependencies.......We present an iterated approach to statically analyze programs of two processes communicating by message passing. Our analysis operates over a domain of lattice-valued regular expressions, and computes increasingly better approximations of each process's communication behavior. Overall the work...

  8. Cyclophilin A interacts with diverse lentiviral capsids

    Directory of Open Access Journals (Sweden)

    Emerman Michael

    2006-10-01

    Full Text Available Abstract Background The capsid (CA protein of HIV-1 binds with high affinity to the host protein cyclophilin A (CypA. This binding positively affects some early stage of the viral life-cycle because prevention of binding either by drugs that occupy that active site of cyclophilin A, by mutation in HIV-1 CA, or RNAi that knocks down intracellular CypA level diminishes viral infectivity. The closely related lentivirus, SIVcpz also binds CypA, but it was thought that this interaction was limited to the HIV-1/SIVcpz lineage because other retroviruses failed to interact with CypA in a yeast two-hybrid assay. Results We find that diverse lentiviruses, FIV and SIVagmTAN also bind to CypA. Mutagenesis of FIV CA showed that an amino acid that is in a homologous position to the proline at amino acid 90 of HIV-1 CA is essential for FIV interactions with CypA. Conclusion These results demonstrate that CypA binding to lentiviruses is more widespread than previously thought and suggest that this interaction is evolutionarily important for lentiviral infection.

  9. Abstract knowledge versus direct experience in processing of binomial expressions.

    Science.gov (United States)

    Morgan, Emily; Levy, Roger

    2016-12-01

    We ask whether word order preferences for binomial expressions of the form A and B (e.g. bread and butter) are driven by abstract linguistic knowledge of ordering constraints referencing the semantic, phonological, and lexical properties of the constituent words, or by prior direct experience with the specific items in questions. Using forced-choice and self-paced reading tasks, we demonstrate that online processing of never-before-seen binomials is influenced by abstract knowledge of ordering constraints, which we estimate with a probabilistic model. In contrast, online processing of highly frequent binomials is primarily driven by direct experience, which we estimate from corpus frequency counts. We propose a trade-off wherein processing of novel expressions relies upon abstract knowledge, while reliance upon direct experience increases with increased exposure to an expression. Our findings support theories of language processing in which both compositional generation and direct, holistic reuse of multi-word expressions play crucial roles. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  10. Structures of foot and mouth disease virus pentamers: Insight into capsid dissociation and unexpected pentamer reassociation.

    Directory of Open Access Journals (Sweden)

    Nayab Malik

    2017-09-01

    Full Text Available Foot-and-mouth disease virus (FMDV belongs to the Aphthovirus genus of the Picornaviridae, a family of small, icosahedral, non-enveloped, single-stranded RNA viruses. It is a highly infectious pathogen and is one of the biggest hindrances to the international trade of animals and animal products. FMDV capsids (which are unstable below pH6.5 release their genome into the host cell from an acidic compartment, such as that of an endosome, and in the process dissociate into pentamers. Whilst other members of the family (enteroviruses have been visualized to form an expanded intermediate capsid with holes from which inner capsid proteins (VP4, N-termini (VP1 and RNA can be released, there has been no visualization of any such state for an aphthovirus, instead the capsid appears to simply dissociate into pentamers. Here we present the 8-Å resolution structure of isolated dissociated pentamers of FMDV, lacking VP4. We also found these pentamers to re-associate into a rigid, icosahedrally symmetric assembly, which enabled their structure to be solved at higher resolution (5.2 Å. In this assembly, the pentamers unexpectedly associate 'inside out', but still with their exposed hydrophobic edges buried. Stabilizing interactions occur between the HI loop of VP2 and its symmetry related partners at the icosahedral 3-fold axes, and between the BC and EF loops of VP3 with the VP2 βB-strand and the CD loop at the 2-fold axes. A relatively extensive but subtle structural rearrangement towards the periphery of the dissociated pentamer compared to that in the mature virus provides insight into the mechanism of dissociation of FMDV and the marked difference in antigenicity.

  11. Mutation of the N-Terminal Region of Chikungunya Virus Capsid Protein: Implications for Vaccine Design.

    Science.gov (United States)

    Taylor, Adam; Liu, Xiang; Zaid, Ali; Goh, Lucas Y H; Hobson-Peters, Jody; Hall, Roy A; Merits, Andres; Mahalingam, Suresh

    2017-02-21

    Mosquito-transmitted chikungunya virus (CHIKV) is an arthritogenic alphavirus of the Togaviridae family responsible for frequent outbreaks of arthritic disease in humans. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleolus. In encephalitic alphaviruses, nuclear translocation induces host cell transcriptional shutoff; however, the role of capsid protein nucleolar localization in arthritogenic alphaviruses remains unclear. Using recombinant enhanced green fluorescent protein (EGFP)-tagged expression constructs and CHIKV infectious clones, we describe a nucleolar localization sequence (NoLS) in the N-terminal region of capsid protein, previously uncharacterized in CHIKV. Mutation of the NoLS by site-directed mutagenesis reduced efficiency of nuclear import of CHIKV capsid protein. In the virus, mutation of the capsid protein NoLS (CHIKV-NoLS) attenuated replication in mammalian and mosquito cells, producing a small-plaque phenotype. Attenuation of CHIKV-NoLS is likely due to disruption of the viral replication cycle downstream of viral RNA synthesis. In mice, CHIKV-NoLS infection caused no disease signs compared to wild-type CHIKV (CHIKV-WT)-infected mice; lack of disease signs correlated with significantly reduced viremia and decreased expression of proinflammatory factors. Mice immunized with CHIKV-NoLS, challenged with CHIKV-WT at 30 days postimmunization, develop no disease signs and no detectable viremia. Serum from CHIKV-NoLS-immunized mice is able to efficiently neutralize CHIKV infection in vitro Additionally, CHIKV-NoLS-immunized mice challenged with the related alphavirus Ross River virus showed reduced early and peak viremia postchallenge, indicating a cross-protective effect. The high degree of CHIKV-NoLS attenuation may improve CHIKV antiviral and rational vaccine design. IMPORTANCE CHIKV is a mosquito-borne pathogen capable of causing explosive epidemics of incapacitating joint pain

  12. Linguistic expressions and semantic processing a practical approach

    CERN Document Server

    Butler, Alastair

    2015-01-01

    This book introduces formal semantics techniques for a natural language processing audience. Methods discussed involve: (i) the denotational techniques used in model-theoretic semantics, which make it possible to determine whether a linguistic expression is true or false with respect to some model of the way things happen to be; and (ii) stages of interpretation, i.e., ways to arrive at meanings by evaluating and converting source linguistic expressions, possibly with respect to contexts, into output (logical) forms that could be used with (i). The book demonstrates that the methods allow w

  13. Cryo-electron Microscopy Reconstruction and Stability Studies of the Wild Type and the R432A Variant of Adeno-associated Virus Type 2 Reveal that Capsid Structural Stability Is a Major Factor in Genome Packaging.

    Science.gov (United States)

    Drouin, Lauren M; Lins, Bridget; Janssen, Maria; Bennett, Antonette; Chipman, Paul; McKenna, Robert; Chen, Weijun; Muzyczka, Nicholas; Cardone, Giovanni; Baker, Timothy S; Agbandje-McKenna, Mavis

    2016-10-01

    The adeno-associated viruses (AAV) are promising therapeutic gene delivery vectors and better understanding of their capsid assembly and genome packaging mechanism is needed for improved vector production. Empty AAV capsids assemble in the nucleus prior to genome packaging by virally encoded Rep proteins. To elucidate the capsid determinants of this process, structural differences between wild-type (wt) AAV2 and a packaging deficient variant, AAV2-R432A, were examined using cryo-electron microscopy and three-dimensional image reconstruction both at an ∼5.0-Å resolution (medium) and also at 3.8- and 3.7-Å resolutions (high), respectively. The high resolution structures showed that removal of the arginine side chain in AAV2-R432A eliminated hydrogen bonding interactions, resulting in altered intramolecular and intermolecular interactions propagated from under the 3-fold axis toward the 5-fold channel. Consistent with these observations, differential scanning calorimetry showed an ∼10°C decrease in thermal stability for AAV2-R432A compared to wt-AAV2. In addition, the medium resolution structures revealed differences in the juxtaposition of the less ordered, N-terminal region of their capsid proteins, VP1/2/3. A structural rearrangement in AAV2-R432A repositioned the βA strand region under the icosahedral 2-fold axis rather than antiparallel to the βB strand, eliminating many intramolecular interactions. Thus, a single amino acid substitution can significantly alter the AAV capsid integrity to the extent of reducing its stability and possibly rendering it unable to tolerate the stress of genome packaging. Furthermore, the data show that the 2-, 3-, and 5-fold regions of the capsid contributed to producing the packaging defect and highlight a tight connection between the entire capsid in maintaining packaging efficiency. The mechanism of AAV genome packaging is still poorly understood, particularly with respect to the capsid determinants of the required capsid

  14. Dissociating Face Identity and Facial Expression Processing Via Visual Adaptation

    Directory of Open Access Journals (Sweden)

    Hong Xu

    2012-10-01

    Full Text Available Face identity and facial expression are processed in two distinct neural pathways. However, most of the existing face adaptation literature studies them separately, despite the fact that they are two aspects from the same face. The current study conducted a systematic comparison between these two aspects by face adaptation, investigating how top- and bottom-half face parts contribute to the processing of face identity and facial expression. A real face (sad, “Adam” and its two size-equivalent face parts (top- and bottom-half were used as the adaptor in separate conditions. For face identity adaptation, the test stimuli were generated by morphing Adam's sad face with another person's sad face (“Sam”. For facial expression adaptation, the test stimuli were created by morphing Adam's sad face with his neutral face and morphing the neutral face with his happy face. In each trial, after exposure to the adaptor, observers indicated the perceived face identity or facial expression of the following test face via a key press. They were also tested in a baseline condition without adaptation. Results show that the top- and bottom-half face each generated a significant face identity aftereffect. However, the aftereffect by top-half face adaptation is much larger than that by the bottom-half face. On the contrary, only the bottom-half face generated a significant facial expression aftereffect. This dissociation of top- and bottom-half face adaptation suggests that face parts play different roles in face identity and facial expression. It thus provides further evidence for the distributed systems of face perception.

  15. α-Defensin HD5 Inhibits Human Papillomavirus 16 Infection via Capsid Stabilization and Redirection to the Lysosome

    Directory of Open Access Journals (Sweden)

    Mayim E. Wiens

    2017-01-01

    Full Text Available α-Defensins are an important class of abundant innate immune effectors that are potently antiviral against a number of nonenveloped viral pathogens; however, a common mechanism to explain their ability to block infection by these unrelated viruses is lacking. We previously found that human defensin 5 (HD5 blocks a critical host-mediated proteolytic processing step required for human papillomavirus (HPV infection. Here, we show that bypassing the requirement for this cleavage failed to abrogate HD5 inhibition. Instead, HD5 altered HPV trafficking in the cell. In the presence of an inhibitory concentration of HD5, HPV was internalized and reached the early endosome. The internalized capsid became permeable to antibodies and proteases; however, HD5 prevented dissociation of the viral capsid from the genome, reduced viral trafficking to the trans-Golgi network, redirected the incoming viral particle to the lysosome, and accelerated the degradation of internalized capsid proteins. This mechanism is equivalent to the mechanism by which HD5 inhibits human adenovirus. Thus, our data support capsid stabilization and redirection to the lysosome during infection as a general antiviral mechanism of α-defensins against nonenveloped viruses.

  16. Viable adenovirus vaccine prototypes: High-level production of a papillomavirus capsid antigen from the major late transcriptional unit

    OpenAIRE

    Berg, Michael; DiFatta, Julie; Hoiczyk, Egbert; Schlegel, Richard; Ketner, Gary

    2005-01-01

    Safe, effective, orally delivered, live adenovirus vaccines have been in use for three decades. Recombinant derivatives of the live adenovirus vaccines may prove an economical alternative to current vaccines for a variety of diseases. To explore that possibility, we constructed a series of recombinants that express the major capsid protein (L1) of canine oral papillomavirus (COPV), a model for mucosal human papillomavirus (HPV) infection. Vaccination with virus-like particles (VLPs) composed ...

  17. Biophysical characterization of the feline immunodeficiency virus p24 capsid protein conformation and in vitro capsid assembly.

    Directory of Open Access Journals (Sweden)

    Jennifer Serrière

    Full Text Available The Feline Immunodeficiency Virus (FIV capsid protein p24 oligomerizes to form a closed capsid that protects the viral genome. Because of its crucial role in the virion, FIV p24 is an interesting target for the development of therapeutic strategies, although little is known about its structure and assembly. We defined and optimized a protocol to overexpress recombinant FIV capsid protein in a bacterial system. Circular dichroism and isothermal titration calorimetry experiments showed that the structure of the purified FIV p24 protein was comprised mainly of α-helices. Dynamic light scattering (DLS and cross-linking experiments demonstrated that p24 was monomeric at low concentration and dimeric at high concentration. We developed a protocol for the in vitro assembly of the FIV capsid. As with HIV, an increased ionic strength resulted in FIV p24 assembly in vitro. Assembly appeared to be dependent on temperature, salt concentration, and protein concentration. The FIV p24 assembly kinetics was monitored by DLS. A limit end-point diameter suggested assembly into objects of definite shapes. This was confirmed by electron microscopy, where FIV p24 assembled into spherical particles. Comparison of FIV p24 with other retroviral capsid proteins showed that FIV assembly is particular and requires further specific study.

  18. Overcoming preexisting humoral immunity to AAV using capsid decoys.

    Science.gov (United States)

    Mingozzi, Federico; Anguela, Xavier M; Pavani, Giulia; Chen, Yifeng; Davidson, Robert J; Hui, Daniel J; Yazicioglu, Mustafa; Elkouby, Liron; Hinderer, Christian J; Faella, Armida; Howard, Carolann; Tai, Alex; Podsakoff, Gregory M; Zhou, Shangzhen; Basner-Tschakarjan, Etiena; Wright, John Fraser; High, Katherine A

    2013-07-17

    Adeno-associated virus (AAV) vectors delivered through the systemic circulation successfully transduce various target tissues in animal models. However, similar attempts in humans have been hampered by the high prevalence of neutralizing antibodies to AAV, which completely block vector transduction. We show in both mouse and nonhuman primate models that addition of empty capsid to the final vector formulation can, in a dose-dependent manner, adsorb these antibodies, even at high titers, thus overcoming their inhibitory effect. To further enhance the safety of the approach, we mutated the receptor binding site of AAV2 to generate an empty capsid mutant that can adsorb antibodies but cannot enter a target cell. Our work suggests that optimizing the ratio of full/empty capsids in the final formulation of vector, based on a patient's anti-AAV titers, will maximize the efficacy of gene transfer after systemic vector delivery.

  19. Quantum dot-induced viral capsid assembling in dissociation buffer

    Directory of Open Access Journals (Sweden)

    Gao D

    2013-06-01

    Full Text Available Ding Gao,1,2 Zhi-Ping Zhang,1 Feng Li,3 Dong Men,1 Jiao-Yu Deng,1 Hong-Ping Wei,1 Xian-En Zhang,1 Zong-Qiang Cui1 1State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, 2Graduate University of Chinese Academy of Sciences, Beijing, 3Division of Nanobiomedicine and i-Lab, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, People's Republic of China Abstract: Viruses encapsulating inorganic nanoparticles are a novel type of nanostructure with applications in biomedicine and biosensors. However, the encapsulation and assembly mechanisms of these hybridized virus-based nanoparticles (VNPs are still unknown. In this article, it was found that quantum dots (QDs can induce simian virus 40 (SV40 capsid assembly in dissociation buffer, where viral capsids should be disassembled. The analysis of the transmission electron microscope, dynamic light scattering, sucrose density gradient centrifugation, and cryo-electron microscopy single particle reconstruction experimental results showed that the SV40 major capsid protein 1 (VP1 can be assembled into ≈25 nm capsids in the dissociation buffer when QDs are present and that the QDs are encapsulated in the SV40 capsids. Moreover, it was determined that there is a strong affinity between QDs and the SV40 VP1 proteins (KD = 2.19E-10 M, which should play an important role in QD encapsulation in the SV40 viral capsids. This study provides a new understanding of the assembly mechanism of SV40 virus-based nanoparticles with QDs, which may help in the design and construction of other similar virus-based nanoparticles. Keywords: quantum dots, simian virus 40, self-assembly, encapsulation, virus-based nanoparticles

  20. Capsid Mutated Adeno-Associated Virus Delivered to the Anterior Chamber Results in Efficient Transduction of Trabecular Meshwork in Mouse and Rat.

    Directory of Open Access Journals (Sweden)

    Barbara Bogner

    Full Text Available Adeno associated virus (AAV is well known for its ability to deliver transgenes to retina and to mediate improvements in animal models and patients with inherited retinal disease. Although the field is less advanced, there is growing interest in AAV's ability to target cells of the anterior segment. The purpose of our study was to fully articulate a reliable and reproducible method for injecting the anterior chamber (AC of mice and rats and to investigate the transduction profiles of AAV2- and AAV8-based capsid mutants containing self-complementary (sc genomes in the anterior segment of the eye.AC injections were performed in C57BL/6 mice and Sprague Dawley rats. The cornea was punctured anterior of the iridocorneal angle. To seal the puncture site and to prevent reflux an air bubble was created in the AC. scAAVs expressing GFP were injected and transduction was evaluated by immunohistochemistry. Both parent serotype and capsid modifications affected expression. scAAV2- based vectors mediated efficient GFP-signal in the corneal endothelium, ciliary non-pigmented epithelium (NPE, iris and chamber angle including trabecular meshwork, with scAAV2(Y444F and scAAV2(triple being the most efficient.This is the first study to semi quantitatively evaluate transduction of anterior segment tissues following injection of capsid-mutated AAV vectors. scAAV2- based vectors transduced corneal endothelium, ciliary NPE, iris and trabecular meshwork more effectively than scAAV8-based vectors. Mutagenesis of surface-exposed tyrosine residues greatly enhanced transduction efficiency of scAAV2 in these tissues. The number of Y-F mutations was not directly proportional to transduction efficiency, however, suggesting that proteosomal avoidance alone may not be sufficient. These results are applicable to the development of targeted, gene-based strategies to investigate pathological processes of the anterior segment and may be applied toward the development of gene

  1. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    Energy Technology Data Exchange (ETDEWEB)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Kojima, H.; Mizutani, K.; Okazaki, S., E-mail: okazaki@apchem.nagoya-u.ac.jp [Department of Applied Chemistry, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603 (Japan); Fujimoto, K. [Department of Pharmacy, College of Pharmaceutical Sciences, Ritsumeikan University, Nojihigashi, Kusatsu, Shiga 525-8577 (Japan); Nakagawa, A. [Institute for Protein Research, Osaka University, Yamadaoka, Suita, Osaka 565-0871 (Japan); Nomoto, A. [Institute of Microbial Chemistry, Kamiosaki, Shinagawa-ku, Tokyo 141-0021 (Japan)

    2014-10-28

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 10{sup 6} all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  2. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    Science.gov (United States)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Fujimoto, K.; Kojima, H.; Mizutani, K.; Nakagawa, A.; Nomoto, A.; Okazaki, S.

    2014-10-01

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 106 all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it.

  3. All-atom molecular dynamics calculation study of entire poliovirus empty capsids in solution

    International Nuclear Information System (INIS)

    Andoh, Y.; Yoshii, N.; Yamada, A.; Kojima, H.; Mizutani, K.; Okazaki, S.; Fujimoto, K.; Nakagawa, A.; Nomoto, A.

    2014-01-01

    Small viruses that belong, for example, to the Picornaviridae, such as poliovirus and foot-and-mouth disease virus, consist simply of capsid proteins and a single-stranded RNA (ssRNA) genome. The capsids are quite stable in solution to protect the genome from the environment. Here, based on long-time and large-scale 6.5 × 10 6 all-atom molecular dynamics calculations for the Mahoney strain of poliovirus, we show microscopic properties of the viral capsids at a molecular level. First, we found equilibrium rapid exchange of water molecules across the capsid. The exchange rate is so high that all water molecules inside the capsid (about 200 000) can leave the capsid and be replaced by water molecules from the outside in about 25 μs. This explains the capsid's tolerance to high pressures and deactivation by exsiccation. In contrast, the capsid did not exchange ions, at least within the present simulation time of 200 ns. This implies that the capsid can function, in principle, as a semipermeable membrane. We also found that, similar to the xylem of trees, the pressure of the solution inside the capsid without the genome was negative. This is caused by coulombic interaction of the solution inside the capsid with the capsid excess charges. The negative pressure may be compensated by positive osmotic pressure by the solution-soluble ssRNA and the counter ions introduced into it

  4. Detention of HPV L1 Capsid Protein and hTERC Gene in Screening of Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Huang Bin

    2013-06-01

    Full Text Available   Objective(s: To investigate the expression of human papilloma virus (HPV L1 capsid protein, and human telomerase RNA component (hTERC in cervical cancer and the role of detection of both genes in screening of cervical cancer.   Materials and Methods: A total of 309 patients were recruited and cervical exfoliated cells were collected. Immunocytochemistry was employed to detect HPV L1 capsid protein, and fluorescent in situ hybridization (FISH was performed to detect the hTERC. Results: The expression of HPV L1 capsid protein reduced with the increase of the histological grade of cervical cells and was negatively related to the grade of cervical lesions. However, the expression of hTERC increased with the increase of the histological grade and positively associated with the grade of cervical lesions. The proportion of patients with L1(-/hTERC(+ was higher in patients with histological grade of CIN2 or higher than that in those with histological grade of CIN1. The L1(+/hTERC(- and L1(-/hTERC(- were negatively related to the grade of cervical lesions. L1(-/hTERC(+ was positively associated with the grade of cervical lesions. The L1/hTERC ratio increased. The negative predictive value of both HPV L1 and hTERC was higher than that of HPV L1 or hTERC, but there was no marked difference in the screening efficacy of cervical cancer among HPV L1, hTERC and HPV L1+hTERC. Conclusion: HPV L1 capsid protein and hTERC gene may serve as markers for the early diagnosis and prediction of cervical lesions. The increase in L1/hTERC ratio reflects the progression of cervical lesions to a certain extent.

  5. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min; Huang, Hui [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); Zhang, Jun; Xia, Ning-Shao [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); School of Public Health, Xiamen University, Xiamen, Fujian 361005 (China); Miao, Ji, E-mail: jmiao@xmu.edu.cn [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); Zhao, Qinjian, E-mail: qinjian_zhao@xmu.edu.cn [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Public Health, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-01-18

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulating the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.

  6. Molecular characterization of genome segments 1 and 3 encoding two capsid proteins of Antheraea mylitta cytoplasmic polyhedrosis virus

    Directory of Open Access Journals (Sweden)

    Chakrabarti Mrinmay

    2010-08-01

    Full Text Available Abstract Background Antheraea mylitta cytoplasmic polyhedrosis virus (AmCPV, a cypovirus of Reoviridae family, infects Indian non-mulberry silkworm, Antheraea mylitta, and contains 11 segmented double stranded RNA (S1-S11 in its genome. Some of its genome segments (S2 and S6-S11 have been previously characterized but genome segments encoding viral capsid have not been characterized. Results In this study genome segments 1 (S1 and 3 (S3 of AmCPV were converted to cDNA, cloned and sequenced. S1 consisted of 3852 nucleotides, with one long ORF of 3735 nucleotides and could encode a protein of 1245 amino acids with molecular mass of ~141 kDa. Similarly, S3 consisted of 3784 nucleotides having a long ORF of 3630 nucleotides and could encode a protein of 1210 amino acids with molecular mass of ~137 kDa. BLAST analysis showed 20-22% homology of S1 and S3 sequence with spike and capsid proteins, respectively, of other closely related cypoviruses like Bombyx mori CPV (BmCPV, Lymantria dispar CPV (LdCPV, and Dendrolimus punctatus CPV (DpCPV. The ORFs of S1 and S3 were expressed as 141 kDa and 137 kDa insoluble His-tagged fusion proteins, respectively, in Escherichia coli M15 cells via pQE-30 vector, purified through Ni-NTA chromatography and polyclonal antibodies were raised. Immunoblot analysis of purified polyhedra, virion particles and virus infected mid-gut cells with the raised anti-p137 and anti-p141 antibodies showed specific immunoreactive bands and suggest that S1 and S3 may code for viral structural proteins. Expression of S1 and S3 ORFs in insect cells via baculovirus recombinants showed to produce viral like particles (VLPs by transmission electron microscopy. Immunogold staining showed that S3 encoded proteins self assembled to form viral outer capsid and VLPs maintained their stability at different pH in presence of S1 encoded protein. Conclusion Our results of cloning, sequencing and functional analysis of AmCPV S1 and S3 indicate that S3

  7. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus

    Energy Technology Data Exchange (ETDEWEB)

    Xiang, Qi-Wang; Zou, Jin-Feng; Wang, Xin [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian 271018 (China); Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong, Taian 271018 (China); Sun, Ya-Ni [College of Veterinary Medicine, Northwest A and F University, Shanxi, Yangling 712100 (China); Gao, Ji-Ming; Xie, Zhi-Jing [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian 271018 (China); Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong, Taian 271018 (China); Wang, Yu [Department of Basic Medical Sciences, Taishan Medical College, Shandong, Taian 271000 (China); Zhu, Yan-Li [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian 271018 (China); Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong, Taian 271018 (China); Jiang, Shi-Jin, E-mail: sjjiang@sdau.edu.cn [Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Shandong, Taian 271018 (China); Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong, Taian 271018 (China)

    2013-02-05

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1-17 and 18-36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNA binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome.

  8. Identification of two functional nuclear localization signals in the capsid protein of duck circovirus

    International Nuclear Information System (INIS)

    Xiang, Qi-Wang; Zou, Jin-Feng; Wang, Xin; Sun, Ya-Ni; Gao, Ji-Ming; Xie, Zhi-Jing; Wang, Yu; Zhu, Yan-Li; Jiang, Shi-Jin

    2013-01-01

    The capsid protein (CP) of duck circovirus (DuCV) is the major immunogenic protein and has a high proportion of arginine residues concentrated at the N terminus of the protein, which inhibits efficient mRNA translation in prokaryotic expression systems. In this study, we investigated the subcellular distribution of DuCV CP expressed via recombinant baculoviruses in Sf9 cells and the DNA binding activities of the truncated recombinant DuCV CPs. The results showed that two independent bipartite nuclear localization signals (NLSs) situated at N-terminal 1–17 and 18–36 amino acid residue of the CP. Moreover, two expression level regulatory signals (ELRSs) and two DNA binding signals (DBSs) were also mapped to the N terminus of the protein and overlapped with the two NLSs. The ability of CP to bind DNA, coupled with the karyophilic nature of this protein, strongly suggests that it may be responsible for nuclear targeting of the viral genome.

  9. Single Amino Acid Modification of Adeno-Associated Virus Capsid Changes Transduction and Humoral Immune Profiles

    Science.gov (United States)

    Diprimio, Nina; Bowles, Dawn E.; Hirsch, Matthew L.; Monahan, Paul E.; Asokan, Aravind; Rabinowitz, Joseph; Agbandje-McKenna, Mavis

    2012-01-01

    Adeno-associated virus (AAV) vectors have the potential to promote long-term gene expression. Unfortunately, humoral immunity restricts patient treatment and in addition provides an obstacle to the potential option of vector readministration. In this study, we describe a comprehensive characterization of the neutralizing antibody (NAb) response to AAV type 1 (AAV1) through AAV5 both in vitro and in vivo. These results demonstrated that NAbs generated from one AAV type are unable to neutralize the transduction of other types. We extended this observation by demonstrating that a rationally engineered, muscle-tropic AAV2 mutant containing 5 amino acid substitutions from AAV1 displayed a NAb profile different from those of parental AAV2 and AAV1. Here we found that a single insertion of Thr from AAV1 into AAV2 capsid at residue 265 preserved high muscle transduction, while also changing the immune profile. To better understand the role of Thr insertion at position 265, we replaced all 20 amino acids and evaluated both muscle transduction and the NAb response. Of these variants, 8 mutants induced higher muscle transduction than AAV2. Additionally, three classes of capsid NAb immune profile were defined based on the ability to inhibit transduction from AAV2 or mutants. While no relationship was found between transduction, amino acid properties, and NAb titer or its cross-reactivity, these studies map a critical capsid motif involved in all steps of AAV infectivity. Our results suggest that AAV types can be utilized not only as templates to generate mutants with enhanced transduction efficiency but also as substrates for repeat administration. PMID:22593151

  10. Human rhinovirus capsid dynamics is controlled by canyon flexibility

    International Nuclear Information System (INIS)

    Reisdorph, Nichole; Thomas, John J.; Katpally, Umesh; Chase, Elaine; Harris, Ken; Siuzdak, Gary; Smith, Thomas J.

    2003-01-01

    Quantitative enzyme accessibility experiments using nano liquid chromatography electrospray mass spectrometry combined with limited proteolysis and isotope-labeling was used to examine the dynamic nature of the human rhinovirus (HRV) capsid in the presence of three antiviral compounds, a neutralizing Fab, and drug binding cavity mutations. Using these methods, it was found that the antivirals WIN 52084 and picovir (pleconaril) stabilized the capsid, while dansylaziridine caused destabilization. Site-directed mutations in the drug-binding cavity were found to stabilize the HRV14 capsid against proteolytic digestion in a manner similar to WIN 52084 and pleconaril. Antibodies that bind to the NIm-IA antigenic site and penetrate the canyon were also observed to protect the virion against proteolytic cleavage. These results demonstrate that quantifying the effects of antiviral ligands on protein 'breathing' can be used to compare their mode of action and efficacy. In this case, it is apparent that hydrophobic antiviral agents, antibodies, or mutations in the canyon region block viral breathing. Therefore, these studies demonstrate that mobility in the canyon region is a major determinant in capsid breathing

  11. Molecular characterization of capsid protein gene of potato virus X ...

    African Journals Online (AJOL)

    Molecular characterization of capsid protein gene of potato virus X from Pakistan. Arshad Jamal, Idrees Ahmad Nasir, Bushra Tabassum, Muhammad Tariq, Abdul Munim Farooq, Zahida Qamar, Mohsin Ahmad Khan, Nadeem Ahmad, Muhammad Shafiq, Muhammad Saleem Haider, M. Arshad Javed, Tayyab Husnain ...

  12. Flexible Connectors between Capsomer Subunits that Regulate Capsid Assembly.

    Science.gov (United States)

    Hasek, Mary L; Maurer, Joshua B; Hendrix, Roger W; Duda, Robert L

    2017-08-04

    Viruses build icosahedral capsids of specific size and shape by regulating the spatial arrangement of the hexameric and pentameric protein capsomers in the growing shell during assembly. In the T=7 capsids of Escherichia coli bacteriophage HK97 and other phages, 60 capsomers are hexons, while the rest are pentons that are correctly positioned during assembly. Assembly of the HK97 capsid to the correct size and shape has been shown to depend on specific ionic contacts between capsomers. We now describe additional ionic interactions within capsomers that also regulate assembly. Each is between the long hairpin, the "E-loop," that extends from one subunit to the adjacent subunit within the same capsomer. Glutamate E153 on the E-loop and arginine R210 on the adjacent subunit's backbone alpha-helix form salt bridges in hexamers and pentamers. Mutations that disrupt these salt bridges were lethal for virus production, because the mutant proteins assembled into tubes or sheets instead of capsids. X-ray structures show that the E153-R210 links are flexible and maintained during maturation despite radical changes in capsomer shape. The E153-R210 links appear to form early in assembly to enable capsomers to make programmed changes in their shape during assembly. The links also prevent flattening of capsomers and premature maturation. Mutant phenotypes and modeling support an assembly model in which flexible E153-R210 links mediate capsomer shape changes that control where pentons are placed to create normal-sized capsids. The E-loop may be conserved in other systems in order to play similar roles in regulating assembly. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Periodic table of virus capsids: implications for natural selection and design.

    Science.gov (United States)

    Mannige, Ranjan V; Brooks, Charles L

    2010-03-04

    For survival, most natural viruses depend upon the existence of spherical capsids: protective shells of various sizes composed of protein subunits. So far, general evolutionary pressures shaping capsid design have remained elusive, even though an understanding of such properties may help in rationally impeding the virus life cycle and designing efficient nano-assemblies. This report uncovers an unprecedented and species-independent evolutionary pressure on virus capsids, based on the the notion that the simplest capsid designs (or those capsids with the lowest "hexamer complexity", C(h)) are the fittest, which was shown to be true for all available virus capsids. The theories result in a physically meaningful periodic table of virus capsids that uncovers strong and overarching evolutionary pressures, while also offering geometric explanations to other capsid properties (rigidity, pleomorphy, auxiliary requirements, etc.) that were previously considered to be unrelatable properties of the individual virus. Apart from describing a universal rule for virus capsid evolution, our work (especially the periodic table) provides a language with which highly diverse virus capsids, unified only by geometry, may be described and related to each other. Finally, the available virus structure databases and other published data reiterate the predicted geometry-derived rules, reinforcing the role of geometry in the natural selection and design of virus capsids.

  14. Processing of emotional facial expressions in Korsakoff's syndrome.

    NARCIS (Netherlands)

    Montagne, B.; Kessels, R.P.C.; Wester, A.J.; Haan, E.H.F. de

    2006-01-01

    Interpersonal contacts depend to a large extent on understanding emotional facial expressions of others. Several neurological conditions may affect proficiency in emotional expression recognition. It has been shown that chronic alcoholics are impaired in labelling emotional expressions. More

  15. Processing of individual items during ensemble coding of facial expressions

    Directory of Open Access Journals (Sweden)

    Huiyun Li

    2016-09-01

    Full Text Available There is growing evidence that human observers are able to extract the mean emotion or other type of information from a set of faces. The most intriguing aspect of this phenomenon is that observers often fail to identify or form a representation for individual faces in a face set. However, most of these results were based on judgments under limited processing resource. We examined a wider range of exposure time and observed how the relationship between the extraction of a mean and representation of individual facial expressions would change. The results showed that with an exposure time of 50 milliseconds for the faces, observers were more sensitive to mean representation over individual representation, replicating the typical findings in the literature. With longer exposure time, however, observers were able to extract both individual and mean representation more accurately. Furthermore, diffusion model analysis revealed that the mean representation is also more prone to suffer from the noise accumulated in redundant processing time and leads to a more conservative decision bias, whereas individual representations seem more resistant to this noise. Results suggest that the encoding of emotional information from multiple faces may take two forms: single face processing and crowd face processing.

  16. Characterization of the invariable residue 51 mutations of human immunodeficiency virus type 1 capsid protein on in vitro CA assembly and infectivity

    Directory of Open Access Journals (Sweden)

    Höglund Stefan

    2007-09-01

    Full Text Available Abstract Background The mature HIV-1 conical core formation proceeds through highly regulated protease cleavage of the Gag precursor, which ultimately leads to substantial rearrangements of the capsid (CAp24 molecule involving both inter- and intra-molecular contacts of the CAp24 molecules. In this aspect, Asp51 which is located in the N-terminal domain of HIV-1 CAp24 plays an important role by forming a salt-bridge with the free imino terminus Pro1 following proteolytic cleavage and liberation of the CAp24 protein from the Pr55Gag precursor. Thus, previous substitution mutation of Asp51 to alanine (D51A has shown to be lethal and that this invariable residue was found essential for tube formation in vitro, virus replication and virus capsid formation. Results We extended the above investigation by introducing three different D51 substitution mutations (D51N, D51E, and D51Q into both prokaryotic and eukaryotic expression systems and studied their effects on in vitro capsid assembly and virus infectivity. Two substitution mutations (D51E and D51N had no substantial effect on in vitro capsid assembly, yet they impaired viral infectivity and particle production. In contrast, the D51Q mutant was defective both for in vitro capsid assembly and for virus replication in cell culture. Conclusion These results show that substitutions of D51 with glutamate, glutamine, or asparagine, three amino acid residues that are structurally related to aspartate, could partially rescue both in vitro capsid assembly and intra-cellular CAp24 production but not replication of the virus in cultured cells.

  17. Outer capsid proteins induce the formation of pores in epithelial cells

    International Nuclear Information System (INIS)

    Ruiz, M; Abad M; Michelangely, F; Charpilienne, A; Cohen, J

    1995-01-01

    Two mechanisms of entrance in cell of the rotavirus, during the infection, were proposed: a direct entrance through the plasmatic membrane or by means of endocytosis. In the two cases, a permeabilization mechanism of the membrane (cellular or of the endocytic vesicle, respectively) should occur. It has been shown that the rotavirus induces permeabilization of liposomes and of membrane vesicles. In this work, are studied the changes of intact cells permeability, measuring the entrance of e tide bromides. Viral particles of double capsid of the RF stump produce an increase of the cells membrane MA104 permeability, while the simple capsid ones don't induce effect. This phenomenon requires the particles trypsinization, and occurs in a means where the concentration of free Ca is lower to 1 micromolar. The temporary course of the fluorescence increase is sigmoid. The latency, the speed and the width depend on the relationship of virus / cell, and it can be observed up to 100% of permeabilization in relation to the effect of digitonin. The pores induced in the membrane by the rotavirus are irreversible. The permeabilizer effect of the rotavirus on the membrane was observed in other cellular lines as Hela and HT29, but not in the L929 ones. These results suggest that one or more proteins of the external capsid are responsible s of the effect. These could be involved in the penetration process of the virus towards the cytoplasm and could be one of the restrictive factor of the cell infection by means of the virus [es

  18. Engineering bacterial surface displayed human norovirus capsid proteins: A novel system to explore interaction between norovirus and ligands

    Directory of Open Access Journals (Sweden)

    Mengya eNiu

    2015-12-01

    Full Text Available Human noroviruses (HuNoVs are major contributors to acute nonbacterial gastroenteritis outbreaks. Many aspects of HuNoVs are poorly understood due to both the current inability to culture HuNoVs, and the lack of efficient small animal models. Surrogates for HuNoVs, such as recombinant viral like particles (VLPs expressed in eukaryotic system or P particles expressed in prokaryotic system, have been used for studies in immunology and interaction between the virus and its receptors. However, it is difficult to use VLPs or P particles to collect or isolate potential ligands binding to these recombinant capsid proteins. In this study, a new strategy was used to collect HuNoVs binding ligands through the use of ice nucleation protein (INP to display recombinant capsid proteins of HuNoVs on bacterial surfaces. The viral protein-ligand complex could be easily separated by a low speed centrifugation step. This system was also used to explore interaction between recombinant capsid proteins of HuNoVs and their receptors. In this system, the VP1 capsid encoding gene (ORF2 and the protruding domain (P domain encoding gene (3’ terminal fragment of ORF2 of HuNoVs GI.1 and GII.4 were fused with 5’ terminal fragment of ice nucleation protein encoding gene (inaQn. The results demonstrated that the recombinant VP1 and P domains of HuNoVs were expressed and anchored on the surface of Escherichia coli BL21 cells after the bacteria were transformed with the corresponding plasmids. Both cell surface displayed VP1 and P domains could be recognized by HuNoVs specific antibodies and interact with the viral histo-blood group antigens receptors. In both cases, displayed P domains had better binding abilities than VP1. This new strategy of using displayed HuNoVs capsid proteins on the bacterial surface could be utilized to separate HuNoVs binding components from complex samples, to investigate interaction between the virus and its receptors, as well as to develop an

  19. The structure of avian polyomavirus reveals variably sized capsids, non-conserved inter-capsomere interactions, and a possible location of the minor capsid protein VP4

    International Nuclear Information System (INIS)

    Shen, Peter S.; Enderlein, Dirk; Nelson, Christian D.S.; Carter, Weston S.; Kawano, Masaaki; Xing Li; Swenson, Robert D.; Olson, Norman H.; Baker, Timothy S.; Cheng, R. Holland; Atwood, Walter J.; Johne, Reimar; Belnap, David M.

    2011-01-01

    Avian polyomavirus (APV) causes a fatal, multi-organ disease among several bird species. Using cryogenic electron microscopy and other biochemical techniques, we investigated the structure of APV and compared it to that of mammalian polyomaviruses, particularly JC polyomavirus and simian virus 40. The structure of the pentameric major capsid protein (VP1) is mostly conserved; however, APV VP1 has a unique, truncated C-terminus that eliminates an intercapsomere-connecting β-hairpin observed in other polyomaviruses. We postulate that the terminal β-hairpin locks other polyomavirus capsids in a stable conformation and that absence of the hairpin leads to the observed capsid size variation in APV. Plug-like density features were observed at the base of the VP1 pentamers, consistent with the known location of minor capsid proteins VP2 and VP3. However, the plug density is more prominent in APV and may include VP4, a minor capsid protein unique to bird polyomaviruses.

  20. Structural determination of importin alpha in complex with beak and feather disease virus capsid nuclear localization signal

    International Nuclear Information System (INIS)

    Patterson, Edward I.; Dombrovski, Andrew K.; Swarbrick, Crystall M.D.; Raidal, Shane R.; Forwood, Jade K.

    2013-01-01

    Highlights: •Circovirus capsid proteins contain large nuclear localization signals (NLS). •A method of nuclear import has not been elucidated. •Beak and feather disease virus (BFDV) capsid NLS was crystallized with importin α. •The structure showed BFDV NLS binding to the major site of importin α. •Result shows implications for mechanism of nuclear transport for all circoviruses. -- Abstract: Circoviruses represent a rapidly increasing genus of viruses that infect a variety of vertebrates. Replication requires shuttling viral molecules into the host cell nucleus, a process facilitated by capsid-associated protein (Cap). Whilst a nuclear localization signal (NLS) has been shown to mediate nuclear translocation, the mode of nuclear transport remains to be elucidated. To better understand this process, beak and feather disease virus (BFDV) Cap NLS was crystallized with nuclear import receptor importin-α (Impα). Diffraction yielded structural data to 2.9 Å resolution, and the binding site on both Impα and BFDV Cap NLS were well resolved. The binding mechanism for the major site is likely conserved across circoviruses as supported by the similarity of NLSs in circovirus Caps. This finding illuminates a crucial step for infection of host cells by this viral family, and provides a platform for rational drug design against the binding interface

  1. Structural basis for the development of avian virus capsids that display influenza virus proteins and induce protective immunity.

    Science.gov (United States)

    Pascual, Elena; Mata, Carlos P; Gómez-Blanco, Josué; Moreno, Noelia; Bárcena, Juan; Blanco, Esther; Rodríguez-Frandsen, Ariel; Nieto, Amelia; Carrascosa, José L; Castón, José R

    2015-03-01

    Bioengineering of viruses and virus-like particles (VLPs) is a well-established approach in the development of new and improved vaccines against viral and bacterial pathogens. We report here that the capsid of a major avian pathogen, infectious bursal disease virus (IBDV), can accommodate heterologous proteins to induce protective immunity. The structural units of the ~70-nm-diameter T=13 IBDV capsid are trimers of VP2, which is made as a precursor (pVP2). The pVP2 C-terminal domain has an amphipathic α helix that controls VP2 polymorphism. In the absence of the VP3 scaffolding protein, 466-residue pVP2 intermediates bearing this α helix assemble into genuine VLPs only when expressed with an N-terminal His6 tag (the HT-VP2-466 protein). HT-VP2-466 capsids are optimal for protein insertion, as they are large enough (cargo space, ~78,000 nm(3)) and are assembled from a single protein. We explored HT-VP2-466-based chimeric capsids initially using enhanced green fluorescent protein (EGFP). The VLP assembly yield was efficient when we coexpressed EGFP-HT-VP2-466 and HT-VP2-466 from two recombinant baculoviruses. The native EGFP structure (~240 copies/virion) was successfully inserted in a functional form, as VLPs were fluorescent, and three-dimensional cryo-electron microscopy showed that the EGFP molecules incorporated at the inner capsid surface. Immunization of mice with purified EGFP-VLPs elicited anti-EGFP antibodies. We also inserted hemagglutinin (HA) and matrix (M2) protein epitopes derived from the mouse-adapted A/PR/8/34 influenza virus and engineered several HA- and M2-derived chimeric capsids. Mice immunized with VLPs containing the HA stalk, an M2 fragment, or both antigens developed full protection against viral challenge. Virus-like particles (VLPs) are multimeric protein cages that mimic the infectious virus capsid and are potential candidates as nonliving vaccines that induce long-lasting protection. Chimeric VLPs can display or include foreign

  2. Tyrosine Mutation in AAV9 Capsid Improves Gene Transfer to the Mouse Lung.

    Science.gov (United States)

    Martini, Sabrina V; Silva, Adriana L; Ferreira, Debora; Rabelo, Rafael; Ornellas, Felipe M; Gomes, Karina; Rocco, Patricia R M; Petrs-Silva, Hilda; Morales, Marcelo M

    2016-01-01

    Adeno-associated virus (AAV) vectors are being increasingly used as the vector of choice for in vivo gene delivery and gene therapy for many pulmonary diseases. Recently, it was shown that phosphorylation of surface-exposed tyrosine residues from AAV capsid targets the viral particles for ubiquitination and proteasome-mediated degradation, and mutations of these tyrosine residues lead to highly efficient vector transduction in vitro and in vivo in different organs. In this study, we evaluated the pulmonary transgene expression efficacy of AAV9 vectors containing point mutations in surface-exposed capsid tyrosine residues. Eighteen C57BL/6 mice were randomly assigned into three groups: (1) a control group (CTRL) animals underwent intratracheal (i.t.) instillation of saline, (2) the wild-type AAV9 group (WT-AAV9, 1010 vg), and (3) the tyrosine-mutant Y731F AAV9 group (M-AAV9, 1010 vg), which received (i.t.) self-complementary AAV9 vectors containing the DNA sequence of enhanced green fluorescence protein (eGFP). Four weeks after instillation, lung mechanics, morphometry, tissue cellularity, gene expression, inflammatory cytokines, and growth factor expression were analyzed. No significant differences were observed in lung mechanics and morphometry among the experimental groups. However, the number of polymorphonuclear cells was higher in the WT-AAV9 group than in the CTRL and M-AAV9 groups, suggesting that the administration of tyrosine-mutant AAV9 vectors was better tolerated. Tyrosine-mutant AAV9 vectors significantly improved transgene delivery to the lung (30%) compared with their wild-type counterparts, without eliciting an inflammatory response. Our results provide the impetus for further studies to exploit the use of AAV9 vectors as a tool for pulmonary gene therapy. © 2016 The Author(s) Published by S. Karger AG, Basel.

  3. Functional requirements of the yellow fever virus capsid protein.

    Science.gov (United States)

    Patkar, Chinmay G; Jones, Christopher T; Chang, Yu-hsuan; Warrier, Ranjit; Kuhn, Richard J

    2007-06-01

    Although it is known that the flavivirus capsid protein is essential for genome packaging and formation of infectious particles, the minimal requirements of the dimeric capsid protein for virus assembly/disassembly have not been characterized. By use of a trans-packaging system that involved packaging a yellow fever virus (YFV) replicon into pseudo-infectious particles by supplying the YFV structural proteins using a Sindbis virus helper construct, the functional elements within the YFV capsid protein (YFC) were characterized. Various N- and C-terminal truncations, internal deletions, and point mutations of YFC were analyzed for their ability to package the YFV replicon. Consistent with previous reports on the tick-borne encephalitis virus capsid protein, YFC demonstrates remarkable functional flexibility. Nearly 40 residues of YFC could be removed from the N terminus while the ability to package replicon RNA was retained. Additionally, YFC containing a deletion of approximately 27 residues of the C terminus, including a complete deletion of C-terminal helix 4, was functional. Internal deletions encompassing the internal hydrophobic sequence in YFC were, in general, tolerated to a lesser extent. Site-directed mutagenesis of helix 4 residues predicted to be involved in intermonomeric interactions were also analyzed, and although single mutations did not affect packaging, a YFC with the double mutation of leucine 81 and valine 88 was nonfunctional. The effects of mutations in YFC on the viability of YFV infection were also analyzed, and these results were similar to those obtained using the replicon packaging system, thus underscoring the flexibility of YFC with respect to the requirements for its functioning.

  4. Cleavage sites within the poliovirus capsid protein precursors

    International Nuclear Information System (INIS)

    Larsen, G.R.; Anderson, C.W.; Dorner, A.J.; Semler, B.L.; Wimmer, E.

    1982-01-01

    Partial amino-terminal sequence analysis was performed on radiolabeled poliovirus capsid proteins VP1, VP2, and VP3. A computer-assisted comparison of the amino acid sequences obtained with that predicted by the nucleotide sequence of the poliovirus genome allows assignment of the amino terminus of each capsid protein to a unique position within the virus polyprotein. Sequence analysis of trypsin-digested VP4, which has a blocked amino terminus, demonstrates that VP4 is encoded at or very near to the amino terminus of the polyprotein. The gene order of the capsid proteins is VP4-VP2-VP3-VP1. Cleavage of VP0 to VP4 and VP2 is shown to occur between asparagine and serine, whereas the cleavages that separate VP2/VP3 and VP3/VP1 occur between glutamine and glycine residues. This finding supports the hypothesis that the cleavage of VP0, which occurs during virion morphogenesis, is distinct from the cleavages that separate functional regions of the polyprotein

  5. Rapid increase of near atomic resolution virus capsid structures determined by cryo-electron microscopy.

    Science.gov (United States)

    Ho, Phuong T; Reddy, Vijay S

    2018-01-01

    The recent technological advances in electron microscopes, detectors, as well as image processing and reconstruction software have brought single particle cryo-electron microscopy (cryo-EM) into prominence for determining structures of bio-molecules at near atomic resolution. This has been particularly true for virus capsids, ribosomes, and other large assemblies, which have been the ideal specimens for structural studies by cryo-EM approaches. An analysis of time series metadata of virus structures on the methods of structure determination, resolution of the structures, and size of the virus particles revealed a rapid increase in the virus structures determined by cryo-EM at near atomic resolution since 2010. In addition, the data highlight the median resolution (∼3.0 Å) and size (∼310.0 Å in diameter) of the virus particles determined by X-ray crystallography while no such limits exist for cryo-EM structures, which have a median diameter of 508 Å. Notably, cryo-EM virus structures in the last four years have a median resolution of 3.9 Å. Taken together with minimal sample requirements, not needing diffraction quality crystals, and being able to achieve similar resolutions of the crystal structures makes cryo-EM the method of choice for current and future virus capsid structure determinations. Copyright © 2017 Elsevier Inc. All rights reserved.

  6. Facilitating the use of alternative capsid control methods towards sustainable production of organic cocoa in Ghana

    OpenAIRE

    Ayenor, G.K.; Huis, van, A.; Obeng-Ofori, D.; Padi, B.; Röling, N.G.

    2007-01-01

    Cocoa (Theobroma cacao L.) is an important foreign exchange earner for Ghana. However, production is constrained by a high incidence of pests and diseases. Based on farmers' needs, this study focused on the control of capsids, mainly Sahlbergella singularis Haglund and Distantiella theobroma (Distant) (both Hemiptera: Miridae). Annual crop loss caused by capsids is estimated at 25¿30%. To control capsids, formal research recommends application of synthetic insecticides four times between Augu...

  7. Identification of immunogenic hot spots within plum pox potyvirus capsid protein for efficient antigen presentation.

    Science.gov (United States)

    Fernández-Fernández, M Rosario; Martínez-Torrecuadrada, Jorge L; Roncal, Fernando; Domínguez, Elvira; García, Juan Antonio

    2002-12-01

    PEPSCAN analysis has been used to characterize the immunogenic regions of the capsid protein (CP) in virions of plum pox potyvirus (PPV). In addition to the well-known highly immunogenic N- and C-terminal domains of CP, regions within the core domain of the protein have also shown high immunogenicity. Moreover, the N terminus of CP is not homogeneously immunogenic, alternatively showing regions frequently recognized by antibodies and others that are not recognized at all. These results have helped us to design efficient antigen presentation vectors based on PPV. As predicted by PEPSCAN analysis, a small displacement of the insertion site in a previously constructed vector, PPV-gamma, turned the derived chimeras into efficient immunogens. Vectors expressing foreign peptides at different positions within a highly immunogenic region (amino acids 43 to 52) in the N-terminal domain of CP were the most effective at inducing specific antibody responses against the foreign sequence.

  8. Perceptual, Categorical, and Affective Processing of Ambiguous Smiling Facial Expressions

    Science.gov (United States)

    Calvo, Manuel G.; Fernandez-Martin, Andres; Nummenmaa, Lauri

    2012-01-01

    Why is a face with a smile but non-happy eyes likely to be interpreted as happy? We used blended expressions in which a smiling mouth was incongruent with the eyes (e.g., angry eyes), as well as genuine expressions with congruent eyes and mouth (e.g., both happy or angry). Tasks involved detection of a smiling mouth (perceptual), categorization of…

  9. EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR AND HUMAN PAPILLOMAVIRUS (HPV L1 CAPSID PROTEIN IN CERVICAL SQUAMOUS INTRAEPITHELIAL LESIONS

    Directory of Open Access Journals (Sweden)

    Balan Raluca

    2010-09-01

    Full Text Available We analyzed the immunohistochemical pattern of epidermal growth factor receptor (EGFR in cervical squamous intraepithelial lesions (SILs in correlation with L1 HPV capsid protein, in order to determine the relationship between EGFR expression and the infection status of human papillomavirus (HPV. The study included 40 cases, 24 LSIL (low grade SIL (CIN1, cervical intraepithelial neoplasia and 16 HSIL (high grade SIL (6 cases of CIN2 and 10 cases of CIN3. The immunoexpression of L1 HPV protein was assessed on conventional cervico-vaginal smears and EGFR was immunohistochemically evaluated on the corresponding cervical biopsies. The HPV L1 capsid protein was expressed in 45.83% of LSIL and 25% of HSIL. EGFR was overexpressed in 62,4% of HSIL (58,4% CIN2 and 41,6% CIN3 and 37,6% LSIL. The immunoexpression of L1 HPV has clinical application in the progression assessment of the cervical precancerous lesions without a correlation to the grade of the cervical SIL. EGFR is expressed by all proliferating squamous epithelial cells, thus corresponding with the grade of SIL. The evaluation of EGFR status, correlated with L1 HPV protein expression, can provide useful data of progression risk of cervical squamous intraepithelial lesions

  10. The tripartite capsid gene of Salmonella phage Gifsy-2 yields a capsid assembly pathway engaging features from HK97 and λ

    International Nuclear Information System (INIS)

    Effantin, Gregory; Figueroa-Bossi, Nara; Schoehn, Guy; Bossi, Lionello; Conway, James F.

    2010-01-01

    Phage Gifsy-2, a lambdoid phage infecting Salmonella, has an unusually large composite gene coding for its major capsid protein (mcp) at the C-terminal end, a ClpP-like protease at the N-terminus, and a ∼ 200 residue central domain of unknown function but which may have a scaffolding role. This combination of functions on a single coding region is more extensive than those observed in other phages such as HK97 (scaffold-capsid fusion) and λ (protease-scaffold fusion). To study the structural phenotype of the unique Gifsy-2 capsid gene, we have purified Gifsy-2 particles and visualized capsids and procapsids by cryoelectron microscopy, determining structures to resolutions up to 12 A. The capsids have lambdoid T = 7 geometry and are well modeled with the atomic structures of HK97 mcp and phage λ gpD decoration protein. Thus, the unique Gifsy-2 capsid protein gene yields a capsid maturation pathway engaging features from both phages HK97 and λ.

  11. Structures of Adenovirus Incomplete Particles Clarify Capsid Architecture and Show Maturation Changes of Packaging Protein L1 52/55k.

    Science.gov (United States)

    Condezo, Gabriela N; Marabini, Roberto; Ayora, Silvia; Carazo, José M; Alba, Raúl; Chillón, Miguel; San Martín, Carmen

    2015-09-01

    Adenovirus is one of the most complex icosahedral, nonenveloped viruses. Even after its structure was solved at near-atomic resolution by both cryo-electron microscopy and X-ray crystallography, the location of minor coat proteins is still a subject of debate. The elaborated capsid architecture is the product of a correspondingly complex assembly process, about which many aspects remain unknown. Genome encapsidation involves the concerted action of five virus proteins, and proteolytic processing by the virus protease is needed to prime the virion for sequential uncoating. Protein L1 52/55k is required for packaging, and multiple cleavages by the maturation protease facilitate its release from the nascent virion. Light-density particles are routinely produced in adenovirus infections and are thought to represent assembly intermediates. Here, we present the molecular and structural characterization of two different types of human adenovirus light particles produced by a mutant with delayed packaging. We show that these particles lack core polypeptide V but do not lack the density corresponding to this protein in the X-ray structure, thereby adding support to the adenovirus cryo-electron microscopy model. The two types of light particles present different degrees of proteolytic processing. Their structures provide the first glimpse of the organization of L1 52/55k protein inside the capsid shell and of how this organization changes upon partial maturation. Immature, full-length L1 52/55k is poised beneath the vertices to engage the virus genome. Upon proteolytic processing, L1 52/55k disengages from the capsid shell, facilitating genome release during uncoating. Adenoviruses have been extensively characterized as experimental systems in molecular biology, as human pathogens, and as therapeutic vectors. However, a clear picture of many aspects of their basic biology is still lacking. Two of these aspects are the location of minor coat proteins in the capsid and the

  12. Dimensionless Numbers Expressed in Terms of Common CVD Process Parameters

    Science.gov (United States)

    Kuczmarski, Maria A.

    1999-01-01

    A variety of dimensionless numbers related to momentum and heat transfer are useful in Chemical Vapor Deposition (CVD) analysis. These numbers are not traditionally calculated by directly using reactor operating parameters, such as temperature and pressure. In this paper, these numbers have been expressed in a form that explicitly shows their dependence upon the carrier gas, reactor geometry, and reactor operation conditions. These expressions were derived for both monatomic and diatomic gases using estimation techniques for viscosity, thermal conductivity, and heat capacity. Values calculated from these expressions compared well to previously published values. These expressions provide a relatively quick method for predicting changes in the flow patterns resulting from changes in the reactor operating conditions.

  13. Mapping the Structural Determinants Responsible for Enhanced T Cell Activation to the Immunogenic Adeno-Associated Virus Capsid from Isolate Rhesus 32.33

    Science.gov (United States)

    Mays, Lauren E.; Wang, Lili; Tenney, Rebeca; Bell, Peter; Nam, Hyun-Joo; Lin, Jianping; Gurda, Brittney; Van Vliet, Kim; Mikals, Kyle; Agbandje-McKenna, Mavis

    2013-01-01

    Avoiding activation of immunity to vector-encoded proteins is critical to the safe and effective use of adeno-associated viral (AAV) vectors for gene therapy. While commonly used serotypes, such as AAV serotypes 1, 2, 7, 8, and 9, are often associated with minimal and/or dysfunctional CD8+ T cell responses in mice, the threshold for immune activation appears to be lower in higher-order species. We have modeled this discrepancy within the mouse by identifying two capsid variants with differential immune activation profiles: AAV serotype 8 (AAV8) and a hybrid between natural rhesus isolates AAVrh32 and AAVrh33 (AAVrh32.33). Here, we aimed to characterize the structural determinants of the AAVrh32.33 capsid that augment cellular immunity to vector-encoded proteins or those of AAV8 that may induce tolerance. We hypothesized that the structural domain responsible for differential immune activation could be mapped to surface-exposed regions of the capsid, such as hypervariable regions (HVRs) I to IX of VP3. To test this, a series of hybrid AAV capsids was constructed by swapping domains between AAV8 and AAVrh32.33. By comparing their ability to generate transgene-specific T cells in vivo versus the stability of transgene expression in the muscle, we confirmed that the functional domain lies within the VP3 portion of the capsid. Our studies were able to exclude the regions of VP3 which are not sufficient for augmenting the cellular immune response, notably, HVRs I, II, and V. We have also identified HVR IV as a region of interest in conferring the efficiency and stability of muscle transduction to AAVrh32.33. PMID:23720715

  14. QA prime-boost vaccination strategy in prevent serotype O FMDV infection using a "single-cycle" alphavirus vector and empty capsid particles

    DEFF Research Database (Denmark)

    Gullberg, Maria; Lohse, Louise; Bøtner, Anette

    Introduction Foot-and-mouth disease (FMD) remains one of the most economically important infectious diseases of production animals globally. Vaccination can help to control this disease, however, current vaccines based on chemically inactivated FMDV, are imperfect and there is a need for new, safe...... and effective vaccines to control FMD. There is no cross protection between the 7 serotypes but serotype O is the most abundant globally. Material and methods The FMDV capsid protein precursor (P1-2A) of strain O1 Manisa has been expressed with the FMDV 3C protease (3Cpro) using a “single cycle” packaged...... alphavirus self-replicating RNA based on Semliki Forest virus (SFV). Purified O1 Manisa empty capsid particles (ECs) have been prepared using a recombinant vaccinia virus expression system. Cattle have been vaccinated with the SFV-FMDV vectors and boosted subsequently with the ECs and then challenged...

  15. Expressive Writing as a Therapeutic Process for Drug Dependent Women

    Science.gov (United States)

    Meshberg-Cohen, Sarah; Svikis, Dace; McMahon, Thomas J

    2013-01-01

    Background Although women with Substance Use Disorders (SUD) have high rates of trauma and post-traumatic stress, many addiction programs do not offer trauma-specific treatments. One promising intervention is Pennebaker’s expressive writing, which involves daily, 20-minute writing sessions to facilitate disclosure of stressful experiences. Methods Women (N = 149) in residential treatment completed a randomized clinical trial comparing expressive writing to control writing. Repeated measures analysis of variance was used to document change in psychological and physical distress from baseline to 2-week and 1-month follow-ups. Analyses also examined immediate levels of negative affect following expressive writing. Results Expressive writing participants showed greater reductions in post-traumatic symptom severity, depression, and anxiety scores, when compared to control writing participants at the 2-week follow-up. No group differences were found at the 1-month follow-up. Safety data were encouraging; while expressive writing participants showed increased negative affect immediately after each writing session, there were no differences in pre-writing negative affect scores between conditions the following day. By the final writing session, participants were able to write about traumatic/stressful events without having a spike in negative affect. Conclusions Results suggest expressive writing may be a brief, safe, low cost, adjunct to SUD treatment that warrants further study as a strategy for addressing post-traumatic distress in substance-abusing women. PMID:24588298

  16. Face Processing in Children with Autism Spectrum Disorder: Independent or Interactive Processing of Facial Identity and Facial Expression?

    Science.gov (United States)

    Krebs, Julia F.; Biswas, Ajanta; Pascalis, Olivier; Kamp-Becker, Inge; Remschmidt, Helmuth; Schwarzer, Gudrun

    2011-01-01

    The current study investigated if deficits in processing emotional expression affect facial identity processing and vice versa in children with autism spectrum disorder. Children with autism and IQ and age matched typically developing children classified faces either by emotional expression, thereby ignoring facial identity or by facial identity…

  17. Antigenic structure of the capsid protein of rabbit haemorrhagic disease virus

    DEFF Research Database (Denmark)

    Martinez-Torrecuadrada, Jorge L.; Cortes, Elena; Vela, Carmen

    1998-01-01

    Rabbit haemorrhagic disease virus (RHDV) causes an important disease in rabbits. The virus capsid is composed of a single 60 kDa protein. The capsid protein gene was cloned in Escherichia coli using the pET3 system, and the antigenic structure of RHDV VP60 was dissected using 11 monoclonal...

  18. Identification of Factors Promoting HBV Capsid Self-Assembly by Assembly-Promoting Antivirals.

    Science.gov (United States)

    Rath, Soumya Lipsa; Liu, Huihui; Okazaki, Susumu; Shinoda, Wataru

    2018-02-26

    Around 270 million individuals currently live with hepatitis B virus (HBV) infection. Heteroaryldihydropyrimidines (HAPs) are a family of antivirals that target the HBV capsid protein and induce aberrant self-assembly. The capsids formed resemble the native capsid structure but are unable to propagate the virus progeny because of a lack of RNA/DNA. Under normal conditions, self-assembly is initiated by the viral genome. The mode of action of HAPs, however, remains largely unknown. In this work, using molecular dynamics simulations, we attempted to understand the action of HAP by comparing the dynamics of capsid proteins with and without HAPs. We found that the inhibitor is more stable in higher oligomers. It retains its stability in the hexamer throughout 1 μs of simulation. Our results also show that the inhibitor might help in stabilizing the C-terminus, the HBc 149-183 arginine-rich domain of the capsid protein. The C-termini of dimers interact with each other, assisted by the HAP inhibitor. During capsid assembly, the termini are supposed to directly interact with the viral genome, thereby suggesting that the viral genome might work in a similar way to stabilize the capsid protein. Our results may help in understanding the underlying molecular mechanism of HBV capsid self-assembly, which should be crucial for exploring new drug targets and structure-based drug design.

  19. Inner tegument proteins of Herpes Simplex Virus are sufficient for intracellular capsid motility in neurons but not for axonal targeting

    Science.gov (United States)

    Müller, Oliver; Ivanova, Lyudmila; Bialy, Dagmara; Pohlmann, Anja; Binz, Anne; Hegemann, Maike; Viejo-Borbolla, Abel; Rosenhahn, Bodo; Bauerfeind, Rudolf; Sodeik, Beate

    2017-01-01

    Upon reactivation from latency and during lytic infections in neurons, alphaherpesviruses assemble cytosolic capsids, capsids associated with enveloping membranes, and transport vesicles harboring fully enveloped capsids. It is debated whether capsid envelopment of herpes simplex virus (HSV) is completed in the soma prior to axonal targeting or later, and whether the mechanisms are the same in neurons derived from embryos or from adult hosts. We used HSV mutants impaired in capsid envelopment to test whether the inner tegument proteins pUL36 or pUL37 necessary for microtubule-mediated capsid transport were sufficient for axonal capsid targeting in neurons derived from the dorsal root ganglia of adult mice. Such neurons were infected with HSV1-ΔUL20 whose capsids recruited pUL36 and pUL37, with HSV1-ΔUL37 whose capsids associate only with pUL36, or with HSV1-ΔUL36 that assembles capsids lacking both proteins. While capsids of HSV1-ΔUL20 were actively transported along microtubules in epithelial cells and in the somata of neurons, those of HSV1-ΔUL36 and -ΔUL37 could only diffuse in the cytoplasm. Employing a novel image analysis algorithm to quantify capsid targeting to axons, we show that only a few capsids of HSV1-ΔUL20 entered axons, while vesicles transporting gD utilized axonal transport efficiently and independently of pUL36, pUL37, or pUL20. Our data indicate that capsid motility in the somata of neurons mediated by pUL36 and pUL37 does not suffice for targeting capsids to axons, and suggest that capsid envelopment needs to be completed in the soma prior to targeting of herpes simplex virus to the axons, and to spreading from neurons to neighboring cells. PMID:29284065

  20. Atomic force microscopy investigation of Turnip Yellow Mosaic Virus capsid disruption and RNA extrusion

    International Nuclear Information System (INIS)

    Kuznetsov, Yu. G.; McPherson, Alexander

    2006-01-01

    Turnip Yellow Mosaic Virus (TYMV) was subjected to a variety of procedures which disrupted the protein capsids and produced exposure of the ssRNA genome. The results of the treatments were visualized by atomic force microscopy (AFM). Both in situ and ex situ freeze-thawing produced RNA emission, though at low efficiency. The RNA lost from such particles was evident, in some cases in the process of exiting the virions. More severe disruption of TYMV and extrusion of intact RNA onto the substrate were produced by drying the virus and rehydrating with neutral buffer. Similar products were also obtained by heating TYMV to 70-75 deg. C and by exposure to alkaline pH. Experiments showed the nucleic acid to have an elaborate secondary structure distributed linearly along its length

  1. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    International Nuclear Information System (INIS)

    Kim, Yoon Sik; Seo, Hyun Wook; Jung, Guhung

    2015-01-01

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H 2 O 2 and GSH modulate HBV capsid assembly. • H 2 O 2 facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H 2 O 2 and GSH induce conformation change of Hsp90

  2. Revised Mimivirus major capsid protein sequence reveals intron-containing gene structure and extra domain

    Directory of Open Access Journals (Sweden)

    Suzan-Monti Marie

    2009-05-01

    Full Text Available Abstract Background Acanthamoebae polyphaga Mimivirus (APM is the largest known dsDNA virus. The viral particle has a nearly icosahedral structure with an internal capsid shell surrounded with a dense layer of fibrils. A Capsid protein sequence, D13L, was deduced from the APM L425 coding gene and was shown to be the most abundant protein found within the viral particle. However this protein remained poorly characterised until now. A revised protein sequence deposited in a database suggested an additional N-terminal stretch of 142 amino acids missing from the original deduced sequence. This result led us to investigate the L425 gene structure and the biochemical properties of the complete APM major Capsid protein. Results This study describes the full length 3430 bp Capsid coding gene and characterises the 593 amino acids long corresponding Capsid protein 1. The recombinant full length protein allowed the production of a specific monoclonal antibody able to detect the Capsid protein 1 within the viral particle. This protein appeared to be post-translationnally modified by glycosylation and phosphorylation. We proposed a secondary structure prediction of APM Capsid protein 1 compared to the Capsid protein structure of Paramecium Bursaria Chlorella Virus 1, another member of the Nucleo-Cytoplasmic Large DNA virus family. Conclusion The characterisation of the full length L425 Capsid coding gene of Acanthamoebae polyphaga Mimivirus provides new insights into the structure of the main Capsid protein. The production of a full length recombinant protein will be useful for further structural studies.

  3. Reactive oxygen species promote heat shock protein 90-mediated HBV capsid assembly

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yoon Sik, E-mail: yumshak@naver.com; Seo, Hyun Wook, E-mail: suruk@naver.com; Jung, Guhung, E-mail: drjung@snu.ac.kr

    2015-02-13

    Hepatitis B virus (HBV) infection induces reactive oxygen species (ROS) production and has been associated with the development of hepatocellular carcinoma (HCC). ROS are also an important factor in HCC because the accumulated ROS leads to abnormal cell proliferation and chromosome mutation. In oxidative stress, heat shock protein 90 (Hsp90) and glutathione (GSH) function as part of the defense mechanism. Hsp90 prevents cellular component from oxidative stress, and GSH acts as antioxidants scavenging ROS in the cell. However, it is not known whether molecules regulated by oxidative stress are involved in HBV capsid assembly. Based on the previous study that Hsp90 facilitates HBV capsid assembly, which is an important step for the packing of viral particles, here, we show that ROS enrich Hsp90-driven HBV capsid formation. In cell-free system, HBV capsid assembly was facilitated by ROS with Hsp90, whereas it was decreased without Hsp90. In addition, GSH inhibited the function of Hsp90 to decrease HBV capsid assembly. Consistent with the result of cell-free system, ROS and buthionine sulfoximine (BS), an inhibitor of GSH synthesis, increased HBV capsid formation in HepG2.2.15 cells. Thus, our study uncovers the interplay between ROS and Hsp90 during HBV capsid assembly. - Highlights: • We examined H{sub 2}O{sub 2} and GSH modulate HBV capsid assembly. • H{sub 2}O{sub 2} facilitates HBV capsid assembly in the presence of Hsp90. • GSH inhibits function of Hsp90 in facilitating HBV capsid assembly. • H{sub 2}O{sub 2} and GSH induce conformation change of Hsp90.

  4. Use of Cre/loxP recombination to swap cell binding motifs on the adenoviral capsid protein IX

    International Nuclear Information System (INIS)

    Poulin, Kathy L.; Tong, Grace; Vorobyova, Olga; Pool, Madeline; Kothary, Rashmi; Parks, Robin J.

    2011-01-01

    We used Cre/loxP recombination to swap targeting ligands present on the adenoviral capsid protein IX (pIX). A loxP-flanked sequence encoding poly-lysine (pK-binds heparan sulfate proteoglycans) was engineered onto the 3'-terminus of pIX, and the resulting fusion protein allowed for routine virus propagation. Growth of this virus on Cre-expressing cells removed the pK coding sequence, generating virus that could only infect through alternative ligands, such as a tyrosine kinase receptor A (TrkA)-binding motif engineered into the capsid fibre protein for enhanced infection of neuronal cells. We used a similar approach to swap the pK motif on pIX for a sequence encoding a single-domain antibody directed towards CD66c for targeted infection of cancer cells; Cre-mediated removal of the pK-coding sequence simultaneously placed the single-domain antibody coding sequence in frame with pIX. Thus, we have developed a simple method to propagate virus lacking native viral tropism but containing cell-specific binding ligands. - Highlights: → We describe a method to grow virus lacking native tropism but containing novel cell-binding ligands. → Cre/loxP recombination was used to modify the adenovirus genome. → A targeting ligand present on capsid protein IX was removed or replaced using recombination. → Cre-loxP was also used to 'swap' the identity of the targeting ligand present on pIX.

  5. Facial identity and facial expression are initially integrated at visual perceptual stages of face processing.

    Science.gov (United States)

    Fisher, Katie; Towler, John; Eimer, Martin

    2016-01-08

    It is frequently assumed that facial identity and facial expression are analysed in functionally and anatomically distinct streams within the core visual face processing system. To investigate whether expression and identity interact during the visual processing of faces, we employed a sequential matching procedure where participants compared either the identity or the expression of two successively presented faces, and ignored the other irrelevant dimension. Repetitions versus changes of facial identity and expression were varied independently across trials, and event-related potentials (ERPs) were recorded during task performance. Irrelevant facial identity and irrelevant expression both interfered with performance in the expression and identity matching tasks. These symmetrical interference effects show that neither identity nor expression can be selectively ignored during face matching, and suggest that they are not processed independently. N250r components to identity repetitions that reflect identity matching mechanisms in face-selective visual cortex were delayed and attenuated when there was an expression change, demonstrating that facial expression interferes with visual identity matching. These findings provide new evidence for interactions between facial identity and expression within the core visual processing system, and question the hypothesis that these two attributes are processed independently. Copyright © 2015 Elsevier Ltd. All rights reserved.

  6. Unconscious Processing of Facial Expressions in Individuals with Internet Gaming Disorder

    Directory of Open Access Journals (Sweden)

    Xiaozhe Peng

    2017-06-01

    Full Text Available Internet Gaming Disorder (IGD is characterized by impairments in social communication and the avoidance of social contact. Facial expression processing is the basis of social communication. However, few studies have investigated how individuals with IGD process facial expressions, and whether they have deficits in emotional facial processing remains unclear. The aim of the present study was to explore these two issues by investigating the time course of emotional facial processing in individuals with IGD. A backward masking task was used to investigate the differences between individuals with IGD and normal controls (NC in the processing of subliminally presented facial expressions (sad, happy, and neutral with event-related potentials (ERPs. The behavioral results showed that individuals with IGD are slower than NC in response to both sad and neutral expressions in the sad–neutral context. The ERP results showed that individuals with IGD exhibit decreased amplitudes in ERP component N170 (an index of early face processing in response to neutral expressions compared to happy expressions in the happy–neutral expressions context, which might be due to their expectancies for positive emotional content. The NC, on the other hand, exhibited comparable N170 amplitudes in response to both happy and neutral expressions in the happy–neutral expressions context, as well as sad and neutral expressions in the sad–neutral expressions context. Both individuals with IGD and NC showed comparable ERP amplitudes during the processing of sad expressions and neutral expressions. The present study revealed that individuals with IGD have different unconscious neutral facial processing patterns compared with normal individuals and suggested that individuals with IGD may expect more positive emotion in the happy–neutral expressions context.Highlights:• The present study investigated whether the unconscious processing of facial expressions is influenced by

  7. Unconscious Processing of Facial Expressions in Individuals with Internet Gaming Disorder.

    Science.gov (United States)

    Peng, Xiaozhe; Cui, Fang; Wang, Ting; Jiao, Can

    2017-01-01

    Internet Gaming Disorder (IGD) is characterized by impairments in social communication and the avoidance of social contact. Facial expression processing is the basis of social communication. However, few studies have investigated how individuals with IGD process facial expressions, and whether they have deficits in emotional facial processing remains unclear. The aim of the present study was to explore these two issues by investigating the time course of emotional facial processing in individuals with IGD. A backward masking task was used to investigate the differences between individuals with IGD and normal controls (NC) in the processing of subliminally presented facial expressions (sad, happy, and neutral) with event-related potentials (ERPs). The behavioral results showed that individuals with IGD are slower than NC in response to both sad and neutral expressions in the sad-neutral context. The ERP results showed that individuals with IGD exhibit decreased amplitudes in ERP component N170 (an index of early face processing) in response to neutral expressions compared to happy expressions in the happy-neutral expressions context, which might be due to their expectancies for positive emotional content. The NC, on the other hand, exhibited comparable N170 amplitudes in response to both happy and neutral expressions in the happy-neutral expressions context, as well as sad and neutral expressions in the sad-neutral expressions context. Both individuals with IGD and NC showed comparable ERP amplitudes during the processing of sad expressions and neutral expressions. The present study revealed that individuals with IGD have different unconscious neutral facial processing patterns compared with normal individuals and suggested that individuals with IGD may expect more positive emotion in the happy-neutral expressions context. • The present study investigated whether the unconscious processing of facial expressions is influenced by excessive online gaming. A validated

  8. A molecular breadboard: Removal and replacement of subunits in a hepatitis B virus capsid.

    Science.gov (United States)

    Lee, Lye Siang; Brunk, Nicholas; Haywood, Daniel G; Keifer, David; Pierson, Elizabeth; Kondylis, Panagiotis; Wang, Joseph Che-Yen; Jacobson, Stephen C; Jarrold, Martin F; Zlotnick, Adam

    2017-11-01

    Hepatitis B virus (HBV) core protein is a model system for studying assembly and disassembly of icosahedral structures. Controlling disassembly will allow re-engineering the 120 subunit HBV capsid, making it a molecular breadboard. We examined removal of subunits from partially crosslinked capsids to form stable incomplete particles. To characterize incomplete capsids, we used two single molecule techniques, resistive-pulse sensing and charge detection mass spectrometry. We expected to find a binomial distribution of capsid fragments. Instead, we found a preponderance of 3 MDa complexes (90 subunits) and no fragments smaller than 3 MDa. We also found 90-mers in the disassembly of uncrosslinked HBV capsids. 90-mers seem to be a common pause point in disassembly reactions. Partly explaining this result, graph theory simulations have showed a threshold for capsid stability between 80 and 90 subunits. To test a molecular breadboard concept, we showed that missing subunits could be refilled resulting in chimeric, 120 subunit particles. This result may be a means of assembling unique capsids with functional decorations. © 2017 The Protein Society.

  9. Structure of the capsid of Kilham rat virus from small-angle neutron scattering

    International Nuclear Information System (INIS)

    Wobbe, C.R.; Mitra, S.; Ramakrishnan, V.

    1984-01-01

    The structure of empty capsids of Kilham rat virus, an autonomous parvovirus with icosahedral symmetry, was investigated by small-angle neutron scattering. From the forward scatter, the molecular weight was determined to be 4.0 x 10(6), and from the Guinier region, the radius of gyration was found to be 105 A in D2O and 104 A in H 2 O. On the basis of the capsid molecular weight and the molecular weights and relative abundances of the capsid proteins, the authors propose that the capsid has a triangulation number of 1. Extended scattering curves and mathematical modeling revealed that the capsid consists of two shells of protein, the inner shell extending from 58 to 91 A in D2O and from 50 to 91 A in H 2 O and containing 11% of the capsid scattering mass, and the outer shell extending to 121 A in H 2 O and D2O. The inner shell appears to have a higher content of basic amino acids than the outer shell, based on its lower scattering density in D2O than in H 2 O. The authors propose that all three capsid proteins contribute to the inner shell and that this basic region serves DNA binding and partial charge neutralization functions

  10. Intracellular cargo delivery by virus capsid protein-based vehicles: From nano to micro.

    Science.gov (United States)

    Gao, Ding; Lin, Xiu-Ping; Zhang, Zhi-Ping; Li, Wei; Men, Dong; Zhang, Xian-En; Cui, Zong-Qiang

    2016-02-01

    Cellular delivery is an important concern for the efficiency of medicines and sensors for disease diagnoses and therapy. However, this task is quite challenging. Self-assembly virus capsid proteins might be developed as building blocks for multifunctional cellular delivery vehicles. In this work, we found that SV40 VP1 (Simian virus 40 major capsid protein) could function as a new cell-penetrating protein. The VP1 protein could carry foreign proteins into cells in a pentameric structure. A double color structure, with red QDs (Quantum dots) encapsulated by viral capsids fused with EGFP, was created for imaging cargo delivery and release from viral capsids. The viral capsids encapsulating QDs were further used for cellular delivery of micron-sized iron oxide particles (MPIOs). MPIOs were efficiently delivered into live cells and controlled by a magnetic field. Therefore, our study built virus-based cellular delivery systems for different sizes of cargos: protein molecules, nanoparticles, and micron-sized particles. Much research is being done to investigate methods for efficient and specific cellular delivery of drugs, proteins or genetic material. In this article, the authors describe their approach in using self-assembly virus capsid proteins SV40 VP1 (Simian virus 40 major capsid protein). The cell-penetrating behavior provided excellent cellular delivery and should give a new method for biomedical applications. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Effects of Point Mutations in the Major Capsid Protein of Beet Western Yellows Virus on Capsid Formation, Virus Accumulation, and Aphid Transmission

    Science.gov (United States)

    Brault, V.; Bergdoll, M.; Mutterer, J.; Prasad, V.; Pfeffer, S.; Erdinger, M.; Richards, K. E.; Ziegler-Graff, V.

    2003-01-01

    Point mutations were introduced into the major capsid protein (P3) of cloned infectious cDNA of the polerovirus beet western yellows virus (BWYV) by manipulation of cloned infectious cDNA. Seven mutations targeted sites on the S domain predicted to lie on the capsid surface. An eighth mutation eliminated two arginine residues in the R domain, which is thought to extend into the capsid interior. The effects of the mutations on virus capsid formation, virus accumulation in protoplasts and plants, and aphid transmission were tested. All of the mutants replicated in protoplasts. The S-domain mutant W166R failed to protect viral RNA from RNase attack, suggesting that this particular mutation interfered with stable capsid formation. The R-domain mutant R7A/R8A protected ∼90% of the viral RNA strand from RNase, suggesting that lower positive-charge density in the mutant capsid interior interfered with stable packaging of the complete strand into virions. Neither of these mutants systemically infected plants. The six remaining mutants properly packaged viral RNA and could invade Nicotiana clevelandii systemically following agroinfection. Mutant Q121E/N122D was poorly transmitted by aphids, implicating one or both targeted residues in virus-vector interactions. Successful transmission of mutant D172N was accompanied either by reversion to the wild type or by appearance of a second-site mutation, N137D. This finding indicates that D172 is also important for transmission but that the D172N transmission defect can be compensated for by a “reverse” substitution at another site. The results have been used to evaluate possible structural models for the BWYV capsid. PMID:12584348

  12. Differences in holistic processing do not explain cultural differences in the recognition of facial expression.

    Science.gov (United States)

    Yan, Xiaoqian; Young, Andrew W; Andrews, Timothy J

    2017-12-01

    The aim of this study was to investigate the causes of the own-race advantage in facial expression perception. In Experiment 1, we investigated Western Caucasian and Chinese participants' perception and categorization of facial expressions of six basic emotions that included two pairs of confusable expressions (fear and surprise; anger and disgust). People were slightly better at identifying facial expressions posed by own-race members (mainly in anger and disgust). In Experiment 2, we asked whether the own-race advantage was due to differences in the holistic processing of facial expressions. Participants viewed composite faces in which the upper part of one expression was combined with the lower part of a different expression. The upper and lower parts of the composite faces were either aligned or misaligned. Both Chinese and Caucasian participants were better at identifying the facial expressions from the misaligned images, showing interference on recognizing the parts of the expressions created by holistic perception of the aligned composite images. However, this interference from holistic processing was equivalent across expressions of own-race and other-race faces in both groups of participants. Whilst the own-race advantage in recognizing facial expressions does seem to reflect the confusability of certain emotions, it cannot be explained by differences in holistic processing.

  13. ATP-Driven Contraction of Phage T3 Capsids with DNA Incompletely Packaged In Vivo

    Directory of Open Access Journals (Sweden)

    Philip Serwer

    2017-05-01

    Full Text Available Adenosine triphosphate (ATP cleavage powers packaging of a double-stranded DNA (dsDNA molecule in a pre-assembled capsid of phages that include T3. Several observations constitute a challenge to the conventional view that the shell of the capsid is energetically inert during packaging. Here, we test this challenge by analyzing the in vitro effects of ATP on the shells of capsids generated by DNA packaging in vivo. These capsids retain incompletely packaged DNA (ipDNA and are called ipDNA-capsids; the ipDNA-capsids are assumed to be products of premature genome maturation-cleavage. They were isolated via preparative Nycodenz buoyant density centrifugation. For some ipDNA-capsids, Nycodenz impermeability increases hydration and generates density so low that shell hyper-expansion must exist to accommodate associated water. Electron microscopy (EM confirmed hyper-expansion and low permeability and revealed that 3.0 mM magnesium ATP (physiological concentration causes contraction of hyper-expanded, lowpermeability ipDNA-capsids to less than mature size; 5.0 mM magnesium ATP (border of supraphysiological concentration or more disrupts them. Additionally, excess sodium ADP reverses 3.0 mM magnesium ATP-induced contraction and re-generates hyper-expansion. The Nycodenz impermeability implies assembly perfection that suggests selection for function in DNA packaging. These findings support the above challenge and can be explained via the assumption that T3 DNA packaging includes a back-up cycle of ATP-driven capsid contraction and hyper-expansion.

  14. Transcriptome characterization and gene expression of Epinephelus spp in endoplasmic reticulum stress-related pathway during betanodavirus infection in vitro

    Directory of Open Access Journals (Sweden)

    Lu Ming-Wei

    2012-11-01

    Full Text Available Abstract Background Grouper (Epinephelus spp is an economically important fish species worldwide. However, viral pathogens such as nervous necrosis virus (NNV have been causing severe infections in the fish, resulting in great loss in the grouper aquaculture industry. Yet, the understanding of the molecular mechanisms underlying the pathogenicity of NNV is still inadequate, mainly due to insufficient genomic information of the host. Results De novo assembly of grouper transcriptome in the grouper kidney (GK cells was conducted by using short read sequencing technology of Solexa/Illumina. A sum of 66,582 unigenes with mean length of 603 bp were obtained, and were annotated according to Gene Ontology (GO and Clusters of Orthologous Groups (COG. In addition, the tag-based digital gene expression (DGE system was used to investigate the gene expression and pathways associated with NNV infection in GK cells. The analysis revealed endoplasmic reticulum (ER stress response was prominently affected in NNV-infected GK cells. A further analysis revealed an interaction between the NNV capsid protein and the ER chaperone immunoglobulin heavy-chain binding protein (BiP. Furthermore, exogenous expression of NNV capsid protein was able to induce XBP-1 mRNA splicing in vivo, suggesting a role of the capsid protein in the NNV-induced ER stress. Conclusions Our data presents valuable genetic information for Epinephelus spp., which will benefit future study in this non-model but economically important species. The DGE profile of ER stress response in NNV-infected cells provides information of many important components associated with the protein processing in ER. Specifically, we showed that the viral capsid protein might play an important role in the ER stress response.

  15. Impact of blood collection and processing on peripheral blood gene expression profiling in type 1 diabetes.

    Science.gov (United States)

    Yip, Linda; Fuhlbrigge, Rebecca; Atkinson, Mark A; Fathman, C Garrison

    2017-08-18

    The natural history of type 1 diabetes (T1D) is challenging to investigate, especially as pre-diabetic individuals are difficult to identify. Numerous T1D consortia have been established to collect whole blood for gene expression analysis from individuals with or at risk to develop T1D. However, with no universally accepted protocol for their collection, differences in sample processing may lead to variances in the results. Here, we examined whether the choice of blood collection tube and RNA extraction kit leads to differences in the expression of genes that are changed during the progression of T1D, and if these differences could be minimized by measuring gene expression directly from the lysate of whole blood. Microarray analysis showed that the expression of 901 genes is highly influenced by sample processing using the PAXgene versus the Tempus system. These included a significant number of lymphocyte-specific genes and genes whose expression has been reported to differ in the peripheral blood of at-risk and T1D patients compared to controls. We showed that artificial changes in gene expression occur when control and T1D samples were processed differently. The sample processing-dependent differences in gene expression were largely due to loss of transcripts during the RNA extraction step using the PAXgene system. The majority of differences were not observed when gene expression was measured in whole blood lysates prepared from blood collected in PAXgene and Tempus tubes. We showed that the gene expression profile of samples processed using the Tempus system is more accurate than that of samples processed using the PAXgene system. Variation in sample processing can result in misleading changes in gene expression. However, these differences can be minimized by measuring gene expression directly in whole blood lysates.

  16. Enterovirus 71 viral capsid protein linear epitopes: Identification and characterization

    Directory of Open Access Journals (Sweden)

    Gao Fan

    2012-01-01

    Full Text Available Abstract Background To characterize the human humoral immune response against enterovirus 71 (EV71 infection and map human epitopes on the viral capsid proteins. Methods A series of 256 peptides spanning the capsid proteins (VP1, VP2, VP3 of BJ08 strain (genomic C4 were synthesized. An indirect enzyme-linked immunosorbent assay (ELISA was carried out to detect anti-EV71 IgM and IgG in sera of infected children in acute or recovery phase. The partially overlapped peptides contained 12 amino acids and were coated in the plate as antigen (0.1 μg/μl. Sera from rabbits immunized with inactivated BJ08 virus were also used to screen the peptide panel. Results A total of 10 human anti-EV71 IgM epitopes (vp1-14 in VP1; vp2-6, 21, 40 and 50 in VP2 and vp3-10, 12, 15, 24 and 75 in VP3 were identified in acute phase sera. In contrast, only one anti-EV71 IgG epitope in VP1 (vp1-15 was identified in sera of recovery stage. Four rabbit anti-EV71 IgG epitopes (vp1-14, 31, 54 and 71 were identified and mapped to VP1. Conclusion These data suggested that human IgM epitopes were mainly mapped to VP2 and VP3 with multi-epitope responses occurred at acute infection, while the only IgG epitope located on protein VP1 was activated in recovery phase sera. The dynamic changes of humoral immune response at different stages of infection may have public health significance in evaluation of EV71 vaccine immunogenicity and the clinical application of diagnostic reagents.

  17. Plum pox virus capsid protein suppresses plant pathogen-associated molecular pattern (PAMP)-triggered immunity.

    Science.gov (United States)

    Nicaise, Valerie; Candresse, Thierry

    2017-08-01

    The perception of pathogen-associated molecular patterns (PAMPs) by immune receptors launches defence mechanisms referred to as PAMP-triggered immunity (PTI). Successful pathogens must suppress PTI pathways via the action of effectors to efficiently colonize their hosts. So far, plant PTI has been reported to be active against most classes of pathogens, except viruses, although this defence layer has been hypothesized recently as an active part of antiviral immunity which needs to be suppressed by viruses for infection success. Here, we report that Arabidopsis PTI genes are regulated upon infection by viruses and contribute to plant resistance to Plum pox virus (PPV). Our experiments further show that PPV suppresses two early PTI responses, the oxidative burst and marker gene expression, during Arabidopsis infection. In planta expression of PPV capsid protein (CP) was found to strongly impair these responses in Nicotiana benthamiana and Arabidopsis, revealing its PTI suppressor activity. In summary, we provide the first clear evidence that plant viruses acquired the ability to suppress PTI mechanisms via the action of effectors, highlighting a novel strategy employed by viruses to escape plant defences. © 2016 BSPP AND JOHN WILEY & SONS LTD.

  18. Nuclear localization signal regulates porcine circovirus type 2 capsid protein nuclear export through phosphorylation.

    Science.gov (United States)

    Hou, Qiang; Hou, Shaohua; Chen, Qing; Jia, Hong; Xin, Ting; Jiang, Yitong; Guo, Xiaoyu; Zhu, Hongfei

    2018-02-15

    The open reading frame 2 (ORF2) of Porcine circovirus type 2 (PCV2) encodes the major Capsid (Cap) protein, which self-assembles into virus-like particle (VLP) of similar morphology to the PCV2 virion and accumulates in the nucleus through the N-terminal arginine-rich nuclear localization signal (NLS). In this study, PCV2 Cap protein and its derivates were expressed via the baculovirus expression system, and the cellular localization of the recombinant proteins were investigated using anti-Cap mAb by imaging flow cytometry. Analysis of subcellular localization of Cap protein and its variants demonstrated that NLS mediated Cap protein nuclear export as well as nuclear import, and a phosphorylation site (S17) was identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) in the NLS domain to regulate Cap protein nuclear export. Phosphorylation of NLS regulating the PCV2 Cap protein nuclear export was also demonstrated in PK15 cells by fluorescence microscopy. Moreover, the influence of Rep and Rep' protein on Cap protein subcellular localization was investigated in PK15 cells. Phosphorylation of NLS regulating Cap protein nuclear export provides more detailed knowledge of the PCV2 viral life cycle. Copyright © 2018 Elsevier B.V. All rights reserved.

  19. Extracting gene expression patterns and identifying co-expressed genes from microarray data reveals biologically responsive processes

    Directory of Open Access Journals (Sweden)

    Paules Richard S

    2007-11-01

    biological processes affected by IR- and/or UV- induced DNA damage. Conclusion EPIG competed with CLICK and performed better than CAST in extracting patterns from simulated data. EPIG extracted more biological informative patterns and co-expressed genes from both C. elegans and IR/UV-treated human fibroblasts. Using Gene Ontology analysis of the genes in the patterns extracted by EPIG, several key biological categories related to p53-dependent cell cycle control were revealed from the IR/UV data. Among them were mitotic cell cycle, DNA replication, DNA repair, cell cycle checkpoint, and G0-like status transition. EPIG can be applied to data sets from a variety of experimental designs.

  20. Pt, Co–Pt and Fe–Pt alloy nanoclusters encapsulated in virus capsids

    International Nuclear Information System (INIS)

    Okuda, M; Eloi, J-C; Jones, S E Ward; Schwarzacher, W; Verwegen, M; Cornelissen, J J L M

    2016-01-01

    Nanostructured Pt-based alloys show great promise, not only for catalysis but also in medical and magnetic applications. To extend the properties of this class of materials, we have developed a means of synthesizing Pt and Pt-based alloy nanoclusters in the capsid of a virus. Pure Pt and Pt-alloy nanoclusters are formed through the chemical reduction of [PtCl 4 ] − by NaBH 4 with/without additional metal ions (Co or Fe). The opening and closing of the ion channels in the virus capsid were controlled by changing the pH and ionic strength of the solution. The size of the nanoclusters is limited to 18 nm by the internal diameter of the capsid. Their magnetic properties suggest potential applications in hyperthermia for the Co–Pt and Fe–Pt magnetic alloy nanoclusters. This study introduces a new way to fabricate size-restricted nanoclusters using virus capsid. (paper)

  1. Specific cross-linking of capsid proteins to virus RNA by ultraviolet irradiation of polio virus

    Energy Technology Data Exchange (ETDEWEB)

    Wetz, K.; Habermehl, K.O. (Freie Univ. Berlin (Germany, F.R.))

    1982-04-01

    Poliovirus was irradiated with u.v. light under conditions causing approx. 5% cross-linking of capsid protein to virus RNA. Cross-linked RNA-protein complexes, freed from unbound protein, were treated with nuclease, and then analysed on SDS-polyacrylamide gels. The smallest capsid polypeptide VP4 was found to be associated with the RNA to the greatest degree, followed by VP2 and VP1, while VP3 was attached only in trace amounts. Low radiation doses, which produced cross-linking of RNA to protein, did not cause breakdown of the virus particles or conformational changes of the capsid as examined physically and serologically. However, higher doses caused structural alterations of the virus capsid.

  2. Specific cross-linking of capsid proteins to virus RNA by ultraviolet irradiation of polio virus

    International Nuclear Information System (INIS)

    Wetz, K.; Habermehl, K.-O.

    1982-01-01

    Poliovirus was irradiated with u.v. light under conditions causing approx. 5% cross-linking of capsid protein to virus RNA. Cross-linked RNA-protein complexes, freed from unbound protein, were treated with nuclease, and then analysed on SDS-polyacrylamide gels. The smallest capsid polypeptide VP4 was found to be associated with the RNA to the greatest degree, followed by VP2 and VP1, while VP3 was attached only in trace amounts. Low radiation doses, which produced cross-linking of RNA to protein, did not cause breakdown of the virus particles or conformational changes of the capsid as examined physically and serologically. However, higher doses caused structural alterations of the virus capsid. (author)

  3. Hepatitis B virus core protein allosteric modulators can distort and disrupt intact capsids.

    Science.gov (United States)

    Schlicksup, Christopher John; Wang, Joseph Che-Yen; Francis, Samson; Venkatakrishnan, Balasubramanian; Turner, William W; VanNieuwenhze, Michael; Zlotnick, Adam

    2018-01-29

    Defining mechanisms of direct-acting antivirals facilitates drug development and our understanding of virus function. Heteroaryldihydropyrimidines (HAPs) inappropriately activate assembly of hepatitis B virus (HBV) core protein (Cp), suppressing formation of virions. We examined a fluorophore-labeled HAP, HAP-TAMRA. HAP-TAMRA induced Cp assembly and also bound pre-assembled capsids. Kinetic and spectroscopic studies imply that HAP-binding sites are usually not available but are bound cooperatively. Using cryo-EM, we observed that HAP-TAMRA asymmetrically deformed capsids, creating a heterogeneous array of sharp angles, flat regions, and outright breaks. To achieve high resolution reconstruction (HAP-TAMRA caused quasi-sixfold vertices to become flatter and fivefold more angular. This transition led to asymmetric faceting. That a disordered crosslink could rescue symmetry implies that capsids have tensegrity properties. Capsid distortion and disruption is a new mechanism by which molecules like the HAPs can block HBV infection. © 2017, Schlicksup et al.

  4. Hepatitis B virus core protein allosteric modulators can distort and disrupt intact capsids

    Science.gov (United States)

    Schlicksup, Christopher John; Wang, Joseph Che-Yen; Francis, Samson; Venkatakrishnan, Balasubramanian; Turner, William W; VanNieuwenhze, Michael

    2018-01-01

    Defining mechanisms of direct-acting antivirals facilitates drug development and our understanding of virus function. Heteroaryldihydropyrimidines (HAPs) inappropriately activate assembly of hepatitis B virus (HBV) core protein (Cp), suppressing formation of virions. We examined a fluorophore-labeled HAP, HAP-TAMRA. HAP-TAMRA induced Cp assembly and also bound pre-assembled capsids. Kinetic and spectroscopic studies imply that HAP-binding sites are usually not available but are bound cooperatively. Using cryo-EM, we observed that HAP-TAMRA asymmetrically deformed capsids, creating a heterogeneous array of sharp angles, flat regions, and outright breaks. To achieve high resolution reconstruction (particle symmetry. We deduced that HAP-TAMRA caused quasi-sixfold vertices to become flatter and fivefold more angular. This transition led to asymmetric faceting. That a disordered crosslink could rescue symmetry implies that capsids have tensegrity properties. Capsid distortion and disruption is a new mechanism by which molecules like the HAPs can block HBV infection. PMID:29377794

  5. Structure, Immunogenicity, and Protective Mechanism of an Engineered Enterovirus 71-Like Particle Vaccine Mimicking 80S Empty Capsid.

    Science.gov (United States)

    Wang, Xiaoli; Ku, Zhiqiang; Zhang, Xiang; Ye, Xiaohua; Chen, Jinhuan; Liu, Qingwei; Zhang, Wei; Zhang, Chao; Fu, Zhenglin; Jin, Xia; Cong, Yao; Huang, Zhong

    2018-01-01

    Enterovirus 71 (EV71) is the major causative agent of severe hand, foot, and mouth disease, which affects millions of young children in the Asia-Pacific region annually. In this study, we engineered a novel EV71 virus-like particle (VLP) that lacks VP4 (therefore designated VLP ΔVP4 ) and investigated its structure, antigenicity, and vaccine potential. The cryo-electron microscopy (cryo-EM) structure of VLP ΔVP4 was reconstructed to 3.71-Å resolution. Results from structural and biochemical analyses revealed that VLP ΔVP4 resembles the end product of the viral uncoating process, the 80S empty capsid. VLP ΔVP4 is able to elicit high-titer neutralizing antibodies and to fully protect mice against lethal viral challenge. Mechanistic studies showed that, at the cellular level, the anti-VLP ΔVP4 sera exert neutralization effects at both pre- and postattachment stages by inhibiting both virus attachment and internalization, and at the molecular level, the antisera can block multiple interactions between EV71 and its key receptors. Our study gives a better understanding of EV71 capsid assembly and provides important information for the design and development of new-generation vaccines for EV71, and perhaps for other enteroviruses, as well. IMPORTANCE Enterovirus 71 (EV71) infection may lead to severe hand, foot, and mouth disease, with significant morbidity and mortality. Knowledge regarding EV71 particle assembly remains limited. Here, we report the generation and characterization of a novel EV71 virus-like particle that lacks the VP4 capsid subunit protein. This particle, termed VLP ΔVP4 , structurally mimics the 80S empty capsid, which is the end stage of EV71 uncoating. We further show that VLP ΔVP4 exhibits desirable immunogenicity and protective efficacy in proof-of-concept studies. In addition, the inhibitory mechanisms of the VLP ΔVP4 -induced antibodies are unraveled at both the cellular and molecular levels. Our work provides the first evidence of

  6. Characterization of intravitreally delivered capsid mutant AAV2-Cre vector to induce tissue-specific mutations in murine retinal ganglion cells.

    Science.gov (United States)

    Langouet-Astrie, Christophe J; Yang, Zhiyong; Polisetti, Sraavya M; Welsbie, Derek S; Hauswirth, William W; Zack, Donald J; Merbs, Shannath L; Enke, Raymond A

    2016-10-01

    Targeted expression of Cre recombinase in murine retinal ganglion cells (RGCs) by viral vector is an effective strategy for creating tissue-specific gene knockouts for investigation of genetic contribution to RGC degeneration associated with optic neuropathies. Here we characterize dosage, efficacy and toxicity for sufficient intravitreal delivery of a capsid mutant Adeno-associated virus 2 (AAV2) vector encoding Cre recombinase. Wild type and Rosa26 (R26) LacZ mice were intravitreally injected with capsid mutant AAV2 viral vectors. Murine eyes were harvested at intervals ranging from 2 weeks to 15 weeks post-injection and were assayed for viral transduction, transgene expression and RGC survival. 10(9) vector genomes (vg) were sufficient for effective in vivo targeting of murine ganglion cell layer (GCL) retinal neurons. Transgene expression was observed as early as 2 weeks post-injection of viral vectors and persisted to 11 weeks. Early expression of Cre had no significant effect on RGC survival, while significant RGC loss was detected beginning 5 weeks post-injection. Early expression of viral Cre recombinase was robust, well-tolerated and predominantly found in GCL neurons suggesting this strategy can be effective in short-term RGC-specific mutation studies in experimental glaucoma models such as optic nerve crush and transection experiments. RGC degeneration with Cre expression for more than 4 weeks suggests that Cre toxicity is a limiting factor for targeted mutation strategies in RGCs. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. On the expressiveness and decidability of higher-order process calculi

    NARCIS (Netherlands)

    Lanese, Ivan; Perez, Jorge A.; Sangiorgi, Davide; Schmitt, Alan

    In higher-order process calculi, the values exchanged in communications may contain processes. A core calculus of higher-order concurrency is studied; it has only the operators necessary to express higher-order communications: input prefix, process output, and parallel composition. By exhibiting a

  8. The relationship of positive and negative expressiveness to the processing of emotion information.

    Science.gov (United States)

    Knyazev, Gennady G; Barchard, Kimberly A; Razumnikova, Olga M; Mitrofanova, Larisa G

    2012-06-01

    The tendency to express emotions non-verbally is positively related to perception of emotions in oneself. This study examined its relationship to perception of emotions in others. In 40 healthy adults, EEG theta synchronization was used to indicate emotion processing following presentation of happy, angry, and neutral faces. Both positive and negative expressiveness were associated with higher emotional sensitivity, as shown by cortical responses to facial expressions during the early, unconscious processing stage. At the late, conscious processing stage, positive expressiveness was associated with higher sensitivity to happy faces but lower sensitivity to angry faces. Thus, positive expressiveness predisposes people to allocate fewer attentional resources for conscious perception of angry faces. In contrast, negative expressiveness was consistently associated with higher sensitivity. The effects of positive expressiveness occurred in cortical areas that deal with emotions, but the effects of negative expressiveness occurred in areas engaged in self-referential processes in the context of social relationships. © 2012 The Authors. Scandinavian Journal of Psychology © 2012 The Scandinavian Psychological Associations.

  9. The Assembly-Activating Protein Promotes Stability and Interactions between AAV’s Viral Proteins to Nucleate Capsid Assembly

    Directory of Open Access Journals (Sweden)

    Anna C. Maurer

    2018-05-01

    Full Text Available Summary: The adeno-associated virus (AAV vector is a preferred delivery platform for in vivo gene therapy. Natural and engineered variations of the AAV capsid affect a plurality of phenotypes relevant to gene therapy, including vector production and host tropism. Fundamental to these aspects is the mechanism of AAV capsid assembly. Here, the role of the viral co-factor assembly-activating protein (AAP was evaluated in 12 naturally occurring AAVs and 9 putative ancestral capsid intermediates. The results demonstrate increased capsid protein stability and VP-VP interactions in the presence of AAP. The capsid’s dependence on AAP can be partly overcome by strengthening interactions between monomers within the assembly, as illustrated by the transfer of a minimal motif defined by a phenotype-to-phylogeny mapping method. These findings suggest that the emergence of AAP within the Dependovirus genus relaxes structural constraints on AAV assembly in favor of increasing the degrees of freedom for the capsid to evolve. : Maurer et al. describe a phenotype-to-phylogeny mapping strategy correlating phenotypic variation in AAVs to a reconstructed phylogeny, revealing capsid structure-function relationships relevant to that phenotype. Dependence on the viral co-factor AAP for capsid assembly is examined, and capsid functional motifs, in addition to mechanistic roles of AAP, are elucidated. Keywords: AAV, AAP, adeno-associated virus, capsid assembly, manufacturing, capsid, vector engineering, structure-function, gene therapy

  10. Residues of the UL25 Protein of Herpes Simplex Virus That Are Required for Its Stable Interaction with Capsids

    Science.gov (United States)

    Cockrell, Shelley K.; Huffman, Jamie B.; Toropova, Katerina; Conway, James F.; Homa, Fred L.

    2011-01-01

    The herpes simplex virus 1 (HSV-1) UL25 gene product is a minor capsid component that is required for encapsidation, but not cleavage, of replicated viral DNA. UL25 is located on the capsid surface in a proposed heterodimer with UL17, where five copies of the heterodimer are found at each of the capsid vertices. Previously, we demonstrated that amino acids 1 to 50 of UL25 are essential for its stable interaction with capsids. To further define the UL25 capsid binding domain, we generated recombinant viruses with either small truncations or amino acid substitutions in the UL25 N terminus. Studies of these mutants demonstrated that there are two important regions within the capsid binding domain. The first 27 amino acids are essential for capsid binding of UL25, while residues 26 to 39, which are highly conserved in the UL25 homologues of other alphaherpesviruses, were found to be critical for stable capsid binding. Cryo-electron microscopy reconstructions of capsids containing either a small tag on the N terminus of UL25 or the green fluorescent protein (GFP) fused between amino acids 50 and 51 of UL25 demonstrate that residues 1 to 27 of UL25 contact the hexon adjacent to the penton. A second region, most likely centered on amino acids 26 to 39, contacts the triplex that is one removed from the penton. Importantly, both of these UL25 capsid binding regions are essential for the stable packaging of full-length viral genomes. PMID:21411517

  11. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization.

    Directory of Open Access Journals (Sweden)

    Anna D Koromyslova

    2017-11-01

    Full Text Available Norovirus is the leading cause of gastroenteritis worldwide. Despite recent developments in norovirus propagation in cell culture, these viruses are still challenging to grow routinely. Moreover, little is known on how norovirus infects the host cells, except that histo-blood group antigens (HBGAs are important binding factors for infection and cell entry. Antibodies that bind at the HBGA pocket and block attachment to HBGAs are believed to neutralize the virus. However, additional neutralization epitopes elsewhere on the capsid likely exist and impeding the intrinsic structural dynamics of the capsid could be equally important. In the current study, we investigated a panel of Nanobodies in order to probe functional epitopes that could trigger capsid rearrangement and/ or interfere with HBGA binding interactions. The precise binding sites of six Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42 were identified using X-ray crystallography. We showed that these Nanobodies bound on the top, side, and bottom of the norovirus protruding domain. The impact of Nanobody binding on norovirus capsid morphology was analyzed using electron microscopy and dynamic light scattering. We discovered that distinct Nanobody epitopes were associated with varied changes in particle structural integrity and assembly. Interestingly, certain Nanobody-induced capsid morphological changes lead to the capsid protein degradation and viral RNA exposure. Moreover, Nanobodies employed multiple inhibition mechanisms to prevent norovirus attachment to HBGAs, which included steric obstruction (Nano-14, allosteric interference (Nano-32, and violation of normal capsid morphology (Nano-26 and Nano-85. Finally, we showed that two Nanobodies (Nano-26 and Nano-85 not only compromised capsid integrity and inhibited VLPs attachment to HBGAs, but also recognized a broad panel of norovirus genotypes with high affinities. Consequently, Nano-26 and Nano-85 have a great

  12. Nanobodies targeting norovirus capsid reveal functional epitopes and potential mechanisms of neutralization

    Science.gov (United States)

    2017-01-01

    Norovirus is the leading cause of gastroenteritis worldwide. Despite recent developments in norovirus propagation in cell culture, these viruses are still challenging to grow routinely. Moreover, little is known on how norovirus infects the host cells, except that histo-blood group antigens (HBGAs) are important binding factors for infection and cell entry. Antibodies that bind at the HBGA pocket and block attachment to HBGAs are believed to neutralize the virus. However, additional neutralization epitopes elsewhere on the capsid likely exist and impeding the intrinsic structural dynamics of the capsid could be equally important. In the current study, we investigated a panel of Nanobodies in order to probe functional epitopes that could trigger capsid rearrangement and/ or interfere with HBGA binding interactions. The precise binding sites of six Nanobodies (Nano-4, Nano-14, Nano-26, Nano-27, Nano-32, and Nano-42) were identified using X-ray crystallography. We showed that these Nanobodies bound on the top, side, and bottom of the norovirus protruding domain. The impact of Nanobody binding on norovirus capsid morphology was analyzed using electron microscopy and dynamic light scattering. We discovered that distinct Nanobody epitopes were associated with varied changes in particle structural integrity and assembly. Interestingly, certain Nanobody-induced capsid morphological changes lead to the capsid protein degradation and viral RNA exposure. Moreover, Nanobodies employed multiple inhibition mechanisms to prevent norovirus attachment to HBGAs, which included steric obstruction (Nano-14), allosteric interference (Nano-32), and violation of normal capsid morphology (Nano-26 and Nano-85). Finally, we showed that two Nanobodies (Nano-26 and Nano-85) not only compromised capsid integrity and inhibited VLPs attachment to HBGAs, but also recognized a broad panel of norovirus genotypes with high affinities. Consequently, Nano-26 and Nano-85 have a great potential to

  13. Specific in vitro cleavage of Mason-Pfizer monkey virus capsid protein: evidence for a potential role of retroviral protease in early stages of infection

    International Nuclear Information System (INIS)

    Rumlova, Michaela; Ruml, Tomas; Pohl, Jan; Pichova, Iva

    2003-01-01

    Processing of Gag polyproteins by viral protease (PR) leads to reorganization of immature retroviral particles and formation of a ribonucleoprotein core. In some retroviruses, such as HIV and RSV, cleavage of a spacer peptide separating capsid and nucleocapsid proteins is essential for the core formation. We show here that no similar spacer peptide is present in the capsid-nucleocapsid (CA-NC) region of Mason-Pfizer monkey virus (M-PMV) and that the CA protein is cleaved in vitro by the PR within the major homology region (MHR) and the NC protein in several sites at the N-terminus. The CA cleavage product was also identified shortly after penetration of M-PMV into COS cells, suggesting that the protease-catalyzed cleavage is involved in core disintegration

  14. Oral Administration of Astrovirus Capsid Protein Is Sufficient To Induce Acute Diarrhea In Vivo

    Directory of Open Access Journals (Sweden)

    Victoria A. Meliopoulos

    2016-11-01

    Full Text Available The disease mechanisms associated with the onset of astrovirus diarrhea are unknown. Unlike other enteric virus infections, astrovirus infection is not associated with an inflammatory response or cellular damage. In vitro studies in differentiated Caco-2 cells demonstrated that human astrovirus serotype 1 (HAstV-1 capsid protein alone disrupts the actin cytoskeleton and tight junction complex, leading to increased epithelial barrier permeability. In this study, we show that oral administration of purified recombinant turkey astrovirus 2 (TAstV-2 capsid protein results in acute diarrhea in a dose- and time-dependent manner in turkey poults. Similarly to that induced by infectious virus, TAstV-2 capsid-induced diarrhea was independent of inflammation or histological changes but was associated with increased intestinal barrier permeability, as well as redistribution of sodium hydrogen exchanger 3 (NHE3 from the membrane to the cytoplasm of the intestinal epithelium. Unlike other viral enterotoxins that have been identified, astrovirus capsid induces diarrhea after oral administration, reproducing the natural route of infection and demonstrating that ingestion of intact noninfectious capsid protein may be sufficient to provoke acute diarrhea. Based on these data, we hypothesize that the astrovirus capsid acts like an enterotoxin and induces intestinal epithelial barrier dysfunction.

  15. How viral capsids adapt to mismatched cargoes—identifying mechanisms of morphology control with simulations

    Science.gov (United States)

    Elrad, Oren

    2009-03-01

    During the replication of many viruses, hundreds to thousands of protein subunits assemble around the viral nucleic acid to form a protein shell called a capsid. Most viruses form one particular structure with astonishing fidelity; yet, recent experiments demonstrate that capsids can assemble with different sizes and morphologies to accommodate nucleic acids or other cargoes such as functionalized nanoparticles. In this talk, we will explore the mechanisms of simultaneous assembly and cargo encapsidation with a computational model that describes the assembly of icosahedral capsids around functionalized nanoparticles. With this model, we find parameter values for which subunits faithfully form empty capsids with a single morphology, but adaptively assemble into different icosahedral morphologies around nanoparticles with different diameters. Analyzing trajectories in which adaptation is or is not successful sheds light on the mechanisms by which capsid morphology may be controlled in vitro and in vivo, and suggests experiments to test these mechanisms. We compare the simulation results to recent experiments in which Brome Mosaic Virus capsid proteins assemble around functionalized nanoparticles, and describe how future experiments can test the model predictions.

  16. High Relaxivity Gadolinium Hydroxypyridonate-Viral Capsid Conjugates: Nano-sized MRI Contrast Agents

    Energy Technology Data Exchange (ETDEWEB)

    Meux, Susan C.; Datta, Ankona; Hooker, Jacob M.; Botta, Mauro; Francis, Matthew B.; Aime, Silvio; Raymond, Kenneth N.

    2007-08-29

    High relaxivity macromolecular contrast agents based on the conjugation of gadolinium chelates to the interior and exterior surfaces of MS2 viral capsids are assessed. The proton nuclear magnetic relaxation dispersion (NMRD) profiles of the conjugates show up to a five-fold increase in relaxivity, leading to a peak relaxivity (per Gd{sup 3+} ion) of 41.6 mM{sup -1}s{sup -1} at 30 MHz for the internally modified capsids. Modification of the exterior was achieved through conjugation to flexible lysines, while internal modification was accomplished by conjugation to relatively rigid tyrosines. Higher relaxivities were obtained for the internally modified capsids, showing that (1) there is facile diffusion of water to the interior of capsids and (2) the rigidity of the linker attaching the complex to the macromolecule is important for obtaining high relaxivity enhancements. The viral capsid conjugated gadolinium hydroxypyridonate complexes appear to possess two inner-sphere water molecules (q = 2) and the NMRD fittings highlight the differences in the local motion for the internal ({tau}{sub RI} = 440 ps) and external ({tau}{sub RI} = 310 ps) conjugates. These results indicate that there are significant advantages of using the internal surface of the capsids for contrast agent attachment, leaving the exterior surface available for the installation of tissue targeting groups.

  17. EXPRESS

    International Nuclear Information System (INIS)

    Ancelin, C.; Le, P.; DeSaint-Quentin, S.; Villatte, N.

    1987-01-01

    This paper presents EXPRESS, an expert system developed for the automation of reliability studies. The first part consists in the description of the method for static thermohydraulic systems. In this step, the authors define the knowledge representation based on the two inference engines - ALOUETTE and LCR developed by EDF. They explain all the process to construct a fault tree from a topological and functional description of the system. Numerous examples are exhibited in illustration of the method. This is followed by the lessons derived from the studies performed on some safety systems of the PALUEL nuclear plant. The development of the same approach for electric power systems is described, insisting on the difference resulting from the sequential nature of these systems. Finally, they show the main advantages identified during the studies

  18. Following the time course of face gender and expression processing: a task-dependent ERP study.

    Science.gov (United States)

    Valdés-Conroy, Berenice; Aguado, Luis; Fernández-Cahill, María; Romero-Ferreiro, Verónica; Diéguez-Risco, Teresa

    2014-05-01

    The effects of task demands and the interaction between gender and expression in face perception were studied using event-related potentials (ERPs). Participants performed three different tasks with male and female faces that were emotionally inexpressive or that showed happy or angry expressions. In two of the tasks (gender and expression categorization) facial properties were task-relevant while in a third task (symbol discrimination) facial information was irrelevant. Effects of expression were observed on the visual P100 component under all task conditions, suggesting the operation of an automatic process that is not influenced by task demands. The earliest interaction between expression and gender was observed later in the face-sensitive N170 component. This component showed differential modulations by specific combinations of gender and expression (e.g., angry male vs. angry female faces). Main effects of expression and task were observed in a later occipito-temporal component peaking around 230 ms post-stimulus onset (EPN or early posterior negativity). Less positive amplitudes in the presence of angry faces and during performance of the gender and expression tasks were observed. Finally, task demands also modulated a positive component peaking around 400 ms (LPC, or late positive complex) that showed enhanced amplitude for the gender task. The pattern of results obtained here adds new evidence about the sequence of operations involved in face processing and the interaction of facial properties (gender and expression) in response to different task demands. Copyright © 2014 Elsevier B.V. All rights reserved.

  19. The time course of face processing: startle eyeblink response modulation by face gender and expression.

    Science.gov (United States)

    Duval, Elizabeth R; Lovelace, Christopher T; Aarant, Justin; Filion, Diane L

    2013-12-01

    The purpose of this study was to investigate the effects of both facial expression and face gender on startle eyeblink response patterns at varying lead intervals (300, 800, and 3500ms) indicative of attentional and emotional processes. We aimed to determine whether responses to affective faces map onto the Defense Cascade Model (Lang et al., 1997) to better understand the stages of processing during affective face viewing. At 300ms, there was an interaction between face expression and face gender with female happy and neutral faces and male angry faces producing inhibited startle. At 3500ms, there was a trend for facilitated startle during angry compared to neutral faces. These findings suggest that affective expressions are perceived differently in male and female faces, especially at short lead intervals. Future studies investigating face processing should take both face gender and expression into account. © 2013.

  20. Maize rayado fino virus capsid proteins assemble into virus-like particles in Escherichia coli.

    Science.gov (United States)

    Hammond, Rosemarie W; Hammond, John

    2010-02-01

    Maize rayado fino virus (MRFV; genus Marafivirus; family Tymoviridae) is an isometric plant virus of 30 nm containing two components: empty shells and complete virus particles (encapsidating the 6.3 kb genomic RNA). Both particles are composed of two serologically related, carboxy co-terminal, coat proteins (CP) of apparent molecular mass 21-22 kDa (CP2) and 24-28 kDa (CP1) in a molar ratio of 3:1, respectively; CP1 contains a 37 amino acid amino terminal extension of CP2. In our study, expression of CP1 or CP2 in Escherichia coli resulted in assembly of each capsid protein into virus-like particles (VLPs), appearing in electron microscopy as stain-permeable (CP2) or stain-impermeable particles (CP1). CP1 VLPs encapsidated bacterial 16S ribosomal RNA, but not CP mRNA, while CP2 VLPs encapsidated neither CP mRNA nor 16S ribosomal RNA. Expression of CP1 and CP2 in E. coli using a co-expression vector resulted in the assembly of VLPs which were stain-impermeable and encapsidated CP mRNA. These results suggest that the N-terminal 37 amino acid residues of CP1, although not required for particle formation, may be involved in the assembly of complete virions and that the presence of both CP1 and CP2 in the particle is required for specific encapsidation of MRFV CP mRNA. (c) 2009 Elsevier B.V. All rights reserved.

  1. The teaching-learning process of plastic expression in students with Down syndrome

    Directory of Open Access Journals (Sweden)

    Julio Antonio Conill Armenteros

    2018-03-01

    Full Text Available The drawing constitutes a means through which the child expresses the level of physical, mental, emotional and creative development achieved and plays an important role in the plastic expression. The study took into account the identification of needs in the teaching - learning process of plastic expression in students with Down syndrome, for which a didactic strategy was designed that contains actions of a teaching nature and establishes interdisciplinary links between the different subjects of the curriculum. The investigative process was conducted on a dialectical-materialist basis and methods were used at the theoretical, empirical and statistical-mathematical levels, such as: documentary analysis, interview, drawing technique, among others. Five students with Down syndrome participated in the study of the special school "28 de Enero" of Pinar del Río and the instructor who directs the workshops of creation of Plastic Arts. The investigations allowed to determine the regularities that distinguish the process of teaching - learning of the plastic expression in these students, as well as the needs of the Plastic Arts instructor for the conduction of said process. The didactic strategy allowed the process of teaching - learning of the plastic expression to encourage creativity and the development of motor skills, from the projection of actions that contribute to the diagnosis and treatment of this process in order to achieve the maximum integral development possible and the preparation for the independent adult life of the school student with Down syndrome.

  2. Cradling Side Preference Is Associated with Lateralized Processing of Baby Facial Expressions in Females

    Science.gov (United States)

    Huggenberger, Harriet J.; Suter, Susanne E.; Reijnen, Ester; Schachinger, Hartmut

    2009-01-01

    Women's cradling side preference has been related to contralateral hemispheric specialization of processing emotional signals; but not of processing baby's facial expression. Therefore, 46 nulliparous female volunteers were characterized as left or non-left holders (HG) during a doll holding task. During a signal detection task they were then…

  3. Breaking Symmetry in Viral Icosahedral Capsids as Seen through the Lenses of X-ray Crystallography and Cryo-Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Kristin N. Parent

    2018-02-01

    Full Text Available The majority of viruses on Earth form capsids built by multiple copies of one or more types of a coat protein arranged with 532 symmetry, generating an icosahedral shell. This highly repetitive structure is ideal to closely pack identical protein subunits and to enclose the nucleic acid genomes. However, the icosahedral capsid is not merely a passive cage but undergoes dynamic events to promote packaging, maturation and the transfer of the viral genome into the host. These essential processes are often mediated by proteinaceous complexes that interrupt the shell’s icosahedral symmetry, providing a gateway through the capsid. In this review, we take an inventory of molecular structures observed either internally, or at the 5-fold vertices of icosahedral DNA viruses that infect bacteria, archea and eukaryotes. Taking advantage of the recent revolution in cryo-electron microscopy (cryo-EM and building upon a wealth of crystallographic structures of individual components, we review the design principles of non-icosahedral structural components that interrupt icosahedral symmetry and discuss how these macromolecules play vital roles in genome packaging, ejection and host receptor-binding.

  4. Mutation of a Conserved Nuclear Export Sequence in Chikungunya Virus Capsid Protein Disrupts Host Cell Nuclear Import.

    Science.gov (United States)

    Jacobs, Susan C; Taylor, Adam; Herrero, Lara J; Mahalingam, Suresh; Fazakerley, John K

    2017-10-20

    Transmitted by mosquitoes; chikungunya virus (CHIKV) is responsible for frequent outbreaks of arthritic disease in humans. CHIKV is an arthritogenic alphavirus of the Togaviridae family. Capsid protein, a structural protein encoded by the CHIKV RNA genome, is able to translocate to the host cell nucleus. In encephalitic alphaviruses nuclear translocation induces host cell shut off; however, the role of capsid protein nuclear localisation in arthritogenic alphaviruses remains unclear. Using replicon systems, we investigated a nuclear export sequence (NES) in the N-terminal region of capsid protein; analogous to that found in encephalitic alphavirus capsid but uncharacterised in CHIKV. The chromosomal maintenance 1 (CRM1) export adaptor protein mediated CHIKV capsid protein export from the nucleus and a region within the N-terminal part of CHIKV capsid protein was required for active nuclear targeting. In contrast to encephalitic alphaviruses, CHIKV capsid protein did not inhibit host nuclear import; however, mutating the NES of capsid protein (∆NES) blocked host protein access to the nucleus. Interactions between capsid protein and the nucleus warrant further investigation.

  5. Structural Characterization of H-1 Parvovirus: Comparison of Infectious Virions to Empty Capsids

    Science.gov (United States)

    Halder, Sujata; Nam, Hyun-Joo; Govindasamy, Lakshmanan; Vogel, Michèle; Dinsart, Christiane; Salomé, Nathalie; McKenna, Robert

    2013-01-01

    The structure of single-stranded DNA (ssDNA) packaging H-1 parvovirus (H-1PV), which is being developed as an antitumor gene delivery vector, has been determined for wild-type (wt) virions and noninfectious (empty) capsids to 2.7- and 3.2-Å resolution, respectively, using X-ray crystallography. The capsid viral protein (VP) structure consists of an α-helix and an eight-stranded anti-parallel β-barrel with large loop regions between the strands. The β-barrel and loops form the capsid core and surface, respectively. In the wt structure, 600 nucleotides are ordered in an interior DNA binding pocket of the capsid. This accounts for ∼12% of the H-1PV genome. The wt structure is identical to the empty capsid structure, except for side chain conformation variations at the nucleotide binding pocket. Comparison of the H-1PV nucleotides to those observed in canine parvovirus and minute virus of mice, two members of the genus Parvovirus, showed both similarity in structure and analogous interactions. This observation suggests a functional role, such as in capsid stability and/or ssDNA genome recognition for encapsulation. The VP structure differs from those of other parvoviruses in surface loop regions that control receptor binding, tissue tropism, pathogenicity, and antibody recognition, including VP sequences reported to determine tumor cell tropism for oncotropic rodent parvoviruses. These structures of H-1PV provide insight into structural features that dictate capsid stabilization following genome packaging and three-dimensional information applicable for rational design of tumor-targeted recombinant gene delivery vectors. PMID:23449783

  6. Structure of a Human Astrovirus Capsid-Antibody Complex and Mechanistic Insights into Virus Neutralization

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanoff, Walter A.; Campos, Jocelyn; Perez, Edmundo I.; Yin, Lu; Alexander, David L.; DuBois, Rebecca M. (UCSC)

    2016-11-02

    ABSTRACT

    Human astroviruses (HAstVs) are a leading cause of viral diarrhea in young children, the immunocompromised, and the elderly. There are no vaccines or antiviral therapies against HAstV disease. Several lines of evidence point to the presence of protective antibodies in healthy adults as a mechanism governing protection against reinfection by HAstV. However, development of anti-HAstV therapies is hampered by the gap in knowledge of protective antibody epitopes on the HAstV capsid surface. Here, we report the structure of the HAstV capsid spike domain bound to the neutralizing monoclonal antibody PL-2. The antibody uses all six complementarity-determining regions to bind to a quaternary epitope on each side of the dimeric capsid spike. We provide evidence that the HAstV capsid spike is a receptor-binding domain and that the antibody neutralizes HAstV by blocking virus attachment to cells. We identify patches of conserved amino acids that overlap the antibody epitope and may comprise a receptor-binding site. Our studies provide a foundation for the development of therapies to prevent and treat HAstV diarrheal disease.

    IMPORTANCEHuman astroviruses (HAstVs) infect nearly every person in the world during childhood and cause diarrhea, vomiting, and fever. Despite the prevalence of this virus, little is known about how antibodies in healthy adults protect them against reinfection. Here, we determined the crystal structure of a complex of the HAstV capsid protein and a virus-neutralizing antibody. We show that the antibody binds to the outermost spike domain of the capsid, and we provide evidence that the antibody blocks virus attachment to human cells. Importantly, our findings suggest that a subunit-based vaccine focusing the immune system on the HAstV capsid spike domain could be effective in protecting children against HAstV disease.

  7. Minor Capsid Protein L2 Polytope Induces Broad Protection against Oncogenic and Mucosal Human Papillomaviruses.

    Science.gov (United States)

    Pouyanfard, Somayeh; Spagnoli, Gloria; Bulli, Lorenzo; Balz, Kathrin; Yang, Fan; Odenwald, Caroline; Seitz, Hanna; Mariz, Filipe C; Bolchi, Angelo; Ottonello, Simone; Müller, Martin

    2018-02-15

    The amino terminus of the human papillomavirus (HPV) minor capsid protein L2 contains a major cross-neutralization epitope which provides the basis for the development of a broadly protecting HPV vaccine. A wide range of protection against different HPV types would eliminate one of the major drawbacks of the commercial, L1-based prophylactic vaccines. Previously, we have reported that insertion of the L2 epitope into a scaffold composed of bacterial thioredoxin protein generates a potent antigen inducing comprehensive protection against different animal and human papillomaviruses. We also reported, however, that although protection is broad, some oncogenic HPV types escape the neutralizing antibody response, if L2 epitopes from single HPV types are used as immunogen. We were able to compensate for this by applying a mix of thioredoxin proteins carrying L2 epitopes from HPV16, -31, and -51. As the development of a cost-efficient HPV prophylactic vaccines is one of our objectives, this approach is not feasible as it requires the development of multiple good manufacturing production processes in combination with a complex vaccine formulation. Here, we report the development of a thermostable thioredoxin-based single-peptide vaccine carrying an L2 polytope of up to 11 different HPV types. The L2 polytope antigens have excellent abilities in respect to broadness of protection and robustness of induced immune responses. To further increase immunogenicity, we fused the thioredoxin L2 polytope antigen with a heptamerization domain. In the final vaccine design, we achieve protective responses against all 14 oncogenic HPV types that we have analyzed plus the low-risk HPVs 6 and 11 and a number of cutaneous HPVs. IMPORTANCE Infections by a large number of human papillomaviruses lead to malignant and nonmalignant disease. Current commercial vaccines based on virus-like particles (VLPs) effectively protect against some HPV types but fail to do so for most others. Further, only

  8. Intracellular Calreticulin Regulates Multiple Steps in Fibrillar Collagen Expression, Trafficking, and Processing into the Extracellular Matrix*

    OpenAIRE

    Van Duyn Graham, Lauren; Sweetwyne, Mariya T.; Pallero, Manuel A.; Murphy-Ullrich, Joanne E.

    2009-01-01

    Calreticulin (CRT), a chaperone and Ca2+ regulator, enhances wound healing, and its expression correlates with fibrosis in animal models, suggesting that CRT regulates production of the extracellular matrix. However, direct regulation of collagen matrix by CRT has not been previously demonstrated. We investigated the role of CRT in the regulation of fibrillar collagen expression, secretion, processing, and deposition in the extracellular matrix by fibroblasts. Mouse embryonic fibroblasts defi...

  9. Rubella virus capsid protein modulation of viral genomic and subgenomic RNA synthesis

    International Nuclear Information System (INIS)

    Tzeng, W.-P.; Frey, Teryl K.

    2005-01-01

    The ratio of the subgenomic (SG) to genome RNA synthesized by rubella virus (RUB) replicons expressing the green fluorescent protein reporter gene (RUBrep/GFP) is substantially higher than the ratio of these species synthesized by RUB (4.3 for RUBrep/GFP vs. 1.3-1.4 for RUB). It was hypothesized that this modulation of the viral RNA synthesis was by one of the virus structural protein genes and it was found that introduction of the capsid (C) protein gene into the replicons as an in-frame fusion with GFP resulted in an increase of genomic RNA production (reducing the SG/genome RNA ratio), confirming the hypothesis and showing that the C gene was the moiety responsible for the modulation effect. The N-terminal one-third of the C gene was required for the effect of be exhibited. A similar phenomenon was not observed with the replicons of Sindbis virus, a related Alphavirus. Interestingly, modulation was not observed when RUBrep/GFP was co-transfected with either other RUBrep or plasmid constructs expressing the C gene, demonstrating that modulation could occur only when the C gene was provided in cis. Mutations that prevented translation of the C protein failed to modulate RNA synthesis, indicating that the C protein was the moiety responsible for modulation; consistent with this conclusion, modulation of RNA synthesis was maintained when synonymous codon mutations were introduced at the 5' end of the C gene that changed the C gene sequence without altering the amino acid sequence of the C protein. These results indicate that C protein translated in proximity of viral replication complexes, possibly from newly synthesized SG RNA, participate in regulating the replication of viral RNA

  10. Impact of blood processing variations on Natural Killer cell frequency, activation, chemokine receptor expression and function

    Science.gov (United States)

    Naranbhai, Vivek; Bartman, Pat; Ndlovu, Dudu; Ramkalawon, Pamela; Ndung’u, Thumbi; Wilson, Douglas; Altfeld, Marcus; Carr, William H

    2011-01-01

    Understanding the role of natural killer (NK) cells in human disease pathogenesis is crucial and necessitates study of patient samples directly ex vivo. Manipulation of whole blood by density gradient centrifugation or delays in sample processing due to shipping, however, may lead to artifactual changes in immune response measures. Here, we assessed the impact of density gradient centrifugation and delayed processing of both whole blood and peripheral blood mononuclear cells (PBMC) at multiple timepoints (2–24 hrs) on flow cytometric measures of NK cell frequency, activation status, chemokine receptor expression, and effector functions. We found that density gradient centrifugation activated NK cells and modified chemokine receptor expression. Delays in processing beyond 8 hours activated NK cells in PBMC but not in whole blood. Likewise, processing delays decreased chemokine receptor (CCR4 and CCR7) expression in both PBMC and whole blood. Finally, delays in processing PBMC were associated with a decreased ability of NK cells to degranulate (as measured by CD107a expression) or secrete cytokines (IFN-γ and TNF-α). In summary, our findings suggest that density gradient centrifugation and delayed processing of PBMC can alter measures of clinically relevant NK cell characteristics including effector functions; and therefore should be taken into account in designing clinical research studies. PMID:21255578

  11. Roles of three amino acids of capsid proteins in mink enteritis parvovirus replication.

    Science.gov (United States)

    Mao, Yaping; Su, Jun; Wang, Jigui; Zhang, Xiaomei; Hou, Qiang; Bian, Dawei; Liu, Weiquan

    2016-08-15

    Virulent mink enteritis parvovirus (MEV) strain MEV-LHV replicated to higher titers in feline F81 cells than attenuated strain MEV-L. Phylogenetic and sequence analyses of the VP2 gene of MEV-LHV, MEV-L and other strains in GenBank revealed two evolutionary branches separating virulent and attenuated strains. Three residues, 101, 232 and 411, differed between virulent and attenuated strains but were conserved within the two branches. Site-directed mutagenesis of the VP2 gene of infectious plasmids of attenuated strain MEV-L respectively replacing residues 101 Ile and 411 Ala with Thr and Glu of virulent strains (MEV-L I101T and MEV-L A411E) increased replication efficiency but still to lower levels than MEV-LHV. However, viruses with mutation of residue 232 (MEV-L I232V and MEV-L I101T/I232V/A411E) decreased viral transcription and replication levels. The three VP2 residues 101, 232 and 411, located on or near the capsid surface, played different roles in the infection processes of MEV. Copyright © 2016 Elsevier B.V. All rights reserved.

  12. Genome-wide analysis of gene expression in primate taste buds reveals links to diverse processes.

    Directory of Open Access Journals (Sweden)

    Peter Hevezi

    Full Text Available Efforts to unravel the mechanisms underlying taste sensation (gustation have largely focused on rodents. Here we present the first comprehensive characterization of gene expression in primate taste buds. Our findings reveal unique new insights into the biology of taste buds. We generated a taste bud gene expression database using laser capture microdissection (LCM procured fungiform (FG and circumvallate (CV taste buds from primates. We also used LCM to collect the top and bottom portions of CV taste buds. Affymetrix genome wide arrays were used to analyze gene expression in all samples. Known taste receptors are preferentially expressed in the top portion of taste buds. Genes associated with the cell cycle and stem cells are preferentially expressed in the bottom portion of taste buds, suggesting that precursor cells are located there. Several chemokines including CXCL14 and CXCL8 are among the highest expressed genes in taste buds, indicating that immune system related processes are active in taste buds. Several genes expressed specifically in endocrine glands including growth hormone releasing hormone and its receptor are also strongly expressed in taste buds, suggesting a link between metabolism and taste. Cell type-specific expression of transcription factors and signaling molecules involved in cell fate, including KIT, reveals the taste bud as an active site of cell regeneration, differentiation, and development. IKBKAP, a gene mutated in familial dysautonomia, a disease that results in loss of taste buds, is expressed in taste cells that communicate with afferent nerve fibers via synaptic transmission. This database highlights the power of LCM coupled with transcriptional profiling to dissect the molecular composition of normal tissues, represents the most comprehensive molecular analysis of primate taste buds to date, and provides a foundation for further studies in diverse aspects of taste biology.

  13. The role of the cannabinoid receptor in adolescents' processing of facial expressions.

    Science.gov (United States)

    Ewald, Anais; Becker, Susanne; Heinrich, Angela; Banaschewski, Tobias; Poustka, Luise; Bokde, Arun; Büchel, Christian; Bromberg, Uli; Cattrell, Anna; Conrod, Patricia; Desrivières, Sylvane; Frouin, Vincent; Papadopoulos-Orfanos, Dimitri; Gallinat, Jürgen; Garavan, Hugh; Heinz, Andreas; Walter, Henrik; Ittermann, Bernd; Gowland, Penny; Paus, Tomáš; Martinot, Jean-Luc; Paillère Martinot, Marie-Laure; Smolka, Michael N; Vetter, Nora; Whelan, Rob; Schumann, Gunter; Flor, Herta; Nees, Frauke

    2016-01-01

    The processing of emotional faces is an important prerequisite for adequate social interactions in daily life, and might thus specifically be altered in adolescence, a period marked by significant changes in social emotional processing. Previous research has shown that the cannabinoid receptor CB1R is associated with longer gaze duration and increased brain responses in the striatum to happy faces in adults, yet, for adolescents, it is not clear whether an association between CBR1 and face processing exists. In the present study we investigated genetic effects of the two CB1R polymorphisms, rs1049353 and rs806377, on the processing of emotional faces in healthy adolescents. They participated in functional magnetic resonance imaging during a Faces Task, watching blocks of video clips with angry and neutral facial expressions, and completed a Morphed Faces Task in the laboratory where they looked at different facial expressions that switched from anger to fear or sadness or from happiness to fear or sadness, and labelled them according to these four emotional expressions. A-allele versus GG-carriers in rs1049353 displayed earlier recognition of facial expressions changing from anger to sadness or fear, but not for expressions changing from happiness to sadness or fear, and higher brain responses to angry, but not neutral, faces in the amygdala and insula. For rs806377 no significant effects emerged. This suggests that rs1049353 is involved in the processing of negative facial expressions with relation to anger in adolescence. These findings add to our understanding of social emotion-related mechanisms in this life period. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  14. Effects of task demands on the early neural processing of fearful and happy facial expressions.

    Science.gov (United States)

    Itier, Roxane J; Neath-Tavares, Karly N

    2017-05-15

    Task demands shape how we process environmental stimuli but their impact on the early neural processing of facial expressions remains unclear. In a within-subject design, ERPs were recorded to the same fearful, happy and neutral facial expressions presented during a gender discrimination, an explicit emotion discrimination and an oddball detection tasks, the most studied tasks in the field. Using an eye tracker, fixation on the face nose was enforced using a gaze-contingent presentation. Task demands modulated amplitudes from 200 to 350ms at occipito-temporal sites spanning the EPN component. Amplitudes were more negative for fearful than neutral expressions starting on N170 from 150 to 350ms, with a temporo-occipital distribution, whereas no clear effect of happy expressions was seen. Task and emotion effects never interacted in any time window or for the ERP components analyzed (P1, N170, EPN). Thus, whether emotion is explicitly discriminated or irrelevant for the task at hand, neural correlates of fearful and happy facial expressions seem immune to these task demands during the first 350ms of visual processing. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Virulent variants emerging in mice infected with the apathogenic prototype strain of the parvovirus minute virus of mice exhibit a capsid with low avidity for a primary receptor.

    Science.gov (United States)

    Rubio, Mari-Paz; López-Bueno, Alberto; Almendral, José M

    2005-09-01

    The mechanisms involved in the emergence of virulent mammalian viruses were investigated in the adult immunodeficient SCID mouse infected by the attenuated prototype strain of the parvovirus Minute Virus of Mice (MVMp). Cloned MVMp intravenously inoculated in mice consistently evolved during weeks of subclinical infection to variants showing altered plaque phenotypes. All the isolated large-plaque variants spread systemically from the oronasal cavity and replicated in major organs (brain, kidney, liver), in sharp contrast to the absolute inability of the MVMp and small-plaque variants to productively invade SCID organs by this natural route of infection. The virulent variants retained the MVMp capacity to infect mouse fibroblasts, consistent with the lack of genetic changes across the 220-to-335 amino acid sequence of VP2, a capsid domain containing main determinants of MVM tropism. However, the capsid of the virulent variants shared a lower affinity than the wild type for a primary receptor used in the cytotoxic infection. The capsid gene of a virulent variant engineered in the MVMp background endowed the recombinant virus with a large-plaque phenotype, lower affinity for the receptor, and productive invasiveness by the oronasal route in SCID mice, eventually leading to 100% mortality. In the analysis of virulence in mice, both MVMp and the recombinant virus similarly gained the bloodstream 1 to 2 days postoronasal inoculation and remained infectious when adsorbed to blood cells in vitro. However, the wild-type MVMp was cleared from circulation a few days afterwards, in contrast to the viremia of the recombinant virus, which was sustained for life. Significantly, attachment to an abundant receptor of primary mouse kidney epithelial cells by both viruses could be quantitatively competed by wild-type MVMp capsids, indicating that virulence is not due to an extended receptor usage in target tissues. We conclude that the selection of capsid-receptor interactions of

  16. Identification and classification of human cytomegalovirus capsids in textured electron micrographs using deformed template matching

    Directory of Open Access Journals (Sweden)

    Söderberg-Nauclér Cecilia

    2006-08-01

    Full Text Available Abstract Background Characterization of the structural morphology of virus particles in electron micrographs is a complex task, but desirable in connection with investigation of the maturation process and detection of changes in viral particle morphology in response to the effect of a mutation or antiviral drugs being applied. Therefore, we have here developed a procedure for describing and classifying virus particle forms in electron micrographs, based on determination of the invariant characteristics of the projection of a given virus structure. The template for the virus particle is created on the basis of information obtained from a small training set of electron micrographs and is then employed to classify and quantify similar structures of interest in an unlimited number of electron micrographs by a process of correlation. Results Practical application of the method is demonstrated by the ability to locate three diverse classes of virus particles in transmission electron micrographs of fibroblasts infected with human cytomegalovirus. These results show that fast screening of the total number of viral structures at different stages of maturation in a large set of electron micrographs, a task that is otherwise both time-consuming and tedious for the expert, can be accomplished rapidly and reliably with our automated procedure. Using linear deformation analysis, this novel algorithm described here can handle capsid variations such as ellipticity and furthermore allows evaluation of properties such as the size and orientation of a virus particle. Conclusion Our methodological procedure represents a promising objective tool for comparative studies of the intracellular assembly processes of virus particles using electron microscopy in combination with our digitized image analysis tool. An automated method for sorting and classifying virus particles at different stages of maturation will enable us to quantify virus production in all stages of the

  17. B-cell depletion is protective against anti-AAV capsid immune response: a human subject case study

    Directory of Open Access Journals (Sweden)

    M Corti

    2014-01-01

    Full Text Available Gene therapy strategies for congenital myopathies may require repeat administration of adeno-associated viral (AAV vectors due to aspects of the clinical application, such as: (i administration of doses below therapeutic efficacy in patients enrolled in early phase clinical trials; (ii progressive reduction of the therapeutic gene expression over time as a result of increasing muscle mass in patients treated at a young age; and (iii a possibly faster depletion of pathogenic myofibers in this patient population. Immune response triggered by the first vector administration, and to subsequent doses, represents a major obstacle for successful gene transfer in young patients. Anti-capsid and anti-transgene product related humoral and cell-mediated responses have been previously observed in all preclinical models and human subjects who received gene therapy or enzyme replacement therapy (ERT for congenital myopathies. Immune responses may result in reduced efficacy of the gene transfer over time and/or may preclude for the possibility of re-administration of the same vector. In this study, we evaluated the immune response of a Pompe patient dosed with an AAV1-GAA vector after receiving Rituximab and Sirolimus to modulate reactions against ERT. A key finding of this single subject case report is the observation that B-cell ablation with rituximab prior to AAV vector exposure results in non-responsiveness to both capsid and transgene, therefore allowing the possibility of repeat administration in the future. This observation is significant for future gene therapy studies and establishes a clinically relevant approach to blocking immune responses to AAV vectors.

  18. Journaling about stressful events: effects of cognitive processing and emotional expression.

    Science.gov (United States)

    Ullrich, Philip M; Lutgendorf, Susan K

    2002-01-01

    The effects of two journaling interventions, one focusing on emotional expression and the other on both cognitive processing and emotional expression, were compared during 1 month of journaling about a stressful or traumatic event. One hundred twenty-two students were randomly assigned to one of three writing conditions: (a) focusing on emotions related to a trauma or stressor, (b) focusing on cognitions and emotions related to a trauma or stressor, or (c) writing factually about media events. Writers focusing on cognitions and emotions developed greater awareness of the positive benefits of the stressful event than the other two groups. This effect was apparently mediated by greater cognitive processing during writing. Writers focusing on emotions alone reported more severe illness symptoms during the study than those in other conditions. This effect appeared to be mediated by a greater focus on negative emotional expression during writing.

  19. Processing of Facial Expressions of Emotions by Adults with Down Syndrome and Moderate Intellectual Disability

    Science.gov (United States)

    Carvajal, Fernando; Fernandez-Alcaraz, Camino; Rueda, Maria; Sarrion, Louise

    2012-01-01

    The processing of facial expressions of emotions by 23 adults with Down syndrome and moderate intellectual disability was compared with that of adults with intellectual disability of other etiologies (24 matched in cognitive level and 26 with mild intellectual disability). Each participant performed 4 tasks of the Florida Affect Battery and an…

  20. Poliovirus-associated protein kinase: Destabilization of the virus capsid and stimulation of the phosphorylation reaction by Zn2+

    International Nuclear Information System (INIS)

    Ratka, M.; Lackmann, M.; Ueckermann, C.; Karlins, U.; Koch, G.

    1989-01-01

    The previously described poliovirus-associated protein kinase activity phosphorylates viral proteins VP0 and VP2 as well as exogenous proteins in the presence of Mg 2+ . In this paper, the effect of Zn 2+ on the phosphorylation reaction and the stability of the poliovirus capsid has been studied in detail and compared to that of Mg 2+ . In the presence of Zn 2+ , phosphorylation of capsid proteins VP2 and VP4 is significantly higher while phosphorylation of VP0 and exogenous phosphate acceptor proteins is not detected. The results indicate the activation of more than one virus-associated protein kinase by Zn 2+ . The ion-dependent behavior of the enzyme activities is observed independently of whether the virus was obtained from HeLa or green monkey kidney cells. The poliovirus capsid is destabilized by Zn 2+ . This alteration of the poliovirus capsid structure is a prerequisite for effective phosphorylation of viral capsid proteins. The increased level of phosphorylation of viral capsid proteins results in further destabilization of the viral capsid. As a result of the conformational changes, poliovirus-associated protein kinase activities dissociate from the virus particle. The authors suggest that the destabilizing effect of phosphorylation on the viral capsid plays a role in uncoating of poliovirus

  1. Structural Transitions and Energy Landscape for Cowpea Chlorotic Mottle Virus Capsid Mechanics from Nanomanipulation in Vitro and in Silico

    Science.gov (United States)

    Kononova, Olga; Snijder, Joost; Brasch, Melanie; Cornelissen, Jeroen; Dima, Ruxandra I.; Marx, Kenneth A.; Wuite, Gijs J. L.; Roos, Wouter H.; Barsegov, Valeri

    2013-10-01

    Physical properties of capsids of plant and animal viruses are important factors in capsid self-assembly, survival of viruses in the extracellular environment, and their cell infectivity. Virus shells can have applications as nanocontainers and delivery vehicles in biotechnology and medicine. Combined AFM experiments and computational modeling on sub-second timescales of the indentation nanomechanics of Cowpea Chlorotic Mottle Virus (CCMV) capsid show that the capsid's physical properties are dynamic and local characteristics of the structure, which depend on the magnitude and geometry of mechanical input. Surprisingly, under large deformations the CCMV capsid transitions to the collapsed state without substantial local structural alterations. The enthalpy change in this deformation state dH = 11.5 - 12.8 MJ/mol is mostly due to large-amplitude out-of-plane excitations, which contribute to the capsid bending, and the entropy change TdS = 5.1 - 5.8 MJ/mol is mostly due to coherent in-plane rearrangements of protein chains, which result in the capsid stiffening. Dynamic coupling of these modes defines the extent of elasticity and reversibility of capsid mechanical deformation. This emerging picture illuminates how unique physico-chemical properties of protein nanoshells help define their structure and morphology, and determine their viruses' biological function.

  2. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97.

    Science.gov (United States)

    Milbradt, Jens; Sonntag, Eric; Wagner, Sabrina; Strojan, Hanife; Wangen, Christina; Lenac Rovis, Tihana; Lisnic, Berislav; Jonjic, Stipan; Sticht, Heinrich; Britt, William J; Schlötzer-Schrehardt, Ursula; Marschall, Manfred

    2018-01-13

    The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC) that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV) capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  3. Human Cytomegalovirus Nuclear Capsids Associate with the Core Nuclear Egress Complex and the Viral Protein Kinase pUL97

    Directory of Open Access Journals (Sweden)

    Jens Milbradt

    2018-01-01

    Full Text Available The nuclear phase of herpesvirus replication is regulated through the formation of regulatory multi-component protein complexes. Viral genomic replication is followed by nuclear capsid assembly, DNA encapsidation and nuclear egress. The latter has been studied intensely pointing to the formation of a viral core nuclear egress complex (NEC that recruits a multimeric assembly of viral and cellular factors for the reorganization of the nuclear envelope. To date, the mechanism of the association of human cytomegalovirus (HCMV capsids with the NEC, which in turn initiates the specific steps of nuclear capsid budding, remains undefined. Here, we provide electron microscopy-based data demonstrating the association of both nuclear capsids and NEC proteins at nuclear lamina budding sites. Specifically, immunogold labelling of the core NEC constituent pUL53 and NEC-associated viral kinase pUL97 suggested an intranuclear NEC-capsid interaction. Staining patterns with phospho-specific lamin A/C antibodies are compatible with earlier postulates of targeted capsid egress at lamina-depleted areas. Important data were provided by co-immunoprecipitation and in vitro kinase analyses using lysates from HCMV-infected cells, nuclear fractions, or infectious virions. Data strongly suggest that nuclear capsids interact with pUL53 and pUL97. Combined, the findings support a refined concept of HCMV nuclear trafficking and NEC-capsid interaction.

  4. Intra- and inter-subunit disulfide bond formation is nonessential in adeno-associated viral capsids.

    Directory of Open Access Journals (Sweden)

    Nagesh Pulicherla

    Full Text Available The capsid proteins of adeno-associated viruses (AAV have five conserved cysteine residues. Structural analysis of AAV serotype 2 reveals that Cys289 and Cys361 are located adjacent to each other within each monomer, while Cys230 and Cys394 are located on opposite edges of each subunit and juxtaposed at the pentamer interface. The Cys482 residue is located at the base of a surface loop within the trimer region. Although plausible based on molecular dynamics simulations, intra- or inter-subunit disulfides have not been observed in structural studies. In the current study, we generated a panel of Cys-to-Ser mutants to interrogate the potential for disulfide bond formation in AAV capsids. The C289S, C361S and C482S mutants were similar to wild type AAV with regard to titer and transduction efficiency. However, AAV capsid protein subunits with C230S or C394S mutations were prone to proteasomal degradation within the host cells. Proteasomal inhibition partially blocked degradation of mutant capsid proteins, but failed to rescue infectious virions. While these results suggest that the Cys230/394 pair is critical, a C394V mutant was found viable, but not the corresponding C230V mutant. Although the exact nature of the structural contribution(s of Cys230 and Cys394 residues to AAV capsid formation remains to be determined, these results support the notion that disulfide bond formation within the Cys289/361 or Cys230/394 pair appears to be nonessential. These studies represent an important step towards understanding the role of inter-subunit interactions that drive AAV capsid assembly.

  5. Revealing complex function, process and pathway interactions with high-throughput expression and biological annotation data.

    Science.gov (United States)

    Singh, Nitesh Kumar; Ernst, Mathias; Liebscher, Volkmar; Fuellen, Georg; Taher, Leila

    2016-10-20

    The biological relationships both between and within the functions, processes and pathways that operate within complex biological systems are only poorly characterized, making the interpretation of large scale gene expression datasets extremely challenging. Here, we present an approach that integrates gene expression and biological annotation data to identify and describe the interactions between biological functions, processes and pathways that govern a phenotype of interest. The product is a global, interconnected network, not of genes but of functions, processes and pathways, that represents the biological relationships within the system. We validated our approach on two high-throughput expression datasets describing organismal and organ development. Our findings are well supported by the available literature, confirming that developmental processes and apoptosis play key roles in cell differentiation. Furthermore, our results suggest that processes related to pluripotency and lineage commitment, which are known to be critical for development, interact mainly indirectly, through genes implicated in more general biological processes. Moreover, we provide evidence that supports the relevance of cell spatial organization in the developing liver for proper liver function. Our strategy can be viewed as an abstraction that is useful to interpret high-throughput data and devise further experiments.

  6. Neurocognitive mechanisms of gaze-expression interactions in face processing and social attention.

    Science.gov (United States)

    Graham, Reiko; Labar, Kevin S

    2012-04-01

    The face conveys a rich source of non-verbal information used during social communication. While research has revealed how specific facial channels such as emotional expression are processed, little is known about the prioritization and integration of multiple cues in the face during dyadic exchanges. Classic models of face perception have emphasized the segregation of dynamic vs. static facial features along independent information processing pathways. Here we review recent behavioral and neuroscientific evidence suggesting that within the dynamic stream, concurrent changes in eye gaze and emotional expression can yield early independent effects on face judgments and covert shifts of visuospatial attention. These effects are partially segregated within initial visual afferent processing volleys, but are subsequently integrated in limbic regions such as the amygdala or via reentrant visual processing volleys. This spatiotemporal pattern may help to resolve otherwise perplexing discrepancies across behavioral studies of emotional influences on gaze-directed attentional cueing. Theoretical explanations of gaze-expression interactions are discussed, with special consideration of speed-of-processing (discriminability) and contextual (ambiguity) accounts. Future research in this area promises to reveal the mental chronometry of face processing and interpersonal attention, with implications for understanding how social referencing develops in infancy and is impaired in autism and other disorders of social cognition. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Can We Distinguish Emotions from Faces? Investigation of Implicit and Explicit Processes of Peak Facial Expressions.

    Science.gov (United States)

    Xiao, Ruiqi; Li, Xianchun; Li, Lin; Wang, Yanmei

    2016-01-01

    Most previous studies on facial expression recognition have focused on the moderate emotions; to date, few studies have been conducted to investigate the explicit and implicit processes of peak emotions. In the current study, we used transiently peak intense expression images of athletes at the winning or losing point in competition as materials, and investigated the diagnosability of peak facial expressions at both implicit and explicit levels. In Experiment 1, participants were instructed to evaluate isolated faces, isolated bodies, and the face-body compounds, and eye-tracking movement was recorded. The results revealed that the isolated body and face-body congruent images were better recognized than isolated face and face-body incongruent images, indicating that the emotional information conveyed by facial cues was ambiguous, and the body cues influenced facial emotion recognition. Furthermore, eye movement records showed that the participants displayed distinct gaze patterns for the congruent and incongruent compounds. In Experiment 2A, the subliminal affective priming task was used, with faces as primes and bodies as targets, to investigate the unconscious emotion perception of peak facial expressions. The results showed that winning face prime facilitated reaction to winning body target, whereas losing face prime inhibited reaction to winning body target, suggesting that peak facial expressions could be perceived at the implicit level. In general, the results indicate that peak facial expressions cannot be consciously recognized but can be perceived at the unconscious level. In Experiment 2B, revised subliminal affective priming task and a strict awareness test were used to examine the validity of unconscious perception of peak facial expressions found in Experiment 2A. Results of Experiment 2B showed that reaction time to both winning body targets and losing body targets was influenced by the invisibly peak facial expression primes, which indicated the

  8. Expression

    Directory of Open Access Journals (Sweden)

    Wang-Xia Wang

    2014-02-01

    Full Text Available The miR-15/107 family comprises a group of 10 paralogous microRNAs (miRNAs, sharing a 5′ AGCAGC sequence. These miRNAs have overlapping targets. In order to characterize the expression of miR-15/107 family miRNAs, we employed customized TaqMan Low-Density micro-fluid PCR-array to investigate the expression of miR-15/107 family members, and other selected miRNAs, in 11 human tissues obtained at autopsy including the cerebral cortex, frontal cortex, primary visual cortex, thalamus, heart, lung, liver, kidney, spleen, stomach and skeletal muscle. miR-103, miR-195 and miR-497 were expressed at similar levels across various tissues, whereas miR-107 is enriched in brain samples. We also examined the expression patterns of evolutionarily conserved miR-15/107 miRNAs in three distinct primary rat brain cell preparations (enriched for cortical neurons, astrocytes and microglia, respectively. In primary cultures of rat brain cells, several members of the miR-15/107 family are enriched in neurons compared to other cell types in the central nervous system (CNS. In addition to mature miRNAs, we also examined the expression of precursors (pri-miRNAs. Our data suggested a generally poor correlation between the expression of mature miRNAs and their precursors. In summary, we provide a detailed study of the tissue and cell type-specific expression profile of this highly expressed and phylogenetically conserved family of miRNA genes.

  9. Characterization of the mode of action of a potent dengue virus capsid inhibitor.

    Science.gov (United States)

    Scaturro, Pietro; Trist, Iuni Margaret Laura; Paul, David; Kumar, Anil; Acosta, Eliana G; Byrd, Chelsea M; Jordan, Robert; Brancale, Andrea; Bartenschlager, Ralf

    2014-10-01

    Dengue viruses (DV) represent a significant global health burden, with up to 400 million infections every year and around 500,000 infected individuals developing life-threatening disease. In spite of attempts to develop vaccine candidates and antiviral drugs, there is a lack of approved therapeutics for the treatment of DV infection. We have previously reported the identification of ST-148, a small-molecule inhibitor exhibiting broad and potent antiviral activity against DV in vitro and in vivo (C. M. Byrd et al., Antimicrob. Agents Chemother. 57:15-25, 2013, doi:10 .1128/AAC.01429-12). In the present study, we investigated the mode of action of this promising compound by using a combination of biochemical, virological, and imaging-based techniques. We confirmed that ST-148 targets the capsid protein and obtained evidence of bimodal antiviral activity affecting both assembly/release and entry of infectious DV particles. Importantly, by using a robust bioluminescence resonance energy transfer-based assay, we observed an ST-148-dependent increase of capsid self-interaction. These results were corroborated by molecular modeling studies that also revealed a plausible model for compound binding to capsid protein and inhibition by a distinct resistance mutation. These results suggest that ST-148-enhanced capsid protein self-interaction perturbs assembly and disassembly of DV nucleocapsids, probably by inducing structural rigidity. Thus, as previously reported for other enveloped viruses, stabilization of capsid protein structure is an attractive therapeutic concept that also is applicable to flaviviruses. Dengue viruses are arthropod-borne viruses representing a significant global health burden. They infect up to 400 million people and are endemic to subtropical and tropical areas of the world. Currently, there are neither vaccines nor approved therapeutics for the prophylaxis or treatment of DV infections, respectively. This study reports the characterization of the

  10. General Model for Retroviral Capsid Pattern Recognition by TRIM5 Proteins.

    Science.gov (United States)

    Wagner, Jonathan M; Christensen, Devin E; Bhattacharya, Akash; Dawidziak, Daria M; Roganowicz, Marcin D; Wan, Yueping; Pumroy, Ruth A; Demeler, Borries; Ivanov, Dmitri N; Ganser-Pornillos, Barbie K; Sundquist, Wesley I; Pornillos, Owen

    2018-02-15

    Restriction factors are intrinsic cellular defense proteins that have evolved to block microbial infections. Retroviruses such as HIV-1 are restricted by TRIM5 proteins, which recognize the viral capsid shell that surrounds, organizes, and protects the viral genome. TRIM5α uses a SPRY domain to bind capsids with low intrinsic affinity ( K D of >1 mM) and therefore requires higher-order assembly into a hexagonal lattice to generate sufficient avidity for productive capsid recognition. TRIMCyp, on the other hand, binds HIV-1 capsids through a cyclophilin A domain, which has a well-defined binding site and higher affinity ( K D of ∼10 μM) for isolated capsid subunits. Therefore, it has been argued that TRIMCyp proteins have dispensed with the need for higher-order assembly to function as antiviral factors. Here, we show that, consistent with its high degree of sequence similarity with TRIM5α, the TRIMCyp B-box 2 domain shares the same ability to self-associate and facilitate assembly of a TRIMCyp hexagonal lattice that can wrap about the HIV-1 capsid. We also show that under stringent experimental conditions, TRIMCyp-mediated restriction of HIV-1 is indeed dependent on higher-order assembly. Both forms of TRIM5 therefore use the same mechanism of avidity-driven capsid pattern recognition. IMPORTANCE Rhesus macaques and owl monkeys are highly resistant to HIV-1 infection due to the activity of TRIM5 restriction factors. The rhesus macaque TRIM5α protein blocks HIV-1 through a mechanism that requires self-assembly of a hexagonal TRIM5α lattice around the invading viral core. Lattice assembly amplifies very weak interactions between the TRIM5α SPRY domain and the HIV-1 capsid. Assembly also promotes dimerization of the TRIM5α RING E3 ligase domain, resulting in synthesis of polyubiquitin chains that mediate downstream steps of restriction. In contrast to rhesus TRIM5α, the owl monkey TRIM5 homolog, TRIMCyp, binds isolated HIV-1 CA subunits much more tightly

  11. Forager bees (Apis mellifera) highly express immune and detoxification genes in tissues associated with nectar processing.

    Science.gov (United States)

    Vannette, Rachel L; Mohamed, Abbas; Johnson, Brian R

    2015-11-09

    Pollinators, including honey bees, routinely encounter potentially harmful microorganisms and phytochemicals during foraging. However, the mechanisms by which honey bees manage these potential threats are poorly understood. In this study, we examine the expression of antimicrobial, immune and detoxification genes in Apis mellifera and compare between forager and nurse bees using tissue-specific RNA-seq and qPCR. Our analysis revealed extensive tissue-specific expression of antimicrobial, immune signaling, and detoxification genes. Variation in gene expression between worker stages was pronounced in the mandibular and hypopharyngeal gland (HPG), where foragers were enriched in transcripts that encode antimicrobial peptides (AMPs) and immune response. Additionally, forager HPGs and mandibular glands were enriched in transcripts encoding detoxification enzymes, including some associated with xenobiotic metabolism. Using qPCR on an independent dataset, we verified differential expression of three AMP and three P450 genes between foragers and nurses. High expression of AMP genes in nectar-processing tissues suggests that these peptides may contribute to antimicrobial properties of honey or to honey bee defense against environmentally-acquired microorganisms. Together, these results suggest that worker role and tissue-specific expression of AMPs, and immune and detoxification enzymes may contribute to defense against microorganisms and xenobiotic compounds acquired while foraging.

  12. PhysioSpace: relating gene expression experiments from heterogeneous sources using shared physiological processes.

    Directory of Open Access Journals (Sweden)

    Michael Lenz

    Full Text Available Relating expression signatures from different sources such as cell lines, in vitro cultures from primary cells and biopsy material is an important task in drug development and translational medicine as well as for tracking of cell fate and disease progression. Especially the comparison of large scale gene expression changes to tissue or cell type specific signatures is of high interest for the tracking of cell fate in (trans- differentiation experiments and for cancer research, which increasingly focuses on shared processes and the involvement of the microenvironment. These signature relation approaches require robust statistical methods to account for the high biological heterogeneity in clinical data and must cope with small sample sizes in lab experiments and common patterns of co-expression in ubiquitous cellular processes. We describe a novel method, called PhysioSpace, to position dynamics of time series data derived from cellular differentiation and disease progression in a genome-wide expression space. The PhysioSpace is defined by a compendium of publicly available gene expression signatures representing a large set of biological phenotypes. The mapping of gene expression changes onto the PhysioSpace leads to a robust ranking of physiologically relevant signatures, as rigorously evaluated via sample-label permutations. A spherical transformation of the data improves the performance, leading to stable results even in case of small sample sizes. Using PhysioSpace with clinical cancer datasets reveals that such data exhibits large heterogeneity in the number of significant signature associations. This behavior was closely associated with the classification endpoint and cancer type under consideration, indicating shared biological functionalities in disease associated processes. Even though the time series data of cell line differentiation exhibited responses in larger clusters covering several biologically related patterns, top scoring

  13. The West Nile virus assembly process evades the conserved antiviral mechanism of the interferon-induced MxA protein

    Energy Technology Data Exchange (ETDEWEB)

    Hoenen, Antje [School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane (Australia); Gillespie, Leah [Department of Microbiology, La Trobe University, Melbourne (Australia); Department of Microbiology and Immunology, University of Melbourne, Melbourne (Australia); Morgan, Garry; Heide, Peter van der [Institute for Molecular Bioscience, University of Queensland, Brisbane (Australia); Khromykh, Alexander [School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane (Australia); Australian Infectious Diseases Research Centre, University of Queensland, Brisbane (Australia); Mackenzie, Jason, E-mail: jason.mackenzie@unimelb.edu.au [Department of Microbiology, La Trobe University, Melbourne (Australia); Department of Microbiology and Immunology, University of Melbourne, Melbourne (Australia)

    2014-01-05

    Flaviviruses have evolved means to evade host innate immune responses. Recent evidence suggests this is due to prevention of interferon production and signaling in flavivirus-infected cells. Here we show that the interferon-induced MxA protein can sequester the West Nile virus strain Kunjin virus (WNV{sub KUN}) capsid protein in cytoplasmic tubular structures in an expression-replication system. This sequestering resulted in reduced titers of secreted WNV{sub KUN} particles. We show by electron microscopy, tomography and 3D modeling that these cytoplasmic tubular structures form organized bundles. Additionally we show that recombinant ER-targeted MxA can restrict production of infectious WNV{sub KUN} under conditions of virus infection. Our results indicate a co-ordinated and compartmentalized WNV{sub KUN} assembly process may prevent recognition of viral components by MxA, particularly the capsid protein. This recognition can be exploited if MxA is targeted to intracellular sites of WNV{sub KUN} assembly. This results in further understanding of the mechanisms of flavivirus evasion from the immune system. - Highlights: • We show that the ISG MxA can recognize the West Nile virus capsid protein. • Interaction between WNV C protein and MxA induces cytoplasmic fibrils. • MxA can be retargeted to the ER to restrict WNV particle release. • WNV assembly process is a strategy to avoid MxA recognition.

  14. Putting the face in context: Body expressions impact facial emotion processing in human infants

    Directory of Open Access Journals (Sweden)

    Purva Rajhans

    2016-06-01

    Full Text Available Body expressions exert strong contextual effects on facial emotion perception in adults. Specifically, conflicting body cues hamper the recognition of emotion from faces, as evident on both the behavioral and neural level. We examined the developmental origins of the neural processes involved in emotion perception across body and face in 8-month-old infants by measuring event-related brain potentials (ERPs. We primed infants with body postures (fearful, happy that were followed by either congruent or incongruent facial expressions. Our results revealed that body expressions impact facial emotion processing and that incongruent body cues impair the neural discrimination of emotional facial expressions. Priming effects were associated with attentional and recognition memory processes, as reflected in a modulation of the Nc and Pc evoked at anterior electrodes. These findings demonstrate that 8-month-old infants possess neural mechanisms that allow for the integration of emotion across body and face, providing evidence for the early developmental emergence of context-sensitive facial emotion perception.

  15. Putting the face in context: Body expressions impact facial emotion processing in human infants.

    Science.gov (United States)

    Rajhans, Purva; Jessen, Sarah; Missana, Manuela; Grossmann, Tobias

    2016-06-01

    Body expressions exert strong contextual effects on facial emotion perception in adults. Specifically, conflicting body cues hamper the recognition of emotion from faces, as evident on both the behavioral and neural level. We examined the developmental origins of the neural processes involved in emotion perception across body and face in 8-month-old infants by measuring event-related brain potentials (ERPs). We primed infants with body postures (fearful, happy) that were followed by either congruent or incongruent facial expressions. Our results revealed that body expressions impact facial emotion processing and that incongruent body cues impair the neural discrimination of emotional facial expressions. Priming effects were associated with attentional and recognition memory processes, as reflected in a modulation of the Nc and Pc evoked at anterior electrodes. These findings demonstrate that 8-month-old infants possess neural mechanisms that allow for the integration of emotion across body and face, providing evidence for the early developmental emergence of context-sensitive facial emotion perception. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Specific Inhibitors of HIV Capsid Assembly Binding to the C-Terminal Domain of the Capsid Protein: Evaluation of 2-Arylquinazolines as Potential Antiviral Compounds

    Czech Academy of Sciences Publication Activity Database

    Machara, A.; Lux, V.; Kožíšek, Milan; Grantz Šašková, Klára; Štěpánek, O.; Kotora, M.; Parkan, Kamil; Pávová, Marcela; Glass, B.; Sehr, P.; Lewis, J.; Müller, B.; Kräusslich, H. G.; Konvalinka, Jan

    2016-01-01

    Roč. 59, č. 2 (2016), s. 545-558 ISSN 0022-2623 R&D Projects: GA ČR GA13-19561S EU Projects: European Commission(XE) 201095 - HIV ACE Institutional support: RVO:61388963 Keywords : HIV -1 assembly * capsid * high-throughput screening * AlphaScreen assay Subject RIV: CE - Biochemistry Impact factor: 6.259, year: 2016

  17. Single residue AAV capsid mutation improves transduction of photoreceptors in the Abca4-/- mouse and bipolar cells in the rd1 mouse and human retina ex vivo.

    Science.gov (United States)

    De Silva, Samantha R; Charbel Issa, Peter; Singh, Mandeep S; Lipinski, Daniel M; Barnea-Cramer, Alona O; Walker, Nathan J; Barnard, Alun R; Hankins, Mark W; MacLaren, Robert E

    2016-11-01

    Gene therapy using adeno-associated viral (AAV) vectors for the treatment of retinal degenerations has shown safety and efficacy in clinical trials. However, very high levels of vector expression may be necessary for the treatment of conditions such as Stargardt disease where a dual vector approach is potentially needed, or in optogenetic strategies for end-stage degeneration in order to achieve maximal light sensitivity. In this study, we assessed two vectors with single capsid mutations, rAAV2/2(Y444F) and rAAV2/8(Y733F) in their ability to transduce retina in the Abca4 -/- and rd1 mouse models of retinal degeneration. We noted significantly increased photoreceptor transduction using rAAV2/8(Y733F) in the Abca4 -/- mouse, in contrast to previous work where vectors tested in this model have shown low levels of photoreceptor transduction. Bipolar cell transduction was achieved following subretinal delivery of both vectors in the rd1 mouse, and via intravitreal delivery of rAAV2/2(Y444F). The successful use of rAAV2/8(Y733F) to target bipolar cells was further validated on human tissue using an ex vivo culture system of retinal explants. Capsid mutant AAV vectors transduce human retinal cells and may be particularly suited to treat retinal degenerations in which high levels of transgene expression are required.

  18. Synthesis and characterization of different immunogenic viral nanoconstructs from rotavirus VP6 inner capsid protein

    Directory of Open Access Journals (Sweden)

    Bugli F

    2014-05-01

    Full Text Available Francesca Bugli,1 Valeria Caprettini,2 Margherita Cacaci,1 Cecilia Martini,1 Francesco Paroni Sterbini,1 Riccardo Torelli,1 Stefano Della Longa,3 Massimiliano Papi,4 Valentina Palmieri,4 Bruno Giardina,5 Brunella Posteraro,1 Maurizio Sanguinetti,1 Alessandro Arcovito5 1Istituto di Microbiologia, Università Cattolica del Sacro Cuore, 2Dipartimento di Fisica, Sapienza Università di Roma, Rome, 3Dipartimento di Medicina Clinica, Sanità Pubblica, Scienze della Vita e dell’Ambiente, Università dell’Aquila, L’Aquila, 4Istituto di Fisica, 5Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Rome, Italy Abstract: In order to deliver low-cost viral capsomeres from a large amount of soluble viral VP6 protein from human rotavirus, we developed and optimized a biotechnological platform in Escherichia coli. Specifically, three different expression protocols were compared, differing in their genetic constructs, ie, a simple native histidine-tagged VP6 sequence, VP6 fused to thioredoxin, and VP6 obtained with the newly described small ubiquitin-like modifier (SUMO fusion system. Our results demonstrate that the histidine-tagged protein does not escape the accumulation in the inclusion bodies, and that SUMO is largely superior to the thioredoxin-fusion tag in enhancing the expression and solubility of VP6 protein. Moreover, the VP6 protein produced according to the SUMO fusion tag displays well-known assembly properties, as observed in both transmission electron microscopy and atomic force microscopy images, giving rise to either VP6 trimers, 60 nm spherical virus-like particles, or nanotubes a few micron long. This different quaternary organization of VP6 shows a higher level of immunogenicity for the elongated structures with respect to the spheres or the protein trimers. Therefore, the expression and purification strategy presented here – providing a large amount of the viral capsid protein in the native

  19. Online Analytical Processing (OLAP: A Fast and Effective Data Mining Tool for Gene Expression Databases

    Directory of Open Access Journals (Sweden)

    Alkharouf Nadim W.

    2005-01-01

    Full Text Available Gene expression databases contain a wealth of information, but current data mining tools are limited in their speed and effectiveness in extracting meaningful biological knowledge from them. Online analytical processing (OLAP can be used as a supplement to cluster analysis for fast and effective data mining of gene expression databases. We used Analysis Services 2000, a product that ships with SQLServer2000, to construct an OLAP cube that was used to mine a time series experiment designed to identify genes associated with resistance of soybean to the soybean cyst nematode, a devastating pest of soybean. The data for these experiments is stored in the soybean genomics and microarray database (SGMD. A number of candidate resistance genes and pathways were found. Compared to traditional cluster analysis of gene expression data, OLAP was more effective and faster in finding biologically meaningful information. OLAP is available from a number of vendors and can work with any relational database management system through OLE DB.

  20. Online analytical processing (OLAP): a fast and effective data mining tool for gene expression databases.

    Science.gov (United States)

    Alkharouf, Nadim W; Jamison, D Curtis; Matthews, Benjamin F

    2005-06-30

    Gene expression databases contain a wealth of information, but current data mining tools are limited in their speed and effectiveness in extracting meaningful biological knowledge from them. Online analytical processing (OLAP) can be used as a supplement to cluster analysis for fast and effective data mining of gene expression databases. We used Analysis Services 2000, a product that ships with SQLServer2000, to construct an OLAP cube that was used to mine a time series experiment designed to identify genes associated with resistance of soybean to the soybean cyst nematode, a devastating pest of soybean. The data for these experiments is stored in the soybean genomics and microarray database (SGMD). A number of candidate resistance genes and pathways were found. Compared to traditional cluster analysis of gene expression data, OLAP was more effective and faster in finding biologically meaningful information. OLAP is available from a number of vendors and can work with any relational database management system through OLE DB.

  1. Influence of minor displacements in loops of the porcine parvovirus VP2 capsid on virus-like particles assembly and the induction of antibody responses.

    Science.gov (United States)

    Pan, Qunxing; He, Kongwang; Wang, Yongshan; Wang, Xiaoli; Ouyang, Wei

    2013-06-01

    An antigen-delivery system based on hybrid virus-like particles (VLPs) formed by the self-assembly of the capsid VP2 protein of porcine parvovirus (PPV) and expressing foreign peptides offers an alternative method for vaccination. In this study, the three-dimensional structure of the PPV capsid protein and surface loops deletion mutants were analyzed to define essential domains in PPV VP2 for the assembly of VLPs. Electron microscopic analysis and SDS-PAGE analysis confirmed the presence of abundant VLPs in a loop2 deletion mutant of expected size and appropriate morphology. Loop4 and loop2-loop4 deletion mutants, however, resulted in a lower number of particles and the morphology of the particles was not well preserved. Furthermore, the green fluorescent protein (gfp) gene was used as a model. GFP was observed at the same level in displacements mutants. However, GFP displacement mutants in loop2 construct allowed better adaptation for the fusion GFP to be further displayed on the surface of the capsid-like structure. Immunogenicity study showed that there is no obvious difference in mice inoculated with rAd-VP2(Δloop2), rAd-VP2(Δloop4), rAd-VP2(Δloop2-Δloop4), and PPV inactivated vaccine. The results suggested the possibility of inserting simultaneously B and T cell epitopes in the surface loop2 and the N-terminus. The combination of different types of epitopes (B, CD4+, and CD8+) in different positions of the PPV particles opens the way to the development of highly efficient vaccines, able to stimulate at the same time the different branches of the immune system.

  2. Dynamics of processing invisible faces in the brain: automatic neural encoding of facial expression information.

    Science.gov (United States)

    Jiang, Yi; Shannon, Robert W; Vizueta, Nathalie; Bernat, Edward M; Patrick, Christopher J; He, Sheng

    2009-02-01

    The fusiform face area (FFA) and the superior temporal sulcus (STS) are suggested to process facial identity and facial expression information respectively. We recently demonstrated a functional dissociation between the FFA and the STS as well as correlated sensitivity of the STS and the amygdala to facial expressions using an interocular suppression paradigm [Jiang, Y., He, S., 2006. Cortical responses to invisible faces: dissociating subsystems for facial-information processing. Curr. Biol. 16, 2023-2029.]. In the current event-related brain potential (ERP) study, we investigated the temporal dynamics of facial information processing. Observers viewed neutral, fearful, and scrambled face stimuli, either visibly or rendered invisible through interocular suppression. Relative to scrambled face stimuli, intact visible faces elicited larger positive P1 (110-130 ms) and larger negative N1 or N170 (160-180 ms) potentials at posterior occipital and bilateral occipito-temporal regions respectively, with the N170 amplitude significantly greater for fearful than neutral faces. Invisible intact faces generated a stronger signal than scrambled faces at 140-200 ms over posterior occipital areas whereas invisible fearful faces (compared to neutral and scrambled faces) elicited a significantly larger negative deflection starting at 220 ms along the STS. These results provide further evidence for cortical processing of facial information without awareness and elucidate the temporal sequence of automatic facial expression information extraction.

  3. Expression, processing and transcriptional regulation of granulysin in short-term activated human lymphocytes

    Directory of Open Access Journals (Sweden)

    Groscurth Peter

    2007-06-01

    Full Text Available Abstract Background Granulysin, a cytotoxic protein expressed in human natural killer cells and activated T lymphocytes, exhibits cytolytic activity against a variety of intracellular microbes. Expression and transcription have been partially characterised in vitro and four transcripts (NKG5, 519, 520, and 522 were identified. However, only a single protein product of 15 kDa was found, which is subsequently processed to an active 9 kDa protein. Results In this study we investigated generation of granulysin in lymphokine activated killer (LAK cells and antigen (Listeria specific T-cells. Semiquantitative RT-PCR revealed NKG5 to be the most prominent transcript. It was found to be up-regulated in a time-dependent manner in LAK cells and antigen specific T-cells and their subsets. Two isoforms of 519 mRNA were up-regulated under IL-2 and antigen stimulation. Moreover, two novel transcripts, without any known function, comprising solely parts of the 5 prime region of the primary transcript, were detected. A significant increase of granulysin expressing LAK cells as well as antigen specific T-cells was shown by fluorescence microscopy. On the subset level, increase in CD4+ granulysin expressing cells was found only under antigen stimulation. Immunoblotting showed the 15 kDa form of granulysin to be present in the first week of stimulation either with IL-2 or with bacterial antigen. Substantial processing to the 9 kDa form was detected during the first week in LAK cells and in the second week in antigen specific T-cells. Conclusion This first comprehensive study of granulysin gene regulation in primary cultured human lymphocytes shows that the regulation of granulysin synthesis in response to IL-2 or bacterial antigen stimulation occurs at several levels: RNA expression, extensive alternative splicing and posttranslational processing.

  4. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes.

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  5. Exact protein distributions for stochastic models of gene expression using partitioning of Poisson processes

    Science.gov (United States)

    Pendar, Hodjat; Platini, Thierry; Kulkarni, Rahul V.

    2013-04-01

    Stochasticity in gene expression gives rise to fluctuations in protein levels across a population of genetically identical cells. Such fluctuations can lead to phenotypic variation in clonal populations; hence, there is considerable interest in quantifying noise in gene expression using stochastic models. However, obtaining exact analytical results for protein distributions has been an intractable task for all but the simplest models. Here, we invoke the partitioning property of Poisson processes to develop a mapping that significantly simplifies the analysis of stochastic models of gene expression. The mapping leads to exact protein distributions using results for mRNA distributions in models with promoter-based regulation. Using this approach, we derive exact analytical results for steady-state and time-dependent distributions for the basic two-stage model of gene expression. Furthermore, we show how the mapping leads to exact protein distributions for extensions of the basic model that include the effects of posttranscriptional and posttranslational regulation. The approach developed in this work is widely applicable and can contribute to a quantitative understanding of stochasticity in gene expression and its regulation.

  6. Functional imaging of interleukin 1 beta expression in inflammatory process using bioluminescence imaging in transgenic mice

    Directory of Open Access Journals (Sweden)

    Liu Zhihui

    2008-08-01

    Full Text Available Abstract Background Interleukin 1 beta (IL-1β plays an important role in a number of chronic and acute inflammatory diseases. To understand the role of IL-1β in disease processes and develop an in vivo screening system for anti-inflammatory drugs, a transgenic mouse line was generated which incorporated the transgene firefly luciferase gene driven by a 4.5-kb fragment of the human IL-1β gene promoter. Luciferase gene expression was monitored in live mice under anesthesia using bioluminescence imaging in a number of inflammatory disease models. Results In a LPS-induced sepsis model, dramatic increase in luciferase activity was observed in the mice. This transgene induction was time dependent and correlated with an increase of endogenous IL-1β mRNA and pro-IL-1β protein levels in the mice. In a zymosan-induced arthritis model and an oxazolone-induced skin hypersensitivity reaction model, luciferase expression was locally induced in the zymosan injected knee joint and in the ear with oxazolone application, respectively. Dexamethasone suppressed the expression of luciferase gene both in the acute sepsis model and in the acute arthritis model. Conclusion Our data suggest that the transgenic mice model could be used to study transcriptional regulation of the IL-1β gene expression in the inflammatory process and evaluation the effect of anti-inflammatory drug in vivo.

  7. A new series of HAPs as anti-HBV agents targeting at capsid assembly.

    Science.gov (United States)

    Yang, Xiu-yan; Xu, Xiao-qian; Guan, Hua; Wang, Li-li; Wu, Qin; Zhao, Guo-ming; Li, Song

    2014-09-01

    A series of novel Heteroaryldihydropyrimidines (HAPs) derivatives were designed and synthesized as potent inhibitors of HBV capsid assembly. These compounds were prepared from efforts to optimize an earlier series of HAPs, and compounds Mo1, Mo7, Mo8, Mo10, Mo12, and Mo13 demonstrated potent inhibition of HBV DNA replication at submicromolar range. Copyright © 2014. Published by Elsevier Ltd.

  8. Formation of newly synthesized adeno-associated virus capsids in the cell nucleus.

    Science.gov (United States)

    Bell, Peter; Vandenberghe, Luk H; Wilson, James M

    2014-06-01

    Adeno-associated virus (AAV) particles inside the nucleus of a HEK 293 cell are shown by electron microscopy. Cells have been triple-transfected for vector production and were analyzed for capsid formation three days later. Newly assembled particle are visible as seemingly unstructured conglomerates or crystal-like arrays.

  9. The VP7 Outer Capsid Protein of Rotavirus Induces Polyclonal B-Cell Activation

    Science.gov (United States)

    Blutt, Sarah E.; Crawford, Sue E.; Warfield, Kelly L.; Lewis, Dorothy E.; Estes, Mary K.; Conner, Margaret E.

    2004-01-01

    The early response to a homologous rotavirus infection in mice includes a T-cell-independent increase in the number of activated B lymphocytes in the Peyer's patches. The mechanism of this activation has not been previously determined. Since rotavirus has a repetitively arranged triple-layered capsid and repetitively arranged antigens can induce activation of B cells, one or more of the capsid proteins could be responsible for the initial activation of B cells during infection. To address this question, we assessed the ability of rotavirus and virus-like particles to induce B-cell activation in vivo and in vitro. Using infectious rotavirus, inactivated rotavirus, noninfectious but replication-competent virus, and virus-like particles, we determined that neither infectivity nor RNA was necessary for B-cell activation but the presence of the rotavirus outer capsid protein, VP7, was sufficient for murine B-cell activation. Preincubation of the virus with neutralizing VP7 antibodies inhibited B-cell activation. Polymyxin B treatment and boiling of the virus preparation were performed, which ruled out possible lipopolysaccharide contamination as the source of activation and confirmed that the structural conformation of VP7 is important for B-cell activation. These findings indicate that the structure and conformation of the outer capsid protein, VP7, initiate intestinal B-cell activation during rotavirus infection. PMID:15194774

  10. Functional dissection of the alphavirus capsid protease: sequence requirements for activity.

    Science.gov (United States)

    Thomas, Saijo; Rai, Jagdish; John, Lijo; Günther, Stephan; Drosten, Christian; Pützer, Brigitte M; Schaefer, Stephan

    2010-11-18

    The alphavirus capsid is multifunctional and plays a key role in the viral life cycle. The nucleocapsid domain is released by the self-cleavage activity of the serine protease domain within the capsid. All alphaviruses analyzed to date show this autocatalytic cleavage. Here we have analyzed the sequence requirements for the cleavage activity of Chikungunya virus capsid protease of genus alphavirus. Amongst alphaviruses, the C-terminal amino acid tryptophan (W261) is conserved and found to be important for the cleavage. Mutating tryptophan to alanine (W261A) completely inactivated the protease. Other amino acids near W261 were not having any effect on the activity of this protease. However, serine protease inhibitor AEBSF did not inhibit the activity. Through error-prone PCR we found that isoleucine 227 is important for the effective activity. The loss of activity was analyzed further by molecular modelling and comparison of WT and mutant structures. It was found that lysine introduced at position 227 is spatially very close to the catalytic triad and may disrupt electrostatic interactions in the catalytic site and thus inactivate the enzyme. We are also examining other sequence requirements for this protease activity. We analyzed various amino acid sequence requirements for the activity of ChikV capsid protease and found that amino acids outside the catalytic triads are important for the activity.

  11. The two capsid proteins of maize rayado fino virus contain common peptide sequences.

    Science.gov (United States)

    Falk, B W; Tsai, J H

    1986-01-01

    Virions of maize rayado fino virus (MRFV) were purified and two major capsid proteins (ca. Mr 29,000 and 22,000) were resolved by SDS-PAGE. When the two major capsid proteins were isolated from gels and compared by one-dimensional peptide mapping after digestion with Staphylococcus aureus V-8 protease, indistinguishable peptide maps were obtained, suggesting that these two proteins contain common peptide sequences. Some preparations also showed minor protein components that were intermediate between the Mr 22,000 and Mr 29,000 capsid proteins. One of the minor proteins, ca. Mr 27,000, gave a peptide map indistinguishable from the major capsid proteins. In vitro ageing of partially purified preparations or virion treatment with proteolytic enzymes failed to show conversion of the Mr 29,000 protein to a Mr 22,000. Protease inhibitors added to the buffers used for virion purification did not affect the apparent 1:3 ratio of 29,000 to 22,000 proteins in the purified preparations.

  12. Promoter analysis of the Chilo iridescent virus DNA polymerase and major capsid protein genes

    NARCIS (Netherlands)

    Nalcacioglu, R.; Marks, H.; Vlak, J.M.; Demirbag, Z.; Oers, van M.M.

    2003-01-01

    The DNA polymerase (DNApol) and major capsid protein (MCP) genes were used as models to study promoter activity in Chilo iridescent virus (CIV). Infection of Bombyx mori SPC-BM-36 cells in the presence of inhibitors of DNA or protein synthesis showed that DNApol, as well as helicase, is an

  13. Essential C-Terminal region of the baculovirus minor capsid protein VP80 binds DNA

    NARCIS (Netherlands)

    Marek, M.; Merten, O.W.; Francis-Devaraj, F.; Oers, van M.M.

    2012-01-01

    The essential Autographa californica multicapsid nucleopolyhedrovirus (AcMNPV) minor capsid protein VP80 has been recently shown to interact with the virus-triggered, nuclear F-actin cytoskeleton. A role for VP80 in virus morphogenesis has been proposed in the maturation of progeny nucleocapsids and

  14. Facilitating the use of alternative capsid control methods towards sustainable production of organic cocoa in Ghana

    NARCIS (Netherlands)

    Ayenor, G.K.; Huis, van A.; Obeng-Ofori, D.; Padi, B.; Röling, N.G.

    2007-01-01

    Cocoa (Theobroma cacao L.) is an important foreign exchange earner for Ghana. However, production is constrained by a high incidence of pests and diseases. Based on farmers' needs, this study focused on the control of capsids, mainly Sahlbergella singularis Haglund and Distantiella theobroma

  15. Four levels of hierarchical organization, including noncovalent chainmail, brace the mature tumor herpesvirus capsid against pressurization.

    Science.gov (United States)

    Zhou, Z Hong; Hui, Wong Hoi; Shah, Sanket; Jih, Jonathan; O'Connor, Christine M; Sherman, Michael B; Kedes, Dean H; Schein, Stan

    2014-10-07

    Like many double-stranded DNA viruses, tumor gammaherpesviruses Epstein-Barr virus and Kaposi's sarcoma-associated herpesvirus withstand high internal pressure. Bacteriophage HK97 uses covalent chainmail for this purpose, but how this is achieved noncovalently in the much larger gammaherpesvirus capsid is unknown. Our cryoelectron microscopy structure of a gammaherpesvirus capsid reveals a hierarchy of four levels of organization: (1) Within a hexon capsomer, each monomer of the major capsid protein (MCP), 1,378 amino acids and six domains, interacts with its neighboring MCPs at four sites. (2) Neighboring capsomers are linked in pairs by MCP dimerization domains and in groups of three by heterotrimeric triplex proteins. (3) Small (∼280 amino acids) HK97-like domains in MCP monomers alternate with triplex heterotrimers to form a belt that encircles each capsomer. (4) One hundred sixty-two belts concatenate to form noncovalent chainmail. The triplex heterotrimer orchestrates all four levels and likely drives maturation to an angular capsid that can withstand pressurization. Copyright © 2014 Elsevier Ltd. All rights reserved.

  16. Protruding Features of Viral Capsids Are Clustered on Icosahedral Great Circles.

    Directory of Open Access Journals (Sweden)

    David P Wilson

    Full Text Available Spherical viruses are remarkably well characterized by the Triangulation (T number developed by Casper and Klug. The T-number specifies how many viral capsid proteins are required to cover the virus, as well as how they are further subdivided into pentamer and hexamer subunits. The T-number however does not constrain the orientations of these proteins within the subunits or dictate where the proteins should place their protruding features. These protrusions often take the form of loops, spires and helices, and are significant because they aid in stability of the capsid as well as recognition by the host organism. Until now there has be no overall understanding of the placement of protrusions for spherical viruses, other than they have icosahedral symmetry. We constructed a set of gauge points based upon the work affine extensions of Keef and Twarock, which have fixed relative angular locations with which to measure the locations of these features. This work adds a new element to our understanding of the geometric arrangement of spherical viral capsid proteins; chiefly that the locations of protruding features are not found stochastically distributed in an icosahedral manner across the viral surface, but instead these features are found only in specific locations along the 15 icosahedral great circles. We have found that this result holds true as the T number and viral capsids size increases, suggesting an underlying geometric constraint on their locations. This is in spite of the fact that the constraints on the pentamers and hexamer orientations change as a function of T-number, as you need to accommodate more hexamers in the same solid angle between pentamers. The existence of this angular constraint of viral capsids suggests that there is a fitness or energetic benefit to the virus placing its protrusions in this manner. This discovery may have profound impacts on identifying and eliminating viral pathogens, understanding evolutionary

  17. Theoretical insights into expression of leadership competencies in the process of management

    OpenAIRE

    Regina Andriukaitienė; Valentyna Voronkova; Olga Kyvliuk; Marina Maksimenyuk; Aita Sakun

    2017-01-01

    The relevance of the topic is defined through the idea that appropriate leadership competencies and their application in certain activities enabling the followers can ensure the prospects of organizational development and individual career opportunities. To review and summarize the aspects of research findings of leadership science in expression of competencies in managerial processes, highlighting the leadership competencies in the context of general competencies. Methods. In order to formul...

  18. The impact of high trait social anxiety on neural processing of facial emotion expressions in females.

    Science.gov (United States)

    Felmingham, Kim L; Stewart, Laura F; Kemp, Andrew H; Carr, Andrea R

    2016-05-01

    A cognitive model of social anxiety predicts that an early attentional bias leads to greater cognitive processing of social threat signals, whereas the vigilance-avoidance model predicts there will be subsequent reduction in cognitive processing. This study tests these models by examining neural responses to social threat stimuli using Event-related potentials (ERP). 19 women with high trait social anxiety and 19 women with low trait social anxiety viewed emotional expressions (angry, disgusted, happy and neutral) in a passive viewing task whilst ERP responses were recorded. The HSA group revealed greater automatic attention, or hypervigilance, to all facial expressions, as indexed by greater N1 amplitude compared to the LSA group. They also showed greater sustained attention and elaborative processing of all facial expressions, indexed by significantly increased P2 and P3 amplitudes compared to the LSA group. These results support cognitive models of social anxiety, but are not consistent with predictions of the vigilance-avoidance model. Copyright © 2016. Published by Elsevier B.V.

  19. Direction of Amygdala-Neocortex Interaction During Dynamic Facial Expression Processing.

    Science.gov (United States)

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota; Yoshikawa, Sakiko; Toichi, Motomi

    2017-03-01

    Dynamic facial expressions of emotion strongly elicit multifaceted emotional, perceptual, cognitive, and motor responses. Neuroimaging studies revealed that some subcortical (e.g., amygdala) and neocortical (e.g., superior temporal sulcus and inferior frontal gyrus) brain regions and their functional interaction were involved in processing dynamic facial expressions. However, the direction of the functional interaction between the amygdala and the neocortex remains unknown. To investigate this issue, we re-analyzed functional magnetic resonance imaging (fMRI) data from 2 studies and magnetoencephalography (MEG) data from 1 study. First, a psychophysiological interaction analysis of the fMRI data confirmed the functional interaction between the amygdala and neocortical regions. Then, dynamic causal modeling analysis was used to compare models with forward, backward, or bidirectional effective connectivity between the amygdala and neocortical networks in the fMRI and MEG data. The results consistently supported the model of effective connectivity from the amygdala to the neocortex. Further increasing time-window analysis of the MEG demonstrated that this model was valid after 200 ms from the stimulus onset. These data suggest that emotional processing in the amygdala rapidly modulates some neocortical processing, such as perception, recognition, and motor mimicry, when observing dynamic facial expressions of emotion. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  20. Effects of Early Neglect Experience on Recognition and Processing of Facial Expressions: A Systematic Review

    Directory of Open Access Journals (Sweden)

    Victoria Doretto

    2018-01-01

    Full Text Available Background: Child neglect is highly prevalent and associated with a series of biological and social consequences. Early neglect may alter the recognition of emotional faces, but its precise impact remains unclear. We aim to review and analyze data from recent literature about recognition and processing of facial expressions in individuals with history of childhood neglect. Methods: We conducted a systematic review using PubMed, PsycINFO, ScIELO and EMBASE databases in the search of studies for the past 10 years. Results: In total, 14 studies were selected and critically reviewed. A heterogeneity was detected across methods and sample frames. Results were mixed across studies. Different forms of alterations to perception of facial expressions were found across 12 studies. There was alteration to the recognition and processing of both positive and negative emotions, but for emotional face processing there was predominance in alteration toward negative emotions. Conclusions: This is the first review to examine specifically the effects of early neglect experience as a prevalent condition of child maltreatment. The results of this review are inconclusive due to methodological diversity, implement of distinct instruments and differences in the composition of the samples. Despite these limitations, some studies support our hypothesis that individuals with history of early negligence may present alteration to the ability to perceive face expressions of emotions. The article brings relevant information that can help in the development of more effective therapeutic strategies to reduce the impact of neglect on the cognitive and emotional development of the child.

  1. Identification and intensity of disgust: Distinguishing visual, linguistic and facial expressions processing in Parkinson disease.

    Science.gov (United States)

    Sedda, Anna; Petito, Sara; Guarino, Maria; Stracciari, Andrea

    2017-07-14

    Most of the studies since now show an impairment for facial displays of disgust recognition in Parkinson disease. A general impairment in disgust processing in patients with Parkinson disease might adversely affect their social interactions, given the relevance of this emotion for human relations. However, despite the importance of faces, disgust is also expressed through other format of visual stimuli such as sentences and visual images. The aim of our study was to explore disgust processing in a sample of patients affected by Parkinson disease, by means of various tests tackling not only facial recognition but also other format of visual stimuli through which disgust can be recognized. Our results confirm that patients are impaired in recognizing facial displays of disgust. Further analyses show that patients are also impaired and slower for other facial expressions, with the only exception of happiness. Notably however, patients with Parkinson disease processed visual images and sentences as controls. Our findings show a dissociation within different formats of visual stimuli of disgust, suggesting that Parkinson disease is not characterized by a general compromising of disgust processing, as often suggested. The involvement of the basal ganglia-frontal cortex system might spare some cognitive components of emotional processing, related to memory and culture, at least for disgust. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. The Dual Role of an ESCRT-0 Component HGS in HBV Transcription and Naked Capsid Secretion

    Science.gov (United States)

    Chou, Shu-Fan; Tsai, Ming-Lin; Huang, Jyun-Yuan; Chang, Ya-Shu; Shih, Chiaho

    2015-01-01

    The Endosomal Sorting Complex Required for Transport (ESCRT) is an important cellular machinery for the sorting and trafficking of ubiquitinated cargos. It is also known that ESCRT is required for the egress of a number of viruses. To investigate the relationship between ESCRT and hepatitis B virus (HBV), we conducted an siRNA screening of ESCRT components for their potential effect on HBV replication and virion release. We identified a number of ESCRT factors required for HBV replication, and focused our study here on HGS (HRS, hepatocyte growth factor-regulated tyrosine kinase substrate) in the ESCRT-0 complex. Aberrant levels of HGS suppressed HBV transcription, replication and virion secretion. Hydrodynamic delivery of HGS in a mouse model significantly suppressed viral replication in the liver and virion secretion in the serum. Surprisingly, overexpression of HGS stimulated the release of HBV naked capsids, irrespective of their viral RNA, DNA, or empty contents. Mutant core protein (HBc 1–147) containing no arginine-rich domain (ARD) failed to secrete empty virions with or without HGS. In contrast, empty naked capsids of HBc 1–147 could still be promoted for secretion by HGS. HGS exerted a strong positive effect on the secretion of naked capsids, at the expense of a reduced level of virions. The association between HGS and HBc appears to be ubiquitin-independent. Furthermore, HBc is preferentially co-localized with HGS near the cell periphery, instead of near the punctate endosomes in the cytoplasm. In summary, our work demonstrated the importance of an optimum level of HGS in HBV propagation. In addition to an effect on HBV transcription, HGS can diminish the pool size of intracellular nucleocapsids with ongoing genome maturation, probably in part by promoting the secretion of naked capsids. The secretion routes of HBV virions and naked capsids can be clearly distinguished based on the pleiotropic effect of HGS involved in the ESCRT-0 complex. PMID

  3. Drosophila Nora virus capsid proteins differ from those of other picorna-like viruses.

    Science.gov (United States)

    Ekström, Jens-Ola; Habayeb, Mazen S; Srivastava, Vaibhav; Kieselbach, Thomas; Wingsle, Gunnar; Hultmark, Dan

    2011-09-01

    The recently discovered Nora virus from Drosophila melanogaster is a single-stranded RNA virus. Its published genomic sequence encodes a typical picorna-like cassette of replicative enzymes, but no capsid proteins similar to those in other picorna-like viruses. We have now done additional sequencing at the termini of the viral genome, extending it by 455 nucleotides at the 5' end, but no more coding sequence was found. The completeness of the final 12,333-nucleotide sequence was verified by the production of infectious virus from the cloned genome. To identify the capsid proteins, we purified Nora virus particles and analyzed their proteins by mass spectrometry. Our results show that the capsid is built from three major proteins, VP4A, B and C, encoded in the fourth open reading frame of the viral genome. The viral particles also contain traces of a protein from the third open reading frame, VP3. VP4A and B are not closely related to other picorna-like virus capsid proteins in sequence, but may form similar jelly roll folds. VP4C differs from the others and is predicted to have an essentially α-helical conformation. In a related virus, identified from EST database sequences from Nasonia parasitoid wasps, VP4C is encoded in a separate open reading frame, separated from VP4A and B by a frame-shift. This opens a possibility that VP4C is produced in non-equimolar quantities. Altogether, our results suggest that the Nora virus capsid has a different protein organization compared to the order Picornavirales. Copyright © 2011 Elsevier B.V. All rights reserved.

  4. The Dual Role of an ESCRT-0 Component HGS in HBV Transcription and Naked Capsid Secretion.

    Directory of Open Access Journals (Sweden)

    Shu-Fan Chou

    2015-10-01

    Full Text Available The Endosomal Sorting Complex Required for Transport (ESCRT is an important cellular machinery for the sorting and trafficking of ubiquitinated cargos. It is also known that ESCRT is required for the egress of a number of viruses. To investigate the relationship between ESCRT and hepatitis B virus (HBV, we conducted an siRNA screening of ESCRT components for their potential effect on HBV replication and virion release. We identified a number of ESCRT factors required for HBV replication, and focused our study here on HGS (HRS, hepatocyte growth factor-regulated tyrosine kinase substrate in the ESCRT-0 complex. Aberrant levels of HGS suppressed HBV transcription, replication and virion secretion. Hydrodynamic delivery of HGS in a mouse model significantly suppressed viral replication in the liver and virion secretion in the serum. Surprisingly, overexpression of HGS stimulated the release of HBV naked capsids, irrespective of their viral RNA, DNA, or empty contents. Mutant core protein (HBc 1-147 containing no arginine-rich domain (ARD failed to secrete empty virions with or without HGS. In contrast, empty naked capsids of HBc 1-147 could still be promoted for secretion by HGS. HGS exerted a strong positive effect on the secretion of naked capsids, at the expense of a reduced level of virions. The association between HGS and HBc appears to be ubiquitin-independent. Furthermore, HBc is preferentially co-localized with HGS near the cell periphery, instead of near the punctate endosomes in the cytoplasm. In summary, our work demonstrated the importance of an optimum level of HGS in HBV propagation. In addition to an effect on HBV transcription, HGS can diminish the pool size of intracellular nucleocapsids with ongoing genome maturation, probably in part by promoting the secretion of naked capsids. The secretion routes of HBV virions and naked capsids can be clearly distinguished based on the pleiotropic effect of HGS involved in the ESCRT-0 complex.

  5. Changes in the stability and biomechanics of P22 bacteriophage capsid during maturation.

    Science.gov (United States)

    Kant, Ravi; Llauró, Aida; Rayaprolu, Vamseedhar; Qazi, Shefah; de Pablo, Pedro J; Douglas, Trevor; Bothner, Brian

    2018-03-15

    The capsid of P22 bacteriophage undergoes a series of structural transitions during maturation that guide it from spherical to icosahedral morphology. The transitions include the release of scaffold proteins and capsid expansion. Although P22 maturation has been investigated for decades, a unified model that incorporates thermodynamic and biophysical analyses is not available. A general and specific model of icosahedral capsid maturation is of significant interest to theoreticians searching for fundamental principles as well as virologists and material scientists seeking to alter maturation to their advantage. To address this challenge, we have combined the results from orthogonal biophysical techniques including differential scanning fluorimetry, atomic force microscopy, circular dichroism, and hydrogen-deuterium exchange mass spectrometry. By integrating these results from single particle and population measurements, an energy landscape of P22 maturation from procapsid through expanded shell to wiffle ball emerged, highlighting the role of metastable structures and the thermodynamics guiding maturation. The propagation of weak quaternary interactions across symmetric elements of the capsid is a key component for stability in P22. A surprising finding is that the progression to wiffle ball, which lacks pentamers, shows that chemical and thermal stability can be uncoupled from mechanical rigidity, elegantly demonstrating the complexity inherent in capsid protein interactions and the emergent properties that can arise from icosahedral symmetry. On a broader scale, this work demonstrates the power of applying orthogonal biophysical techniques to elucidate assembly mechanisms for supramolecular complexes and provides a framework within which other viral systems can be compared. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Electrostatic potential of human immunodeficiency virus type 2 and rhesus macaque simian immunodeficiency virus capsid proteins

    Directory of Open Access Journals (Sweden)

    Katarzyna eBozek

    2012-06-01

    Full Text Available Human immunodeficiency virus type 2 (HIV-2 and simian immunodeficiency virus isolated from a macaque monkey (SIVmac are assumed to have originated from simian immunodeficiency virus isolated from sooty mangabey (SIVsm. Despite their close similarity in genome structure, HIV-2 and SIVmac show different sensitivities to TRIM5α, a host restriction factor against retroviruses. The replication of HIV-2 strains is potently restricted by rhesus (Rh monkey TRIM5α, while that of SIVmac strain 239 (SIVmac239 is not. Viral capsid protein is the determinant of this differential sensitivity to TRIM5α, as the HIV-2 mutant carrying SIVmac239 capsid protein evaded Rh TRIM5α-mediated restriction. However, the molecular determinants of this restriction mechanism are unknown. Electrostatic potential on the protein-binding site is one of the properties regulating protein-protein interactions. In this study, we investigated the electrostatic potential on the interaction surface of capsid protein of HIV-2 strain GH123 and SIVmac239. Although HIV-2 GH123 and SIVmac239 capsid proteins share more than 87% amino acid identity, we observed a large difference between the two molecules with the HIV-2 GH123 molecule having predominantly positive and SIVmac239 predominantly negative electrostatic potential on the surface of the loop between α-helices 4 and 5 (L4/5. As L4/5 is one of the major determinants of Rh TRIM5α sensitivity of these viruses, the present results suggest that the binding site of the Rh TRIM5α may show complementarity to the HIV-2 GH123 capsid surface charge distribution.

  7. Direct interaction between two viral proteins, the nonstructural protein 2C and the capsid protein VP3, is required for enterovirus morphogenesis.

    Directory of Open Access Journals (Sweden)

    Ying Liu

    2010-08-01

    Full Text Available In spite of decades-long studies, the mechanism of morphogenesis of plus-stranded RNA viruses belonging to the genus Enterovirus of Picornaviridae, including poliovirus (PV, is not understood. Numerous attempts to identify an RNA encapsidation signal have failed. Genetic studies, however, have implicated a role of the non-structural protein 2C(ATPase in the formation of poliovirus particles. Here we report a novel mechanism in which protein-protein interaction is sufficient to explain the specificity in PV encapsidation. Making use of a novel "reporter virus", we show that a quasi-infectious chimera consisting of the capsid precursor of C-cluster coxsackie virus 20 (C-CAV20 and the nonstructural proteins of the closely related PV translated and replicated its genome with wild type kinetics, whereas encapsidation was blocked. On blind passages, encapsidation of the chimera was rescued by a single mutation either in capsid protein VP3 of CAV20 or in 2C(ATPase of PV. Whereas each of the single-mutation variants expressed severe proliferation phenotypes, engineering both mutations into the chimera yielded a virus encapsidating with wild type kinetics. Biochemical analyses provided strong evidence for a direct interaction between 2C(ATPase and VP3 of PV and CAV20. Chimeras of other C-CAVs (CAV20/CAV21 or CAV18/CAV20 were blocked in encapsidation (no virus after blind passages but could be rescued if the capsid and 2C(ATPase coding regions originated from the same virus. Our novel mechanism explains the specificity of encapsidation without apparent involvement of an RNA signal by considering that (i genome replication is known to be stringently linked to translation, (ii morphogenesis is known to be stringently linked to genome replication, (iii newly synthesized 2C(ATPase is an essential component of the replication complex, and (iv 2C(ATPase has specific affinity to capsid protein(s. These conditions lead to morphogenesis at the site where newly

  8. Finding biological process modifications in cancer tissues by mining gene expression correlations

    Directory of Open Access Journals (Sweden)

    Storari Sergio

    2006-01-01

    Full Text Available Abstract Background Through the use of DNA microarrays it is now possible to obtain quantitative measurements of the expression of thousands of genes from a biological sample. This technology yields a global view of gene expression that can be used in several ways. Functional insight into expression profiles is routinely obtained by using Gene Ontology terms associated to the cellular genes. In this paper, we deal with functional data mining from expression profiles, proposing a novel approach that studies the correlations between genes and their relations to Gene Ontology (GO. By using this "functional correlations comparison" we explore all possible pairs of genes identifying the affected biological processes by analyzing in a pair-wise manner gene expression patterns and linking correlated pairs with Gene Ontology terms. Results We apply here this "functional correlations comparison" approach to identify the existing correlations in hepatocarcinoma (161 microarray experiments and to reveal functional differences between normal liver and cancer tissues. The number of well-correlated pairs in each GO term highlights several differences in genetic interactions between cancer and normal tissues. We performed a bootstrap analysis in order to compute false detection rates (FDR and confidence limits. Conclusion Experimental results show the main advantage of the applied method: it both picks up general and specific GO terms (in particular it shows a fine resolution in the specific GO terms. The results obtained by this novel method are highly coherent with the ones proposed by other cancer biology studies. But additionally they highlight the most specific and interesting GO terms helping the biologist to focus his/her studies on the most relevant biological processes.

  9. A physical interaction between viral replicase and capsid protein is required for genome-packaging specificity in an RNA virus.

    Science.gov (United States)

    Seo, Jang-Kyun; Kwon, Sun-Jung; Rao, A L N

    2012-06-01

    Genome packaging is functionally coupled to replication in RNA viruses pathogenic to humans (Poliovirus), insects (Flock house virus [FHV]), and plants (Brome mosaic virus [BMV]). However, the underlying mechanism is not fully understood. We have observed previously that in FHV and BMV, unlike ectopically expressed capsid protein (CP), packaging specificity results from RNA encapsidation by CP that has been translated from mRNA produced from replicating genomic RNA. Consequently, we hypothesize that a physical interaction with replicase increases the CP specificity for packaging viral RNAs. We tested this hypothesis by evaluating the molecular interaction between replicase protein and CP using a FHV-Nicotiana benthamiana system. Bimolecular fluorescence complementation in conjunction with fluorescent cellular protein markers and coimmunoprecipitation assays demonstrated that FHV replicase (protein A) and CP physically interact at the mitochondrial site of replication and that this interaction requires the N-proximal region from either amino acids 1 to 31 or amino acids 32 to 50 of the CP. In contrast to the mitochondrial localization of CP derived from FHV replication, ectopic expression displayed a characteristic punctate pattern on the endoplasmic reticulum (ER). This pattern was altered to relocalize the CP throughout the cytoplasm when the C-proximal hydrophobic domain was deleted. Analysis of the packaging phenotypes of the CP mutants defective either in protein A-CP interactions or ER localization suggested that synchronization between protein A-CP interaction and its subcellular localization is imperative to confer packaging specificity.

  10. Spatiotemporal neural network dynamics for the processing of dynamic facial expressions

    Science.gov (United States)

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota

    2015-01-01

    The dynamic facial expressions of emotion automatically elicit multifaceted psychological activities; however, the temporal profiles and dynamic interaction patterns of brain activities remain unknown. We investigated these issues using magnetoencephalography. Participants passively observed dynamic facial expressions of fear and happiness, or dynamic mosaics. Source-reconstruction analyses utilizing functional magnetic-resonance imaging data revealed higher activation in broad regions of the bilateral occipital and temporal cortices in response to dynamic facial expressions than in response to dynamic mosaics at 150–200 ms and some later time points. The right inferior frontal gyrus exhibited higher activity for dynamic faces versus mosaics at 300–350 ms. Dynamic causal-modeling analyses revealed that dynamic faces activated the dual visual routes and visual–motor route. Superior influences of feedforward and feedback connections were identified before and after 200 ms, respectively. These results indicate that hierarchical, bidirectional neural network dynamics within a few hundred milliseconds implement the processing of dynamic facial expressions. PMID:26206708

  11. Spatiotemporal neural network dynamics for the processing of dynamic facial expressions.

    Science.gov (United States)

    Sato, Wataru; Kochiyama, Takanori; Uono, Shota

    2015-07-24

    The dynamic facial expressions of emotion automatically elicit multifaceted psychological activities; however, the temporal profiles and dynamic interaction patterns of brain activities remain unknown. We investigated these issues using magnetoencephalography. Participants passively observed dynamic facial expressions of fear and happiness, or dynamic mosaics. Source-reconstruction analyses utilizing functional magnetic-resonance imaging data revealed higher activation in broad regions of the bilateral occipital and temporal cortices in response to dynamic facial expressions than in response to dynamic mosaics at 150-200 ms and some later time points. The right inferior frontal gyrus exhibited higher activity for dynamic faces versus mosaics at 300-350 ms. Dynamic causal-modeling analyses revealed that dynamic faces activated the dual visual routes and visual-motor route. Superior influences of feedforward and feedback connections were identified before and after 200 ms, respectively. These results indicate that hierarchical, bidirectional neural network dynamics within a few hundred milliseconds implement the processing of dynamic facial expressions.

  12. Influence of spatial frequency and emotion expression on face processing in patients with panic disorder.

    Science.gov (United States)

    Shim, Miseon; Kim, Do-Won; Yoon, Sunkyung; Park, Gewnhi; Im, Chang-Hwan; Lee, Seung-Hwan

    2016-06-01

    Deficits in facial emotion processing is a major characteristic of patients with panic disorder. It is known that visual stimuli with different spatial frequencies take distinct neural pathways. This study investigated facial emotion processing involving stimuli presented at broad, high, and low spatial frequencies in patients with panic disorder. Eighteen patients with panic disorder and 19 healthy controls were recruited. Seven event-related potential (ERP) components: (P100, N170, early posterior negativity (EPN); vertex positive potential (VPP), N250, P300; and late positive potential (LPP)) were evaluated while the participants looked at fearful and neutral facial stimuli presented at three spatial frequencies. When a fearful face was presented, panic disorder patients showed a significantly increased P100 amplitude in response to low spatial frequency compared to high spatial frequency; whereas healthy controls demonstrated significant broad spatial frequency dependent processing in P100 amplitude. Vertex positive potential amplitude was significantly increased in high and broad spatial frequency, compared to low spatial frequency in panic disorder. Early posterior negativity amplitude was significantly different between HSF and BSF, and between LSF and BSF processing in both groups, regardless of facial expression. The possibly confounding effects of medication could not be controlled. During early visual processing, patients with panic disorder prefer global to detailed information. However, in later processing, panic disorder patients overuse detailed information for the perception of facial expressions. These findings suggest that unique spatial frequency-dependent facial processing could shed light on the neural pathology associated with panic disorder. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Adenoviruses using the cancer marker EphA2 as a receptor in vitro and in vivo by genetic ligand insertion into different capsid scaffolds.

    Directory of Open Access Journals (Sweden)

    Michael Behr

    Full Text Available Adenoviral gene therapy and oncolysis would critically benefit from targeted cell entry by genetically modified capsids. This requires both the ablation of native adenovirus tropism and the identification of ligands that remain functional in virus context. Here, we establish cell type-specific entry of HAdV-5-based vectors by genetic ligand insertion into a chimeric fiber with shaft and knob domains of the short HAdV-41 fiber (Ad5T/41sSK. This fiber format was reported to ablate transduction in vitro and biodistribution to the liver in vivo. We show that the YSA peptide, binding to the pan-cancer marker EphA2, can be inserted into three positions of the chimeric fiber, resulting in strong transduction of EphA2-positive but not EphA2-negative cells of human melanoma biopsies and of tumor xenografts after intratumoral injection. Transduction was blocked by soluble YSA peptide and restored for EphA2-negative cells after recombinant EphA2 expression. The YSA peptide could also be inserted into three positions of a CAR binding-ablated HAdV-5 fiber enabling specific transduction; however, the Ad5T/41sSK format was superior in vivo. In conclusion, we establish an adenovirus capsid facilitating functional insertion of targeting peptides and a novel adenovirus using the tumor marker EphA2 as receptor with high potential for cancer gene therapy and viral oncolysis.

  14. Regulation of c-myc and c-fos mRNA levels by polyomavirus: distinct roles for the capsid protein VP1 and the viral early proteins

    International Nuclear Information System (INIS)

    Zullo, J.; Stiles, C.D.; Garcea, R.L.

    1987-01-01

    The levels of c-myc, c-fos, and JE mRNAs accumulate in a biphasic pattern following infection of quiescent BALB/c 3T3 mouse cells with polyomavirus. Maximal levels of c-myc and c-fos mRNAs were seen within 1 hr and were nearly undetectable at 6 hr after infection. At 12 hr after infection mRNA levels were again maximal and remained elevated thereafter. Empty virions (capsids) and recombinant VP 1 protein, purified from Escherichia coli, induced the early but not the late phase of mRNA accumulation. Virions, capsids, and recombinant VP 1 protein stimulated [ 3 H]thymidine nuclear labeling and c-myc mRNA accumulation in a dose-responsive manner paralleling their affinity for the cell receptor for polyoma. The second phase of mRNA accumulation is regulated by the viral early gene products, as shown by polyomavirus early gene mutants and by a transfected cell line (336a) expressing middle tumor antigen upon glucocorticoid addition. These results suggest that polyomavirus interacts with the cell membrane at the onset of infection to increase the levels of mRNA for the cellular genes associated with cell competence for DNA replication, and subsequently these levels are maintained by the action of the early viral proteins

  15. Interaction of the Mouse Polyomavirus Capsid Proteins with Importins Is Required for Efficient Import of Viral DNA into the Cell Nucleus.

    Science.gov (United States)

    Soldatova, Irina; Prilepskaja, Terezie; Abrahamyan, Levon; Forstová, Jitka; Huérfano, Sandra

    2018-03-31

    The mechanism used by mouse polyomavirus (MPyV) overcomes the crowded cytosol to reach the nucleus has not been fully elucidated. Here, we investigated the involvement of importin α/β1 mediated transport in the delivery of MPyV genomes into the nucleus. Interactions of the virus with importin β1 were studied by co-immunoprecipitation and proximity ligation assay. For infectivity and nucleus delivery assays, the virus and its capsid proteins mutated in the nuclear localization signals (NLSs) were prepared and produced. We found that at early times post infection, virions bound importin β1 in a time dependent manner with a peak of interactions at 6 h post infection. Mutation analysis revealed that only when the NLSs of both VP1 and VP2/3 were disrupted, virus did not bind efficiently to importin β1 and its infectivity remarkably decreased (by 80%). Nuclear targeting of capsid proteins was improved when VP1 and VP2 were co-expressed. VP1 and VP2 were effectively delivered into the nucleus, even when one of the NLS, either VP1 or VP2, was disrupted. Altogether, our results showed that MPyV virions can use VP1 and/or VP2/VP3 NLSs in concert or individually to bind importins to deliver their genomes into the cell nucleus.

  16. A novel fusion protein domain III-capsid from dengue-2, in a highly aggregated form, induces a functional immune response and protection in mice

    International Nuclear Information System (INIS)

    Valdes, Iris; Bernardo, Lidice; Gil, Lazaro; Pavon, Alekis; Lazo, Laura; Lopez, Carlos; Romero, Yaremis; Menendez, Ivon; Falcon, Viviana; Betancourt, Lazaro; Martin, Jorge; Chinea, Glay; Silva, Ricardo; Guzman, Maria G.; Guillen, Gerardo; Hermida, Lisset

    2009-01-01

    Based on the immunogenicity of domain III from the Envelope protein of dengue virus as well as the proven protective capacity of the capsid antigen, we have designed a novel domain III-capsid chimeric protein with the goal of obtaining a molecule potentially able to induce both humoral and cell-mediated immunity (CMI). After expression of the recombinant gene in Escherichia coli, the domain III moiety retained its antigenicity as evaluated with anti-dengue sera. In order to explore alternatives for modulating the immunogenicity of the protein, it was mixed with oligodeoxynucleotides in order to obtain particulated aggregates and then immunologically evaluated in mice in comparison with non-aggregated controls. Although the humoral immune response induced by both forms of the protein was equivalent, the aggregated variant resulted in a much stronger CMI as measured by in vitro IFN-γ secretion and protection experiments, mediated by CD4 + and CD8 + cells. The present work provides additional evidence in support for a crucial role of CMI in protection against dengue virus and describes a novel vaccine candidate against the disease based on a recombinant protein that can stimulate both arms of the acquired immune system.

  17. Adenoviruses Using the Cancer Marker EphA2 as a Receptor In Vitro and In Vivo by Genetic Ligand Insertion into Different Capsid Scaffolds

    Science.gov (United States)

    Behr, Michael; Kaufmann, Johanna K.; Ketzer, Patrick; Engelhardt, Sarah; Mück-Häusl, Martin; Okun, Pamela M.; Petersen, Gabriele; Neipel, Frank; Hassel, Jessica C.; Ehrhardt, Anja; Enk, Alexander H.; Nettelbeck, Dirk M.

    2014-01-01

    Adenoviral gene therapy and oncolysis would critically benefit from targeted cell entry by genetically modified capsids. This requires both the ablation of native adenovirus tropism and the identification of ligands that remain functional in virus context. Here, we establish cell type-specific entry of HAdV-5-based vectors by genetic ligand insertion into a chimeric fiber with shaft and knob domains of the short HAdV-41 fiber (Ad5T/41sSK). This fiber format was reported to ablate transduction in vitro and biodistribution to the liver in vivo. We show that the YSA peptide, binding to the pan-cancer marker EphA2, can be inserted into three positions of the chimeric fiber, resulting in strong transduction of EphA2-positive but not EphA2-negative cells of human melanoma biopsies and of tumor xenografts after intratumoral injection. Transduction was blocked by soluble YSA peptide and restored for EphA2-negative cells after recombinant EphA2 expression. The YSA peptide could also be inserted into three positions of a CAR binding-ablated HAdV-5 fiber enabling specific transduction; however, the Ad5T/41sSK format was superior in vivo. In conclusion, we establish an adenovirus capsid facilitating functional insertion of targeting peptides and a novel adenovirus using the tumor marker EphA2 as receptor with high potential for cancer gene therapy and viral oncolysis. PMID:24760010

  18. Linking children's neuropsychological processing of emotion with their knowledge of emotion expression regulation.

    Science.gov (United States)

    Watling, Dawn; Bourne, Victoria J

    2007-09-01

    Understanding of emotions has been shown to develop between the ages of 4 and 10 years; however, individual differences exist in this development. While previous research has typically examined these differences in terms of developmental and/or social factors, little research has considered the possible impact of neuropsychological development on the behavioural understanding of emotions. Emotion processing tends to be lateralised to the right hemisphere of the brain in adults, yet this pattern is not as evident in children until around the age of 10 years. In this study 136 children between 5 and 10 years were given both behavioural and neuropsychological tests of emotion processing. The behavioural task examined expression regulation knowledge (ERK) for prosocial and self-presentational hypothetical interactions. The chimeric faces test was given as a measure of lateralisation for processing positive facial emotion. An interaction between age and lateralisation for emotion processing was predictive of children's ERK for only the self-presentational interactions. The relationships between children's ERK and lateralisation for emotion processing changes across the three age groups, emerging as a positive relationship in the 10-year-olds. The 10-years-olds who were more lateralised to the right hemisphere for emotion processing tended to show greater understanding of the need for regulating negative emotions during interactions that would have a self-presentational motivation. This finding suggests an association between the behavioural and neuropsychological development of emotion processing.

  19. Process and genes for expression and overexpression of active [FeFe] hydrogenases

    Science.gov (United States)

    Seibert, Michael; King, Paul W; Ghirardi, Maria Lucia; Posewitz, Matthew C; Smolinski, Sharon L

    2014-09-16

    A process for expression of active [FeFe]-hydrogenase in a host organism that does not contain either the structural gene(s) for [FeFe]-hydrogenases and/or homologues for the maturation genes HydE, HydF and HyG, comprising: cloning the structural hydrogenase gene(s) and/or the maturation genes HydE, HydF and HydG from an organisms that contains these genes into expression plasmids; transferring the plasmids into an organism that lacks a native [FeFe]-hydrogenase or that has a disrupted [FeFe]-hydrogenase and culturing it aerobically; and inducing anaerobiosis to provide [FeFe] hydrogenase biosynthesis and H?2#191 production.

  20. Neuropsychology of facial expressions. The role of consciousness in processing emotional faces

    Directory of Open Access Journals (Sweden)

    Michela Balconi

    2012-04-01

    Full Text Available Neuropsychological studies have underlined the significant presence of distinct brain correlates deputed to analyze facial expression of emotion. It was observed that some cerebral circuits were considered as specific for emotional face comprehension as a function of conscious vs. unconscious processing of emotional information. Moreover, the emotional content of faces (i.e. positive vs. negative; more or less arousing may have an effect in activating specific cortical networks. Between the others, recent studies have explained the contribution of hemispheres in comprehending face, as a function of type of emotions (mainly related to the distinction positive vs. negative and of specific tasks (comprehending vs. producing facial expressions. Specifically, ERPs (event-related potentials analysis overview is proposed in order to comprehend how face may be processed by an observer and how he can make face a meaningful construct even in absence of awareness. Finally, brain oscillations is considered in order to explain the synchronization of neural populations in response to emotional faces when a conscious vs. unconscious processing is activated

  1. Gene and process level modulation to overcome the bottlenecks of recombinant proteins expression in Pichia pastoris.

    Science.gov (United States)

    Prabhu, Ashish A; Boro, Bibari; Bharali, Biju; Chakraborty, Shuchishloka; Dasu, V Venkata

    2018-03-28

    Process development involving system metabolic engineering and bioprocess engineering has become one of the major thrust for the development of therapeutic proteins or enzymes. Pichia pastoris has emerged as a prominent host for the production of therapeutic protein or enzymes. Despite of producing high protein titers, various cellular and process level bottlenecks hinders the expression of recombinant proteins in P. pastoris. In the present review, we have summarized the recent developments in the expression of foreign proteins in P. pastoris. Further, we have discussed various cellular engineering strategies which include codon optimization, pathway engineering, signal peptide processing, development of protease deficient strain and glyco-engineered strains for the high yield protein secretion of recombinant protein. Bioprocess development of recombinant proteins in large scale bioreactor including medium optimization, optimum feeding strategy and co-substrate feeding in fed batch as well as continuous cultivation have been described. The recent advances in system and synthetic biology studies including metabolic flux analysis in understanding the phenotypic characteristics of recombinant Pichia and genome editing with CRISPR-CAS system have also been summarized. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  2. Judging emotional congruency: Explicit attention to situational context modulates processing of facial expressions of emotion.

    Science.gov (United States)

    Diéguez-Risco, Teresa; Aguado, Luis; Albert, Jacobo; Hinojosa, José Antonio

    2015-12-01

    The influence of explicit evaluative processes on the contextual integration of facial expressions of emotion was studied in a procedure that required the participants to judge the congruency of happy and angry faces with preceding sentences describing emotion-inducing situations. Judgments were faster on congruent trials in the case of happy faces and on incongruent trials in the case of angry faces. At the electrophysiological level, a congruency effect was observed in the face-sensitive N170 component that showed larger amplitudes on incongruent trials. An interactive effect of congruency and emotion appeared on the LPP (late positive potential), with larger amplitudes in response to happy faces that followed anger-inducing situations. These results show that the deliberate intention to judge the contextual congruency of facial expressions influences not only processes involved in affective evaluation such as those indexed by the LPP but also earlier processing stages that are involved in face perception. Copyright © 2015. Published by Elsevier B.V.

  3. Expressive vocabulary and auditory processing in children with deviant speech acquisition.

    Science.gov (United States)

    Quintas, Victor Gandra; Mezzomo, Carolina Lisbôa; Keske-Soares, Márcia; Dias, Roberta Freitas

    2010-01-01

    expressive vocabulary and auditory processing in children with phonological disorder. to compare the performance of children with phonological disorder in a vocabulary test with the parameters indicated by the same test and to verify a possible relationship between this performance and auditory processing deficits. participants were 12 children diagnosed with phonological disorders, with ages ranging from 5 to 7 years, of both genders. Vocabulary was assessed using the ABFW language test and the simplified auditory processing evaluation (sorting), Alternate Dichotic Dissyllable - Staggered Spondaic Word (SSW), Pitch Pattern Sequence (PPS) and the Binaural Fusion Test (BF). considering performance in the vocabulary test, all children obtained results with no significant statistical. As for the auditory processing assessment, all children presented better results than expected; the only exception was on the sorting process testing, where the mean accuracy score was of 8.25. Regarding the performance in the other auditory processing tests, the mean accuracy averages were 6.50 in the SSW, 10.74 in the PPS and 7.10 in the BF. When correlating the performance obtained in both assessments, considering p>0.05, the results indicated that, despite the normality, the lower the value obtained in the auditory processing assessment, the lower the accuracy presented in the vocabulary test. A trend was observed for the semantic fields of "means of transportation and professions". Considering the classification categories of the vocabulary test, the SP (substitution processes) were the categories that presented the higher significant increase in all semantic fields. there is a correlation between the auditory processing and the lexicon, where vocabulary can be influenced in children with deviant speech acquisition.

  4. Process development and economic evaluation of recombinant human lactoferrin expressed in rice grain.

    Science.gov (United States)

    Nandi, Somen; Yalda, Dorice; Lu, Stephen; Nikolov, Zivko; Misaki, Ryo; Fujiyama, Kazuhito; Huang, Ning

    2005-06-01

    In this paper, we show that recombinant human lactoferrin (rhLF) has been stably expressed at 0.5% brown rice flour weight for nine generations. Process development indicates that rhLF can be efficiently extracted from rice flour in 20 mM phosphate buffer (pH 7.0) containing up to 0.5 M NaCl and at a ratio of 1 kg flour to 10 L buffer. After solid/liquid separation, the extract can then be loaded directly onto an ion-exchange column and rhLF can be eluted using 0.8 M NaCl. The resulting rhLF is about 95% pure. A range of biochemical and biophysical analyses were carried out and results indicated that the purified rhLF was identical to its native human counterpart other than its glycosylation. Economic analysis shows that at 600 kg/year scale, the cash cost to produce 1 g of rhLF of pharmaceutical grade is US$ 5.90. Analysis also indicates that the expression level has profound impact on costs related to planting, milling, extraction and purification, thus high level expression of recombinant protein in plants is one of the key parameters for the success of plant made pharmaceuticals.

  5. Face and emotion expression processing and the serotonin transporter polymorphism 5-HTTLPR/rs22531.

    Science.gov (United States)

    Hildebrandt, A; Kiy, A; Reuter, M; Sommer, W; Wilhelm, O

    2016-06-01

    Face cognition, including face identity and facial expression processing, is a crucial component of socio-emotional abilities, characterizing humans as highest developed social beings. However, for these trait domains molecular genetic studies investigating gene-behavior associations based on well-founded phenotype definitions are still rare. We examined the relationship between 5-HTTLPR/rs25531 polymorphisms - related to serotonin-reuptake - and the ability to perceive and recognize faces and emotional expressions in human faces. For this aim we conducted structural equation modeling on data from 230 young adults, obtained by using a comprehensive, multivariate task battery with maximal effort tasks. By additionally modeling fluid intelligence and immediate and delayed memory factors, we aimed to address the discriminant relationships of the 5-HTTLPR/rs25531 polymorphisms with socio-emotional abilities. We found a robust association between the 5-HTTLPR/rs25531 polymorphism and facial emotion perception. Carriers of two long (L) alleles outperformed carriers of one or two S alleles. Weaker associations were present for face identity perception and memory for emotional facial expressions. There was no association between the 5-HTTLPR/rs25531 polymorphism and non-social abilities, demonstrating discriminant validity of the relationships. We discuss the implications and possible neural mechanisms underlying these novel findings. © 2016 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.

  6. Promoter analysis of the Chilo iridescent virus DNA polymerase and major capsid protein genes

    International Nuclear Information System (INIS)

    Nalcacioglu, Remziye; Marks, Hendrik; Vlak, Just M.; Demirbag, Zihni; Oers, Monique M. van

    2003-01-01

    The DNA polymerase (DNApol) and major capsid protein (MCP) genes were used as models to study promoter activity in Chilo iridescent virus (CIV). Infection of Bombyx mori SPC-BM-36 cells in the presence of inhibitors of DNA or protein synthesis showed that DNApol, as well as helicase, is an immediate-early gene and confirmed that the major capsid protein (MCP) is a late gene. Transcription of DNApol initiated 35 nt upstream and that of MCP 14 nt upstream of the translational start site. In a luciferase reporter gene assay both promoters were active only when cells were infected with CIV. For DNApol sequences between position -27 and -6, relative to the transcriptional start site, were essential for promoter activity. Furthermore, mutation of a G within the sequence TTGTTTT located just upstream of the DNApol transcription initiation site reduced the promoter activity by 25%. Sequences crucial for MCP promoter activity are located between positions -53 and -29

  7. Chronic hepatitis B infection and HBV DNA-containing capsids: Modeling and analysis

    Science.gov (United States)

    Manna, Kalyan; Chakrabarty, Siddhartha P.

    2015-05-01

    We analyze the dynamics of chronic HBV infection taking into account both uninfected and infected hepatocytes along with the intracellular HBV DNA-containing capsids and the virions. While previous HBV models have included either the uninfected hepatocytes or the intracellular HBV DNA-containing capsids, our model accounts for both these two populations. We prove the conditions for local and global stability of both the uninfected and infected steady states in terms of the basic reproduction number. Further, we incorporate a time lag in the model to encompass the intracellular delay in the production of the infected hepatocytes and find that this delay does not affect the overall dynamics of the system. The results for the model and the delay model are finally numerically illustrated.

  8. Fixation to features and neural processing of facial expressions in a gender discrimination task.

    Science.gov (United States)

    Neath, Karly N; Itier, Roxane J

    2015-10-01

    Early face encoding, as reflected by the N170 ERP component, is sensitive to fixation to the eyes. Whether this sensitivity varies with facial expressions of emotion and can also be seen on other ERP components such as P1 and EPN, was investigated. Using eye-tracking to manipulate fixation on facial features, we found the N170 to be the only eye-sensitive component and this was true for fearful, happy and neutral faces. A different effect of fixation to features was seen for the earlier P1 that likely reflected general sensitivity to face position. An early effect of emotion (∼120 ms) for happy faces was seen at occipital sites and was sustained until ∼350 ms post-stimulus. For fearful faces, an early effect was seen around 80 ms followed by a later effect appearing at ∼150 ms until ∼300 ms at lateral posterior sites. Results suggests that in this emotion-irrelevant gender discrimination task, processing of fearful and happy expressions occurred early and largely independently of the eye-sensitivity indexed by the N170. Processing of the two emotions involved different underlying brain networks active at different times. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Heterologous expression of Pycnoporus cinnabarinus cellobiose dehydrogenase in Pichia pastoris and involvement in saccharification processes

    Directory of Open Access Journals (Sweden)

    Bey Mathieu

    2011-12-01

    Full Text Available Abstract Background Cellobiose dehydrogenase (CDH is an extracellular hemoflavoenzyme produced by lignocellulose-degrading fungi including Pycnoporus cinnabarinus. We investigated the cellulolytic system of P. cinnabarinus, focusing on the involvement of CDH in the deconstruction of lignocellulosic biomass. Results First, P. cinnabarinus growth conditions were optimized for CDH production. Following growth under cellulolytic conditions, the main components secreted were cellulases, xylanases and CDH. To investigate the contribution of P. cinnabarinus secretome in saccharification processes, the Trichoderma reesei enzymatic cocktail was supplemented with the P. cinnabarinus secretome. A significant enhancement of the degradation of wheat straw was observed with (i the production of a large amount of gluconic acid, (ii increased hemicellulose degradation, and (iii increased overall degradation of the lignocellulosic material. P. cinnabarinus CDH was heterologously expressed in Pichia pastoris to obtain large amounts of pure enzyme. In a bioreactor, the recombinant CDH (rCDH expression level reached 7800 U/L. rCDH exhibited values of biochemical parameters similar to those of the natural enzyme, and was able to bind cellulose despite the absence of a carbohydrate-binding module (CBM. Following supplementation of purified rCDH to T. reesei enzymatic cocktail, formation of gluconic acid and increased hemicellulose degradation were observed, thus confirming the previous results observed with P. cinnabarinus secretome. Conclusions We demonstrate that CDH offers an attractive tool for saccharification process enhancement due to gluconic acid production from raw lignocellulosic material.

  10. Thermodynamic characterization of the peptide assembly inhibitor binding to HIV-1 capsid protein

    Czech Academy of Sciences Publication Activity Database

    Kožíšek, Milan; Durčák, Jindřich; Konvalinka, Jan

    2013-01-01

    Roč. 10, Suppl. 1 (2013), S37-S37 ISSN 1742-4690. [Frontiers of Retrovirology: Complex retorviruses, retroelements and their hosts. 16.09.2013-18.09.2013, Cambridge] R&D Projects: GA ČR GA13-19561S Institutional support: RVO:61388963 Keywords : HIV -1 capsid protein * CAI Subject RIV: EE - Microbiology, Virology http://www.retrovirology.com/content/10/S1/P108

  11. Solid-to-fluid DNA transition inside HSV-1 capsid close to the temperature of infection

    Energy Technology Data Exchange (ETDEWEB)

    Sae-Ueng, Udom; Li, Dong; Zuo, Xiaobing; Huffman, Jamie B.; Homa, Fred L.; Rau, Donald; Evilevitch, Alex

    2014-10-01

    DNA in the human Herpes simplex virus type 1 (HSV-1) capsid is packaged to a tight density. This leads to tens of atmospheres of internal pressure responsible for the delivery of the herpes genome into the cell nucleus. In this study we show that, despite its liquid crystalline state inside the capsid, the DNA is fluid-like, which facilitates its ejection into the cell nucleus during infection. We found that the sliding friction between closely packaged DNA strands, caused by interstrand repulsive interactions, is reduced by the ionic environment of epithelial cells and neurons susceptible to herpes infection. However, variations in the ionic conditions corresponding to neuronal activity can restrict DNA mobility in the capsid, making it more solid-like. This can inhibit intranuclear DNA release and interfere with viral replication. In addition, the temperature of the human host (37 °C) induces a disordering transition of the encapsidated herpes genome, which reduces interstrand interactions and provides genome mobility required for infection.

  12. Structure of a Spumaretrovirus Gag Central Domain Reveals an Ancient Retroviral Capsid.

    Directory of Open Access Journals (Sweden)

    Neil J Ball

    2016-11-01

    Full Text Available The Spumaretrovirinae, or foamy viruses (FVs are complex retroviruses that infect many species of monkey and ape. Despite little sequence homology, FV and orthoretroviral Gag proteins perform equivalent functions, including genome packaging, virion assembly, trafficking and membrane targeting. However, there is a paucity of structural information for FVs and it is unclear how disparate FV and orthoretroviral Gag molecules share the same function. To probe the functional overlap of FV and orthoretroviral Gag we have determined the structure of a central region of Gag from the Prototype FV (PFV. The structure comprises two all α-helical domains NtDCEN and CtDCEN that although they have no sequence similarity, we show they share the same core fold as the N- (NtDCA and C-terminal domains (CtDCA of archetypal orthoretroviral capsid protein (CA. Moreover, structural comparisons with orthoretroviral CA align PFV NtDCEN and CtDCEN with NtDCA and CtDCA respectively. Further in vitro and functional virological assays reveal that residues making inter-domain NtDCEN-CtDCEN interactions are required for PFV capsid assembly and that intact capsid is required for PFV reverse transcription. These data provide the first information that relates the Gag proteins of Spuma and Orthoretrovirinae and suggests a common ancestor for both lineages containing an ancient CA fold.

  13. Antibody Competition Reveals Surface Location of HPV L2 Minor Capsid Protein Residues 17–36

    Directory of Open Access Journals (Sweden)

    Stephanie M. Bywaters

    2017-11-01

    Full Text Available The currently available nonavalent human papillomavirus (HPV vaccine exploits the highly antigenic L1 major capsid protein to promote high-titer neutralizing antibodies, but is limited to the HPV types included in the vaccine since the responses are highly type-specific. The limited cross-protection offered by the L1 virus-like particle (VLP vaccine warrants further investigation into cross-protective L2 epitopes. The L2 proteins are yet to be fully characterized as to their precise placement in the virion. Adding to the difficulties in localizing L2, studies have suggested that L2 epitopes are not well exposed on the surface of the mature capsid prior to cellular engagement. Using a series of competition assays between previously mapped anti-L1 monoclonal antibodies (mAbs (H16.V5, H16.U4 and H16.7E and novel anti-L2 mAbs, we probed the capsid surface for the location of an L2 epitope (aa17–36. The previously characterized L1 epitopes together with our competition data is consistent with a proposed L2 epitope within the canyons of pentavalent capsomers.

  14. Antibody Competition Reveals Surface Location of HPV L2 Minor Capsid Protein Residues 17-36.

    Science.gov (United States)

    Bywaters, Stephanie M; Brendle, Sarah A; Tossi, Kerstin P; Biryukov, Jennifer; Meyers, Craig; Christensen, Neil D

    2017-11-10

    The currently available nonavalent human papillomavirus (HPV) vaccine exploits the highly antigenic L1 major capsid protein to promote high-titer neutralizing antibodies, but is limited to the HPV types included in the vaccine since the responses are highly type-specific. The limited cross-protection offered by the L1 virus-like particle (VLP) vaccine warrants further investigation into cross-protective L2 epitopes. The L2 proteins are yet to be fully characterized as to their precise placement in the virion. Adding to the difficulties in localizing L2, studies have suggested that L2 epitopes are not well exposed on the surface of the mature capsid prior to cellular engagement. Using a series of competition assays between previously mapped anti-L1 monoclonal antibodies (mAbs) (H16.V5, H16.U4 and H16.7E) and novel anti-L2 mAbs, we probed the capsid surface for the location of an L2 epitope (aa17-36). The previously characterized L1 epitopes together with our competition data is consistent with a proposed L2 epitope within the canyons of pentavalent capsomers.

  15. Structure of a Spumaretrovirus Gag Central Domain Reveals an Ancient Retroviral Capsid

    Science.gov (United States)

    Dutta, Moumita; Pollard, Dominic J.; Goldstone, David C.; Ramos, Andres; Müllers, Erik; Stirnnagel, Kristin; Stanke, Nicole; Lindemann, Dirk; Taylor, William R.; Rosenthal, Peter B.

    2016-01-01

    The Spumaretrovirinae, or foamy viruses (FVs) are complex retroviruses that infect many species of monkey and ape. Despite little sequence homology, FV and orthoretroviral Gag proteins perform equivalent functions, including genome packaging, virion assembly, trafficking and membrane targeting. However, there is a paucity of structural information for FVs and it is unclear how disparate FV and orthoretroviral Gag molecules share the same function. To probe the functional overlap of FV and orthoretroviral Gag we have determined the structure of a central region of Gag from the Prototype FV (PFV). The structure comprises two all α-helical domains NtDCEN and CtDCEN that although they have no sequence similarity, we show they share the same core fold as the N- (NtDCA) and C-terminal domains (CtDCA) of archetypal orthoretroviral capsid protein (CA). Moreover, structural comparisons with orthoretroviral CA align PFV NtDCEN and CtDCEN with NtDCA and CtDCA respectively. Further in vitro and functional virological assays reveal that residues making inter-domain NtDCEN—CtDCEN interactions are required for PFV capsid assembly and that intact capsid is required for PFV reverse transcription. These data provide the first information that relates the Gag proteins of Spuma and Orthoretrovirinae and suggests a common ancestor for both lineages containing an ancient CA fold. PMID:27829070

  16. Perspective on Adeno-Associated Virus Capsid Modification for Duchenne Muscular Dystrophy Gene Therapy.

    Science.gov (United States)

    Nance, Michael E; Duan, Dongsheng

    2015-12-01

    Duchenne muscular dystrophy (DMD) is a X-linked, progressive childhood myopathy caused by mutations in the dystrophin gene, one of the largest genes in the genome. It is characterized by skeletal and cardiac muscle degeneration and dysfunction leading to cardiac and/or respiratory failure. Adeno-associated virus (AAV) is a highly promising gene therapy vector. AAV gene therapy has resulted in unprecedented clinical success for treating several inherited diseases. However, AAV gene therapy for DMD remains a significant challenge. Hurdles for AAV-mediated DMD gene therapy include the difficulty to package the full-length dystrophin coding sequence in an AAV vector, the necessity for whole-body gene delivery, the immune response to dystrophin and AAV capsid, and the species-specific barriers to translate from animal models to human patients. Capsid engineering aims at improving viral vector properties by rational design and/or forced evolution. In this review, we discuss how to use the state-of-the-art AAV capsid engineering technologies to overcome hurdles in AAV-based DMD gene therapy.

  17. Clustering gene expression time series data using an infinite Gaussian process mixture model.

    Science.gov (United States)

    McDowell, Ian C; Manandhar, Dinesh; Vockley, Christopher M; Schmid, Amy K; Reddy, Timothy E; Engelhardt, Barbara E

    2018-01-01

    Transcriptome-wide time series expression profiling is used to characterize the cellular response to environmental perturbations. The first step to analyzing transcriptional response data is often to cluster genes with similar responses. Here, we present a nonparametric model-based method, Dirichlet process Gaussian process mixture model (DPGP), which jointly models data clusters with a Dirichlet process and temporal dependencies with Gaussian processes. We demonstrate the accuracy of DPGP in comparison to state-of-the-art approaches using hundreds of simulated data sets. To further test our method, we apply DPGP to published microarray data from a microbial model organism exposed to stress and to novel RNA-seq data from a human cell line exposed to the glucocorticoid dexamethasone. We validate our clusters by examining local transcription factor binding and histone modifications. Our results demonstrate that jointly modeling cluster number and temporal dependencies can reveal shared regulatory mechanisms. DPGP software is freely available online at https://github.com/PrincetonUniversity/DP_GP_cluster.

  18. Clustering gene expression time series data using an infinite Gaussian process mixture model.

    Directory of Open Access Journals (Sweden)

    Ian C McDowell

    2018-01-01

    Full Text Available Transcriptome-wide time series expression profiling is used to characterize the cellular response to environmental perturbations. The first step to analyzing transcriptional response data is often to cluster genes with similar responses. Here, we present a nonparametric model-based method, Dirichlet process Gaussian process mixture model (DPGP, which jointly models data clusters with a Dirichlet process and temporal dependencies with Gaussian processes. We demonstrate the accuracy of DPGP in comparison to state-of-the-art approaches using hundreds of simulated data sets. To further test our method, we apply DPGP to published microarray data from a microbial model organism exposed to stress and to novel RNA-seq data from a human cell line exposed to the glucocorticoid dexamethasone. We validate our clusters by examining local transcription factor binding and histone modifications. Our results demonstrate that jointly modeling cluster number and temporal dependencies can reveal shared regulatory mechanisms. DPGP software is freely available online at https://github.com/PrincetonUniversity/DP_GP_cluster.

  19. Shades of Emotion: What the Addition of Sunglasses or Masks to Faces Reveals about the Development of Facial Expression Processing

    Science.gov (United States)

    Roberson, Debi; Kikutani, Mariko; Doge, Paula; Whitaker, Lydia; Majid, Asifa

    2012-01-01

    Three studies investigated developmental changes in facial expression processing, between 3 years-of-age and adulthood. For adults and older children, the addition of sunglasses to upright faces caused an equivalent decrement in performance to face inversion. However, younger children showed "better" classification of expressions of faces wearing…

  20. Integrated continuous processing of proteins expressed as inclusion bodies: GCSF as a case study.

    Science.gov (United States)

    Kateja, Nikhil; Agarwal, Harshit; Hebbi, Vishwanath; Rathore, Anurag S

    2017-07-01

    Affordability of biopharmaceuticals continues to be a challenge, particularly in developing economies. This has fuelled advancements in manufacturing that can offer higher productivity and better economics without sacrificing product quality in the form of an integrated continuous manufacturing platform. While platform processes for monoclonal antibodies have existed for more than a decade, development of an integrated continuous manufacturing process for bacterial proteins has received relatively scant attention. In this study, we propose an end-to-end integrated continuous downstream process (from inclusion bodies to unformulated drug substance) for a therapeutic protein expressed in Escherichia coli as inclusion body. The final process consisted of a continuous refolding in a coiled flow inverter reactor directly coupled to a three-column periodic counter-current chromatography for capture of the product followed by a three-column con-current chromatography for polishing. The continuous bioprocessing train was run uninterrupted for 26 h to demonstrate its capability and the resulting output was analyzed for the various critical quality attributes, namely product purity (>99%), high molecular weight impurities (<0.5%), host cell proteins (<100 ppm), and host cell DNA (<10 ppb). All attributes were found to be consistent over the period of operation. The developed assembly offers smaller facility footprint, higher productivity, fewer hold steps, and significantly higher equipment and resin utilization. The complexities of process integration in the context of continuous processing have been highlighted. We hope that the study presented here will promote development of highly efficient, universal, end-to-end, fully continuous platforms for manufacturing of biotherapeutics. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:998-1009, 2017. © 2016 American Institute of Chemical Engineers.

  1. Weighted gene co-expression network analysis reveals potential genes involved in early metamorphosis process in sea cucumber Apostichopus japonicus.

    Science.gov (United States)

    Li, Yongxin; Kikuchi, Mani; Li, Xueyan; Gao, Qionghua; Xiong, Zijun; Ren, Yandong; Zhao, Ruoping; Mao, Bingyu; Kondo, Mariko; Irie, Naoki; Wang, Wen

    2018-01-01

    Sea cucumbers, one main class of Echinoderms, have a very fast and drastic metamorphosis process during their development. However, the molecular basis under this process remains largely unknown. Here we systematically examined the gene expression profiles of Japanese common sea cucumber (Apostichopus japonicus) for the first time by RNA sequencing across 16 developmental time points from fertilized egg to juvenile stage. Based on the weighted gene co-expression network analysis (WGCNA), we identified 21 modules. Among them, MEdarkmagenta was highly expressed and correlated with the early metamorphosis process from late auricularia to doliolaria larva. Furthermore, gene enrichment and differentially expressed gene analysis identified several genes in the module that may play key roles in the metamorphosis process. Our results not only provide a molecular basis for experimentally studying the development and morphological complexity of sea cucumber, but also lay a foundation for improving its emergence rate. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Are event-related potentials to dynamic facial expressions of emotion related to individual differences in the accuracy of processing facial expressions and identity?

    Science.gov (United States)

    Recio, Guillermo; Wilhelm, Oliver; Sommer, Werner; Hildebrandt, Andrea

    2017-04-01

    Despite a wealth of knowledge about the neural mechanisms behind emotional facial expression processing, little is known about how they relate to individual differences in social cognition abilities. We studied individual differences in the event-related potentials (ERPs) elicited by dynamic facial expressions. First, we assessed the latent structure of the ERPs, reflecting structural face processing in the N170, and the allocation of processing resources and reflexive attention to emotionally salient stimuli, in the early posterior negativity (EPN) and the late positive complex (LPC). Then we estimated brain-behavior relationships between the ERP factors and behavioral indicators of facial identity and emotion-processing abilities. Structural models revealed that the participants who formed faster structural representations of neutral faces (i.e., shorter N170 latencies) performed better at face perception (r = -.51) and memory (r = -.42). The N170 amplitude was not related to individual differences in face cognition or emotion processing. The latent EPN factor correlated with emotion perception (r = .47) and memory (r = .32), and also with face perception abilities (r = .41). Interestingly, the latent factor representing the difference in EPN amplitudes between the two neutral control conditions (chewing and blinking movements) also correlated with emotion perception (r = .51), highlighting the importance of tracking facial changes in the perception of emotional facial expressions. The LPC factor for negative expressions correlated with the memory for emotional facial expressions. The links revealed between the latency and strength of activations of brain systems and individual differences in processing socio-emotional information provide new insights into the brain mechanisms involved in social communication.

  3. The issues how to express the concentration processes in European agriculture

    Directory of Open Access Journals (Sweden)

    Ivo Zdráhal

    2013-01-01

    Full Text Available The paper deals with one of the current problems of the agrarian economics and policy, and this approaches to the definition, measurement and interpretation of farm size, as one of the key indicators of evaluation the processes shaping the entrepreneurial structure in the current agribusiness. The results of research into causation factors and processes shaping the business structure of modern agriculture are presented there. It evaluates approaches to express the magnitude of company and its explanatory power in the context of the selected evaluation criteria of the processes and phenomena. It deals with the potential risks of a narrow criterion-oriented agricultural policy in terms of strategy and fulfillment of role allocation and distribution in order to support of enterprises in today’s business environment. The basic trends in the farm size structure in the member countries of the European Union are evaluated including their impact of the significance of individual size segments and their share of the output sector. In this context it evaluates and compares the results of the analysis of developments in business structures in the old and new EU Member States.

  4. Sex Hormones and Processing of Facial Expressions of Emotion: A Systematic Literature Review

    Directory of Open Access Journals (Sweden)

    Flávia L. Osório

    2018-04-01

    Full Text Available Background: We systematically reviewed the literature to determine the influence of sex hormones on facial emotion processing (FEP in healthy women at different phases of life.Methods: Searches were performed in PubMed, Web of Science, PsycINFO, LILACS, and SciELO. Twenty-seven articles were included in the review and allocated into five different categories according to their objectives and sample characteristics (menstrual cycle, oral contraceptives, pregnancy/postpartum, testosterone, and progesterone.Results: Despite the limited number of studies in some categories and the existence of inconsistencies in the results of interest, the findings of the review suggest that FEP may be enhanced during the follicular phase. Studies with women taking oral contraceptives showed reduced recognition accuracy and decreased responsiveness of different brain structures during FEP tasks. Studies with pregnant women and women in the postpartum showed that hormonal changes are associated with alterations in FEP and in brain functioning that could indicate the existence of a hypervigilant state in new and future mothers. Exogenous administration of testosterone enhanced the recognition of threatening facial expressions and the activation of brain structures involved in the processing of emotional stimuli.Conclusions: We conclude that sex hormones affect FEP in women, which may have an impact in adaptive processes of the species and in the onset of mood symptoms associated with the premenstrual syndrome.

  5. Burning velocity of the heterogeneous flame propagation in the SHS process expressed in explicit form

    International Nuclear Information System (INIS)

    Makino, A.; Law, C.K.

    1995-01-01

    The combustion behavior of the self-propagating high-temperature synthesis (SHS) process has been the subject of many analytical and experimental investigations. Recently, a theory based on spray combustion was proposed for the SHS flame structure and propagation. In contrast to previous studies based on the homogeneous premixed flame, this theory accounts for the premixed-mode of propagation of the bulk flame and the non-premixed reaction of the dispersed nonmetal (or higher melting-point metal) particles which supports the bulk flame. Finite-rate reaction at the particle surface and the temperature-dependent, Arrhenius nature of mass diffusion are both incorporated. The heterogeneous nature of the theory has satisfactorily captured the effects of particle size on the flame propagation speed. The final solution of Makino and Law was obtained numerically and hence presented parametrically. The authors have since then derived an approximate analytical expression for the burning velocity, which explicitly displays the functional dependence of the burning velocity on the various system parameters. This result is presented herein. Applicability of this expression is examined by comparing it with the numerical results for Ti-C, Ti-B, Zr-B, Hf-B, and Co-Ti systems. A fair degree of agreement has been shown as far as the general trend and approximate magnitude are concerned

  6. Grafting Acoustic Instruments and Signal Processing: Creative Control and Augmented Expressivity

    DEFF Research Database (Denmark)

    Overholt, Daniel; Freed, Adrian

    In this study, work is presented on a hybrid acoustic / electric violin. The instrument has embedded processing that provides real-time simulation of acoustic body models using DSP techniques able to gradually transform a given body model into another, including extrapolations beyond the models...... acoustic violins with high fidelity. The opportunity to control a virtually malleable body while playing, i.e., a model that changes reverberant resonances in response to player input, results in interesting audio effects. Other common audio effects can also be employed and simultaneously controlled via...... the musician’s movements. For example, gestural tilting of the instrument is tracked via an embedded Inertial Measurement Unit (IMU), which can be assigned to alter parameters such as the wet/dry mix of a simple octave-doubler or other more advanced audio effect, further augmenting the expressivity...

  7. Reengineering of the business process in the Serbian post's department for express parcel service

    Directory of Open Access Journals (Sweden)

    Lazarević Dragan M.

    2015-01-01

    Full Text Available In this paper the model that solves the problem of exceeding time limit in the system of express parcel shipping in the Post of Serbia is described. The existing principle of the organization of the area serving is explained, as well as the problem of exceeding time limit that appears and leads to the delay of the service to the user. Two approaches for problem solving are suggested. The reengineering of the existing business processes is carried out to some extent through these two approaches, and will be presented by BPMN notation. The first approach is based on the use of the fuzzy set theory, i.e. fuzzy logical systems, while the other one is based on the use of algorithm 'zoning-routing'.

  8. Genetic modification of adeno-associated viral vector type 2 capsid enhances gene transfer efficiency in polarized human airway epithelial cells.

    Science.gov (United States)

    White, April F; Mazur, Marina; Sorscher, Eric J; Zinn, Kurt R; Ponnazhagan, Selvarangan

    2008-12-01

    Cystic fibrosis (CF) is a common genetic disease characterized by defects in the expression of the CF transmembrane conductance regulator (CFTR) gene. Gene therapy offers better hope for the treatment of CF. Adeno-associated viral (AAV) vectors are capable of stable expression with low immunogenicity. Despite their potential in CF gene therapy, gene transfer efficiency by AAV is limited because of pathophysiological barriers in these patients. Although a few AAV serotypes have shown better transduction compared with the AAV2-based vectors, gene transfer efficiency in human airway epithelium has still not reached therapeutic levels. To engineer better AAV vectors for enhanced gene delivery in human airway epithelium, we developed and characterized mutant AAV vectors by genetic capsid modification, modeling the well-characterized AAV2 serotype. We genetically incorporated putative high-affinity peptide ligands to human airway epithelium on the GH loop region of AAV2 capsid protein. Six independent mutant AAV were constructed, containing peptide ligands previously reported to bind with high affinity for known and unknown receptors on human airway epithelial cells. The vectors were tested on nonairway cells and nonpolarized and polarized human airway epithelial cells for enhanced infectivity. One of the mutant vectors, with the peptide sequence THALWHT, not only showed the highest transduction in undifferentiated human airway epithelial cells but also indicated significant transduction in polarized cells. Interestingly, this modified vector was also able to infect cells independently of the heparan sulfate proteoglycan receptor. Incorporation of this ligand on other AAV serotypes, which have shown improved gene transfer efficiency in the human airway epithelium, may enhance the application of AAV vectors in CF gene therapy.

  9. Cesium Toxicity Alters MicroRNA Processing and AGO1 Expressions in Arabidopsis thaliana.

    Directory of Open Access Journals (Sweden)

    Il Lae Jung

    Full Text Available MicroRNAs (miRNAs are short RNA fragments that play important roles in controlled gene silencing, thus regulating many biological processes in plants. Recent studies have indicated that plants modulate miRNAs to sustain their survival in response to a variety of environmental stimuli, such as biotic stresses, cold, drought, nutritional starvation, and toxic heavy metals. Cesium and radio-cesium contaminations have arisen as serious problems that both impede plant growth and enter the food chain through contaminated plants. Many studies have been performed to define plant responses against cesium intoxication. However, the complete profile of miRNAs in plants during cesium intoxication has not been established. Here we show the differential expression of the miRNAs that are mostly down-regulated during cesium intoxication. Furthermore, we found that cesium toxicity disrupts both the processing of pri-miRNAs and AGONOUTE 1 (AGO1-mediated gene silencing. AGO 1 seems to be especially destabilized by cesium toxicity, possibly through a proteolytic regulatory pathway. Our study presents a comprehensive profile of cesium-responsive miRNAs, which is distinct from that of potassium, and suggests two possible mechanisms underlying the cesium toxicity on miRNA metabolism.

  10. Alexithymia and the processing of emotional facial expressions (EFEs: systematic review, unanswered questions and further perspectives.

    Directory of Open Access Journals (Sweden)

    Delphine Grynberg

    Full Text Available Alexithymia is characterized by difficulties in identifying, differentiating and describing feelings. A high prevalence of alexithymia has often been observed in clinical disorders characterized by low social functioning. This review aims to assess the association between alexithymia and the ability to decode emotional facial expressions (EFEs within clinical and healthy populations. More precisely, this review has four main objectives: (1 to assess if alexithymia is a better predictor of the ability to decode EFEs than the diagnosis of clinical disorder; (2 to assess the influence of comorbid factors (depression and anxiety disorder on the ability to decode EFE; (3 to investigate if deficits in decoding EFEs are specific to some levels of processing or task types; (4 to investigate if the deficits are specific to particular EFEs. Twenty four studies (behavioural and neuroimaging were identified through a computerized literature search of Psycinfo, PubMed, and Web of Science databases from 1990 to 2010. Data on methodology, clinical characteristics, and possible confounds were analyzed. The review revealed that: (1 alexithymia is associated with deficits in labelling EFEs among clinical disorders, (2 the level of depression and anxiety partially account for the decoding deficits, (3 alexithymia is associated with reduced perceptual abilities, and is likely to be associated with impaired semantic representations of emotional concepts, and (4 alexithymia is associated with neither specific EFEs nor a specific valence. These studies are discussed with respect to processes involved in the recognition of EFEs. Future directions for research on emotion perception are also discussed.

  11. The role of GABAA in the expression of updated information through the reconsolidation process in humans.

    Science.gov (United States)

    Fernández, Rodrigo S; Moyano, Malen D; Radloff, Michael; Campos, Jorge; Carbó-Tano, Martin; Allegri, Ricardo F; Pedreira, María E; Forcato, Cecilia

    2017-07-01

    Consolidated memory can be again destabilized by the presentation of a memory cue (reminder) of the previously acquired information. During this process of labilization/restabilization memory traces can be either impaired, strengthened or updated in content. Here, we study if a consolidated memory can be updated by linking one original cue to two different outcomes and whether this process was modulated by the GABAergic system. To aim that, we designed two experiments carried out in three consecutive days. All participants learned a list of non-sense syllable pairs on day 1. On day 2 the new information was introduced after the reminder or no-reminder presentation. Participants were tested on day 3 for the updated or original list (Exp. 1). In Exp. 2 we tested whether this new information was incorporated by an inhibitory process mediated by the GABAergic system. For that, participants retrieved the original information before being taken Clonazepam 0.25mg (GABA A agonist) or Placebo pill. We found that the groups that received the reminder correctly recalled the old and new information. However, the no reminder groups only correctly recalled the original information. Furthermore, when testing occurred in the presence of Clonazepam, the group that received the reminder plus the new information showed an impaired original memory performance compared to the group that received only Clonazepam (without reminder) or the reminder plus Placebo pill. These results show that new information can be added to a reactivated declarative memory in humans by linking one cue to two different outcomes. Furthermore, we shed light on the mechanisms of memory updating being the GABAergic system involved in the modulation of the old and new information expression. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. The complex subcellular distribution of satellite panicum mosaic virus capsid protein reflects its multifunctional role during infection

    International Nuclear Information System (INIS)

    Qi Dong; Omarov, Rustem T.; Scholthof, Karen-Beth G.

    2008-01-01

    Satellite panicum mosaic virus (SPMV) depends on its helper Panicum mosaic virus for replication and movement in host plants. The positive-sense single-stranded genomic RNA of SPMV encodes a 17-kDa capsid protein (CP) to form 16-nm virions. We determined that SPMV CP accumulates in both cytosolic and non-cytosolic fractions, but cytosolic accumulation of SPMV CP is exclusively associated with virions. An N-terminal arginine-rich motif (N-ARM) on SPMV CP is used to bind its cognate RNA and to form virus particles. Intriguingly, virion formation is dispensable for successful systemic SPMV RNA accumulation, yet this process still depends on an intact N-ARM. In addition, a C-terminal domain on the SPMV CP is necessary for self-interaction. Biochemical fractionation and fluorescent microscopy of green fluorescent protein-tagged SPMV CP demonstrated that the non-cytosolic SPMV CP is associated with the cell wall, the nucleus and other membranous organelles. To our knowledge, this is the first report that a satellite virus CP not only accumulates exclusively as virions in the cytosol but also is directed to the nucleolus and membranes. That SPMV CP is found both in the nucleus and the cell wall suggests its involvement in viral nuclear import and cell-to-cell transport

  13. Analysis of the functional compatibility of SIV capsid sequences in the context of the FIV gag precursor.

    Directory of Open Access Journals (Sweden)

    César A Ovejero

    Full Text Available The formation of immature lentiviral particles is dependent on the multimerization of the Gag polyprotein at the plasma membrane of the infected cells. One key player in the virus assembly process is the capsid (CA domain of Gag, which establishes the protein-protein interactions that give rise to the hexagonal lattice of Gag molecules in the immature virion. To gain a better understanding of the functional equivalence between the CA proteins of simian and feline immunodeficiency viruses (SIV and FIV, respectively, we generated a series of chimeric FIV Gag proteins in which the CA-coding region was partially or totally replaced by its SIV counterpart. All the FIV Gag chimeras were found to be assembly-defective; however, all of them are able to interact with wild-type SIV Gag and be recruited into extracellular virus-like particles, regardless of the SIV CA sequences present in the chimeric FIV Gag. The results presented here markedly contrast with our previous findings showing that chimeric SIVs carrying FIV CA-derived sequences are assembly-competent. Overall, our data support the notion that although the SIV and FIV CA proteins share 51% amino acid sequence similarity and exhibit a similar organization, i.e., an N-terminal domain joined by a flexible linker to a C-terminal domain, their functional exchange between these different lentiviruses is strictly dependent on the context of the recipient Gag precursor.

  14. Fine-tuning translation kinetics selection as the driving force of codon usage bias in the hepatitis A virus capsid.

    Science.gov (United States)

    Aragonès, Lluís; Guix, Susana; Ribes, Enric; Bosch, Albert; Pintó, Rosa M

    2010-03-05

    Hepatitis A virus (HAV), the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness.

  15. Fine-tuning translation kinetics selection as the driving force of codon usage bias in the hepatitis A virus capsid.

    Directory of Open Access Journals (Sweden)

    Lluís Aragonès

    2010-03-01

    Full Text Available Hepatitis A virus (HAV, the prototype of genus Hepatovirus, has several unique biological characteristics that distinguish it from other members of the Picornaviridae family. Among these, the need for an intact eIF4G factor for the initiation of translation results in an inability to shut down host protein synthesis by a mechanism similar to that of other picornaviruses. Consequently, HAV must inefficiently compete for the cellular translational machinery and this may explain its poor growth in cell culture. In this context of virus/cell competition, HAV has strategically adopted a naturally highly deoptimized codon usage with respect to that of its cellular host. With the aim to optimize its codon usage the virus was adapted to propagate in cells with impaired protein synthesis, in order to make tRNA pools more available for the virus. A significant loss of fitness was the immediate response to the adaptation process that was, however, later on recovered and more associated to a re-deoptimization rather than to an optimization of the codon usage specifically in the capsid coding region. These results exclude translation selection and instead suggest fine-tuning translation kinetics selection as the underlying mechanism of the codon usage bias in this specific genome region. Additionally, the results provide clear evidence of the Red Queen dynamics of evolution since the virus has very much evolved to re-adapt its codon usage to the environmental cellular changing conditions in order to recover the original fitness.

  16. Shared Gaussian Process Latent Variable Model for Multi-view Facial Expression Recognition

    NARCIS (Netherlands)

    Eleftheriadis, Stefanos; Rudovic, Ognjen; Pantic, Maja

    Facial-expression data often appear in multiple views either due to head-movements or the camera position. Existing methods for multi-view facial expression recognition perform classification of the target expressions either by using classifiers learned separately for each view or by using a single

  17. The influence of process parameters on Gas Assisted Mechanical Expression (GAME) of cocoa nibs

    NARCIS (Netherlands)

    Venter, M.J.; Hink, R.; Kuipers, N.J.M.; de Haan, A.B.

    2007-01-01

    It is known that increased cocoa butter yields can be achieved with Gas Assisted Mechanical Expression (GAME) of cocoa nibs when compared to conventional expression of cocoa nibs [Venter, M.J., Willems, P., Kuipers, N.J.M. & de Haan, A.B. (2006). Gas Assisted Mechanical Expression of cocoa butter

  18. The influence of process parameters on gas assisted mechanical expression (GAME) of cocoa nibs

    NARCIS (Netherlands)

    Venter, M.J.; Hink, R.; Kuipers, N.J.M.; Haan, de A.B.

    2007-01-01

    It is known that increased cocoa butter yields can be achieved with Gas Assisted Mechanical Expression (GAME) of cocoa nibs when compared to conventional expression of cocoa nibs [Venter, M.J., Willems, P., Kuipers, N.J.M. & de Haan, A.B. (2006). Gas Assisted Mechanical Expression of cocoa butter

  19. Development and validation of novel AAV2 random libraries displaying peptides of diverse lengths and at diverse capsid positions.

    Science.gov (United States)

    Naumer, Matthias; Ying, Ying; Michelfelder, Stefan; Reuter, Antje; Trepel, Martin; Müller, Oliver J; Kleinschmidt, Jürgen A

    2012-05-01

    Libraries based on the insertion of random peptide ligands into the capsid of adeno-associated virus type 2 (AAV2) have been widely used to improve the efficiency and selectivity of the AAV vector system. However, so far only libraries of 7-mer peptide ligands have been inserted at one well-characterized capsid position. Here, we expanded the combinatorial AAV2 display system to a panel of novel AAV libraries, displaying peptides of 5, 7, 12, 19, or 26 amino acids in length at capsid position 588 or displaying 7-mer peptides at position 453, the most prominently exposed region of the viral capsid. Library selections on two unrelated cell types-human coronary artery endothelial cells and rat cardiomyoblasts-revealed the isolation of cell type-characteristic peptides of different lengths mediating strongly improved target-cell transduction, except for the 26-mer peptide ligands. Characterization of vector selectivity by transduction of nontarget cells and comparative gene-transduction analysis using a panel of 44 human tumor cell lines revealed that insertion of different-length peptides allows targeting of distinct cellular receptors for cell entry with similar efficiency, but with different selectivity. The application of such novel AAV2 libraries broadens the spectrum of targetable receptors by capsid-modified AAV vectors and provides the opportunity to choose the best suited targeting ligand for a certain application from a number of different candidates.

  20. Labeling and localization of the herpes simplex virus capsid protein UL25 and its interaction with the two triplexes closest to the penton

    Science.gov (United States)

    Conway, James F.; Cockrell, Shelley K.; Copeland, Anna Maria; Newcomb, William W.; Brown, Jay C.; Homa, Fred L.

    2010-01-01

    The herpes simplex virus type 1 (HSV-1) UL25 protein is one of seven viral proteins that are required for DNA cleavage and packaging. Together with UL17, UL25 forms part of an elongated molecule referred to as the C-capsid-specific component or CCSC. Five copies of the CCSC are located at each of the capsid vertices on DNA-containing capsids. To study the conformation of UL25 as it is folded on the capsid surface, we identified the sequence recognized by a UL25-specific monoclonal antibody and localized the epitope on the capsid surface by immunogold electron microscopy. The epitope mapped to amino acids 99-111 adjacent to the region of the protein (amino acids 1-50) that is required for capsid binding. In addition, cryo-EM reconstructions of C-capsids in which the green fluorescent protein (GFP) was fused within the N-terminus of UL25 localized the point of contact between UL25 and GFP. The result confirmed the modeled location of the UL25 protein in the CCSC density as the region that is distal to the penton with the N-terminus of UL25 making contact with the triplex one removed from the penton. Immunofluorescence experiments at early times during infection demonstrated that UL25-GFP was present on capsids located within the cytoplasm and adjacent to the nucleus. These results support the view that UL25 is present on incoming capsids with the capsid binding domain of UL25 located on the surface of the mature DNA-containing capsid. PMID:20109467

  1. Clinicopathological Implications of Human Papilloma Virus (HPV) L1 Capsid Protein Immunoreactivity in HPV16-Positive Cervical Cytology

    Science.gov (United States)

    Lee, Sung-Jong; Lee, Ah-Won; Kang, Chang-Suk; Park, Jong-Sup; Park, Dong-Choon; Ki, Eun-Young; Lee, Keun-Ho; Yoon, Joo-Hee; Hur, Soo-Young; Kim, Tae-Jung

    2014-01-01

    Background: The objective of this study was to investigate the expression of human papilloma virus (HPV) L1 capsid protein in abnormal cervical cytology with HPV16 infection and analyze its association with cervical histopathology in Korean women. Material and Methods: We performed immunocytochemistry for HPV L1 in 475 abnormal cervical cytology samples from patients with HPV16 infections using the Cytoactiv® HPV L1 screening set. We investigated the expression of HPV L1 in cervical cytology samples and compared it with the results of histopathological examination of surgical specimens. Results: Of a total of 475 cases, 188 (39.6%) were immunocytochemically positive and 287 (60.4%) negative for HPV L1. The immunocytochemical expression rates of HPV L1 in atypical squamous cells of unknown significance (ASCUS), low-grade squamous intraepithelial lesions (LSIL), high-grade squamous intraepithelial lesions (HSIL), and cancer were 21.8%, 59.7%, 19.1%, and 0.0%, respectively. LSIL exhibited the highest rate of HPV L1 positivity. Of a total of 475 cases, the multiple-type HPV infection rate, including HPV16, in HPV L1-negative cytology samples was 27.5%, which was significantly higher than that in HPV L1-positive cytology samples (p = 0.037). The absence of HPV L1 expression in ASCUS and LSIL was significantly associated with high-grade (≥cervical intraepithelial neoplasia [CIN] 2) than low-grade (≤CIN1) histopathology diagnoses (p 0.05). On the other hand, among 188 HPV L1-positive cases, 30.6% of multiple-type HPV infections showed high-grade histopathology diagnoses (≥CIN3), significantly higher than the percentage of HPV16 single infections (8.6%) (p = 0.0004) Conclusions: Our study demonstrates that the expression of HPV L1 is low in advanced dysplasia. Furthermore, the absence of HPV L1 in HPV16-positive low-grade cytology (i.e., ASCUS and LSIL) is strongly associated with high-grade histopathology diagnoses. The multiplicity of HPV infections may have an

  2. Capsid coding sequences of foot-and-mouth disease viruses are determinants of pathogenicity in pigs.

    Science.gov (United States)

    Lohse, Louise; Jackson, Terry; Bøtner, Anette; Belsham, Graham J

    2012-05-24

    The surface exposed capsid proteins, VP1, VP2 and VP3, of foot-and-mouth disease virus (FMDV) determine its antigenicity and the ability of the virus to interact with host-cell receptors. Hence, modification of these structural proteins may alter the properties of the virus.In the present study we compared the pathogenicity of different FMDVs in young pigs. In total 32 pigs, 7-weeks-old, were exposed to virus, either by direct inoculation or through contact with inoculated pigs, using cell culture adapted (O1K B64), chimeric (O1K/A-TUR and O1K/O-UKG) or field strain (O-UKG/34/2001) viruses. The O1K B64 virus and the two chimeric viruses are identical to each other except for the capsid coding region.Animals exposed to O1K B64 did not exhibit signs of disease, while pigs exposed to each of the other viruses showed typical clinical signs of foot-and-mouth disease (FMD). All pigs infected with the O1K/O-UKG chimera or the field strain (O-UKG/34/2001) developed fulminant disease. Furthermore, 3 of 4 in-contact pigs exposed to the O1K/O-UKG virus died in the acute phase of infection, likely from myocardial infection. However, in the group exposed to the O1K/A-TUR chimeric virus, only 1 pig showed symptoms of disease within the time frame of the experiment (10 days). All pigs that developed clinical disease showed a high level of viral RNA in serum and infected pigs that survived the acute phase of infection developed a serotype specific antibody response. It is concluded that the capsid coding sequences are determinants of FMDV pathogenicity in pigs.

  3. Modeling capsid kinetics assembly from the steady state distribution of multi-sizes aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Hozé, Nathanaël; Holcman, David

    2014-01-24

    The kinetics of aggregation for particles of various sizes depends on their diffusive arrival and fusion at a specific nucleation site. We present here a mean-field approximation and a stochastic jump model for aggregates at equilibrium. This approach is an alternative to the classical Smoluchowski equations that do not have a close form and are not solvable in general. We analyze these mean-field equations and obtain the kinetics of a cluster formation. Our approach provides a simplified theoretical framework to study the kinetics of viral capsid formation, such as HIV from the self-assembly of the structural proteins Gag.

  4. Nanofluidic Devices with Two Pores in Series for Resistive-Pulse Sensing of Single Virus Capsids

    DEFF Research Database (Denmark)

    Harms, Zachary D.; Mogensen, Klaus Bo; Rodrigues de Sousa Nunes, Pedro André

    2011-01-01

    We report fabrication and characterization of nanochannel devices with two nanopores in series for resistive-pulse sensing of hepatitis B virus (HBV) capsids. The nanochannel and two pores are patterned by electron beam lithography between two microchannels and etched by reactive ion etching....... The two nanopores are 50-nm wide, 50-nm deep, and 40-nm long and are spaced 2.0-μm apart. The nanochannel that brackets the two pores is 20 wider (1 μm) to reduce the electrical resistance adjacent to the two pores and to ensure the current returns to its baseline value between resistive-pulse events...

  5. Generation of neutralizing monoclonal antibodies against a conformational epitope of human adenovirus type 7 (HAdv-7 incorporated in capsid encoded in a HAdv-3-based vector.

    Directory of Open Access Journals (Sweden)

    Minglong Liu

    Full Text Available The generation of monoclonal antibodies (MAbs by epitope-based immunization is difficult because the immunogenicity of simple peptides is poor and T cells must be potently stimulated and immunological memory elicited. A strategy in which antigen is incorporated into the adenoviral capsid protein has been used previously to develop antibody responses against several vaccine targets and may offer a solution to this problem. In this study, we used a similar strategy to develop HAdv-7-neutralizing MAbs using rAdMHE3 virions into which hexon hypervariable region 5 (HVR5 of adenovirus type 7 (HAdv-7 was incorporated. The epitope mutant rAdMHE3 was generated by replacing HVR5 of Ad3EGFP, a recombinant HAdv-3-based vector expressing enhanced green fluorescence protein, with HVR5 of HAdv-7. We immunized BALB/c mice with rAdMHE3 virions and produced 22 different MAbs against them, four of which showed neutralizing activity against HAdv-7 in vitro. Using an indirect enzyme-linked immunosorbent assay (ELISA analysis and an antibody-binding-competition ELISA with Ad3EGFP, HAdv-7, and a series of chimeric adenoviral particles containing epitope mutants, we demonstrated that the four MAbs recognize the neutralization site within HVR5 of the HAdv-7 virion. Using an immunoblotting analysis and ELISA with HAdv-7, recombinant peptides, and a synthetic peptide, we also showed that the neutralizing epitope within HVR5 of the HAdv-7 virion is a conformational epitope. These findings suggest that it is feasible to use a strategy in which antigen is incorporated into the adenoviral capsid protein to generate neutralizing MAbs. This strategy may also be useful for developing therapeutic neutralizing MAbs and designing recombinant vector vaccines against HAdv-7, and in structural analysis of adenoviruses.

  6. Intravenous administration of the adeno-associated virus-PHP.B capsid fails to upregulate transduction efficiency in the marmoset brain.

    Science.gov (United States)

    Matsuzaki, Yasunori; Konno, Ayumu; Mochizuki, Ryuta; Shinohara, Yoichiro; Nitta, Keisuke; Okada, Yukihiro; Hirai, Hirokazu

    2018-02-05

    Intravenous administration of adeno-associated virus (AAV)-PHP.B, a capsid variant of AAV9 containing seven amino acid insertions, results in a greater permeability of the blood brain barrier (BBB) than standard AAV9 in mice, leading to highly efficient and global transduction of the central nervous system (CNS). The present study aimed to examine whether the enhanced BBB penetrance of AAV-PHP.B observed in mice also occurs in non-human primates. Thus, a young adult (age, 1.6 years) and an old adult (age, 7.2 years) marmoset received an intravenous injection of AAV-PHP.B expressing enhanced green fluorescent protein (EGFP) under the control of the constitutive CBh promoter (a hybrid of cytomegalovirus early enhancer and chicken β-actin promoter). Age-matched control marmosets were treated with standard AAV9-capsid vectors. The animals were sacrificed 6 weeks after the viral injection. Based on the results, only limited transduction of neurons (0-2%) and astrocytes (0.1-2.5%) was observed in both AAV-PHP.B- and AAV9-treated marmosets. One noticeable difference between AAV-PHP.B and AAV9 was the marked transduction of the peripheral dorsal root ganglia neurons. Indeed, the soma and axons in the projection from the spinal cord to the nucleus cuneatus in the medulla oblongata were strongly labeled with EGFP by AAV-PHP.B. Thus, except for the peripheral dorsal root ganglia neurons, the AAV-PHP.B transduction efficiency in the CNS of marmosets was comparable to that of AAV9 vectors. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Value management : functional expression of the need and functional performance specification : requirements for expressing and validating the need to be satisfied within the process of purchasing or obtaining a product

    CERN Document Server

    Association Française de Normalisation. Paris

    2013-01-01

    Value management : functional expression of the need and functional performance specification : requirements for expressing and validating the need to be satisfied within the process of purchasing or obtaining a product

  8. Expression of goose parvovirus whole VP3 protein and its epitopes in Escherichia coli cells.

    Science.gov (United States)

    Tarasiuk, K; Woźniakowski, G; Holec-Gąsior, L

    2015-01-01

    The aim of this study was the expression of goose parvovirus capsid protein (VP3) and its epitopes in Escherichia coli cells. Expression of the whole VP3 protein provided an insufficient amount of protein. In contrast, the expression of two VP3 epitopes (VP3ep4, VP3ep6) in E. coli, resulted in very high expression levels. This may suggest that smaller parts of the GPV antigenic determinants are more efficiently expressed than the complete VP3 gene.

  9. Self-processing 2A-polyproteins--a system for co-ordinate expression of multiple proteins in transgenic plants.

    Science.gov (United States)

    Halpin, C; Cooke, S E; Barakate, A; El Amrani, A; Ryan, M D

    1999-02-01

    Achieving co-ordinate, high-level and stable expression of multiple transgenes in plants is currently difficult. Expression levels are notoriously variable and influenced by factors that act independently on transgenes at different genetic loci. Instability of expression due to loss, re-arrangement or silencing of transgenes may occur, and is exacerbated by increasing numbers of transgenic loci and repeated use of homologous sequences. Even linking two or more genes within a T-DNA does not necessarily result in co-ordinate expression. Linking proteins in a single open reading frame--a polyprotein--is a strategy for co-ordinate expression used by many viruses. After translation, polyproteins are processed into constituent polypeptides, usually by proteinases encoded within the polyprotein itself. However, in foot-and-mouth disease virus (FMDV), a sequence (2A) of just 16-20 amino acids appears to have the unique capability to mediate cleavage at its own C-terminus by an apparently enzyme-independent, novel type of reaction. This sequence can also mediate cleavage in a heterologous protein context in a range of eukaryotic expression systems. We have constructed a plasmid in which the 2A sequence is inserted between the reporter genes chloramphenicol acetyltransferase (CAT) and beta-glucuronidase (GUS), maintaining a single open reading frame. Here we report that expression of this construct in wheatgerm lysate and transgenic plants results in efficient cleavage of the polyprotein and co-ordinate expression of active CAT and GUS. Self-processing polyproteins using the FMDV 2A sequence could therefore provide a system for ensuring co-ordinated, stable expression of multiple introduced proteins in plant cells.

  10. Plus- and minus-end directed microtubule motors bind simultaneously to herpes simplex virus capsids using different inner tegument structures.

    Directory of Open Access Journals (Sweden)

    Kerstin Radtke

    2010-07-01

    Full Text Available Many viruses depend on host microtubule motors to reach their destined intracellular location. Viral particles of neurotropic alphaherpesviruses such as herpes simplex virus 1 (HSV1 show bidirectional transport towards the cell center as well as the periphery, indicating that they utilize microtubule motors of opposing directionality. To understand the mechanisms of specific motor recruitment, it is necessary to characterize the molecular composition of such motile viral structures. We have generated HSV1 capsids with different surface features without impairing their overall architecture, and show that in a mammalian cell-free system the microtubule motors dynein and kinesin-1 and the dynein cofactor dynactin could interact directly with capsids independent of other host factors. The capsid composition and surface was analyzed with respect to 23 structural proteins that are potentially exposed to the cytosol during virus assembly or cell entry. Many of these proteins belong to the tegument, the hallmark of all herpesviruses located between the capsid and the viral envelope. Using immunoblots, quantitative mass spectrometry and quantitative immunoelectron microscopy, we show that capsids exposing inner tegument proteins such as pUS3, pUL36, pUL37, ICP0, pUL14, pUL16, and pUL21 recruited dynein, dynactin, kinesin-1 and kinesin-2. In contrast, neither untegumented capsids exposing VP5, VP26, pUL17 and pUL25 nor capsids covered by outer tegument proteins such as vhs, pUL11, ICP4, ICP34.5, VP11/12, VP13/14, VP16, VP22 or pUS11 bound microtubule motors. Our data suggest that HSV1 uses different structural features of the inner tegument to recruit dynein or kinesin-1. Individual capsids simultaneously accommodated motors of opposing directionality as well as several copies of the same motor. Thus, these associated motors either engage in a tug-of-war or their activities are coordinately regulated to achieve net transport either to the nucleus during

  11. Kernel-imbedded Gaussian processes for disease classification using microarray gene expression data

    Directory of Open Access Journals (Sweden)

    Cheung Leo

    2007-02-01

    Full Text Available Abstract Background Designing appropriate machine learning methods for identifying genes that have a significant discriminating power for disease outcomes has become more and more important for our understanding of diseases at genomic level. Although many machine learning methods have been developed and applied to the area of microarray gene expression data analysis, the majority of them are based on linear models, which however are not necessarily appropriate for the underlying connection between the target disease and its associated explanatory genes. Linear model based methods usually also bring in false positive significant features more easily. Furthermore, linear model based algorithms often involve calculating the inverse of a matrix that is possibly singular when the number of potentially important genes is relatively large. This leads to problems of numerical instability. To overcome these limitations, a few non-linear methods have recently been introduced to the area. Many of the existing non-linear methods have a couple of critical problems, the model selection problem and the model parameter tuning problem, that remain unsolved or even untouched. In general, a unified framework that allows model parameters of both linear and non-linear models to be easily tuned is always preferred in real-world applications. Kernel-induced learning methods form a class of approaches that show promising potentials to achieve this goal. Results A hierarchical statistical model named kernel-imbedded Gaussian process (KIGP is developed under a unified Bayesian framework for binary disease classification problems using microarray gene expression data. In particular, based on a probit regression setting, an adaptive algorithm with a cascading structure is designed to find the appropriate kernel, to discover the potentially significant genes, and to make the optimal class prediction accordingly. A Gibbs sampler is built as the core of the algorithm to make

  12. Does Gaze Direction Modulate Facial Expression Processing in Children with Autism Spectrum Disorder?

    Science.gov (United States)

    Akechi, Hironori; Senju, Atsushi; Kikuchi, Yukiko; Tojo, Yoshikuni; Osanai, Hiroo; Hasegawa, Toshikazu

    2009-01-01

    Two experiments investigated whether children with autism spectrum disorder (ASD) integrate relevant communicative signals, such as gaze direction, when decoding a facial expression. In Experiment 1, typically developing children (9-14 years old; n = 14) were faster at detecting a facial expression accompanying a gaze direction with a congruent…

  13. Recognizing the SINEs of Infection: Regulation of Retrotransposon Expression and Modulation of Host Cell Processes

    Directory of Open Access Journals (Sweden)

    William Dunker

    2017-12-01

    Full Text Available Short interspersed elements (SINEs are a family of retrotransposons evolutionarily derived from cellular RNA polymerase III transcripts. Over evolutionary time, SINEs have expanded throughout the human genome and today comprise ~11% of total chromosomal DNA. While generally transcriptionally silent in healthy somatic cells, SINE expression increases during a variety of types of stresses, including DNA virus infection. The relevance of SINE expression to viral infection was largely unexplored, however, recent years have seen great progress towards defining the impact of SINE expression on viral replication and host gene expression. Here we review the origin and diversity of SINE elements and their transcriptional control, with an emphasis on how their expression impacts host cell biology during viral infection.

  14. Single Mutations in the VP2 300 Loop Region of the Three-Fold Spike of the Carnivore Parvovirus Capsid Can Determine Host Range

    Science.gov (United States)

    Organtini, Lindsey J.; Zhang, Sheng; Hafenstein, Susan L.; Holmes, Edward C.

    2015-01-01

    ABSTRACT Sylvatic carnivores, such as raccoons, have recently been recognized as important hosts in the evolution of canine parvovirus (CPV), a pandemic pathogen of domestic dogs. Although viruses from raccoons do not efficiently bind the dog transferrin receptor (TfR) or infect dog cells, a single mutation changing an aspartic acid to a glycine at capsid (VP2) position 300 in the prototype raccoon CPV allows dog cell infection. Because VP2 position 300 exhibits extensive amino acid variation among the carnivore parvoviruses, we further investigated its role in determining host range by analyzing its diversity and evolution in nature and by creating a comprehensive set of VP2 position 300 mutants in infectious clones. Notably, some position 300 residues rendered CPV noninfectious for dog, but not cat or fox, cells. Changes of adjacent residues (residues 299 and 301) were also observed often after cell culture passage in different hosts, and some of the mutations mimicked changes seen in viruses recovered from natural infections of alternative hosts, suggesting that compensatory mutations were selected to accommodate the new residue at position 300. Analysis of the TfRs of carnivore hosts used in the experimental evolution studies demonstrated that their glycosylation patterns varied, including a glycan present only on the domestic dog TfR that dictates susceptibility to parvoviruses. Overall, there were significant differences in the abilities of viruses with alternative position 300 residues to bind TfRs and infect different carnivore hosts, demonstrating that the process of infection is highly host dependent and that VP2 position 300 is a key determinant of host range. IMPORTANCE Although the emergence and pandemic spread of canine parvovirus (CPV) are well documented, the carnivore hosts and evolutionary pathways involved in its emergence remain enigmatic. We recently demonstrated that a region in the capsid structure of CPV, centered around VP2 position 300

  15. Structures of the major capsid proteins of the human Karolinska Institutet and Washington University polyomaviruses.

    Science.gov (United States)

    Neu, Ursula; Wang, Jianbo; Macejak, Dennis; Garcea, Robert L; Stehle, Thilo

    2011-07-01

    The Karolinska Institutet and Washington University polyomaviruses (KIPyV and WUPyV, respectively) are recently discovered human viruses that infect the respiratory tract. Although they have not yet been linked to disease, they are prevalent in populations worldwide, with initial infection occurring in early childhood. Polyomavirus capsids consist of 72 pentamers of the major capsid protein viral protein 1 (VP1), which determines antigenicity and receptor specificity. The WUPyV and KIPyV VP1 proteins are distant in evolution from VP1 proteins of known structure such as simian virus 40 or murine polyomavirus. We present here the crystal structures of unassembled recombinant WUPyV and KIPyV VP1 pentamers at resolutions of 2.9 and 2.55 Å, respectively. The WUPyV and KIPyV VP1 core structures fold into the same β-sandwich that is a hallmark of all polyomavirus VP1 proteins crystallized to date. However, differences in sequence translate into profoundly different surface loop structures in KIPyV and WUPyV VP1 proteins. Such loop structures have not been observed for other polyomaviruses, and they provide initial clues about the possible interactions of these viruses with cell surface receptors.

  16. Genetically Thermo-Stabilised, Immunogenic Poliovirus Empty Capsids; a Strategy for Non-replicating Vaccines.

    Directory of Open Access Journals (Sweden)

    Helen Fox

    2017-01-01

    Full Text Available While wild type polio has been nearly eradicated there will be a need to continue immunisation programmes for some time because of the possibility of re-emergence and the existence of long term excreters of poliovirus. All vaccines in current use depend on growth of virus and most of the non-replicating (inactivated vaccines involve wild type viruses known to cause poliomyelitis. The attenuated vaccine strains involved in the eradication programme have been used to develop new inactivated vaccines as production is thought safer. However it is known that the Sabin vaccine strains are genetically unstable and can revert to a virulent transmissible form. A possible solution to the need for virus growth would be to generate empty viral capsids by recombinant technology, but hitherto such particles are so unstable as to be unusable. We report here the genetic manipulation of the virus to generate stable empty capsids for all three serotypes. The particles are shown to be extremely stable and to generate high levels of protective antibodies in animal models.

  17. Production of highly knotted DNA by means of cosmid circularization inside phage capsids

    Directory of Open Access Journals (Sweden)

    Trigueros Sonia

    2007-12-01

    Full Text Available Abstract Background The formation of DNA knots is common during biological transactions. Yet, functional implications of knotted DNA are not fully understood. Moreover, potential applications of DNA molecules condensed by means of knotting remain to be explored. A convenient method to produce abundant highly knotted DNA would be highly valuable for these studies. Results We had previously shown that circularization of the 11.2 kb linear DNA of phage P4 inside its viral capsid generates complex knots by the effect of confinement. We demonstrate here that this mechanism is not restricted to the viral genome. We constructed DNA cosmids as small as 5 kb and introduced them inside P4 capsids. Such cosmids were then recovered as a complex mixture of highly knotted DNA circles. Over 250 μg of knotted cosmid were typically obtained from 1 liter of bacterial culture. Conclusion With this biological system, DNA molecules of varying length and sequence can be shaped into very complex and heterogeneous knotted forms. These molecules can be produced in preparative amounts suitable for systematic studies and applications.

  18. Gaussian fluctuation of the diffusion exponent of virus capsid in a living cell nucleus

    Science.gov (United States)

    Itto, Yuichi

    2018-05-01

    In their work [4], Bosse et al. experimentally showed that virus capsid exhibits not only normal diffusion but also anomalous diffusion in nucleus of a living cell. There, it was found that the distribution of fluctuations of the diffusion exponent characterizing them takes the Gaussian form, which is, quite remarkably, the same form for two different types of the virus. This suggests high robustness of such fluctuations. Here, the statistical property of local fluctuations of the diffusion exponent of the virus capsid in the nucleus is studied. A maximum-entropy-principle approach (originally proposed for a different virus in a different cell) is applied for obtaining the fluctuation distribution of the exponent. Largeness of the number of blocks identified with local areas of interchromatin corrals is also examined based on the experimental data. It is shown that the Gaussian distribution of the local fluctuations can be derived, in accordance with the above form. In addition, it is quantified how the fluctuation distribution on a long time scale is different from the Gaussian distribution.

  19. TensorCalculator: exploring the evolution of mechanical stress in the CCMV capsid

    Science.gov (United States)

    Kononova, Olga; Maksudov, Farkhad; Marx, Kenneth A.; Barsegov, Valeri

    2018-01-01

    A new computational methodology for the accurate numerical calculation of the Cauchy stress tensor, stress invariants, principal stress components, von Mises and Tresca tensors is developed. The methodology is based on the atomic stress approach which permits the calculation of stress tensors, widely used in continuum mechanics modeling of materials properties, using the output from the MD simulations of discrete atomic and C_α -based coarse-grained structural models of biological particles. The methodology mapped into the software package TensorCalculator was successfully applied to the empty cowpea chlorotic mottle virus (CCMV) shell to explore the evolution of mechanical stress in this mechanically-tested specific example of a soft virus capsid. We found an inhomogeneous stress distribution in various portions of the CCMV structure and stress transfer from one portion of the virus structure to another, which also points to the importance of entropic effects, often ignored in finite element analysis and elastic network modeling. We formulate a criterion for elastic deformation using the first principal stress components. Furthermore, we show that von Mises and Tresca stress tensors can be used to predict the onset of a viral capsid’s mechanical failure, which leads to total structural collapse. TensorCalculator can be used to study stress evolution and dynamics of defects in viral capsids and other large-size protein assemblies.

  20. Controlled immobilisation of active enzymes on the cowpea mosaic virus capsid

    Science.gov (United States)

    Aljabali, Alaa A. A.; Barclay, J. Elaine; Steinmetz, Nicole F.; Lomonossoff, George P.; Evans, David J.

    2012-08-01

    Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors.Immobilisation of horseradish peroxidase (HRP) and glucose oxidase (GOX) via covalent attachment of modified enzyme carbohydrate to the exterior of the cowpea mosaic virus (CPMV) capsid gave high retention of enzymatic activity. The number of enzymes bound per virus was determined to be about eleven for HRP and 2-3 for GOX. This illustrates that relatively large biomacromolecules can be readily coupled to the virus surface using simple conjugation strategies. Virus-biomacromolecule hybrids have great potential for uses in catalysis, diagnostic assays or biosensors. Electronic supplementary information (ESI) available: Alternative conjugation strategies, agarose gel electrophoresis of CPMV and CPMV-HRP conjugates, UV-vis spectrum of HRP-ADHCPMV, agarose gel electrophoresis of GOX-ADHCPMV particles and corresponding TEM image, calibration curves for HRP-ADHCPMV and GOX-ADHCPMV, DLS data for GOX-ADHCPMV are made available. See DOI: 10.1039/c2nr31485a

  1. Cross-serotype immunity induced by immunization with a conserved rhinovirus capsid protein.

    Directory of Open Access Journals (Sweden)

    Nicholas Glanville

    Full Text Available Human rhinovirus (RV infections are the principle cause of common colds and precipitate asthma and COPD exacerbations. There is currently no RV vaccine, largely due to the existence of ∼150 strains. We aimed to define highly conserved areas of the RV proteome and test their usefulness as candidate antigens for a broadly cross-reactive vaccine, using a mouse infection model. Regions of the VP0 (VP4+VP2 capsid protein were identified as having high homology across RVs. Immunization with a recombinant VP0 combined with a Th1 promoting adjuvant induced systemic, antigen specific, cross-serotype, cellular and humoral immune responses. Similar cross-reactive responses were observed in the lungs of immunized mice after infection with heterologous RV strains. Immunization enhanced the generation of heterosubtypic neutralizing antibodies and lung memory T cells, and caused more rapid virus clearance. Conserved domains of the RV capsid therefore induce cross-reactive immune responses and represent candidates for a subunit RV vaccine.

  2. Resilience, emotion processing and emotion expression among youth with type 1 diabetes.

    Science.gov (United States)

    Huston, Sally A; Blount, Ronald L; Heidesch, Troy; Southwood, Robin

    2016-12-01

    Poor adherence to self-care among youth with type-1 diabetes (YWD) can lead to significant long-term health problems. Negative diabetes-related emotions (NDRE) are common, and are significantly correlated with poor/deteriorating A1c. Resilient youth handle diabetes self-care challenges, such as adjusting for diabetes in public, better. Resiliency skills and perceptions include benefit finding (BF), fitting in with friends (FI), diabetes acceptance (DA), emotion processing (EP) and emotion expression (EE). First study goal: to verify structure of underlying measurement variables: NDRE, EP, EE, BF, DA, FI and comfort in adjusting for diabetes in public (CA) among youth 11-16 yr of age with diabetes. We also hypothesize: (i) YWD who engage in EP and EE will have higher levels of BF, FI, DA, (ii) EP and EE will moderate NDRE impact and (iii) higher levels of EP, EE, BF, FI and DA will be associated with higher CA. 243 summer diabetes campers between 11-16 yr of age. Pre-camp survey. Measurement variables were verified. EP and EE to friends were positively associated with BF, FI and DA for most YWD. NDRE was negatively associated with FI and DA, and for YWD aged 14-16 yr with CA. FI was positively associated with CA. EE moderated the impact of NDRE on CA among youth 11-13 yr. R 2 for CA in youth 14-16 yr was 48.2%, for 11-13 yr was 38.3%. DA was positively associated with CA for youth 14-16 yr. Resilience factors appear to influence CA either directly or indirectly. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Differential expression of system L amino acid transporters during wound healing process in the skin of young and old rats.

    Science.gov (United States)

    Jeong, Moon-Jin; Kim, Chun Sung; Park, Joo-Cheol; Kim, Heung-Joong; Ko, Yeong Mu; Park, Kyung Jin; Jeong, Soon-Jeong; Endou, Hitoshi; Kanai, Yoshikatsu; Lim, Do-Seon; Kim, Do Kyung

    2008-03-01

    In order to elucidate the role of the system L-type amino acid transporters (LATs) in the wound healing process of aged and young subjects, we investigated the expression of LAT1, LAT2 and their subunit 4F2hc in the skin healing process after artificial wounds of dorsal skin in the young and old rats. The 1 cm full-thickness incisional wounds were made through the skin and panniculus carnosus muscle. The wounds were harvested at days 1, 3, 5 and 7 post-wounding, the experimental controls were harvested the skin of rat without wounds and the various analyses were performed. In young rats, gradually and noticeable wound healing was detected, however, in old rats, wound healing was found to be greatly delayed. In young rats, the expression of LAT1 was increased rapidly on the day 1 after wound induction, on the other hand, in old rats, the expression of LAT1 after wound induction was not different from the control group. In young rats, the expression of LAT2 after the induction of wound was not different from the control group, however in old rats, the expression of LAT2 on the day 1 of wound induction was rapidly elevated. These results suggest that the LAT1 and LAT2 increase in the wound healing process after cell injury in young and old rats, respectively.

  4. Community Tools for Cartographic and Photogrammetric Processing of Mars Express HRSC Images

    Science.gov (United States)

    Kirk, R. L.; Howington-Kraus, E.; Edmundson, K.; Redding, B.; Galuszka, D.; Hare, T.; Gwinner, K.

    2017-07-01

    The High Resolution Stereo Camera (HRSC) on the Mars Express orbiter (Neukum et al. 2004) is a multi-line pushbroom scanner that can obtain stereo and color coverage of targets in a single overpass, with pixel scales as small as 10 m at periapsis. Since commencing operations in 2004 it has imaged  77 % of Mars at 20 m/pixel or better. The instrument team uses the Video Image Communication And Retrieval (VICAR) software to produce and archive a range of data products from uncalibrated and radiometrically calibrated images to controlled digital topographic models (DTMs) and orthoimages and regional mosaics of DTM and orthophoto data (Gwinner et al. 2009; 2010b; 2016). Alternatives to this highly effective standard processing pipeline are nevertheless of interest to researchers who do not have access to the full VICAR suite and may wish to make topographic products or perform other (e. g., spectrophotometric) analyses prior to the release of the highest level products. We have therefore developed software to ingest HRSC images and model their geometry in the USGS Integrated Software for Imagers and Spectrometers (ISIS3), which can be used for data preparation, geodetic control, and analysis, and the commercial photogrammetric software SOCET SET (® BAE Systems; Miller and Walker 1993; 1995) which can be used for independent production of DTMs and orthoimages. The initial implementation of this capability utilized the then-current ISIS2 system and the generic pushbroom sensor model of SOCET SET, and was described in the DTM comparison of independent photogrammetric processing by different elements of the HRSC team (Heipke et al. 2007). A major drawback of this prototype was that neither software system then allowed for pushbroom images in which the exposure time changes from line to line. Except at periapsis, HRSC makes such timing changes every few hundred lines to accommodate changes of altitude and velocity in its elliptical orbit. As a result, it was

  5. COMMUNITY TOOLS FOR CARTOGRAPHIC AND PHOTOGRAMMETRIC PROCESSING OF MARS EXPRESS HRSC IMAGES

    Directory of Open Access Journals (Sweden)

    R. L. Kirk

    2017-07-01

    Full Text Available The High Resolution Stereo Camera (HRSC on the Mars Express orbiter (Neukum et al. 2004 is a multi-line pushbroom scanner that can obtain stereo and color coverage of targets in a single overpass, with pixel scales as small as 10 m at periapsis. Since commencing operations in 2004 it has imaged ~ 77 % of Mars at 20 m/pixel or better. The instrument team uses the Video Image Communication And Retrieval (VICAR software to produce and archive a range of data products from uncalibrated and radiometrically calibrated images to controlled digital topographic models (DTMs and orthoimages and regional mosaics of DTM and orthophoto data (Gwinner et al. 2009; 2010b; 2016. Alternatives to this highly effective standard processing pipeline are nevertheless of interest to researchers who do not have access to the full VICAR suite and may wish to make topographic products or perform other (e. g., spectrophotometric analyses prior to the release of the highest level products. We have therefore developed software to ingest HRSC images and model their geometry in the USGS Integrated Software for Imagers and Spectrometers (ISIS3, which can be used for data preparation, geodetic control, and analysis, and the commercial photogrammetric software SOCET SET (® BAE Systems; Miller and Walker 1993; 1995 which can be used for independent production of DTMs and orthoimages. The initial implementation of this capability utilized the then-current ISIS2 system and the generic pushbroom sensor model of SOCET SET, and was described in the DTM comparison of independent photogrammetric processing by different elements of the HRSC team (Heipke et al. 2007. A major drawback of this prototype was that neither software system then allowed for pushbroom images in which the exposure time changes from line to line. Except at periapsis, HRSC makes such timing changes every few hundred lines to accommodate changes of altitude and velocity in its elliptical orbit. As a result

  6. Characterization of Three Novel Linear Neutralizing B-Cell Epitopes in the Capsid Protein of Swine Hepatitis E Virus.

    Science.gov (United States)

    Chen, Yiyang; Liu, Baoyuan; Sun, Yani; Li, Huixia; Du, Taofeng; Nan, Yuchen; Hiscox, Julian A; Zhou, En-Min; Zhao, Qin

    2018-04-18

    Hepatitis E virus (HEV) causes liver disease in humans and is thought to be a zoonotic infection with domestic animals being a reservoir including swine and rabbits. One of the proteins encoded by the virus is the capsid protein. This is likely the major immune-dominant protein and a target for vaccination. Four monoclonal antibodies (MAbs); three novel; 1E4, 2C7, 2G9, and one previously characterized (1B5), were evaluated for binding to the capsid protein from genotype 4 (swine) hepatitis E virus (HEV). The results indicated that 625 DFCP 628 , 458 PSRPF 462 , and 407 EPTV 410 peptides on the capsid protein comprised minimal amino acid sequence motifs recognized by 1E4, 2C7, and 2G9, respectively. The data suggested that 2C7 and 2G9 epitopes were partially exposed on the surface of the capsid protein. Truncated genotype 4 swine HEV capsid protein (sp239, amino acids 368-606), can exist in multimeric forms. Pre-incubation of swine HEV with 2C7, 2G9, or 1B5 before addition to HepG2 cells partially blocked sp239 cell binding and inhibited swine HEV infection. The study indicated that 2C7, 2G9, and 1B5 partially blocked swine HEV infection of rabbits better than 1E4 or normal mouse IgG. The cross reactivity of antibodies suggested that capsid epitopes recognized by 2C7 and 2G9 are common to HEV strains infecting most host species. Collectively, MAbs 2C7, 2G9, and 1B5 were shown to recognize three novel linear neutralizing B-cell epitopes of genotype 4 HEV capsid protein. These results enhance understanding of HEV capsid protein structure to guide vaccine and anti-viral design. IMPORTANCE Genotype 3 and 4 HEVs are zoonotic viruses. Here, genotype 4 HEV was studied due to its prevalence in human populations and pig herds in China. To improve HEV disease diagnosis and prevention, a better understanding of antigenic structure and neutralizing epitopes of HEV capsid protein are needed. In this study, the locations of three novel linear B-cell recognition epitopes within

  7. Community tools for cartographic and photogrammetric processing of Mars Express HRSC images

    Science.gov (United States)

    Kirk, Randolph L.; Howington-Kraus, Elpitha; Edmundson, Kenneth L.; Redding, Bonnie L.; Galuszka, Donna M.; Hare, Trent M.; Gwinner, K.; Wu, B.; Di, K.; Oberst, J.; Karachevtseva, I.

    2017-01-01

    The High Resolution Stereo Camera (HRSC) on the Mars Express orbiter (Neukum et al. 2004) is a multi-line pushbroom scanner that can obtain stereo and color coverage of targets in a single overpass, with pixel scales as small as 10 m at periapsis. Since commencing operations in 2004 it has imaged ~ 77 % of Mars at 20 m/pixel or better. The instrument team uses the Video Image Communication And Retrieval (VICAR) software to produce and archive a range of data products from uncalibrated and radiometrically calibrated images to controlled digital topographic models (DTMs) and orthoimages and regional mosaics of DTM and orthophoto data (Gwinner et al. 2009; 2010b; 2016). Alternatives to this highly effective standard processing pipeline are nevertheless of interest to researchers who do not have access to the full VICAR suite and may wish to make topographic products or perform other (e. g., spectrophotometric) analyses prior to the release of the highest level products. We have therefore developed software to ingest HRSC images and model their geometry in the USGS Integrated Software for Imagers and Spectrometers (ISIS3), which can be used for data preparation, geodetic control, and analysis, and the commercial photogrammetric software SOCET SET (® BAE Systems; Miller and Walker 1993; 1995) which can be used for independent production of DTMs and orthoimages. The initial implementation of this capability utilized the then-current ISIS2 system and the generic pushbroom sensor model of SOCET SET, and was described in the DTM comparison of independent photogrammetric processing by different elements of the HRSC team (Heipke et al. 2007). A major drawback of this prototype was that neither software system then allowed for pushbroom images in which the exposure time changes from line to line. Except at periapsis, HRSC makes such timing changes every few hundred lines to accommodate changes of altitude and velocity in its elliptical orbit. As a result, it was

  8. Expression patterns of ERVWE1/Syncytin-1 and other placentally expressed human endogenous retroviruses along the malignant transformation process of hydatidiform moles.

    Science.gov (United States)

    Bolze, Pierre-Adrien; Patrier, Sophie; Cheynet, Valérie; Oriol, Guy; Massardier, Jérôme; Hajri, Touria; Guillotte, Michèle; Bossus, Marc; Sanlaville, Damien; Golfier, François; Mallet, François

    2016-03-01

    Up to 20% of hydatidiform moles are followed by malignant transformation in gestational trophoblastic neoplasia and require chemotherapy. Syncytin-1 is involved in human placental morphogenesis and is also expressed in various cancers. We assessed the predictive value of the expression of Syncytin-1 and its interactants in the malignant transformation process of hydatidiform moles. Syncytin-1 glycoprotein was localized by immunohistochemistry in hydatidiform moles, gestational trophoblastic neoplasia and control placentas. The transcription levels of its locus ERVWE1, its interaction partners (hASCT1, hASCT2, TLR4 and DC-SIGN) and two loci (ERVFRDE1 and ERV3) involved the expression of other placental envelopes were assessed by real-time PCR. Syncytin-1 glycoprotein was expressed in syncytiotrophoblast of hydatidiform moles with an apical enhancement when compared with normal placentas. Moles with further malignant transformation had a higher staining intensity of Syncytin-1 surface unit C-terminus but the transcription level of its locus ERVWE1 was not different from that of moles with further remission and normal placentas. hASCT1 and TLR4, showed lower transcription levels in complete moles when compared to normal placentas. ERVWE1, ERVFRDE1 and ERV3 transcription was down-regulated in hydatidiform moles and gestational trophoblastic neoplasia. Variations of Syncytin-1 protein localization and down-regulation of hASCT1 and TLR4 transcription are likely to reflect altered functions of Syncytin-1 in the premalignant context of complete moles. The reduced transcription in gestational trophoblastic diseases of ERVWE1, ERVFRDE1 and ERV3, which expression during normal pregnancy is differentially regulated by promoter region methylation, suggest a joint dysregulation mechanism in malignant context. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Gene expression profiles of prostate cancer reveal involvement of multiple molecular pathways in the metastatic process

    International Nuclear Information System (INIS)

    Chandran, Uma R; Ma, Changqing; Dhir, Rajiv; Bisceglia, Michelle; Lyons-Weiler, Maureen; Liang, Wenjing; Michalopoulos, George; Becich, Michael; Monzon, Federico A

    2007-01-01

    Prostate cancer is characterized by heterogeneity in the clinical course that often does not correlate with morphologic features of the tumor. Metastasis reflects the most adverse outcome of prostate cancer, and to date there are no reliable morphologic features or serum biomarkers that can reliably predict which patients are at higher risk of developing metastatic disease. Understanding the differences in the biology of metastatic and organ confined primary tumors is essential for developing new prognostic markers and therapeutic targets. Using Affymetrix oligonucleotide arrays, we analyzed gene expression profiles of 24 androgen-ablation resistant metastatic samples obtained from 4 patients and a previously published dataset of 64 primary prostate tumor samples. Differential gene expression was analyzed after removing potentially uninformative stromal genes, addressing the differences in cellular content between primary and metastatic tumors. The metastatic samples are highly heterogenous in expression; however, differential expression analysis shows that 415 genes are upregulated and 364 genes are downregulated at least 2 fold in every patient with metastasis. The expression profile of metastatic samples reveals changes in expression of a unique set of genes representing both the androgen ablation related pathways and other metastasis related gene networks such as cell adhesion, bone remodelling and cell cycle. The differentially expressed genes include metabolic enzymes, transcription factors such as Forkhead Box M1 (FoxM1) and cell adhesion molecules such as Osteopontin (SPP1). We hypothesize that these genes have a role in the biology of metastatic disease and that they represent potential therapeutic targets for prostate cancer

  10. Subliminal and supraliminal processing of facial expression of emotions: brain oscillation in the left/right frontal area.

    Science.gov (United States)

    Balconi, Michela; Ferrari, Chiara

    2012-03-26

    The unconscious effects of an emotional stimulus have been highlighted by a vast amount of research, whereover it remains questionable whether it is possible to assign a specific function to cortical brain oscillations in the unconscious perception of facial expressions of emotions. Alpha band variation was monitored within the right- and left-cortical side when subjects consciously (supraliminal stimulation) or unconsciously (subliminal stimulation) processed facial patterns. Twenty subjects looked at six facial expressions of emotions (anger, fear, surprise, disgust, happiness, sadness, and neutral) under two different conditions: supraliminal (200 ms) vs. subliminal (30 ms) stimulation (140 target-mask pairs for each condition). The results showed that conscious/unconscious processing and the significance of the stimulus can modulate the alpha power. Moreover, it was found that there was an increased right frontal activity for negative emotions vs. an increased left response for positive emotion. The significance of facial expressions was adduced to elucidate cortical different responses to emotional types.

  11. Expression, purification, crystallization and preliminary X-ray crystallographic studies of hepatitis B virus core fusion protein corresponding to octahedral particles

    International Nuclear Information System (INIS)

    Kikuchi, Masaki; Iwabuchi, Shinichiro; Kikkou, Tatsuhiko; Noguchi, Keiichi; Odaka, Masafumi; Yohda, Masafumi; Kawata, Masaaki; Sato, Chikara; Matsumoto, Osamu

    2013-01-01

    Novel hepatitis B virus-like particles of recombinant dimeric core–GFP fusion protein were expressed, purified and crystallized. The crystals diffracted to 2.15 Å resolution and belonged to space group F432, with unit-cell parameters a = b = c = 219.7 Å. Recombinant hepatitis B virus core proteins dimerize to form building blocks that are capable of self-assembly into a capsid. A core capsid protein dimer (CPD) linked to a green fluorescent protein variant, EGFP, at the C-terminus has been designed. The recombinant fusion CPD was expressed in Escherichia coli, assembled into virus-like particles (VLPs), purified and crystallized. The single crystal diffracted to 2.15 Å resolution and belonged to the cubic space group F432, with unit-cell parameters a = b = c = 219.7 Å. The fusion proteins assembled into icosahedral VLPs in aqueous solution, but were rearranged into octahedral symmetry through the crystal-packing process under the crystallization conditions

  12. Effects of Repeated Concussions and Sex on Early Processing of Emotional Facial Expressions as Revealed by Electrophysiology.

    Science.gov (United States)

    Carrier-Toutant, Frédérike; Guay, Samuel; Beaulieu, Christelle; Léveillé, Édith; Turcotte-Giroux, Alexandre; Papineau, Samaël D; Brisson, Benoit; D'Hondt, Fabien; De Beaumont, Louis

    2018-05-06

    Concussions affect the processing of emotional stimuli. This study aimed to investigate how sex interacts with concussion effects on early event-related brain potentials (ERP) measures (P1, N1) of emotional facial expressions (EFE) processing in asymptomatic, multi-concussion athletes during an EFE identification task. Forty control athletes (20 females and 20 males) and 43 multi-concussed athletes (22 females and 21 males), recruited more than 3 months after their last concussion, were tested. Participants completed the Beck Depression Inventory II, the Beck Anxiety Inventory, the Post-Concussion Symptom Scale, and an Emotional Facial Expression Identification Task. Pictures of male and female faces expressing neutral, angry, and happy emotions were randomly presented and the emotion depicted had to be identified as fast as possible during EEG acquisition. Relative to controls, concussed athletes of both sex exhibited a significant suppression of P1 amplitude recorded from the dominant right hemisphere while performing the emotional face expression identification task. The present study also highlighted a sex-specific suppression of the N1 component amplitude after concussion which affected male athletes. These findings suggest that repeated concussions alter the typical pattern of right-hemisphere response dominance to EFE in early stages of EFE processing and that the neurophysiological mechanisms underlying the processing of emotional stimuli are distinctively affected across sex. (JINS, 2018, 24, 1-11).

  13. Impaired social brain network for processing dynamic facial expressions in autism spectrum disorders

    Directory of Open Access Journals (Sweden)

    Sato Wataru

    2012-08-01

    Full Text Available Abstract Background Impairment of social interaction via facial expressions represents a core clinical feature of autism spectrum disorders (ASD. However, the neural correlates of this dysfunction remain unidentified. Because this dysfunction is manifested in real-life situations, we hypothesized that the observation of dynamic, compared with static, facial expressions would reveal abnormal brain functioning in individuals with ASD. We presented dynamic and static facial expressions of fear and happiness to individuals with high-functioning ASD and to age- and sex-matched typically developing controls and recorded their brain activities using functional magnetic resonance imaging (fMRI. Result Regional analysis revealed reduced activation of several brain regions in the ASD group compared with controls in response to dynamic versus static facial expressions, including the middle temporal gyrus (MTG, fusiform gyrus, amygdala, medial prefrontal cortex, and inferior frontal gyrus (IFG. Dynamic causal modeling analyses revealed that bi-directional effective connectivity involving the primary visual cortex–MTG–IFG circuit was enhanced in response to dynamic as compared with static facial expressions in the control group. Group comparisons revealed that all these modulatory effects were weaker in the ASD group than in the control group. Conclusions These results suggest that weak activity and connectivity of the social brain network underlie the impairment in social interaction involving dynamic facial expressions in individuals with ASD.

  14. Expressive writing as a therapeutic process for drug-dependent women.

    Science.gov (United States)

    Meshberg-Cohen, Sarah; Svikis, Dace; McMahon, Thomas J

    2014-01-01

    Although women with substance use disorders (SUDs) have high rates of trauma and posttraumatic stress, many addiction programs do not offer trauma-specific treatments. One promising intervention is Pennebaker's expressive writing, which involves daily, 20-minute writing sessions to facilitate disclosure of stressful experiences. Women (N = 149) in residential treatment completed a randomized clinical trial comparing expressive writing with control writing. Repeated-measures analysis of variance was used to document change in psychological and physical distress from baseline to 2-week and 1-month follow-ups. Analyses also examined immediate levels of negative affect following expressive writing. Expressive writing participants showed greater reductions in posttraumatic symptom severity, depression, and anxiety scores, when compared with control writing participants at the 2-week follow-up. No group differences were found at the 1-month follow-up. Safety data were encouraging: although expressive writing participants showed increased negative affect immediately after each writing session, there were no differences in pre-writing negative affect scores between conditions the following day. By the final writing session, participants were able to write about traumatic/stressful events without having a spike in negative affect. Results suggest that expressive writing may be a brief, safe, low-cost, adjunct to SUD treatment that warrants further study as a strategy for addressing posttraumatic distress in substance-abusing women.

  15. A Comprehensive Study of Neutralizing Antigenic Sites on the Hepatitis E Virus (HEV) Capsid by Constructing, Clustering, and Characterizing a Tool Box*

    Science.gov (United States)

    Zhao, Min; Li, Xiao-Jing; Tang, Zi-Min; Yang, Fan; Wang, Si-Ling; Cai, Wei; Zhang, Ke; Xia, Ning-Shao; Zheng, Zi-Zheng

    2015-01-01

    The hepatitis E virus (HEV) ORF2 encodes a single structural capsid protein. The E2s domain (amino acids 459–606) of the capsid protein has been identified as the major immune target. All identified neutralizing epitopes are located on this domain; however, a comprehensive characterization of antigenic sites on the domain is lacking due to its high degree of conformation dependence. Here, we used the statistical software SPSS to analyze cELISA (competitive ELISA) data to classify monoclonal antibodies (mAbs), which recognized conformational epitopes on E2s domain. Using this novel analysis method, we identified various conformational mAbs that recognized the E2s domain. These mAbs were distributed into 6 independent groups, suggesting the presence of at least 6 epitopes. Twelve representative mAbs covering the six groups were selected as a tool box to further map functional antigenic sites on the E2s domain. By combining functional and location information of the 12 representative mAbs, this study provided a complete picture of potential neutralizing epitope regions and immune-dominant determinants on E2s domain. One epitope region is located on top of the E2s domain close to the monomer interface; the other is located on the monomer side of the E2s dimer around the groove zone. Besides, two non-neutralizing epitopes were also identified on E2s domain that did not stimulate neutralizing antibodies. Our results help further the understanding of protective mechanisms induced by the HEV vaccine. Furthermore, the tool box with 12 representative mAbs will be useful for studying the HEV infection process. PMID:26085097

  16. RNA packaging of MRFV virus-like particles: The interplay between RNA pools and capsid coat protein

    Science.gov (United States)

    Virus-like particles (VLPs) can be produced through self-assembly of capsid protein (CP) into particles with discrete shapes and sizes and containing different types of RNA molecules. The general principle that governs particle assembly and RNA packaging is determined by unique interactions between ...

  17. Structure of the immature HIV-1 capsid in intact virus particles at 8.8 angstrom resolution

    Czech Academy of Sciences Publication Activity Database

    Schur, F. K. M.; Hagen, W. J. H.; Rumlová, Michaela; Ruml, T.; Müller, B.; Kräusslich, H. G.; Briggs, J. A. G.

    2015-01-01

    Roč. 517, č. 7535 (2015), s. 505-508 ISSN 0028-0836 R&D Projects: GA ČR(CZ) GA14-15326S Institutional support: RVO:61388963 Keywords : retrovirus * HIV * M-PMV * capsid protein * CA * assembly * immature particles Subject RIV: CE - Biochemistry Impact factor: 38.138, year: 2015

  18. Herpes Simplex Virus 1 Us3 Deletion Mutant is Infective Despite Impaired Capsid Translocation to the Cytoplasm

    Directory of Open Access Journals (Sweden)

    Peter Wild

    2015-01-01

    Full Text Available Herpes simplex virus 1 (HSV-1 capsids are assembled in the nucleus bud at the inner nuclear membrane into the perinuclear space, acquiring envelope and tegument. In theory, these virions are de-enveloped by fusion of the envelope with the outer nuclear membrane and re-enveloped by Golgi membranes to become infective. Us3 enables the nucleus to cytoplasm capsid translocation. Nevertheless, Us3 is not essential for the production of infective progeny viruses. Determination of phenotype distribution by quantitative electron microscopy, and calculation per mean nuclear or cell volume revealed the following: (i The number of R7041(∆US3 capsids budding at the inner nuclear membrane was significantly higher than that of wild type HSV-1; (ii The mean number of R7041(∆US3 virions per mean cell volume was 2726, that of HSV-1 virions 1460 by 24 h post inoculation; (iii 98% of R7041(∆US3 virions were in the perinuclear space; (iv The number of R7041(∆US3 capsids in the cytoplasm, including those budding at Golgi membranes, was significantly reduced. Cell associated R7041(∆US3 yields were 2.37 × 108 and HSV-1 yields 1.57 × 108 PFU/mL by 24 h post inoculation. We thus conclude that R7041(∆US3 virions, which acquire envelope and tegument by budding at the inner nuclear membrane into the perinuclear space, are infective.

  19. Sequence Analysis of the Capsid Gene during a Genotype II.4 Dominated Norovirus Season in One University Hospital

    DEFF Research Database (Denmark)

    Holzknecht, Barbara Juliane; Franck, Kristina Træholt; Nielsen, Rikke Thoft

    2015-01-01

    Norovirus (NoV) is a leading cause of gastroenteritis and genotype II.4 (GII.4) is responsible for the majority of nosocomial NoV infections. Our objective was to examine whether sequencing of the capsid gene might be a useful tool for the hospital outbreak investigation to define possible...

  20. Cell culture adaptation mutations in foot-and-mouth disease virus serotype A capsid proteins: implications for receptor interactions

    Science.gov (United States)

    In this study we describe the adaptive changes fixed on the capsid of several foot-and-mouth disease virus serotype A strains during propagation in cell monolayers. Viruses passaged extensively in three cell lines (BHK-21, LFBK and IB-RS-2), consistently gained several positively charged amino acids...

  1. Impaired Emotional Mirroring in Parkinson’s Disease—A Study on Brain Activation during Processing of Facial Expressions

    Directory of Open Access Journals (Sweden)

    Anna Pohl

    2017-12-01

    Full Text Available BackgroundAffective dysfunctions are common in patients with Parkinson’s disease, but the underlying neurobiological deviations have rarely been examined. Parkinson’s disease is characterized by a loss of dopamine neurons in the substantia nigra resulting in impairment of motor and non-motor basal ganglia-cortical loops. Concerning emotional deficits, some studies provide evidence for altered brain processing in limbic- and lateral-orbitofrontal gating loops. In a second line of evidence, human premotor and inferior parietal homologs of mirror neuron areas were involved in processing and understanding of emotional facial expressions. We examined deviations in brain activation during processing of facial expressions in patients and related these to emotion recognition accuracy.Methods13 patients and 13 healthy controls underwent an emotion recognition task and a functional magnetic resonance imaging (fMRI measurement. In the Emotion Hexagon test, participants were presented with blends of two emotions and had to indicate which emotion best described the presented picture. Blended pictures with three levels of difficulty were included. During fMRI scanning, participants observed video clips depicting emotional, non-emotional, and neutral facial expressions or were asked to produce these facial expressions themselves.ResultsPatients performed slightly worse in the emotion recognition task, but only when judging the most ambiguous facial expressions. Both groups activated inferior frontal and anterior inferior parietal homologs of mirror neuron areas during observation and execution of the emotional facial expressions. During observation, responses in the pars opercularis of the right inferior frontal gyrus, in the bilateral inferior parietal lobule and in the bilateral supplementary motor cortex were decreased in patients. Furthermore, in patients, activation of the right anterior inferior parietal lobule was positively related to accuracy in

  2. Developmentally regulated expression and complex processing of barley pri-microRNAs

    Directory of Open Access Journals (Sweden)

    Kruszka Katarzyna

    2013-01-01

    Full Text Available Abstract Background MicroRNAs (miRNAs regulate gene expression via mRNA cleavage or translation inhibition. In spite of barley being a cereal of great economic importance, very little data is available concerning its miRNA biogenesis. There are 69 barley miRNA and 67 pre-miRNA sequences available in the miRBase (release 19. However, no barley pri-miRNA and MIR gene structures have been shown experimentally. In the present paper, we examine the biogenesis of selected barley miRNAs and the developmental regulation of their pri-miRNA processing to learn more about miRNA maturation in barely. Results To investigate the organization of barley microRNA genes, nine microRNAs - 156g, 159b, 166n, 168a-5p/168a-3p, 171e, 397b-3p, 1120, and 1126 - were selected. Two of the studied miRNAs originate from one MIR168a-5p/168a-3p gene. The presence of all miRNAs was confirmed using a Northern blot approach. The miRNAs are encoded by genes with diverse organizations, representing mostly independent transcription units with or without introns. The intron-containing miRNA transcripts undergo complex splicing events to generate various spliced isoforms. We identified miRNAs that were encoded within introns of the noncoding genes MIR156g and MIR1126. Interestingly, the intron that encodes miR156g is spliced less efficiently than the intron encoding miR1126 from their specific precursors. miR397b-3p was detected in barley as a most probable functional miRNA, in contrast to rice where it has been identified as a complementary partner miRNA*. In the case of miR168a-5p/168a-3p, we found the generation of stable, mature molecules from both pre-miRNA arms, confirming evolutionary conservation of the stability of both species, as shown in rice and maize. We suggest that miR1120, located within the 3′ UTR of a protein-coding gene and described as a functional miRNA in wheat, may represent a siRNA generated from a mariner-like transposable element. Conclusions Seven of the

  3. Expression of the histone chaperone SET/TAF-Iβ during the strobilation process of Mesocestoides corti (Platyhelminthes, Cestoda).

    Science.gov (United States)

    Costa, Caroline B; Monteiro, Karina M; Teichmann, Aline; da Silva, Edileuza D; Lorenzatto, Karina R; Cancela, Martín; Paes, Jéssica A; Benitz, André de N D; Castillo, Estela; Margis, Rogério; Zaha, Arnaldo; Ferreira, Henrique B

    2015-08-01

    The histone chaperone SET/TAF-Iβ is implicated in processes of chromatin remodelling and gene expression regulation. It has been associated with the control of developmental processes, but little is known about its function in helminth parasites. In Mesocestoides corti, a partial cDNA sequence related to SET/TAF-Iβ was isolated in a screening for genes differentially expressed in larvae (tetrathyridia) and adult worms. Here, the full-length coding sequence of the M. corti SET/TAF-Iβ gene was analysed and the encoded protein (McSET/TAF) was compared with orthologous sequences, showing that McSET/TAF can be regarded as a SET/TAF-Iβ family member, with a typical nucleosome-assembly protein (NAP) domain and an acidic tail. The expression patterns of the McSET/TAF gene and protein were investigated during the strobilation process by RT-qPCR, using a set of five reference genes, and by immunoblot and immunofluorescence, using monospecific polyclonal antibodies. A gradual increase in McSET/TAF transcripts and McSET/TAF protein was observed upon development induction by trypsin, demonstrating McSET/TAF differential expression during strobilation. These results provided the first evidence for the involvement of a protein from the NAP family of epigenetic effectors in the regulation of cestode development.

  4. Perceiving emotions: Cueing social categorization processes and attentional control through facial expressions.

    Science.gov (United States)

    Cañadas, Elena; Lupiáñez, Juan; Kawakami, Kerry; Niedenthal, Paula M; Rodríguez-Bailón, Rosa

    2016-09-01

    Individuals spontaneously categorise other people on the basis of their gender, ethnicity and age. But what about the emotions they express? In two studies we tested the hypothesis that facial expressions are similar to other social categories in that they can function as contextual cues to control attention. In Experiment 1 we associated expressions of anger and happiness with specific proportions of congruent/incongruent flanker trials. We also created consistent and inconsistent category members within each of these two general contexts. The results demonstrated that participants exhibited a larger congruency effect when presented with faces in the emotional group associated with a high proportion of congruent trials. Notably, this effect transferred to inconsistent members of the group. In Experiment 2 we replicated the effects with faces depicting true and false smiles. Together these findings provide consistent evidence that individuals spontaneously utilise emotions to categorise others and that such categories determine the allocation of attentional control.

  5. Human melanocytes form a PAX3-expressing melanocyte cluster on Matrigel by the cell migration process.

    Science.gov (United States)

    Choi, Hyunjung; Jin, Sun Hee; Han, Mi Hwa; Lee, Jinyoung; Ahn, Seyeon; Seong, Minjeong; Choi, Hyun; Han, Jiyeon; Cho, Eun-Gyung; Lee, Tae Ryong; Noh, Minsoo

    2014-10-01

    The interactions between human epidermal melanocytes and their cellular microenvironment are important in the regulation of human melanocyte functions or in their malignant transformation into melanoma. Although the basement membrane extracellular matrix (BM-ECM) is one of major melanocyte microenvironments, the effects of BM-ECM on the human melanocyte functions are not fully explained at a molecular level. This study was aimed to characterize the molecular and cellular interactions between normal human melanocytes (NHMs) and BM-ECM. We investigated cell culture models of normal human melanocytes or melanoma cells on three-dimensional (3D) Matrigel to understand the roles of the basement membrane microenvironment in human melanocyte functions. Melanogenesis and melanobast biomarker expression in both primary human melanocytes and melanoma cells on 3D Matrigel were evaluated. We found that NHMs migrated and formed reversible paired box 3 (PAX3) expressing cell clusters on three-dimensional (3D) Matrigel. The melanogenesis was significantly decreased in the PAX3 expressing cell cluster. The expression profile of PAX3, SOX10, and MITF in the melanocyte cluster on 3D Matrigel was similar to that of melanoblasts. Interestingly, PAX3 and SOX10 showed an inverse expression profile in NHMs, whereas the inverse expression pattern of PAX3 and SOX10 was disrupted in melanoma MNT1 and WM266-4 cells. The human melanocyte culture on 3D Matrigel provides an alternative model system to study functions of human melanoblasts. In addition, this system will contribute to the elucidation of PAX3-related tumorigenic mechanisms to understand human melanoma. Copyright © 2014 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  6. Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma.

    Science.gov (United States)

    Tomaselli, Sara; Galeano, Federica; Alon, Shahar; Raho, Susanna; Galardi, Silvia; Polito, Vinicia Assunta; Presutti, Carlo; Vincenti, Sara; Eisenberg, Eli; Locatelli, Franco; Gallo, Angela

    2015-01-13

    ADAR enzymes convert adenosines to inosines within double-stranded RNAs, including microRNA (miRNA) precursors, with important consequences on miRNA retargeting and expression. ADAR2 activity is impaired in glioblastoma and its rescue has anti-tumoral effects. However, how ADAR2 activity may impact the miRNome and the progression of glioblastoma is not known. By integrating deep-sequencing and array approaches with bioinformatics analyses and molecular studies, we show that ADAR2 is essential to edit a small number of mature miRNAs and to significantly modulate the expression of about 90 miRNAs in glioblastoma cells. Specifically, the rescue of ADAR2 activity in cancer cells recovers the edited miRNA population lost in glioblastoma cell lines and tissues, and rebalances expression of onco-miRNAs and tumor suppressor miRNAs to the levels observed in normal human brain. We report that the major effect of ADAR2 is to reduce the expression of a large number of miRNAs, most of which act as onco-miRNAs. ADAR2 can edit miR-222/221 and miR-21 precursors and decrease the expression of the corresponding mature onco-miRNAs in vivo and in vitro, with important effects on cell proliferation and migration. Our findings disclose an additional layer of complexity in miRNome regulation and provide information to better understand the impact of ADAR2 editing enzyme in glioblastoma. We propose that ADAR2 is a key factor for maintaining edited-miRNA population and balancing the expression of several essential miRNAs involved in cancer.

  7. Absolute quantification of norovirus capsid protein in food, water, and soil using synthetic peptides with electrospray and MALDI mass spectrometry

    International Nuclear Information System (INIS)

    Hartmann, Erica M.; Colquhoun, David R.; Schwab, Kellogg J.; Halden, Rolf U.

    2015-01-01

    Highlights: • Mass spectrometry-based methods for norovirus quantification are developed. • Absolute quantification is achieved using internal heavy isotope-labeled standards. • A single labeled peptide serves in two distinct detection strategies. • These methods are validated for food, water, and soil analysis. • MS-based detection limits are lowered by two orders of magnitude. - Abstract: Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences

  8. Absolute quantification of norovirus capsid protein in food, water, and soil using synthetic peptides with electrospray and MALDI mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Erica M. [Center for Environmental Security and Security Defense Systems Initiative, The Biodesign Institute, Arizona State University, 781 E. Terrace Mall, Tempe, AZ 85287-5904 (United States); Colquhoun, David R.; Schwab, Kellogg J. [Department of Environmental Health Sciences, The Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205 (United States); Halden, Rolf U., E-mail: halden@asu.edu [Center for Environmental Security and Security Defense Systems Initiative, The Biodesign Institute, Arizona State University, 781 E. Terrace Mall, Tempe, AZ 85287-5904 (United States); Department of Environmental Health Sciences, The Johns Hopkins University, Bloomberg School of Public Health, 615 N. Wolfe St., Baltimore, MD 21205 (United States)

    2015-04-09

    Highlights: • Mass spectrometry-based methods for norovirus quantification are developed. • Absolute quantification is achieved using internal heavy isotope-labeled standards. • A single labeled peptide serves in two distinct detection strategies. • These methods are validated for food, water, and soil analysis. • MS-based detection limits are lowered by two orders of magnitude. - Abstract: Norovirus infections are one of the most prominent public health problems of microbial origin in the U.S. and other industrialized countries. Surveillance is necessary to prevent secondary infection, confirm successful cleanup after outbreaks, and track the causative agent. Quantitative mass spectrometry, based on absolute quantitation with stable-isotope labeled peptides, is a promising tool for norovirus monitoring because of its speed, sensitivity, and robustness in the face of environmental inhibitors. In the current study, we present two new methods for the detection of the norovirus genogroup I capsid protein using electrospray and matrix-assisted laser desorption/ionization (MALDI) mass spectrometry. The peptide TLDPIEVPLEDVR was used to quantify norovirus-like particles down to 500 attomoles with electrospray and 100 attomoles with MALDI. With MALDI, we also demonstrate a detection limit of 1 femtomole and a quantitative dynamic range of 5 orders of magnitude in the presence of an environmental matrix effect. Due to the rapid processing time and applicability to a wide range of environmental sample types (bacterial lysate, produce, milk, soil, and groundwater), mass spectrometry-based absolute quantitation has a strong potential for use in public health and environmental sciences.

  9. Bovine adenovirus type 3 containing heterologous protein in the C-terminus of minor capsid protein IX

    International Nuclear Information System (INIS)

    Zakhartchouk, Alexander; Connors, Wayne; Van Kessel, Andrew; Tikoo, Suresh Kumar

    2004-01-01

    Earlier, we detected pIX of BAdV-3 as a 14-kDa protein in purified virions. Analysis of BAdV-3 pIX using different region antibodies revealed that the N-terminus and central domain of the pIX contain immunogenic sites and are not exposed on the surface of BAdV-3 virion. This suggested that the C-terminus of BAdV-3 pIX (125 amino acid) may be exposed on the virion and may be used as a site for incorporation of heterologous peptides or proteins. We constructed recombinant BAV950 containing a small peptide (21 amino acid), including the RGD motif or recombinant BAV951 containing enhanced yellow-green fluorescent protein (EYFP) fused to the C-terminus of pIX. Western blot analysis demonstrated that the chimeric pIX-RGD was incorporated into virion capsids. Incorporation of the RGD motif into the pIX resulted in significant augmentation of BAdV-3 fiber knob-independent infection of the integrin-positive cells, suggesting that RGD motifs are displayed on the surface of virion capsids and are accessible for binding to integrins. Analysis of BAV951 revealed that the chimeric pIX is incorporated into virion capsids and EYFP containing the C-terminus of pIX is exposed on the surface of the virion. Moreover, insertion of chimeric pIXs was maintained without change through successive rounds of viral replication. These results suggested that in contrast to major capsid proteins (hexon, penton, fiber), the minor capsid protein IX can be use for the incorporation of targeting ligands based on either small peptides or longer polypeptides

  10. Retargeting of rat parvovirus H-1PV to cancer cells through genetic engineering of the viral capsid.

    Science.gov (United States)

    Allaume, Xavier; El-Andaloussi, Nazim; Leuchs, Barbara; Bonifati, Serena; Kulkarni, Amit; Marttila, Tiina; Kaufmann, Johanna K; Nettelbeck, Dirk M; Kleinschmidt, Jürgen; Rommelaere, Jean; Marchini, Antonio

    2012-04-01

    The rat parvovirus H-1PV is a promising anticancer agent given its oncosuppressive properties and the absence of known side effects in humans. H-1PV replicates preferentially in transformed cells, but the virus can enter both normal and cancer cells. Uptake by normal cells sequesters a significant portion of the administered viral dose away from the tumor target. Hence, targeting H-1PV entry specifically to tumor cells is important to increase the efficacy of parvovirus-based treatments. In this study, we first found that sialic acid plays a key role in H-1PV entry. We then genetically engineered the H-1PV capsid to improve its affinity for human tumor cells. By analogy with the resolved crystal structure of the closely related parvovirus minute virus of mice, we developed an in silico three-dimensional (3D) model of the H-1PV wild-type capsid. Based on this model, we identified putative amino acids involved in cell membrane recognition and virus entry at the level of the 2-fold axis of symmetry of the capsid, within the so-called dimple region. In situ mutagenesis of these residues significantly reduced the binding and entry of H-1PV into permissive cells. We then engineered an entry-deficient viral capsid and inserted a cyclic RGD-4C peptide at the level of its 3-fold axis spike. This peptide binds α(v)β(3) and α(v)β(5) integrins, which are overexpressed in cancer cells and growing blood vessels. The insertion of the peptide rescued viral infectivity toward cells overexpressing α(v)β(5) integrins, resulting in the efficient killing of these cells by the reengineered virus. This work demonstrates that H-1PV can be genetically retargeted through the modification of its capsid, showing great promise for a more efficient use of this virus in cancer therapy.

  11. Specific interaction of capsid protein and importin-α/β influences West Nile virus production

    International Nuclear Information System (INIS)

    Bhuvanakantham, Raghavan; Chong, Mun-Keat; Ng, Mah-Lee

    2009-01-01

    West Nile virus (WNV) capsid (C) protein has been shown to enter the nucleus of infected cells. However, the mechanism by which C protein enters the nucleus is unknown. In this study, we have unveiled for the first time that nuclear transport of WNV and Dengue virus C protein is mediated by their direct association with importin-α. This interplay is mediated by the consensus sequences of bipartite nuclear localization signal located between amino acid residues 85-101 together with amino acid residues 42 and 43 of C protein. Elucidation of biological significance of importin-α/C protein interaction demonstrated that the binding efficiency of this association influenced the nuclear entry of C protein and virus production. Collectively, this study illustrated the molecular mechanism by which the C protein of arthropod-borne flavivirus enters the nucleus and showed the importance of importin-α/C protein interaction in the context of flavivirus life-cycle.

  12. Kinetics of the association of dengue virus capsid protein with the granular component of nucleolus.

    Science.gov (United States)

    Tiwary, Ashish Kumar; Cecilia, D

    2017-02-01

    Dengue virus (DENV) replicates in the cytoplasm but translocation of the capsid protein (C) to the nucleoli of infected cells has been shown to facilitate virus multiplication for DENV-2. This study demonstrates that the nucleolar localization of C occurs with all four serotypes of DENV. The interaction of C with the nucleolus was found to be dynamic with a mobile fraction of 66% by FRAP. That the C shuttled between the nucleus and cytoplasm was suggested by FLIP and translation inhibition experiments. Colocalization with B23 indicated that DENV C targeted the granular component (GC) of the nucleolus. Presence of DENV C in the nucleolus affected the recovery kinetics of B23 in infected and transfected cells. Sub-nucleolar localization of DENV C of all serotypes to the GC, its mobility in and out of the nucleolus and its affect on the dynamics of B23 is being shown for the first time. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Capsid coding sequences of foot-and-mouth disease viruses are determinants of pathogenicity in pigs

    DEFF Research Database (Denmark)

    Lohse, Louise; Jackson, Terry; Bøtner, Anette

    2012-01-01

    The surface exposed capsid proteins, VP1, VP2 and VP3, of foot-and-mouth disease virus (FMDV) determine its antigenicity and the ability of the virus to interact with host-cell receptors. Hence, modification of these structural proteins may alter the properties of the virus. In the present study we...... compared the pathogenicity of different FMDVs in young pigs. In total 32 pigs, 7-weeks-old, were exposed to virus, either by direct inoculation or through contact with inoculated pigs, using cell culture adapted (O1K B64), chimeric (O1K/A-TUR and O1K/O-UKG) or field strain (O-UKG/34/2001) viruses. The O1K...... coding sequences are determinants of FMDV pathogenicity in pigs....

  14. The Polerovirus Minor Capsid Protein Determines Vector Specificity and Intestinal Tropism in the Aphid

    Science.gov (United States)

    Brault, Véronique; Périgon, Sophie; Reinbold, Catherine; Erdinger, Monique; Scheidecker, Danièle; Herrbach, Etienne; Richards, Ken; Ziegler-Graff, Véronique

    2005-01-01

    Aphid transmission of poleroviruses is highly specific, but the viral determinants governing this specificity are unknown. We used a gene exchange strategy between two poleroviruses with different vectors, Beet western yellows virus (BWYV) and Cucurbit aphid-borne yellows virus (CABYV), to analyze the role of the major and minor capsid proteins in vector specificity. Virus recombinants obtained by exchanging the sequence of the readthrough domain (RTD) between the two viruses replicated in plant protoplasts and in whole plants. The hybrid readthrough protein of chimeric viruses was incorporated into virions. Aphid transmission experiments using infected plants or purified virions revealed that vector specificity is driven by the nature of the RTD. BWYV and CABYV have specific intestinal sites in the vectors for endocytosis: the midgut for BWYV and both midgut and hindgut for CABYV. Localization of hybrid virions in aphids by transmission electron microscopy revealed that gut tropism is also determined by the viral origin of the RTD. PMID:16014930

  15. Specific interaction of capsid protein and importin-{alpha}/{beta} influences West Nile virus production

    Energy Technology Data Exchange (ETDEWEB)

    Bhuvanakantham, Raghavan; Chong, Mun-Keat [Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, Singapore 117597 (Singapore); Ng, Mah-Lee, E-mail: micngml@nus.edu.sg [Flavivirology Laboratory, Department of Microbiology, 5 Science Drive 2, National University of Singapore, Singapore 117597 (Singapore)

    2009-11-06

    West Nile virus (WNV) capsid (C) protein has been shown to enter the nucleus of infected cells. However, the mechanism by which C protein enters the nucleus is unknown. In this study, we have unveiled for the first time that nuclear transport of WNV and Dengue virus C protein is mediated by their direct association with importin-{alpha}. This interplay is mediated by the consensus sequences of bipartite nuclear localization signal located between amino acid residues 85-101 together with amino acid residues 42 and 43 of C protein. Elucidation of biological significance of importin-{alpha}/C protein interaction demonstrated that the binding efficiency of this association influenced the nuclear entry of C protein and virus production. Collectively, this study illustrated the molecular mechanism by which the C protein of arthropod-borne flavivirus enters the nucleus and showed the importance of importin-{alpha}/C protein interaction in the context of flavivirus life-cycle.

  16. Processing OMEGA/Mars Express hyperspectral imagery from radiance-at-sensor to surface reflectance

    NARCIS (Netherlands)

    Bakker, W.H.; Ruitenbeek, F.J.A. van; Werff, H.M.A. van der; Zegers, T.E.; Oosthoek, J.H.P.; Marsh, S.H.; Meer, F.D. van der

    2014-01-01

    OMEGA/Mars Express hyperspectral imagery is an excellent source of data for exploring the surface composition of the planet Mars. Compared to terrestrial hyperspectral imagery, the data are challenging to work with; scene-specific transmission models are lacking, spectral features are shallow making

  17. Expressing Emotions as Evidence in Osteoporosis Narratives: Effects on Message Processing and Intentions

    Science.gov (United States)

    Volkman, Julie E.; Parrott, Roxanne L.

    2012-01-01

    This study examined the use of different narratives expressing positive or negative emotions, and varying the narrator's perspective on the arousal of discrete emotions, dominant cognitions, perceived evidence quality, and perceived message effectiveness related to osteoporosis behavioral intentions. Formative research led to the creation of…

  18. Epigenetic priming restores the HLA class-I antigen processing machinery expression in Merkel cell carcinoma

    DEFF Research Database (Denmark)

    Ritter, Cathrin; Fan, Kaiji; Paschen, Annette

    2017-01-01

    Merkel cell carcinoma (MCC) is a rare and aggressive, yet highly immunogenic skin cancer. The latter is due to its viral or UV-associated carcinogenesis. For tumor progression MCC has to escape the host's immuno-surveillance, e.g. by loss of HLA class-I expression. Indeed, a reduced HLA class...

  19. Using Postmortem hippocampi tissue can interfere with differential gene expression analysis of the epileptogenic process.

    Directory of Open Access Journals (Sweden)

    João Paulo Lopes Born

    Full Text Available Neuropathological studies often use autopsy brain tissue as controls to evaluate changes in protein or RNA levels in several diseases. In mesial temporal lobe epilepsy (MTLE, several genes are up or down regulated throughout the epileptogenic and chronic stages of the disease. Given that postmortem changes in several gene transcripts could impact the detection of changes in case-control studies, we evaluated the effect of using autopsy specimens with different postmortem intervals (PMI on differential gene expression of the Pilocarpine (PILOinduced Status Epilepticus (SE of MTLE. For this, we selected six genes (Gfap, Ppia, Gad65, Gad67, Npy, and Tnf-α whose expression patterns in the hippocampus of PILO-injected rats are well known. Initially, we compared hippocampal expression of naïve rats whose hippocampi were harvested immediately after death (0h-PMI with those harvested at 6h postmortem interval (6h-PMI: Npy and Ppia transcripts increased and Tnf-α transcripts decreased in the 6h-PMI group (p<0.05. We then investigated if these PMI-related changes in gene expression have the potential to adulterate or mask RT-qPCR results obtained with PILO-injected rats euthanized at acute or chronic phases. In the acute group, Npy transcript was significantly higher when compared with 0h-PMI rats, whereas Ppia transcript was lower than 6h-PMI group. When we used epileptic rats (chronic group, the RT-qPCR results showed higher Tnf-α only when compared to 6h-PMI group. In conclusion, our study demonstrates that PMI influences gene transcription and can mask changes in gene transcription seen during epileptogenesis in the PILO-SE model. Thus, to avoid erroneous conclusions, we strongly recommend that researchers account for changes in postmortem gene expression in their experimental design.

  20. Characterization and identification of differentially expressed microRNAs during the process of the peribiliary fibrosis induced by Clonorchis sinensis.

    Science.gov (United States)

    Yan, Chao; Shen, Li-Ping; Ma, Rui; Li, Bo; Li, Xiang-Yang; Hua, Hui; Zhang, Bo; Yu, Qian; Wang, Yu-Gang; Tang, Ren-Xian; Zheng, Kui-Yang

    2016-09-01

    Clonorchis sinensis (C. sinensis) infection can lead to biliary fibrosis. MicroRNAs (miRNAs) play important roles in regulation of genes expression in the liver diseases. However, the differential expression of miRNAs that probably regulates the portal fibrogenesis caused by C. sinensis has not yet been investigated. Hepatic miRNAs expression profiles from C. sinensis-infected mice at different time-points were analyzed by miRNA microarray and validated by quantitative real-time PCR (qRT-PCR). 349 miRNAs were differentially expressed in the liver of the C. sinensis-infected mice at 2, 8 or 16weeks post infection (p.i.), compared with those at 0week p.i., and there were 143 down-regulated and 206 up-regulated miRNAs among them. These all dysregulated miRNAs were potentially involved in the pathological processes of clonorchiasis by regulation of cancer-related signaling pathway, TGF-β signaling pathway, MAPK signaling pathway, Toll-like receptor signaling pathway, PI3K /AKT signaling pathway, etc. 169 of these dysregulated miRNAs were predicted to be involved in the TGF/Smads signaling pathway which plays an important role in the biliary fibrosis caused by C. sinensis. Additionally, miRNA-32, miRNA-34a, miRNA-125b and miRNA-497 were negatively correlated with Smad7 expression, indicating these miRNAs may specifically down-regulate Smad7 expression and participate in regulation of biliary fibrosis caused by C. sinensis. The results of the present study for the first time demonstrated that miRNAs were differentially expressed in the liver of mice infected by C. sinensis, and these miRNAs may play important roles in regulation of peribiliary fibrosis caused by C. sinensis, which may provide possible therapeutic targets for clonorchiasis. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Subliminal and Supraliminal Processing of Facial Expression of Emotions: Brain Oscillation in the Left/Right Frontal Area

    OpenAIRE

    Balconi, Michela; Ferrari, Chiara

    2012-01-01

    The unconscious effects of an emotional stimulus have been highlighted by a vast amount of research, whereover it remains questionable whether it is possible to assign a specific function to cortical brain oscillations in the unconscious perception of facial expressions of emotions. Alpha band variation was monitored within the right- and left-cortical side when subjects consciously (supraliminal stimulation) or unconsciously (subliminal stimulation) processed facial patterns. Twenty subjects...

  2. Initiation of genome instability and preneoplastic processes through loss of Fhit expression.

    Directory of Open Access Journals (Sweden)

    Joshua C Saldivar

    Full Text Available Genomic instability drives tumorigenesis, but how it is initiated in sporadic neoplasias is unknown. In early preneoplasias, alterations at chromosome fragile sites arise due to DNA replication stress. A frequent, perhaps earliest, genetic alteration in preneoplasias is deletion within the fragile FRA3B/FHIT locus, leading to loss of Fhit protein expression. Because common chromosome fragile sites are exquisitely sensitive to replication stress, it has been proposed that their clonal alterations in cancer cells are due to stress sensitivity rather than to a selective advantage imparted by loss of expression of fragile gene products. Here, we show in normal, transformed, and cancer-derived cell lines that Fhit-depletion causes replication stress-induced DNA double-strand breaks. Using DNA combing, we observed a defect in replication fork progression in Fhit-deficient cells that stemmed primarily from fork stalling and collapse. The likely mechanism for the role of Fhit in replication fork progression is through regulation of Thymidine kinase 1 expression and thymidine triphosphate pool levels; notably, restoration of nucleotide balance rescued DNA replication defects and suppressed DNA breakage in Fhit-deficient cells. Depletion of Fhit did not activate the DNA damage response nor cause cell cycle arrest, allowing continued cell proliferation and ongoing chromosomal instability. This finding was in accord with in vivo studies, as Fhit knockout mouse tissue showed no evidence of cell cycle arrest or senescence yet exhibited numerous somatic DNA copy number aberrations at replication stress-sensitive loci. Furthermore, cells established from Fhit knockout tissue showed rapid immortalization and selection of DNA deletions and amplifications, including amplification of the Mdm2 gene, suggesting that Fhit loss-induced genome instability facilitates transformation. We propose that loss of Fhit expression in precancerous lesions is the first step in the

  3. International Space Station (ISS) Expedite the Process of Experiments to Space Station (EXPRESS) Racks Software Support

    Science.gov (United States)

    2003-01-01

    bd Systems personnel accomplished the technical responsibilities for this reporting period, as planned. A close working relationship was maintained with personnel of the MSFC Avionics Department Software Group (ED 14), the MSFC EXPRESS Project Office (FD3 l), and the Huntsville Boeing Company. Work accomplishments included the support of SRB activities, ATB activities, ESCP activities, participating in technical meetings, coordinating issues between the Boeing Company and the MSFC Project Office, and performing special tasks as requested.

  4. The MetabolomeExpress Project: enabling web-based processing, analysis and transparent dissemination of GC/MS metabolomics datasets

    Directory of Open Access Journals (Sweden)

    Carroll Adam J

    2010-07-01

    Full Text Available Abstract Background Standardization of analytical approaches and reporting methods via community-wide collaboration can work synergistically with web-tool development to result in rapid community-driven expansion of online data repositories suitable for data mining and meta-analysis. In metabolomics, the inter-laboratory reproducibility of gas-chromatography/mass-spectrometry (GC/MS makes it an obvious target for such development. While a number of web-tools offer access to datasets and/or tools for raw data processing and statistical analysis, none of these systems are currently set up to act as a public repository by easily accepting, processing and presenting publicly submitted GC/MS metabolomics datasets for public re-analysis. Description Here, we present MetabolomeExpress, a new File Transfer Protocol (FTP server and web-tool for the online storage, processing, visualisation and statistical re-analysis of publicly submitted GC/MS metabolomics datasets. Users may search a quality-controlled database of metabolite response statistics from publicly submitted datasets by a number of parameters (eg. metabolite, species, organ/biofluid etc.. Users may also perform meta-analysis comparisons of multiple independent experiments or re-analyse public primary datasets via user-friendly tools for t-test, principal components analysis, hierarchical cluster analysis and correlation analysis. They may interact with chromatograms, mass spectra and peak detection results via an integrated raw data viewer. Researchers who register for a free account may upload (via FTP their own data to the server for online processing via a novel raw data processing pipeline. Conclusions MetabolomeExpress https://www.metabolome-express.org provides a new opportunity for the general metabolomics community to transparently present online the raw and processed GC/MS data underlying their metabolomics publications. Transparent sharing of these data will allow researchers to

  5. Spatiotemporal expression of endogenous opioid processing enzymes in mouse uterus at peri-implantation.

    Science.gov (United States)

    Wu, Weiwei; Kong, Shuangbo; Wang, Bingyan; Chen, Yongjie; Wang, Haibin

    2016-02-01

    Successful implantation requires intimate interactions between a competent blastocyst and a receptive uterus. We recently demonstrated that the aberrant activation of opioid signaling by exogenous ligands adversely affects preimplantation embryonic development and subsequent implantation in mice. However, the underlying machinery governing the dynamic homeostasis of the endogenous opioid system in the uterus during early pregnancy remains elusive. We now show that all three major endogenous opioid precursors are spatiotemporally expressed in the uterus during early pregnancy. Moreover, we observe the well-coordinated expression of the synthetic enzyme prohormone convertases 1/3 (PC1/3) at lower levels and of its inhibitor proprotein convertase subtilisin/kexin type 1 inhibitor (Pcsk1n) and the degrading enzyme membrane metallo-endopeptidase (MME) at higher levels in the receptive uterus. Both estrogen and progestin tend to reduce the uterine levels of opioid ligand precursors in the ovariectomized mouse model. This tight regulation of the endogenous opioid system by PC1/3, Pcsk1n and MME has been further confirmed in physiologically related pseudopregnancy and delayed implantation mouse models. The coordinated regulation of opioid precursor biosynthesis and metabolism helps to create appropriate opioid signaling ensuring uterine receptivity for implantation. Thus, endogenous uterine opioid levels are primarily determined by the coordinated expressions of PC1/3, Pcsk1n and MME under the influence of ovarian progestin and estrogen. Our findings raise an additional cautionary note regarding the effects of opioid abuse on early pregnancy events.

  6. Processing of facial affect in social drinkers: a dose-response study of alcohol using dynamic emotion expressions.

    Science.gov (United States)

    Kamboj, Sunjeev K; Joye, Alyssa; Bisby, James A; Das, Ravi K; Platt, Bradley; Curran, H Valerie

    2013-05-01

    Studies of affect recognition can inform our understanding of the interpersonal effects of alcohol and help develop a more complete neuropsychological profile of this drug. The objective of the study was to examine affect recognition in social drinkers using a novel dynamic affect-recognition task, sampling performance across a range of evolutionarily significant target emotions and neutral expressions. Participants received 0, 0.4 or 0.8 g/kg alcohol in a double-blind, independent groups design. Relatively naturalistic changes in facial expression-from neutral (mouth open) to increasing intensities of target emotions, as well as neutral (mouth closed)-were simulated using computer-generated dynamic morphs. Accuracy and reaction time were measured and a two-high-threshold model applied to hits and false-alarm data to determine sensitivity and response bias. While there was no effect on the principal emotion expressions (happiness, sadness, fear, anger and disgust), compared to those receiving 0.8 g/kg of alcohol and placebo, participants administered with 0.4 g/kg alcohol tended to show an enhanced response bias to neutral expressions. Exploration of this effect suggested an accompanying tendency to misattribute neutrality to sad expressions following the 0.4-g/kg dose. The 0.4-g/kg alcohol-but not 0.8 g/kg-produced a limited and specific modification in affect recognition evidenced by a neutral response bias and possibly an accompanying tendency to misclassify sad expressions as neutral. In light of previous findings on involuntary negative memory following the 0.4-g/kg dose, we suggest that moderate-but not high-doses of alcohol have a special relevance to emotional processing in social drinkers.

  7. Evaluation of protein undernourishment on the condylar process of the Wistar rat mandible correlation with insulin receptor expression

    Directory of Open Access Journals (Sweden)

    Marcelo Arthur CAVALLI

    2015-04-01

    Full Text Available The mandible condylar process cartilage (CP of Wistar rats is a secondary cartilage and acts as a mandibular growth site. This phenomenon depends on adequate proteins intake and hormone actions, including insulin. Objectives The present study evaluated the morphological aspects and the expression of the insulin receptor (IR in the cartilage of the condylar process (CP of rats subjected to protein undernourishment. Material and Methods The nourished group received a 20% casein diet, while the undernourished group (U received a 5% casein diet. The re-nourished groups, R and RR, were used to assess the effects of re-nutrition during puberty and adulthood, respectively. CPs were processed and stained with picro-sirius red, safranin-O and azocarmine. Scanning electron microscopy and immunohistochemistry were also performed. Results The area of the CP cartilage and the number of cells in the chondroblastic layer decreased in the U group, as did the thickness of the CP layer in the joint and hypertrophic layer. Renourishment during the pubertal stage, but not during the adult phase, restored these parameters. The cell number was restored when re-nutrition occurred in the pubertal stage, but not in the adult phase. The extracellular matrix also decreased in the U group, but was restored by re-nutrition during the pubertal stage and further increased in the adult phase. IR expression was observed in all CPs, being higher in the chondroblastic and hypertrophic cartilage layers. The lowest expression was found in the U and RR groups. Conclusions Protein malnutrition altered the cellularity, the area, and the fibrous cartilage complex, as well as the expression of the IRs.

  8. Interactions of Prototype Foamy Virus Capsids with Host Cell Polo-Like Kinases Are Important for Efficient Viral DNA Integration.

    Directory of Open Access Journals (Sweden)

    Irena Zurnic

    2016-08-01

    Full Text Available Unlike for other retroviruses, only a few host cell factors that aid the replication of foamy viruses (FVs via interaction with viral structural components are known. Using a yeast-two-hybrid (Y2H screen with prototype FV (PFV Gag protein as bait we identified human polo-like kinase 2 (hPLK2, a member of cell cycle regulatory kinases, as a new interactor of PFV capsids. Further Y2H studies confirmed interaction of PFV Gag with several PLKs of both human and rat origin. A consensus Ser-Thr/Ser-Pro (S-T/S-P motif in Gag, which is conserved among primate FVs and phosphorylated in PFV virions, was essential for recognition by PLKs. In the case of rat PLK2, functional kinase and polo-box domains were required for interaction with PFV Gag. Fluorescently-tagged PFV Gag, through its chromatin tethering function, selectively relocalized ectopically expressed eGFP-tagged PLK proteins to mitotic chromosomes in a Gag STP motif-dependent manner, confirming a specific and dominant nature of the Gag-PLK interaction in mammalian cells. The functional relevance of the Gag-PLK interaction was examined in the context of replication-competent FVs and single-round PFV vectors. Although STP motif mutated viruses displayed wild type (wt particle release, RNA packaging and intra-particle reverse transcription, their replication capacity was decreased 3-fold in single-cycle infections, and up to 20-fold in spreading infections over an extended time period. Strikingly similar defects were observed when cells infected with single-round wt Gag PFV vectors were treated with a pan PLK inhibitor. Analysis of entry kinetics of the mutant viruses indicated a post-fusion defect resulting in delayed and reduced integration, which was accompanied with an enhanced preference to integrate into heterochromatin. We conclude that interaction between PFV Gag and cellular PLK proteins is important for early replication steps of PFV within host cells.

  9. Expression of genes for microRNA-processing enzymes is altered in advanced non-alcoholic fatty liver disease.

    Science.gov (United States)

    Sharma, Haveesh; Estep, Michael; Birerdinc, Aybike; Afendy, Arian; Moazzez, Amir; Elariny, Hazem; Goodman, Zachary; Chandhoke, Vikas; Baranova, Ancha; Younossi, Zobair M

    2013-08-01

    Recently, microRNAs (miRNA) have been linked to the pathogenesis of non-alcoholic fatty liver disease (NAFLD) and its progression to non-alcoholic steatohepatitis (NASH). First transcribed as pri-miRNA, these molecules are further processed by a complex of endonuclear and cytosolic RNA binding molecules to form mature miRNAs. The aim of this study is to investigate mechanisms of miRNA regulation in the visceral adipose of obese NAFLD patients via measuring expression of miRNA processing enzymes and pri-miRNA. Total RNAs were extracted from visceral adipose tissue (VAT) samples collected from patients undergoing bariatric surgery. All patients had biopsy-proven NAFLD (NASH patients [n = 12] and non-NASH NAFLD [n = 12]). For each patient, we profiled mRNA levels for three miRNA processing elements (Drosha, DGCR8, and Dicer1) and seven pri-miRNAs (pri-miR-125b-2, pri-miR-16-2, pri-miR-26a-1, pri-miR-26a-2, pri-miR-7-1, pri-miR-7-2, and pri-miR-7-3). Expression of Dicer1, Drosha and DGCR8 was significantly increased within the NASH cohort along with expression of pri-miR-7-1. The presence of focal necrosis on the liver biopsy correlated significantly with levels of Dicer1 and DGRC8. Both NASH and ballooning degeneration of hepatocytes correlated negatively with the expression levels of hsa-miR-125b. Histologic NASH correlated positively with the expression levels of pri-miR-16-2 and pri-miR-7-1. The presence of the hepatocyte's ballooning degeneration in the liver biopsy correlated positively with pri-miR-26a-1 and pri-miR-7-1. The expression profile of pri-miR-125b-2 also correlated positively with body mass index. Our findings support the hypothesis that VAT-derived miRNA may contribute to the pathogenesis of NASH in obese patients. © 2013 Journal of Gastroenterology and Hepatology Foundation and Wiley Publishing Asia Pty Ltd.

  10. Proteolytic Processing and Assembly of gag and gag-pol Proteins of TED, a Baculovirus-Associated Retrotransposon of the Gypsy Family

    Science.gov (United States)

    Hajek, Kathryn L.; Friesen, Paul D.

    1998-01-01

    TED (transposable element D) is an env-containing member of the gypsy family of retrotransposons that represents a possible retrovirus of invertebrates. This lepidopteran (moth) retroelement contains gag and pol genes that encode proteins capable of forming viruslike particles (VLP) with reverse transcriptase. Since VLP are likely intermediates in TED transposition, we investigated the roles of gag and pol in TED capsid assembly and maturation. By using constructed baculovirus vectors and TED Gag-specific antiserum, we show that the principal translation product of gag (Pr55gag) is cleaved to produce a single VLP structural protein, p37gag. Replacement of Asp436 within the retrovirus-like active site of the pol-encoded protease (PR) abolished Pr55gag cleavage and demonstrated the requirement for PR in capsid processing. As shown by expression of an in-frame fusion of TED gag and pol, PR is derived from the Gag-Pol polyprotein Pr195gag-pol. The PR cleavage site within Pr55gag was mapped to a position near the junction of a basic, nucleocapsid-like domain and a C-terminal acidic domain. Once released by cleavage, the C-terminal fragment was not detected. This acidic fragment was dispensable for VLP assembly, as demonstrated by the formation of VLP by C-terminal Pr55gag truncation proteins and replacement of the acidic domain with a heterologous protein. In contrast, C-terminal deletions that extended into the adjacent nucleocapsid-like domain of Pr55gag abolished VLP recovery and demonstrated that this central region contributes to VLP assembly or stability, or both. Collectively, these data suggest that the single TED protein p37gag provides both capsid and nucleocapsid functions. TED may therefore use a simple processing strategy for VLP assembly and genome packaging. PMID:9765414

  11. Maternal Attachment Representation and Neurophysiological Processing during the Perception of Infants' Emotional Expressions.

    Directory of Open Access Journals (Sweden)

    Rainer Leyh

    Full Text Available The perception of infant emotions is an integral part of sensitive caregiving within the mother-child relationship, a maternal ability which develops in mothers during their own attachment history. In this study we address the association between maternal attachment representation and brain activity underlying the perception of infant emotions. Event related potentials (ERPs of 32 primiparous mothers were assessed during a three stimulus oddball task presenting negative, positive and neutral emotion expressions of infants as target, deviant or standard stimuli. Attachment representation was assessed with the Adult Attachment Interview during pregnancy. Securely attached mothers recognized emotions of infants more accurately than insecurely attached mothers. ERPs yielded amplified N170 amplitudes for insecure mothers when focusing on negative infant emotions. Secure mothers showed enlarged P3 amplitudes to target emotion expressions of infants compared to insecure mothers, especially within conditions with frequent negative infant emotions. In these conditions, P3 latencies were prolonged in insecure mothers. In summary, maternal attachment representation was found associated with brain activity during the perception of infant emotions. This further clarifies psychological mechanisms contributing to maternal sensitivity.

  12. SR proteins in vertical integration of gene expression from transcription to RNA processing to translation.

    Science.gov (United States)

    Zhong, Xiang-Yang; Wang, Pingping; Han, Joonhee; Rosenfeld, Michael G; Fu, Xiang-Dong

    2009-07-10

    SR proteins have been studied extensively as a family of RNA-binding proteins that participate in both constitutive and regulated pre-mRNA splicing in mammalian cells. However, SR proteins were first discovered as factors that interact with transcriptionally active chromatin. Recent studies have now uncovered properties that connect these once apparently disparate functions, showing that a subset of SR proteins seem to bind directly to the histone 3 tail, play an active role in transcriptional elongation, and colocalize with genes that are engaged in specific intra- and interchromosome interactions for coordinated regulation of gene expression in the nucleus. These transcription-related activities are also coupled with a further expansion of putative functions of specific SR protein family members in RNA metabolism downstream of mRNA splicing, from RNA export to stability control to translation. These findings, therefore, highlight the broader roles of SR proteins in vertical integration of gene expression and provide mechanistic insights into their contributions to genome stability and proper cell-cycle progression in higher eukaryotic cells.

  13. The grapevine kinome: annotation, classification and expression patterns in developmental processes and stress responses.

    Science.gov (United States)

    Zhu, Kaikai; Wang, Xiaolong; Liu, Jinyi; Tang, Jun; Cheng, Qunkang; Chen, Jin-Gui; Cheng, Zong-Ming Max

    2018-01-01

    Protein kinases (PKs) have evolved as the largest family of molecular switches that regulate protein activities associated with almost all essential cellular functions. Only a fraction of plant PKs, however, have been functionally characterized even in model plant species. In the present study, the entire grapevine kinome was identified and annotated using the most recent version of the grapevine genome. A total of 1168 PK-encoding genes were identified and classified into 20 groups and 121 families, with the RLK-Pelle group being the largest, with 872 members. The 1168 kinase genes were unevenly distributed over all 19 chromosomes, and both tandem and segmental duplications contributed to the expansion of the grapevine kinome, especially of the RLK-Pelle group. Ka/Ks values indicated that most of the tandem and segmental duplication events were under purifying selection. The grapevine kinome families exhibited different expression patterns during plant development and in response to various stress treatments, with many being coexpressed. The comprehensive annotation of grapevine kinase genes, their patterns of expression and coexpression, and the related information facilitate a more complete understanding of the roles of various grapevine kinases in growth and development, responses to abiotic stress, and evolutionary history.

  14. Testing the effects of expression, intensity and age on emotional face processing in ASD.

    Science.gov (United States)

    Luyster, Rhiannon J; Bick, Johanna; Westerlund, Alissa; Nelson, Charles A

    2017-06-21

    Individuals with autism spectrum disorder (ASD) commonly show global deficits in the processing of facial emotion, including impairments in emotion recognition and slowed processing of emotional faces. Growing evidence has suggested that these challenges may increase with age, perhaps due to minimal improvement with age in individuals with ASD. In the present study, we explored the role of age, emotion type and emotion intensity in face processing for individuals with and without ASD. Twelve- and 18-22- year-old children with and without ASD participated. No significant diagnostic group differences were observed on behavioral measures of emotion processing for younger versus older individuals with and without ASD. However, there were significant group differences in neural responses to emotional faces. Relative to TD, at 12 years of age and during adulthood, individuals with ASD showed slower N170 to emotional faces. While the TD groups' P1 latency was significantly shorter in adults when compared to 12 year olds, there was no significant age-related difference in P1 latency among individuals with ASD. Findings point to potential differences in the maturation of cortical networks that support visual processing (whether of faces or stimuli more broadly), among individuals with and without ASD between late childhood and adulthood. Finally, associations between ERP amplitudes and behavioral responses on emotion processing tasks suggest possible neural markers for emotional and behavioral deficits among individuals with ASD. Copyright © 2017 Elsevier Ltd. All rights reserved.

  15. Integrated cell and process engineering for improved transient production of a "difficult-to-express" fusion protein by CHO cells.

    Science.gov (United States)

    Johari, Yusuf B; Estes, Scott D; Alves, Christina S; Sinacore, Marty S; James, David C

    2015-12-01

    Based on an optimized electroporation protocol, we designed a rapid, milliliter-scale diagnostic transient production assay to identify limitations in the ability of Chinese hamster ovary (CHO) cells to produce a model "difficult-to-express" homodimeric Fc-fusion protein, Sp35Fc, that exhibited very low volumetric titer and intracellular formation of disulfide-bonded oligomeric aggregates post-transfection. As expression of Sp35Fc induced an unfolded protein response in transfected host cells, we utilized the transient assay to compare, in parallel, multiple functionally diverse strategies to engineer intracellular processing of Sp35Fc in order to increase production and reduce aggregation as two discrete design objectives. Specifically, we compared the effect of (i) co-expression of ER-resident molecular chaperones (BiP, PDI, CypB) or active forms of UPR transactivators (ATF6c, XBP1s) at varying recombinant gene load, (ii) addition of small molecules known to act as chemical chaperones (PBA, DMSO, glycerol, betaine, TMAO) or modulate UPR signaling (PERK inhibitor GSK2606414) at varying concentration, (iii) a reduction in culture temperature to 32°C. Using this information, we designed a biphasic, Sp35Fc-specific transient manufacturing process mediated by lipofection that utilized CypB co-expression at an optimal Sp35Fc:CypB gene ratio of 5:1 to initially maximize transfected cell proliferation, followed by addition of a combination of PBA (0.5 mM) and glycerol (1% v/v) at the onset of stationary phase to maximize cell specific production and eliminate Sp35Fc aggregation. Using this optimal, engineered process transient Sp35Fc production was significantly increased sixfold over a 12 day production process with no evidence of disulfide-bonded aggregates. Finally, transient production in clonally derived sub-populations (derived from parental CHO host) screened for a heritably improved capability to produce Sp35Fc was also significantly improved by the optimized

  16. Enhanced Expression of Interferon-γ-Induced Antigen-Processing Machinery Components in a Spontaneously Occurring Cancer

    Directory of Open Access Journals (Sweden)

    Fulvia Cerruti

    2007-11-01

    Full Text Available In human tumors, changes in the surface expression and/or function of major histocompatibility complex (MHC class I antigens are frequently found and may provide malignant cells with a mechanism to escape control of the immune system. This altered human lymphocyte antigen (HLA class I phenotype can be caused by either structural alterations or dysregulation of genes encoding subunits of HLA class I antigens and/or components of the MHC class I antigen-processing machinery (APM. Herein we analyze the expression of several proteins involved in the generation of MHC class I epitopes in feline injection site sarcoma, a spontaneously occurring tumor in cats that is an informative model for the study of tumor biology in other species, including humans. Eighteen surgically removed primary fibrosarcoma lesions were analyzed, and an enhanced expression of two catalytic subunits of immunoproteasomes, PA28 and leucine aminopeptidase, was found in tumors compared to matched normal tissues. As a functional counterpart of these changes in protein levels, proteasomal activities were increased in tissue extracts from fibrosarcomas. Taken together, these results suggest that alterations in the APM system may account for reduced processing of selected tumor antigens and may potentially provide neoplastic fibroblasts with a mechanism for escape from T-cell recognition and destruction.

  17. Expression of Glutamate and GABA during the Process of Rat Retinal Synaptic Plasticity Induced by Acute High Intraocular Pressure

    International Nuclear Information System (INIS)

    Zhou, Lihong; Huang, Jufang; Wang, Hui; Luo, Jia; Zeng, Leping; Xiong, Kun; Chen, Dan

    2013-01-01

    Acute high intraocular pressure (HIOP) can induce plastic changes of retinal synapses during which the expression of the presynaptic marker synaptophysin (SYN) has a distinct spatiotemporal pattern from the inner plexiform layer to the outer plexiform layer. We identified the types of neurotransmitters in the retina that participated in this process and determined the response of these neurotransmitters to HIOP induction. The model of acute HIOP was established by injecting normal saline into the anterior chamber of the rat eye. We found that the number of glutamate-positive cells increased successively from the inner part to the outer part of the retina (from the ganglion cell layer to the inner nuclear layer to the outer nuclear layer) after HIOP, which was similar to the spatiotemporal pattern of SYN expression (internally to externally) following HIOP. However, the distribution and intensity of GABA immunoreactivity in the retina did not change significantly at different survival time post injury and had no direct correlation with SYN expression. Our results suggested that the excitatory neurotransmitter glutamate might participate in the plastic process of retinal synapses following acute HIOP, but no evidence was found for the role of the inhibitory neurotransmitter GABA

  18. Subliminal and Supraliminal Processing of Facial Expression of Emotions: Brain Oscillation in the Left/Right Frontal Area

    Directory of Open Access Journals (Sweden)

    Michela Balconi

    2012-03-01

    Full Text Available The unconscious effects of an emotional stimulus have been highlighted by a vast amount of research, whereover it remains questionable whether it is possible to assign a specific function to cortical brain oscillations in the unconscious perception of facial expressions of emotions. Alpha band variation was monitored within the right- and left-cortical side when subjects consciously (supraliminal stimulation or unconsciously (subliminal stimulation processed facial patterns. Twenty subjects looked at six facial expressions of emotions (anger, fear, surprise, disgust, happiness, sadness, and neutral under two different conditions: supraliminal (200 ms vs. subliminal (30 ms stimulation (140 target-mask pairs for each condition. The results showed that conscious/unconscious processing and the significance of the stimulus can modulate the alpha power. Moreover, it was found that there was an increased right frontal activity for negative emotions vs. an increased left response for positive emotion. The significance of facial expressions was adduced to elucidate cortical different responses to emotional types.

  19. The role of tau in the pathological process and clinical expression of Huntington's disease

    DEFF Research Database (Denmark)

    Vuono, Romina; Winder-Rhodes, Sophie; de Silva, Rohan

    2015-01-01

    and progression of Huntington's disease, the exact molecular mechanisms driving its pathogenic cascade and clinical features, especially the dementia, are not fully understood. Recently the microtubule associated protein tau, MAPT, which is associated with several neurodegenerative disorders, has been implicated......-mortem brain samples from patients with Huntington's disease (n = 16) compared to cases with a known tauopathy and healthy controls. Next, we undertook a genotype-phenotype analysis of a large cohort of patients with Huntington's disease (n = 960) with a particular focus on cognitive decline. We report...... not only on the tau pathology in the Huntington's disease brain but also the association between genetic variation in tau gene and the clinical expression and progression of the disease. We found extensive pathological inclusions containing abnormally phosphorylated tau protein that co-localized in some...

  20. Random Insertion of mCherry Into VP3 Domain of Adeno-associated Virus Yields Fluorescent Capsids With no Loss of Infectivity

    Directory of Open Access Journals (Sweden)

    Justin Judd

    2012-01-01

    Full Text Available Adeno-associated virus (AAV-derived vectors are promising gene delivery systems, and a number of design strategies have been pursued to improve their performance. For example, genetic insertion of proteins into the capsid may be used to achieve vector retargeting, reduced immunogenicity, or to track vector transport. Unfortunately, rational approaches to genetic insertion have experienced limited success due to the unpredictable context-dependent nature of protein folding and the complexity of the capsid's macroassembly. We report the construction and use of a frame-enriched DNase-based random insertion library based on AAV2 cap, called pAAV2_RaPID (Random Peptide Insertion by DNase. The fluorescent mCherry protein was inserted randomly throughout the AAV2 capsid and the library was selected for fluorescent and infectious variants. A capsid site was identified in VP3 that can tolerate the large protein insertion. In contrast to previous efforts to incorporate fluorescent proteins into the AAV2 capsid, the isolated mCherry mutant maintains native infectivity while displaying robust fluorescence. Collectively, these results demonstrate that the pAAV2_RaPID platform library can be used to create fully infectious AAV vectors carrying large functional protein domains on the capsid.

  1. Requirements for capsid-binding and an effector function in TRIMCyp-mediated restriction of HIV-1

    International Nuclear Information System (INIS)

    Diaz-Griffero, Felipe; Vandegraaff, Nick; Li Yuan; McGee-Estrada, Kathleen; Stremlau, Matthew; Welikala, Sohanya; Si Zhihai; Engelman, Alan; Sodroski, Joseph

    2006-01-01

    In owl monkeys, a retrotransposition event replaced the gene encoding the retroviral restriction factor TRIM5α with one encoding TRIMCyp, a fusion between the RING, B-box 2 and coiled-coil domains of TRIM5 and cyclophilin A. TRIMCyp restricts human immunodeficiency virus (HIV-1) infection by a mechanism dependent on the interaction of the cyclophilin A moiety and the HIV-1 capsid protein. Here, we show that infection by retroviruses other than HIV-1 can be restricted by TRIMCyp, providing an explanation for the evolutionary retention of the TRIMCyp gene in owl monkey lineages. The TRIMCyp-mediated block to HIV-1 infection occurs before the earliest step of reverse transcription. TRIMCyp-mediated restriction involves at least two functions: (1) capsid binding, which occurs most efficiently for trimeric TRIMCyp proteins that retain the coiled-coil and cyclophilin A domains, and (2) an effector function that depends upon the B-box 2 domain

  2. BI-2 destabilizes HIV-1 cores during infection and Prevents Binding of CPSF6 to the HIV-1 Capsid.

    Science.gov (United States)

    Fricke, Thomas; Buffone, Cindy; Opp, Silvana; Valle-Casuso, Jose; Diaz-Griffero, Felipe

    2014-12-11

    The recently discovered small-molecule BI-2 potently blocks HIV-1 infection. BI-2 binds to the N-terminal domain of HIV-1 capsid. BI-2 utilizes the same capsid pocket used by the small molecule PF74. Although both drugs bind to the same pocket, it has been proposed that BI-2 uses a different mechanism to block HIV-1 infection when compared to PF74. This work demonstrates that BI-2 destabilizes the HIV-1 core during infection, and prevents the binding of the cellular factor CPSF6 to the HIV-1 core. Overall this short-form paper suggests that BI-2 is using a similar mechanism to the one used by PF74 to block HIV-1 infection.

  3. Differentially expressed genes distributed over chromosomes and implicated in certain biological processes for site insertion genetically modified rice Kemingdao.

    Science.gov (United States)

    Liu, Zhi; Li, Yunhe; Zhao, Jie; Chen, Xiuping; Jian, Guiliang; Peng, Yufa; Qi, Fangjun

    2012-01-01

    Release of genetically modified (GM) plants has sparked off intensive debates worldwide partly because of concerns about potential adverse unintended effects of GM plants to the agro system and the safety of foods. In this study, with the aim of revealing the molecular basis for unintended effects of a single site insertion GM Kemingdao (KMD) rice transformed with a synthetic cry1Ab gene, and bridging unintended effects of KMD rice through clues of differentially expressed genes, comparative transcriptome analyses were performed for GM KMD rice and its parent rice of Xiushui11 (XS11). The results showed that 680 differentially expressed transcripts were identified from 30-day old seedlings of GM KMD rice. The absolute majority of these changed expression transcripts dispersed and located over all rice chromosomes, and existed physical distance on chromosome from the insertion site, while only two transcripts were found to be differentially expressed within the 21 genes located within 100 kb up and down-stream of the insertion site. Pathway and biology function analyses further revealed that differentially expressed transcripts of KMD rice were involved in certain biological processes, and mainly implicated in two types of pathways. One type was pathways implicated in plant stress/defense responses, which were considerably in coordination with the reported unintended effects of KMD rice, which were more susceptible to rice diseases compared to its parent rice XS11; the other type was pathways associated with amino acids metabolism. With this clue, new unintended effects for changes in amino acids synthesis of KMD rice leaves were successfully revealed. Such that an actual case was firstly provided for identification of unintended effects in GM plants by comparative transciptome analysis.

  4. Portal protein functions akin to a DNA-sensor that couples genome-packaging to icosahedral capsid maturation

    OpenAIRE

    Lokareddy, Ravi K.; Sankhala, Rajeshwer S.; Roy, Ankoor; Afonine, Pavel V.; Motwani, Tina; Teschke, Carolyn M.; Parent, Kristin N.; Cingolani, Gino

    2017-01-01

    Tailed bacteriophages and herpesviruses assemble infectious particles via an empty precursor capsid (or ?procapsid') built by multiple copies of coat and scaffolding protein and by one dodecameric portal protein. Genome packaging triggers rearrangement of the coat protein and release of scaffolding protein, resulting in dramatic procapsid lattice expansion. Here, we provide structural evidence that the portal protein of the bacteriophage P22 exists in two distinct dodecameric conformations: a...

  5. Diverging receptive and expressive word processing mechanisms in a deep dyslexic reader.

    Science.gov (United States)

    Ablinger, Irene; Radach, Ralph

    2016-01-29

    We report on KJ, a patient with acquired dyslexia due to cerebral artery infarction. He represents an unusually clear case of an "output" deep dyslexic reader, with a distinct pattern of pure semantic reading. According to current neuropsychological models of reading, the severity of this condition is directly related to the degree of impairment in semantic and phonological representations and the resulting imbalance in the interaction between the two word processing pathways. The present work sought to examine whether an innovative eye movement supported intervention combining lexical and segmental therapy would strengthen phonological processing and lead to an attenuation of the extreme semantic over-involvement in KJ's word identification process. Reading performance was assessed before (T1) between (T2) and after (T3) therapy using both analyses of linguistic errors and word viewing patterns. Therapy resulted in improved reading aloud accuracy along with a change in error distribution that suggested a return to more sequential reading. Interestingly, this was in contrast to the dynamics of moment-to-moment word processing, as eye movement analyses still suggested a predominantly holistic strategy, even at T3. So, in addition to documenting the success of the therapeutic intervention, our results call for a theoretically important conclusion: Real-time letter and word recognition routines should be considered separately from properties of the verbal output. Combining both perspectives may provide a promising strategy for future assessment and therapy evaluation. Copyright © 2015. Published by Elsevier Ltd.

  6. Quantifying geological processes on Mars - Results of the high resolution stereo camera (HRSC) on Mars express

    NARCIS (Netherlands)

    Jaumann, R.; Tirsch, D.; Hauber, E.; Ansan, V.; Di Achille, G.; Erkeling, G.; Fueten, F.; Head, J.; Kleinhans, M. G.; Mangold, N.; Michael, G. G.; Neukum, G.; Pacifici, A.; Platz, T.; Pondrelli, M.; Raack, J.; Reiss, D.; Williams, D. A.; Adeli, S.; Baratoux, D.; De Villiers, G.; Foing, B.; Gupta, S.; Gwinner, K.; Hiesinger, H.; Hoffmann, H.; Deit, L. Le; Marinangeli, L.; Matz, K. D.; Mertens, V.; Muller, J. P.; Pasckert, J. H.; Roatsch, T.; Rossi, A. P.; Scholten, F.; Sowe, M.; Voigt, J.; Warner, N.

    2015-01-01

    Abstract This review summarizes the use of High Resolution Stereo Camera (HRSC) data as an instrumental tool and its application in the analysis of geological processes and landforms on Mars during the last 10 years of operation. High-resolution digital elevations models on a local to regional scale

  7. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: implications for replication and genome packaging.

    Science.gov (United States)

    Chaturvedi, Sonali; Rao, A L N

    2014-09-01

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein-protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: Implications for replication and genome packaging

    International Nuclear Information System (INIS)

    Chaturvedi, Sonali; Rao, A.L.N.

    2014-01-01

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein–protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. - Highlights: • YFP fusion proteins of BMV p1a and p2a are biologically active. • Self-interaction was observed for p1a, p2a and CP. • CP interacts with p2a but not p1a. • Majority of reconstituted YFP resulting from bona fide fusion protein partners localized on ER

  9. Live cell imaging of interactions between replicase and capsid protein of Brome mosaic virus using Bimolecular Fluorescence Complementation: Implications for replication and genome packaging

    Energy Technology Data Exchange (ETDEWEB)

    Chaturvedi, Sonali; Rao, A.L.N., E-mail: arao@ucr.edu

    2014-09-15

    In Brome mosaic virus, it was hypothesized that a physical interaction between viral replicase and capsid protein (CP) is obligatory to confer genome packaging specificity. Here we tested this hypothesis by employing Bimolecular Fluorescent Complementation (BiFC) as a tool for evaluating protein–protein interactions in living cells. The efficacy of BiFC was validated by a known interaction between replicase protein 1a (p1a) and protein 2a (p2a) at the endoplasmic reticulum (ER) site of viral replication. Additionally, co-expression in planta of a bona fide pair of interacting protein partners of p1a and p2a had resulted in the assembly of a functional replicase. Subsequent BiFC assays in conjunction with mCherry labeled ER as a fluorescent cellular marker revealed that CP physically interacts with p2a, but not p1a, and this CP:p2a interaction occurs at the cytoplasmic phase of the ER. The significance of the CP:p2a interaction in BMV replication and genome packaging is discussed. - Highlights: • YFP fusion proteins of BMV p1a and p2a are biologically active. • Self-interaction was observed for p1a, p2a and CP. • CP interacts with p2a but not p1a. • Majority of reconstituted YFP resulting from bona fide fusion protein partners localized on ER.

  10. Critical Thinking through Writing: Expressing Scientific Thought and Process in a Deaf Classroom

    Science.gov (United States)

    Manjarrez, Leslie

    Within Deaf classrooms there is often a disconnect between academic areas and writing curriculums that develop in both common and academic language, where often classrooms focus solely on writing as a skill rather than as a method for producing language through an academic area. This work focuses on the development of academic language in ASL and English print of science. The curriculum is written to be implemented as a bilingual academic curriculum to support Deaf and Hard of Hearing students in various self contained classroom settings. Lessons are conducted in three Units, A B and C. Unit A focuses on research, thought and writing of preparatory materials in small groups. Unit B is comprised of procedural lessons on conducting x experiments and the evaluation of those experiments through mathematics. Unit C is a group of lessons that ties together Units A and B through writing and peer teaching as a method of concluding the work and presenting information in an effective manner. The success of the project was evaluated on the basis of student work, rubrics, and final works from the students. The results showed promise in aspects of Critical Thinking, writing development, and expression of new concepts in both ASL and English.

  11. Linking children's neuropsychological processing of emotion with their knowledge of emotion expression regulation.

    OpenAIRE

    Watling, Dawn; Bourne, Victoria

    2007-01-01

    Understanding of emotions has been shown to develop between the ages of 4 and 10 years; however, individual differences exist in this development. While previous research has typically examined these differences in terms of developmental and/or social factors, little research has considered the possible impact of neuropsychological development on the behavioural understanding of emotions. Emotion processing tends to be lateralised to the right hemisphere of the brain in adults, yet this patt...

  12. THE ACTIVE INTEGRATED CIRCULAR PROCESSEXPRESSION OF MAXIMUM SYNTHESIS OF SUSTAINABLE DEVELOPMENT

    Directory of Open Access Journals (Sweden)

    Done Ioan

    2015-06-01

    Full Text Available "The accelerated pace of economic growth, prompted by the need to ensure reducing disparities between the various countries, has imposed in the last two decades the adoption of sustainable development principles, particularly as a result of the Rio Declaration on Environment and Development (1992 and the UNESCO Declaration in the fall of 1997. In specific literature, in essence, sustainable development is considered "an economic and social process that is characterized by a simultaneous and concerted action at global, regional and local level. Its objective is to provide living conditions both for the present and forth future. Sustainable development “encompasses the economic, ecological, social and political aspects, linked through cultural and spiritual relationships."(Coşea, 2007In Romania, achieving sustainable development is a major, difficult objective, because it must be done in terms of convergence to the demands of the economic, social, cultural and political context of the EU, and in terms of the completion of the transition to a functioning and competitive market economy. In this context, it is imposed the economic competitiveness through reindustrialization and not least, by harnessing the active integrated circular process. Gross value added and profit chain in the structures of active integrated circular process must reflect the interests of the forces involved(employers, employees and the statethereby forming the basis of respect for the correlation between sustainable development, economic growth and increasing national wealth. The elimination or marginalization of certain links in the value chain and profit causes major disruptions or bankruptcy, with direct implications for recognizing and rewarding performance. Essentially, the building of active integrated circular process will determine the maximization of the profit – the foundation of satisfying all economic interests.

  13. The process behind the expression of mdr-1/P-gp and mrp/MRP in human leukemia/lymphoma.

    Science.gov (United States)

    Hirose, Masao

    2009-04-01

    There is a controversy over the link between phenotypes of multidrug resistance (MDR) and clinical outcome in leukemia/lymphoma patients. This may be because the process behind the induction and loss of expression of genotypes and phenotypes by which MDR develops and the role of MDR in fresh cells of human leukemia/lymphoma are not clearly defined. P-glycoprotein (P-gp) increased and decreased along with mdr-1 expression in three cell lines out of five vincristine (VCR)-resistant cell lines. MRP appeared with increased mrp expression in the other two cell lines. After the drug was removed from the culture system, mdr-1/P-gp changed in parallel with the level of VCR resistance, although mrp and MRP did not. It was concluded that P-gp is directly derived from mdr-1 and that mdr-1/P-gp supports the VCR-resistance but mrp/MRP is not directly linked to the VCR-resistance. These results should contribute to a better understanding of MDR phenomenon in cancer.

  14. Failure to synthesize the CD3-gamma chain. Consequences for T cell antigen receptor assembly, processing, and expression

    DEFF Research Database (Denmark)

    Geisler, C

    1992-01-01

    surface expression of the Ti/CD3 complex. Transfection of the wild-type CD3-gamma gene into JGN reconstituted expression of functional Ti/CD3 complexes, and analysis of T cell lines producing different amounts of CD3-gamma indicated that CD3-gamma and CD3-delta competed for the binding to CD3-epsilon.......The TCR consists of the Ti alpha beta heterodimer and the associated CD3 chains, CD3 gamma delta epsilon zeta 2 or zeta eta. The structural relationships between the subunits of the Ti/CD3 complex are still not fully understood. To explore the roles of the individual CD3 chains for the assembly......, intracellular processing, and expression of the TCR, mutants of the T cell line Jurkat were isolated. One variant, JGN, was found to produce all the Ti/CD3 components with the exception of CD3-gamma. The results indicate that: 1) the tetrameric form (Ti alpha beta-CD3 delta epsilon) of the Ti/CD3 complex...

  15. Profiling of Candida albicans Gene Expression During Intra-abdominal Candidiasis Identifies Biologic Processes Involved in Pathogenesis

    Science.gov (United States)

    Cheng, Shaoji; Clancy, Cornelius J.; Xu, Wenjie; Schneider, Frank; Hao, Binghua; Mitchell, Aaron P.; Nguyen, M. Hong

    2013-01-01

    Background. The pathogenesis of intra-abdominal candidiasis is poorly understood. Methods. Mice were intraperitoneally infected with Candida albicans (1 × 106 colony-forming units) and sterile stool. nanoString assays were used to quantitate messenger RNA for 145 C. albicans genes within the peritoneal cavity at 48 hours. Results. Within 6 hours after infection, mice developed peritonitis, characterized by high yeast burdens, neutrophil influx, and a pH of 7.9 within peritoneal fluid. Organ invasion by hyphae and early abscess formation were evident 6 and 24 hours after infection, respectively; abscesses resolved by day 14. nanoString assays revealed adhesion and responses to alkaline pH, osmolarity, and stress as biologic processes activated in the peritoneal cavity. Disruption of the highly-expressed gene RIM101, which encodes an alkaline-regulated transcription factor, did not impact cellular morphology but reduced both C. albicans burden during early peritonitis and C. albicans persistence within abscesses. RIM101 influenced expression of 49 genes during intra-abdominal candidiasis, including previously unidentified Rim101 targets. Overexpression of the RIM101-dependent gene SAP5, which encodes a secreted protease, restored the ability of a rim101 mutant to persist within abscesses. Conclusions. A mouse model of intra-abdominal candidiasis is valuable for studying pathogenesis and C. albicans gene expression. RIM101 contributes to persistence within intra-abdominal abscesses, at least in part through activation of SAP5. PMID:24006479

  16. Correlation of Naturally Occurring HIV-1 Resistance to DEB025 with Capsid Amino Acid Polymorphisms

    Directory of Open Access Journals (Sweden)

    Brigitte Rosenwirth

    2013-03-01

    Full Text Available DEB025 (alisporivir is a synthetic cyclosporine with inhibitory activity against human immunodeficiency virus type-1 (HIV-1 and hepatitis C virus (HCV. It binds to cyclophilin A (CypA and blocks essential functions of CypA in the viral replication cycles of both viruses. DEB025 inhibits clinical HIV-1 isolates in vitro and decreases HIV-1 virus load in the majority of patients. HIV-1 isolates being naturally resistant to DEB025 have been detected in vitro and in nonresponder patients. By sequence analysis of their capsid protein (CA region, two amino acid polymorphisms that correlated with DEB025 resistance were identified: H87Q and I91N, both located in the CypA-binding loop of the CA protein of HIV-1. The H87Q change was by far more abundant than I91N. Additional polymorphisms in the CypA-binding loop (positions 86, 91 and 96, as well as in the N-terminal loop of CA were detected in resistant isolates and are assumed to contribute to the degree of resistance. These amino acid changes may modulate the conformation of the CypA-binding loop of CA in such a way that binding and/or isomerase function of CypA are no longer necessary for virus replication. The resistant HIV-1 isolates thus are CypA-independent.

  17. A novel inhibitor of dengue virus replication that targets the capsid protein.

    Science.gov (United States)

    Byrd, Chelsea M; Dai, Dongcheng; Grosenbach, Douglas W; Berhanu, Aklile; Jones, Kevin F; Cardwell, Kara B; Schneider, Christine; Wineinger, Kristin A; Page, Jessica M; Harver, Chris; Stavale, Eric; Tyavanagimatt, Shanthakumar; Stone, Melialani A; Bartenschlager, Ralf; Scaturro, Pietro; Hruby, Dennis E; Jordan, Robert

    2013-01-01

    Dengue viruses (DENV) infect 50 to 100 million people worldwide per year, of which 500,000 develop severe life-threatening disease. This mosquito-borne illness is endemic in most tropical and subtropical countries and has spread significantly over the last decade. While there are several promising vaccine candidates in clinical trials, there are currently no approved vaccines or therapeutics available for treatment of dengue infection. Here, we describe a novel small-molecule compound, ST-148, that is a potent inhibitor of all four serotypes of DENV in vitro. ST-148 significantly reduced viremia and viral load in vital organs and tended to lower cytokine levels in the plasma in a nonlethal model of DENV infection in AG129 mice. Compound resistance mapped to the DENV capsid (C) gene, and a direct interaction of ST-148 with C protein is suggested by alterations of the intrinsic fluorescence of the protein in the presence of compound. Thus, ST-148 appears to interact with the DENV C protein and inhibits a distinct step(s) of the viral replication cycle.

  18. Mechanical and assembly units of viral capsids identified via quasi-rigid domain decomposition.

    Directory of Open Access Journals (Sweden)

    Guido Polles

    Full Text Available Key steps in a viral life-cycle, such as self-assembly of a protective protein container or in some cases also subsequent maturation events, are governed by the interplay of physico-chemical mechanisms involving various spatial and temporal scales. These salient aspects of a viral life cycle are hence well described and rationalised from a mesoscopic perspective. Accordingly, various experimental and computational efforts have been directed towards identifying the fundamental building blocks that are instrumental for the mechanical response, or constitute the assembly units, of a few specific viral shells. Motivated by these earlier studies we introduce and apply a general and efficient computational scheme for identifying the stable domains of a given viral capsid. The method is based on elastic network models and quasi-rigid domain decomposition. It is first applied to a heterogeneous set of well-characterized viruses (CCMV, MS2, STNV, STMV for which the known mechanical or assembly domains are correctly identified. The validated method is next applied to other viral particles such as L-A, Pariacoto and polyoma viruses, whose fundamental functional domains are still unknown or debated and for which we formulate verifiable predictions. The numerical code implementing the domain decomposition strategy is made freely available.

  19. Detoxification and repair process of ozone injury: From O3 uptake to gene expression adjustment

    International Nuclear Information System (INIS)

    Castagna, A.; Ranieri, A.

    2009-01-01

    Plants react to O 3 threat by setting up a variety of defensive strategies involving the co-ordinated modulation of stress perception, signalling and metabolic responses. Although stomata largely controls O 3 uptake, differences in O 3 tolerance cannot always be ascribed to changes in stomatal conductance but cell protective and repair processes should be taken into account. O 3 -driven ROS production in the apoplast induces a secondary, active, self-propagating generation of ROS, whose levels must be finely tuned, by many enzymatic and non-enzymatic antioxidant systems, to induce gene activation without determining uncontrolled cell death. Additional signalling molecules, as ethylene, jasmonic and salicylic acid are also crucial to determine the spreading and the containment of leaf lesions. The main recent results obtained on O 3 sensing, signal transduction, ROS formation and detoxification mechanisms are here discussed. - A dissection of the complex network of interacting mechanisms which determine the cell fate under ozone stress.

  20. Graphical expression of thermodynamic characteristics of absorption process in ammonia-water system

    Directory of Open Access Journals (Sweden)

    Fortelný Zdeněk

    2012-04-01

    Full Text Available The adiabatic sorption is very interesting phenomenon that occurs when vapor of refrigerant is in contact with unsaturated liquid absorbent-refrigerant mixture and exchange of heat is forbid between the system and an environment. This contribution introduces new auxiliary lines that enable correct position determination of the adiabatic sorption process in the p-T-x diagram of ammoniawater system. The presented auxiliary lines were obtained from common functions for fast calculation of water-ammonia system properties. Absorption cycles designers often utilize p-t-x diagrams of working mixtures for first suggestion of new absorption cycles. The p-t-x diagrams enable fast correct determination of saturate states of liquid (and gaseous mixtures of refrigerants and absorbents. The working mixture isn’t only at saturated state during a real working cycle. If we know pressure and temperature of an unsaturated mixture, exact position determination is possible in the p-t-x diagrams too.

  1. Expression of Glutathione Peroxidase and Glutathione Reductase and Level of Free Radical Processes under Toxic Hepatitis in Rats

    Directory of Open Access Journals (Sweden)

    Igor Y. Iskusnykh

    2013-01-01

    Full Text Available Correlation between intensity of free radical processes estimated by biochemiluminesce parameters, content of lipoperoxidation products, and changes of glutathione peroxidase (GP, EC 1.11.1.9 and glutathione reductase (GR, EC 1.6.4.2 activities at rats liver injury, after 12, 36, 70, 96, 110, and 125 hours & tetrachloromethane administration have been investigated. The histological examination of the liver sections of rats showed that prominent hepatocytes with marked vacuolisation and inflammatory cells which were arranged around the necrotic tissue are more at 96 h after exposure to CCl4. Moreover maximum increase in GR and GP activities, 2.1 and 2.5 times, respectively, was observed at 96 h after exposure to CCl4, what coincided with the maximum of free radical oxidation processes. Using a combination of reverse transcription and real-time polymerase chain reaction, expression of the glutathione peroxidase and glutathione reductase genes (Gpx1 and Gsr was analyzed by the determination of their respective mRNAs in the rat liver tissue under toxic hepatitis conditions. The analyses of Gpx1 and Gsr expression revealed that the transcript levels increased in 2.5- and 3.0-folds, respectively. Western blot analysis revealed that the amounts of hepatic Gpx1 and Gsr proteins increased considerably after CCl4 administration. It can be proposed that the overexpression of these enzymes could be a mechanism of enhancement of hepatocytes tolerance to oxidative stress.

  2. Endosulfan inhibiting the meiosis process via depressing expressions of regulatory factors and causing cell cycle arrest in spermatogenic cells.

    Science.gov (United States)

    Guo, Fang-Zi; Zhang, Lian-Shuang; Wei, Jia-Liu; Ren, Li-Hua; Zhang, Jin; Jing, Li; Yang, Man; Wang, Ji; Sun, Zhi-Wei; Zhou, Xian-Qing

    2016-10-01

    Endosulfan is a persistent organic pollutant and widely used in agriculture as a pesticide. It is present in air, water, and soil worldwide; therefore, it is a health risk affecting especially the reproductive system. The aim of this study was to evaluate the toxicity of endosulfan in the reproductive system. To investigate the effect of endosulfan on meiosis process, 32 rats were divided into four groups, treated with 0, 1, 5, and 10 mg/kg/day endosulfan, respectively, and sacrificed after the 21 days of treatments. Results show that endosulfan caused the reductions in sperm concentration and motility rate, which resulted into an increased in sperm abnormality rate; further, endosulfan induced downregulation of spermatogenesis- and oogenesis-specific basic helix-loop-helix transcription factor (Sohlh1) which controls the switch on meiosis in mammals, as well cyclin A1, cyclin-dependent kinases 1 (CDK1), and cyclin-dependent kinases 2 (CDK2). In vitro, endosulfan induced G2/M phase arrest in the spermatogenic cell cycle and caused proliferation inhibition. Moreover, endosulfan induced oxidative stress and DNA damage in vivo and vitro. The results suggested that endosulfan could inhibit the start of meiosis by downregulating the expression of Sohlh1 and induce G2/M phase arrest of cell cycle by decreasing the expression of cyclin A1, CDK1, and CDK2 via oxidative damage, which inhibits the meiosis process, and therefore decrease the amount of sperm.

  3. Correlated alpha activity with the facial expression processing network in a simultaneous EEG-fMRI experiment.

    Science.gov (United States)

    Simoes, Marco; Direito, Bruno; Lima, Joao; Castelhano, Joao; Ferreira, Carlos; Couceiro, Ricardo; Carvalho, Paulo; Castelo-Branco, Miguel

    2017-07-01

    The relationship between EEG and fMRI data is poorly covered in the literature. Extensive work has been conducted in resting-state and epileptic activity, highlighting a negative correlation between the alpha power band of the EEG and the BOLD activity in the default-mode-network. The identification of an appropriate task-specific relationship between fMRI and EEG data for predefined regions-of-interest, would allow the transfer of interventional paradigms (such as BOLD-based neurofeedback sessions) from fMRI to EEG, enhancing its application range by lowering its costs and improving its flexibility. In this study, we present an analysis of the correlation between task-specific alpha band fluctuations and BOLD activity in the facial expressions processing network. We characterized the network ROIs through a stringent localizer and identified two clusters on the scalp (one frontal, one parietal-occipital) with marked alpha fluctuations, related to the task. We then check whether such power variations throughout the time correlate with the BOLD activity in the network. Our results show statistically significant negative correlations between the alpha power in both clusters and for all the ROIs of the network. The correlation levels have still not met the requirements for transferring the protocol to an EEG setup, but they pave the way towards a better understand on how frontal and parietal-occipital alpha relates to the activity of the facial expressions processing network.

  4. Using Bacterial Extract along with Differential Gene Expression in Acropora millepora Larvae to Decouple the Processes of Attachment and Metamorphosis

    Science.gov (United States)

    Siboni, Nachshon; Abrego, David; Seneca, Francois; Motti, Cherie A.; Andreakis, Nikos; Tebben, Jan; Blackall, Linda L.; Harder, Tilmann

    2012-01-01

    Biofilms of the bacterium Pseudoalteromonas induce metamorphosis of acroporid coral larvae. The bacterial metabolite tetrabromopyrrole (TBP), isolated from an extract of Pseudoalteromonas sp. associated with the crustose coralline alga (CCA) Neogoniolithon fosliei, induced coral larval metamorphosis (100%) with little or no attachment (0–2%). To better understand the molecular events and mechanisms underpinning the induction of Acropora millepora larval metamorphosis, including cell proliferation, apoptosis, differentiation, migration, adhesion and biomineralisation, two novel coral gene expression assays were implemented. These involved the use of reverse-transcriptase quantitative PCR (RT-qPCR) and employed 47 genes of interest (GOI), selected based on putative roles in the processes of settlement and metamorphosis. Substantial differences in transcriptomic responses of GOI were detected following incubation of A. millepora larvae with a threshold concentration and 10-fold elevated concentration of TBP-containing extracts of Pseudoalteromonas sp. The notable and relatively abrupt changes of the larval body structure during metamorphosis correlated, at the molecular level, with significant differences (pmetamorphosis. The bacterial TBP-containing extract provided a unique opportunity to monitor the regulation of genes exclusively involved in the process of metamorphosis, contrasting previous gene expression studies that utilized cues, such as crustose coralline algae, biofilms or with GLW-amide neuropeptides that stimulate the entire onset of larval metamorphosis and attachment. PMID:22655067

  5. Imaging and Quantitation of a Succession of Transient Intermediates Reveal the Reversible Self-Assembly Pathway of a Simple Icosahedral Virus Capsid.

    Science.gov (United States)

    Medrano, María; Fuertes, Miguel Ángel; Valbuena, Alejandro; Carrillo, Pablo J P; Rodríguez-Huete, Alicia; Mateu, Mauricio G

    2016-11-30

    Understanding the fundamental principles underlying supramolecular self-assembly may facilitate many developments, from novel antivirals to self-organized nanodevices. Icosahedral virus particles constitute paradigms to study self-assembly using a combination of theory and experiment. Unfortunately, assembly pathways of the structurally simplest virus capsids, those more accessible to detailed theoretical studies, have been difficult to study experimentally. We have enabled the in vitro self-assembly under close to physiological conditions of one of the simplest virus particles known, the minute virus of mice (MVM) capsid, and experimentally analyzed its pathways of assembly and disassembly. A combination of electron microscopy and high-resolution atomic force microscopy was used to structurally characterize and quantify a succession of transient assembly and disassembly intermediates. The results provided an experiment-based model for the reversible self-assembly pathway of a most simple (T = 1) icosahedral protein shell. During assembly, trimeric capsid building blocks are sequentially added to the growing capsid, with pentamers of building blocks and incomplete capsids missing one building block as conspicuous intermediates. This study provided experimental verification of many features of self-assembly of a simple T = 1 capsid predicted by molecular dynamics simulations. It also demonstrated atomic force microscopy imaging and automated analysis, in combination with electron microscopy, as a powerful single-particle approach to characterize at high resolution and quantify transient intermediates during supramolecular self-assembly/disassembly reactions. Finally, the efficient in vitro self-assembly achieved for the oncotropic, cell nucleus-targeted MVM capsid may facilitate its development as a drug-encapsidating nanoparticle for anticancer targeted drug delivery.

  6. The role of proteolytic processing and the stable signal peptide in expression of the Old World arenavirus envelope glycoprotein ectodomain

    International Nuclear Information System (INIS)

    Burri, Dominique J.; Pasquato, Antonella; Ramos da Palma, Joel; Igonet, Sebastien; Oldstone, Michael B.A.; Kunz, Stefan

    2013-01-01

    Maturation of the arenavirus GP precursor (GPC) involves proteolytic processing by cellular signal peptidase and the proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P), yielding a tripartite complex comprised of a stable signal peptide (SSP), the receptor-binding GP1, and the fusion-active transmembrane GP2. Here we investigated the roles of SKI-1/S1P processing and SSP in the biosynthesis of the recombinant GP ectodomains of lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV). When expressed in mammalian cells, the LCMV and LASV GP ectodomains underwent processing by SKI-1/S1P, followed by dissociation of GP1 from GP2. The GP2 ectodomain spontaneously formed trimers as revealed by chemical cross-linking. The endogenous SSP, known to be crucial for maturation and transport of full-length arenavirus GPC was dispensable for processing and secretion of the soluble GP ectodomain, suggesting a specific role of SSP in the stable prefusion conformation and transport of full-length GPC.

  7. The role of proteolytic processing and the stable signal peptide in expression of the Old World arenavirus envelope glycoprotein ectodomain

    Energy Technology Data Exchange (ETDEWEB)

    Burri, Dominique J.; Pasquato, Antonella; Ramos da Palma, Joel [Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne CH-1011 (Switzerland); Igonet, Sebastien; Oldstone, Michael B.A. [Department of Immunology and Microbial Science, The Scripps Research Institute, La Jolla, CA 92037 (United States); Kunz, Stefan, E-mail: Stefan.Kunz@chuv.ch [Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne CH-1011 (Switzerland)

    2013-02-05

    Maturation of the arenavirus GP precursor (GPC) involves proteolytic processing by cellular signal peptidase and the proprotein convertase subtilisin kexin isozyme 1 (SKI-1)/site 1 protease (S1P), yielding a tripartite complex comprised of a stable signal peptide (SSP), the receptor-binding GP1, and the fusion-active transmembrane GP2. Here we investigated the roles of SKI-1/S1P processing and SSP in the biosynthesis of the recombinant GP ectodomains of lymphocytic choriomeningitis virus (LCMV) and Lassa virus (LASV). When expressed in mammalian cells, the LCMV and LASV GP ectodomains underwent processing by SKI-1/S1P, followed by dissociation of GP1 from GP2. The GP2 ectodomain spontaneously formed trimers as revealed by chemical cross-linking. The endogenous SSP, known to be crucial for maturation and transport of full-length arenavirus GPC was dispensable for processing and secretion of the soluble GP ectodomain, suggesting a specific role of SSP in the stable prefusion conformation and transport of full-length GPC.

  8. Relevance of Assembly-Activating Protein for Adeno-associated Virus Vector Production and Capsid Protein Stability in Mammalian and Insect Cells.

    Science.gov (United States)

    Grosse, Stefanie; Penaud-Budloo, Magalie; Herrmann, Anne-Kathrin; Börner, Kathleen; Fakhiri, Julia; Laketa, Vibor; Krämer, Chiara; Wiedtke, Ellen; Gunkel, Manuel; Ménard, Lucie; Ayuso, Eduard; Grimm, Dirk

    2017-10-15

    The discovery that adeno-associated virus 2 (AAV2) encodes an eighth protein, called assembly-activating protein (AAP), transformed our understanding of wild-type AAV biology. Concurrently, it raised questions about the role of AAP during production of recombinant vectors based on natural or molecularly engineered AAV capsids. Here, we show that AAP is indeed essential for generation of functional recombinant AAV2 vectors in both mammalian and insect cell-based vector production systems. Surprisingly, we observed that AAV2 capsid proteins VP1 to -3 are unstable in the absence of AAP2, likely due to rapid proteasomal degradation. Inhibition of the proteasome led to an increase of intracellular VP1 to -3 but neither triggered assembly of functional capsids nor promoted nuclear localization of the capsid proteins. Together, this underscores the crucial and unique role of AAP in the AAV life cycle, where it rapidly chaperones capsid assembly, thus preventing degradation of free capsid proteins. An expanded analysis comprising nine alternative AAV serotypes (1, 3 to 9, and rh10) showed that vector production always depends on the presence of AAP, with the exceptions of AAV4 and AAV5, which exhibited AAP-independent, albeit low-level, particle assembly. Interestingly, AAPs from all 10 serotypes could cross-complement AAP-depleted helper plasmids during vector production, despite there being distinct intracellular AAP localization patterns. These were most pronounced for AAP4 and AAP5, congruent with their inability to rescue an AAV2/AAP2 knockout. We conclude that AAP is key for assembly of genuine capsids from at least 10 different AAV serotypes, which has implications for vectors derived from wild-type or synthetic AAV capsids. IMPORTANCE Assembly of adeno-associated virus 2 (AAV2) is regulated by the assembly-activating protein (AAP), whose open reading frame overlaps with that of the viral capsid proteins. As the majority of evidence was obtained using virus

  9. Multi-layered control of Galectin-8 mediated autophagy during adenovirus cell entry through a conserved PPxY motif in the viral capsid.

    Directory of Open Access Journals (Sweden)

    Charlotte Montespan

    2017-02-01

    Full Text Available Cells employ active measures to restrict infection by pathogens, even prior to responses from the innate and humoral immune defenses. In this context selective autophagy is activated upon pathogen induced membrane rupture to sequester and deliver membrane fragments and their pathogen contents for lysosomal degradation. Adenoviruses, which breach the endosome upon entry, escape this fate by penetrating into the cytosol prior to autophagosome sequestration of the ruptured endosome. We show that virus induced membrane damage is recognized through Galectin-8 and sequesters the autophagy receptors NDP52 and p62. We further show that a conserved PPxY motif in the viral membrane lytic protein VI is critical for efficient viral evasion of autophagic sequestration after endosomal lysis. Comparing the wildtype with a PPxY-mutant virus we show that depletion of Galectin-8 or suppression of autophagy in ATG5-/- MEFs rescues infectivity of the PPxY-mutant virus while depletion of the autophagy receptors NDP52, p62 has only minor effects. Furthermore we show that wildtype viruses exploit the autophagic machinery for efficient nuclear genome delivery and control autophagosome formation via the cellular ubiquitin ligase Nedd4.2 resulting in reduced antigenic presentation. Our data thus demonstrate that a short PPxY-peptide motif in the adenoviral capsid permits multi-layered viral control of autophagic processes during entry.

  10. Antiviral activity of α-helical stapled peptides designed from the HIV-1 capsid dimerization domain

    Directory of Open Access Journals (Sweden)

    Cowburn David

    2011-05-01

    Full Text Available Abstract Background The C-terminal domain (CTD of HIV-1 capsid (CA, like full-length CA, forms dimers in solution and CTD dimerization is a major driving force in Gag assembly and maturation. Mutations of the residues at the CTD dimer interface impair virus assembly and render the virus non-infectious. Therefore, the CTD represents a potential target for designing anti-HIV-1 drugs. Results Due to the pivotal role of the dimer interface, we reasoned that peptides from the α-helical region of the dimer interface might be effective as decoys to prevent CTD dimer formation. However, these small peptides do not have any structure in solution and they do not penetrate cells. Therefore, we used the hydrocarbon stapling technique to stabilize the α-helical structure and confirmed by confocal microscopy that this modification also made these peptides cell-penetrating. We also confirmed by using isothermal titration calorimetry (ITC, sedimentation equilibrium and NMR that these peptides indeed disrupt dimer formation. In in vitro assembly assays, the peptides inhibited mature-like virus particle formation and specifically inhibited HIV-1 production in cell-based assays. These peptides also showed potent antiviral activity against a large panel of laboratory-adapted and primary isolates, including viral strains resistant to inhibitors of reverse transcriptase and protease. Conclusions These preliminary data serve as the foundation for designing small, stable, α-helical peptides and small-molecule inhibitors targeted against the CTD dimer interface. The observation that relatively weak CA binders, such as NYAD-201 and NYAD-202, showed specificity and are able to disrupt the CTD dimer is encouraging for further exploration of a much broader class of antiviral compounds targeting CA. We cannot exclude the possibility that the CA-based peptides described here could elicit additional effects on virus replication not directly linked to their ability to bind

  11. Biochemical and biophysical characterization of cell-free synthesized Rift Valley fever virus nucleoprotein capsids enables in vitro screening to identify novel antivirals.

    Science.gov (United States)

    Broce, Sean; Hensley, Lisa; Sato, Tomoharu; Lehrer-Graiwer, Joshua; Essrich, Christian; Edwards, Katie J; Pajda, Jacqueline; Davis, Christopher J; Bhadresh, Rami; Hurt, Clarence R; Freeman, Beverly; Lingappa, Vishwanath R; Kelleher, Colm A; Karpuj, Marcela V

    2016-05-14

    Viral capsid assembly involves the oligomerization of the capsid nucleoprotein (NP), which is an essential step in viral replication and may represent a potential antiviral target. An in vitro transcription-translation reaction using a wheat germ (WG) extract in combination with a sandwich ELISA assay has recently been used to identify small molecules with antiviral activity against the rabies virus. Here, we examined the application of this system to viruses with capsids with a different structure, such as the Rift Valley fever virus (RVFV), the etiological agent of a severe emerging infectious disease. The biochemical and immunological characterization of the in vitro-generated RVFV NP assembly products enabled the distinction between intermediately and highly ordered capsid structures. This distinction was used to establish a screening method for the identification of potential antiviral drugs for RVFV countermeasures. These results indicated that this unique analytical system, which combines nucleoprotein oligomerization with the specific immune recognition of a highly ordered capsid structure, can be extended to various viral families and used both to study the early stages of NP assembly and to assist in the identification of potential antiviral drugs in a cost-efficient manner. Reviewed by Jeffry Skolnick and Noah Isakov. For the full reviews please go to the Reviewers' comments section.

  12. EXPRESSION AND SELF-ASSEMBLY OF NORWALK VIRUS CAPSID PROTEIN FROM VENEZUELAN EQUINE ENCEPHALITIS VIRUS REPLICONS. (R826139)

    Science.gov (United States)

    The perspectives, information and conclusions conveyed in research project abstracts, progress reports, final reports, journal abstracts and journal publications convey the viewpoints of the principal investigator and may not represent the views and policies of ORD and EPA. Concl...

  13. NMR structure of the N-terminal domain of capsid protein from the Mason-Pfizer monkey virus

    Czech Academy of Sciences Publication Activity Database

    Macek, Pavel; Chmelík, Josef; Křížová, Ivana; Kadeřávek, P.; Padrta, P.; Žídek, L.; Wildová, Marcela; Hadravová, Romana; Chaloupková, R.; Pichová, Iva; Ruml, T.; Rumlová, Michaela; Sklenář, V.

    2009-01-01

    Roč. 392, č. 1 (2009), s. 100-114 ISSN 0022-2836 R&D Projects: GA MŠk LC545; GA MŠk 1M0508; GA ČR GA204/09/1388; GA ČR GESCO/06/E001 Grant - others:GA MŠk(CZ) 1M0520; MŠk(CZ) LC06030 Program:1M; LC Institutional research plan: CEZ:AV0Z40550506; CEZ:AV0Z50200510 Keywords : M-PMV * betaretroviruses * capsid protein * NMR structure * internal dynamics Subject RIV: CE - Biochemistry Impact factor: 3.871, year: 2009

  14. Stabilization of the beta-hairpin in Mason-Pfizer monkey virus capsid protein- a critical step for infectivity

    Czech Academy of Sciences Publication Activity Database

    Obr, M.; Hadravová, Romana; Doležal, Michal; Křížová, Ivana; Papoušková, V.; Žídek, L.; Hrabal, R.; Ruml, T.; Rumlová, Michaela

    2014-01-01

    Roč. 11, Oct 30 (2014), 94/1-94/14 ISSN 1742-4690 R&D Projects: GA ČR(CZ) GA14-15326S; GA MŠk LO1302 Grant - others:GA MŠk(CZ) ED1.1.00/02.0068; Seventh Framework Programme of the European Union(XE) FP7-261863 Program:ED Institutional support: RVO:61388963 Keywords : retrovirus * assembly * M-PMV * capsid protein * maturation * beta-hairpin Subject RIV: EE - Microbiology, Virology Impact factor: 4.185, year: 2014 http://www.retrovirology.com/content/11/1/94

  15. Elimination of contaminating cap genes in AAV vector virions reduces immune responses and improves transgene expression in a canine gene therapy model.

    Science.gov (United States)

    Wang, Z; Halbert, C L; Lee, D; Butts, T; Tapscott, S J; Storb, R; Miller, A D

    2014-04-01

    Animal and human gene therapy studies utilizing AAV vectors have shown that immune responses to AAV capsid proteins can severely limit transgene expression. The main source of capsid antigen is that associated with the AAV vectors, which can be reduced by stringent vector purification. A second source of AAV capsid proteins is that expressed from cap genes aberrantly packaged into AAV virions during vector production. This antigen source can be eliminated by the use of a cap gene that is too large to be incorporated into an AAV capsid, such as a cap gene containing a large intron (captron gene). Here, we investigated the effects of elimination of cap gene transfer and of vector purification by CsCl gradient centrifugation on AAV vector immunogenicity and expression following intramuscular injection in dogs. We found that both approaches reduced vector immunogenicity and that combining the two produced the lowest immune responses and highest transgene expression. This combined approach enabled the use of a relatively mild immunosuppressive regimen to promote robust micro-dystrophin gene expression in Duchenne muscular dystrophy-affected dogs. Our study shows the importance of minimizing AAV cap gene impurities and indicates that this improvement in AAV vector production may benefit human applications.

  16. The Facial Expression Action Stimulus Test. A test battery for the assessment of face memory, face and object perception, configuration processing and facial expression recognition

    Directory of Open Access Journals (Sweden)

    Beatrice eDe Gelder

    2015-10-01

    Full Text Available There are many ways to assess face perception skills. In this study, we describe a novel task battery FEAST (Facial Expression Action Stimulus Test developed to test recognition of identity and expressions of human faces as well as stimulus control categories. The FEAST consists of a neutral and emotional face memory task, a face and object identity matching task, a face and house part-to-whole matching task, and a human and animal facial expression matching task. The identity and part-to-whole matching tasks contain both upright and inverted conditions. The results provide reference data of a healthy sample of controls in two age groups for future users of the FEAST.

  17. Neural processing of fearful and happy facial expressions during emotion-relevant and emotion-irrelevant tasks: a fixation-to-feature approach

    Science.gov (United States)

    Neath-Tavares, Karly N.; Itier, Roxane J.

    2017-01-01

    Research suggests an important role of the eyes and mouth for discriminating facial expressions of emotion. A gaze-contingent procedure was used to test the impact of fixation to facial features on the neural response to fearful, happy and neutral facial expressions in an emotion discrimination (Exp.1) and an oddball detection (Exp.2) task. The N170 was the only eye-sensitive ERP component, and this sensitivity did not vary across facial expressions. In both tasks, compared to neutral faces, responses to happy expressions were seen as early as 100–120ms occipitally, while responses to fearful expressions started around 150ms, on or after the N170, at both occipital and lateral-posterior sites. Analyses of scalp topographies revealed different distributions of these two emotion effects across most of the epoch. Emotion processing interacted with fixation location at different times between tasks. Results suggest a role of both the eyes and mouth in the neural processing of fearful expressions and of the mouth in the processing of happy expressions, before 350ms. PMID:27430934

  18. Inclusion bodies of recombinant Epstein-Barr virus capsid antigen p18 as potential immobilized antigens in enzyme immunoassays for detection of nasopharyngeal carcinoma.

    Science.gov (United States)

    Lim, Chun Shen; Goh, Siang Ling; Kariapper, Leena; Krishnan, Gopala; Lim, Yat-Yuen; Ng, Ching Ching

    2015-08-25

    Development of indirect enzyme-linked immunosorbent assays (ELISAs) often utilizes synthetic peptides or recombinant proteins from Escherichia coli as immobilized antigens. Because inclusion bodies (IBs) formed during recombinant protein expression in E. coli are commonly thought as misfolded aggregates, only refolded proteins from IBs are used to develop new or in-house diagnostic assays. However, the promising utilities of IBs as nanomaterials and immobilized enzymes as shown in recent studies have led us to explore the potential use of IBs of recombinant Epstein-Barr virus viral capsid antigen p18 (VCA p18) as immobilized antigens in ELISAs for serologic detection of nasopharyngeal carcinoma (NPC). Thioredoxin fusion VCA p18 (VCA-Trx) and IBs of VCA p18 without fusion tags (VCA-IBs) were purified from E. coli. The diagnostic performances of IgG/VCA-IBs, IgG/VCA-Denat-IBs (using VCA-IBs coated in 8mol/l urea), IgG/VCA-Trx, and IgG/VCA-Peptide assays were compared by screening 100 NPC case-control pairs. The IgG/VCA-Denat-IBs assay showed the best area under the receiver operating characteristic curve (AUC: 0.802; p<0.05), while the AUCs for the IgG/VCA-IBs, IgG/VCA-Trx, and IgG/VCA-Peptide assays were comparable (AUC: 0.740, 0.727, and 0.741, respectively). We improved the diagnostic performance of the ELISA significantly using IBs of recombinant VCA p18. Copyright © 2015 Elsevier B.V. All rights reserved.

  19. Whole-Chain Tick Saliva Proteins Presented on Hepatitis B Virus Capsid-Like Particles Induce High-Titered Antibodies with Neutralizing Potential.

    Directory of Open Access Journals (Sweden)

    Philipp Kolb

    Full Text Available Ticks are vectors for various, including pathogenic, microbes. Tick saliva contains multiple anti-host defense factors that enable ticks their bloodmeals yet also facilitate microbe transmission. Lyme disease-causing borreliae profit specifically from the broadly conserved tick histamine release factor (tHRF, and from cysteine-rich glycoproteins represented by Salp15 from Ixodes scapularis and Iric-1 from Ixodes ricinus ticks which they recruit to their outer surface protein C (OspC. Hence these tick proteins are attractive targets for anti-tick vaccines that simultaneously impair borrelia transmission. Main obstacles are the tick proteins´ immunosuppressive activities, and for Salp15 orthologs, the lack of efficient recombinant expression systems. Here, we exploited the immune-enhancing properties of hepatitis B virus core protein (HBc derived capsid-like particles (CLPs to generate, in E. coli, nanoparticulate vaccines presenting tHRF and, as surrogates for the barely soluble wild-type proteins, cysteine-free Salp15 and Iric-1 variants. The latter CLPs were exclusively accessible in the less sterically constrained SplitCore system. Mice immunized with tHRF CLPs mounted a strong anti-tHRF antibody response. CLPs presenting cysteine-free Salp15 and Iric-1 induced antibodies to wild-type, including glycosylated, Salp15 and Iric-1. The broadly distributed epitopes included the OspC interaction sites. In vitro, the anti-Salp15 antibodies interfered with OspC binding and enhanced human complement-mediated killing of Salp15 decorated borreliae. A mixture of all three CLPs induced high titered antibodies against all three targets, suggesting the feasibility of combination vaccines. These data warrant in vivo validation of the new candidate vaccines´ protective potential against tick infestation and Borrelia transmission.

  20. Whole-Chain Tick Saliva Proteins Presented on Hepatitis B Virus Capsid-Like Particles Induce High-Titered Antibodies with Neutralizing Potential

    Science.gov (United States)

    Kolb, Philipp; Wallich, Reinhard; Nassal, Michael

    2015-01-01

    Ticks are vectors for various, including pathogenic, microbes. Tick saliva contains multiple anti-host defense factors that enable ticks their bloodmeals yet also facilitate microbe transmission. Lyme disease-causing borreliae profit specifically from the broadly conserved tick histamine release factor (tHRF), and from cysteine-rich glycoproteins represented by Salp15 from Ixodes scapularis and Iric-1 from Ixodes ricinus ticks which they recruit to their outer surface protein C (OspC). Hence these tick proteins are attractive targets for anti-tick vaccines that simultaneously impair borrelia transmission. Main obstacles are the tick proteins´ immunosuppressive activities, and for Salp15 orthologs, the lack of efficient recombinant expression systems. Here, we exploited the immune-enhancing properties of hepatitis B virus core protein (HBc) derived capsid-like particles (CLPs) to generate, in E. coli, nanoparticulate vaccines presenting tHRF and, as surrogates for the barely soluble wild-type proteins, cysteine-free Salp15 and Iric-1 variants. The latter CLPs were exclusively accessible in the less sterically constrained SplitCore system. Mice immunized with tHRF CLPs mounted a strong anti-tHRF antibody response. CLPs presenting cysteine-free Salp15 and Iric-1 induced antibodies to wild-type, including glycosylated, Salp15 and Iric-1. The broadly distributed epitopes included the OspC interaction sites. In vitro, the anti-Salp15 antibodies interfered with OspC binding and enhanced human complement-mediated killing of Salp15 decorated borreliae. A mixture of all three CLPs induced high titered antibodies against all three targets, suggesting the feasibility of combination vaccines. These data warrant in vivo validation of the new candidate vaccines´ protective potential against tick infestation and Borrelia transmission. PMID:26352137

  1. Characterization of a protein kinase activity associated with purified capsids of the granulosis virus infecting Plodia interpunctella.

    Science.gov (United States)

    Wilson, M E; Consigli, R A

    1985-06-01

    A cyclic-nucleotide independent protein kinase activity has been demonstrated in highly purified preparations of the granulosis virus infecting the Indian meal moth, Plodia interpunctella. A divalent cation was required for activity. Manganese was the preferred cation and a pH of 8.0 resulted in optimal incorporation of 32P radiolabel into acid-precipitable protein. Although both ATP and GTP could serve as phosphate donors, ATP was utilized more efficiently by the enzyme. The kinase activity was localized to purified capsids; and the basic, internal core protein, VP12, was found to be the predominant viral acceptor. Histones and protamine sulfate could also serve as acceptors for the capsid-associated kinase activity. Using acid hydrolysis and phosphoamino acid analysis of phosphorylated nucleocapsid protein and nuclear magnetic resonance of phosphorylated VP12, it was determined that the enzyme catalyzes the transfer of phosphate to both serine and arginine residues of acceptor proteins. We believe this kinase activity may play a significant role in the viral replication cycle.

  2. Nucleolin Interacts with the Dengue Virus Capsid Protein and Plays a Role in Formation of Infectious Virus Particles

    Science.gov (United States)

    Balinsky, Corey A.; Schmeisser, Hana; Ganesan, Sundar; Singh, Kavita; Pierson, Theodore C.

    2013-01-01

    Dengue virus (DENV) is a mosquito-transmitted flavivirus that can cause severe disease in humans and is considered a reemerging pathogen of significant importance to public health. The DENV capsid (C) protein functions as a structural component of the infectious virion; however, it may have additional functions in the virus replicative cycle. Here, we show that the DENV C protein interacts and colocalizes with the multifunctional host protein nucleolin (NCL). Furthermore, we demonstrate that this interaction can be disrupted by the addition of an NCL binding aptamer (AS1411). Knockdown of NCL with small interfering RNA (siRNA) or treatment of cells with AS1411 results in a significant reduction of viral titers after DENV infection. Western blotting and quantitative RT-PCR (qRT-PCR) analysis revealed no differences in viral RNA or protein levels at early time points postinfection, suggesting a role for NCL in viral morphogenesis. We support this hypothesis by showing that treatment with AS1411 alters the migration characteristics of the viral capsid, as visualized by native electrophoresis. Here, we identify a critical interaction between DENV C protein and NCL that represents a potential new target for the development of antiviral therapeutics. PMID:24027323

  3. Impact of reducing and oxidizing agents on the infectivity of Qβ phage and the overall structure of its capsid.

    Science.gov (United States)

    Loison, Pauline; Majou, Didier; Gelhaye, Eric; Boudaud, Nicolas; Gantzer, Christophe

    2016-11-01

    Qβ phages infect Escherichia coli in the human gut by recognizing F-pili as receptors. Infection therefore occurs under reducing conditions induced by physiological agents (e.g. glutathione) or the intestinal bacterial flora. After excretion in the environment, phage particles are exposed to oxidizing conditions and sometimes disinfection. If inactivation does not occur, the phage may infect new hosts in the human gut through the oral route. During such a life cycle, we demonstrated that, outside the human gut, cysteines of the major protein capsid of Qβ phage form disulfide bonds. Disinfection with NaClO does not allow overoxidation to occur. Such oxidation induces inactivation rather by irreversible damage to the minor proteins. In the presence of glutathione, most disulfide bonds are reduced, which slightly increases the capacity of the phage to infect E. coli in vitro Such reduction is reversible and barely alters infectivity of the phage. Reduction of all disulfide bonds by dithiothreitol leads to complete capsid destabilization. These data provide new insights into how the phages are impacted by oxidizing-reducing conditions outside their host cell and raises the possibility of the intervention of the redox during life cycle of the phage. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  4. The lectin from Musa paradisiaca binds with the capsid protein of tobacco mosaic virus and prevents viral infection.

    Science.gov (United States)

    Liu, Xiao-Yu; Li, Huan; Zhang, Wei

    2014-05-04

    It has been demonstrated that the lectin from Musa paradisiaca (BanLec-1) could inhibit the cellular entry of human immunodeficiency virus (HIV). In order to evaluate its effects on tobacco mosaic virus (TMV), the banlec-1 gene was cloned and transformed into Escherichia coli and tobacco, respectively. Recombinant BanLec-1 showed metal ions dependence, and higher thermal and pH stability. Overexpression of banlec-1 in tobacco resulted in decreased leaf size, and higher resistance to TMV infection, which includes reduced TMV cellular entry, more stable chlorophyll contents, and enhanced antioxidant enzymes. BanLec-1 was found to bind directly to the TMV capsid protein in vitro , and to inhibit TMV infection in a dose-dependent manner. In contrast to limited prevention in vivo , purified rBanLec-1 exhibited more significant effects on TMV infection in vitro . Taken together, our study indicated that BanLec-1 could prevent TMV infection in tobacco, probably through the interaction between BanLec-1 and TMV capsid protein.

  5. African Swine Fever Virus Undergoes Outer Envelope Disruption, Capsid Disassembly and Inner Envelope Fusion before Core Release from Multivesicular Endosomes.

    Directory of Open Access Journals (Sweden)

    Bruno Hernáez

    2016-04-01

    Full Text Available African swine fever virus (ASFV is a nucleocytoplasmic large DNA virus (NCLDV that causes a highly lethal disease in domestic pigs. As other NCLDVs, the extracellular form of ASFV possesses a multilayered structure consisting of a genome-containing nucleoid successively wrapped by a thick protein core shell, an inner lipid membrane, an icosahedral protein capsid and an outer lipid envelope. This structural complexity suggests an intricate mechanism of internalization in order to deliver the virus genome into the cytoplasm. By using flow cytometry in combination with pharmacological entry inhibitors, as well as fluorescence and electron microscopy approaches, we have dissected the entry and uncoating pathway used by ASFV to infect the macrophage, its natural host cell. We found that purified extracellular ASFV is internalized by both constitutive macropinocytosis and clathrin-mediated endocytosis. Once inside the cell, ASFV particles move from early endosomes or macropinosomes to late, multivesicular endosomes where they become uncoated. Virus uncoating requires acidic pH and involves the disruption of the outer membrane as well as of the protein capsid. As a consequence, the inner viral membrane becomes exposed and fuses with the limiting endosomal membrane to release the viral core into the cytosol. Interestingly, virus fusion is dependent on virus protein pE248R, a transmembrane polypeptide of the inner envelope that shares sequence similarity with some members of the poxviral entry/fusion complex. Collective evidence supports an entry model for ASFV that might also explain the uncoating of other multienveloped icosahedral NCLDVs.

  6. Enhanced sensitivity in detection of antiviral antibody responses using biotinylation of foot-and-mouth disease virus (FMDV) capsids.

    Science.gov (United States)

    Kenney, Mary; Waters, Ryan A; Rieder, Elizabeth; Pega, Juan; Perez-Filguera, Mariano; Golde, William T

    2017-11-01

    Analysis of the immune response to infection of livestock by foot-and-mouth disease virus (FMDV) is most often reported as the serum antibody response to the virus. While measurement of neutralizing antibody has been sensitive and specific, measurements of the quality of the antibody response are less robust. Determining the immunoglobulin (Ig) isotype of the serum antibody response provides a deeper understanding of the biology of the response and more sensitive methods for these assays will facilitate analyses of B cell mediated immunity. We tested the hypothesis that using the virus as the molecular probe could be achieved by adding tags to the surface of the FMDV capsid, and that would enhance sensitivity in assays for anti-FMDV antibody responses. The use of a FLAG-tagged virus in these assays failed to yield improvement whereas chemically biotinylating the virus capsid resulted in significant enhancement of the signal. Here we describe methods using biotinylated virus for measuring anti-viral antibody in serum and antibody secreting cells (ASCs) in blood that are sensitive and specific. Finally, we describe using the biotinylated virus in flow cytometry where such assays should greatly enhance the analysis of anti-virus antibody producing B cells, allowing the investigator to focus on only the FMDV specific B cells when analyzing the development of the B cell response to either infection or vaccination. Published by Elsevier B.V.

  7. Evolutionary changes in the capsid P2 region of Australian strains of the norovirus GII.Pe_GII.4.

    Science.gov (United States)

    Bruggink, Leesa D; Moselen, Jean M; Roberts, Jason A; Marshall, John A

    2017-07-01

    The protruding (P) 2 region of the norovirus capsid is thought to include hypervariable sites involved in receptor binding. This study examines the changes that occurred in the P2 region of GII.Pe_GII.4 norovirus in the course of its evolution from a precursor phase (2008-2009), to an intermediate phase (2010) and finally to an epidemic phase (2012-2015). Twenty-two P2 region amino acid (aa) sequences (166 aa long) from all phases of the evolution of the virus were compared and the changes analysed.Results/key findings. Twenty sites in the P2 region underwent aa change and of these, 10 corresponded to previously proposed hypervariable sites and 10 to novel hypervariable sites. It was notable that aa changes at two sites, X and Y, only emerged as the epidemic phase progressed. 3D computer modelling of the P2 region indicated that neither X nor Y were in the uppermost 'crown', but further down in the 'neck' portion. The location of X and Y and the nature of aa change at Y suggest these sites were important in enhancing the structural integrity of the capsid, which in turn may have facilitated the longer term viability of the virus. The current study helps establish the validity of previously proposed hypervariable sites in the P2 region as well as indicating new ones. It also provides quantitative and qualitative data on how these sites changed over the evolutionary history of a particular norovirus strain.

  8. High-yield secretion of recombinant proteins expressed in tobacco cell culture with a designer glycopeptide tag: Process development.

    Science.gov (United States)

    Zhang, Ningning; Gonzalez, Maria; Savary, Brett; Xu, Jianfeng

    2016-03-01

    Low-yield protein production remains the most significant economic hurdle with plant cell culture technology. Fusions of recombinant proteins with hydroxyproline-O-glycosylated designer glycopeptide tags have consistently boosted secreted protein yields. This prompted us to study the process development of this technology aiming to achieve productivity levels necessary for commercial viability. We used a tobacco BY-2 cell culture expressing EGFP as fusion with a glycopeptide tag comprised of 32 repeat of "Ser-Pro" dipeptide, or (SP)32 , to study cell growth and protein secretion, culture scale-up, and establishment of perfusion cultures for continuous production. The BY-2 cells accumulated low levels of cell biomass (~7.5 g DW/L) in Schenk & Hildebrandt medium, but secreted high yields of (SP)32 -tagged EGFP (125 mg/L). Protein productivity of the cell culture has been stable for 6.0 years. The BY-2 cells cultured in a 5-L bioreactor similarly produced high secreted protein yield at 131 mg/L. Successful operation of a cell perfusion culture for 30 days was achieved under the perfusion rate of 0.25 and 0.5 day(-1) , generating a protein volumetric productivity of 17.6 and 28.9 mg/day/L, respectively. This research demonstrates the great potential of the designer glycopeptide technology for use in commercial production of valuable proteins with plant cell cultures. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. HCV E2 glycoprotein: mutagenesis of N-linked glycosylation sites and its effects on E2 expression and processing

    International Nuclear Information System (INIS)

    Slater-Handshy, Tiffany; Droll, Deborah A.; Fan Xiaofeng; Di Bisceglie, Adrian M.; Chambers, Thomas J.

    2004-01-01

    An expression system for analysis of the synthesis and processing of the E2 glycoprotein of a hepatitis C virus (HCV) genotype 1a strain was developed in transiently transfected cells. E2 proteins representing the entire length of the protein, including the transmembrane segment (E2) as well as two truncated versions (E2 660 and E2 715 ), were characterized for acquisition of N-linked glycans and transport to the media of transfected cells. To investigate the utilization of the 10 potential N-linked glycosylation sites on this E2 protein, a series of mutations consisting of single or multiple (two, three, four or eight) ablations of asparagine residues in the background of the E2 660 construct were analyzed. E2 660 proteins harboring single or multiple site mutations were produced at levels similar to that of wild-type protein, but secretion of the single mutants was mildly diminished, and elimination of two or more sites dramatically reduced delivery of the protein to the media. Similar results were obtained in Huh-7 cells with respect to intracellular synthesis and secretion of the mutant proteins. Analysis of oligosaccharide composition using endoglycosidase digestion revealed that all of the glycan residues on the intracellular forms of E2 660 , E2 715 , and E2 contained N-linked glycans modified into high-mannose carbohydrates, in contrast to the secreted forms, which were endo H resistant. The parental E2 660 protein could be readily detected in Huh-7 cells using anti-polyhistidine or antibody to recombinant E2. In contrast, E2 660 lacking the eight N-linked glycans was expressed but not detectable with anti-E2 antibody, and proteins lacking four glycans exhibited reduced reactivity. These experiments provide direct evidence that the presence of multiple N-linked glycans is required for the proper folding of the E2 protein in the ER and secretory pathway as well as for formation of its antigenic structure

  10. Path Expressions

    Science.gov (United States)

    1975-06-01

    Traditionally, synchronization of concurrent processes is coded in line by operations on semaphores or similar objects. Path expressions move the...discussion about a variety of synchronization primitives . An analysis of their relative power is found in [3]. Path expressions do not introduce yet...another synchronization primitive . A path expression relates to such primitives as a for- or while-statement of an ALGOL-like language relates to a JUMP

  11. Diagnostic significance of DNA and antibodies against capsid antigens of anti-Epstein–Barr virus antibodies levels in blood plasma of nasopharyngeal carcinoma patients from non-endemic region

    Directory of Open Access Journals (Sweden)

    V. E. Gurtsevich

    2015-01-01

    Full Text Available Epstein–Barr virus (EBV, a representative of the herpesvirus family, is the etiological agent for a number of benign and malignant human neoplasms. Among the latter, the nasopharyngeal carcinoma (NPC occupies a special place. In NPC development EBV plays a key role stimulating the progression of the pathological process from precancerous lesions to the cancer development. For most NPC patients, elevated levels of humoral IgG and IgA antibodies against capsid and early EBV antigens are characteristic and their antibody titers rise to high levels long before the diagnosis of cancer. Using this phenomenon, virus-specific antibodies are used for many years as markers for NPC screening, especially in cases of undiagnosed primary lesion. In recent years, in endemic for NPC regions (South China, South-East Asia a great attention has been paid to the use of quantitative determination of EBV DNA copies in the blood plasma of patients with NPC as a method of early cancer detection and monitoring.The aim of this study was to compare clinical significance of EBV DNA and humoral antibodies levels in blood plasma of NPC patients in non-endemic region, Russia. The results obtained indicate that both markers DNA / EBV and IgA antibodies against capsid EBV antigens can be successfully used for diagnosis of NPC in non-endemic region. However, in comparison with the virus-specific antibody titers, the viral DNA levels in the patients plasma are more sensitive and specific as NPC marker reflecting the efficacy of the therapy, and the state of remission or relapse.

  12. Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, Shauna M. [Cellular and Molecular Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Zhao, Linbo [Doctoral Program in Cancer Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Bosard, Catherine [Department of Microbiology and Immunology University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Imperiale, Michael J., E-mail: imperial@umich.edu [Cellular and Molecular Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Doctoral Program in Cancer Biology Program University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States); Department of Microbiology and Immunology University of Michigan 1150W Medical Center Dr 5724 Medical Science Bldg II Ann Arbor, MI 48109 (United States)

    2015-01-01

    BK Polyomavirus (BKPyV) is a ubiquitous nonenveloped human virus that can cause severe disease in immunocompromised populations. After internalization into renal proximal tubule epithelial cells, BKPyV traffics through the ER and enters the cytosol. However, it is unclear how the virus enters the nucleus. In this study, we elucidate a role for the nuclear localization signal located on the minor capsid proteins VP2 and VP3 during infection. Site-directed mutagenesis of a single lysine in the basic region of the C-terminus of the minor capsid proteins abrogated their nuclear localization, and the analogous genomic mutation reduced infectivity. Additionally, through use of the inhibitor ivermectin and knockdown of importin β1, we found that the importin α/β pathway is involved during infection. Overall these data are the first to show the significance of the NLS of the BKPyV minor capsid proteins during infection in a natural host cell. - Highlights: • Polyomaviruses must deliver their genome to the nucleus to replicate. • The minor capsid proteins have a well-conserved nuclear localization signal. • Mutation of this NLS diminishes, but does not completely inhibit, infection.

  13. Novel Infectivity-Enhanced Oncolytic Adenovirus with a Capsid-Incorporated Dual-Imaging Moiety for Monitoring Virotherapy in Ovarian Cancer

    Directory of Open Access Journals (Sweden)

    Kristopher J. Kimball

    2009-09-01

    Full Text Available We sought to develop a cancer-targeted, infectivity-enhanced oncolytic adenovirus that embodies a capsid-labeling fusion for non-invasive dual-modality imaging of ovarian cancer virotherapy. A functional fusion protein composed of fluorescent and nuclear imaging tags was genetically incorporated into the capsid of an infectivity-enhanced conditionally replicative adenovirus. Incorporation of herpes simplex virus thymidine kinase (HSV-tk and monomeric red fluorescent protein 1 (mRFP1 into the viral capsid and its genomic stability were verified by molecular analyses. Replication and oncolysis were evaluated in ovarian cancer cells. Fusion functionality was confirmed by in vitro gamma camera and fluorescent microscopy imaging. Comparison of tk-mRFP virus to single-modality controls revealed similar replication efficiency and oncolytic potency. Molecular fusion did not abolish enzymatic activity of HSV-tk as the virus effectively phosphorylated thymidine both ex vivo and in vitro. In vitro fluorescence imaging demonstrated a strong correlation between the intensity of fluorescent signal and cytopathic effect in infected ovarian cancer cells, suggesting that fluorescence can be used to monitor viral replication. We have in vitro validated a new infectivity-enhanced oncolytic adenovirus with a dual-imaging modality-labeled capsid, optimized for ovarian cancer virotherapy. The new agent could provide incremental gains toward climbing the barriers for achieving conditionally replicated adenovirus efficacy in human trials.

  14. Bacterial surface-displayed GII.4 human norovirus capsid proteins bound to surface of Romaine lettuce through HBGA-like molecules

    Science.gov (United States)

    Human Noroviruses (HuNoVs) are the main cause of nonbacterial gastroenteritis. Contaminated produce is a main vehicle for dissemination of HuNoVs. In this study, we used an ice nucleation protein (INP) mediated surface display system to present the protruding domain of GII.4 HuNoV capsid protein (G...

  15. Role of a nuclear localization signal on the minor capsid Proteins VP2 and VP3 in BKPyV nuclear entry

    International Nuclear Information System (INIS)

    Bennett, Shauna M.; Zhao, Linbo; Bosard, Catherine; Imperiale, Michael J.

    2015-01-01

    BK Polyomavirus (BKPyV) is a ubiquitous nonenveloped human virus that can cause severe disease in immunocompromised populations. After internalization into renal proximal tubule epithelial cells, BKPyV traffics through the ER and enters the cytosol. However, it is unclear how the virus enters the nucleus. In this study, we elucidate a role for the nuclear localization signal located on the minor capsid proteins VP2 and VP3 during infection. Site-directed mutagenesis of a single lysine in the basic region of the C-terminus of the minor capsid proteins abrogated their nuclear localization, and the analogous genomic mutation reduced infectivity. Additionally, through use of the inhibitor ivermectin and knockdown of importin β1, we found that the importin α/β pathway is involved during infection. Overall these data are the first to show the significance of the NLS of the BKPyV minor capsid proteins during infection in a natural host cell. - Highlights: • Polyomaviruses must deliver their genome to the nucleus to replicate. • The minor capsid proteins have a well-conserved nuclear localization signal. • Mutation of this NLS diminishes, but does not completely inhibit, infection

  16. Comparison of classical and affinity purification techniques of Mason-Pfizer monkey virus capsid protein: The Alteration of the product by an affinity tag

    Czech Academy of Sciences Publication Activity Database

    Rumlová, Michaela; Benedíková, Jitka; Cubínková, Romana; Pichová, Iva; Ruml, Tomáš

    2001-01-01

    Roč. 23, - (2001), s. 75-83 ISSN 1046-5928 R&D Projects: GA ČR GA203/00/1005 Institutional research plan: CEZ:AV0Z4055905 Keywords : Mason-Pfizer monkey virus * capsid protein Subject RIV: CE - Biochemistry Impact factor: 1.497, year: 2001

  17. Prognostic relevance of human papillomavirus L1 capsid protein detection within mild and moderate dysplastic lesions of the cervix uteri in combination with p16 biomarker

    DEFF Research Database (Denmark)

    Hilfrich, Ralf; Hariri, Jalil

    2008-01-01

    OBJECTIVE: To proof the prognostic relevance of HPV L1 capsid protein detection on colposcopically-guided punch biopsies in combination with p16. STUDY DESIGN: Sections of colposcopically-guided punch biopsies from 191 consecutive cases with at least 5 years of follow-up were stained with HPV L1 ...

  18. Brucella abortus Inhibits Major Histocompatibility Complex Class II Expression and Antigen Processing through Interleukin-6 Secretion via Toll-Like Receptor 2▿

    Science.gov (United States)

    Barrionuevo, Paula; Cassataro, Juliana; Delpino, M. Victoria; Zwerdling, Astrid; Pasquevich, Karina A.; Samartino, Clara García; Wallach, Jorge C.; Fossati, Carlos A.; Giambartolomei, Guillermo H.

    2008-01-01

    The strategies that allow Brucella abortus to survive inside macrophages for prolonged periods and to avoid the immunological surveillance of major histocompatibility complex class II (MHC-II)-restricted gamma interferon (IFN-γ)-producing CD4+ T lymphocytes are poorly understood. We report here that infection of THP-1 cells with B. abortus inhibited expression of MHC-II molecules and antigen (Ag) processing. Heat-killed B. abortus (HKBA) also induced both these phenomena, indicating the independence of bacterial viability and involvement of a structural component of the bacterium. Accordingly, outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, inhibited both MHC-II expression and Ag processing to the same extent as HKBA. Moreover, a synthetic lipohexapeptide that mimics the structure of the protein lipid moiety also inhibited MHC-II expression, indicating that any Brucella lipoprotein could down-modulate MHC-II expression and Ag processing. Inhibition of MHC-II expression and Ag processing by either HKBA or lipidated Omp19 (L-Omp19) depended on Toll-like receptor 2 and was mediated by interleukin-6. HKBA or L-Omp19 also inhibited MHC-II expression and Ag processing of human monocytes. In addition, exposure to the synthetic lipohexapeptide inhibited Ag-specific T-cell proliferation and IFN-γ production of peripheral blood mononuclear cells from Brucella-infected patients. Together, these results indicate that there is a mechanism by which B. abortus may prevent recognition by T cells to evade host immunity and establish a chronic infection. PMID:17984211

  19. Survival of salmonella transformed to express green fluorescent protein on Italian parsley as affected by processing and storage.

    Science.gov (United States)

    Duffy, E A; Cisneros-Zevallos, L; Castillo, A; Pillai, S D; Ricke, S C; Acuff, G R

    2005-04-01

    To study the effect of processing and storage parameters on the survival of Salmonella on fresh Italian parsley, parsley bunches were dipped for 3 or 15 min in suspensions that were preequilibrated to 5, 25, or 35 degrees C and inoculated with Salmonella transformed to express enhanced green fluorescent protein. Loosely attached and/or associated, strongly attached and/or associated, and internalized and/or entrapped Salmonella cells were enumerated over 0, 1, and 7 days of storage at 25 degrees C and over 0, 1, 7, 14, and 30 days of storage at 4 degrees C using surface-plating procedures. Leaf sections obtained from samples after 0, 1, and 7 days of storage were examined using confocal scanning laser microscopy. Temperature of the dip suspension had little effect on the attachment and survival of Salmonella cells on parsley. Regardless of the temperature or duration of dip, Salmonella was internalized. Immersion for longer times resulted in higher numbers of attached and internalized cells. Microscopic observations supported these results and revealed Salmonella cells near the stomata and within cracks in the cuticle. Storage temperature had the greatest impact on the survival of Salmonella cells on parsley. When stored at 25 degrees C, parsley had a shelf life of 7 days, and Salmonella populations significantly increased over the 7 days of storage. For parsley stored at 4 degrees C, numbers of Salmonella cells decreased over days 0, 1, and 7. After 7 days of storage, there were no viable internalized Salmonella cells detected. Storage temperature represents an important control point for the safety of fresh parsley.

  20. A central region in the minor capsid protein of papillomaviruses facilitates viral genome tethering and membrane penetration for mitotic nuclear entry.

    Directory of Open Access Journals (Sweden)

    Inci Aydin

    2017-05-01

    Full Text Available Incoming papillomaviruses (PVs depend on mitotic nuclear envelope breakdown to gain initial access to the nucleus for viral transcription and replication. In our previous work, we hypothesized that the minor capsid protein L2 of PVs tethers the incoming vDNA to mitotic chromosomes to direct them into the nascent nuclei. To re-evaluate how dynamic L2 recruitment to cellular chromosomes occurs specifically during prometaphase, we developed a quantitative, microscopy-based assay for measuring the degree of chromosome recruitment of L2-EGFP. Analyzing various HPV16 L2 truncation-mutants revealed a central chromosome-binding region (CBR of 147 amino acids that confers binding to mitotic chromosomes. Specific mutations of conserved motifs (IVAL286AAAA, RR302/5AA, and RTR313EEE within the CBR interfered with chromosomal binding. Moreover, assembly-competent HPV16 containing the chromosome-binding deficient L2(RTR313EEE or L2(IVAL286AAAA were inhibited for infection despite their ability to be transported to intracellular compartments. Since vDNA and L2 were not associated with mitotic chromosomes either, the infectivity was likely impaired by a defect in tethering of the vDNA to mitotic chromosomes. However, L2 mutations that abrogated chromatin association also compromised translocation of L2 across membranes of intracellular organelles. Thus, chromatin recruitment of L2 may in itself be a requirement for successful penetration of the limiting membrane thereby linking both processes mechanistically. Furthermore, we demonstrate that the association of L2 with