WorldWideScience

Sample records for expressing l523s protein

  1. Regulation and innovation dynamics for nanoresponsible development: The case of the French code de l'environnement L 523-1 to L 523-5

    International Nuclear Information System (INIS)

    Auplat, C; Slimane, S Ben

    2015-01-01

    This paper examines one aspect of innovation dynamics for nanoresponsible development: the links between regulation and innovation dynamics. It focuses on the case of the French Code de l'environnement, Articles L. 523-1 to L. 523-3. Articles L. 523-1 to L. 523-3 of the French environment code provide for the obligation to declare the quantities and uses of substances at nanoscale produced, distributed or imported in France. This procedure is intended to improve knowledge of these substances and their uses as well as of their markets and volumes sold, to ensure traceability and to collect available information on their toxicological and ecotoxicological properties. The paper builds on recent work on the emergence of a regulatory framework for nanotechnologies to take stock of the current situation in France, in the EU and globally and to explore how this specific law package may influence innovation and the shaping of new markets for nanobased materials. The study shows that nano-regulation does have an impact on innovation. However, the impact is not the same with EU regulation and with French regulation, and while EU regulation seems to create a favourable context for innovation, French regulation seems to do the opposite. With this study we hope to bring new perspectives to the field of the strategic management of innovation, and also to shed some light on the roles and challenges of institutions to facilitate nanoresponsible development. (paper)

  2. RAC1 P29S regulates PD-L1 expression in melanoma

    Science.gov (United States)

    Vu, Ha Linh; Rosenbaum, Sheera; Purwin, Timothy J.; Davies, Michael A.; Aplin, Andrew E.

    2015-01-01

    Summary Whole exome sequencing of cutaneous melanoma has led to the detection of P29 mutations in RAC1 in 5–9% of samples, but the role of RAC1 P29 mutations in melanoma biology remains unclear. Using reverse phase protein array analysis to examine the changes in protein/phospho-protein expression, we identified cyclin B1, PD-L1, Ets-1, and Syk as being selectively upregulated with RAC1 P29S expression and downregulated with RAC1 P29S depletion. Using the melanoma patient samples in TCGA, we found PD-L1 expression to be significantly increased in RAC1 P29S patients compared to RAC1 WT as well as other RAC1 mutants. The finding that PD-L1 is upregulated suggests that oncogenic RAC1 P29S may promote suppression of the antitumor immune response. This is a new insight into the biological function of RAC1 P29S mutations with potential clinical implications as PD-L1 is a candidate biomarker for increased benefit from treatment with anti-PD1 or anti-PD-L1 antibodies. PMID:26176707

  3. S100A10 protein expression is associated with oxaliplatin sensitivity in human colorectal cancer cells

    Directory of Open Access Journals (Sweden)

    Suzuki Sayo

    2011-12-01

    Full Text Available Abstract Background Individual responses to oxaliplatin (L-OHP-based chemotherapy remain unpredictable. The objective of our study was to find candidate protein markers for tumor sensitivity to L-OHP from intracellular proteins of human colorectal cancer (CRC cell lines. We performed expression difference mapping (EDM analysis of whole cell lysates from 11 human CRC cell lines with different sensitivities to L-OHP by using surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS, and identified a candidate protein by liquid chromatography/mass spectrometry ion trap time-of-flight (LCMS-IT-TOF. Results Of the qualified mass peaks obtained by EDM analysis, 41 proteins were differentially expressed in 11 human colorectal cancer cell lines. Among these proteins, the peak intensity of 11.1 kDa protein was strongly correlated with the L-OHP sensitivity (50% inhibitory concentrations (P R2 = 0.80. We identified this protein as Protein S100-A10 (S100A10 by MS/MS ion search using LCMS-IT-TOF. We verified its differential expression and the correlation between S100A10 protein expression levels in drug-untreated CRC cells and their L-OHP sensitivities by Western blot analyses. In addition, S100A10 protein expression levels were not correlated with sensitivity to 5-fluorouracil, suggesting that S100A10 is more specific to L-OHP than to 5-fluorouracil in CRC cells. S100A10 was detected in cell culture supernatant, suggesting secretion out of cells. Conclusions By proteomic approaches including SELDI technology, we have demonstrated that intracellular S100A10 protein expression levels in drug-untreated CRC cells differ according to cell lines and are significantly correlated with sensitivity of CRC cells to L-OHP exposure. Our findings provide a new clue to searching predictive markers of the response to L-OHP, suggesting that S100A10 is expected to be one of the candidate protein markers.

  4. Cloning, periplasmic expression, purification and structural characterization of human ribosomal protein L10

    International Nuclear Information System (INIS)

    Pereira, Larissa Miranda

    2009-01-01

    The ribosomal protein L10 (RP L10) is a strong candidate to be included in the class of tumor suppressor proteins. This protein, also denominated as QM, is known to participate in the binding of ribosomal subunits 60S and 40S and the translation of mRNAs. It has a molecular weight that varies between 24 and 26 kDa and an isoelectric point of (pI) 10.5. The sequence of the protein QM is highly conserved in mammals, plants, invertebrates, insects and yeast which indicates its critical functions in a cell. As a tumor suppressor, RP L10 has been studied in strains of Wilm's tumor (WT-1) and tumor cells in the stomach, where was observed a decrease in the amount of its mRNA. More recently, the RP L10 was found in low amounts in the early stages of prostate adenoma and showed some mutation in ovarian cancer, what indicates its role as a suppressor protein in the development of these diseases. It has also been described that this protein interacts with c-Jun and c-Yes inhibiting growth factors and consequently, cell division. This work has an important role on the establishment of soluble expression of QM to give base information for further studies on expression that aim to evaluate the specific regions where it acts binding the 60S and 40S ribosomal subunits and translation, as well as its binding to proto-oncogenes. The cDNA for QM protein was amplified by PCR and cloned into periplasmic expression vector p3SN8. The QM protein was expressed in E. coli BL21 (DE3) in the region of cytoplasm and periplasm, the best condition was obtained from the expression of the recombinant plasmid QM p1813 Q M at 25 degree C or 30 degree C, the soluble protein was obtained with small amounts of contaminants. The assays of secondary structure showed that the QM protein is predominantly alpha-helix, but when it loses the folding, this condition changes and the protein is replaced by β- sheet feature. (author)

  5. Several genes encoding ribosomal proteins are over-expressed in prostate-cancer cell lines: confirmation of L7a and L37 over-expression in prostate-cancer tissue samples.

    Science.gov (United States)

    Vaarala, M H; Porvari, K S; Kyllönen, A P; Mustonen, M V; Lukkarinen, O; Vihko, P T

    1998-09-25

    A cDNA library specific for mRNA over-expressed in prostate cancer was generated by subtractive hybridization of transcripts originating from prostatic hyperplasia and cancer tissues. cDNA encoding ribosomal proteins L4, L5, L7a, L23a, L30, L37, S14 and S18 was found to be present among 100 analyzed clones. Levels of ribosomal mRNA were significantly higher at least in one of the prostate-cancer cell lines, LNCaP, DU-145 and PC-3, than in hyperplastic tissue, as determined by slot-blot hybridization. Furthermore, L23a- and S14-transcript levels were significantly elevated in PC-3 cells as compared with those in the normal prostate epithelial cell line PrEC. Generally, dramatic changes in the mRNA content of the ribosomal proteins were not detected, the most evident over-expression being that of L37 mRNA, which was 3.4 times more abundant in LNCaP cells than in hyperplastic prostate tissue. The over-expression of L7a and L37 mRNA was confirmed in prostate-cancer tissue samples by in situ hybridization. Elevated cancer-related expression of L4 and L30 has not been reported, but levels of the other ribosomal proteins are known to be increased in several types of cancers. These results therefore suggest that prostate cancer is comparable with other types of cancers, in that a larger pool of some ribosomal proteins is gained during the transformation process, by an unknown mechanism.

  6. [Rapid expression and preparation of the recombinant fusion protein sTNFRII-gAD by adenovirus vector system].

    Science.gov (United States)

    Lu, Yue; Liu, Dan; Zhang, Xiaoren; Liu, Xuerong; Shen, Wei; Zheng, Gang; Liu, Yunfan; Dong, Xiaoyan; Wu, Xiaobing; Gao, Jimin

    2011-08-01

    We expressed and prepared the recombinant fusion protein sTNFRII-gAD consisted of soluble TNF receptor II and the globular domain of adiponectin by Adenovirus Vector System in mammalian BHK21c022 cells. First we used the adenovirus vector containing EGFP gene (rAd5-EGFP) to infect BHK21c022 cells at different MOI (from 0 to 1 000), and then evaluated their transduction efficiency and cytotoxicity. Similarly, we constructed the replication-deficient adenovirus type 5-sTNFRII-gAD (rAd5-sTNFRII-gAD). We collected the supernatants for Western blotting to determine the optimal MOI by comparing the expression levels of sTNFRII-gAD fusion protein, 48 h after the BHK21c022 cells were infected by rAd5-sTNFRII-gAD at different MOIs (from 0 to 1 000). Then, we chose rAd5-sTNFRII-gAD at MOI 100 to infect five bottles of BHK21c022 cells in 100 mL of serum-free chemically defined media 100 mL, harvested the supernatant every 48 h for 6 times, and condense and purify sTNFRII-gAD fusion protein by ammonium sulfate salt-out and size-exclusion chromatography, respectively. Finally, we analyzed anti-TNFalpha activity of sTNFRII-gAD fusion protein on L929 cells in vitro. The results showed that the number of BHK21c022 cells expressing EGFP protein was increased significantly with the increase of MOI. However, some cells died at MOI of 1 000 while there was no significant cytotoxicity at MOI from 0 to 100. Western blotting analysis showed that the more adenoviruses, the higher expression of sTNFRII-gAD fusion protein in the supernatant with the highest expression at MOI 1 000. We successfully obtained about 11 mg bioactive and purified sTNFRII-gAD fusion protein at last. The in vitro assay demonstrated that the sTNFRII-gAD fusion protein was potent to antagonize TNFalpha's cytotoxicity to L929 cells. Put together, we established a recombinant adenovirus vector/BHK21 cell expression system, characteristic of the efficient serum-free culture and easy scaling-up.

  7. Sequence of the amino-terminal region of rat liver ribosomal proteins S4, S6, S8, L6, L7a, L18, L27, L30, L37, L37a, and L39.

    Science.gov (United States)

    Wittmann-Liebold, B; Geissler, A W; Lin, A; Wool, I G

    1979-01-01

    The sequence of the amino-terminal region of eleven rat liver ribosomal proteins--S4, S6, S8, L6, L7a, L18, L27, L30, L37a, and L39--was determined. The analysis confirmed the homogeneity of the proteins and suggests that they are unique, since no extensive common sequences were found. The N-terminal regions of the rat liver proteins were compared with amino acid sequences in Saccharomyces cerevisiae and in Escherichia coli ribosomal proteins. It seems likely that the proteins L37 from rat liver and Y55 from yeast ribosomes are homologous. It is possible that rat liver L7a or L37a or both are related to S cerevisiae Y44, although the similar sequences are at the amino-terminus of the rat liver proteins and in an internal region of Y44. A number of similarities in the sequences of rat liver and E coli ribosomal proteins have been found; however, it is not yet possible to say whether they connote a common ancestry.

  8. Proteomic Identification of Differentially Expressed Proteins during Alfalfa (Medicago sativa L.) Flower Development.

    Science.gov (United States)

    Chen, Lingling; Chen, Quanzhu; Zhu, Yanqiao; Hou, Longyu; Mao, Peisheng

    2016-01-01

    Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa ( Medicago sativa L.) seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1), pollination (S2), and the post-pollination senescence period (S3). Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD). Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs), carbonic anhydrase, and NADPH: quinone oxidoreductase-like protein. Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower development and

  9. Cloning, periplasmic expression, purification and structural characterization of human ribosomal protein L10; Clonagem, expressao, purificacao e caracterizacao estrutural da proteina ribossomal L10 humana recombinante

    Energy Technology Data Exchange (ETDEWEB)

    Pereira, Larissa Miranda

    2009-07-01

    The ribosomal protein L10 (RP L10) is a strong candidate to be included in the class of tumor suppressor proteins. This protein, also denominated as QM, is known to participate in the binding of ribosomal subunits 60S and 40S and the translation of mRNAs. It has a molecular weight that varies between 24 and 26 kDa and an isoelectric point of (pI) 10.5. The sequence of the protein QM is highly conserved in mammals, plants, invertebrates, insects and yeast which indicates its critical functions in a cell. As a tumor suppressor, RP L10 has been studied in strains of Wilm's tumor (WT-1) and tumor cells in the stomach, where was observed a decrease in the amount of its mRNA. More recently, the RP L10 was found in low amounts in the early stages of prostate adenoma and showed some mutation in ovarian cancer, what indicates its role as a suppressor protein in the development of these diseases. It has also been described that this protein interacts with c-Jun and c-Yes inhibiting growth factors and consequently, cell division. This work has an important role on the establishment of soluble expression of QM to give base information for further studies on expression that aim to evaluate the specific regions where it acts binding the 60S and 40S ribosomal subunits and translation, as well as its binding to proto-oncogenes. The cDNA for QM protein was amplified by PCR and cloned into periplasmic expression vector p3SN8. The QM protein was expressed in E. coli BL21 (DE3) in the region of cytoplasm and periplasm, the best condition was obtained from the expression of the recombinant plasmid QM p1813{sub Q}M at 25 degree C or 30 degree C, the soluble protein was obtained with small amounts of contaminants. The assays of secondary structure showed that the QM protein is predominantly alpha-helix, but when it loses the folding, this condition changes and the protein is replaced by {beta}- sheet feature. (author)

  10. Proteomic identification of differentially expressed proteins during alfalfa (Medicago sativa L. flower development

    Directory of Open Access Journals (Sweden)

    Lingling Chen

    2016-10-01

    Full Text Available Flower development, pollination, and fertilization are important stages in the sexual reproduction process of plants; they are also critical steps in the control of seed formation and development. During alfalfa (Medicago sativa L. seed production, some distinct phenomena such as a low seed setting ratio, serious flower falling, and seed abortion commonly occur. However, the causes of these phenomena are complicated and largely unknown. An understanding of the mechanisms that regulate alfalfa flowering is important in order to increase seed yield. Hence, proteomic technology was used to analyze changes in protein expression during the stages of alfalfa flower development. Flower samples were collected at pre-pollination (S1, pollination (S2, and the post-pollination senescence period (S3. Twenty-four differentially expressed proteins were successfully identified, including 17 down-regulated in pollinated flowers, one up-regulated in pollinated and senesced flowers, and six up-regulated in senesced flowers. The largest proportions of the identified proteins were involved in metabolism, signal transduction, defense response, oxidation reduction, cell death, and programmed cell death (PCD. Their expression profiles demonstrated that energy metabolism, carbohydrate metabolism, and amino acid metabolism provided the nutrient foundation for pollination in alfalfa. Furthermore, there were three proteins involved in multiple metabolic pathways: dual specificity kinase splA-like protein (kinase splALs, carbonic anhydrase (CA, and NADPH: quinone oxidoreductase-like protein (NQOLs. Expression patterns of these proteins indicated that MAPK cascades regulated multiple processes, such as signal transduction, stress response, and cell death. PCD also played an important role in the alfalfa flower developmental process, and regulated both pollination and flower senescence. The current study sheds some light on protein expression profiles during alfalfa flower

  11. Ribosomal protein L10(L12)4 autoregulates expression of the Bacillus subtilis rplJL operon by a transcription attenuation mechanism.

    Science.gov (United States)

    Yakhnin, Helen; Yakhnin, Alexander V; Babitzke, Paul

    2015-08-18

    Ribosomal protein genes are often controlled by autoregulatory mechanisms in which a protein encoded in the operon can either bind to newly synthesized rRNA during rapid growth or to a similar target in its mRNA during poor growth conditions. The rplJL operon encodes the ribosomal L10(L12)4 complex. In Escherichia coli L10(L12)4 represses its translation by binding to the rplJL leader transcript. We identified three RNA structures in the Bacillus subtilis rplJL leader transcript that function as an anti-antiterminator, antiterminator or intrinsic terminator. Expression studies with transcriptional and translational fusions indicated that L10(L12)4 represses rplJL expression at the transcriptional level. RNA binding studies demonstrated that L10(L12)4 stabilizes the anti-antiterminator structure, while in vitro transcription results indicated that L10(L12)4 promotes termination. Disruption of anti-antiterminator, antiterminator or terminator function by competitor oligonucleotides in vitro and by mutations in vivo demonstrated that each structure functions as predicted. Thus, rplJL expression is regulated by an autogenous transcription attenuation mechanism in which L10(L12)4 binding to the anti-antiterminator structure promotes termination. We also found that translation of a leader peptide increases rplJL expression, presumably by inhibiting Rho-dependent termination. Thus, the rplJL operon of B. subtilis is regulated by transcription attenuation and antitermination mechanisms. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  12. Comparison of the binding characteristics of [{sup 18}F]THK-523 and other amyloid imaging tracers to Alzheimer's disease pathology

    Energy Technology Data Exchange (ETDEWEB)

    Harada, Ryuichi; Okamura, Nobuyuki; Yoshikawa, Takeo; Yanai, Kazuhiko [Tohoku University School of Medicine, Department of Pharmacology, Sendai (Japan); Furumoto, Shozo [Tohoku University School of Medicine, Department of Pharmacology, Sendai (Japan); Tohoku University, Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Sendai (Japan); Tago, Tetsuro; Iwata, Ren [Tohoku University, Division of Radiopharmaceutical Chemistry, Cyclotron and Radioisotope Center, Sendai (Japan); Maruyama, Masahiro; Higuchi, Makoto [Molecular Imaging Center, National Institute of Radiological Sciences, Chiba (Japan); Arai, Hiroyuki [Tohoku University, Department of Geriatrics and Gerontology, Institute of Development, Aging and Cancer, Sendai (Japan); Kudo, Yukitsuka [Tohoku University, Innovation of New Biomedical Engineering Center, Sendai (Japan)

    2013-01-15

    Extensive deposition of senile plaques and neurofibrillary tangles in the brain is a pathological hallmark of Alzheimer's disease (AD). Although several PET imaging agents have been developed for in vivo detection of senile plaques, no PET probe is currently available for selective detection of neurofibrillary tangles in the living human brain. Recently, [{sup 18}F]THK-523 was developed as a potential in vivo imaging probe for tau pathology. The purpose of this study was to compare the binding properties of [{sup 18}F]THK-523 and other amyloid imaging agents, including PiB, BF-227 and FDDNP, to synthetic protein fibrils and human brain tissue. In vitro radioligand binding assays were conducted using synthetic amyloid {beta}{sub 42} and K18{Delta}K280-tau fibrils. Nonspecific binding was determined by the addition of unlabelled compounds at a concentration of 2 {mu}M. To examine radioligand binding to neuropathological lesions, in vitro autoradiography was conducted using sections of AD brain. [{sup 18}F]THK-523 showed higher affinity for tau fibrils than for A{beta} fibrils, whereas the other probes showed a higher affinity for A{beta} fibrils. The autoradiographic analysis indicated that [{sup 18}F]THK-523 accumulated in the regions containing a high density of tau protein deposits. Conversely, PiB and BF-227 accumulated in the regions containing a high density of A{beta} plaques. These findings suggest that the unique binding profile of [{sup 18}F]THK-523 can be used to identify tau deposits in AD brain. (orig.)

  13. Expression and purification of sea raven type II antifreeze protein from Drosophila melanogaster S2 cells.

    Science.gov (United States)

    Scotter, Andrew J; Kuntz, Douglas A; Saul, Michelle; Graham, Laurie A; Davies, Peter L; Rose, David R

    2006-06-01

    We present a system for the expression and purification of recombinant sea raven type II antifreeze protein, a cysteine-rich, C-type lectin-like globular protein that has proved to be a difficult target for recombinant expression and purification. The cDNAs encoding the pro- and mature forms of the sea raven protein were cloned into a modified pMT Drosophila expression vector. These constructs produced N-terminally His(6)-tagged pro- and mature forms of the type II antifreeze protein under the control of a metallothionein promoter when transfected into Drosophila melanogaster S2 cells. Upon induction of stable cell lines the two proteins were expressed at high levels and secreted into the medium. The proteins were then purified from the cell medium in a simple and rapid protocol using immobilized metal affinity chromatography and specific protease cleavage by tobacco etch virus protease. The proteins demonstrated antifreeze activity indistinguishable from that of wild-type sea raven antifreeze protein purified from serum as illustrated by ice affinity purification, ice crystal morphology, and their ability to inhibit ice crystal growth. This expression and purification system gave yields of 95 mg/L of fully active mature sea raven type II AFP and 9.6 mg/L of the proprotein. This surpasses all previous attempts to express this protein in Escherichia coli, baculovirus-infected fall armyworm cells and Pichia pastoris and will provide sufficient protein for structural analysis.

  14. Expression Levels and Localizations of DVL3 and sFRP3 in Glioblastoma

    Directory of Open Access Journals (Sweden)

    Anja Kafka

    2017-01-01

    Full Text Available The expression patterns of critical molecular components of Wnt signaling, sFRP3 and DVL3, were investigated in glioblastoma, the most aggressive form of primary brain tumors, with the aim to offer potential biomarkers. The protein expression levels and localizations in tumor tissue were revealed by immunohistochemistry and evaluated by the semiquantitative method and immunoreactivity score. Majority of glioblastomas had moderate expression levels for both DVL3 (52.4% and sFRP3 (52.3%. Strong expression levels were observed in 23.1% and 36.0% of samples, respectively. DVL3 was localized in cytoplasm in 97% of glioblastomas, of which 44% coexpressed the protein in the nucleus. sFRP3 subcellular distribution showed that it was localized in the cytoplasm in 94% of cases. Colocalization in the cytoplasm and nucleus was observed in 50% of samples. Wilcox test indicated that the domination of the strong signal is in connection with simultaneous localization of DVL3 protein in the cytoplasm and the nucleus. Patients with strong expression of DVL3 will significantly more often have the protein in the nucleus (P=6.33×10−5. No significant correlation between the two proteins was established, nor were their signal strengths correlated with epidemiological parameters. Our study contributes to better understanding of glioblastoma molecular profile.

  15. Influenza viral vectors expressing the Brucella OMP16 or L7/L12 proteins as vaccines against B. abortus infection.

    Science.gov (United States)

    Tabynov, Kaissar; Sansyzbay, Abylai; Kydyrbayev, Zhailaubay; Yespembetov, Bolat; Ryskeldinova, Sholpan; Zinina, Nadezhda; Assanzhanova, Nurika; Sultankulova, Kulaisan; Sandybayev, Nurlan; Khairullin, Berik; Kuznetsova, Irina; Ferko, Boris; Egorov, Andrej

    2014-04-10

    We generated novel, effective candidate vaccine against Brucella abortus based on recombinant influenza viruses expressing the Brucella ribosomal protein L7/L12 or outer membrane protein (Omp)-16 from the NS1 open reading frame. The main purpose of this work was to evaluate the safety, immunogenicity and protectiveness of vaccine candidate in laboratory animals. Four recombinant influenza A viral constructs of the subtypes Н5N1 or H1N1 expressing the Brucella proteins L7/L12 or Omp16 were obtained by a reverse genetics method: Flu-NS1-124-L7/L12-H5N1, Flu-NS1-124-Omp16-H5N1, Flu-NS1-124-L7/L12-H1N1 and Flu-NS1-124-Omp16-H1N1. Despite of substantial modification of NS1 gene, all constructs replicated well and were retain their Brucella inserts over five passages in embryonated chicken eggs (CE). Administration of the mono- or bivalent vaccine formulation via prime-boost intranasal (i.n.), conjunctival (c.) or subcutaneous (s.c.) immunization was safe in mice; no deaths, body weight loss or pathomorphological changes were observed over 56 days. Moreover, guinea pigs vaccinated i.n. with vaccine vectors did not shed the vaccine viruses through their upper respiratory tract after the prime and booster vaccination. These findings confirmed the replication-deficient phenotype of viral vectors. The highest antibody response to Brucella antigen was obtained with constructs expressing L7/L12 (ELISA, GMT 242.5-735.0); whereas the highest T-cell immune response- with construct expressing Omp16 (ELISPOT, 337 ± 52-651 ± 45 spots/4×105cells), which was comparable (P > 0.05) to the response induced by the commercial vaccine B. abortus 19. Interestingly, c. immunization appeared to be optimal for eliciting T-cell immune response. In guinea pigs, the highest protective efficacy after challenge with B. abortus 544 was achieved with Omp16 expressing constructs in both monovalent or bivalent vaccine formulations; protective efficacy was comparable to those induced by

  16. Expression of the Argonaute protein PiwiL2 and piRNAs in adult mouse mesenchymal stem cells

    International Nuclear Information System (INIS)

    Wu, Qiuling; Ma, Qi; Shehadeh, Lina A.; Wilson, Amber; Xia, Linghui; Yu, Hong; Webster, Keith A.

    2010-01-01

    Piwi (P-element-induced wimpy testis) first discovered in Drosophila is a member of the Argonaute family of micro-RNA binding proteins with essential roles in germ-cell development. The murine homologue of PiwiL2, also known as Mili is selectively expressed in the testes, and mice bearing targeted mutations of the PiwiL2 gene are male-sterile. PiwiL2 proteins are thought to protect the germ line genome by suppressing retrotransposons, stabilizing heterochromatin structure, and regulating target genes during meiosis and mitosis. Here, we report that PiwiL2 and associated piRNAs (piRs) may play similar roles in adult mouse mesenchymal stem cells. We found that PiwiL2 is expressed in the cytoplasm of metaphase mesenchymal stem cells from the bone marrow of adult and aged mice. Knockdown of PiwiL2 with a specific siRNA enhanced cell proliferation, significantly increased the number of cells in G1/S and G2/M cell cycle phases and was associated with increased expression of cell cycle genes CCND1, CDK8, microtubule regulation genes, and decreased expression of tumor suppressors Cables 1, LATS, and Cxxc4. The results suggest broader roles for Piwi in genome surveillance beyond the germ line and a possible role in regulating the cell cycle of mesenchymal stem cells.

  17. Expression of the Argonaute protein PiwiL2 and piRNAs in adult mouse mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Qiuling; Ma, Qi; Shehadeh, Lina A.; Wilson, Amber; Xia, Linghui; Yu, Hong [Department of Molecular and Cellular Pharmacology, Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136 (United States); Webster, Keith A., E-mail: kwebster@med.miami.edu [Department of Molecular and Cellular Pharmacology, Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136 (United States)

    2010-06-11

    Piwi (P-element-induced wimpy testis) first discovered in Drosophila is a member of the Argonaute family of micro-RNA binding proteins with essential roles in germ-cell development. The murine homologue of PiwiL2, also known as Mili is selectively expressed in the testes, and mice bearing targeted mutations of the PiwiL2 gene are male-sterile. PiwiL2 proteins are thought to protect the germ line genome by suppressing retrotransposons, stabilizing heterochromatin structure, and regulating target genes during meiosis and mitosis. Here, we report that PiwiL2 and associated piRNAs (piRs) may play similar roles in adult mouse mesenchymal stem cells. We found that PiwiL2 is expressed in the cytoplasm of metaphase mesenchymal stem cells from the bone marrow of adult and aged mice. Knockdown of PiwiL2 with a specific siRNA enhanced cell proliferation, significantly increased the number of cells in G1/S and G2/M cell cycle phases and was associated with increased expression of cell cycle genes CCND1, CDK8, microtubule regulation genes, and decreased expression of tumor suppressors Cables 1, LATS, and Cxxc4. The results suggest broader roles for Piwi in genome surveillance beyond the germ line and a possible role in regulating the cell cycle of mesenchymal stem cells.

  18. Cell cycle, differentiation and tissue-independent expression of ribosomal protein L37.

    Science.gov (United States)

    Su, S; Bird, R C

    1995-09-15

    A unique human cDNA (hG1.16) that encodes a mRNA of 450 nucleotides was isolated from a subtractive library derived from HeLa cells. The relative expression level of hG1.16 during different cell-cycle phases was determined by Northern-blot analysis of cells synchronized by double-thymidine block and serum deprivation/refeeding. hG1.16 was constitutively expressed during all phases of the cell cycle, including the quiescent phase when even most constitutively expressed genes experience some suppression of expression. The expression level of hG1.16 did not change during terminal differentiation of myoblasts to myotubes, during which cells become permanently post-mitotic. Examination of other tissues revealed that the relative expression level of hG1.16 was constitutive in all embryonic mouse tissues examined, including brain, eye, heart, kidney, liver, lung and skeletal muscle. This was unusual in that expression was not down-modulated during differentiation and did not vary appreciably between tissue types. Analysis by inter-species Northern-blot analysis revealed that hG1.16 was highly conserved among all vertebrates studied (from fish to humans but not in insects). DNA sequence analysis of hG1.16 revealed a high level of similarity to rat ribosomal protein L37, identifying hG1.16 as a new member of this multigene family. The deduced amino acid sequence of hG1.16 was identical to rat ribosomal protein L37 that contained 97 amino acids, many of which are highly positively charged (15 arginine and 14 lysine residues with a predicted M(r) of 11,065). hG1.16 protein has a single C2-C2 zinc-finger-like motif which is also present in rat ribosomal protein L37. Using primers designed from the sequence of hG1.16, unique bovine and rat cDNAs were also isolated by 5'-rapid-amplification of cDNA ends. DNA sequences of bovine and rat G1.16, clones were 92.8% and 92.2% similar to human G1.16 while the deduced amino acid sequences derived from bovine and rat cDNAs each differed

  19. [Eukaryotic expression of Leptospira interrogans lipL32/1-ompL1/1 fusion gene encoding genus-specific protein antigens and the immunoreactivity of expression products].

    Science.gov (United States)

    Yan, Jie; Zhao, Shou-feng; Mao, Ya-fei; Ruan, Ping; Luo, Yi-hui; Li, Shu-ping; Li, Li-wei

    2005-01-01

    To construct the eukaryotic expression system of L.interrogans lipL32/1-ompL1/1 fusion gene and to identify the immunoreactivity of expression products. PCR with linking primer was used to construct the fusion gene lipL32/1-ompL1/1. The P.pastoris eukaryotic expression system of the fusion gene, pPIC9K-lipL32/1-ompL1/1-P. pastorisGS115, was constructed after the fusion gene was cloned and sequenced. Colony with phenotype His(+)Mut(+) was isolated by using MD and MM plates and His(+) Mut(+) transformant with high resistance to G418 was screened out by using YPD plate. Using lysate of His(+) Mut(+) colony with high copies of the target gene digested with yeast lyase as the template and 5'AOX1 and 3'AOX1 as the primers, the target fusion gene in chromosome DNA of the constructed P. pastoris engineering strain was detected by PCR. Methanol in BMMY medium was used to induce the target recombinant protein rLipL32/1-rOmpL1/1 expression. rLipL32/1-rOmpL1/1 in the medium supernatant was extracted by using ammonium sulfate precipitation and Ni-NTA affinity chromatography. Output and immunoreactivity of rLipL32/1-rOmpL1/1 were measured by SDS-PAGE and Western blot methods, respectively. Amplification fragments of the obtained fusion gene lipL32/1-ompL1/1 was 1794 bp in size. The homogeneity of nucleotide and putative amino acid sequences of the fusion gene were as high as 99.94 % and 100 %, respectively, compared with the sequences of original lipL32/1 and ompL1/1 genotypes. The constructed eukaryotic expression system was able to secrete rLipL32/1-rOmpL1/1 with an output of 10 % of the total proteins in the supernatant, which located the expected position after SDS-PAGE. The rabbit anti-rLipL32/1 and anti-rOmpL1/1 sera could combine the expressed rLipL32/1-rOmpL1/1. An eukaryotic expression system with high efficiency in P.pastoris of L.interrogans lipL32/1-ompL1/1 fusion gene was successfully constructed in this study. The expressed fusion protein shows specific

  20. Mycobacterium tuberculosis HspX/EsxS Fusion Protein: Gene Cloning, Protein Expression, and Purification in Escherichia coli.

    Science.gov (United States)

    Khademi, Farzad; Yousefi-Avarvand, Arshid; Derakhshan, Mohammad; Meshkat, Zahra; Tafaghodi, Mohsen; Ghazvini, Kiarash; Aryan, Ehsan; Sankian, Mojtaba

    2017-10-01

    The purpose of this study was to clone, express, and purify a novel multidomain fusion protein of Micobacterium tuberculosis (Mtb) in a prokaryotic system. An hspX/esxS gene construct was synthesized and ligated into a pGH plasmid, E. coli TOP10 cells were transformed, and the vector was purified. The vector containing the construct and pET-21b (+) plasmid were digested with the same enzymes and the construct was ligated into pET-21b (+). The accuracy of cloning was confirmed by colony PCR and sequencing. E. coli BL21 cells were transformed with the pET-21b (+)/hspX/esxS expression vector and protein expression was evaluated. Finally, the expressed fusion protein was purified on a Ni-IDA column and verified by SDS-PAGE and western blotting. The hspX/esxS gene construct was inserted into pET-21b (+) and recombinant protein expression was induced with IPTG in E. coli BL21 cells. Various concentrations of IPTG were tested to determine the optimum concentration for expression induction. The recombinant protein was expressed in insoluble inclusion bodies. Three molar guanidine HCl was used to solubilize the insoluble protein. An HspX/EsxS Mtb fusion protein was expressed in E. coli and the recombinant protein was purified. After immunological analysis, the HspX/EsxS fusion protein might be an anti-tuberculosis vaccine candidate in future clinical trial studies.

  1. Fragile X mental retardation protein expression in Alzheimer’s disease

    Directory of Open Access Journals (Sweden)

    Abigail J Renoux

    2014-10-01

    Full Text Available The FMR1 protein product, FMRP, is an mRNA binding protein associated with translational inhibition of target transcripts. One FMRP target is the amyloid precursor protein (APP mRNA, and APP levels are elevated in Fmr1 KO mice. Given that elevated APP protein expression can elicit Alzheimer’s disease (AD in patients and model systems, we evaluated whether FMRP expression might be altered in Alzheimer’s autopsy brain samples and mouse models compared to controls. In a double transgenic mouse model of AD (APP/PS1, we found no difference in FMRP expression in aged AD model mice compared to littermate controls. FMRP expression was also similar in AD and control patient frontal cortex and cerebellum samples. Fragile X-associated tremor/ataxia syndrome (FXTAS is an age related neurodegenerative disorder caused by expanded CGG repeats in the 5’UTR of the FMR1 gene. Patients experience cognitive impairment and dementia in addition to motor symptoms. In parallel studies, we measured FMRP expression in cortex and cerebellum from three FXTAS patients and found reduced expression compared to both controls and Alzheimer’s patient brains, consistent with animal models. We also find increased APP levels in cerebellar, but not cortical, samples of FXTAS patients compared to controls. Taken together, these data suggest that a decrease in FMRP expression is unlikely to be a primary contributor to Alzheimer’s disease pathogenesis.

  2. The clinical expression of hereditary protein C and protein S deficiency: : a relation to clinical thrombotic risk-factors and to levels of protein C and protein S

    NARCIS (Netherlands)

    Henkens, C. M. A.; van der Meer, J.; Hillege, J. L.; Bom, V. J. J.; Halie, M. R.; van der Schaaf, W.

    We investigated 103 first-degree relatives of 13 unrelated protein C or protein S deficient patients to assess the role of additional thrombotic risk factors and of protein C and protein S levels in the clinical expression of hereditary protein C and protein S deficiency. Fifty-seven relatives were

  3. [Construction and application of prokaryotic expression system of Leptospira interrogans lipL32/1-lipL41/1 fusion gene].

    Science.gov (United States)

    Luo, Dong-jiao; Yan, Jie; Mao, Ya-fei; Li, Shu-ping; Luo, Yi-hui; Li, Li-wei

    2005-01-01

    To construct lipL32/1-lipL41/1 fusion gene and its prokaryotic expression system and to determine frequencies of carrying and expression of lipL32 and lipL41 genes in L.interrogans wild strains and specific antibody levels in sera from leptospirosis patients. lipL32/1-lipL41/1 fusion gene was constructed using linking primer PCR method and the prokaryotic expression system of the fusion gene done with routine techniques. SDS-PAGE was used to examine expression of the target recombinant protein rLipL32/1-rLipL41/1. Immunogenicity of rLipL32/1-rLipL41/1 was identified by Western blot. PCR and MAT were performed to detect carrying and expression of lipL32 and lipL41 genes in 97 wild L.interrogans strains. Antibodies against products of lipL32 and lipL41 genes in serum samples from 228 leptospirosis patients were detected by ELISA method. The homogeneity of nucleotide and putative amino acid sequence of lipL32/1-lipL41/1 fusion gene were 99.9 % and 99.8 % in comparison with the reported sequences. Expression output of the target recombinant protein rLipL32/1-rLipL41/1, mainly present in inclusion body, accounted for 10 % of the total bacterial proteins. Both the rabbit antisera against rLipL32/1 and rLipL41/1 could combine to rLipL32/1-rLipL41/1. 97.9 % and 87.6 % of the L.interrogans wild strains had lipL32 and lipL41 genes, respectively. 95.9 % and 84.5 % of the wild strains were positive for MAT with titers of 1:4 - 1:128 using rabbit anti-rLipL32s or anti-rLipL41s sera, respectively. 94.7 % - 97.4 % of the patients'serum samples were positive for rLipL32s antibodies, while 78.5 % - 84.6 % of them were rLipL41s antibodies detectable. lipL32/1-jlipL41/1 fusion gene and its prokaryotic expression system were successfully constructed. The expressed fusion protein had qualified immunogenicity. Both the lipL32 and lipL41 genes are extensively carried and frequently expressed by different serogroups of L.interrogans, and their expression products exhibit cross-antigenicity.

  4. Over-expression of 60s ribosomal L23a is associated with cellular proliferation in SAG resistant clinical isolates of Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Sanchita Das

    Full Text Available Sodium antimony gluconate (SAG unresponsiveness of Leishmania donovani (Ld had effectively compromised the chemotherapeutic potential of SAG. 60s ribosomal L23a (60sRL23a, identified as one of the over-expressed protein in different resistant strains of L.donovani as observed with differential proteomics studies indicates towards its possible involvement in SAG resistance in L.donovani. In the present study 60sRL23a has been characterized for its probable association with SAG resistance mechanism.The expression profile of 60s ribosomal L23a (60sRL23a was checked in different SAG resistant as well as sensitive strains of L.donovani clinical isolates by real-time PCR and western blotting and was found to be up-regulated in resistant strains. Ld60sRL23a was cloned, expressed in E.coli system and purified for raising antibody in swiss mice and was observed to have cytosolic localization in L.donovani. 60sRL23a was further over-expressed in sensitive strain of L.donovani to check its sensitivity profile against SAG (Sb V and III and was found to be altered towards the resistant mode.This study reports for the first time that the over expression of 60sRL23a in SAG sensitive parasite decreases the sensitivity of the parasite towards SAG, miltefosine and paramomycin. Growth curve of the tranfectants further indicated the proliferative potential of 60sRL23a assisting the parasite survival and reaffirming the extra ribosomal role of 60sRL23a. The study thus indicates towards the role of the protein in lowering and redistributing the drug pressure by increased proliferation of parasites and warrants further longitudinal study to understand the underlying mechanism.

  5. Switch in rod opsin gene expression in the European eel, Anguilla anguilla (L.).

    Science.gov (United States)

    Hope, A J; Partridge, J C; Hayes, P K

    1998-01-01

    The rod photoreceptors of the European eel, Anguilla anguilla (L.), alter their wavelength of maximum sensitivity (lambda max) from c.a. 523 nm to c.a. 482 nm at maturation, a switch involving the synthesis of a new visual pigment protein (opsin) that is inserted into the outer segments of existing rods. We artificially induced the switch in rod opsin production by the administration of hormones, and monitored the switch at the level of mRNA accumulation using radiolabelled oligonuleotides that hybridized differently to the two forms of eel rod opsin. The production of the deep-sea form of rod opsin was detected 6 h after the first hormone injection, and the switch in rod opsin expression was complete within four weeks, at which time only the mRNA for the deep-sea opsin was detectable in the retinal cells. It is suggested that this system could be used as a tractable model for studying the regulatory control of opsin gene expression. PMID:9633112

  6. Identification of multiple small heat-shock protein genes in Plutella xylostella (L.) and their expression profiles in response to abiotic stresses

    OpenAIRE

    Chen, Xi’en; Zhang, Yalin

    2014-01-01

    We identify and characterize 14 small heat-shock protein (sHSP) genes from the diamondback moth (DBM), Plutella xylostella (L.), a destructive pest. Phylogenetic analyses indicate that, except for sHSP18.8 and sHSP19.22, the other 12 DBM sHSPs belong to five known insect sHSP groups. Developmental expression analysis revealed that most sHSPs peaked in the pupal and adult stages. The transcripts of sHSPs display tissue specificity with two exhibiting constitutive expression in four tested tiss...

  7. Changes in protein expression in testes of L2 strain Taiwan country chickens in response to acute heat stress.

    Science.gov (United States)

    Wang, Shih-Han; Cheng, Chuen-Yu; Chen, Chao-Jung; Chen, Hsin-Hsin; Tang, Pin-Chi; Chen, Chih-Feng; Lee, Yen-Pai; Huang, San-Yuan

    2014-07-01

    Heat stress causes a decrease of fertility in roosters. Yet, the way acute heat stress affects protein expression remains poorly understood. This study investigated differential protein expression in testes of the L2 strain of Taiwan country chickens following acute heat stress. Twelve 45-week-old roosters were allocated into four groups, including control roosters kept at 25 °C, roosters subjected to 38 °C acute heat stress for 4 hours without recovery, with 2 hours of recovery, and with 6 hours of recovery. Testis samples were collected for morphologic assay and protein analysis. Some of the differentially expressed proteins were validated by Western blot and immunohistochemistry. Abnormal and apoptotic spermatogenic cells were observed at 2 hours of recovery after acute heat stress, especially among the spermatocytes. Two-dimensional difference gel electrophoresis revealed that 119 protein spots were differentially expressed in chicken testes following heat stress, and peptide mass fingerprinting revealed that these spots contained 92 distinct proteins. In the heat-stressed samples, the heat shock proteins, chaperonin containing t-complex, and proteasome subunits were downregulated, and glutathione S-transferase, transgelin, and DJ-1 were upregulated. Our results demonstrate that acute heat stress impairs the processes of translation, protein folding, and protein degradation, and thus results in apoptosis and interferes with spermatogenesis. On the other hand, the increased expression of antioxidant enzymes, including glutathione S-transferase and DJ-1, may attenuate heat-induced damage. These findings may have implications for breeding chickens that can tolerate more extreme conditions. Copyright © 2014 Elsevier Inc. All rights reserved.

  8. Expression of cbsA encoding the collagen-binding S-protein of Lactobacillus crispatus JCM5810 in Lactobacillus casei ATCC 393T

    NARCIS (Netherlands)

    Martínez, B.; Sillanpää, J.; Smit, E.; Korhonen, T.K.; Pouwels, P.H.

    2000-01-01

    The cbsA gene encoding the collagen-binding S-layer protein of Lactobacillus crispatus JCM5810 was expressed in L. casei ATCC 393T. The S-protein was not retained on the surface of the recombinant bacteria but was secreted into the medium. By translational fusion of CbsA to the cell wall sorting

  9. Cross-linking of L5 protein to 5 S RNA in rat liver 60-S subunits by ultraviolet irradiation

    International Nuclear Information System (INIS)

    Terao, K.; Uchiumi, T.; Ogata, K.

    1980-01-01

    After rat liver 60-S ribosomal subunits were irradiated with ultraviolet light at 254 nm, they were treated with EDTA and then subjected to sucrose density-gradient centrifugation to isolate 5 S RNA-protein complex. When 5 S RNA-protein was analyzed by SDS-acrylamide gel electrophoresis which dissociated noncovalent 5 S RNA-protein, two protein bands were observed. The one showed a slower mobility than the protein band (L5) of 5 S RNA-protein from non-irradiated 60 S subunit and the other showed the same mobility as L5 protein. Since the former band was shown to be specific to ultraviolet-irradiation, it was considered as cross-linked 5 S RNA-protein. After the two protein bands were iodinated with 125 I, labeled protein was extracted and treated with RNAase. Thereafter, it was analyzed by two-dimensional acrylamide gel electrophoresis, followed by autoradiography. The results indicate that the protein component of cross-linked 5 S RNA-protein is L5 protein (ribosomal protein); these proteins are designated according to the proposed uniform nomenclature. (Auth.)

  10. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Takahashi, Nobuhiko; Yoshizaki, Takayuki; Hiranaka, Natsumi; Suzuki, Takeshi; Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya; Kanazawa, Kaoru; Yoshida, Mika; Naito, Sumiyoshi; Fujiya, Mikihiro; Kohgo, Yutaka; Ieko, Masahiro

    2011-01-01

    Highlights: ► Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. ► Adipose lipin-1 expression is reduced in obesity. ► Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. ► Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-κB activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  11. Suppression of lipin-1 expression increases monocyte chemoattractant protein-1 expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Takahashi, Nobuhiko, E-mail: ntkhs@hoku-iryo-u.ac.jp [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Yoshizaki, Takayuki [Innovation Center, Kagoshima University, 1-21-40 Korimoto, Kagoshima 890-0065 (Japan); Hiranaka, Natsumi; Suzuki, Takeshi [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yui, Tomoo; Akanuma, Masayasu; Oka, Kazuya [Department of Fixed Prosthodontics and Oral Implantology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Kanazawa, Kaoru [Department of Dental Anesthesiology, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Yoshida, Mika; Naito, Sumiyoshi [Department of Clinical Laboratory, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan); Fujiya, Mikihiro; Kohgo, Yutaka [Division of Gastroenterology and Hematology/Oncology, Department of Medicine, Asahikawa Medical University, 2-1-1-1 Midorigaoka-Higashi, Asahikawa, Hokkaido 078-8510 (Japan); Ieko, Masahiro [Department of Internal Medicine, School of Dentistry, Health Sciences University of Hokkaido, 1757 Kanazawa, Ishikari-Toubetsu, Hokkaido 061-0023 (Japan)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer Lipin-1 affects lipid metabolism, adipocyte differentiation, and transcription. Black-Right-Pointing-Pointer Adipose lipin-1 expression is reduced in obesity. Black-Right-Pointing-Pointer Lipin-1 depletion using siRNA in 3T3-L1 adipocytes increased MCP-1 expression. Black-Right-Pointing-Pointer Lipin-1 is involved in adipose inflammation. -- Abstract: Lipin-1 plays a crucial role in the regulation of lipid metabolism and cell differentiation in adipocytes. Expression of adipose lipin-1 is reduced in obesity, and metabolic syndrome. However, the significance of this reduction remains unclear. This study investigated if and how reduced lipin-1 expression affected metabolism. We assessed mRNA expression levels of various genes related to adipocyte metabolism in lipin-1-depleted 3T3-L1 adipocytes by introducing its specific small interfering RNA. In lipin-1-depleted adipocytes, mRNA and protein expression levels of monocyte chemoattractant protein-1 (MCP-1) were significantly increased, although the other genes tested were not altered. The conditioned media from the cells promoted monocyte chemotaxis. The increase in MCP-1 expression was prevented by treatment with quinazoline or salicylate, inhibitors of nuclear factor-{kappa}B activation. Because MCP-1 is related to adipose inflammation and systemic insulin resistance, these results suggest that a reduction in adipose lipin-1 in obesity may exacerbate adipose inflammation and metabolism.

  12. L-malate enhances the gene expression of carried proteins and antioxidant enzymes in liver of aged rats.

    Science.gov (United States)

    Zeng, X; Wu, J; Wu, Q; Zhang, J

    2015-01-01

    Previous studies in our laboratory reported L-malate as a free radical scavenger in aged rats. To investigate the antioxidant mechanism of L-malate in the mitochondria, we analyzed the change in gene expression of two malate-aspartate shuttle (MAS)-related carried proteins (AGC, aspartate/glutamate carrier and OMC, oxoglutarate/malate carrier) in the inner mitochondrial membrane, and three antioxidant enzymes (CAT, SOD, and GSH-Px) in the mitochondria. The changes in gene expression of these proteins and enzymes were examined by real-time RT-PCR in the heart and liver of aged rats treated with L-malate. L-malate was orally administered in rats continuously for 30 days using a feeding atraumatic needle. We found that the gene expression of OMC and GSH-Px mRNA in the liver increased by 39 % and 38 %, respectively, in the 0.630 g/kg L-malate treatment group than that in the control group. The expression levels of SOD mRNA in the liver increased by 39 %, 56 %, and 78 % in the 0.105, 0.210, and 0.630 g/kg L-malate treatment groups, respectively. No difference were observed in the expression levels of AGC, OMC, CAT, SOD, and GSH-Px mRNAs in the heart of rats between the L-malate treatment and control groups. These results predicted that L-malate may increase the antioxidant capacity of mitochondria by enhancing the expression of mRNAs involved in the MAS and the antioxidant enzymes.

  13. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    Science.gov (United States)

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-12-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in two narrow planar parallel layers belonging to the protein and rRNA, respectively. The regions, including these atoms conserved in Bacteria and Archaea, can be considered an RNA-protein recognition module. Comparison of the T. thermophilus L5 structure in the RNA-bound form with the isolated Bacillus stearothermophilus L5 structure shows that the RNA-recognition module on the protein surface does not undergo significant changes upon RNA binding. In the crystal of the complex, the protein interacts with another RNA molecule in the asymmetric unit through the beta-sheet concave surface. This protein/RNA interface simulates the interaction of L5 with 23S rRNA observed in the Haloarcula marismortui 50S ribosomal subunit.

  14. Leptospiral outer membrane protein LipL41 is not essential for acute leptospirosis but requires a small chaperone protein, lep, for stable expression.

    Science.gov (United States)

    King, Amy M; Bartpho, Thanatchaporn; Sermswan, Rasana W; Bulach, Dieter M; Eshghi, Azad; Picardeau, Mathieu; Adler, Ben; Murray, Gerald L

    2013-08-01

    Leptospirosis is a worldwide zoonosis caused by pathogenic Leptospira spp., but knowledge of leptospiral pathogenesis remains limited. However, the development of mutagenesis systems has allowed the investigation of putative virulence factors and their involvement in leptospirosis. LipL41 is the third most abundant lipoprotein found in the outer membranes of pathogenic leptospires and has been considered a putative virulence factor. LipL41 is encoded on the large chromosome 28 bp upstream of a small open reading frame encoding a hypothetical protein of unknown function. This gene was named lep, for LipL41 expression partner. In this study, lipL41 was found to be cotranscribed with lep. Two transposon mutants were characterized: a lipL41 mutant and a lep mutant. In the lep mutant, LipL41 protein levels were reduced by approximately 90%. Lep was shown through cross-linking and coexpression experiments to bind to LipL41. Lep is proposed to be a molecular chaperone essential for the stable expression of LipL41. The roles of LipL41 and Lep in the pathogenesis of Leptospira interrogans were investigated; surprisingly, neither of these two unique proteins was essential for acute leptospirosis.

  15. Inhibition of H9N2 virus invasion into dendritic cells by the S-layer protein from L. acidophilus ATCC 4356

    Directory of Open Access Journals (Sweden)

    Xue Gao

    2016-10-01

    Full Text Available Probiotics are essential for the prevention of virus invasion and the maintenance of the immune balance. However, the mechanism of competition between probiotics and virus are unknown. The objectives of this study were to isolate the surface layer (S-layer protein from L. acidophilus ATCC 4356 as a new antiviral material, to evaluate the stimulatory effects of the S-layer protein on mouse dendritic cells (DCs and to verify its ability to inhibit the invasion of H9N2 avian influenza virus (AIV in DCs. We found that the S-layer protein induced DCs activation and up-regulated the IL-10 secretion. The invasion and replication of the H9N2 virus in mouse DCs was successfully demonstrated. However, the invasion of H9N2 virus into DCs could be inhibited by treatment with the S-layer protein prior to infection, which was verified by the reduced hemagglutinin (HA and neuraminidase (NA mRNA expression, and nucleoprotein (NP protein expression in the DCs. Furthermore, treatment with the S-layer protein increases the Mx1, Isg15, and Ddx58 mRNA expressions, and remits the inflammatory process to inhibit H9N2 AIV infection. In conclusion, the S-layer protein stimulates the activation of mouse DCs, inhibits H9N2 virus invasion of DCs, and stimulates the IFN-I signalling pathway. Thus, the S-layer protein from Lactobacillus is a promising biological antiviral material for AIV prevention.

  16. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids.

    Science.gov (United States)

    Shishkina, Galina T; Kalinina, Tatyana S; Bulygina, Veta V; Lanshakov, Dmitry A; Babluk, Ekaterina V; Dygalo, Nikolay N

    2015-01-01

    Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT) neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg), and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg). Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.

  17. Anti-Apoptotic Protein Bcl-xL Expression in the Midbrain Raphe Region Is Sensitive to Stress and Glucocorticoids.

    Directory of Open Access Journals (Sweden)

    Galina T Shishkina

    Full Text Available Anti-apoptotic proteins are suggested to be important for the normal health of neurons and synapses as well as for resilience to stress. In order to determine whether stressful events may influence the expression of anti-apoptotic protein Bcl-xL in the midbrain and specifically in the midbrain serotonergic (5-HT neurons involved in neurobehavioral responses to adverse stimuli, adult male rats were subjected to short-term or chronic forced swim stress. A short-term stress rapidly increased the midbrain bcl-xl mRNA levels and significantly elevated Bcl-xL immunoreactivity in the midbrain 5-HT cells. Stress-induced increase in glucocorticoid secretion was implicated in the observed effect. The levels of bcl-xl mRNA were decreased after stress when glucocorticoid elevation was inhibited by metyrapone (MET, 150 mg/kg, and this decrease was attenuated by glucocorticoid replacement with dexamethasone (DEX; 0.2 mg/kg. Both short-term stress and acute DEX administration, in parallel with Bcl-xL, caused a significant increase in tph2 mRNA levels and slightly enhanced tryptophan hydroxylase immunoreactivity in the midbrain. The increasing effect on the bcl-xl expression was specific to the short-term stress. Forced swim repeated daily for 2 weeks led to a decrease in bcl-xl mRNA in the midbrain without any effects on the Bcl-xL protein expression in the 5-HT neurons. In chronically stressed animals, an increase in tph2 gene expression was not associated with any changes in tryptophan hydroxylase protein levels. Our findings are the first to demonstrate that both short-term stress and acute glucocorticoid exposures induce Bcl-xL protein expression in the midbrain 5-HT neurons concomitantly with the activation of the 5-HT synthesis pathway in these neurons.

  18. Enhancing production and cytotoxic activity of polymeric soluble FasL-based chimeric proteins by concomitant expression of soluble FasL.

    Directory of Open Access Journals (Sweden)

    Aurore Morello

    Full Text Available Membrane FasL is the natural trigger of Fas-mediated apoptosis. A soluble homotrimeric counterpart (sFasL also exists which is very weakly active, and needs oligomerization beyond its trimeric state to induce apoptosis. We recently generated a soluble FasL chimera by fusing the immunoglobulin-like domain of the leukemia inhibitory factor receptor gp190 to the extracellular region of human FasL, which enabled spontaneous dodecameric homotypic polymerization of FasL. This polymeric soluble human FasL (pFasL displayed anti-tumoral activity in vitro and in vivo without systemic cytotoxicity in mouse. In the present work, we focused on the improvement of pFasL, with two complementary objectives. First, we developed more complex pFasL-based chimeras that contained a cell-targeting module. Secondly, we attempted to improve the production and/or the specific activity of pFasL and of the cell-targeting chimeras. We designed two chimeras by fusing to pFasL the extracellular portions of the HLA-A2 molecule or of a human gamma-delta TCR, and analyzed the consequences of co-expressing these molecules or pFasL together with sFasL on their heterotopic cell production. This strategy significantly enhanced the production of pFasL and of the two chimeras, as well as the cytotoxic activity of the two chimeras but not of pFasL. These results provide the proof of concept for an optimization of FasL-based chimeric proteins for a therapeutic use.

  19. Trichohyalin-like 1 protein, a member of fused S100 proteins, is expressed in normal and pathologic human skin

    Energy Technology Data Exchange (ETDEWEB)

    Yamakoshi, Takako [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Makino, Teruhiko, E-mail: tmakino@med.u-toyama.ac.jp [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Ur Rehman, Mati; Yoshihisa, Yoko [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Sugimori, Michiya [Department of Integrative Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan); Shimizu, Tadamichi, E-mail: shimizut@med.u-toyama.ac.jp [Department of Dermatology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Sugitani, Toyama 930-0194 (Japan)

    2013-03-01

    Highlights: ► Trichohyalin-like 1 protein is a member of the fused-type S100 protein gene family. ► Specific antibodies against the C-terminus of the TCHHL1 protein were generated. ► TCHHL1 proteins were expressed in the basal layer of the normal epidermis. ► TCHHL1 proteins were strongly expressed in tumor nests of BCC and SCC. ► The expression of TCHHL1 proteins increased in epidermis of psoriasis vulgaris. - Abstract: Trichohyalin-like 1 (TCHHL1) protein is a novel member of the fused-type S100 protein gene family. The deduced amino acid sequence of TCHHL1 contains an EF-hand domain in the N-terminus, one trans-membrane domain and a nuclear localization signal. We generated specific antibodies against the C-terminus of the TCHHL1 protein and examined the expression of TCHHL1 proteins in normal and pathological human skin. An immunohistochemical study showed that TCHHL1 proteins were expressed in the basal layer of the normal epidermis. In addition, signals of TCHHL1 proteins were observed around the nuclei of cultured growing keratinocytes. Accordingly, TCHHL1 mRNA has been detected in normal skin and cultured growing keratinocytes. Furthermore, TCHHL1 proteins were strongly expressed in the peripheral areas of tumor nests in basal cell carcinomas and squamous cell carcinomas. A dramatic increase in the number of Ki67 positive cells was observed in TCHHL1-expressing areas. The expression of TCHHL1 proteins also increased in non-cancerous hyperproliferative epidermal tissues such as those of psoriasis vulgaris and lichen planus. These findings highlight the possibility that TCHHL1 proteins are expressed in growing keratinocytes of the epidermis and might be associated with the proliferation of keratinocytes.

  20. Trichohyalin-like 1 protein, a member of fused S100 proteins, is expressed in normal and pathologic human skin

    International Nuclear Information System (INIS)

    Yamakoshi, Takako; Makino, Teruhiko; Ur Rehman, Mati; Yoshihisa, Yoko; Sugimori, Michiya; Shimizu, Tadamichi

    2013-01-01

    Highlights: ► Trichohyalin-like 1 protein is a member of the fused-type S100 protein gene family. ► Specific antibodies against the C-terminus of the TCHHL1 protein were generated. ► TCHHL1 proteins were expressed in the basal layer of the normal epidermis. ► TCHHL1 proteins were strongly expressed in tumor nests of BCC and SCC. ► The expression of TCHHL1 proteins increased in epidermis of psoriasis vulgaris. - Abstract: Trichohyalin-like 1 (TCHHL1) protein is a novel member of the fused-type S100 protein gene family. The deduced amino acid sequence of TCHHL1 contains an EF-hand domain in the N-terminus, one trans-membrane domain and a nuclear localization signal. We generated specific antibodies against the C-terminus of the TCHHL1 protein and examined the expression of TCHHL1 proteins in normal and pathological human skin. An immunohistochemical study showed that TCHHL1 proteins were expressed in the basal layer of the normal epidermis. In addition, signals of TCHHL1 proteins were observed around the nuclei of cultured growing keratinocytes. Accordingly, TCHHL1 mRNA has been detected in normal skin and cultured growing keratinocytes. Furthermore, TCHHL1 proteins were strongly expressed in the peripheral areas of tumor nests in basal cell carcinomas and squamous cell carcinomas. A dramatic increase in the number of Ki67 positive cells was observed in TCHHL1-expressing areas. The expression of TCHHL1 proteins also increased in non-cancerous hyperproliferative epidermal tissues such as those of psoriasis vulgaris and lichen planus. These findings highlight the possibility that TCHHL1 proteins are expressed in growing keratinocytes of the epidermis and might be associated with the proliferation of keratinocytes

  1. The Leptospira outer membrane protein LipL32 induces tubulointerstitial nephritis-mediated gene expression in mouse proximal tubule cells.

    Science.gov (United States)

    Yang, Chih-Wei; Wu, Mai-Szu; Pan, Ming-Jeng; Hsieh, Wang-Ju; Vandewalle, Alain; Huang, Chiu-Ching

    2002-08-01

    Tubulointerstitial nephritis is a main renal manifestation caused by pathogenic leptospira that accumulate mostly in the proximal tubules, thereby inducing tubular injury and tubulointerstitial nephritis. To elucidate the role of leptospira outer membrane proteins in tubulointerstitial nephritis, outer membrane proteins from pathogenic Leptospira shermani and nonpathogenic Leptospira patoc extracted by Triton X-114 were administered to cultured mouse proximal tubule cells. A dose-dependent increase of monocyte chemoattractant protein-1 (MCP-1), RANTES, nitrite, and tumor necrosis factor-alpha (TNF-alpha) in the culture supernatant was observed 48 h after incubating Leptospira shermani outer membrane proteins with mouse proximal tubule cells. RT competitive-PCR experiments showed that Leptospira shermani outer membrane proteins (0.2 microg/ml) increased the expression of MCP-1, nitric oxide synthase (iNOS), RANTES, and TNF-alpha mRNA by 3.0-, 9.4-, 2.5-, and 2.5-fold, respectively, when compared with untreated cells. Outer membrane proteins extract from avirulent Leptospira patoc did not induce significant effects. The pathogenic outer membrane proteins extract contain a major component of a 32-kD lipoprotein (LipL32), which is absent in the nonpathogenic leptospira outer membrane. An antibody raised against LipL32 prevented the stimulatory effect of Leptospira shermani outer membrane proteins extract on MCP-1 and iNOS mRNA expression in cultured proximal tubule cells, whereas recombinant LipL32 significantly stimulated the expression of MCP-1 and iNOS mRNAs and augmented nuclear binding of nuclear factor-kappaB (NF-kappaB) and AP-1 transcription factors in proximal tubule cells. An antibody raised against LipL32 also blunted the effects induced by the recombinant LipL32. This study demonstrates that LipL32 is a major component of pathogenic leptospira outer membrane proteins involved in the pathogenesis of tubulointerstitial nephritis.

  2. Protein S binding to human endothelial cells is required for expression of cofactor activity for activated protein C

    NARCIS (Netherlands)

    Hackeng, T. M.; Hessing, M.; van 't Veer, C.; Meijer-Huizinga, F.; Meijers, J. C.; de Groot, P. G.; van Mourik, J. A.; Bouma, B. N.

    1993-01-01

    An important feedback mechanism in blood coagulation is supplied by the protein C/protein S anticoagulant pathway. In this study we demonstrate that the binding of human protein S to cultured human umbilical vein endothelial cells (HUVECs) is required for the expression of cofactor activity of

  3. Structural study of the membrane protein MscL using cell-free expression and solid-state NMR

    Science.gov (United States)

    Abdine, Alaa; Verhoeven, Michiel A.; Park, Kyu-Ho; Ghazi, Alexandre; Guittet, Eric; Berrier, Catherine; Van Heijenoort, Carine; Warschawski, Dror E.

    2010-05-01

    High-resolution structures of membrane proteins have so far been obtained mostly by X-ray crystallography, on samples where the protein is surrounded by detergent. Recent developments of solid-state NMR have opened the way to a new approach for the study of integral membrane proteins inside a membrane. At the same time, the extension of cell-free expression to the production of membrane proteins allows for the production of proteins tailor made for NMR. We present here an in situ solid-state NMR study of a membrane protein selectively labeled through the use of cell-free expression. The sample consists of MscL (mechano-sensitive channel of large conductance), a 75 kDa pentameric α-helical ion channel from Escherichia coli, reconstituted in a hydrated lipid bilayer. Compared to a uniformly labeled protein sample, the spectral crowding is greatly reduced in the cell-free expressed protein sample. This approach may be a decisive step required for spectral assignment and structure determination of membrane proteins by solid-state NMR.

  4. Bcl-x(L) expression in vivo in rheumatoid synovium.

    LENUS (Irish Health Repository)

    Busteed, S

    2012-02-03

    To examine the expression of the apoptosis regulatory protein, Bcl-x(L), in the synovium of patients with rheumatoid arthritis (RA) and osteoarthritis (OA). Immunohistochemistry for Bcl-x(L) was carried out on synovial samples from patients with RA and OA. Reverse transcriptase polymerase chain reaction (RT-PCR) and Western blot analysis were performed to qualitatively examine the expression of Bcl-x(L). Bcl-x(L) expression was detected in the lining, endothelium and inflammatory cells of both RA (n=20) and OA (n=10) samples. However, there was significantly more expression in the lining of RA synovium compared to OA (77 vs 61%, p<0.05). Many of the positive cells in the RA subsynovium were noted to be plasma cells. There was a significant correlation between Bcl-x(L) expression and the number of inflammatory cells in the subsynovium of RA and OA patients (r (s)=0.376, p<0.05, n=30). Age and disease duration did not correlate with Bcl-x(L) expression in rheumatoid patients. Bcl-x(L) may play a role in the extended survival of synoviocytes and inflammatory cells in rheumatoid synovium.

  5. [Reconstruction of Leptospira interrogans lipL21 gene and characteristics of its expression product].

    Science.gov (United States)

    Luo, Dong-jiao; Hu, Ye; Dennin, R H; Yan, Jie

    2007-09-01

    To reconstruct the nucleotide sequence of Leptospira interrogans lipL21 gene for increasing the output of prokaryotic expression and to understand the changes on immunogenicity of the expression products before and after reconstruction, and to determine the position of envelope lipoprotein LipL21 on the surface of leptospiral body. According to the preferred codons of E.coli, the nucleotide sequence of lipL21 gene was designed and synthesized, and then its prokaryotic expression system was constructed. By using SDS-PAGE plus BioRad agarose image analysor, the expression level changes of lipL21 genes before and after reconstruction were measured. A Western blot assay using rabbit anti-TR/Patoc I serum as the first antibody was performed to identify the immunoreactivity of the two target recombinant proteins rLipL21s before and after reconstruction. The changes of cross agglutination titers of antisera against two rLipL21s before and after reconstruction to the different leptospiral serogroups were demonstrated using microscope agglutination test (MAT). Immuno-electronmicroscopy was applied to confirm the location of LipL21s. The expression outputs of original and reconstructed lipL21 genes were 8.5 % and 46.5 % of the total bacterial proteins, respectively. Both the two rLipL21s could take place immune conjugation reaction with TR/Patoc I antiserum. After immunization with each of the two rLipL21s in rabbits, the animals could produce specific antibody. Similar MAT titers with 1:80 - 1:320 of the two antisera against rLipL21s were present. LipL21 was confirmed to locate on the surface of leptospiral envelope. LipL21 is a superficial antigen of Leptospira interrogans. The expression output of the reconstructed lipL21 gene is remarkably increased. The expression rLipL21 maintains fine antigenicity and immunoreactivity and its antibody still shows an extensive cross immunoagglutination activity. The high expression of the reconstructed lipL21 gene will offer a

  6. Involvement of ribosomal protein L6 in assembly of functional 50S ribosomal subunit in Escherichia coli cells

    International Nuclear Information System (INIS)

    Shigeno, Yuta; Uchiumi, Toshio; Nomura, Takaomi

    2016-01-01

    Ribosomal protein L6, an essential component of the large (50S) subunit, primarily binds to helix 97 of 23S rRNA and locates near the sarcin/ricin loop of helix 95 that directly interacts with GTPase translation factors. Although L6 is believed to play important roles in factor-dependent ribosomal function, crucial biochemical evidence for this hypothesis has not been obtained. We constructed and characterized an Escherichia coli mutant bearing a chromosomal L6 gene (rplF) disruption and carrying a plasmid with an arabinose-inducible L6 gene. Although this ΔL6 mutant grew more slowly than its wild-type parent, it proliferated in the presence of arabinose. Interestingly, cell growth in the absence of arabinose was biphasic. Early growth lasted only a few generations (LI-phase) and was followed by a suspension of growth for several hours (S-phase). This suspension was followed by a second growth phase (LII-phase). Cells harvested at both LI- and S-phases contained ribosomes with reduced factor-dependent GTPase activity and accumulated 50S subunit precursors (45S particles). The 45S particles completely lacked L6. Complete 50S subunits containing L6 were observed in all growth phases regardless of the L6-depleted condition, implying that the ΔL6 mutant escaped death because of a leaky expression of L6 from the complementing plasmid. We conclude that L6 is essential for the assembly of functional 50S subunits at the late stage. We thus established conditions for the isolation of L6-depleted 50S subunits, which are essential to study the role of L6 in translation. - Highlights: • We constructed an in vivo functional assay system for Escherichia coli ribosomal protein L6. • Growth of an E. coli ΔL6 mutant was biphasic when L6 levels were depleted. • The ΔL6 mutant accumulated 50S ribosomal subunit precursors that sedimented at 45S. • L6 is a key player in the late stage of E. coli 50S subunit assembly.

  7. Involvement of ribosomal protein L6 in assembly of functional 50S ribosomal subunit in Escherichia coli cells

    Energy Technology Data Exchange (ETDEWEB)

    Shigeno, Yuta [Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567 (Japan); Uchiumi, Toshio [Department of Biology, Faculty of Science, Niigata University, Niigata 950-2181 (Japan); Nomura, Takaomi, E-mail: nomurat@shinshu-u.ac.jp [Division of Applied Biology, Faculty of Textile Science and Technology, Shinshu University, Ueda 386-8567 (Japan)

    2016-04-22

    Ribosomal protein L6, an essential component of the large (50S) subunit, primarily binds to helix 97 of 23S rRNA and locates near the sarcin/ricin loop of helix 95 that directly interacts with GTPase translation factors. Although L6 is believed to play important roles in factor-dependent ribosomal function, crucial biochemical evidence for this hypothesis has not been obtained. We constructed and characterized an Escherichia coli mutant bearing a chromosomal L6 gene (rplF) disruption and carrying a plasmid with an arabinose-inducible L6 gene. Although this ΔL6 mutant grew more slowly than its wild-type parent, it proliferated in the presence of arabinose. Interestingly, cell growth in the absence of arabinose was biphasic. Early growth lasted only a few generations (LI-phase) and was followed by a suspension of growth for several hours (S-phase). This suspension was followed by a second growth phase (LII-phase). Cells harvested at both LI- and S-phases contained ribosomes with reduced factor-dependent GTPase activity and accumulated 50S subunit precursors (45S particles). The 45S particles completely lacked L6. Complete 50S subunits containing L6 were observed in all growth phases regardless of the L6-depleted condition, implying that the ΔL6 mutant escaped death because of a leaky expression of L6 from the complementing plasmid. We conclude that L6 is essential for the assembly of functional 50S subunits at the late stage. We thus established conditions for the isolation of L6-depleted 50S subunits, which are essential to study the role of L6 in translation. - Highlights: • We constructed an in vivo functional assay system for Escherichia coli ribosomal protein L6. • Growth of an E. coli ΔL6 mutant was biphasic when L6 levels were depleted. • The ΔL6 mutant accumulated 50S ribosomal subunit precursors that sedimented at 45S. • L6 is a key player in the late stage of E. coli 50S subunit assembly.

  8. Methylation and in vivo expression of the surface-exposed Leptospira interrogans outer-membrane protein OmpL32.

    Science.gov (United States)

    Eshghi, Azad; Pinne, Marija; Haake, David A; Zuerner, Richard L; Frank, Ami; Cameron, Caroline E

    2012-03-01

    Recent studies have revealed that bacterial protein methylation is a widespread post-translational modification that is required for virulence in selected pathogenic bacteria. In particular, altered methylation of outer-membrane proteins has been shown to modulate the effectiveness of the host immune response. In this study, 2D gel electrophoresis combined with MALDI-TOF MS identified a Leptospira interrogans serovar Copenhageni strain Fiocruz L1-130 protein, corresponding to ORF LIC11848, which undergoes extensive and differential methylation of glutamic acid residues. Immunofluorescence microscopy implicated LIC11848 as a surface-exposed outer-membrane protein, prompting the designation OmpL32. Indirect immunofluorescence microscopy of golden Syrian hamster liver and kidney sections revealed expression of OmpL32 during colonization of these organs. Identification of methylated surface-exposed outer-membrane proteins, such as OmpL32, provides a foundation for delineating the role of this post-translational modification in leptospiral virulence.

  9. 5 CFR 9701.523 - Official time.

    Science.gov (United States)

    2010-01-01

    ... 5 Administrative Personnel 3 2010-01-01 2010-01-01 false Official time. 9701.523 Section 9701.523... MANAGEMENT SYSTEM Labor-Management Relations § 9701.523 Official time. (a) Any employee representing an... authorized official time for such purposes, including attendance at impasse proceedings, during the time the...

  10. 20 CFR 638.523 - Food service.

    Science.gov (United States)

    2010-04-01

    ... 20 Employees' Benefits 3 2010-04-01 2010-04-01 false Food service. 638.523 Section 638.523 Employees' Benefits EMPLOYMENT AND TRAINING ADMINISTRATION, DEPARTMENT OF LABOR JOB CORPS PROGRAM UNDER TITLE IV-B OF THE JOB TRAINING PARTNERSHIP ACT Center Operations § 638.523 Food service. (a) The center...

  11. Purification and characterization of ribosomal proteins L27 and L30 having antimicrobial activity produced by the Lactobacillus salivarius SGL 03.

    Science.gov (United States)

    Pidutti, P; Federici, F; Brandi, J; Manna, L; Rizzi, E; Marini, U; Cecconi, D

    2018-02-01

    The aim of this study was to investigate the antimicrobial potential of proteins secreted by a new strain of Lactobacillus salivarius. The secretome of L. salivarius SGL 03 strain was analysed by gel-assisted fractionation and MS/MS to identify low-molecular-mass proteins. This strategy allowed us to identify 10 secreted proteins. Then, a combination of heterologous expression and agar well diffusion was used to characterize them as to their antimicrobial activity, mechanisms of action and stability. Our findings indicate that L27 and L30 proteins of the 50S ribosomal subunit have antimicrobial activity against Streptococcus pyogenes, Streptococcus uberis and Enterococcus faecium. In addition, both proteins are bactericidal against S. pyogenes and maintain their antimicrobial activity after different protease treatments, at acidic pH, after heat treatment, and if stored in a refrigerated ambient at least at 4°C. The overall results demonstrated that the L27 and L30 ribosomal proteins are of interest as new antimicrobial molecules to prevent the growth of S. pyogenes, S. uberis and E. faecium. Our results provide the first insight into the extra-ribosomal activity of L27 and L30 secreted proteins of L. salivarius. This study demonstrated the capacity of L. salivarius SGL 03 to produce antimicrobial molecules and suggested this strain as a promising probiotic candidate. © 2017 The Society for Applied Microbiology.

  12. Up-regulated expression of l-caldesmon associated with malignancy of colorectal cancer

    International Nuclear Information System (INIS)

    Kim, Kyung-Hee; Kim, Byung Chang; Yoo, Byong Chul; Yeo, Seung-Gu; Kim, Won Ki; Kim, Dae Yong; Yeo, Hyun Yang; Hong, Jun Pyu; Chang, Hee Jin; Park, Ji Won; Kim, Sun Young

    2012-01-01

    Caldesmon (CaD), a major actin-associated protein, is found in smooth muscle and non-muscle cells. Smooth muscle caldesmon, h-CaD, is a multifunctional protein, and non-muscle cell caldesmon, l-CaD, plays a role in cytoskeletal architecture and dynamics. h-CaD is thought to be an useful marker for smooth muscle tumors, but the role(s) of l-CaD has not been examined in tumors. Primary colon cancer and liver metastasis tissues were obtained from colon cancer patients. Prior to chemoradiotherapy (CRT), normal and cancerous tissues were obtained from rectal cancer patients. Whole-tissue protein extracts were analyzed by 2-DE-based proteomics. Expression and phosphorylation level of main cellular signaling proteins were determined by western blot analysis. Cell proliferation after CaD siRNA transfection was monitored by MTT assay. The expression level of l-CaD was significantly increased in primary colon cancer and liver metastasis tissues compared to the level in the corresponding normal tissues. In cancerous tissues obtained from the patients showing poor response to CRT (Dworak grade 4), the expression of l-CaD was increased compared to that of good response group (Dworak grade 1). In line with, l-CaD positive human colon cancer cell lines were more resistant to 5-fluorouracil (5-FU) and radiation treatment compared to l-CaD negative cell lines. Artificial suppression of l-CaD increased susceptibility of colon cancer cells to 5-FU, and caused an increase of p21 and c-PARP, and a decrease of NF-kB and p-mTOR expression. Up-regulated expression of l-CaD may have a role for increasing metastatic property and decreasing CRT susceptibility in colorectal cancer cells

  13. Over-expression of a tobacco nitrate reductase gene in wheat (Triticum aestivum L.) increases seed protein content and weight without augmenting nitrogen supplying.

    Science.gov (United States)

    Zhao, Xiao-Qiang; Nie, Xuan-Li; Xiao, Xing-Guo

    2013-01-01

    Heavy nitrogen (N) application to gain higher yield of wheat (Triticum aestivum L.) resulted in increased production cost and environment pollution. How to diminish the N supply without losing yield and/or quality remains a challenge. To meet the challenge, we integrated and expressed a tobacco nitrate reductase gene (NR) in transgenic wheat. The 35S-NR gene was transferred into two winter cultivars, "Nongda146" and "Jimai6358", by Agrobacterium-mediation. Over-expression of the transgene remarkably enhanced T1 foliar NR activity and significantly augmented T2 seed protein content and 1000-grain weight in 63.8% and 68.1% of T1 offspring (total 67 individuals analyzed), respectively. Our results suggest that constitutive expression of foreign nitrate reductase gene(s) in wheat might improve nitrogen use efficiency and thus make it possible to increase seed protein content and weight without augmenting N supplying.

  14. Over-expression of a tobacco nitrate reductase gene in wheat (Triticum aestivum L. increases seed protein content and weight without augmenting nitrogen supplying.

    Directory of Open Access Journals (Sweden)

    Xiao-Qiang Zhao

    Full Text Available Heavy nitrogen (N application to gain higher yield of wheat (Triticum aestivum L. resulted in increased production cost and environment pollution. How to diminish the N supply without losing yield and/or quality remains a challenge. To meet the challenge, we integrated and expressed a tobacco nitrate reductase gene (NR in transgenic wheat. The 35S-NR gene was transferred into two winter cultivars, "Nongda146" and "Jimai6358", by Agrobacterium-mediation. Over-expression of the transgene remarkably enhanced T1 foliar NR activity and significantly augmented T2 seed protein content and 1000-grain weight in 63.8% and 68.1% of T1 offspring (total 67 individuals analyzed, respectively. Our results suggest that constitutive expression of foreign nitrate reductase gene(s in wheat might improve nitrogen use efficiency and thus make it possible to increase seed protein content and weight without augmenting N supplying.

  15. The Sporothrix schenckii Gene Encoding for the Ribosomal Protein L6 Has Constitutive and Stable Expression and Works as an Endogenous Control in Gene Expression Analysis

    Directory of Open Access Journals (Sweden)

    Elías Trujillo-Esquivel

    2017-09-01

    Full Text Available Sporothrix schenckii is one of the causative agents of sporotrichosis, a worldwide-distributed mycosis that affects humans and other mammals. The interest in basic and clinical features of this organism has significantly increased in the last years, yet little progress in molecular aspects has been reported. Gene expression analysis is a set of powerful tools that helps to assess the cell response to changes in the extracellular environment, the genetic networks controlling metabolic pathways, and the adaptation to different growth conditions. Most of the quantitative methodologies used nowadays require data normalization, and this is achieved measuring the expression of endogenous control genes. Reference genes, whose expression is assumed to suffer minimal changes regardless the cell morphology, the stage of the cell cycle or the presence of harsh extracellular conditions are commonly used as controls in Northern blotting assays, microarrays, and semi-quantitative or quantitative RT-PCR. Since the biology of the organisms is usually species specific, it is difficult to find a reliable group of universal genes that can be used as controls for data normalization in experiments addressing the gene expression, regardless the taxonomic classification of the organism under study. Here, we compared the transcriptional stability of the genes encoding for elongation factor 1A, Tfc1, a protein involved in transcription initiation on Pol III promoters, ribosomal protein L6, histone H2A, β-actin, β-tubulin, glyceraldehyde 3-phosphate dehydrogenase, UAF30, the upstream activating factor 30, and the transcription initiation factor TFIID subunit 10, during the fungal growth in different culture media and cell morphologies. Our results indicated that only the gene encoding for the ribosomal protein L6 showed a stable and constant expression. Furthermore, it displayed not transcriptional changes when S. schenckii infected larvae of Galleria mellonella or

  16. Construction of a plasmid coding for green fluorescent protein tagged cathepsin L and data on expression in colorectal carcinoma cells

    Directory of Open Access Journals (Sweden)

    Tripti Tamhane

    2015-12-01

    Full Text Available The endo-lysosomal cysteine cathepsin L has recently been shown to have moonlighting activities in that its unexpected nuclear localization in colorectal carcinoma cells is involved in cell cycle progression (Tamhane et al., 2015 [1]. Here, we show data on the construction and sequence of a plasmid coding for human cathepsin L tagged with an enhanced green fluorescent protein (phCL-EGFP in which the fluorescent protein is covalently attached to the C-terminus of the protease. The plasmid was used for transfection of HCT116 colorectal carcinoma cells, while data from non-transfected and pEGFP-N1-transfected cells is also shown. Immunoblotting data of lysates from non-transfected controls and HCT116 cells transfected with pEGFP-N1 and phCL-EGFP, showed stable expression of cathepsin L-enhanced green fluorescent protein chimeras, while endogenous cathepsin L protein amounts exceed those of hCL-EGFP chimeras. An effect of phCL-EGFP expression on proliferation and metabolic states of HCT116 cells at 24 h post-transfection was observed.

  17. Construction and characterisation of a recombinant fowlpox virus that expresses the human papilloma virus L1 protein

    Directory of Open Access Journals (Sweden)

    Zanotto Carlo

    2011-11-01

    Full Text Available Abstract Background Human papilloma virus (HPV-16 is the most prevalent high-risk mucosal genotype. Virus-like-particle (VLP-based immunogens developed recently have proven to be successful as prophylactic HPV vaccines, but are still too expensive for developing countries. Although vaccinia viruses expressing the HPV-16 L1 protein (HPV-L1 have been studied, fowlpox-based recombinants represent efficient and safer vectors for immunocompromised hosts due to their ability to elicit a complete immune response and their natural host-range restriction to avian species. Methods A new fowlpox virus recombinant encoding HPV-L1 (FPL1 was engineered and evaluated for the correct expression of HPV-L1 in vitro, using RT-PCR, immunoprecipitation, Western blotting, electron microscopy, immunofluorescence, and real-time PCR assays. Results The FPL1 recombinant correctly expresses HPV-L1 in mammalian cells, which are non-permissive for the replication of this vector. Conclusion This FPL1 recombinant represents an appropriate immunogen for expression of HPV-L1 in human cells. The final aim is to develop a safe, immunogenic, and less expensive prophylactic vaccine against HPV.

  18. 27 CFR 40.523 - Inventories.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 2 2010-04-01 2010-04-01 false Inventories. 40.523... PROCESSED TOBACCO Manufacture of Processed Tobacco Operations by Manufacturers of Processed Tobacco § 40.523 Inventories. Every manufacturer of processed tobacco must provide a true and accurate inventory on TTB F 5210...

  19. Elevated expression of ribosomal protein genes L37, RPP-1, and S2 in the presence of mutant p53.

    Science.gov (United States)

    Loging, W T; Reisman, D

    1999-11-01

    The wild-type p53 protein is a DNA-binding transcription factor that activates genes such as p21, MDM2, GADD45, and Bax that are required for the regulation of cell cycle progression or apoptosis in response to DNA damage. Mutant forms of p53, which are transforming oncogenes and are expressed at high levels in tumor cells, generally have a reduced binding affinity for the consensus DNA sequence. Interestingly, some p53 mutants that are no longer effective at binding to the consensus DNA sequence and transactivating promoters containing this target site have acquired the ability to transform cells in culture, in part through their ability to transactivate promoters of a number of genes that are not targets of the wild-type protein. Certain p53 mutants are therefore considered to be gain-of-function mutants and appear to be promoting proliferation or transforming cells through their ability to alter the expression of novel sets of genes. Our goal is to identify genes that have altered expression in the presence of a specific mutant p53 (Arg to Trp mutation at codon 248) protein. Through examining differential gene expression in cells devoid of p53 expression and in cells that express high levels of mutant p53 protein, we have identified three ribosomal protein genes that have elevated expression in response to mutant p53. Consistent with these findings, the overexpression of a number of ribosomal protein genes in human tumors and evidence for their contribution to oncogenic transformation have been reported previously, although the mechanism leading to this overexpression has remained elusive. We show results that indicate that expression of these specific ribosomal protein genes is increased in the presence of the R248W p53 mutant, which provides a mechanism for their overexpression in human tumors.

  20. Segmental isotope labeling of proteins for NMR structural study using a protein S tag for higher expression and solubility

    International Nuclear Information System (INIS)

    Kobayashi, Hiroshi; Swapna, G. V. T.; Wu, Kuen-Phon; Afinogenova, Yuliya; Conover, Kenith; Mao, Binchen; Montelione, Gaetano T.; Inouye, Masayori

    2012-01-01

    A common obstacle to NMR studies of proteins is sample preparation. In many cases, proteins targeted for NMR studies are poorly expressed and/or expressed in insoluble forms. Here, we describe a novel approach to overcome these problems. In the protein S tag-intein (PSTI) technology, two tandem 92-residue N-terminal domains of protein S (PrS 2 ) from Myxococcus xanthus is fused at the N-terminal end of a protein to enhance its expression and solubility. Using intein technology, the isotope-labeled PrS 2 -tag is replaced with non-isotope labeled PrS 2 -tag, silencing the NMR signals from PrS 2 -tag in isotope-filtered 1 H-detected NMR experiments. This method was applied to the E. coli ribosome binding factor A (RbfA), which aggregates and precipitates in the absence of a solubilization tag unless the C-terminal 25-residue segment is deleted (RbfAΔ25). Using the PrS 2 -tag, full-length well-behaved RbfA samples could be successfully prepared for NMR studies. PrS 2 (non-labeled)-tagged RbfA (isotope-labeled) was produced with the use of the intein approach. The well-resolved TROSY-HSQC spectrum of full-length PrS 2 -tagged RbfA superimposes with the TROSY-HSQC spectrum of RbfAΔ25, indicating that PrS 2 -tag does not affect the structure of the protein to which it is fused. Using a smaller PrS-tag, consisting of a single N-terminal domain of protein S, triple resonance experiments were performed, and most of the backbone 1 H, 15 N and 13 C resonance assignments for full-length E. coli RbfA were determined. Analysis of these chemical shift data with the Chemical Shift Index and heteronuclear 1 H– 15 N NOE measurements reveal the dynamic nature of the C-terminal segment of the full-length RbfA protein, which could not be inferred using the truncated RbfAΔ25 construct. CS-Rosetta calculations also demonstrate that the core structure of full-length RbfA is similar to that of the RbfAΔ25 construct.

  1. Oxidized Low-density Lipoprotein (ox-LDL) Cholesterol Induces the Expression of miRNA-223 and L-type Calcium Channel Protein in Atrial Fibrillation

    Science.gov (United States)

    He, Fengping; Xu, Xin; Yuan, Shuguo; Tan, Liangqiu; Gao, Lingjun; Ma, Shaochun; Zhang, Shebin; Ma, Zhanzhong; Jiang, Wei; Liu, Fenglian; Chen, Baofeng; Zhang, Beibei; Pang, Jungang; Huang, Xiuyan; Weng, Jiaqiang

    2016-08-01

    Atrial fibrillation (AF) is the most common sustained arrhythmia causing high morbidity and mortality. While changing of the cellular calcium homeostasis plays a critical role in AF, the L-type calcium channel α1c protein has suggested as an important regulator of reentrant spiral dynamics and is a major component of AF-related electrical remodeling. Our computational modeling predicted that miRNA-223 may regulate the CACNA1C gene which encodes the cardiac L-type calcium channel α1c subunit. We found that oxidized low-density lipoprotein (ox-LDL) cholesterol significantly up-regulates both the expression of miRNA-223 and L-type calcium channel protein. In contrast, knockdown of miRNA-223 reduced L-type calcium channel protein expression, while genetic knockdown of endogenous miRNA-223 dampened AF vulnerability. Transfection of miRNA-223 by adenovirus-mediated expression enhanced L-type calcium currents and promoted AF in mice while co-injection of a CACNA1C-specific miR-mimic counteracted the effect. Taken together, ox-LDL, as a known factor in AF-associated remodeling, positively regulates miRNA-223 transcription and L-type calcium channel protein expression. Our results implicate a new molecular mechanism for AF in which miRNA-223 can be used as an biomarker of AF rheumatic heart disease.

  2. 49 CFR 214.523 - Hi-rail vehicles.

    Science.gov (United States)

    2010-10-01

    ... 49 Transportation 4 2010-10-01 2010-10-01 false Hi-rail vehicles. 214.523 Section 214.523..., DEPARTMENT OF TRANSPORTATION RAILROAD WORKPLACE SAFETY On-Track Roadway Maintenance Machines and Hi-Rail Vehicles § 214.523 Hi-rail vehicles. (a) The hi-rail gear of all hi-rail vehicles shall be inspected for...

  3. RNA-binding proteins ZFP36L1 and ZFP36L2 promote cell quiescence.

    Science.gov (United States)

    Galloway, Alison; Saveliev, Alexander; Łukasiak, Sebastian; Hodson, Daniel J; Bolland, Daniel; Balmanno, Kathryn; Ahlfors, Helena; Monzón-Casanova, Elisa; Mannurita, Sara Ciullini; Bell, Lewis S; Andrews, Simon; Díaz-Muñoz, Manuel D; Cook, Simon J; Corcoran, Anne; Turner, Martin

    2016-04-22

    Progression through the stages of lymphocyte development requires coordination of the cell cycle. Such coordination ensures genomic integrity while cells somatically rearrange their antigen receptor genes [in a process called variable-diversity-joining (VDJ) recombination] and, upon successful rearrangement, expands the pools of progenitor lymphocytes. Here we show that in developing B lymphocytes, the RNA-binding proteins (RBPs) ZFP36L1 and ZFP36L2 are critical for maintaining quiescence before precursor B cell receptor (pre-BCR) expression and for reestablishing quiescence after pre-BCR-induced expansion. These RBPs suppress an evolutionarily conserved posttranscriptional regulon consisting of messenger RNAs whose protein products cooperatively promote transition into the S phase of the cell cycle. This mechanism promotes VDJ recombination and effective selection of cells expressing immunoglobulin-μ at the pre-BCR checkpoint. Copyright © 2016, American Association for the Advancement of Science.

  4. [Comparison of two types of cell cultures for preparation of sTNFRII-gAD fusion protein].

    Science.gov (United States)

    Huang, Shigao; Yin, Yuting; Xiong, Chunhui; Wang, Caihong; Lü, Jianxin; Gao, Jimin

    2013-01-01

    In this study we used two types of cell cultures, i.e., anchorage-dependent basket and full suspension batch cultures of sTNFRII-gAD-expressing CHO cells in the CelliGen 310 bioreactor (7.5 L) to compare their yields in order to optimize the culturing conditions for efficient expression of sTNFRII-gAD fusion protein consisting of soluble tumor necrosis factor receptor II and globular domain of adiponectin. The anchorage-dependent basket culture was performed in 4L 10% serum-containing medium with the final inoculating concentration of 3 x 10(5) to 4 x 10(5) cells/mL of sTNFRII-gAD-expressing CHO cells for 3 days, and then switched to 4 L serum-free LK021 medium to continue the culture for 4 days. The full suspension batch culture was carried out in the 4 L serum-free LK021 medium with the final inoculating concentration of 3 x 10(5) to 4 x 10(5) cells/mL of sTNFRII-gAD-expressing CHO cells for 7 days. The culturing conditions were monitored in real-time to maintain pH and dissolved oxygen stability through the whole process. The supernatants were collected by centrifuge, and the protein was concentrated through Pellicon flow ultrafiltration system and then purified by DEAE anion exchange. The results showed that the yields of sTNFRII-gAD fusion protein were 8.0 mg/L with 95% purity and 7.5 mg/L with 98% purity in the anchorage-dependent basket and the full suspension batch cultures, respectively. The study provided the framework for the pilot production of sTNFRII-gAD fusion protein.

  5. Molecular characterization and expression analysis of three homoeologous Ta14S genes encoding 14-3-3 proteins in wheat (Triticum aestivum L.

    Directory of Open Access Journals (Sweden)

    Xinguo Wang

    2016-06-01

    Full Text Available The purpose of this study was to characterize Ta14S homoeologs and assess their functions in wheat seed development. The genomic and cDNA sequences of three Ta14S homoeologous genes encoding 14-3-3 proteins were isolated. Sequence analysis revealed that the three homoeologs consisted of five exons and four introns and were very highly conserved in the coding regions and in exon/intron structure, whereas the cDNA sequences were variable in the 5′ and 3′-UTR. The three genes, designated as Ta14S-2A, Ta14S-2B and Ta14S-2D, were located in homoeologous group 2 chromosomes. The polypeptide chains of the three Ta14S genes were highly similar. These genes were most homologous to Hv14A from barley. Real-time quantitative PCR indicated that the three Ta14S genes were differentially expressed in different organs at different developmental stages and all exhibited greater expression in primary roots of 1-day-old germlings than in other tissues. Comparison of the expression patterns of the three homoeologous genes at different times after pollination also revealed that their expression was developmentally regulated. The transcription of Ta14S-2B was clearly higher during seed germination, whereas expressions of Ta14S-2A and Ta14S-2D were up-regulated at the beginning of seed imbibition (0–12 h, but declined thereafter. The results suggested that the three Ta14S homoeologous genes have regulatory roles in seed development and germination.

  6. Does unpaired adenosine-66 from helix II of Escherichia coli 5S RNA bind to protein L18?

    DEFF Research Database (Denmark)

    Christiansen, J; Douthwaite, S R; Christensen, A

    1985-01-01

    Adenosine-66 is unpaired within helix II of Escherichia coli 5S RNA and lies in the binding site of ribosomal protein L18. It has been proposed as a recognition site for protein L18. We have investigated further the structural importance of this nucleotide by deleting it. The 5S RNA gene of the rrn...... plasmid derived from pKK3535. Binding studies with protein L18 revealed that the protein bound much more weakly to the mutated 5S RNA. We consider the most likely explanation of this result is that L18 interacts with adenosine-66, and we present a tentative model for an interaction between the unpaired...

  7. Glucose-regulated protein 78 regulates the expression of mitochondrial genesis proteins in HBV-related hepatocellular carcinoma: a clinical analysis

    Directory of Open Access Journals (Sweden)

    LI Yaping

    2017-10-01

    Full Text Available ObjectiveTo investigate the expression of glucose-regulated protein 78 (GRP78 in HBV-related hepatocellular carcinoma (HBV-HCC and its association with clinicopathological features, as well as its regulatory effect on mitochondrial genesis proteins in hepatoma cells, and to provide a basis for new strategies for the prevention and treatment of HCC. MethodsTissue samples were collected from 54 patients with HBV-HCC, and immunohistochemistry and Western blot were used to measure the expression of GRP78, Lon, TFAM, and cytochrome C oxidase Ⅳ (COXⅣ. The expression of GRP78 in hepatoma cells was interfered by siRNA, and then the expression of GRP78, Lon, mitochondrial transcription factor A (TFAM, and COX Ⅳ was measured. Quantitative real-time PCR was used to measure the level of mitochondrial DNA (mtDNA in clinical specimens and HCC cells after GRP78 expression was interfered with. A statistical analysis was performed for clinical and experimental data. The t-test was used for comparison of continuous data between groups, the Fisher′s exact test was used for comparison of categorical data between groups, and the Kaplan-Meier method was used for survival analysis. Results Compared with the adjacent tissues, HBV-HCC tissues had significantly higher expression of GRP78 and Lon (t=9.135 and 5523, both P<0.0001 and significantly lower expression of the mitochondrial genesis proteins TFAM and COX Ⅳ and mtDNA level (t=2.765, 4260, and 12.280, P=0.011, <0.001, and <0.001. There were significant increases in the expression of the mitochondrial genesis proteins TFAM and COX Ⅳ and mtDNA level after the interference with GRP78 expression in hepatoma cells (all P<0.05. There were significant differences in the expression of GRP78 between patients with different numbers of tumors, patients with and without portal vein tumor thrombus, and patients with different tumor stages (P=0.016, 0.003, and 0.045. The patients with low GRP78

  8. Isolation of eukaryotic ribosomal proteins. Purification and characterization of the 60 S ribosomal subunit proteins L4, L5, L7, L9, L11, L12, L13, L21, L22, L23, L26, L27, L30, L33, L35', L37, and L39.

    Science.gov (United States)

    Tsurugi, K; Collatz, E; Wool, E G; Lin, A

    1976-12-25

    The proteins of the large subunit of rat liver ribosomes were separated into seven groups by stepwise elution from carboxymethylcellulose with LiCl at pH 6.5. Seventeen proteins (L4, L5, L7, L9, L11, L12, L13, L21, L22, L23, L26, L27, L30, L33, L35', L37, and L39) were isolated from three of the groups (B60, D60, G60) by ion exchange chromatography on carboxymethylcellulose and by filtration through Sephadex. The amount of protein obtained varied from 0.5 to 15 mg. Eight of the proteins (L9, L11, L13, L21, L22, L35', L37 and L39) had no detectable contamination; the impurities in the others were no greater than 9%. The molecular weight of the proteins was estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate; the amino acid composition was determined.

  9. The ribosomal protein Rpl22 controls ribosome composition by directly repressing expression of its own paralog, Rpl22l1.

    Directory of Open Access Journals (Sweden)

    Monique N O'Leary

    Full Text Available Most yeast ribosomal protein genes are duplicated and their characterization has led to hypotheses regarding the existence of specialized ribosomes with different subunit composition or specifically-tailored functions. In yeast, ribosomal protein genes are generally duplicated and evidence has emerged that paralogs might have specific roles. Unlike yeast, most mammalian ribosomal proteins are thought to be encoded by a single gene copy, raising the possibility that heterogenous populations of ribosomes are unique to yeast. Here, we examine the roles of the mammalian Rpl22, finding that Rpl22(-/- mice have only subtle phenotypes with no significant translation defects. We find that in the Rpl22(-/- mouse there is a compensatory increase in Rpl22-like1 (Rpl22l1 expression and incorporation into ribosomes. Consistent with the hypothesis that either ribosomal protein can support translation, knockdown of Rpl22l1 impairs growth of cells lacking Rpl22. Mechanistically, Rpl22 regulates Rpl22l1 directly by binding to an internal hairpin structure and repressing its expression. We propose that ribosome specificity may exist in mammals, providing evidence that one ribosomal protein can influence composition of the ribosome by regulating its own paralog.

  10. Expression of G(alpha)(s) proteins and TSH receptor signalling in hyperfunctioning thyroid nodules with TSH receptor mutations.

    Science.gov (United States)

    Holzapfel, Hans-Peter; Bergner, Beate; Wonerow, Peter; Paschke, Ralf

    2002-07-01

    Constitutively activating mutations of the thyrotrophin receptor (TSHR) are the main molecular cause of hyperfunctioning thyroid nodules (HTNs). The G protein coupling is an important and critical step in the TSHR signalling which mainly includes G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins. We investigated the in vitro consequences of overexpressing G(alpha) proteins on signalling of the wild-type (WT) or mutated TSHR. Moreover, we investigated whether changes in G(alpha) protein expression are pathophysiologically relevant in HTNs or cold thyroid nodules (CTNs). Wild-type TSH receptor and mutated TSH receptors were coexpressed with G(alpha)(s), G(alpha)(i) or G(alpha)(q)/11, and cAMP and inositol phosphate (IP) production was measured after stimulation with TSH. The expression of G(alpha)(s), G(alpha)(i) and G(alpha)(q)/11 proteins was examined by Western blotting in 28 HTNs and 14 CTNs. Coexpression of G(alpha)(s) with the WT TSH receptor in COS 7 cells significantly increased the basal and TSH-stimulated cAMP accumulation while coexpression of the G(alpha)(q) or G(alpha)11 protein significantly increased the production of cAMP and inositol triphosphate (IP(3)). The coexpression of the TSH receptor mutants (I486F, DEL613-621), known to couple constitutively to G(alpha)(s) and G(alpha)(q) with G(alpha)(s) and G(alpha)(q)/11, significantly increased the basal and stimulated cAMP and IP(3) accumulation. Coexpression of the TSH receptor mutant V556F with G(alpha)(s) only increased the basal and stimulated cAMP production while its coexpression with G(alpha)(q)/11 increased the basal and stimulated IP(3) signalling. The expression of G(alpha)(s) protein subunits determined by Western blotting was significantly decreased in 14 HTNs with a constitutively activating TSH receptor mutation in comparison with the corresponding surrounding tissue, while in 14 HTNs without TSH receptor or G(alpha)(s) protein mutation and in 14 CTNs the expression of G(alpha)(s

  11. Detailed analysis of RNA-protein interactions within the bacterial ribosomal protein L5/5S rRNA complex.

    OpenAIRE

    Perederina, Anna; Nevskaya, Natalia; Nikonov, Oleg; Nikulin, Alexei; Dumas, Philippe; Yao, Min; Tanaka, Isao; Garber, Maria; Gongadze, George; Nikonov, Stanislav

    2002-01-01

    The crystal structure of ribosomal protein L5 from Thermus thermophilus complexed with a 34-nt fragment comprising helix III and loop C of Escherichia coli 5S rRNA has been determined at 2.5 A resolution. The protein specifically interacts with the bulged nucleotides at the top of loop C of 5S rRNA. The rRNA and protein contact surfaces are strongly stabilized by intramolecular interactions. Charged and polar atoms forming the network of conserved intermolecular hydrogen bonds are located in ...

  12. The study on highly expressed proteins as a function of an elevated ultraviolet radiation in the copepod, Tigriopus japonicus

    Science.gov (United States)

    Zubrzycki, Igor Z.; Lee, Seunghan; Lee, Kanghyun; Wiacek, Magdalena; Lee, Wonchoel

    2012-06-01

    The objective of the study was to analyze constantlyhighly expressed proteins as a function of elevated midultraviolet (UVB, 280-315 nm) radiation in Tigriopus japonicus sensu lato ( T. japonicus s.l). We also analyzed associations between kinetics of radiation avoidance, measured as a covered distance per time unit, and highly expressed proteins. The obtained results indicate an increase in T. japonicus s.l. mobility between the control (no radiation) and mild UV radiation levels (15 kJ·m-2). Two-dimensional gel electrophoresis combined with MALDI-MS-MS resulted in 2D protein map comprising of 686 protein spots, of which 19 were identified as highly expressed proteins across all experimental conditions. Obtained results indicate that calpain, vitellogenin, and collagenase are housekeeping protein that are expressed at a constant level independently of environmental changes and that adoption of a locomotive system for the avoidance of a UV source may be, at least partially, supported by hepatopancreas-driven metabolism.

  13. Ribosomal proteins L11 and L10.(L12)4 and the antibiotic thiostrepton interact with overlapping regions of the 23 S rRNA backbone in the ribosomal GTPase centre

    DEFF Research Database (Denmark)

    Rosendahl, G; Douthwaite, S

    1993-01-01

    RNA, and to investigate how this interaction is influenced by other ribosomal components. Complexes were characterized in both naked 23 S rRNA and ribosomes from an E. coli L11-minus strain, before and after reconstitution with L11. The protein protects 17 riboses between positions 1058 and 1085 in the naked 23 S r......The Escherichia coli ribosomal protein (r-protein) L11 and its binding site on 23 S ribosomal RNA (rRNA) are associated with ribosomal hydrolysis of guanosine 5'-triphosphate (GTP). We have used hydroxyl radical footprinting to map the contacts between L11 and the backbone riboses in 23 S r......)4 and other proteins within the ribosome. The antibiotics thiostrepton and micrococcin inhibit the catalytic functions of this region by slotting in between the accessible loops and interacting with nucleotides there....

  14. Fas/FasL expression in colorectal cancer. An immunohistochemical study.

    Directory of Open Access Journals (Sweden)

    Katarzyna Guzińska-Ustymowicz

    2010-11-01

    Full Text Available The objective of the current study was to assess the expression of Fas ligand (FasL and Fas receptor (FasR as the proteins of the post-mitochondrial apoptotic pathway in colorectal carcinoma and to investigate correlations between their expression and chosen clinico-pathological parameters. The protein expression was analyzed in 50 colorectal carcinoma patients, using the immunohistochemical method. Reaction for FasR was weak in 75.5% and strong in 24.5% of the study patients, as compared to normal glandular epithelium where FasR expression was strong in 100% of cases. On the other hand, FasL expression was found to be weak in 30% and strong in 70% of colorectal cancer patients, as compared to its lack in 100% of normal colorectal epithelium. Statistical analysis showed strong expression of FasL was found to correlate statistically significantly with vascular invasion (p = 0.005. No correlations of FasL and FasR expression in the main mass of tumor was found between other clinic-pathological parameters. Fas ligand and Fas receptor appeared to be of little usefulness as prognostic factors for different groups of colorectal carcinoma patients. However, these proteins could become good therapeutic targets for colorectal carcinoma since their expression differs distinctly between normal intestinal epithelium and cancer cells, and known is the mechanism by which cancer cells escape death via apoptosis-inducing Fas/FasL pathway disorders.

  15. Identification of multiple small heat-shock protein genes in Plutella xylostella (L.) and their expression profiles in response to abiotic stresses.

    Science.gov (United States)

    Chen, Xi'en; Zhang, Yalin

    2015-01-01

    We identify and characterize 14 small heat-shock protein (sHSP) genes from the diamondback moth (DBM), Plutella xylostella (L.), a destructive pest. Phylogenetic analyses indicate that, except for sHSP18.8 and sHSP19.22, the other 12 DBM sHSPs belong to five known insect sHSP groups. Developmental expression analysis revealed that most sHSPs peaked in the pupal and adult stages. The transcripts of sHSPs display tissue specificity with two exhibiting constitutive expression in four tested tissues. Expression of sHSP18.8 in fourth instar larvae is not induced by the tested abiotic stressors, and unless sHSP21.8 is not sensitive to thermal stress, 12 sHSPs are significantly up-regulated. The messenger RNA (mRNA) levels of all sHSPs are reduced under oxidative stress. Food deprivation leads to significant down-regulation of three sHSPs. The majority of sHSPs show expression variation to various heavy metals, whereas mRNA abundances of sHSP22.1 and sHSP 28.9 are reduced by four heavy metals. The responses of sHSPs to indoxacarb and cantharidin are varied. Beta-cypermethrin and chlorfenapyr exposure results in an increase of 13 sHSP transcripts and a reduction of 12 sHSP transcripts, respectively. These results show that different sHSPs might play distinct roles in the development and regulation of physiological activities, as well as in response to various abiotic stresses of DBM.

  16. Effect of calcium-binding protein S100A8 expression on early phase of radiation pulmonary fibrosis

    International Nuclear Information System (INIS)

    Rao Yalan; Li Ming; Cong Yue; Li Fengsheng; Chen Xiaohua; Dong Bo; Zhang Junquan; Gao Ling; Mao Bingzhi

    2008-01-01

    The study explores the expression and effect of calcium-binding protein S100A8 on early phase of radiation pulmonary fibrosis via in vivo and in vitro experiments. In vivo experiment, the thoracic regions of rats were irradiated under 20Gy 60 Co γ-rays to establish radiation pulmonary fibrosis. After irradiation, the lung specimens of the sacrificed rats were separately harvested by the ends of the first, second, and fourth weeks respectively. The protein expression of S100A8 was tested through immunohistochemistry, the mRNA expression of S100A8 and its heterodimeric S100A9 were investigated by RT-PCR method. In vitro experiment, RT-PCR method was also applied to measure the mRNA expression of S100A8 in mouse macrophage cell line RAW264.7 after γ-rays irradiation and/or lipopolysaccharide (LPS). It shows that the protein expression of S100A8 was increased in the plasma of lung macrophages samples and the mRNA expression of S100A8 and S100A9 was also increased in the lung tissue samples in four weeks after irradiation in vivo experiment. And in vitro experiment it shows that the cooperation between γ-rays and LPS can increase the mRNA expression of S100A8 in RAW264.7. These phenomena suggest that S100A8 can exert the chemotactic activity, participate in the inflammatory response, and influence the establishment of radiation pulmonary fibrosis. (authors)

  17. Expression of microphthalmia transcription factor, S100 protein, and HMB-45 in malignant melanoma and pigmented nevi.

    Science.gov (United States)

    Xia, Jianxin; Wang, Yanlong; Li, Fuqiu; Wang, Jinfeng; Mu, Yan; Mei, Xianglin; Li, Xue; Zhu, Wenjing; Jin, Xianhua; Yu, Kai

    2016-09-01

    Malignant melanoma (MM) is a type of malignant tumor, which originates from neural crest melanocytes. MM progresses rapidly and results in a high mortality rate. The present study aims to investigate the expression of microphthalmia transcription factor (MITF), the S100 protein, and HMB-45 in MM and pigmented nevi. A total of 32 MM samples (including three skin metastasis, three lymph node metastasis and two spindle cell MM samples), two Spitz nevus samples, four pigmented nevus samples and two blue nevus samples were collected. The expression levels of S100 protein, HMB-45, and MITF were observed via immunostaining. The S100 protein exhibited high positive rates in MM and pigment disorders (96.7 and 100%, respectively), but with low specificity. The S100 protein was also expressed in fibroblasts, myoepithelial cells, histocytes and Langerhans cells in normal skin samples. HMB-45 had high specificity. Its positive expression was only confined to MM cells and junctional nevus cells. Furthermore, HMB-45 was not expressed in melanocytes in the normal tissue samples around the tumor or in the benign intradermal nevus cells. MITF exhibited high specificity and high sensitivity. It was expressed in the nuclei of melanocytes, MM cells and nevus cells. It was observed to be strongly expressed in metastatic MM and spindle cell MMs. Thus, MITF may present as a specific immunomarker for the diagnosis and differential diagnosis of MM.

  18. OmpL1 is an extracellular matrix- and plasminogen-interacting protein of Leptospira spp.

    Science.gov (United States)

    Fernandes, Luis G V; Vieira, Monica L; Kirchgatter, Karin; Alves, Ivy J; de Morais, Zenaide M; Vasconcellos, Silvio A; Romero, Eliete C; Nascimento, Ana L T O

    2012-10-01

    Leptospirosis is a zoonosis with multisystem involvement caused by pathogenic strains of the genus Leptospira. OmpL1 is an outer membrane protein of Leptospira spp. that is expressed during infection. In this work, we investigated novel features of this protein. We describe that OmpL1 is a novel leptospiral extracellular matrix (ECM)-binding protein and a plasminogen (PLG) receptor. The recombinant protein was expressed in Escherichia coli BL21(DE3) Star/pLysS as inclusion bodies, refolded, and purified by metal-chelating chromatography. The protein presented a typical β-strand secondary structure, as evaluated by circular dichroism spectroscopy. The recombinant protein reacted with antibodies in serum samples from convalescent leptospirosis patients with a high specificity compared to serum samples from individuals with unrelated diseases. These data strengthen the usefulness of OmpL1 as a diagnostic marker of leptospirosis. The characterization of the immunogenicity of recombinant OmpL1 in inoculated BALB/c mice showed that the protein has the capacity to elicit humoral and cellular immune responses, as denoted by high antibody titers and the proliferation of lymphocytes. We demonstrate that OmpL1 has the ability to mediate attachment to laminin and plasma fibronectin, with K(D) (equilibrium dissociation constant) values of 2,099.93 ± 871.03 nM and 1,239.23 ± 506.85 nM, respectively. OmpL1 is also a PLG receptor, with a K(D) of 368.63 ± 121.23 nM, capable of generating enzymatically active plasmin. This is the first report that shows and characterizes OmpL1 as an ECM-interacting and a PLG-binding protein of Leptospira spp. that may play a role in bacterial pathogenesis when expressed during infection.

  19. Sexually dimorphic expression of the genes encoding ribosomal proteins L17 and L37 in the song control nuclei of juvenile zebra finches.

    Science.gov (United States)

    Tang, Yu Ping; Wade, Juli

    2006-12-18

    Studies evaluating the role of steroid hormones in sexual differentiation of the zebra finch song system have produced complicated and at times paradoxical results, and indicate that additional factors may be critical. Therefore, in a previous study we initiated a screen for differential gene expression in the telencephalon of developing male and female zebra finches. The use of cDNA microarrays and real-time quantitative PCR revealed increased expression of the genes encoding ribosomal proteins L17 and L37 (RPL17 and RPL37) in the male forebrain as a whole. Preliminary in situ hybridization data then indicated enhanced expression of both these genes in song control regions. Two experiments in the present study quantified the mRNA expression. The first utilized 25-day-old male and female zebra finches. The second compared a separate set of juveniles to adults of both sexes to both re-confirm enhanced expression in juvenile males and to determine whether it is limited to developing animals. In Experiment 1, males exhibited increased expression of both RPL17 and RPL37 compared to females in Area X, the robust nucleus of the arcopallium (RA), and the ventral ventricular zone (VVZ), which may provide neurons to Area X. Experiment 2 replicated the sexually dimorphic expression of these genes at post-hatching day 25, and documented that the sex differences are eliminated or greatly reduced in adults. The results are consistent with the idea that these ribosomal proteins may influence sexual differentiation of Area X and RA, potentially regulating the genesis and/or survival of neurons.

  20. Isolation of eukaryotic ribosomal proteins. Purification and characterization of 60 S ribosomal subunit proteins L3, L6, L7', L8, L10, L15, L17, L18, L19, L23', L25, L27', L28, L29, L31, L32, L34, L35, L36, L36', and L37'.

    Science.gov (United States)

    Tsurugi, K; Collatz, E; Todokoro, K; Wool, I G

    1977-06-10

    The proteins of the large subunit of rat liver ribosomes were separated into seven groups by stepwise elution from carboxymethylcellulose with LiCl at pH 6.5. Twenty-one proteins (L3, L6, L7', L8, L10, L15, L17, L18, L19, L23', L25, L27', L28, L29, L31, L32, L34, L35, L36, L36', and L37') were isolated from three groups (C60, E60, and F60) by ion exchange chromatography on carboxymethycellulose and by filtration through Sephadex. The amount of protein obtained varied from 0.3 to 25 mg. Nine of the proteins (L6, L8, L18, L27', L28, L29, L34, L36, and L36') had no detectable contamination: the impurities in the others were no greater than 9%. The molecular weight of the proteins was estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate; the amino acid composition was determined.

  1. A novel mechanism of RNase L inhibition: Theiler's virus L* protein prevents 2-5A from binding to RNase L

    Science.gov (United States)

    Drappier, Melissa; Elliott, Ruth; Zhang, Rong; Weiss, Susan R.; Silverman, Robert H.

    2018-01-01

    The OAS/RNase L pathway is one of the best-characterized effector pathways of the IFN antiviral response. It inhibits the replication of many viruses and ultimately promotes apoptosis of infected cells, contributing to the control of virus spread. However, viruses have evolved a range of escape strategies that act against different steps in the pathway. Here we unraveled a novel escape strategy involving Theiler’s murine encephalomyelitis virus (TMEV) L* protein. Previously we found that L* was the first viral protein binding directly RNase L. Our current data show that L* binds the ankyrin repeats R1 and R2 of RNase L and inhibits 2’-5’ oligoadenylates (2-5A) binding to RNase L. Thereby, L* prevents dimerization and oligomerization of RNase L in response to 2-5A. Using chimeric mouse hepatitis virus (MHV) expressing TMEV L*, we showed that L* efficiently inhibits RNase L in vivo. Interestingly, those data show that L* can functionally substitute for the MHV-encoded phosphodiesterase ns2, which acts upstream of L* in the OAS/RNase L pathway, by degrading 2-5A. PMID:29652922

  2. Enhanced resistance to blast fungus in rice (Oryza sativa L.) by expressing the ribosome-inactivating protein α-momorcharin.

    Science.gov (United States)

    Qian, Qian; Huang, Lin; Yi, Rong; Wang, Shuzhen; Ding, Yi

    2014-03-01

    Rice blast caused by Magnaporthe grisea is one of the three major diseases that seriously affect the rice production. Alpha-momorcharin (α-MC), a ribosome-inactivating protein (RIP) isolated from Momordica charantia seeds, has antifungal effects in vitro. In this study, the α-MC gene was constitutively expressed under the control of the 2×35S promoter in transgenic rice (Oryza sativa L.) using an Agrobacterium tumefaciens-mediated method. The nine transgenic plants were obtained and confirmed by PCR and RT-PCR, and the four (B2, B4, B7 and B9) of them whose copy numbers were 1, 2, 3 and 3, respectively, were shown to express the α-MC protein by Western blot. The molecular weight of α-MC in transgenic plants was approximately 38 kDa larger than the purified α-MC protein (28 kDa) in vitro. When the confirmed T1 generations were inoculated with a suspension of M. grisea spores for ten days, the lesions on leaves of transgenic plants were much lesser than those found on wild type (WT). According to the criteria of International Rice Research Institute standard, the mean values for morbidity and disease index numbers were 29.8% and 14.9%, respectively, which were lower than for WT. It is unclear whether RIPs could impact plant fitness and however our results suggest that the α-MC protein is an effective antifungal protein preventing rice blast in transgenic rice. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  3. Expression and Purification of Z Protein from Junín Virus

    Directory of Open Access Journals (Sweden)

    S. E. Goñi

    2010-01-01

    Full Text Available Arenaviridae comprises 23 recognized virus species with a bipartite ssRNA genome and an ambisense coding strategy. The virions are enveloped and include nonequimolar amounts of each genomic RNA species, designated L and S, coding for four ORFs (N, GPC, L, and Z. The arenavirus Junín (JUNV is the etiological agent of Argentine Hemorrhagic Fever, an acute disease with high mortality rate. It has been proposed that Z is the functional counterpart of the matrix proteins found in other negative-stranded enveloped RNA viruses. Here we report the optimized expression of a synthetic gene of Z protein, using three expression systems (two bacterial and a baculoviral one. One of these recombinant proteins was used to generate antibodies. A bioinformatic analysis was made where Z was subdivided into three domains. The data presented contributes methodologies for Z recombinant production and provides the basis for the development of new experiments to test its function.

  4. Expression of human protein S100A7 (psoriasin, preparation of antibody and application to human larynx squamous cell carcinoma

    Directory of Open Access Journals (Sweden)

    Barbieri Manuela R

    2011-11-01

    Full Text Available Abstract Background Up-regulation of S100A7 (Psoriasin, a small calcium-binding protein, is associated with the development of several types of carcinomas, but its function and possibility to serve as a diagnostic or prognostic marker have not been fully defined. In order to prepare antibodies to the protein for immunohistochemical studies we produced the recombinant S100A7 protein in E. coli. mRNA extracted from human tracheal tumor tissue which was amplified by RT-PCR to provide the region coding for the S100A7 gene. The amplified fragment was cloned in the vector pCR2.1-TOPO and sub-cloned in the expression vector pAE. The protein rS100A7 (His-tag was expressed in E. coli BL21::DE3, purified by affinity chromatography on an Ni-NTA column, recovered in the 2.0 to 3.5 mg/mL range in culture medium, and used to produce a rabbit polyclonal antibody anti-rS100A7 protein. The profile of this polyclonal antibody was evaluated in a tissue microarray. Results The rS100A7 (His-tag protein was homogeneous by SDS-PAGE and mass spectrometry and was used to produce an anti-recombinant S100A7 (His-tag rabbit serum (polyclonal antibody anti-rS100A7. The molecular weight of rS100A7 (His-tag protein determined by linear MALDI-TOF-MS was 12,655.91 Da. The theoretical mass calculated for the nonapeptide attached to the amino terminus is 12,653.26 Da (delta 2.65 Da. Immunostaining with the polyclonal anti-rS100A7 protein generated showed reactivity with little or no background staining in head and neck squamous cell carcinoma cells, detecting S100A7 both in nucleus and cytoplasm. Lower levels of S100A7 were detected in non-neoplastic tissue. Conclusions The polyclonal anti-rS100A7 antibody generated here yielded a good signal-to-noise contrast and should be useful for immunohistochemical detection of S100A7 protein. Its potential use for other epithelial lesions besides human larynx squamous cell carcinoma and non-neoplastic larynx should be explored in future.

  5. cDNA Cloning, expression and characterization of an allergenic 60s ribosomal protein of almond (prunus dulcis).

    Science.gov (United States)

    Abolhassani, Mohsen; Roux, Kenneth H

    2009-06-01

    Tree nuts, including almond (prunus dulcis) are a source of food allergens often associated with life-threatening allergic reactions in susceptible individuals. Although the proteins in almonds have been biochemically characterized, relatively little has been reported regarding the identity of the allergens involved in almond sensitivity. The present study was undertaken to identify the allergens of the almond by cDNA library approach. cDNA library of almond seeds was constructed in Uni-Zap XR lamda vector and expressed in E. coli XL-1 blue. Plaques were immunoscreened with pooled sera of allergic patients. The cDNA clone reacting significantly with specific IgE antibodies was selected and subcloned and subsequently expressed in E. coli. The amino acids deducted from PCR product of clone showed homology to 60s acidic ribosomal protein of almond. The expressed protein was 11,450 Dalton without leader sequence. Immunoreactivity of the recombinant 60s ribosomal protein (r60sRP) was evaluated with dot blot analysis using pooled and individual sera of allergic patients. The data showed that r60sRP and almond extract (as positive control) possess the ability to bind the IgE antibodies. The results showed that expressed protein is an almond allergen.Whether this r60sRP represents a major allergen of almond needs to be further studied which requires a large number of sera from the almond atopic patients and also need to determine the IgE-reactive frequencies of each individual allergen.

  6. Vector Development for the Expression of Foreign Proteins in the Vaccine Strain Brucella abortus S19

    Science.gov (United States)

    Comerci, Diego J.; Pollevick, Guido D.; Vigliocco, Ana M.; Frasch, Alberto C. C.; Ugalde, Rodolfo A.

    1998-01-01

    A vector for the expression of foreign antigens in the vaccine strain Brucella abortus S19 was developed by using a DNA fragment containing the regulatory sequences and the signal peptide of the Brucella bcsp31 gene. This fragment was cloned in broad-host-range plasmid pBBR4MCS, resulting in plasmid pBEV. As a reporter protein, a repetitive antigen of Trypanosoma cruzi was used. The recombinant fusion protein is stably expressed and secreted into the Brucella periplasmic space, inducing a good antibody response against the T. cruzi antigen. The expression of the repetitive antigen in Brucella neither altered its growth pattern nor generated a toxic or lethal effect during experimental infection. The application of this strategy for the generation of live recombinant vaccines and the tagging of B. abortus S19 vaccine is discussed. This is the first time that a recombinant protein has been expressed in the periplasm of brucellae. PMID:9673273

  7. Intestinal APCs of the endogenous nanomineral pathway fail to express PD-L1 in Crohn’s disease

    Science.gov (United States)

    Robertson, Jack; Haas, Carolin T.; Pele, Laetitia C.; Monie, Tom P.; Charalambos, Charles; Parkes, Miles; Hewitt, Rachel E.; Powell, Jonathan J.

    2016-01-01

    Crohn’s disease is a chronic inflammatory condition most commonly affecting the ileum and colon. The aetiology of Crohn’s disease is complex and may include defects in peptidoglycan recognition, and/or failures in the establishment of intestinal tolerance. We have recently described a novel constitutive endogenous delivery system for the translocation of nanomineral-antigen-peptidoglycan (NAP) conjugates to antigen presenting cells (APCs) in intestinal lymphoid patches. In mice NAP conjugate delivery to APCs results in high surface expression of the immuno-modulatory molecule programmed death receptor ligand 1 (PD-L1). Here we report that NAP conjugate positive APCs in human ileal tissues from individuals with ulcerative colitis and intestinal carcinomas, also have high expression of PD-L1. However, NAP-conjugate positive APCs in intestinal tissue from patients with Crohn’s disease show selective failure in PD-L1 expression. Therefore, in Crohn’s disease intestinal antigen taken up by lymphoid patch APCs will be presented without PD-L1 induced tolerogenic signalling, perhaps initiating disease. PMID:27226337

  8. Data set of interactomes and metabolic pathways of proteins differentially expressed in brains with Alzheimer׳s disease

    Directory of Open Access Journals (Sweden)

    Benito Minjarez

    2016-06-01

    Full Text Available Alzheimer׳s disease is one of the main causes of dementia in the elderly and its frequency is on the rise worldwide. It is considered the result of complex interactions between genetic and environmental factors, being many of them unknown. Therefore, there is a dire necessity for the identification of novel molecular players for the understanding of this disease. In this data article we determined the protein expression profiles of whole protein extracts from cortex regions of brains from patients with Alzheimer׳s disease in comparison to a normal brain. We identified 721 iTRAQ-labeled polypeptides with more than 95% in confidence. We analyzed all proteins that changed in their expression level and located them in the KEGG metabolic pathways, as well as in the mitochondrial complexes of the electron transport chain and ATP synthase. In addition, we analyzed the over- and sub-expressed polypeptides through IPA software, specifically Core I and Biomarkers I modules. Data in this article is related to the research article “Identification of proteins that are differentially expressed in brains with Alzheimer’s disease using iTRAQ labeling and tandem mass spectrometry” (Minjarez et al., 2016 [1].

  9. 28 CFR 523.31 - Who is eligible for DCEGT?

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false Who is eligible for DCEGT? 523.31 Section 523.31 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.31...

  10. Effects of interferon gamma on Chlamydia trachomatis serovar A and L2 protein expression investigated by two-dimensional gel electrophoresis

    DEFF Research Database (Denmark)

    Shaw, A; Christiansen, Gunna; Birkelund, Svend

    1999-01-01

    ]methionine and two-dimensional gel electrophoresis with immobilized pH gradients in order to investigate changes in the protein expression of C. trachomatis serovar A and L2 caused by treatment with IFN-gamma. In contrast to what was observed in C. trachomatis L2, our results showed that, in C. trachomatis A, down...

  11. 22 CFR 52.3 - Certification as to marriage laws.

    Science.gov (United States)

    2010-04-01

    ... 22 Foreign Relations 1 2010-04-01 2010-04-01 false Certification as to marriage laws. 52.3 Section 52.3 Foreign Relations DEPARTMENT OF STATE NATIONALITY AND PASSPORTS MARRIAGES § 52.3 Certification as to marriage laws. Although a consular officer may have knowledge respecting the laws of marriage...

  12. The proteome response to amyloid protein expression in vivo.

    Directory of Open Access Journals (Sweden)

    Ricardo A Gomes

    Full Text Available Protein misfolding disorders such as Alzheimer, Parkinson and transthyretin amyloidosis are characterized by the formation of protein amyloid deposits. Although the nature and location of the aggregated proteins varies between different diseases, they all share similar molecular pathways of protein unfolding, aggregation and amyloid deposition. Most effects of these proteins are likely to occur at the proteome level, a virtually unexplored reality. To investigate the effects of an amyloid protein expression on the cellular proteome, we created a yeast expression system using human transthyretin (TTR as a model amyloidogenic protein. We used Saccharomyces cerevisiae, a living test tube, to express native TTR (non-amyloidogenic and the amyloidogenic TTR variant L55P, the later forming aggregates when expressed in yeast. Differential proteome changes were quantitatively analyzed by 2D-differential in gel electrophoresis (2D-DIGE. We show that the expression of the amyloidogenic TTR-L55P causes a metabolic shift towards energy production, increased superoxide dismutase expression as well as of several molecular chaperones involved in protein refolding. Among these chaperones, members of the HSP70 family and the peptidyl-prolyl-cis-trans isomerase (PPIase were identified. The latter is highly relevant considering that it was previously found to be a TTR interacting partner in the plasma of ATTR patients but not in healthy or asymptomatic subjects. The small ubiquitin-like modifier (SUMO expression is also increased. Our findings suggest that refolding and degradation pathways are activated, causing an increased demand of energetic resources, thus the metabolic shift. Additionally, oxidative stress appears to be a consequence of the amyloidogenic process, posing an enhanced threat to cell survival.

  13. PROTEIN L-ISOASPARTYL METHYLTRANSFERASE2 is differentially expressed in chickpea and enhances seed vigor and longevity by reducing abnormal isoaspartyl accumulation predominantly in seed nuclear proteins.

    Science.gov (United States)

    Verma, Pooja; Kaur, Harmeet; Petla, Bhanu Prakash; Rao, Venkateswara; Saxena, Saurabh C; Majee, Manoj

    2013-03-01

    PROTEIN l-ISOASPARTYL METHYLTRANSFERASE (PIMT) is a widely distributed protein-repairing enzyme that catalyzes the conversion of abnormal l-isoaspartyl residues in spontaneously damaged proteins to normal aspartyl residues. This enzyme is encoded by two divergent genes (PIMT1 and PIMT2) in plants, unlike many other organisms. While the biological role of PIMT1 has been elucidated, the role and significance of the PIMT2 gene in plants is not well defined. Here, we isolated the PIMT2 gene (CaPIMT2) from chickpea (Cicer arietinum), which exhibits a significant increase in isoaspartyl residues in seed proteins coupled with reduced germination vigor under artificial aging conditions. The CaPIMT2 gene is found to be highly divergent and encodes two possible isoforms (CaPIMT2 and CaPIMT2') differing by two amino acids in the region I catalytic domain through alternative splicing. Unlike CaPIMT1, both isoforms possess a unique 56-amino acid amino terminus and exhibit similar yet distinct enzymatic properties. Expression analysis revealed that CaPIMT2 is differentially regulated by stresses and abscisic acid. Confocal visualization of stably expressed green fluorescent protein-fused PIMT proteins and cell fractionation-immunoblot analysis revealed that apart from the plasma membrane, both CaPIMT2 isoforms localize predominantly in the nucleus, while CaPIMT1 localizes in the cytosol. Remarkably, CaPIMT2 enhances seed vigor and longevity by repairing abnormal isoaspartyl residues predominantly in nuclear proteins upon seed-specific expression in Arabidopsis (Arabidopsis thaliana), while CaPIMT1 enhances seed vigor and longevity by repairing such abnormal proteins mainly in the cytosolic fraction. Together, our data suggest that CaPIMT2 has most likely evolved through gene duplication, followed by subfunctionalization to specialize in repairing the nuclear proteome.

  14. Cloning, expression, purification and characterization of Leishmania tropica PDI-2 protein

    Directory of Open Access Journals (Sweden)

    Ali Dina

    2016-01-01

    Full Text Available In Leishmania species, protein disulfide isomerase (PDI is an essential enzyme that catalyzes thiol-disulfide interchange. The present work describes the isolation, cloning, sequencing and expression of the pdI-2 gene. Initially, the gene was amplified from L. tropica genomic DNA by PCR using specific primers before cloning into the expression vector pET-15b. The construct pET/pdI-2 was transformed into BL21(DE3 cells and induced for the protein expression. SDS-PAGE and western blot analysis showed that the expressed protein is about 51 kDa. Cloned gene sequence analysis revealed that the deduced amino acid sequence showed significant homology with those of several parasites PDIs. Finally, recombinant protein was purified with a metal-chelating affinity column. The putative protein was confirmed as a thiol - disulfide oxidoreductase by detecting its activity in an oxidoreductase assay. Assay result of assay suggested that the PDI-2 protein is required for both oxidation and reduction of disulfide bonds in vitro. Antibodies reactive with this 51 kDa protein were detected by Western blot analysis in sera from human infected with L. tropica. This work describes for the first time the enzymatic activity of recombinant L. tropica PDI-2 protein and suggests a role for this protein as an antigen for the detection of leishmaniasis infection.

  15. GRP78 Protein Expression as Prognostic Values in Neoadjuvant Chemoradiotherapy and Laparoscopic Surgery for Locally Advanced Rectal Cancer.

    Science.gov (United States)

    Lee, Hee Yeon; Jung, Ji-Han; Cho, Hyun-Min; Kim, Sung Hwan; Lee, Kang-Moon; Kim, Hyung-Jin; Lee, Jong Hoon; Shim, Byoung Yong

    2015-10-01

    We investigated the relationships between biomarkers related to endoplasmic reticulum stress proteins (glucose-regulated protein of molecular mass 78 [GRP78] and Cripto-1 [teratocarcinoma-derived growth factor 1 protein]), pathologic response, and prognosis in locally advanced rectal cancer. All clinical stage II and III rectal cancer patients received 50.4 Gy over 5.5 weeks, plus 5-fluorouracil (400 mg/m(2)/day) and leucovorin (20 mg/m(2)/day) bolus on days 1 to 5 and 29 to 33, and surgery was performed at 7 to 10 weeks after completion of all therapies. Expression of GRP78 and Cripto-1 proteins was determined by immunohistochemistry and was assessed in 101 patients with rectal cancer treated with neoadjuvant chemoradiotherapy (CRT). High expression of GRP78 and Cripto-1 proteins was observed in 86 patients (85.1%) and 49 patients (48.5%), respectively. Low expression of GRP78 protein was associated with a significantly high rate of down staging (80.0% vs. 52.3%, respectively; p=0.046) and a significantly low rate of recurrence (0% vs. 33.7%, respectively; p=0.008) compared with high expression of GRP78 protein. Mean recurrence-free survival according to GRP78 expression could not be estimated because the low expression group did not develop recurrence events but showed a significant correlation with time to recurrence, based on the log rank method (p=0.007). GRP78 also showed correlation with overall survival, based on the log rank method (p=0.045). GRP78 expression is a predictive and prognostic factor for down staging, recurrence, and survival in rectal cancer patients treated with 5-fluorouracil and leucovorin neoadjuvant CRT.

  16. [Construction of the eukaryotic recombinant vector and expression of the outer membrane protein LipL32 gene from Leptospira serovar Lai].

    Science.gov (United States)

    Huang, Bi; Bao, Lang; Zhong, Qi; Shang, Zheng-ling; Zhang, Hui-dong; Zhang, Ying

    2008-02-01

    To construct the eukaryotic experssion vector of LipL32 gene from Leptospira serovar Lai and express the recombinant plasmid in COS-7 cell. The LipL32 gene was amplified from Leptospira strain 017 genomic DNA by PCR and cloned into pcDNA3.1, through restriction nuclease enzyme digestion. Then the recombinant plasmid was transformed into E.coli DH5alpha. After identified by nuclease digestion, PCR and sequencing analysis, the recombinant vector was transfected into COS-7 cell with lipsome. The expression of the target gene was detected by RT-PCR and Western blot. The eukaryotic experssion vector pcDNA3.1-LipL32 was successfully constructed and stably expressed in COS-7 cell. The eukaryotic recombinant vector of outer membrane protein LipL32 gene from Leptospira serovar Lai can be expressed in mammalian cell, which provides an experimental basis for the application of the Leptospira DNA vaccine.

  17. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Guoyue, E-mail: yuanguoyue@hotmail.com [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Jia, Jue; Di, Liangliang [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Zhou, Libin [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China); Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Li, Lianxi [Department of Endocrinology and Metabolism, Shanghai Jiao Tong University Affiliated Sixth People' s Hospital, 600, Yishan Road, Shanghai 200233 (China); Yang, Ying [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China); Mao, Chaoming [Department of Endocrinology, The Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001 (China); Chen, Mingdao, E-mail: mingdaochensh@yahoo.com [Ruijin Hospital, Center of Molecular Medicine, Shanghai Institute of Endocrine and Metabolic Diseases, State Key Laboratory of Medical Genomics, Shanghai Jiaotong University Medical School, 197, Ruijin Road II, Shanghai 200025 (China)

    2012-08-03

    Highlights: Black-Right-Pointing-Pointer CRP increases TNF-{alpha} and IL-6 genes expression in matured 3T3-L1 adipocytes. Black-Right-Pointing-Pointer CRP suppresses adiponectin, leptin and PPAR-{gamma} mRNA levels in matured 3T3-L1 cells. Black-Right-Pointing-Pointer Wortmannin reverses effects of CRP on adiponectin, TNF-{alpha} and leptin mRNA levels. Black-Right-Pointing-Pointer CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-{gamma}) genes expression and raised tumor necrosis factor-{alpha} (TNF-{alpha}) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-{alpha} and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-{alpha}, leptin, IL-6 and PPAR-{gamma} genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  18. Effects of C-reactive protein on adipokines genes expression in 3T3-L1 adipocytes

    International Nuclear Information System (INIS)

    Yuan, Guoyue; Jia, Jue; Di, Liangliang; Zhou, Libin; Dong, Sijing; Ye, Jingjing; Wang, Dong; Yang, Ling; Wang, Jifang; Li, Lianxi; Yang, Ying; Mao, Chaoming; Chen, Mingdao

    2012-01-01

    Highlights: ► CRP increases TNF-α and IL-6 genes expression in matured 3T3-L1 adipocytes. ► CRP suppresses adiponectin, leptin and PPAR-γ mRNA levels in matured 3T3-L1 cells. ► Wortmannin reverses effects of CRP on adiponectin, TNF-α and leptin mRNA levels. ► CRP may regulate IR, obesity and metabolic syndrome by this mechanism. -- Abstract: Adipose tissue is now recognized to be an important endocrine organ, secreting a variety of adipokines that are involved in the regulation of energy metabolism, insulin resistance and metabolic syndrome. C-reactive protein (CRP) is considered as one of the most sensitive markers of inflammation. A number of studies have shown that elevation of CRP concentrations is an independent predictive parameter of type 2 diabetes mellitus, which is also strongly associated with various components of the metabolic syndrome. The aim of the present study is to investigate the effects of CRP on adipokines genes expression in 3T3-L1 adipocytes. Quantitative real-time PCR analysis revealed that CRP inhibited adiponectin, leptin and peroxisome proliferator-activated receptor-gamma (PPAR-γ) genes expression and raised tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) mRNA levels in matured 3T3-L1 adipocytes in a dose and time-dependent manner. Pharmacological inhibition of phosphatidylinositol (PI)-3 kinase by wortmannin partially reversed the effects of CRP on adiponectin, TNF-α and leptin genes expression. These results collectively suggest that CRP regulates adiponectin, TNF-α, leptin, IL-6 and PPAR-γ genes expression, and that might represent a mechanism by which CRP regulates insulin resistance, obesity and metabolic syndrome.

  19. Zinc finger protein 219-like (ZNF219L) and Sox9a regulate synuclein-γ2 (sncgb) expression in the developing notochord of zebrafish.

    Science.gov (United States)

    Lien, Huang-Wei; Yang, Chung-Hsiang; Cheng, Chia-Hsiung; Liao, Yung-Feng; Han, Yu-San; Huang, Chang-Jen

    2013-12-13

    Zebrafish synuclein-γ2 (sncgb) has been reported to be expressed specifically in the notochord. However, the mechanism by which the sncgb gene promoter is regulated has not been described. In this paper, we demonstrate that Zinc finger protein 219-like (ZNF219L) and sox9a are involved in the regulation of sncgb gene expression. Furthermore, we observed that over-expression of both ZNF219L and Sox9a resulted in increased sncgb expression. In addition, ZNF219L is physically associated with Sox9a, and simultaneous morpholino knockdown of znf219L and sox9a caused a synergistic decrease of sncgb expression in the notochord. Taken together, our results reveal that coordination of ZNF219L with Sox9a is involved in the regulation of notochord-specific expression of sncgb. Copyright © 2013 The Authors. Published by Elsevier Inc. All rights reserved.

  20. Proteins Differentially Expressed in the Pancreas of Hepatic Alcohol Dehydrogenase-Deficient Deer Mice Fed Ethanol For 3 Months.

    Science.gov (United States)

    Bhopale, Kamlesh K; Amer, Samir M; Kaphalia, Lata; Soman, Kizhake V; Wiktorowicz, John E; Shakeel Ansari, Ghulam A; Kaphalia, Bhupendra S

    2017-07-01

    The aim of this study was to identify differentially expressed proteins in the pancreatic tissue of hepatic alcohol dehydrogenase-deficient deer mice fed ethanol to understand metabolic basis and mechanism of alcoholic chronic pancreatitis. Mice were fed liquid diet containing 3.5 g% ethanol daily for 3 months, and differentially expressed pancreatic proteins were identified by protein separation using 2-dimensional gel electrophoresis and identification by mass spectrometry. Nineteen differentially expressed proteins were identified by applying criteria established for protein identification in proteomics. An increased abundance was found for ribosome-binding protein 1, 60S ribosomal protein L31-like isoform 1, histone 4, calcium, and adenosine triphosphate (ATP) binding proteins and the proteins involved in antiapoptotic processes and endoplasmic reticulum function, stress, and/or homeostasis. Low abundance was found for endoA cytokeratin, 40S ribosomal protein SA, amylase 2b isoform precursor, serum albumin, and ATP synthase subunit β and the proteins involved in cell motility, structure, and conformation. Chronic ethanol feeding in alcohol dehydrogenase-deficient deer mice differentially expresses pancreatic functional and structural proteins, which can be used to develop biomarker(s) of alcoholic chronic pancreatitis, particularly amylase 2b precursor, and 60 kDa heat shock protein and those involved in ATP synthesis and blood osmotic pressure.

  1. Comparison of the binding characteristics of [18F]THK-523 and other amyloid imaging tracers to Alzheimer's disease pathology

    International Nuclear Information System (INIS)

    Harada, Ryuichi; Okamura, Nobuyuki; Yoshikawa, Takeo; Yanai, Kazuhiko; Furumoto, Shozo; Tago, Tetsuro; Iwata, Ren; Maruyama, Masahiro; Higuchi, Makoto; Arai, Hiroyuki; Kudo, Yukitsuka

    2013-01-01

    Extensive deposition of senile plaques and neurofibrillary tangles in the brain is a pathological hallmark of Alzheimer's disease (AD). Although several PET imaging agents have been developed for in vivo detection of senile plaques, no PET probe is currently available for selective detection of neurofibrillary tangles in the living human brain. Recently, [ 18 F]THK-523 was developed as a potential in vivo imaging probe for tau pathology. The purpose of this study was to compare the binding properties of [ 18 F]THK-523 and other amyloid imaging agents, including PiB, BF-227 and FDDNP, to synthetic protein fibrils and human brain tissue. In vitro radioligand binding assays were conducted using synthetic amyloid β 42 and K18ΔK280-tau fibrils. Nonspecific binding was determined by the addition of unlabelled compounds at a concentration of 2 μM. To examine radioligand binding to neuropathological lesions, in vitro autoradiography was conducted using sections of AD brain. [ 18 F]THK-523 showed higher affinity for tau fibrils than for Aβ fibrils, whereas the other probes showed a higher affinity for Aβ fibrils. The autoradiographic analysis indicated that [ 18 F]THK-523 accumulated in the regions containing a high density of tau protein deposits. Conversely, PiB and BF-227 accumulated in the regions containing a high density of Aβ plaques. These findings suggest that the unique binding profile of [ 18 F]THK-523 can be used to identify tau deposits in AD brain. (orig.)

  2. Oxysterol-Binding Protein-Related Protein 1L Regulates Cholesterol Egress from the Endo-Lysosomal System

    Directory of Open Access Journals (Sweden)

    Kexin Zhao

    2017-05-01

    Full Text Available Lipoprotein cholesterol is delivered to the limiting membrane of late endosomes/lysosomes (LELs by Niemann-Pick C1 (NPC1. However, the mechanism of cholesterol transport from LELs to the endoplasmic reticulum (ER is poorly characterized. We report that oxysterol-binding protein-related protein 1L (ORP1L is necessary for this stage of cholesterol export. CRISPR-mediated knockout of ORP1L in HeLa and HEK293 cells reduced esterification of cholesterol to the level in NPC1 knockout cells, and it increased the expression of sterol-regulated genes and de novo cholesterol synthesis, indicative of a block in cholesterol transport to the ER. In the absence of this transport pathway, cholesterol-enriched LELs accumulated in the Golgi/perinuclear region. Cholesterol delivery to the ER required the sterol-, phosphatidylinositol 4-phosphate-, and vesicle-associated membrane protein-associated protein (VAP-binding activities of ORP1L, as well as NPC1 expression. These results suggest that ORP1L-dependent membrane contacts between LELs and the ER coordinate cholesterol transfer with the retrograde movement of endo-lysosomal vesicles.

  3. S(+)-ibuprofen destabilizes MYC/MYCN and AKT, increases p53 expression, and induces unfolded protein response and favorable phenotype in neuroblastoma cell lines.

    Science.gov (United States)

    Ikegaki, Naohiko; Hicks, Sakeenah L; Regan, Paul L; Jacobs, Joshua; Jumbo, Amina S; Leonhardt, Payton; Rappaport, Eric F; Tang, Xao X

    2014-01-01

    Neuroblastoma is a common pediatric solid tumor that exhibits a striking clinical bipolarity: favorable and unfavorable. The survival rate of children with unfavorable neuroblastoma remains low among all childhood cancers. MYCN and MYC play a crucial role in determining the malignancy of unfavorable neuroblastomas, whereas high-level expression of the favorable neuroblastoma genes is associated with a good disease outcome and confers growth suppression of neuroblastoma cells. A small fraction of neuroblastomas harbors TP53 mutations at diagnosis, but a higher proportion of the relapse cases acquire TP53 mutations. In this study, we investigated the effect of S(+)-ibuprofen on neuroblastoma cell lines, focusing on the expression of the MYCN, MYC, AKT, p53 proteins and the favorable neuroblastoma genes in vitro as biomarkers of malignancy. Treatment of neuroblastoma cell lines with S(+)-ibuprofen resulted in a significant growth suppression. This growth effect was accompanied by a marked decrease in the expression of MYC, MYCN, AKT and an increase in p53 expression in neuroblastoma cell lines without TP53 mutation. In addition, S(+)-ibuprofen enhanced the expression of some favorable neuroblastoma genes (EPHB6, CD44) and genes involved in growth suppression and differentiation (EGR1, EPHA2, NRG1 and SEL1L). Gene expression profile and Ingenuity pathway analyses using TP53-mutated SKNAS cells further revealed that S(+)-ibuprofen suppressed molecular pathways associated with cell growth and conversely enhanced those of cell cycle arrest and the unfolded protein response. Collectively, these results suggest that S(+)-ibuprofen or its related compounds may have the potential for therapeutic and/or palliative use for unfavorable neuroblastoma.

  4. 28 CFR 523.33 - How is eligibility for DCEGT limited?

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false How is eligibility for DCEGT limited? 523.33 Section 523.33 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.33...

  5. 28 CFR 523.32 - How much DCEGT can I earn?

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false How much DCEGT can I earn? 523.32 Section 523.32 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time Credit § 523.32...

  6. 40 CFR 86.523-78 - Oxides of nitrogen analyzer calibration.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 18 2010-07-01 2010-07-01 false Oxides of nitrogen analyzer calibration. 86.523-78 Section 86.523-78 Protection of Environment ENVIRONMENTAL PROTECTION AGENCY (CONTINUED... Emission Regulations for 1978 and Later New Motorcycles; Test Procedures § 86.523-78 Oxides of nitrogen...

  7. 76 FR 50724 - Sawgrass Storage, L.L.C.; Notice of Application

    Science.gov (United States)

    2011-08-16

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket Nos. CP11-523-000; PF10-20-000] Sawgrass Storage, L.L.C.; Notice of Application Take notice that on July 27, 2011, Sawgrass Storage, L.L.C..., filed an application in Docket No. CP11-523-000 pursuant to Section 7(c) of the Natural Gas Act (NGA...

  8. Cloning and expression of ligand-gated ion-channel receptor L2 in central nervous system

    International Nuclear Information System (INIS)

    Houtani, Takeshi; Munemoto, Yumi; Kase, Masahiko; Sakuma, Satoru; Tsutsumi, Toshiyuki; Sugimoto, Tetsuo

    2005-01-01

    An orphan receptor of ligand-gated ion-channel type (L2, also termed ZAC according to the presence of zinc ion for channel activation) was identified by computer-assisted search programs on human genome database. The L2 protein shares partial homology with serotonin receptors 5HT3A and 5HT3B. We have cloned L2 cDNA derived from human caudate nucleus and characterized the exon-intron structure as follows: (1) The L2 protein has four transmembrane regions (M1-M4) and a long cytoplasmic loop between M3 and M4. (2) The sequence is conserved in species including chimpanzee, dog, cow, and opossum. (3) Nine exons form its protein-coding region and especially exon 5 corresponds to a disulfide bond region on the amino-terminal side. Our analysis using multiple tissue cDNA panels revealed that at least two splicing variants of L2 mRNA are present. The cDNA PCR amplification study revealed that L2 mRNA is expressed in tissues including brain, pancreas, liver, lung, heart, kidney, and skeletal muscle while 5HT3A mRNA could be detected in brain, heart, placenta, lung, kidney, pancreas, and skeletal muscle, and 5HT3B mRNA in brain, kidney, and skeletal muscle, suggesting different significance in tissue expression of these receptors. Regional expression of L2 mRNA and protein was examined in brain. The RT-PCR studies confirmed L2 mRNA expression in hippocampus, striatum, amygdala, and thalamus in adult brain. The L2 protein was immunolocalized by using antipeptide antibodies. Immunostained tissue sections revealed that L2-like immunoreactivity was dominantly expressed in the hippocampal CA3 pyramidal cells and in the polymorphic layer of the dentate gyrus. We analyzed the expression of L2 protein in HEK293 cells using GFP fusion protein reporter system. Western blots revealed that L2 protein confers sugar chains on the extracellular side. In transfected HEK293 cells, cellular membranes and intracellular puncta were densely labeled with GFP, suggesting selective dispatch to the

  9. Development of Chemically Defined Media to Express Trp-Analog-Labeled Proteins in a Lactococcus lactis Trp Auxotroph.

    Science.gov (United States)

    Shao, Jinfeng; Marcondes, Marcelo F M; Oliveira, Vitor; Broos, Jaap

    2016-01-01

    Chemically defined media for growth of Lactococcus lactis strains contain about 50 components, making them laborious and expensive growth media. However, they are crucial for metabolism studies as well as for expression of heterologous proteins labeled with unnatural amino acids. In particular, the L. lactis Trp auxotroph PA1002, overexpressing the tryptophanyl tRNA synthetase enzyme of L. lactis, is very suitable for the biosynthetic incorporation of Trp analogs in proteins because of its most relaxed substrate specificity reported towards Trp analogs. Here we present two much simpler defined media for L. lactis, which consist of only 24 or 31 components, respectively, and with which the L. lactis Trp auxotroph shows similar growth characteristics as with a 50-component chemically defined medium. Importantly, the expression levels of two recombinant proteins used for evaluation were up to 2-3 times higher in these new media than in the 50-component medium, without affecting the Trp analog incorporation efficiency. Taken together, the simplest chemically defined media reported so far for L. lactis are presented. Since L. lactis also shows auxotrophy for Arg, His, Ile, Leu Val, and Met, our simplified media may also be useful for the biosynthetic incorporation of analogs of these five amino acids. © 2016 The Author(s) Published by S. Karger AG, Basel.

  10. Expression of calcium binding protein S100 A7 (psoriasin) in laryngeal carcinoma.

    Science.gov (United States)

    Tiveron, Rogério Costa; de Freitas, Luiz Carlos Conti; Figueiredo, David L; Serafini, Luciano N; Mamede, Rui Celso Martins; Zago, Marco A

    2012-01-01

    Many studies have reported increased expression of S100 A7 (psoriasin) in neoplastic lesions. Among them are studies on breast carcinoma, bladder squamous cell carcinoma, skin tumors and oral cavity squamous cell carcinoma. The expression of S100 A7 has not been described for laryngeal cancer. This study aims to identify the expression of the calcium-binding protein S100 A7 and its correlation with squamous cell carcinomas of the larynx. Specimens from 63 patients were submitted to immunohistochemistry testing with antibody S100 A7. Results were classified and compared. The group with highly differentiated tumors had the highest treatment failure scores. Moderately differentiated tumors had higher treatment failure scores than poorly differentiated tumors. Higher scores were predominantly seen on stages I and II in moderately differentiated tumors, whereas score distribution was more homogeneous in advanced stage disease (III and IV). Regarding failure in treatment, the group scoring zero (3/4 complications: 75%) differed significantly from the remaining groups (13/59: 22%). S100 A7 marker was expressed in 93.7% of laryngeal cancer cases, with higher positive correlation rates in more differentiated tumors and significantly lower rates of treatment failure. Scores had no impact on survival rates.

  11. Detention of HPV L1 Capsid Protein and hTERC Gene in Screening of Cervical Cancer

    Directory of Open Access Journals (Sweden)

    Huang Bin

    2013-06-01

    Full Text Available   Objective(s: To investigate the expression of human papilloma virus (HPV L1 capsid protein, and human telomerase RNA component (hTERC in cervical cancer and the role of detection of both genes in screening of cervical cancer.   Materials and Methods: A total of 309 patients were recruited and cervical exfoliated cells were collected. Immunocytochemistry was employed to detect HPV L1 capsid protein, and fluorescent in situ hybridization (FISH was performed to detect the hTERC. Results: The expression of HPV L1 capsid protein reduced with the increase of the histological grade of cervical cells and was negatively related to the grade of cervical lesions. However, the expression of hTERC increased with the increase of the histological grade and positively associated with the grade of cervical lesions. The proportion of patients with L1(-/hTERC(+ was higher in patients with histological grade of CIN2 or higher than that in those with histological grade of CIN1. The L1(+/hTERC(- and L1(-/hTERC(- were negatively related to the grade of cervical lesions. L1(-/hTERC(+ was positively associated with the grade of cervical lesions. The L1/hTERC ratio increased. The negative predictive value of both HPV L1 and hTERC was higher than that of HPV L1 or hTERC, but there was no marked difference in the screening efficacy of cervical cancer among HPV L1, hTERC and HPV L1+hTERC. Conclusion: HPV L1 capsid protein and hTERC gene may serve as markers for the early diagnosis and prediction of cervical lesions. The increase in L1/hTERC ratio reflects the progression of cervical lesions to a certain extent.

  12. Novel vector vaccine against Brucella abortus based on influenza A viruses expressing Brucella L7/L12 or Omp16 proteins: evaluation of protection in pregnant heifers.

    Science.gov (United States)

    Tabynov, Kaissar; Yespembetov, Bolat; Sansyzbay, Abylai

    2014-10-14

    The present study provides the first information about the protection of a novel influenza viral vector vaccine expressing the Brucella proteins ribosomal L7/L12 or Omp16 containing the adjuvant Montanide Gel01 in pregnant heifers. Immunization of pregnant heifers was conducted via the conjunctival (n=10) or subcutaneous (n=10) route using cross prime and booster vaccination schedules at an interval of 28 days. The vector vaccine was evaluated in comparison with positive control groups vaccinated with Brucella abortus S19 (n=10) or B. abortus RB51 (n=10) and a negative (PBS+Montanide Gel01; n=10) control group. Via both the conjunctival or subcutaneous route, evaluation of protectiveness against abortion, effectiveness of vaccination and index of infection (in heifers and their fetuses or calves) demonstrated the vector vaccine provided good protection against B. abortus 544 infection compared to the negative control group (PBS+Montanide Gel01) and comparable protection to commercial vaccines B. abortus S19 or B. abortus RB51. Copyright © 2014 Elsevier Ltd. All rights reserved.

  13. Chemotherapy treatment is associated with altered PD-L1 expression in lung cancer patients

    DEFF Research Database (Denmark)

    Rojkó, Lívia; Reiniger, Lilla; Téglási, Vanda

    2018-01-01

    Objectives: While the predictive value of programmed cell death ligand-1 (PD-L1) protein expression for immune checkpoint inhibitor therapy of lung cancer has been extensively studied, the impact of standard platinum-based chemotherapy on PD-L1 or programmed cell death-1 (PD-1) expression is unkn...... expression of TC in a subset of patients, therefore, rebiopsy and re-evaluation of PD-L1 expression may be necessary for the indication of immune checkpoint inhibitor therapy.......Objectives: While the predictive value of programmed cell death ligand-1 (PD-L1) protein expression for immune checkpoint inhibitor therapy of lung cancer has been extensively studied, the impact of standard platinum-based chemotherapy on PD-L1 or programmed cell death-1 (PD-1) expression...... is unknown. The aim of this study was to determine the changes in PD-L1 expression of tumor cells (TC) and immune cells (IC), in PD-1 expression of IC, and in the amount of stromal mononuclear cell infiltration after platinum-based chemotherapy in patients with lung cancer. Materials and methods: We...

  14. Expression of Slug in S100β-protein-positive cells of postnatal developing rat anterior pituitary gland.

    Science.gov (United States)

    Horiguchi, Kotaro; Fujiwara, Ken; Tsukada, Takehiro; Yako, Hideji; Tateno, Kozue; Hasegawa, Rumi; Takigami, Shu; Ohsako, Shunji; Yashiro, Takashi; Kato, Takako; Kato, Yukio

    2016-02-01

    Among heterogeneous S100β-protein-positive (S100β-positive) cells, star-like cells with extended cytoplasmic processes, the so-called folliculo-stellate cells, envelop hormone-producing cells or interconnect homophilically in the anterior pituitary. S100β-positive cells are known, from immunohistochemistry, to emerge from postnatal day (P) 10 and to proliferate and migrate in the parenchyma of the anterior pituitary with growth. Recent establishment of S100β-GFP transgenic rats expressing specifically green fluorescent protein (GFP) under the control of the S100β-promoter has allowed us to observe living S100β-positive cells. In the present study, we first confirmed that living S100β-positive cells in tissue cultures of S100β-GFP rat pituitary at P5 were present prior to P10 by means of confocal laser microscopy and that they proliferated and extended their cytoplasmic processes. Second, we examined the expression of the Snail-family zinc-finger transcription factors, Snail and Slug, to investigate the mechanism behind the morphological changes and the proliferation of S100β-positive cells. Interestingly, we detected Slug expression in S100β-positive cells and its increase together with development in the anterior pituitary. To analyze downstream of SLUG in S100β-positive cells, we utilized specific small interfering RNA for Slug mRNAs and observed that the expression of matrix metalloprotease (Mmp) 9, Mmp14 and chemokine Cxcl12 was down-regulated and that morphological changes and proliferation were decreased. Thus, our findings suggest that S100β-positive cells express Slug and that its expression is important for subsequent migration and proliferation.

  15. Nedd4L expression is decreased in ovarian epithelial cancer tissues compared to ovarian non-cancer tissue.

    Science.gov (United States)

    Yang, Qiuyun; Zhao, Jinghe; Cui, Manhua; Gi, Shuting; Wang, Wei; Han, Xiaole

    2015-12-01

    Recent studies have demonstrated that the neural precursor cell expressed, developmentally downregulated 4-like (Nedd4L) gene plays a role in the progression of various cancers. However, reports describing Nedd4L expression in ovarian cancer tissues are limited. A cohort (n = 117) of archival formalin-fixed, paraffin embedded resected normal ovarian epithelial tissues (n = 10), benign ovarian epithelial tumor tissues (n = 10), serous borderline ovarian epithelial tumor tissues (n = 14), mucous borderline ovarian epithelial tumor tissues (n = 11), and invasive ovarian epithelial cancer tissues (n = 72) were assessed for Nedd4L protein expression using immunohistochemistry. Nedd4L protein expression was significantly decreased in invasive ovarian epithelial cancer tissues compared to non-cancer tissues (P < 0.05). Decreased Nedd4L protein expression correlated with clinical stage, pathological grade, lymph node metastasis and survival (P < 0.05). Nedd4L protein expression may be an independent prognostic marker of ovarian cancer development. © 2015 Japan Society of Obstetrics and Gynecology.

  16. Evasion of antiviral innate immunity by Theiler's virus L* protein through direct inhibition of RNase L.

    Directory of Open Access Journals (Sweden)

    Frédéric Sorgeloos

    Full Text Available Theiler's virus is a neurotropic picornavirus responsible for chronic infections of the central nervous system. The establishment of a persistent infection and the subsequent demyelinating disease triggered by the virus depend on the expression of L*, a viral accessory protein encoded by an alternative open reading frame of the virus. We discovered that L* potently inhibits the interferon-inducible OAS/RNase L pathway. The antagonism of RNase L by L* was particularly prominent in macrophages where baseline oligoadenylate synthetase (OAS and RNase L expression levels are elevated, but was detectable in fibroblasts after IFN pretreatment. L* mutations significantly affected Theiler's virus replication in primary macrophages derived from wild-type but not from RNase L-deficient mice. L* counteracted the OAS/RNase L pathway through direct interaction with the ankyrin domain of RNase L, resulting in the inhibition of this enzyme. Interestingly, RNase L inhibition was species-specific as Theiler's virus L* protein blocked murine RNase L but not human RNase L or RNase L of other mammals or birds. Direct RNase L inhibition by L* and species specificity were confirmed in an in vitro assay performed with purified proteins. These results demonstrate a novel viral mechanism to elude the antiviral OAS/RNase L pathway. By targeting the effector enzyme of this antiviral pathway, L* potently inhibits RNase L, underscoring the importance of this enzyme in innate immunity against Theiler's virus.

  17. KSHV LANA and EBV LMP1 induce the expression of UCH-L1 following viral transformation

    Energy Technology Data Exchange (ETDEWEB)

    Bentz, Gretchen L.; Bheda-Malge, Anjali; Wang, Ling [Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill (United States); Shackelford, Julia [Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill (United States); Department of Cell and Developmental Biology, University of North Carolina, Chapel Hill (United States); Damania, Blossom [Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill (United States); Departments of Medicine and of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC (United States); Pagano, Joseph S., E-mail: joseph_pagano@med.unc.edu [Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill (United States); Departments of Medicine and of Microbiology and Immunology, University of North Carolina, Chapel Hill, NC (United States)

    2014-01-05

    Ubiquitin C-terminal Hydrolase L1 (UCH-L1) has oncogenic properties and is highly expressed during malignancies. We recently documented that Epstein-Barr virus (EBV) infection induces uch-l1 expression. Here we show that Kaposi's Sarcoma-associated herpesvirus (KSHV) infection induced UCH-L1 expression, via cooperation of KSHV Latency-Associated Nuclear Antigen (LANA) and RBP-Jκ and activation of the uch-l1 promoter. UCH-L1 expression was also increased in Primary Effusion Lymphoma (PEL) cells co-infected with KSHV and EBV compared with PEL cells infected only with KSHV, suggesting EBV augments the effect of LANA on uch-l1. EBV latent membrane protein 1 (LMP1) is one of the few EBV products expressed in PEL cells. Results showed that LMP1 was sufficient to induce uch-l1 expression, and co-expression of LMP1 and LANA had an additive effect on uch-l1 expression. These results indicate that viral latency products of both human γ-herpesviruses contribute to uch-l1 expression, which may contribute to the progression of lymphoid malignancies. - Highlights: • Infection of endothelial cells with KSHV induced UCH-L1 expression. • KSHV LANA is sufficient for the induction of uch-l1. • Co-infection with KSHV and EBV (observed in some PELs) results in the additive induction of uch-l1. • EBV LMP1 also induced UCH-L1 expression. • LANA- and LMP1-mediated activation of the uch-l1 promoter is in part through RBP-Jκ.

  18. Expression of the Grb2-related protein of the lymphoid system in B cell subsets enhances B cell antigen receptor signaling through mitogen-activated protein kinase pathways.

    Science.gov (United States)

    Yankee, Thomas M; Solow, Sasha A; Draves, Kevin D; Clark, Edward A

    2003-01-01

    Adapter proteins play a critical role in regulating signals triggered by Ag receptor cross-linking. These small molecules link receptor proximal events with downstream signaling pathways. In this study, we explore the expression and function of the Grb2-related protein of the lymphoid system (GrpL)/Grb2-related adaptor downstream of Shc adapter protein in human B cells. GrpL is expressed in naive B cells and is down-regulated following B cell Ag receptor ligation. By contrast, germinal center and memory B cells express little or no GrpL. Using human B cell lines, we detected constitutive interactions between GrpL and B cell linker protein, Src homology (SH)2 domain-containing leukocyte protein of 76 kDa, hemopoietic progenitor kinase 1, and c-Cbl. The N-terminal SH3 domain of GrpL binds c-Cbl while the C-terminal SH3 domain binds B cell linker protein and SH2 domain-containing leukocyte protein of 76 kDa. Exogenous expression of GrpL in a GrpL-negative B cell line leads to enhanced Ag receptor-induced extracellular signal-related kinase and p38 mitogen-activated protein kinase phosphorylation. Thus, GrpL expression in human B cell subsets appears to regulate Ag receptor-mediated signaling events.

  19. L-Cysteine supplementation increases adiponectin synthesis and secretion, and GLUT4 and glucose utilization by upregulating disulfide bond A-like protein expression mediated by MCP-1 inhibition in 3T3-L1 adipocytes exposed to high glucose.

    Science.gov (United States)

    Achari, Arunkumar Elumalai; Jain, Sushil K

    2016-03-01

    Adiponectin is an anti-diabetic and anti-atherogenic adipokine; its plasma levels are decreased in obesity, insulin resistance, and type 2 diabetes. An adiponectin-interacting protein named disulfide bond A-like protein (DsbA-L) plays an important role in the assembly of adiponectin. This study examined the hypothesis that L-cysteine (LC) regulates glucose homeostasis through the DsbA-L upregulation and synthesis and secretion of adiponectin in diabetes. 3T3L1 adipocytes were treated with LC (250 and 500 µM, 2 h) and high glucose (HG, 25 mM, 20 h). Results showed that LC supplementation significantly (p L, adiponectin, and GLUT-4 protein expression and glucose utilization in HG-treated adipocytes. LC supplementation significantly (p L expression and adiponectin levels in 3T3-L1 cells. Treatment with LC prevented the decrease in DsbA-L, adiponectin, and GLUT-4 expression in 3T3L1 adipocyte cells exposed to MCP-1. Thus, this study demonstrates that DsbA-L and adiponectin upregulation mediates the beneficial effects of LC on glucose utilization by inhibiting MCP-1 secretion in adipocytes and provides a novel mechanism by which LC supplementation can improve insulin sensitivity in diabetes.

  20. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    Energy Technology Data Exchange (ETDEWEB)

    He, Yonghan [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223 (China); Li, Ying [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China); Zhang, Shuocheng [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Perry, Ben [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 (Canada); Zhao, Tiantian [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Psychology, University of Toronto, 1265 Military Trail, Toronto, ON, Canada M1C 1A4 (Canada); Wang, Yanwen, E-mail: yanwen.wang@nrc.ca [Aquatic and Crop Resource Development, Life Sciences Branch, National Research Council Canada, Charlottetown, PE, Canada C1A 4P3 (Canada); Department of Biomedical Sciences, University of Prince Edward Island, 550 University Avenue, Charlottetown, PE, Canada C1A 4P3 (Canada); Sun, Changhao, E-mail: sun2002changhao@yahoo.com [Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, 157 Baojian Road, Harbin 150081 (China)

    2013-06-28

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR{sub γ}) and CCAAT element binding protein α (C/EBP{sub α}), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins.

  1. Radicicol, a heat shock protein 90 inhibitor, inhibits differentiation and adipogenesis in 3T3-L1 preadipocytes

    International Nuclear Information System (INIS)

    He, Yonghan; Li, Ying; Zhang, Shuocheng; Perry, Ben; Zhao, Tiantian; Wang, Yanwen; Sun, Changhao

    2013-01-01

    Highlights: •Radicicol suppressed intracellular fat accumulation in 3T3-L1 adipocytes. •Radicicol inhibited the expression of FAS and FABP4. •Radicicol blocked cell cycle at the G1-S phase during cell differentiation. •Radicicol inhibited the PDK1/Akt pathway in adipocyte differentiation. -- Abstract: Heat shock protein 90 (Hsp90) is involved in various cellular processes, such as cell proliferation, differentiation and apoptosis. As adipocyte differentiation plays a critical role in obesity development, the present study investigated the effect of an Hsp90 inhibitor radicicol on the differentiation of 3T3-L1 preadipocytes and potential mechanisms. The cells were treated with different concentrations of radicicol during the first 8 days of cell differentiation. Adipogenesis, the expression of adipogenic transcriptional factors, differentiation makers and cell cycle were determined. It was found that radicicol dose-dependently decreased intracellular fat accumulation through down-regulating the expression of peroxisome proliferator-activated receptor γ (PPAR γ ) and CCAAT element binding protein α (C/EBP α ), fatty acid synthase (FAS) and fatty acid-binding protein 4 (FABP4). Flow cytometry analysis revealed that radicicol blocked cell cycle at G1-S phase. Radicicol redcued the phosphorylation of Akt while showing no effect on β-catenin expression. Radicicol decreased the phosphorylation of phosphoinositide-dependent kinase 1 (PDK1). The results suggest that radicicol inhibited 3T3-L1 preadipocyte differentiation through affecting the PDK1/Akt pathway and subsequent inhibition of mitotic clonal expansion and the expression/activity of adipogenic transcriptional factors and their downstream adipogenic proteins

  2. Effect of Leptospira interrogans outer membrane proteins LipL32 on HUVEC.

    Science.gov (United States)

    Sun, Zhan; Bao, Lang; Li, DaoKun; Huang, Bi; Wu, Bingting

    2010-09-01

    Leptospira cause disease through a toxin-mediated process by inducing vascular injury, particularly a small-vessel vasculitis. Breakdown of vessel endothelial cell integrity may increase vessel permeability which is correlated with the changes of tight junction and/or apoptosis in vessel endothelial cells. The specific toxin responsible remains unidentified. In this study, we amplified outer membrane protein LipL32 from the genome of Leptospira interrogans serovar Lai, and it was subcloned in pET32a(+) vector to express thioredoxin(Trx)-LipL32 fusion protein in Escherichia coli BL21(DE3). The protein was expressed and purified, and Trx-LipL32 was administered to culture with human umbilical vein endothelial cells (HUVEC) to elucidate the role of leptospiral outer membrane proteins in vessel endothelial cell. The purified recombinant protein was capable to increase the permeability of HUVECs. And the protein was able to decrease the expression of ZO-1 and induce F-actin in HUVECs display thickening and clustering. Moreover, apoptosis of HUVEC was significantly accelerated. But the fusion partner had no effect in these regards. It is possible that LipL32 is involved in the vessel lesions. Copyright 2010 Elsevier Ltd. All rights reserved.

  3. Saccharomyces cerevisiae ribosomal protein L37 is encoded by duplicate genes that are differentially expressed.

    Science.gov (United States)

    Tornow, J; Santangelo, G M

    1994-06-01

    A duplicate copy of the RPL37A gene (encoding ribosomal protein L37) was cloned and sequenced. The coding region of RPL37B is very similar to that of RPL37A, with only one conservative amino-acid difference. However, the intron and flanking sequences of the two genes are extremely dissimilar. Disruption experiments indicate that the two loci are not functionally equivalent: disruption of RPL37B was insignificant, but disruption of RPL37A severely impaired the growth rate of the cell. When both RPL37 loci are disrupted, the cell is unable to grow at all, indicating that rpL37 is an essential protein. The functional disparity between the two RPL37 loci could be explained by differential gene expression. The results of two experiments support this idea: gene fusion of RPL37A to a reporter gene resulted in six-fold higher mRNA levels than was generated by the same reporter gene fused to RPL37B, and a modest increase in gene dosage of RPL37B overcame the lack of a functional RPL37A gene.

  4. 30 CFR 75.523-3 - Automatic emergency-parking brakes.

    Science.gov (United States)

    2010-07-01

    ... immediately by the emergency deenergization device required by 30 CFR 75.523-1 and -75.523-2; (2) Engage automatically within 5.0 seconds when the equipment is deenergized; (3) Safely bring the equipment when fully...

  5. The E4 protein; structure, function and patterns of expression

    Energy Technology Data Exchange (ETDEWEB)

    Doorbar, John, E-mail: jdoorba@nimr.mrc.ac.uk

    2013-10-15

    The papillomavirus E4 open reading frame (ORF) is contained within the E2 ORF, with the primary E4 gene-product (E1{sup ∧}E4) being translated from a spliced mRNA that includes the E1 initiation codon and adjacent sequences. E4 is located centrally within the E2 gene, in a region that encodes the E2 protein′s flexible hinge domain. Although a number of minor E4 transcripts have been reported, it is the product of the abundant E1{sup ∧}E4 mRNA that has been most extensively analysed. During the papillomavirus life cycle, the E1{sup ∧}E4 gene products generally become detectable at the onset of vegetative viral genome amplification as the late stages of infection begin. E4 contributes to genome amplification success and virus synthesis, with its high level of expression suggesting additional roles in virus release and/or transmission. In general, E4 is easily visualised in biopsy material by immunostaining, and can be detected in lesions caused by diverse papillomavirus types, including those of dogs, rabbits and cattle as well as humans. The E4 protein can serve as a biomarker of active virus infection, and in the case of high-risk human types also disease severity. In some cutaneous lesions, E4 can be expressed at higher levels than the virion coat proteins, and can account for as much as 30% of total lesional protein content. The E4 proteins of the Beta, Gamma and Mu HPV types assemble into distinctive cytoplasmic, and sometimes nuclear, inclusion granules. In general, the E4 proteins are expressed before L2 and L1, with their structure and function being modified, first by kinases as the infected cell progresses through the S and G2 cell cycle phases, but also by proteases as the cell exits the cell cycle and undergoes true terminal differentiation. The kinases that regulate E4 also affect other viral proteins simultaneously, and include protein kinase A, Cyclin-dependent kinase, members of the MAP Kinase family and protein kinase C. For HPV16 E1{sup

  6. Association of anti-apoptotic Mcl-1L isoform expression with radioresistance of oral squamous carcinoma cells

    International Nuclear Information System (INIS)

    Palve, Vinayak C; Teni, Tanuja R

    2012-01-01

    Oral cancer is a common cancer and a major health problem in the Indian subcontinent. At our laboratory Mcl-1, an anti-apoptotic member of the Bcl-2 family has been demonstrated to be overexpressed in oral cancers and to predict outcome in oral cancer patients treated with definitive radiotherapy. To study the role of Mcl-1 isoforms in radiation response of oral squamous carcinoma cells (OSCC), we investigated in the present study, the association of Mcl-1 isoform expression with radiosensitivity of OSCC, using siRNA strategy. The time course expression of Mcl-1 splice variants (Mcl-1L, Mcl-1S & Mcl-1ES) was studied by RT-PCR, western blotting & immunofluorescence, post-irradiation in oral cell lines [immortalized FBM (radiosensitive) and tongue cancer AW8507 & AW13516 (radioresistant)]of relatively differing radiosensitivities. The effect of Mcl-1L knockdown alone or in combination with ionizing radiation (IR) on cell proliferation, apoptosis & clonogenic survival, was investigated in AW8507 & AW13516 cells. Further the expression of Mcl-1L protein was assessed in radioresistant sublines generated by fractionated ionizing radiation (FIR). Three to six fold higher expression of anti-apoptotic Mcl-1L versus pro-apoptotic Mcl-1S was observed at mRNA & protein levels in all cell lines, post-irradiation. Sustained high levels of Mcl-1L, downregulation of pro-apoptotic Bax & Bak and a significant (P < 0.05) reduction in apoptosis was observed in the more radioresistant AW8507, AW13516 versus FBM cells, post-IR. The ratios of anti to pro-apoptotic proteins were high in AW8507 as compared to FBM. Treatment with Mcl-1L siRNA alone or in combination with IR significantly (P < 0.01) increased apoptosis viz. 17.3% (IR), 25.3% (siRNA) and 46.3% (IR plus siRNA) and upregulated pro-apoptotic Bax levels in AW8507 cells. Combination of siRNA & IR treatment significantly (P < 0.05) reduced cell proliferation and clonogenic survival of radioresistant AW8507 & AW13516 cells

  7. Purification and Characterization of Recombinant Vaccinia L1R Protein from Escherichia coli

    Science.gov (United States)

    2016-08-01

    RECOMBINANT VACCINIA L1R PROTEIN FROM ESCHERICHIA COLI 1. INTRODUCTION 1.1 Background Vaccinia virus (VACV) is the active component of the...the preparation of the recombinant VACV L1R protein fragment by denaturing , refolding, and purifying material expressed into inclusion bodies in...PURIFICATION AND CHARACTERIZATION OF RECOMBINANT VACCINIA L1R PROTEIN FROM ESCHERICHIA COLI ECBC-TR-1370

  8. Developmental expression of a cell surface protein involved in sea urchin skeleton formation

    International Nuclear Information System (INIS)

    Farach, M.C.; Valdizan, M.; Park, H.R.; Decker, G.L.; Lennarz, W.J.

    1986-01-01

    The authors have previously used a monoclonal antibody (1223) to identify a 130 Kd cell surface protein involved in skeleton formation is sea urchin embryos. In the current study the authors have examined the expression of the 1223 antigen over the course of development of embryos of two species, Strongylocentrotus purpuratus and Lytechinus pictus. The 130 Kd protein is detected in S. purp eggs on immunoblots. Labeling with [ 3 H] leucine and immunoaffinity chromatography show that it also is synthesized shortly after fertilization. Immunofluroescence reveals that at this early stage the 1223 antigen is uniformly distributed on all of the cells. Synthesis decreases to a minimum by the time of hatching (18 h), as does the total amount of antigen present in the embryo. A second period of synthesis commences at the mesenchyme blastula stage, when the spicule-forming primary mesenchyme cells (PMCs) have appeared. During this later stage, synthesis and cell surface expression are restricted to the PMCs. In contrast to S. purp., in L. pictus the 130 Kd protein does not appear until the PMCs are formed. Hybrid embryos demonstrate a pattern of expression of the maternal species. These results suggest that early expression of 1223 antigen in S. purp. is due to utilization of maternal transcripts present in the egg. In both species later expression in PMCs appears to be the result of cell-type specific synthesis, perhaps encoded by embryonic transcripts

  9. The antituberculosis antibiotic capreomycin inhibits protein synthesis by disrupting interaction between ribosomal proteins L12 and L10.

    Science.gov (United States)

    Lin, Yuan; Li, Yan; Zhu, Ningyu; Han, Yanxing; Jiang, Wei; Wang, Yanchang; Si, Shuyi; Jiang, Jiandong

    2014-01-01

    Capreomycin is a second-line drug for multiple-drug-resistant tuberculosis (TB). However, with increased use in clinics, the therapeutic efficiency of capreomycin is decreasing. To better understand TB resistance to capreomycin, we have done research to identify the molecular target of capreomycin. Mycobacterium tuberculosis ribosomal proteins L12 and L10 interact with each other and constitute the stalk of the 50S ribosomal subunit, which recruits initiation and elongation factors during translation. Hence, the L12-L10 interaction is considered to be essential for ribosomal function and protein synthesis. Here we provide evidence showing that capreomycin inhibits the L12-L10 interaction by using an established L12-L10 interaction assay. Overexpression of L12 and/or L10 in M. smegmatis, a species close to M. tuberculosis, increases the MIC of capreomycin. Moreover, both elongation factor G-dependent GTPase activity and ribosome-mediated protein synthesis are inhibited by capreomycin. When protein synthesis was blocked with thiostrepton, however, the bactericidal activity of capreomycin was restrained. All of these results suggest that capreomycin seems to inhibit TB by interrupting the L12-L10 interaction. This finding might provide novel clues for anti-TB drug discovery.

  10. CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC (III) METHYLTRANSFERASE (CYT19)

    Science.gov (United States)

    CLONING, EXPRESSION, AND CHARACTERIZATION OF RAT S-ADENOSYL-L-METHIONINE: ARSENIC(III) METHYLTRANSFERASE (cyt19)Stephen B. Waters1 , Felicia Walton1 , Miroslav Styblo1 , Karen Herbin-Davis2, and David J. Thomas2 1 School of Medicine, University of North Carolina at Chape...

  11. Complete amino acid sequences of the ribosomal proteins L25, L29 and L31 from the archaebacterium Halobacterium marismortui.

    Science.gov (United States)

    Hatakeyama, T; Kimura, M

    1988-03-15

    Ribosomal proteins were extracted from 50S ribosomal subunits of the archaebacterium Halobacterium marismortui by decreasing the concentration of Mg2+ and K+, and the proteins were separated and purified by ion-exchange column chromatography on DEAE-cellulose. Ten proteins were purified to homogeneity and three of these proteins were subjected to sequence analysis. The complete amino acid sequences of the ribosomal proteins L25, L29 and L31 were established by analyses of the peptides obtained by enzymatic digestion with trypsin, Staphylococcus aureus protease, chymotrypsin and lysylendopeptidase. Proteins L25, L29 and L31 consist of 84, 115 and 95 amino acid residues with the molecular masses of 9472 Da, 12293 Da and 10418 Da respectively. A comparison of their sequences with those of other large-ribosomal-subunit proteins from other organisms revealed that protein L25 from H. marismortui is homologous to protein L23 from Escherichia coli (34.6%), Bacillus stearothermophilus (41.8%), and tobacco chloroplasts (16.3%) as well as to protein L25 from yeast (38.0%). Proteins L29 and L31 do not appear to be homologous to any other ribosomal proteins whose structures are so far known.

  12. Efficient Expression of Acetylcholine-Binding Protein from Aplysia californica in Bac-to-Bac System

    Directory of Open Access Journals (Sweden)

    Bo Lin

    2014-01-01

    Full Text Available The Bac-to-Bac baculovirus expression system can efficiently produce recombinant proteins, but the system may have to be optimized to achieve high-level expression for different candidate proteins. We reported here the efficient expression of acetylcholine-binding proteins from sea hares Aplysia californica (Ac-AChBP and a convenient method to monitor protein expression level in this expression system. Three key factors affecting expression of Ac-AChBP were optimized for maximizing the yield, which included the cell density, volume of the infecting baculovirus inoculums, and the culturing time of postinfection. We have found it to reach a high yield of ∼5 mg/L, which needs 55 h incubation after infection at the cell density of 2 × 106 cells/mL with an inoculum volume ratio of 1 : 100. The optimized expression system in this study was also applied for expressing another protein Ls-AChBP from Lymnaea stagnalis successfully. Therefore, this established method is helpful to produce high yields of AChBP proteins for X-ray crystallographic structural and functional studies.

  13. Efficient protein production method for NMR using soluble protein tags with cold shock expression vector

    International Nuclear Information System (INIS)

    Hayashi, Kokoro; Kojima, Chojiro

    2010-01-01

    The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in 1 H- 15 N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.

  14. Molecular analysis of an odorant-binding protein gene in two sympatric species of Lutzomyia longipalpis s.l.

    Directory of Open Access Journals (Sweden)

    Ana Karina Kerche Dias

    2013-01-01

    Full Text Available Lutzomyia longipalpis s.l. is the main vector of American visceral leishmaniasis (AVL and occurs as a species complex. DNA samples from two Brazilian sympatric species that differ in pheromone and courtship song production were used to analyse molecular polymorphisms in an odorant-binding protein ( obp29 gene. OBPs are proteins related to olfaction and are involved in activities fundamental to survival, such as foraging, mating and choice of oviposition site. In this study, the marker obp29 was found to be highly polymorphic in Lu. longipalpis s.l. , with no fixed differences observed between the two species. A pairwise fixation index test indicated a moderate level of genetic differentiation between the samples analysed.

  15. Intrinsic and Extrinsic Regulation of PD-L2 Expression in Oncogene-Driven Non-Small Cell Lung Cancer.

    Science.gov (United States)

    Shibahara, Daisuke; Tanaka, Kentaro; Iwama, Eiji; Kubo, Naoki; Ota, Keiichi; Azuma, Koichi; Harada, Taishi; Fujita, Jiro; Nakanishi, Yoichi; Okamoto, Isamu

    2018-03-27

    The interaction of programmed cell death ligand 2 (PD-L2) with programmed cell death 1 is implicated in tumor immune escape. The regulation of PD-L2 expression in tumor cells has remained unclear, however. We here examined intrinsic and extrinsic regulation of PD-L2 expression in NSCLC. PD-L2 expression was evaluated by reverse transcription and real-time polymerase chain reaction analysis and by flow cytometry. BEAS-2B cells stably expressing an activated mutant form of EGFR or the echinoderm microtubule associated protein like 4 (EML4)-ALK receptor tyrosine kinase fusion oncoprotein manifested increased expression of PD-L2 at both the mRNA and protein levels. Furthermore, treatment of NSCLC cell lines that harbor such driver oncogenes with corresponding EGFR or ALK tyrosine kinase inhibitors or depletion of EGFR or ALK by small interfering RNA transfection suppressed expression of PD-L2, demonstrating that activating EGFR mutations or echinoderm microtubule associated protein like 4 gene (EML4)-ALK receptor tyrosine kinase gene (ALK) fusion intrinsically induce PD-L2 expression. We also found that interferon gamma (IFN-γ) extrinsically induced expression of PD-L2 through signal transducer and activator of transcription 1 signaling in NSCLC cells. Oncogene-driven expression of PD-L2 in NSCLC cells was inhibited by knockdown of the transcription factors signal transducer and activator of transcription 3 (STAT3) or c-FOS. IFN-γ also activated STAT3 and c-FOS, suggesting that these proteins may also contribute to the extrinsic induction of PD-L2 expression. Expression of PD-L2 is induced intrinsically by activating EGFR mutations or EML4-ALK fusion and extrinsically by IFN-γ, with STAT3 and c-FOS possibly contributing to both intrinsic and extrinsic pathways. Our results thus provide insight into the complexity of tumor immune escape in NSCLC. Copyright © 2018 International Association for the Study of Lung Cancer. Published by Elsevier Inc. All rights reserved.

  16. 27 CFR 5.23 - Alteration of class and type.

    Science.gov (United States)

    2010-04-01

    ... 27 Alcohol, Tobacco Products and Firearms 1 2010-04-01 2010-04-01 false Alteration of class and type. 5.23 Section 5.23 Alcohol, Tobacco Products and Firearms ALCOHOL AND TOBACCO TAX AND TRADE BUREAU, DEPARTMENT OF THE TREASURY LIQUORS LABELING AND ADVERTISING OF DISTILLED SPIRITS Standards of Identity for...

  17. Hornerin, an S100 family protein, is functional in breast cells and aberrantly expressed in breast cancer

    International Nuclear Information System (INIS)

    Fleming, Jodie M; Ginsburg, Erika; Oliver, Shannon D; Goldsmith, Paul; Vonderhaar, Barbara K

    2012-01-01

    Recent evidence suggests an emerging role for S100 protein in breast cancer and tumor progression. These ubiquitous proteins are involved in numerous normal and pathological cell functions including inflammatory and immune responses, Ca 2+ homeostasis, the dynamics of cytoskeleton constituents, as well as cell proliferation, differentiation, and death. Our previous proteomic analysis demonstrated the presence of hornerin, an S100 family member, in breast tissue and extracellular matrix. Hornerin has been reported in healthy skin as well as psoriatic and regenerating skin after wound healing, suggesting a role in inflammatory/immune response or proliferation. In the present study we investigated hornerin’s potential role in normal breast cells and breast cancer. The expression levels and localization of hornerin in human breast tissue, breast tumor biopsies, primary breast cells and breast cancer cell lines, as well as murine mammary tissue were measured via immunohistochemistry, western blot analysis and PCR. Antibodies were developed against the N- and C-terminus of the protein for detection of proteolytic fragments and their specific subcellular localization via fluorescent immunocytochemisty. Lastly, cells were treated with H 2 O 2 to detect changes in hornerin expression during induction of apoptosis/necrosis. Breast epithelial cells and stromal fibroblasts and macrophages express hornerin and show unique regulation of expression during distinct phases of mammary development. Furthermore, hornerin expression is decreased in invasive ductal carcinomas compared to invasive lobular carcinomas and less aggressive breast carcinoma phenotypes, and cellular expression of hornerin is altered during induction of apoptosis. Finally, we demonstrate the presence of post-translational fragments that display differential subcellular localization. Our data opens new possibilities for hornerin and its proteolytic fragments in the control of mammary cell function and breast

  18. Hornerin, an S100 family protein, is functional in breast cells and aberrantly expressed in breast cancer

    Directory of Open Access Journals (Sweden)

    Fleming Jodie M

    2012-06-01

    Full Text Available Abstract Background Recent evidence suggests an emerging role for S100 protein in breast cancer and tumor progression. These ubiquitous proteins are involved in numerous normal and pathological cell functions including inflammatory and immune responses, Ca2+ homeostasis, the dynamics of cytoskeleton constituents, as well as cell proliferation, differentiation, and death. Our previous proteomic analysis demonstrated the presence of hornerin, an S100 family member, in breast tissue and extracellular matrix. Hornerin has been reported in healthy skin as well as psoriatic and regenerating skin after wound healing, suggesting a role in inflammatory/immune response or proliferation. In the present study we investigated hornerin’s potential role in normal breast cells and breast cancer. Methods The expression levels and localization of hornerin in human breast tissue, breast tumor biopsies, primary breast cells and breast cancer cell lines, as well as murine mammary tissue were measured via immunohistochemistry, western blot analysis and PCR. Antibodies were developed against the N- and C-terminus of the protein for detection of proteolytic fragments and their specific subcellular localization via fluorescent immunocytochemisty. Lastly, cells were treated with H2O2 to detect changes in hornerin expression during induction of apoptosis/necrosis. Results Breast epithelial cells and stromal fibroblasts and macrophages express hornerin and show unique regulation of expression during distinct phases of mammary development. Furthermore, hornerin expression is decreased in invasive ductal carcinomas compared to invasive lobular carcinomas and less aggressive breast carcinoma phenotypes, and cellular expression of hornerin is altered during induction of apoptosis. Finally, we demonstrate the presence of post-translational fragments that display differential subcellular localization. Conclusions Our data opens new possibilities for hornerin and its

  19. Efficient expression and characterization of a cold-active endo-1, 4-β-glucanase from Citrobacter farmeri by co-expression of Myxococcus xanthus protein S

    Directory of Open Access Journals (Sweden)

    Xi Bai

    2016-11-01

    Conclusions: The ProS-EglC is promising in application of various biotechnological processes because of its cold-active characterizations. This study also suggests a useful strategy for the expression of foreign proteins in E. coli using a ProS tag.

  20. 7 CFR 58.523 - Laboratory and quality control tests.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 3 2010-01-01 2010-01-01 false Laboratory and quality control tests. 58.523 Section... Service 1 Operations and Operating Procedures § 58.523 Laboratory and quality control tests. (a) Quality control tests shall be made on samples as often as necessary to determine the shelf-life and stability of...

  1. Differentially expressed proteins on postoperative 3

    Directory of Open Access Journals (Sweden)

    Jialili Ainuer

    2011-04-01

    , pro-alpha-1 type 1 collagen, peroxiredoxin 1, alpha-1-antiproteinase E a-1 and MAD2L1 binding protein, etc. And some with the molecular chaperone, oxidative stress, energy metabolism, signal transduction, coupled with the tendon cell expression and protein synthesis, proliferate, differentiate and are closely related to the AT healing. The GAPDH protein was further validated through Western blotting. It was indicated that some differentially expressed proteins were involved in various metabolism pathways and may play an important role in initial healing of AT rupture. Conclusion: Differentially expressed proteins in rabbit healing AT model may contribute to 3 days healing of AT rupture through a new mechanobiological mechanism due to the application of postoperative early kinesitherapy. Key words: Achilles tendon; Rupture; GAPDH protein; Polyacrylamide gels; Mechanotransduction, cellular; Databases, protein; Muscle stretching exercises

  2. Identification of seed proteins associated with resistance to pre-harvested aflatoxin contamination in peanut (Arachis hypogaea L

    Directory of Open Access Journals (Sweden)

    Li Ling

    2010-11-01

    Full Text Available Abstract Background Pre-harvest infection of peanuts by Aspergillus flavus and subsequent aflatoxin contamination is one of the food safety factors that most severely impair peanut productivity and human and animal health, especially in arid and semi-arid tropical areas. Some peanut cultivars with natural pre-harvest resistance to aflatoxin contamination have been identified through field screening. However, little is known about the resistance mechanism, which has slowed the incorporation of resistance into cultivars with commercially acceptable genetic background. Therefore, it is necessary to identify resistance-associated proteins, and then to recognize candidate resistance genes potentially underlying the resistance mechanism. Results The objective of this study was to identify resistance-associated proteins in response to A. flavus infection under drought stress using two-dimensional electrophoresis with mass spectrometry. To identify proteins involved in the resistance to pre-harvest aflatoxin contamination, we compared the differential expression profiles of seed proteins between a resistant cultivar (YJ-1 and a susceptible cultivar (Yueyou 7 under well-watered condition, drought stress, and A. flavus infection with drought stress. A total of 29 spots showed differential expression between resistant and susceptible cultivars in response to A. flavus attack under drought stress. Among these spots, 12 protein spots that consistently exhibited an altered expression were screened by Image Master 5.0 software and successfully identified by MALDI-TOF MS. Five protein spots, including Oso7g0179400, PII protein, CDK1, Oxalate oxidase, SAP domain-containing protein, were uniquely expressed in the resistant cultivar. Six protein spots including low molecular weight heat shock protein precursor, RIO kinase, L-ascorbate peroxidase, iso-Ara h3, 50 S ribosomal protein L22 and putative 30 S ribosomal S9 were significantly up-regulated in the resistant

  3. Efficient protein production method for NMR using soluble protein tags with cold shock expression vector

    Energy Technology Data Exchange (ETDEWEB)

    Hayashi, Kokoro [Fujifilm Corporation, Analysis Technology Center (Japan); Kojima, Chojiro, E-mail: kojima@protein.osaka-u.ac.j [Nara Institute of Science and Technology (NAIST), Graduate School of Biological Sciences (Japan)

    2010-11-15

    The E. coli protein expression system is one of the most useful methods employed for NMR sample preparation. However, the production of some recombinant proteins in E. coli is often hampered by difficulties such as low expression level and low solubility. To address these problems, a modified cold-shock expression system containing a glutathione S-transferase (GST) tag, the pCold-GST system, was investigated. The pCold-GST system successfully expressed 9 out of 10 proteins that otherwise could not be expressed using a conventional E. coli expression system. Here, we applied the pCold-GST system to 84 proteins and 78 proteins were successfully expressed in the soluble fraction. Three other cold-shock expression systems containing a maltose binding protein tag (pCold-MBP), protein G B1 domain tag (pCold-GB1) or thioredoxin tag (pCold-Trx) were also developed to improve the yield. Additionally, we show that a C-terminal proline tag, which is invisible in {sup 1}H-{sup 15}N HSQC spectra, inhibits protein degradation and increases the final yield of unstable proteins. The purified proteins were amenable to NMR analyses. These data suggest that pCold expression systems combined with soluble protein tags can be utilized to improve the expression and purification of various proteins for NMR analysis.

  4. Mutant forms of Escherichia coli protein L25 unable to bind to 5S rRNA are incorporated efficiently into the ribosome in vivo.

    Science.gov (United States)

    Anikaev, A Y; Korepanov, A P; Korobeinikova, A V; Kljashtorny, V G; Piendl, W; Nikonov, S V; Garber, M B; Gongadze, G M

    2014-08-01

    5S rRNA-binding ribosomal proteins of the L25 family are an evolutional acquisition of bacteria. Earlier we showed that (i) single replacements in the RNA-binding module of the protein of this family result in destabilization or complete impossibility to form a complex with 5S rRNA in vitro; (ii) ΔL25 ribosomes of Escherichia coli are less efficient in protein synthesis in vivo than the control ribosomes. In the present work, the efficiency of incorporation of the E. coli protein L25 with mutations in the 5S rRNA-binding region into the ribosome in vivo was studied. It was found that the mutations in L25 that abolish its ability to form the complex with free 5S rRNA do not prevent its correct and efficient incorporation into the ribosome. This is supported by the fact that even the presence of a very weakly retained mutant form of the protein in the ribosome has a positive effect on the activity of the translational machinery in vivo. All this suggests the existence of an alternative incorporation pathway for this protein into the ribosome, excluding the preliminary formation of the complex with 5S rRNA. At the same time, the stable L25-5S rRNA contact is important for the retention of the protein within the ribosome, and the conservative amino acid residues of the RNA-binding module play a key role in this.

  5. Crystallization of the novel S-adenosyl-l-methionine-dependent C-methyltransferase CouO from Streptomyces rishiriensis and preliminary diffraction data analysis

    International Nuclear Information System (INIS)

    Lyskowski, Andrzej; Tengg, Martin; Steinkellner, Georg; Schwab, Helmut; Gruber-Khadjawi, Mandana; Gruber, Karl

    2012-01-01

    Recombinant Q9F8T9 protein from Streptomyces rishiriensis (CouO), an S-adenosyl-l-methionine-dependent C-methyltransferase, has been successfully cloned, expressed and purified. Recombinant Q9F8T9 protein from Streptomyces rishiriensis (CouO), an S-adenosyl-l-methionine-dependent C-methyltransferase, has been successfully cloned, expressed and purified. CouO was crystallized from a single condition in the Morpheus crystallization screen. A vitrified crystal diffracted to 2.05 Å resolution and belonged to space group P2 1 , with unit-cell parameters a = 33.02, b = 82.87, c = 76.77 Å, β = 96.93°

  6. Deregulated Expression of Mitochondrial Proteins Mfn2 and Bcnl3L in Placentae from Sheep Somatic Cell Nuclear Transfer (SCNT Conceptuses.

    Directory of Open Access Journals (Sweden)

    Marta Czernik

    Full Text Available In various animal species, the main cause of pregnancy loss in conceptuses obtained by somatic cell nuclear transfer (SCNT are placental abnormalities. Most abnormalities described in SCNT pregnancies (such as placentomegaly, reduced vascularisation, hypoplasia of trophoblastic epithelium suggest that placental cell degeneration may be triggered by mitochondrial failure. We hypothesized that placental abnormalities of clones obtained by SCNT are related to mitochondrial dysfunction. To test this, early SCNT and control (CTR, from pregnancies obtained by in vitro fertilization placentae were collected from pregnant ewes (at day 20 and 22 of gestation and subjected to morphological, mRNA and protein analysis. Here, we demonstrated swollen and fragmented mitochondria and low expression of mitofusin 2 (Mfn2, the protein which plays a crucial role in mitochondrial functionality, in SCNT early placentae. Furthermore, reduced expression of the Bcnl3L/Nix protein, which plays a crucial role in selective elimination of damaged mitochondria, was observed and reflected by the accumulation of numerous damaged mitochondria in SCNT placental cells. Likely, this accumulation of damaged organelles led to uncontrolled apoptosis in SCNT placentae, as demonstrated by the high number of apoptotic bodies, fragmented cytoplasm, condensed chromatin, lack of integrity of the nuclear membrane and the perturbed mRNA expression of apoptotic genes (BCL2 and BAX. In conclusion, our data indicate that deregulated expression of Mfn2 and Bcnl3L is responsible for placental abnormalities in SCNT conceptuses. Our results suggest that some nuclear genes, that are involved in the regulation of mitochondrial function, do not work well and consequently this influence the function of mitochondria.

  7. Unintended changes in protein expression revealed by proteomic analysis of seeds from transgenic pea expressing a bean alpha-amylase inhibitor gene.

    Science.gov (United States)

    Chen, Hancai; Bodulovic, Greg; Hall, Prudence J; Moore, Andy; Higgins, Thomas J V; Djordjevic, Michael A; Rolfe, Barry G

    2009-09-01

    Seeds of genetically modified (GM) peas (Pisum sativum L.) expressing the gene for alpha-amylase inhibitor-1 (alphaAI1) from the common bean (Phaseolus vulgaris L. cv. Tendergreen) exhibit resistance to the pea weevil (Bruchus pisorum). A proteomic analysis was carried out to compare seeds from GM pea lines expressing the bean alphaAI1 protein and the corresponding alphaAI1-free segregating lines and non-GM parental line to identify unintended alterations to the proteome of GM peas due to the introduction of the gene for alphaAI1. Proteomic analysis showed that in addition to the presence of alphaAI1, 33 other proteins were differentially accumulated in the alphaAI1-expressing GM lines compared with their non-GM parental line and these were grouped into five expression classes. Among these 33 proteins, only three were found to be associated with the expression of alphaAI1 in the GM pea lines. The accumulation of the remaining 30 proteins appears to be associated with Agrobacterium-mediated transformation events. Sixteen proteins were identified after MALDI-TOF-TOF analysis. About 56% of the identified proteins with altered accumulation in the GM pea were storage proteins including legumin, vicilin or convicilin, phaseolin, cupin and valosin-containing protein. Two proteins were uniquely expressed in the alphaAI1-expressing GM lines and one new protein was present in both the alphaAI1-expressing GM lines and their alphaAI1-free segregating lines, suggesting that both transgenesis and transformation events led to demonstrable changes in the proteomes of the GM lines tested.

  8. Expression and RNA Interference of Ribosomal Protein L5 Gene in Nilaparvata lugens (Hemiptera: Delphacidae).

    Science.gov (United States)

    Zhu, Jiajun; Hao, Peiying; Lu, Chaofeng; Ma, Yan; Feng, Yalin; Yu, Xiaoping

    2017-05-01

    The ribosomal proteins play important roles in the growth and development of organisms. This study aimed to explore the function of NlRPL5 (GenBank KX379234), a ribosomal protein L5 gene, in the brown planthopper Nilaparvata lugens. The open reading frame of NlRPL5 was cloned from N. lugens based on a previous transcriptome analysis. The results revealed that the open reading frame of NlRPL5 is of 900 bp, encoding 299 amino acid residues. The reverse transcription quantitative PCR results suggested that the expression of NlRPL5 gene was stronger in gravid females, but was relatively low in nymphs, males, and newly emerged females. The expression level of NlRPL5 in the ovary was about twofolds of that in the head, thorax, or fat body. RNAi of dsNlRPL5 resulted in a significant reduction of mRNA levels, ∼50% decrease in comparison with the dsGFP control at day 6. Treatment of dsNlRPL5 significantly restricted the ovarian development, and decreased the number of eggs laid on the rice (Oryza sativa) plants. This study provided a new clue for further study on the function and regulation mechanism of NlRPL5 in N. lugens. © The Author 2017. Published by Oxford University Press on behalf of the Entomological Society of America.

  9. Expression and purification of the non-tagged LipL32 of pathogenic Leptospira

    Directory of Open Access Journals (Sweden)

    P. Hauk

    2011-04-01

    Full Text Available Leptospirosis is a reemerging infectious disease and the most disseminated zoonosis worldwide. A leptospiral surface protein, LipL32, only occurs in pathogenic Leptospira, and is the most abundant protein on the bacterial surface, being described as an important factor in host immunogenic response and also in bacterial infection. We describe here an alternative and simple purification protocol for non-tagged recombinant LipL32. The recombinant LipL32(21-272 was expressed in Escherichia coli without His-tag or any other tag used to facilitate recombinant protein purification. The recombinant protein was expressed in the soluble form, and the purification was based on ion exchange (anionic and cationic and hydrophobic interactions. The final purification yielded 3 mg soluble LipL32(21-272 per liter of the induced culture. Antiserum produced against the recombinant protein was effective to detect native LipL32 from cell extracts of several Leptospira serovars. The purified recombinant LipL32(21-272 produced by this protocol can be used for structural, biochemical and functional studies and avoids the risk of possible interactions and interferences of the tags commonly used as well as the time consuming and almost always inefficient methods to cleave these tags when a tag-free LipL32 is needed. Non-tagged LipL32 may represent an alternative antigen for biochemical studies, for serodiagnosis and for the development of a vaccine against leptospirosis.

  10. Expression and purification of the non-tagged LipL32 of pathogenic Leptospira.

    Science.gov (United States)

    Hauk, P; Carvalho, E; Ho, P L

    2011-04-01

    Leptospirosis is a reemerging infectious disease and the most disseminated zoonosis worldwide. A leptospiral surface protein, LipL32, only occurs in pathogenic Leptospira, and is the most abundant protein on the bacterial surface, being described as an important factor in host immunogenic response and also in bacterial infection. We describe here an alternative and simple purification protocol for non-tagged recombinant LipL32. The recombinant LipL32(21-272) was expressed in Escherichia coli without His-tag or any other tag used to facilitate recombinant protein purification. The recombinant protein was expressed in the soluble form, and the purification was based on ion exchange (anionic and cationic) and hydrophobic interactions. The final purification yielded 3 mg soluble LipL32(21-272) per liter of the induced culture. Antiserum produced against the recombinant protein was effective to detect native LipL32 from cell extracts of several Leptospira serovars. The purified recombinant LipL32(21-272) produced by this protocol can be used for structural, biochemical and functional studies and avoids the risk of possible interactions and interferences of the tags commonly used as well as the time consuming and almost always inefficient methods to cleave these tags when a tag-free LipL32 is needed. Non-tagged LipL32 may represent an alternative antigen for biochemical studies, for serodiagnosis and for the development of a vaccine against leptospirosis.

  11. Production of soluble mammalian proteins in Escherichia coli: identification of protein features that correlate with successful expression

    Directory of Open Access Journals (Sweden)

    Perera Rajika L

    2004-12-01

    Full Text Available Abstract Background In the search for generic expression strategies for mammalian protein families several bacterial expression vectors were examined for their ability to promote high yields of soluble protein. Proteins studied included cell surface receptors (Ephrins and Eph receptors, CD44, kinases (EGFR-cytoplasmic domain, CDK2 and 4, proteases (MMP1, CASP2, signal transduction proteins (GRB2, RAF1, HRAS and transcription factors (GATA2, Fli1, Trp53, Mdm2, JUN, FOS, MAD, MAX. Over 400 experiments were performed where expression of 30 full-length proteins and protein domains were evaluated with 6 different N-terminal and 8 C-terminal fusion partners. Expression of an additional set of 95 mammalian proteins was also performed to test the conclusions of this study. Results Several protein features correlated with soluble protein expression yield including molecular weight and the number of contiguous hydrophobic residues and low complexity regions. There was no relationship between successful expression and protein pI, grand average of hydropathicity (GRAVY, or sub-cellular location. Only small globular cytoplasmic proteins with an average molecular weight of 23 kDa did not require a solubility enhancing tag for high level soluble expression. Thioredoxin (Trx and maltose binding protein (MBP were the best N-terminal protein fusions to promote soluble expression, but MBP was most effective as a C-terminal fusion. 63 of 95 mammalian proteins expressed at soluble levels of greater than 1 mg/l as N-terminal H10-MBP fusions and those that failed possessed, on average, a higher molecular weight and greater number of contiguous hydrophobic amino acids and low complexity regions. Conclusions By analysis of the protein features identified here, this study will help predict which mammalian proteins and domains can be successfully expressed in E. coli as soluble product and also which are best targeted for a eukaryotic expression system. In some cases

  12. Sex- and age-related differences in ribosomal proteins L17 and L37, as well as androgen receptor protein, in the song control system of zebra finches.

    Science.gov (United States)

    Tang, Y P; Wade, J

    2010-12-29

    The zebra finch song system is sexually dimorphic--only males sing, and the morphology of forebrain regions controlling the learning and production of this song is greatly enhanced in males compared to females. Masculinization appears to involve effects of steroid hormones as well as other factors, perhaps including the expression of sex chromosome genes (males: ZZ, females: ZW). The present study investigated three proteins--two encoded by Z-linked genes, ribosomal proteins L17 and L37 (RPL17 and RPL37), including their co-localization with androgen receptor (AR), from post-hatching day 25 to adulthood. Extensive co-expression of AR with the ribosomal proteins was detected in the three song nuclei investigated (HVC, robust nucleus of the arcopallium (RA), and Area X) across these ages. In general, more cells expressed each of these proteins in males compared to females, and the sex differences increased as animals matured. Specific patterns differed across regions and between RPL17 and RPL37, which suggest potential roles of one or both of these proteins in the incorporation and/or differentiation of song system cells. Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

  13. Novel influenza virus vectors expressing Brucella L7/L12 or Omp16 proteins in cattle induced a strong T-cell immune response, as well as high protectiveness against B. abortus infection.

    Science.gov (United States)

    Tabynov, Kaissar; Kydyrbayev, Zhailaubay; Ryskeldinova, Sholpan; Yespembetov, Bolat; Zinina, Nadezhda; Assanzhanova, Nurika; Kozhamkulov, Yerken; Inkarbekov, Dulat; Gotskina, Tatyana; Sansyzbay, Abylai

    2014-04-11

    This paper presents the results of a study of the immunogenicity and protectiveness of new candidate vector vaccine against Brucella abortus - a bivalent vaccine formulation consisting of a mixture of recombinant influenza A subtype H5N1 or H1N1 (viral constructs vaccine formulation) viruses expressing Brucella ribosomal protein L7/L12 and Omp16, in cattle. To increase the effectiveness of the candidate vaccine, adjuvants such as Montanide Gel01 or chitosan were included in its composition. Immunization of cattle (heifers aged 1-1.5 years, 5 animals per group) with the viral constructs vaccine formulation only, or its combination with adjuvants Montanide Gel01 or chitosan, was conducted via the conjunctival method using cross prime (influenza virus subtype H5N1) and booster (influenza virus subtype H1N1) vaccination schedules at an interval of 28 days. Vaccine candidates were evaluated in comparison with the positive (B. abortus S19) and negative (PBS) controls. The viral constructs vaccine formulations, particularly in combination with Montanide Gel01 adjuvant promoted formation of IgG antibodies (with a predominance of antibodies of isotype IgG2a) against Brucella L7/L12 and Omp16 proteins in ELISA. Moreover, these vaccines in cattle induced a strong antigen-specific T-cell immune response, as indicated by a high number of CD4(+) and CD8(+) cells, as well as the concentration of IFN-γ, and most importantly provided a high level of protectiveness comparable to the commercial B. abortus S19 vaccine and superior to the B. abortus S19 vaccine in combination with Montanide Gel01 adjuvant. Based on these findings, we recommended the bivalent vaccine formulation containing the adjuvant Montanide Gel01 for practical use in cattle. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  14. LPS-Toll-Like Receptor-Mediated Signaling on Expression of Protein S and C4b-Binding Protein in the Liver

    Directory of Open Access Journals (Sweden)

    Tatsuya Hayashi

    2010-01-01

    Full Text Available Protein S (PS, mainly synthesized in hepatocytes and endothelial cells, plays a critical role as a cofactor of anticoagulant activated protein C (APC. PS activity is regulated by C4b-binding protein (C4BP, structurally composed of seven α-chains (C4BPα and a β-chain (C4BPβ. In this paper, based primarily on our previous studies, we review the lipopolysaccharide (LPS-induced signaling which affects expression of PS and C4BP in the liver. Our in vivo studies in rats showed that after LPS injection, plasma PS levels are significantly decreased, whereas plasma C4BP levels first are transiently decreased after 2 to 12 hours and then significantly increased after 24 hours. LPS decreases PS antigen and mRNA levels in both hepatocytes and sinusoidal endothelial cells (SECs, and decreases C4BP antigen and both C4BPα and C4BPβ mRNA levels in hepatocytes. Antirat CD14 and antirat Toll-like receptor (TLR-4 antibodies inhibited LPS-induced NFκB activation in both hepatocytes and SECs. Furthermore, inhibitors of NFκB and MEK recovered the LPS-induced decreased expression of PS in both cell types and the LPS-induced decreased expression of C4BP in hepatocytes. These data suggest that the LPS-induced decrease in PS expression in hepatocytes and SECs and LPS-induced decrease in C4BP expression in hepatocytes are mediated by MEK/ERK signaling and NFκB activation and that membrane-bound CD14 and TLR-4 are involved in this mechanism.

  15. Expression of p53 protein in Barrett’s adenocarcinoma and adenocarcinoma of the gastric cardia and antrum

    Directory of Open Access Journals (Sweden)

    Jovanović Ivan

    2005-01-01

    Full Text Available Background/Aim. Most studies of esophageal and gastric adenocarcinomas have shown a very high rate of p53 gene mutation and/or protein overexpression, but the influence of the tumor site upon the frequency of p53 protein expression has not been evaluated (gastroesophageal junction, Barret's esophagus, and antrum. The aim of our study was to analyze the correlation between the selected clinico-pthological parameters, and p53 protein overexpression in regards to the particular tumor location. Methods. The material comprised 66 surgical specimens; 10 were Barrett’s carcinomas, 25 adenocarcinomas of the gastric cardia (type II adenocarcinoma of the esophagogastric junction - EGJ, and 31 adenocarcinomas of the antrum. Immunostaining for p53 protein was performed on formalin-fixed, paraffin-embedded tissue sections, using the alkaline phosphatase - antialkaline phosphatase (APAAP method. The cases were considered positive for p53 if at least 5% of the tumor cells expressed this protein by immunostaining. Results. There was no significant difference observed between the studied groups in regards to age, sex, Lauren’s classification and tumor differentiation. There was, however, a significant difference observed in the depth of tumor invasion between Barrrett’s adenocarcinoma and adenocarcinoma of the cardia compared with the adenocarcinoma of the antrum. Namely, at the time of surgery, both Barrett’s adenocarcinomas and adenocarcinomas of the cardia, were significantly more advanced comparing with the adenocarcinomas of the antrum. Overexpression of p53 was found in 40% (4/10 of Barrett’s adenocarcinomas, 72% (18/25 of adenocarcinoma of the cardia and 65% (20/31 of adenocarcinoma of the antrum. No significant differences in p53 expression in relation to sex, type (Lauren of tumor, depth of invasion, lymph node involvement, or tumor differentiation were observed in any of the analyzed groups of tumors. Patients with more advanced Barrett’s

  16. The correlation of serum S100β protein levels and hippocampal Seladin-1 gene expression in a rat model of sporadic Alzheimer\\\\\\'s disease

    Directory of Open Access Journals (Sweden)

    Soheila Hosseinzadeh

    2015-11-01

    Full Text Available Background: Seladin-1 protein protects the neural cells against amyloid beta toxicity and its expression decreased in vulnerable regions of Alzheimer's disease (AD brains. On the other hand, changes in serum levels of S100 have been considered as a marker of brain damage in neurodegenerative diseases. Furthermore, this study was carried out to determine the relation between the change profile of serum S100β protein levels and hippocampal Seladin-1 gene expression in a rat model of sporadic AD. Methods: In this experimental study that established in Department of Neuroscience, School of Advanced Technologies in Medicine, Tehran University of Medical Science, from March 2011 to April 2013, 72 animals were randomly divided into control, 4, 7, 14, and 21days ICV-STZ/Saline administrated rats. Alzheimer's model was induced by intracerebroventricular (ICV injections of streptozotocin (STZ [3 mg/kg] on days 1 and 3. Serum levels of S100β and hippocampal Seladin-1 gene expression were evalu-ated in experimental groups. The initial and step-through latencies (STL were deter-mined using passive avoidance test. Results: Serum levels of S100β were significantly different between the STZ-7 day and STZ-14 day groups in comparison with the control, saline and STZ-4 day groups. As well as, there was a significant difference between the STZ-7 day group in comparison with the STZ-14 day and STZ-21 day groups (P=0.0001. Hippocampal Seladin-1 gene expression in STZ-14 day and STZ-21 day groups significantly decreased as compared to the control, saline and STZ-4 day groups (P=0.0001. However, significant correla-tion was detected between serum S100β protein decrement and Seladin-1 down regula-tion (P=0.001. Also, the STL was significantly decreased in 21 days ICV-STZ adminis-trated rats as compared to the control or saline groups (P=0.001. Conclusion: Monitoring the changes of serum S100β protein levels by relationship with changes in hippocampal Seladin-1

  17. Effects of heat, cold, acid and bile salt adaptations on the stress tolerance and protein expression of kefir-isolated probiotic Lactobacillus kefiranofaciens M1.

    Science.gov (United States)

    Chen, Ming-Ju; Tang, Hsin-Yu; Chiang, Ming-Lun

    2017-09-01

    Lactobacillus kefiranofaciens M1 is a probiotic strain isolated from Taiwanese kefir grains. The present study evaluated the effects of heat, cold, acid and bile salt adaptations on the stress tolerance of L. kefiranofaciens M1. The regulation of protein expression of L. kefiranofaciens M1 under these adaptation conditions was also investigated. The results showed that adaptation of L. kefiranofaciens M1 to heat, cold, acid and bile salts induced homologous tolerance and cross-protection against heterologous challenge. The extent of induced tolerance varied depending on the type and condition of stress. Proteomic analysis revealed that 27 proteins exhibited differences in expression between non-adapted and stress-adapted L. kefiranofaciens M1 cells. Among these proteins, three proteins involved in carbohydrate metabolism (triosephosphate isomerase, enolase and NAD-dependent glycerol-3-phosphate dehydrogenase), two proteins involved in pH homeostasis (ATP synthase subunits AtpA and AtpB), two stress response proteins (chaperones DnaK and GroEL) and one translation-related protein (30S ribosomal protein S2) were up-regulated by three of the four adaptation treatments examined. The increased synthesis of these stress proteins might play a critical protective role in the cellular defense against heat, cold, acid and bile salt stresses. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Expression of human ferredoxin and assembly of the [2Fe-2S] center in Escherichia coli

    International Nuclear Information System (INIS)

    Coghlan, V.M.; Vickery, L.E.

    1989-01-01

    A cDNA fragment encoding human ferredoxin, a mitochondrial [2Fe-2S] protein, was introduced into Escherichia coli by using an expression vector based on the approach of Nagai and Thogersen. Expression was under control of the λP L promoter and resulted in production of ferredoxin as a cleavable fusion protein with an amino-terminal fragment derived from bacteriophage λcII protein. The fusion protein was isolated from the soluble fraction of induced cells and was specifically cleaved to yield mature recombinant ferredoxin. The recombinant protein was shown to be identical in size to ferredoxin isolated from human placenta (13,546 Da) by NaDodSO 4 /PAGE and partial amino acid sequencing. E. coli cells expressing human ferredoxin were brown in color, and absorbance and electron paramagnetic resonance spectra of the purified recombinant protein established that the [2Fe-2S]center was assembled and incorporated into ferredoxin in vivo. Recombinant ferredoxin was active in steroid hydroxylations when reconstituted with cytochromes P-450 sec and P-450 11β and exhibited rates comparable to those observed for ferredoxin isolated from human placenta. This expression system should be useful in production of native and structurally altered forms of human ferredoxin for studies of ferredoxin structure and function

  19. Observations on the expression of human papillomavirus major capsid protein in HeLa cells.

    Science.gov (United States)

    Xiao, Chang-Yi; Fu, Bing-Bing; Li, Zhi-Ying; Mushtaq, Gohar; Kamal, Mohammad Amjad; Li, Jia-Hua; Tang, Gui-Cheng; Xiao, Shuo-Shuang

    2015-01-01

    The goal of this study was to identify the nature of the inclusion bodies that have been found in HeLa cells (cervical cancer immortal cell line) by electron microscope and to determine whether the major capsid protein (L1) of human papillomavirus (HPV) can be expressed in HPV-positive uterine cervix cancer cells. HPV L1 protein expression in HeLa cells was detected with anti-HPV L1 multivalent mice monoclonal antibody and rabbit polyclonal anti-HPV L1 antibody by ELISA, light microscope immunohistochemistry, electron microscope immunocytochemistry and Western blotting assays. Reverse transcriptional PCR (RT-PCR) was performed to detect the transcription of L1 mRNA in HeLa cells. The immortalized human keratinocyte HeCat was used as the negative control. HPV L1 proteins reacted positively in the lysate of HeLa cells by ELISA assays. HRP labeled light microscope immunohistochemistry assay showed that there was a strong HPV L1 positive reaction in HeLa cells. Under the electron microscope, irregular shaped inclusion bodies, assembled by many small and uniform granules, had been observed in the cytoplasm of some HeLa cells. These granules could be labeled by the colloidal gold carried by HPV L1 antibody. The Western blotting assay showed that there was a L1 reaction strap at 80-85 kDa in the HeLa cell lysates, hence demonstrating the existence of HPV18 L1 in HeLa cells. RT-PCR assay showed that the L1 mRNA was transcribed in HeLa cells. The inclusion bodies found in the cytoplasm of HeLa cells are composed of HPV18 L1 protein. Since HeLa cell line is a type of cervical cancer cells, this implies that HeLa cells have the ability to express HPV L1 proteins.

  20. C-reactive protein inhibits survivin expression via Akt/mTOR pathway downregulation by PTEN expression in cardiac myocytes.

    Directory of Open Access Journals (Sweden)

    Beom Seob Lee

    Full Text Available C-reactive protein (CRP is one of the most important biomarkers for arteriosclerosis and cardiovascular disease. Recent studies have shown that CRP affects cell cycle and inflammatory process in cardiac myocytes. Survivin is also involved in cardiac myocytes replication and apoptosis. Reduction of survivin expression is associated with less favorable cardiac remodeling in animal models. However, the effect of CRP on survivin expression and its cellular mechanism has not yet been studied. We demonstrated that treatment of CRP resulted in a significant decrease of survivin protein expression in a concentration-dependent manner in cardiac myocytes. The upstream signaling proteins of survivin, such as Akt, mTOR and p70S6K, were also downregulated by CRP treatment. In addition, CRP increased the protein and mRNA levels of PTEN. The siRNA transfection or specific inhibitor treatment for PTEN restored the CRP-induced downregulation of Akt/mTOR/p70S6K pathway and survivin protein expression. Moreover, pretreatment with a specific p53 inhibitor decreased the CRP-induced PTEN expression. ERK-specific inhibitor also blocked the p53 phosphorylation and PTEN expression induced by CRP. Our study provides a novel insight into CRP-induced downregulation of survivin protein expression in cardiac myocytes through mechanisms that involved in downregulation of Akt/mTOR/p70S6K pathway by expression of PTEN.

  1. The Murine Natural Cytotoxic Receptor NKp46/NCR1 Controls TRAIL Protein Expression in NK Cells and ILC1s

    Directory of Open Access Journals (Sweden)

    Sam Sheppard

    2018-03-01

    Full Text Available Summary: TRAIL is an apoptosis-inducing ligand constitutively expressed on liver-resident type 1 innate lymphoid cells (ILC1s and a subset of natural killer (NK cells, where it contributes to NK cell anti-tumor, anti-viral, and immunoregulatory functions. However, the intrinsic pathways involved in TRAIL expression in ILCs remain unclear. Here, we demonstrate that the murine natural cytotoxic receptor mNKp46/NCR1, expressed on ILC1s and NK cells, controls TRAIL protein expression. Using NKp46-deficient mice, we show that ILC1s lack constitutive expression of TRAIL protein and that NK cells activated in vitro and in vivo fail to upregulate cell surface TRAIL in the absence of NKp46. We show that NKp46 regulates TRAIL expression in a dose-dependent manner and that the reintroduction of NKp46 in mature NK cells deficient for NKp46 is sufficient to restore TRAIL surface expression. These studies uncover a link between NKp46 and TRAIL expression in ILCs with potential implications in pathologies involving NKp46-expressing cells. : Sheppard et al. find that mice deficient in the activating receptor NCR1/NKp46 (Ncr1−/− fail to express the apoptosis-inducing ligand TRAIL at the surface of group 1 innate lymphoid cells (ILC1s. Keywords: NK cell, natural killer cell, NKp46, ILC1, TRAIL, IL-15, IL-2

  2. Characterization and Oral Delivery of Proinsulin-Transferrin Fusion Protein Expressed Using ExpressTec

    Directory of Open Access Journals (Sweden)

    Yu-Sheng Chen

    2018-01-01

    Full Text Available Proinsulin-transferrin fusion protein (ProINS-Tf has been designed and successfully expressed from the mammalian HEK293 cells (HEK-ProINS-Tf. It was found that HEK-ProINS-Tf could be converted into an activated form in the liver. Furthermore, HEK-ProINS-Tf was demonstrated as an extra-long acting insulin analogue with liver-specific insulin action in streptozotocin (STZ-induced type 1 diabetic mice. However, due to the low production yield from transfected HEK293 cells, there are other interesting features, including the oral bioavailability, which have not been fully explored and characterized. To improve the protein production yield, an alternative protein expression system, ExpressTec using transgenic rice (Oryza sativa L., was used. The intact and active rice-derived ProINS-Tf (ExpressTec-ProINS-Tf was successfully expressed from the transgenic rice expression system. Our results suggested that, although the insulin-like bioactivity of ExpressTec-ProINS-Tf was slightly lower in vitro, its potency of in vivo blood glucose control was considerably stronger than that of HEK-ProINS-Tf. The oral delivery studies in type 1 diabetic mice demonstrated a prolonged control of blood glucose to near-normal levels after oral administration of ExpressTec-ProINS-Tf. Results in this report suggest that ExpressTec-ProINS-Tf is a promising insulin analog with advantages including low cost, prolonged and liver targeting effects, and most importantly, oral bioactivity.

  3. Identification of fasciclin-like arabinogalactan proteins in textile hemp (Cannabis sativa L.): in silico analyses and gene expression patterns in different tissues.

    Science.gov (United States)

    Guerriero, Gea; Mangeot-Peter, Lauralie; Legay, Sylvain; Behr, Marc; Lutts, Stanley; Siddiqui, Khawar Sohail; Hausman, Jean-Francois

    2017-09-20

    The fasciclin-like arabinogalactan proteins (FLAs) belong to the arabinogalactan protein (AGP) superfamily and are known to play different physiological roles in plants. This class of proteins was shown to participate in plant growth, development, defense against abiotic stresses and, notably, cell wall biosynthesis. Although some studies are available on the characterization of FLA genes from different species, both woody and herbaceous, no detailed information is available on the FLA family of textile hemp (Cannabis sativa L.), an economically important fibre crop. By searching the Cannabis genome and EST databases, 23 CsaFLAs have been here identified which are divided into four phylogenetic groups. A real-time qPCR analysis performed on stem tissues (isolated bast fibres and shivs sampled at three heights), hypocotyls (6-9-12-15-17-20 days-old), whole seedlings, roots, leaves and female/male flowers of the monoecious fibre variety Santhica 27, indicates that the identified FLA genes are differentially expressed. Interestingly, some hemp FLAs are expressed during early phases of fibre growth (elongation), while others are more expressed in the middle and base of the stem and thus potentially involved in secondary cell wall formation (fibre thickening). The bioinformatic analysis of the promoter regions shows that the FLAs upregulated in the younger regions of the stem share a conserved motif related to flowering control and regulation of photoperiod perception. The promoters of the FLA genes expressed at higher levels in the older stem regions, instead, share a motif putatively recognized by MYB3, a transcriptional repressor belonging to the MYB family subgroup S4. These results point to the existence of a transcriptional network fine-tuning the expression of FLA genes in the older and younger regions of the stem, as well as in the bast fibres/shivs of textile hemp. In summary, our study paves the way for future analyses on the biological functions of FLAs in

  4. L-Dopa decarboxylase expression profile in human cancer cells.

    Science.gov (United States)

    Chalatsa, Ioanna; Nikolouzou, Eleftheria; Fragoulis, Emmanuel G; Vassilacopoulou, Dido

    2011-02-01

    L-Dopa decarboxylase (DDC) catalyses the decarboxylation of L-Dopa. It has been shown that the DDC gene undergoes alternative splicing within its 5'-untranslated region (UTR), in a tissue-specific manner, generating identical protein products. The employment of two alternative 5'UTRs is thought to be responsible for tissue-specific expression of the human DDC mRNA. In this study, we focused on the investigation of the nature of the mRNA expression in human cell lines of neural and non-neural origin. Our results show the expression of a neural-type DDC mRNA splice variant, lacking exon 3 in all cell lines studied. Co-expression of the full length non-neural DDC mRNA and the neural-type DDC splice variant lacking exon 3 was detected in all cell lines. The alternative DDC protein isoform, Alt-DDC, was detected in SH-SY5Y and HeLa cells. Our findings suggest that the human DDC gene undergoes complex processing, leading to the formation of multiple mRNA isoforms. The study of the significance of this phenomenon of multiple DDC mRNA isoforms could provide us with new information leading to the elucidation of the complex biological pathways that the human enzyme is involved in.

  5. Genome-wide investigation and expression analyses of WD40 protein family in the model plant foxtail millet (Setaria italica L..

    Directory of Open Access Journals (Sweden)

    Awdhesh Kumar Mishra

    Full Text Available WD40 proteins play a crucial role in diverse protein-protein interactions by acting as scaffolding molecules and thus assisting in the proper activity of proteins. Hence, systematic characterization and expression profiling of these WD40 genes in foxtail millet would enable us to understand the networks of WD40 proteins and their biological processes and gene functions. In the present study, a genome-wide survey was conducted and 225 potential WD40 genes were identified. Phylogenetic analysis categorized the WD40 proteins into 5 distinct sub-families (I-V. Gene Ontology annotation revealed the biological roles of the WD40 proteins along with its cellular components and molecular functions. In silico comparative mapping with sorghum, maize and rice demonstrated the orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of WD40 genes. Estimation of synonymous and non-synonymous substitution rates revealed its evolutionary significance in terms of gene-duplication and divergence. Expression profiling against abiotic stresses provided novel insights into specific and/or overlapping expression patterns of SiWD40 genes. Homology modeling enabled three-dimensional structure prediction was performed to understand the molecular functions of WD40 proteins. Although, recent findings had shown the importance of WD40 domains in acting as hubs for cellular networks during many biological processes, it has invited a lesser research attention unlike other common domains. Being a most promiscuous interactors, WD40 domains are versatile in mediating critical cellular functions and hence this genome-wide study especially in the model crop foxtail millet would serve as a blue-print for functional characterization of WD40s in millets and bioenergy grass species. In addition, the present analyses would also assist the research community in choosing the candidate WD40s for comprehensive studies towards crop improvement

  6. Genome-wide investigation and expression analyses of WD40 protein family in the model plant foxtail millet (Setaria italica L.).

    Science.gov (United States)

    Mishra, Awdhesh Kumar; Muthamilarasan, Mehanathan; Khan, Yusuf; Parida, Swarup Kumar; Prasad, Manoj

    2014-01-01

    WD40 proteins play a crucial role in diverse protein-protein interactions by acting as scaffolding molecules and thus assisting in the proper activity of proteins. Hence, systematic characterization and expression profiling of these WD40 genes in foxtail millet would enable us to understand the networks of WD40 proteins and their biological processes and gene functions. In the present study, a genome-wide survey was conducted and 225 potential WD40 genes were identified. Phylogenetic analysis categorized the WD40 proteins into 5 distinct sub-families (I-V). Gene Ontology annotation revealed the biological roles of the WD40 proteins along with its cellular components and molecular functions. In silico comparative mapping with sorghum, maize and rice demonstrated the orthologous relationships and chromosomal rearrangements including duplication, inversion and deletion of WD40 genes. Estimation of synonymous and non-synonymous substitution rates revealed its evolutionary significance in terms of gene-duplication and divergence. Expression profiling against abiotic stresses provided novel insights into specific and/or overlapping expression patterns of SiWD40 genes. Homology modeling enabled three-dimensional structure prediction was performed to understand the molecular functions of WD40 proteins. Although, recent findings had shown the importance of WD40 domains in acting as hubs for cellular networks during many biological processes, it has invited a lesser research attention unlike other common domains. Being a most promiscuous interactors, WD40 domains are versatile in mediating critical cellular functions and hence this genome-wide study especially in the model crop foxtail millet would serve as a blue-print for functional characterization of WD40s in millets and bioenergy grass species. In addition, the present analyses would also assist the research community in choosing the candidate WD40s for comprehensive studies towards crop improvement of millets and

  7. Identification of cross-linked amino acids in the protein pair HmaL23-HmaL29 from the 50S ribosomal subunit of the archaebacterium Haloarcula marismortui.

    Science.gov (United States)

    Bergmann, U; Wittmann-Liebold, B

    1993-03-23

    50S ribosomal subunits from the extreme halophilic archaebacterium Haloarcula marismortui were treated with the homobifunctional protein-protein cross-linking reagents diepoxybutane (4 A) and dithiobis(succinimidyl propionate) (12 A). The dominant product with both cross-linking reagents was identified on the protein level as HmaL23-HmaL29, which is homologous to the protein pair L23-L29 from Escherichia coli [Walleczek, J., Martin, T., Redl, B., Stöffler-Meilicke, M., & Stöffler, G. (1989) Biochemistry 28, 4099-4105] and from Bacillus stearothermophilus [Brockmöller, J., & Kamp, R. M. (1986) Biol. Chem. Hoppe-Seyler 367, 925-935]. To reveal the exact cross-linking site in HmaL23-HmaL29, the cross-linked complex was purified on a preparative scale by conventional and high-performance liquid chromatography. After endoproteolytic fragmentation of the protein pair, the amino acids engaged in cross-link formation were unambiguously identified by N-terminal sequence analysis and mass spectrometry of the cross-linked peptides. The cross-link is formed between lysine-57 in the C-terminal region of HmaL29 and the alpha-amino group of the N-terminal serine in protein HmaL23, irrespective of the cross-linking reagent. This result demonstrates that the N-terminal region of protein HmaL23 and the C-terminal domain of HmaL29 are highly flexible so that the distance between the two polypeptide chains can vary by at least 8 A. Comparison of our cross-linking results with those obtained with B. stearothermophilus revealed that the fine structure within this ribosomal domain is at least partially conserved.

  8. Expression of small heat shock proteins from pea seedlings under gravity altered conditions

    Science.gov (United States)

    Talalaev, Alexandr S.

    2005-08-01

    A goal of our study was to evaluate the stress gene expression in Pisum sativum seedlings exposed to altered gravity and temperature elevation. We investigate message for the two inducible forms of the cytosolic small heat shock proteins (sHsp), sHsp 17.7 and sHsp 18.1. Both proteins are able to enhance the refolding of chemically denatured proteins in an ATP- independent manner, in other words they can function as molecular chaperones. We studied sHsps expression in pea seedlings cells by Western blotting. Temperature elevation, as the positive control, significantly increased PsHsp 17.7 and PsHsp 18.1 expression. Expression of the housekeeping protein, actin was constant and comparable to unstressed controls for all treatments. We concluded that gravitational perturbations incurred by clinorotation did not change sHsp genes expression.

  9. Variation in Protein Intake Induces Variation in Spider Silk Expression

    Science.gov (United States)

    Blamires, Sean J.; Wu, Chun-Lin; Tso, I-Min

    2012-01-01

    Background It is energetically expensive to synthesize certain amino acids. The proteins (spidroins) of spider major ampullate (MA) silk, MaSp1 and MaSp2, differ in amino acid composition. Glutamine and proline are prevalent in MaSp2 and are expensive to synthesize. Since most orb web spiders express high proline silk they might preferentially attain the amino acids needed for silk from food and shift toward expressing more MaSp1 in their MA silk when starved. Methodology/Principal Findings We fed three spiders; Argiope aetherea, Cyrtophora moluccensis and Leucauge blanda, high protein, low protein or no protein solutions. A. aetherea and L. blanda MA silks are high in proline, while C. moluccesnsis MA silks are low in proline. After 10 days of feeding we determined the amino acid compositions and mechanical properties of each species' MA silk and compared them between species and treatments with pre-treatment samples, accounting for ancestry. We found that the proline and glutamine of A. aetherea and L. blanda silks were affected by protein intake; significantly decreasing under the low and no protein intake treatments. Glutmaine composition in C. moluccensis silk was likewise affected by protein intake. However, the composition of proline in their MA silk was not significantly affected by protein intake. Conclusions Our results suggest that protein limitation induces a shift toward different silk proteins with lower glutamine and/or proline content. Contradictions to the MaSp model lie in the findings that C. moluccensis MA silks did not experience a significant reduction in proline and A. aetherea did not experience a significant reduction in serine on low/no protein. The mechanical properties of the silks could not be explained by a MaSp1 expressional shift. Factors other than MaSp expression, such as the expression of spidroin-like orthologues, may impact on silk amino acid composition and spinning and glandular processes may impact mechanics. PMID:22363691

  10. 28 CFR 523.17 - Procedures.

    Science.gov (United States)

    2010-07-01

    ..., unless the reason for transfer would otherwise have caused removal from an earning status, and provided... status if not immediately employed in Federal Prison Industries or assigned to a work/study release... comply with procedures outlined in § 523.11. (f) An inmate serving a life sentence may earn extra good...

  11. Lopinavir up-regulates expression of the antiviral protein ribonuclease L in human papillomavirus-positive cervical carcinoma cells.

    Science.gov (United States)

    Batman, Gavin; Oliver, Anthony W; Zehbe, Ingeborg; Richard, Christina; Hampson, Lynne; Hampson, Ian N

    2011-01-01

    We have previously shown that the HIV protease inhibitor lopinavir has selective toxicity against human papillomavirus (HPV)-positive cervical carcinoma cells via an unknown mechanism. SiHa cervical carcinoma cells were stably transfected with the proteasome sensor vector pZsProSensor-1 to confirm lopinavir inhibits the proteasome in these cells. The Panorama Xpress profiler 725 antibody array was then used to analyse specific changes in protein expression in lopinavir-treated versus control untreated SiHa cells followed by PCR and western blotting. Colorimetric growth assays of lopinavir-treated E6/E7 immortalised versus control human keratinocytes were performed. Targeted small interfering RNA gene silencing followed by growth assay comparison of lopinavir-treated/untreated SiHa cells was also used. Lopinavir induced an increase in the fluorescence of pZsProSensor-1 transfected SiHa cells, indicative of proteasomal inhibition. Ribonuclease L (RNASEL) protein was shown to be up-regulated in lopinavir-treated SiHa cells, which was confirmed by PCR and western blot. Targeted silencing of RNASEL reduced the sensitivity of SiHa cells to lopinavir. Selective toxicity against E6/E7 immortalised keratinocytes versus control cells was also seen with lopinavir and was associated with up-regulated RNASEL expression. These data are consistent with the toxicity of lopinavir against HPV-positive cervical carcinoma cells being related to its ability to block viral proteasome activation and induce an up-regulation of the antiviral protein RNASEL. This is supported by the drug's selective toxicity and up-regulation of RNASEL in E6/E7 immortalised keratinocytes combined with the increased resistance to lopinavir observed in SiHa cells following silencing of RNASEL gene expression.

  12. Enhancing freezing tolerance of Brassica napus L. by overexpression of a stearoyl-acyl carrier protein desaturase gene (SAD) from Sapium sebiferum (L.) Roxb.

    Science.gov (United States)

    Peng, Dan; Zhou, Bo; Jiang, Yueqiao; Tan, XiaoFeng; Yuan, DeYi; Zhang, Lin

    2018-07-01

    Sapium sebiferum (L.) Roxb. is an important woody oil tree and traditional herbal medicine in China. Stearoyl-acyl carrier protein desaturase (SAD) is a dehydrogenase enzyme that plays a key role in the transformation of saturated fatty acids into unsaturated fatty acids in oil; these fatty acids greatly influence the freezing tolerance of plants. However, it remains unclear whether freezing tolerance can be regulated by the expression level of SsSAD in S. sebiferum L. Our research indicated that SsSAD expression in S. sebiferum L. increased under freezing stress. To further confirm this result, we constructed a pEGAD-SsSAD vector and transformed it into B. napus L. W10 by Agrobacterium tumefaciens-mediated transformation. Transgenic plants that overexpressed the SsSAD gene exhibited significantly higher linoleic (18:2) and linolenic acid (18:3) content and advanced freezing tolerance. These results suggest that SsSAD overexpression in B. napus L. can increase the content of polyunsaturated fatty acids (PUFAs) such as linoleic (18:2) and linolenic acid (18:3), which are likely pivotal in improving freezing tolerance in B. napus L. plants. Thus, SsSAD overexpression could be useful in the production of freeze-tolerant varieties of B. napus L. Copyright © 2018 Elsevier B.V. All rights reserved.

  13. Nociceptive DRG neurons express muscle lim protein upon axonal injury.

    Science.gov (United States)

    Levin, Evgeny; Andreadaki, Anastasia; Gobrecht, Philipp; Bosse, Frank; Fischer, Dietmar

    2017-04-04

    Muscle lim protein (MLP) has long been regarded as a cytosolic and nuclear muscular protein. Here, we show that MLP is also expressed in a subpopulation of adult rat dorsal root ganglia (DRG) neurons in response to axonal injury, while the protein was not detectable in naïve cells. Detailed immunohistochemical analysis of L4/L5 DRG revealed ~3% of MLP-positive neurons 2 days after complete sciatic nerve crush and maximum ~10% after 4-14 days. Similarly, in mixed cultures from cervical, thoracic, lumbar and sacral DRG ~6% of neurons were MLP-positive after 2 days and maximal 17% after 3 days. In both, histological sections and cell cultures, the protein was detected in the cytosol and axons of small diameter cells, while the nucleus remained devoid. Moreover, the vast majority could not be assigned to any of the well characterized canonical DRG subpopulations at 7 days after nerve injury. However, further analysis in cell culture revealed that the largest population of MLP expressing cells originated from non-peptidergic IB4-positive nociceptive neurons, which lose their ability to bind the lectin upon axotomy. Thus, MLP is mostly expressed in a subset of axotomized nociceptive neurons and can be used as a novel marker for this population of cells.

  14. Small-angle X-ray titration study on the complex formation between 5-S RNA and the L18 protein of the Escherichia coli 50-S ribosome particle

    International Nuclear Information System (INIS)

    Oesterberg, R.; Garrett, A.

    1977-01-01

    The 5-S RNA (A) and the L 18 protein (B) from Escherichia coli ribosomes form one single AB complex in the concentration ranges supposed to prevail in vivo; at concentrations of L 18 higher than 40 mM there is some indication for a minor species, most probably an AB 2 species. This is indicated from the X-ray scattering titration data of the 5-S RNA/L 18 system recorded at 21 0 C in ribosomal reconstitution buffer. As a result of the 1 : 1 complex formation, there is a relatively small but defined increase in the radius of gyration from 3.61 to 3.85 nm. This result as well as the experimental scattering curve can be explained by models where it is assumed that the elongated L 18 model is quite far from the electron density centre and where protein L 18 interacts with one or both of the minor arms of the supposed Y-shaped 5-S RNA molecule. (orig.) [de

  15. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Directory of Open Access Journals (Sweden)

    Lauren E Hudson

    Full Text Available Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  16. Functional heterologous protein expression by genetically engineered probiotic yeast Saccharomyces boulardii.

    Science.gov (United States)

    Hudson, Lauren E; Fasken, Milo B; McDermott, Courtney D; McBride, Shonna M; Kuiper, Emily G; Guiliano, David B; Corbett, Anita H; Lamb, Tracey J

    2014-01-01

    Recent studies have suggested the potential of probiotic organisms to be adapted for the synthesis and delivery of oral therapeutics. The probiotic yeast Saccharomyces boulardii would be especially well suited for this purpose due to its ability, in contrast to probiotic prokaryotes, to perform eukaryotic post translational modifications. This probiotic yeast thus has the potential to express a broad array of therapeutic proteins. Currently, however, use of wild type (WT) S. boulardii relies on antibiotic resistance for the selection of transformed yeast. Here we report the creation of auxotrophic mutant strains of S. boulardii that can be selected without antibiotics and demonstrate that these yeast can express functional recombinant protein even when recovered from gastrointestinal immune tissues in mice. A UV mutagenesis approach was employed to generate three uracil auxotrophic S. boulardii mutants that show a low rate of reversion to wild type growth. These mutants can express recombinant protein and are resistant in vitro to low pH, bile acid salts, and anaerobic conditions. Critically, oral gavage experiments using C57BL/6 mice demonstrate that mutant S. boulardii survive and are taken up into gastrointestinal immune tissues on a similar level as WT S. boulardii. Mutant yeast recovered from gastrointestinal immune tissues furthermore retain expression of functional recombinant protein. These data show that auxotrophic mutant S. boulardii can safely express recombinant protein without antibiotic selection and can deliver recombinant protein to gastrointestinal immune tissues. These auxotrophic mutants of S. boulardii pave the way for future experiments to test the ability of S. boulardii to deliver therapeutics and mediate protection against gastrointestinal disorders.

  17. Expression and purification of the non-tagged LipL32 of pathogenic Leptospira

    OpenAIRE

    Hauk, P.; Carvalho, E.; Ho, P.L.

    2011-01-01

    Leptospirosis is a reemerging infectious disease and the most disseminated zoonosis worldwide. A leptospiral surface protein, LipL32, only occurs in pathogenic Leptospira, and is the most abundant protein on the bacterial surface, being described as an important factor in host immunogenic response and also in bacterial infection. We describe here an alternative and simple purification protocol for non-tagged recombinant LipL32. The recombinant LipL32(21-272) was expressed in Escherichia coli ...

  18. Transient expression of progesterone receptor and cathepsin-l in human granulosa cells during the periovulatory period.

    Science.gov (United States)

    García, Víctor; Kohen, Paulina; Maldonado, Carola; Sierralta, Walter; Muñoz, Alex; Villarroel, Claudio; Strauss, Jerome F; Devoto, Luigi

    2012-03-01

    To study in vivo the progesterone receptor (PR) expression levels in human granulosa cells (GCs) during the periovulatory period and the affect of the protein kinase A (PKA) pathway on PR expression and cathepsin-L expression-activation. Experimental study. University research unit. Twenty-five women of reproductive age. Follicular fluid and GCs obtained from spontaneous cycles before and during the normal luteinizing hormone surge, and samples obtained 36 hours after human chorionic gonadotropin (hCG) administration in patients undergoing in vitro fertilization. To determine PR, cathepsin-L messenger RNA (mRNA) analysis via real-time polymerase chain reaction, and protein of PR, cathepsin-L, and PKA in human GCs. The Western blot analysis revealed that bands of PR (isoform A) were the most abundant and that mRNA (PR-A and PR-B) have a temporal pattern of expression throughout the periovulatory period. The protein levels of PR and cathepsin-L were up-regulated by hCG. The abundance of PR was diminished in the presence of PKA inhibitor, and cathepsin-L with PR receptor antagonist. The transient expression of PR in human GCs of the preovulatory follicle suggests that PR and its ligand play a role in the activation of cathepsin-L, which is presumably involved in the degradation of the follicular extracellular matrix during human ovulation. Copyright © 2012 American Society for Reproductive Medicine. All rights reserved.

  19. Lactococcus lactis is an Efficient Expression System for Mammalian Membrane Proteins Involved in Liver Detoxification, CYP3A4, and MGST1.

    Science.gov (United States)

    Bakari, Sana; Lembrouk, Mehdi; Sourd, Laura; Ousalem, Fares; André, François; Orlowski, Stéphane; Delaforge, Marcel; Frelet-Barrand, Annie

    2016-04-01

    Despite the great importance of human membrane proteins involved in detoxification mechanisms, their wide use for biochemical approaches is still hampered by several technical difficulties considering eukaryotic protein expression in order to obtain the large amounts of protein required for functional and/or structural studies. Lactococcus lactis has emerged recently as an alternative heterologous expression system to Escherichia coli for proteins that are difficult to express. The aim of this work was to check its ability to express mammalian membrane proteins involved in liver detoxification, i.e., CYP3A4 and two isoforms of MGST1 (rat and human). Genes were cloned using two different strategies, i.e., classical or Gateway-compatible cloning, and we checked the possible influence of two affinity tags (6×-His-tag and Strep-tag II). Interestingly, all proteins could be successfully expressed in L. lactis at higher yields than those previously obtained for these proteins with classical expression systems (E. coli, Saccharomyces cerevisiae) or those of other eukaryotic membrane proteins expressed in L. lactis. In addition, rMGST1 was fairly active after expression in L. lactis. This study highlights L. lactis as an attractive system for efficient expression of mammalian detoxification membrane proteins at levels compatible with further functional and structural studies.

  20. [Analysis of the mRNA expression of the S100β protein in adipocytes of patients with diabetes mellitus, type 2].

    Science.gov (United States)

    Hamasaki, Mike Yoshio; Hirata, Mario Hiroyuki; Hirata, Rosario Dominguez Crespo; Himelfarb, Silvia Tchernin; Campos, Leila Maria Guissoni; Nogueira, Maria Inês

    2012-10-01

    This study aims to explore the possible relationship between the expression level of S100β protein mRNA with diabetes mellitus type 2 in adipocytes from patients with this disease in comparison with normoglycemic individuals. Samples of adipose tissue of eight patients from the coronary section of the Institute Dante Pazzanese of Cardiology (IDPC), four in Group Diabetes and four of Normoglycemic group, were evaluated by RT-PCR real time. An increase around 15 times values, between the threshold cycle (ΔCt), of mRNA expression of S100β protein in adipocytes of the diabetes group was observed in comparison to the control group (p = 0.015). Our results indicate, for the first time, that there is coexistence of increased expression of the S100β and the type 2 diabetes mellitus gene.

  1. High-level transient expression of recombinant protein in lettuce.

    Science.gov (United States)

    Joh, Lawrence D; Wroblewski, Tadeusz; Ewing, Nicholas N; VanderGheynst, Jean S

    2005-09-30

    Transient expression following agroinfiltration of plant tissue was investigated as a system for producing recombinant protein. As a model system, Agrobacterium tumefaciens containing the beta-glucuronidase (GUS) gene was vacuum infiltrated into lettuce leaf disks. Infiltration with a suspension of 10(9) colony forming units/mL followed by incubation for 72 h at 22 degrees C in continuous darkness produced a maximum of 0.16% GUS protein based on dry tissue or 1.1% GUS protein based on total soluble protein. This compares favorably to expression levels for commercially manufactured GUS protein from transgenic corn seeds. A. tumefaciens culture medium pH between 5.6 and 7.0 and surfactant concentrations lettuce to produce GUS protein more rapidly, but final levels did not exceed the GUS production in leaves incubated in continuous darkness after 72 h at 22 degrees C. The kinetics of GUS expression during incubation in continuous light and dark were represented well using a logistic model, with rate constants of 0.30 and 0.29/h, respectively. To semi-quantitatively measure the GUS expression in large numbers of leaf disks, a photometric enhancement of the standard histochemical staining method was developed. A linear relationship with an R2 value of 0.90 was determined between log10 (% leaf darkness) versus log10 (GUS activity). Although variability in expression level was observed, agroinfiltration appears to be a promising technology that could potentially be scaled up to produce high-value recombinant proteins in planta. Copyright 2005 Wiley Periodicals, Inc

  2. A multiwavelength view of the galaxy cluster Abell 523 and its peculiar diffuse radio source

    Science.gov (United States)

    Girardi, M.; Boschin, W.; Gastaldello, F.; Giovannini, G.; Govoni, F.; Murgia, M.; Barrena, R.; Ettori, S.; Trasatti, M.; Vacca, V.

    2016-03-01

    We study the structure of the galaxy cluster Abell 523 (A523) at z = 0.104 using new spectroscopic data for 132 galaxies acquired at the Telescopio Nazionale Galileo, new photometric data from the Isaac Newton Telescope, and X-ray and radio data from the Chandra and Very Large Array archives. We estimate the velocity dispersion of the galaxy population, σ _V=949_{-60}^{+80} km s-1, and the X-ray temperature of the hot intracluster medium, kT = 5.3 ± 0.3 keV. We infer that A523 is a massive system: M200 ˜ 7-9 × 1014 M⊙. The analysis of the optical data confirms the presence of two subclusters, 0.75 Mpc apart, tracing the SSW-NNE direction and dominated by the two brightest cluster galaxies (BCG1 and BCG2). The X-ray surface brightness is strongly elongated towards the NNE direction, and its peak is clearly offset from both the brightest cluster galaxies (BCGs). We confirm the presence of a 1.3 Mpc large radio halo, elongated in the ESE-WNW direction and perpendicular to the optical/X-ray elongation. We detect a significant radio/X-ray offset and radio polarization, two features which might be the result of a magnetic field energy spread on large spatial scales. A523 is found consistent with most scaling relations followed by clusters hosting radio haloes, but quite peculiar in the Pradio-LX relation: it is underluminous in the X-rays or overluminous in radio. A523 can be described as a binary head-on merger caught after a collision along the SSW-NNE direction. However, minor optical and radio features suggest a more complex cluster structure, with A523 forming at the crossing of two filaments along the SSW-NNE and ESE-WNW directions.

  3. L2, the minor capsid protein of papillomavirus

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Joshua W. [Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287 (United States); Roden, Richard B.S., E-mail: roden@jhmi.edu [Department of Pathology, The Johns Hopkins University, Baltimore, MD 21287 (United States); Department of Oncology, The Johns Hopkins University, Baltimore, MD 21287 (United States); Department of Gynecology and Obstetrics, The Johns Hopkins University, Baltimore, MD 21287 (United States)

    2013-10-15

    The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ∼8 kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 is not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2. - Highlights: • L2 is the minor antigen of the non-enveloped T=7d icosahedral Papillomavirus capsid. • L2 is a nuclear protein that can traffic to ND-10 and facilitate genome encapsidation. • L2 is critical for infection and must be cleaved by furin. • L2 is a broadly protective vaccine antigen recognized by neutralizing antibodies.

  4. L2, the minor capsid protein of papillomavirus

    International Nuclear Information System (INIS)

    Wang, Joshua W.; Roden, Richard B.S.

    2013-01-01

    The capsid protein L2 plays major roles in both papillomavirus assembly and the infectious process. While L1 forms the majority of the capsid and can self-assemble into empty virus-like particles (VLPs), L2 is a minor capsid component and lacks the capacity to form VLPs. However, L2 co-assembles with L1 into VLPs, enhancing their assembly. L2 also facilitates encapsidation of the ∼8 kbp circular and nucleosome-bound viral genome during assembly of the non-enveloped T=7d virions in the nucleus of terminally differentiated epithelial cells, although, like L1, L2 is not detectably expressed in infected basal cells. With respect to infection, L2 is not required for particles to bind to and enter cells. However L2 must be cleaved by furin for endosome escape. L2 then travels with the viral genome to the nucleus, wherein it accumulates at ND-10 domains. Here, we provide an overview of the biology of L2. - Highlights: • L2 is the minor antigen of the non-enveloped T=7d icosahedral Papillomavirus capsid. • L2 is a nuclear protein that can traffic to ND-10 and facilitate genome encapsidation. • L2 is critical for infection and must be cleaved by furin. • L2 is a broadly protective vaccine antigen recognized by neutralizing antibodies

  5. Exogenous Expressions of FTO Wild-Type and R316Q Mutant Proteins Caused an Increase in HNRPK Levels in 3T3-L1 Cells as Demonstrated by DIGE Analysis

    Directory of Open Access Journals (Sweden)

    Nil Guzel

    2017-01-01

    Full Text Available Fat mass and obesity-associated protein is an enzyme that oxidatively demethylates DNA. Although there are numerous studies regarding the catalytic function of FTO, the overall existence or absence of FTO on cellular proteome has not been investigated. This study investigated the changes in the soluble proteome of 3T3-L1 cells upon expression of the WT and the mutant (R316Q FTO proteins. Protein extracts prepared from 3T3-L1 cells expressing either the WT or the mutant FTO proteins were used in DIGE experiments. Analysis of the data revealed the number of spots matched to every member and there were 350 ± 20 spots with 30.5% overall mean coefficient of variation. Eleven regulated protein spots were excised from the gels and identified by MALDI-TOF/TOF. One of the identified proteins was heterogeneous nuclear ribonucleoprotein K, which displayed more than 2.6- and 3.7-fold increases in its abundance in the WT and the mutant FTO expressing cells, respectively. Western blot analysis validated these observations. This is the first study revealing the presence of a parallel increase in expressions of FTO and HNRNPK proteins. This increase may codictate the metabolic changes occurring in the cell and may attribute a significance to HNRNPK in FTO-associated transformations.

  6. Short- and long-term changes in sugarbeet (Beta vulgaris L. gene expression due to postharvest jasmonic acid treatment - Data

    Directory of Open Access Journals (Sweden)

    Lucilene Silva de Oliveira

    2017-04-01

    Full Text Available Jasmonic acid is a natural plant hormone that induces native defense responses in plants. Sugarbeet (Beta vulgaris L. root unigenes that were differentially expressed 2 and 60 days after a postharvest jasmonic acid treatment are presented. Data include changes in unigene expression relative to water-treated controls, unigene annotations against nonredundant (Nr, Swiss-Prot, Clusters of Orthologous Groups (COG, and Kyoto Encyclopedia of Genes and Genomes (KEGG protein databases, and unigene annotations with Gene Ontology (GO terms. Putative defense unigenes are compiled and annotated against the sugarbeet genome. Differential gene expression data were generated by RNA sequencing. Interpretation of the data is available in the research article, “Jasmonic acid causes short- and long-term alterations to the transcriptome and the expression of defense genes in sugarbeet roots” (K.K. Fugate, L.S. Oliveira, J.P. Ferrareze, M.D. Bolton, E.L. Deckard, F.L. Finger, 2017 [1]. Public dissemination of this dataset will allow further analyses of the data.

  7. Investigation of mRNA expression for secreted frizzled-related protein 2 (sFRP2) in chick embryos.

    Science.gov (United States)

    Lin, Chung-Tien; Lin, Yu-Ting; Kuo, Tzong-Fu

    2007-08-01

    The roles of secreted frizzled-related protein 2 (sFRP2) in organ development of vertebrate animals are not well understood. We investigated expression of sFRP2 during embryogenesis of Arbor Acre broiler chicken eggs. Expression of sFRP2 was detected in the folds and lateral layer of developing brains. The sFRP2 signals in the developing eye were marked as a circle along the orbit. In younger embryos on days 3-6, the sFRP2 signals were consistent with growth of the sclerotome, suggesting that sFRP2 may be associated with somite development. Furthermore, with the exception of bones, sFRP2 mRNA was detectable in the interdigital tissue of embryos older than eight days as the limbs matured. This revealed that sFRP2 might play a role in myogenesis. In situ hybridization was also used to analyze the expression of sFRP2 in day 3-10 chick embryos. Signals were expressed in the gray matter of the developing brain coelom, including the optic lobe, metencephalon, myelencephalon, mesencephalon and diencephalon. The developing eyes contained an intercellular distribution of sFRP2 in the pigmented layer of the retina and photoreceptors. Furthermore, sFRP2 was expressed in the mantle layer of the neural tube and notochord. Based on these findings, it seems reasonable to suggest that sFRP2 may play an active role in embryogenesis, especially in development of the neural system, eyes, muscles and limbs.

  8. Impact of High-Level Expression of Heterologous Protein on Lactococcus lactis Host.

    Science.gov (United States)

    Kim, Mina; Jin, Yerin; An, Hyun-Joo; Kim, Jaehan

    2017-07-28

    The impact of overproduction of a heterologous protein on the metabolic system of host Lactococcus lactis was investigated. The protein expression profiles of L. lactis IL1403 containing two near-identical plasmids that expressed high- and low-level of the green fluorescent protein (GFP) were examined via shotgun proteomics. Analysis of the two strains via high-throughput LC-MS/MS proteomics identified the expression of 294 proteins. The relative amount of each protein in the proteome of both strains was determined by label-free quantification using the spectral counting method. Although expression level of most proteins were similar, several significant alterations in metabolic network were identified in the high GFP-producing strain. These changes include alterations in the pyruvate fermentation pathway, oxidative pentose phosphate pathway, and de novo synthesis pathway for pyrimidine RNA. Expression of enzymes for the synthesis of dTDP-rhamnose and N -acetylglucosamine from glucose was suppressed in the high GFP strain. In addition, enzymes involved in the amino acid synthesis or interconversion pathway were downregulated. The most noticeable changes in the high GFP-producing strain were a 3.4-fold increase in the expression of stress response and chaperone proteins and increase of caseinolytic peptidase family proteins. Characterization of these host expression changes witnessed during overexpression of GFP was might suggested the metabolic requirements and networks that may limit protein expression, and will aid in the future development of lactococcal hosts to produce more heterologous protein.

  9. Expression, purification and characterization of hepatitis B virus X protein BH3-like motif-linker-Bcl-xL fusion protein for structural studies

    Directory of Open Access Journals (Sweden)

    Hideki Kusunoki

    2017-03-01

    Full Text Available Hepatitis B virus X protein (HBx is a multifunctional protein that interacts directly with many host proteins. For example, HBx interacts with anti-apoptotic proteins, Bcl-2 and Bcl-xL, through its BH3-like motif, which leads to elevated cytosolic calcium levels, efficient viral DNA replication and the induction of apoptosis. To facilitate sample preparation and perform detailed structural characterization of the complex between HBx and Bcl-xL, we designed and purified a recombinant HBx BH3-like motif-linker-Bcl-xL fusion protein produced in E. coli. The fusion protein was characterized by size exclusion chromatography, circular dichroism and nuclear magnetic resonance experiments. Our results show that the fusion protein is a monomer in aqueous solution, forms a stable intramolecular complex, and likely retains the native conformation of the complex between Bcl-xL and the HBx BH3-like motif. Furthermore, the HBx BH3-like motif of the intramolecular complex forms an α-helix. These observations indicate that the fusion protein should facilitate structural studies aimed at understanding the interaction between HBx and Bcl-xL at the atomic level.

  10. 28 CFR 523.34 - How can I challenge DCEGT award decisions?

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false How can I challenge DCEGT award decisions? 523.34 Section 523.34 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time...

  11. 28 CFR 523.30 - What is educational good time sentence credit?

    Science.gov (United States)

    2010-07-01

    ... 28 Judicial Administration 2 2010-07-01 2010-07-01 false What is educational good time sentence credit? 523.30 Section 523.30 Judicial Administration BUREAU OF PRISONS, DEPARTMENT OF JUSTICE INMATE ADMISSION, CLASSIFICATION, AND TRANSFER COMPUTATION OF SENTENCE District of Columbia Educational Good Time...

  12. A ribonuclease-resistant region of 5S RNA and its relation to the RNA binding sites of proteins L18 and L25

    DEFF Research Database (Denmark)

    Douthwaite, S; Garrett, R A; Wagner, R

    1979-01-01

    An RNA fragment, constituting three subfragments of nucleotide sequences 1-11, 69-87 and 89-120, is the most ribonuclease-resistant part of the native 5S RNA of Escherichia coli, at 0 degrees C. A smaller fragment of nucleotide sequence 69-87 and 90-110 is ribonuclease-resistant at 25 degrees....... Degradation of the L25-5S RNA complex with ribonuclease A or T2 yielded RNA fragments similar to those of the free 5S RNA at 0 degrees C and 25 degrees C; moreover L25 remained strongly bound to both RNA fragments and also produced some opening of the RNA structure in at least two positions. Protein L18...... initially protected most of the 5S RNA against ribonuclease digestion, at 0 degrees C, but was then gradually released prior to the formation of the larger RNA fragment. It cannot be concluded, therefore, as it was earlier (Gray et al., 1973), that this RNA fragment contains the primary binding site of L18....

  13. Dissociation of activated protein C functions by elimination of protein S cofactor enhancement.

    LENUS (Irish Health Repository)

    Harmon, Shona

    2008-11-07

    Activated protein C (APC) plays a critical anticoagulant role in vivo by inactivating procoagulant factor Va and factor VIIIa and thus down-regulating thrombin generation. In addition, APC bound to the endothelial cell protein C receptor can initiate protease-activated receptor-1 (PAR-1)-mediated cytoprotective signaling. Protein S constitutes a critical cofactor for the anticoagulant function of APC but is not known to be involved in regulating APC-mediated protective PAR-1 signaling. In this study we utilized a site-directed mutagenesis strategy to characterize a putative protein S binding region within the APC Gla domain. Three single amino acid substitutions within the APC Gla domain (D35T, D36A, and A39V) were found to mildly impair protein S-dependent anticoagulant activity (<2-fold) but retained entirely normal cytoprotective activity. However, a single amino acid substitution (L38D) ablated the ability of protein S to function as a cofactor for this APC variant. Consequently, in assays of protein S-dependent factor Va proteolysis using purified proteins or in the plasma milieu, APC-L38D variant exhibited minimal residual anticoagulant activity compared with wild type APC. Despite the location of Leu-38 in the Gla domain, APC-L38D interacted normally with endothelial cell protein C receptor and retained its ability to trigger PAR-1 mediated cytoprotective signaling in a manner indistinguishable from that of wild type APC. Consequently, elimination of protein S cofactor enhancement of APC anticoagulant function represents a novel and effective strategy by which to separate the anticoagulant and cytoprotective functions of APC for potential therapeutic gain.

  14. BIP induces mice CD19(hi) regulatory B cells producing IL-10 and highly expressing PD-L1, FasL.

    Science.gov (United States)

    Tang, Youfa; Jiang, Qing; Ou, Yanghui; Zhang, Fan; Qing, Kai; Sun, Yuanli; Lu, Wenjie; Zhu, Huifen; Gong, Feili; Lei, Ping; Shen, Guanxin

    2016-01-01

    Many studies have shown that B cells possess a regulatory function in mouse models of autoimmune diseases. Regulatory B cells can modulate immune response through many types of molecular mechanisms, including the production of IL-10 and the expression of PD-1 Ligand and Fas Ligand, but the microenvironmental factors and mechanisms that induce regulatory B cells have not been fully identified. BIP (binding immunoglobulin protein), a member of the heat shock protein 70 family, is a type of evolutionarily highly conserved protein. In this article, we have found that IL-10(+), PD-L1(hi) and FasL(hi) B cells are discrete cell populations, but enriched in CD19(hi) cells. BIP can induce IL-10-producing splenic B cells, IL-10 secretion and B cells highly expressing PD-L1 and FasL. CD40 signaling acts in synergy with BIP to induce regulatory B cells. BIP increased surface CD19 molecule expression intensity and IL-10(+), PD-L1(hi) and FasL(hi) B cells induced by BIP share the CD19(hi) phenotype. Furthermore, B cells treated with BIP and anti-CD40 can lead to suppression of T cell proliferation and the effect is partially IL-10-dependent and mainly BIP-induced. Taken together, our findings identify a novel function of BIP in the induction of regulatory B cells and add a new reason for the therapy of autoimmune disorders or other inflammatory conditions. Copyright © 2015. Published by Elsevier Ltd.

  15. PD-L1 protein expression assessed by immunohistochemistry is neither prognostic nor predictive of benefit from adjuvant chemotherapy in resected non-small cell lung cancer.

    Science.gov (United States)

    Tsao, M-S; Le Teuff, G; Shepherd, F A; Landais, C; Hainaut, P; Filipits, M; Pirker, R; Le Chevalier, T; Graziano, S; Kratze, R; Soria, J-C; Pignon, J-P; Seymour, L; Brambilla, E

    2017-04-01

    The expression of programmed death (PD) ligand 1 (PD-L1) protein expression assessed by immunohistochemistry (IHC) has been correlated with response and survival benefit from anti-PD-1/PD-L1 immune checkpoint inhibitor therapies in advanced non-small cell lung carcinoma (NSCLC). The efficacy of several agents appears correlated with PD-L1 expression. It remains controversial whether PD-L1 is prognostic in NSCLC. We assessed the prognostic value of PD-L1 IHC and its predictive role for adjuvant chemotherapy in early stage NSCLC. Tumor sections from three pivotal adjuvant chemotherapy trials (IALT, JBR.10, CALGB 9633) using the E1L3N antibody were studied in this pooled analysis. PD-L1 staining intensity and percentage in both tumor cells (TCs) and immune cells (ICs) were scored by two pathologists. The average or consensus PD-L1 expression levels across intensities and/or percent cells stained were correlated with clinicopathological and molecular features, patient survivals and potential benefit of adjuvant chemotherapy. Results from 982 patients were available for analysis. Considering staining at any intensities for overall PD-L1 expression, 314 (32.0%), 204 (20.8%) and 141 (14.3%) tumor samples were positive for PD-L1 staining on TCs using cut-offs at ≥1%, ≥10% and ≥25%, respectively. For PD-L1 expressing ICs, 380 (38.7%), 308 (31.4%) and 148 (15.1%) were positive at ≥ 1%, ≥10% and 25% cut-offs, respectively. Positive PD-L1 was correlated with squamous histology, intense lymphocytic infiltrate, and KRAS but not with TP53 mutation. EGFR mutated tumors showed statistically non-significant lower PD-L1 expression. PD-L1 expression was neither prognostic with these cut-offs nor other exploratory cut-offs, nor were predictive for survival benefit from adjuvant chemotherapy. PD-L1 IHC is not a prognostic factor in early stage NSCLC patients. It is also not predictive for adjuvant chemotherapy benefit in these patients. © The Author 2017. Published by

  16. Exogenous short-term silicon application regulates macro-nutrients, endogenous phytohormones, and protein expression in Oryza sativa L.

    Science.gov (United States)

    Jang, Soo-Won; Kim, Yoonha; Khan, Abdul Latif; Na, Chae-In; Lee, In-Jung

    2018-01-04

    Silicon (Si) has been known to regulate plant growth; however, the underlying mechanisms of short-term exogenous Si application on the regulation of calcium (Ca) and nitrogen (N), endogenous phytohormones, and expression of essential proteins have been little understood. Exogenous Si application significantly increased Si content as compared to the control. Among Si treatments, 1.0 mM Si application showed increased phosphorus content as compared to other Si treatments (0.5, 2.0, and 4.0 mM). However, Ca accumulation was significantly reduced (1.8- to 2.0-fold) at the third-leaf stage in the control, whereas all Si treatments exhibited a dose-dependent increase in Ca as determined by radioisotope 45 Ca analysis. Similarly, the radioisotope 15 N for nitrogen localization and uptake showed a varying but reduced response (ranging from 1.03-10.8%) to different Si concentrations as compared to 15 N application alone. Physiologically active endogenous gibberellin (GA 1 ) was also significantly higher with exogenous Si (1.0 mM) as compared to GA 20 and the control plants. A similar response was noted for endogenous jasmonic and salicylic acid synthesis in rice plants with Si application. Proteomic analysis revealed the activation of several essential proteins, such as Fe-S precursor protein, putative thioredoxin, Ser/Thr phosphatase, glucose-6-phosphate isomerase (G6P), and importin alpha-1b (Imp3), with Si application. Among the most-expressed proteins, confirmatory gene expression analysis for G6P and Imp3 showed a similar response to those of the Si treatments. In conclusion, the current results suggest that short-term exogenous Si can significantly regulate rice plant physiology by influencing Ca, N, endogenous phytohormones, and proteins, and that 1.0 mM Si application is more beneficial to plants than higher concentrations.

  17. Proteins and their modifications in a medieval mummy

    Czech Academy of Sciences Publication Activity Database

    Mikšík, Ivan; Sedláková, Pavla; Pataridis, Statis; Bortolotti, F.; Gottardo, R.

    2016-01-01

    Roč. 25, č. 11 (2016), s. 2037-2044 ISSN 0961-8368 R&D Projects: GA ČR(CZ) GA15-01948S Institutional support: RVO:67985823 Keywords : mummy * collagen * protein modification * deamidation * carbamylation * carboxymethylation Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.523, year: 2016

  18. Affinity labelling in situ of the bL12 protein on E. coli 70S ribosomes by means of a tRNA dialdehyde derivative.

    Science.gov (United States)

    Hountondji, Codjo; Créchet, Jean-Bernard; Le Caër, Jean-Pierre; Lancelot, Véronique; Cognet, Jean A H; Baouz, Soria

    2017-12-01

    In this report, we have used periodate-oxidized tRNA (tRNAox) as an affinity laleling reagent to demonstrate that: (i) the bL12 protein contacts the CCA-arm of P-site bound tRNA on the Escherichia coli 70S ribosomes; (ii) the stoichiometry of labelling is one molecule of tRNAox bound to one polypeptide chain of endogenous bL12; (iii) cross-linking in situ of bL12 with tRNAox on the ribosomes provokes the loss of activity; (iv) intact tRNA protects bL12 in the 70S ribosomes against cross-linking with tRNAox; (v) both tRNAox and pyridoxal 5'-phosphate (PLP) compete for the same or for proximal cross-linking site(s) on bL12 inside the ribosome; (vi) the stoichiometry of cross-linking of PLP to the recombinant E. coli bL12 protein is one molecule of PLP covalently bound per polypeptide chain; (vii) the amino acid residue of recombinant bL12 cross-linked with PLP is Lys-65; (viii) Lys-65 of E. coli bL12 corresponds to Lys-53 of eL42 which was previously shown to cross-link with P-site bound tRNAox on human 80S ribosomes in situ; (ix) finally, E. coli bL12 and human eL42 proteins display significant primary structure similarities, which argues for evolutionary conservation of these two proteins located at the tRNA-CCA binding site on eubacterial and eukaryal ribosomes. © The Authors 2017. Published by Oxford University Press on behalf of the Japanese Biochemical Society. All rights reserved.

  19. High-level extracellular protein production in Bacillus subtilis using an optimized dual-promoter expression system.

    Science.gov (United States)

    Zhang, Kang; Su, Lingqia; Duan, Xuguo; Liu, Lina; Wu, Jing

    2017-02-20

    We recently constructed a Bacillus subtilis strain (CCTCC M 2016536) from which we had deleted the srfC, spoIIAC, nprE, aprE and amyE genes. This strain is capable of robust recombinant protein production and amenable to high-cell-density fermentation. Because the promoter is among the factors that influence the production of target proteins, optimization of the initial promoter, P amyQ from Bacillus amyloliquefaciens, should improve protein expression using this strain. This study was undertaken to develop a new, high-level expression system in B. subtilis CCTCC M 2016536. Using the enzyme β-cyclodextrin glycosyltransferase (β-CGTase) as a reporter protein and B. subtilis CCTCC M 2016536 as the host, nine plasmids equipped with single promoters were screened using shake-flask cultivation. The plasmid containing the P amyQ' promoter produced the greatest extracellular β-CGTase activity; 24.1 U/mL. Subsequently, six plasmids equipped with dual promoters were constructed and evaluated using this same method. The plasmid containing the dual promoter P HpaII -P amyQ' produced the highest extracellular β-CGTase activity (30.5 U/mL) and was relatively glucose repressed. The dual promoter P HpaII -P amyQ' also mediated substantial extracellular pullulanase (90.7 U/mL) and α-CGTase expression (9.5 U/mL) during shake-flask cultivation, demonstrating the general applicability of this system. Finally, the production of β-CGTase using the dual-promoter P HpaII -P amyQ' system was investigated in a 3-L fermenter. Extracellular expression of β-CGTase reached 571.2 U/mL (2.5 mg/mL), demonstrating the potential of this system for use in industrial applications. The dual-promoter P HpaII -P amyQ' system was found to support superior expression of extracellular proteins in B. subtilis CCTCC M 2016536. This system appears generally applicable and is amenable to scale-up.

  20. Porcine EEF1A1 and EEF1A2 genes: genomic structure, polymorphism, mapping and expression

    Czech Academy of Sciences Publication Activity Database

    Svobodová, K.; Horák, Pavel; Stratil, Antonín; Bartenschlager, H.; Van Poucke, M.; Chalupová, P.; Dvořáková, Věra; Knorr, Ch.; Stupka, R.; Čítek, J.; Šprysl, M.; Palánová, Anna; Peelman, L. J.; Geldermann, H.; Knoll, A.

    2015-01-01

    Roč. 42, č. 8 (2015), s. 1257-1264 ISSN 0301-4851 R&D Projects: GA ČR(CZ) GA523/06/1302; GA ČR GA523/09/0844 Institutional support: RVO:67985904 Keywords : EEF1A1 * EEF1A2 * gene expression Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.698, year: 2015

  1. Validation of reference genes for quantitative RT-PCR studies of gene expression in perennial ryegrass (Lolium perenne L.

    Directory of Open Access Journals (Sweden)

    Thrush Anthony

    2010-01-01

    Full Text Available Abstract Background Perennial ryegrass (Lolium perenne L. is an important pasture and turf crop. Biotechniques such as gene expression studies are being employed to improve traits in this temperate grass. Quantitative reverse transcription-polymerase chain reaction (qRT-PCR is among the best methods available for determining changes in gene expression. Before analysis of target gene expression, it is essential to select an appropriate normalisation strategy to control for non-specific variation between samples. Reference genes that have stable expression at different biological and physiological states can be effectively used for normalisation; however, their expression stability must be validated before use. Results Existing Serial Analysis of Gene Expression data were queried to identify six moderately expressed genes that had relatively stable gene expression throughout the year. These six candidate reference genes (eukaryotic elongation factor 1 alpha, eEF1A; TAT-binding protein homolog 1, TBP-1; eukaryotic translation initiation factor 4 alpha, eIF4A; YT521-B-like protein family protein, YT521-B; histone 3, H3; ubiquitin-conjugating enzyme, E2 were validated for qRT-PCR normalisation in 442 diverse perennial ryegrass (Lolium perenne L. samples sourced from field- and laboratory-grown plants under a wide range of experimental conditions. Eukaryotic EF1A is encoded by members of a multigene family exhibiting differential expression and necessitated the expression analysis of different eEF1A encoding genes; a highly expressed eEF1A (h, a moderately, but stably expressed eEF1A (s, and combined expression of multigene eEF1A (m. NormFinder identified eEF1A (s and YT521-B as the best combination of two genes for normalisation of gene expression data in perennial ryegrass following different defoliation management in the field. Conclusions This study is unique in the magnitude of samples tested with the inclusion of numerous field-grown samples

  2. The L-L oligomerization domain resides at the very N-terminus of the sendai virus L RNA polymerase protein

    International Nuclear Information System (INIS)

    Cevik, Bayram; Smallwood, Sherin; Moyer, Sue A.

    2003-01-01

    The Sendai virus RNA-dependent RNA polymerase is composed of the L and P proteins. We previously showed that the L protein gives intragenic complementation and forms an oligomer where the L-L interaction site mapped to the N-terminal half of the protein (S. Smallwood et al., 2002, Virology, 00, 000-000). We now show that L oligomerization does not depend on P protein and progressively smaller N-terminal fragments of L from amino acids (aa) 1-1146 through aa 1-174 all bind wild-type L. C-terminal truncations up to aa 424, which bind L, can complement the transcription defect in an L mutant altered at aa 379, although these L truncation mutants do not bind P. The fragment of L comprising aa 1-895, furthermore, acts as a dominant-negative mutant to inhibit transcription of wild-type L. N-terminal deletions of aa 1-189 and aa 1-734 have lost the ability to form the L-L complex as well as the L-P complex, although they still bind C protein. These data are consistent with the L-L interaction site residing in aa 1-174. Site-directed mutations in the N-terminal 347 aa, of L which abolish P binding, do not affect L-L complex formation, so while the L and P binding sites on L are overlapping they are mediated by different amino acids. The N-terminal portions of L with aa 1-424, aa 1-381, and to a lesser extent aa 1-174, can complement the transcription defect in an L mutant altered at aa 77-81, showing their L-L interaction is functional

  3. Enhanced Raman Scattering from NCM523 Cathodes Coated with Electrochemically Deposited Gold

    Energy Technology Data Exchange (ETDEWEB)

    Tornheim, Adam; Maroni, Victor A.; He, Meinan; Gosztola, David J.; Zhang, Zhengcheng

    2017-01-01

    Materials with the general composition LiMO2, where M is a mix of nickel, cobalt, and manganese, have been studied extensively as cathodes for lithium-based electrochemical cells. Some compositions, like LiNi0.5Co0.2Mn0.3O2 (NCM523), have already found application in commercial lithium-ion batteries. Pre-test and post-test analyses of these types of cathodes have benefited greatly from the use of Raman spectroscopy. Specifically, Raman spectroscopy can be used to investigate the phonons of the LiMO2 lattice. This is particularly useful for studies of the LiMO2 after it has been formed into the type of polymer-bonded laminate from which typical battery cathodes are cut. One of the problems that occurs in such studies is that the scattering from the LiMO2 phase gets progressively weaker as the nickel content increases. NCM523 poses one example of this behavior owing to the fact that half of the transition metal content is nickel. In this study we show that the intensity of the Raman scattering from the NCM523 phonons can be significantly increased by electroplating clusters of sub-micron gold particles on NCM523-containing laminate structures. The gold appears to plate somewhat selectively on the NCM523 particles in randomly sized clusters. These clusters stimulate the Raman scattering from the NCM523 to varying extents that can reach nearly 100 times the scattering intensity from uncoated pristine laminates.

  4. Expression of genes encoding multi-transmembrane proteins in specific primate taste cell populations.

    Directory of Open Access Journals (Sweden)

    Bryan D Moyer

    Full Text Available BACKGROUND: Using fungiform (FG and circumvallate (CV taste buds isolated by laser capture microdissection and analyzed using gene arrays, we previously constructed a comprehensive database of gene expression in primates, which revealed over 2,300 taste bud-associated genes. Bioinformatics analyses identified hundreds of genes predicted to encode multi-transmembrane domain proteins with no previous association with taste function. A first step in elucidating the roles these gene products play in gustation is to identify the specific taste cell types in which they are expressed. METHODOLOGY/PRINCIPAL FINDINGS: Using double label in situ hybridization analyses, we identified seven new genes expressed in specific taste cell types, including sweet, bitter, and umami cells (TRPM5-positive, sour cells (PKD2L1-positive, as well as other taste cell populations. Transmembrane protein 44 (TMEM44, a protein with seven predicted transmembrane domains with no homology to GPCRs, is expressed in a TRPM5-negative and PKD2L1-negative population that is enriched in the bottom portion of taste buds and may represent developmentally immature taste cells. Calcium homeostasis modulator 1 (CALHM1, a component of a novel calcium channel, along with family members CALHM2 and CALHM3; multiple C2 domains; transmembrane 1 (MCTP1, a calcium-binding transmembrane protein; and anoctamin 7 (ANO7, a member of the recently identified calcium-gated chloride channel family, are all expressed in TRPM5 cells. These proteins may modulate and effect calcium signalling stemming from sweet, bitter, and umami receptor activation. Synaptic vesicle glycoprotein 2B (SV2B, a regulator of synaptic vesicle exocytosis, is expressed in PKD2L1 cells, suggesting that this taste cell population transmits tastant information to gustatory afferent nerve fibers via exocytic neurotransmitter release. CONCLUSIONS/SIGNIFICANCE: Identification of genes encoding multi-transmembrane domain proteins

  5. Ethylene-induced senescence-related gene expression requires protein synthesis

    International Nuclear Information System (INIS)

    Lawton, K.A.; Raghothama, K.G.; Woodson, W.R.

    1990-01-01

    We have investigated the effects of inhibiting protein synthesis on the ethylene-induced expression of 3 carnation senescence-related genes, pSR5, pSR8, and pSR12. Treatment of preclimacteric carnation petal discs with 1μg/ml of cycloheximide, a cytoplasmic protein synthesis inhibitor, for 3h inhibited protein synthesis by >80% as quantitated by the incorporation of [35S]methionine into protein. Pre-treatment of petal discs with cycloheximide prevented ethylene-induced SR transcript accumulation. Cycloheximide treatment of petal discs held in air did not result in increased levels of SR mRNA. These results indicate that ethylene does not interact with pre-formed factors but rather that the activation of SR gene expression by ethylene is mediated by labile protein factor(s) synthesized on cytoplasmic ribosomes. Experiments are currently underway to determine if cycloheximide exerts its effect at the transcriptional or post-transcriptional level

  6. Heterologous production of human papillomavirus type-16 L1 protein by a lactic acid bacterium

    Directory of Open Access Journals (Sweden)

    Bermúdez-Humarán Luis G

    2009-08-01

    Full Text Available Abstract Background The expression of vaccine antigens in lactic acid bacteria (LAB is a safe and cost-effective alternative to traditional expression systems. In this study, we investigated i the expression of Human papillomavirus type 16 (HPV-16 L1 major capsid protein in the model LAB Lactococcus lactis and ii the ability of the resulting recombinant strain to produce either capsomer-or virus-like particles (VLPs. Results and conclusion HPV-16 L1 gene was cloned into two vectors, pCYT and pSEC, designed for controlled intra- or extracellular heterologous expression in L. lactis, respectively. The capacity of L. lactis harboring either pCYT:L1 or pSEC:L1 plasmid to accumulate L1 in the cytoplasm and supernatant samples was confirmed by Western blot assays. Electron microscopy analysis suggests that, L1 protein produced by recombinant lactococci can self-assemble into structures morphologically similar to VLPs intracellularly. The presence of conformational epitopes on the L. lactis-derived VLPs was confirmed by ELISA using an anti-HPV16 L1 capsid antigen antibody. Our results support the feasibility of using recombinant food-grade LAB, such as L. lactis, for the production of L1-based VLPs and open the possibility for the development of a new safe mucosal vector for HPV-16 prophylactic vaccination.

  7. An inducible expression system for high-level expression of recombinant proteins in slow growing mycobacteria.

    Science.gov (United States)

    Leotta, Lisa; Spratt, Joanne M; Kong, Carlyn U; Triccas, James A

    2015-09-01

    A novel protein expression vector utilising the inducible hspX promoter of Mycobacterium tuberculosis was constructed and evaluated in this study. High-level induction of three mycobacterial antigens, comprising up to 9% of bacterial sonicate, was demonstrated in recombinant Mycobacterium bovis BCG when grown under low-oxygen tension, which serves to enhance hspX promoter activity. Recombinant proteins were efficiently purified from bacterial lysates in a soluble form by virtue of a C-terminal 6-histidine tag. Purification of the immunodominant M. tuberculosis Ag85B antigen using this system resulted in a recombinant protein that stimulated significant IFN-γ release from Ag85B-reactive T cells generated after vaccination of mice with an Ag85B-expressing vaccine. Further, the M. tuberculosis L-alanine dehydrogenase (Ald) protein purified from recombinant BCG displayed strong enzymatic activity in recombinant form. This study demonstrated that high levels of native-like recombinant mycobacterial proteins can be produced in mycobacterial hosts, and this may aid the analysis of mycobacterial protein function and the development of new treatments. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Exploiting the yeast L-A viral capsid for the in vivo assembly of chimeric VLPs as platform in vaccine development and foreign protein expression.

    Directory of Open Access Journals (Sweden)

    Frank Powilleit

    Full Text Available A novel expression system based on engineered variants of the yeast (Saccharomyces cerevisiae dsRNA virus L-A was developed allowing the in vivo assembly of chimeric virus-like particles (VLPs as a unique platform for a wide range of applications. We show that polypeptides fused to the viral capsid protein Gag self-assemble into isometric VLP chimeras carrying their cargo inside the capsid, thereby not only effectively preventing proteolytic degradation in the host cell cytosol, but also allowing the expression of a per se cytotoxic protein. Carboxyterminal extension of Gag by T cell epitopes from human cytomegalovirus pp65 resulted in the formation of hybrid VLPs that strongly activated antigen-specific CD8(+ memory T cells ex vivo. Besides being a carrier for polypeptides inducing antigen-specific immune responses in vivo, VLP chimeras were also shown to be effective in the expression and purification of (i a heterologous model protein (GFP, (ii a per se toxic protein (K28 alpha-subunit, and (iii a particle-associated and fully recyclable biotechnologically relevant enzyme (esterase A. Thus, yeast viral Gag represents a unique platform for the in vivo assembly of chimeric VLPs, equally attractive and useful in vaccine development and recombinant protein production.

  9. Heterogeneity of proteins expressed by Brazilian Sporothrix schenckii isolates.

    Science.gov (United States)

    Fernandes, Geisa Ferreira; Do Amaral, Cristiane Candida; Sasaki, Alexandre; Godoy, Patrício Martinez; De Camargo, Zoilo Pires

    2009-12-01

    The profiles of proteins present in the exoantigens of Brazilian Sporothrix schenckii isolates were studied and compared by electrophoresis (SDS-PAGE). Thirteen isolates from five different regions of Brazil (1,000 to 2,000 km apart) and ten from a more limited region (200 to 400 km apart within the state of São Paulo) were cultured in Sabouraud, M199 and minimum (MM) media. Qualitative and quantitative differences in the expression of proteins, which varied according to the medium and the isolate, were observed. Fractions with the same MW but varying in intensity were detected, as well as fractions present in 1 isolate but absent in others. Dendrograms were constructed and isolates grouped based on the fractions obtained, irrespective of the intensity. The results showed that Brazilian S. schenckii isolates express different protein profiles, a feature also present in isolates from a more restricted region. The exoantigens were found to have a maximum of 15 protein fractions, ranging in MW from 19-220 KDaltons depending on the medium used for the cultures. These data show the great heterogeneity of Brazilian S. schenckii protein expression.

  10. Cannabidiol normalizes caspase 3, synaptophysin, and mitochondrial fission protein DNM1L expression levels in rats with brain iron overload: implications for neuroprotection.

    Science.gov (United States)

    da Silva, Vanessa Kappel; de Freitas, Betânia Souza; da Silva Dornelles, Arethuza; Nery, Laura Roesler; Falavigna, Lucio; Ferreira, Rafael Dal Ponte; Bogo, Maurício Reis; Hallak, Jaime Eduardo Cecílio; Zuardi, Antônio Waldo; Crippa, José Alexandre S; Schröder, Nadja

    2014-02-01

    We have recently shown that chronic treatment with cannabidiol (CBD) was able to recover memory deficits induced by brain iron loading in a dose-dependent manner in rats. Brain iron accumulation is implicated in the pathogenesis of neurodegenerative diseases, including Parkinson's and Alzheimer's, and has been related to cognitive deficits in animals and human subjects. Deficits in synaptic energy supply have been linked to neurodegenerative diseases, evidencing the key role played by mitochondria in maintaining viable neural cells and functional circuits. It has also been shown that brains of patients suffering from neurodegenerative diseases have increased expression of apoptosisrelated proteins and specific DNA fragmentation. Here, we have analyzed the expression level of brain proteins involved with mitochondrial fusion and fission mechanisms (DNM1L and OPA1), the main integral transmembrane protein of synaptic vesicles (synaptophysin), and caspase 3, an apoptosis-related protein, to gain a better understanding of the potential of CBD in restoring the damage caused by iron loading in rats. We found that CBD rescued iron-induced effects, bringing hippocampal DNM1L, caspase 3, and synaptophysin levels back to values comparable to the control group. Our results suggest that iron affects mitochondrial dynamics, possibly trigging synaptic loss and apoptotic cell death and indicate that CBD should be considered as a potential molecule with memory-rescuing and neuroprotective properties to be used in the treatment of cognitive deficits observed in neurodegenerative disorders.

  11. Bactobolin resistance is conferred by mutations in the L2 ribosomal protein.

    Science.gov (United States)

    Chandler, Josephine R; Truong, Thao T; Silva, Patricia M; Seyedsayamdost, Mohammad R; Carr, Gavin; Radey, Matthew; Jacobs, Michael A; Sims, Elizabeth H; Clardy, Jon; Greenberg, E Peter

    2012-12-18

    Burkholderia thailandensis produces a family of polyketide-peptide molecules called bactobolins, some of which are potent antibiotics. We found that growth of B. thailandensis at 30°C versus that at 37°C resulted in increased production of bactobolins. We purified the three most abundant bactobolins and determined their activities against a battery of bacteria and mouse fibroblasts. Two of the three compounds showed strong activities against both bacteria and fibroblasts. The third analog was much less potent in both assays. These results suggested that the target of bactobolins might be conserved across bacteria and mammalian cells. To learn about the mechanism of bactobolin activity, we isolated four spontaneous bactobolin-resistant Bacillus subtilis mutants. We used genomic sequencing technology to show that each of the four resistant variants had mutations in rplB, which codes for the 50S ribosome-associated L2 protein. Ectopic expression of a mutant rplB gene in wild-type B. subtilis conferred bactobolin resistance. Finally, the L2 mutations did not confer resistance to other antibiotics known to interfere with ribosome function. Our data indicate that bactobolins target the L2 protein or a nearby site and that this is not the target of other antibiotics. We presume that the mammalian target of bactobolins involves the eukaryotic homolog of L2 (L8e). Currently available antibiotics target surprisingly few cellular functions, and there is a need to identify novel antibiotic targets. We have been interested in the Burkholderia thailandensis bactobolins, and we sought to learn about the target of bactobolin activity by mapping spontaneous resistance mutations in the bactobolin-sensitive Bacillus subtilis. Our results indicate that the bactobolin target is the 50S ribosome-associated L2 protein or a region of the ribosome affected by L2. Bactobolin-resistant mutants are not resistant to other known ribosome inhibitors. Our evidence indicates that bactobolins

  12. Isolation of nuclear proteins from flax (Linum usitatissimum L. seed coats for gene expression regulation studies

    Directory of Open Access Journals (Sweden)

    Renouard Sullivan

    2012-01-01

    Full Text Available Abstract Background While seed biology is well characterized and numerous studies have focused on this subject over the past years, the regulation of seed coat development and metabolism is for the most part still non-elucidated. It is well known that the seed coat has an essential role in seed development and its features are associated with important agronomical traits. It also constitutes a rich source of valuable compounds such as pharmaceuticals. Most of the cell genetic material is contained in the nucleus; therefore nuclear proteins constitute a major actor for gene expression regulation. Isolation of nuclear proteins responsible for specific seed coat expression is an important prerequisite for understanding seed coat metabolism and development. The extraction of nuclear proteins may be problematic due to the presence of specific components that can interfere with the extraction process. The seed coat is a rich source of mucilage and phenolics, which are good examples of these hindering compounds. Findings In the present study, we propose an optimized nuclear protein extraction protocol able to provide nuclear proteins from flax seed coat without contaminants and sufficient yield and quality for their use in transcriptional gene expression regulation by gel shift experiments. Conclusions Routinely, around 250 μg of nuclear proteins per gram of fresh weight were extracted from immature flax seed coats. The isolation protocol described hereafter may serve as an effective tool for gene expression regulation and seed coat-focused proteomics studies.

  13. Expression and characterization of an iron-regulated hemin-binding protein, HbpA, from Leptospira interrogans serovar Lai.

    Science.gov (United States)

    Asuthkar, Swapna; Velineni, Sridhar; Stadlmann, Johannes; Altmann, Friedrich; Sritharan, Manjula

    2007-09-01

    In an earlier study, based on the ferric enterobactin receptor FepA of Escherichia coli, we identified and modeled a TonB-dependent outer membrane receptor protein (LB191) from the genome of Leptospira interrogans serovar Lai. Based on in silico analysis, we hypothesized that this protein was an iron-dependent hemin-binding protein. In this study, we provide experimental evidence to prove that this protein, termed HbpA (hemin-binding protein A), is indeed an iron-regulated hemin-binding protein. We cloned and expressed the full-length 81-kDa recombinant rHbpA protein and a truncated 55-kDa protein from L. interrogans serovar Lai, both of which bind hemin-agarose. Assay of hemin-associated peroxidase activity and spectrofluorimetric analysis provided confirmatory evidence of hemin binding by HbpA. Immunofluorescence studies by confocal microscopy and the microscopic agglutination test demonstrated the surface localization and the iron-regulated expression of HbpA in L. interrogans. Southern blot analysis confirmed our earlier observation that the hbpA gene was present only in some of the pathogenic serovars and was absent in Leptospira biflexa. Hemin-agarose affinity studies showed another hemin-binding protein with a molecular mass of approximately 44 kDa, whose expression was independent of iron levels. This protein was seen in several serovars, including nonpathogenic L. biflexa. Sequence analysis and immunoreactivity with specific antibodies showed this protein to be LipL41.

  14. Effects of ethanol and NAP on cerebellar expression of the neural cell adhesion molecule L1.

    Directory of Open Access Journals (Sweden)

    Devon M Fitzgerald

    Full Text Available The neural cell adhesion molecule L1 is critical for brain development and plays a role in learning and memory in the adult. Ethanol inhibits L1-mediated cell adhesion and neurite outgrowth in cerebellar granule neurons (CGNs, and these actions might underlie the cerebellar dysmorphology of fetal alcohol spectrum disorders. The peptide NAP potently blocks ethanol inhibition of L1 adhesion and prevents ethanol teratogenesis. We used quantitative RT-PCR and Western blotting of extracts of cerebellar slices, CGNs, and astrocytes from postnatal day 7 (PD7 rats to investigate whether ethanol and NAP act in part by regulating the expression of L1. Treatment of cerebellar slices with 20 mM ethanol, 10(-12 M NAP, or both for 4 hours, 24 hours, and 10 days did not significantly affect L1 mRNA and protein levels. Similar treatment for 4 or 24 hours did not regulate L1 expression in primary cultures of CGNs and astrocytes, the predominant cerebellar cell types. Because ethanol also damages the adult cerebellum, we studied the effects of chronic ethanol exposure in adult rats. One year of binge drinking did not alter L1 gene and protein expression in extracts from whole cerebellum. Thus, ethanol does not alter L1 expression in the developing or adult cerebellum; more likely, ethanol disrupts L1 function by modifying its conformation and signaling. Likewise, NAP antagonizes the actions of ethanol without altering L1 expression.

  15. Long-time treatment by low-dose N-acetyl-L-cysteine enhances proinflammatory cytokine expressions in LPS-stimulated macrophages.

    Directory of Open Access Journals (Sweden)

    Tomokazu Ohnishi

    Full Text Available N-acetyl-L-cysteine is known to act as a reactive oxygen species scavenger and used in clinical applications. Previous reports have shown that high-dose N-acetyl-L-cysteine treatment inhibits the expression of proinflammatory cytokines in activated macrophages. Here, we have found that long-time N-acetyl-L-cysteine treatment at low-concentration increases phosphorylation of extracellular signal-regulated kinase 1/2 and AKT, which are essential for the induction of proinflammatory cytokines including interleukin 1β and interleukin 6 in lipopolysaccharide-stimulated RAW264.7 cells. Furthermore, long-time N-acetyl-L-cysteine treatment decreases expressions of protein phosphatases, catalytic subunit of protein phosphatase-2A and dual specificity phosphatase 1. On the other hand, we have found that short-time N-acetyl-L-cysteine treatment at low dose increases p53 expression, which inhibits expressions of proinflammatory cytokines. These observations suggest that long-time low-dose N-acetyl-L-cysteine treatment increases expressions of proinflammatory cytokines through enhancement of kinase phosphorylation.

  16. Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag

    International Nuclear Information System (INIS)

    Gomes, Tânia; Pereira, Catarina G.; Cardoso, Cátia; Bebianno, Maria João

    2013-01-01

    Highlights: •Different protein expression profiles between tissues and Ag forms. •Ag NPs and Ag + presented different mechanisms of toxic action. •Ag NPs toxicity is mediated by oxidative stress-induced cell signalling cascades. •New biomarkers for Ag NPs were proposed, i.e. MVP, ras partial and precol-P. -- Abstract: Ag NPs are one of the most commonly used NPs in nanotechnology whose environmental impacts are to date unknown and the information about bioavailability, mechanisms of biological uptake and toxic implications in organisms is scarce. So, the main objective of this study was to investigate differences in protein expression profiles in gills and digestive gland of mussels Mytilus galloprovincialis exposed to Ag NPs and Ag + (10 μg L −1 ) for a period of 15 days. Protein expression profiles of exposed gills and digestive glands were compared to those of control mussels using two–dimensional electrophoresis to discriminate differentially expressed proteins. Different patterns of protein expression were obtained for exposed mussels, dependent not only on the different redox requirements of each tissue but also to the Ag form used. Unique sets of differentially expressed proteins were affected by each silver form in addition to proteins that were affected by both Ag NPs and Ag + . Fifteen of these proteins were subsequently identified by MALDI–TOF–TOF and database search. Ag NPs affected similar cellular pathways as Ag + , with common response mechanisms in cytoskeleton and cell structure (catchin, myosin heavy chain), stress response (heat shock protein 70), oxidative stress (glutathione s-transferase), transcriptional regulation (nuclear receptor subfamily 1G), adhesion and mobility (precollagen-P) and energy metabolism (ATP synthase F0 subunit 6 and NADH dehydrogenase subunit 2). Exposure to Ag NPs altered the expression of two proteins associated with stress response (major vault protein and ras partial) and one protein involved in

  17. Differential protein expression in mussels Mytilus galloprovincialis exposed to nano and ionic Ag

    Energy Technology Data Exchange (ETDEWEB)

    Gomes, Tânia; Pereira, Catarina G.; Cardoso, Cátia; Bebianno, Maria João, E-mail: mbebian@ualg.pt

    2013-07-15

    Highlights: •Different protein expression profiles between tissues and Ag forms. •Ag NPs and Ag{sup +} presented different mechanisms of toxic action. •Ag NPs toxicity is mediated by oxidative stress-induced cell signalling cascades. •New biomarkers for Ag NPs were proposed, i.e. MVP, ras partial and precol-P. -- Abstract: Ag NPs are one of the most commonly used NPs in nanotechnology whose environmental impacts are to date unknown and the information about bioavailability, mechanisms of biological uptake and toxic implications in organisms is scarce. So, the main objective of this study was to investigate differences in protein expression profiles in gills and digestive gland of mussels Mytilus galloprovincialis exposed to Ag NPs and Ag{sup +} (10 μg L{sup −1}) for a period of 15 days. Protein expression profiles of exposed gills and digestive glands were compared to those of control mussels using two–dimensional electrophoresis to discriminate differentially expressed proteins. Different patterns of protein expression were obtained for exposed mussels, dependent not only on the different redox requirements of each tissue but also to the Ag form used. Unique sets of differentially expressed proteins were affected by each silver form in addition to proteins that were affected by both Ag NPs and Ag{sup +}. Fifteen of these proteins were subsequently identified by MALDI–TOF–TOF and database search. Ag NPs affected similar cellular pathways as Ag{sup +}, with common response mechanisms in cytoskeleton and cell structure (catchin, myosin heavy chain), stress response (heat shock protein 70), oxidative stress (glutathione s-transferase), transcriptional regulation (nuclear receptor subfamily 1G), adhesion and mobility (precollagen-P) and energy metabolism (ATP synthase F0 subunit 6 and NADH dehydrogenase subunit 2). Exposure to Ag NPs altered the expression of two proteins associated with stress response (major vault protein and ras partial) and one

  18. Evaluation of GO-based functional similarity measures using S. cerevisiae protein interaction and expression profile data

    Directory of Open Access Journals (Sweden)

    Du LinFang

    2008-11-01

    Full Text Available Abstract Background Researchers interested in analysing the expression patterns of functionally related genes usually hope to improve the accuracy of their results beyond the boundaries of currently available experimental data. Gene ontology (GO data provides a novel way to measure the functional relationship between gene products. Many approaches have been reported for calculating the similarities between two GO terms, known as semantic similarities. However, biologists are more interested in the relationship between gene products than in the scores linking the GO terms. To highlight the relationships among genes, recent studies have focused on functional similarities. Results In this study, we evaluated five functional similarity methods using both protein-protein interaction (PPI and expression data of S. cerevisiae. The receiver operating characteristics (ROC and correlation coefficient analysis of these methods showed that the maximum method outperformed the other methods. Statistical comparison of multiple- and single-term annotated proteins in biological process ontology indicated that genes with multiple GO terms may be more reliable for separating true positives from noise. Conclusion This study demonstrated the reliability of current approaches that elevate the similarity of GO terms to the similarity of proteins. Suggestions for further improvements in functional similarity analysis are also provided.

  19. Molecular characterization of the pL40 protein in Leptospira interrogans.

    Science.gov (United States)

    Zhao, Wei; Chen, Chun-Yan; Zhang, Xiang-Yan; Lai, Wei-Qiang; Hu, Bao-Yu; Zhao, Guo-Ping; Qin, Jin-Hong; Guo, Xiao-Kui

    2009-06-01

    Leptospirosis is a widespread zoonotic disease caused by pathogenic leptospires. The identification of outer membrane proteins (OMPs) conserved among pathogenic leptospires, which are exposed on the leptospiral surface and expressed during mammalian infection, has become a major focus of leptospirosis research. pL40, a 40 kDa protein coded by the LA3744 gene in Leptospira interrogans, was found to be unique to Leptospira. Triton X-114 fractionation and flow cytometry analyses indicate that pL40 is a component of the leptospiral outer membrane. The conservation of pL40 among Leptospira strains prevalent in China was confirmed by both Western blotting and PCR screening. Furthermore, the pL40 antigen could be recognized by sera from guinea pigs and mice infected with low-passage L. interrogans. These findings indicate that pL40 may serve as a useful serodiagnostic antigen and vaccine candidate for L. interrogans.

  20. [Optimization of prokaryotic expression conditions of Leptospira interrogans trigeminy genus-specific protein antigen based on surface response analysis].

    Science.gov (United States)

    Wang, Jiang; Luo, Dongjiao; Sun, Aihua; Yan, Jie

    2008-07-01

    Lipoproteins LipL32 and LipL21 and transmembrane protein OMPL1 have been confirmed as the superficial genus-specific antigens of Leptospira interrogans, which can be used as antigens for developing a universal genetic engineering vaccine. In order to obtain high expression of an artificial fusion gene lipL32/1-lipL21-ompL1/2, we optimized prokaryotic expression conditions. We used surface response analysis based on the central composite design to optimize culture conditions of a new antigen protein by recombinant Escherichia coli DE3.The culture conditions included initial pH, induction start time, post-induction time, Isopropyl beta-D-thiogalactopyranoside (IPTG) concentration, and temperature. The maximal production of antigen protein was 37.78 mg/l. The optimal culture conditions for high recombinant fusion protein was determined: initial pH 7.9, induction start time 2.5 h, a post-induction time of 5.38 h, 0.20 mM IPTG, and a post-induction temperature of 31 degrees C. Surface response analysis based on CCD increased the target production. This statistical method reduced the number of experiments required for optimization and enabled rapid identification and integration of the key culture condition parameters for optimizing recombinant protein expression.

  1. Pathological analysis, detection of antigens, FasL expression analysis and leucocytes survival analysis in tilapia (Oreochromis niloticus) after infection with green fluorescent protein labeled Streptococcus agalactiae.

    Science.gov (United States)

    Wang, Jingyuan; Wu, Jinying; Yi, Liyuan; Hou, Zengxin; Li, Wensheng

    2017-03-01

    The pathogenesis of Streptococcus agalactiae infection in tilapia has not been fully described. To understand this, we investigated the clinic-pathological features of acute experimental septicemia in tilapia (Oreochromis niloticus) after receiving an intra-peritoneal injection with S. agalactiae THN-1901GFP. Immunohistochemistry and sections of pathological tissues were used to estimate the level of damage in the head-kidney, liver, spleen and trunk-kidney. The expression of FasL was analyzed by western blotting in these samples based on their damage levels. Leucocytes were isolated from the head-kidney and incubated with S. agalactiae THN-1901GFP. Then, phagocytosis, programmed cell death and the expression of FasL were analyzed. The infected tissues showed varying degrees of necrosis and histolysis. The serous membrane of the intestine was dissolved by S. agalactiae THN-1901GFP. Antigens of S. agalactiae THN-1901GFP accumulated in different parts of the infected organs. In the head-kidney and spleen, the expression of FasL was up-regulated in parallel with increased tissue damage. After being incubated with S. agalactiae THN-1901GFP, the phagocytic capacity and ability were both very high and the expression of FasL remained high in leucocytes. S. agalactiae THN-1901GFP was able to survive for a long period of time after being engulfed by phagocytic cells. These findings offer insight into the pathogenesis of S. agalactiae infection in tilapia. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Thioredoxin 1 regulation of protein S-desulfhydration

    Directory of Open Access Journals (Sweden)

    Youngjun Ju

    2016-03-01

    Full Text Available The importance of H2S in biology and medicine has been widely recognized in recent years, and protein S-sulfhydration is proposed to mediate the direct actions of H2S bioactivity in the body. Thioredoxin 1 (Trx1 is an important reducing enzyme that cleaves disulfides in proteins and acts as an S-denitrosylase. The regulation of Trx1 on protein S-sulfhydration is unclear. Here we showed that Trx1 facilitates protein S-desulfhydration. Overexpression of Trx1 attenuated the basal level and H2S-induced protein S-sulfhydration by direct interaction with S-sulfhydrated proteins, i.e., glyceraldehyde 3-phosphate dehydrogenase and pyruvate carboxylase. In contrast, knockdown of Trx1 mRNA expression by short interfering RNA or blockage of Trx1 redox activity with PX12 or 2,4-dinitrochlorobenzene enhanced protein S-sulfhydration. Mutation of cysteine-32 but not cysteine-35 in the Trp–Cys32–Gly–Pro–Cys35 motif eliminated the binding of Trx1 with S-sulfhydrated proteins and abolished the S-desulfhydrating effect of Trx1. All these data suggest that Trx1 acts as an S-desulfhydrase.

  3. EPIDERMAL GROWTH FACTOR RECEPTOR (EGFR AND HUMAN PAPILLOMAVIRUS (HPV L1 CAPSID PROTEIN IN CERVICAL SQUAMOUS INTRAEPITHELIAL LESIONS

    Directory of Open Access Journals (Sweden)

    Balan Raluca

    2010-09-01

    Full Text Available We analyzed the immunohistochemical pattern of epidermal growth factor receptor (EGFR in cervical squamous intraepithelial lesions (SILs in correlation with L1 HPV capsid protein, in order to determine the relationship between EGFR expression and the infection status of human papillomavirus (HPV. The study included 40 cases, 24 LSIL (low grade SIL (CIN1, cervical intraepithelial neoplasia and 16 HSIL (high grade SIL (6 cases of CIN2 and 10 cases of CIN3. The immunoexpression of L1 HPV protein was assessed on conventional cervico-vaginal smears and EGFR was immunohistochemically evaluated on the corresponding cervical biopsies. The HPV L1 capsid protein was expressed in 45.83% of LSIL and 25% of HSIL. EGFR was overexpressed in 62,4% of HSIL (58,4% CIN2 and 41,6% CIN3 and 37,6% LSIL. The immunoexpression of L1 HPV has clinical application in the progression assessment of the cervical precancerous lesions without a correlation to the grade of the cervical SIL. EGFR is expressed by all proliferating squamous epithelial cells, thus corresponding with the grade of SIL. The evaluation of EGFR status, correlated with L1 HPV protein expression, can provide useful data of progression risk of cervical squamous intraepithelial lesions

  4. Identification of Protein-Protein Interactions with Glutathione-S-Transferase (GST) Fusion Proteins.

    Science.gov (United States)

    Einarson, Margret B; Pugacheva, Elena N; Orlinick, Jason R

    2007-08-01

    INTRODUCTIONGlutathione-S-transferase (GST) fusion proteins have had a wide range of applications since their introduction as tools for synthesis of recombinant proteins in bacteria. GST was originally selected as a fusion moiety because of several desirable properties. First and foremost, when expressed in bacteria alone, or as a fusion, GST is not sequestered in inclusion bodies (in contrast to previous fusion protein systems). Second, GST can be affinity-purified without denaturation because it binds to immobilized glutathione, which provides the basis for simple purification. Consequently, GST fusion proteins are routinely used for antibody generation and purification, protein-protein interaction studies, and biochemical analysis. This article describes the use of GST fusion proteins as probes for the identification of protein-protein interactions.

  5. GILT expression in B cells diminishes cathepsin S steady-state protein expression and activity

    OpenAIRE

    Phipps-Yonas, Hannah; Semik, Vikki; Hastings, Karen Taraszka

    2012-01-01

    MHC class II-restricted Ag processing requires protein degradation in the endocytic pathway for the activation of CD4+ T cells. Gamma-interferon-inducible lysosomal thiol reductase (GILT) facilitates Ag processing by reducing protein disulfide bonds in this compartment. Lysosomal cysteine protease cathepsin S (CatS) contains disulfide bonds and mediates essential steps in MHC class II-restricted processing, including proteolysis of large polypeptides and cleavage of the invariant chain. We so...

  6. Endoplasmic reticulum proteins SDF2 and SDF2L1 act as components of the BiP chaperone cycle to prevent protein aggregation.

    Science.gov (United States)

    Fujimori, Tsutomu; Suno, Ryoji; Iemura, Shun-Ichiro; Natsume, Tohru; Wada, Ikuo; Hosokawa, Nobuko

    2017-08-01

    The folding of newly synthesized proteins in the endoplasmic reticulum (ER) is assisted by ER-resident chaperone proteins. BiP (immunoglobulin heavy-chain-binding protein), a member of the HSP70 family, plays a central role in protein quality control. The chaperone function of BiP is regulated by its intrinsic ATPase activity, which is stimulated by ER-resident proteins of the HSP40/DnaJ family, including ERdj3. Here, we report that two closely related proteins, SDF2 and SDF2L1, regulate the BiP chaperone cycle. Both are ER-resident, but SDF2 is constitutively expressed, whereas SDF2L1 expression is induced by ER stress. Both luminal proteins formed a stable complex with ERdj3 and potently inhibited the aggregation of different types of misfolded ER cargo. These proteins associated with non-native proteins, thus promoting the BiP-substrate interaction cycle. A dominant-negative ERdj3 mutant that inhibits the interaction between ERdj3 and BiP prevented the dissociation of misfolded cargo from the ERdj3-SDF2L1 complex. Our findings indicate that SDF2 and SDF2L1 associate with ERdj3 and act as components in the BiP chaperone cycle to prevent the aggregation of misfolded proteins, partly explaining the broad folding capabilities of the ER under various physiological conditions. © 2017 Molecular Biology Society of Japan and John Wiley & Sons Australia, Ltd.

  7. Differentially expressed proteins among normal cervix, cervical intraepithelial neoplasia and cervical squamous cell carcinoma.

    Science.gov (United States)

    Zhao, Q; He, Y; Wang, X-L; Zhang, Y-X; Wu, Y-M

    2015-08-01

    To explore the differentially expressed proteins in normal cervix, cervical intraepithelial neoplasia (CIN) and cervical squamous cell carcinoma (CSCC) tissues by differential proteomics technique. Cervical tissues (including normal cervix, CIN and CSCC) were collected in Department of Gynecologic Oncology of Beijing Obstetrics and Gynecology Hospital. Two-dimensional fluorescence difference in gel electrophoresis (2-D DIGE) and DeCyder software were used to detect the differentially expressed proteins. Matrix-assisted laser desorption/ionization-time-of-flight tandem mass spectrometry (MALDI-TOF/TOF MS) was used to identify the differentially expressed proteins. Western blot (WB) and immunohistochemistry (IHC) were performed to validate the expressions of selected proteins among normal cervix, CIN and CSCC. 2-D DIGE images with high resolution and good repeatability were obtained. Forty-six differentially expressed proteins (27 up-regulated and 19 down-regulated) were differentially expressed among the normal cervix, CIN and CSCC. 26 proteins were successfully identified by MALDI-TOF/TOF MS. S100A9 (S100 calcium-binding protein A9) was the most significantly up-regulated protein. Eukaryotic elongation factor 1-alpha-1 (eEF1A1) was the most significantly down-regulated protein. Pyruvate kinase isozymes M2 (PKM2) was both up-regulated and down-regulated. The results of WB showed that with the increase in the severity of cervical lesions, the expression of S100A9 protein was significantly increased among the three groups (P = 0.010). The expression of eEF1A1 was reduced but without significant difference (P = 0.861). The expression of PKM2 was significantly reduced (P = 0.000). IHC showed that protein S100A9 was mainly expressed in the cytoplasm, and its positive expression rate was 20.0 % in normal cervix, 70.0 % in CIN and 100.0 % in CSCC, with a significant difference among them (P = 0.006). eEF1A1 was mainly expressed in the cell plasma, and its

  8. Efficient expression of SRK intracellular domain by a modeling-based protein engineering.

    Science.gov (United States)

    Murase, Kohji; Hirano, Yoshinori; Takayama, Seiji; Hakoshima, Toshio

    2017-03-01

    S-locus protein kinase (SRK) is a receptor kinase that plays a critical role in self-recognition in the Brassicaceae self-incompatibility (SI) response. SRK is activated by binding of its ligand S-locus protein 11 (SP11) and subsequently induced phosphorylation of the intracellular kinase domain. However, a detailed activation mechanism of SRK is still largely unknown because of the difficulty in stably expressing SRK recombinant proteins. Here, we performed modeling-based protein engineering of the SRK kinase domain for stable expression in Escherichia coli. The engineered SRK intracellular domain was expressed about 54-fold higher production than wild type SRK, without loss of the kinase activity, suggesting it could be useful for further biochemical and structural studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Yeast polypeptide exit tunnel ribosomal proteins L17, L35 and L37 are necessary to recruit late-assembling factors required for 27SB pre-rRNA processing.

    Science.gov (United States)

    Gamalinda, Michael; Jakovljevic, Jelena; Babiano, Reyes; Talkish, Jason; de la Cruz, Jesús; Woolford, John L

    2013-02-01

    Ribosome synthesis involves the coordinated folding and processing of pre-rRNAs with assembly of ribosomal proteins. In eukaryotes, these events are facilitated by trans-acting factors that propel ribosome maturation from the nucleolus to the cytoplasm. However, there is a gap in understanding how ribosomal proteins configure pre-ribosomes in vivo to enable processing to occur. Here, we have examined the role of adjacent yeast r-proteins L17, L35 and L37 in folding and processing of pre-rRNAs, and binding of other proteins within assembling ribosomes. These three essential ribosomal proteins, which surround the polypeptide exit tunnel, are required for 60S subunit formation as a consequence of their role in removal of the ITS2 spacer from 27SB pre-rRNA. L17-, L35- and L37-depleted cells exhibit turnover of aberrant pre-60S assembly intermediates. Although the structure of ITS2 does not appear to be grossly affected in their absence, these three ribosomal proteins are necessary for efficient recruitment of factors required for 27SB pre-rRNA processing, namely, Nsa2 and Nog2, which associate with pre-60S ribosomal particles containing 27SB pre-rRNAs. Altogether, these data support that L17, L35 and L37 are specifically required for a recruiting step immediately preceding removal of ITS2.

  10. Tunable Control of an Escherichia coli Expression System for the Overproduction of Membrane Proteins by Titrated Expression of a Mutant lac Repressor.

    Science.gov (United States)

    Kim, Seong Keun; Lee, Dae-Hee; Kim, Oh Cheol; Kim, Jihyun F; Yoon, Sung Ho

    2017-09-15

    Most inducible expression systems suffer from growth defects, leaky basal induction, and inhomogeneous expression levels within a host cell population. These difficulties are most prominent with the overproduction of membrane proteins that are toxic to host cells. Here, we developed an Escherichia coli inducible expression system for membrane protein production based on titrated expression of a mutant lac repressor (mLacI). Performance of the mLacI inducible system was evaluated in conjunction with commonly used lac operator-based expression vectors using a T7 or tac promoter. Remarkably, expression of a target gene can be titrated by the dose-dependent addition of l-rhamnose, and the expression levels were homogeneous in the cell population. The developed system was successfully applied to overexpress three membrane proteins that were otherwise difficult to produce in E. coli. This gene expression control system can be easily applied to a broad range of existing protein expression systems and should be useful in constructing genetic circuits that require precise output signals.

  11. Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature.

    Science.gov (United States)

    Lo, Miranda; Cordwell, Stuart J; Bulach, Dieter M; Adler, Ben

    2009-12-08

    Leptospirosis is a global zoonosis affecting millions of people annually. Transcriptional changes in response to temperature were previously investigated using microarrays to identify genes potentially expressed upon host entry. Past studies found that various leptospiral outer membrane proteins are differentially expressed at different temperatures. However, our microarray studies highlighted a divergence between protein abundance and transcript levels for some proteins. Given the abundance of post-transcriptional expression control mechanisms, this finding highlighted the importance of global protein analysis systems. To complement our previous transcription study, we evaluated differences in the proteins of the leptospiral outer membrane fraction in response to temperature upshift. Outer membrane protein-enriched fractions from Leptospira interrogans grown at 30 degrees C or overnight upshift to 37 degrees C were isolated and the relative abundance of each protein was determined by iTRAQ analysis coupled with two-dimensional liquid chromatography and tandem mass spectrometry (2-DLC/MS-MS). We identified 1026 proteins with 99% confidence; 27 and 66 were present at elevated and reduced abundance respectively. Protein abundance changes were compared with transcriptional differences determined from the microarray studies. While there was some correlation between the microarray and iTRAQ data, a subset of genes that showed no differential expression by microarray was found to encode temperature-regulated proteins. This set of genes is of particular interest as it is likely that regulation of their expression occurs post-transcriptionally, providing an opportunity to develop hypotheses about the molecular dynamics of the outer membrane of Leptospira in response to changing environments. This is the first study to compare transcriptional and translational responses to temperature shift in L. interrogans. The results thus provide an insight into the mechanisms used by L

  12. Comparative transcriptional and translational analysis of leptospiral outer membrane protein expression in response to temperature.

    Directory of Open Access Journals (Sweden)

    Miranda Lo

    shift in L. interrogans. The results thus provide an insight into the mechanisms used by L. interrogans to adapt to conditions encountered in the host and to cause disease. Our results suggest down-regulation of protein expression in response to temperature, and decreased expression of outer membrane proteins may facilitate minimal interaction with host immune mechanisms.

  13. 76 FR 71961 - Elba Express Company, L.L.C.; Notice of Application

    Science.gov (United States)

    2011-11-21

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. CP12-11-000] Elba Express Company, L.L.C.; Notice of Application Take notice that on October 31, 2011, Elba Express Company, L.L.C... directed to Glenn A. Sheffield, Director, Rates & Regulatory Affairs, Elba Express Company, L.L.C., 569...

  14. A synthetic arabinose-inducible promoter confers high levels of recombinant protein expression in hyperthermophilic archaeon Sulfolobus islandicus

    DEFF Research Database (Denmark)

    Peng, Nan; Deng, Ling; Mei, Yuxia

    2012-01-01

    Despite major progresses in genetic studies of hyperthermophilic archaea, recombinant protein production in these organisms always suffers from low yields and a robust expression system is still in great demand. Here we report a versatile vector that confers high levels of protein expression...... to remove the peptide tags from expressed recombinant proteins. While pEXA employed an araS promoter for protein expression, pSeSD utilized P(araS-SD), an araS derivative promoter carrying an engineered ribosome-binding site (RBS; a Shine-Dalgarno [SD] sequence). We found that P(araS-SD) directed high...... levels of target gene expression. More strikingly, N-terminal amino acid sequencing of recombinant proteins unraveled that the protein synthesized from pEXA-N-lacS lacked the designed 6×His tag and that translation initiation did not start at the ATG codon of the fusion gene. Instead, it started...

  15. A plasma coagulation assay for an activated protein C-independent anticoagulant activity of protein S

    NARCIS (Netherlands)

    van Wijnen, M.; van 't Veer, C.; Meijers, J. C.; Bertina, R. M.; Bouma, B. N.

    1998-01-01

    To study the physiological importance of the activated protein C (APC)-independent anticoagulant activity of protein S, we developed an assay specific for this activity. The ability of protein S to prolong the clotting time in an APC-independent way was expressed as the ratio of the clotting time in

  16. Expression, characterization of a novel nitrilase PpL19 from Pseudomonas psychrotolerans with S-selectivity toward mandelonitrile present in active inclusion bodies.

    Science.gov (United States)

    Sun, Huihui; Gao, Wenyuan; Wang, Hualei; Wei, Dongzhi

    2016-03-01

    To identify a novel nitrilase with S-selectivity toward mandelonitrile that can produce (S)-mandelic acid in one step. A novel nitrilase PpL19 from Pseudomonas psychrotolerans L19 was discovered by genome mining. It showed S-selectivity with an enantiomeric excess of 52.7 % when used to hydrolyse (R, S)-mandelonitrile. No byproduct was observed. PpL19 was overexpressed in Escherichia coli BL21 (DE3) and formed inclusion bodies that were active toward mandelonitrile and stable across a broad range of temperature and pH. In addition, PpL19 hydrolysed nitriles with diverse structures; arylacetonitriles were the optimal substrates. Homology modelling and docking studies of both enantiomers of mandelonitrile in the active site of nitrilase PpL19 shed light on the enantioselectivity. A novel nitrilase PpL19 from P. psychrotolerans L19 was mined and distinguished from other nitrilases as it was expressed as an active inclusion body and showed S-selectivity toward mandelonitrile.

  17. Evaluation of novel inducible promoter/repressor systems for recombinant protein expression in Lactobacillus plantarum.

    Science.gov (United States)

    Heiss, Silvia; Hörmann, Angelika; Tauer, Christopher; Sonnleitner, Margot; Egger, Esther; Grabherr, Reingard; Heinl, Stefan

    2016-03-10

    Engineering lactic acid bacteria (LAB) is of growing importance for food and feed industry as well as for in vivo vaccination or the production of recombinant proteins in food grade organisms. Often, expression of a transgene is only desired at a certain time point or period, e.g. to minimize the metabolic burden for the host cell or to control the expression time span. For this purpose, inducible expression systems are preferred, though cost and availability of the inducing agent must be feasible. We selected the plasmid free strain Lactobacillus plantarum 3NSH for testing and characterization of novel inducible promoters/repressor systems. Their feasibility in recombinant protein production was evaluated. Expression of the reporter protein mCherry was monitored with the BioLector(®) micro-fermentation system. Reporter gene mCherry expression was compared under the control of different promoter/repressor systems: PlacA (an endogenous promoter/repressor system derived from L. plantarum 3NSH), PxylA (a promoter/repressor system derived from Bacillus megaterium DSMZ 319) and PlacSynth (synthetic promoter and codon-optimized repressor gene based on the Escherichia coli lac operon). We observed that PlacA was inducible solely by lactose, but not by non-metabolizable allolactose analoga. PxylA was inducible by xylose, yet showed basal expression under non-induced conditions. Growth on galactose (as compared to exponential growth phase on glucose) reduced basal mCherry expression at non-induced conditions. PlacSynth was inducible with TMG (methyl β-D-thiogalactopyranoside) and IPTG (isopropyl β-D-1-thiogalactopyranoside), but also showed basal expression without inducer. The promoter PlacSynth was used for establishment of a dual plasmid expression system, based on T7 RNA polymerase driven expression in L. plantarum. Comparative Western blot supported BioLector(®) micro-fermentation measurements. Conclusively, overall expression levels were moderate (compared to a

  18. Pathogenic Leptospira species express surface-exposed proteins belonging to the bacterial immunoglobulin superfamily

    Science.gov (United States)

    Matsunaga, James; Barocchi, Michele A.; Croda, Julio; Young, Tracy A.; Sanchez, Yolanda; Siqueira, Isadora; Bolin, Carole A.; Reis, Mitermayer G.; Riley, Lee W.; Haake, David A.; Ko, Albert I.

    2005-01-01

    Summary Proteins with bacterial immunoglobulin-like (Big) domains, such as the Yersinia pseudotuberculosis invasin and Escherichia coli intimin, are surface-expressed proteins that mediate host mammalian cell invasion or attachment. Here, we report the identification and characterization of a new family of Big domain proteins, referred to as Lig (leptospiral Ig-like) proteins, in pathogenic Leptospira. Screening of L. interrogans and L. kirschneri expression libraries with sera from leptospirosis patients identified 13 lambda phage clones that encode tandem repeats of the 90 amino acid Big domain. Two lig genes, designated ligA and ligB, and one pseudo-gene, ligC, were identified. The ligA and ligB genes encode amino-terminal lipoprotein signal peptides followed by 10 or 11 Big domain repeats and, in the case of ligB, a unique carboxy-terminal non-repeat domain. The organization of ligC is similar to that of ligB but contains mutations that disrupt the reading frame. The lig sequences are present in pathogenic but not saprophytic Leptospira species. LigA and LigB are expressed by a variety of virulent leptospiral strains. Loss of Lig protein and RNA transcript expression is correlated with the observed loss of virulence during culture attenuation of pathogenic strains. High-pressure freeze substitution followed by immunocytochemical electron microscopy confirmed that the Lig proteins were localized to the bacterial surface. Immunoblot studies with patient sera found that the Lig proteins are a major antigen recognized during the acute host infection. These observations demonstrate that the Lig proteins are a newly identified surface protein of pathogenic Leptospira, which by analogy to other bacterial immunoglobulin superfamily virulence factors, may play a role in host cell attachment and invasion during leptospiral pathogenesis. PMID:12890019

  19. S-adenosyl-L-methionine protection of acetaminophen mediated oxidative stress and identification of hepatic 4-hydroxynonenal protein adducts by mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Brown, James Mike [Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Huntington, WV (United States); Kuhlman, Christopher [Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, AZ (United States); Terneus, Marcus V. [Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Huntington, WV (United States); Labenski, Matthew T. [Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, AZ (United States); Lamyaithong, Andre Benja; Ball, John G. [Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Huntington, WV (United States); Lau, Serrine S. [Southwest Environmental Health Sciences Center, Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona Health Sciences Center, Tucson, AZ (United States); Valentovic, Monica A., E-mail: Valentov@marshall.edu [Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Huntington, WV (United States)

    2014-12-01

    Acetaminophen (APAP) hepatotoxicity is protected by S-adenosyl-L-methionine (SAMe) treatment 1 hour (h) after APAP in C57/Bl6 mice. This study examined protein carbonylation as well as mitochondrial and cytosolic protein adduction by 4-hydroxynonenal (4-HNE) using mass spectrometry (MS) analysis. Additional studies investigated the leakage of mitochondrial proteins and 4-HNE adduction of these proteins. Male C57/Bl6 mice (n = 5/group) were divided into the following groups and treated as indicated: Veh (15 ml/kg water, ip), SAMe (1.25 mmol/kg, ip), APAP (250 mg/kg), and SAMe given 1 h after APAP (S + A). APAP toxicity was confirmed by an increase (p < 0.05) in plasma ALT (U/l) and liver weight/10 g body weight relative to the Veh, SAMe and S + A groups 4 h following APAP treatment. SAMe administered 1 h post-APAP partially corrected APAP hepatotoxicity as ALT and liver weight/10 g body weights were lower in the S + A group compared the APAP group. APAP induced leakage of the mitochondrial protein, carbamoyl phosphate synthase-1 (CPS-1) into the cytosol and which was reduced in the S + A group. SAMe further reduced the extent of APAP mediated 4-HNE adduction of CPS-1. MS analysis of hepatic and mitochondrial subcellular fractions identified proteins from APAP treated mice. Site specific 4-HNE adducts were identified on mitochondrial proteins sarcosine dehydrogenase and carbamoyl phosphate synthase-1 (CPS-1). In summary, APAP is associated with 4-HNE adduction of proteins as identified by MS analysis and that CPS-1 leakage was greater in APAP treated mice. SAMe reduced the extent of 4-HNE adduction of proteins as well as leakage of CPS-1. - Highlights: • Acetaminophen (APAP) toxicity protected by S-adenosylmethionine (SAMe) • 4-Hydroxynonenal adducted to sarcosine dehydrogenase • 4-Hydroxynonenal adducted to carbamoyl phosphate synthetase-1 • SAMe reduced APAP mediated CPS-1 mitochondrial leakage.

  20. S-adenosyl-L-methionine protection of acetaminophen mediated oxidative stress and identification of hepatic 4-hydroxynonenal protein adducts by mass spectrometry

    International Nuclear Information System (INIS)

    Brown, James Mike; Kuhlman, Christopher; Terneus, Marcus V.; Labenski, Matthew T.; Lamyaithong, Andre Benja; Ball, John G.; Lau, Serrine S.; Valentovic, Monica A.

    2014-01-01

    Acetaminophen (APAP) hepatotoxicity is protected by S-adenosyl-L-methionine (SAMe) treatment 1 hour (h) after APAP in C57/Bl6 mice. This study examined protein carbonylation as well as mitochondrial and cytosolic protein adduction by 4-hydroxynonenal (4-HNE) using mass spectrometry (MS) analysis. Additional studies investigated the leakage of mitochondrial proteins and 4-HNE adduction of these proteins. Male C57/Bl6 mice (n = 5/group) were divided into the following groups and treated as indicated: Veh (15 ml/kg water, ip), SAMe (1.25 mmol/kg, ip), APAP (250 mg/kg), and SAMe given 1 h after APAP (S + A). APAP toxicity was confirmed by an increase (p < 0.05) in plasma ALT (U/l) and liver weight/10 g body weight relative to the Veh, SAMe and S + A groups 4 h following APAP treatment. SAMe administered 1 h post-APAP partially corrected APAP hepatotoxicity as ALT and liver weight/10 g body weights were lower in the S + A group compared the APAP group. APAP induced leakage of the mitochondrial protein, carbamoyl phosphate synthase-1 (CPS-1) into the cytosol and which was reduced in the S + A group. SAMe further reduced the extent of APAP mediated 4-HNE adduction of CPS-1. MS analysis of hepatic and mitochondrial subcellular fractions identified proteins from APAP treated mice. Site specific 4-HNE adducts were identified on mitochondrial proteins sarcosine dehydrogenase and carbamoyl phosphate synthase-1 (CPS-1). In summary, APAP is associated with 4-HNE adduction of proteins as identified by MS analysis and that CPS-1 leakage was greater in APAP treated mice. SAMe reduced the extent of 4-HNE adduction of proteins as well as leakage of CPS-1. - Highlights: • Acetaminophen (APAP) toxicity protected by S-adenosylmethionine (SAMe) • 4-Hydroxynonenal adducted to sarcosine dehydrogenase • 4-Hydroxynonenal adducted to carbamoyl phosphate synthetase-1 • SAMe reduced APAP mediated CPS-1 mitochondrial leakage

  1. Construction of Lactococcus lactis expressing secreted and anchored Eimeria tenella 3-1E protein and comparison of protective immunity against homologous challenge.

    Science.gov (United States)

    Ma, Chunli; Zhang, Lili; Gao, Mingyang; Ma, Dexing

    2017-07-01

    Two novel plasmids pTX8048-SP-Δ3-1E and pTX8048-SP-NAΔ3-1E-CWA were constructed. The plasmids were respectively electrotransformed into L. lactis NZ9000 to generate strain of L. lactis/pTX8048-SP-Δ3-1E in which 3-1E protein was expressed in secretion, and L. lactis/pTX8048-SP-NAΔ3-1E-CWA on which 3-1E protein was covalently anchored to the surface of bacteria cells. The expression of target proteins were examined by Western blot. The live lactococci expressing secreted 3-1E protein, anchored 3-1E protein, and cytoplasmic 3-1E protein was administered orally to chickens respectively, and the protective immunity and efficacy were compared by animal experiment. The results showed oral immunization to chickens with recombinant lactococci expressing anchored 3-1E protein elicited high 3-1E-specific serum IgG, increased high proportion of CD4 + and CD8α + cells in spleen, alleviated average lesion score in cecum, decreased the oocyst output per chicken compared to lactococci expressing cytoplasmic or secreted 3-1E protein. Taken together, these findings indicated the surface anchored Eimeria protein displayed by L. lacits can induce protective immunity and partial protection against homologous infection. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Global analysis of gene expression in response to L-Cysteine deprivation in the anaerobic protozoan parasite Entamoeba histolytica

    Science.gov (United States)

    2011-01-01

    Background Entamoeba histolytica, an enteric protozoan parasite, causes amebic colitis and extra intestinal abscesses in millions of inhabitants of endemic areas. E. histolytica completely lacks glutathione metabolism but possesses L-cysteine as the principle low molecular weight thiol. L-Cysteine is essential for the structure, stability, and various protein functions, including catalysis, electron transfer, redox regulation, nitrogen fixation, and sensing for regulatory processes. Recently, we demonstrated that in E. histolytica, L-cysteine regulates various metabolic pathways including energy, amino acid, and phospholipid metabolism. Results In this study, employing custom-made Affymetrix microarrays, we performed time course (3, 6, 12, 24, and 48 h) gene expression analysis upon L-cysteine deprivation. We identified that out of 9,327 genes represented on the array, 290 genes encoding proteins with functions in metabolism, signalling, DNA/RNA regulation, electron transport, stress response, membrane transport, vesicular trafficking/secretion, and cytoskeleton were differentially expressed (≥3 fold) at one or more time points upon L-cysteine deprivation. Approximately 60% of these modulated genes encoded proteins of no known function and annotated as hypothetical proteins. We also attempted further functional analysis of some of the most highly modulated genes by L-cysteine depletion. Conclusions To our surprise, L-cysteine depletion caused only limited changes in the expression of genes involved in sulfur-containing amino acid metabolism and oxidative stress defense. In contrast, we observed significant changes in the expression of several genes encoding iron sulfur flavoproteins, a major facilitator super-family transporter, regulator of nonsense transcripts, NADPH-dependent oxido-reductase, short chain dehydrogenase, acetyltransferases, and various other genes involved in diverse cellular functions. This study represents the first genome-wide analysis of

  3. Global analysis of gene expression in response to L-Cysteine deprivation in the anaerobic protozoan parasite Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Jeelani Ghulam

    2011-05-01

    Full Text Available Abstract Background Entamoeba histolytica, an enteric protozoan parasite, causes amebic colitis and extra intestinal abscesses in millions of inhabitants of endemic areas. E. histolytica completely lacks glutathione metabolism but possesses L-cysteine as the principle low molecular weight thiol. L-Cysteine is essential for the structure, stability, and various protein functions, including catalysis, electron transfer, redox regulation, nitrogen fixation, and sensing for regulatory processes. Recently, we demonstrated that in E. histolytica, L-cysteine regulates various metabolic pathways including energy, amino acid, and phospholipid metabolism. Results In this study, employing custom-made Affymetrix microarrays, we performed time course (3, 6, 12, 24, and 48 h gene expression analysis upon L-cysteine deprivation. We identified that out of 9,327 genes represented on the array, 290 genes encoding proteins with functions in metabolism, signalling, DNA/RNA regulation, electron transport, stress response, membrane transport, vesicular trafficking/secretion, and cytoskeleton were differentially expressed (≥3 fold at one or more time points upon L-cysteine deprivation. Approximately 60% of these modulated genes encoded proteins of no known function and annotated as hypothetical proteins. We also attempted further functional analysis of some of the most highly modulated genes by L-cysteine depletion. Conclusions To our surprise, L-cysteine depletion caused only limited changes in the expression of genes involved in sulfur-containing amino acid metabolism and oxidative stress defense. In contrast, we observed significant changes in the expression of several genes encoding iron sulfur flavoproteins, a major facilitator super-family transporter, regulator of nonsense transcripts, NADPH-dependent oxido-reductase, short chain dehydrogenase, acetyltransferases, and various other genes involved in diverse cellular functions. This study represents the first

  4. Specific interaction between hnRNP H and HPV16 L1 proteins: Implications for late gene auto-regulation enabling rapid viral capsid protein production

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Zi-Zheng; Sun, Yuan-Yuan; Zhao, Min; Huang, Hui [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); Zhang, Jun; Xia, Ning-Shao [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); School of Public Health, Xiamen University, Xiamen, Fujian 361005 (China); Miao, Ji, E-mail: jmiao@xmu.edu.cn [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Life Sciences, Xiamen University, Xiamen, Fujian 361005 (China); Zhao, Qinjian, E-mail: qinjian_zhao@xmu.edu.cn [National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Xiamen University, Xiamen, Fujian 361005 (China); School of Public Health, Xiamen University, Xiamen, Fujian 361005 (China)

    2013-01-18

    Highlights: ► The RNA-binding hnRNP H regulates late viral gene expression. ► hnRNP H activity was inhibited by a late viral protein. ► Specific interaction between HPV L1 and hnRNP H was demonstrated. ► Co-localization of HPV L1 and hnRNP H inside cells was observed. ► Viral capsid protein production, enabling rapid capsid assembly, was implicated. -- Abstract: Heterogeneous nuclear ribonucleoproteins (hnRNPs), including hnRNP H, are RNA-binding proteins that function as splicing factors and are involved in downstream gene regulation. hnRNP H, which binds to G triplet regions in RNA, has been shown to play an important role in regulating the staged expression of late proteins in viral systems. Here, we report that the specific association between hnRNP H and a late viral capsid protein, human papillomavirus (HPV) L1 protein, leads to the suppressed function of hnRNP H in the presence of the L1 protein. The direct interaction between the L1 protein and hnRNP H was demonstrated by complex formation in solution and intracellularly using a variety of biochemical and immunochemical methods, including peptide mapping, specific co-immunoprecipitation and confocal fluorescence microscopy. These results support a working hypothesis that a late viral protein HPV16 L1, which is down regulated by hnRNP H early in the viral life cycle may provide an auto-regulatory positive feedback loop that allows the rapid production of HPV capsid proteins through suppression of the function of hnRNP H at the late stage of the viral life cycle. In this positive feedback loop, the late viral gene products that were down regulated earlier themselves disable their suppressors, and this feedback mechanism could facilitate the rapid production of capsid proteins, allowing staged and efficient viral capsid assembly.

  5. Characterization and immunogenicity of rLipL32/1-LipL21-OmpL1/2 fusion protein as a novel immunogen for a vaccine against Leptospirosis

    Directory of Open Access Journals (Sweden)

    Zhao Xin

    2015-01-01

    Full Text Available Vaccination is an effective strategy to prevent leptospirosis, a global zoonotic disease caused by infection with pathogenic Leptospira species. However, the currently used multiple-valence vaccine, which is prepared with whole cells of several Leptospira serovars, has major side effects, while its cross-immunogenicity among different Leptospira serovars is weak. LipL32, LipL21 and 2 OmpL1 have been confirmed as surface-exposed antigens in all pathogenic Leptospira strains, but their immunoprotective efficiency needs to be improved. In the present study, we generated a fusion gene lipL32/1-lipL21-ompL1/2 using primer-linking PCR and an engineered E. coli strain to express the recombinant fusion protein rLipL32/1-LipL21-OmpL1/2 (rLLO. Subsequently, the expression conditions were optimized using a central composite design that increased the fusion protein yield 2.7-fold. Western blot assays confirmed that rLLO was recognized by anti-rLipL32/1, anti-rLipL21, and anti-rOmpL1/2 sera as well as 98.5% of the sera from leptospirosis patients. The microscopic agglutination test (MAT demonstrated that rLLO antiserum had a stronger ability to agglutinate the strains of different Leptospira serovars than the rLipL32/1, rLipL21, and rOmpL1/2 antisera. More importantly, tests in hamsters showed that rLLO provided higher immunoprotective rates (91.7% than rLipL32/1, rLipL21 and rOmpL1/2 (50.0-75.0%. All the data indicate that rLLO, a recombinant fusion protein incorporating three antigens, has increased antigenicity and immunoprotective effects, and so can be used as a novel immunogen to develop a universal genetically engineered vaccine against leptospirosis.

  6. ERG protein expression over time

    DEFF Research Database (Denmark)

    Berg, Kasper Drimer; Brasso, Klaus; Thomsen, Frederik Birkebæk

    2015-01-01

    AIMS: We evaluated the consistency in ERG protein expression from diagnostic specimens through rebiopsies to radical prostatectomies in patients with clinically localised prostate cancer to investigate the validity of ERG status in biopsies. METHODS: ERG expression was assessed by immunohistochem......AIMS: We evaluated the consistency in ERG protein expression from diagnostic specimens through rebiopsies to radical prostatectomies in patients with clinically localised prostate cancer to investigate the validity of ERG status in biopsies. METHODS: ERG expression was assessed...

  7. The Rabies Virus L Protein Catalyzes mRNA Capping with GDP Polyribonucleotidyltransferase Activity.

    Science.gov (United States)

    Ogino, Minako; Ito, Naoto; Sugiyama, Makoto; Ogino, Tomoaki

    2016-05-21

    The large (L) protein of rabies virus (RABV) plays multiple enzymatic roles in viral RNA synthesis and processing. However, none of its putative enzymatic activities have been directly demonstrated in vitro. In this study, we expressed and purified a recombinant form of the RABV L protein and verified its guanosine 5'-triphosphatase and GDP polyribonucleotidyltransferase (PRNTase) activities, which are essential for viral mRNA cap formation by the unconventional mechanism. The RABV L protein capped 5'-triphosphorylated but not 5'-diphosphorylated RABV mRNA-start sequences, 5'-AACA(C/U), with GDP to generate the 5'-terminal cap structure G(5')ppp(5')A. The 5'-AAC sequence in the substrate RNAs was found to be strictly essential for RNA capping with the RABV L protein. Furthermore, site-directed mutagenesis showed that some conserved amino acid residues (G1112, T1170, W1201, H1241, R1242, F1285, and Q1286) in the PRNTase motifs A to E of the RABV L protein are required for cap formation. These findings suggest that the putative PRNTase domain in the RABV L protein catalyzes the rhabdovirus-specific capping reaction involving covalent catalysis of the pRNA transfer to GDP, thus offering this domain as a target for developing anti-viral agents.

  8. High-throughput Cloning and Expression of Integral Membrane Proteins in Escherichia coli

    Science.gov (United States)

    Bruni, Renato

    2014-01-01

    Recently, several structural genomics centers have been established and a remarkable number of three-dimensional structures of soluble proteins have been solved. For membrane proteins, the number of structures solved has been significantly trailing those for their soluble counterparts, not least because over-expression and purification of membrane proteins is a much more arduous process. By using high throughput technologies, a large number of membrane protein targets can be screened simultaneously and a greater number of expression and purification conditions can be employed, leading to a higher probability of successfully determining the structure of membrane proteins. This unit describes the cloning, expression and screening of membrane proteins using high throughput methodologies developed in our laboratory. Basic Protocol 1 deals with the cloning of inserts into expression vectors by ligation-independent cloning. Basic Protocol 2 describes the expression and purification of the target proteins on a miniscale. Lastly, for the targets that express at the miniscale, basic protocols 3 and 4 outline the methods employed for the expression and purification of targets at the midi-scale, as well as a procedure for detergent screening and identification of detergent(s) in which the target protein is stable. PMID:24510647

  9. Phosphatidylserine Sensing by TAM Receptors Regulates AKT-Dependent Chemoresistance and PD-L1 Expression.

    Science.gov (United States)

    Kasikara, Canan; Kumar, Sushil; Kimani, Stanley; Tsou, Wen-I; Geng, Ke; Davra, Viralkumar; Sriram, Ganapathy; Devoe, Connor; Nguyen, Khanh-Quynh N; Antes, Anita; Krantz, Allen; Rymarczyk, Grzegorz; Wilczynski, Andrzej; Empig, Cyril; Freimark, Bruce; Gray, Michael; Schlunegger, Kyle; Hutchins, Jeff; Kotenko, Sergei V; Birge, Raymond B

    2017-06-01

    Tyro3, Axl, and Mertk (collectively TAM receptors) are three homologous receptor tyrosine kinases that bind vitamin K-dependent endogenous ligands, Protein S (ProS), and growth arrest-specific factor 6 (Gas6), and act as bridging molecules to promote phosphatidylserine (PS)-mediated clearance of apoptotic cells (efferocytosis). TAM receptors are overexpressed in a vast array of tumor types, whereby the level of expression correlates with the tumor grade and the emergence of chemo- and radioresistance to targeted therapeutics, but also have been implicated as inhibitory receptors on infiltrating myeloid-derived cells in the tumor microenvironment that can suppress host antitumor immunity. In the present study, we utilized TAM-IFNγR1 reporter lines and expressed TAM receptors in a variety of epithelial cell model systems to show that each TAM receptor has a unique pattern of activation by Gas6 or ProS, as well as unique dependency for PS on apoptotic cells and PS liposomes for activity. In addition, we leveraged this system to engineer epithelial cells that express wild-type TAM receptors and show that although each receptor can promote PS-mediated efferocytosis, AKT-mediated chemoresistance, as well as upregulate the immune checkpoint molecule PD-L1 on tumor cells, Mertk is most dominant in the aforementioned pathways. Functionally, TAM receptor-mediated efferocytosis could be partially blocked by PS-targeting antibody 11.31 and Annexin V, demonstrating the existence of a PS/PS receptor (i.e., TAM receptor)/PD-L1 axis that operates in epithelial cells to foster immune escape. These data provide a rationale that PS-targeting, anti-TAM receptor, and anti-PD-L1-based therapeutics will have merit as combinatorial checkpoint inhibitors. Implications: Many tumor cells are known to upregulate the immune checkpoint inhibitor PD-L1. This study demonstrates a role for PS and TAM receptors in the regulation of PD-L1 on cancer cells. Mol Cancer Res; 15(6); 753-64. ©2017 AACR

  10. 4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression.

    Science.gov (United States)

    Shives, Katherine D; Massey, Aaron R; May, Nicholas A; Morrison, Thomas E; Beckham, J David

    2016-10-18

    West Nile virus (WNV) is a (+) sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7 GpppN m 5' cap with 2'- O -methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1) for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K) and eukaryotic translation initiation factor 4E-binding protein (4EBP) pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E) interaction and eukaryotic initiation factor 4F (eIF4F) complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6) and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.

  11. 4EBP-Dependent Signaling Supports West Nile Virus Growth and Protein Expression

    Directory of Open Access Journals (Sweden)

    Katherine D. Shives

    2016-10-01

    Full Text Available West Nile virus (WNV is a (+ sense, single-stranded RNA virus in the Flavivirus genus. WNV RNA possesses an m7GpppNm 5′ cap with 2′-O-methylation that mimics host mRNAs preventing innate immune detection and allowing the virus to translate its RNA genome through the utilization of cap-dependent translation initiation effectors in a wide variety of host species. Our prior work established the requirement of the host mammalian target of rapamycin complex 1 (mTORC1 for optimal WNV growth and protein expression; yet, the roles of the downstream effectors of mTORC1 in WNV translation are unknown. In this study, we utilize gene deletion mutants in the ribosomal protein kinase called S6 kinase (S6K and eukaryotic translation initiation factor 4E-binding protein (4EBP pathways downstream of mTORC1 to define the role of mTOR-dependent translation initiation signals in WNV gene expression and growth. We now show that WNV growth and protein expression are dependent on mTORC1 mediated-regulation of the eukaryotic translation initiation factor 4E-binding protein/eukaryotic translation initiation factor 4E-binding protein (4EBP/eIF4E interaction and eukaryotic initiation factor 4F (eIF4F complex formation to support viral growth and viral protein expression. We also show that the canonical signals of mTORC1 activation including ribosomal protein s6 (rpS6 and S6K phosphorylation are not required for WNV growth in these same conditions. Our data suggest that the mTORC1/4EBP/eIF4E signaling axis is activated to support the translation of the WNV genome.

  12. Identification and expression analyses of MYB and WRKY transcription factor genes in Papaver somniferum L.

    Science.gov (United States)

    Kakeshpour, Tayebeh; Nayebi, Shadi; Rashidi Monfared, Sajad; Moieni, Ahmad; Karimzadeh, Ghasem

    2015-10-01

    Papaver somniferum L. is an herbaceous, annual and diploid plant that is important from pharmacological and strategic point of view. The cDNA clones of two putative MYB and WRKY genes were isolated (GeneBank accession numbers KP411870 and KP203854, respectively) from this plant, via the nested-PCR method, and characterized. The MYB transcription factor (TF) comprises 342 amino acids, and exhibits the structural features of the R2R3MYB protein family. The WRKY TF, a 326 amino acid-long polypeptide, falls structurally into the group II of WRKY protein family. Quantitative real-time PCR (qRT-PCR) analyses indicate the presence of these TFs in all organs of P. somniferum L. and Papaver bracteatum L. Highest expression levels of these two TFs were observed in the leaf tissues of P. somniferum L. while in P. bracteatum L. the espression levels were highest in the root tissues. Promoter analysis of the 10 co-expressed gene clustered involved in noscapine biosynthesis pathway in P. somniferum L. suggested that not only these 10 genes are co-expressed, but also share common regulatory motifs and TFs including MYB and WRKY TFs, and that may explain their common regulation.

  13. 42 CFR 456.523 - Revised UR plan.

    Science.gov (United States)

    2010-10-01

    ... control over the utilization of services; and (2) Conducts reviews in a way that improves the quality of...) MEDICAL ASSISTANCE PROGRAMS UTILIZATION CONTROL Utilization Review Plans: FFP, Waivers, and Variances for Hospitals and Mental Hospitals Ur Plan: Remote Facility Variances from Time Requirements § 456.523 Revised...

  14. Recognition of Ribosomal Protein L11 by the Protein Trimethyltransferase PrmA

    Energy Technology Data Exchange (ETDEWEB)

    Demirci,H.; Gregory, S.; Dahlberg, A.; Jogl, G.

    2007-01-01

    Bacterial ribosomal protein L11 is post-translationally trimethylated at multiple residues by a single methyltransferase, PrmA. Here, we describe four structures of PrmA from the extreme thermophile Thermus thermophilus. Two apo-PrmA structures at 1.59 and 2.3 {angstrom} resolution and a third with bound cofactor S-adenosyl-L-methionine at 1.75 {angstrom} each exhibit distinct relative positions of the substrate recognition and catalytic domains, revealing how PrmA can position the L11 substrate for multiple, consecutive side-chain methylation reactions. The fourth structure, the PrmA-L11 enzyme-substrate complex at 2.4 {angstrom} resolution, illustrates the highly specific interaction of the N-terminal domain with its substrate and places Lys39 in the PrmA active site. The presence of a unique flexible loop in the cofactor-binding site suggests how exchange of AdoMet with the reaction product S-adenosyl-L-homocysteine can occur without necessitating the dissociation of PrmA from L11. Finally, the mode of interaction of PrmA with L11 explains its observed preference for L11 as substrate before its assembly into the 50S ribosomal subunit.

  15. Bioinformatics analysis of differentially expressed proteins in prostate cancer based on proteomics data

    Directory of Open Access Journals (Sweden)

    Chen C

    2016-03-01

    Full Text Available Chen Chen,1 Li-Guo Zhang,1 Jian Liu,1 Hui Han,1 Ning Chen,1 An-Liang Yao,1 Shao-San Kang,1 Wei-Xing Gao,1 Hong Shen,2 Long-Jun Zhang,1 Ya-Peng Li,1 Feng-Hong Cao,1 Zhi-Guo Li3 1Department of Urology, North China University of Science and Technology Affiliated Hospital, 2Department of Modern Technology and Education Center, 3Department of Medical Research Center, International Science and Technology Cooperation Base of Geriatric Medicine, North China University of Science and Technology, Tangshan, People’s Republic of China Abstract: We mined the literature for proteomics data to examine the occurrence and metastasis of prostate cancer (PCa through a bioinformatics analysis. We divided the differentially expressed proteins (DEPs into two groups: the group consisting of PCa and benign tissues (P&b and the group presenting both high and low PCa metastatic tendencies (H&L. In the P&b group, we found 320 DEPs, 20 of which were reported more than three times, and DES was the most commonly reported. Among these DEPs, the expression levels of FGG, GSN, SERPINC1, TPM1, and TUBB4B have not yet been correlated with PCa. In the H&L group, we identified 353 DEPs, 13 of which were reported more than three times. Among these DEPs, MDH2 and MYH9 have not yet been correlated with PCa metastasis. We further confirmed that DES was differentially expressed between 30 cancer and 30 benign tissues. In addition, DEPs associated with protein transport, regulation of actin cytoskeleton, and the extracellular matrix (ECM–receptor interaction pathway were prevalent in the H&L group and have not yet been studied in detail in this context. Proteins related to homeostasis, the wound-healing response, focal adhesions, and the complement and coagulation pathways were overrepresented in both groups. Our findings suggest that the repeatedly reported DEPs in the two groups may function as potential biomarkers for detecting PCa and predicting its aggressiveness. Furthermore

  16. Expression and crystallization of SeDsbA, SeDsbL and SeSrgA from Salmonella enterica serovar Typhimurium

    International Nuclear Information System (INIS)

    Jarrott, R.; Shouldice, S. R.; Gunčar, G.; Totsika, M.; Schembri, M. A.; Heras, B.

    2010-01-01

    The cloning, purification, crystallization and preliminary crystallographic studies of three DsbA-like proteins present in S. enterica serovar Typhimurium, SeDsbA, SeDsbL and SeSrgA, are reported. Pathogens require protein-folding enzymes to produce functional virulence determinants. These foldases include the Dsb family of proteins, which catalyze oxidative folding in bacteria. Bacterial disulfide catalytic processes have been well characterized in Escherichia coli K-12 and these mechanisms have been extrapolated to other organisms. However, recent research indicates that the K-12 complement of Dsb proteins is not common to all bacteria. Importantly, many pathogenic bacteria have an extended arsenal of Dsb catalysts that is linked to their virulence. To help to elucidate the process of oxidative folding in pathogens containing a wide repertoire of Dsb proteins, Salmonella enterica serovar Typhimurium has been focused on. This Gram-negative bacterium contains three DsbA proteins: SeDsbA, SeDsbL and SeSrgA. Here, the expression, purification, crystallization and preliminary diffraction analysis of these three proteins are reported. SeDsbA, SeDsbL and SeSrgA crystals diffracted to resolution limits of 1.55, 1.57 and 2.6 Å and belonged to space groups P2 1 , P2 1 2 1 2 and C2, respectively

  17. Classification, expression pattern and comparative analysis of sugarcane expressed sequences tags (ESTs encoding glycine-rich proteins (GRPs

    Directory of Open Access Journals (Sweden)

    Fusaro Adriana

    2001-01-01

    Full Text Available Since the isolation of the first glycine-rich proteins (GRPs in plants a wealth of new GRPs have been identified. The highly specific but diverse expression pattern of grp genes, taken together with the distinct sub-cellular localization of some GRP groups, clearly indicate that these proteins are involved in several independent physiological processes. Notwithstanding the absence of a clear definition of the role of GRPs in plant cells, studies conducted with these proteins have provided new and interesting insights into the molecular biology and cell biology of plants. Complexly regulated promoters and distinct mechanisms for the regulation of gene expression have been demonstrated and new protein targeting pathways, as well as the exportation of GRPs from different cell types have been discovered. These data show that GRPs can be useful as markers and/or models to understand distinct aspects of plant biology. In this paper, the structural and functional features of these proteins in sugarcane (Saccharum officinarum L. are summarized. Since this is the first description of GRPs in sugarcane, special emphasis has been given to the expression pattern of these GRP genes by studying their abundance and prevalence in the different cDNA-libraries of the Sugarcane Expressed Sequence Tag (SUCEST project . The comparison of sugarcane GRPs with GRPs from other species is also discussed.

  18. Expression of cathepsins B, L, S, and D by gastric epithelial cells implicates them as antigen presenting cells in local immune responses.

    Science.gov (United States)

    Barrera, C; Ye, G; Espejo, R; Gunasena, S; Almanza, R; Leary, J; Crowe, S; Ernst, P; Reyes, V E

    2001-10-01

    Helicobacter pylori infection is linked to chronic gastritis, peptic ulcer and gastric carcinoma. During H. pylori infection, class II MHC expression by the gastric epithelium increases, as does the number of local CD4(+) T cells, which appear to be important in the associated pathogenesis. These observations suggested that the epithelium might present antigens to T cells. Thus, we sought to determine whether gastric epithelial cells process antigens to establish their function as local antigen presenting cells (APC). We examined a panel of gastric epithelial cell lines for expression of the antigen processing cathepsins B (CB), L (CL), S (CS), and D (CD). The mRNA for these enzymes were detected by RT-PCR and the enzymes in the gastric epithelial cells were identified by various independent methods. We corroborated the expression of CB and CD on gastric epithelial cells from human biopsy samples. The functions of these proteases were confirmed by assessing their ability to digest ovalbumin, a conventional dietary antigen, and proteins from H. pylori. In summary, multiple lines of evidence suggest gastric epithelial cells process antigens for presentation to CD4(+) T cells. To our knowledge, these are the first studies to document the antigen processing capacity of human gastric epithelial cells.

  19. A testis-specific and testis developmentally regulated tumor protein D52 (TPD52)-like protein TPD52L3/hD55 interacts with TPD52 family proteins

    International Nuclear Information System (INIS)

    Cao Qinhong; Chen Jie; Zhu Li; Liu Yun; Zhou Zuomin; Sha Jiahao; Wang Shui; Li Jianmin

    2006-01-01

    Tumor protein D52-like proteins (TPD52) are small coiled-coil motif bearing proteins that were first identified in breast cancer. TPD52 and related proteins have been implicated in cell proliferation, apoptosis, and vesicle trafficking. To date, three human TPD52 members had been identified, named hD52 (TPD52), hD53 (TPD52L1), and hD54 (TPD52L2). The most important characteristic of the protein family is a highly conserved coiled-coil motif that is required for homo- and heteromeric interaction with other TPD52-like proteins. Herein, we identified a novel TPD52-like sequence (TPD52L3, or hD55) in human testis using cDNA microarray. Sequence analysis of the deduced protein suggests that hD55 contains a coiled-coil motif and is highly conserved compared with other TPD52-like sequences. Yeast two-hybrid and GST pull-down assays revealed that hD55 interacts with hD52, hD53, hD54, and itself. cDNA microarray detection found that hD55 was expressed at 5.6-fold higher levels in adult testis than in fetal testis. Additionally, the expression profile shows that hD55 is testis-specific, indicating a potential role for hD55 in testis development and spermatogenesis

  20. Bcl-2 protein expression is associated with p27 and p53 protein expressions and MIB-1 counts in breast cancer

    International Nuclear Information System (INIS)

    Tsutsui, Shinichi; Yasuda, Kazuhiro; Suzuki, Kosuke; Takeuchi, Hideya; Nishizaki, Takashi; Higashi, Hidefumi; Era, Shoichi

    2006-01-01

    Recent experimental studies have shown that Bcl-2, which has been established as a key player in the control of apoptosis, plays a role in regulating the cell cycle and proliferation. The aim of this study was to investigate the relationship between Bcl-2 and p27 protein expression, p53 protein expression and the proliferation activity as defined by the MIB-1 counts. The prognostic implication of Bcl-2 protein expression in relation to p27 and p53 protein expressions and MIB-1 counts for breast cancer was also evaluated. The immunohistochemical expression of Bcl-2 protein was evaluated in a series of 249 invasive ductal carcinomas of the breast, in which p27 and p53 protein expressions and MIB-1 counts had been determined previously. The Bcl-2 protein expression was found to be decreased in 105 (42%) cases. A decreased Bcl-2 protein expression was significantly correlated with a nuclear grade of III, a negative estrogen receptor, a decreased p27 protein expression, a positive p53 protein expression, positive MIB-1 counts and a positive HER2 protein expression. The incidence of a nuclear grade of III and positive MIB-1 counts increased as the number of abnormal findings of Bcl-2, p27 and p53 protein expressions increased. A univariate analysis indicated a decreased Bcl-2 protein expression to be significantly (p = 0.0089) associated with a worse disease free survival (DFS), while a multivariate analysis indicated the lymph node status and MIB-1 counts to be independently significant prognostic factors for the DFS. The Bcl-2 protein expression has a close correlation with p27 and p53 protein expressions and the proliferation activity determined by MIB-1 counts in invasive ductal carcinoma of the breast. The prognostic value of Bcl-2 as well as p27 and p53 protein expressions was dependent on the proliferation activity in breast cancer

  1. Bcl-2 protein expression is associated with p27 and p53 protein expressions and MIB-1 counts in breast cancer

    Directory of Open Access Journals (Sweden)

    Nishizaki Takashi

    2006-07-01

    Full Text Available Abstract Background Recent experimental studies have shown that Bcl-2, which has been established as a key player in the control of apoptosis, plays a role in regulating the cell cycle and proliferation. The aim of this study was to investigate the relationship between Bcl-2 and p27 protein expression, p53 protein expression and the proliferation activity as defined by the MIB-1 counts. The prognostic implication of Bcl-2 protein expression in relation to p27 and p53 protein expressions and MIB-1 counts for breast cancer was also evaluated. Methods The immunohistochemical expression of Bcl-2 protein was evaluated in a series of 249 invasive ductal carcinomas of the breast, in which p27 and p53 protein expressions and MIB-1 counts had been determined previously. Results The Bcl-2 protein expression was found to be decreased in 105 (42% cases. A decreased Bcl-2 protein expression was significantly correlated with a nuclear grade of III, a negative estrogen receptor, a decreased p27 protein expression, a positive p53 protein expression, positive MIB-1 counts and a positive HER2 protein expression. The incidence of a nuclear grade of III and positive MIB-1 counts increased as the number of abnormal findings of Bcl-2, p27 and p53 protein expressions increased. A univariate analysis indicated a decreased Bcl-2 protein expression to be significantly (p = 0.0089 associated with a worse disease free survival (DFS, while a multivariate analysis indicated the lymph node status and MIB-1 counts to be independently significant prognostic factors for the DFS. Conclusion The Bcl-2 protein expression has a close correlation with p27 and p53 protein expressions and the proliferation activity determined by MIB-1 counts in invasive ductal carcinoma of the breast. The prognostic value of Bcl-2 as well as p27 and p53 protein expressions was dependent on the proliferation activity in breast cancer.

  2. Protein expression analysis of inflammation-related colon carcinogenesis

    Directory of Open Access Journals (Sweden)

    Yasui Yumiko

    2009-01-01

    Full Text Available Background: Chronic inflammation is a risk factor for colorectal cancer (CRC development. The aim of this study was to determine the differences in protein expression between CRC and the surrounding nontumorous colonic tissues in the mice that received azoxymethane (AOM and dextran sodium sulfate (DSS using a proteomic analysis. Materials and Methods: Male ICR mice were given a single intraperitoneal injection of AOM (10 mg/kg body weight, followed by 2% (w/v DSS in their drinking water for seven days, starting one week after the AOM injection. Colonic adenocarcinoma developed after 20 weeks and a proteomics analysis based on two-dimensional gel electrophoresis and ultraflex TOF/TOF mass spectrometry was conducted in the cancerous and nontumorous tissue specimens. Results: The proteomic analysis revealed 21 differentially expressed proteins in the cancerous tissues in comparison to the nontumorous tissues. There were five markedly increased proteins (beta-tropomyosin, tropomyosin 1 alpha isoform b, S100 calcium binding protein A9, and an unknown protein and 16 markedly decreased proteins (Car1 proteins, selenium-binding protein 1, HMG-CoA synthase, thioredoxin 1, 1 Cys peroxiredoxin protein 2, Fcgbp protein, Cytochrome c oxidase, subunit Va, ETHE1 protein, and 7 unknown proteins. Conclusions: There were 21 differentially expressed proteins in the cancerous tissues of the mice that received AOM and DSS. Their functions include metabolism, the antioxidant system, oxidative stress, mucin production, and inflammation. These findings may provide new insights into the mechanisms of inflammation-related colon carcinogenesis and the establishment of novel therapies and preventative strategies to treat carcinogenesis in the inflamed colon.

  3. Downregulation of ATM Gene and Protein Expression in Canine Mammary Tumors.

    Science.gov (United States)

    Raposo-Ferreira, T M M; Bueno, R C; Terra, E M; Avante, M L; Tinucci-Costa, M; Carvalho, M; Cassali, G D; Linde, S D; Rogatto, S R; Laufer-Amorim, R

    2016-11-01

    The ataxia telangiectasia mutated (ATM) gene encodes a protein associated with DNA damage repair and maintenance of genomic integrity. In women, ATM transcript and protein downregulation have been reported in sporadic breast carcinomas, and the absence of ATM protein expression has been associated with poor prognosis. The aim of this study was to evaluate ATM gene and protein expression in canine mammary tumors and their association with clinical outcome. ATM gene and protein expression was evaluated by reverse transcription-quantitative polymerase chain reaction and immunohistochemistry, respectively, in normal mammary gland samples (n = 10), benign mammary tumors (n = 11), nonmetastatic mammary carcinomas (n = 19), and metastatic mammary carcinomas (n = 11). Lower ATM transcript levels were detected in benign mammary tumors and carcinomas compared with normal mammary glands (P = .011). Similarly, lower ATM protein expression was observed in benign tumors (P = .0003), nonmetastatic mammary carcinomas (P ATM gene or protein levels were detected among benign tumors and nonmetastatic and metastatic mammary carcinomas (P > .05). The levels of ATM gene or protein expression were not significantly associated with clinical and pathological features or with survival. Similar to human breast cancer, the data in this study suggest that ATM gene and protein downregulation is involved in canine mammary gland tumorigenesis. © The Author(s) 2016.

  4. S. aureus MscL is a pentamer in vivo but of variable stoichiometries in vitro: implications for detergent-solubilized membrane proteins.

    Directory of Open Access Journals (Sweden)

    Michael R Dorwart

    Full Text Available While the bacterial mechanosensitive channel of large conductance (MscL is the best studied biological mechanosensor and serves as a paradigm for how a protein can sense and respond to membrane tension, the simple matter of its oligomeric state has led to debate, with models ranging from tetramers to hexamers. Indeed, two different oligomeric states of the bacterial mechanosensitive channel MscL have been resolved by X-ray crystallography: The M. tuberculosis channel (MtMscL is a pentamer, while the S. aureus protein (SaMscL forms a tetramer. Because several studies suggest that, like MtMscL, the E. coli MscL (EcoMscL is a pentamer, we re-investigated the oligomeric state of SaMscL. To determine the structural organization of MscL in the cell membrane we developed a disulfide-trapping approach. Surprisingly, we found that virtually all SaMscL channels in vivo are pentameric, indicating this as the physiologically relevant and functional oligomeric state. Complementing our in vivo results, we purified SaMscL and assessed its oligomeric state using three independent approaches (sedimentation equilibrium centrifugation, crosslinking, and light scattering and established that SaMscL is a pentamer when solubilized in Triton X-100 and C(8E(5 detergents. However, performing similar experiments on SaMscL solubilized in LDAO, the detergent used in the crystallographic study, confirmed the tetrameric oligomerization resolved by X-ray crystallography. We further demonstrate that this stoichiometric shift is reversible by conventional detergent exchange experiments. Our results firmly establish the pentameric organization of SaMscL in vivo. Furthermore they demonstrate that detergents can alter the subunit stoichiometry of membrane protein complexes in vitro; thus, in vivo assays are necessary to firmly establish a membrane protein's true functionally relevant oligomeric state.

  5. S. aureus MscL is a pentamer in vivo but of variable stoichiometries in vitro: implications for detergent-solubilized membrane proteins.

    Science.gov (United States)

    Dorwart, Michael R; Wray, Robin; Brautigam, Chad A; Jiang, Youxing; Blount, Paul

    2010-12-07

    While the bacterial mechanosensitive channel of large conductance (MscL) is the best studied biological mechanosensor and serves as a paradigm for how a protein can sense and respond to membrane tension, the simple matter of its oligomeric state has led to debate, with models ranging from tetramers to hexamers. Indeed, two different oligomeric states of the bacterial mechanosensitive channel MscL have been resolved by X-ray crystallography: The M. tuberculosis channel (MtMscL) is a pentamer, while the S. aureus protein (SaMscL) forms a tetramer. Because several studies suggest that, like MtMscL, the E. coli MscL (EcoMscL) is a pentamer, we re-investigated the oligomeric state of SaMscL. To determine the structural organization of MscL in the cell membrane we developed a disulfide-trapping approach. Surprisingly, we found that virtually all SaMscL channels in vivo are pentameric, indicating this as the physiologically relevant and functional oligomeric state. Complementing our in vivo results, we purified SaMscL and assessed its oligomeric state using three independent approaches (sedimentation equilibrium centrifugation, crosslinking, and light scattering) and established that SaMscL is a pentamer when solubilized in Triton X-100 and C(8)E(5) detergents. However, performing similar experiments on SaMscL solubilized in LDAO, the detergent used in the crystallographic study, confirmed the tetrameric oligomerization resolved by X-ray crystallography. We further demonstrate that this stoichiometric shift is reversible by conventional detergent exchange experiments. Our results firmly establish the pentameric organization of SaMscL in vivo. Furthermore they demonstrate that detergents can alter the subunit stoichiometry of membrane protein complexes in vitro; thus, in vivo assays are necessary to firmly establish a membrane protein's true functionally relevant oligomeric state.

  6. Regulation of cAMP Responsive Element Binding Protein 3-Like 1 (Creb3l1 Expression by Orphan Nuclear Receptor Nr4a1

    Directory of Open Access Journals (Sweden)

    Michael P. Greenwood

    2017-12-01

    Full Text Available Cyclic AMP (cAMP inducible transcription factor cAMP responsive element binding protein 3 like 1 (Creb3l1 is strongly activated in the hypothalamus in response to hyperosmotic cues such as dehydration (DH. We have recently shown that Creb3l1 expression is upregulated by cAMP pathways in vitro, however the exact mechanisms are not known. Here we show that increasing Creb3l1 transcription by raising cAMP levels in mouse pituitary AtT20 cells automatically initiates cleavage of Creb3l1, leading to a greater abundance of the transcriptionally active N-terminal portion. Inhibiting protein synthesis indicated that de novo protein synthesis of an intermediary transcription factor was required for Creb3l1 induction. Strategic mining of our microarray data from dehydrated rodent hypothalamus revealed four candidates, reduced to two by analysis of acute hyperosmotic-induced transcriptional activation profiles in the hypothalamus, and one, orphan nuclear receptor Nr4a1, by direct shRNA mediated silencing in AtT20 cells. We show that activation of Creb3l1 transcription by Nr4a1 involves interaction with a single NBRE site in the promoter region. The ability to activate Creb3l1 transcription by this pathway in vitro is dictated by the level of methylation of a CpG island within the proximal promoter/5′UTR of this gene. We thus identify a novel cAMP-Nr4a1-Creb3l1 transcriptional pathway in AtT20 cells and also, our evidence would suggest, in the hypothalamus.

  7. Effect of 17-allylamino-17-demethoxygeldanamycin (17-AAG) on Akt protein expression is more effective in head and neck cancer cell lineages that retain PTEN protein expression.

    Science.gov (United States)

    Pontes, Flávia Sirotheau C; Pontes, Hélder A R; de Souza, Lucas L; de Jesus, Adriana S; Joaquim, Andrea M C; Miyahara, Ligia A N; Fonseca, Felipe P; Pinto Junior, Décio S

    2018-03-01

    The aim of this study was to evaluate the expression of Akt, PTEN, Mdm2 and p53 proteins in three different head and neck squamous cell carcinoma (HNSCC) cell lines (HN6, HN19 and HN30), all of them treated with epidermal growth factor (EGF) and 17-allylamino-17-demethoxygeldanamycin (17-AAG), an inhibitor of Hsp90 protein. Immunofluorescence and western blot were performed in order to analyze the location and quantification, respectively, of proteins under the action 17-AAG and EGF. Treatment with EGF resulted in increased levels of Akt, PTEN and p53 in all cell lineages. The expression of Mdm2 was constant in HN30 and HN6 lineages, while in HN19 showed slightly decreased expression. Under the action 17-AAG, in HN6 and HN19, the expression of PTEN and p53 proteins was suppressed, while Akt and Mdm2 expression was reduced. Finally, in the HN30 cell lineage were absolute absence of expression of Akt, Mdm2 and p53 and decreased expression of PTEN. These data allow us to speculate on the particular utility of 17-AAG for HNSCC treatment through the inhibition of Akt protein expression, especially in the cases that retain the expression of PTEN protein. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Differential expression of α-L-arabinofuranosidases during maize (Zea mays L.) root elongation.

    Science.gov (United States)

    Kozlova, Liudmila V; Gorshkov, Oleg V; Mokshina, Natalia E; Gorshkova, Tatyana A

    2015-05-01

    Specific α- l -arabinofuranosidases are involved in the realisation of elongation growth process in cells with type II cell walls. Elongation growth in a plant cell is largely based on modification of the cell wall. In type II cell walls, the Ara/Xyl ratio is known to decrease during elongation due to the partial removal of Ara residues from glucuronoarabinoxylan. We searched within the maize genome for the genes of all predicted α-L-arabinofuranosidases that may be responsible for such a process and related their expression to the activity of the enzyme and the amount of free arabinose measured in six zones of a growing maize root. Eight genes of the GH51 family (ZmaABFs) and one gene of the GH3 family (ZmaARA-I) were identified. The abundance of ZmaABF1 and 3-6 transcripts was highly correlated with the measured enzymatic activity and free arabinose content that significantly increased during elongation. The transcript abundances also coincided with the pattern of changes in the Ara/Xyl ratio of the xylanase-extractable glucuronoarabinoxylan described in previous studies. The expression of ZmaABF3, 5 and 6 was especially up-regulated during elongation although corresponding proteins are devoid of the catalytic glutamate at the proper position. ZmaABF2 transcripts were specifically enriched in the root cap and meristem. A single ZmaARA-I gene was not expressed as a whole gene but instead as splice variants that encode the C-terminal end of the protein. Changes in the ZmaARA-I transcript level were rather moderate and had no significant correlation with free arabinose content. Thus, elongation growth of cells with type II cell walls is accompanied by the up-regulation of specific and predicted α-L-arabinofuranosidase genes, and the corresponding activity is indeed pronounced and is important for the modification of glucuronoarabinoxylan, which plays a key role in the modification of the cell wall supramolecular organisation.

  9. Analysis of mRNA expression of CNN3, DCN, FBN2, POSTN, SPARC and YWHAQ genes in porcine foetal and adult skeletal muscles

    Czech Academy of Sciences Publication Activity Database

    Bílek, K.; Knoll, Aleš; Stratil, Antonín; Svobodová, K.; Horák, Pavel; Bechyňová, Renata; Van Poucke, M.; Peelman, L. J.

    2008-01-01

    Roč. 53, č. 5 (2008), s. 181-186 ISSN 1212-1819 R&D Projects: GA ČR GD523/03/H076; GA ČR(CZ) GA523/06/1302 Institutional research plan: CEZ:AV0Z50450515 Keywords : mRNA * fetus * gene expression Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.735, year: 2008

  10. The Neuron-Specific Protein TMEM59L Mediates Oxidative Stress-Induced Cell Death.

    Science.gov (United States)

    Zheng, Qiuyang; Zheng, Xiaoyuan; Zhang, Lishan; Luo, Hong; Qian, Lingzhi; Fu, Xing; Liu, Yiqian; Gao, Yuehong; Niu, Mengxi; Meng, Jian; Zhang, Muxian; Bu, Guojun; Xu, Huaxi; Zhang, Yun-Wu

    2017-08-01

    TMEM59L is a newly identified brain-specific membrane-anchored protein with unknown functions. Herein we found that both TMEM59L and its homolog, TMEM59, are localized in Golgi and endosomes. However, in contrast to a ubiquitous and relatively stable temporal expression of TMEM59, TMEM59L expression was limited in neurons and increased during development. We also found that both TMEM59L and TMEM59 interacted with ATG5 and ATG16L1, and that overexpression of them triggered cell autophagy. However, overexpression of TMEM59L induced intrinsic caspase-dependent apoptosis more dramatically than TMEM59. In addition, downregulation of TMEM59L prevented neuronal cell death and caspase-3 activation caused by hydrogen peroxide insults and reduced the lipidation of LC3B. Finally, we found that AAV-mediated knockdown of TMEM59L in mice significantly ameliorated caspase-3 activation, increased mouse duration in the open arm during elevated plus maze test, reduced mouse immobility time during forced swim test, and enhanced mouse memory during Y-maze and Morris water maze tests. Together, our study indicates that TMEM59L is a pro-apoptotic neuronal protein involved in animal behaviors such as anxiety, depression, and memory, and that TMEM59L downregulation protects neurons against oxidative stress.

  11. The primary structure of rat liver ribosomal protein L37. Homology with yeast and bacterial ribosomal proteins.

    Science.gov (United States)

    Lin, A; McNally, J; Wool, I G

    1983-09-10

    The covalent structure of the rat liver 60 S ribosomal subunit protein L37 was determined. Twenty-four tryptic peptides were purified and the sequence of each was established; they accounted for all 111 residues of L37. The sequence of the first 30 residues of L37, obtained previously by automated Edman degradation of the intact protein, provided the alignment of the first 9 tryptic peptides. Three peptides (CN1, CN2, and CN3) were produced by cleavage of protein L37 with cyanogen bromide. The sequence of CN1 (65 residues) was established from the sequence of secondary peptides resulting from cleavage with trypsin and chymotrypsin. The sequence of CN1 in turn served to order tryptic peptides 1 through 14. The sequence of CN2 (15 residues) was determined entirely by a micromanual procedure and allowed the alignment of tryptic peptides 14 through 18. The sequence of the NH2-terminal 28 amino acids of CN3 (31 residues) was determined; in addition the complete sequences of the secondary tryptic and chymotryptic peptides were done. The sequence of CN3 provided the order of tryptic peptides 18 through 24. Thus the sequence of the three cyanogen bromide peptides also accounted for the 111 residues of protein L37. The carboxyl-terminal amino acids were identified after carboxypeptidase A treatment. There is a disulfide bridge between half-cystinyl residues at positions 40 and 69. Rat liver ribosomal protein L37 is homologous with yeast YP55 and with Escherichia coli L34. Moreover, there is a segment of 17 residues in rat L37 that occurs, albeit with modifications, in yeast YP55 and in E. coli S4, L20, and L34.

  12. Crystal Structure of the 23S rRNA Fragment Specific to r-Protein L1 and Designed Model of the Ribosomal L1 Stalk from Haloarcula marismortui

    Directory of Open Access Journals (Sweden)

    Azat Gabdulkhakov

    2017-02-01

    Full Text Available The crystal structure of the 92-nucleotide L1-specific fragment of 23S rRNA from Haloarcula marismortui (Hma has been determined at 3.3 Å resolution. Similar to the corresponding bacterial rRNA fragments, this structure contains joined helix 76-77 topped by an approximately globular structure formed by the residual part of the L1 stalk rRNA. The position of HmaL1 relative to the rRNA was found by its docking to the rRNA fragment using the L1-rRNA complex from Thermus thermophilus as a guide model. In spite of the anomalous negative charge of the halophilic archaeal protein, the conformation of the HmaL1-rRNA interface appeared to be very close to that observed in all known L1-rRNA complexes. The designed structure of the L1 stalk was incorporated into the H. marismortui 50S ribosomal subunit. Comparison of relative positions of L1 stalks in 50S subunits from H. marismortui and T. thermophilus made it possible to reveal the site of inflection of rRNA during the ribosome function.

  13. EXPRESSION AND SIGNIFICANCE OF ERK PROTEIN IN HUMAN BREAST CARCINOMA

    Institute of Scientific and Technical Information of China (English)

    张秀梅; 李柏林; 宋敏; 宋继谒

    2004-01-01

    Objective: To investigate the expression of ERK and p-ERK protein in human breast cancer and their corresponding tissue, to assess the significance of ERK signal pathway in tumorigenesis and progression of breast carcinoma. Methods: 40 breast cancer cases were used in S-P immunohistochemistry technique and Western Blot study. Results: The expression of ERK1, ERK2, and p- ERK protein levels increased remarkably in breast cancer tissues in comparison to normal tissues (P<0.01). The expression was upregulated by 1.32-, 1.53-and 4.27-fold, respectively. The overexpressions of ERK1, ERK2, and p- ERK proteins were obviously correlated with clinical stage of breast cancer. Protein levels of ERK and p-ERK were higher in stage III patients than in stage I and stage II patients (P<0.05). These proteins were strongly related with axillary lymph node metastasis of breast cancer, but not correlated with histopathological type and status of ER and PR of breast cancer. Expression of ERK1, and ERK2, protein showed a positive linear correlation. Conclusion: ERK signal transduction pathway is a key factor during human breast tumorigenesis and breast cancer progression.

  14. Suppression of NYVAC Infection in HeLa Cells Requires RNase L but Is Independent of Protein Kinase R Activity

    Science.gov (United States)

    Fernández-Escobar, Mercedes; Nájera, José Luis; Baldanta, Sara; Rodriguez, Dolores; Way, Michael; Esteban, Mariano

    2015-01-01

    Protein kinase R (PKR) and RNase L are host cell components that function to contain viral spread after infections. In this study, we analyzed the role of both proteins in the abortive infection of human HeLa cells with the poxvirus strain NYVAC, for which an inhibition of viral A27L and B5R gene expression is described. Specifically, the translation of these viral genes is independent of PKR activation, but their expression is dependent on the RNase L activity. PMID:26656695

  15. Comprehensive identification and expression analysis of Hsp90s gene family in Solanum lycopersicum.

    Science.gov (United States)

    Zai, W S; Miao, L X; Xiong, Z L; Zhang, H L; Ma, Y R; Li, Y L; Chen, Y B; Ye, S G

    2015-07-14

    Heat shock protein 90 (Hsp90) is a protein produced by plants in response to adverse environmental stresses. In this study, we identified and analyzed Hsp90 gene family members using a bioinformatic method based on genomic data from tomato (Solanum lycopersicum L.). The results illustrated that tomato contains at least 7 Hsp90 genes distributed on 6 chromosomes; protein lengths ranged from 267-794 amino acids. Intron numbers ranged from 2-19 in the genes. The phylogenetic tree revealed that Hsp90 genes in tomato (Solanum lycopersicum L.), rice (Oryza sativa L.), and Arabidopsis (Arabidopsis thaliana L.) could be divided into 5 groups, which included 3 pairs of orthologous genes and 4 pairs of paralogous genes. Expression analysis of RNA-sequence data showed that the Hsp90-1 gene was specifically expressed in mature fruits, while Hsp90-5 and Hsp90-6 showed opposite expression patterns in various tissues of cultivated and wild tomatoes. The expression levels of the Hsp90-1, Hsp90-2, and Hsp90- 3 genes in various tissues of cultivated tomatoes were high, while both the expression levels of genes Hsp90-3 and Hsp90-4 were low. Additionally, quantitative real-time polymerase chain reaction showed that these genes were involved in the responses to yellow leaf curl virus in tomato plant leaves. Our results provide a foundation for identifying the function of the Hsp90 gene in tomato.

  16. MPL W515L expression induces TGFβ secretion and leads to an increase in chemokinesis via phosphorylation of THOC5.

    Science.gov (United States)

    Whetton, Anthony D; Azmi, Norhaida Che; Pearson, Stella; Jaworska, Ewa; Zhang, Liqun; Blance, Rognvald; Kendall, Alexandra C; Nicolaou, Anna; Taylor, Samuel; Williamson, Andrew J K; Pierce, Andrew

    2016-03-08

    The thrombopoietin receptor (MPL) has been shown to be mutated (MPL W515L) in myelofibrosis and thrombocytosis yet new approaches to treat this disorder are still required. We have previously shown that transcriptome and proteomic effects do not correlate well in oncogene-mediated leukemogenesis. We therefore investigated the effects of MPL W515L using proteomics. The consequences of MPL W515L expression on over 3300 nuclear and 3500 cytoplasmic proteins were assessed using relative quantification mass spectrometry. We demonstrate that MPL W515L expression markedly modulates the CXCL12/CXCR4/CD45 pathway associated with stem and progenitor cell chemotactic movement. We also demonstrated that MPL W515L expressing cells displayed increased chemokinesis which required the MPL W515L-mediated dysregulation of MYC expression via phosphorylation of the RNA transport protein THOC5 on tyrosine 225. In addition MPL W515L expression induced TGFβ secretion which is linked to sphingosine 1-phosphate production and the increased chemokinesis. These studies identify several pathways which offer potential targets for therapeutic intervention in the treatment of MPL W515L-driven malignancy. We validate our approach by showing that CD34+ cells from MPL W515L positive patients display increased chemokinesis and that treatment with a combination of MYC and sphingosine kinase inhibitors leads to the preferential killing of MPL W515L expressing cells.

  17. Andrographolide inhibits adipogenesis of 3T3-L1 cells by suppressing C/EBPβ expression and activation

    International Nuclear Information System (INIS)

    Chen, Ching-Chu; Chuang, Wei-Ting; Lin, Ai-Hsuan; Tsai, Chia-Wen; Huang, Chin-Shiu; Chen, Yun-Ting; Chen, Haw-Wen; Lii, Chong-Kuei

    2016-01-01

    Andrographolide, a diterpenoid, is the most abundant terpenoid in Andrographis paniculata, a popular Chinese herbal medicine. Andrographolide displays diverse biological activities including hypoglycemia, hypolipidemia, anti-inflammation, and anti-tumorigenesis. Recent evidence indicates that andrographolide displays anti-obesity property by inhibiting lipogenic gene expression, however, the underlying mechanisms remain to be elucidated. In this study, the effects of andrographolide on transcription factor cascade and mitotic clonal expansion in 3T3-L1 preadipocyte differentiation into adipocyte were determined. Andrographolide dose-dependently (0–15 μM) inhibited CCAAT/enhancer-binding protein α (C/EBPα) and C/EBPβ mRNA and protein expression as well as peroxisome proliferator-activated receptor γ (PPARγ) protein level during the adipogenesis of 3T3-L1 cells. Concomitantly, fatty acid synthase and stearoyl-CoA desaturase expression and lipid accumulation were attenuated by andrographolide. Oil-red O staining further showed that the first 48 h after the initiation of differentiation was critical for andrographolide inhibition of adipocyte formation. Andrographolide inhibited the phosphorylation of PKA and the activation of cAMP response element-binding protein (CREB) in response to a differentiation cocktail, which led to attenuated C/EBPβ expression. In addition, ERK and GSK3β-dependent C/EBPβ phosphorylation was attenuated by andrographolide. Moreover, andrographolide suppressed cyclin A, cyclin E, and CDK2 expression and impaired the progression of mitotic clonal expansion (MCE) by arresting the cell cycle at the Go/G1 phase. Taken together, these results indicate that andrographolide has a potent anti-obesity action by inhibiting PKA-CREB-mediated C/EBPβ expression as well as C/EBPβ transcriptional activity, which halts MCE progression and attenuates C/EBPα and PPARγ expression. - Highlights: • Andrographolide is a diterpenoid phytochemical.

  18. Andrographolide inhibits adipogenesis of 3T3-L1 cells by suppressing C/EBPβ expression and activation

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ching-Chu [Division of Endocrinology and Metabolism, Department of Medicine, China Medical University Hospital, Taichung, Taiwan (China); Division of Endocrinology and Metabolism, Department of Chinese Medicine, China Medical University, China Medical University, Taichung, Taiwan (China); Chuang, Wei-Ting; Lin, Ai-Hsuan; Tsai, Chia-Wen [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Huang, Chin-Shiu [Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China); Department of Medical Research, China Medical University Hospital, Taichung, Taiwan (China); Chen, Yun-Ting [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Chen, Haw-Wen, E-mail: chenhw@mail.cmu.edu.tw [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Lii, Chong-Kuei, E-mail: cklii@mail.cmu.edu.tw [Department of Nutrition, China Medical University, Taichung, Taiwan (China); Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan (China)

    2016-09-15

    Andrographolide, a diterpenoid, is the most abundant terpenoid in Andrographis paniculata, a popular Chinese herbal medicine. Andrographolide displays diverse biological activities including hypoglycemia, hypolipidemia, anti-inflammation, and anti-tumorigenesis. Recent evidence indicates that andrographolide displays anti-obesity property by inhibiting lipogenic gene expression, however, the underlying mechanisms remain to be elucidated. In this study, the effects of andrographolide on transcription factor cascade and mitotic clonal expansion in 3T3-L1 preadipocyte differentiation into adipocyte were determined. Andrographolide dose-dependently (0–15 μM) inhibited CCAAT/enhancer-binding protein α (C/EBPα) and C/EBPβ mRNA and protein expression as well as peroxisome proliferator-activated receptor γ (PPARγ) protein level during the adipogenesis of 3T3-L1 cells. Concomitantly, fatty acid synthase and stearoyl-CoA desaturase expression and lipid accumulation were attenuated by andrographolide. Oil-red O staining further showed that the first 48 h after the initiation of differentiation was critical for andrographolide inhibition of adipocyte formation. Andrographolide inhibited the phosphorylation of PKA and the activation of cAMP response element-binding protein (CREB) in response to a differentiation cocktail, which led to attenuated C/EBPβ expression. In addition, ERK and GSK3β-dependent C/EBPβ phosphorylation was attenuated by andrographolide. Moreover, andrographolide suppressed cyclin A, cyclin E, and CDK2 expression and impaired the progression of mitotic clonal expansion (MCE) by arresting the cell cycle at the Go/G1 phase. Taken together, these results indicate that andrographolide has a potent anti-obesity action by inhibiting PKA-CREB-mediated C/EBPβ expression as well as C/EBPβ transcriptional activity, which halts MCE progression and attenuates C/EBPα and PPARγ expression. - Highlights: • Andrographolide is a diterpenoid phytochemical.

  19. Expression, crystallization and preliminary X-ray analysis of the periplasmic stress sensory protein RseB from Escherichia coli

    International Nuclear Information System (INIS)

    Wollmann, Petra; Zeth, Kornelius

    2006-01-01

    The periplasmic stress protein RseB from E. coli was cloned, expressed and crystallized. Crystallographic data are presented and structure solution using the multiple isomorphous replacement approach (MIR) is in progress. Sensing external stress in the bacterial periplasm and signal transduction to the cytoplasm are important functions of the CpxAR, Bae and σ E signalling pathways. In Escherichia coli, the σ E pathway can be activated through degradation of the antisigma factor RseA by DegS and YaeL. The periplasmic protein RseB plays an important role in this pathway by exerting a direct or indirect negative effect on YaeL cleavage efficiency. RseB from E. coli, missing the periplasmic signal sequence (RseB ΔN ), was cloned, expressed, purified and crystallized. Crystals were obtained in two different forms belonging to space group P42 1 2 (form I) and C222 1 (form II) and diffracted to 2.8 and 2.4 Å resolution, respectively. In crystal form I two copies of the protein were located in the asymmetric unit according to heavy-atom analysis, while crystal form II contained three copies

  20. The Rabies Virus L Protein Catalyzes mRNA Capping with GDP Polyribonucleotidyltransferase Activity

    Directory of Open Access Journals (Sweden)

    Minako Ogino

    2016-05-01

    Full Text Available The large (L protein of rabies virus (RABV plays multiple enzymatic roles in viral RNA synthesis and processing. However, none of its putative enzymatic activities have been directly demonstrated in vitro. In this study, we expressed and purified a recombinant form of the RABV L protein and verified its guanosine 5′-triphosphatase and GDP polyribonucleotidyltransferase (PRNTase activities, which are essential for viral mRNA cap formation by the unconventional mechanism. The RABV L protein capped 5′-triphosphorylated but not 5′-diphosphorylated RABV mRNA-start sequences, 5′-AACA(C/U, with GDP to generate the 5′-terminal cap structure G(5′ppp(5′A. The 5′-AAC sequence in the substrate RNAs was found to be strictly essential for RNA capping with the RABV L protein. Furthermore, site-directed mutagenesis showed that some conserved amino acid residues (G1112, T1170, W1201, H1241, R1242, F1285, and Q1286 in the PRNTase motifs A to E of the RABV L protein are required for cap formation. These findings suggest that the putative PRNTase domain in the RABV L protein catalyzes the rhabdovirus-specific capping reaction involving covalent catalysis of the pRNA transfer to GDP, thus offering this domain as a target for developing anti-viral agents.

  1. Genome-Wide Characterization of Heat-Shock Protein 70s from Chenopodium quinoa and Expression Analyses of Cqhsp70s in Response to Drought Stress.

    Science.gov (United States)

    Liu, Jianxia; Wang, Runmei; Liu, Wenying; Zhang, Hongli; Guo, Yaodong; Wen, Riyu

    2018-01-23

    Heat-shock proteins (HSPs) are ubiquitous proteins with important roles in response to biotic and abiotic stress. The 70-kDa heat-shock genes ( Hsp70s ) encode a group of conserved chaperone proteins that play central roles in cellular networks of molecular chaperones and folding catalysts across all the studied organisms including bacteria, plants and animals. Several Hsp70s involved in drought tolerance have been well characterized in various plants, whereas no research on Chenopodium quinoa HSPs has been completed. Here, we analyzed the genome of C. quinoa and identified sixteen Hsp70 members in quinoa genome. Phylogenetic analysis revealed the independent origination of those Hsp70 members, with eight paralogous pairs comprising the Hsp70 family in quinoa. While the gene structure and motif analysis showed high conservation of those paralogous pairs, the synteny analysis of those paralogous pairs provided evidence for expansion coming from the polyploidy event. With several subcellular localization signals detected in CqHSP70 protein paralogous pairs, some of the paralogous proteins lost the localization information, indicating the diversity of both subcellular localizations and potential functionalities of those HSP70s. Further gene expression analyses revealed by quantitative polymerase chain reaction (qPCR) analysis illustrated the significant variations of Cqhsp70s in response to drought stress. In conclusion, the sixteen Cqhsp70 s undergo lineage-specific expansions and might play important and varied roles in response to drought stress.

  2. Genome-wide identification of heat shock proteins (Hsps) and Hsp interactors in rice: Hsp70s as a case study.

    Science.gov (United States)

    Wang, Yongfei; Lin, Shoukai; Song, Qi; Li, Kuan; Tao, Huan; Huang, Jian; Chen, Xinhai; Que, Shufu; He, Huaqin

    2014-05-07

    Heat shock proteins (Hsps) perform a fundamental role in protecting plants against abiotic stresses. Although researchers have made great efforts on the functional analysis of individual family members, Hsps have not been fully characterized in rice (Oryza sativa L.) and little is known about their interactors. In this study, we combined orthology-based approach with expression association data to screen rice Hsps for the expression patterns of which strongly correlated with that of heat responsive probe-sets. Twenty-seven Hsp candidates were identified, including 12 small Hsps, six Hsp70s, three Hsp60s, three Hsp90s, and three clpB/Hsp100s. Then, using a combination of interolog and expression profile-based methods, we inferred 430 interactors of Hsp70s in rice, and validated the interactions by co-localization and function-based methods. Subsequent analysis showed 13 interacting domains and 28 target motifs were over-represented in Hsp70s interactors. Twenty-four GO terms of biological processes and five GO terms of molecular functions were enriched in the positive interactors, whose expression levels were positively associated with Hsp70s. Hsp70s interaction network implied that Hsp70s were involved in macromolecular translocation, carbohydrate metabolism, innate immunity, photosystem II repair and regulation of kinase activities. Twenty-seven Hsps in rice were identified and 430 interactors of Hsp70s were inferred and validated, then the interacting network of Hsp70s was induced and the function of Hsp70s was analyzed. Furthermore, two databases named Rice Heat Shock Proteins (RiceHsps) and Rice Gene Expression Profile (RGEP), and one online tool named Protein-Protein Interaction Predictor (PPIP), were constructed and could be accessed at http://bioinformatics.fafu.edu.cn/.

  3. Molecular cloning and gene expression analysis of Ercc6l in Sika deer (Cervus nippon hortulorum.

    Directory of Open Access Journals (Sweden)

    Yupeng Yin

    Full Text Available BACKGROUND: One important protein family that functions in nucleotide excision repair (NER factors is the SNF2 family. A newly identified mouse ERCC6-like gene, Ercc6l (excision repair cross-complementing rodent repair deficiency, complementation group 6-like, has been shown to be another developmentally related member of the SNF2 family. METHODOLOGY/PRINCIPAL FINDINGS: In this study, Sika deer Ercc6l cDNA was first cloned and then sequenced. The full-length cDNA of the Sika deer Ercc6l gene is 4197 bp and contains a 3732 bp open reading frame that encodes a putative protein of 1243 amino acids. The similarity of Sika deer Ercc6l to Bos taurus Ercc6l is 94.05% at the amino acid sequence level. The similarity, however, is reduced to 68.42-82.21% when compared to Ercc6l orthologs in other mammals and to less than 50% compared to orthologs in Gallus gallus and Xenopus. Additionally, the expression of Ercc6l mRNA was investigated in the organs of fetal and adult Sika deer (FSD and ASD, respectively by quantitative RT-PCR. The common expression level of Ercc6l mRNA in the heart, liver, spleen, lung, kidney, and stomach from six different developmental stages of 18 Sika deer were examined, though the expression levels in each organ varied among individual Sika deer. During development, there was a slight trend toward decreased Ercc61 mRNA expression. The highest Ercc6l expression levels were seen at 3 months old in every organ and showed the highest level of detection in the spleen of FSD. The lowest Ercc6l expression levels were seen at 3 years old. CONCLUSIONS/SIGNIFICANCE: We are the first to successfully clone Sika deer Ercc6l mRNA. Ercc6l transcript is present in almost every organ. During Sika deer development, there is a slight trend toward decreased Ercc61 mRNA expression. It is possible that Ercc6l has other roles in embryonic development and in maintaining the growth of animals.

  4. Establishment and Identification of Chinese Hamster Ovary Cell Lines with Stable Expression of Soluble CD40 Ligands

    Directory of Open Access Journals (Sweden)

    JIANG Hua-wei

    2014-09-01

    Full Text Available Objective: To establish the Chinese Hamster Ovary (CHO cell lines with stable expression of soluble CD40 ligands (sCD40L. Methods: Recombinant plasmid pIRES2-EGFP-sCD40L, enzyme digestion and sequencing identification were obtained by cloning sCD40L coding sequences into eukaryotic expression vector pIRES2-EGFP from carrier pDC316-sCD40 containing sCD40L. CHO cells were transfected by electroporation, followed by screening of resistant clones with G418, after which monoclones were obtained by limited dilution assay and multiply cultured. Flow cytometer and reverted fluorescence microscope were applied to observe the expression of green fluorescent protein, while sCD40L expression was detected by polymerase chain reaction (PCR, reverse transcription-polymerase chain reaction (RT-PCR and enzyme-linked immunosorbent assay (ELISA from aspects of deoxyribose nucleic acid (DNA, messenger ribonucleic acid (mRNA and protein, respectively. CHO-sCD40L was cultured together with MDA-MB-231 cells to compare the expression changes of surface molecule fatty acid synthase (Fas by flow cytometer and observe the apoptosis of MDA-MB-231 cells after Fas activated antibodies (CH-11 were added 24 h later. Results: Plasmid pIRES2-EGFP-sCD40L was successfully established, and cell lines with stable expression of sCD40L were obtained with cloned culture after CHO cell transfection, which was named as B11. Flow cytometer and reverted fluorescence microscope showed >90% expression of green fluorescent protein, while PCR, RT-PCR and ELISA suggested integration of sCD40L genes into cell genome DNA, transcription of sCD40L mRNA and sCD40L protein expression being (4.5±2.1 ng/mL in the supernatant of cell culture, respectively. After co-culture of B11 and MDA-MB-231 cells, the surface Fas expression of MDA-MB-231 cells was increased from (3±1.02 % to (34.8±8.75%, while the apoptosis rate 24 h after addition of CH11 from (5.4±1.32% to (20.7±5.24%, and the differences

  5. 28 CFR 523.16 - Lump sum awards.

    Science.gov (United States)

    2010-07-01

    ... satisfactory performance of an unusually hazardous assignment; (c) An act which protects the lives of staff or... TRANSFER COMPUTATION OF SENTENCE Extra Good Time § 523.16 Lump sum awards. Any staff member may recommend... award is calculated. No seniority is accrued for such awards. Staff may recommend lump sum awards of...

  6. Effect of polysaccharides from Angelica sinensis on Bcl-2 and Bax protein expression of irradiated liver cells

    International Nuclear Information System (INIS)

    Sun Yuanlin; Tang Jian; Gu Xiaohong; Li Deyuan

    2009-01-01

    Objective: To investigate the effect of polysaccharides from Angelica sinensis (ASP3) on Bcl-2 and Bax protein expression of irradiated liver cells from mice. Methods: Bcl-2 and Bax protein expression of liver cells in vitro exposed to 2.0 Gy rays were examined by using immunohistochemistry method. Results: The expression of apoptosis-accelerating protein Bax in the irradiation group was enhanced obviously (70.83%), while apoptosis inhibiting protein Bcl-2 tended to decline (55.60%), with the statistically significant difference (P <0.01) compared with that of the control. ASP3 pretreatment could regulate Bcl-2 and Bax protein expression of liver cells, inhibiting Bax protein expression(64.14/58.37%) and increasing Bcl-2 protein expression(59.21%/ 67.45%). The differences between the high dosage (100 mg/L of ASP3) and the irradiation group were statistically significant (P<0.05). Conclusions: ASP3 pretreatment could prohibit the apoptosis of radiation- damaged liver cells due to abnormal expression of Bcl-2 and Bax, and reduce the cell apoptosis by increasing Bcl-2/Bax protein expression so as to enhance the radiation endurance of liver cells. (authors)

  7. Cloning and Expression of Leptospira LipL32 Antigen as a Candidate for Rapid Diagnosis

    Directory of Open Access Journals (Sweden)

    Nooshin Sohrabi

    2013-09-01

    Full Text Available Background and Objective: Leptospirosis as an important emerging infectious zoonotic disease caused by spirochetes of the genus Leptospira. Given the low sensitivity and long duration of its culture, the diagnosis of leptospirosis is mainly based on serological methods. The microscopic agglutination test (MAT is considered as the reference method. Because of the complexity of the MAT, there is an urgent need for the development of new reliable and rapid screening tests for leptospirosis. Major leptospiral outer membrane proteins (OMPs, present only in pathologic strains, could be regarded as a good candidate for diagnostic studies. Here we report the cloning and expression of LipL32, as a prominent immunogenic protein, in a prokaryotic system. Materials and Methods: After the amplification of LipL32 gene, it was cloned into the pQE30 vector. The insertion of LipL32 gene into the vector was screened and confirmed with restriction analysis and sequencing. The recombinant plasmid was transformed into E. coli M15 strain, and the expressed protein was identified by SDS-PAGE and western blotting. This recombinant protein with 6× His-tagged sequence was purified using Ni-NTA affinity column chromatography. Results: The results revealed that the selected gene was successfully cloned in pQE30 vector and recombinant protein (rLipL32 of approximately ~32 kDa was produced, purified and confirmed by western blotting. Conclusion: This recombinant protein could be potentially used for the development of serodiagnosis tests for the diagnosis of leptospirosis in humans and animals.

  8. Purification, crystallization and preliminary X-ray diffraction study of human ribosomal protein L10 core domain

    International Nuclear Information System (INIS)

    Nishimura, Mitsuhiro; Kaminishi, Tatsuya; Kawazoe, Masahito; Shirouzu, Mikako; Takemoto, Chie; Yokoyama, Shigeyuki; Tanaka, Akiko; Sugano, Sumio; Yoshida, Takuya; Ohkubo, Tadayasu; Kobayashi, Yuji

    2007-01-01

    A truncated variant of human ribosomal protien L10 was prepared and crystallized. Diffraction data were collected to 2.5 Å resolution. Eukaryotic ribosomal protein L10 is an essential component of the large ribosomal subunit, which organizes the architecture of the aminoacyl-tRNA binding site. The human L10 protein is also called the QM protein and consists of 214 amino-acid residues. For crystallization, the L10 core domain (L10CD, Phe34–Glu182) was recombinantly expressed in Escherichia coli and purified to homogeneity. A hexagonal crystal of L10CD was obtained by the sitting-drop vapour-diffusion method. The L10CD crystal diffracted to 2.5 Å resolution and belongs to space group P3 1 21 or P3 2 21

  9. Expression, secretion and antigenic variation of bacterial S-layer proteins

    NARCIS (Netherlands)

    Boot, H.J.; Pouwels, P.H.

    1996-01-01

    The function of the S-layer, a regularly arranged structure on the outside of numerous bacteria, appears to be different for bacteria living in different environments. Almost no similarity exists between the primary sequences of S-proteins, although their amino acid composition is comparable.

  10. L-4F Inhibits Oxidized Low-density Lipoprotein-induced Inflammatory Adipokine Secretion via Cyclic AMP/Protein Kinase A-CCAAT/Enhancer Binding Protein β Signaling Pathway in 3T3-L1 Adipocytes

    Directory of Open Access Journals (Sweden)

    Xiang-Zhu Xie

    2016-01-01

    Conclusions: OxLDL induces C/EBPβ protein synthesis in a time-dependent manner and enhances MCP-1 secretion and expression in 3T3-L1 adipocytes. L-4F dose-dependently counterbalances the pro-inflammatory effect of oxLDL, and cyclic AMP/PKA-C/EBPβ signaling pathway may participate in it.

  11. A new essential protein discovery method based on the integration of protein-protein interaction and gene expression data

    Directory of Open Access Journals (Sweden)

    Li Min

    2012-03-01

    Full Text Available Abstract Background Identification of essential proteins is always a challenging task since it requires experimental approaches that are time-consuming and laborious. With the advances in high throughput technologies, a large number of protein-protein interactions are available, which have produced unprecedented opportunities for detecting proteins' essentialities from the network level. There have been a series of computational approaches proposed for predicting essential proteins based on network topologies. However, the network topology-based centrality measures are very sensitive to the robustness of network. Therefore, a new robust essential protein discovery method would be of great value. Results In this paper, we propose a new centrality measure, named PeC, based on the integration of protein-protein interaction and gene expression data. The performance of PeC is validated based on the protein-protein interaction network of Saccharomyces cerevisiae. The experimental results show that the predicted precision of PeC clearly exceeds that of the other fifteen previously proposed centrality measures: Degree Centrality (DC, Betweenness Centrality (BC, Closeness Centrality (CC, Subgraph Centrality (SC, Eigenvector Centrality (EC, Information Centrality (IC, Bottle Neck (BN, Density of Maximum Neighborhood Component (DMNC, Local Average Connectivity-based method (LAC, Sum of ECC (SoECC, Range-Limited Centrality (RL, L-index (LI, Leader Rank (LR, Normalized α-Centrality (NC, and Moduland-Centrality (MC. Especially, the improvement of PeC over the classic centrality measures (BC, CC, SC, EC, and BN is more than 50% when predicting no more than 500 proteins. Conclusions We demonstrate that the integration of protein-protein interaction network and gene expression data can help improve the precision of predicting essential proteins. The new centrality measure, PeC, is an effective essential protein discovery method.

  12. Hypoxic-induced stress protein expression in rat cardiac myocytes

    International Nuclear Information System (INIS)

    Howard, G.; Geoghegan, T.E.

    1986-01-01

    Mammalian stress proteins can be induced in cells and tissues exposed to a variety of conditions including hyperthermia and diminished O 2 supply. The authors have previously shown that the expression of three stress proteins (71, 85, and 95 kDa) was induced in cardiac tissue from mice exposed to hypoxic conditions. The expression of mRNAs coding for the 85 and 95 kDa proteins increase with time of exposure to hypoxia, while the mRNA coding for the 71 kDa protein is transiently induced. The authors extended these studies to investigate the expression of stress proteins in isolated rat cardiac myocytes. Freshly prepared myocytes were exposed to control, hypoxic, anoxic, or heat-shock environments for up to 16 h. The proteins were then labeled for 6 hours with [ 35 S]methionine. Analysis of the solubilized proteins by SDS-PAGE and autoradiography showed that there was a 6-fold increase in synthesis of the 85 kDa protein upon exposure to hypoxia but not heat-shock conditions. The 71 kDa protein was present at high levels in both control and treated myocyte protein preparations, and presumably had been induced during the isolation procedure. Total RNA isolated from intact rat heart and isolated myocytes was compared by cell-free translation analysis and showed induction of RNAs coding for several stress proteins in the myocyte preparation. The induced proteins at 85 and 95 kDa have molecular weights similar to reported cell stress and/or glucose-regulated proteins

  13. SGLT2 Protein Expression Is Increased in Human Diabetic Nephropathy

    Science.gov (United States)

    Wang, Xiaoxin X.; Levi, Jonathan; Luo, Yuhuan; Myakala, Komuraiah; Herman-Edelstein, Michal; Qiu, Liru; Wang, Dong; Peng, Yingqiong; Grenz, Almut; Lucia, Scott; Dobrinskikh, Evgenia; D'Agati, Vivette D.; Koepsell, Hermann; Kopp, Jeffrey B.; Rosenberg, Avi Z.; Levi, Moshe

    2017-01-01

    There is very limited human renal sodium gradient-dependent glucose transporter protein (SGLT2) mRNA and protein expression data reported in the literature. The first aim of this study was to determine SGLT2 mRNA and protein levels in human and animal models of diabetic nephropathy. We have found that the expression of SGLT2 mRNA and protein is increased in renal biopsies from human subjects with diabetic nephropathy. This is in contrast to db-db mice that had no changes in renal SGLT2 protein expression. Furthermore, the effect of SGLT2 inhibition on renal lipid content and inflammation is not known. The second aim of this study was to determine the potential mechanisms of beneficial effects of SGLT2 inhibition in the progression of diabetic renal disease. We treated db/db mice with a selective SGLT2 inhibitor JNJ 39933673. We found that SGLT2 inhibition caused marked decreases in systolic blood pressure, kidney weight/body weight ratio, urinary albumin, and urinary thiobarbituric acid-reacting substances. SGLT2 inhibition prevented renal lipid accumulation via inhibition of carbohydrate-responsive element-binding protein-β, pyruvate kinase L, SCD-1, and DGAT1, key transcriptional factors and enzymes that mediate fatty acid and triglyceride synthesis. SGLT2 inhibition also prevented inflammation via inhibition of CD68 macrophage accumulation and expression of p65, TLR4, MCP-1, and osteopontin. These effects were associated with reduced mesangial expansion, accumulation of the extracellular matrix proteins fibronectin and type IV collagen, and loss of podocyte markers WT1 and synaptopodin, as determined by immunofluorescence microscopy. In summary, our study showed that SGLT2 inhibition modulates renal lipid metabolism and inflammation and prevents the development of nephropathy in db/db mice. PMID:28196866

  14. Two New Chroman Derivations from the Endophytic Penicillium sp. DCS523

    OpenAIRE

    Li, Jun-Tian; Fu, Xiao-Li; Tan, Chun; Zeng, Ying; Wang, Qi; Zhao, Pei-Ji

    2011-01-01

    Strain DCS523 was isolated from the branch tissue of Daphniphyllum longeracemosum and determined to be a Penicillium sp. according to the ITS sequence analysis. The extracts from the PDA solid fermentation media of Penicillium sp. DCS523 were purified to give two new chroman derivatives as well as six known compounds. Based on their spectral data the new compounds were identified as (Z)-6-acetyl- 3-(1,2-dihydroxypropylidene)-5-hydroxy-8-methylchroman-2-one (1) and 6-acetyl-2α,5- dihydroxy-2-(...

  15. Expression of Colocasia esculenta tuber agglutinin in Indian mustard provides resistance against Lipaphis erysimi and the expressed protein is non-allergenic.

    Science.gov (United States)

    Das, Ayan; Ghosh, Prithwi; Das, Sampa

    2018-06-01

    Transgenic Brassica juncea plants expressing Colocasia esculenta tuber agglutinin (CEA) shows the non-allergenic nature of the expressed protein leading to enhanced mortality and reduced fecundity of mustard aphid-Lipaphis erysimi. Lipaphis erysimi (common name: mustard aphid) is the most devastating sucking insect pest of Indian mustard (Brassica juncea L.). Colocasia esculenta tuber agglutinin (CEA), a GNA (Galanthus nivalis agglutinin)-related lectin has previously been reported by the present group to be effective against a wide array of hemipteran insects in artificial diet-based bioassays. In the present study, efficacy of CEA in controlling L. erysimi has been established through the development of transgenic B. juncea expressing this novel lectin. Southern hybridization of the transgenic plants confirmed stable integration of cea gene. Expression of CEA in T 0 , T 1 and T 2 transgenic plants was confirmed through western blot analysis. Level of expression of CEA in the T 2 transgenic B. juncea ranged from 0.2 to 0.47% of the total soluble protein. In the in planta insect bioassays, the CEA expressing B. juncea lines exhibited enhanced insect mortality of 70-81.67%, whereas fecundity of L. erysimi was reduced by 49.35-62.11% compared to the control plants. Biosafety assessment of the transgenic B. juncea protein containing CEA was carried out by weight of evidence approach following the recommendations by FAO/WHO (Evaluation of the allergenicity of genetically modified foods: report of a joint FAO/WHO expert consultation, 22-25 Jan, Rome, http://www.fao.org/docrep/007/y0820e/y0820e00.HTM , 2001), Codex (Codex principles and guidelines on foods derived from biotechnology, Food and Agriculture Organization of the United Nations, Rome; Codex, Codex principles and guidelines on foods derived from biotechnology, Food and Agriculture Organization of the United Nations, Rome, 2003) and ICMR (Indian Council of Medical Research, guidelines for safety assessment of

  16. Cellular responses to the expression of unstable secretory proteins in the filamentous fungus Aspergillus oryzae.

    Science.gov (United States)

    Yokota, Jun-Ichi; Shiro, Daisuke; Tanaka, Mizuki; Onozaki, Yasumichi; Mizutani, Osamu; Kakizono, Dararat; Ichinose, Sakurako; Shintani, Tomoko; Gomi, Katsuya; Shintani, Takahiro

    2017-03-01

    Filamentous fungi are often used as cell factories for recombinant protein production because of their ability to secrete large quantities of hydrolytic enzymes. However, even using strong transcriptional promoters, yields of nonfungal proteins are generally much lower than those of fungal proteins. Recent analyses revealed that expression of certain nonfungal secretory proteins induced the unfolded protein response (UPR), suggesting that they are recognized as proteins with folding defects in filamentous fungi. More recently, however, even highly expressed endogenous secretory proteins were found to evoke the UPR. These findings raise the question of whether the unfolded or misfolded state of proteins is selectively recognized by quality control mechanisms in filamentous fungi. In this study, a fungal secretory protein (1,2-α-D-mannosidase; MsdS) with a mutation that decreases its thermostability was expressed at different levels in Aspergillus oryzae. We found that, at moderate expression levels, wild-type MsdS was secreted to the medium, while the mutant was not. In the strain with a deletion for the hrdA gene, which is involved in the endoplasmic reticulum-associated degradation pathway, mutant MsdS had specifically increased levels in the intracellular fraction but was not secreted. When overexpressed, the mutant protein was secreted to the medium to a similar extent as the wild-type protein; however, the mutant underwent hyperglycosylation and induced the UPR. Deletion of α-amylase (the most abundant secretory protein in A. oryzae) alleviated the UPR induction by mutant MsdS overexpression. These findings suggest that misfolded MsdS and unfolded species of α-amylase might act synergistically for UPR induction.

  17. Heterologous protein display on the cell surface of lactic acid bacteria mediated by the s-layer protein

    Directory of Open Access Journals (Sweden)

    Han Lanlan

    2011-10-01

    Full Text Available Abstract Background Previous studies have revealed that the C-terminal region of the S-layer protein from Lactobacillus is responsible for the cell wall anchoring, which provide an approach for targeting heterologous proteins to the cell wall of lactic acid bacteria (LAB. In this study, we developed a new surface display system in lactic acid bacteria with the C-terminal region of S-layer protein SlpB of Lactobacillus crispatus K2-4-3 isolated from chicken intestine. Results Multiple sequence alignment revealed that the C-terminal region (LcsB of Lb. crispatus K2-4-3 SlpB had a high similarity with the cell wall binding domains SA and CbsA of Lactobacillus acidophilus and Lb. crispatus. To evaluate the potential application as an anchoring protein, the green fluorescent protein (GFP or beta-galactosidase (Gal was fused to the N-terminus of the LcsB region, and the fused proteins were successfully produced in Escherichia coli, respectively. After mixing them with the non-genetically modified lactic acid bacteria cells, the fused GFP-LcsB and Gal-LcsB were functionally associated with the cell surface of various lactic acid bacteria tested. In addition, the binding capacity could be improved by SDS pretreatment. Moreover, both of the fused proteins could simultaneously bind to the surface of a single cell. Furthermore, when the fused DNA fragment of gfp:lcsB was inserted into the Lactococcus lactis expression vector pSec:Leiss:Nuc, the GFP could not be secreted into the medium under the control of the nisA promoter. Western blot, in-gel fluorescence assay, immunofluorescence microscopy and SDS sensitivity analysis confirmed that the GFP was successfully expressed onto the cell surface of L. lactis with the aid of the LcsB anchor. Conclusion The LcsB region can be used as a functional scaffold to target the heterologous proteins to the cell surfaces of lactic acid bacteria in vitro and in vivo, and has also the potential for biotechnological

  18. Intrathecal injection of naked plasmid DNA provides long-term expression of secreted proteins.

    Science.gov (United States)

    Hughes, Travis S; Langer, Stephen J; Johnson, Kirk W; Chavez, Raymond A; Watkins, Linda R; Milligan, Erin D; Leinwand, Leslie A

    2009-01-01

    Therapeutic benefit has been reported to result from intrathecal (i.t.) injection of transgene vectors, including naked DNA. However, most studies using naked DNA have measured only the transgene expression of intracellular proteins. Here we demonstrate that i.t. injection of naked DNA can result in long-term expression of secreted proteins. Plasmids expressing either secreted alkaline phosphatase (SEAP) or human interleukin-10 (hIL-10) were injected into the i.t. space in rats, and transgene products were repeatedly measured in the cerebrospinal fluid (CSF). Both SEAP and hIL-10 were maximal at 1 and 2 days after the injection and still detectable at 4 months. The utilization of a plasmid having two features that are hypothesized to increase gene expression (matrix attachment regions (MARs) and lack of CpG dinucleotides) resulted in a significant increase in gene expression. Reinjection of SEAP or hIL-10 plasmids after 4 months significantly increased protein levels at 1 and 14 days after the reinjection. SEAP was uniformly distributed between the DNA delivery site (approximately vertebral level T13) and the lumbar puncture site (L5/L6 inter-vertebral space), was reduced at the cisterna magna, and was detectable, though at much lower levels, in serum. These data suggest that naked DNA has the potential to be used as a therapeutic tool for applications that require long-term release of transgenes into the CSF.

  19. Interaction between the G3 and L5 proteins of the vaccinia virus entry-fusion complex

    International Nuclear Information System (INIS)

    Wolfe, Cindy L.; Moss, Bernard

    2011-01-01

    The vaccinia virus entry-fusion complex (EFC) consists of 10 to 12 proteins that are embedded in the viral membrane and individually required for fusion with the cell and entry of the core into the cytoplasm. The architecture of the EFC is unknown except for information regarding two pair-wise interactions: A28 with H2 and A16 with G9. Here we used a technique to destabilize the EFC by repressing the expression of individual components and identified a third pair-wise interaction: G3 with L5. These two proteins remained associated under several different EFC destabilization conditions and in each case were immunopurified together as demonstrated by Western blotting. Further evidence for the specific interaction of G3 and L5 was obtained by mass spectrometry. This interaction also occurred when G3 and L5 were expressed in uninfected cells, indicating that no other viral proteins were required. Thus, the present study extends our knowledge of the protein interactions important for EFC assembly and stability.

  20. High level heterologous protein production in Lactococcus and Lactobacillus using a new secretion system based on the Lactobacillus brevis S-layer signals.

    Science.gov (United States)

    Savijoki, K; Kahala, M; Palva, A

    1997-02-28

    A secretion cassette, based on the expression and secretion signals of a S-layer protein (SlpA) from Lactobacillus brevis, was constructed. E. coli beta-lactamase (Bla) was used as the reporter protein to determine the functionality of the S-layer signals for heterologous expression and secretion in Lactococcus lactis, Lactobacillus brevis, Lactobacillus plantarum, Lactobacillus gasseri and Lactobacillus casei using a low-copy-number plasmid derived from pGK12. In all hosts tested, the bla gene was expressed under the slpA signals and all Bla activity was secreted to the culture medium. The Lb. brevis S-layer promoters were very efficiently recognized in L. lactis, Lb. brevis and Lb. plantarum, whereas in Lb. gasseri the slpA promoter region appeared to be recognized at a lower level and in Lb. casei the level of transcripts was below the detection limit. The production of Bla was mainly restricted to the exponential phase of growth. The highest yield of Bla was obtained with L. lactis and Lb. brevis. Without pH control, substantial degradation of Bla occurred during prolonged cultivations with all lactic acid bacteria (LAB) tested. When growing L. lactis and Lb. brevis under pH control, the Bla activity could be stabilized also at the stationary phase. L. lactis produced up to 80 mg/l of Bla which to our knowledge represents the highest amount of a heterologous protein secreted by LAB so far. The short production phase implied a very high rate of secretion with a calculated value of 5 x 10(5) Bla molecules/cell per h. Such a high rate was also observed with Lb. plantarum, whereas in Lb. brevis the competition between the wild type slpA gene and the secretion construct probably lowered the rate of Bla production. The results obtained indicate wide applicability of the Lb. brevis slpA signals for efficient protein production and secretion in LAB.

  1. Protein S is protective in pulmonary fibrosis.

    Science.gov (United States)

    Urawa, M; Kobayashi, T; D'Alessandro-Gabazza, C N; Fujimoto, H; Toda, M; Roeen, Z; Hinneh, J A; Yasuma, T; Takei, Y; Taguchi, O; Gabazza, E C

    2016-08-01

    Essentials Epithelial cell apoptosis is critical in the pathogenesis of idiopathic pulmonary fibrosis. Protein S, a circulating anticoagulant, inhibited apoptosis of lung epithelial cells. Overexpression of protein S in lung cells reduced bleomycin-induced pulmonary fibrosis. Intranasal therapy with exogenous protein S ameliorated bleomycin-induced pulmonary fibrosis. Background Pulmonary fibrosis is the terminal stage of interstitial lung diseases, some of them being incurable and of unknown etiology. Apoptosis plays a critical role in lung fibrogenesis. Protein S is a plasma anticoagulant with potent antiapoptotic activity. The role of protein S in pulmonary fibrosis is unknown. Objectives To evaluate the clinical relevance of protein S and its protective role in pulmonary fibrosis. Methods and Results The circulating level of protein S was measured in patients with pulmonary fibrosis and controls by the use of enzyme immunoassays. Pulmonary fibrosis was induced with bleomycin in transgenic mice overexpressing human protein S and wild-type mice, and exogenous protein S or vehicle was administered to wild-type mice; fibrosis was then compared in both models. Patients with pulmonary fibrosis had reduced circulating levels of protein S as compared with controls. Inflammatory changes, the levels of profibrotic cytokines, fibrosis score, hydroxyproline content in the lungs and oxygen desaturation were significantly reduced in protein S-transgenic mice as compared with wild-type mice. Wild-type mice treated with exogenous protein S showed significant decreases in the levels of inflammatory and profibrotic markers and fibrosis in the lungs as compared with untreated control mice. After bleomycin infusion, mice overexpressing human protein S showed significantly low caspase-3 activity, enhanced expression of antiapoptotic molecules and enhanced Akt and Axl kinase phosphorylation as compared with wild-type counterparts. Protein S also inhibited apoptosis of alveolar

  2. Protein changes in Lepidium sativum L. exposed to Hg during soil phytoremediation.

    Science.gov (United States)

    Smolinska, Beata; Szczodrowska, Agnieszka; Leszczynska, Joanna

    2017-08-03

    Some investigations have been carried out in this study to find the best technique of soil reclamation in mercurypolluted soil. In this study, we examined Lepidium sativum L. as a plant useful for Hg phytoextraction. The simultaneous application of compost and thiosulfate was explored as a possible method of enhancing the process of phytoextraction. The results of the investigations of plant protein changes during assisted Hg phytoextraction were also provided. The results of the study show that combined use of compost and thiosulfate significantly increased both the total Hg accumulation and its translocation to aerial plant tissues. Plant protein analysis showed that L. sativum L. has the ability to respond to environmental stress condition by the activation of additional proteins. The additional proteins, like homocysteine methyltransferase, ribulose bisphosphate carboxylases (long and short chains), 14-3-3-like protein, and biosynthesis-related 40S ribosomal protein S15, were activated in plant shoots only in experiments carried out in Hg-polluted soil. There were no protein changes observed in plants exposed to compost and thiosulfate. It suggests that the combined use of compost and thiosulfate decreased Hg toxicity.

  3. PD-L1 expression is associated with p16INK4A expression in non-oropharyngeal head and neck squamous cell carcinoma

    Science.gov (United States)

    Chen, San-Chi; Chang, Peter Mu-Hsin; Wang, Hsiao-Jung; Tai, Shyh-Kuan; Chu, Pen-Yuan; Yang, Muh-Hwa

    2018-01-01

    PD-L1 expression is critical in helping tumor cells evade the immune system. However, the level of PD-L1 expression in non-oropharyngeal head and neck squamous cell carcinoma (non-OPHNSCC) and its association with patient prognosis remains unclear. A retrospective clinicopathological analysis was performed on 106 patients with non-OPHNSCC diagnosed between 2007 and 2014. In the current study, tissue arrays from paraffin-embedded non-OPHNSCC samples obtained from patients were constructed, and PD-L1 and p16INK4A expression were determined using immunohistochemistry. Systemic inflammatory factors, including C-reactive protein, serum white blood cell, neutrophil, monocyte and lymphocyte counts were also analyzed. The current study demonstrated that PD-L1 was overexpressed in 32.1% (34/106) and p16INK4A in 20.8% (22/106) of patients. The expression of PD-L1 was associated with p16INK4A expression (P<0.01) but was not associated with levels of systemic inflammatory factors. Tumor stage was determined to be a significant prognostic value (stage I/II vs. III/IV, P=0.03), however, PD-L1, p16INK4A or other clinicopathological factors were not. The current study identified an association between PD-L1 and p16INK4A expression in non-OPHNSCC. This may facilitate the development of anti-PD1/PDL1 therapies to treat patients with head and neck cancer. PMID:29434933

  4. Recognition determinants for proteins and antibiotics within 23S rRNA

    DEFF Research Database (Denmark)

    Douthwaite, Stephen Roger; Voldborg, Bjørn Gunnar Rude; Hansen, Lykke Haastrup

    1995-01-01

    Ribosomal RNAs fold into phylogenetically conserved secondary and tertiary structures that determine their function in protein synthesis. We have investigated Escherichia coli 23S rRNA to identify structural elements that interact with antibiotic and protein ligands. Using a combination of molecu......Ribosomal RNAs fold into phylogenetically conserved secondary and tertiary structures that determine their function in protein synthesis. We have investigated Escherichia coli 23S rRNA to identify structural elements that interact with antibiotic and protein ligands. Using a combination......-proteins L10.(L12)4 and L11 and is inhibited by interaction with the antibiotic thiostrepton. The peptidyltransferase center within domain V is inhibited by macrolide, lincosamide, and streptogramin B antibiotics, which interact with the rRNA around nucleotide A2058. Drug resistance is conferred by mutations...

  5. Evolution of RLSB, a nuclear-encoded S1 domain RNA binding protein associated with post-transcriptional regulation of plastid-encoded rbcL mRNA in vascular plants.

    Science.gov (United States)

    Yerramsetty, Pradeep; Stata, Matt; Siford, Rebecca; Sage, Tammy L; Sage, Rowan F; Wong, Gane Ka-Shu; Albert, Victor A; Berry, James O

    2016-06-29

    RLSB, an S-1 domain RNA binding protein of Arabidopsis, selectively binds rbcL mRNA and co-localizes with Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) within chloroplasts of C3 and C4 plants. Previous studies using both Arabidopsis (C3) and maize (C4) suggest RLSB homologs are post-transcriptional regulators of plastid-encoded rbcL mRNA. While RLSB accumulates in all Arabidopsis leaf chlorenchyma cells, in C4 leaves RLSB-like proteins accumulate only within Rubisco-containing bundle sheath chloroplasts of Kranz-type species, and only within central compartment chloroplasts in the single cell C4 plant Bienertia. Our recent evidence implicates this mRNA binding protein as a primary determinant of rbcL expression, cellular localization/compartmentalization, and photosynthetic function in all multicellular green plants. This study addresses the hypothesis that RLSB is a highly conserved Rubisco regulatory factor that occurs in the chloroplasts all higher plants. Phylogenetic analysis has identified RLSB orthologs and paralogs in all major plant groups, from ancient liverworts to recent angiosperms. RLSB homologs were also identified in algae of the division Charophyta, a lineage closely related to land plants. RLSB-like sequences were not identified in any other algae, suggesting that it may be specific to the evolutionary line leading to land plants. The RLSB family occurs in single copy across most angiosperms, although a few species with two copies were identified, seemingly randomly distributed throughout the various taxa, although perhaps correlating in some cases with known ancient whole genome duplications. Monocots of the order Poales (Poaceae and Cyperaceae) were found to contain two copies, designated here as RLSB-a and RLSB-b, with only RLSB-a implicated in the regulation of rbcL across the maize developmental gradient. Analysis of microsynteny in angiosperms revealed high levels of conservation across eudicot species and for both paralogs in

  6. Evolved Escherichia coli strains for amplified, functional expression of membrane proteins.

    Science.gov (United States)

    Gul, Nadia; Linares, Daniel M; Ho, Franz Y; Poolman, Bert

    2014-01-09

    The major barrier to the physical characterization and structure determination of membrane proteins is low protein yield and/or low functionality in recombinant expression. The enteric bacterium Escherichia coli is the most widely employed organism for producing recombinant proteins. Beside several advantages of this expression host, one major drawback is that the protein of interest does not always adopt its native conformation and may end up in large insoluble aggregates. We describe a robust strategy to increase the likelihood of overexpressing membrane proteins in a functional state. The method involves fusion in tandem of green fluorescent protein and the erythromycin resistance protein (23S ribosomal RNA adenine N-6 methyltransferase, ErmC) to the C-terminus of a target membrane protein. The fluorescence of green fluorescent protein is used to report the folding state of the target protein, whereas ErmC is used to select for increased expression. By gradually increasing the erythromycin concentration of the medium and testing different membrane protein targets, we obtained a number of evolved strains of which four (NG2, NG3, NG5 and NG6) were characterized and their genome was fully sequenced. Strikingly, each of the strains carried a mutation in the hns gene, whose product is involved in genome organization and transcriptional silencing. The degree of expression of (membrane) proteins correlates with the severity of the hns mutation, but cells in which hns was deleted showed an intermediate expression performance. We propose that (partial) removal of the transcriptional silencing mechanism changes the levels of proteins essential for the functional overexpression of membrane proteins. © 2013.

  7. Two new chroman derivations from the endophytic Penicillium sp. DCS523.

    Science.gov (United States)

    Li, Jun-Tian; Fu, Xiao-Li; Tan, Chun; Zeng, Ying; Wang, Qi; Zhao, Pei-Ji

    2011-01-18

    Strain DCS523 was isolated from the branch tissue of Daphniphyllum longeracemosum and determined to be a Penicillium sp. according to the ITS sequence analysis. The extracts from the PDA solid fermentation media of Penicillium sp. DCS523 were purified to give two new chroman derivatives as well as six known compounds. Based on their spectral data the new compounds were identified as (Z)-6-acetyl- 3-(1,2-dihydroxypropylidene)-5-hydroxy-8-methylchroman-2-one and 6-acetyl-2α,5- dihydroxy-2-(2-hydroxypropyl)- 3α,8-dimethylchroman, respectively.

  8. The occurrence of gibberellin-binding protein(s) in pea

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Z.H.

    1988-01-01

    In vitro gibberellin (GA) binding properties of a cytosol fraction from epicotyls of dwarf pea (Pisum sativum L. cv. Progress No. 9) and tall pea (Pisum sativum L. cv. Alaska) were investigated using ({sup 3}H)GA{sub 4} in a DEAE filter paper assay at 0-3 C. The binding obtained is saturable, reversible, and temperature labile in dwarf pea, and has a half-life of dissociation of 5-6 min. By varying the concentration of ({sup 3}H)GA{sub 4} in the incubation medium the Kd was estimated to be 120-140 nM in dwarf pea and 70 nM in tall pea. The number of binding sites (n) was estimated to be 0.66 and 0.43 pmole mg{sup {minus}1} soluble protein in dwarf pea and in tall pea, respectively. In competition binding assays, biologically active GAs, such as GA{sub 3} and GA{sub 4} could reduce the level of ({sup 3}H)GA{sub 4} binding much more than the biologically inactive GA{sub 4} methyl ester and epi-GA{sub 4}. Changes in gibberellin-binding protein(s) were studied during seed germination. While the Kd of the binding protein(s) for ({sup 3}H)GA{sub 4} remained the same, there was a marked increase in the number of binding sites from 24 h soaked seed to 8-day old seedlings. Also, the Kd and the number of binding sites in the GA-responsive apical part and in the nonresponsive basal part in the epicotyl were similar. The effect of light on gibberellin-binding protein in dwarf pea was also studied. The GA-binding protein in dwarf pea was partially purified by gel filtration and ion exchange chromatography.

  9. HUMAN PAPILLOMA VIRUS IMMUNOGEN CREATION ON THE BASE OF CHIMERIC RECOMBINANT PROTEIN L2E7

    Directory of Open Access Journals (Sweden)

    I. S. Malakhov

    2016-01-01

    Full Text Available The cervical cancer is one of the most common diseases in world. This malignancy is the seventh highest prevalence oncological disease worldwide and the second highest prevalence oncological disease of women in the world. Meanwhile women need to be infected by human papilloma virus (HPV is absolutely necessary for it further evolution, HPV DNA was found in 99.97% cases of disease. Except cervical cancer, HPV cause 85% of rectal cancer, 50% of the vulva, vagina and penis cancers, 20% of oropharyngeal cancer and 10% of larynx and esophagus cancers. In 2009, 14 000 women were diagnosed with cervical cancer in Russia. The growth in morbidity was 19% (in comparison with 1999. The most effective recognised measure for almost each infection prophylaxis is a vaccination. Two human papilloma virus vaccines are available in Russia nowadays — Gardasil and Cervarix, produced in Belgium and the Netherlands respectively. Cervarix is a bivalent vaccine based on virus-like particles (VLP of two types. Recombinant major capsid proteins L1 HPV 16 and HPV 18 express in baculovirus expression system and self-assembled into virus-like particles (about 70 percent of cervical cancers are caused by HPV 16 and HPV 18. VLP of each strain produced in different baculovirus vectors and then combined in single drug. Gardasil is like Cervarix with few exceptions. Producing organisms are fungi S. cerevisiae in this case, and this vaccine contains low-risk HPV 6 and HPV 11 VLP. Thus, Gardasil is quadrivalent HPV-6/11/16/18 vaccine. These vaccines are very effective in averting infection of disease and don’t have significant side-effects, however they have some disadvantages. Firstly, they have a high price because of necessity of their expression in eukaryotic cells. Secondly, they are strain-specific, so vaccines are completely effective only for virus’s strains which are represented in the vaccine. Thirdly, it`s the absence of therapeutic (treatment of established

  10. Proteomic analysis identifies differentially expressed proteins after red propolis treatment in Hep-2 cells.

    Science.gov (United States)

    Frozza, Caroline Olivieri da Silva; Ribeiro, Tanara da Silva; Gambato, Gabriela; Menti, Caroline; Moura, Sidnei; Pinto, Paulo Marcos; Staats, Charley Christian; Padilha, Francine Ferreira; Begnini, Karine Rech; de Leon, Priscila Marques Moura; Borsuk, Sibele; Savegnago, Lucielli; Dellagostin, Odir; Collares, Tiago; Seixas, Fabiana Kömmling; Henriques, João Antonio Pêgas; Roesch-Ely, Mariana

    2014-01-01

    Here we investigated alterations in the protein profile of Hep-2 treated with red propolis using two-dimensional electrophoresis associated to mass spectrometry and apoptotic rates of cells treated with and without red propolis extracts through TUNEL and Annexin-V assays. A total of 325 spots were manually excised from the two-dimensional gel electrophoresis and 177 proteins were identified using LC-MS-MS. Among all proteins identified that presented differential expression, most were down-regulated in presence of red propolis extract at a concentration of 120 μg/mL (IC50): GRP78, PRDX2, LDHB, VIM and TUBA1A. Only two up-regulated proteins were identified in this study in the non-cytotoxic (6 μg/mL) red propolis treated group: RPLP0 and RAD23B. TUNEL staining assay showed a markedly increase in the mid- to late-stage apoptosis of Hep-2 cells induced by red propolis at concentrations of 60 and 120 μg/mL when compared with non-treated cells. The increase of late apoptosis was confirmed by in situ Annexin-V analysis in which red propolis extract induced late apoptosis in a dose-dependent manner. The differences in tumor cell protein profiles warrant further investigations including isolation of major bioactive compounds of red propolis in different cell lines using proteomics and molecular tests to validate the protein expression here observed. Copyright © 2013 Elsevier Ltd. All rights reserved.

  11. The primary structures of ribosomal proteins L16, L23 and L33 from the archaebacterium Halobacterium marismortui.

    Science.gov (United States)

    Hatakeyama, T; Hatakeyama, T; Kimura, M

    1988-11-21

    The complete amino acid sequences of ribosomal proteins L16, L23 and L33 from the archaebacterium Halobacterium marismortui were determined. The sequences were established by manual sequencing of peptides produced with several proteases as well as by cleavage with dilute HCl. Proteins L16, L23 and L33 consist of 119, 154 and 69 amino acid residues, and their molecular masses are 13,538, 16,812 and 7620 Da, respectively. The comparison of their sequences with those of ribosomal proteins from other organisms revealed that L23 and L33 are related to eubacterial ribosomal proteins from Escherichia coli and Bacillus stearothermophilus, while protein L16 was found to be homologous to a eukaryotic ribosomal protein from yeast. These results provide information about the special phylogenetic position of archaebacteria.

  12. The RNA-binding protein, ZFP36L2, influences ovulation and oocyte maturation.

    Directory of Open Access Journals (Sweden)

    Christopher B Ball

    Full Text Available ZFP36L2 protein destabilizes AU-rich element-containing transcripts and has been implicated in female fertility. In the C57BL/6NTac mouse, a mutation in Zfp36l2 that results in the decreased expression of a form of ZFP36L2 in which the 29 N-terminal amino acid residues have been deleted, ΔN-ZFP36L2, leads to fertilized eggs that arrest at the two-cell stage. Interestingly, homozygous ΔN-Zfp36l2 females in the C57BL/6NTac strain release 40% fewer eggs than the WT littermates (Ramos et al., 2004, suggesting an additional defect in ovulation and/or oocyte maturation. Curiously, the same ΔN-Zfp36l2 mutation into the SV129 strain resulted in anovulation, prompting us to investigate a potential problem in ovulation and oocyte maturation. Remarkably, only 20% of ΔN-Zfp36l2 oocytes in the 129S6/SvEvTac strain matured ex vivo, suggesting a defect on the oocyte meiotic maturation process. Treatment of ΔN-Zfp36l2 oocytes with a PKA inhibitor partially rescued the meiotic arrested oocytes. Furthermore, cAMP levels were increased in ΔN-Zfp36l2 oocytes, linking the cAMP/PKA pathway and ΔN-Zfp36l2 with meiotic arrest. Since ovulation and oocyte maturation are both triggered by LHR signaling, the downstream pathway was investigated. Adenylyl cyclase activity was increased in ΔN-Zfp36l2 ovaries only upon LH stimulation. Moreover, we discovered that ZFP36L2 interacts with the 3'UTR of LHR mRNA and that decreased expression levels of Zfp36l2 correlates with higher levels of LHR mRNA in synchronized ovaries. Furthermore, overexpression of ZFP36L2 decreases the endogenous expression of LHR mRNA in a cell line. Therefore, we propose that lack of the physiological down regulation of LHR mRNA levels by ZFP36L2 in the ovaries is associated with anovulation and oocyte meiotic arrest.

  13. Identification of light-harvesting chlorophyll a/b-binding protein genes of Zostera marina L. and their expression under different environmental conditions

    Science.gov (United States)

    Kong, Fanna; Zhou, Yang; Sun, Peipei; Cao, Min; Li, Hong; Mao, Yunxiang

    2016-02-01

    Photosynthesis includes the collection of light and the transfer of solar energy using light-harvesting chlorophyll a/b-binding (LHC) proteins. In high plants, the LHC gene family includes LHCA and LHCB sub-families, which encode proteins constituting the light-harvesting complex of photosystems I and II. Zostera marina L. is a monocotyledonous angiosperm and inhabits submerged marine environments rather than land environments. We characterized the Lhca and Lhcb gene families of Z. marina from the expressed sequence tags (EST) database. In total, 13 unigenes were annotated as ZmLhc, 6 in Lhca family and 7 in ZmLhcb family. ZmLHCA and ZmLHCB contained the conservative LHC motifs and amino acid residues binding chlorophyll. The average similarity among mature ZmLHCA and ZmLHCB was 48.91% and 48.66%, respectively, which indicated a high degree of divergence within ZmLHChc gene family. The reconstructed phylogenetic tree showed that the tree topology and phylogenetic relationship were similar to those reported in other high plants, suggesting that the Lhc genes were highly conservative and the classification of ZmLhc genes was consistent with the evolutionary position of Z. marina. Real-time reverse transcription (RT) PCR analysis showed that different members of ZmLhca and ZmLhcb responded to a stress in different expression patterns. Salinity, temperature, light intensity and light quality may affect the expression of most ZmLhca and ZmLhcb genes. Inorganic carbon concentration and acidity had no obvious effect on ZmLhca and ZmLhcb gene expression, except for ZmLhca6.

  14. The predictive nature of transcript expression levels on protein expression in adult human brain.

    Science.gov (United States)

    Bauernfeind, Amy L; Babbitt, Courtney C

    2017-04-24

    Next generation sequencing methods are the gold standard for evaluating expression of the transcriptome. When determining the biological implications of such studies, the assumption is often made that transcript expression levels correspond to protein levels in a meaningful way. However, the strength of the overall correlation between transcript and protein expression is inconsistent, particularly in brain samples. Following high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses of adult human brain samples, we compared the correlation in the expression of transcripts and proteins that support various biological processes, molecular functions, and that are located in different areas of the cell. Although most categories of transcripts have extremely weak predictive value for the expression of their associated proteins (R 2 values of < 10%), transcripts coding for protein kinases and membrane-associated proteins, including those that are part of receptors or ion transporters, are among those that are most predictive of downstream protein expression levels. The predictive value of transcript expression for corresponding proteins is variable in human brain samples, reflecting the complex regulation of protein expression. However, we found that transcriptomic analyses are appropriate for assessing the expression levels of certain classes of proteins, including those that modify proteins, such as kinases and phosphatases, regulate metabolic and synaptic activity, or are associated with a cellular membrane. These findings can be used to guide the interpretation of gene expression results from primate brain samples.

  15. Binding site of ribosomal proteins on prokaryotic 5S ribonucleic acids: a study with ribonucleases

    DEFF Research Database (Denmark)

    Douthwaite, S; Christensen, A; Garrett, R A

    1982-01-01

    The binding sites of ribosomal proteins L18 and L25 on 5S RNA from Escherichia coli were probed with ribonucleases A, T1, and T2 and a double helix specific cobra venom endonuclease. The results for the protein-RNA complexes, which were compared with those for the free RNA [Douthwaite, S...... stearothermophilus 5S RNA. Several protein-induced changes in the RNA structures were identified; some are possibly allosteric in nature. The two prokaryotic 5S RNAs were also incubated with total 50S subunit proteins from E. coli and B. stearothermophilus ribosomes. Homologous and heterologous reconstitution....... stearothermophilus 5S RNA, which may have been due to a third ribosomal protein L5....

  16. Improved protein quality in transgenic soybean expressing a de novo synthetic protein, MB-16.

    Science.gov (United States)

    Zhang, Yunfang; Schernthaner, Johann; Labbé, Natalie; Hefford, Mary A; Zhao, Jiping; Simmonds, Daina H

    2014-06-01

    To improve soybean [Glycine max (L.) Merrill] seed nutritional quality, a synthetic gene, MB-16 was introduced into the soybean genome to boost seed methionine content. MB-16, an 11 kDa de novo protein enriched in the essential amino acids (EAAs) methionine, threonine, lysine and leucine, was originally developed for expression in rumen bacteria. For efficient seed expression, constructs were designed using the soybean codon bias, with and without the KDEL ER retention sequence, and β-conglycinin or cruciferin seed specific protein storage promoters. Homozygous lines, with single locus integrations, were identified for several transgenic events. Transgene transmission and MB-16 protein expression were confirmed to the T5 and T7 generations, respectively. Quantitative RT-PCR analysis of developing seed showed that the transcript peaked in growing seed, 5-6 mm long, remained at this peak level to the full-sized green seed and then was significantly reduced in maturing yellow seed. Transformed events carrying constructs with the rumen bacteria codon preference showed the same transcription pattern as those with the soybean codon preference, but the transcript levels were lower at each developmental stage. MB-16 protein levels, as determined by immunoblots, were highest in full-sized green seed but the protein virtually disappeared in mature seed. However, amino acid analysis of mature seed, in the best transgenic line, showed a significant increase of 16.2 and 65.9 % in methionine and cysteine, respectively, as compared to the parent. This indicates that MB-16 elevated the sulfur amino acids, improved the EAA seed profile and confirms that a de novo synthetic gene can enhance the nutritional quality of soybean.

  17. L1R, A27L, A33R and B5R vaccinia virus genes expressed by fowlpox recombinants as putative novel orthopoxvirus vaccines.

    Science.gov (United States)

    Pacchioni, Sole Maria; Bissa, Massimiliano; Zanotto, Carlo; Morghen, Carlo De Giuli; Illiano, Elena; Radaelli, Antonia

    2013-04-11

    The traditional smallpox vaccine, administered by scarification, was discontinued in the general population from 1980, because of the absence of new smallpox cases. However, the development of an effective prophylactic vaccine against smallpox is still necessary, to protect from the threat of deliberate release of the variola virus for bioterrorism and from new zoonotic infections, and to improve the safety of the traditional vaccine. Preventive vaccination still remains the most effective control and new vectors have been developed to generate recombinant vaccines against smallpox that induce the same immunogenicity as the traditional one. As protective antibodies are mainly directed against the surface proteins of the two infectious forms of vaccinia, the intracellular mature virions and the extracellular virions, combined proteins from these viral forms can be used to better elicit a complete and protective immunity. Four novel viral recombinants were constructed based on the fowlpox genetic background, which independently express the vaccinia virus L1 and A27 proteins present on the mature virions, and the A33 and B5 proteins present on the extracellular virions. The correct expression of the transgenes was determined by RT-PCR, Western blotting, and immunofluorescence. Using immunoprecipitation and Western blotting, the ability of the proteins expressed by the four novel FPL1R, FPA27L, FPA33R and FPB5R recombinants to be recognized by VV-specific hyperimmune mouse sera was demonstrated. By neutralisation assays, recombinant virus particles released by infected chick embryo fibroblasts were shown not be recognised by hyperimmune sera. This thus demonstrates that the L1R, A27L, A33R and B5R gene products are not inserted into the new viral progeny. Fowlpox virus replicates only in avian species, but it is permissive for entry and transgene expression in mammalian cells, while being immunologically non-cross-reactive with vaccinia virus. These recombinants might

  18. Electroporation and use of hepatitis B virus envelope L proteins as bionanocapsules.

    Science.gov (United States)

    Yamada, Tadanori; Jung, Joohee; Seno, Masaharu; Kondo, Akihiko; Ueda, Masakazu; Tanizawa, Katsuyuki; Kuroda, Shun'ichi

    2012-06-01

    Hepatitis B virus (HBV) envelope L proteins, when synthesized in yeast cells, form a hollow bionanocapsule (BNC) in which genes (including large plasmids up to 40 kbp), small interfering RNA (siRNA), drugs, and proteins can be enclosed by electroporation. BNCs made from L proteins have several advantages as a delivery system: Because they display a human liver-specific receptor (the pre-S region of the L protein) on their surface, BNCs can efficiently and specifically deliver their contents to human liver-derived cells and tissues ex vivo (in cell culture) and in vivo (in a mouse xenograft model). Retargeting can be achieved simply by substituting other biorecognition molecules such as antibodies, ligands, receptors, and homing peptides for the pre-S region. In addition, BNCs have already been proven to be safe for use in humans during their development as an immunogen of hepatitis B vaccine. This protocol describes the loading of BNCs and their use in cell culture and in vivo.

  19. Biotin protein ligase from Corynebacterium glutamicum: role for growth and L: -lysine production.

    Science.gov (United States)

    Peters-Wendisch, P; Stansen, K C; Götker, S; Wendisch, V F

    2012-03-01

    Corynebacterium glutamicum is a biotin auxotrophic Gram-positive bacterium that is used for large-scale production of amino acids, especially of L-glutamate and L-lysine. It is known that biotin limitation triggers L-glutamate production and that L-lysine production can be increased by enhancing the activity of pyruvate carboxylase, one of two biotin-dependent proteins of C. glutamicum. The gene cg0814 (accession number YP_225000) has been annotated to code for putative biotin protein ligase BirA, but the protein has not yet been characterized. A discontinuous enzyme assay of biotin protein ligase activity was established using a 105aa peptide corresponding to the carboxyterminus of the biotin carboxylase/biotin carboxyl carrier protein subunit AccBC of the acetyl CoA carboxylase from C. glutamicum as acceptor substrate. Biotinylation of this biotin acceptor peptide was revealed with crude extracts of a strain overexpressing the birA gene and was shown to be ATP dependent. Thus, birA from C. glutamicum codes for a functional biotin protein ligase (EC 6.3.4.15). The gene birA from C. glutamicum was overexpressed and the transcriptome was compared with the control strain revealing no significant gene expression changes of the bio-genes. However, biotin protein ligase overproduction increased the level of the biotin-containing protein pyruvate carboxylase and entailed a significant growth advantage in glucose minimal medium. Moreover, birA overexpression resulted in a twofold higher L-lysine yield on glucose as compared with the control strain.

  20. Programmed Death Ligand 1 Expression Among 700 Consecutive Endometrial Cancers: Strong Association With Mismatch Repair Protein Deficiency.

    Science.gov (United States)

    Li, Zaibo; Joehlin-Price, Amy S; Rhoades, Jennifer; Ayoola-Adeola, Martins; Miller, Karin; Parwani, Anil V; Backes, Floor J; Felix, Ashley S; Suarez, Adrian A

    2018-01-01

    This study aims to determine the prevalence of programmed death ligand 1 (PD-L1) expression in endometrial carcinoma (EC) and determine clinical and pathological associations. Immunohistochemistry for PD-L1 was performed on sections of a triple-core tissue microarray of 700 ECs. Positive PD-L1 expression, defined as 1% of cells staining positive, was evaluated in tumor and stromal compartments. Using age-adjusted logistic regression, we estimated odds ratios and 95% confidence intervals for associations between PD-L1 expression (overall and by staining compartment) with clinical and tumor characteristics. Kaplan-Meier plots and log-rank tests were used to evaluate associations between PD-L1 expression and EC-specific survival. PD-L1 expression was observed in 100 cases (14.3%), including 27 (3.9%) with expression in tumor cells only, 35 (5.0%) with expression in both tumor cells and stroma, and 38 (5.4%) with expression in stroma only. Expression was observed in ECs of different histologic types. Tumors characterized by loss of mismatch repair proteins were significantly associated with tumoral PD-L1 expression (P < 0.0001), but not with stromal PD-L1 expression. Both tumoral and stromal PD-L1 expressions were associated with high-grade endometrioid histology, nonendometrioid histology, and lymphovascular space invasion. We observed no significant associations between PD-L1 expression and EC-specific survival. PD-L1 is expressed in a significant proportion of EC and is associated with mismatch repair deficiency, potentially representing a mechanism of tumor immune evasion and a therapeutic target in EC.

  1. Distinct patterns of gene and protein expression elicited by organophosphorus pesticides in Caenorhabditis elegans

    Directory of Open Access Journals (Sweden)

    Dennis William E

    2009-04-01

    Full Text Available Abstract Background The wide use of organophosphorus (OP pesticides makes them an important public health concern. Persistent effects of exposure and the mechanism of neuronal degeneration are continuing issues in OP toxicology. To elucidate early steps in the mechanisms of OP toxicity, we studied alterations in global gene and protein expression in Caenorhabditis elegans exposed to OPs using microarrays and mass spectrometry. We tested two structurally distinct OPs (dichlorvos and fenamiphos and employed a mechanistically different third neurotoxicant, mefloquine, as an out-group for analysis. Treatment levels used concentrations of chemical sufficient to prevent the development of 10%, 50% or 90% of mid-vulval L4 larvae into early gravid adults (EGA at 24 h after exposure in a defined, bacteria-free medium. Results After 8 h of exposure, the expression of 87 genes responded specifically to OP treatment. The abundance of 34 proteins also changed in OP-exposed worms. Many of the genes and proteins affected by the OPs are expressed in neuronal and muscle tissues and are involved in lipid metabolism, cell adhesion, apoptosis/cell death, and detoxification. Twenty-two genes were differentially affected by the two OPs; a large proportion of these genes encode cytochrome P450s, UDP-glucuronosyl/UDP-glucosyltransferases, or P-glycoproteins. The abundance of transcripts and the proteins they encode were well correlated. Conclusion Exposure to OPs elicits a pattern of changes in gene expression in exposed worms distinct from that of the unrelated neurotoxicant, mefloquine. The functional roles and the tissue location of the genes and proteins whose expression is modulated in response to exposure is consistent with the known effects of OPs, including damage to muscle due to persistent hypercontraction, neuronal cell death, and phase I and phase II detoxification. Further, the two different OPs evoked distinguishable changes in gene expression; about half

  2. Expression of a novel stress-inducible protein, sestrin 2, in rat glomerular parietal epithelial cells

    Science.gov (United States)

    Hamatani, Hiroko; Sakairi, Toru; Takahashi, Satoshi; Watanabe, Mitsuharu; Maeshima, Akito; Ohse, Takamoto; Pippin, Jeffery W.; Shankland, Stuart J.; Nojima, Yoshihisa

    2014-01-01

    Sestrin 2, initially identified as a p53 target protein, accumulates in cells exposed to stress and inhibits mammalian target of rapamycin (mTOR) signaling. In normal rat kidneys, sestrin 2 was selectively expressed in parietal epithelial cells (PECs), identified by the marker protein gene product 9.5. In adriamycin nephropathy, sestrin 2 expression decreased in PECs on day 14, together with increased expression of phosphorylated S6 ribosomal protein (P-S6RP), a downstream target of mTOR. Sestrin 2 expression was markedly decreased on day 42, coinciding with glomerulosclerosis and severe periglomerular fibrosis. In puromycin aminonucleoside nephropathy, decreased sestrin 2 expression, increased P-S6RP expression, and periglomerular fibrosis were observed on day 9, when massive proteinuria developed. These changes were transient and nearly normalized by day 28. In crescentic glomerulonephritis, sestrin 2 expression was not detected in cellular crescents, whereas P-S6RP increased. In conditionally immortalized cultured PECs, the forced downregulation of sestrin 2 by short hairpin RNA resulted in increased expression of P-S6RP and increased apoptosis. These data suggest that sestrin 2 is involved in PEC homeostasis by regulating the activity of mTOR. In addition, sestrin 2 could be a novel marker of PECs, and decreased expression of sestrin 2 might be a marker of PEC injury. PMID:25056347

  3. Purification, crystallization and preliminary crystallographic studies of plant S-adenosyl-l-homocysteine hydrolase (Lupinus luteus)

    Energy Technology Data Exchange (ETDEWEB)

    Brzezinski, Krzysztof [Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan (Poland); Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan (Poland); Bujacz, Grzegorz [Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan (Poland); Faculty of Food Chemistry and Biotechnology, Technical University of Lodz (Poland); Jaskolski, Mariusz, E-mail: mariuszj@amu.edu.pl [Center for Biocrystallographic Research, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan (Poland); Department of Crystallography, Faculty of Chemistry, A. Mickiewicz University, Poznan (Poland)

    2008-07-01

    Single crystals of recombinant S-adenosyl-l-homocysteine hydrolase from L. luteus in complex with adenosine diffract X-rays to 1.17 Å resolution at 100 K. The crystals are tetragonal, space group P4{sub 3}2{sub 1}2, and contain one copy of the dimeric enzyme in the asymmetric unit. By degrading S-adenosyl-l-homocysteine, which is a byproduct of S-adenosyl-l-methionine-dependent methylation reactions, S-adenosyl-l-homocysteine hydrolase (SAHase) acts as a regulator of cellular methylation processes. S-Adenosyl-l-homocysteine hydrolase from the leguminose plant yellow lupin (Lupinus luteus), LlSAHase, which is composed of 485 amino acids and has a molecular weight of 55 kDa, has been cloned, expressed in Escherichia coli and purified. Crystals of LlSAHase in complex with adenosine were obtained by the hanging-drop vapour-diffusion method using 20%(w/v) PEG 4000 and 10%(v/v) 2-propanol as precipitants in 0.1 M Tris–HCl buffer pH 8.0. The crystals were tetragonal, space group P4{sub 3}2{sub 1}2, with unit-cell parameters a = 122.4, c = 126.5 Å and contained two protein molecules in the asymmetric unit, corresponding to the functional dimeric form of the enzyme. Atomic resolution (1.17 Å) X-ray diffraction data have been collected using synchrotron radiation.

  4. Purification, crystallization and preliminary crystallographic studies of plant S-adenosyl-l-homocysteine hydrolase (Lupinus luteus)

    International Nuclear Information System (INIS)

    Brzezinski, Krzysztof; Bujacz, Grzegorz; Jaskolski, Mariusz

    2008-01-01

    Single crystals of recombinant S-adenosyl-l-homocysteine hydrolase from L. luteus in complex with adenosine diffract X-rays to 1.17 Å resolution at 100 K. The crystals are tetragonal, space group P4 3 2 1 2, and contain one copy of the dimeric enzyme in the asymmetric unit. By degrading S-adenosyl-l-homocysteine, which is a byproduct of S-adenosyl-l-methionine-dependent methylation reactions, S-adenosyl-l-homocysteine hydrolase (SAHase) acts as a regulator of cellular methylation processes. S-Adenosyl-l-homocysteine hydrolase from the leguminose plant yellow lupin (Lupinus luteus), LlSAHase, which is composed of 485 amino acids and has a molecular weight of 55 kDa, has been cloned, expressed in Escherichia coli and purified. Crystals of LlSAHase in complex with adenosine were obtained by the hanging-drop vapour-diffusion method using 20%(w/v) PEG 4000 and 10%(v/v) 2-propanol as precipitants in 0.1 M Tris–HCl buffer pH 8.0. The crystals were tetragonal, space group P4 3 2 1 2, with unit-cell parameters a = 122.4, c = 126.5 Å and contained two protein molecules in the asymmetric unit, corresponding to the functional dimeric form of the enzyme. Atomic resolution (1.17 Å) X-ray diffraction data have been collected using synchrotron radiation

  5. Expression and purification of recombinant proteins in Escherichia coli tagged with the metal-binding protein CusF.

    Science.gov (United States)

    Cantu-Bustos, J Enrique; Vargas-Cortez, Teresa; Morones-Ramirez, Jose Ruben; Balderas-Renteria, Isaias; Galbraith, David W; McEvoy, Megan M; Zarate, Xristo

    2016-05-01

    Production of recombinant proteins in Escherichia coli has been improved considerably through the use of fusion proteins, because they increase protein solubility and facilitate purification via affinity chromatography. In this article, we propose the use of CusF as a new fusion partner for expression and purification of recombinant proteins in E. coli. Using a cell-free protein expression system, based on the E. coli S30 extract, Green Fluorescent Protein (GFP) was expressed with a series of different N-terminal tags, immobilized on self-assembled protein microarrays, and its fluorescence quantified. GFP tagged with CusF showed the highest fluorescence intensity, and this was greater than the intensities from corresponding GFP constructs that contained MBP or GST tags. Analysis of protein production in vivo showed that CusF produces large amounts of soluble protein with low levels of inclusion bodies. Furthermore, fusion proteins can be exported to the cellular periplasm, if CusF contains the signal sequence. Taking advantage of its ability to bind copper ions, recombinant proteins can be purified with readily available IMAC resins charged with this metal ion, producing pure proteins after purification and tag removal. We therefore recommend the use of CusF as a viable alternative to MBP or GST as a fusion protein/affinity tag for the production of soluble recombinant proteins in E. coli. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Tunable recombinant protein expression with E. coli in a mixed-feed environment.

    Science.gov (United States)

    Sagmeister, Patrick; Schimek, Clemens; Meitz, Andrea; Herwig, Christoph; Spadiut, Oliver

    2014-04-01

    Controlling the recombinant protein production rate in Escherichia coli is of utmost importance to ensure product quality and quantity. Up to now, only the genetic construct, introduced into E. coli, and the specific growth rate of the culture were used to influence and stir the productivity. However, bioprocess technological means to control or even tune the productivity of E. coli are scarce. Here, we present a novel method for the process-technological control over the recombinant protein expression rate in E. coli. A mixed-feed fed-batch bioprocess based on the araBAD promoter expression system using both D-glucose and L-arabinose as assimilable C-sources was designed. Using the model product green fluorescent protein, we show that the specific product formation rate can be efficiently tuned even on the cellular level only via the uptake rate of L-arabinose. This novel approach introduces an additional degree of freedom for the design of recombinant bioprocesses with E. coli. We anticipate that the presented method will result in significant quality and robustness improvement as well as cost and process time reduction for recombinant bacterial bioprocesses in the future.

  7. Optimized expression in Pichia pastoris eliminates common protein contaminants from subsequent His-tag purification.

    Science.gov (United States)

    Chen, Yong; Li, Yang; Liu, Peng; Sun, Qun; Liu, Zhu

    2014-04-01

    A weakness of using immobilized metal affinity chromatography (IMAC) to purify recombinant proteins expressed in Pichia pastoris is the co-purification of native proteins that exhibit high affinities for Ni-IMAC. We have determined the elution profiles of P. pastoris proteins and have examined the native proteins that co-purify when eluting with 100 mM imidazole. Four major contaminants were identified: mitochondrial alcohol dehydrogenase isozyme III (mADH), nucleotide excision repair endonuclease, and the hypothetical proteins TPHA_0L01390 and TDEL_0B02190 which are homologous proteins derived from Tetrapisispora phaffii and Torulaspora delbrueckii, respectively. A new P. pastoris expression strain was engineered that eliminated the predominant contaminant, mADH, by gene disruption. The total amount of protein contaminants was reduced by 55 % without effecting cell growth. The present study demonstrates the feasibility of using a proteomic approach to facilitate bioprocess optimization.

  8. One out of four: HspL but no other small heat shock protein of Agrobacterium tumefaciens acts as efficient virulence-promoting VirB8 chaperone.

    Directory of Open Access Journals (Sweden)

    Yun-Long Tsai

    Full Text Available Alpha-crystallin-type small heat shock proteins (sHsps are ubiquitously distributed in most eukaryotes and prokaryotes. Four sHsp genes named hspL, hspC, hspAT1, and hspAT2 were identified in Agrobacterium tumefaciens, a plant pathogenic bacterium capable of unique interkingdom DNA transfer via type IV secretion system (T4SS. HspL is highly expressed in virulence-induced growth condition and functions as a VirB8 chaperone to promote T4SS-mediated DNA transfer. Here, we used genetic and biochemical approaches to investigate the involvement of the other three sHsps in T4SS and discovered the molecular basis underlying the dominant function of HspL in promoting T4SS function. While single deletion of hspL but no other sHsp gene reduced T4SS-mediated DNA transfer and tumorigenesis efficiency, additional deletion of other sHsp genes in the hspL deletion background caused synergistic effects in the virulence phenotypes. This is correlated with the high induction of hspL and only modest increase of hspC, hspAT1, and hspAT2 at their mRNA and protein abundance in virulence-induced growth condition. Interestingly, overexpression of any single sHsp gene alone in the quadruple mutant caused increased T4SS-mediated DNA transfer and tumorigenesis. Thermal aggregation protecting assays in vitro indicated that all four sHsps exhibit chaperone activity for the model substrate citrate synthase but only HspL functions as efficient chaperone for VirB8. The higher VirB8 chaperone activity of HspL was also demonstrated in vivo, in which lower amounts of HspL than other sHsps were sufficient in maintaining VirB8 homeostasis in A. tumefaciens. Domain swapping between HspL and HspAT2 indicated that N-terminal, central alpha-crystallin, and C-terminal domains of HspL all contribute to HspL function as an efficient VirB8 chaperone. Taken together, we suggest that the dominant role of HspL in promoting T4SS function is based on its higher expression in virulence

  9. Expression of phosphorylated cAMP response element binding protein (p-CREB) in bladder afferent pathways in VIP-/- mice with cyclophosphamide (CYP)-induced cystitis

    DEFF Research Database (Denmark)

    Jensen, Dorthe G; Studeny, Simon; May, Victor

    2008-01-01

    The expression of phosphorylated cAMP response element binding protein (p-CREB) in dorsal root ganglia (DRG) with and without cyclophosphamide (CYP)-induced cystitis (150 mg/kg, i.p; 48 h) was determined in VIP(-/-) and wild-type (WT) mice. p-CREB immunoreactivity (IR) was determined in bladder...... (Fast blue) afferent cells. Nerve growth factor (NGF) bladder content was determined by enzyme-linked immunosorbent assays. Basal expression of p-CREB-IR in DRG of VIP(-/-) mice was (p DRG compared to WT mice. CYP treatment in WT mice increased (p ...-CREB-IR in L1, L2, L5-S1 DRG. CYP treatment in VIP(-/-) mice (p DRG compared to WT with CYP. In WT mice, bladder afferent cells (20-38%) in DRG expressed p-CREB-IR under basal conditions. With CYP, p-CREB-IR increased in bladder afferent cells (60...

  10. The L polymerase protein of parainfluenza virus 3 forms an oligomer and can interact with the heterologous Sendai virus L, P and C proteins

    International Nuclear Information System (INIS)

    Smallwood, Sherin; Moyer, Sue A.

    2004-01-01

    We recently showed that the L protein of Sendai virus is present as an oligomer in the active P-L polymerase complex [Smallwood et al., Virology 304 (2002) 235]. We now demonstrate using two different epitope tags that the L protein of a second respirovirus, human parainfluenza type 3 virus (PIV3), also forms an L-L complex. L oligomerization requires the coexpression of the differentially epitope tagged L proteins. By exploiting a series of C-terminal truncations the L-L binding site maps to the N-terminal half of L. There is some complex formation between the heterologous PIV3 and Sendai L and P proteins; however, the heterologous L protein does not function in transcription of either the PIV3 or Sendai template. The PIV3 C protein binds PIV3 L and inhibits RNA synthesis in vitro and in vivo. Significant homology exists between the C proteins of PIV3 and Sendai and complex formation occurs between the PIV3 and Sendai heterologous C and L proteins. In addition, the heterologous C proteins can inhibit transcription at ∼50% of the level of the homologous protein. These data suggest that while the C proteins may be functionally somewhat interchangeable, the L and P proteins are specific for each virus

  11. Two New Chroman Derivations from the Endophytic Penicillium sp. DCS523

    Directory of Open Access Journals (Sweden)

    Qi Wang

    2011-01-01

    Full Text Available Strain DCS523 was isolated from the branch tissue of Daphniphyllum longeracemosum and determined to be a Penicillium sp. according to the ITS sequence analysis. The extracts from the PDA solid fermentation media of Penicillium sp. DCS523 were purified to give two new chroman derivatives as well as six known compounds. Based on their spectral data the new compounds were identified as (Z-6-acetyl- 3-(1,2-dihydroxypropylidene-5-hydroxy-8-methylchroman-2-one (1 and 6-acetyl-2α,5- dihydroxy-2-(2-hydroxypropyl- 3α,8-dimethylchroman (2, respectively.

  12. The proteins of Fusobacterium spp. involved in hydrogen sulfide production from L-cysteine.

    Science.gov (United States)

    Basic, Amina; Blomqvist, Madeleine; Dahlén, Gunnar; Svensäter, Gunnel

    2017-03-14

    Hydrogen sulfide (H 2 S) is a toxic foul-smelling gas produced by subgingival biofilms in patients with periodontal disease and is suggested to be part of the pathogenesis of the disease. We studied the H 2 S-producing protein expression of bacterial strains associated with periodontal disease. Further, we examined the effect of a cysteine-rich growth environment on the synthesis of intracellular enzymes in F. nucleatum polymorphum ATCC 10953. The proteins were subjected to one-dimensional (1DE) and two-dimensional (2DE) gel electrophoresis An in-gel activity assay was used to detect the H 2 S-producing enzymes; Sulfide from H 2 S, produced by the enzymes in the gel, reacted with bismuth forming bismuth sulfide, illustrated as brown bands (1D) or spots (2D) in the gel. The discovered proteins were identified with liquid chromatography - tandem mass spectrometry (LC-MS/MS). Cysteine synthase and proteins involved in the production of the coenzyme pyridoxal 5'phosphate (that catalyzes the production of H 2 S) were frequently found among the discovered enzymes. Interestingly, a higher expression of H 2 S-producing enzymes was detected from bacteria incubated without cysteine prior to the experiment. Numerous enzymes, identified as cysteine synthase, were involved in the production of H 2 S from cysteine and the expression varied among Fusobacterium spp. and strains. No enzymes were detected with the in-gel activity assay among the other periodontitis-associated bacteria tested. The expression of the H 2 S-producing enzymes was dependent on environmental conditions such as cysteine concentration and pH but less dependent on the presence of serum and hemin.

  13. Homologous high-throughput expression and purification of highly conserved E coli proteins

    Directory of Open Access Journals (Sweden)

    Duchmann Rainer

    2007-06-01

    Full Text Available Abstract Background Genetic factors and a dysregulated immune response towards commensal bacteria contribute to the pathogenesis of Inflammatory Bowel Disease (IBD. Animal models demonstrated that the normal intestinal flora is crucial for the development of intestinal inflammation. However, due to the complexity of the intestinal flora, it has been difficult to design experiments for detection of proinflammatory bacterial antigen(s involved in the pathogenesis of the disease. Several studies indicated a potential association of E. coli with IBD. In addition, T cell clones of IBD patients were shown to cross react towards antigens from different enteric bacterial species and thus likely responded to conserved bacterial antigens. We therefore chose highly conserved E. coli proteins as candidate antigens for abnormal T cell responses in IBD and used high-throughput techniques for cloning, expression and purification under native conditions of a set of 271 conserved E. coli proteins for downstream immunologic studies. Results As a standardized procedure, genes were PCR amplified and cloned into the expression vector pQTEV2 in order to express proteins N-terminally fused to a seven-histidine-tag. Initial small-scale expression and purification under native conditions by metal chelate affinity chromatography indicated that the vast majority of target proteins were purified in high yields. Targets that revealed low yields after purification probably due to weak solubility were shuttled into Gateway (Invitrogen destination vectors in order to enhance solubility by N-terminal fusion of maltose binding protein (MBP, N-utilizing substance A (NusA, or glutathione S-transferase (GST to the target protein. In addition, recombinant proteins were treated with polymyxin B coated magnetic beads in order to remove lipopolysaccharide (LPS. Thus, 73% of the targeted proteins could be expressed and purified in large-scale to give soluble proteins in the range of 500

  14. Quantitative analysis of differentially expressed saliva proteins in human immunodeficiency virus type 1 (HIV-1) infected individuals

    International Nuclear Information System (INIS)

    Zhang, Nawei; Zhang, Zhenyu; Feng, Shan; Wang, Qingtao; Malamud, Daniel; Deng, Haiteng

    2013-01-01

    Highlights: ► A high-throughput method for profiling and quantification of the differentially expressed proteins in saliva samples was developed. ► Identified that DMBT1, S100A7, S100A8, S100A9 and alpha defensin were up-regulated in saliva from HIV-1 seropositive patients. ► Established analytical strategies are translatable to the clinical setting. -- Abstract: In the present study, we have established a new methodology to analyze saliva proteins from HIV-1-seropositive patients before highly active antiretroviral therapy (HAART) and seronegative controls. A total of 593 and 601 proteins were identified in the pooled saliva samples from 5 HIV-1 subjects and 5 controls, respectively. Forty-one proteins were found to be differentially expressed. Bioinformatic analysis of differentially expressed salivary proteins showed an increase of antimicrobial proteins and decrease of protease inhibitors upon HIV-1 infection. To validate some of these differentially expressed proteins, a high-throughput quantitation method was established to determine concentrations of 10 salivary proteins in 40 individual saliva samples from 20 seropositive patients before HAART and 20 seronegative subjects. This method was based on limited protein separation within the zone of the stacking gel of the 1D SDS PAGE and using isotope-coded synthetic peptides as internal standards. The results demonstrated that a combination of protein profiling and targeted quantitation is an efficient method to identify and validate differentially expressed salivary proteins. Expression levels of members of the calcium-binding S100 protein family and deleted in malignant brain tumors 1 protein (DMBT1) were up-regulated while that of Mucin 5B was down-regulated in HIV-1 seropositive saliva samples, which may provide new perspectives for monitoring HIV-infection and understanding the mechanism of HIV-1 infectivity

  15. Quantitative analysis of differentially expressed saliva proteins in human immunodeficiency virus type 1 (HIV-1) infected individuals

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Nawei; Zhang, Zhenyu [Beijing Chaoyang Hospital Affiliated Capital Medical University, Beijing (China); Feng, Shan [MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing (China); Wang, Qingtao [Beijing Chaoyang Hospital Affiliated Capital Medical University, Beijing (China); Malamud, Daniel [NYU College of Dentistry, 345 East 24th Street, New York, NY 10010 (United States); Deng, Haiteng, E-mail: dht@mail.tsinghua.edu.cn [MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing (China)

    2013-04-24

    Highlights: ► A high-throughput method for profiling and quantification of the differentially expressed proteins in saliva samples was developed. ► Identified that DMBT1, S100A7, S100A8, S100A9 and alpha defensin were up-regulated in saliva from HIV-1 seropositive patients. ► Established analytical strategies are translatable to the clinical setting. -- Abstract: In the present study, we have established a new methodology to analyze saliva proteins from HIV-1-seropositive patients before highly active antiretroviral therapy (HAART) and seronegative controls. A total of 593 and 601 proteins were identified in the pooled saliva samples from 5 HIV-1 subjects and 5 controls, respectively. Forty-one proteins were found to be differentially expressed. Bioinformatic analysis of differentially expressed salivary proteins showed an increase of antimicrobial proteins and decrease of protease inhibitors upon HIV-1 infection. To validate some of these differentially expressed proteins, a high-throughput quantitation method was established to determine concentrations of 10 salivary proteins in 40 individual saliva samples from 20 seropositive patients before HAART and 20 seronegative subjects. This method was based on limited protein separation within the zone of the stacking gel of the 1D SDS PAGE and using isotope-coded synthetic peptides as internal standards. The results demonstrated that a combination of protein profiling and targeted quantitation is an efficient method to identify and validate differentially expressed salivary proteins. Expression levels of members of the calcium-binding S100 protein family and deleted in malignant brain tumors 1 protein (DMBT1) were up-regulated while that of Mucin 5B was down-regulated in HIV-1 seropositive saliva samples, which may provide new perspectives for monitoring HIV-infection and understanding the mechanism of HIV-1 infectivity.

  16. Selection and validation of reference genes for quantitative gene expression analyses in various tissues and seeds at different developmental stages in Bixa orellana L.

    Science.gov (United States)

    Moreira, Viviane S; Soares, Virgínia L F; Silva, Raner J S; Sousa, Aurizangela O; Otoni, Wagner C; Costa, Marcio G C

    2018-05-01

    Bixa orellana L., popularly known as annatto, produces several secondary metabolites of pharmaceutical and industrial interest, including bixin, whose molecular basis of biosynthesis remain to be determined. Gene expression analysis by quantitative real-time PCR (qPCR) is an important tool to advance such knowledge. However, correct interpretation of qPCR data requires the use of suitable reference genes in order to reduce experimental variations. In the present study, we have selected four different candidates for reference genes in B. orellana , coding for 40S ribosomal protein S9 (RPS9), histone H4 (H4), 60S ribosomal protein L38 (RPL38) and 18S ribosomal RNA (18SrRNA). Their expression stabilities in different tissues (e.g. flower buds, flowers, leaves and seeds at different developmental stages) were analyzed using five statistical tools (NormFinder, geNorm, BestKeeper, ΔCt method and RefFinder). The results indicated that RPL38 is the most stable gene in different tissues and stages of seed development and 18SrRNA is the most unstable among the analyzed genes. In order to validate the candidate reference genes, we have analyzed the relative expression of a target gene coding for carotenoid cleavage dioxygenase 1 (CCD1) using the stable RPL38 and the least stable gene, 18SrRNA , for normalization of the qPCR data. The results demonstrated significant differences in the interpretation of the CCD1 gene expression data, depending on the reference gene used, reinforcing the importance of the correct selection of reference genes for normalization.

  17. Signaling system in Porphyromonas gingivalis based on a LuxS protein.

    Science.gov (United States)

    Chung, W O; Park, Y; Lamont, R J; McNab, R; Barbieri, B; Demuth, D R

    2001-07-01

    The luxS gene of quorum-sensing Vibrio harveyi is required for type 2 autoinducer production. We identified a Porphyromonas gingivalis open reading frame encoding a predicted peptide of 161 aa that shares 29% identity with the amino acid sequence of the LuxS protein of V. harveyi. Conditioned medium from a late-log-phase P. gingivalis culture induced the luciferase operon of V. harveyi, but that from a luxS insertional mutant did not. In P. gingivalis, the expression of luxS mRNA was environmentally controlled and varied according to the cell density and the osmolarity of the culture medium. In addition, differential display PCR showed that the inactivation of P. gingivalis luxS resulted in up-regulation of a hemin acquisition protein and an arginine-specific protease and reduced expression of a hemin-regulated protein, a TonB homologue, and an excinuclease. The data suggest that the luxS gene in P. gingivalis may function to control the expression of genes involved in the acquisition of hemin.

  18. Assembly of proteins and 5 S rRNA to transcripts of the major structural domains of 23 S rRNA

    DEFF Research Database (Denmark)

    Ostergaard, P; Phan, H; Johansen, L B

    1998-01-01

    The six major structural domains of 23 S rRNA from Escherichia coli, and all combinations thereof, were synthesized as separate T7 transcripts and reconstituted with total 50 S subunit proteins. Analysis by one and two-dimensional gel electrophoresis demonstrated the presence of at least one prim...... approach was used to map the putative binding regions on domain V of protein L9 and the 5 S RNA-L5-L18 complex....

  19. Dirichlet expression for L(1, χ )

    Indian Academy of Sciences (India)

    We show that this expression with obvious modification is valid for the general primitive Dirichlet character χ. Keywords. Hurwitz zeta function; Dirichlet character; Dirichlet L-series; primitive character. 1. Introduction. In Dirichlet's famous work dealing with class number formula, the value of L(1,χ) is expressed in terms of finite ...

  20. N-Acetylglutaminoyl-S-farnesyl-L-cysteine (SIG-1191): an anti-inflammatory molecule that increases the expression of the aquaglyceroporin, aquaporin-3, in human keratinocytes.

    Science.gov (United States)

    Fernández, José R; Webb, Corey; Rouzard, Karl; Voronkov, Michael; Huber, Kristen L; Stock, Jeffry B; Stock, Maxwell; Gordon, Joel S; Perez, Eduardo

    2017-03-01

    Isoprenylcysteine (IPC) small molecules were discovered as signal transduction modulating compounds ~25 years ago. More recently, IPC molecules have demonstrated antioxidant and anti-inflammatory properties in a variety of dermal cells as well as antimicrobial activity, representing a novel class of compounds to ameliorate skin conditions and disease. Here, we demonstrate a new IPC compound, N-acetylglutaminoyl-S-farnesyl-L-cysteine (SIG-1191), which inhibits UVB-induced inflammation blocking pro-inflammatory cytokine interleukin-6 (IL-6) and tumor necrosis factor alpha (TNF-α) production. To investigate further the previously reported hydrating potential of IPC compounds, SIG-1191 was tested for its ability to modulate aquaporin expression. Specifically, aquaporin 3 (AQP3) the most abundant aquaporin found in skin has been reported to play a key role in skin hydration, elasticity and barrier repair. Results show here for the first time that SIG-1191 increases AQP3 expression in both cultured normal human epidermal keratinocytes as well as when applied topically in a three-dimensional (3D) reconstructed human skin equivalent. Additionally, SIG-1191 dose dependently increased AQP3 protein levels, as determined by specific antibody staining, in the epidermis of the 3D skin equivalents. To begin to elucidate which signaling pathways SIG-1191 may be modulating to increase AQP3 levels, we used several pharmacological pathway inhibitors and determined that AQP3 expression is mediated by the Mitogen-activated protein kinase/Extracellular signal-regulated kinase kinase (MEK) pathway. Altogether, these data suggest SIG-1191 represents a new IPC derivative with anti-inflammatory activity that may also promote increased skin hydration based on its ability to increase AQP3 levels.

  1. Expression, Delivery and Function of Insecticidal Proteins Expressed by Recombinant Baculoviruses

    Science.gov (United States)

    Kroemer, Jeremy A.; Bonning, Bryony C.; Harrison, Robert L.

    2015-01-01

    Since the development of methods for inserting and expressing genes in baculoviruses, a line of research has focused on developing recombinant baculoviruses that express insecticidal peptides and proteins. These recombinant viruses have been engineered with the goal of improving their pesticidal potential by shortening the time required for infection to kill or incapacitate insect pests and reducing the quantity of crop damage as a consequence. A wide variety of neurotoxic peptides, proteins that regulate insect physiology, degradative enzymes, and other potentially insecticidal proteins have been evaluated for their capacity to reduce the survival time of baculovirus-infected lepidopteran host larvae. Researchers have investigated the factors involved in the efficient expression and delivery of baculovirus-encoded insecticidal peptides and proteins, with much effort dedicated to identifying ideal promoters for driving transcription and signal peptides that mediate secretion of the expressed target protein. Other factors, particularly translational efficiency of transcripts derived from recombinant insecticidal genes and post-translational folding and processing of insecticidal proteins, remain relatively unexplored. The discovery of RNA interference as a gene-specific regulation mechanism offers a new approach for improvement of baculovirus biopesticidal efficacy through genetic modification. PMID:25609310

  2. Functional expression of a human GDP-L-fucose transporter in Escherichia coli.

    Science.gov (United States)

    Förster-Fromme, Karin; Schneider, Sarah; Sprenger, Georg A; Albermann, Christoph

    2017-02-01

    To investigate the translocation of nucleotide-activated sugars from the cytosol across a membrane into the endoplasmatic reticulum or the Golgi apparatus which is an important step in the synthesis of glycoproteins and glycolipids in eukaryotes. The heterologous expression of the recombinant and codon-adapted human GDP-L-fucose antiporter gene SLC35C1 (encoding an N-terminal OmpA-signal sequence) led to a functional transporter protein located in the cytoplasmic membrane of Escherichia coli. The in vitro transport was investigated using inverted membrane vesicles. SLC35C1 is an antiporter specific for GDP-L-fucose and depending on the concomitant reverse transport of GMP. The recombinant transporter FucT1 exhibited an activity for the transport of 3 H-GDP-L-fucose with a V max of 8 pmol/min mg with a K m of 4 µM. The functional expression of SLC35C1 in GDP-L-fucose overproducing E. coli led to the export of GDP-L-fucose to the culture supernatant. The export of GDP-L-fucose by E. coli provides the opportunity for the engineering of a periplasmatic fucosylation reaction in recombinant bacterial cells.

  3. Seed protein variations of Salicornia L. and allied taxa in Turkey.

    Science.gov (United States)

    Yaprak, A E; Yurdakulol, E

    2007-06-01

    Electrophoretic seed protein patterns of a number of accessions of Salicornia europaea L. sl., S. prostrata Palas, S. fragilis P.W. Ball and Tutin, Sarcocornia fruticosa (L.) A. J. Scott, Sarcocornia perennis (Miller.) A. J. Scott, Arthrocnemum glaucum (Del.) Ung.-Sternb., Microcnemum coralloides (Loscos and Pardo) subsp. anatolicum Wagenitz and Halocnemum strobilaceum (Pall.) Bieb. were electrophoretically analysed on SDS-PAGE. In total 48 different bands were identified. The obtained data have been treated numerically using the cluster analysis method of unweighted pair group (UPGMA). Finally it was determined that all species separated according to seed protein profiles. And the cladogram obtained studied taxa have been given.

  4. Synergetic effect of yeast cell-surface expression of cellulase and expansin-like protein on direct ethanol production from cellulose

    Science.gov (United States)

    2013-01-01

    Background Numerous studies have examined the direct fermentation of cellulosic materials by cellulase-expressing yeast; however, ethanol productivity in these systems has not yet reached an industrial level. Certain microorganisms, such as the cellulolytic fungus Trichoderma reesei, produce expansin-like proteins, which have a cellulose-loosening effect that may increase the breakdown of cellulose. Here, to improve the direct conversion of cellulose to ethanol, yeast Saccharomyces cerevisiae co-displaying cellulase and expansin-like protein on the cell surface were constructed and examined for direct ethanol fermentation performance. Results The cellulase and expansin-like protein co-expressing strain showed 246 mU/g-wet cell of phosphoric acid swollen cellulose (PASC) degradation activity, which corresponded to 2.9-fold higher activity than that of a cellulase-expressing strain. This result clearly demonstrated that yeast cell-surface expressed cellulase and expansin-like protein act synergistically to breakdown cellulose. In fermentation experiments examining direct ethanol production from PASC, the cellulase and expansin-like protein co-expressing strain produced 3.4 g/L ethanol after 96 h of fermentation, a concentration that was 1.4-fold higher than that achieved by the cellulase-expressing strain (2.5 g/L). Conclusions The PASC degradation and fermentation ability of an engineered yeast strain was markedly improved by co-expressing cellulase and expansin-like protein on the cell surface. To our knowledge, this is the first report to demonstrate the synergetic effect of co-expressing cellulase and expansin-like protein on a yeast cell surface, which may be a promising strategy for constructing direct ethanol fermenting yeast from cellulose. PMID:23835302

  5. Transmembrane START domain proteins: in silico identification, characterization and expression analysis under stress conditions in chickpea (Cicer arietinum L.).

    Science.gov (United States)

    Satheesh, Viswanathan; Chidambaranathan, Parameswaran; Jagannadham, Prasanth Tejkumar; Kumar, Vajinder; Jain, Pradeep K; Chinnusamy, Viswanathan; Bhat, Shripad R; Srinivasan, R

    2016-01-01

    Steroidogenic acute regulatory related transfer (StART) proteins that are involved in transport of lipid molecules, play a myriad of functions in insects, mammals and plants. These proteins consist of a modular START domain of approximately 200 amino acids which binds and transfers the lipids. In the present study we have performed a genome-wide search for all START domain proteins in chickpea. The search identified 36 chickpea genes belonging to the START domain family. Through a phylogenetic tree reconstructed with Arabidopsis, rice, chickpea, and soybean START proteins, we were able to identify four transmembrane START (TM-START) proteins in chickpea. These four proteins are homologous to the highly conserved mammalian phosphatidylcholine transfer proteins. Multiple sequence alignment of all the transmembrane containing START proteins from Arabidopsis, rice, chickpea, and soybean revealed that the amino acid residues to which phosphatidylcholine binds in mammals, is also conserved in all these plant species, implying an important functional role and a very similar mode of action of all these proteins across dicots and monocots. This study characterizes a few of the not so well studied transmembrane START superfamily genes that may be involved in stress signaling. Expression analysis in various tissues showed that these genes are predominantly expressed in flowers and roots of chickpea. Three of the chickpea TM-START genes showed induced expression in response to drought, salt, wound and heat stress, suggesting their role in stress response.

  6. Improving L-arabinose utilization of pentose fermenting Saccharomyces cerevisiae cells by heterologous expression of L-arabinose transporting sugar transporters

    Directory of Open Access Journals (Sweden)

    Boles Eckhard

    2011-10-01

    Full Text Available Abstract Background Hydrolysates of plant biomass used for the production of lignocellulosic biofuels typically contain sugar mixtures consisting mainly of D-glucose and D-xylose, and minor amounts of L-arabinose. The yeast Saccharomyces cerevisiae is the preferred microorganism for the fermentative production of ethanol but is not able to ferment pentose sugars. Although D-xylose and L-arabinose fermenting S. cerevisiae strains have been constructed recently, pentose uptake is still a limiting step in mixed sugar fermentations. Results Here we described the cloning and characterization of two sugar transporters, AraT from the yeast Scheffersomyces stipitis and Stp2 from the plant Arabidopsis thaliana, which mediate the uptake of L-arabinose but not of D-glucose into S. cerevisiae cells. A yeast strain lacking all of its endogenous hexose transporter genes and expressing a bacterial L-arabinose utilization pathway could no longer take up and grow with L-arabinose as the only carbon source. Expression of the heterologous transporters supported uptake and utilization of L-arabinose especially at low L-arabinose concentrations but did not, or only very weakly, support D-glucose uptake and utilization. In contrast, the S. cerevisiae D-galactose transporter, Gal2, mediated uptake of both L-arabinose and D-glucose, especially at high concentrations. Conclusions Using a newly developed screening system we have identified two heterologous sugar transporters from a yeast and a plant which can support uptake and utilization of L-arabinose in L-arabinose fermenting S. cerevisiae cells, especially at low L-arabinose concentrations.

  7. Escherichia coli Protein Expression System for Acetylcholine Binding Proteins (AChBPs.

    Directory of Open Access Journals (Sweden)

    Nikita Abraham

    Full Text Available Nicotinic acetylcholine receptors (nAChR are ligand gated ion channels, identified as therapeutic targets for a range of human diseases. Drug design for nAChR related disorders is increasingly using structure-based approaches. Many of these structural insights for therapeutic lead development have been obtained from co-crystal structures of nAChR agonists and antagonists with the acetylcholine binding protein (AChBP. AChBP is a water soluble, structural and functional homolog of the extracellular, ligand-binding domain of nAChRs. Currently, AChBPs are recombinantly expressed in eukaryotic expression systems for structural and biophysical studies. Here, we report the establishment of an Escherichia coli (E. coli expression system that significantly reduces the cost and time of production compared to the existing expression systems. E. coli can efficiently express unglycosylated AChBP for crystallography and makes the expression of isotopically labelled forms feasible for NMR. We used a pHUE vector containing an N-terminal His-tagged ubiquitin fusion protein to facilitate AChBP expression in the soluble fractions, and thus avoid the need to recover protein from inclusion bodies. The purified protein yield obtained from the E. coli expression system is comparable to that obtained from existing AChBP expression systems. E. coli expressed AChBP bound nAChR agonists and antagonists with affinities matching those previously reported. Thus, the E. coli expression system significantly simplifies the expression and purification of functional AChBP for structural and biophysical studies.

  8. [High-level expression of heterologous protein based on increased copy number in Saccharomyces cerevisiae].

    Science.gov (United States)

    Zhang, Xinjie; He, Peng; Tao, Yong; Yang, Yi

    2013-11-04

    High-level expression system of heterologous protein mediated by internal ribosome entry site (IRES) in Saccharomyces cerevisiae was constructed, which could be used for other applications of S. cerevisiae in metabolic engineering. We constructed co-expression cassette (promoter-mCherry-TIF4631 IRES-URA3) containing promoters Pilv5, Padh2 and Ptdh3 and recombined the co-expression cassette into the genome of W303-1B-A. The URA3+ transformants were selected. By comparing the difference in the mean florescence value of mCherry in transformants, the effect of three promoters was detected in the co-expression cassette. The copy numbers of the interested genes in the genome were determined by Real-Time PCR. We analyzed genetic stability by continuous subculturing transformants in the absence of selection pressure. To verify the application of co-expression cassette, the ORF of mCherry was replaced by beta-galactosidase (LACZ) and xylose reductase (XYL1). The enzyme activities and production of beta-galactosidase and xylose reductase were detected. mCherry has been expressed in the highest-level in transformants with co-expression cassette containing Pilv5 promoter. The highest copy number of DNA fragment integrating in the genome was 47 in transformants containing Pilv5. The engineering strains showed good genetic stability. Xylose reductase was successfully expressed in the co-expression cassette containing Pilv5 promoter and TIF4631 IRES. The highest enzyme activity was 0. 209 U/mg crude protein in the transformants WIX-10. Beta-galactosidase was also expressed successfully. The transformants that had the highest enzyme activity was WIL-1 and the enzyme activity was 12.58 U/mg crude protein. The system mediated by Pilv5 promoter and TIF4631 IRES could express heterologous protein efficiently in S. cerevisiae. This study offered a new strategy for expression of heterologous protein in S. cerevisiae and provided sufficient experimental evidence for metabolic engineering

  9. Expression of P-glycoprotein, multidrug resistance-associated protein, glutathione-S-transferase pi and p53 in canine transmissible venereal tumor

    Directory of Open Access Journals (Sweden)

    Daniel G. Gerardi

    2014-01-01

    Full Text Available The overexpression of proteins P-glycoprotein (P-gp, multidrug resistance-associated protein (MRP1, mutant p53, and the enzyme glutathione-S-transferase (GSTpi are related to resistance to chemotherapy in neoplasms. This study evaluated the expression of these markers by immunohistochemistry in two groups of canine TVT, without history of prior chemotherapy (TVT1, n=9 and in TVTs presented unsatisfactory clinical response to vincristine sulfate (TVT2, n=5. The percentage of specimens positively stained for P-gp, MRP1, GSTpi and p53 were, respectively 88.8%, 0%, 44.5% and 22.2% in TVT1 and 80%, 0%, 80% and 0% in TVT2. In TVT1, one specimen presented positive expression for three markers and four specimens for two markers. In TVT2, three specimens expressed P-gp and GSTpi. In conclusion, the canine TVTs studied expressed the four markers evaluated, but just P-gp and GSTpi were significantly expressed, mainly at cytoplasm and cytoplasm and nuclei, respectively, either before chemotherapy as after vincristine sulfate exposure. Future studies are needed to demonstrate the function of these two markers in conferring multidrug resistance (MDR or predict the response to chemotherapy in canine TVT.

  10. Rift valley fever virus nonstructural protein NSs promotes viral RNA replication and transcription in a minigenome system.

    Science.gov (United States)

    Ikegami, Tetsuro; Peters, C J; Makino, Shinji

    2005-05-01

    Rift Valley fever virus (RVFV), which belongs to the genus Phlebovirus, family Bunyaviridae, has a tripartite negative-strand genome (S, M, and L segments) and is an important mosquito-borne pathogen for domestic animals and humans. We established an RVFV T7 RNA polymerase-driven minigenome system in which T7 RNA polymerase from an expression plasmid drove expression of RNA transcripts for viral proteins and minigenome RNA transcripts carrying a reporter gene between both termini of the M RNA segment in 293T cells. Like other viruses of the Bunyaviridae family, replication and transcription of the RVFV minigenome required expression of viral N and L proteins. Unexpectedly, the coexpression of an RVFV nonstructural protein, NSs, with N and L proteins resulted in a significant enhancement of minigenome RNA replication. Coexpression of NSs protein with N and L proteins also enhanced minigenome mRNA transcription in the cells expressing viral-sense minigenome RNA transcripts. NSs protein expression increased the RNA replication of minigenomes that originated from S and L RNA segments. Enhancement of minigenome RNA synthesis by NSs protein occurred in cells lacking alpha/beta interferon (IFN-alpha/beta) genes, indicating that the effect of NSs protein on minigenome RNA replication was unrelated to a putative NSs protein-induced inhibition of IFN-alpha/beta production. Our finding that RVFV NSs protein augmented minigenome RNA synthesis was in sharp contrast to reports that Bunyamwera virus (genus Bunyavirus) NSs protein inhibits viral minigenome RNA synthesis, suggesting that RVFV NSs protein and Bunyamwera virus NSs protein have distinctly different biological roles in viral RNA synthesis.

  11. Analysis of the Sarcocystis neurona microneme protein SnMIC10: protein characteristics and expression during intracellular development.

    Science.gov (United States)

    Hoane, Jessica S; Carruthers, Vernon B; Striepen, Boris; Morrison, David P; Entzeroth, Rolf; Howe, Daniel K

    2003-07-01

    Sarcocystis neurona, an apicomplexan parasite, is the primary causative agent of equine protozoal myeloencephalitis. Like other members of the Apicomplexa, S. neurona zoites possess secretory organelles that contain proteins necessary for host cell invasion and intracellular survival. From a collection of S. neurona expressed sequence tags, we identified a sequence encoding a putative microneme protein based on similarity to Toxoplasma gondii MIC10 (TgMIC10). Pairwise sequence alignments of SnMIC10 to TgMIC10 and NcMIC10 from Neospora caninum revealed approximately 33% identity to both orthologues. The open reading frame of the S. neurona gene encodes a 255 amino acid protein with a predicted 39-residue signal peptide. Like TgMIC10 and NcMIC10, SnMIC10 is predicted to be hydrophilic, highly alpha-helical in structure, and devoid of identifiable adhesive domains. Antibodies raised against recombinant SnMIC10 recognised a protein band with an apparent molecular weight of 24 kDa in Western blots of S. neurona merozoites, consistent with the size predicted for SnMIC10. In vitro secretion assays demonstrated that this protein is secreted by extracellular merozoites in a temperature-dependent manner. Indirect immunofluorescence analysis of SnMIC10 showed a polar labelling pattern, which is consistent with the apical position of the micronemes, and immunoelectron microscopy provided definitive localisation of the protein to these secretory organelles. Further analysis of SnMIC10 in intracellular parasites revealed that expression of this protein is temporally regulated during endopolygeny, supporting the view that micronemes are only needed during host cell invasion. Collectively, the data indicate that SnMIC10 is a microneme protein that is part of the excreted/secreted antigen fraction of S. neurona. Identification and characterisation of additional S. neurona microneme antigens and comparisons to orthologues in other Apicomplexa could provide further insight into the

  12. Distinct expression profiles and different functions of odorant binding proteins in Nilaparvata lugens Stål.

    Directory of Open Access Journals (Sweden)

    Peng He

    Full Text Available BACKGROUND: Odorant binding proteins (OBPs play important roles in insect olfaction. The brown planthopper (BPH, Nilaparvata lugens Stål (Delphacidae, Auchenorrhyncha, Hemiptera is one of the most important rice pests. Its monophagy (only feeding on rice, wing form (long and short wing variation, and annual long distance migration (seeking for rice plants of high nutrition imply that the olfaction would play a central role in BPH behavior. However, the olfaction related proteins have not been characterized in this insect. METHODOLOGY/PRINCIPAL FINDINGS: Full length cDNA of three OBPs were obtained and distinct expression profiles were revealed regarding to tissue, developmental stage, wing form and gender for the first time for the species. The results provide important clues in functional differentiation of these genes. Binding assays with 41 compounds demonstrated that NlugOBP3 had markedly higher binding ability and wider binding spectrum than the other two OBPs. Terpenes and Ketones displayed higher binding while Alkanes showed no binding to the three OBPs. Focused on NlugOBP3, RNA interference experiments showed that NlugOBP3 not only involved in nymph olfaction on rice seedlings, but also had non-olfactory functions, as it was closely related to nymph survival. CONCLUSIONS: NlugOBP3 plays important roles in both olfaction and survival of BPH. It may serve as a potential target for developing behavioral disruptant and/or lethal agent in N. lugens.

  13. Systemic Immunization with Papillomavirus L1 Protein Completely Prevents the Development of Viral Mucosal Papillomas

    Science.gov (United States)

    Suzich, Joann A.; Ghim, Shin-Je; Palmer-Hill, Frances J.; White, Wendy I.; Tamura, James K.; Bell, Judith A.; Newsome, Joseph A.; Bennett Jenson, A.; Schlegel, Richard

    1995-12-01

    Infection of mucosal epithelium by papillomaviruses is responsible for the induction of genital and oral warts and plays a critical role in the development of human cervical and oropharyngeal cancer. We have employed a canine model to develop a systemic vaccine that completely protects against experimentally induced oral mucosal papillomas. The major capsid protein, L1, of canine oral papillomavirus (COPV) was expressed in Sf9 insect cells in native conformation. L1 protein, which self-assembled into virus-like particles, was purified on CsCl gradients and injected intradermally into the foot pad of beagles. Vaccinated animals developed circulating antibodies against COPV and became completely resistant to experimental challenge with COPV. Successful immunization was strictly dependent upon native L1 protein conformation and L1 type. Partial protection was achieved with as little as 0.125 ng of L1 protein, and adjuvants appeared useful for prolonging the host immune response. Serum immunoglobulins passively transferred from COPV L1-immunized beagles to naive beagles conferred protection from experimental infection with COPV. Our results indicate the feasibility of developing a human vaccine to prevent mucosal papillomas, which can progress to malignancy.

  14. Evaluation of Beauveria bassiana infection in the hemolymph serum proteins of the housefly, Musca domestica L. (Diptera: Muscidae).

    Science.gov (United States)

    Mishra, Sapna; Kumar, Peeyush; Malik, Anushree

    2017-11-01

    Beauveria bassiana plays a prominent role in biocontrol of houseflies, Musca domestica (L.). Thus, a deeper insight into immune response of M. domestica during B. bassiana infection was warranted to assist the production of more efficient mycoinsecticides. The present study investigates changes in protein profile of M. domestica hemolymph serum post B. bassiana infection using two-dimensional difference gel electrophoresis (2D-DIGE) followed by identification of selected proteins by matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The non-infected or control group of flies showed an expression of 54 proteins, while M. domestica infected with B. bassiana expressed a total of 68 hemolymph serum proteins. Thirty three proteins were expressed in both groups of houseflies, whereas 35 proteins were exclusively expressed in infected flies and 21 proteins were exclusively expressed in control flies. Among the 33 proteins which were expressed in both groups of houseflies, 17 proteins showed downregulation, while16 proteins were upregulated in the infected flies compared to the non-infected ones. The results from this study are expected to facilitate better understanding of insect's immune response mechanism.

  15. Heterologous expression of plasmodial proteins for structural studies and functional annotation

    CSIR Research Space (South Africa)

    Birkholtz, LM

    2008-01-01

    Full Text Available Malaria Journal Open AcceReview Heterologous expression of plasmodial proteins for structural studies and functional annotation Lyn-Marie Birkholtz1, Gregory Blatch2, Theresa L Coetzer3, Heinrich C Hoppe1,4, Esmaré Human1, Elizabeth J Morris1,5, Zoleka Ngcete..., Kwadlangezwa, South Africa Email: Lyn-Marie Birkholtz - lbirkholtz@up.ac.za; Gregory Blatch - G.Blatch@ru.ac.za; Theresa L Coetzer - theresa.coetzer@nhls.ac.za; Heinrich C Hoppe - hhoppe@csir.co.za; Esmaré Human - esmare.human@up.ac.za; Elizabeth J Morris...

  16. Methylation status and protein expression of RASSF1A in breast cancer patients.

    Science.gov (United States)

    Hagrass, Hoda A; Pasha, Heba F; Shaheen, Mohamed A; Abdel Bary, Eman H; Kassem, Rasha

    2014-01-01

    Recently genetics and epigenetics alterations have been found to be characteristic of malignancy and hence can be used as targets for detection of neoplasia. RAS association domain family protein 1A (RASSF1A) gene hypermethylation has been a subject of interest in recent researches on cancer breast patients. The aim of the present study was to evaluate whether RASSF1A methylation status and RASSF1A protein expression are associated with the major clinico-pathological parameters. One hundred and twenty breast cancer Egyptian patients and 100-control subjects diagnosed with benign lesions of the breast were enrolled in this study. We evaluated RASSF1A methylation status in tissue and serum samples using Methyl specific PCR together with RASSF1A protein expression in tissues by immunohistochemistry. Results were studied in relation to known prognostic clinicopathological features in breast cancer. Frequency of RASSF1A methylation in tissues and serum were 70 and 63.3 % respectively and RASSF1A protein expression showed frequency of 46.7 %. There was an association between RASSF1A methylation in tissues, serum and loss of protein expression in tissues with invasive carcinoma, advanced stage breast cancer, L.N. metastasis, ER/PR and HER2 negativity. RASSF1A methylation in serum showed high degree of concordance with methylation in tissues (Kappa = 0.851, P < 0.001). RASSF1A hypermethylation in tissues and serum and its protein expression may be a valid, reliable and sensitive tool for detection and follow up of breast cancer patients.

  17. Characterization of host proteins interacting with the lymphocytic choriomeningitis virus L protein.

    Science.gov (United States)

    Khamina, Kseniya; Lercher, Alexander; Caldera, Michael; Schliehe, Christopher; Vilagos, Bojan; Sahin, Mehmet; Kosack, Lindsay; Bhattacharya, Anannya; Májek, Peter; Stukalov, Alexey; Sacco, Roberto; James, Leo C; Pinschewer, Daniel D; Bennett, Keiryn L; Menche, Jörg; Bergthaler, Andreas

    2017-12-01

    RNA-dependent RNA polymerases (RdRps) play a key role in the life cycle of RNA viruses and impact their immunobiology. The arenavirus lymphocytic choriomeningitis virus (LCMV) strain Clone 13 provides a benchmark model for studying chronic infection. A major genetic determinant for its ability to persist maps to a single amino acid exchange in the viral L protein, which exhibits RdRp activity, yet its functional consequences remain elusive. To unravel the L protein interactions with the host proteome, we engineered infectious L protein-tagged LCMV virions by reverse genetics. A subsequent mass-spectrometric analysis of L protein pulldowns from infected human cells revealed a comprehensive network of interacting host proteins. The obtained LCMV L protein interactome was bioinformatically integrated with known host protein interactors of RdRps from other RNA viruses, emphasizing interconnected modules of human proteins. Functional characterization of selected interactors highlighted proviral (DDX3X) as well as antiviral (NKRF, TRIM21) host factors. To corroborate these findings, we infected Trim21-/- mice with LCMV and found impaired virus control in chronic infection. These results provide insights into the complex interactions of the arenavirus LCMV and other viral RdRps with the host proteome and contribute to a better molecular understanding of how chronic viruses interact with their host.

  18. Characterization of Three Different Unusual S-Layer Proteins from Viridibacillus arvi JG-B58 That Exhibits Two Super-Imposed S-Layer Proteins

    Science.gov (United States)

    Günther, Tobias J.; Raff, Johannes; Pollmann, Katrin

    2016-01-01

    Genomic analyses of Viridibacillus arvi JG-B58 that was previously isolated from heavy metal contaminated environment identified three different putative surface layer (S-layer) protein genes namely slp1, slp2, and slp3. All three genes are expressed during cultivation. At least two of the V. arvi JG-B58 S-layer proteins were visualized on the surface of living cells via atomic force microscopy (AFM). These S-layer proteins form a double layer with p4 symmetry. The S-layer proteins were isolated from the cells using two different methods. Purified S-layer proteins were recrystallized on SiO2 substrates in order to study the structure of the arrays and self-assembling properties. The primary structure of all examined S-layer proteins lack some features that are typical for Bacillus or Lysinibacillus S-layers. For example, they possess no SLH domains that are usually responsible for the anchoring of the proteins to the cell wall. Further, the pI values are relatively high ranging from 7.84 to 9.25 for the matured proteins. Such features are typical for S-layer proteins of Lactobacillus species although sequence comparisons indicate a close relationship to S-layer proteins of Lysinibacillus and Bacillus strains. In comparison to the numerous descriptions of S-layers, there are only a few studies reporting the concomitant existence of two different S-layer proteins on cell surfaces. Together with the genomic data, this is the first description of a novel type of S-layer proteins showing features of Lactobacillus as well as of Bacillus-type S-layer proteins and the first study of the cell envelope of Viridibacillus arvi. PMID:27285458

  19. 35S Promoter Methylation in Kanamycin-Resistant Kalanchoe (Kalanchoe pinnata L.) Plants Expressing the Antimicrobial Peptide Cecropin P1 Transgene.

    Science.gov (United States)

    Shevchuk, T V; Zakharchenko, N S; Tarlachkov, S V; Furs, O V; Dyachenko, O V; Buryanov, Y I

    2016-09-01

    Transgenic kalanchoe plants (Kalanchoe pinnata L.) expressing the antimicrobial peptide cecropin P1 gene (cecP1) under the control of the 35S cauliflower mosaic virus 35S RNA promoter and the selective neomycin phosphotransferase II (nptII) gene under the control of the nopaline synthase gene promoter were studied. The 35S promoter methylation and the cecropin P1 biosynthesis levels were compared in plants growing on media with and without kanamycin. The low level of active 35S promoter methylation further decreases upon cultivation on kanamycin-containing medium, while cecropin P1 synthesis increases.

  20. cDNA Cloning, Overexpression, Purification and Pharmacologic Evaluation for Anticancer Activity of Ribosomal Protein L23A Gene (RPL23A from the Giant Panda

    Directory of Open Access Journals (Sweden)

    Si-Nan Zhang

    2012-02-01

    Full Text Available RPL23A gene encodes a ribosomal protein that is a component of the 60S subunit. The protein belongs to the L23P family of ribosomal proteins, which is located in the cytoplasm. The purpose of this paper was to explore the structure and anti-cancer function of ribosomal protein L23A (RPL23A gene of the Giant Panda (Ailuropoda melanoleuca. The cDNA of RPL23A was cloned successfully from the Giant Panda using RT-PCR technology. We constructed a recombinant expression vector containing RPL23A cDNA and over-expressed it in Escherichia coli using pET28a plasmids. The expression product obtained was purified by using Ni chelating affinity chromatography. Recombinant protein of RPL23A obtained from the experiment acted on Hep-2 cells and human HepG-2 cells, then the growth inhibitory effect of these cells was observed by MTT (3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide assay. The result indicated that the length of the fragment cloned is 506 bp, and it contains an open-reading frame (ORF of 471 bp encoding 156 amino acids. Primary structure analysis revealed that the molecular weight of the putative RPL23A protein is 17.719 kDa with a theoretical pI 11.16. The molecular weight of the recombinant protein RPL23A is 21.265 kDa with a theoretical pI 10.57. The RPL23A gene can be really expressed in E. coli and the RPL23A protein, fusioned with the N-terminally His-tagged protein, gave rise to the accumulation of an expected 22 KDa polypeptide. The data showed that the recombinant protein RPL23A had a time- and dose-dependency on the cell growth inhibition rate. The data also indicated that the effect at low concentrations was better than at high concentrations on Hep-2 cells, and that the concentration of 0.185 μg/mL had the best rate of growth inhibition of 36.31%. All results of the experiment revealed that the recombinant protein RPL23A exhibited anti-cancer function on the Hep-2 cells. The study provides a scientific basis and aids

  1. [Expression, purification and antibody preparation of recombinat SARS-CoV X5 protein].

    Science.gov (United States)

    Wang, Li-Na; Kong, Jian-Qiang; Zhu, Ping; Du, Guan-Hua; Wang, Wei; Cheng, Ke-Di

    2008-11-01

    X5 protein is one of the putative unknown proteins of SARS-CoV. The recombinant protein has been successfully expressed in E. coli in the form of insoluble inclusion body. The inclusion body was dissolved in high concentration of urea. Affinity Chromatography was preformed to purify the denatured protein, and then the product was refolded in a series of gradient solutions of urea. The purified protein was obtained with the purity of > 95% and the yield of 93.3 mg x L(-1). Polyclonal antibody of this protein was obtained, and Western blotting assay indicated that the X5 protein has the strong property of antigen. Sixty-eight percent of the recombinant protein sequence was confirmed by LC-ESI-MS/MS analysis.

  2. Sulforaphane and alpha-lipoic acid upregulate the expression of the pi class of glutathione S-transferase through c-jun and Nrf2 activation.

    Science.gov (United States)

    Lii, Chong-Kuei; Liu, Kai-Li; Cheng, Yi-Ping; Lin, Ai-Hsuan; Chen, Haw-Wen; Tsai, Chia-Wen

    2010-05-01

    The anticarcinogenic effect of dietary organosulfur compounds has been partly attributed to their modulation of the activity and expression of phase II detoxification enzymes. Our previous studies indicated that garlic allyl sulfides upregulate the expression of the pi class of glutathione S-transferase (GSTP) through the activator protein-1 pathway. Here, we examined the modulatory effect of sulforaphane (SFN) and alpha-lipoic acid (LA) or dihydrolipoic acid (DHLA) on GSTP expression in rat Clone 9 liver cells. Cells were treated with LA or DHLA (50-600 micromol/L) or SFN (0.2-5 micromol/L) for 24 h. Immunoblots and real-time PCR showed that SFN, LA, and DHLA dose dependently induced GSTP protein and mRNA expression. Compared with the induction by the garlic organosulfur compound diallyl trisulfide (DATS), the effectiveness was in the order of SFN > DATS > LA = DHLA. The increase in GSTP enzyme activity in cells treated with 5 micromol/L SFN, 50 micromol/L DATS, and 600 micromol/L LA and DHLA was 172, 75, 122, and 117%, respectively (P GPEI) was required for GSTP induction by the organosulfur compounds. Electromobility gel shift assays showed that the DNA binding of GPEI to nuclear proteins reached a maximum at 0.5-1 h after SFN, LA, and DHLA treatment. Super-shift assay revealed that the transcription factors c-jun and nuclear factor erythroid-2 related factor 2 (Nrf2) were bound to GPEI. These results suggest that SFN and LA in either its oxidized or reduced form upregulate the transcription of the GSTP gene by activating c-jun and Nrf2 binding to the enhancer element GPEI.

  3. Structural Basis for the Binding of the Neutralizing Antibody, 7D11, to the Poxvirus L1 Protein

    Science.gov (United States)

    2007-08-01

    pCR- 7D11-vHC and pCR-7D11- vLC , respectively. Crystallization of the complex between L1 and 7D11-Fab VACV L1 protein was expressed and purified as...2005. Vaccinia virus H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in...D.M., Schmaljohn, C., Schmaljohn, A., 2000. DNA vaccination with vaccinia virus L1R and A33R genes protects mice against a lethal poxvirus challenge

  4. Oral Vaccination with the Porcine Rotavirus VP4 Outer Capsid Protein Expressed by Lactococcus lactis Induces Specific Antibody Production

    Directory of Open Access Journals (Sweden)

    Yi-jing Li

    2010-01-01

    Full Text Available The objective of this study to design a delivery system resistant to the gastrointestinal environment for oral vaccine against porcine rotavirus. Lactococcus lactis NZ9000 was transformed with segments of vP4 of the porcine rotavirus inserted into the pNZ8112 surface-expression vector, and a recombinant L. lactis expressing VP4 protein was constructed. An approximately 27 kDa VP4 protein was confirmed by SDS-PAGE , Western blot and immunostaining analysis. BALB/c mice were immunized orally with VP4-expression recombinant L. lactis and cellular, mucosal and systemic humoral immune responses were examined. Specific anti-VP4 secretory IgA and IgG were found in feces, ophthalmic and vaginal washes and in serum. The induced antibodies demonstrated neutralizing effects on porcine rotavirus infection on MA104 cells. Our findings suggest that oral immunization with VP4-expressing L. lactis induced both specific local and systemic humoral and cellular immune responses in mice.

  5. Modeling of the structure of ribosomal protein L1 from the archaeon Haloarcula marismortui

    Science.gov (United States)

    Nevskaya, N. A.; Kljashtorny, V. G.; Vakhrusheva, A. V.; Garber, M. B.; Nikonov, S. V.

    2017-07-01

    The halophilic archaeon Haloarcula marismortui proliferates in the Dead Sea at extremely high salt concentrations (higher than 3 M). This is the only archaeon, for which the crystal structure of the ribosomal 50S subunit was determined. However, the structure of the functionally important side protuberance containing the abnormally negatively charged protein L1 (HmaL1) was not visualized. Attempts to crystallize HmaL1 in the isolated state or as its complex with RNA using normal salt concentrations (≤500 mM) failed. A theoretical model of HmaL1 was built based on the structural data for homologs of the protein L1 from other organisms, and this model was refined by molecular dynamics methods. Analysis of this model showed that the protein HmaL1 can undergo aggregation due to the presence of a cluster of positive charges unique for proteins L1. This cluster is located at the RNA-protein interface, which interferes with the crystallization of HmaL1 and the binding of the latter to RNA.

  6. Rice sHsp genes: genomic organization and expression profiling under stress and development

    Directory of Open Access Journals (Sweden)

    Grover Anil

    2009-08-01

    Full Text Available Abstract Background Heat shock proteins (Hsps constitute an important component in the heat shock response of all living systems. Among the various plant Hsps (i.e. Hsp100, Hsp90, Hsp70 and Hsp20, Hsp20 or small Hsps (sHsps are expressed in maximal amounts under high temperature stress. The characteristic feature of the sHsps is the presence of α-crystallin domain (ACD at the C-terminus. sHsps cooperate with Hsp100/Hsp70 and co-chaperones in ATP-dependent manner in preventing aggregation of cellular proteins and in their subsequent refolding. Database search was performed to investigate the sHsp gene family across rice genome sequence followed by comprehensive expression analysis of these genes. Results We identified 40 α-crystallin domain containing genes in rice. Phylogenetic analysis showed that 23 out of these 40 genes constitute sHsps. The additional 17 genes containing ACD clustered with Acd proteins of Arabidopsis. Detailed scrutiny of 23 sHsp sequences enabled us to categorize these proteins in a revised scheme of classification constituting of 16 cytoplasmic/nuclear, 2 ER, 3 mitochondrial, 1 plastid and 1 peroxisomal genes. In the new classification proposed herein nucleo-cytoplasmic class of sHsps with 9 subfamilies is more complex in rice than in Arabidopsis. Strikingly, 17 of 23 rice sHsp genes were noted to be intronless. Expression analysis based on microarray and RT-PCR showed that 19 sHsp genes were upregulated by high temperature stress. Besides heat stress, expression of sHsp genes was up or downregulated by other abiotic and biotic stresses. In addition to stress regulation, various sHsp genes were differentially upregulated at different developmental stages of the rice plant. Majority of sHsp genes were expressed in seed. Conclusion We identified twenty three sHsp genes and seventeen Acd genes in rice. Three nucleocytoplasmic sHsp genes were found only in monocots. Analysis of expression profiling of sHsp genes revealed

  7. Optimalisation of expression conditions for production of round-leaf sundew chitinase (Drosera rotundifolia L. in three E. coli expression strains

    Directory of Open Access Journals (Sweden)

    Miroslav Rajninec

    2016-12-01

    Full Text Available Round-leaf sundew (Drosera rotundifolia L., family Droseraceae, genus Drosera, is one of a few plant species with a strong antifungal potential. Chitinases of carnivorous plants play an important role in decomposition of chitin-containing cell structures of insect prey. The cell wall of many phytopathogenic fungi also contains chitin, which can be utilized by chitinases, thus round-leaf sundew represents an interesting gene source for plant biotechnology. The purpose of this study was to compare the suitability of 3 different E. coli expression strains (E. coli BL21- CodonPlus® (DE3-RIPL, E. coli ArcticExpress (DE3RIL and E. coli SHuffle® T7 for production and isolation of heterologous round-leaf sundew chitinase (DrChit. Results showed that the recombinant protein was successfully expressed in all three strains, but occurred in insoluble protein fraction. To get the DrChit protein into soluble protein fraction some modifications concerning to induction temperatures and concentration of the IPTG inductor were tested. In addition, composition of lysis buffer has been modified with supplementation of strong non-ionic detergents, Triton® X100 and Tween® 20, respectively. As these modifications didn’t increase the amount of the DrChit protein in soluble fraction, therefore, its isolation under denaturing conditions and subsequent refolding for activity assays is recommended.

  8. High yield expression in a recombinant E. coli of a codon optimized chicken anemia virus capsid protein VP1 useful for vaccine development

    Directory of Open Access Journals (Sweden)

    You Bang-Jau

    2011-07-01

    Full Text Available Abstract Background Chicken anemia virus (CAV, the causative agent chicken anemia, is the only member of the genus Gyrovirus of the Circoviridae family. CAV is an immune suppressive virus and causes anemia, lymph organ atrophy and immunodeficiency. The production and biochemical characterization of VP1 protein and its use in a subunit vaccine or as part of a diagnostic kit would be useful to CAV infection prevention. Results Significantly increased expression of the recombinant full-length VP1 capsid protein from chicken anemia virus was demonstrated using an E. coli expression system. The VP1 gene was cloned into various different expression vectors and then these were expressed in a number of different E. coli strains. The expression of CAV VP1 in E. coli was significantly increased when VP1 was fused with GST protein rather than a His-tag. By optimizing the various rare amino acid codons within the N-terminus of the VP1 protein, the expression level of the VP1 protein in E. coli BL21(DE3-pLysS was further increased significantly. The highest protein expression level obtained was 17.5 g/L per liter of bacterial culture after induction with 0.1 mM IPTG for 2 h. After purification by GST affinity chromatography, the purified full-length VP1 protein produced in this way was demonstrated to have good antigenicity and was able to be recognized by CAV-positive chicken serum in an ELISA assay. Conclusions Purified recombinant VP1 protein with the gene's codons optimized in the N-terminal region has potential as chimeric protein that, when expressed in E. coli, may be useful in the future for the development of subunit vaccines and diagnostic tests.

  9. Enzyme-treated asparagus extract promotes expression of heat shock protein and exerts antistress effects.

    Science.gov (United States)

    Ito, Tomohiro; Maeda, Takahiro; Goto, Kazunori; Miura, Takehito; Wakame, Koji; Nishioka, Hiroshi; Sato, Atsuya

    2014-03-01

    A novel enzyme-treated asparagus extract (ETAS) has been developed as a functional material produced from asparagus stem. Studies were conducted to determine the effect of ETAS on heat shock protein 70 (HSP70) expression and alleviation of stress. HeLa cells were treated with ETAS, and HSP70 mRNA and protein levels were measured using a reverse transcription-polymerase chain reaction (RT-PCR) assay and an enzyme-linked immunosorbent assay (ELISA), respectively. ETAS showed significant increases in HSP70 mRNA at more than 0.125 mg/mL and the protein at more than 1.0 mg/mL. The antistress effect was evaluated in a murine sleep-deprivation model. A sleep-deprivation stress load resulted in elevation of blood corticosterone and lipid peroxide concentrations, while supplementation with ETAS at 200 and 1000 mg/kg body weight was associated with significantly reduced levels of both stress markers, which were in the normal range. The HSP70 protein expression level in mice subjected to sleep-deprivation stress and supplemented with ETAS was significantly enhanced in stomach, liver, and kidney, compared to ETAS-untreated mice. A preliminary and small-sized human study was conducted among healthy volunteers consuming up to 150 mg/d of ETAS daily for 7 d. The mRNA expression of HSP70 in peripheral leukocytes was significantly elevated at intakes of 100 or 150 mg/d, compared to their baseline levels. Since HSP70 is known to be a stress-related protein and its induction leads to cytoprotection, the present results suggest that ETAS might exert antistress effects under stressful conditions, resulting from enhancement of HSP70 expression. © 2014 Institute of Food Technologists®

  10. Expression and purification of PprI protein from D.radiodurans R1 in escherichia coli

    International Nuclear Information System (INIS)

    Zhang Yongqin; Zhou Hui; Chen Jie; Yang Zhanshan

    2011-01-01

    In order to express and purify PprI protein from D.radiodurans R1 in E. coli, the full length of pprI gene was gained by PCR amplification using pCMV-HA-pprI as a template. The gene segment was inserted into vector pET-28a after digested by two restriction endonucleases Nco I and EcoR I. Then the recombinant vector pET-28a-His-pprI was transfected into E. coli BL21(DE3) RP. The PprI protein expression was induced by IPTG and the fusion protein was confirmed by SDS-PAGE and Western blotting. The expressive conditions of the protein such as E. coli' A 600 , concentration of IPTG, time and temperature of culture, were optimized. Finally the fusion protein was purified by Ni-NTA His Bind Resins and molecule boult. The experimental results show the fusion protein confirmed by Western blotting is 6 x His-PprI and its molecular weight is 37 kDa. The ladders of PprI protein at molecular weight 37 kDa were different due to difference of the PprI protein expression conditions if E. coli. The PprI protein exists both in supernatant and precipitation. The concentration of purified protein is about 0.15 mg/mL which was measured by BCA method. It is concluded that the recombinant plasmid pET-28a-His-pprI is constructed and the PprI fusion protein is expressed and purified. The results lay a solid foundation for studying the radio-resistance and immunity of PprI protein. (authors)

  11. Structure and expression of the maize (Zea mays L. SUN-domain protein gene family: evidence for the existence of two divergent classes of SUN proteins in plants

    Directory of Open Access Journals (Sweden)

    Simmons Carl R

    2010-12-01

    Full Text Available Abstract Background The nuclear envelope that separates the contents of the nucleus from the cytoplasm provides a surface for chromatin attachment and organization of the cortical nucleoplasm. Proteins associated with it have been well characterized in many eukaryotes but not in plants. SUN (Sad1p/Unc-84 domain proteins reside in the inner nuclear membrane and function with other proteins to form a physical link between the nucleoskeleton and the cytoskeleton. These bridges transfer forces across the nuclear envelope and are increasingly recognized to play roles in nuclear positioning, nuclear migration, cell cycle-dependent breakdown and reformation of the nuclear envelope, telomere-led nuclear reorganization during meiosis, and karyogamy. Results We found and characterized a family of maize SUN-domain proteins, starting with a screen of maize genomic sequence data. We characterized five different maize ZmSUN genes (ZmSUN1-5, which fell into two classes (probably of ancient origin, as they are also found in other monocots, eudicots, and even mosses. The first (ZmSUN1, 2, here designated canonical C-terminal SUN-domain (CCSD, includes structural homologs of the animal and fungal SUN-domain protein genes. The second (ZmSUN3, 4, 5, here designated plant-prevalent mid-SUN 3 transmembrane (PM3, includes a novel but conserved structural variant SUN-domain protein gene class. Mircroarray-based expression analyses revealed an intriguing pollen-preferred expression for ZmSUN5 mRNA but low-level expression (50-200 parts per ten million in multiple tissues for all the others. Cloning and characterization of a full-length cDNA for a PM3-type maize gene, ZmSUN4, is described. Peptide antibodies to ZmSUN3, 4 were used in western-blot and cell-staining assays to show that they are expressed and show concentrated staining at the nuclear periphery. Conclusions The maize genome encodes and expresses at least five different SUN-domain proteins, of which the PM3

  12. A mature and fusogenic form of the Nipah virus fusion protein requires proteolytic processing by cathepsin L

    International Nuclear Information System (INIS)

    Pager, Cara Theresia; Craft, Willie Warren; Patch, Jared; Dutch, Rebecca Ellis

    2006-01-01

    The Nipah virus fusion (F) protein is proteolytically processed to F 1 + F 2 subunits. We demonstrate here that cathepsin L is involved in this important maturation event. Cathepsin inhibitors ablated cleavage of Nipah F. Proteolytic processing of Nipah F and fusion activity was dramatically reduced in cathepsin L shRNA-expressing Vero cells. Additionally, Nipah virus F-mediated fusion was inhibited in cathepsin L-deficient cells, but coexpression of cathepsin L restored fusion activity. Both purified cathepsin L and B could cleave immunopurified Nipah F protein, but only cathepsin L produced products of the correct size. Our results suggest that endosomal cathepsins can cleave Nipah F, but that cathepsin L specifically converts Nipah F to a mature and fusogenic form

  13. Scale-up of Escherichia coli growth and recombinant protein expression conditions from microwell to laboratory and pilot scale based on matched k(L)a.

    Science.gov (United States)

    Islam, R S; Tisi, D; Levy, M S; Lye, G J

    2008-04-01

    Fermentation optimization experiments are ideally performed at small scale to reduce time, cost and resource requirements. Currently microwell plates (MWPs) are under investigation for this purpose as the format is ideally suited to automated high-throughput experimentation. In order to translate an optimized small-scale fermentation process to laboratory and pilot scale stirred-tank reactors (STRs) it is necessary to characterize key engineering parameters at both scales given the differences in geometry and the mechanisms of aeration and agitation. In this study oxygen mass transfer coefficients are determined in three MWP formats and in 7.5 L and 75 L STRs. k(L)a values were determined in cell-free media using the dynamic gassing-out technique over a range of agitation conditions. Previously optimized culture conditions at the MWP scale were then scaled up to the larger STR scales on the basis of matched k(L)a values. The accurate reproduction of MWP (3 mL) E. coli BL21 (DE3) culture kinetics at the two larger scales was shown in terms of cell growth, protein expression, and substrate utilization for k(L)a values that provided effective mixing and gas-liquid distribution at each scale. This work suggests that k(L)a provides a useful initial scale-up criterion for MWP culture conditions which enabled a 15,000-fold scale translation in this particular case. This work complements our earlier studies on the application of DoE techniques to MWP fermentation optimization and in so doing provides a generic framework for the generation of large quantities of soluble protein in a rapid and cost-effective manner.

  14. Clusters of basic amino acids contribute to RNA binding and nucleolar localization of ribosomal protein L22.

    Directory of Open Access Journals (Sweden)

    Jennifer L Houmani

    Full Text Available The ribosomal protein L22 is a component of the 60S eukaryotic ribosomal subunit. As an RNA-binding protein, it has been shown to interact with both cellular and viral RNAs including 28S rRNA and the Epstein-Barr virus encoded RNA, EBER-1. L22 is localized to the cell nucleus where it accumulates in nucleoli. Although previous studies demonstrated that a specific amino acid sequence is required for nucleolar localization, the RNA-binding domain has not been identified. Here, we investigated the hypothesis that the nucleolar accumulation of L22 is linked to its ability to bind RNA. To address this hypothesis, mutated L22 proteins were generated to assess the contribution of specific amino acids to RNA binding and protein localization. Using RNA-protein binding assays, we demonstrate that basic amino acids 80-93 are required for high affinity binding of 28S rRNA and EBER-1 by L22. Fluorescence localization studies using GFP-tagged mutated L22 proteins further reveal that basic amino acids 80-93 are critical for nucleolar accumulation and for incorporation into ribosomes. Our data support the growing consensus that the nucleolar accumulation of ribosomal proteins may not be mediated by a defined localization signal, but rather by specific interaction with established nucleolar components such as rRNA.

  15. Mucosal and systemic immune responses elicited by recombinant Lactococcus lactis expressing a fusion protein composed of pertussis toxin and filamentous hemagglutinin from Bordetella pertussis.

    Science.gov (United States)

    Torkashvand, Ali; Bahrami, Fariborz; Adib, Minoo; Ajdary, Soheila

    2018-05-05

    We constructed a food-grade expression system harboring a F1S1 fusion protein of Bordetella pertussis to be produced in Lactococcus lactis NZ3900 as a new oral vaccine model against whooping cough, caused by B. pertussis. F1S1 was composed of N-terminally truncated S1 subunit of pertussis toxin and type I immunodominant domain of filamentous hemagglutinin which are both known as protective immunogens against pertussis. The recombinant L. lactis was administered via oral or intranasal routes to BALB/c mice and the related specific systemic and mucosal immune responses were then evaluated. The results indicated significantly higher levels of specific IgA in the lung extracts and IgG in sera of mucosally-immunized mice, compared to their controls. It was revealed that higher levels of IgG2a, compared to IgG1, were produced in all mucosally-immunized mice. Moreover, immunized mice developed Th1 responses with high levels of IFN-γ production by the spleen cells. These findings provide evidence for L. lactis to be used as a suitable vehicle for expression and delivery of F1S1 fusion protein to mucosa and induction of appropriate systemic and mucosal immune responses against pertussis. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Protein stability: a crystallographer’s perspective

    International Nuclear Information System (INIS)

    Deller, Marc C.; Kong, Leopold; Rupp, Bernhard

    2016-01-01

    An understanding of protein stability is essential for optimizing the expression, purification and crystallization of proteins. In this review, discussion will focus on factors affecting protein stability on a somewhat practical level, particularly from the view of a protein crystallographer. Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed

  17. Protein stability: a crystallographer’s perspective

    Energy Technology Data Exchange (ETDEWEB)

    Deller, Marc C., E-mail: mdeller@stanford.edu [Stanford University, Shriram Center, 443 Via Ortega, Room 097, MC5082, Stanford, CA 94305-4125 (United States); Kong, Leopold [National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health (NIH), Building 8, Room 1A03, 8 Center Drive, Bethesda, MD 20814 (United States); Rupp, Bernhard [k.-k. Hofkristallamt, 91 Audrey Place, Vista, CA 92084 (United States); Medical University of Innsbruck, Schöpfstrasse 41, A-6020 Innsbruck (Austria)

    2016-01-26

    An understanding of protein stability is essential for optimizing the expression, purification and crystallization of proteins. In this review, discussion will focus on factors affecting protein stability on a somewhat practical level, particularly from the view of a protein crystallographer. Protein stability is a topic of major interest for the biotechnology, pharmaceutical and food industries, in addition to being a daily consideration for academic researchers studying proteins. An understanding of protein stability is essential for optimizing the expression, purification, formulation, storage and structural studies of proteins. In this review, discussion will focus on factors affecting protein stability, on a somewhat practical level, particularly from the view of a protein crystallographer. The differences between protein conformational stability and protein compositional stability will be discussed, along with a brief introduction to key methods useful for analyzing protein stability. Finally, tactics for addressing protein-stability issues during protein expression, purification and crystallization will be discussed.

  18. CD163-L1 is an endocytic macrophage protein strongly regulated by mediators in the inflammatory response

    DEFF Research Database (Denmark)

    Moeller, Jesper B; Nielsen, Marianne J; Reichhardt, Martin P

    2012-01-01

    CD163-L1 belongs to the group B scavenger receptor cysteine-rich family of proteins, where the CD163-L1 gene arose by duplication of the gene encoding the hemoglobin scavenger receptor CD163 in late evolution. The current data demonstrate that CD163-L1 is highly expressed and colocalizes with CD163...... on large subsets of macrophages, but in contrast to CD163 the expression is low or absent in monocytes and in alveolar macrophages, glia, and Kupffer cells. The expression of CD163-L1 increases when cultured monocytes are M-CSF stimulated to macrophages, and the expression is further increased by the acute......-phase mediator IL-6 and the anti-inflammatory mediator IL-10 but is suppressed by the proinflammatory mediators IL-4, IL-13, TNF-α, and LPS/IFN-γ. Furthermore, we show that CD163-L1 is an endocytic receptor, which internalizes independently of cross-linking through a clathrin-mediated pathway. Two cytoplasmic...

  19. Endogenous testosterone increases L-type Ca2+ channel expression in porcine coronary smooth muscle.

    Science.gov (United States)

    Bowles, D K; Maddali, K K; Ganjam, V K; Rubin, L J; Tharp, D L; Turk, J R; Heaps, C L

    2004-11-01

    Evidence indicates that gender and sex hormonal status influence cardiovascular physiology and pathophysiology. We recently demonstrated increased L-type voltage-gated Ca2+ current (ICa,L) in coronary arterial smooth muscle (CASM) of male compared with female swine. The promoter region of the L-type voltage-gated Ca2+ channel (VGCC) (Cav1.2) gene contains a hormone response element that is activated by testosterone. Thus the purpose of the present study was to determine whether endogenous testosterone regulates CASM ICa,L through regulation of VGCC expression and activity. Sexually mature male and female Yucatan swine (7-8 mo; 35-45 kg) were obtained from the breeder. Males were left intact (IM, n=8), castrated (CM, n=8), or castrated with testosterone replacement (CMT, n=8; 10 mg/day Androgel). Females remained gonad intact (n=8). In right coronary arteries, both Cav1.2 mRNA and protein were greater in IM compared with intact females. Cav1.2 mRNA and protein were reduced in CM compared with IM and restored in CMT. In isolated CASM, both peak and steady-state ICa were reduced in CM compared with IM and restored in CMT. In males, a linear relationship was found between serum testosterone levels and ICa. In vitro, both testosterone and the nonaromatizable androgen, dihydrotestosterone, increased Cav1.2 expression. Furthermore, this effect was blocked by the androgen receptor antagonist cyproterone. We conclude that endogenous testosterone is a primary regulator of Cav1.2 expression and activity in coronary arteries of males.

  20. Differential in vivo gene expression of major Leptospira proteins in resistant or susceptible animal models.

    Science.gov (United States)

    Matsui, Mariko; Soupé, Marie-Estelle; Becam, Jérôme; Goarant, Cyrille

    2012-09-01

    Transcripts of Leptospira 16S rRNA, FlaB, LigB, LipL21, LipL32, LipL36, LipL41, and OmpL37 were quantified in the blood of susceptible (hamsters) and resistant (mice) animal models of leptospirosis. We first validated adequate reference genes and then evaluated expression patterns in vivo compared to in vitro cultures. LipL32 expression was downregulated in vivo and differentially regulated in resistant and susceptible animals. FlaB expression was also repressed in mice but not in hamsters. In contrast, LigB and OmpL37 were upregulated in vivo. Thus, we demonstrated that a virulent strain of Leptospira differentially adapts its gene expression in the blood of infected animals.

  1. Lactococcus lactis, an alternative system for functional expression of peripheral and intrinsic Arabidopsis membrane proteins.

    Directory of Open Access Journals (Sweden)

    Annie Frelet-Barrand

    Full Text Available BACKGROUND: Despite their functional and biotechnological importance, the study of membrane proteins remains difficult due to their hydrophobicity and their low natural abundance in cells. Furthermore, into established heterologous systems, these proteins are frequently only produced at very low levels, toxic and mis- or unfolded. Lactococcus lactis, a gram-positive lactic bacterium, has been traditionally used in food fermentations. This expression system is also widely used in biotechnology for large-scale production of heterologous proteins. Various expression vectors, based either on constitutive or inducible promoters, are available for this system. While previously used to produce bacterial and eukaryotic membrane proteins, the ability of this system to produce plant membrane proteins was until now not tested. METHODOLOGY/PRINCIPAL FINDINGS: The aim of this work was to test the expression, in Lactococcus lactis, of either peripheral or intrinsic Arabidopsis membrane proteins that could not be produced, or in too low amount, using more classical heterologous expression systems. In an effort to easily transfer genes from Gateway-based Arabidopsis cDNA libraries to the L. lactis expression vector pNZ8148, we first established a cloning strategy compatible with Gateway entry vectors. Interestingly, the six tested Arabidopsis membrane proteins could be produced, in Lactococcus lactis, at levels compatible with further biochemical analyses. We then successfully developed solubilization and purification processes for three of these proteins. Finally, we questioned the functionality of a peripheral and an intrinsic membrane protein, and demonstrated that both proteins were active when produced in this system. CONCLUSIONS/SIGNIFICANCE: Altogether, these data suggest that Lactococcus lactis might be an attractive system for the efficient and functional production of difficult plant membrane proteins.

  2. Differential expression of a novel seven transmembrane domain protein in epididymal fat from aged and diabetic mice.

    Science.gov (United States)

    Yang, H; Egan, J M; Rodgers, B D; Bernier, M; Montrose-Rafizadeh, C

    1999-06-01

    To identify novel seven transmembrane domain proteins from 3T3-L1 adipocytes, we used PCR to amplify 3T3-L1 adipocyte complementary DNA (cDNA) with primers homologous to the N- and C-termini of pancreatic glucagon-like peptide-1 (GLP-1) receptor. We screened a cDNA library prepared from fully differentiated 3T3-L1 adipocytes using a 500-bp cDNA PCR product probe. Herein describes the isolation and characterization of a 1.6-kb cDNA clone that encodes a novel 298-amino acid protein that we termed TPRA40 (transmembrane domain protein of 40 kDa regulated in adipocytes). TPRA40 has seven putative transmembrane domains and shows little homology with the known GLP-1 receptor or with other G protein-coupled receptors. The levels of TPRA40 mRNA and protein were higher in 3T3-L1 adipocytes than in 3T3-L1 fibroblasts. TPRA40 is present in a number of mouse and human tissues. Interestingly, TPRA40 mRNA levels were significantly increased by 2- to 3-fold in epididymal fat of 24-month-old mice vs. young controls as well as in db/db and ob/ob mice vs. nondiabetic control littermates. No difference in TPRA40 mRNA levels was observed in brain, heart, skeletal muscle, liver, or kidney. Furthermore, no difference in TPRA40 expression was detected in brown fat of ob/ob mice when compared with age-matched controls. Taken together, these data suggest that TPRA40 represents a novel membrane-associated protein whose expression in white adipose tissue is altered with aging and type 2 diabetes.

  3. Recombinant Expression Screening of P. aeruginosa Bacterial Inner Membrane Proteins

    Directory of Open Access Journals (Sweden)

    Jeffery Constance J

    2010-11-01

    Full Text Available Abstract Background Transmembrane proteins (TM proteins make up 25% of all proteins and play key roles in many diseases and normal physiological processes. However, much less is known about their structures and molecular mechanisms than for soluble proteins. Problems in expression, solubilization, purification, and crystallization cause bottlenecks in the characterization of TM proteins. This project addressed the need for improved methods for obtaining sufficient amounts of TM proteins for determining their structures and molecular mechanisms. Results Plasmid clones were obtained that encode eighty-seven transmembrane proteins with varying physical characteristics, for example, the number of predicted transmembrane helices, molecular weight, and grand average hydrophobicity (GRAVY. All the target proteins were from P. aeruginosa, a gram negative bacterial opportunistic pathogen that causes serious lung infections in people with cystic fibrosis. The relative expression levels of the transmembrane proteins were measured under several culture growth conditions. The use of E. coli strains, a T7 promoter, and a 6-histidine C-terminal affinity tag resulted in the expression of 61 out of 87 test proteins (70%. In this study, proteins with a higher grand average hydrophobicity and more transmembrane helices were expressed less well than less hydrophobic proteins with fewer transmembrane helices. Conclusions In this study, factors related to overall hydrophobicity and the number of predicted transmembrane helices correlated with the relative expression levels of the target proteins. Identifying physical characteristics that correlate with protein expression might aid in selecting the "low hanging fruit", or proteins that can be expressed to sufficient levels using an E. coli expression system. The use of other expression strategies or host species might be needed for sufficient levels of expression of transmembrane proteins with other physical

  4. Mechanism for the decrease in the FIP1L1-PDGFRalpha protein level in EoL-1 cells by histone deacetylase inhibitors.

    Science.gov (United States)

    Ishihara, Kenji; Kaneko, Motoko; Kitamura, Hajime; Takahashi, Aki; Hong, Jang Ja; Seyama, Toshio; Iida, Koji; Wada, Hiroshi; Hirasawa, Noriyasu; Ohuchi, Kazuo

    2008-01-01

    Acetylation and deacetylation of proteins occur in cells in response to various stimuli, and are reversibly catalyzed by histone acetyltransferase and histone deacetylase (HDAC), respectively. EoL-1 cells have an FIP1L1-PDGFRA fusion gene that causes transformation of eosinophilic precursor cells into leukemia cells. The HDAC inhibitors apicidin and n-butyrate suppress the proliferation of EoL-1 cells and induce differentiation into eosinophils by a decrease in the protein level of FIP1L1-PDGFRalpha without affecting the mRNA level for FIP1L1-PDGFRA. In this study, we analyzed the mechanism by which the protein level of FIP1L1-PDGFRalpha is decreased by apicidin and n-butyrate. EoL-1 cells were incubated in the presence of the HDAC inhibitors apicidin, trichostatin A or n-butyrate. The protein levels of FIP1L1-PDGFRalpha and phosphorylated eIF-2alpha were determined by Western blotting. Actinomycin D and cycloheximide were used to block RNA synthesis and protein synthesis, respectively, in the chasing experiment of the amount of FIP1L1-PDGFRalpha protein. When apicidin- and n-butyrate-treated EoL-1 cells were incubated in the presence of actinomycin D, the decrease in the protein level of FIP1L1-PDGFRalpha was significantly enhanced when compared with controls. In contrast, the protein levels were not changed by cycloheximide among these groups. Apicidin and n-butyrate induced the continuous phosphorylation of eIF-2alpha for up to 8 days. The decrease in the level of FIP1L1-PDGFRalpha protein by continuous inhibition of HDAC may be due to the decrease in the translation rate of FIP1L1-PDGFRA. Copyright 2008 S. Karger AG, Basel.

  5. Comparative study of SOS2 and a novel PMP3-1 gene expression in two sunflower (Helianthus annuus L.) lines differing in salt tolerance.

    Science.gov (United States)

    Saadia, Mubshara; Jamil, Amer; Ashraf, Muhammad; Akram, Nudrat Aisha

    2013-06-01

    Gene expression pattern of two important regulatory proteins, salt overly sensitive 2 (SOS2) and plasma membrane protein 3-1 (PMP3-1), involved in ion homeostasis, was analyzed in two salinity-contrasting sunflower (Helianthus annuus L.) lines, Hysun-38 (salt tolerant) and S-278 (moderately salt tolerant). The pattern was studied at selected time intervals (24 h) under 150 mM NaCl treatment. Using reverse transcription PCR, SOS2 gene fragment was obtained from young leaf and root tissues of opposing lines while that for PMP3-1 was obtained only from young root tissues. Both tolerant and moderately tolerant lines showed a gradual increase in SOS2 expression in sunflower root tissues. Leaf tissues showed the gradually increasing pattern of SOS2 expression in tolerant plants as compared to that for moderately tolerant ones that showed a relatively lower level of expression for this gene. We found the highest level of PMP 3-1 expression in the roots of tolerant sunflower line at 6 and 12 h postsalinity treatment. The moderately tolerant line showed higher expression of PMP3-1 at 12 and 24 h after salt treatment. Overall, the expression of genes for both the regulator proteins varied significantly in the two sunflower lines differing in salinity tolerance.

  6. Cloning and expression of antibacterial goat lactoferricin from Escherichia coli AD494(DE3)pLysS expression system.

    Science.gov (United States)

    Chen, Gen-Hung; Yin, Li-Jung; Chiang, I-Hua; Jiang, Shann-Tzong

    2008-12-01

    Goat lactoferricin (GLfcin), an antibacterial peptide, is released from the N terminus of goat lactoferrin by pepsin digestion. Two GLfcin-related cDNAs, GLfcin L and GLfcin S, encoding Ala20-Ser60 and Ser36-Ser60 of goat lactoferrin, respectively, were cloned into the pET-23a(+) expression vector upstream from (His)6-Tag gene and transformed into Escherichia coli AD494(DE3)pLysS expression host. After being induced by isopropyl-beta-D-thiogalactopyranoside (IPTG), two (His)6-Tag fused recombinant lactoferricins, GLfcin L-His*Tag and GLfcin S-His*Tag, were expressed in soluble form within the E. coli cytoplasm. The GLfcin L-His*Tag and GLfcin S-His*Tag were purified using HisTrap affinity chromatography. According to an antibacterial activity assay using the agar diffusion method, GLfcin L-His*Tag had antibacterial activity against E. coli BCRC 11549, Staphylococcus aureus BCRC 25923, and Propionibacterium acnes BCRC 10723, while GLfcin S-His*Tag was able to inhibit the growth of E. coli BCRC 11549 and P. acnes BCRC 10723. These two recombinant lactoferricins behaved as thermostable peptides, which could retain their activity for up to 30 min of exposure at 100 degrees C.

  7. The N-terminal sequence of ribosomal protein L10 from the archaebacterium Halobacterium marismortui and its relationship to eubacterial protein L6 and other ribosomal proteins.

    Science.gov (United States)

    Dijk, J; van den Broek, R; Nasiulas, G; Beck, A; Reinhardt, R; Wittmann-Liebold, B

    1987-08-01

    The amino-terminal sequence of ribosomal protein L10 from Halobacterium marismortui has been determined up to residue 54, using both a liquid- and a gas-phase sequenator. The two sequences are in good agreement. The protein is clearly homologous to protein HcuL10 from the related strain Halobacterium cutirubrum. Furthermore, a weaker but distinct homology to ribosomal protein L6 from Escherichia coli and Bacillus stearothermophilus can be detected. In addition to 7 identical amino acids in the first 36 residues in all four sequences a number of conservative replacements occurs, of mainly hydrophobic amino acids. In this common region the pattern of conserved amino acids suggests the presence of a beta-alpha fold as it occurs in ribosomal proteins L12 and L30. Furthermore, several potential cases of homology to other ribosomal components of the three ur-kingdoms have been found.

  8. Andrographolide inhibits adipogenesis of 3T3-L1 cells by suppressing C/EBPβ expression and activation.

    Science.gov (United States)

    Chen, Ching-Chu; Chuang, Wei-Ting; Lin, Ai-Hsuan; Tsai, Chia-Wen; Huang, Chin-Shiu; Chen, Yun-Ting; Chen, Haw-Wen; Lii, Chong-Kuei

    2016-09-15

    Andrographolide, a diterpenoid, is the most abundant terpenoid in Andrographis paniculata, a popular Chinese herbal medicine. Andrographolide displays diverse biological activities including hypoglycemia, hypolipidemia, anti-inflammation, and anti-tumorigenesis. Recent evidence indicates that andrographolide displays anti-obesity property by inhibiting lipogenic gene expression, however, the underlying mechanisms remain to be elucidated. In this study, the effects of andrographolide on transcription factor cascade and mitotic clonal expansion in 3T3-L1 preadipocyte differentiation into adipocyte were determined. Andrographolide dose-dependently (0-15μM) inhibited CCAAT/enhancer-binding protein α (C/EBPα) and C/EBPβ mRNA and protein expression as well as peroxisome proliferator-activated receptor γ (PPARγ) protein level during the adipogenesis of 3T3-L1 cells. Concomitantly, fatty acid synthase and stearoyl-CoA desaturase expression and lipid accumulation were attenuated by andrographolide. Oil-red O staining further showed that the first 48h after the initiation of differentiation was critical for andrographolide inhibition of adipocyte formation. Andrographolide inhibited the phosphorylation of PKA and the activation of cAMP response element-binding protein (CREB) in response to a differentiation cocktail, which led to attenuated C/EBPβ expression. In addition, ERK and GSK3β-dependent C/EBPβ phosphorylation was attenuated by andrographolide. Moreover, andrographolide suppressed cyclin A, cyclin E, and CDK2 expression and impaired the progression of mitotic clonal expansion (MCE) by arresting the cell cycle at the Go/G1 phase. Taken together, these results indicate that andrographolide has a potent anti-obesity action by inhibiting PKA-CREB-mediated C/EBPβ expression as well as C/EBPβ transcriptional activity, which halts MCE progression and attenuates C/EBPα and PPARγ expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  9. Dietary ascorbic acid modulates the expression profile of stress protein genes in hepatopancreas of adult Pacific abalone Haliotis discus hannai Ino.

    Science.gov (United States)

    Wu, Chenglong; Wang, Jia; Xu, Wei; Zhang, Wenbing; Mai, Kangsen

    2014-12-01

    This study was conducted to investigate the effects of dietary ascorbic acid (AA) on transcriptional expression patterns of antioxidant proteins, heat shock proteins (HSP) and nuclear factor kappa B (NF-κB) in the hepatopancreas of Pacific abalone Haliotis discus hannai Ino (initial average length: 84.36 ± 0.24 mm) using real-time quantitative PCR assays. L-ascorbyl-2-molyphosphate (LAMP) was added to the basal diet to formulate four experimental diets containing 0.0, 70.3, 829.8 and 4967.5 mg AA equivalent kg(-1) diets, respectively. Each diet was fed to triplicate groups of adult abalone in acrylic tanks (200 L) in a flow-through seawater system. Each tank was stocked with 15 abalone. Animals were fed once daily (17:00) to apparent satiation for 24 weeks. The results showed that the dietary AA (70.3 mg kg(-1)) could significantly up-regulate the expression levels of Cu/Zn superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST), feritin (FT) and heat shock protein 26 (HSP26) in the hepatopancreas of abalone in this treatment compared to the controls. However, the expression levels of Mn-SOD, glutathione peroxidase (GPX), thioredoxin peroxidase (TPx), selenium-binding protein (SEBP), HSP70 and HSP90 were significantly down-regulated. Compared with those in the group with 70.3 mg kg(-1) dietary AA, the expression levels of CAT, GST and HSP26 were decreased in abalone fed with very high dietary AA (4967.5 mg kg(-1)). In addition, significant up-regulations of expression levels of Mn-SOD, GPX, TPx, SEBP, FT, HSP70, HSP90 and NF-κB were observed in abalone fed with apparently excessive dietary AA (829.8 and 4967.5 mg kg(-1)) as compared to those fed 70.3 mg kg(-1) dietary AA. These findings showed that dietary AA influenced the expression levels of antioxidant proteins, heat shock proteins and NF-κB in the hepatopancreas of abalone at transcriptional level. Levels of dietary AA that appeared adequate (70.3 mg kg(-1)) reduced the oxidative stress

  10. Cocaine-induced adaptation of dopamine D2S, but not D2L autoreceptors.

    Science.gov (United States)

    Robinson, Brooks G; Condon, Alec F; Radl, Daniela; Borrelli, Emiliana; Williams, John T; Neve, Kim A

    2017-11-20

    The dopamine D2 receptor has two splice variants, D2S (Short) and D2L (Long). In dopamine neurons, both variants can act as autoreceptors to regulate neuronal excitability and dopamine release, but the roles of each variant are incompletely characterized. In a previous study we used viral receptor expression in D2 receptor knockout mice to show distinct effects of calcium signaling on D2S and D2L autoreceptor function (Gantz et al., 2015). However, the cocaine-induced plasticity of D2 receptor desensitization observed in wild type mice was not recapitulated with this method of receptor expression. Here we use mice with genetic knockouts of either the D2S or D2L variant to investigate cocaine-induced plasticity in D2 receptor signaling. Following a single in vivo cocaine exposure, the desensitization of D2 receptors from neurons expressing only the D2S variant was reduced. This did not occur in D2L-expressing neurons, indicating differential drug-induced plasticity between the variants.

  11. Exogenous Supplementation of Silicon Improved the Recovery of Hyperhydric Shoots in Dianthus caryophyllus L. by Stabilizing the Physiology and Protein Expression

    Science.gov (United States)

    Soundararajan, Prabhakaran; Manivannan, Abinaya; Cho, Yoon S.; Jeong, Byoung R.

    2017-01-01

    Hyperhydricity is one of the major problems hindering in vitro propagation of Dianthus caryophyllus L. Silicon (Si) is a well-known beneficial element renowned for its stress amelioration properties in plants. This study has demonstrated the physiological and molecular mechanism behind the Si-mediated recovery from hyperhydricity in D. caryophyllus L. ‘Green Beauty’. Four weeks old hyperhydric shoots obtained from temporary immersion system were cultured on the Murashige and Skoog medium supplemented with 0 (control), 1.8 mM, or 3.6 mM of potassium silicate (K2SiO3). After 2 weeks of culture, we observed only 20% of hyperhydric shoots were recovered in control. On the other hand hyperhydricity, shoot recovery percentage in 1.8 mM and 3.6 mM of Si were 44% and 36%, respectively. Shoots in control possessed higher lipid peroxidation rate compared to the Si treatments. Similarly, damaged stomata were detected in the control, while Si treatments restored the normal stomatal development. Expressions of superoxide dismutase, guaiacol peroxidase, and catalase varied between the control and Si treatments. Furthermore, a proteomic analysis showed that as compared with the control Si up-regulated 17 and 10 protein spots in abundance at 1.8 and 3.6 mM of Si, respectively. In comparison to the 3.6 mM, 1.8 mM of Si treatment up-regulated 19 proteins and down-regulated 7 proteins. Identified proteins were categorized into six groups according to their biological roles such as ribosomal binding, oxido-reduction, hormone/cell signaling, metal/ion binding, defense, and photosynthesis. The proteomic results revealed that Si actively involved in the various metabolisms to accelerate the recovery of the shoots from hyperhydricity. Thus, the outcomes of this study can be utilized for addressing the molecular insight of hyperhydricity and its recovery mechanism by the supplementation of Si. Therefore, we conclude that active involvement of Si in the regulation and signaling process

  12. Using the 2A Protein Coexpression System: Multicistronic 2A Vectors Expressing Gene(s) of Interest and Reporter Proteins.

    Science.gov (United States)

    Luke, Garry A; Ryan, Martin D

    2018-01-01

    To date, a huge range of different proteins-many with cotranslational and posttranslational subcellular localization signals-have been coexpressed together with various reporter proteins in vitro and in vivo using 2A peptides. The pros and cons of 2A co-expression technology are considered below, followed by a simple example of a "how to" protocol to concatenate multiple genes of interest, together with a reporter gene, into a single gene linked via 2As for easy identification or selection of transduced cells.

  13. The roles of MCP-1 and protein kinase C delta activation in human eosinophilic leukemia EoL-1 cells.

    Science.gov (United States)

    Lee, Ji-Sook; Yang, Eun Ju; Kim, In Sik

    2009-12-01

    Idiopathic hypereosinophilc syndrome is a disorder associated with clonally eosinophilic proliferation. The importance of FIP1-like-1-platelet-derived growth factor receptor-alpha (FIP1L1-PDGFRA) in the pathogenesis and classification of HES has been recently reported. In this study, we investigated the contribution of monocyte chemoattractant protein-1 (MCP-1)/CCL2 to chemotactic activity and protein kinase C delta (PKC delta in the human eosinophilic leukemia cell line EoL-1. These cells express CCR2 protein among the CC chemokine receptors (CCR1-5). MCP-1 induces strong migration of EoL-1 cells and the chemotaxis signal in response to MCP-1 involves a G(i)/G(o) protein, phospholipase C (PLC), PKC delta, p38 MAPK and NF-kappaB. MCP-1 activates p38 MAPK via G(i)/G(o) protein, PLC and PKC delta cascade. MCP-1 also induces NF-kappaB translocation and the activation is inhibited by PKC delta activation. The increase in the basal expression and activity of PKC delta in EoL-1 cells, compared to normal eosinophils, inhibits apoptosis in EoL-1 cells. Anti-apoptotic mechanism of PKC delta is related to inhibition of caspase 3 and caspase 9, but not to FIP1L1-PDGFRA. PKC delta functions as an anti-apoptotic molecule, and is involved in EoL-1 cell movement stimulated by MCP-1. This study contributes to an understanding of MCP-1 in eosinophil biology and pathogenic mechanism of eosinophilic disorders.

  14. 30 CFR 250.523 - How long do I keep records of casing pressure and diagnostic tests?

    Science.gov (United States)

    2010-07-01

    ... and diagnostic tests? 250.523 Section 250.523 Mineral Resources MINERALS MANAGEMENT SERVICE... casing pressure and diagnostic tests? Records of casing pressure and diagnostic tests must be kept at the field office nearest the well for a minimum of 2 years. The last casing diagnostic test for each casing...

  15. Atomic Structure and Biochemical Characterization of an RNA Endonuclease in the N Terminus of Andes Virus L Protein.

    Directory of Open Access Journals (Sweden)

    Yaiza Fernández-García

    2016-06-01

    Full Text Available Andes virus (ANDV is a human-pathogenic hantavirus. Hantaviruses presumably initiate their mRNA synthesis by using cap structures derived from host cell mRNAs, a mechanism called cap-snatching. A signature for a cap-snatching endonuclease is present in the N terminus of hantavirus L proteins. In this study, we aimed to solve the atomic structure of the ANDV endonuclease and characterize its biochemical features. However, the wild-type protein was refractory to expression in Escherichia coli, presumably due to toxic enzyme activity. To circumvent this problem, we introduced attenuating mutations in the domain that were previously shown to enhance L protein expression in mammalian cells. Using this approach, 13 mutant proteins encompassing ANDV L protein residues 1-200 were successfully expressed and purified. Protein stability and nuclease activity of the mutants was analyzed and the crystal structure of one mutant was solved to a resolution of 2.4 Å. Shape in solution was determined by small angle X-ray scattering. The ANDV endonuclease showed structural similarities to related enzymes of orthobunya-, arena-, and orthomyxoviruses, but also differences such as elongated shape and positively charged patches surrounding the active site. The enzyme was dependent on manganese, which is bound to the active site, most efficiently cleaved single-stranded RNA substrates, did not cleave DNA, and could be inhibited by known endonuclease inhibitors. The atomic structure in conjunction with stability and activity data for the 13 mutant enzymes facilitated inference of structure-function relationships in the protein. In conclusion, we solved the structure of a hantavirus cap-snatching endonuclease, elucidated its catalytic properties, and present a highly active mutant form, which allows for inhibitor screening.

  16. Predictable tuning of protein expression in bacteria

    DEFF Research Database (Denmark)

    Bonde, Mads; Pedersen, Margit; Klausen, Michael Schantz

    2016-01-01

    We comprehensively assessed the contribution of the Shine-Dalgarno sequence to protein expression and used the data to develop EMOPEC (Empirical Model and Oligos for Protein Expression Changes; http://emopec.biosustain.dtu.dk). EMOPEC is a free tool that makes it possible to modulate the expressi...

  17. Protein samples for NMR: expression and analysis without purification, and stabilization by covalent cyclization

    International Nuclear Information System (INIS)

    Otting, G.; Ozawa, K.; Prosselkov, P.; Williams, N.K.; Dixon, N.E.; Liepinsh, E.

    2002-01-01

    Full text: A modified cell-free in vitro expression system was established for the expression of milligram quantities of protein per mL reaction medium. Expression levels of the E coli cytoplasmic peptidyl-prolyl cis-trans isomerase, PpiB, in 0 6 mL reaction medium were sufficient for the direct recording of clean 15N-HSQC spectra without chromatographic purification or sample concentration steps, using a 600 MHz NMR spectrometer with cryoprobe. Besides providing a route to high-throughput sample preparation, in vitro expression systems are known to be highly economic in their utilization of selectively labelled ammo acids. Using dual-selective labelling with 15N- and 13C-labelled amino acids, the 15N-HSQC cross peaks of strategically selected ammo acids can readily be identified and monitored for their response to the presence of ligand molecules, again without sample purification. 2) The N-terminal domain of E coli DnaB is a protein of ca 110 residues with a structured core composed of 6 helices. Additional segments of 10 residues each at the N- and C-termini are highly mobile. Both ends are close in space and can be linked together in a covalent peptide bond using intern technology. The core structures of linear (lin-DnaB-N) and cyclized (cz-DnaB-N) protein are conserved, as evidenced by superimposable NOESY spectra and chemical shifts. The linker segment in cz-DnaB-N is mobile as shown by 1H-15N NOEs. Yet, the cyclic protein melts about 10 degrees higher than the linear version. A stabilization free energy of ca 2 kcal/mol is in agreement with predictions based on the reduced entropy in the unfolded state. Amide proton exchange rates are much slower in the cyclic protein and reveal cooperative exchange through total, global unfolding at a rate of once every 100 minutes in the linear protein

  18. Evolutionary Divergence of Gene and Protein Expression in the Brains of Humans and Chimpanzees.

    Science.gov (United States)

    Bauernfeind, Amy L; Soderblom, Erik J; Turner, Meredith E; Moseley, M Arthur; Ely, John J; Hof, Patrick R; Sherwood, Chet C; Wray, Gregory A; Babbitt, Courtney C

    2015-07-10

    Although transcriptomic profiling has become the standard approach for exploring molecular differences in the primate brain, very little is known about how the expression levels of gene transcripts relate to downstream protein abundance. Moreover, it is unknown whether the relationship changes depending on the brain region or species under investigation. We performed high-throughput transcriptomic (RNA-Seq) and proteomic (liquid chromatography coupled with tandem mass spectrometry) analyses on two regions of the human and chimpanzee brain: The anterior cingulate cortex and caudate nucleus. In both brain regions, we found a lower correlation between mRNA and protein expression levels in humans and chimpanzees than has been reported for other tissues and cell types, suggesting that the brain may engage extensive tissue-specific regulation affecting protein abundance. In both species, only a few categories of biological function exhibited strong correlations between mRNA and protein expression levels. These categories included oxidative metabolism and protein synthesis and modification, indicating that the expression levels of mRNA transcripts supporting these biological functions are more predictive of protein expression compared with other functional categories. More generally, however, the two measures of molecular expression provided strikingly divergent perspectives into differential expression between human and chimpanzee brains: mRNA comparisons revealed significant differences in neuronal communication, ion transport, and regulatory processes, whereas protein comparisons indicated differences in perception and cognition, metabolic processes, and organization of the cytoskeleton. Our results highlight the importance of examining protein expression in evolutionary analyses and call for a more thorough understanding of tissue-specific protein expression levels. © The Author(s) 2015. Published by Oxford University Press on behalf of the Society for Molecular

  19. Mechanisms of Nifedipine-Downregulated CD40L/sCD40L Signaling in Collagen Stimulated Human Platelets.

    Directory of Open Access Journals (Sweden)

    Tso-Hsiao Chen

    Full Text Available The platelet-derived soluble CD40L (sCD40L release plays a critical role in the development of atherosclerosis. Nifedipine, a dihydropyridine-based L-type calcium channel blocker (CCB, has been reported to have an anti-atherosclerotic effect beyond its blood pressure-lowering effect, but the molecular mechanisms remain unclear. The present study was designed to investigate whether nifedipine affects sCD40L release from collagen-stimulated human platelets and to determine the potential role of peroxisome proliferator-activated receptor-β/-γ (PPAR-β/-γ. We found that treatment with nifedipine significantly inhibited the platelet surface CD40L expression and sCD40L release in response to collagen, while the inhibition was markedly reversed by blocking PPAR-β/-γ activity with specific antagonist such as GSK0660 and GW9662. Meanwhile, nifedipine also enhanced nitric oxide (NO and cyclic GMP formation in a PPAR-β/-γ-dependent manner. When the NO/cyclic GMP pathway was suppressed, nifedipine-mediated inhibition of sCD40L release was abolished significantly. Collagen-induced phosphorylation of p38MAPK, ERK1/2 and HSP27, matrix metalloproteinase-2 (MMP-2 expression/activity and reactive oxygen species (ROS formation were significantly inhibited by nifedipine, whereas these alterations were all attenuated by co-treatment with PPAR-β/-γ antagonists. Collectively, these results demonstrate that PPAR-β/-γ-dependent pathways contribute to nifedipine-mediated downregulation of CD40L/sCD40L signaling in activated platelets through regulation of NO/ p38MAPK/ERK1/2/HSP27/MMP-2 signalings and provide a novel mechanism regarding the anti-atherosclerotic effect of nifedipine.

  20. Protein Expression Analyses at the Single Cell Level

    Directory of Open Access Journals (Sweden)

    Masae Ohno

    2014-09-01

    Full Text Available The central dogma of molecular biology explains how genetic information is converted into its end product, proteins, which are responsible for the phenotypic state of the cell. Along with the protein type, the phenotypic state depends on the protein copy number. Therefore, quantification of the protein expression in a single cell is critical for quantitative characterization of the phenotypic states. Protein expression is typically a dynamic and stochastic phenomenon that cannot be well described by standard experimental methods. As an alternative, fluorescence imaging is being explored for the study of protein expression, because of its high sensitivity and high throughput. Here we review key recent progresses in fluorescence imaging-based methods and discuss their application to proteome analysis at the single cell level.

  1. Isolation, expression and characterization of rbcL gene from Ulva prolifera J. Agardh (Ulvophyceae, Chlorophyta)

    Science.gov (United States)

    Shao, Zhanru; Li, Wei; Guo, Hui; Duan, Delin

    2015-12-01

    Ulva prolifera is a typical green alga in subtidal areas and can grow tremendously fast. A highly efficient Rubisco enzyme which is encoded by UpRbcL gene may contribute to the rapid growth. In this study, the full-length UpRbcL open reading frame (ORF) was identified, which encoded a protein of 474 amino acids. Phylogenetic analysis of UpRbcL sequences revealed that Chlorophyta had a closer genetic relationship with higher plants than with Rhodophyta and Phaeophyta. The two distinct residues (aa11 and aa91) were presumed to be unique for Rubisco catalytic activity. The predicted three-dimensional structure showed that one α/β-barrel existed in the C-terminal region, and the sites for Mg2+ coordination and CO2 fixation were also located in this region. Gene expression profile indicated that UpRbcL was expressed at a higher level under light exposure than in darkness. When the culture temperature reached 35°C, the expression level of UpRbcL was 2.5-fold lower than at 15°C, and the carboxylase activity exhibited 13.8-fold decrease. UpRbcL was heterologously expressed in E. coli and was purified by Ni2+ affinity chromatography. The physiological and biochemical characterization of recombinant Rubisco will be explored in the future.

  2. Cloning and expression analysis of genes encoding lytic endopeptidases L1 and L5 from Lysobacter sp. strain XL1.

    Science.gov (United States)

    Lapteva, Y S; Zolova, O E; Shlyapnikov, M G; Tsfasman, I M; Muranova, T A; Stepnaya, O A; Kulaev, I S; Granovsky, I E

    2012-10-01

    Lytic enzymes are the group of hydrolases that break down structural polymers of the cell walls of various microorganisms. In this work, we determined the nucleotide sequences of the Lysobacter sp. strain XL1 alpA and alpB genes, which code for, respectively, secreted lytic endopeptidases L1 (AlpA) and L5 (AlpB). In silico analysis of their amino acid sequences showed these endopeptidases to be homologous proteins synthesized as precursors similar in structural organization: the mature enzyme sequence is preceded by an N-terminal signal peptide and a pro region. On the basis of phylogenetic analysis, endopeptidases AlpA and AlpB were assigned to the S1E family [clan PA(S)] of serine peptidases. Expression of the alpA and alpB open reading frames (ORFs) in Escherichia coli confirmed that they code for functionally active lytic enzymes. Each ORF was predicted to have the Shine-Dalgarno sequence located at a canonical distance from the start codon and a potential Rho-independent transcription terminator immediately after the stop codon. The alpA and alpB mRNAs were experimentally found to be monocistronic; transcription start points were determined for both mRNAs. The synthesis of the alpA and alpB mRNAs was shown to occur predominantly in the late logarithmic growth phase. The amount of alpA mRNA in cells of Lysobacter sp. strain XL1 was much higher, which correlates with greater production of endopeptidase L1 than of L5.