WorldWideScience

Sample records for exposure differentially alters

  1. Lead Exposure Disrupts Global DNA Methylation in Human Embryonic Stem Cells and Alters Their Neuronal Differentiation

    Science.gov (United States)

    Senut, Marie-Claude; Sen, Arko; Cingolani, Pablo; Shaik, Asra; Land, Susan J.; Ruden, Douglas M.

    2014-01-01

    Exposure to lead (Pb) during childhood can result in learning disabilities and behavioral problems. Although described in animal models, whether Pb exposure also alters neuronal differentiation in the developing brains of exposed children is unknown. Here, we investigated the effects of physiologically relevant concentrations of Pb (from 0.4 to 1.9μM) on the capacity of human embryonic stem cells (hESCs) to progress to a neuronal fate. We found that neither acute nor chronic exposure to Pb prevented hESCs from generating neural progenitor cells (NPCs). NPCs derived from hESCs chronically exposed to 1.9μM Pb throughout the neural differentiation process generated 2.5 times more TUJ1-positive neurons than those derived from control hESCs. Pb exposure of hESCs during the stage of neural rosette formation resulted in a significant decrease in the expression levels of the neural marker genes PAX6 and MSI1. Furthermore, the resulting NPCs differentiated into neurons with shorter neurites and less branching than control neurons, as assessed by Sholl analysis. DNA methylation studies of control, acutely treated hESCs and NPCs derived from chronically exposed hESCs using the Illumina HumanMethylation450 BeadChip demonstrated that Pb exposure induced changes in the methylation status of genes involved in neurogenetic signaling pathways. In summary, our study shows that exposure to Pb subtly alters the neuronal differentiation of exposed hESCs and that these changes could be partly mediated by modifications in the DNA methylation status of genes crucial to brain development. PMID:24519525

  2. Diesel exhaust particle exposure in vitro alters monocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Nazia Chaudhuri

    Full Text Available Air pollution by diesel exhaust particles is associated with elevated mortality and increased hospital admissions in individuals with respiratory diseases such as asthma and chronic obstructive pulmonary disease. During active inflammation monocytes are recruited to the airways and can replace resident alveolar macrophages. We therefore investigated whether chronic fourteen day exposure to low concentrations of diesel exhaust particles can alter the phenotype and function of monocytes from healthy individuals and those with chronic obstructive pulmonary disease. Monocytes were purified from the blood of healthy individuals and people with a diagnosis of chronic obstructive pulmonary disease. Monocyte-derived macrophages were generated in the presence or absence of diesel exhaust particles and their phenotypes studied through investigation of their lifespan, cytokine generation in response to Toll like receptor agonists and heat killed bacteria, and expression of surface markers. Chronic fourteen day exposure of monocyte-derived macrophages to concentrations of diesel exhaust particles >10 µg/ml caused mitochondrial and lysosomal dysfunction, and a gradual loss of cells over time both in healthy and chronic obstructive pulmonary disease individuals. Chronic exposure to lower concentrations of diesel exhaust particles impaired CXCL8 cytokine responses to lipopolysaccharide and heat killed E. coli, and this phenotype was associated with a reduction in CD14 and CD11b expression. Chronic diesel exhaust particle exposure may therefore alter both numbers and function of lung macrophages differentiating from locally recruited monocytes in the lungs of healthy people and patients with chronic obstructive pulmonary disease.

  3. Developmental exposure to estrogen alters differentiation and epigenetic programming in a human fetal prostate xenograft model.

    Directory of Open Access Journals (Sweden)

    Camelia M Saffarini

    Full Text Available Prostate cancer is the most frequent non-cutaneous malignancy in men. There is strong evidence in rodents that neonatal estrogen exposure plays a role in the development of this disease. However, there is little information regarding the effects of estrogen in human fetal prostate tissue. This study explored early life estrogen exposure, with and without a secondary estrogen and testosterone treatment in a human fetal prostate xenograft model. Histopathological lesions, proliferation, and serum hormone levels were evaluated at 7, 30, 90, and 200-day time-points after xenografting. The expression of 40 key genes involved in prostatic glandular and stromal growth, cell-cycle progression, apoptosis, hormone receptors and tumor suppressors was evaluated using a custom PCR array. Epigenome-wide analysis of DNA methylation was performed on whole tissue, and laser capture-microdissection (LCM isolated epithelial and stromal compartments of 200-day prostate xenografts. Combined initial plus secondary estrogenic exposures had the most severe tissue changes as revealed by the presence of hyperplastic glands at day 200. Gene expression changes corresponded with the cellular events in the KEGG prostate cancer pathway, indicating that initial plus secondary exposure to estrogen altered the PI3K-Akt signaling pathway, ultimately resulting in apoptosis inhibition and an increase in cell cycle progression. DNA methylation revealed that differentially methylated CpG sites significantly predominate in the stromal compartment as a result of estrogen-treatment, thereby providing new targets for future investigation. By using human fetal prostate tissue and eliminating the need for species extrapolation, this study provides novel insights into the gene expression and epigenetic effects related to prostate carcinogenesis following early life estrogen exposure.

  4. Identification of neural biomarkers of altered sexual differentiation following gestational exposure###

    Science.gov (United States)

    Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) duri...

  5. IDENTIFICATION OF NEURAL BIOMARKERS OF ALTERED SEXUAL DIFFERENTIATION FOLLOWING GESTATIONAL EXPOSURE***

    Science.gov (United States)

    Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) duri...

  6. Identification of neural biomarkers of altered sexual differentiation following gestational exposure

    Science.gov (United States)

    Sexual differentiation of the brain occurs during late gestation through the early postnatal period. The development of the phenotypical male brain is dependent on the aromatization of circulating testosterone to estradiol. Exposure to endocrine disrupting chemicals (EDCs) during...

  7. Prenatal exposure to urban air nanoparticles in mice causes altered neuronal differentiation and depression-like responses.

    Directory of Open Access Journals (Sweden)

    David A Davis

    Full Text Available Emerging evidence suggests that excessive exposure to traffic-derived air pollution during pregnancy may increase the vulnerability to neurodevelopmental alterations that underlie a broad array of neuropsychiatric disorders. We present a mouse model for prenatal exposure to urban freeway nanoparticulate matter (nPM. In prior studies, we developed a model for adult rodent exposure to re-aerosolized urban nPM which caused inflammatory brain responses with altered neuronal glutamatergic functions. nPMs are collected continuously for one month from a local freeway and stored as an aqueous suspension, prior to re-aerosolization for exposure of mice under controlled dose and duration. This paradigm was used for a pilot study of prenatal nPM impact on neonatal neurons and adult behaviors. Adult C57BL/6J female mice were exposed to re-aerosolized nPM (350 µg/m(3 or control filtered ambient air for 10 weeks (3×5 hour exposures per week, encompassing gestation and oocyte maturation prior to mating. Prenatal nPM did not alter litter size, pup weight, or postnatal growth. Neonatal cerebral cortex neurons at 24 hours in vitro showed impaired differentiation, with 50% reduction of stage 3 neurons with long neurites and correspondingly more undifferentiated neurons at Stages 0 and 1. Neuron number after 24 hours of culture was not altered by prenatal nPM exposure. Addition of exogenous nPM (2 µg/ml to the cultures impaired pyramidal neuron Stage 3 differentiation by 60%. Adult males showed increased depression-like responses in the tail-suspension test, but not anxiety-related behaviors. These pilot data suggest that prenatal exposure to nPM can alter neuronal differentiation with gender-specific behavioral sequelae that may be relevant to human prenatal exposure to urban vehicular aerosols.

  8. Acute and chronic ethanol exposure differentially alters alcohol dehydrogenase and aldehyde dehydrogenase activity in the zebrafish liver.

    Science.gov (United States)

    Tran, Steven; Nowicki, Magda; Chatterjee, Diptendu; Gerlai, Robert

    2015-01-02

    Chronic ethanol exposure paradigms have been successfully used in the past to induce behavioral and central nervous system related changes in zebrafish. However, it is currently unknown whether chronic ethanol exposure alters ethanol metabolism in adult zebrafish. In the current study we examine the effect of acute ethanol exposure on adult zebrafish behavioral responses, as well as alcohol dehydrogenase (ADH) and aldehyde dehydrogenase (ALDH) activity in the liver. We then examine how two different chronic ethanol exposure paradigms (continuous and repeated ethanol exposure) alter behavioral responses and liver enzyme activity during a subsequent acute ethanol challenge. Acute ethanol exposure increased locomotor activity in a dose-dependent manner. ADH activity was shown to exhibit an inverted U-shaped curve and ALDH activity was decreased by ethanol exposure at all doses. During the acute ethanol challenge, animals that were continuously housed in ethanol exhibited a significantly reduced locomotor response and increased ADH activity, however, ALDH activity did not change. Zebrafish that were repeatedly exposed to ethanol demonstrated a small but significant attenuation of the locomotor response during the acute ethanol challenge but ADH and ALDH activity was similar to controls. Overall, we identified two different chronic ethanol exposure paradigms that differentially alter behavioral and physiological responses in zebrafish. We speculate that these two paradigms may allow dissociation of central nervous system-related and liver enzyme-dependent ethanol induced changes in zebrafish. Copyright © 2014 Elsevier Inc. All rights reserved.

  9. Alcohol exposure differentially effects anti-tumor immunity in females by altering dendritic cell function.

    Science.gov (United States)

    Thompson, Matthew G; Navarro, Flor; Chitsike, Lennox; Ramirez, Luis; Kovacs, Elizabeth J; Watkins, Stephanie K

    2016-12-01

    Dendritic cells (DCs) are a critical component of anti-tumor immunity due to their ability to induce a robust immune response to antigen (Ag). Alcohol was previously shown to reduce DC ability to present foreign Ag and promote pro-inflammatory responses in situations of infection and trauma. However the impact of alcohol exposure on generation of an anti-tumor response, especially in the context of generation of an immune vaccine has not been examined. In the clinic, DC vaccines are typically generated from autologous blood, therefore prior exposure to substances such as alcohol may be a critical factor to consider regarding the effectiveness in generating an immune response. In this study, we demonstrate for the first time that ethanol differentially affects DC and tumor Ag-specific T cell responses depending on sex. Signaling pathways were found to be differentially regulated in DC in females compared to males and these differences were exacerbated by ethanol treatment. DC from female mice treated with ethanol were unable to activate Ag-specific cytotoxic T cells (CTL) as shown by reduced expression of CD44, CD69, and decreased production of granzyme B and IFNγ. Furthermore, although FOXO3, an immune suppressive mediator of DC function, was found to be upregulated in DC from female mice, ethanol related suppression was independent of FOXO3. These findings demonstrate for the first time differential impacts of alcohol on the immune system of females compared to males and may be a critical consideration for determining the effectiveness of an immune based therapy for cancer in patients that consume alcohol. Copyright © 2016 The Authors. Published by Elsevier Inc. All rights reserved.

  10. Developmental exposure to bisphenol A (BPA) alters sexual differentiation in painted turtles (Chrysemys picta)

    Science.gov (United States)

    Jandegian, Caitlin M.; Deem, Sharon L.; Bhandari, Ramji K.; Holliday, Casey M.; Nicks, Diane; Rosenfeld, Cheryl S.; Selcer, Kyle; Tillitt, Donald E.; vom Saal, Fredrick S.; Velez, Vanessa; Yang, Ying; Holliday, Dawn K.

    2015-01-01

    Environmental chemicals can disrupt endocrine signaling and adversely impact sexual differentiation in wildlife. Bisphenol A (BPA) is an estrogenic chemical commonly found in a variety of habitats. In this study, we used painted turtles (Chrysemys picta), which have temperature-dependent sex determination (TSD), as an animal model for ontogenetic endocrine disruption by BPA. We hypothesized that BPA would override TSD and disrupt sexual development. We incubated farm-raised turtle eggs at the male-producing temperature (26 °C), randomly assigned individuals to treatment groups: control, vehicle control, 17β-estradiol (E2, 20 ng/g-egg) or 0.01, 1.0, 100 μg BPA/g-egg and harvested tissues at hatch. Typical female gonads were present in 89% of the E2-treated “males”, but in none of the control males (n = 35). Gonads of BPA-exposed turtles had varying amounts of ovarian-like cortical (OLC) tissue and disorganized testicular tubules in the medulla. Although the percentage of males with OLCs increased with BPA dose (BPA-low = 30%, BPA-medium = 33%, BPA-high = 39%), this difference was not significant (p = 0.85). In all three BPA treatments, SOX9 patterns revealed disorganized medullary testicular tubules and β-catenin expression in a thickened cortex. Liver vitellogenin, a female-specific liver protein commonly used as an exposure biomarker, was not induced by any of the treatments. Notably, these results suggest that developmental exposure to BPA disrupts sexual differentiation in painted turtles. Further examination is necessary to determine the underlying mechanisms of sex reversal in reptiles and how these translate to EDC exposure in wild populations.

  11. Testosterone attenuates morpho-functional alterations by 2-methoxyestradiol exposure and induces differentiation in C6 cells.

    Science.gov (United States)

    Manca, Paolo; Chisu, Valentina

    2011-06-01

    2-Methoxyestradiol (2ME) is a cytotoxic drug that interacts with tubulin and alters microtubule dynamics. It has been reported that testosterone (T) has a neuroprotective effect against oxidative stress and induces differentiation in mouse C1300 neuroblastoma cells. Here, we investigated the ability of T to attenuate the cytotoxic effects of 2ME and to induce cell differentiation in an immortalized rat glial cell line, known as C6. C6 cells were exposed for 5 days to 5 µM 2ME, 50 nM T, or both. We evaluated the morphological changes, growth rate, vitality, catalase activity, and glial fibrillary acidic protein (GFAP) immunoreactivity in control and treated C6 cells. Western blot analyses were used to quantify expression of tyrosinated tubulin (Tyr-Tub), acetylated tubulin (Acet-Tub), total α-tubulin (TOT-Tub), and GFAP. After 2ME exposure, the cells displayed a globular, shrunken shape, and retraction or absence of cytoplasmic processes; moreover, 2ME treatment significantly decreased cell growth, cell viability, catalase activity, and expression of both Tyr-Tub and Acet-Tub. However, when T was added, the cells exhibited a glial-like shape, elongated cell processes, and enhanced cell growth, cell vitality, catalase activity, and GFAP immunoreactivity. Densitometric values of Tyr-Tub, Acet-Tub, and GFAP increased significantly when T was present, while Tot-Tub values were unaltered. These results indicate that, in C6 cells, T: (i) attenuated the morpho-functional changes caused by 2ME exposure; (ii) induced glial differentiation; and (iii) exerted a direct action on the microtubule system. Copyright © 2010 Wiley-Liss, Inc.

  12. Music exposure differentially alters the levels of brain-derived neurotrophic factor and nerve growth factor in the mouse hypothalamus.

    Science.gov (United States)

    Angelucci, Francesco; Ricci, Enzo; Padua, Luca; Sabino, Andrea; Tonali, Pietro Attilio

    2007-12-18

    It has been reported that music may have physiological effects on blood pressure, cardiac heartbeat, respiration, and improve mood state in people affected by anxiety, depression and other psychiatric disorders. However, the physiological bases of these phenomena are not clear. Hypothalamus is a brain region involved in the regulation of body homeostasis and in the pathophysiology of anxiety and depression through the modulation of hypothalamic-pituitary-adrenal (HPA) axis. Hypothalamic functions are also influenced by the presence of the neurotrophins brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF), which are proteins involved in the growth, survival and function of neurons in the central nervous system. The aim of this study was to investigate the effect of music exposure in mice on hypothalamic levels of BDNF and NGF. We exposed young adult mice to slow rhythm music (6h per day; mild sound pressure levels, between 50 and 60 dB) for 21 consecutive days. At the end of the treatment mice were sacrificed and BDNF and NGF levels in the hypothalamus were measured by enzyme-linked immunosorbent assay (ELISA). We found that music exposure significantly enhanced BDNF levels in the hypothalamus. Furthermore, we observed that music-exposed mice had decreased NGF hypothalamic levels. Our results demonstrate that exposure to music in mice can influence neurotrophin production in the hypothalamus. Our findings also suggest that physiological effects of music might be in part mediated by modulation of neurotrophins.

  13. Exposure to bloom-like concentrations of two marine Synechococcus cyanobacteria (strains CC9311 and CC9902) differentially alters fish behaviour.

    Science.gov (United States)

    Hamilton, T J; Paz-Yepes, J; Morrison, R A; Palenik, B; Tresguerres, M

    2014-01-01

    Coastal California experiences large-scale blooms of Synechococcus cyanobacteria, which are predicted to become more prevalent by the end of the 21st century as a result of global climate change. This study investigated whether exposure to bloom-like concentrations of two Synechococcus strains, CC9311 and CC9902, alters fish behaviour. Black perch (Embiotoca jacksoni) were exposed to Synechococcus strain CC9311 or CC9902 (1.5 × 10(6) cells ml(-1)) or to control seawater in experimental aquaria for 3 days. Fish movement inside a testing arena was then recorded and analysed using video camera-based motion-tracking software. Compared with control fish, fish exposed to CC9311 demonstrated a significant preference for the dark zone of the tank in the light-dark test, which is an indication of increased anxiety. Furthermore, fish exposed to CC9311 also had a statistically significant decrease in velocity and increase in immobility and they meandered more in comparison to control fish. There was a similar trend in velocity, immobility and meandering in fish exposed to CC9902, but there were no significant differences in behaviour or locomotion between this group and control fish. Identical results were obtained with a second batch of fish. Additionally, in this second trial we also investigated whether fish would recover after a 3 day period in seawater without cyanobacteria. Indeed, there were no longer any significant differences in behaviour among treatments, demonstrating that the sp. CC9311-induced alteration of behaviour is reversible. These results demonstrate that blooms of specific marine Synechococcus strains can induce differential sublethal effects in fish, namely alterations light-dark preference behaviour and motility.

  14. Maternal exposure to dexamethasone or cortisol in early pregnancy differentially alters insulin secretion and glucose homeostasis in adult male sheep offspring.

    Science.gov (United States)

    De Blasio, M J; Dodic, M; Jefferies, A J; Moritz, K M; Wintour, E M; Owens, J A

    2007-07-01

    An adverse intrauterine environment increases the risk of developing various adult-onset diseases, whose nature varies with the timing of exposure. Maternal undernutrition in humans can increase adiposity, and the risk of coronary heart disease and impaired glucose tolerance in adult life, which may be partly mediated by maternal or fetal endocrine stress responses. In sheep, dexamethasone in early pregnancy impairs cardiovascular function, but not glucose homeostasis in adult female offspring. However, male offspring are often more susceptible to early life "programming". Pregnant sheep were infused intravenously with saline (0.19 ml/h), dexamethasone (0.48 mg/h), or cortisol (5 mg/h), for 2 days from 26 to 28 days of gestation. In male offspring, size at birth and postnatal growth were measured, and glucose tolerance [intravenous glucose tolerance test (IVGTT)], insulin secretion, and insulin sensitivity of glucose, alpha-amino nitrogen, and free fatty acid metabolism were assessed at 4 yr of age. We show that cortisol, but not dexamethasone, treatment of mothers causes fasting hyperglycemia in adult male offspring. Maternal cortisol induced a second-phase hyperinsulinemia during IVGTT, whereas maternal dexamethasone induced a first-phase hyperinsulinemia. Dexamethasone improved glucose tolerance, while cortisol had no impact, and neither affected insulin sensitivity. This suggests that maternal glucocorticoid exposure in early pregnancy alters glucose homeostasis and induces hyperinsulinemia in adult male offspring, but in a glucocorticoid-specific manner. These consequences of glucocorticoid exposure in early pregnancy may lead to pancreatic exhaustion and diabetes longer term and are consistent with stress during early pregnancy contributing to such outcomes in humans.

  15. Pulmonary biochemical alterations resulting from ozone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Mustafa, M.G.; Lee, S.D.

    1976-07-01

    Metabolic response of lung tissue to ozone was studied in rats and monkeys after exposure of animals to various levels of ozone (0.1 to 0.8 ppM) for 1 to 30 days. In rats, 0.8 ppM ozone exposure resulted in a 40 to 50 percent augmentation of oxygen utilization in lung homogenate in the presence of an added substrate (e.g., succinate or 2-oxoglutarate). Activities of marker enzymes, viz. mitochondrial succinate-cytochrome c reductase; microsomal NADPH-cytochrome c reductase and cytosolic glucose-6-phosphate dehydrogenase, increased maximally (40 to 70 percent over control) after 3 to 4 days of exposure, and remained elevated throughout the 0.8 ppM ozone exposure for 30 days. In monkeys, the observations were the same except that the magnitude of biochemical changes was relatively smaller. Exposure of animals to lower levels of ozone resulted in proportionately smaller biochemical changes in the lung, and ozone effects were detectable up to the 0.2 ppM level. While 0.1 ppM ozone exposure was ineffective, dietary deficiency of vitamin E, a natural antioxidant, increased the sensitivity of rat lungs to this concentration of ozone. The results suggest that low-level ozone exposures may cause metabolic alterations in the lung, and that dietary supplementation of vitamin E may offer protection against oxidant stress.

  16. Caffeine exposure alters cardiac gene expression in embryonic cardiomyocytes

    Science.gov (United States)

    Fang, Xiefan; Mei, Wenbin; Barbazuk, William B.; Rivkees, Scott A.

    2014-01-01

    Previous studies demonstrated that in utero caffeine treatment at embryonic day (E) 8.5 alters DNA methylation patterns, gene expression, and cardiac function in adult mice. To provide insight into the mechanisms, we examined cardiac gene and microRNA (miRNA) expression in cardiomyocytes shortly after exposure to physiologically relevant doses of caffeine. In HL-1 and primary embryonic cardiomyocytes, caffeine treatment for 48 h significantly altered the expression of cardiac structural genes (Myh6, Myh7, Myh7b, Tnni3), hormonal genes (Anp and BnP), cardiac transcription factors (Gata4, Mef2c, Mef2d, Nfatc1), and microRNAs (miRNAs; miR208a, miR208b, miR499). In addition, expressions of these genes were significantly altered in embryonic hearts exposed to in utero caffeine. For in utero experiments, pregnant CD-1 dams were treated with 20–60 mg/kg of caffeine, which resulted in maternal circulation levels of 37.3–65.3 μM 2 h after treatment. RNA sequencing was performed on embryonic ventricles treated with vehicle or 20 mg/kg of caffeine daily from E6.5-9.5. Differential expression (DE) analysis revealed that 124 genes and 849 transcripts were significantly altered, and differential exon usage (DEU) analysis identified 597 exons that were changed in response to prenatal caffeine exposure. Among the DE genes identified by RNA sequencing were several cardiac structural genes and genes that control DNA methylation and histone modification. Pathway analysis revealed that pathways related to cardiovascular development and diseases were significantly affected by caffeine. In addition, global cardiac DNA methylation was reduced in caffeine-treated cardiomyocytes. Collectively, these data demonstrate that caffeine exposure alters gene expression and DNA methylation in embryonic cardiomyocytes. PMID:25354728

  17. Differential cellular metabolite alterations in HaCaT cells caused by exposure to the aryl hydrocarbon receptor-binding polycyclic aromatic hydrocarbons chrysene, benzo[a]pyrene and dibenzo[a,l]pyrene

    Directory of Open Access Journals (Sweden)

    Sarah Potratz

    2016-01-01

    Full Text Available Polycyclic aromatic hydrocarbons (PAHs are ubiquitous in the human environment. Since they are present in crude oilfractions used for the production of rubber and plastics, consumers may come into direct dermal contacts with these compounds (e.g., via tool handles on a daily basis. Some individual PAHs are identified as genotoxic mutagens thereby prompting particular toxicological and environmental concern. Among this group, benzo[a]pyrene (BAP constitutes a model carcinogen which is also used as reference compound for risk assessment purposes. It acts as a strong agonist of the aryl hydrocarbon receptor (AHR and becomes metabolically activated toward mutagenic and carcinogenic intermediates by cytochrome P450-dependent monooxygenases (CYPs. While BAP has been exhaustively characterized with regard to its toxicological properties, there is much less information available for other PAHs. We treated an AHR-proficient immortal human keratinocyte cell line (i.e., HaCaT with three selected PAHs: BAP, chrysene (CRY and dibenzo[a,l]pyrene (DALP. Compound-mediated alterations of endogenous metabolites were investigated by an LC–MS/MS-based targeted approach. To examine AHR-dependent changes of the measured metabolites, AHR-deficient HaCaT knockdown cells (AHR-KD were used for comparison. Our results reveal that 24 metabolites are sufficient to separate the PAH-exposed cells from untreated controls by application of a multivariate model. Alterations in the metabolomics profiles caused by each PAH show influences on the energy and lipid metabolism of the cells indicating reduced tricarboxylic acid (TCA cycle activity and β-oxidation. Up-regulation of sphingomyelin levels after exposure to BAP and DALP point to pro-apoptotic processes caused by these two potent PAHs. Our results suggest that in vitro metabolomics can serve as tool to develop bioassays for application in hazard assessment.

  18. Atrazine exposure elicits copy number alterations in the zebrafish genome.

    Science.gov (United States)

    Wirbisky, Sara E; Freeman, Jennifer L

    2017-04-01

    Atrazine is an agricultural herbicide used throughout the Midwestern United States that frequently contaminates potable water supplies resulting in human exposure. Using the zebrafish model system, an embryonic atrazine exposure was previously reported to decrease spawning rates with an increase in progesterone and ovarian follicular atresia in adult females. In addition, alterations in genes associated with distinct molecular pathways of the endocrine system were observed in brain and gonad tissue of the adult females and males. Current hypotheses for mechanistic changes in the developmental origins of health and disease include genetic (e.g., copy number alterations) or epigenetic (e.g., DNA methylation) mechanisms. As such, in the current study we investigated whether an atrazine exposure would generate copy number alterations (CNAs) in the zebrafish genome. A zebrafish fibroblast cell line was used to limit detection to CNAs caused by the chemical exposure. First, cells were exposed to a range of atrazine concentrations and a crystal violet assay was completed, showing confluency decreased by ~60% at 46.3μM. Cells were then exposed to 0, 0.463, 4.63, or 46.3μM atrazine and array comparative genomic hybridization completed. Results showed 34, 21, and 44 CNAs in the 0.463, 4.63, and 46.3μM treatments, respectively. Furthermore, CNAs were associated with previously reported gene expression alterations in adult male and female zebrafish. This study demonstrates that atrazine exposure can generate CNAs that are linked to gene expression alterations observed in adult zebrafish exposed to atrazine during embryogenesis providing a mechanism of the developmental origins of atrazine endocrine disruption. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Adulthood stress responses in rats are variably altered as a factor of adolescent stress exposure.

    Science.gov (United States)

    Moore, Nicole L T; Altman, Daniel E; Gauchan, Sangeeta; Genovese, Raymond F

    2016-05-01

    Stress exposure during development may influence adulthood stress response severity. The present study investigates persisting effects of two adolescent stressors upon adulthood response to predator exposure (PE). Rats were exposed to underwater trauma (UWT) or PE during adolescence, then to PE after reaching adulthood. Rats were then exposed to predator odor (PO) to test responses to predator cues alone. Behavioral and neuroendocrine assessments were conducted to determine acute effects of each stress experience. Adolescent stress altered behavioral response to adulthood PE. Acoustic startle response was blunted. Bidirectional changes in plus maze exploration were revealed as a factor of adolescent stress type. Neuroendocrine response magnitude did not predict severity of adolescent or adult stress response, suggesting that different adolescent stress events may differentially alter developmental outcomes regardless of acute behavioral or neuroendocrine response. We report that exposure to two different stressors in adolescence may differentially affect stress response outcomes in adulthood. Acute response to an adolescent stressor may not be consistent across all stressors or all dependent measures, and may not predict alterations in developmental outcomes pertaining to adulthood stress exposure. Further studies are needed to characterize factors underlying long-term effects of a developmental stressor.

  20. Gene Expression Profiling of Biological Pathway Alterations by Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Though damage caused by radiation has been the focus of rigorous research, the mechanisms through which radiation exerts harmful effects on cells are complex and not well-understood. In particular, the influence of low dose radiation exposure on the regulation of genes and pathways remains unclear. In an attempt to investigate the molecular alterations induced by varying doses of radiation, a genome-wide expression analysis was conducted. Peripheral blood mononuclear cells were collected from five participants and each sample was subjected to 0.5 Gy, 1 Gy, 2.5 Gy, and 5 Gy of cobalt 60 radiation, followed by array-based expression profiling. Gene set enrichment analysis indicated that the immune system and cancer development pathways appeared to be the major affected targets by radiation exposure. Therefore, 1 Gy radioactive exposure seemed to be a critical threshold dosage. In fact, after 1 Gy radiation exposure, expression levels of several genes including FADD, TNFRSF10B, TNFRSF8, TNFRSF10A, TNFSF10, TNFSF8, CASP1, and CASP4 that are associated with carcinogenesis and metabolic disorders showed significant alterations. Our results suggest that exposure to low-dose radiation may elicit changes in metabolic and immune pathways, potentially increasing the risk of immune dysfunctions and metabolic disorders.

  1. Cigarette smoke exposure-associated alterations to noncoding RNA

    Directory of Open Access Journals (Sweden)

    Matthew Alan Maccani

    2012-04-01

    Full Text Available Environmental exposures vary by timing, severity, and frequency and may have a number of deleterious effects throughout the life course. The period of in utero development, for example, is one of the most crucial stages of development during which adverse environmental exposures can both alter the growth and development of the fetus as well as lead to aberrant fetal programming, increasing disease risk. During fetal development and beyond, the plethora of exposures, including nutrients, drugs, stress, and trauma, influence health, development, and survival. Recent research in environmental epigenetics has investigated the roles of environmental exposures in influencing epigenetic modes of gene regulation during pregnancy and at various stages of life. Many relatively common environmental exposures, such as cigarette smoking, alcohol consumption, and drug use, may have consequences for the expression and function of noncoding RNA (ncRNA, important post-transcriptional regulators of gene expression. A number of ncRNA have been discovered, including microRNA (miRNA, Piwi-interacting RNA (piRNA, and long noncoding RNA (long ncRNA. The best-characterized species of ncRNA are miRNA, the mature forms of which are ~22 nucleotides in length and capable of post-transcriptionally regulating target mRNA utilizing mechanisms based largely on the degree of complementarity between miRNA and target mRNA. Because miRNA can still negatively regulate gene expression when imperfectly base-paired with a target mRNA, a single miRNA can have a large number of potential mRNA targets and can regulate many different biological processes critical for health and development. The following review analyzes the current literature detailing links between cigarette smoke exposure and aberrant expression and function of noncoding RNA, assesses how such alterations may have consequences throughout the life course, and proposes future directions for this intriguing field of

  2. Altered Proteome of Burkholderia pseudomallei Colony Variants Induced by Exposure to Human Lung Epithelial Cells.

    Directory of Open Access Journals (Sweden)

    Anis Rageh Al-Maleki

    Full Text Available Burkholderia pseudomallei primary diagnostic cultures demonstrate colony morphology variation associated with expression of virulence and adaptation proteins. This study aims to examine the ability of B. pseudomallei colony variants (wild type [WT] and small colony variant [SCV] to survive and replicate intracellularly in A549 cells and to identify the alterations in the protein expression of these variants, post-exposure to the A549 cells. Intracellular survival and cytotoxicity assays were performed followed by proteomics analysis using two-dimensional gel electrophoresis. B. pseudomallei SCV survive longer than the WT. During post-exposure, among 259 and 260 protein spots of SCV and WT, respectively, 19 were differentially expressed. Among SCV post-exposure up-regulated proteins, glyceraldehyde 3-phosphate dehydrogenase, fructose-bisphosphate aldolase (CbbA and betaine aldehyde dehydrogenase were associated with adhesion and virulence. Among the down-regulated proteins, enolase (Eno is implicated in adhesion and virulence. Additionally, post-exposure expression profiles of both variants were compared with pre-exposure. In WT pre- vs post-exposure, 36 proteins were differentially expressed. Of the up-regulated proteins, translocator protein, Eno, nucleoside diphosphate kinase (Ndk, ferritin Dps-family DNA binding protein and peptidyl-prolyl cis-trans isomerase B were implicated in invasion and virulence. In SCV pre- vs post-exposure, 27 proteins were differentially expressed. Among the up-regulated proteins, flagellin, Eno, CbbA, Ndk and phenylacetate-coenzyme A ligase have similarly been implicated in adhesion, invasion. Protein profiles differences post-exposure provide insights into association between morphotypic and phenotypic characteristics of colony variants, strengthening the role of B. pseudomallei morphotypes in pathogenesis of melioidosis.

  3. Exposure to genotoxic compounds alters in vitro cellular VOC excretion.

    Science.gov (United States)

    Fijten, Rianne; Smolinska, Agnieszka; Shi, Quan; Pachen, Daniëlle; Dallinga, Jan; Boots, Agnes; van Schooten, Frederik Jan

    2017-10-03

    Genotoxic carcinogens significantly damage cells and tissues by targeting macromolecules such as proteins and DNA, but their mechanisms of action and effects on human health are diverse. Consequently, determining the amount of exposure to a carcinogen and its cellular effects is essential, yet difficult. The aim of this manuscript was to investigate the potential of detecting alterations in Volatile Organic Compounds (VOCs) profiles in the in vitro headspace of pulmonary cells after exposure to the genotoxic carcinogens cisplatin and benzo[a]pyrene using two different sampling set-ups. A prototype set-up was used for the cisplatin exposure, whereas a modified set-up was utilized for the benzo[a]pyrene exposure. Both carcinogens were added to the cell medium for 24 hours. The headspace in the culture flask was sampled to measure the VOC content using gas chromatography - time of flight - mass spectrometry. Eight cisplatin-specific VOCs and six benzo[a]pyrene-specific VOCs were discriminatory between treated and non-treated cells. Since the in vivo biological effects of both genotoxic compounds are well-defined, the origin of the identified VOCs could potentially be traced back to common cellular processes including cell cycle pathways, DNA damage and repair. These results indicate that exposing lung cells to genotoxins alters headspace VOC profiles, suggesting that it might be possible to monitor VOC changes in vivo to study drug efficacy or exposure to different pollutants. In conclusion, this study emphasizes the innovative potential of in vitro VOCs experiments to determine their in vivo applicability and discover their endogenous origin. . © 2017 IOP Publishing Ltd.

  4. Critical disease windows shaped by stress exposure alter allocation trade-offs between development and immunity.

    Science.gov (United States)

    Kirschman, Lucas J; Crespi, Erica J; Warne, Robin W

    2018-01-01

    between stress exposure (via glucocorticoid actions) and infection impose resource trade-offs that shape optimal allocation between development and somatic function. As a result, critical disease windows are likely shaped by stress exposure because any conditions that induce changes in differentiation rates will alter the duration and susceptibility of organisms to stressors or disease. © 2017 The Authors. Journal of Animal Ecology © 2017 British Ecological Society.

  5. Radiation Exposure Alters Expression of Metabolic Enzyme Genes In Mice

    Science.gov (United States)

    Wotring, Virginia E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2010-01-01

    Most pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Because of the importance of the liver in drug metabolism it is important to understand the effects of spaceflight on the enzymes of the liver. Exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. This study is an effort to examine the effects of adaptive mechanisms that may be triggered by early exposure to low radiation doses. Using procedures approved by the JSC Animal Care & Use Committee, C57 male mice were exposed to Cs-137 in groups: controls, low dose (50 mGy), high dose (6Gy) and a fourth group that received both radiation doses separated by 24 hours. Animals were anesthetized and sacrificed 4 hours after their last radiation exposure. Livers were removed immediately and flash-frozen in liquid nitrogen. Tissue was homogenized, RNA extracted and purified (Absolutely RNA, Agilent). Quality of RNA samples was evaluated (Agilent Bioanalyzer 2100). Complementary DNA was prepared from high-quality RNA samples, and used to run RT-qPCR screening arrays for DNA Repair and Drug Metabolism (SuperArray, SABiosciences/Qiagen; BioRad Cfx96 qPCR System). Of 91 drug metabolism genes examined, expression of 7 was altered by at least one treatment condition. Genes that had elevated expression include those that metabolize promethazine and steroids (4-8-fold), many that reduce oxidation products, and one that reduces heavy metal exposure (greater than 200-fold). Of the 91 DNA repair and general metabolism genes examined, expression of 14 was altered by at least one treatment condition. These gene expression changes are likely homeostatic and could lead to development of new radioprotective countermeasures.

  6. Adult hippocampal neurogenesis and mRNA expression are altered by perinatal arsenic exposure in mice and restored by brief exposure to enrichment.

    Directory of Open Access Journals (Sweden)

    Christina R Tyler

    Full Text Available Arsenic is a common and pervasive environmental contaminant found in drinking water in varying concentrations depending on region. Exposure to arsenic induces behavioral and cognitive deficits in both human populations and in rodent models. The Environmental Protection Agency (EPA standard for the allotment of arsenic in drinking water is in the parts-per-billion range, yet our lab has shown that 50 ppb arsenic exposure during development can have far-reaching consequences into adulthood, including deficits in learning and memory, which have been linked to altered adult neurogenesis. Given that the morphological impact of developmental arsenic exposure on the hippocampus is unknown, we sought to evaluate proliferation and differentiation of adult neural progenitor cells in the dentate gyrus after 50 ppb arsenic exposure throughout the perinatal period of development in mice (equivalent to all three trimesters in humans using a BrdU pulse-chase assay. Proliferation of the neural progenitor population was decreased by 13% in arsenic-exposed mice, but was not significant. However, the number of differentiated cells was significantly decreased by 41% in arsenic-exposed mice compared to controls. Brief, daily exposure to environmental enrichment significantly increased proliferation and differentiation in both control and arsenic-exposed animals. Expression levels of 31% of neurogenesis-related genes including those involved in Alzheimer's disease, apoptosis, axonogenesis, growth, Notch signaling, and transcription factors were altered after arsenic exposure and restored after enrichment. Using a concentration previously considered safe by the EPA, perinatal arsenic exposure altered hippocampal morphology and gene expression, but did not inhibit the cellular neurogenic response to enrichment. It is possible that behavioral deficits observed during adulthood in animals exposed to arsenic during development derive from the lack of differentiated neural

  7. Exposure to metals mixtures: Genomic alterations of infectious ...

    Science.gov (United States)

    Exposure to toxic metals can have harmful health effects, particularly in children. Although studies have investigated the individual effects toxic metals have on gene expression and health outcomes, there are no studies assessing the effect of metal mixtures on gene expression profiles. Here, we assessed the mixture effect of six toxic metals (arsenic, beryllium, cadmium, chromium, mercury, and lead) on gene expression profiles in children in Detroit, Michigan. As part of the Mechanistic Indicators of Childhood Asthma (MICA) cross sectional study, we assessed metal exposure in 131 children in Detroit using fingernail metals levels. A metals mixture score was calculated and compared to gene expression profiles across the population adjusting for age and race. There were 145 unique genes that were significantly differentially expressed when comparing children exposed to low and high levels of the metals mixture. Of the genes differentially expressed, 107 (74%) had increased expression while 38 (26%) had decreased expression. The main biological function associated with multiple metals was infectious disease. Within that group, genes were associated with infection of respiratory tract (P metals mixtures may activate gene networks related to infectious disease response. This abstract does not necessarily reflect the views or policie

  8. Neurobehavioral alteration in rodents following developmental exposure to aluminum.

    Science.gov (United States)

    Alleva, E; Rankin, J; Santucci, D

    1998-01-01

    Aluminum (Al) is one of the most abundant metals in the earth's crust, and humans can be exposed to it from several sources. It is present in food, water, pharmaceutical compounds, and in the environment, e.g., as a result of acid rain leaching it from the soil. Exposure to Al has recently been implicated in a number of human pathologies, but it has not yet been definitely proved that it plays a major causal role in any of them. In this paper we review the effects of developmental exposure of laboratory animals to Al salts as a model for human pathological conditions. The data presented show behavioral and neurochemical changes in the offspring of AL-exposed mouse dams during gestation, which include alterations in the pattern of ultrasonic vocalizations and a marked reduction in central nervous system (CNS) choline acetyltransferase activity. Prenatal Al also affects CNS cholinergic functions under Nerve Growth Factor (NGF) control, as shown by increased central NGF levels and impaired performances in a maze learning task in young-adult mice. The need for more detailed studies to evaluate the risks for humans associated with developmental exposure to Al, as well as the importance of using more than one strain of laboratory animal in the experimental design, is emphasized.

  9. Ancestral vinclozolin exposure alters the epigenetic transgenerational inheritance of sperm small noncoding RNAs.

    Science.gov (United States)

    Schuster, Andrew; Skinner, Michael K; Yan, Wei

    Exposure to the agricultural fungicide vinclozolin during gestation promotes a higher incidence of various diseases in the subsequent unexposed F3 and F4 generations. This phenomenon is termed epigenetic transgenerational inheritance and has been shown to in part involve alterations in DNA methylation, but the role of other epigenetic mechanisms remains unknown. The current study investigated the alterations in small noncoding RNA (sncRNA) in the sperm from F3 generation control and vinclozolin lineage rats. Over 200 differentially expressed sncRNAs were identified and the tRNA-derived sncRNAs, namely 5' halves of mature tRNAs (5' halves), displayed the most dramatic changes. Gene targets of the altered miRNAs and tRNA 5' halves revealed associations between the altered sncRNAs and differentially DNA methylated regions. Dysregulated sncRNAs appear to correlate with mRNA profiles associated with the previously observed vinclozolin-induced disease phenotypes. Data suggest potential connections between sperm-borne RNAs and the vinclozolin-induced epigenetic transgenerational inheritance phenomenon.

  10. Environmentally realistic exposure to the herbicide atrazine alters some sexually selected traits in male guppies.

    Directory of Open Access Journals (Sweden)

    Kausalya Shenoy

    Full Text Available Male mating signals, including ornaments and courtship displays, and other sexually selected traits, like male-male aggression, are largely controlled by sex hormones. Environmental pollutants, notably endocrine disrupting compounds, can interfere with the proper functioning of hormones, thereby impacting the expression of hormonally regulated traits. Atrazine, one of the most widely used herbicides, can alter sex hormone levels in exposed animals. I tested the effects of environmentally relevant atrazine exposures on mating signals and behaviors in male guppies, a sexually dimorphic freshwater fish. Prolonged atrazine exposure reduced the expression of two honest signals: the area of orange spots (ornaments and the number of courtship displays performed. Atrazine exposure also reduced aggression towards competing males in the context of mate competition. In the wild, exposure levels vary among individuals because of differential distribution of the pollutants across habitats; hence, differently impacted males often compete for the same mates. Disrupted mating signals can reduce reproductive success as females avoid mating with perceptibly suboptimal males. Less aggressive males are at a competitive disadvantage and lose access to females. This study highlights the effects of atrazine on ecologically relevant mating signals and behaviors in exposed wildlife. Altered reproductive traits have important implications for population dynamics, evolutionary patterns, and conservation of wildlife species.

  11. Memantine and Ketamine Differentially Alter NMDA Receptor Desensitization.

    Science.gov (United States)

    Glasgow, Nathan G; Povysheva, Nadezhda V; Azofeifa, Andrea M; Johnson, Jon W

    2017-10-04

    Memantine and ketamine are clinically useful NMDA receptor (NMDAR) open channel blockers that inhibit NMDARs with similar potency and kinetics, but display vastly different clinical profiles. This discrepancy has been hypothesized to result from inhibition by memantine and ketamine of overlapping but distinct NMDAR subpopulations. For example, memantine but not ketamine may inhibit extrasynaptic NMDARs more effectively than synaptic NMDARs. However, the basis for preferential NMDAR inhibition depending on subcellular location has not been investigated systematically. We integrated recordings from heterologously expressed single NMDAR subtypes, kinetic modeling, and recordings of synaptically evoked NMDAR responses in acute brain slices to investigate mechanisms by which channel blockers may distinguish NMDAR subpopulations. We found that memantine and ketamine differentially alter NMDAR desensitization and that memantine stabilizes a Ca 2+ -dependent desensitized state. As a result, inhibition by memantine of GluN1/2A receptors in tsA201 cells and of native synaptic NMDARs in cortical pyramidal neurons from mice of either sex increased in conditions that enhanced intracellular Ca 2+ accumulation. Therefore, differential inhibition by memantine and ketamine based on NMDAR location is likely to result from location dependence of the intensity and duration of NMDAR activation. Modulation of Ca 2+ -dependent NMDAR desensitization is an unexplored mechanism of inhibitory action with the potential to endow drugs with NMDAR selectivity that leads to superior clinical profiles. Our results suggest that designing compounds to target specific receptor states, rather than specific receptor types, may be a viable strategy for future drug development. SIGNIFICANCE STATEMENT Memantine and ketamine are NMDA receptor (NMDAR) channel-blocking drugs with divergent clinical effects. Understanding mechanistically their differential actions may advance our understanding of nervous

  12. Motoneuron axon pathfinding errors in zebrafish: Differential effects related to concentration and timing of nicotine exposure

    Energy Technology Data Exchange (ETDEWEB)

    Menelaou, Evdokia; Paul, Latoya T. [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Perera, Surangi N. [Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States); Svoboda, Kurt R., E-mail: svobodak@uwm.edu [Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803 (United States); Joseph J. Zilber School of Public Health, University of Wisconsin — Milwaukee, Milwaukee, WI 53205 (United States)

    2015-04-01

    Nicotine exposure during embryonic stages of development can affect many neurodevelopmental processes. In the developing zebrafish, exposure to nicotine was reported to cause axonal pathfinding errors in the later born secondary motoneurons (SMNs). These alterations in SMN axon morphology coincided with muscle degeneration at high nicotine concentrations (15–30 μM). Previous work showed that the paralytic mutant zebrafish known as sofa potato exhibited nicotine-induced effects onto SMN axons at these high concentrations but in the absence of any muscle deficits, indicating that pathfinding errors could occur independent of muscle effects. In this study, we used varying concentrations of nicotine at different developmental windows of exposure to specifically isolate its effects onto subpopulations of motoneuron axons. We found that nicotine exposure can affect SMN axon morphology in a dose-dependent manner. At low concentrations of nicotine, SMN axons exhibited pathfinding errors, in the absence of any nicotine-induced muscle abnormalities. Moreover, the nicotine exposure paradigms used affected the 3 subpopulations of SMN axons differently, but the dorsal projecting SMN axons were primarily affected. We then identified morphologically distinct pathfinding errors that best described the nicotine-induced effects on dorsal projecting SMN axons. To test whether SMN pathfinding was potentially influenced by alterations in the early born primary motoneuron (PMN), we performed dual labeling studies, where both PMN and SMN axons were simultaneously labeled with antibodies. We show that only a subset of the SMN axon pathfinding errors coincided with abnormal PMN axonal targeting in nicotine-exposed zebrafish. We conclude that nicotine exposure can exert differential effects depending on the levels of nicotine and developmental exposure window. - Highlights: • Embryonic nicotine exposure can specifically affect secondary motoneuron axons in a dose-dependent manner.

  13. Neonatal exposure to a glyphosate based herbicide alters the development of the rat uterus.

    Science.gov (United States)

    Guerrero Schimpf, Marlise; Milesi, María M; Ingaramo, Paola I; Luque, Enrique H; Varayoud, Jorgelina

    2017-02-01

    Glyphosate-based herbicides (GBHs) are extensively used to control weeds on both cropland and non-cropland areas. No reports are available regarding the effects of GBHs exposure on uterine development. We evaluated if neonatal exposure to a GBH affects uterine morphology, proliferation and expression of proteins that regulate uterine organogenetic differentiation in rats. Female Wistar pups received saline solution (control, C) or a commercial formulation of glyphosate (GBH, 2mg/kg) by sc injection every 48h from postnatal day (PND) 1 to PND7. Rats were sacrificed on PND8 (neonatal period) and PND21 (prepubertal period) to evaluate acute and short-term effects, respectively. The uterine morphology was evaluated in hematoxylin and eosin stained sections. The epithelial and stromal immunophenotypes were established by assessing the expression of luminal epithelial protein (cytokeratin 8; CK8), basal epithelial proteins (p63 and pan cytokeratin CK1, 5, 10 and 14); and vimentin by immunohistochemistry (IHC). To investigate changes on proteins that regulate uterine organogenetic differentiation we evaluated the expression of estrogen receptor alpha (ERα), progesterone receptor (PR), Hoxa10 and Wnt7a by IHC. The GBH-exposed uteri showed morphological changes, characterized by an increase in the incidence of luminal epithelial hyperplasia (LEH) and an increase in the stromal and myometrial thickness. The epithelial cells showed a positive immunostaining for CK8, while the stromal cells for vimentin. GBH treatment increased cell proliferation in the luminal and stromal compartment on PND8, without changes on PND21. GBH treatment also altered the expression of proteins involved in uterine organogenetic differentiation. PR and Hoxa10 were deregulated both immediately and two weeks after the exposure. ERα was induced in the stromal compartment on PND8, and was downregulated in the luminal epithelial cells of gyphosate-exposed animals on PND21. GBH treatment also increased

  14. Alexithymia tendencies and mere exposure alter social approachability judgments.

    Science.gov (United States)

    Campbell, Darren W; McKeen, Nancy A

    2011-04-01

    People have a fundamental motivation for social connection and social engagement, but how do they decide whom to approach in ambiguous social situations? Subjective feelings often influence such decisions, but people vary in awareness of their feelings. We evaluated two opposing hypotheses based on visual familiarity effects and emotional awareness on social approachability judgments. These hypotheses differ in their interpretation of the familiarity or mere exposure effect with either an affective or cognitive interpretation. The responses of our 128-student sample supported the cognitive interpretation. Lower emotional awareness or higher alexithymia was associated with higher approachability judgments to familiarized faces and lower approachability judgments to novel faces. These findings were independent of the Big Five personality factors. The results indicate that individual differences in emotional awareness should be integrated into social decision-making models. The results also suggest that cognitive-perceptual alterations may underlie the poorer social outcomes associated with alexithymia. © 2011 The Authors. Journal of Personality © 2011, Wiley Periodicals, Inc.

  15. Exposure to buffer solution alters tendon hydration and mechanics.

    Science.gov (United States)

    Safa, Babak N; Meadows, Kyle D; Szczesny, Spencer E; Elliott, Dawn M

    2017-08-16

    A buffer solution is often used to maintain tissue hydration during mechanical testing. The most commonly used buffer solution is a physiological concentration of phosphate buffered saline (PBS); however, PBS increases the tissue's water content and decreases its tensile stiffness. In addition, solutes from the buffer can diffuse into the tissue and interact with its structure and mechanics. These bathing solution effects can confound the outcome and interpretation of mechanical tests. Potential bathing solution artifacts, including solute diffusion, and their effect on mechanical properties, are not well understood. The objective of this study was to measure the effects of long-term exposure of rat tail tendon fascicles to several concentrations (0.9-25%) of NaCl, sucrose, polyethylene glycol (PEG), and SPEG (NaCl+PEG) solutions on water content, solute diffusion, and mechanical properties. We found that with an increase in solute concentration the apparent water content decreased for all solution types. Solutes diffused into the tissue for NaCl and sucrose, however, no solute diffusion was observed for PEG or SPEG. The mechanical properties changed for both NaCl solutions, in particular after long-term (8h) incubation the modulus and equilibrium stress decreased compared to short-term (15min) for 25% NaCl, and the cross sectional area increased for 0.9% NaCl. However, the mechanical properties were unchanged for both PEG and SPEG except for minor alterations in stress relaxation parameters. This study shows that NaCl and sucrose buffer solutions are not suitable for long-term mechanical tests. We therefore propose using PEG or SPEG as alternative buffer solutions that after long-term incubation can maintain tissue hydration without solute diffusion and produce a consistent mechanical response. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Wage Differentials between Heat-Exposure Risk and No Heat-Exposure Risk Groups

    Directory of Open Access Journals (Sweden)

    Donghyun Kim

    2017-06-01

    Full Text Available The goal of this study is to investigate the wage differential between groups of workers who are exposed to heat and those who are not. Workers in the heat-exposure risk group are defined as workers who work in conditions that cause them to spend more than 25% of their work hours at high temperatures. To analyze the wage differential, the Blinder-Oaxaca and Juhn-Murphy-Pierce methods were applied to Korea Working Condition Survey data. The results show that the no heat-exposure risk group received higher wages. In most cases, this can be interpreted as the endowment effect of human capital. As a price effect that lowers the endowment effect, the compensating differential for the heat-exposure risk group was found to be 1%. Moreover, education level, work experience, and employment status counteracted the compensating differentials for heat-exposure risks. A comparison of data sets from 2011 and 2014 shows that the increasing wage gap between the two groups was not caused by systematic social discrimination factors. This study suggests that wage differential factors can be modified for thermal environmental risks that will change working conditions as the impact of climate change increases.

  17. Persistent organic pollutants alter DNA methylation during human adipocyte differentiation

    NARCIS (Netherlands)

    Dungen, van den Myrthe; Murk, Tinka; Steegenga, Wilma; Gils-Kok, van Dieuwertje

    2016-01-01

    Genome-wide DNA methylation profiling was performed in human mesenchymal stem cells (hMSCs) differentiated into adipocytes (day 10) while being continuously exposed to either one of three different persistent organic pollutants (POPs), namely TCDD, PFOS, and TBT. The Illumina Infinium 450K Human DNA

  18. Activation of the Aryl Hydrocarbon Receptor during Different Critical Windows in Pregnancy Alters Mammary Epithelial Cell Proliferation and Differentiation

    Science.gov (United States)

    Lew, Betina J.; Collins, Loretta L.; O'Reilly, Michael A.; Lawrence, B. Paige

    2009-01-01

    Exposure to the aryl hydrocarbon receptor (AhR) agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) during pregnancy causes severe defects in mammary gland development and function; however, the underlying mechanism remains unclear. Alterations in epithelial cell proliferation, differentiation, and apoptosis during pregnancy-related mammary development can lead to failed lactogenesis. To determine which of these processes are affected and at what time periods, we examined proliferation, differentiation and apoptosis in mammary glands following exposure to TCDD during early, mid or throughout pregnancy. Although AhR activation throughout pregnancy did not cause early involution, there was a 50% decrease in cell proliferation, which was observed as early as the sixth day of pregnancy (DP). TCDD treatment on the day of impregnation only reduced development and proliferation in early and mid-pregnancy, followed by partial recovery by DP17. However, when AhR activation was delayed to DP7, developmental impairment was not observed in mid-pregnancy, but became evident by DP17, whereas proliferation was reduced at all times. Thus, early exposure to TCDD was neither necessary nor sufficient to cause persistent defects in lactogenesis. These varying outcomes in mammary development due to exposure at different times in pregnancy suggest there are critical windows during which AhR activation impairs mammary epithelial cell proliferation and differentiation. PMID:19502548

  19. Transplantation Dose Alters the Differentiation Program of Hematopoietic Stem Cells.

    Science.gov (United States)

    Brewer, Casey; Chu, Elizabeth; Chin, Mike; Lu, Rong

    2016-05-24

    Hematopoietic stem cell (HSC) transplantation is the most prevalent stem cell therapy, but it remains a risky procedure. To improve this treatment, it is important to understand how transplanted stem cells rebuild the blood and immune systems and how this process is impacted by transplantation variables such as the HSC dose. Here, we find that, in the long term following transplantation, 70%-80% of donor-HSC-derived clones do not produce all measured blood cell types. High HSC doses lead to more clones that exhibit balanced lymphocyte production, whereas low doses produce more T-cell-specialized clones. High HSC doses also produce significantly higher proportions of early-differentiating clones compared to low doses. These complex differentiation behaviors uncover the clonal-level regeneration dynamics of hematopoietic regeneration and suggest that transplantation dose can be exploited to improve stem cell therapy. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  20. Endometrial metaplasias and reactive changes: a spectrum of altered differentiation.

    Science.gov (United States)

    Nicolae, Alina; Preda, Ovidiu; Nogales, Francisco F

    2011-02-01

    Endometrial metaplasias and changes (EMCs) are conditions frequently overlooked and misdiagnosed. The aim of this review is to update current issues and provide a classification with a practical clinicopathological approach. Hormonal or irritative stimuli are the main inducing factors of EMCs, although some metaplasias have a mutational origin. EMCs vary from reactive, degenerative lesions to those able to associate with malignancy or those having a preneoplastic potential. The most common types of EMCs are ciliated tubal metaplasia (CTM) and mucinous metaplasia (MM), which occur in simple and complex glands, and possibly these architectural changes hold the same prognostic significance as they do in hyperplastic endometrioid lesions. Immunohistochemically, CTM is positive for LhS28, bcl-2, PAX2 and p16(INK4A). Complex CTM is likely to be a precursor of ciliated endometrioid-type carcinomas. MMs should be evaluated architecturally, taking into account that their atypicality is minimal. The differentiation between complex MM and mucinous carcinoma may be extremely difficult. Surface complex, papillary MM in endometrial polyps can be considered as benign. Intestinal-type endometrial MM is rare and its presence should prompt further investigation of associated lesions in the endocervix. Endometrial squamous metaplasia (ESS) is often linked to chronic irritative situations. It should be differentiated from secondary involvement by a human papilomavirus-related cervical lesion. Morular metaplasia is a mutational phenomenon with a distinct phenotype that helps to differentiate it from ESS. Morules are benign, hormonally inert structures that are often markers of complex endometrioid glandular architecture, and they are associated with an attenuated malignancy. Endometrial reactive changes are commonly associated with desquamation or hormonal imbalance. The frequent, p16(INK4A) positive, benign surface papillary syncytial change may be misdiagnosed, in some cases, as

  1. RNA-Seq Identifies Key Reproductive Gene Expression Alterations in Response to Cadmium Exposure

    Directory of Open Access Journals (Sweden)

    Hanyang Hu

    2014-01-01

    Full Text Available Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice.

  2. RNA-Seq Identifies Key Reproductive Gene Expression Alterations in Response to Cadmium Exposure

    Science.gov (United States)

    Hu, Hanyang; Lu, Xing; Cen, Xiang; Chen, Xiaohua; Li, Feng; Zhong, Shan

    2014-01-01

    Cadmium is a common toxicant that is detrimental to many tissues. Although a number of transcriptional signatures have been revealed in different tissues after cadmium treatment, the genes involved in the cadmium caused male reproductive toxicity, and the underlying molecular mechanism remains unclear. Here we observed that the mice treated with different amount of cadmium in their rodent chow for six months exhibited reduced serum testosterone. We then performed RNA-seq to comprehensively investigate the mice testicular transcriptome to further elucidate the mechanism. Our results showed that hundreds of genes expression altered significantly in response to cadmium treatment. In particular, we found several transcriptional signatures closely related to the biological processes of regulation of hormone, gamete generation, and sexual reproduction, respectively. The expression of several testosterone synthetic key enzyme genes, such as Star, Cyp11a1, and Cyp17a1, were inhibited by the cadmium exposure. For better understanding of the cadmium-mediated transcriptional regulatory mechanism of the genes, we computationally analyzed the transcription factors binding sites and the mircoRNAs targets of the differentially expressed genes. Our findings suggest that the reproductive toxicity by cadmium exposure is implicated in multiple layers of deregulation of several biological processes and transcriptional regulation in mice. PMID:24982889

  3. Changing climate cues differentially alter zooplankton dormancy dynamics across latitudes.

    Science.gov (United States)

    Jones, Natalie T; Gilbert, Benjamin

    2016-03-01

    In seasonal climates, dormancy is a common strategy that structures biodiversity and is necessary for the persistence of many species. Climate change will likely alter dormancy dynamics in zooplankton, the basis of aquatic food webs, by altering two important hatching cues: mean temperatures during the ice-free season, and mean day length when lakes become ice free. Theory suggests that these changes could alter diversity, hatchling abundances and phenology within lakes, and that these responses may diverge across latitudes due to differences in optimal hatching cues and strategies. To examine the role of temperature and day length on hatching dynamics, we collected sediment from 25 lakes across a 1800 km latitudinal gradient and exposed sediment samples to a factorial combination of two photoperiods (12 and 16 h) and two temperatures (8 and 12 °C) representative of historical southern (short photoperiod, warm) and northern (long photoperiod, cool) lake conditions. We tested whether sensitivity to these hatching cues varies by latitudinal origin and differs among taxa. Higher temperatures advanced phenology for all taxa, and these advances were greatest for cladocerans followed by copepods and rotifers. Although phenology differed among taxa, the effect of temperature did not vary with latitude. The latitudinal origin of the egg bank influenced egg abundance and hatchling abundance and diversity, with these latter effects varying with taxa, temperature and photoperiod. Copepod hatchling abundances peaked at mid-latitudes in the high temperature and long photoperiod treatments, whereas hatchling abundances of other zooplankton were greatest at low latitudes and high temperature. The overall diversity of crustacean zooplankton (copepods and cladocerans) also reflected distinct responses of each taxa to our treatments, with the greatest diversity occurring at mid-latitudes (~56 °N) in the shorter photoperiod treatment. Our results demonstrate that hatching cues

  4. Differential pathologies resulting from sound exposure: Tinnitus vs hearing loss

    Science.gov (United States)

    Longenecker, Ryan James

    The first step in identifying the mechanism(s) responsible for tinnitus development would be to discover a neural correlate that is differentially expressed in tinnitus-positive compared to tinnitus negative animals. Previous research has identified several neural correlates of tinnitus in animals that have tested positive for tinnitus. However it is unknown whether all or some of these correlates are linked to tinnitus or if they are a byproduct of hearing loss, a common outcome of tinnitus induction. Abnormally high spontaneous activity has frequently been linked to tinnitus. However, while some studies demonstrate that hyperactivity positively correlates with behavioral evidence of tinnitus, others show that when all animals develop hyperactivity to sound exposure, not all exposed animals show evidence of tinnitus. My working hypothesis is that certain aspects of hyperactivity are linked to tinnitus while other aspects are linked to hearing loss. The first specific aim utilized the gap induced prepulse inhibition of the acoustic startle reflex (GIPAS) to monitor the development of tinnitus in CBA/CaJ mice during one year following sound exposure. Immediately after sound exposure, GIPAS testing revealed widespread gap detection deficits across all frequencies, which was likely due to temporary threshold shifts. However, three months after sound exposure these deficits were limited to a narrow frequency band and were consistently detected up to one year after exposure. This suggests the development of chronic tinnitus is a long lasting and highly dynamic process. The second specific aim assessed hearing loss in sound exposed mice using several techniques. Acoustic brainstem responses recorded initially after sound exposure reveal large magnitude deficits in all exposed mice. However, at the three month period, thresholds return to control levels in all mice suggesting that ABRs are not a reliable tool for assessing permanent hearing loss. Input/output functions of

  5. Binge Toluene Exposure Alters Glutamate, Glutamine and GABA in the Adolescent Rat Brain as Measured by Proton Magnetic Resonance Spectroscopy*

    Science.gov (United States)

    Perrine, Shane A.; O'Leary-Moore, Shonagh K.; Galloway, Matthew P.; Hannigan, John H.; Bowen, Scott E.

    2010-01-01

    Despite the high incidence of toluene abuse in adolescents, little is known regarding the effect of binge exposure on neurochemical profiles during this developmental stage. In the current study, the effects of binge toluene exposure during adolescence on neurotransmitter levels were determined using high-resolution proton magnetic resonance spectroscopy ex vivo at 11.7 T. Adolescent male Sprague-Dawley rats were exposed to toluene (0, 8,000 , or 12,000 ppm) for 15 min twice daily from postnatal day 28 (P28) through P34 and then euthanized either one or seven days later (on P35 or P42) to assess glutamate, glutamine, and GABA levels in intact tissue punches from the medial prefrontal cortex (mPFC), anterior striatum and hippocampus. In the mPFC, toluene reduced glutamate one day after exposure, with no effect on GABA, while after seven days, glutamate was no longer affected but there was an increase in GABA levels. In the hippocampus, neither GABA nor glutamate was altered one day after exposure, whereas seven days after exposure, increases were observed in GABA and glutamate. Striatal glutamate and GABA levels measured after either one or seven days were not altered after toluene exposure. These findings show that one week of binge toluene inhalation selectively alters these neurotransmitters in the mPFC and hippocampus in adolescent rats, and that some of these effects endure at least one week after the exposure. The results suggest that age-dependent, differential neurochemical responses to toluene may contribute to the unique behavioral patterns associated with drug abuse among older children and young teens. PMID:21126832

  6. Neuropsychological alterations in mercury intoxication persist several years after exposure

    Science.gov (United States)

    Zachi, Elaine Cristina; Taub, Anita; Faria, Marcília de Araújo Medrado; Ventura, Dora Fix

    2008-01-01

    Elemental mercury is a liquid toxic metal widely used in industry. Occupational exposure occurs mainly via inhalation. Previously, neuropsychological assessment detected deficits in former workers of a fluorescent lamp plant who had been exposed to elemental mercury vapor and were away from exposure for several years at the time of examination. Objectives The purpose of this work was to reexamine these functions after 18 months in order to evaluate their progression. Methods Thirteen participants completed tests of attention, inhibitory control, verbal/visual memory, psychomotor speed, verbal fluency, visuomotor ability, executive function, semantic knowledge, and depression and anxiety inventories on 2 separate occasions. Results At baseline, the former workers indicated slower psychomotor and information processing speed, verbal spontaneous recall memory impairment, and increased depression and anxiety symptoms compared to controls (Precovery of functions, the neuropsychological effects related to mercury exposure are found to persist for many years. PMID:29213549

  7. Radiation Exposure Alters Expression of Metabolic Enzyme Genes in Mice

    Science.gov (United States)

    Wotring, V. E.; Mangala, L. S.; Zhang, Y.; Wu, H.

    2011-01-01

    Most administered pharmaceuticals are metabolized by the liver. The health of the liver, especially the rate of its metabolic enzymes, determines the concentration of circulating drugs as well as the duration of their efficacy. Most pharmaceuticals are metabolized by the liver, and clinically-used medication doses are given with normal liver function in mind. A drug overdose can result in the case of a liver that is damaged and removing pharmaceuticals from the circulation at a rate slower than normal. Alternatively, if liver function is elevated and removing drugs from the system more quickly than usual, it would be as if too little drug had been given for effective treatment. Because of the importance of the liver in drug metabolism, we want to understand the effects of spaceflight on the enzymes of the liver and exposure to cosmic radiation is one aspect of spaceflight that can be modeled in ground experiments. Additionally, it has been previous noted that pre-exposure to small radiation doses seems to confer protection against later and larger radiation doses. This protective power of pre-exposure has been called a priming effect or radioadaptation. This study is an effort to examine the drug metabolizing effects of radioadaptation mechanisms that may be triggered by early exposure to low radiation doses.

  8. Neuropsychological alterations in mercury intoxication persist several years after exposure

    Directory of Open Access Journals (Sweden)

    Elaine Cristina Zachi

    Full Text Available Abstract Elemental mercury is a liquid toxic metal widely used in industry. Occupational exposure occurs mainly via inhalation. Previously, neuropsychological assessment detected deficits in former workers of a fluorescent lamp plant who had been exposed to elemental mercury vapor and were away from exposure for several years at the time of examination. Objectives: The purpose of this work was to reexamine these functions after 18 months in order to evaluate their progression. Methods: Thirteen participants completed tests of attention, inhibitory control, verbal/visual memory, psychomotor speed, verbal fluency, visuomotor ability, executive function, semantic knowledge, and depression and anxiety inventories on 2 separate occasions. Results: At baseline, the former workers indicated slower psychomotor and information processing speed, verbal spontaneous recall memory impairment, and increased depression and anxiety symptoms compared to controls (P<0.05. Paired comparisons of neuropsychological functioning within the exposed group at baseline and 1.5 years later showed poorer immediate memory performance (P<0.05. There were no differences on other measures. Conclusions: Although the literature show signs of recovery of functions, the neuropsychological effects related to mercury exposure are found to persist for many years.

  9. Differential Effects of Ozone Exposure on Carbon Assimilation and Stomatal Conductance

    Science.gov (United States)

    Lombardozzi, D.; Bonan, G. B.; Levis, S.; Sparks, J. P.

    2009-12-01

    Humans are indirectly increasing concentrations of surface ozone through industrial processes. Ozone is known to have negative impacts on plants, including reductions in crop yields, plant growth, and visible leaf injury. Ozone directly influences photosynthesis via two mechanisms: 1) the oxidation of cellular components (i.e., influencing leaf internal biochemistry and transport) and 2) altering stomatal functioning, ultimately changing conductance. Carbon exchange at the leaf level is governed by both conductance and carboxylation processes, but water exchange depends primarily on the size of the stomatal aperture. Thus, the possibility exists that ozone exposure will differentially affect plant-mediated carbon and water fluxes. Further, these differential effects of ozone are not explicitly expressed in most modeling efforts. We investigated how ozone changes both stomatal conductance and carbon assimilation using controlled open-top chamber experiments and then incorporated our experimental findings into modified Farquhar and Ball-Berry based photosynthesis and stomatal conductance models. In experiments, we observed carbon assimilation and conductance decreases in response to ozone. However, the decrease in carbon assimilation was larger than the decrease in conductance to water vapor, thereby changing the relationship between carbon gain and water loss at the leaf level. In addition, the relationship between photosynthesis and transpiration weakened significantly after 12 weeks of ozone exposure, suggesting a decoupling of photosynthesis and stomatal conductance. We used this information to modify biochemical parameters in the Farquhar model and the Ball-Berry coefficient to determine whether these models are able to simulate plant performance under ozone exposure.

  10. Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells

    Science.gov (United States)

    Dreyer-Andersen, Nanna; Almeida, Ana Sofia; Jensen, Pia; Kamand, Morad; Okarmus, Justyna; Rosenberg, Tine; Friis, Stig Düring; Martínez Serrano, Alberto; Blaabjerg, Morten; Kristensen, Bjarne Winther; Skrydstrup, Troels; Gramsbergen, Jan Bert; Vieira, Helena L. A.

    2018-01-01

    Exploratory studies using human fetal tissue have suggested that intrastriatal transplantation of dopaminergic neurons may become a future treatment for patients with Parkinson’s disease. However, the use of human fetal tissue is compromised by ethical, regulatory and practical concerns. Human stem cells constitute an alternative source of cells for transplantation in Parkinson’s disease, but efficient protocols for controlled dopaminergic differentiation need to be developed. Short-term, low-level carbon monoxide (CO) exposure has been shown to affect signaling in several tissues, resulting in both protection and generation of reactive oxygen species. The present study investigated the effect of CO produced by a novel CO-releasing molecule on dopaminergic differentiation of human neural stem cells. Short-term exposure to 25 ppm CO at days 0 and 4 significantly increased the relative content of β-tubulin III-immunoreactive immature neurons and tyrosine hydroxylase expressing catecholaminergic neurons, as assessed 6 days after differentiation. Also the number of microtubule associated protein 2-positive mature neurons had increased significantly. Moreover, the content of apoptotic cells (Caspase3) was reduced, whereas the expression of a cell proliferation marker (Ki67) was left unchanged. Increased expression of hypoxia inducible factor-1α and production of reactive oxygen species (ROS) in cultures exposed to CO may suggest a mechanism involving mitochondrial alterations and generation of ROS. In conclusion, the present procedure using controlled, short-term CO exposure allows efficient dopaminergic differentiation of human neural stem cells at low cost and may as such be useful for derivation of cells for experimental studies and future development of donor cells for transplantation in Parkinson’s disease. PMID:29338033

  11. Surviving endoplasmic reticulum stress is coupled to altered chondrocyte differentiation and function.

    Directory of Open Access Journals (Sweden)

    Kwok Yeung Tsang

    2007-03-01

    Full Text Available In protein folding and secretion disorders, activation of endoplasmic reticulum (ER stress signaling (ERSS protects cells, alleviating stress that would otherwise trigger apoptosis. Whether the stress-surviving cells resume normal function is not known. We studied the in vivo impact of ER stress in terminally differentiating hypertrophic chondrocytes (HCs during endochondral bone formation. In transgenic mice expressing mutant collagen X as a consequence of a 13-base pair deletion in Col10a1 (13del, misfolded alpha1(X chains accumulate in HCs and elicit ERSS. Histological and gene expression analyses showed that these chondrocytes survived ER stress, but terminal differentiation is interrupted, and endochondral bone formation is delayed, producing a chondrodysplasia phenotype. This altered differentiation involves cell-cycle re-entry, the re-expression of genes characteristic of a prehypertrophic-like state, and is cell-autonomous. Concomitantly, expression of Col10a1 and 13del mRNAs are reduced, and ER stress is alleviated. ERSS, abnormal chondrocyte differentiation, and altered growth plate architecture also occur in mice expressing mutant collagen II and aggrecan. Alteration of the differentiation program in chondrocytes expressing unfolded or misfolded proteins may be part of an adaptive response that facilitates survival and recovery from the ensuing ER stress. However, the altered differentiation disrupts the highly coordinated events of endochondral ossification culminating in chondrodysplasia.

  12. Altered Adipogenesis in Zebrafish Larvae Following High Fat Diet and Chemical Exposure Is Visualised by Stimulated Raman Scattering Microscopy

    Directory of Open Access Journals (Sweden)

    Marjo J. den Broeder

    2017-04-01

    Full Text Available Early life stage exposure to environmental chemicals may play a role in obesity by altering adipogenesis; however, robust in vivo methods to quantify these effects are lacking. The goal of this study was to analyze the effects of developmental exposure to chemicals on adipogenesis in the zebrafish (Danio rerio. We used label-free Stimulated Raman Scattering (SRS microscopy for the first time to image zebrafish adipogenesis at 15 days post fertilization (dpf and compared standard feed conditions (StF to a high fat diet (HFD or high glucose diet (HGD. We also exposed zebrafish embryos to a non-toxic concentration of tributyltin (TBT, 1 nM or Tris(1,3-dichloroisopropylphosphate (TDCiPP, 0.5 µM from 0–6 dpf and reared larvae to 15 dpf under StF. Potential molecular mechanisms of altered adipogenesis were examined by qPCR. Diet-dependent modulation of adipogenesis was observed, with HFD resulting in a threefold increase in larvae with adipocytes, compared to StF and HGD. Developmental exposure to TBT but not TDCiPP significantly increased adipocyte differentiation. The expression of adipogenic genes such as pparda, lxr and lepa was altered in response to HFD or chemicals. This study shows that SRS microscopy can be successfully applied to zebrafish to visualize and quantify adipogenesis, and is a powerful approach for identifying obesogenic chemicals in vivo.

  13. Exposure to bisphenol A in young adult mice does not alter ovulation but does alter the fertilization ability of oocytes.

    Science.gov (United States)

    Moore-Ambriz, Teresita Rocio; Acuña-Hernández, Deyanira Guadalupe; Ramos-Robles, Brenda; Sánchez-Gutiérrez, Manuel; Santacruz-Márquez, Ramsés; Sierra-Santoyo, Adolfo; Piña-Guzmán, Belem; Shibayama, Mineko; Hernández-Ochoa, Isabel

    2015-12-15

    Follicle growth culminates in ovulation, which allows for the expulsion of fertilizable oocytes and the formation of corpora lutea. Bisphenol A (BPA) is present in many consumer products, and it has been suggested that BPA impairs ovulation; however, the underlying mechanisms are unknown. Therefore, this study first evaluated whether BPA alters ovulation by affecting folliculogenesis, the number of corpora lutea or eggs shed to the oviduct, ovarian gonadotropin responsiveness, hormone levels, and estrous cyclicity. Because it has been suggested (but not directly confirmed) that BPA exerts toxic effects on the fertilization ability of oocytes, a second aim was to evaluate whether BPA impacts the oocyte fertilization rate using an in vitro fertilization assay and mating. The possible effects on early zygote development were also examined. Young adult female C57BL/6J mice (39 days old) were orally dosed with corn oil (vehicle) or 50 μg/kgbw/day BPA for a period encompassing the first three reproductive cycles (12-15 days). BPA exposure did not alter any parameters related to ovulation. Moreover, BPA exposure reduced the percentage of fertilized oocytes after either in vitro fertilization or mating, but it did not alter the zygotic stages. The data indicate that exposure to the reference dose of BPA does not impact ovulation but that it does influence the oocyte quality in terms of its fertilization ability. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Prenatal ethanol exposure alters the effects of gonadectomy on hypothalamic-pituitary-adrenal activity in male rats.

    Science.gov (United States)

    Lan, N; Yamashita, F; Halpert, A G; Ellis, L; Yu, W K; Viau, V; Weinberg, J

    2006-09-01

    Prenatal ethanol exposure has marked effects on development of the hypothalamic-pituitary-adrenal (HPA) and -gonadal (HPG) axes. In adulthood, ethanol-treated rats show altered gonadal hormone responses and reproductive function, and increased HPA responsiveness to stressors. Importantly, prenatal ethanol differentially alters stress responsiveness in adult males and females, raising the possibility that the gonadal hormones play a role in mediating prenatal ethanol effects on HPA function. To examine a possible testicular influence on HPA activity in males, we compared the effects of gonadectomy on HPA stress responses of adult male offspring from ethanol, pair-fed (PF) and ad libitum-fed control dams. Intact ethanol-treated rats showed increased adrenocorticotrophic hormone (ACTH) but blunted testosterone and luteinising hormone (LH) responses to restraint stress, and no stress-induced elevation in arginine vasopressin (AVP) mRNA levels compared to those observed in PF and/or control rats. Gonadectomy: (i) significantly increased ACTH responses to stress in control but not ethanol-treated and PF males; (ii) eliminated differences among groups in plasma ACTH and AVP mRNA levels; and (iii) altered LH and gonadotrophin-releasing hormone responses in ethanol-treated males. Taken together, these findings suggest that central regulation of both the HPA and HPG axes are altered by prenatal ethanol exposure, with normal testicular influences on HPA function markedly reduced in ethanol-treated animals. A decreased sensitivity to inhibitory effects of androgens could contribute to the HPA hyperresponsiveness typically observed in ethanol-treated males.

  15. Exposure to high ambient temperatures alters embryology in rabbits

    Science.gov (United States)

    García, M. L.; Argente, M. J.

    2017-09-01

    High ambient temperatures are a determining factor in the deterioration of embryo quality and survival in mammals. The aim of this study was to evaluate the effect of heat stress on embryo development, embryonic size and size of the embryonic coats in rabbits. A total of 310 embryos from 33 females in thermal comfort zone and 264 embryos of 28 females in heat stress conditions were used in the experiment. The traits studied were ovulation rate, percentage of total embryos, percentage of normal embryos, embryo area, zona pellucida thickness and mucin coat thickness. Traits were measured at 24 and 48 h post-coitum (hpc); mucin coat thickness was only measured at 48 hpc. The embryos were classified as zygotes or two-cell embryos at 24 hpc, and 16-cells or early morulae at 48 hpc. The ovulation rate was one oocyte lower in heat stress conditions than in thermal comfort. Percentage of normal embryos was lower in heat stress conditions at 24 hpc (17.2%) and 48 hpc (13.2%). No differences in percentage of zygotes or two-cell embryos were found at 24 hpc. The embryo development and area was affected by heat stress at 48 hpc (10% higher percentage of 16-cells and 883 μm2 smaller, respectively). Zona pellucida was thicker under thermal stress at 24 hpc (1.2 μm) and 48 hpc (1.5 μm). No differences in mucin coat thickness were found. In conclusion, heat stress appears to alter embryology in rabbits.

  16. Perinatal sulfur dioxide exposure alters brainstem parasympathetic control of heart rate.

    Science.gov (United States)

    Woerman, Amanda L; Mendelowitz, David

    2013-07-01

    Sulfur dioxide (SO₂) is an air pollutant that impedes neonatal development and induces adverse cardiorespiratory health effects, including tachycardia. Here, an animal model was developed that enabled characterization of (i) in vivo alterations in heart rate and (ii) altered activity in brainstem neurons that control heart rate after perinatal SO₂ exposure. Pregnant Sprague-Dawley dams and their pups were exposed to 5 parts per million SO₂ for 1 h daily throughout gestation and 6 days postnatal. Electrocardiograms were recorded from pups at 5 days postnatal to examine changes in basal and diving reflex-evoked changes in heart rate following perinatal SO₂ exposure. In vitro studies employed whole-cell patch-clamp electrophysiology to examine changes in neurotransmission to cardiac vagal neurons within the nucleus ambiguus upon SO₂ exposure using a preparation that maintains fictive inspiratory activity recorded from the hypoglossal rootlet. Perinatal SO₂ exposure increased heart rate and blunted the parasympathetic-mediated diving reflex-evoked changes in heart rate. Neither spontaneous nor inspiratory-related inhibitory GABAergic or glycinergic neurotransmission to cardiac vagal neurons was altered by SO₂ exposure. However, excitatory glutamatergic neurotransmission was decreased by 51.2% upon SO₂ exposure. This diminished excitatory neurotransmission was tetrodotoxin-sensitive, indicating SO₂ exposure impaired the activity of preceding glutamatergic neurons that synapse upon cardiac vagal neurons. Diminished glutamatergic, but unaltered inhibitory neurotransmission to cardiac vagal neurons provides a mechanism for the observed SO₂-induced elevated heart rate via an impairment of brainstem cardioinhibitory parasympathetic activity to the heart.

  17. Prenatal alcohol exposure alters expression of neurogenesis-related genes in an ex vivo cell culture model.

    Science.gov (United States)

    Tyler, Christina R; Allan, Andrea M

    2014-08-01

    Prenatal alcohol exposure can lead to long-lasting changes in functional and genetic programs of the brain, which may underlie behavioral alterations seen in Fetal Alcohol Spectrum Disorder (FASD). Aberrant fetal programming during gestational alcohol exposure is a possible mechanism by which alcohol imparts teratogenic effects on the brain; however, current methods used to investigate the effects of alcohol on development often rely on either direct application of alcohol in vitro or acute high doses in vivo. In this study, we used our established moderate prenatal alcohol exposure (PAE) model, resulting in maternal blood alcohol content of approximately 20 mM, and subsequent ex vivo cell culture to assess expression of genes related to neurogenesis. Proliferating and differentiating neural progenitor cell culture conditions were established from telencephalic tissue derived from embryonic day (E) 15-17 tissue exposed to alcohol via maternal drinking throughout pregnancy. Gene expression analysis on mRNA derived in vitro was performed using a microarray, and quantitative PCR was conducted for genes to validate the microarray. Student's t tests were performed for statistical comparison of each exposure under each culture condition using a 95% confidence interval. Eleven percent of genes on the array had significantly altered mRNA expression in the prenatal alcohol-exposed neural progenitor culture under proliferating conditions. These include reduced expression of Adora2a, Cxcl1, Dlg4, Hes1, Nptx1, and Vegfa and increased expression of Fgf13, Ndn, and Sox3; bioinformatics analysis indicated that these genes are involved in cell growth and proliferation. Decreased levels of Dnmt1 and Dnmt3a were also found under proliferating conditions. Under differentiating conditions, 7.3% of genes had decreased mRNA expression; these include Cdk5rap3, Gdnf, Hey2, Heyl, Pard6b, and Ptn, which are associated with survival and differentiation as indicated by bioinformatics analysis

  18. Prenatal arsenic exposure alters gene expression in the adult liver to a proinflammatory state contributing to accelerated atherosclerosis.

    Directory of Open Access Journals (Sweden)

    J Christopher States

    Full Text Available The mechanisms by which environmental toxicants alter developmental processes predisposing individuals to adult onset chronic disease are not well-understood. Transplacental arsenic exposure promotes atherogenesis in apolipoprotein E-knockout (ApoE(-/- mice. Because the liver plays a central role in atherosclerosis, diabetes and metabolic syndrome, we hypothesized that accelerated atherosclerosis may be linked to altered hepatic development. This hypothesis was tested in ApoE(-/- mice exposed to 49 ppm arsenic in utero from gestational day (GD 8 to term. GD18 hepatic arsenic was 1.2 µg/g in dams and 350 ng/g in fetuses. The hepatic transcriptome was evaluated by microarray analysis to assess mRNA and microRNA abundance in control and exposed pups at postnatal day (PND 1 and PND70. Arsenic exposure altered postnatal developmental trajectory of mRNA and microRNA profiles. We identified an arsenic exposure related 51-gene signature at PND1 and PND70 with several hubs of interaction (Hspa8, IgM and Hnf4a. Gene ontology (GO annotation analyses indicated that pathways for gluconeogenesis and glycolysis were suppressed in exposed pups at PND1, and pathways for protein export, ribosome, antigen processing and presentation, and complement and coagulation cascades were induced by PND70. Promoter analysis of differentially-expressed transcripts identified enriched transcription factor binding sites and clustering to common regulatory sites. SREBP1 binding sites were identified in about 16% of PND70 differentially-expressed genes. Western blot analysis confirmed changes in the liver at PND70 that included increases of heat shock protein 70 (Hspa8 and active SREBP1. Plasma AST and ALT levels were increased at PND70. These results suggest that transplacental arsenic exposure alters developmental programming in fetal liver, leading to an enduring stress and proinflammatory response postnatally that may contribute to early onset of atherosclerosis. Genes

  19. Dual role of Act1 in keratinocyte differentiation and host defense: TRAF3IP2 silencing alters keratinocyte differentiation while inhibiting IL-17 responses

    Science.gov (United States)

    Lambert, Sylviane; Swindell, William R.; Tsoi, Lam C.; Stoll, Stefan W.; Elder, James T.

    2017-01-01

    TRAF3IP2 is a candidate psoriasis susceptibility gene encoding Act1, an adaptor protein with ubiquitin ligase activity that couples the IL-17 receptor to downstream signaling pathways. We investigated the role of Act1 in keratinocyte responses to IL-17 using a tetracycline inducible shRNA targeting TRAF3IP2. Tet exposure for seven days effectively silenced TRAF3IP2 mRNA and Act1 protein, resulting in 761 genes with significant changes in expression (495 down, 266 up, >1.5-fold, pKRT1, KRT10, DSC1, DSG1) being downregulated and late differentiation genes (SPRR2, SPRR3, LCE3) being upregulated. AP1 binding sites were enriched upstream of genes up-regulated by TRAF3IP2 silencing. Correspondingly, nuclear expression of FosB and Fra1 was increased in TRAF3IP2-silenced cells. Many genes involved in host defense were induced by IL-17 in a TRAF3IP2-dependent fashion. Inflammatory differentiation conditions (serum addition for 4 days postconfluence) markedly amplified these IL-17 responses, while increasing basal levels and TRAF3IP2 silencing-dependent upregulation of multiple late differentiation genes. These findings suggest that TRAF3IP2 may alter both epidermal homeostasis and keratinocyte defense responses to influence psoriasis risk. PMID:28274739

  20. Dual Role of Act1 in Keratinocyte Differentiation and Host Defense: TRAF3IP2 Silencing Alters Keratinocyte Differentiation and Inhibits IL-17 Responses.

    Science.gov (United States)

    Lambert, Sylviane; Swindell, William R; Tsoi, Lam C; Stoll, Stefan W; Elder, James T

    2017-07-01

    TRAF3IP2 is a candidate psoriasis susceptibility gene encoding Act1, an adaptor protein with ubiquitin ligase activity that couples the IL-17 receptor to downstream signaling pathways. We investigated the role of Act1 in keratinocyte responses to IL-17 using a tetracycline inducible short hairpin RNA targeting TRAF3IP2. Tetracycline exposure for 7 days effectively silenced TRAF3IP2 mRNA and Act1 protein, resulting in 761 genes with significant changes in expression (495 down, 266 up; >1.5-fold, P KRT1, KRT10, DSC1, DSG1) being down-regulated and late differentiation genes (SPRR2, SPRR3, LCE3) being up-regulated. AP1 binding sites were enriched upstream of genes up-regulated by TRAF3IP2 silencing. Correspondingly, nuclear expression of FosB and Fra1 was increased in TRAF3IP2-silenced cells. Many genes involved in host defense were induced by IL-17 in a TRAF3IP2-dependent fashion. Inflammatory differentiation conditions (serum addition for 4 days postconfluence) markedly amplified these IL-17 responses and increased basal levels and TRAF3IP2 silencing-dependent up-regulation of multiple late differentiation genes. These findings suggest that TRAF3IP2 may alter both epidermal homeostasis and keratinocyte defense responses to influence psoriasis risk. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. Genomic and Phenotypic Alterations of the Neuronal-Like Cells Derived from Human Embryonal Carcinoma Stem Cells (NT2 Caused by Exposure to Organophosphorus Compounds Paraoxon and Mipafox

    Directory of Open Access Journals (Sweden)

    David Pamies

    2014-01-01

    Full Text Available Historically, only few chemicals have been identified as neurodevelopmental toxicants, however, concern remains, and has recently increased, based upon the association between chemical exposures and increased developmental disorders. Diminution in motor speed and latency has been reported in preschool children from agricultural communities. Organophosphorus compounds (OPs are pesticides due to their acute insecticidal effects mediated by the inhibition of acetylcholinesterase, although other esterases as neuropathy target esterase (NTE can also be inhibited. Other neurological and neurodevelopmental toxic effects with unknown targets have been reported after chronic exposure to OPs in vivo. We studied the initial stages of retinoic acid acid-triggered differentiation of pluripotent cells towards neural progenitors derived from human embryonal carcinoma stem cells to determine if neuropathic OP, mipafox, and non-neuropathic OP, paraoxon, are able to alter differentiation of neural precursor cells in vitro. Exposure to 1 µM paraoxon (non-cytotoxic concentrations altered the expression of different genes involved in signaling pathways related to chromatin assembly and nucleosome integrity. Conversely, exposure to 5 µM mipafox, a known inhibitor of NTE activity, showed no significant changes on gene expression. We conclude that 1 µM paraoxon could affect the initial stage of in vitro neurodifferentiation possibly due to a teratogenic effect, while the absence of transcriptional alterations by mipafox exposure did not allow us to conclude a possible effect on neurodifferentiation pathways at the tested concentration.

  2. Human Ozone (O3) Exposure Alters Serum Profile of Lipid Metabolites

    Science.gov (United States)

    HUMAN OZONE (O3) EXPOSURE ALTERS SERUM PROFILE OF LIPID METABOLITES Miller, D B.1; Kodavanti, U P.2 Karoly, E D.3; Cascio W.E2, Ghio, A J. 21. UNC-Chapel Hill, Chapel Hill, N.C., United States. 2. NHEERL, U.S. EPA, RTP, N.C., United States. 3. METABOLON INC., Durham, N.C., United...

  3. Pulmonary Ozone Exposure Alters Essential Metabolic Pathways involved in Glucose Homeostasis in the Liver

    Science.gov (United States)

    Pulmonary Ozone Exposure Alters Essential Metabolic Pathways involved in Glucose Homeostasis in the Liver D.B. Johnson, 1 W.O. Ward, 2 V.L. Bass, 2 M.C.J. Schladweiler, 2A.D. Ledbetter, 2 D. Andrews, and U.P. Kodavanti 2 1 Curriculum in Toxicology, UNC School of Medicine, Cha...

  4. Time dependent effect of chronic embryonic exposure to ethanol on zebrafish: Morphology, biochemical and anxiety alterations.

    Science.gov (United States)

    Ramlan, Nurul Farhana; Sata, Nurul Syafida Asma Mohd; Hassan, Siti Norhidayah; Bakar, Noraini Abu; Ahmad, Syahida; Zulkifli, Syaizwan Zahmir; Abdullah, Che Azurahanim Che; Ibrahim, Wan Norhamidah Wan

    2017-08-14

    Exposure to ethanol during critical period of development can cause severe impairments in the central nervous system (CNS). This study was conducted to assess the neurotoxic effects of chronic embryonic exposure to ethanol in the zebrafish, taking into consideration the time dependent effect. Two types of exposure regimen were applied in this study. Withdrawal exposure group received daily exposure starting from gastrulation until hatching, while continuous exposure group received daily exposure from gastrulation until behavioural assessment at 6dpf (days post fertilization). Chronic embryonic exposure to ethanol decreased spontaneous tail coiling at 24hpf (hour post fertilization), heart rate at 48hpf and increased mortality rate at 72hpf. The number of apoptotic cells in the embryos treated with ethanol was significantly increased as compared to the control. We also measured the morphological abnormalities and the most prominent effects can be observed in the treated embryos exposed to 1.50% and 2.00%. The treated embryos showed shorter body length, larger egg yolk, smaller eye diameter and heart edema as compared to the control. Larvae received 0.75% continuous ethanol exposure exhibited decreased swimming activity and increased anxiety related behavior, while withdrawal ethanol exposure showed increased swimming activity and decreased anxiety related behavior as compared to the respective control. Biochemical analysis exhibited that ethanol exposure for both exposure regimens altered proteins, lipids, carbohydrates and nucleic acids of the zebrafish larvae. Our results indicated that time dependent effect of ethanol exposure during development could target the biochemical processes thus leading to induction of apoptosis and neurobehavioral deficits in the zebrafish larvae. Thus it raised our concern about the safe limit of alcohol consumption for pregnant mother especially during critical periods of vulnerability for developing nervous system. Copyright © 2017

  5. Epigenetic alterations and occupational exposure to benzene, fibers, and heavy metals associated with tumor development (Review).

    Science.gov (United States)

    Salemi, Rossella; Marconi, Andrea; Di Salvatore, Valentina; Franco, Sabrina; Rapisarda, Venerando; Libra, Massimo

    2017-05-01

    The chronic occupational exposure to contaminants and carcinogens leads to the development of cancer. Over the past decades, many carcinogens have been found in the occupational environment and their presence is often associated with an increased incidence of cancer. According to the International Agency for Research on Cancer (IARC), the majority of carcinogens are classified as 'probable' and 'possible' human carcinogens, while, direct evidence of carcinogenicity is provided in epidemiological and experimental studies. Additionally, accumulating evidence suggests that epigenetic alterations may be early indicators of genotoxic and non-genotoxic carcinogen exposure. In the present review, the relationship between exposures to benzene, mineral fibers, metals and epigenetic alterations are discussed as the most important cancer risk factors during work activities.

  6. Prenatal exposure to BPA alters the epigenome of the rat mammary gland and increases the propensity to neoplastic development.

    Directory of Open Access Journals (Sweden)

    Eugen Dhimolea

    Full Text Available Exposure to environmental estrogens (xenoestrogens may play a causal role in the increased breast cancer incidence which has been observed in Europe and the US over the last 50 years. The xenoestrogen bisphenol A (BPA leaches from plastic food/beverage containers and dental materials. Fetal exposure to BPA induces preneoplastic and neoplastic lesions in the adult rat mammary gland. Previous results suggest that BPA acts through the estrogen receptors which are detected exclusively in the mesenchyme during the exposure period by directly altering gene expression, leading to alterations of the reciprocal interactions between mesenchyme and epithelium. This initiates a long sequence of altered morphogenetic events leading to neoplastic transformation. Additionally, BPA induces epigenetic changes in some tissues. To explore this mechanism in the mammary gland, Wistar-Furth rats were exposed subcutaneously via osmotic pumps to vehicle or 250 µg BPA/kg BW/day, a dose that induced ductal carcinomas in situ. Females exposed from gestational day 9 to postnatal day (PND 1 were sacrificed at PND4, PND21 and at first estrus after PND50. Genomic DNA (gDNA was isolated from the mammary tissue and immuno-precipitated using anti-5-methylcytosine antibodies. Detection and quantification of gDNA methylation status using the Nimblegen ChIP array revealed 7412 differentially methylated gDNA segments (out of 58207 segments, with the majority of changes occurring at PND21. Transcriptomal analysis revealed that the majority of gene expression differences between BPA- and vehicle-treated animals were observed later (PND50. BPA exposure resulted in higher levels of pro-activation histone H3K4 trimethylation at the transcriptional initiation site of the alpha-lactalbumin gene at PND4, concomitantly enhancing mRNA expression of this gene. These results show that fetal BPA exposure triggers changes in the postnatal and adult mammary gland epigenome and alters gene

  7. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis

    DEFF Research Database (Denmark)

    Jafari Kermani, Abbas; Qanie, Diyako; Andersen, Thomas L

    2017-01-01

    Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells...... and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin...

  8. Response of Differentiated Human Airway Epithelia to Alcohol Exposure and Klebsiella pneumoniae Challenge

    Directory of Open Access Journals (Sweden)

    Sammeta V. Raju

    2013-07-01

    Full Text Available Alcohol abuse has been associated with increased susceptibility to pulmonary infection. It is not fully defined how alcohol contributes to the host defense compromise. Here primary human airway epithelial cells were cultured at an air-liquid interface to form a differentiated and polarized epithelium. This unique culture model allowed us to closely mimic lung infection in the context of alcohol abuse by basolateral alcohol exposure and apical live bacterial challenge. Application of clinically relevant concentrations of alcohol for 24 h did not significantly alter epithelial integrity or barrier function. When apically challenged with viable Klebsiella pneumoniae, the cultured epithelia had an enhanced tightness which was unaffected by alcohol. Further, alcohol enhanced apical bacterial growth, but not bacterial binding to the cells. The cultured epithelium in the absence of any treatment or stimulation had a base-level IL-6 and IL-8 secretion. Apical bacterial challenge significantly elevated the basolateral secretion of inflammatory cytokines including IL-2, IL-4, IL-6, IL-8, IFN-γ, GM-CSF, and TNF-α. However, alcohol suppressed the observed cytokine burst in response to infection. Addition of adenosine receptor agonists negated the suppression of IL-6 and TNF-α. Thus, acute alcohol alters the epithelial cytokine response to infection, which can be partially mitigated by adenosine receptor agonists.

  9. SILAC-based quantitative proteomic analysis reveals widespread molecular alterations in human skin keratinocytes upon chronic arsenic exposure.

    Science.gov (United States)

    Mir, Sartaj Ahmad; Pinto, Sneha M; Paul, Somnath; Raja, Remya; Nanjappa, Vishalakshi; Syed, Nazia; Advani, Jayshree; Renuse, Santosh; Sahasrabuddhe, Nandini A; Prasad, T S Keshava; Giri, Ashok K; Gowda, Harsha; Chatterjee, Aditi

    2017-03-01

    Chronic exposure to arsenic is associated with dermatological and nondermatological disorders. Consumption of arsenic-contaminated drinking water results in accumulation of arsenic in liver, spleen, kidneys, lungs, and gastrointestinal tract. Although arsenic is cleared from these sites, a substantial amount of residual arsenic is left in keratin-rich tissues including skin. Epidemiological studies suggest the association of skin cancer upon arsenic exposure, however, the mechanism of arsenic-induced carcinogenesis is not completely understood. We developed a cell line based model to understand the molecular mechanisms involved in arsenic-mediated toxicity and carcinogenicity. Human skin keratinocyte cell line, HaCaT, was chronically exposed to 100 nM sodium arsenite over a period of 6 months. We observed an increase in basal ROS levels in arsenic-exposed cells. SILAC-based quantitative proteomics approach resulted in identification of 2111 proteins of which 42 proteins were found to be overexpressed and 54 downregulated (twofold) upon chronic arsenic exposure. Our analysis revealed arsenic-induced overexpression of aldo-keto reductase family 1 member C2 (AKR1C2), aldo-keto reductase family 1 member C3 (AKR1C3), glutamate-cysteine ligase catalytic subunit (GCLC), and NAD(P)H dehydrogenase [quinone] 1 (NQO1) among others. We observed downregulation of several members of the plakin family including periplakin (PPL), envoplakin (EVPL), and involucrin (IVL) that are essential for terminal differentiation of keratinocytes. MRM and Western blot analysis confirmed differential expression of several candidate proteins. Our study provides insights into molecular alterations upon chronic arsenic exposure on skin. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Postnatal sulfur dioxide exposure reversibly alters parasympathetic regulation of heart rate.

    Science.gov (United States)

    Woerman, Amanda L; Mendelowitz, David

    2013-08-01

    Perinatal sulfur dioxide exposure disrupts parasympathetic regulation of cardiovascular activity. Here, we examine the relative risks of prenatal versus postnatal exposure to the air pollutant and the reversibility of the cardiovascular effects. Two groups of animals were used for this study. For prenatal exposure, pregnant Sprague-Dawley dams were exposed to 5 parts per million sulfur dioxide for 1 hour daily throughout gestation and with their pups after birth to medical-grade air through 6 days postnatal. For postnatal exposure, dams were exposed to air, and after delivery along with their pups to 5 parts per million sulfur dioxide through postnatal day 6. ECGs were recorded from pups on postnatal day 5 to examine changes in heart rate. Whole-cell patch-clamp electrophysiology was used to examine changes in neurotransmission to cardiac vagal neurons in the nucleus ambiguus on sulfur dioxide exposure. Postnatal sulfur dioxide exposure diminished glutamatergic neurotransmission to cardiac vagal neurons by 40.9% and increased heart rate, whereas prenatal exposure altered neither of these properties. When postnatal exposure concluded on postnatal day 5, excitatory neurotransmission remained decreased through day 6 and returned to basal levels by day 7. ECGs showed that heart rate remained elevated through day 6 and recovered by day 7. On activation of the parasympathetic diving reflex, the response was significantly blunted by postnatal sulfur dioxide exposure through day 7 but recovered by day 8. Postnatal, but not prenatal, exposure to sulfur dioxide can disrupt parasympathetic regulation of cardiovascular activity. Neonates can recover from these effects within 2 to 3 days of discontinued exposure.

  11. Pathology, genetic alterations, and targets of differentially expressed microRNAs in pancreatic cancer

    Directory of Open Access Journals (Sweden)

    Azevedo-Pouly ACP

    2014-06-01

    Full Text Available Ana Clara P Azevedo-Pouly, Thomas D SchmittgenDivision of Pharmaceutics and Pharmaceutical Chemistry, the Ohio State University College of Pharmacy, Columbus, OH, USAAbstract: Since their discovery in mammals in 2001, the field of microRNA (miRNA research has grown exponentially. miRNAs regulate protein translation following binding to conserved sequences within the 3' untranslated region of messenger RNAs. miRNAs are found to regulate nearly all biological processes, and their expression has been shown to differentially regulate a large number of diseases including cancer. Pancreatic ductal adenocarcinoma (PDAC was one of the initial groups of cancers to demonstrate differential miRNA expression. Since then, there have been numerous studies linking differential miRNA expression to PDAC. Translational extrapolation of these studies has been done linking diagnostic, prognostic, and therapeutic applications, and multiple review articles and book chapters have been written on these subjects. The intent here is to provide an overview of pancreatic cancer and review the current state of the validated and published findings on the messenger RNA targets of differentially expressed miRNAs in PDAC. We then attempt to summarize these findings to extrapolate them in the hopes of better understanding how altered miRNA expression in PDAC may alter the phenotype of this disease.Keywords: microRNA, pancreatic cancer, pancreatic ductal adenocarcinoma, target

  12. Stromal-epithelial interactions in aging and cancer: Senescent fibroblasts alter epithelial cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Parrinello, Simona; Coppe, Jean-Philippe; Krtolica, Ana; Campisi, Judith

    2004-07-14

    Cellular senescence suppresses cancer by arresting cells at risk for malignant tumorigenesis. However, senescent cells also secrete molecules that can stimulate premalignant cells to proliferate and form tumors, suggesting the senescence response is antagonistically pleiotropic. We show that premalignant mammary epithelial cells exposed to senescent human fibroblasts in mice irreversibly lose differentiated properties, become invasive and undergo full malignant transformation. Moreover, using cultured mouse or human fibroblasts and non-malignant breast epithelial cells, we show that senescent fibroblasts disrupt epithelial alveolar morphogenesis, functional differentiation, and branching morphogenesis. Further, we identify MMP-3 as the major factor responsible for the effects of senescent fibroblasts on branching morphogenesis. Our findings support the idea that senescent cells contribute to age-related pathology, including cancer, and describe a new property of senescent fibroblasts--the ability to alter epithelial differentiation--that might also explain the loss of tissue function and organization that is a hallmark of aging.

  13. Alterations of Synaptic Proteins in the Hippocampus of Mouse Offspring Induced by Developmental Lead Exposure.

    Science.gov (United States)

    Yu, Haiyang; Liao, Yingjun; Li, Tingting; Cui, Yan; Wang, Gaoyang; Zhao, Fenghong; Jin, Yaping

    2016-12-01

    Lead exposure can cause cognitive dysfunction in children, thus it still raises important public health concerns in China and other countries. However, the underlying molecular mechanisms are still not well defined. In this study, we aimed to elucidate the mechanisms underlying lead neurotoxicity by focusing on alterations of synaptic proteins in the mouse hippocampus at the early life. Mother mice and their offspring were exposed to 0, 0.5, 1.0, and 2.0 g/L lead via drinking water from the first day of gestation until postnatal day (PND) 40. Synaptic ultrastructure and expressions of postsynaptic density protein-95 (PSD-95), neuronal nitric oxide synthase (nNOS) and synaptophysin (SYP) at both protein and gene levels in the hippocampus were analyzed. The results revealed that developmental lead exposure caused a diminished postsynaptic density in the hippocampus. Moreover, the protein levels of PSD-95, nNOS, and SYP decreased significantly due to developmental lead exposure. On the other hand, the messenger RNA (mRNA) levels of PSD-95 and SYP decreased significantly in PND 40 mice exposed to lead. Collectively, developmental lead exposure might result in decreased protein and gene expressions of both presynaptic and postsynaptic proteins. Our findings raised a possibility that alterations of synaptic proteins in the hippocampus induced by lead exposure at the early life might serve an important role for the subsequent intellectual impairments, e.g., deficits in spatial learning and memory ability at later ages shown in our recently published paper.

  14. Alterations in Skeletal Muscle Cell Homeostasis in a Mouse Model of Cigarette Smoke Exposure

    Science.gov (United States)

    Caron, Marc-André; Morissette, Mathieu C.; Thériault, Marie-Eve; Nikota, Jake K.; Stämpfli, Martin R.; Debigaré, Richard

    2013-01-01

    Background Skeletal muscle dysfunction is common in chronic obstructive pulmonary disease (COPD), a disease mainly caused by chronic cigarette use. An important proportion of patients with COPD have decreased muscle mass, suggesting that chronic cigarette smoke exposure may interfere with skeletal muscle cellular equilibrium. Therefore, the main objective of this study was to investigate the kinetic of the effects that cigarette smoke exposure has on skeletal muscle cell signaling involved in protein homeostasis and to assess the reversibility of these effects. Methods A mouse model of cigarette smoke exposure was used to assess skeletal muscle changes. BALB/c mice were exposed to cigarette smoke or room air for 8 weeks, 24 weeks or 24 weeks followed by 60 days of cessation. The gastrocnemius and soleus muscles were collected and the activation state of key mediators involved in protein synthesis and degradation was assessed. Results Gastrocnemius and soleus were smaller in mice exposed to cigarette smoke for 8 and 24 weeks compared to room air exposed animals. Pro-degradation proteins were induced at the mRNA level after 8 and 24 weeks. Twenty-four weeks of cigarette smoke exposure induced pro-degradation proteins and reduced Akt phosphorylation and glycogen synthase kinase-3β quantity. A 60-day smoking cessation period reversed the cell signaling alterations induced by cigarette smoke exposure. Conclusions Repeated cigarette smoke exposure induces reversible muscle signaling alterations that are dependent on the duration of the cigarette smoke exposure. These results highlights a beneficial aspect associated with smoking cessation. PMID:23799102

  15. Noise exposure of immature rats can induce different age-dependent extra-auditory alterations that can be partially restored by rearing animals in an enriched environment.

    Science.gov (United States)

    Molina, S J; Capani, F; Guelman, L R

    2016-04-01

    It has been previously shown that different extra-auditory alterations can be induced in animals exposed to noise at 15 days. However, data regarding exposure of younger animals, that do not have a functional auditory system, have not been obtained yet. Besides, the possibility to find a helpful strategy to restore these changes has not been explored so far. Therefore, the aims of the present work were to test age-related differences in diverse hippocampal-dependent behavioral measurements that might be affected in noise-exposed rats, as well as to evaluate the effectiveness of a potential neuroprotective strategy, the enriched environment (EE), on noise-induced behavioral alterations. Male Wistar rats of 7 and 15 days were exposed to moderate levels of noise for two hours. At weaning, animals were separated and reared either in standard or in EE cages for one week. At 28 days of age, different hippocampal-dependent behavioral assessments were performed. Results show that rats exposed to noise at 7 and 15 days were differentially affected. Moreover, EE was effective in restoring all altered variables when animals were exposed at 7 days, while a few were restored in rats exposed at 15 days. The present findings suggest that noise exposure was capable to trigger significant hippocampal-related behavioral alterations that were differentially affected, depending on the age of exposure. In addition, it could be proposed that hearing structures did not seem to be necessarily involved in the generation of noise-induced hippocampal-related behaviors, as they were observed even in animals with an immature auditory pathway. Finally, it could be hypothesized that the differential restoration achieved by EE rearing might also depend on the degree of maturation at the time of exposure and the variable evaluated, being younger animals more susceptible to environmental manipulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Developmental Exposure to Pesticides Alters Motor Activity and Coordination in Rats: Sex Differences and Underlying Mechanisms.

    Science.gov (United States)

    Gómez-Giménez, B; Felipo, V; Cabrera-Pastor, A; Agustí, A; Hernández-Rabaza, V; Llansola, M

    2018-02-01

    It has been proposed that developmental exposure to pesticides contributes to increasing prevalence of neurodevelopmental disorders in children, such as attention deficit with hyperactivity (ADHD) and to alterations in coordination skills. However, the mechanisms involved in these alterations remain unclear. We analyzed the effects on spontaneous motor activity and motor coordination of developmental exposure to a representative pesticide of each one of the four main chemical families: organophosphates (chlorpyrifos), carbamates (carbaryl), organochlorines (endosulfan), and pyrethroids (cypermethrin). Pesticides were administered once a day orally, in a sweet jelly, from gestational day 7 to post natal day 21. Spontaneous motor activity was assessed by an actimeter and motor coordination using the rotarod, when rats were adults. The effects were analyzed separately in males and females. Extracellular GABA in cerebellum and NMDA receptor subunits in hippocampus were assessed as possible underlying mechanisms of motor alterations. Motor coordination was impaired by developmental exposure to endosulfan, cypermethrin, and chlorpyrifos in females but not in males. The effect of endosulfan and cypermethrin would be due to increased extracellular GABA in cerebellum, which remains unaltered in male rats. Chlorpyrifos increased motor activity in males and females. Cypermethrin decreased motor activity mainly in males. In male rats, but not in females, expression of the NR2B subunit of NMDA receptor in hippocampus correlated with motor activity. These results show sex-specific effects of different pesticides on motor activity and coordination, associated with neurotransmission alterations. These data contribute to better understand the relationship between developmental exposure to the main pesticide families and motor disorders in children.

  17. Larval exposure to polychlorinated biphenyl 126 (PCB-126) causes persistent alteration of the amphibian gut microbiota.

    Science.gov (United States)

    Kohl, Kevin D; Cary, Tawnya L; Karasov, William H; Dearing, M Denise

    2015-05-01

    Interactions between gut microbes and anthropogenic pollutants have been under study. The authors investigated the effects of larval exposure to polychlorinated biphenyl 126 (PCB-126) on the gut microbial communities of tadpoles and frogs. Frogs treated with PCBs exhibited increased species richness in the gut and harbored communities significantly enriched in Fusobacteria. These results suggest that anthropogenic pollutants alter gut microbial populations, which may have health and fitness consequences for hosts. © 2015 SETAC.

  18. Maternal and fetal metabonomic alterations in prenatal nicotine exposure-induced rat intrauterine growth retardation.

    Science.gov (United States)

    Feng, Jiang-hua; Yan, You-e; Liang, Gai; Liu, Yan-song; Li, Xiao-jun; Zhang, Ben-jian; Chen, Liao-bin; Yu, Hong; He, Xiao-hua; Wang, Hui

    2014-08-25

    Prenatal nicotine exposure causes adverse birth outcome. However, the corresponding metabonomic alterations and underlying mechanisms of nicotine-induced developmental toxicity remain unclear. The aims of this study were to characterize the metabolic alterations in biofluids in nicotine-induced intrauterine growth retardation (IUGR) rat model. In the present study, pregnant Wistar rats were intragastrically administered with different doses of nicotine (0.5, 1.0 and 2.0 mg/kg d) from gestational day (GD) 11-20. The metabolic profiles of the biofluids, including maternal plasma, fetal plasma and amniotic fluid, were analyzed using (1)H nuclear magnetic resonance (NMR)-based metabonomic techniques. Prenatal nicotine exposure caused noticeably lower body weights, higher IUGR rates of fetal rats, and elevated maternal and fetal corticosterone (CORT) levels compared to the controls. The correlation analysis among maternal, fetal serum CORT levels and fetal bodyweight suggested that the levels of maternal and fetal serum CORT presented a positive correlation (r=0.356, n=32, P<0.05), while there was a negative correlation between fetal (r=-0.639, n=32, P<0.01) and maternal (r=-0.530, n=32, P<0.01) serum CORT level and fetal bodyweight. The fetal metabonome alterations included the stimulation of lipogenesis and the decreased levels of glucose and amino acids. The maternal metabonome alterations involved the enhanced blood glucose levels, fatty acid oxygenolysis, proteolysis and amino acid accumulation. These results suggested that prenatal nicotine exposure is associated with an altered maternal and fetal metabonome, which may be related to maternal increased glucocorticoid level induced by nicotine. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. In utero exposure to a maternal high-fat diet alters the epigenetic histone code in a murine model.

    Science.gov (United States)

    Suter, Melissa A; Ma, Jun; Vuguin, Patricia M; Hartil, Kirsten; Fiallo, Ariana; Harris, R Alan; Charron, Maureen J; Aagaard, Kjersti M

    2014-05-01

    Data from animal models show that in utero exposure to a maternal high-fat diet (HFD) renders susceptibility of these offspring to the adult onset of metabolic syndrome. We and others have previously shown that epigenetic modifications to histones may serve as a molecular memory of the in utero exposure, rendering the risk of adult disease. Because mice heterozygous for the Glut4 gene (insulin sensitive glucose transporter) born to wild-type (WT) mothers demonstrate exacterbated metabolic syndrome when exposed to an HFD in utero, we sought to analyze the genome-wide epigenetic changes that occur in the fetal liver in susceptible offspring. WT and Glut4(+/-) (G4(+/-)) offspring of WT mothers that were exposed either to a control or an HFD in utero were studied. Immunoblotting was used to measure hepatic histone modifications of fetal and 5-week animals. Chromatin immunoprecipitation (ChIP) followed by hybridization to chip arrays (ChIP-on-chip) was used to detect genome-wide changes of histone modifications with HFD exposure. We found that levels of hepatic H3K14ac and H3K9me3 significantly increased with HFD exposure in WT and G4(+/-) fetal and 5-week offspring. Pathway analysis of our ChIP-on-chip data revealed differential H3K14ac and H3K9me3 enrichment along pathways that regulate lipid metabolism, specifically in the promoter regions of Pparg, Ppara, Rxra, and Rora. We conclude that HFD exposure in utero is associated with functional alterations to fetal hepatic histone modifications in both WT and G4(+/-) offspring, some of which persist up to 5 weeks of age. Copyright © 2014 Mosby, Inc. All rights reserved.

  20. Fetal and neonatal exposure to the endocrine disruptor methoxychlor causes epigenetic alterations in adult ovarian genes.

    Science.gov (United States)

    Zama, Aparna Mahakali; Uzumcu, Mehmet

    2009-10-01

    Exposure to endocrine-disrupting chemicals during development could alter the epigenetic programming of the genome and result in adult-onset disease. Methoxychlor (MXC) and its metabolites possess estrogenic, antiestrogenic, and antiandrogenic activities. Previous studies showed that fetal/neonatal exposure to MXC caused adult ovarian dysfunction due to altered expression of key ovarian genes including estrogen receptor (ER)-beta, which was down-regulated, whereas ERalpha was unaffected. The objective of the current study was to evaluate changes in global and gene-specific methylation patterns in adult ovaries associated with the observed defects. Rats were exposed to MXC (20 microg/kgxd or 100 mg/kg.d) between embryonic d 19 and postnatal d 7. We performed DNA methylation analysis of the known promoters of ERalpha and ERbeta genes in postnatal d 50-60 ovaries using bisulfite sequencing and methylation-specific PCRs. Developmental exposure to MXC led to significant hypermethylation in the ERbeta promoter regions (P fetal and neonatal development affects adult ovarian function via altered methylation patterns.

  1. IL-13 alters mucociliary differentiation and ciliary beating of human respiratory epithelial cells

    Science.gov (United States)

    Laoukili, Jamila; Perret, Eric; Willems, Tom; Minty, Adrian; Parthoens, Eef; Houcine, Odile; Coste, Andre; Jorissen, Mark; Marano, Francelyne; Caput, Daniel; Tournier, Frédéric

    2001-01-01

    In animal models of asthma, interleukin-13 (IL-13) induces goblet cell metaplasia, eosinophil infiltration of the bronchial mucosa, and bronchial hyperreactivity, but the basis of its effects on airway epithelia remain unknown. Lesions of the epithelial barrier, frequently observed in asthma and other chronic lung inflammatory diseases, are repaired through proliferation, migration, and differentiation of epithelial cells. An inflammatory process may then, therefore, influence epithelial regeneration. We have thus investigated the effect of IL-13 on mucociliary differentiation of human nasal epithelial cells in primary culture. We show that IL-13 alters ciliated cell differentiation and increases the proportion of secretory cells. IL-13 downregulates the actin-binding protein ezrin and other cytoskeletal components. IL-13 also impairs lateral cell contacts and interferes with the apical localization of ezrin seen in differentiated ciliated cells. In addition, an IL-4 antagonistic mutant protein (Y124D), which binds to the IL-4 receptor α subunit, a common chain of IL-4 and IL-13 receptors, inhibits IL-13’s effects. IL-13 also decreases ciliary beat frequency in a time- and dose-dependent manner. These results suggest that, in human allergic asthmatic responses, IL-13 affects both ciliated and secretory cell differentiation, leading to airway damage and obstruction. PMID:11748265

  2. Aging and environmental exposures alter tissue-specific DNA methylation dependent upon CpG island context.

    Directory of Open Access Journals (Sweden)

    Brock C Christensen

    2009-08-01

    Full Text Available Epigenetic control of gene transcription is critical for normal human development and cellular differentiation. While alterations of epigenetic marks such as DNA methylation have been linked to cancers and many other human diseases, interindividual epigenetic variations in normal tissues due to aging, environmental factors, or innate susceptibility are poorly characterized. The plasticity, tissue-specific nature, and variability of gene expression are related to epigenomic states that vary across individuals. Thus, population-based investigations are needed to further our understanding of the fundamental dynamics of normal individual epigenomes. We analyzed 217 non-pathologic human tissues from 10 anatomic sites at 1,413 autosomal CpG loci associated with 773 genes to investigate tissue-specific differences in DNA methylation and to discern how aging and exposures contribute to normal variation in methylation. Methylation profile classes derived from unsupervised modeling were significantly associated with age (P<0.0001 and were significant predictors of tissue origin (P<0.0001. In solid tissues (n = 119 we found striking, highly significant CpG island-dependent correlations between age and methylation; loci in CpG islands gained methylation with age, loci not in CpG islands lost methylation with age (P<0.001, and this pattern was consistent across tissues and in an analysis of blood-derived DNA. Our data clearly demonstrate age- and exposure-related differences in tissue-specific methylation and significant age-associated methylation patterns which are CpG island context-dependent. This work provides novel insight into the role of aging and the environment in susceptibility to diseases such as cancer and critically informs the field of epigenomics by providing evidence of epigenetic dysregulation by age-related methylation alterations. Collectively we reveal key issues to consider both in the construction of reference and disease

  3. Adolescent binge-pattern alcohol exposure alters genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve male offspring.

    Science.gov (United States)

    Asimes, AnnaDorothea; Torcaso, Audrey; Pinceti, Elena; Kim, Chun K; Zeleznik-Le, Nancy J; Pak, Toni R

    2017-05-01

    Teenage binge drinking is a major health concern in the United States, with 21% of teenagers reporting binge-pattern drinking behavior in the previous 30 days. Recently, our lab showed that alcohol-naïve offspring of rats exposed to alcohol during adolescence exhibited altered gene expression profiles in the hypothalamus, a brain region involved in stress regulation. We employed Enhanced Reduced Representation Bisulfite Sequencing as an unbiased approach to test the hypothesis that parental exposure to binge-pattern alcohol during adolescence alters DNA methylation profiles in their alcohol-naïve offspring. Wistar rats were administered a repeated binge-ethanol exposure paradigm during early (postnatal day (PND) 37-44) and late (PND 67-74) adolescent development. Animals were mated 24 h after the last ethanol dose and subsequent offspring were produced. Analysis of male PND7 offspring revealed that offspring of alcohol-exposed parents exhibited differential DNA methylation patterns in the hypothalamus. The differentially methylated cytosines (DMCs) were distinct between offspring depending on which parent was exposed to ethanol. Moreover, novel DMCs were observed when both parents were exposed to ethanol and many DMCs from single parent ethanol exposure were not recapitulated with dual parent exposure. We also measured mRNA expression of several differentially methylated genes and some, but not all, showed correlative changes in expression. Importantly, methylation was not a direct predictor of expression levels, underscoring the complexity of transcriptional regulation. Overall, we demonstrate that adolescent binge ethanol exposure causes altered genome-wide DNA methylation patterns in the hypothalamus of alcohol-naïve offspring. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Prenatal xenobiotic exposure and intrauterine hypothalamus-pituitary-adrenal axis programming alteration.

    Science.gov (United States)

    Zhang, Chong; Xu, Dan; Luo, Hanwen; Lu, Juan; Liu, Lian; Ping, Jie; Wang, Hui

    2014-11-05

    The hypothalamic-pituitary-adrenal (HPA) axis is one of the most important neuroendocrine axes and plays an important role in stress defense responses before and after birth. Prenatal exposure to xenobiotics, including environmental toxins (such as smoke, sulfur dioxide and carbon monoxide), drugs (such as synthetic glucocorticoids), and foods and beverage categories (such as ethanol and caffeine), affects fetal development indirectly by changing the maternal status or damaging the placenta. Certain xenobiotics (such as caffeine, ethanol and dexamethasone) may also affect the fetus directly by crossing the placenta into the fetus due to their lipophilic properties and lower molecular weights. All of these factors probably result in intrauterine programming alteration of the HPA axis, which showed a low basal activity but hypersensitivity to chronic stress. These alterations will, therefore, increase the susceptibility to adult neuropsychiatric (such as depression and schizophrenia) and metabolic diseases (such as hypertension, diabetes and non-alcoholic fatty liver disease). The "over-exposure of fetuses to maternal glucocorticoids" may be the main initiation factor by which the fetal HPA axis programming is altered. Meantime, xenobiotics can directly induce abnormal epigenetic modifications and expression on the important fetal genes (such as hippocampal glucocorticoid receptor, adrenal steroidogenic acute regulatory protein, et al) or damage by in situ oxidative metabolism of fetal adrenals, which may also be contributed to the programming alteration of fetal HPA axis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  5. Detection of Radiation-Exposure Biomarkers by Differential Mobility Prefiltered Mass Spectrometry (DMS-MS)

    OpenAIRE

    Coy, Stephen L.; Krylov, Evgeny V.; Schneider, Bradley B.; Covey, Thomas R.; Brenner, David J.; Tyburski, John B.; Patterson, Andrew D.; Krausz, Kris W.; Fornace, Albert J.; Nazarov, Erkinjon G.

    2010-01-01

    Technology to enable rapid screening for radiation exposure has been identified as an important need, and, as a part of a NIH / NIAD effort in this direction, metabolomic biomarkers for radiation exposure have been identified in a recent series of papers. To reduce the time necessary to detect and measure these biomarkers, differential mobility spectrometry – mass spectrometry (DMS-MS) systems have been developed and tested. Differential mobility ion filters preselect specific ions and also s...

  6. Different alcohol exposures induce selective alterations on the expression of dynorphin and nociceptin systems related genes in rat brain.

    Science.gov (United States)

    D'Addario, Claudio; Caputi, Francesca F; Rimondini, Roberto; Gandolfi, Ottavio; Del Borrello, Elia; Candeletti, Sanzio; Romualdi, Patrizia

    2013-05-01

    Molecular mechanisms of adaptive transformations caused by alcohol exposure on opioid dynorphin and nociceptin systems have been investigated in the rat brain. Alcohol was intragastrically administered to rats to resemble human drinking with several hours of exposure: water or alcohol (20% in water) at a dose of 1.5 g/kg three times daily for 1 or 5 days. The development of tolerance and dependence were recorded daily. Brains were dissected 30 minutes (1- and 5-day groups) or 1, 3 or 7 days after the last administration for the three other 5-day groups (groups under withdrawal). Specific alterations in opioid genes expression were ascertained. In the amygdala, an up-regulation of prodynorphin and pronociceptin was observed in the 1-day group; moreover, pronociceptin and the kappa opioid receptor mRNAs in the 5-day group and both peptide precursors in the 1-day withdrawal group were also up-regulated. In the prefrontal cortex, an increase in prodynorhin expression in the 1-day group was detected. These data indicate a relevant role of the dynorphinergic system in the negative hedonic states associated with multiple alcohol exposure. The pattern of alterations observed for the nociceptin system appears to be consistent with its role of functional antagonism towards the actions of ethanol associated with other opioid peptides. Our findings could help to the understanding of how alcohol differentially affects the opioid systems in the brain and also suggest the dynorphin and nociceptin systems as possible targets for the treatment and/or prevention of alcohol dependence. © 2011 The Authors, Addiction Biology © 2011 Society for the Study of Addiction.

  7. Embryonic caffeine exposure acts via A1 adenosine receptors to alter adult cardiac function and DNA methylation in mice.

    Directory of Open Access Journals (Sweden)

    Daniela L Buscariollo

    Full Text Available Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg or vehicle (0.09% NaCl i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2-4 cups of coffee in humans. After dams gave birth, offspring were examined at 8-10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation.

  8. Embryonic Caffeine Exposure Acts via A1 Adenosine Receptors to Alter Adult Cardiac Function and DNA Methylation in Mice

    Science.gov (United States)

    Greenwood, Victoria; Xue, Huiling; Rivkees, Scott A.; Wendler, Christopher C.

    2014-01-01

    Evidence indicates that disruption of normal prenatal development influences an individual's risk of developing obesity and cardiovascular disease as an adult. Thus, understanding how in utero exposure to chemical agents leads to increased susceptibility to adult diseases is a critical health related issue. Our aim was to determine whether adenosine A1 receptors (A1ARs) mediate the long-term effects of in utero caffeine exposure on cardiac function and whether these long-term effects are the result of changes in DNA methylation patterns in adult hearts. Pregnant A1AR knockout mice were treated with caffeine (20 mg/kg) or vehicle (0.09% NaCl) i.p. at embryonic day 8.5. This caffeine treatment results in serum levels equivalent to the consumption of 2–4 cups of coffee in humans. After dams gave birth, offspring were examined at 8–10 weeks of age. A1AR+/+ offspring treated in utero with caffeine were 10% heavier than vehicle controls. Using echocardiography, we observed altered cardiac function and morphology in adult mice exposed to caffeine in utero. Caffeine treatment decreased cardiac output by 11% and increased left ventricular wall thickness by 29% during diastole. Using DNA methylation arrays, we identified altered DNA methylation patterns in A1AR+/+ caffeine treated hearts, including 7719 differentially methylated regions (DMRs) within the genome and an overall decrease in DNA methylation of 26%. Analysis of genes associated with DMRs revealed that many are associated with cardiac hypertrophy. These data demonstrate that A1ARs mediate in utero caffeine effects on cardiac function and growth and that caffeine exposure leads to changes in DNA methylation. PMID:24475304

  9. Voluntary alcohol intake after noise exposure in adolescent rats: Hippocampal-related behavioral alterations.

    Science.gov (United States)

    Miceli, M; Molina, S J; Forcada, A; Acosta, G B; Guelman, L R

    2018-01-15

    Different physical or chemical agents, such as noise or alcohol, can induce diverse behavioral and biochemical alterations. Considering the high probability of young people to undergo consecutive or simultaneous exposures, the aim of the present work was to investigate in an animal model if noise exposure at early adolescence could induce hippocampal-related behavioral changes that might be modified after alcohol intake. Male Wistar rats (28-days-old) were exposed to noise (95-97 dB, 2 h). Afterwards, animals were allowed to voluntarily drink alcohol (10% ethanol in tap water) for three consecutive days, using the two-bottle free choice paradigm. After that, hippocampal-related memory and anxiety-like behavior tests were performed. Results show that whereas noise-exposed rats presented deficits in habituation memory, those who drank alcohol exhibited impairments in associative memory and anxiety-like behaviors. In contrast, exposure to noise followed by alcohol intake showed increases in exploratory and locomotor activities as well as in anxiety-like behaviors, unlike what was observed using each agent separately. Finally, lower levels of alcohol intake were measured in these animals when compared with those that drank alcohol and were not exposed to noise. Present findings demonstrate that exposure to physical and chemical challenges during early adolescence might induce behavioral alterations that could differ depending on the schedule used, suggesting a high vulnerability of rat developing brain to these socially relevant agents. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Rat hippocampal alterations could underlie behavioral abnormalities induced by exposure to moderate noise levels.

    Science.gov (United States)

    Uran, S L; Aon-Bertolino, M L; Caceres, L G; Capani, F; Guelman, L R

    2012-08-30

    Noise exposure is known to affect auditory structures in living organisms. However, it should not be ignored that many of the effects of noise are extra-auditory. Previous findings of our laboratory demonstrated that noise was able to induce behavioral alterations that are mainly related to the cerebellum (CE) and the hippocampus (HC). Therefore, the aim of this work was to reveal new data about the vulnerability of developing rat HC to moderate noise levels through the assessment of potential histological changes and hippocampal-related behavioral alterations. Male Wistar rats were exposed to noise (95-97 dB SPL, 2h daily) either for 1 day (acute noise exposure, ANE) or between postnatal days 15 and 30 (sub-acute noise exposure, SANE). Hippocampal histological evaluation as well as short (ST) and long term (LT) habituation and recognition memory assessments were performed. Results showed a mild disruption in the different hippocampal regions after ANE and SANE schemes, along with significant behavioral abnormalities. These data suggest that exposure of developing rats to noise levels of moderate intensity is able to trigger changes in the HC, an extra-auditory structure of the Central Nervous System (CNS), that could underlie the observed behavioral effects. Copyright © 2012 Elsevier B.V. All rights reserved.

  11. Neonatal exposure to monosodium glutamate induces morphological alterations in suprachiasmatic nucleus of adult rat.

    Science.gov (United States)

    Rojas-Castañeda, Julio César; Vigueras-Villaseñor, Rosa María; Chávez-Saldaña, Margarita; Rojas, Patricia; Gutiérrez-Pérez, Oscar; Rojas, Carolina; Arteaga-Silva, Marcela

    2016-02-01

    Neonatal exposure to monosodium glutamate (MSG) induces circadian disorders in several physiological and behavioural processes regulated by the suprachiasmatic nucleus (SCN). The objective of this study was to evaluate the effects of neonatal exposure to MSG on locomotor activity, and on morphology, cellular density and expression of proteins, as evaluated by optical density (OD), of vasopressin (VP)-, vasoactive intestinal polypeptide (VIP)- and glial fibrillary acidic protein (GFAP)-immunoreactive cells in the SCN. Male Wistar rats were used: the MSG group was subcutaneously treated from 3 to 10 days of age with 3.5 mg/g/day. Locomotor activity was evaluated at 90 days of age using 'open-field' test, and the brains were processed for immunohistochemical studies. MSG exposure induced a significant decrease in locomotor activity. VP- and VIP-immunoreactive neuronal densities showed a significant decrease, while the somatic OD showed an increase. Major axes and somatic area were significantly increased in VIP neurons. The cellular and optical densities of GFAP-immunoreactive sections of SCN were significantly increased. These results demonstrated that newborn exposure to MSG induced morphological alterations in SCN cells, an alteration that could be the basis for behavioural disorders observed in the animals. © 2016 The Authors. International Journal of Experimental Pathology © 2016 International Journal of Experimental Pathology.

  12. Embryo-larval exposure to atrazine reduces viability and alters oxidative stress parameters in Drosophila melanogaster.

    Science.gov (United States)

    Figueira, Fernanda Hernandes; Aguiar, Lais Mattos de; Rosa, Carlos Eduardo da

    2017-01-01

    The herbicide atrazine has been used worldwide with subsequent residual contamination of water and food, which may cause adverse effects on non-target organisms. Animal exposure to this herbicide may affect development, reproduction and energy metabolism. Here, the effects of atrazine regarding survival and redox metabolism were assessed in the fruit fly D. melanogaster exposed during embryonic and larval development. The embryos (newly fertilized eggs) were exposed to different atrazine concentrations (10μM and 100μM) in the diet until the adult fly emerged. Pupation and emergence rates, developmental time and sex ratio were determined as well as oxidative stress parameters and gene expression of the antioxidant defence system were evaluated in newly emerged male and female flies. Atrazine exposure reduced pupation and emergence rates in fruit flies without alterations to developmental time and sex ratio. Different redox imbalance patterns were observed between males and females exposed to atrazine. Atrazine caused an increase in oxidative damage, reactive oxygen species generation and antioxidant capacity and decreased thiol-containing molecules. Further, atrazine exposure altered the mRNA expression of antioxidant genes (keap1, sod, sod2, cat, irc, gss, gclm, gclc, trxt, trxr-1 and trxr-2). Reductions in fruit fly larval and pupal viability observed here are likely consequences of the oxidative stress induced by atrazine exposure. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Chronic early life lead (Pb2+) exposure alters presynaptic vesicle pools in hippocampal synapses.

    Science.gov (United States)

    Guariglia, Sara Rose; Stansfield, Kirstie H; McGlothan, Jennifer; Guilarte, Tomas R

    2016-11-02

    Lead (Pb2+) exposure has been shown to impair presynaptic neurotransmitter release in both in vivo and in vitro model systems. The mechanism by which Pb2+ impairs neurotransmitter release has not been fully elucidated. In previous work, we have shown that Pb2+ exposure inhibits vesicular release and reduces the number of fast-releasing sites in cultured hippocampal neurons. We have also shown that Pb2+ exposure inhibits vesicular release and alters the distribution of presynaptic vesicles in Shaffer Collateral - CA1 synapses of rodents chronically exposed to Pb2+ during development. In the present study, we used transmission electron microscopy to examine presynaptic vesicle pools in Mossy Fiber-CA3 synapses and in Perforant Path-Dentate Gyrus synapses of rats to determine if in vivo Pb2+ exposure altered presynaptic vesicle distribution in these hippocampal regions. Data were analyzed using T-test for each experimental endpoint. We found that Pb2+ exposure significantly reduced the number of vesicles in the readily releasable pool and recycling pool in Mossy Fiber-CA3 terminals. In both Mossy Fiber-CA3 terminals and in Perforant Path-Dentate Gyrus terminals, Pb2+ exposure significantly increased vesicle nearest neighbor distance in all vesicular pools (Rapidly Releasable, Recycling and Resting). We also found a reduction in the size of the postsynaptic densities of CA3 dendrites in the Pb2+ exposed group. In our previous work, we have demonstrated that Pb2+ exposure impairs vesicular release in Shaffer Collateral - CA1 terminals of the hippocampus and that the number of docked vesicles in the presynaptic active zone was reduced. Our current data shows that Pb2+ exposure reduces the number of vesicles that are in proximity to release sites in Mossy Fiber- CA3 terminals. Furthermore, Pb2+ exposure causes presynaptic vesicles to be further from one another, in both Mossy Fiber- CA3 terminals and in Perforant Pathway - Dentate Gyrus terminals, which may interfere with

  14. Activation of autophagy at cerebral cortex and apoptosis at brainstem are differential responses to 835 MHz RF-EMF exposure.

    Science.gov (United States)

    Kim, Ju Hwan; Yu, Da-Hyeon; Kim, Hak Rim

    2017-03-01

    With the explosive increase in exposure to radiofrequency electromagnetic fields (RF-EMF) emitted by mobile phones, public concerns have grown over the last few decades with regard to the potential effects of EMF exposure on the nervous system in the brain. Many researchers have suggested that RF-EMFs can effect diverse neuronal alterations in the brain, thereby affecting neuronal functions as well as behavior. Previously, we showed that long-term exposure to 835 MHz RF-EMF induces autophagy in the mice brain. In this study, we explore whether short-term exposure to RF-EMF leads to the autophagy pathway in the cerebral cortex and brainstem at 835 MHz with a specific absorption rate (SAR) of 4.0 W/kg for 4 weeks. Increased levels of autophagy genes and proteins such as LC3B-II and Beclin1 were demonstrated and the accumulation of autophagosomes and autolysosomes was observed in cortical neurons whereas apoptosis pathways were up-regulated in the brainstem but not in the cortex following 4 weeks of RF exposure. Taken together, the present study indicates that monthly exposure to RF-EMF induces autophagy in the cerebral cortex and suggests that autophagic degradation in cortical neurons against a stress of 835 MHz RF during 4 weeks could correspond to adaptation to the RF stress environment. However, activation of apoptosis rather than autophagy in the brainstem is suggesting the differential responses to the RF-EMF stresses in the brain system.

  15. Mitochondrial proteomic alterations caused by long-term low-dose copper exposure in mouse cortex.

    Science.gov (United States)

    Lin, Xuemei; Wei, Gang; Huang, Zhijun; Qu, Zhongsen; Huang, Xinfeng; Xu, Hua; Liu, Jianjun; Zhuang, Zhixiong; Yang, Xifei

    2016-11-30

    Mitochondrial dysfunction is involved in neurotoxicity caused by exposure of various chemicals such as copper. However, the effects of long-term low-dose copper exposure on mitochondrial proteome remain unclear. In this study, we found the treatment of copper (0.13ppm copper sulfate in drinking water) for 12 months caused abnormal expression of a total of 13 mitochondrial proteins (7 up-regulated and 6 down-regulated) as revealed by two-dimensional electrophoresis coupled with mass spectrometry in mouse cortex. Protein functional analysis revealed that these differentially expressed proteins mainly included apoptosis-associated proteins, axon guidance-associated proteins, axonogenesis-associated proteins and mitochondrial respiratory chain complex. Among these differentially expressed mitochondrial proteins, GRP75 (75kDa glucose-regulated protein) and GRP78 (78kDa glucose-regulated protein) were found to be significantly down-regulated as confirmed by Western-blot analysis. The down-regulation of GRP75 was shown to promote apoptosis. The down-regulation of GRP78/BiP could up-regulate endoplasmic reticulum (ER) stress mediators and thus cause apoptosis. Our study suggested that these differentially expressed mitochondrial proteins such as GRP75 and GRP78 could be involved in neurotoxicity caused by long-term low-dose copper exposure and serve as potential molecular targets for the treatment of copper neurotoxicity. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Successful diagnosis and treatment 50 years after exposure: is mucocutaneous leishmaniasis still a neglected differential diagnosis?

    Science.gov (United States)

    Schleucher, Regina D; Zanger, Philipp; Gaessler, Michael; Knobloch, Juergen

    2008-01-01

    We present a case of a long-term history of imported mucocutaneous leishmaniasis, illustrating the importance of this differential diagnosis even decades after exposure. Diagnostic pitfalls and the role of primary subspecies differentiation are demonstrated. Chemotherapy avoiding antimonials was successful and remarkably well tolerated by an elderly patient.

  17. Differential psychological impact of internet exposure on Internet addicts.

    Directory of Open Access Journals (Sweden)

    Michela Romano

    Full Text Available The study explored the immediate impact of internet exposure on the mood and psychological states of internet addicts and low internet-users. Participants were given a battery of psychological tests to explore levels of internet addiction, mood, anxiety, depression, schizotypy, and autism traits. They were then given exposure to the internet for 15 min, and re-tested for mood and current anxiety. Internet addiction was associated with long-standing depression, impulsive nonconformity, and autism traits. High internet-users also showed a pronounced decrease in mood following internet use compared to the low internet-users. The immediate negative impact of exposure to the internet on the mood of internet addicts may contribute to increased usage by those individuals attempting to reduce their low mood by re-engaging rapidly in internet use.

  18. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults.

    Directory of Open Access Journals (Sweden)

    Ivy N Cheung

    Full Text Available Increasing evidence points to associations between light-dark exposure patterns, feeding behavior, and metabolism. This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal. Nineteen healthy adults completed this 4-day inpatient protocol under dim light conditions (<20lux. Participants were randomized to 3 hours of blue-enriched light exposure on Day 3 starting either 0.5 hours after wake (n = 9; morning group or 10.5 hours after wake (n = 10; evening group. All participants remained in dim light on Day 2 to serve as their baseline. Subjective hunger and sleepiness scales were collected hourly. Blood was sampled at 30-minute intervals for 4 hours in association with the light exposure period for glucose, insulin, cortisol, leptin, and ghrelin. Homeostatic model assessment of insulin resistance (HOMA-IR and area under the curve (AUC for insulin, glucose, HOMA-IR and cortisol were calculated. Comparisons relative to baseline were done using t-tests and repeated measures ANOVAs. In both the morning and evening groups, insulin total area, HOMA-IR, and HOMA-IR AUC were increased and subjective sleepiness was reduced with blue-enriched light compared to dim light. The evening group, but not the morning group, had significantly higher glucose peak value during blue-enriched light exposure compared to dim light. There were no other significant differences between the morning or the evening groups in response to blue-enriched light exposure. Blue-enriched light exposure acutely alters glucose metabolism and sleepiness, however the mechanisms behind this relationship and its impacts on hunger and appetite regulation remain unclear. These results provide further support for a role of environmental light exposure in the regulation of metabolism.

  19. Early life exposure to allergen and ozone results in altered development in adolescent rhesus macaque lungs

    Energy Technology Data Exchange (ETDEWEB)

    Herring, M.J.; Putney, L.F.; St George, J.A. [California National Primate Research Center, Davis, CA (United States); Avdalovic, M.V. [Department of Internal Medicine, Division of Pulmonary and Critical Care, University of California, Davis, CA (United States); Schelegle, E.S.; Miller, L.A. [California National Primate Research Center, Davis, CA (United States); Hyde, D.M., E-mail: dmhyde@ucdavis.edu [California National Primate Research Center, Davis, CA (United States)

    2015-02-15

    In rhesus macaques, previous studies have shown that episodic exposure to allergen alone or combined with ozone inhalation during the first 6 months of life results in a condition with many of the hallmarks of asthma. This exposure regimen results in altered development of the distal airways and parenchyma (Avdalovic et al., 2012). We hypothesized that the observed alterations in the lung parenchyma would be permanent following a long-term recovery in filtered air (FA) housing. Forty-eight infant rhesus macaques (30 days old) sensitized to house dust mite (HDM) were treated with two week cycles of FA, house dust mite allergen (HDMA), ozone (O{sub 3}) or HDMA/ozone (HDMA + O{sub 3}) for five months. At the end of the five months, six animals from each group were necropsied. The other six animals in each group were allowed to recover in FA for 30 more months at which time they were necropsied. Design-based stereology was used to estimate volumes of lung components, number of alveoli, size of alveoli, distribution of alveolar volumes, interalveolar capillary density. After 30 months of recovery, monkeys exposed to HDMA, in either group, had significantly more alveoli than filtered air. These alveoli also had higher capillary densities as compared with FA controls. These results indicate that early life exposure to HDMA alone or HDMA + O{sub 3} alters the development process in the lung alveoli. - Highlights: • Abnormal lung development after postnatal exposure to ozone and allergen • This remodeling is shown as smaller, more numerous alveoli and narrower airways. • Allergen appears to have more of an effect than ozone during recovery. • These animals also have continued airway hyperresponsiveness (Moore et al. 2014)

  20. Differential expression of ozone-induced gene during exposures to ...

    African Journals Online (AJOL)

    USER

    2010-08-16

    Aug 16, 2010 ... exposures to salt stress in Polygonum sibiricum Laxm leaves, stem and underground stem. Shou-Hai Na1, Chun-Pu ... environmental stresses such as salt stress is characterized by a number of physiological and biochemical .... It showed a higher conservation of the. PcOZI-1 with the Populus and Ricinus.

  1. Methamphetamine exposure during brain development alters the brain acetylcholine system in adolescent mice.

    Science.gov (United States)

    Siegel, Jessica A; Park, Byung S; Raber, Jacob

    2011-10-01

    Children exposed to methamphetamine during brain development as a result of maternal drug use have long-term hippocampus-dependent cognitive impairments, but the mechanisms underlying these impairments are not understood. The acetylcholine system plays an important role in cognitive function and potential methamphetamine-induced acetylcholine alterations may be related to methamphetamine-induced cognitive impairments. In this study, we investigated the potential long-term effects of methamphetamine exposure during hippocampal development on the acetylcholine system in adolescence mice on postnatal day 30 and in adult mice on postnatal day 90. Methamphetamine exposure increased the density of acetylcholine neurons in regions of the basal forebrain and the area occupied by acetylcholine axons in the hippocampus in adolescent female mice. In contrast, methamphetamine exposure did not affect the density of GABA cells or total neurons in the basal forebrain. Methamphetamine exposure also increased the number of muscarinic acetylcholine receptors in the hippocampus of adolescent male and female mice. Our results demonstrate for the first time that methamphetamine exposure during hippocampal development affects the acetylcholine system in adolescent mice and that these changes are more profound in females than males. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.

  2. Acute alcohol exposure during mouse gastrulation alters lipid metabolism in placental and heart development: Folate prevention.

    Science.gov (United States)

    Linask, Kersti K; Han, Mingda

    2016-09-01

    Embryonic acute exposure to ethanol (EtOH), lithium, and homocysteine (HCy) induces cardiac defects at the time of exposure; folic acid (FA) supplementation protects normal cardiogenesis (Han et al., , ; Serrano et al., ). Our hypothesis is that EtOH exposure and FA protection relate to lipid and FA metabolism during mouse cardiogenesis and placentation. On the morning of conception, pregnant C57BL/6J mice were placed on either of two FA-containing diets: a 3.3 mg health maintenance diet or a high FA diet of 10.5 mg/kg. Mice were injected a binge level of EtOH, HCy, or saline on embryonic day (E) 6.75, targeting gastrulation. On E15.5, cardiac and umbilical blood flow were examined by ultrasound. Embryonic cardiac tissues were processed for gene expression of lipid and FA metabolism; the placenta and heart tissues for neutral lipid droplets, or for medium chain acyl-dehydrogenase (MCAD) protein. EtOH exposure altered lipid-related gene expression on E7.5 in comparison to control or FA-supplemented groups and remained altered on E15.5 similarly to changes with HCy, signifying FA deficiency. In comparison to control tissues, the lipid-related acyl CoA dehydrogenase medium length chain gene and its protein MCAD were altered with EtOH exposure, as were neutral lipid droplet localization in the heart and placenta. EtOH altered gene expression associated with lipid and folate metabolism, as well as neutral lipids, in the E15.5 abnormally functioning heart and placenta. In comparison to controls, the high FA diet protected the embryo and placenta from these effects allowing normal development. Birth Defects Research (Part A) 106:749-760, 2016. © 2016 The Authors Birth Defects Research Part A: Clinical and Molecular Teratology Published by Wiley Periodicals, Inc. © 2016 The Authors Birth Defects Research Part A: Clinical and Molecular Teratology Published by Wiley Periodicals, Inc.

  3. Prenatal endotoxin exposure alters behavioural pain responses to lipopolysaccharide in adult offspring.

    Science.gov (United States)

    Hodyl, Nicolette A; Walker, F Rohan; Krivanek, Klara M; Clifton, Vicki L; Hodgson, Deborah M

    2010-05-11

    Evidence suggests that exposure to bacterial endotoxin in early life can alter the production of pro-inflammatory cytokines in later life. This phenomenon may have significant consequences for pain and pain related behaviours as pro-inflammatory cytokines heighten pain sensitivity. This association has yet to be examined. As such, the aim of the present study was to characterize pain behaviours in adult rat offspring following prenatal endotoxin (PE) exposure. Pregnant F344 rats received endotoxin (200microg/kg, s.c.) or saline on gestational days 16, 18 and 20. Pain thresholds were assessed in the adult PE offspring (n=23) and control offspring (n=24) prior to and 4h following administration of lipopolysaccharide (LPS; 100microg/kg, s.c.). Three assays of pain were employed - the hot plate, tail immersion and von Frey tests. Results demonstrated sex-specific effects of prenatal endotoxin on the offspring, with PE males displaying unaltered pain thresholds on the von Frey test post-LPS administration (p<0.01), while male control offspring (n=24) displayed the expected hyperalgesia. Male PE offspring also displayed increased pain thresholds on the tail immersion test (p<0.01), while no change in pain sensitivity was observed in control males following LPS exposure. No difference in response was observed between the female PE and control offspring on the von Frey test, however PE female offspring displayed increased thresholds on the tail immersion test compared to baseline - an effect not observed in the control female offspring. Pain sensitivity on the hot plate test was unaffected by prenatal exposure to endotoxin. These data suggest that prenatal exposure to products associated with bacterial infection have the capacity to alter pain responses, which are evident in the adult offspring. Copyright 2010 Elsevier Inc. All rights reserved.

  4. Postnatal choline supplementation selectively attenuates hippocampal microRNA alterations associated with developmental alcohol exposure.

    Science.gov (United States)

    Balaraman, Sridevi; Idrus, Nirelia M; Miranda, Rajesh C; Thomas, Jennifer D

    2017-05-01

    Prenatal alcohol exposure can result in a range of physical, neuropathological, and behavioral alterations, collectively termed fetal alcohol spectrum disorders (FASD). We have shown that supplementation with the nutrient choline reduces the severity of developmental alcohol-associated deficits in hippocampal-dependent behaviors and normalizes some aspects of hippocampal cholinergic development and DNA methylation patterns. Alcohol's developmental effects may also be mediated, in part, by altering microRNAs (miRNAs) that serve as negative regulators of gene translation. To determine whether choline supplementation alters ethanol's long-lasting effects on miRNAs, Sprague-Dawley rats were exposed to 5.25 g/kg/day ethanol from postnatal days (PD) 4-9 via intubation; controls received sham intubations. Subjects were treated with choline chloride (100 mg/kg/day) or saline vehicle subcutaneously (s.c.) from PD 4-21. On PD 22, subjects were sacrificed, and RNA was isolated from the hippocampus. MiRNA expression was assessed with TaqMan Human MicroRNA Panel Low-Density Arrays. Ethanol significantly increased miRNA expression variance, an effect that was attenuated with choline supplementation. Cluster analysis of stably expressed miRNAs that exceeded an ANOVA p alcohol exposure and can protect specific miRNAs from induction by ethanol. These findings have important implications for the mechanisms by which choline may serve as a potential treatment for FASD. Copyright © 2017 Elsevier Inc. All rights reserved.

  5. Developmental alcohol exposure impairs synaptic plasticity without overtly altering microglial function in mouse visual cortex.

    Science.gov (United States)

    Wong, Elissa L; Lutz, Nina M; Hogan, Victoria A; Lamantia, Cassandra E; McMurray, Helene R; Myers, Jason R; Ashton, John M; Majewska, Ania K

    2018-01-01

    Fetal alcohol spectrum disorder (FASD), caused by gestational ethanol (EtOH) exposure, is one of the most common causes of non-heritable and life-long mental disability worldwide, with no standard treatment or therapy available. While EtOH exposure can alter the function of both neurons and glia, it is still unclear how EtOH influences brain development to cause deficits in sensory and cognitive processing later in life. Microglia play an important role in shaping synaptic function and plasticity during neural circuit development and have been shown to mount an acute immunological response to EtOH exposure in certain brain regions. Therefore, we hypothesized that microglial roles in the healthy brain could be permanently altered by early EtOH exposure leading to deficits in experience-dependent plasticity. We used a mouse model of human third trimester high binge EtOH exposure, administering EtOH twice daily by subcutaneous injections from postnatal day 4 through postnatal day 9 (P4-:P9). Using a monocular deprivation model to assess ocular dominance plasticity, we found an EtOH-induced deficit in this type of visually driven experience-dependent plasticity. However, using a combination of immunohistochemistry, confocal microscopy, and in vivo two-photon microscopy to assay microglial morphology and dynamics, as well as fluorescence activated cell sorting (FACS) and RNA-seq to examine the microglial transcriptome, we found no evidence of microglial dysfunction in early adolescence. We also found no evidence of microglial activation in visual cortex acutely after early ethanol exposure, possibly because we also did not observe EtOH-induced neuronal cell death in this brain region. We conclude that early EtOH exposure caused a deficit in experience-dependent synaptic plasticity in the visual cortex that was independent of changes in microglial phenotype or function. This demonstrates that neural plasticity can remain impaired by developmental ethanol exposure even in

  6. Prenatal choline supplementation mitigates behavioral alterations associated with prenatal alcohol exposure in rats.

    Science.gov (United States)

    Thomas, Jennifer D; Idrus, Nirelia M; Monk, Bradley R; Dominguez, Hector D

    2010-10-01

    Prenatal alcohol exposure can alter physical and behavioral development, leading to a range of fetal alcohol spectrum disorders. Despite warning labels, pregnant women continue to drink alcohol, creating a need to identify effective interventions to reduce the severity of alcohol's teratogenic effects. Choline is an essential nutrient that influences brain and behavioral development. Recent studies indicate that choline supplementation can reduce the teratogenic effects of developmental alcohol exposure. The present study examined whether choline supplementation during prenatal ethanol treatment could mitigate the adverse effects of ethanol on behavioral development. Pregnant Sprague-Dawley rats were intubated with 6 g/kg/day ethanol in a binge-like manner from gestational days 5-20; pair-fed and ad libitum chow controls were included. During treatment, subjects from each group were intubated with either 250 mg/kg/day choline chloride or vehicle. Spontaneous alternation, parallel bar motor coordination, Morris water maze, and spatial working memory were assessed in male and female offspring. Subjects prenatally exposed to alcohol exhibited delayed development of spontaneous alternation behavior and deficits on the working memory version of the Morris water maze during adulthood, effects that were mitigated with prenatal choline supplementation. Neither alcohol nor choline influenced performance on the motor coordination task. These data indicate that choline supplementation during prenatal alcohol exposure may reduce the severity of fetal alcohol effects, particularly on alterations in tasks that require behavioral flexibility. These findings have important implications for children of women who drink alcohol during pregnancy. © 2010 Wiley-Liss, Inc.

  7. Nuclear and Mitochondrial DNA Alterations in Newborns with Prenatal Exposure to Cigarette Smoke

    Directory of Open Access Journals (Sweden)

    Francesca Pirini

    2015-01-01

    Full Text Available Newborns exposed to maternal cigarette smoke (CS in utero have an increased risk of developing chronic diseases, cancer, and acquiring decreased cognitive function in adulthood. Although the literature reports many deleterious effects associated with maternal cigarette smoking on the fetus, the molecular alterations and mechanisms of action are not yet clear. Smoking may act directly on nuclear DNA by inducing mutations or epigenetic modifications. Recent studies also indicate that smoking may act on mitochondrial DNA by inducing a change in the number of copies to make up for the damage caused by smoking on the respiratory chain and lack of energy. In addition, individual genetic susceptibility plays a significant role in determining the effects of smoking during development. Furthermore, prior exposure of paternal and maternal gametes to cigarette smoke may affect the health of the developing individual, not only the in utero exposure. This review examines the genetic and epigenetic alterations in nuclear and mitochondrial DNA associated with smoke exposure during the most sensitive periods of development (prior to conception, prenatal and early postnatal and assesses how such changes may have consequences for both fetal growth and development.

  8. Intravenous Prenatal Nicotine Exposure Alters METH-Induced Hyperactivity, Conditioned Hyperactivity, and BDNF in Adult Rat Offspring.

    Science.gov (United States)

    Lacy, Ryan T; Brown, Russell W; Morgan, Amanda J; Mactutus, Charles F; Harrod, Steven B

    2016-01-01

    compared to PS controls. PN rats treated with METH showed significant enhancement of locomotor behavior compared to PS rats following acute and repeated injections; however, PN did not produce differential initiation or expression of behavioral sensitization. METH produced conditioned hyperactivity, and PN rats exhibited a greater conditioned response of hyperactivity relative to controls. PN and METH exposure produced changes in BDNF protein levels in all three regions, and complex interactions were observed between these two factors. Logistic regression revealed that BDNF protein levels, throughout the mesocorticolimbic system, significantly predicted the difference in the conditioned hyperactive response of the animals: both correlations were significant, but the predicted relationship between BDNF and context-elicited activity was stronger in the PN (r = 0.67) compared to the PS rats (r = 0.42). These findings indicate that low-dose PN exposure produces long-term changes in activity and enhanced sensitivity to the locomotor effects of METH. The enhanced METH-induced contextual conditioning shown by the PN animals suggests that offspring of in utero tobacco smoke exposure have greater susceptibility to learn about drug-related conditional stimuli, such as the context. The PN-induced alterations in mesocorticolimbic BDNF protein lend further support for the hypothesis that maternal smoking during pregnancy produces alterations in neuronal plasticity that contribute to drug abuse vulnerability. The current findings demonstrate that these changes are persistent into adulthood. © 2016 S. Karger AG, Basel.

  9. Perfluorooctane sulfonate induces neuronal and oligodendrocytic differentiation in neural stem cells and alters the expression of PPARγ in vitro and in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Wan Ibrahim, Wan Norhamidah, E-mail: hamidah@science.upm.edu.my [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden); Tofighi, Roshan, E-mail: Roshan.Tofighi@ki.se [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden); Onishchenko, Natalia, E-mail: Natalia.Onishchenko@ki.se [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden); Rebellato, Paola, E-mail: Paola.Rebellato@ki.se [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm (Sweden); Bose, Raj, E-mail: Raj.Bose@ki.se [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden); Uhlén, Per, E-mail: Per.Uhlen@ki.se [Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-17177 Stockholm (Sweden); Ceccatelli, Sandra, E-mail: Sandra.Ceccatelli@ki.se [Department of Neuroscience, Karolinska Institutet, S-17177 Stockholm (Sweden)

    2013-05-15

    Perfluorinated compounds are ubiquitous chemicals of major concern for their potential adverse effects on the human population. We have used primary rat embryonic neural stem cells (NSCs) to study the effects of perfluorooctane sulfonate (PFOS) on the process of NSC spontaneous differentiation. Upon removal of basic fibroblast growth factor, NSCs were exposed to nanomolar concentrations of PFOS for 48 h, and then allowed to differentiate for additional 5 days. Exposure to 25 or 50 nM concentration resulted in a lower number of proliferating cells and a higher number of neurite-bearing TuJ1-positive cells, indicating an increase in neuronal differentiation. Exposure to 50 nM also significantly increased the number of CNPase-positive cells, pointing to facilitation of oligodendrocytic differentiation. PPAR genes have been shown to be involved in PFOS toxicity. By q-PCR we detected an upregulation of PPARγ with no changes in PPARα or PPARδ genes. One of the downstream targets of PPARs, the mitochondrial uncoupling protein 2 (UCP2) was also upregulated. The number of TuJ1- and CNPase-positive cells increased after exposure to PPARγ agonist rosiglitazone (RGZ, 3 μM) and decreased after pre-incubation with the PPARγ antagonist GW9662 (5 μM). RGZ also upregulated the expression of PPARγ and UCP2 genes. Meanwhile GW9662 abolished the UCP2 upregulation and decreased Ca{sup 2+} activity induced by PFOS. Interestingly, a significantly higher expression of PPARγ and UCP3 genes was also detected in mouse neonatal brain after prenatal exposure to PFOS. These data suggest that PPARγ plays a role in the alteration of spontaneous differentiation of NSCs induced by nanomolar concentrations of PFOS. - Highlights: • PFOS decreases proliferation of neural stem cells (NSCs). • PFOS induces neuronal and oligodendrocytic differentiation in NSCs. • PFOS alters expression of PPARγ and UCP2 in vitro. • PFOS alters expression of PPARγ and UCP3 in vivo. • Block of PPAR

  10. Legumain Regulates Differentiation Fate of Human Bone Marrow Stromal Cells and Is Altered in Postmenopausal Osteoporosis.

    Science.gov (United States)

    Jafari, Abbas; Qanie, Diyako; Andersen, Thomas L; Zhang, Yuxi; Chen, Li; Postert, Benno; Parsons, Stuart; Ditzel, Nicholas; Khosla, Sundeep; Johansen, Harald Thidemann; Kjærsgaard-Andersen, Per; Delaisse, Jean-Marie; Abdallah, Basem M; Hesselson, Daniel; Solberg, Rigmor; Kassem, Moustapha

    2017-02-14

    Secreted factors are a key component of stem cell niche and their dysregulation compromises stem cell function. Legumain is a secreted cysteine protease involved in diverse biological processes. Here, we demonstrate that legumain regulates lineage commitment of human bone marrow stromal cells and that its expression level and cellular localization are altered in postmenopausal osteoporotic patients. As shown by genetic and pharmacological manipulation, legumain inhibited osteoblast (OB) differentiation and in vivo bone formation through degradation of the bone matrix protein fibronectin. In addition, genetic ablation or pharmacological inhibition of legumain activity led to precocious OB differentiation and increased vertebral mineralization in zebrafish. Finally, we show that localized increased expression of legumain in bone marrow adipocytes was inversely correlated with adjacent trabecular bone mass in a cohort of patients with postmenopausal osteoporosis. Our data suggest that altered proteolytic activity of legumain in the bone microenvironment contributes to decreased bone mass in postmenopausal osteoporosis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  11. Chronic nicotine differentially alters spontaneous recovery of contextual fear in male and female mice.

    Science.gov (United States)

    Tumolo, Jessica M; Kutlu, Munir Gunes; Gould, Thomas J

    2018-01-05

    Post-traumatic stress disorder (PTSD) is a devastating disorder with symptoms such as flashbacks, hyperarousal, and avoidance of reminders of the traumatic event. Exposure therapy, which attempts to extinguish fear responses, is a commonly used treatment for PTSD but relapse following successful exposure therapy is a frequent problem. In rodents, spontaneous recovery (SR), where extinguished fear responses resurface following extinction treatment, is used as a model of fear relapse. Previous studies from our lab showed that chronic nicotine impaired fear extinction and acute nicotine enhanced SR of contextual fear in adult male mice. In addition, we showed that acute nicotine's effects were specific to SR as acute nicotine did not affect recall of contextual fear conditioning in the absence of extinction. However, effects of chronic nicotine administration on SR are not known. Therefore, in the present study, we investigated if chronic nicotine administration altered SR or recall of contextual fear in adult male and female C57BL/6J mice. Our results showed that chronic nicotine significantly enhanced SR in female mice and significantly decreased SR in males. Chronic nicotine had no effect on recall of contextual fear in males or females. Female sham mice also had significantly less baseline SR than male sham mice. Overall, these results demonstrate sex differences in SR of fear memories and that chronic nicotine modulates these effects on SR but nicotine does not alter recall of contextual fear. Copyright © 2018 Elsevier B.V. All rights reserved.

  12. Alcohol-induced epigenetic alterations to developmentally crucial genes regulating neural stemness and differentiation.

    Science.gov (United States)

    Veazey, Kylee J; Carnahan, Mindy N; Muller, Daria; Miranda, Rajesh C; Golding, Michael C

    2013-07-01

    From studies using a diverse range of model organisms, we now acknowledge that epigenetic changes to chromatin structure provide a plausible link between environmental teratogens and alterations in gene expression leading to disease. Observations from a number of independent laboratories indicate that ethanol (EtOH) has the capacity to act as a powerful epigenetic disruptor and potentially derail the coordinated processes of cellular differentiation. In this study, we sought to examine whether primary neurospheres cultured under conditions maintaining stemness were susceptible to alcohol-induced alterations in the histone code. We focused our studies on trimethylated histone 3 lysine 4 and trimethylated histone 3 lysine 27, as these are 2 of the most prominent posttranslational histone modifications regulating stem cell maintenance and neural differentiation. Primary neurosphere cultures were maintained under conditions promoting the stem cell state and treated with EtOH for 5 days. Control and EtOH-treated cellular extracts were examined using a combination of quantitative RT-PCR and chromatin immunoprecipitation techniques. We find that the regulatory regions of genes controlling both neural precursor cell identity and processes of differentiation exhibited significant declines in the enrichment of the chromatin marks examined. Despite these widespread changes in chromatin structure, only a small subset of genes including Dlx2, Fabp7, Nestin, Olig2, and Pax6 displayed EtOH-induced alterations in transcription. Unexpectedly, the majority of chromatin-modifying enzymes examined including members of the Polycomb Repressive Complex displayed minimal changes in expression and localization. Only transcripts encoding Dnmt1, Uhrf1, Ehmt1, Ash2 l, Wdr5, and Kdm1b exhibited significant differences. Our results indicate that primary neurospheres maintained as stem cells in vitro are susceptible to alcohol-induced perturbation of the histone code and errors in the epigenetic

  13. Differentiating the Effects of Familial Risk for Alcohol Dependence and Prenatal Exposure to Alcohol on Offspring Brain Morphology.

    Science.gov (United States)

    Sharma, Vinod K; Hill, Shirley Y

    2017-02-01

    Offspring with a family history of alcohol dependence (AD) have been shown to have altered structural and functional integrity of corticolimbic brain structures. Similarly, prenatal exposure to alcohol is associated with a variety of structural and functional brain changes. The goal of this study was to differentiate the brain gray matter volumetric differences associated with familial risk and prenatal exposure to alcohol among offspring while controlling for lifetime personal exposures to alcohol and drugs. A total of 52 high-risk (HR) offspring from maternal multiplex families with a high proportion of AD were studied along with 55 low-risk (LR) offspring. Voxel-based morphometric analysis was performed using statistical parametric mapping (SPM8) software using 3T structural images from these offspring to identify gray matter volume differences associated with familial risk and prenatal exposure. Significant familial risk group differences were seen with HR males showing reduced volume of the left inferior temporal, left fusiform, and left and right insula regions relative to LR males, controlling for prenatal exposure to alcohol drugs and cigarettes. HR females showed a reduction in the right fusiform but also showed a reduction in volume in portions of the cerebellum (left crus I and left lobe 8). Prenatal alcohol exposure effects, assessed within the familial HR group, was associated with reduced right middle cingulum and left middle temporal volume. Even low exposure resulting from mothers drinking in amounts less than the median of those who drank (53 drinks or less over the course of the pregnancy) showed a reduction in volume in the right anterior cingulum and in the left cerebellum (lobes 4 and 5). Familial risk for AD and prenatal exposure to alcohol and other drugs show independent effects on brain morphology. Copyright © 2017 by the Research Society on Alcoholism.

  14. Ammonia exposure alters the expression of immune-related and antioxidant enzymes-related genes and the gut microbial community of crucian carp (Carassius auratus).

    Science.gov (United States)

    Qi, Xiao-Zhou; Xue, Ming-Yang; Yang, Shi-Bo; Zha, Ji-Wei; Wang, Gao-Xue; Ling, Fei

    2017-11-01

    Chronic exposure of ammonia in fish can affect the activities of antioxidant enzymes but few studies investigate the influence of ammonia exposure on the expression of immune-related and antioxidant enzymes-related genes. Also, there is no study demonstrates the effect of ammonia exposure on gut microbial community of fish. In this study, crucian carp (Carassius auratus) were exposed to the ammonia concentrations, 0 (control), 10 mg L-1 (low) or 50 mg L-1 (high) for consecutive 30 days at 25 ± 1 °C temperature, respectively, and after that, the fish from all exposure groups were maintained in control conditions for another 15 days. The results showed that low concentration ammonia increased the expression of immune-related genes and antioxidant enzymes-related genes, but high concentration ammonia inhibited the expression of immune-related genes and antioxidant enzymes-related genes. After a 15-day treatment without ammonia, the expression of antioxidant enzymes-related genes and immune-related genes showed no significant changes compared with control. The results of high-throughput sequencing showed that gut microbial communities were significantly differentiated following ammonia exposure. The abundance of Bacteroides and Cetobacterium (two kinds of potential probiotics) increased while fish exposed to 10 mg L-1 ammonia. The Flavobacterium (a potential fish pathogen) showed increasing trends when the exposure dose reached 50 mg L-1, while the Bacteroides and Cetobacterium showed almost no abundance. The results also revealed that ammonia exposure concentration or time can alter the intestinal microbial community. In conclusion, ammonia exposure could induce the immune response in crucian carp, and alter the gut microbial community. The results may help us understand the correlations of gut microbial community shift and ammonia exposure and extend our knowledge to comprehend the effects of environmental factors on intestinal microbial community

  15. Altered goblet cell differentiation and surface mucus properties in Hirschsprung disease.

    Science.gov (United States)

    Thiagarajah, Jay R; Yildiz, Hasan; Carlson, Taylor; Thomas, Alyssa R; Steiger, Casey; Pieretti, Alberto; Zukerberg, Lawrence R; Carrier, Rebecca L; Goldstein, Allan M

    2014-01-01

    Hirschsprung disease-associated enterocolitis (HAEC) leads to significant mortality and morbidity, but its pathogenesis remains unknown. Changes in the colonic epithelium related to goblet cells and the luminal mucus layer have been postulated to play a key role. Here we show that the colonic epithelium of both aganglionic and ganglionic segments are altered in patients and in mice with Hirschsprung disease (HSCR). Structurally, goblet cells were altered with increased goblet cell number and reduced intracellular mucins in the distal colon of biopsies from patients with HSCR. Endothelin receptor B (Ednrb) mutant mice showed increased goblet cell number and size and increased cell proliferation compared to wild-type mice in aganglionic segments, and reduced goblet cell size and number in ganglionic segments. Functionally, compared to littermates, Ednrb-/- mice showed increased transepithelial resistance, reduced stool water content and similar chloride secretion in the distal colon. Transcript levels of goblet cell differentiation factors SPDEF and Math1 were increased in the distal colon of Ednrb-/- mice. Both distal colon from Ednrb mice and biopsies from HSCR patients showed reduced Muc4 expression as compared to controls, but similar expression of Muc2. Particle tracking studies showed that mucus from Ednrb-/- mice provided a more significant barrier to diffusion of 200 nm nanoparticles as compared to wild-type mice. These results suggest that aganglionosis is associated with increased goblet cell proliferation and differentiation and subsequent altered surface mucus properties, prior to the development of inflammation in the distal colon epithelium. Restoration of normal goblet cell function and mucus layer properties in the colonic epithelium may represent a therapeutic strategy for prevention of HAEC.

  16. Altered goblet cell differentiation and surface mucus properties in Hirschsprung disease.

    Directory of Open Access Journals (Sweden)

    Jay R Thiagarajah

    Full Text Available Hirschsprung disease-associated enterocolitis (HAEC leads to significant mortality and morbidity, but its pathogenesis remains unknown. Changes in the colonic epithelium related to goblet cells and the luminal mucus layer have been postulated to play a key role. Here we show that the colonic epithelium of both aganglionic and ganglionic segments are altered in patients and in mice with Hirschsprung disease (HSCR. Structurally, goblet cells were altered with increased goblet cell number and reduced intracellular mucins in the distal colon of biopsies from patients with HSCR. Endothelin receptor B (Ednrb mutant mice showed increased goblet cell number and size and increased cell proliferation compared to wild-type mice in aganglionic segments, and reduced goblet cell size and number in ganglionic segments. Functionally, compared to littermates, Ednrb-/- mice showed increased transepithelial resistance, reduced stool water content and similar chloride secretion in the distal colon. Transcript levels of goblet cell differentiation factors SPDEF and Math1 were increased in the distal colon of Ednrb-/- mice. Both distal colon from Ednrb mice and biopsies from HSCR patients showed reduced Muc4 expression as compared to controls, but similar expression of Muc2. Particle tracking studies showed that mucus from Ednrb-/- mice provided a more significant barrier to diffusion of 200 nm nanoparticles as compared to wild-type mice. These results suggest that aganglionosis is associated with increased goblet cell proliferation and differentiation and subsequent altered surface mucus properties, prior to the development of inflammation in the distal colon epithelium. Restoration of normal goblet cell function and mucus layer properties in the colonic epithelium may represent a therapeutic strategy for prevention of HAEC.

  17. Leishmania donovani infection induces anemia in hamsters by differentially altering erythropoiesis in bone marrow and spleen.

    Directory of Open Access Journals (Sweden)

    William P Lafuse

    Full Text Available Leishmania donovani is a parasite that causes visceral leishmaniasis by infecting and replicating in macrophages of the bone marrow, spleen, and liver. Severe anemia and leucopenia is associated with the disease. Although immune defense mechanisms against the parasite have been studied, we have a limited understanding of how L. donovani alters hematopoiesis. In this study, we used Syrian golden hamsters to investigate effects of L. donovani infection on erythropoiesis. Infection resulted in severe anemia and leucopenia by 8 weeks post-infection. Anemia was associated with increased levels of serum erythropoietin, which indicates the hamsters respond to the anemia by producing erythropoietin. We found that infection also increased numbers of BFU-E and CFU-E progenitor populations in the spleen and bone marrow and differentially altered erythroid gene expression in these organs. In the bone marrow, the mRNA expression of erythroid differentiation genes (α-globin, β-globin, ALAS2 were inhibited by 50%, but mRNA levels of erythroid receptor (c-kit, EpoR and transcription factors (GATA1, GATA2, FOG1 were not affected by the infection. This suggests that infection has a negative effect on differentiation of erythroblasts. In the spleen, erythroid gene expression was enhanced by infection, indicating that the anemia activates a stress erythropoiesis response in the spleen. Analysis of cytokine mRNA levels in spleen and bone marrow found that IFN-γ mRNA is highly increased by L. donovani infection. Expression of the IFN-γ inducible cytokine, TNF-related apoptosis-inducing ligand (TRAIL, was also up-regulated. Since TRAIL induces erythroblasts apoptosis, apoptosis of bone marrow erythroblasts from infected hamsters was examined by flow cytometry. Percentage of erythroblasts that were apoptotic was significantly increased by L. donovani infection. Together, our results suggest that L. donovani infection inhibits erythropoiesis in the bone marrow by

  18. Leishmania donovani Infection Induces Anemia in Hamsters by Differentially Altering Erythropoiesis in Bone Marrow and Spleen

    Science.gov (United States)

    Lafuse, William P.; Story, Ryan; Mahylis, Jocelyn; Gupta, Gaurav; Varikuti, Sanjay; Steinkamp, Heidi; Oghumu, Steve; Satoskar, Abhay R.

    2013-01-01

    Leishmania donovani is a parasite that causes visceral leishmaniasis by infecting and replicating in macrophages of the bone marrow, spleen, and liver. Severe anemia and leucopenia is associated with the disease. Although immune defense mechanisms against the parasite have been studied, we have a limited understanding of how L. donovani alters hematopoiesis. In this study, we used Syrian golden hamsters to investigate effects of L. donovani infection on erythropoiesis. Infection resulted in severe anemia and leucopenia by 8 weeks post-infection. Anemia was associated with increased levels of serum erythropoietin, which indicates the hamsters respond to the anemia by producing erythropoietin. We found that infection also increased numbers of BFU-E and CFU-E progenitor populations in the spleen and bone marrow and differentially altered erythroid gene expression in these organs. In the bone marrow, the mRNA expression of erythroid differentiation genes (α-globin, β-globin, ALAS2) were inhibited by 50%, but mRNA levels of erythroid receptor (c-kit, EpoR) and transcription factors (GATA1, GATA2, FOG1) were not affected by the infection. This suggests that infection has a negative effect on differentiation of erythroblasts. In the spleen, erythroid gene expression was enhanced by infection, indicating that the anemia activates a stress erythropoiesis response in the spleen. Analysis of cytokine mRNA levels in spleen and bone marrow found that IFN-γ mRNA is highly increased by L. donovani infection. Expression of the IFN-γ inducible cytokine, TNF-related apoptosis-inducing ligand (TRAIL), was also up-regulated. Since TRAIL induces erythroblasts apoptosis, apoptosis of bone marrow erythroblasts from infected hamsters was examined by flow cytometry. Percentage of erythroblasts that were apoptotic was significantly increased by L. donovani infection. Together, our results suggest that L. donovani infection inhibits erythropoiesis in the bone marrow by cytokine

  19. Age-dependent alterations in human PER2 levels after early morning blue light exposure.

    Science.gov (United States)

    Jud, Corinne; Chappuis, Sylvie; Revell, Victoria L; Sletten, Tracey L; Saaltink, Dirk-Jan; Cajochen, Christian; Skene, Debra J; Albrecht, Urs

    2009-10-01

    In our modern society, we are exposed to different artificial light sources that could potentially lead to disturbances of circadian rhythms and, hence, represent a risk for health and welfare. Investigating the acute impact of light on clock-gene expression may thus help us to better understand the mechanisms underlying disorders rooted in the circadian system. Here, we show an overall significant reduction in PER2 expression in oral mucosa with aging in the morning, noon, and afternoon. In the afternoon, 10 h after exposure to early morning blue light, PER2 was significantly elevated in the young compared to green light exposure and to older participants. Our findings demonstrate that human buccal samples are a valuable tool for studying clock-gene rhythms and the response of PER2 to light. Additionally, our results indicate that the influence of light on clock-gene expression in humans is altered with age.

  20. Moderate prenatal alcohol exposure alters behavior and neuroglial parameters in adolescent rats.

    Science.gov (United States)

    Brolese, Giovana; Lunardi, Paula; Broetto, Núbia; Engelke, Douglas S; Lírio, Franciane; Batassini, Cristiane; Tramontina, Ana Carolina; Gonçalves, Carlos-Alberto

    2014-08-01

    Alcohol consumption by women during gestation has become increasingly common. Although it is widely accepted that exposure to high doses of ethanol has long-lasting detrimental effects on brain development, the case for moderate doses is underappreciated, and benchmark studies have demonstrated structural and behavioral defects associated with moderate prenatal alcohol exposure in humans and animal models. This study aimed to investigate the influence of in utero exposure to moderate levels of ethanol throughout pregnancy on learning/memory, anxiety parameters and neuroglial parameters in adolescent offspring. Female rats were exposed to an experimental protocol throughout gestation up to weaning. After mating, the dams were divided into three groups and treated with only water (control), non-alcoholic beer (vehicle) or 10% (vv) beer solution (moderate prenatal alcohol exposure - MPAE). Adolescent male offspring were subjected to the plus-maze discriminative avoidance task to evaluate learning/memory and anxiety-like behavior. Hippocampi were dissected and slices were obtained for immunoquantification of GFAP, NeuN, S100B and the NMDA receptor. The MPAE group clearly presented anxiolytic-like behavior, even though they had learned how to avoid the aversive arm. S100B protein was increased in the cerebrospinal fluid (CSF) in the group treated with alcohol, and alterations in GFAP expression were also shown. This study indicates that moderate ethanol doses administered during pregnancy could induce anxiolytic-like effects, suggesting an increase in risk-taking behavior in adolescent male offspring. Furthermore, the data show the possibility that glial cells are involved in the altered behavior present after prenatal ethanol treatment. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Exposure of rainbow trout milt to mercury and cadmium alters sperm motility parameters and reproductive success

    Energy Technology Data Exchange (ETDEWEB)

    Dietrich, Grzegorz J., E-mail: dietrich@pan.olsztyn.pl [Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn (Poland); Dietrich, Mariola; Kowalski, R.K. [Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn (Poland); Dobosz, Stefan [Department of Salmonid Research, Inland Fisheries Institute, Rutki 83-330 Zukowo (Poland); Karol, Halina; Demianowicz, Wieslaw; Glogowski, Jan [Department of Gamete and Embryo Biology, Institute of Animal Reproduction and Food Research, Polish Academy of Sciences, Tuwima 10, 10-747 Olsztyn (Poland)

    2010-05-10

    In the current work, seminal plasma was used for the first time as an incubation medium for monitoring short-time exposure effects of sublethal concentrations of mercury and cadmium ions on rainbow trout sperm. Sperm motility parameters (CASA) and hatching rates were used as gamete quality markers. Additionally live/dead sperm viability test and comet assay of DNA fragmentation were performed. We demonstrated that computer-assisted sperm motility analysis (CASA) may serve as a predictor of reproductive success, when milt contaminated with heavy metals is used. Results presented in this study demonstrate that mercury ions altered sperm motility characteristics at 1-10 mg Hg{sup 2+}/l and 10 mg Cd{sup 2+}/l and hatching rates at 10 mg Hg{sup 2+}/l and 10 mg Cd{sup 2+}/l after 4 h of exposure. Although mercury ions affected sperm motility parameters immediately after dilution with milt as well as at 4 h of exposure, no differences in sperm motility parameters were found between intact and mercury-treated milt after 24 h of exposure. Our results suggest that rainbow trout seminal plasma has a protective role against the toxic effects of mercury ions of rainbow trout sperm motility.

  2. MicroRNA Expression Profiling Altered by Variant Dosage of Radiation Exposure

    Directory of Open Access Journals (Sweden)

    Kuei-Fang Lee

    2014-01-01

    Full Text Available Various biological effects are associated with radiation exposure. Irradiated cells may elevate the risk for genetic instability, mutation, and cancer under low levels of radiation exposure, in addition to being able to extend the postradiation side effects in normal tissues. Radiation-induced bystander effect (RIBE is the focus of rigorous research as it may promote the development of cancer even at low radiation doses. Alterations in the DNA sequence could not explain these biological effects of radiation and it is thought that epigenetics factors may be involved. Indeed, some microRNAs (or miRNAs have been found to correlate radiation-induced damages and may be potential biomarkers for the various biological effects caused by different levels of radiation exposure. However, the regulatory role that miRNA plays in this aspect remains elusive. In this study, we profiled the expression changes in miRNA under fractionated radiation exposure in human peripheral blood mononuclear cells. By utilizing publicly available microRNA knowledge bases and performing cross validations with our previous gene expression profiling under the same radiation condition, we identified various miRNA-gene interactions specific to different doses of radiation treatment, providing new insights for the molecular underpinnings of radiation injury.

  3. Developmental and lactational exposure to dieldrin alters mammary tumorigenesis in Her2/neu transgenic mice.

    Directory of Open Access Journals (Sweden)

    Heather L Cameron

    Full Text Available Breast cancer is the most common cancer in Western women and while its precise etiology is unknown, environmental factors are thought to play a role. The organochlorine pesticide dieldrin is a persistent environmental toxicant thought to increase the risk of breast cancer and reduce survival in the human population. The objective of this study was to define the effect of developmental exposure to environmentally relevant concentrations of dieldrin, on mammary tumor development in the offspring. Sexually mature FVB-MMTV/neu female mice were treated with vehicle (corn oil, or dieldrin (0.45, 2.25, and 4.5 microg/g body weight daily by gavage for 5 days prior to mating and then once weekly throughout gestation and lactation until weaning. Dieldrin concentrations were selected to produce serum levels representative of human background body burdens, occupational exposure, and overt toxicity. Treatment had no effect on litter size, birth weight or the number of pups surviving to weaning. The highest dose of dieldrin significantly increased the total tumor burden and the volume and number of tumors found in the thoracic mammary glands. Increased mRNA and protein expression of the neurotrophin BDNF and its receptor TrkB was increased in tumors from the offspring of dieldrin treated dams. This study indicates that developmental exposure to the environmental contaminant dieldrin causes increased tumor burden in genetically predisposed mice. Dieldrin exposure also altered the expression of BNDF and TrkB, novel modulators of cancer pathogenesis.

  4. Prenatal androgen exposure alters girls' responses to information indicating gender-appropriate behaviour.

    Science.gov (United States)

    Hines, Melissa; Pasterski, Vickie; Spencer, Debra; Neufeld, Sharon; Patalay, Praveetha; Hindmarsh, Peter C; Hughes, Ieuan A; Acerini, Carlo L

    2016-02-19

    Individual variability in human gender-related behaviour is influenced by many factors, including androgen exposure prenatally, as well as self-socialization and socialization by others postnatally. Many studies have looked at these types of influences in isolation, but little is known about how they work together. Here, we report that girls exposed to high concentrations of androgens prenatally, because they have the genetic condition congenital adrenal hyperplasia, show changes in processes related to self-socialization of gender-related behaviour. Specifically, they are less responsive than other girls to information that particular objects are for girls and they show reduced imitation of female models choosing particular objects. These findings suggest that prenatal androgen exposure may influence subsequent gender-related behaviours, including object (toy) choices, in part by changing processes involved in the self-socialization of gendered behaviour, rather than only by inducing permanent changes in the brain during early development. In addition, the findings suggest that some of the behavioural effects of prenatal androgen exposure might be subject to alteration by postnatal socialization processes. The findings also suggest a previously unknown influence of early androgen exposure on later processes involved in self-socialization of gender-related behaviour, and thus expand understanding of the developmental systems regulating human gender development. © 2016 The Author(s).

  5. Adaptation in Caco-2 Human Intestinal Cell Differentiation and Phenolic Transport with Chronic Exposure to Blackberry (Rubus sp.) Extract.

    Science.gov (United States)

    Redan, Benjamin W; Albaugh, George P; Charron, Craig S; Novotny, Janet A; Ferruzzi, Mario G

    2017-04-05

    As evidence mounts for a health-protective role of dietary phenolics, the importance of understanding factors influencing bioavailability increases. Recent evidence has suggested chronic exposure to phenolics may impact their absorption and metabolism. To explore alterations occurring from chronic dietary exposure to phenolics, Caco-2 cell monolayers were differentiated on Transwell inserts with 0-10 μM blackberry (Rubus sp.) total phenolics extracts rich in anthocyanins, flavonols, and phenolic acids. Following differentiation, apical to basolateral transport of phenolics was assessed from an acute treatment of 100 μM blackberry phenolics from 0 to 4 h. Additionally, differences in gene expression of transport and phase II metabolizing systems including ABC transporters, organic anion transporters (OATs), and uridine 5'-diphospho (UDP) glucuronosyltransferases (UGTs) were probed. After 4 h, 1 μM pretreated monolayers showed a significant (P transport including less epicatechin (42.1 ± 0.53), kaempferol glucoside (23.5 ± 0.29), and dicaffeoylquinic acid (31.9 ± 0.20) compared to control. Finally, significant (P transport proteins were observed with treatment. Therefore, adaptation to blackberry extract exposure may impact intestinal transport and metabolism of phenolics.

  6. Altered vascular smooth muscle cell differentiation in the endometrial vasculature in menorrhagia.

    Science.gov (United States)

    Biswas Shivhare, Sourima; Bulmer, Judith N; Innes, Barbara A; Hapangama, Dharani K; Lash, Gendie E

    2014-09-01

    How does the smooth muscle content and differentiation stage of vascular smooth muscle cells (VSMCs) in endometrial blood vessels change according to the different phases of the menstrual cycle and is this altered in women with menorrhagia? The smooth muscle content (as a proportion of the vascular cross-sectional area) of endometrial blood vessels remained unchanged during the normal menstrual cycle and in menorrhagia; however, expression of the VSMC differentiation markers, smoothelin and calponin, was dysregulated in endometrial blood vessels in samples from women with menorrhagia compared with controls. Menorrhagia affects 30% of women of reproductive age and is the leading indication for hysterectomy. Previous studies have suggested important structural and functional roles for endometrial blood vessels, including impaired vascular contractility. Differentiation of VSMC from a synthetic to contractile state is associated with altered cellular phenotype that contributes to normal blood flow and pressure. This vascular maturation process has been little studied in endometrium both across the normal menstrual cycle and in menorrhagia. Endometrial biopsies were taken from hysterectomy specimens or by pipelle biopsy prior to hysterectomy in controls without endometrial pathology and in women with menorrhagia (n = 7 for each of proliferative, early-secretory, mid-secretory and late-secretory phases for both groups). Biopsies were formalin fixed and embedded in paraffin wax. Paraffin-embedded sections were immunostained for α smooth muscle actin (αSMA), myosin heavy chain (MyHC), H-caldesmon, desmin, smoothelin and calponin (h1 or basic). VSMC content was measured in 25 αSMA(+) vascular cross sections per sample and expressed as a ratio of the muscular area:gross vascular cross-sectional area. VSMC differentiation was analysed by the presence/absence of differentiation markers compared with αSMA expression. Smoothelin and calponin expression was also analysed in

  7. Does exposure to testosterone significantly alter endogenous metabolism in the marine mussel Mytilus galloprovincialis?

    Science.gov (United States)

    Fernandes, Denise; Navarro, Juan Carlos; Riva, Consuelo; Bordonali, Silvia; Porte, Cinta

    2010-11-15

    Mussels (Mytilus galloprovincialis) were exposed to different concentrations of testosterone (T: 20, 200 and 2000ng/L) in a semi-static water regime (1-day dosing intervals) for up to 5 days in an attempt to see whether endogenous steroid levels and steroid metabolism were altered by exogenous exposure to testosterone. Whole tissue levels of total testosterone (free+esterified) sharply increased in a concentration-dependent manner, from 2ng/g in controls to 290ng/g in organisms exposed to the highest concentration. In contrast, levels of free testosterone were only significantly elevated at the high-exposure group (5-fold increase with respect to controls). Increased activity of palmitoyl-CoA:testosterone acyltransferase (ATAT) was detected in organisms exposed to the highest concentration of testosterone, while those exposed to low and medium concentrations showed significant alterations in their polyunsaturated fatty acid profiles. The obtained results suggest that esterification of the excess of T with fatty acids might act as a homeostatic mechanism to maintain endogenous levels of free T stable. Interestingly, a decrease in CYP3A-like activity was detected in T-exposed mussels together with a significant decrease in the metabolism of the androgen precursor androstenedione to dihydrotestosterone (5α-DHT). Overall, the work contributes to the better knowledge of androgen metabolism in mussels. Copyright © 2010 Elsevier B.V. All rights reserved.

  8. Alteration to Dopaminergic Synapses Following Exposure to Perfluorooctane Sulfonate (PFOS, in Vitro and in Vivo

    Directory of Open Access Journals (Sweden)

    Rahul Patel

    2016-08-01

    Full Text Available Our understanding of the contribution exposure to environmental toxicants has on neurological disease continues to evolve. Of these, Parkinson’s disease (PD has been shown to have a strong environmental component to its etiopathogenesis. However, work is still needed to identify and characterize environmental chemicals that could alter the expression and function of the nigrostriatal dopamine system. Of particular interest is the neurotoxicological effect of perfluorinated compounds, such as perfluorooctane sulfonate (PFOS, which has been demonstrated to alter aspects of dopamine signaling. Using in vitro approaches, we have elaborated these initial findings to demonstrate the neurotoxicity of PFOS to the SH-SY5Y neuroblastoma cell line and dopaminergic primary cultured neurons. Using an in vivo model, we did not observe a deficit to dopaminergic terminals in the striatum of mice exposed to 10 mg/kg PFOS for 14 days. However, subsequent exposure to the selective dopaminergic neurotoxin, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP significantly reduced the expression of dopamine transporter (DAT and tyrosine hydroxylase (TH, and resulted in an even greater reduction in DAT expression in animals previously exposed to PFOS. These findings suggest that PFOS is neurotoxic to the nigrostriatal dopamine circuit and this neurotoxicity could prime the dopamine terminal to more extensive damage following additional toxicological insults.

  9. Histopathological findings on Carassius auratus hepatopancreas upon exposure to acrylamide: correlation with genotoxicity and metabolic alterations.

    Science.gov (United States)

    Larguinho, Miguel; Costa, Pedro M; Sousa, Gonçalo; Costa, Maria H; Diniz, Mário S; Baptista, Pedro V

    2014-12-01

    Acrylamide is an amide used in several industrial applications making it easily discharged to aquatic ecosystems. The toxicity of acrylamide to aquatic organisms is scarcely known, although previous studies with murine models provided evidence for deleterious effects. To assess the effects of acrylamide to freshwater fish, goldfish (Carassius auratus L.) were exposed to several concentrations of waterborne acrylamide and analysed for genotoxic damage, alterations to detoxifying enzymes and histopathology. Results revealed a dose-dependent increase in total DNA strand breakage, the formation of erythrocytic nuclear abnormalities and in the levels of hepatic cytochrome P4501A (CYP1A) and glutathione S-transferase (GST) activity. In addition, acrylamide induced more histopathological changes to pancreatic acini than to the hepatic parenchyma, regardless of exposure concentration, whereas hepatic tissue only endured significant alterations at higher concentrations of exposure. Thus, results confirm the genotoxic potential of acrylamide to fish and its ability to induce CYP1A, probably as a direct primary defence mechanism. This strongly suggests the substance's pro-mutagenic potential in fish, similarly to what is known for rodents. However, the deleterious effects observed in the pancreatic acini, more severe than in the liver, could indicate a specific, albeit unknown toxic mechanism of acrylamide to fish that overran the organism's metabolic defences against a chemical agent rather than causing a general systemic failure. Copyright © 2013 John Wiley & Sons, Ltd.

  10. Evaluation of biochemical alterations produced by combined exposure of fenvalerate and nitrate in Bubalus bubalis

    Directory of Open Access Journals (Sweden)

    Kamalpreet Kaur Gill

    2014-03-01

    Full Text Available Aim: Evaluation of combined effect of fenvalerate and nitrate on biochemical parameters in buffalo calves. Materials and Methods: Sixteen male buffalo calves were divided into four groups of four calves each. Group I receiving no treatment served as the control. Group II and III animals were orally administered with fenvalerate (1.0 mg/kg/day and sodium nitrate (20 mg/kg/day, respectively, for 21 consecutive days and were kept as positive control. Group IV animals were co-administered with fenvalerate and sodium nitrate at the above dose rates for 21 consecutive days. Biochemical parameters including Aspartate aminotransferase (AST, Alkaline phosphatase (ALP, Gamma-glutamyl transpeptidase (GGT, Lactate dehydrogenase (LDH, Glucose, Total protein, Albumin, Cholesterol, Blood urea nitrogen (BUN and Creatinine were determined on 0, 3, 7, 10, 14, 17 and 21 day of treatment. Estimation of these parameters was also done on 7th day of post-treatment period. Results: Co-administration of fenvalerate and sodium nitrate produced significant increase in the plasma levels of AST, ALP, GGT, LDH, glucose, BUN, cholesterol and creatinine while significant decrease in the plasma levels of total proteins was observed. No significant alteration was observed in albumin levels. Extent of organ damage as evidenced by biochemical alterations was more pronounced in calves exposed to combination of fenvalerate and sodium nitrate as compared to their individual exposures. Conclusion: Fenvalerate and sodium nitrate co-administration potentiates the toxicological injury produced, in comparison to their individual exposure.

  11. Chronic exposure to insufficient sleep alters processes of pain habituation and sensitization.

    Science.gov (United States)

    Simpson, Norah S; Scott-Sutherland, Jennifer; Gautam, Shiva; Sethna, Navil; Haack, Monika

    2017-09-01

    Chronic pain conditions are highly co-morbid with insufficient sleep. While the mechanistic relationships between the two are not understood, chronic insufficient sleep may be one pathway through which central pain-modulatory circuits deteriorate, thereby contributing to chronic pain vulnerability over time. To test this hypothesis, an in-laboratory model of three weeks of restricted sleep with limited recovery (five nights of 4-hour sleep/night followed by two nights of 8-hour sleep/night) was compared to three weeks of 8-hour sleep/night (control protocol). Seventeen healthy adults participated, with fourteen completing both three-week protocols. Measures of spontaneous pain, heat-pain thresholds, cold-pain tolerance (measuring habituation to cold over several weeks), and temporal summation of pain (examining the slope of pain ratings during cold water immersion) were assessed at multiple points during each protocol. Compared to the control protocol, participants in the sleep-restriction/recovery protocol experienced mild increases in spontaneous pain (ppain thresholds decreased following the first week of sleep restriction (pchronic exposure to restricted sleep was associated with decreased habituation to, and increased temporal summation in response to cold pain (both ppain-modulatory processes. Limited recovery sleep did not completely resolve these alterations in pain-modulatory processes, indicating that more extensive recovery sleep is required. Results suggest that exposure to chronic insufficient sleep may increase vulnerability to chronic pain by altering processes of pain habituation and sensitization.

  12. Alcohol Exposure Alters Mouse Lung Inflammation in Response to Inhaled Dust

    Directory of Open Access Journals (Sweden)

    Jill A. Poole

    2012-07-01

    Full Text Available Alcohol exposure is associated with increased lung infections and decreased mucociliary clearance. Occupational workers exposed to dusts from concentrated animal feeding operations (CAFOs are at risk for developing chronic inflammatory lung diseases. Agricultural worker co-exposure to alcohol and organic dust has been established, although little research has been conducted on the combination effects of alcohol and organic dusts on the lung. Previously, we have shown in a mouse model that exposure to hog dust extract (HDE collected from a CAFO results in the activation of protein kinase C (PKC, elevated lavage fluid cytokines/chemokines including interleukin-6 (IL-6, and the development of significant lung pathology. Because alcohol blocks airway epithelial cell release of IL-6 in vitro, we hypothesized that alcohol exposure would alter mouse lung inflammatory responses to HDE. To test this hypothesis, C57BL/6 mice were fed 20% alcohol or water ad libitum for 6 weeks and treated with 12.5% HDE by intranasal inhalation method daily during the final three weeks. Bronchoalveolar lavage fluid (BALF, tracheas and lungs were collected. HDE stimulated a 2–4 fold increase in lung and tracheal PKCε (epsilon activity in mice, but no such increase in PKCε activity was observed in dust-exposed mice fed alcohol. Similarly, alcohol-fed mice demonstrated significantly less IL-6 in lung lavage in response to dust than that observed in control mice instilled with HDE. TNFα levels were also inhibited in the alcohol and HDE-exposed mouse lung tissue as compared to the HDE only exposed group. HDE-induced lung inflammatory aggregates clearly present in the tissue from HDE only exposed animals were not visually detectable in the HDE/alcohol co-exposure group. Statistically significant weight reductions and 20% mortality were also observed in the mice co-exposed to HDE and alcohol. These data suggest that alcohol exposure depresses the ability

  13. Untargeted Metabolomics Reveals Predominant Alterations in Lipid Metabolism Following Light Exposure in Broccoli Sprouts

    Directory of Open Access Journals (Sweden)

    Mariateresa Maldini

    2015-06-01

    Full Text Available The consumption of vegetables belonging to the family Brassicaceae (e.g., broccoli and cauliflower is linked to a reduced incidence of cancer and cardiovascular diseases. The molecular composition of such plants is strongly affected by growing conditions. Here we developed an unbiased metabolomics approach to investigate the effect of light and dark exposure on the metabolome of broccoli sprouts and we applied such an approach to provide a bird’s-eye view of the overall metabolic response after light exposure. Broccoli seeds were germinated and grown hydroponically for five days in total darkness or with a light/dark photoperiod (16 h light/8 h dark cycle. We used an ultra-performance liquid-chromatography system coupled to an ion-mobility, time-of-flight mass spectrometer to profile the large array of metabolites present in the sprouts. Differences at the metabolite level between groups were analyzed using multivariate statistical analyses, including principal component analysis and correlation analysis. Altered metabolites were identified by searching publicly available and in-house databases. Metabolite pathway analyses were used to support the identification of subtle but significant changes among groups of related metabolites that may have gone unnoticed with conventional approaches. Besides the chlorophyll pathway, light exposure activated the biosynthesis and metabolism of sterol lipids, prenol lipids, and polyunsaturated lipids, which are essential for the photosynthetic machinery. Our results also revealed that light exposure increased the levels of polyketides, including flavonoids, and oxylipins, which play essential roles in the plant’s developmental processes and defense mechanism against herbivores. This study highlights the significant contribution of light exposure to the ultimate metabolic phenotype, which might affect the cellular physiology and nutritional value of broccoli sprouts. Furthermore, this study highlights the

  14. Exposure to low-dose rotenone precipitates synaptic plasticity alterations in PINK1 heterozygous knockout mice.

    Science.gov (United States)

    Martella, G; Madeo, G; Maltese, M; Vanni, V; Puglisi, F; Ferraro, E; Schirinzi, T; Valente, E M; Bonanni, L; Shen, J; Mandolesi, G; Mercuri, N B; Bonsi, P; Pisani, A

    2016-07-01

    Heterozygous mutations in the PINK1 gene are considered a susceptibility factor to develop early-onset Parkinson's disease (PD), as supported by dopamine hypometabolism in asymptomatic mutation carriers and subtle alterations of dopamine-dependent striatal synaptic plasticity in heterozygous PINK1 knockout (PINK1(+/-)) mice. The aim of the present study was to investigate whether exposure to low-dose rotenone of heterozygous PINK1(+/-) mice, compared to their wild-type PINK1(+/+) littermates, could impact on dopamine-dependent striatal synaptic plasticity, in the absence of apparent structural alterations. Mice were exposed to a range of concentrations of rotenone (0.01-1mg/kg). Chronic treatment with concentrations of rotenone up to 0.8mg/kg did not cause manifest neuronal loss or changes in ATP levels both in the striatum or substantia nigra of PINK1(+/-) and PINK1(+/+) mice. Moreover, rotenone (up to 0.8mg/kg) treatment did not induce mislocalization of the mitochondrial membrane protein Tom20 and release of cytochrome c in PINK1(+/-) striata. Accordingly, basic electrophysiological properties of nigral dopaminergic and striatal medium spiny neurons (MSNs) were normal. Despite the lack of gross alterations in neuronal viability in chronically-treated PINK1(+/-), a complete loss of both long-term depression (LTD) and long-term potentiation (LTP) was recorded in MSNs from PINK1(+/-) mice treated with a low rotenone (0.1mg/kg) concentration. Even lower concentrations (0.01mg/kg) blocked LTP induction in heterozygous PINK1(+/-) MSNs compared to PINK1(+/+) mice. Of interest, chronic pretreatment with the antioxidants alpha-tocopherol and Trolox, a water-soluble analog of vitamin E and powerful antioxidant, rescued synaptic plasticity impairment, confirming that, at the doses we utilized, rotenone did not induce irreversible alterations. In this model, chronic exposure to low-doses of rotenone was not sufficient to alter mitochondrial integrity and ATP production, but

  15. Opt2 mediates the exposure of phospholipids during cellular adaptation to altered lipid asymmetry.

    Science.gov (United States)

    Yamauchi, Saori; Obara, Keisuke; Uchibori, Kenya; Kamimura, Akiko; Azumi, Kaoru; Kihara, Akio

    2015-01-01

    Plasma membrane lipid asymmetry is important for various membrane-associated functions and is regulated by membrane proteins termed flippases and floppases. The Rim101 pathway senses altered lipid asymmetry in the yeast plasma membrane. The mutant lem3Δ cells, in which lipid asymmetry is disturbed owing to the inactivation of the plasma membrane flippases, showed a severe growth defect when the Rim101 pathway was impaired. To identify factors involved in the Rim101-pathway-dependent adaptation to altered lipid asymmetry, we performed DNA microarray analysis and found that Opt2 induced by the Rim101 pathway plays an important role in the adaptation to altered lipid asymmetry. Biochemical investigation of Opt2 revealed its localization to the plasma membrane and the Golgi, and provided several lines of evidence for the Opt2-mediated exposure of phospholipids. In addition, Opt2 was found to be required for the maintenance of vacuolar morphology and polarized cell growth. These results suggest that Opt2 is a novel factor involved in cell homeostasis by regulating lipid asymmetry. © 2015. Published by The Company of Biologists Ltd.

  16. Differential Functional Connectivity Alterations of Two Subdivisions within the Right dlPFC in Parkinson's Disease

    Science.gov (United States)

    Caspers, Julian; Mathys, Christian; Hoffstaedter, Felix; Südmeyer, Martin; Cieslik, Edna C.; Rubbert, Christian; Hartmann, Christian J.; Eickhoff, Claudia R.; Reetz, Kathrin; Grefkes, Christian; Michely, Jochen; Turowski, Bernd; Schnitzler, Alfons; Eickhoff, Simon B.

    2017-01-01

    Patients suffering from Parkinson's disease (PD) often show impairments in executive function (EF) like decision-making and action control. The right dorsolateral prefrontal cortex (dlPFC) has been strongly implicated in EF in healthy subjects and has repeatedly been reported to show alterations related to EF impairment in PD. Recently, two key regions for cognitive action control have been identified within the right dlPFC by co-activation based parcellation. While the posterior region is engaged in rather basal EF like stimulus integration and working memory, the anterior region has a more abstract, supervisory function. To investigate whether these functionally distinct subdivisions of right dlPFC are differentially affected in PD, we analyzed resting-state functional connectivity (FC) in 39 PD patients and 44 age- and gender-matched healthy controls. Patients were examined both after at least 12 h withdrawal of dopaminergic drugs (OFF) and under their regular dopaminergic medication (ON). We found that only the posterior right dlPFC subdivision shows FC alterations in PD, while the anterior part remains unaffected. PD-related decreased FC with posterior right dlPFC was found in the bilateral medial posterior parietal cortex (mPPC) and left dorsal premotor region (PMd) in the OFF state. In the medical ON, FC with left PMd normalized, while decoupling with bilateral mPPC remained. Furthermore, we observed increased FC between posterior right dlPFC and the bilateral dorsomedial prefrontal cortex (dmPFC) in PD in the ON state. Our findings point to differential disturbances of right dlPFC connectivity in PD, which relate to its hierarchical organization of EF processing by stronger affecting the functionally basal posterior aspect than the hierarchically higher anterior part. PMID:28611616

  17. Differential Functional Connectivity Alterations of Two Subdivisions within the Right dlPFC in Parkinson's Disease

    Directory of Open Access Journals (Sweden)

    Julian Caspers

    2017-05-01

    Full Text Available Patients suffering from Parkinson's disease (PD often show impairments in executive function (EF like decision-making and action control. The right dorsolateral prefrontal cortex (dlPFC has been strongly implicated in EF in healthy subjects and has repeatedly been reported to show alterations related to EF impairment in PD. Recently, two key regions for cognitive action control have been identified within the right dlPFC by co-activation based parcellation. While the posterior region is engaged in rather basal EF like stimulus integration and working memory, the anterior region has a more abstract, supervisory function. To investigate whether these functionally distinct subdivisions of right dlPFC are differentially affected in PD, we analyzed resting-state functional connectivity (FC in 39 PD patients and 44 age- and gender-matched healthy controls. Patients were examined both after at least 12 h withdrawal of dopaminergic drugs (OFF and under their regular dopaminergic medication (ON. We found that only the posterior right dlPFC subdivision shows FC alterations in PD, while the anterior part remains unaffected. PD-related decreased FC with posterior right dlPFC was found in the bilateral medial posterior parietal cortex (mPPC and left dorsal premotor region (PMd in the OFF state. In the medical ON, FC with left PMd normalized, while decoupling with bilateral mPPC remained. Furthermore, we observed increased FC between posterior right dlPFC and the bilateral dorsomedial prefrontal cortex (dmPFC in PD in the ON state. Our findings point to differential disturbances of right dlPFC connectivity in PD, which relate to its hierarchical organization of EF processing by stronger affecting the functionally basal posterior aspect than the hierarchically higher anterior part.

  18. Developmental Lead Exposure Alters Synaptogenesis through Inhibiting Canonical Wnt Pathway In Vivo and In Vitro

    Science.gov (United States)

    Hu, Fan; Xu, Li; Liu, Zhi-Hua; Ge, Meng-Meng; Ruan, Di-Yun; Wang, Hui-Li

    2014-01-01

    Lead (Pb) exposure has been implicated in the impairment of synaptic plasticity in the developing hippocampus, but the mechanism remains unclear. Here, we investigated whether developmental lead exposure affects the dendritic spine formation through Wnt signaling pathway in vivo and in vitro. Sprague–Dawley rats were exposed to lead throughout the lactation period and Golgi-Cox staining method was used to examine the spine density of pyramidal neurons in the hippocampal CA1 area of rats. We found that lead exposure significantly decreased the spine density in both 14 and 21 days-old pups, accompanied by a significant age-dependent decline of the Wnt7a expression and stability of its downstream protein (β-catenin). Furthermore, in cultured hippocampal neurons, lead (0.1 and 1 µM lead acetate) significantly decreased the spine density in a dose-dependent manner. Exogenous Wnt7a application attenuated the decrease of spine density and increased the stability of the downstream molecules in Wnt signaling pathway. Together, our results suggest that lead has a negative impact on spine outgrowth in the developing hippocampus through altering the canonical Wnt pathway. PMID:24999626

  19. Prenatal ethanol exposure does not cause neurological alterations in adult CD1 mice.

    Science.gov (United States)

    Wei, Suli; Xu, Zhiqiang; Gao, Junying; Ding, Jiong; Xiao, Ming

    2013-03-06

    Genetic factors are involved in variation in fetal alcohol spectrum disorders (FASD), which is also observed among various inbred mouse strains. The CD1 mouse strain is often used in toxicological and genetic experiments. However, there is little literature using this strain to study long-term neurologic abnormalities of FASD. In the present study, we addressed the effect of prenatal ethanol exposure on neurological alterations in adult CD1 mice. The female CD1 mice received exposure to ethanol solution (10 vol%) starting from 2 weeks before mating up to pups born (postnatal day 1). At 24 weeks after the birth, the prenatal ethanol-exposed mice and control mice showed no difference in spatial learning and memory performance in a Morris water maze. Consistently, pathological changes, such as increased neuronal apoptosis, decreased synaptic protein synaptophysin expression, synaptic loss and reactive astrogliosis, were not observed in the hippocampus of mice prenatally exposed to ethanol. These results suggest that CD1 mice are highly resistant to prenatal alcohol exposure and may serve as genetic modification models of FASD.

  20. Alteration of the behavioral effects of nicotine by chronic caffeine exposure.

    Science.gov (United States)

    Tanda, G; Goldberg, S R

    2000-05-01

    The prevalence of tobacco smoking and coffee drinking place nicotine and caffeine among the most used licit drugs in many societies and their consumption is often characterised by concurrent use. The pharmacological basis for any putative interaction between these drugs remains unclear. Some epidemiological reports support anecdotal evidence, which suggests that smokers consume caffeine to enhance the effects of nicotine. This paper reviews various aspects of the pharmacology of caffeine and nicotine, in humans and experimental animals, important for the understanding of the interactions between these drugs. In particular, recent experiments are reviewed in which chronic exposure to caffeine in the drinking water of rats facilitated acquisition of self-adminstration behavior, enhanced nicotine-induced increases in dopamine levels in the shell of the nucleus accumbens and altered the dopaminergic component of a nicotine discrimination. These studies provide evidence that the rewarding and subjective properties of nicotine can be changed by chronic caffeine exposure and indicate that caffeine exposure may be an important environmental factor in shaping and maintaining tobacco smoking.

  1. Prenatal Exposure to Paint Thinner Alters Postnatal Development and Behavior in Mice.

    Science.gov (United States)

    Malloul, Hanaa; Mahdani, Ferdaousse M; Bennis, Mohammed; Ba-M'hamed, Saadia

    2017-01-01

    prenatally treated offspring by 600 ppm of thinner. Based on these results, we can conclude that prenatally exposure to paint thinner causes a long-lasting developmental neurotoxicity and alters a wide range of behavioral functions in mice. This shows the risk that mothers who abuse thinner paint expose their offspring.

  2. Prenatal Exposure to Paint Thinner Alters Postnatal Development and Behavior in Mice

    Directory of Open Access Journals (Sweden)

    Hanaa Malloul

    2017-09-01

    revealed only in the prenatally treated offspring by 600 ppm of thinner. Based on these results, we can conclude that prenatally exposure to paint thinner causes a long-lasting developmental neurotoxicity and alters a wide range of behavioral functions in mice. This shows the risk that mothers who abuse thinner paint expose their offspring.

  3. Prenatal Exposure to Paint Thinner Alters Postnatal Development and Behavior in Mice

    Science.gov (United States)

    Malloul, Hanaa; Mahdani, Ferdaousse M.; Bennis, Mohammed; Ba-M’hamed, Saadia

    2017-01-01

    prenatally treated offspring by 600 ppm of thinner. Based on these results, we can conclude that prenatally exposure to paint thinner causes a long-lasting developmental neurotoxicity and alters a wide range of behavioral functions in mice. This shows the risk that mothers who abuse thinner paint expose their offspring. PMID:28959195

  4. Spatially differentiated and source-specific population exposure to ambient urban air pollution

    Science.gov (United States)

    Zou, Bin; Wilson, J. Gaines; Zhan, F. Benjamin; Zeng, Yongnian

    Models assessing exposure to air pollution often focus on macro-scale estimates of exposure to all types of sources for a particular pollutant across an urban study area. While results based on these models may aid policy makers in identifying larger areas of elevated exposure risk, they often do not differentiate the proportion of population exposure attributable to different polluting sources (e.g. traffic or industrial). In this paper, we introduce a population exposure modeling system that integrates air dispersion modeling, Geographic Information Systems (GIS), and population exposure techniques to spatially characterize a source-specific exposure to ambient air pollution for an entire urban population at a fine geographical scale. By area, total population exposure in Dallas County in 2000 was more attributable to vehicle polluting sources than industrial polluting sources at all levels of exposure. Population exposure was moderately correlated with vehicle sources ( r = 0.440, p modeling system proposed in this study shows promise for use by municipal authorities, policy makers, and epidemiologists in evaluating and controlling the quality of the air in the process of urban planning and mitigation measures.

  5. Neonatal diethylstilbestrol exposure alters the metabolic profile of uterine epithelial cells

    Directory of Open Access Journals (Sweden)

    Yan Yin

    2012-11-01

    Developmental exposure to diethylstilbestrol (DES causes reproductive tract malformations, affects fertility and increases the risk of clear cell carcinoma of the vagina and cervix in humans. Previous studies on a well-established mouse DES model demonstrated that it recapitulates many features of the human syndrome, yet the underlying molecular mechanism is far from clear. Using the neonatal DES mouse model, the present study uses global transcript profiling to systematically explore early gene expression changes in individual epithelial and mesenchymal compartments of the neonatal uterus. Over 900 genes show differential expression upon DES treatment in either one or both tissue layers. Interestingly, multiple components of peroxisome proliferator-activated receptor-γ (PPARγ-mediated adipogenesis and lipid metabolism, including PPARγ itself, are targets of DES in the neonatal uterus. Transmission electron microscopy and Oil-Red O staining further demonstrate a dramatic increase in lipid deposition in uterine epithelial cells upon DES exposure. Neonatal DES exposure also perturbs glucose homeostasis in the uterine epithelium. Some of these neonatal DES-induced metabolic changes appear to last into adulthood, suggesting a permanent effect of DES on energy metabolism in uterine epithelial cells. This study extends the list of biological processes that can be regulated by estrogen or DES, and provides a novel perspective for endocrine disruptor-induced reproductive abnormalities.

  6. Exposure to the Abused Inhalant Toluene Alters Medial Prefrontal Cortex Physiology.

    Science.gov (United States)

    Wayman, Wesley N; Woodward, John J

    2018-03-01

    Inhalants, including toluene, target the addiction neurocircuitry and are often one of the first drugs of abuse tried by adolescents. The medial prefrontal cortex (mPFC) is involved in regulating goal-directed/reward-motivated behaviors and different mPFC sub-regions have been proposed to promote (prelimbic, PRL) or inhibit (infralimbic, IL) these behaviors. While this dichotomy has been studied in the context of other drugs of abuse, it is not known whether toluene exposure differentially affects neurons within PRL and IL regions. To address this question, we used whole-cell electrophysiology and determined the intrinsic excitability of PRL and IL pyramidal neurons in adolescent rats 24 h following a brief exposure to air or toluene vapor (10 500 p.p.m.). Prior to exposure, fluorescent retrobeads were injected into the NAc core (NAcc) or shell (NAcs) sub-regions to identify projection-specific mPFC neurons. In toluene treated adolescent rats, layer 5/6 NAcc projecting PRL (PRL5/6) neurons fired fewer action potentials and this was associated with increased rheobase, increased spike duration, and reductions in membrane resistance and amplitude of the I h current. No changes in excitability were observed in layer 2/3 NAcc projecting PRL (PRL2/3) neurons. In contrast to PRL neurons, layer 5 IL (IL5) and layer 2/3 (IL2/3) NAcc projecting neurons showed enhanced firing in toluene-exposed animals and in IL5 neurons, this was associated with a reduction in rheobase and AHP. For NAcs projecting neurons, toluene exposure significantly decreased firing of IL5 neurons and this was accompanied by an increased rheobase, increased spike duration, and reduced I h amplitude. The intrinsic excitability of PRL5, PRL2/3, and IL2/3 neurons projecting to the NAcs was not affected by exposure to toluene. The changes in excitability observed 24 h after toluene exposure were not observed when recordings were performed 7 days after the exposure. Finally, there were no changes in

  7. Asthmatics exhibit altered oxylipin profiles compared to healthy individuals after subway air exposure.

    Directory of Open Access Journals (Sweden)

    Susanna L Lundström

    Full Text Available Asthma is a chronic inflammatory lung disease that causes significant morbidity and mortality worldwide. Air pollutants such as particulate matter (PM and oxidants are important factors in causing exacerbations in asthmatics, and the source and composition of pollutants greatly affects pathological implications.This randomized crossover study investigated responses of the respiratory system to Stockholm subway air in asthmatics and healthy individuals. Eicosanoids and other oxylipins were quantified in the distal lung to provide a measure of shifts in lipid mediators in association with exposure to subway air relative to ambient air.Sixty-four oxylipins representing the cyclooxygenase (COX, lipoxygenase (LOX and cytochrome P450 (CYP metabolic pathways were screened using liquid chromatography-tandem mass spectrometry (LC-MS/MS of bronchoalveolar lavage (BAL-fluid. Validations through immunocytochemistry staining of BAL-cells were performed for 15-LOX-1, COX-1, COX-2 and peroxisome proliferator-activated receptor gamma (PPARγ. Multivariate statistics were employed to interrogate acquired oxylipin and immunocytochemistry data in combination with patient clinical information.Asthmatics and healthy individuals exhibited divergent oxylipin profiles following exposure to ambient and subway air. Significant changes were observed in 8 metabolites of linoleic- and α-linolenic acid synthesized via the 15-LOX pathway, and of the COX product prostaglandin E(2 (PGE(2. Oxylipin levels were increased in healthy individuals following exposure to subway air, whereas asthmatics evidenced decreases or no change.Several of the altered oxylipins have known or suspected bronchoprotective or anti-inflammatory effects, suggesting a possible reduced anti-inflammatory response in asthmatics following exposure to subway air. These observations may have ramifications for sensitive subpopulations in urban areas.

  8. Altered Parietal Activation during Non-symbolic Number Comparison in Children with Prenatal Alcohol Exposure

    Directory of Open Access Journals (Sweden)

    Keri J. Woods

    2018-01-01

    Full Text Available Number processing is a cognitive domain particularly sensitive to prenatal alcohol exposure, which relies on intact parietal functioning. Alcohol-related alterations in brain activation have been found in the parietal lobe during symbolic number processing. However, the effects of prenatal alcohol exposure on the neural correlates of non-symbolic number comparison and the numerical distance effect have not been investigated. Using functional magnetic resonance imaging (fMRI, we examined differences in brain activation associated with prenatal alcohol exposure in five parietal regions involved in number processing during a non-symbolic number comparison task with varying degrees of difficulty. fMRI results are presented for 27 Cape Colored children (6 fetal alcohol syndome (FAS/partial FAS, 5 heavily exposed (HE non-sydromal, 16 controls; mean age ± SD = 11.7 ± 1.1 years. Fetal alcohol exposure was assessed by interviewing mothers using a timeline follow-back approach. Separate subject analyses were performed in each of five regions of interest, bilateral horizontal intraparietal sulci (IPS, bilateral posterior superior parietal lobules (PSPL, and left angular gyrus (left AG, using the general linear model with predictors for number comparison and difficulty level. Mean percent signal change for each predictor was extracted for each subject for each region to examine group differences and associations with continuous measures of alcohol exposure. Although groups did not differ in performance, controls activated the right PSPL more during non-symbolic number comparison than exposed children, but this was not significant after controlling for maternal smoking, and the right IPS more than children with fetal alcohol syndrome (FAS or partial FAS. More heavily exposed children recruited the left AG to a greater extent as task difficulty increased, possibly to compensate, in part, for impairments in function in the PSPL and IPS. Notably, in non

  9. Differential proteomic expression of human placenta and fetal development following e-waste lead and cadmium exposure in utero

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Long; Ge, Jingjing; Huo, Xia; Zhang, Yuling [Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041 (China); Lau, Andy T.Y. [Laboratory of Cancer Biology and Epigenetics, Shantou University Medical College, Shantou 515041 (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041 (China); Xu, Xijin, E-mail: xuxj@stu.edu.cn [Laboratory of Environmental Medicine and Developmental Toxicology, Shantou University Medical College, Shantou 515041 (China); Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041 (China)

    2016-04-15

    ABSTRACT: Prenatal exposure to lead (Pb) and cadmium (Cd) has been associated with a series of physiological problems resulting in fetal growth restriction. We aimed to investigate the effects of Pb and Cd exposure on placental function and the potential mechanisms involved in fetal development. Placental specimens and questionnaires were collected from an e-waste area and a reference area in China. Two-dimensional electrophoresis combined with MALDI-TOF-MS/MS and molecular network relationship were performed to analyze differentially expressed proteins using a compositing sample pool. Compared with the reference group, the exposed group exhibited significantly higher levels of placental Pb and Cd (p < 0.01), shorter body length and higher gestational age (p < 0.01). After bivariate adjustment in a linear regression model, decreases of 205.05 g in weight and 0.44 cm in body length were associated with a 10 ng/g wt increase in placental Cd. Pb showed a negative trend but lacked statistical significance. Proteomic analysis showed 32 differentially-expressed proteins and were predominantly involved in protein translocation, cytoskeletal structure, and energy metabolism. Fumarate hydratase was down-regulated in the exposed placenta tissues and validated by ELISA. Alterations in placental proteome suggest that imbalances in placental mitochondria respiration might be a vital pathway targeting fetal growth restriction induced by exposure to Cd. - Highlights: • The placental Pb and Cd levels were higher in the e-waste polluted area. • Proteome in placenta tissues was performed by two-dimensional gel electrophoresis. • Cd exposure in the placenta was associated with the reduced fetal development. • 32 proteins covered in translocation, energy metabolism and cytoskeletal structure. • Dysregulated mitochondrial respiration may act in the Cd-reduced fetal development.

  10. Alterations in Factors Involved in Differentiation and Barrier Function in the Epithelium in Oral and Genital Lichen Planus.

    Science.gov (United States)

    Danielsson, Karin; Ebrahimi, Majid; Nylander, Elisabet; Wahlin, Ylva Britt; Nylander, Karin

    2017-02-08

    Lichen planus is a chronic recurrent inflammatory disease affecting both skin and mucosa, mainly in oral and/or genital regions. Keratinocytes go through a well-regulated process of proliferation and differentiation, alterations in which may result in defects in the protective epithelial barrier. Long-term barrier impairment might lead to chronic inflammation. In order to broaden our understanding of the differentiation process in mucosal lichen planus, we mapped the expression of 4 factors known to be involved in differentiation. Biopsies were collected from oral and genital lichen planus lesions and normal controls. Altered expression of all 4 factors in epithelium from lichen planus lesions was found, clearly indicating disturbed epithelial differentiation in lichen planus lesions.

  11. Intermittent, low dose carbon monoxide exposure enhances survival and dopaminergic differentiation of human neural stem cells

    DEFF Research Database (Denmark)

    Dreyer-Andersen, Nanna; Almeida, Ana Sofia; Jensen, Pia

    2018-01-01

    cells constitute an alternative source of cells for transplantation in Parkinson's disease, but efficient protocols for controlled dopaminergic differentiation need to be developed. Short-term, low-level carbon monoxide (CO) exposure has been shown to affect signaling in several tissues, resulting...

  12. Estimating group size: effects of category membership, differential construal and selective exposure

    NARCIS (Netherlands)

    Bosveld, W.; Koomen, W.; van der Pligt, J.

    1996-01-01

    Examined the role of category membership, differential construal, and selective exposure in consensus estimation concerning the social categorization of religion. 54 involved and less involved Christians and 40 non-believers were asked to estimate the percentage of Christians in the Netherlands

  13. Subchronic Arsenic Exposure Through Drinking Water Alters Lipid Profile and Electrolyte Status in Rats.

    Science.gov (United States)

    Waghe, Prashantkumar; Sarkar, Souvendra Nath; Sarath, Thengumpallil Sasindran; Kandasamy, Kannan; Choudhury, Soumen; Gupta, Priyanka; Harikumar, Sankarankutty; Mishra, Santosh Kumar

    2017-04-01

    Arsenic is a groundwater pollutant and can cause various cardiovascular disorders in the exposed population. The aim of the present study was to assess whether subchronic arsenic exposure through drinking water can induce vascular dysfunction associated with alteration in plasma electrolytes and lipid profile. Rats were exposed to arsenic as 25, 50, and 100 ppm of sodium arsenite through drinking water for 90 consecutive days. On the 91st day, rats were sacrificed and blood was collected. Lipid profile and the levels of electrolytes (sodium, potassium, and chloride) were assessed in plasma. Arsenic reduced high-density lipoprotein cholesterol (HDL-C) and HDL-C/LDL-C ratio, but increased the levels of triglycerides, total cholesterol, low-density lipoprotein cholesterol (LDL-C), and electrolytes. The results suggest that the arsenic-mediated dyslipidemia and electrolyte retention could be important mechanisms in the arsenic-induced vascular disorder.

  14. Does ozone exposure alter growth and carbon allocation of mycorrhizal plants

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, L.C.; Gamon, J.A. (California State Univ., Los Angeles, CA (United States)); Andersen, C.P. (Environmental Protection Agency, Corvallis, OR (United States))

    1994-06-01

    Ozone is known to adversely affect plant growth. However, it is less clear how ozone affects belowground processes. This study tests the hypothesis that ozone alters growth and carbon allocation of vesicular arbuscular mycorrhizal (VAM) plants. Two ecotypes of Elymus glaucus (blue wild rye) were exposed to mycorrhizal inoculation and episodic ozone exposures simulating atmospheric conditions in the Los Angeles Basin. Preliminary results show that effects of ozone on growth were subtle. In both ecotypes, growth of aboveground biomass was not affected by ozone while root growth was decreased. In most treatments, mycorrhizal inoculation decreased growth of leaves and stems, but had no significant effect on root growth. Three-way ANOVA tests indicated interactive effects between ecotype, mycorrhiza and ozone. Further experimental work is needed to reveal the biological processes governing these responses.

  15. Steroid levels in crinoid echinoderms are altered by exposure to model endocrine disruptors.

    Science.gov (United States)

    Lavado, Ramón; Barbaglio, Alice; Carnevali, M Daniela Candia; Porte, Cinta

    2006-06-01

    Sexual steroids (testosterone and estradiol) were measured in the whole body of wild specimens of the crinoid Antedon mediterranea collected from the Tyrrhenian Sea (Italy). Testosterone levels (274-1,488 pg/g wet weight (w.w.)) were higher than those of estradiol (60-442 pg/g w.w.) and no significant differences between males and females were observed. No clear seasonal trend was either detected - individuals from February, June and October 2004 analyzed - apart from a peak of estradiol in males in autumn. Nonetheless, dramatic changes on tissue steroid levels were observed when individuals were exposed to model androgenic and anti-androgenic compounds for 2 and 4 weeks. The selected compounds were 17 alpha-methyltestosterone (17 alpha-MT), triphenyltin (TPT), fenarimol (FEN), cyproterone acetate (CPA), and p,p'-DDE. Endogenous testosterone levels were significantly increased after exposure to 17 alpha-MT, TPT and FEN, while different responses were observed for estradiol; 17 alpha-MT and FEN increased endogenous estradiol (up to seven-fold), and TPT lead to a significant decrease. Concerning the anti-androgenic compounds, CPA significantly reduced testosterone in a dose-dependent manner without altering estradiol levels, whereas specimens exposed to p,p'-DDE at a low dose (24 ng/L) for 4 weeks showed a four-fold increase in T levels. Overall, the data show the ability of the selected compounds to alter endogenous steroid concentrations in A. mediterranea, and suggest the existence in this echinoderm species of vertebrate-like mechanisms that can be affected by exposure to androgenic and anti-androgenic chemicals.

  16. Triclosan exposure alters postembryonic development in a Pacific tree frog (Pseudacris regilla) Amphibian Metamorphosis Assay (TREEMA)

    Energy Technology Data Exchange (ETDEWEB)

    Marlatt, Vicki L. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Veldhoen, Nik [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada); Lo, Bonnie P. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Bakker, Dannika; Rehaume, Vicki; Vallee, Kurtis [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada); Haberl, Maxine; Shang, Dayue; Aggelen, Graham C. van; Skirrow, Rachel C. [Pacific and Yukon Laboratory for Environmental Testing, Emergencies Operational Analytical Laboratories and Research Support Division, Environment Canada, 2645 Dollarton Highway, North Vancouver, B.C. V7H 1B1 (Canada); Elphick, James R. [Nautilus Environmental, 8864 Commerce Court, Burnaby, B.C. V5A 4N7 (Canada); Helbing, Caren C., E-mail: chelbing@uvic.ca [Department of Biochemistry and Microbiology, University of Victoria, P.O. Box 3055 Stn CSC, Victoria, B.C. V8W 3P6 (Canada)

    2013-01-15

    The Amphibian Metamorphosis Assay (AMA), developed for Xenopus laevis, is designed to identify chemicals that disrupt thyroid hormone (TH)-mediated biological processes. We adapted the AMA for use on an ecologically-relevant North American species, the Pacific tree frog (Pseudacris regilla), and applied molecular endpoints to evaluate the effects of the antibacterial agent, triclosan (TCS). Premetamorphic (Gosner stage 26-28) tadpoles were immersed for 21 days in solvent control, 1.5 {mu}g/L thyroxine (T{sub 4}), 0.3, 3 and 30 {mu}g/L (nominal) TCS, or combined T{sub 4}/TCS treatments. Exposure effects were scored by morphometric (developmental stage, wet weight, and body, snout-vent and hindlimb lengths) and molecular (mRNA abundance using quantitative real time polymerase chain reaction) criteria. T{sub 4} treatment alone accelerated development concomitant with altered levels of TH receptors {alpha} and {beta}, proliferating cell nuclear antigen, and gelatinase B mRNAs in the brain and tail. We observed TCS-induced perturbations in all of the molecular and morphological endpoints indicating that TCS exposure disrupts coordination of postembryonic tadpole development. Clear alterations in molecular endpoints were evident at day 2 whereas the earliest morphological effects appeared at day 4 and were most evident at day 21. Although TCS alone (3 and 30 {mu}g/L) was protective against tadpole mortality, this protection was lost in the presence of T{sub 4}. The Pacific tree frog is the most sensitive species examined to date displaying disruption of TH-mediated development by a common antimicrobial agent.

  17. Triclosan exposure alters postembryonic development in a Pacific tree frog (Pseudacris regilla) Amphibian Metamorphosis Assay (TREEMA).

    Science.gov (United States)

    Marlatt, Vicki L; Veldhoen, Nik; Lo, Bonnie P; Bakker, Dannika; Rehaume, Vicki; Vallée, Kurtis; Haberl, Maxine; Shang, Dayue; van Aggelen, Graham C; Skirrow, Rachel C; Elphick, James R; Helbing, Caren C

    2013-01-15

    The Amphibian Metamorphosis Assay (AMA), developed for Xenopus laevis, is designed to identify chemicals that disrupt thyroid hormone (TH)-mediated biological processes. We adapted the AMA for use on an ecologically-relevant North American species, the Pacific tree frog (Pseudacris regilla), and applied molecular endpoints to evaluate the effects of the antibacterial agent, triclosan (TCS). Premetamorphic (Gosner stage 26-28) tadpoles were immersed for 21 days in solvent control, 1.5 μg/L thyroxine (T(4)), 0.3, 3 and 30 μg/L (nominal) TCS, or combined T(4)/TCS treatments. Exposure effects were scored by morphometric (developmental stage, wet weight, and body, snout-vent and hindlimb lengths) and molecular (mRNA abundance using quantitative real time polymerase chain reaction) criteria. T(4) treatment alone accelerated development concomitant with altered levels of TH receptors α and β, proliferating cell nuclear antigen, and gelatinase B mRNAs in the brain and tail. We observed TCS-induced perturbations in all of the molecular and morphological endpoints indicating that TCS exposure disrupts coordination of postembryonic tadpole development. Clear alterations in molecular endpoints were evident at day 2 whereas the earliest morphological effects appeared at day 4 and were most evident at day 21. Although TCS alone (3 and 30 μg/L) was protective against tadpole mortality, this protection was lost in the presence of T(4). The Pacific tree frog is the most sensitive species examined to date displaying disruption of TH-mediated development by a common antimicrobial agent. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Perinatal Nicotine Exposure Increases Obesity Susceptibility in Adult Male Rat Offspring by Altering Early Adipogenesis.

    Science.gov (United States)

    Fan, Jie; Zhang, Wan-Xia; Rao, Yi-Song; Xue, Jing-Ling; Wang, Fei-Fei; Zhang, Li; Yan, You-E

    2016-11-01

    The present study aims to evaluate whether perinatal nicotine (NIC) exposure increases obesity susceptibility in adult male rat offspring by altering early adipogenesis. NIC was sc administered (2.0 mg/kg per day) to pregnant rats from gestational day 9 to the time of weaning (postnatal day 28). At weaning, NIC-exposed male pups had an increased body weight and inguinal sc fat mass and a decreased average cell area of adipocyte, which was accompanied by an overexpression of adipogenic and lipogenic genes in the epididymal white adipose tissue. Additionally, the hepatic lipogenic gene levels from NIC-exposed male pups were also affected. At 12 and 26 weeks of age, body weight and fat mass were increased, whereas there was no change in food intake in NIC-exposed male offspring. Adipogenic and lipogenic genes, glucose transporter 4, and leptin mRNA levels were increased, whereas adiponectin mRNA levels were decreased in the epididymal white adipose tissue of NIC-exposed males. The hepatic lipogenic gene expression of NIC-exposed males was increased. NIC-exposed male offspring showed normal glycemia and a higher serum insulin level, homeostasis model assessment of insulin resistance, and homeostasis model assessment of β-cell function. Furthermore, the NIC-exposed male offspring showed higher serum lipids and Castelli index I and lower nonesterified fatty acid. At 26 weeks, in the ip glucose and insulin tolerance tests, the glucose clearance was delayed, and the area under the curve was higher in the NIC-exposed male offspring. In conclusion, perinatal NIC exposure increased obesity susceptibility in adult male rat offspring by altering early adipogenesis.

  19. Potential sensitivity of bias analysis results to incorrect assumptions of nondifferential or differential binary exposures misclassification

    Science.gov (United States)

    Johnson, Candice Y.; Flanders, W. Dana; Strickland, Matthew J.; Honein, Margaret A.; Howards, Penelope P.

    2015-01-01

    Background Results of bias analyses for exposure misclassification are dependent on assumptions made during analysis. We describe how adjustment for misclassification is affected by incorrect assumptions about whether sensitivity and specificity are the same (nondifferential) or different (differential) for cases and non-cases. Methods We adjusted for exposure misclassification using probabilistic bias analysis, under correct and incorrect assumptions about whether exposure misclassification was differential or not. First, we used simulated datasets in which nondifferential and differential misclassification were introduced. Then, we used data on obesity and diabetes from the National Health and Nutrition Examination Survey (NHANES) in which both self-reported (misclassified) and measured (true) obesity were available, using literature estimates of sensitivity and specificity to adjust for bias. The ratio of odds ratio (ROR; observed odds ratio divided by true odds ratio) was used to quantify magnitude of bias, with ROR=1 signifying no bias. Results In the simulated datasets, under incorrect assumptions (e.g., assuming nondifferential misclassification when it was truly differential), results were biased, with RORs ranging from 0.18 to 2.46. In NHANES, results adjusted based on incorrect assumptions also produced biased results, with RORs ranging from 1.26 to 1.55; results were more biased when making these adjustments than when using the misclassified exposure values (ROR=0.91). Conclusions Making an incorrect assumption about nondifferential or differential exposure misclassification in bias analyses can lead to more biased results than if no adjustment is performed. In our analyses, incorporating uncertainty using probabilistic bias analysis was not sufficient to overcome this problem. PMID:25120106

  20. Gill alterations as biomarkers of chronic exposure to endosulfan in Bufo bufo tadpoles.

    Science.gov (United States)

    Brunelli, Elvira; Bernabò, Ilaria; Sperone, Emilio; Tripepi, Sandro

    2010-12-01

    Endosulfan sprayed on agricultural fields accumulates in temporary pools due to surface runoff or sediment transport and may result in high water concentrations in spring and summer, coinciding with breeding and crucial stages of amphibian larval development. In the present study, Bufo bufo tadpoles were exposed to three different concentrations of endosulfan (0.01, 0.05 and 0.1 mg/L) until they reached complete metamorphosis. The aim of the study was to investigate the effects of endosulfan, at environmentally relevant concentrations on gill morphology and ultrastructure. Modifications in ultrastructure and cell composition were observed at all concentrations after 96 h. The main gill effects recorded in treated animals were: mucous secretion, the appearance of tubular vesicles cells (TVC) and a degeneration phenomenon. Comparing these results with our previous findings in which we used growth, developmental rate and behaviour as endpoints, we also demonstrated that the first effect of endosulfan on Bufo bufo was gill alteration, thus supporting the role of a morphological approach in toxicological studies. This study provides additional information on the role of morphological studies in demonstrating the effects of exposure to environmental pollutants. In this context, the use of amphibian gills, as effective biomarkers, is a valuable approach in evaluating exposure to agrochemicals.

  1. Exposure to sorbitol during lactation causes metabolic alterations and genotoxic effects in rat offspring.

    Science.gov (United States)

    Cardoso, Felipe S; Araujo-Lima, Carlos F; Aiub, Claudia A F; Felzenszwalb, Israel

    2016-10-17

    Sorbitol is a polyol used by the food industry as a sweetener. Women are consuming diet and light products containing sorbitol during pregnancy and in the postnatal period to prevent themselves from excessive weight gain and maintain a slim body. Although there is no evidence for the genotoxicity of sorbitol in the perinatal period, this study focused on evaluating the effects of the maternal intake of sorbitol on the biochemical and toxicological parameters of lactating Wistar rat offspring after 14days of mother-to-offspring exposure. A dose-dependent reduction of offspring length was observed. An increase in sorbitol levels determined in the milk was also observed. However, we detected an inverse relationship between the exposition dose in milk fructose and triacylglycerols concentrations. There was an increase in the plasmatic levels of ALT, AST and LDLc and a decrease in proteins, cholesterol and glucose levels in the offspring. Sorbitol exposure caused hepatocyte genotoxicity, including micronuclei induction. Maternal sorbitol intake induced myelotoxicity and myelosuppression in their offspring. The Comet assay of the blood cells detected a dose-dependent genotoxic response within the sorbitol-exposed offspring. According to our results, sorbitol is able to induce important metabolic alterations and genotoxic responses in the exposed offspring. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  2. Microanatomy alteration of gills and kidneys in freshwater mussel (Anodonta woodiana due to cadmium exposure

    Directory of Open Access Journals (Sweden)

    SUNARTO

    2011-01-01

    Full Text Available Fitriawan F, Sutarno, Sunarto. 2011. Microanatomy alteration of gills and kidneys in freshwater mussel (Anodonta woodiana due to cadmium exposure. Nusantara Bioscience 3: 28-35. The purpose of this study were to determine the level of Cd accumulation in the gills and kidneys, to khow the changes in microanatomic structure of A. woodiana after the various treatments of heavy metals. Completely randomized design pattern of 5 x 3 as used in this laboratory experiment. The amount of exposure of heavy metals Cd were (0 ppm, 0.5 ppm, 1 ppm, 5 ppm, 10 ppm, while the variation of length of exprosure time to Cd were (7 days, 14 days, and 30 days. The parameters of Cd accumulation in the gills and kidney was analyzed by using AAS method, while abnormalities of gills and kidney were detected by microanatomy structure. Data collected were then analyzed using the analysis of variance (ANOVA and continued with further test the DMRT. The results indicated that there is a significant effect in 475.3 > 0.000 and 60150.3 >0.000 with 5% significance level (P<0.05 of Cd treatment on gill and kidney microanatomy of A. woodiana. The changes in microanatomy structure of those organs are including edema, hyperplasia, fusion of lamella, necrosis and atrophy.

  3. Calcineurin inhibitors differentially alter the circadian rhythm of T-cell functionality in transplant recipients.

    Science.gov (United States)

    Leyking, Sarah; Budich, Karin; van Bentum, Kai; Thijssen, Stephan; Abdul-Khaliq, Hashim; Fliser, Danilo; Sester, Martina; Sester, Urban

    2015-02-06

    Graft survival in transplant recipients depends on pharmacokinetics and on individual susceptibility towards immunosuppressive drugs. Nevertheless, pharmacodynamic changes in T-cell functionality in response to drugs and in relation to pharmacokinetics are poorly characterized. We therefore investigated the immunosuppressive effect of calcineurin inhibitors and steroids on general T-cell functionality after polyclonal stimulation of whole blood samples. General T-cell functionality in the absence or presence of immunosuppressive drugs was determined in vitro directly from whole blood based on cytokine induction after stimulation with the polyclonal stimulus Staphylococcus aureus enterotoxin B. In addition, diurnal changes in leukocyte and lymphocyte subsets, and on T-cell function after intake of immunosuppressive drugs were analyzed in 19 patients during one day and compared to respective kinetics in six immunocompetent controls. Statistical analysis was performed using non-parametric and parametric tests. Susceptibility towards calcineurin inhibitors showed interindividual differences. When combined with steroids, tacrolimus led to more pronounced increase in the inhibitory activity as compared to cyclosporine A. While circadian alterations in leukocyte subpopulations and T-cell function in controls were related to endogenous cortisol levels, T-cell functionality in transplant recipients decreased after intake of the morning medication, which was more pronounced in patients with higher drug-dosages. Interestingly, calcineurin inhibitors differentially affected circadian rhythm of T-cell function, as patients on cyclosporine A showed a biphasic decrease in T-cell reactivity after drug-intake in the morning and evening, whereas T-cell reactivity in patients on tacrolimus remained rather stable. The whole blood assay allows assessment of the inhibitory activity of immunosuppressive drugs in clinically relevant concentrations. Circadian alterations in T-cell function

  4. Dietary exposure to the PCB mixture aroclor 1254 may compromise osmoregulation by altering central vasopressin release

    Energy Technology Data Exchange (ETDEWEB)

    Coburn, C.G. [Environmental Toxicology, Univ. of California at Riverside, CA (United States); Gillard, E.; Curras-Collazo, M. [Cell Biology and Neuroscience, Univ. of California at Riverside, CA (United States)

    2004-09-15

    Despite the importance of systemic osmoregulation, the potential deleterious effects of persistent organochlorines, such as polychlorinated biphenyls (PCBs), on body fluid regulation has not been thoroughly investigated. In an effort to ameliorate this deficit, the current study explores the toxic effects of PCBs on osmoregulation, and in particular, on the activity of the magnocellular neuroendocrine cell (MNC) system of the hypothalamus. MNCs of the supraoptic nucleus (SON) release oxytocin (OXY) and vasopressin (VP) from terminals in the neurohypophysis in response to dehydration. The latter is released to effect water conservation in response to dehydration via its action upon the kidney and through extra-renal actions. MNCs also secrete VP from their cell bodies and dendrites locally i.e., into the extracellular space of the SON. Although it has been shown that both intranuclear and systemic release rise in response to dehydration the physiological significance of intranuclear release has not been fully elucidated. We chose to use voluntary ingestion as the route of PCB exposure since it is more reflective of natural exposure compared to ip injection. One unexpected observation that resulted from pilot studies using ip injection of PCBs was the deleterious effects of the vehicle (corn oil) resulting in pooling of lipid within the abdominal cavity, mottling of the liver, fatty liver and general discoloration of all abdominal viscera at time of sacrifice. Therefore, all work described in this series of experiments have employed voluntary ingestion of the toxin. Work described in this paper suggests that PCBs in concentrations reflecting realistic lifetime exposure levels may negatively impact homeostatic mechanisms responsible for body water balance by altering somatodendritic (intranuclear) VP secretion in response to dehydration in vivo. The downstream consequences of such influence is currently under investigation, and preliminary evidence suggests that the

  5. Altered reward processing in adolescents with prenatal exposure to maternal cigarette smoking.

    Science.gov (United States)

    Müller, Kathrin U; Mennigen, Eva; Ripke, Stephan; Banaschewski, Tobias; Barker, Gareth J; Büchel, Christian; Conrod, Patricia; Fauth-Bühler, Mira; Flor, Herta; Garavan, Hugh; Heinz, Andreas; Lawrence, Claire; Loth, Eva; Mann, Karl; Martinot, Jean-Luc; Pausova, Zdenka; Rietschel, Marcella; Ströhle, Andreas; Struve, Maren; Walaszek, Bernadeta; Schumann, Gunter; Paus, Tomáš; Smolka, Michael N

    2013-08-01

    Higher rates of substance use and dependence have been observed in the offspring of mothers who smoked during pregnancy. Animal studies indicate that prenatal exposure to nicotine alters the development of brain areas related to reward processing, which might be a risk factor for substance use and addiction later in life. However, no study has examined the effect of maternal smoking on the offspring's brain response during reward processing. To determine whether adolescents with prenatal exposure to maternal cigarette smoking differ from their nonexposed peers in the response of the ventral striatum to the anticipation or the receipt of a reward. An observational case-control study. Data were obtained from the IMAGEN Study, a European multicenter study of impulsivity, reinforcement sensitivity, and emotional reactivity in adolescents. The IMAGEN sample consists of 2078 healthy adolescents (age range, 13-15 years) recruited from March 1, 2008, through December 31, 2011, in local schools. We assessed an IMAGEN subsample of 177 adolescents with prenatal exposure to maternal cigarette smoking and 177 nonexposed peers (age range, 13-15 years) matched by sex, maternal educational level, and imaging site. Response to reward in the ventral striatum measured with functional magnetic resonance imaging. In prenatally exposed adolescents, we observed a weaker response in the ventral striatum during reward anticipation (left side, F = 14.98 [P smoking during pregnancy. Future analyses should assess whether prenatally exposed adolescents develop an increased risk for substance use and addiction and which role the reported neuronal differences during reward anticipation plays in this development.

  6. Neonatal exposure to sucralose does not alter biochemical markers of neuronal development or adult behavior.

    Science.gov (United States)

    Viberg, Henrik; Fredriksson, Anders

    2011-01-01

    Sucralose, a high-intensity sweetener, has been approved as a general-purpose sweetener in all food since the late 1990s. Due to its good taste and physiochemical profile, its use has increased and sucralose is considered a way of managing health and an option to improve the quality of life in the diabetic population. Recently high concentrations of sucralose have been found in the environment. Other environmental pollutants have been shown to induce neurotoxic effects when administered during a period of rapid brain growth and development. This period of rapid brain growth and development is postnatal in mice and rats, spanning the first 3-4 wk of life, reaching its peak around postnatal day 10, whereas in humans, brain growth and development is perinatal. The proteins calcium/calmodulin-dependent protein kinase II, growth-associated protein-43, synaptophysin, and tau play important roles during brain growth and development. In the present study, mice were orally exposed to 5-125 mg of sucralose per kilogram of body weight per day during postnatal days 8-12. Twenty-four hours after last exposure, brains were analyzed for calcium/calmodulin-dependent protein kinase II, growth-associated protein-43, synaptophysin, and tau, and at the age of 2 mo the animals were tested for spontaneous behavior. The protein analysis showed no alterations in calcium/calmodulin-dependent protein kinase II, growth-associated protein-43, synaptophysin, or tau. Furthermore, there were no disturbances in adult behavior or habituation after neonatal sucralose exposure. The present study shows that repeated neonatal exposure to the artificial sweetener sucralose does not result in neurotoxicity, which supports that sucralose seems to be a safe alternative for people who want or need to reduce or substitute glucose in their diet. Copyright © 2011 Elsevier Inc. All rights reserved.

  7. High-throughput sperm differential proteomics suggests that epigenetic alterations contribute to failed assisted reproduction.

    Science.gov (United States)

    Azpiazu, Rubén; Amaral, Alexandra; Castillo, Judit; Estanyol, Josep Maria; Guimerà, Marta; Ballescà, Josep Lluís; Balasch, Juan; Oliva, Rafael

    2014-06-01

    Are there quantitative alterations in the proteome of normozoospermic sperm samples that are able to complete IVF but whose female partner does not achieve pregnancy? Normozoospermic sperm samples with different IVF outcomes (pregnancy versus no pregnancy) differed in the levels of at least 66 proteins. The analysis of the proteome of sperm samples with distinct fertilization capacity using low-throughput proteomic techniques resulted in the detection of a few differential proteins. Current high-throughput mass spectrometry approaches allow the identification and quantification of a substantially higher number of proteins. This was a case-control study including 31 men with normozoospermic sperm and their partners who underwent IVF with successful fertilization recruited between 2007 and 2008. Normozoospermic sperm samples from 15 men whose female partners did not achieve pregnancy after IVF (no pregnancy) and 16 men from couples that did achieve pregnancy after IVF (pregnancy) were included in this study. To perform the differential proteomic experiments, 10 no pregnancy samples and 10 pregnancy samples were separately pooled and subsequently used for tandem mass tags (TMT) protein labelling, sodium dodecyl sulphate-polyacrylamide gel electrophoresis, liquid chromatography tandem mass spectrometry (LC-MS/MS) identification and peak intensity relative protein quantification. Bioinformatic analyses were performed using UniProt Knowledgebase, DAVID and Reactome. Individual samples (n = 5 no pregnancy samples; n = 6 pregnancy samples) and aliquots from the above TMT pools were used for western blotting. By using TMT labelling and LC-MS/MS, we have detected 31 proteins present at lower abundance (ratio no pregnancy/pregnancy 1.5) in the no pregnancy group. Bioinformatic analyses showed that the proteins with differing abundance are involved in chromatin assembly and lipoprotein metabolism (P values Economia y Competividad; FEDER BFU 2009-07118 and PI13/00699) and

  8. White-throated sparrows alter songs differentially in response to chorusing anurans and other background noise.

    Science.gov (United States)

    Lenske, Ariel K; La, Van T

    2014-06-01

    Animals can use acoustic signals to attract mates and defend territories. As a consequence, background noise that interferes with signal transmission has the potential to reduce fitness, especially in birds that rely on song. While much research on bird song has investigated vocal flexibility in response to urban noise, weather and other birds, the possibility of inter-class acoustic competition from anurans has not been previously studied. Using sound recordings from central Ontario wetlands, we tested if white-throated sparrows (Zonotrichia albicolis) make short-term changes to their singing behaviour in response to chorusing spring peepers (Pseudacris crucifer), as well as to car noise, wind and other bird vocalizations. White-throated sparrow songs that were sung during the spring peeper chorus were shorter with higher minimum frequencies and narrower bandwidths resulting in reduced frequency overlap. Additionally, sparrows were less likely to sing when car noise and the vocalizations of other birds were present. These patterns suggest that birds use multiple adjustment strategies. This is the first report to demonstrate that birds may alter their songs differentially in response to different sources of noise. This article is part of a Special Issue entitled: insert SI title. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Altered bone marrow lymphopoiesis and interleukin-6-dependent inhibition of thymocyte differentiation contribute to thymic atrophy during Trypanosoma cruzi infection.

    Science.gov (United States)

    Carbajosa, Sofía; Gea, Susana; Chillón-Marinas, Carlos; Poveda, Cristina; Del Carmen Maza, María; Fresno, Manuel; Gironès, Núria

    2017-03-14

    Thymic atrophy occurs during infection being associated with apoptosis of double positive (DP) and premature exit of DP and double negative (DN) thymocytes. We observed for the first time that a significant bone marrow aplasia and a decrease in common lymphoid progenitors (CLPs) preceded thymic alterations in mice infected with Trypanosoma cruzi. In addition, depletion of the DN2 stage was previous to the DN1, indicating an alteration in the differentiation from DN1 to DN2 thymocytes. Interestingly, infected mice deficient in IL-6 expression showed higher numbers of DP and CD4+ thymocytes than wild type infected mice, while presenting similar percentages of DN1 thymocytes. Moreover, the drop in late differentiation stages of DN thymocytes was partially abrogated in comparison with wild type littermates. Thus, our results suggest that thymic atrophy involves a drop in CLPs production in bone marrow and IL-6-dependent and independent mechanisms that inhibits the differentiation of DN thymocytes.

  10. Extracellular Protease Inhibition Alters the Phenotype of Chondrogenically Differentiating Human Mesenchymal Stem Cells (MSCs) in 3D Collagen Microspheres

    Science.gov (United States)

    Han, Sejin; Li, Yuk Yin; Chan, Barbara Pui

    2016-01-01

    Matrix remodeling of cells is highly regulated by proteases and their inhibitors. Nevertheless, how would the chondrogenesis of mesenchymal stem cells (MSCs) be affected, when the balance of the matrix remodeling is disturbed by inhibiting matrix proteases, is incompletely known. Using a previously developed collagen microencapsulation platform, we investigated whether exposing chondrogenically differentiating MSCs to intracellular and extracellular protease inhibitors will affect the extracellular matrix remodeling and hence the outcomes of chondrogenesis. Results showed that inhibition of matrix proteases particularly the extracellular ones favors the phenotype of fibrocartilage rather than hyaline cartilage in chondrogenically differentiating hMSCs by upregulating type I collagen protein deposition and type II collagen gene expression without significantly altering the hypertrophic markers at gene level. This study suggests the potential of manipulating extracellular proteases to alter the outcomes of hMSC chondrogenesis, contributing to future development of differentiation protocols for fibrocartilage tissues for intervertebral disc and meniscus tissue engineering. PMID:26760956

  11. Differential Gene Expression Analysis of Bovine Macrophages after Exposure to the Penicillium Mycotoxins Citrinin and/or Ochratoxin A

    Directory of Open Access Journals (Sweden)

    Kristen M. Brennan

    2017-11-01

    Full Text Available Mycotoxins produced by fungal species commonly contaminate livestock feedstuffs, jeopardizing their health and diminishing production. Citrinin (CIT and ochratoxin A (OTA are mycotoxins produced by Penicillium spp. and commonly co-occur. Both CIT and OTA can modulate immune response by inhibiting cell proliferation and differentiation, altering cell metabolism, and triggering programmed cell death. The objective of this study was to determine the effects of sublethal exposure (i.e., the concentration that inhibited cell proliferation by 25% (IC25 to CIT, OTA or CIT + OTA on the bovine macrophage transcriptome. Gene expression was determined using the Affymetrix Bovine Genome Array. After 6 h of exposure to CIT, OTA or CIT + OTA, the number of differentially expressed genes (DEG, respectively, was as follows: 1471 genes (822 up-regulated, 649 down-regulated, 5094 genes (2611 up-regulated, 2483 down-regulated and 7624 genes (3984 up-regulated, 3640 down-regulated. Of these, 179 genes (88 up-regulated, 91 down-regulated were commonly expressed between treatments. After 24 h of exposure to CIT, OTA or CIT + OTA the number of DEG, respectively, was as follows: 3230 genes (1631 up-regulated, 1599 down-regulated, 8558 genes (4167 up-regulated, 4391 down-regulated, and 10,927 genes (6284 up-regulated, 4643 down-regulated. Of these, 770 genes (247 up-regulated, 523 down-regulated were commonly expressed between treatments. The categorization of common biological functions and pathway analysis suggests that the IC25 of both CIT and OTA, or their combination, induces cellular oxidative stress, a slowing of cell cycle progression, and apoptosis. Collectively, these effects contribute to inhibiting bovine macrophage proliferation.

  12. Prenatal exposure to anticonvulsants and psychosexual development

    NARCIS (Netherlands)

    Dessens, A. B.; Cohen-Kettenis, P. T.; Mellenbergh, G. J.; vd Poll, N.; Koppe, J. G.; Boer, K.

    1999-01-01

    Animal studies have shown that prenatal exposure to the anticonvulsant drugs phenobarbital and phenytoin alters steroid hormone levels which consequently leads to disturbed sexual differentiation. In this study, possible sequelae of prenatal exposure to these anticonvulsants on gender development in

  13. Violence Exposure Subtypes Differentially Mediate the Relation between Callous-Unemotional Traits and Adolescent Delinquency.

    Science.gov (United States)

    Oberth, Carla; Zheng, Yao; McMahon, Robert J

    2017-11-01

    Research with children and adolescents has established a link between callous-unemotional (CU) traits and delinquency, as well as a link between violence exposure (witnessing and direct victimization) and diverse negative and antisocial outcomes. Little attention has been paid to investigating the association among CU traits, violence exposure, and various forms of delinquency. Using a sample of 753 adolescents (male =58%; African American =46%), the current study aimed to elucidate the mediating role of violence exposure (measured in grades 7, 8, 10, 11) on the relationship between CU traits measured in grade 7 and later delinquency (i.e., property, violent, drug, and sexual) assessed in grade 12. Total violence exposure (witnessing and direct victimization) mediated the association between CU traits and all forms of delinquency. When looking at witnessing and direct victimization separately, however, only witnessing violence mediated the relationship between CU traits and all forms of delinquency. These results highlight the importance of violence exposure in the CU-delinquency link, and showed the differential roles of indirect and direct forms of violence exposure on the association. Witnessing and direct victimization may involve different underlying mechanisms influencing developmental outcomes in youth. These findings have important implications for understanding developmental models of violence exposure, CU traits, and delinquency, as well as interventions for youth who have experienced both indirect and direct forms of violence.

  14. Identification of Differential Gene Expression Patterns after Acute Exposure to High and Low Doses of Low-LET Ionizing Radiation in a Reconstituted Human Skin Tissue

    Energy Technology Data Exchange (ETDEWEB)

    Tilton, Susan C.; Markillie, Lye Meng; Hays, Spencer; Taylor, Ronald C.; Stenoien, David L.

    2016-11-01

    Our goal here was to identify dose and temporal dependent radiation responses in a complex tissue, reconstituted human skin. Direct sequencing of RNA (RNA-seq) was used to quantify altered transcripts following exposure to 0.1, 2 and 10 Gy of ionizing radiation at 3 and 8 hours. These doses include a low dose in the range of some medical diagnostic procedures (0.1 Gy), a dose typically received during radiotherapy (2.0 Gy) and a lethal dose (10 Gy). These doses could be received after an intentional or accidental radiation exposure and biomarkers are needed to rapidly and accurately triage exposed individuals. A total of 1701 genes were deemed to be significantly affected by high dose radiation exposure with the majority of genes affected at 10 Gy. A group of 29 genes including GDF15, BBC3, PPM1D, FDXR, GADD45A, MDM2, CDKN1A, TP53INP1, CYCSP27, SESN1, SESN2, PCNA, and AEN were similarly altered at both 2 and 10 Gy, but not 0.1 Gy, at multiple time points. A much larger group of up regulated genes, including those involved in inflammatory responses, was significantly altered only after a 10 Gy exposure. At high doses, down regulated genes were associated with cell cycle regulation and exhibited an apparent linear response between 2 and 10 Gy. While only a handful of genes were significantly affected by 0.1 Gy exposure using stringent statistical filters, groups of related genes regulating cell cycle progression and inflammatory responses consistently exhibited opposite trends in their regulation compared to the high dose exposures. Differential regulation of PLK1 signaling at low and high doses was confirmed using qRT-PCR. These results indicate that some alterations in gene expression are qualitatively different at low and high doses of radiation in this model system.

  15. Sucrose exposure in early life alters adult motivation and weight gain.

    Directory of Open Access Journals (Sweden)

    Cristianne R M Frazier

    2008-09-01

    Full Text Available The cause of the current increase in obesity in westernized nations is poorly understood but is frequently attributed to a 'thrifty genotype,' an evolutionary predisposition to store calories in times of plenty to protect against future scarcity. In modern, industrialized environments that provide a ready, uninterrupted supply of energy-rich foods at low cost, this genetic predisposition is hypothesized to lead to obesity. Children are also exposed to this 'obesogenic' environment; however, whether such early dietary experience has developmental effects and contributes to adult vulnerability to obesity is unknown. Using mice, we tested the hypothesis that dietary experience during childhood and adolescence affects adult obesity risk. We gave mice unlimited or no access to sucrose for a short period post-weaning and measured sucrose-seeking, food consumption, and weight gain in adulthood. Unlimited access to sucrose early in life reduced sucrose-seeking when work was required to obtain it. When high-sugar/high-fat dietary options were made freely-available, however, the sucrose-exposed mice gained more weight than mice without early sucrose exposure. These results suggest that early, unlimited exposure to sucrose reduces motivation to acquire sucrose but promotes weight gain in adulthood when the cost of acquiring palatable, energy dense foods is low. This study demonstrates that early post-weaning experience can modify the expression of a 'thrifty genotype' and alter an adult animal's response to its environment, a finding consistent with evidence of pre- and peri-natal programming of adult obesity risk by maternal nutritional status. Our findings suggest the window for developmental effects of diet may extend into childhood, an observation with potentially important implications for both research and public policy in addressing the rising incidence of obesity.

  16. Fuzzy cognitive map in differential diagnosis of alterations in urinary elimination: a nursing approach.

    Science.gov (United States)

    Lopes, Maria Helena Baena de Moraes; Ortega, Neli Regina Siqueira; Silveira, Paulo Sérgio Panse; Massad, Eduardo; Higa, Rosângela; Marin, Heimar de Fátima

    2013-03-01

    To develop a decision support system to discriminate the diagnoses of alterations in urinary elimination, according to the nursing terminology of NANDA International (NANDA-I). A fuzzy cognitive map (FCM) was structured considering six possible diagnoses: stress urinary incontinence, reflex urinary incontinence, urge urinary incontinence, functional urinary incontinence, total urinary incontinence and urinary retention; and 39 signals associated with them. The model was implemented in Microsoft Visual C++(®) Edition 2005 and applied in 195 real cases. Its performance was evaluated through the agreement test, comparing its results with the diagnoses determined by three experts (nurses). The sensitivity and specificity of the model were calculated considering the expert's opinion as a gold standard. In order to compute the Kappa's values we considered two situations, since more than one diagnosis was possible: the overestimation of the accordance in which the case was considered as concordant when at least one diagnoses was equal; and the underestimation of the accordance, in which the case was considered as discordant when at least one diagnosis was different. The overestimation of the accordance showed an excellent agreement (kappa=0.92, p<0.0001); and the underestimation provided a moderate agreement (kappa=0.42, p<0.0001). In general the FCM model showed high sensitivity and specificity, of 0.95 and 0.92, respectively, but provided a low specificity value in determining the diagnosis of urge urinary incontinence (0.43) and a low sensitivity value to total urinary incontinence (0.42). The decision support system developed presented a good performance compared to other types of expert systems for differential diagnosis of alterations in urinary elimination. Since there are few similar studies in the literature, we are convinced of the importance of investing in this kind of modeling, both from the theoretical and from the health applied points of view. In spite of

  17. Long-term exposure to environmentally relevant concentrations of progesterone and norgestrel affects sex differentiation in zebrafish (Danio rerio).

    Science.gov (United States)

    Liang, Yan-Qiu; Huang, Guo-Yong; Liu, Shuang-Shuang; Zhao, Jian-Liang; Yang, Yuan-Yuan; Chen, Xiao-Wen; Tian, Fei; Jiang, Yu-Xia; Ying, Guang-Guo

    2015-03-01

    The aim of this study was to investigate the effects of progestins on the sex differentiation of zebrafish by measuring the sex ratio and transcriptions of genes related to sex differentiation (Amh, Dmrt1, Figa, Sox9a and Sox9b genes) as well as sex hormone levels and transcriptional expression profiles along the hypothalamic-pituitary-gonadal (HPG) and hypothalamic-pituitary-adrenal (HPA) axes in juvenile zebrafish. Exposure of zebrafish to 4, 33, 63ngL(-1) progesterone (P4) or 4, 34, 77ngL(-1) norgestrel (NGT) started at 20 days post fertilization (dpf) and ended at 60 dpf. The results showed that exposure to P4 caused a significant increase in proportion of females as well as significant down-regulation of Amh gene and up-regulation of Figa at a concentration of 63ngL(-1). However, the shift in the sex ratio toward males was observed following exposure to 34 and 77ngL(-1) NGT, which came along with the significant induction of Dmrt1 gene and inhibition of Figa gene. The sex hormones in exposed fish were measured with estrone being detected only in the fish exposed to the highest P4 concentration; whereas estradiol and androstenedione were detected only in the fish of the control and lowest NGT concentration. Furthermore, the increase in females was associated with the significant up-regulation of several key genes controlling the synthesis of sex hormones (i.e., Cyp17, Cyp19a1a and Hsd3b) following exposure to 63ngL(-1) P4 whereas the significant down-regulation of Cyp11a1, Cyp17, Cyp19a1a and Hsd3b genes was observed in the male-biased populations caused by 34 and 77ngL(-1) NGT. The overall results imply that both P4 and NGT could significantly affect sex differentiation in zebrafish, and that changes may be reflected by altered sex hormone levels and transcriptional expression profiles of genes related to synthesis of sex hormones. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Gestational exposure to low dose bisphenol A alters social behavior in juvenile mice.

    Directory of Open Access Journals (Sweden)

    Jennifer T Wolstenholme

    Full Text Available Bisphenol A (BPA is a man-made compound used to make polycarbonate plastics and epoxy resins; public health concerns have been fueled by findings that BPA exposure can reduce sex differences in brain and some behaviors. We asked if a low BPA dose, within the range measured in humans, ingested during pregnancy, would affect social behaviors in prepubertal mice. We noted sex differences in social interactions whereby females spent more time sitting side-by-side, while males engaged in more exploring and sitting alone. In addition BPA increased display of nose-to-nose contacts, play solicitations and approaches in both sexes. Interactions between sex and diet were found for self grooming, social interactions while sitting side-by-side and following the other mouse. In all these cases interactions were produced by differences between control and BPA females. We examined brains from embryos during late gestation to determine if gene expression differences might be correlated with some of the sexually dimorphic or BPA affected behaviors we observed. Because BPA treatments ended at birth we took the brains during embryogenesis to increase the probability of discovering BPA mediated effects. We also selected this embryonic age (E18.5 because it coincides with the onset of sexual differentiation of the brain. Interestingly, mRNA for the glutamate transporter, Slc1a1, was enhanced by exposure to BPA in female brains. Also we noted that BPA changed the expression of two of the three DNA methyltransferase genes, Dnmt1 and Dnmt3a. We propose that BPA affects DNA methylation of Sc1a1 during neural development. Sex differences in juvenile social interactions are affected by BPA and in particular this compound modifies behavior in females.

  19. Perinatal exposure to lead (Pb) induces ultrastructural and molecular alterations in synapses of rat offspring.

    Science.gov (United States)

    Gąssowska, Magdalena; Baranowska-Bosiacka, Irena; Moczydłowska, Joanna; Frontczak-Baniewicz, Małgorzata; Gewartowska, Magdalena; Strużyńska, Lidia; Gutowska, Izabela; Chlubek, Dariusz; Adamczyk, Agata

    2016-12-12

    noticed in the cerebellum, while the expression of postsynaptic PSD-95 was significantly decreased in forebrain cortex and cerebellum, and raised in hippocampus. Additionally, we observed the lower level of BDNF in all brain structures in comparison to control animals. In conclusion, perinatal exposure to low doses of Pb caused pathological changes in nerve endings associated with the alterations in the level of key synaptic proteins. All these changes can lead to synaptic dysfunction, expressed by the impairment of the secretory mechanism and thereby to the abnormalities in neurotransmission as well as to the neuronal dysfunction. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  20. Maternal bisphenol A exposure alters rat offspring hepatic and skeletal muscle insulin signaling protein abundance.

    Science.gov (United States)

    Galyon, Kristina D; Farshidi, Farnoosh; Han, Guang; Ross, Michael G; Desai, Mina; Jellyman, Juanita K

    2017-03-01

    skeletal muscle. In adult female bisphenol A offspring, the skeletal muscle protein abundance of glucose transporter 4 was 0.4-fold of the control. Maternal bisphenol A had sex- and tissue-specific effects on insulin signaling components, which may contribute to increased risk of glucose intolerance in offspring. Glucose transporters were consistently altered at both ages as well as in both sexes and may contribute to glucose intolerance. These data suggest that maternal bisphenol A exposure should be limited during pregnancy and lactation. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Adaptations of the vestibular system to short and long-term exposures to altered gravity

    Science.gov (United States)

    Bruce, L.

    Long-term space flight creates unique environmental conditions to which the vestibular system must adapt for optimal survival. We are studying two aspects of this vestibular adaptation: (1) How does long-term exposure to microgravity and hypergravity affect the development of vestibular afferents? (2) How does short- term exposure to extremely rapid changes in gravity, such as those that occur during launch and landing, affect the vestibular system. During space flight the gravistatic receptors in the otolith organs are effectively unloaded. In hypergravity conditions they are overloaded. However, the angular acceleration receptors of the semicircular canals receive relatively normal stimulation in both micro- and hypergravity.Rat embryos exposed to microgravity from gestation day 10 (prior to vestibular function) until gestation day 20 (vestibular system is somewhat functional) showed that afferents from the posterior vertical canal projecting to the medial vestibular nucleus developed similarly in microgravity, hypergravity, and in controls . However, afferents from the saccule showed delayed development in microgravity as compared to development in hypergravity and in controls. Cerebellar plasticity is crucial for modification of sensory-motor control and learning. Thus we explored the possibility that strong vestibular stimuli would modify cerebellar motor control (i.e., eye movement, postural control, gut motility) by altering the morphology of cerebellar Purkinje cells. To study the effects of short-term exposures to strong vestibular stimuli we focused on structural changes in the vestibulo-cerebellum that are caused by strong vestibular stimuli. Adult mice were exposed to various combinations of constant and/or rapidly changing angular and linear accelerations for 8.5 min (the time length of shuttle launch). Our data shows that these stimuli cause intense excitation of cerebellar Purkinje cells, inducing up-regulation of clathrin-mediated endocytosis

  2. Postweaning exposure to a high-fat diet is associated with alterations to the hepatic histone code in Japanese macaques.

    Science.gov (United States)

    Suter, Melissa A; Takahashi, Diana; Grove, Kevin L; Aagaard, Kjersti M

    2013-09-01

    Expression of circadian gene, Npas2, is altered in fetal life with maternal high-fat (HF) diet exposure by virtue of alterations in the fetal histone code. We postulated that these disruptions would persist postnatally. Pregnant macaques were fed a control (CTR) or HF diet and delivered at term. When offspring were weaned, they were placed on either CTR or HF diet for a period of 5 mo to yield four exposure models (in utero diet/postweaning diet: CTR/CTR n = 5; CTR/HF n = 4; HF/CTR n = 4; and HF/HF n = 5). Liver specimens were obtained at necropsy at 1 y of age. Hepatic trimethylation of lysine 4 of histone H3 is decreased (CTR/HF 0.87-fold, P = 0.038; HF/CTR 0.84-fold, P = 0.038), whereas hepatic methyltransferase activity increased by virtue of diet exposure (HF/HF 1.3-fold, P = 0.019). Using chromatin immunoprecipitation to determine Npas2 promoter occupancy, we found alterations of both repressive and permissive histone modifications specifically with postweaning HF diet exposure. We found that altered Npas2 expression corresponds with a change in the histone code within the Npas2 promoter.

  3. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring

    NARCIS (Netherlands)

    Boulle, F.; Pawluski, J.L.; Homberg, J.R.; Machiels, B.; Kroeze, Y.; Kumar, N.; Steinbusch, H.W.; Kenis, G.; Hove, D.L. van den

    2016-01-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has

  4. Altered ubiquitin causes perturbed calcium homeostasis, hyperactivation of calpain, dysregulated differentiation, and cataract.

    Science.gov (United States)

    Liu, Ke; Lyu, Lei; Chin, David; Gao, Junyuan; Sun, Xiurong; Shang, Fu; Caceres, Andrea; Chang, Min-Lee; Rowan, Sheldon; Peng, Junmin; Mathias, Richard; Kasahara, Hideko; Jiang, Shuhong; Taylor, Allen

    2015-01-27

    Although the ocular lens shares many features with other tissues, it is unique in that it retains its cells throughout life, making it ideal for studies of differentiation/development. Precipitation of proteins results in lens opacification, or cataract, the major blinding disease. Lysines on ubiquitin (Ub) determine fates of Ub-protein substrates. Information regarding ubiquitin proteasome systems (UPSs), specifically of K6 in ubiquitin, is undeveloped. We expressed in the lens a mutant Ub containing a K6W substitution (K6W-Ub). Protein profiles of lenses that express wild-type ubiquitin (WT-Ub) or K6W-Ub differ by only ∼2%. Despite these quantitatively minor differences, in K6W-Ub lenses and multiple model systems we observed a fourfold Ca(2+) elevation and hyperactivation of calpain in the core of the lens, as well as calpain-associated fragmentation of critical lens proteins including Filensin, Fodrin, Vimentin, β-Crystallin, Caprin family member 2, and tudor domain containing 7. Truncations can be cataractogenic. Additionally, we observed accumulation of gap junction Connexin43, and diminished Connexin46 levels in vivo and in vitro. These findings suggest that mutation of Ub K6 alters UPS function, perturbs gap junction function, resulting in Ca(2+) elevation, hyperactivation of calpain, and associated cleavage of substrates, culminating in developmental defects and a cataractous lens. The data show previously unidentified connections between UPS and calpain-based degradative systems and advance our understanding of roles for Ub K6 in eye development. They also inform about new approaches to delay cataract and other protein precipitation diseases.

  5. Sexual differentiation of the brain: a model for drug-induced alterations of the reproductive system

    Energy Technology Data Exchange (ETDEWEB)

    Gorski, R.A.

    1986-12-01

    The process of the sexual differentiation of the brain represents a valuable model system for the study of the chemical modification of the mammalian brain. Although there are numerous functional and structural sex differences in the adult brain, these are imposed on an essentially feminine or bipotential brain by testicular hormones during a critical phase of perinatal development in the rat. It is suggested that a relatively marked structural sex difference in the rat brain, the sexually dimorphic nucleus of the preoptic area (SDN-POA), is a morphological signature of the permanent or organizational action of estradiol derived from the aromatization of testicular testosterone. The SDN-POA of the male rat is severalfold larger in volume and is composed of more neurons than that of the female. The observation that the mitotic formation of the neurons of the SDN-POA is specifically prolonged has enabled us to identify the time course and pathway of neuronal migration into the nucleus. Study of the development of the SDN-POA suggests that estradiol in the male increases the number of neurons which survive a phase of neuronal death by exerting a neurite growth promoting action and/or a direct neuronotrophic action. Finally, although it is clear that gonadal hormones have dramatic permanent effects on the brain during perinatal development, even after puberty and in adulthood gonadal steroids can alter neuronal structure and, perhaps as a corollary to this, have permanent effects on reproductive function. Although the brain may be most sensitive to gonadal hormones or exogenous chemical factors during perinatal development, such as sensitivity does not appear limited to this period.

  6. Prenatal exposure to gamma/neutron irradiation: Sensorimotor alterations and paradoxical effects on learning

    Energy Technology Data Exchange (ETDEWEB)

    Di Cicco, D.; Antal, S.; Ammassari-Teule, M. (Istituto di Psicobiologia e Psicofarmacologia del CNR, Rome (Italy))

    1991-01-01

    The effects of prenatal exposure on gamma/neutron radiations (0.5 Gy at about the 18th day of fetal life) were studied in a hybrid strain of mice (DBA/Cne males x C57BL/Cne females). During ontogeny, measurements of sensorimotor reflexes revealed in prenatally irradiated mice (1) a delay in sensorial development, (2) deficits in tests involving body motor control, and (3) a reduction of both motility and locomotor activity scores. In adulthood, the behaviour of prenatally irradiated and control mice was examined in the open field test and in reactivity to novelty. Moreover, their learning performance was compared in several situations. The results show that, in the open field test, only rearings were more frequent in irradiated mice. In the presence of a novel object, significant sex x treatment interactions were observed since ambulation and leaning against the novel object increased in irradiated females but decreased in irradiated males. Finally, when submitted to different learning tasks, irradiated mice were impaired in the radial maze, but paradoxically exhibited higher avoidance scores than control mice, possibly because of their low pain thresholds. Taken together, these observations indicate that late prenatal gamma/neutron irradiation induces long lasting alterations at the sensorimotor level which, in turn, can influence learning abilities of adult mice.

  7. Long-term in vivo polychlorinated biphenyl 126 exposure induces oxidative stress and alters proteomic profile on islets of Langerhans

    Science.gov (United States)

    Loiola, Rodrigo Azevedo; Dos Anjos, Fabyana Maria; Shimada, Ana Lúcia; Cruz, Wesley Soares; Drewes, Carine Cristiane; Rodrigues, Stephen Fernandes; Cardozo, Karina Helena Morais; Carvalho, Valdemir Melechco; Pinto, Ernani; Farsky, Sandra Helena

    2016-06-01

    It has been recently proposed that exposure to polychlorinated biphenyls (PCBs) is a risk factor to type 2 diabetes mellitus (DM2). We investigated this hypothesis using long-term in vivo PCB126 exposure to rats addressing metabolic, cellular and proteomic parameters. Male Wistar rats were exposed to PCB126 (0.1, 1 or 10 μg/kg of body weight/day; for 15 days) or vehicle by intranasal instillation. Systemic alterations were quantified by body weight, insulin and glucose tolerance, and blood biochemical profile. Pancreatic toxicity was measured by inflammatory parameters, cell viability and cycle, free radical generation, and proteomic profile on islets of Langerhans. In vivo PCB126 exposure enhanced the body weight gain, impaired insulin sensitivity, reduced adipose tissue deposit, and elevated serum triglycerides, cholesterol, and insulin levels. Inflammatory parameters in the pancreas and cell morphology, viability and cycle were not altered in islets of Langerhans. Nevertheless, in vivo PCB126 exposure increased free radical generation and modified the expression of proteins related to oxidative stress on islets of Langerhans, which are indicative of early β-cell failure. Data herein obtained show that long-term in vivo PCB126 exposure through intranasal route induced alterations on islets of Langerhans related to early end points of DM2.

  8. The differential effects of forms and settings of exposure to violence on adolescents' adjustment.

    Science.gov (United States)

    Ho, Man Yee; Cheung, Fanny M

    2010-07-01

    This study investigated the link between exposure to violence and psychosocial adjustment for 442 Chinese secondary school students in Form 1-3. The students completed an inventory assessing exposure to violence through witnessing and through direct victimization in different settings (community, school, and home). Multiple measures and informants (i.e., self-report, teacher report, and school report) were used to assess emotional, behavioral, and cognitive functioning in adolescents. The results of this study showed that overall exposure to violence was related to emotional and behavior problems. High rates of exposure to violence across multiple contexts were found in this sample. After controlling for the co-occurrence of risk factors (e.g., exposure to violence in other settings), both witnessing school violence and being victimized by domestic violence were associated with emotional problems, whereas being victimized by community violence was related to behavior problems. These results suggest that there are differential effects of risks associated with different forms and settings of exposure.

  9. Cataloging altered gene expression in young and senescent cells using enhanced differential display

    NARCIS (Netherlands)

    Linskens, Maarten H.K.; Feng, Junli; Andrews, William H.; Enlow, Brett E.; Saati, Shahin M.; Tonkin, Leath A.; Funk, Walter D.; Villeponteau, Bryant

    1995-01-01

    Recently, a novel PCR-based technique, differential display (DD), has facilitated the study of differentially expressed genes at the mRNA level. We report here an improved version of DD, which we call Enhanced Differential Display (EDD). We have modified the technique to enhance reproducibility and

  10. Hepatic transcriptomic alterations for N,N-dimethyl-p-toluidine (DMPT) and p-toluidine after 5-day exposure in rats.

    Science.gov (United States)

    Dunnick, June K; Shockley, Keith R; Morgan, Daniel L; Brix, Amy; Travlos, Gregory S; Gerrish, Kevin; Michael Sanders, J; Ton, T V; Pandiri, Arun R

    2017-04-01

    N,N-dimethyl-p-toluidine (DMPT), an accelerant for methyl methacrylate monomers in medical devices, was a liver carcinogen in male and female F344/N rats and B6C3F1 mice in a 2-year oral exposure study. p-Toluidine, a structurally related chemical, was a liver carcinogen in mice but not in rats in an 18-month feed exposure study. In this current study, liver transcriptomic data were used to characterize mechanisms in DMPT and p-toluidine liver toxicity and for conducting benchmark dose (BMD) analysis. Male F344/N rats were exposed orally to DMPT or p-toluidine (0, 1, 6, 20, 60 or 120 mg/kg/day) for 5 days. The liver was examined for lesions and transcriptomic alterations. Both chemicals caused mild hepatic toxicity at 60 and 120 mg/kg and dose-related transcriptomic alterations in the liver. There were 511 liver transcripts differentially expressed for DMPT and 354 for p-toluidine at 120 mg/kg/day (false discovery rate threshold of 5 %). The liver transcriptomic alterations were characteristic of an anti-oxidative damage response (activation of the Nrf2 pathway) and hepatic toxicity. The top cellular processes in gene ontology (GO) categories altered in livers exposed to DMPT or p-toluidine were used for BMD calculations. The lower confidence bound benchmark doses for these chemicals were 2 mg/kg/day for DMPT and 7 mg/kg/day for p-toluidine. These studies show the promise of using 5-day target organ transcriptomic data to identify chemical-induced molecular changes that can serve as markers for preliminary toxicity risk assessment.

  11. Environmental tobacco smoke exposure and EGFR and ALK alterations in never smokers' lung cancer. Results from the LCRINS study.

    Science.gov (United States)

    Torres-Durán, María; Ruano-Ravina, Alberto; Kelsey, Karl T; Parente-Lamelas, Isaura; Leiro-Fernández, Virginia; Abdulkader, Ihab; Provencio, Mariano; Abal-Arca, José; Castro-Añón, Olalla; Montero-Martínez, Carmen; Vidal-García, Iria; Amenedo, Margarita; Golpe-Gómez, Antonio; Martínez, Cristina; Guzmán-Taveras, Rosirys; Mejuto-Martí, María José; Fernández-Villar, Alberto; Barros-Dios, Juan Miguel

    2017-12-28

    Environmental tobacco smoke (ETS) exposure is a main risk factor of lung cancer in never smokers. Epidermal Growth Factor Receptor (EGFR) mutations and ALK translocations are more frequent in never smokers' lung cancer than in ever-smokers. We performed a multicenter case-control study to assess if ETS exposure is associated with the presence of EGFR mutations and its types and if ALK translocations were related with ETS exposure. All patients were never smokers and had confirmed lung cancer diagnosis. ETS exposure during childhood showed a negative association on the probability of EGRF mutation though not significant. Exposure during adulthood, at home or at workplace, did not show any association with EGFR mutation. The mutation type L858R seemed the most associated with a lower probability of EGFR alterations for ETS exposure at home in adult life. There is no apparent association between ETS exposure and ALK translocation. These results might suggest that ETS exposure during childhood or at home in adult life could influence the EGFR mutations profile in lung cancer in never smokers, reducing the probability of presenting EFGR mutation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. UV laser radiation alters the embryonic protein profile of adrenal-kidney-gonadal complex and gonadal differentiation in the lizard, Calotes Versicolor.

    Science.gov (United States)

    Khodnapur, Bharati S; Inamdar, Laxmi S; Nindi, Robertraj S; Math, Shivkumar A; Mulimani, B G; Inamdar, Sanjeev R

    2015-02-01

    To examine the impact of ultraviolet (UV) laser radiation on the embryos of Calotes versicolor in terms of its effects on the protein profile of the adrenal-kidney-gonadal complex (AKG), sex determination and differentiation, embryonic development and hatching synchrony. The eggs of C. versicolor, during thermo-sensitive period (TSP), were exposed to third harmonic laser pulses at 355 nm from a Q-switched Nd:YAG laser for 180 sec. Subsequent to the exposure they were incubated at the male-producing temperature (MPT) of 25.5 ± 0.5°C. The AKG of hatchlings was subjected to protein analysis by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and to histology. The UV laser radiation altered the expression of the protein banding pattern in the AKG complex of hatchlings and it also affected the gonadal sex differentiation. SDS-PAGE of AKG of one-day-old hatchlings revealed a total of nine protein bands in the control group whereas UV laser irradiated hatchlings expressed a total of seven protein bands only one of which had the same Rf as a control band. The UV laser treated hatchlings have an ovotestes kind of gonad exhibiting a tendency towards femaleness instead of the typical testes. It is inferred that 355 nm UV laser radiation during TSP induces changes in the expression of proteins as well as their secretions. UV laser radiation had an impact on the gonadal differentiation pathway but no morphological anomalies were noticed.

  13. Moderate Prenatal Alcohol Exposure Alters Functional Connectivity in the Adult Rat Brain.

    Science.gov (United States)

    Rodriguez, Carlos I; Davies, Suzy; Calhoun, Vince; Savage, Daniel D; Hamilton, Derek A

    2016-10-01

    Past studies of moderate prenatal alcohol exposure (PAE) have focused on specific brain regions, neurotransmitter systems, and behaviors. However, the effects of PAE on brain function and behavior are complex and not limited to discrete brain regions. Thus, there is a critical need to understand the global effects of moderate PAE on neural function. A primary aim of this research was to explore the functional relationships in neural activity of spatially distinct areas by applying a widely used computational algorithm-group-independent component analysis (gICA)-to resting-state functional magnetic resonance imaging data from rats exposed to either an alcohol or saccharin control solution via maternal consumption during pregnancy. Long-Evans rat dams consumed either 5% (v/v) alcohol or a saccharin control solution throughout gestation. Adult offspring from each prenatal treatment group were anesthetized for functional, structural, and perfusion magnetic resonance-based image acquisition sequences. gICA was applied to the functional data to extract components. To determine connectivity, component time-course correlations were computed and compared. Additionally, spectral power analyses were utilized as an additional measure of functional connectivity. Finally, blood perfusion-assessed by arterial spin labeling-and whole-brain volumetric analyses were evaluated. Analyses revealed 17 components in several brain regions such as the cortex, hippocampus, and thalamus. PAE was associated with reductions in coordinated activity between components, especially in males. PAE was also associated with reductions in low-frequency spectral power, an effect that was more robust in females. Brain volumetric analyses revealed sex-dependent reductions in females while blood flow analyses revealed sex-dependent reductions in males. Moderate PAE leads to persistent changes in functional connectivity in the absence of whole-brain volume or blood flow measures. Future studies will

  14. Bacillus subtilis alters the proportion of major membrane phospholipids in response to surfactin exposure.

    Science.gov (United States)

    Uttlová, Petra; Pinkas, Dominik; Bechyňková, Olga; Fišer, Radovan; Svobodová, Jaroslava; Seydlová, Gabriela

    2016-12-01

    Surfactin, an anionic lipopeptide produced by Bacillus subtilis, is an antimicrobial that targets the cytoplasmic membrane. Nowadays it appears increasingly apparent that the mechanism of resistance against these types of antibiotics consists of target site modification. This prompted us to investigate whether the surfactin non-producing strain B. subtilis 168 changes its membrane composition in response to a sublethal surfactin concentration. Here we show that the exposure of B. subtilis to surfactin at concentrations of 350 and 650 μg/ml (designated as SF350 and SF650, respectively) leads to a concentration-dependent growth arrest followed by regrowth with an altered growth rate. Analysis of the membrane lipid composition revealed modifications both in the polar head group and the fatty acid region. The presence of either surfactin concentration resulted in a reduction in the content of the major membrane phospholipid phosphatidylglycerol (PG) and increase in phosphatidylethanolamine (PE), which was accompanied by elevated levels of phosphatidic acid (PA) in SF350 cultures. The fatty acid analysis of SF350 cells showed a marked increase in non-branched high-melting fatty acids, which lowered the fluidity of the membrane interior measured as the steady-state fluorescence anisotropy of DPH. The liposome leakage of carboxyfluorescein-loaded vesicles resembling the phospholipid composition of surfactin-adapted cells showed that the susceptibility to surfactin-induced leakage is strongly reduced when the PG/PE ratio decreases and/or PA is included in the target bilayer. We concluded that the modifications of the phospholipid content of B. subtilis cells might provide a self-tolerance of the membrane active surfactin. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Exposure to Forced Swim Stress Alters Local Circuit Activity and Plasticity in the Dentate Gyrus of the Hippocampus

    Directory of Open Access Journals (Sweden)

    Orli Yarom

    2008-01-01

    Full Text Available Studies have shown that, depending on its severity and context, stress can affect neural plasticity. Most related studies focused on synaptic plasticity and long-term potentiation (LTP of principle cells. However, evidence suggests that following high-frequency stimulation, which induces LTP in principal cells, modifications also take place at the level of complex interactions with interneurons within the dentate gyrus, that is, at the local circuit level. So far, the possible effects of stress on local circuit activity and plasticity were not studied. Therefore, we set out to examine the possible alterations in local circuit activity and plasticity following exposure to stress. Local circuit activity and plasticity were measured by using frequency dependant inhibition (FDI and commissural modulation protocols following exposure to a 15 minute-forced swim trial. Exposure to stress did not alter FDI. The application of theta-burst stimulation (TBS reduced FDI in both control and stressed rats, but this type of plasticity was greater in stressed rats. Commissural-induced inhibition was significantly higher in stressed rats both before and after applying theta-burst stimulation. These findings indicate that the exposure to acute stress affects aspects of local circuit activity and plasticity in the dentate gyrus. It is possible that these alterations underlie some of the behavioral consequences of the stress experience.

  16. Altered arachidonic acid metabolism during differentiation of the human monoblastoid cell line U937.

    Science.gov (United States)

    Koehler, L; Hass, R; Wessel, K; DeWitt, D L; Kaever, V; Resch, K; Goppelt-Struebe, M

    1990-02-23

    The human cell line U937 was used as a model for differentiation along the mononuclear phagocyte lineage. Following treatment with the phorbol ester TPA, PGE2 and TxB2 secretion was induced 50-100-fold, and both PGF2 alpha and PGI2 levels became detectable in the supernatant of TPA-differentiated U937 cells. The content of the prostaglandin precursor, arachidonic acid, remained unchanged in the cellular phospholipids of undifferentiated and TPA-differentiated U937 cells. Of the enzymes involved in the availability and metabolism of arachidonic acid, phospholipase A2 activity was increased 2-fold in the membranes of TPA-differentiated U937 cells, whereas lysophosphatide acyltransferase activity remained unaltered. Cyclooxygenase activity, however, was enhanced 5-10-fold, which was due to enhanced expression of the enzyme as demonstrated by dot-blot analysis. The data suggest that the capacity to secrete prostaglandins is acquired during differentiation with TPA and results mainly from an increased cyclooxygenase activity. Despite the capacity of TPA-differentiated U937 cells to synthesize prostaglandins, none of the known monocytic stimuli further stimulated prostaglandin secretion in TPA-differentiated U937 cells. Generation of leukotrienes appears to represent a later state in the differentiation along the monocyte-macrophage lineage, since neither LTB4 nor cysteinyl-leukotrienes were detectable in the supernatants of either undifferentiated or TPA-differentiated U937 cells.

  17. Exposure of rats to extremely low-frequency electromagnetic fields (ELF-EMF) alters cytokines production.

    Science.gov (United States)

    Salehi, Iraj; Sani, Karim Ghazikhanlou; Zamani, Alireza

    2013-03-01

    Investigations indicate a potential link between exposure to extremely low-frequency electromagnetic field (ELF-EMF) and some cancers. Carcinogenesis of ELF-EMF may be mediated by effect on the immune system. During an immune response, naïve T cells differentiate to effector type 1 helper T cells (T(H)1), T(H)2, or T(H)17 subsets according to existence of different cytokines and T(H)1 is important in defense against tumors. Therefore, it will be reasonable to test whether ELF-EMF can change cytokines like interferon gamma (IFN-γ), interleukin-4 (IL-4), IL-6, and IL-12 that regulate T(H)1/T(H)2/T(H)17 balance. Forty adult male rats were randomly separated into ELF-EMF-exposed and sham-exposed control groups. The ELF-EMF group was exposed to a flux density of 100 μT, frequency 50 Hz, 2 h/day for 3 months. The controls were placed in identical chamber without ELF-EMF. The results showed there were no significant differences between the mean mass of rats, thymuses, and spleens in ELF-EMF exposed group compared with controls. Serum IL-12 level was decreased from 418 ± 47 pg/ml in controls to 300 ± 23 pg/ml (p EMF-exposed group. Phytohemagglutinin activated of in vitro production of IL-6 by the whole spleen culture (1356 ± 92 pg/ml) and total blood culture (418 ± 40 pg/ml) of ELF-EMF-exposed rats were higher (p EMF may change T(H)1/T(H)2/T(H)17 balance toward down regulation of T(H)1 and upregulation T(H)17 type responses.

  18. Immunogenetic variation and differential pathogen exposure in free-ranging cheetahs across Namibian farmlands.

    Directory of Open Access Journals (Sweden)

    Aines Castro-Prieto

    Full Text Available BACKGROUND: Genes under selection provide ecologically important information useful for conservation issues. Major histocompatibility complex (MHC class I and II genes are essential for the immune defence against pathogens from intracellular (e.g. viruses and extracellular (e.g. helminths origins, respectively. Serosurvey studies in Namibian cheetahs (Acinonyx juabuts revealed higher exposure to viral pathogens in individuals from north-central than east-central regions. Here we examined whether the observed differences in exposure to viruses influence the patterns of genetic variation and differentiation at MHC loci in 88 free-ranging Namibian cheetahs. METHODOLOGY/PRINCIPAL FINDINGS: Genetic variation at MHC I and II loci was assessed through single-stranded conformation polymorphism (SSCP analysis and sequencing. While the overall allelic diversity did not differ, we observed a high genetic differentiation at MHC class I loci between cheetahs from north-central and east-central Namibia. No such differentiation in MHC class II and neutral markers were found. CONCLUSIONS/SIGNIFICANCE: Our results suggest that MHC class I variation mirrors the variation in selection pressure imposed by viruses in free-ranging cheetahs across Namibian farmland. This is of high significance for future management and conservation programs of this species.

  19. Epigenetic Changes Induced by Air Toxics: Formaldehyde Exposure Alters miRNA Expression Profiles in Human Lung Cells

    Science.gov (United States)

    Rager, Julia E.; Smeester, Lisa; Jaspers, Ilona; Sexton, Kenneth G.; Fry, Rebecca C.

    2011-01-01

    Background Exposure to formaldehyde, a known air toxic, is associated with cancer and lung disease. Despite the adverse health effects of formaldehyde, the mechanisms underlying formaldehyde-induced disease remain largely unknown. Research has uncovered microRNAs (miRNAs) as key posttranscriptional regulators of gene expression that may influence cellular disease state. Although studies have compared different miRNA expression patterns between diseased and healthy tissue, this is the first study to examine perturbations in global miRNA levels resulting from formaldehyde exposure. Objectives We investigated whether cellular miRNA expression profiles are modified by formaldehyde exposure to test the hypothesis that formaldehyde exposure disrupts miRNA expression levels within lung cells, representing a novel epigenetic mechanism through which formaldehyde may induce disease. Methods Human lung epithelial cells were grown at air–liquid interface and exposed to gaseous formaldehyde at 1 ppm for 4 hr. Small RNAs and protein were collected and analyzed for miRNA expression using microarray analysis and for interleukin (IL-8) protein levels by enzyme-linked immunosorbent assay (ELISA). Results Gaseous formaldehyde exposure altered the miRNA expression profiles in human lung cells. Specifically, 89 miRNAs were significantly down-regulated in formaldehyde-exposed samples versus controls. Functional and molecular network analysis of the predicted miRNA transcript targets revealed that formaldehyde exposure potentially alters signaling pathways associated with cancer, inflammatory response, and endocrine system regulation. IL-8 release increased in cells exposed to formaldehyde, and results were confirmed by real-time polymerase chain reaction. Conclusions Formaldehyde alters miRNA patterns that regulate gene expression, potentially leading to the initiation of a variety of diseases. PMID:21147603

  20. Developmental exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin alters DNA methyltransferase (dnmt) expression in zebrafish (Danio rerio)

    Energy Technology Data Exchange (ETDEWEB)

    Aluru, Neelakanteswar, E-mail: naluru@whoi.edu [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Kuo, Elaine [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Stanford University, 450 Serra Mall, Stanford, CA 94305 (United States); Helfrich, Lily W. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Northwestern University, 633 Clark St, Evanston, IL 60208 (United States); Karchner, Sibel I. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States); Linney, Elwood A. [Department of Molecular Genetics and Microbiology, Duke University Medical Center, Box 3020, Durham, NC 27710 (United States); Pais, June E. [New England Biolabs, 240 County Road, Ipswich, MA 01938 (United States); Franks, Diana G. [Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, Woods Hole, MA 02543 (United States)

    2015-04-15

    DNA methylation is one of the most important epigenetic modifications involved in the regulation of gene expression. The DNA methylation reaction is catalyzed by DNA methyltransferases (DNMTs). Recent studies have demonstrated that toxicants can affect normal development by altering DNA methylation patterns, but the mechanisms of action are poorly understood. Hence, we tested the hypothesis that developmental exposure to TCDD affects dnmt gene expression patterns. Zebrafish embryos were exposed to 5 nM TCDD for 1 h from 4 to 5 h post-fertilization (hpf) and sampled at 12, 24, 48, 72, and 96 hpf to determine dnmt gene expression and DNA methylation patterns. We performed a detailed analysis of zebrafish dnmt gene expression during development and in adult tissues. Our results demonstrate that dnmt3b genes are highly expressed in early stages of development, and dnmt3a genes are more abundant in later stages. TCDD exposure upregulated dnmt1 and dnmt3b2 expression, whereas dnmt3a1, 3b1, and 3b4 are downregulated following exposure. We did not observe any TCDD-induced differences in global methylation or hydroxymethylation levels, but the promoter methylation of aryl hydrocarbon receptor (AHR) target genes was altered. In TCDD-exposed embryos, AHR repressor a (ahrra) and c-fos promoters were differentially methylated. To characterize the TCDD effects on DNMTs, we cloned the dnmt promoters with xenobiotic response elements and conducted AHR transactivation assays using a luciferase reporter system. Our results suggest that ahr2 can regulate dnmt3a1, dnmt3a2, and dnmt3b2 expression. Overall, we demonstrate that developmental exposure to TCDD alters dnmt expression and DNA methylation patterns. - Highlights: • TCDD altered the dnmt expression in a gene and developmental time-specific manner. • TCDD hypermethylated ahrra and hypomethylated c-fos proximal promoter regions. • Functional analysis suggests that ahr2 can regulate dnmt3a1, 3a2, and 3b2 expression. • Dnmt

  1. Control of Differentiation of Human Mesenchymal Stem Cells by Altering the Geometry of Nanofibers

    Directory of Open Access Journals (Sweden)

    Satoshi Fujita

    2012-01-01

    Full Text Available Effective differentiation of mesenchymal stem cells (MSCs is required for clinical applications. To control MSC differentiation, induction media containing different types of soluble factors have been used to date; however, it remains challenging to obtain a uniformly differentiated population of an appropriate quality for clinical application by this approach. We attempted to develop nanofiber scaffolds for effective MSC differentiation by mimicking anisotropy of the extracellular matrix structure, to assess whether differentiation of these cells can be controlled by using geometrically different scaffolds. We evaluated MSC differentiation on aligned and random nanofibers, fabricated by electrospinning. We found that induction of MSCs into adipocytes was markedly more inhibited on random nanofibers than on aligned nanofibers. In addition, adipoinduction on aligned nanofibers was also inhibited in the presence of mixed adipoinduction and osteoinduction medium, although osteoinduction was not affected by a change in scaffold geometry. Thus, we have achieved localized control over the direction of differentiation through changes in the alignment of the scaffold even in the presence of a mixed medium. These findings indicate that precise control of MSC differentiation can be attained by using scaffolds with different geometry, rather than by the conventional use of soluble factors in the medium.

  2. Differentiation alters stem cell nuclear architecture, mechanics, and mechano-sensitivity

    Science.gov (United States)

    Heo, Su-Jin; Driscoll, Tristan P; Thorpe, Stephen D; Nerurkar, Nandan L; Baker, Brendon M; Yang, Michael T; Chen, Christopher S; Lee, David A; Mauck, Robert L

    2016-01-01

    Mesenchymal stem cell (MSC) differentiation is mediated by soluble and physical cues. In this study, we investigated differentiation-induced transformations in MSC cellular and nuclear biophysical properties and queried their role in mechanosensation. Our data show that nuclei in differentiated bovine and human MSCs stiffen and become resistant to deformation. This attenuated nuclear deformation was governed by restructuring of Lamin A/C and increased heterochromatin content. This change in nuclear stiffness sensitized MSCs to mechanical-loading-induced calcium signaling and differentiated marker expression. This sensitization was reversed when the ‘stiff’ differentiated nucleus was softened and was enhanced when the ‘soft’ undifferentiated nucleus was stiffened through pharmacologic treatment. Interestingly, dynamic loading of undifferentiated MSCs, in the absence of soluble differentiation factors, stiffened and condensed the nucleus, and increased mechanosensitivity more rapidly than soluble factors. These data suggest that the nucleus acts as a mechanostat to modulate cellular mechanosensation during differentiation. DOI: http://dx.doi.org/10.7554/eLife.18207.001 PMID:27901466

  3. Prenatal exposure to cannabinoids evokes long-lasting functional alterations by targeting CB1 receptors on developing cortical neurons.

    Science.gov (United States)

    de Salas-Quiroga, Adán; Díaz-Alonso, Javier; García-Rincón, Daniel; Remmers, Floortje; Vega, David; Gómez-Cañas, María; Lutz, Beat; Guzmán, Manuel; Galve-Roperh, Ismael

    2015-11-03

    The CB1 cannabinoid receptor, the main target of Δ(9)-tetrahydrocannabinol (THC), the most prominent psychoactive compound of marijuana, plays a crucial regulatory role in brain development as evidenced by the neurodevelopmental consequences of its manipulation in animal models. Likewise, recreational cannabis use during pregnancy affects brain structure and function of the progeny. However, the precise neurobiological substrates underlying the consequences of prenatal THC exposure remain unknown. As CB1 signaling is known to modulate long-range corticofugal connectivity, we analyzed the impact of THC exposure on cortical projection neuron development. THC administration to pregnant mice in a restricted time window interfered with subcerebral projection neuron generation, thereby altering corticospinal connectivity, and produced long-lasting alterations in the fine motor performance of the adult offspring. Consequences of THC exposure were reminiscent of those elicited by CB1 receptor genetic ablation, and CB1-null mice were resistant to THC-induced alterations. The identity of embryonic THC neuronal targets was determined by a Cre-mediated, lineage-specific, CB1 expression-rescue strategy in a CB1-null background. Early and selective CB1 reexpression in dorsal telencephalic glutamatergic neurons but not forebrain GABAergic neurons rescued the deficits in corticospinal motor neuron development of CB1-null mice and restored susceptibility to THC-induced motor alterations. In addition, THC administration induced an increase in seizure susceptibility that was mediated by its interference with CB1-dependent regulation of both glutamatergic and GABAergic neuron development. These findings demonstrate that prenatal exposure to THC has long-lasting deleterious consequences in the adult offspring solely mediated by its ability to disrupt the neurodevelopmental role of CB1 signaling.

  4. Exposure to intrauterine inflammation alters metabolomic profiles in the amniotic fluid, fetal and neonatal brain in the mouse.

    Directory of Open Access Journals (Sweden)

    Amy G Brown

    Full Text Available Exposure to prenatal inflammation is associated with diverse adverse neurobehavioral outcomes in exposed offspring. The mechanism by which inflammation negatively impacts the developing brain is poorly understood. Metabolomic profiling provides an opportunity to identify specific metabolites, and novel pathways, which may reveal mechanisms by which exposure to intrauterine inflammation promotes fetal and neonatal brain injury. Therefore, we investigated whether exposure to intrauterine inflammation altered the metabolome of the amniotic fluid, fetal and neonatal brain. Additionally, we explored whether changes in the metabolomic profile from exposure to prenatal inflammation occurs in a sex-specific manner in the neonatal brain.CD-1, timed pregnant mice received an intrauterine injection of lipopolysaccharide (50 μg/dam or saline on embryonic day 15. Six and 48 hours later mice were sacrificed and amniotic fluid, and fetal brains were collected (n = 8/group. Postnatal brains were collected on day of life 1 (n = 6/group/sex. Global biochemical profiles were determined using ultra performance liquid chromatography/tandem mass spectrometry (Metabolon Inc.. Statistical analyses were performed by comparing samples from lipopolysaccharide and saline treated animals at each time point. For the P1 brains, analyses were stratified by sex.Exposure to intrauterine inflammation induced unique, temporally regulated changes in the metabolic profiles of amniotic fluid, fetal brain and postnatal brain. Six hours after exposure to intrauterine inflammation, the amniotic fluid and the fetal brain metabolomes were dramatically altered with significant enhancements of amino acid and purine metabolites. The amniotic fluid had enhanced levels of several members of the (hypo xanthine pathway and this compound was validated as a potential biomarker. By 48 hours, the number of altered biochemicals in both the fetal brain and the amniotic fluid had declined, yet unique

  5. Maternal exposure to diluted diesel engine exhaust alters placental function and induces intergenerational effects in rabbits

    NARCIS (Netherlands)

    Valentino, Sarah A; Tarrade, Anne; Aioun, Josiane; Mourier, Eve; Richard, Christophe; Dahirel, Michèle; Rousseau-Ralliard, Delphine; Fournier, Natalie; Aubrière, Marie-Christine; Lallemand, Marie-Sylvie; Camous, Sylvaine; Guinot, Marine; Charlier, Madia; Aujean, Etienne; Al Adhami, Hala; Fokkens, Paul H; Agier, Lydiane; Boere, John A; Cassee, Flemming R; Slama, Rémy; Chavatte-Palmer, Pascale

    2016-01-01

    BACKGROUND: Airborne pollution is a rising concern in urban areas. Epidemiological studies in humans and animal experiments using rodent models indicate that gestational exposure to airborne pollution, in particular diesel engine exhaust (DE), reduces birth weight, but effects depend on exposure

  6. Acrolein inhalation alters myocardial synchrony and performance at and below exposure concentrations that cause ventilatory responses

    Science.gov (United States)

    Acrolein is an irritating aldehyde generated during combustion of organic compounds. Altered autonomic activity has been documented following acrolein inhalation, possibly impacting myocardial synchrony and function. Given the ubiquitous nature of acrolein in the environment, we ...

  7. DNA Methylation-Independent Growth Restriction and Altered Developmental Programming in a Mouse Model of Preconception Male Alcohol Exposure.

    Science.gov (United States)

    Chang, Richard C; Skiles, William M; Sarah, S Chronister; Wang, Haiqing; Sutton, Gabrielle I; Bedi, Yudhishtar S; Snyder, Matthew; Long, Charles R; Golding, Michael C

    2017-08-17

    The preconception environment is a significant modifier of dysgenesis and the development of environmentally-induced disease. To date, Fetal Alcohol Spectrum Disorders (FASDs) have been exclusively associated with maternal exposures, yet emerging evidence suggests male-inherited alterations in the developmental program of sperm may be relevant to the growth-restriction phenotypes of this condition. Using a mouse model of voluntary consumption, we find chronic preconception male ethanol exposure associates with fetal growth restriction, decreased placental efficiency, abnormalities in cholesterol trafficking, sex-specific alterations in the genetic pathways regulating hepatic fibrosis, and disruptions in the regulation of imprinted genes. Alterations in the DNA methylation profiles of imprinted loci have been identified in clinical studies of alcoholic sperm, suggesting the legacy of paternal drinking may transmit via heritable disruptions in the regulation of imprinted genes. However, the capacity of sperm-inherited changes in DNA methylation to broadly transmit environmentally-induced phenotypes remains unconfirmed. Using bisulphite mutagenesis and second-generation deep sequencing, we find no evidence to suggest that these phenotypes or any of the associated transcriptional changes are linked to alterations in the sperm-inherited DNA methylation profile. These observations are consistent with recent studies examining the male transmission of diet-induced phenotypes and emphasize the importance of epigenetic mechanisms of paternal inheritance beyond DNA methylation. This study challenges the singular importance of maternal alcohol exposures and suggests paternal alcohol abuse is a significant, yet overlooked epidemiological factor complicit in the genesis of alcohol-induced growth defects, and may provide mechanistic insight into the failure of FASD children to thrive postnatally.

  8. Prenatal exposure of ethanol induces increased glutamatergic neuronal differentiation of neural progenitor cells

    Directory of Open Access Journals (Sweden)

    Han Seol-Heui

    2010-11-01

    Full Text Available Abstract Background Prenatal ethanol exposure during pregnancy induces a spectrum of mental and physical disorders called fetal alcohol spectrum disorder (FASD. The central nervous system is the main organ influenced by FASD, and neurological symptoms include mental retardation, learning abnormalities, hyperactivity and seizure susceptibility in childhood along with the microcephaly. In this study, we examined whether ethanol exposure adversely affects the proliferation of NPC and de-regulates the normal ratio between glutamatergic and GABAergic neuronal differentiation using primary neural progenitor culture (NPC and in vivo FASD models. Methods Neural progenitor cells were cultured from E14 embryo brain of Sprague-Dawley rat. Pregnant mice and rats were treated with ethanol (2 or 4 g/kg/day diluted with normal saline from E7 to E16 for in vivo FASD animal models. Expression level of proteins was investigated by western blot analysis and immunocytochemical assays. MTT was used for cell viability. Proliferative activity of NPCs was identified by BrdU incorporation, immunocytochemistry and FACS analysis. Results Reduced proliferation of NPCs by ethanol was demonstrated using BrdU incorporation, immunocytochemistry and FACS analysis. In addition, ethanol induced the imbalance between glutamatergic and GABAergic neuronal differentiation via transient increase in the expression of Pax6, Ngn2 and NeuroD with concomitant decrease in the expression of Mash1. Similar pattern of expression of those transcription factors was observed using an in vivo model of FASD as well as the increased expression of PSD-95 and decreased expression of GAD67. Conclusions These results suggest that ethanol induces hyper-differentiation of glutamatergic neuron through Pax6 pathway, which may underlie the hyper-excitability phenotype such as hyperactivity or seizure susceptibility in FASD patients.

  9. Differential courtship activity and alterations of reproductive success of competing gupply males as an indicator for low concentrations of aquatic pollutants

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, J.H.; Peters, K.

    1988-09-01

    Differential courtship activity of guppy males competing for the same females was used as a bioindicator for low concentrations of water-borne pollutants in a previous study. Patterns of male sexual activity were chosen because they determine reproductive success. The mean difference between courtship activities of two male competitors determines the relative fitness of the male in question. Accordingly, the decrease in mean differential courtship after exposure to aquatic contaminants was predicted to cause a corresponding change in the relative reproductive success. The present study completed the previous one by repeating the experiment with a 10% addition of wastewater drawn from the last clearing basin of a Munich purification plant this time using virgin (non-inseminated) females which were receptive to male courtship. The females subsequently were allowed to produce as many offspring as possible. The number of young guppies sired by individual male competitors could easily be traced by the use of sex-linked phenotypic color patterns as markers. The purpose of these two studies was to show that the quantification of sexual activities of male guppies is useful for monitoring environmental alterations which affect fitness characters.

  10. Perinatal exposure to progesterone, estradiol, or mifepristone affects sexual differentiation of behavior in opossums (Monodelphis domestica).

    Science.gov (United States)

    Fadem, Barbara H; Koester, Diana C; Harder, John D

    2010-08-01

    The effects of perinatal exposure to progesterone (P) and estradiol (E) on sexual differentiation of behavior and morphology were examined by treating male and female gray short-tailed opossums on postnatal day 8 with progesterone alone (P), P plus estradiol (E) (PE), the P receptor antagonist mifepristone/RU486 (MIF), or corn oil control (C) and gonadectomizing them before puberty. When given female hormone replacement therapy in adulthood and tested with intact stimulus males, MIF animals showed less female-typical aggressive threat behavior than animals in other treatment groups. Stimulus males scent marked in more tests involving females than males and in more tests involving MIF animals than animals in other treatment groups. Body weight was lower in females than in males and was lower in MIF animals than in animals in other treatment groups, and P females failed to show female-typical genital locks after copulation. Sexual receptivity was similar in males and females and, while not decreased by any perinatal hormone treatment, was higher in PE males than in animals of either sex in any treatment group. These findings suggest that perinatal exposure to P is associated with the organization of feminine threat behavior and the defeminization of attractivity, body weight and genital anatomy in this marsupial. Reasons for these findings and for why female sexual receptivity is enhanced by perinatal exposure to exogenous E only in an endogenous masculine environment are discussed. Copyright 2010 Elsevier Inc. All rights reserved.

  11. Prenatal Exposure to Maternal Obesity Alters Anxiety and Stress Coping Behaviors in Aged Mice.

    Science.gov (United States)

    Balsevich, Georgia; Baumann, Valentin; Uribe, Andres; Chen, Alon; Schmidt, Mathias V

    2016-01-01

    There is growing evidence that maternal obesity and prenatal exposure to a high-fat diet program fetal development to regulate the physiology and behavior of the offspring in adulthood. Yet the extent to which the maternal dietary environment contributes to adult disease vulnerability remains unclear. In the current study we tested whether prenatal exposure to maternal obesity increases the offspring's vulnerability to stress-related psychiatric disorders. We used a mouse model of maternal diet-induced obesity to investigate whether maternal obesity affects the response to adult chronic stress exposure in young adult (3-month-old) and aged adult (12-month-old) offspring. Long-lasting, delayed impairments to anxiety-like behaviors and stress coping strategies resulted on account of prenatal exposure to maternal obesity. Although maternal obesity did not change the offspring's behavioral response to chronic stress per se, we demonstrate that the behavioral outcomes induced by prenatal exposure to maternal obesity parallel the deleterious effects of adult chronic stress exposure in aged male mice. We found that the glucocorticoid receptor (GR, Nr3c1) is upregulated in various hypothalamic nuclei on account of maternal obesity. In addition, gene expression of a known regulator of the GR, FKBP51, is increased specifically within the paraventricular nucleus. These findings indicate that maternal obesity parallels the deleterious effects of adult chronic stress exposure, and furthermore identifies GR/FKBP51 signaling as a novel candidate pathway regulated by maternal obesity. © 2015 S. Karger AG, Basel.

  12. Morning and Evening Blue-Enriched Light Exposure Alters Metabolic Function in Normal Weight Adults

    National Research Council Canada - National Science Library

    Cheung, Ivy N; Zee, Phyllis C; Shalman, Dov; Malkani, Roneil G; Kang, Joseph; Reid, Kathryn J

    2016-01-01

    .... This study aimed to determine the acute effects of 3 hours of morning versus evening blue-enriched light exposure compared to dim light on hunger, metabolic function, and physiological arousal...

  13. VANADIUM EXPOSURE ALTERS SPONTANEOUS BEAT RATE AND GENE EXPRESSION OF CULTURED CARDIAC MYOCYTES

    Science.gov (United States)

    Ambient air pollution particulate matter (PM) exposure is associated with increased morbidity and mortality. Recent toxicological studies report PM-induced changes in a number of cardiac parameters, including heart rate variability, arrhythmias, repolarization, and internal defib...

  14. Developmental exposure to perchlorate alters synaptic transmission in hippocampus of the adult rat: in vivo studies.

    Science.gov (United States)

    Perchlorate, a contaminant found in food and water supplies throughout the USA, blocks iodine uptake into the thyroid gland to reduce circulating levels of thyroid hormone. Neurological function accompanying developmental exposure to perchlorate was evaluated in the present study...

  15. Peri-implantation Ozone Exposure Alters Uterine Artery Flow and Induces Fetal Growth Restriction in Rats

    Science.gov (United States)

    Epidemiological studies suggest a relationship between air pollutant exposures to various adverse pregnancy outcomes. Elevated ambient ozone levels during the first and second trimesters have demonstrated an increased correlation to preeclampsia, gestational diabetes, and intraut...

  16. Effects of in ovo exposure of Imazalil and Atrazine on sexual differentiation in chick gonads

    Energy Technology Data Exchange (ETDEWEB)

    Yamashita, J.; Ikeda, M. [Univ. of Shizuoka, Shizuoka (Japan); Matsushita, S.; Iwasawa, T.; Ikeya, M. [Shizuoka Swine and Poultry Experiment Station, Kikugawa (Japan)

    2004-09-15

    numerous anti-fungal chemicals. These chemicals have shown to reversibly (although not necessarily competitively) inhibit aromatase activity in human placental microsomes. It is reported that imazalil and difenoconazole inhibit aromatase activity in human adrenocortical carcinoma cell line H295R. Atrazine is the most commonly used herbicide in the word. There are several reports about the adverse effects of atrazine exposure. Atrazine induced hermaphroditism in African clawed frogs and demasculinized the larynx in male frogs. Plasma testosterone concentration in male frogs was decreased by atrazine exposure, and plasma estradiol concentration in rats was increased by atrazine exposure. Atrazine also increased aromatase activity in human adrenocortical carcinoma cell line H295R by inducing aromatase mRNA. In this study, the effects of in ovo exposure to an aromatase-inhibiting chemical (imazalil) and an aromatase-activating chemical (atrazine) on the sexual differentiation of chick gonad were investigated.

  17. Prenatal Exposure to Maternal Obesity Alters Anxiety and Stress Coping Behaviors in Aged Mice

    OpenAIRE

    Balsevich, G.; V. Baumann; Uribe, A; Chen, A.; Schmidt, M.

    2016-01-01

    Background: There is growing evidence that maternal obesity and prenatal exposure to a high-fat diet program fetal development to regulate the physiology and behavior of the offspring in adulthood. Yet the extent to which the maternal dietary environment contributes to adult disease vulnerability remains unclear. In the current study we tested whether prenatal exposure to maternal obesity increases the offspring's vulnerability to stress-related psychiatric disorders. Methods: We used a mouse...

  18. Low androgen induced penile maldevelopment involves altered gene expression of biomarkers of smooth muscle differentiation and a key enzyme regulating cavernous smooth muscle cell tone.

    Science.gov (United States)

    Okumu, Lilian A; Braden, Tim D; Vail, Krystal; Simon, Liz; Goyal, Hari Om

    2014-07-01

    We determined the effects of low androgens in the neonatal period on biomarkers of smooth muscle cell differentiation, Myh11 and Acta2, and on Pde5A expression in the penis. One-day-old pups were treated daily with the gonadotropin-releasing hormone antagonist antide with or without dihydrotestosterone for 1 to 6 days. Tissues were collected at age day 7 and at adulthood at age 120 days. Penes were examined by quantitative reverse transcriptase-polymerase chain reaction, Western blot and immunohistochemistry. Testes were assayed for the intratesticular testosterone and steroidogenic enzymes Cyp17α1 and StAR. Gonadotropin-releasing hormone antagonist exposure suppressed the neonatal testicular testosterone surge 70% to 80%. Quantitative reverse transcriptase-polymerase chain reaction revealed 80% to 90% reductions in Cyp17α1 and StAR protein, and 40% to 60% reductions in Myh11 and ACTA2 as a result of gonadotropin-releasing hormone antagonist compared to controls. Dihydrotestosterone co-administration mitigated these decreases. Western blot confirmed the Myh11 decrease at the protein level. Immunohistochemistry of Acta2 confirmed cavernous smooth muscle cell loss at the tissue level. Also, gonadotropin-releasing hormone antagonist exposure decreased Pde5a expression and dihydrotestosterone co-administration mitigated the decrease. Comparison of data between 2 parts of the penis body (corpora cavernosa and corpus spongiosum) showed that antagonist induced decreases in Myh11, Acta2 and Pde5a expression occurred only in the corpora cavernosa, implying that the latter is the target site of low androgen action. As evidenced by gonadotropin-releasing hormone antagonist induced suppression of the neonatal testosterone surge and reduced steroidogenesis, low androgens in the neonatal period altered gene expression of biomarkers of smooth muscle cell differentiation. This led to loss of cavernous smooth muscle cells and consequently to penile maldevelopment. Copyright

  19. Exposure to ambient ultrafine particulate matter alters the expression of genes in primary human neurons.

    Science.gov (United States)

    Solaimani, Parrisa; Saffari, Arian; Sioutas, Constantinos; Bondy, Stephen C; Campbell, Arezoo

    2017-01-01

    Exposure to ambient particulate matter (PM) has been associated with the onset of neurodevelopmental and neurodegenerative disorders, but the mechanism of toxicity remains unclear. To gain insight into this neurotoxicity, this study sought to examine global gene expression changes caused by exposure to ambient ultrafine PM. Microarray analysis was performed on primary human neurons derived from fetal brain tissue after a 24h exposure to 20μg/mL of ambient ultrafine particles. We found a majority of the changes in noncoding RNAs, which are involved in epigenetic regulation of gene expression, and thereby could impact the expression of several other protein coding gene targets. Although neurons from biologically different lot numbers were used, we found a significant increase in the expression of metallothionein 1A and 1F in all samples after exposure to particulate matter as confirmed by quantitative PCR. These metallothionein 1 proteins are responsible for neuroprotection after exposure to environmental insult but prolonged induction can be toxic. Epidemiological studies have reported that in utero exposure to ultrafine PM not only leads to neurodevelopmental and behavioral abnormalities, but may also predispose the progeny to neurodegenerative disease later in life by genetic imprinting. Our results pinpoint some of the PM-induced genetic changes that may underlie these findings. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Differential motor alterations in children with three types of attention deficit hyperactivity disorder

    Directory of Open Access Journals (Sweden)

    Adrián Poblano

    2014-11-01

    Full Text Available Objective To determine frequency of motor alterations in children with attention deficit hyperactivity disorder (ADHD. Method We evaluated 19 children aged 7-12 years with ADHD classified in three sub-types: Combined (ADHD-C, with Inattention (ADHD-I, and with Hyperactivity (ADHD-H. Controls were age- and gender matched healthy children. We utilized Bruininks-Oseretsky Test of Motor Proficiency (BOTMP for measuring motor skills. Results We observed differences between children with ADHD and controls in BOTMP general score and in static coordination, dynamic general- and hand- coordination, and in synkinetic movements. We also found differences in dynamic hand coordination between controls and children with ADHD-C; in dynamic general coordination between controls and children with ADHD-H; and in frequency of synkinetic movements between controls and children with ADHD-H. Conclusion Children with ADHD with a major degree of hyperactivity showed greater frequency of motor alterations.

  1. A differentiated approach to the risk assessment from exposure to radon

    Directory of Open Access Journals (Sweden)

    D. V. Kononenko

    2017-01-01

    Full Text Available The paper presents the methods of risk assessment from exposure to radon. Proposed methods implement a differentiated approach to the risk estimates calculation procedure which depends on the purpose of risk assessment. This approach is based on the analysis of the results of practical tests of different risk assessment models on arrays Russian medical and demographic data with and without consideration of the synergistic effect of smoking, in simple and complex exposure scenarios. All of these tests were performed in previous 5 years (results are available elsewhere. In this work the evaluation of effectiveness of radon mitigation actions in schools was used as a test task and results obtained using 4 models («EPA-2003», «Wismut-2006», «FCZ» and «Tomasek-2014» were compared. If it is important to evaluate the effect of reduction of radon concentration on the health of children and adolescents in terms of lifetimelung cancer risk, «Tomasek-2014» model will be the best choice. It is as sensitive as «FCZ» model and ERR is close to that from «Wismut-2006» model, which was earlier proposed by other authors for use with some modifications in Russia. If the data on radon concentration are limited (for example data from radiation-hygienic passports of territories and constant lifelong exposure scenario is considered, it seems reasonable to apply more simple «Darby-2005» model. Thus, the proposed methods could be used by specialists in various fields in a wide range of tasks, from the risk assessment for  the purposes of radiation-hygienic certification and comparative assessment of radiation safety of the population of different regions of Russia on the basis of the generalized statistical data, to the risk assessment in practical works where large amounts of measurement data on the radon concentration and complex exposure scenarios are used.

  2. Embryonic-only arsenic exposure in killifish (Fundulus heteroclitus) reduces growth and alters muscle IGF levels one year later.

    Science.gov (United States)

    Szymkowicz, Dana B; Sims, Kaleigh C; Castro, Noemi M; Bridges, William C; Bain, Lisa J

    2017-05-01

    Arsenic is a contaminant of drinking water and crops in many parts of the world. Epidemiological studies have shown that arsenic exposure is linked to decreased birth weight, weight gain, and proper skeletal muscle function. The goal of this study was to use killifish (Fundulus heteroclitus) as a model to determine the long-term effects of embryonic-only arsenic exposure on muscle growth and the insulin-like growth factor (IGF) pathway. Killifish embryos were exposed to 0, 50, 200 or 800ppb AsIII from fertilization until hatching. Juvenile fish were reared in clean water and muscle samples were collected at 16, 28, 40 and 52 weeks of age. There were significant reductions in condition factors, ranging from 12 to 17%, in the fish exposed to arsenic at 16, 28 and 40 weeks of age. However, by 52 weeks, no significant changes in condition factors were seen. Alterations in IGF-1R and IGF-1 levels were assessed as a potential mechanism by which growth was reduced. While there no changes in hepatic IGF-1 transcripts, skeletal muscle cells can also produce their own IGF-1 and/or alter IGF-1 receptor levels to help enhance growth. After a 200 and 800ppb embryonic exposure, fish grown in clean water for 16 weeks had IGF-1R transcripts that were 2.8-fold and 2-fold greater, respectively, than unexposed fish. Through 40 weeks of age, IGF1-R remained elevated in the 200ppb and 800ppb embryonic exposure groups by 1.8-3.9-fold, while at 52 weeks of age, IGF-1R levels were still significantly increased in the 800ppb exposure group. Skeletal muscle IGF-1 transcripts were also significantly increased by 1.9-5.1 fold through the 52 weeks of grow-out in clean by water in the 800ppb embryonic exposure group. Based on these results, embryonic arsenic exposure has long-term effects in that it reduces growth and increases both IGF-1 and IGF-1R levels in skeletal muscle even 1year after the exposure has ended. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Exposure of mice to cigarette smoke and/or light causes DNA alterations in heart and aorta

    Energy Technology Data Exchange (ETDEWEB)

    Izzotti, Alberto; D' Agostini, Francesco [Department of Health Sciences, University of Genoa, Genoa (Italy); Balansky, Roumen [Department of Health Sciences, University of Genoa, Genoa (Italy); National Center of Oncology, Sofia 1756 (Bulgaria); Degan, Paolo [Cancer Research Institute (IST), Genoa (Italy); Pennisi, Tanya M. [Department of Health Sciences, University of Genoa, Genoa (Italy); Steele, Vernon E. [National Cancer Institute, Rockville, MD (United States); De Flora, Silvio [Department of Health Sciences, University of Genoa, Genoa (Italy)], E-mail: sdf@unige.it

    2008-09-26

    Cigarette smoke (CS) is a major risk factor for cardiovascular diseases, cancer, and other chronic degenerative diseases. UV-containing light is the most ubiquitous DNA-damaging agent existing in nature, but its possible role in cardiovascular diseases had never been suspected before, although it is known that mortality for cardiovascular diseases is increased during periods with high temperature and solar irradiation. We evaluated whether exposure of Swiss CD-1 mice to environmental CS (ECS) and UV-C-covered halogen quartz lamps, either individually or in combination, can cause DNA damage in heart and aorta cells. Nucleotide alterations were evaluated by {sup 32}P postlabeling methods and by HPLC-electrochemical detection. The whole-body exposure of mice to ECS considerably increased the levels of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) and of bulky DNA adducts in both heart and aorta. Surprisingly, even exposure to a light that simulated solar irradiation induced oxidatively generated damage in both tissues. The genotoxic effects of UV light in internal organs is tentatively amenable to formation of unidentified long-lived mutagenic products in the skin of irradiated mice. Nucleotide alterations were even more pronounced when the mice were exposed to smoke and/or light during the first 5 weeks of life rather than during adulthood for an equivalent period of time. Although the pathogenetic meaning is uncertain, DNA damage in heart and aorta may tentatively be related to cardiomyopathies and to the atherogenesis process, respectively.

  4. Perinatal Lead Exposure Alters Gut Microbiota Composition and Results in Sex-specific Bodyweight Increases in Adult Mice.

    Science.gov (United States)

    Wu, Jianfeng; Wen, Xiaoquan William; Faulk, Christopher; Boehnke, Kevin; Zhang, Huapeng; Dolinoy, Dana C; Xi, Chuanwu

    2016-06-01

    Heavy metal pollution is a principle source of environmental contamination. Epidemiological and animal data suggest that early life lead (Pb) exposure results in critical effects on epigenetic gene regulation and child and adult weight trajectories. Using a mouse model of human-relevant exposure, we investigated the effects of perinatal Pb exposure on gut microbiota in adult mice, and the link between gut microbiota and bodyweight changes. Following Pb exposure during gestation and lactation via maternal drinking water, bodyweight in A(vy) strain wild-type non-agouti (a/a) offspring was tracked through adulthood. Gut microbiota of adult mice were characterized by deep DNA sequencing of bacterial 16S ribosomal RNA genes. Data analyses were stratified by sex and adjusted for litter effects. A Bayesian variable selection algorithm was used to analyze associations between bacterial operational taxonomic units and offspring adult bodyweight. Perinatal Pb exposure was associated with increased adult bodyweight in male (P compositions were significantly different (analysis of molecular variance, P gut microbiota were highly associated with adult bodyweight (P = .028; effect size = 2.59). Thus, perinatal Pb exposure results in altered adult gut microbiota regardless of sex, and these changes are highly correlated with increased bodyweight in males. Adult gut microbiota can be shaped by early exposures and may contribute to disease risks in a sex-specific manner. © The Author 2016. Published by Oxford University Press on behalf of the Society of Toxicology. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Developmental fluoxetine exposure increases behavioral despair and alters epigenetic regulation of the hippocampal BDNF gene in adult female offspring.

    Science.gov (United States)

    Boulle, Fabien; Pawluski, Jodi L; Homberg, Judith R; Machiels, Barbie; Kroeze, Yvet; Kumar, Neha; Steinbusch, Harry W M; Kenis, Gunter; van den Hove, Daniel L A

    2016-04-01

    A growing number of infants are exposed to selective serotonin reuptake inhibitor (SSRI) medications during the perinatal period. Perinatal exposure to SSRI medications alter neuroplasticity and increase depressive- and anxiety-related behaviors, particularly in male offspring as little work has been done in female offspring to date. The long-term effects of SSRI on development can also differ with previous exposure to prenatal stress, a model of maternal depression. Because of the limited work done on the role of developmental SSRI exposure on neurobehavioral outcomes in female offspring, the aim of the present study was to investigate how developmental fluoxetine exposure affects anxiety and depression-like behavior, as well as the regulation of hippocampal brain-derived neurotrophic factor (BDNF) signaling in the hippocampus of adult female offspring. To do this female Sprague-Dawley rat offspring were exposed to prenatal stress and fluoxetine via the dam, for a total of four groups of female offspring: 1) No Stress+Vehicle, 2) No Stress+Fluoxetine, 3) Prenatal Stress+Vehicle, and 4) Prenatal Stress+Fluoxetine. Primary results show that, in adult female offspring, developmental SSRI exposure significantly increases behavioral despair measures on the forced swim test, decreases hippocampal BDNF exon IV mRNA levels, and increases levels of the repressive histone 3 lysine 27 tri-methylated mark at the corresponding promoter. There was also a significant negative correlation between hippocampal BDNF exon IV mRNA levels and immobility in the forced swim test. No effects of prenatal stress or developmental fluoxetine exposure were seen on tests of anxiety-like behavior. This research provides important evidence for the long-term programming effects of early-life exposure to SSRIs on female offspring, particularily with regard to affect-related behaviors and their underlying molecular mechanisms. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish.

    Science.gov (United States)

    Lazzari, Maurizio; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-02-01

    The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96h of exposure to copper ions at the sublethal concentration of 30μgL(-1). Densitometric values of cONS, immunostained with anti-G αolf, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30days, we observed a partial restoration of anti-G αolf staining intensity to normal condition. The recovery of cOSNs appeared sustained by neuronal proliferation, quantified with anti-PCNA immunostaining, in particular in the early days after exposure. The densitometric analysis applied to mOSNs, immunostained with anti-TRPC2

  7. Differential Exposure to Hazardous Air Pollution in the United States: A Multilevel Analysis of Urbanization and Neighborhood Socioeconomic Deprivation

    Directory of Open Access Journals (Sweden)

    Frank C. Curriero

    2012-06-01

    Full Text Available Population exposure to multiple chemicals in air presents significant challenges for environmental public health. Air quality regulations distinguish criteria air pollutants (CAPs (e.g., ozone, PM2.5 from hazardous air pollutants (HAPs—187 chemicals which include carcinogens and others that are associated with respiratory, cardiovascular, neurological and numerous other non-cancer health effects. Evidence of the public’s cumulative exposure and the health effects of HAPs are quite limited. A multilevel model is used to assess differential exposure to HAP respiratory, neurological, and cancer hazards (2005 related to the Townsend Index of Socioeconomic Deprivation (TSI, after adjustment for regional population size and economic activity, and local population density. We found significant positive associations between tract TSI and respiratory and cancer HAP exposure hazards, and smaller effects for neurological HAPs. Tracts in the top quintile of TSI have between 38%–60% higher HAP exposure than the bottom quintile; increasing population size from the bottom quintile to the top quintile modifies HAP exposure hazard related to TSI, increasing cancer HAP exposure hazard by 6% to 20% and increasing respiratory HAP exposure hazard by 12% to 27%. This study demonstrates the value of social epidemiological methods for analyzing differential exposure and advancing cumulative risk assessment.

  8. Differential exposure to hazardous air pollution in the United States: a multilevel analysis of urbanization and neighborhood socioeconomic deprivation.

    Science.gov (United States)

    Young, Gary S; Fox, Mary A; Trush, Michael; Kanarek, Norma; Glass, Thomas A; Curriero, Frank C

    2012-06-01

    Population exposure to multiple chemicals in air presents significant challenges for environmental public health. Air quality regulations distinguish criteria air pollutants (CAPs) (e.g., ozone, PM2.5) from hazardous air pollutants (HAPs)-187 chemicals which include carcinogens and others that are associated with respiratory, cardiovascular, neurological and numerous other non-cancer health effects. Evidence of the public's cumulative exposure and the health effects of HAPs are quite limited. A multilevel model is used to assess differential exposure to HAP respiratory, neurological, and cancer hazards (2005) related to the Townsend Index of Socioeconomic Deprivation (TSI), after adjustment for regional population size and economic activity, and local population density. We found significant positive associations between tract TSI and respiratory and cancer HAP exposure hazards, and smaller effects for neurological HAPs. Tracts in the top quintile of TSI have between 38%-60% higher HAP exposure than the bottom quintile; increasing population size from the bottom quintile to the top quintile modifies HAP exposure hazard related to TSI, increasing cancer HAP exposure hazard by 6% to 20% and increasing respiratory HAP exposure hazard by 12% to 27%. This study demonstrates the value of social epidemiological methods for analyzing differential exposure and advancing cumulative risk assessment.

  9. Exposure to extremely low frequency electromagnetic fields alters the calcium dynamics of cultured entorhinal cortex neurons.

    Science.gov (United States)

    Luo, Fen-Lan; Yang, Nian; He, Chao; Li, Hong-Li; Li, Chao; Chen, Fang; Xiong, Jia-Xiang; Hu, Zhi-An; Zhang, Jun

    2014-11-01

    Previous studies have revealed that extremely low frequency electromagnetic field (ELF-EMF) exposure affects neuronal dendritic spine density and NMDAR and AMPAR subunit expressions in the entorhinal cortex (EC). Although calcium signaling has a critical role in control of EC neuronal functions, however, it is still unclear whether the ELF-EMF exposure affects the EC neuronal calcium homeostasis. In the present study, using whole-cell recording and calcium imaging, we record the whole-cell inward currents that contain the voltage-gated calcium currents and show that ELF-EMF (50Hz, 1mT or 3mT, lasting 24h) exposure does not influence these currents. Next, we specifically isolate the high-voltage activated (HVA) and low-voltage activated (LVA) calcium channels-induced currents. Similarly, the activation and inactivation characteristics of these membrane calcium channels are also not influenced by ELF-EMF. Importantly, ELF-EMF exposure reduces the maximum amplitude of the high-K(+)-evoked calcium elevation in EC neurons, which is abolished by thapsigargin, a Ca(2+) ATPase inhibitor, to empty the intracellular calcium stores of EC neurons. Together, these findings indicate that ELF-EMF exposure specifically influences the intracellular calcium dynamics of cultural EC neurons via a calcium channel-independent mechanism. Copyright © 2014 Elsevier Inc. All rights reserved.

  10. Differential protein expression in Corbicula fluminea upon exposure to a Microcystis aeruginosa toxic strain.

    Science.gov (United States)

    Martins, José C; Leão, Pedro N; Vasconcelos, Vítor

    2009-03-15

    Changes in protein expression induced by a Microcystis aeruginosa toxic strain in the freshwater clam Corbicula fluminea were studied using a proteomic approach in an effort to identify new molecular biomarkers. Clams were fed with 1 x 10(6) cells mL(-1) of a M. aeruginosa toxic strain (IZANCYA 2), during 24 b. Cytosolic fractions of gills and digestive tract were analyzed by two-dimensional (2D) electrophoresis in 7 cm IPG strips (pH 4-7). On average, about 400 spots were resolved using Coomassie staining. Altered protein expression was quantitatively detected in 16-13 spots in gills and digestive tract, respectively. In 2D electrophoresis gel protein maps from gills, 10 of 16 spots were downregulated. In the digestive tract, the general tendency was an increase in the protein expression level after the exposure. The altered protein spots were excised and analyzed by MALDI-TOF-MS, with identification of 8 proteins in gills and 5 in the digestive tract. Most of the identified proteins are involved in cytoskeleton assembly. Metabolic proteins were also detected. These results are in agreement with predicted effects of PP1 and PP2A phosphatase inhibition as major effect of microcystins-related toxicity.

  11. Exposure to Radiofrequency Radiation Emitted from Common Mobile Phone Jammers Alters the Pattern of Muscle Contractions: an Animal Model Study

    Directory of Open Access Journals (Sweden)

    Rafati A.

    2015-09-01

    Full Text Available Introduction: The rapid growth of wireless communication technologies has caused public concerns regarding the biological effects of electromagnetic radiations on human health. Some early reports indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians such as the alterations of the pattern of muscle extractions. This study is aimed at investigating the effects of exposure to radiofrequency (RF radiation emitted from mobile phone jammers on the pulse height of contractions, the time interval between two subsequent contractions and the latency period of frog’s isolated gastrocnemius muscle after stimulation with single square pulses of 1V (1 Hz. Materials and Methods: Frogs were kept in plastic containers in a room. Animals in the jammer group were exposed to radiofrequency (RF radiation emitted from a common Jammer at a distance of 1m from the jammer’s antenna for 2 hours while the control frogs were only sham exposed. Then animals were sacrificed and isolated gastrocnemius muscles were exposed to on/off jammer radiation for 3 subsequent 10 minute intervals. Isolated gastrocnemius muscles were attached to the force transducer with a string. Using a PowerLab device (26-T, the pattern of muscular contractions was monitored after applying single square pulses of 1V (1 Hz as stimuli. Results: The findings of this study showed that the pulse height of muscle contractions could not be affected by the exposure to electromagnetic fields. However, the latency period was effectively altered in RF-exposed samples. However, none of the experiments could show an alteration in the time interval between two subsequent contractions after exposure to electromagnetic fields. Conclusion: These findings support early reports which indicated a wide variety of non-thermal effects of electromagnetic radiation on amphibians including the effects on the pattern of muscle extractions.

  12. Differential response of olfactory sensory neuron populations to copper ion exposure in zebrafish

    Energy Technology Data Exchange (ETDEWEB)

    Lazzari, Maurizio, E-mail: maurizio.lazzari@unibo.it; Bettini, Simone; Milani, Liliana; Maurizii, Maria Gabriella; Franceschini, Valeria

    2017-02-15

    Highlights: • Copper exposure affects ciliated olfactory receptors more than microvillar cells. • Crypt olfactory sensory neurons are not affected by copper exposure. • Copper exposure induces an increase in the amount of sensory epithelium. - Abstract: The peripheral olfactory system of fish is in direct contact with the external aqueous environment, so dissolved contaminants can easily impair sensory functions and cause neurobehavioral injuries. The olfactory epithelium of fish is arranged in lamellae forming a rosette in the olfactory cavity and contains three main types of olfactory sensory neurons (OSNs): ciliated (cOSNs) and microvillous olfactory sensory neurons (mOSNs), common to all vertebrates, and a third minor group of olfactory neurons, crypt cells, absent in tetrapods. Since copper is a ubiquitously diffusing olfactory toxicant and a spreading contaminant in urban runoff, we investigated the effect of low copper concentration on the three different OSNs in the olfactory epithelium of zebrafish, a model system widely used in biological research. Image analysis was applied for morphometry and quantification of immunohistochemically detected OSNs. Copper exposure resulted in an evident decrease in olfactory epithelium thickness. Moreover, after exposure, the lamellae of the dorsal and ventral halves of the olfactory rosettes showed a different increase in their sensory areas, suggesting a lateral migration of new cells into non-sensory regions. The results of the present study provide clear evidence of a differential response of the three neural cell populations of zebrafish olfactory mucosa after 96 h of exposure to copper ions at the sublethal concentration of 30 μg L{sup −1}. Densitometric values of cONS, immunostained with anti-G {sub αolf}, decreased of about 60% compared to the control. When the fish were transferred to water without copper addition and examined after 3, 10 and 30 days, we observed a partial restoration of anti-G {sub

  13. High psychosis liability is associated with altered autonomic balance during exposure to Virtual Reality social stressors

    NARCIS (Netherlands)

    Counotte, Jacqueline; Pot-Kolder, Roos; van Roon, Arie M.; Hoskam, Olivier; van der Gaag, Mark; Veling, Wim

    Background: Social stressors are associated with an increased risk of psychosis. Stress sensitisation is thought to be an underlying mechanismand may be reflected in an altered autonomic stress response. Using an experimental Virtual Reality design, the autonomic stress response to social

  14. Histological alterations in the liver of rats induced by different gold nanoparticle sizes, doses and exposure duration

    Directory of Open Access Journals (Sweden)

    Abdelhalim Mohamed

    2012-01-01

    Full Text Available Abstract Background Nanoparticles (NPs can potentially cause adverse effects on organ, tissue, cellular, subcellular and protein levels due to their unusual physicochemical properties. Advances in nanotechnology have identified promising candidates for many biological and biomedical applications. Since the properties of NPs differ from that of their bulk materials, they are being increasingly exploited for medical uses and other industrial applications. The aim of the present study was to investigate the particle-size effect of gold nanoparticles (GNPs on the hepatic tissue in an attempt to cover and understand the toxicity and the potential threat of their therapeutic and diagnostic use. Methods To investigate particle-size effect of GNPs on the hepatic tissue, a total of 70 healthy male Wistar-Kyoto rats were exposed to GNPs received 50 or 100 ul of GNPs infusion of size (10, 20 and 50 nm for 3 or 7 days. Results In comparison with respective control rats, exposure to GNPs doses has produced alterations in the hepatocytes, portal triads and the sinusoids. The alterations in the hepatocytes were mainly summarized as hydropic degeneration, cloudy swelling, fatty degeneration, portal and lobular infiltrate by chronic inflammatory cells and congestive dilated central veins. Conclusions The induced histological alterations might be an indication of injured hepatocytes due to GNPs toxicity that became unable to deal with the accumulated residues resulting from metabolic and structural disturbances caused by these NPs. These alterations were size-dependent with smaller ones induced the most effects and related with time exposure of GNPs. The appearance of hepatocytes cytoplasmic degeneration and nuclear destruction may suggest that GNPs interact with proteins and enzymes of the hepatic tissue interfering with the antioxidant defense mechanism and leading to reactive oxygen species (ROS generation which in turn may induce stress in the hepatocytes to

  15. Laser exposure induced alteration of WS2 monolayers in the presence of ambient moisture

    Science.gov (United States)

    Atkin, P.; Lau, D. W. M.; Zhang, Q.; Zheng, C.; Berean, K. J.; Field, M. R.; Ou, J. Z.; Cole, I. S.; Daeneke, T.; Kalantar-Zadeh, K.

    2018-01-01

    Photoluminescence (PL) emergence in monolayer transition metal dichalcogenides (TMDs) such as WS2, has been one of the key attractions of such materials. However, there have been many observational contradictions in PL measurements presented in the past literature. This work addresses such issues. Firstly, the observational changes of the flakes’ PL patterns under exposure to various intensities of radiant exposure via laser sources are presented. These experiments show that these changes are a function of radiant exposure. Interestingly, it is observed that PL loss is accompanied by a change of the profile height for WS2 monolayers. In order to explore the fundamental mechanism for PL and height variations, laser irradiation was applied to monolayer WS2 flakes with varying radiant exposure to obtain PL maps, under the absence and presence of oxygen, H2O and nitrogen molecules in the atmosphere. It was seen that, after relatively high radiant exposure (>15 mJ µm‑2), the PL pattern loss occurs only in the presence of atmospheric H2O molecules (45% humidity) and is also accompanied by an increase in height. Compositional analysis determined that this height increase was due to the substitution of surface S atoms with sulphate groups. This discovery represents an important step forward in understanding the necessary precautions when investigating optical properties of 2D TMDs in atmospheric conditions, and highlights the need for precise evaluation of the thresholds for radiant exposure at which specific reactions begin to occur. This knowledge is crucial for efficient and effective control of ambient operating conditions for optical characterisation of monolayer WS2 and TMDs in general.

  16. Socioeconomic and urban-rural differentials in exposure to air pollution and mortality burden in England.

    Science.gov (United States)

    Milojevic, Ai; Niedzwiedz, Claire L; Pearce, Jamie; Milner, James; MacKenzie, Ian A; Doherty, Ruth M; Wilkinson, Paul

    2017-10-06

    Socioeconomically disadvantaged populations often have higher exposures to particulate air pollution, which can be expected to contribute to differentials in life expectancy. We examined socioeconomic differentials in exposure and air pollution-related mortality relating to larger scale (5 km resolution) variations in background concentrations of selected pollutants across England. Ozone and particulate matter (sub-divided into PM 10 , PM 2.5 , PM 2.5-10 , primary, nitrate and sulphate PM 2.5 ) were simulated at 5 km horizontal resolution using an atmospheric chemistry transport model (EMEP4UK). Annual mean concentrations of these pollutants were assigned to all 1,202,578 residential postcodes in England, which were classified by urban-rural status and socioeconomic deprivation based on the income and employment domains of the 2010 English Index of Multiple Deprivation for the Lower-level Super Output Area of residence. We used life table methods to estimate PM 2.5 -attributable life years (LYs) lost in both relative and absolute terms. Concentrations of the most particulate fractions, but not of nitrate PM 2.5 or ozone, were modestly higher in areas of greater socioeconomic deprivation. Relationships between pollution level and socioeconomic deprivation were non-linear and varied by urban-rural status. The pattern of PM 2.5 concentrations made only a small contribution to the steep socioeconomic gradient in LYs lost due to PM 2.5 per 10 3 population, which primarily was driven by the steep socioeconomic gradient in underlying mortality rates. In rural areas, the absolute burden of air pollution-related LYs lost was lowest in the most deprived deciles. Air pollution shows modest socioeconomic patterning at 5 km resolution in England, but absolute attributable mortality burdens are strongly related to area-level deprivation because of underlying mortality rates. Measures that cause a general reduction in background concentrations of air pollution may modestly

  17. Developmental exposure to 2,3,7,8 tetrachlorodibenzo-p-dioxin attenuates capacity of hematopoietic stem cells to undergo lymphocyte differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ahrenhoerster, Lori S.; Tate, Everett R.; Lakatos, Peter A. [Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee (United States); Program in Environmental and Occupational Health, Milwaukee, WI 53211 (United States); Wang, Xuexia [Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee (United States); Program in Biostatistics, Milwaukee, WI 53211 (United States); Laiosa, Michael D., E-mail: laiosa@uwm.edu [Joseph J. Zilber School of Public Health, University of Wisconsin-Milwaukee (United States); Program in Environmental and Occupational Health, Milwaukee, WI 53211 (United States)

    2014-06-01

    The process of hematopoiesis, characterized by long-term self-renewal and multi-potent lineage differentiation, has been shown to be regulated in part by the ligand-activated transcription factor known as the aryl hydrocarbon receptor (AHR). 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD), a ubiquitous contaminant and the most potent AHR agonist, also modulates regulation of adult hematopoietic stem and progenitor cell (HSC/HPC) homeostasis. However, the effect of developmental TCDD exposure on early life hematopoiesis has not been fully explored. Given the inhibitory effects of TCDD on hematopoiesis and lymphocyte development, we hypothesized that in utero exposure to TCDD would alter the functional capacity of fetal HSC/HPCs to complete lymphocyte differentiation. To test this hypothesis, we employed a co-culture system designed to facilitate the maturation of progenitor cells to either B or T lymphocytes. Furthermore, we utilized an innovative limiting dilution assay to precisely quantify differences in lymphocyte differentiation between HSC/HPCs obtained from fetuses of dams exposed to 3 μg/kg TCDD or control. We found that the AHR is transcribed in yolk sac hematopoietic cells and is transcriptionally active as early as gestational day (GD) 7.5. Furthermore, the number of HSC/HPCs present in the fetal liver on GD 14.5 was significantly increased in fetuses whose mothers were exposed to TCDD throughout pregnancy. Despite this increase in HSC/HPC cell number, B and T lymphocyte differentiation is decreased by approximately 2.5 fold. These findings demonstrate that inappropriate developmental AHR activation in HSC/HPCs adversely impacts lymphocyte differentiation and may have consequences for lymphocyte development in the bone marrow and thymus later in life.

  18. Morphological and metabolic alterations in duckweed (Spirodela polyrhiza) on long-term low-level chronic UV-B exposure.

    Science.gov (United States)

    Farooq, M; Shankar, U; Ray, R S; Misra, R B; Agrawal, N; Verma, K; Hans, R K

    2005-11-01

    Laboratory grown duckweed (Spirodela polyrhiza) plants were exposed to 0.72 and 1.44J of UV-B radiation daily for 7 days at 0.4mW/cm(2) intensity. Chlorosis and necrosis were observed along with depletion in protein, pigments (chlorophyll, pheophytin, carotenoids, phycoerythrin, phycocyanin, and flavoxanthin), biomass, root length, and frond size in UV-B-exposed plants. The study confirms morphological and metabolic alterations leading to reduction in the productivity of duckweed following long-term exposure to UV-B radiation.

  19. [Alteration of thyroid hormone secretion after long-term exposure to low doses of endocrine disruptor DDT].

    Science.gov (United States)

    Iaglova, N V; Iaglov, V V

    2014-01-01

    Endocrine disruptors are exogenous substances that exhibit hormone-like action and consequently disrupt homeostatic action of endogenous hormones. DDT is the most common disruptor. The objective was to evaluate changes in thyroid hormone secretion after long-term exposure to low doses of DDT. The experiment was performed on male Wistar rats. The rats were given DDT at doses of 1.89±0.86 мg/kg/day and 7.77±0.17 мg/kg/day for 6 and 10 weeks. Dose dependent increase of serum total thyroxine, total triiodthyronine, and thyroid peroxidase was revealed after 6 weeks exposure. After 10 weeks free thyroxine secretion was reduced. Such alterations of the thyroid status are typical for iodine deficient goiter. The data obtained indicate that the main mechanism of DDT action includes disruption of thyroxine secretion by thyrocytes, but not inhibition of deiodinase activity and decrease of blood thyroid binding proteins.

  20. Fibroblast growth factor receptor (FGFR) alterations in squamous differentiated bladder cancer: a putative therapeutic target for a small subgroup

    Science.gov (United States)

    Baldia, Philipp H.; Maurer, Angela; Heide, Timon; Rose, Michael; Stoehr, Robert; Hartmann, Arndt; Williams, Sarah V.; Knowles, Margaret A.; Knuechel, Ruth; Gaisa, Nadine T.

    2016-01-01

    Although drugable fibroblast growth factor receptor (FGFR) alterations in squamous cell carcinomas (SCC) of various entities are well known, little is known about FGFR modifications in squamous differentiated bladder cancer. Therefore, our study evaluated FGFR1-3 alterations as a putative therapeutic target in this subgroup. We analyzed 73 squamous differentiated bladder cancers (n = 10 pT2, n = 55 pT3, n = 8 pT4) for FGFR1-3 protein expression, FGFR1-3 copy number variations, FGFR3 chromosomal rearrangements (fluorescence in situ hybridization (FISH)) and FGFR3 mutations (SNapShot analysis). Only single cases displayed enhanced protein expression, most frequently FGFR3 overexpression (9.4% (6/64)). FISH showed no amplifications of FGFR1, 2 or 3. Break apart events were only slightly above the cut off in 12.1% (8/66) of cases and no FGFR3-TACC3 rearrangements could be proven by qPCR. FGFR3 mutations (p.S249C) were found in 8.5% (6/71) of tumors and were significantly associated with FGFR3 protein overexpression (p bladder cancer (n = 85), which revealed reduced overall expression of FGFR1 and FGFR2 in tumors compared to normal tissue, while expression of FGFR3 remained high. In the TCGA “squamous-like” subtype FGFR3 mutations were found in 4.9% and correlated with high FGFR3 RNA expression. Mutations of FGFR1 and FGFR2 were less frequent (2.4% and 1.2%). Hence, our comprehensive study provides novel insights into a subgroup of squamous differentiated bladder tumors that hold clues for novel therapeutic regimens and may benefit from FGFR3-targeted therapies. PMID:27669755

  1. In utero and lactational exposure to a mixture of environmental contaminants detected in Canadian Arctic human populations alters retinoid levels in rat offspring with low margins of exposure.

    Science.gov (United States)

    Elabbas, Lubna E; Esteban, Javier; Barber, Xavier; Hamscher, Gerd; Nau, Heinz; Bowers, Wayne J; Nakai, Jamie S; Herlin, Maria; Åkesson, Agneta; Viluksela, Matti; Borg, Daniel; Håkansson, Helen

    2014-01-01

    Arctic inhabitants are highly exposed to persistent organic pollutants (POP), which may produce adverse health effects. This study characterized alterations in tissue retinoid (vitamin A) levels in rat offspring and their dams following in utero and lactational exposure to the Northern Contaminant Mixture (NCM), a mixture of 27 contaminants including polychlorinated biphenyls (PCB), organochlorine (OC) pesticides, and methylmercury (MeHg), present in maternal blood of the Canadian Arctic Inuit population. Further, effect levels for retinoid system alterations and other endpoints were compared to the Arctic Inuit population exposure and their interrelationships were assessed. Sprague-Dawley rat dams were dosed with NCM from gestational day 1 to postnatal day (PND) 23. Livers, kidneys and serum were obtained from offspring on PND35, PND77, and PND350 and their dams on PND30 for analysis of tissue retinoid levels, hepatic cytochrome P-450 (CYP) enzymes, and serum thyroid hormones. Benchmark doses were established for all endpoints, and a partial least-squares regression analysis was performed for NCM treatment, hepatic retinoid levels, CYP enzyme induction, and thyroid hormone levels, as well as body and liver weights. Hepatic retinoid levels were sensitive endpoints, with the most pronounced effects at PND35 though still apparent at PND350. The effects on tissue retinoid levels and changes in CYP enzyme activities, body and liver weights, and thyroid hormone levels were associated and likely driven by dioxin-like compounds in the mixture. Low margins of exposure were observed for all retinoid endpoints at PND35. These findings are important for health risk assessment of Canadian Arctic populations and further support the use of retinoid system analyses in testing of endocrine-system-modulating compounds.

  2. Air pollution exposure during critical time periods in gestation and alterations in cord blood lymphocyte distribution: a cohort of livebirths

    Directory of Open Access Journals (Sweden)

    Herr Caroline EW

    2010-08-01

    Full Text Available Abstract Background Toxic exposures have been shown to influence maturation of the immune system during gestation. This study investigates the association between cord blood lymphocyte proportions and maternal exposure to air pollution during each gestational month. Methods Cord blood was analyzed using a FACSort flow cytometer to determine proportions of T lymphocytes (CD3+ cells and their subsets, CD4+ and CD8+, B lymphocytes (CD19+ and natural killer (NK cells. Ambient air concentrations of 12 polycyclic aromatic hydrocarbons (PAH and particulate matter 2.5 were measured using fixed site monitors. Arithmetic means of these pollutants, calculated for each gestational month, were used as exposure metrics. Data on covariates were obtained from medical records and questionnaires. Multivariable linear regression models were fitted to estimate associations between monthly PAH or PM2.5 and cord blood lymphocytes, adjusting for year of birth and district of residence and, in further models, gestational season and number of prior live births. Results The adjusted models show significant associations between PAHs or PM2.5 during early gestation and increases in CD3+ and CD4+ lymphocytes percentages and decreases in CD19+ and NK cell percentages in cord blood. In contrast, exposures during late gestation were associated with decreases in CD3+ and CD4+ fractions and increases in CD19+ and NK cell fractions. There was no significant association between alterations in lymphocyte distribution and air pollution exposure during the mid gestation. Conclusions PAHs and PM2.5 in ambient air may influence fetal immune development via shifts in cord blood lymphocytes distributions. Associations appear to differ by exposure in early versus late gestation.

  3. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction.

    Science.gov (United States)

    Massa, Christopher B; Scott, Pamela; Abramova, Elena; Gardner, Carol; Laskin, Debra L; Gow, Andrew J

    2014-07-01

    Acute Cl2 exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl2 inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60ppm-hour Cl2 dose, and were euthanized 3, 24 and 48h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24h. Cl2 exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO3(-) or NO2(-). Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl2 exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl2 inhalation. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. OXIDATIVE STRESS-DEPENDENT ALTERED IMMUNE RESPONSES AND CELL DEATH IN SUBSTANTIA NIGRA AFTER OZONE EXPOSURE IN RAT

    Directory of Open Access Journals (Sweden)

    Selva eRivas - Arancibia

    2015-05-01

    Full Text Available Parkinson’s disease has been associated with the selective loss of neurons in the substantia nigra pars compacta. Increasing evidence suggests that oxidative stress plays a major role. The resulting increase in reactive oxygen species triggers a sequence of events that leads to cell damage, activation of microglia cells and neuroinflammatory responses. Our objective was to study whether chronic exposure to low doses of ozone, which produces oxidative stress itself, induces progressive cell death in conjunction with glial alterations in the substantia nigra. Animals were exposed to an ozone-free air stream (control or to low doses of ozone for 7, 15, 30, 60, or 90 days. Each group underwent 1 spectrophotometric analysis for protein oxidation; 2 western blot testing for microglia reactivity and nuclear factor kappa B expression levels; and 3 immunohistochemistry for cytochrome c, GFAP, Iba-1, NFkB and COX-2. Our results indicate that ozone induces an increase in protein oxidation levels, changes in activated astrocytes and microglia, and cell death. NFkB and cytochrome c showed an increase until 30 days of exposure, while cyclooxygenase 2 in the substantia nigra increased from 7 days up to 90 days of repetitive ozone exposure. These results suggest that oxidative stress caused by ozone exposure induces changes in inflammatory responses and progressive cell death in the substantia nigra in rats, which could also be occurring in Parkinson’s disease.

  5. Neuroprotective Effect of Ginseng against Alteration of Calcium Binding Proteins Immunoreactivity in the Mice Hippocampus after Radiofrequency Exposure

    Directory of Open Access Journals (Sweden)

    Dhiraj Maskey

    2013-01-01

    Full Text Available Calcium binding proteins (CaBPs such as calbindin D28-k, parvalbumin, and calretinin are able to bind Ca2+ with high affinity. Changes in Ca2+ concentrations via CaBPs can disturb Ca2+ homeostasis. Brain damage can be induced by the prolonged electromagnetic field (EMF exposure with loss of interacellular Ca2+ balance. The present study investigated the radioprotective effect of ginseng in regard to CaBPs immunoreactivity (IR in the hippocampus through immunohistochemistry after one-month exposure at 1.6 SAR value by comparing sham control with exposed and ginseng-treated exposed groups separately. Loss of dendritic arborization was noted with the CaBPs in the Cornu Ammonis areas as well as a decrease of staining intensity of the granule cells in the dentate gyrus after exposure while no loss was observed in the ginseng-treated group. A significant difference in the relative mean density was noted between control and exposed groups but was nonsignificant in the ginseng-treated group. Decrease in CaBP IR with changes in the neuronal staining as observed in the exposed group would affect the hippocampal trisynaptic circuit by alteration of the Ca2+ concentration which could be prevented by ginseng. Hence, ginseng could contribute as a radioprotective agent against EMF exposure, contributing to the maintenance of Ca2+ homeostasis by preventing impairment of intracellular Ca2+ levels in the hippocampus.

  6. Exposure of Monocytes to Lipoarabinomannan Promotes Their Differentiation into Functionally and Phenotypically Immature Macrophages

    Directory of Open Access Journals (Sweden)

    Leslie Chávez-Galán

    2015-01-01

    Full Text Available Lipoarabinomannan (LAM is a lipid virulence factor secreted by Mycobacterium tuberculosis (Mtb, the etiologic agent of tuberculosis. LAM can be measured in the urine or serum of tuberculosis patients (TB-patients. Circulating monocytes are the precursor cells of alveolar macrophages and might be exposed to LAM in patients with active TB. We speculated that exposing monocytes to LAM could produce phenotypically and functionally immature macrophages. To test our hypothesis, human monocytes were stimulated with LAM (24–120 hours and various readouts were measured. The study showed that when monocytes were exposed to LAM, the frequency of CD68+, CD33+, and CD86+ macrophages decreased, suggesting that monocyte differentiation into mature macrophages was affected. Regarding functionality markers, TLR2+ and TLR4+ macrophages also decreased, but the percentage of MMR+ expression did not change. LAM-exposed monocytes generated macrophages that were less efficient in producing proinflammatory cytokines such as TNF-α and IFN-γ; however, their phagocytic capacity was not modified. Taken together, these data indicate that LAM exposure influenced monocyte differentiation and produced poorly functional macrophages with a different phenotype. These results may help us understand how mycobacteria can limit the quality of the innate and adaptive immune responses.

  7. Exposure of fluid milk to LED light negatively affects consumer perception and alters underlying sensory properties.

    Science.gov (United States)

    Martin, Nicole; Carey, Nancy; Murphy, Steven; Kent, David; Bang, Jae; Stubbs, Tim; Wiedmann, Martin; Dando, Robin

    2016-06-01

    Fluid milk consumption per capita in the United States has been steadily declining since the 1940s. Many factors have contributed to this decline, including the increasing consumption of carbonated beverages and bottled water. To meet the challenge of stemming the decline in consumption of fluid milk, the dairy industry must take a systematic approach to identifying and correcting for factors that negatively affect consumers' perception of fluid milk quality. To that end, samples of fluid milk were evaluated to identify factors, with a particular focus on light-emitting diode (LED) light exposure, which negatively affect the perceived sensory quality of milk, and to quantify their relative effect on the consumer's experience. Fluid milk samples were sourced from 3 processing facilities with varying microbial postprocessing contamination patterns based on historical testing. The effect of fat content, light exposure, age, and microbiological content were assayed across 23 samples of fluid milk, via consumer, descriptive sensory, and instrumental analyses. Most notably, light exposure resulted in a broad negative reaction from consumers, more so than samples with microbiological contamination exceeding 20,000 cfu/mL on days approaching code. The predominant implication of the study is that a component of paramount importance in ensuring the success of the dairy industry would be to protect fluid milk from all sources of light exposure, from processing plant to consumer. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  8. Serum vitamin D levels are not altered after controlled diesel exhaust exposures in healthy human subjects

    Science.gov (United States)

    Past research has suggested that exposure to urban air pollution may be associated with vitamin D deficiency in human populations. Vitamin D is widely known for its importance in bone growth/remodeling, muscle metabolism, and its ability to promote calcium absorption in the gut; ...

  9. Short GSM mobile phone exposure does not alter human auditory brainstem response

    Directory of Open Access Journals (Sweden)

    Thuróczy György

    2007-11-01

    Full Text Available Abstract Background There are about 1.6 billion GSM cellular phones in use throughout the world today. Numerous papers have reported various biological effects in humans exposed to electromagnetic fields emitted by mobile phones. The aim of the present study was to advance our understanding of potential adverse effects of the GSM mobile phones on the human hearing system. Methods Auditory Brainstem Response (ABR was recorded with three non-polarizing Ag-AgCl scalp electrodes in thirty young and healthy volunteers (age 18–26 years with normal hearing. ABR data were collected before, and immediately after a 10 minute exposure to 900 MHz pulsed electromagnetic field (EMF emitted by a commercial Nokia 6310 mobile phone. Fifteen subjects were exposed to genuine EMF and fifteen to sham EMF in a double blind and counterbalanced order. Possible effects of irradiation was analyzed by comparing the latency of ABR waves I, III and V before and after genuine/sham EMF exposure. Results Paired sample t-test was conducted for statistical analysis. Results revealed no significant differences in the latency of ABR waves I, III and V before and after 10 minutes of genuine/sham EMF exposure. Conclusion The present results suggest that, in our experimental conditions, a single 10 minute exposure of 900 MHz EMF emitted by a commercial mobile phone does not produce measurable immediate effects in the latency of auditory brainstem waves I, III and V.

  10. C60 exposure induced tissue damage and gene expression alterations in the earthworm Lumbricus rubellus

    NARCIS (Netherlands)

    Ploeg, van der M.J.C.; Handy, R.D.; Heckmann, L.H.; Hout, van der A.; Brink, van den N.W.

    2013-01-01

    Effects of C60 exposure (0, 15 or 154 mg/kg soil) on the earthworm Lumbricus rubellus were assessed at the tissue and molecular level, in two experiments. In the first experiment, earthworms were exposed for four weeks, and in the second lifelong. In both experiments, gene expression of heat shock

  11. Exposure of periodontal ligament progenitor cells to lipopolysaccharide from Escherichia coli changes osteoblast differentiation pattern

    Science.gov (United States)

    ALBIERO, Mayra Laino; AMORIM, Bruna Rabelo; MARTINS, Luciane; CASATI, Márcio Zaffalon; SALLUM, Enilson Antonio; NOCITI, Francisco Humberto; SILVÉRIO, Karina Gonzales

    2015-01-01

    Periodontal ligament mesenchymal stem cells (PDLMSCs) are an important alternative source of adult stem cells and may be applied for periodontal tissue regeneration, neuroregenerative medicine, and heart valve tissue engineering. However, little is known about the impact of bacterial toxins on the biological properties of PDLSMSCs, including self-renewal, differentiation, and synthesis of extracellular matrix. Objective : This study investigated whether proliferation, expression of pro-inflammatory cytokines, and osteogenic differentiation of CD105-enriched PDL progenitor cell populations (PDL-CD105+ cells) would be affected by exposure to bacterial lipopolysaccharide from Escherichia coli (EcLPS). Material and Methods : Toll-like receptor 4 (TLR4) expression was assessed in PDL-CD105+ cells by the immunostaining technique and confirmed using Western blotting assay. Afterwards, these cells were exposed to EcLPS, and the following assays were carried out: (i) cell viability using MTS; (ii) expression of the interleukin-1 beta (IL-1β), interleukin-6 (IL-6), interleukin-8 (IL-8), and tumor necrosis factor alpha (TNF-α) genes; (iii) osteoblast differentiation assessed by mineralization in vitro, and by mRNA levels of run-related transcription factor-2 (RUNX2), alkaline phosphatase (ALP) and osteocalcin (OCN) determined by quantitative PCR. Results : PDL-CD105+ cells were identified as positive for TLR4. EcLPS did not affect cell viability, but induced a significant increase of transcripts for IL-6 and IL-8. Under osteogenic condition, PDL-CD105+ cells exposed to EcLPS presented an increase of mineralized matrix deposition and higher RUNX2 and ALP mRNA levels when compared to the control group. Conclusions : These results provide evidence that CD105-enriched PDL progenitor cells are able to adapt to continuous Escherichia coli endotoxin challenge, leading to an upregulation of osteogenic activities. PMID:26018305

  12. Exposure of periodontal ligament progenitor cells to lipopolysaccharide from Escherichia coli changes osteoblast differentiation pattern

    Directory of Open Access Journals (Sweden)

    Mayra Laino ALBIERO

    2015-04-01

    Full Text Available Periodontal ligament mesenchymal stem cells (PDLMSCs are an important alternative source of adult stem cells and may be applied for periodontal tissue regeneration, neuroregenerative medicine, and heart valve tissue engineering. However, little is known about the impact of bacterial toxins on the biological properties of PDLSMSCs, including self-renewal, differentiation, and synthesis of extracellular matrix. Objective : This study investigated whether proliferation, expression of pro-inflammatory cytokines, and osteogenic differentiation of CD105-enriched PDL progenitor cell populations (PDL-CD105+ cells would be affected by exposure to bacterial lipopolysaccharide from Escherichia coli (EcLPS. Material and Methods : Toll-like receptor 4 (TLR4 expression was assessed in PDL-CD105+ cells by the immunostaining technique and confirmed using Western blotting assay. Afterwards, these cells were exposed to EcLPS, and the following assays were carried out: (i cell viability using MTS; (ii expression of the interleukin-1 beta (IL-1β, interleukin-6 (IL-6, interleukin-8 (IL-8, and tumor necrosis factor alpha (TNF-α genes; (iii osteoblast differentiation assessed by mineralization in vitro, and by mRNA levels of run-related transcription factor-2 (RUNX2, alkaline phosphatase (ALP and osteocalcin (OCN determined by quantitative PCR. Results : PDL-CD105+ cells were identified as positive for TLR4. EcLPS did not affect cell viability, but induced a significant increase of transcripts for IL-6 and IL-8. Under osteogenic condition, PDL-CD105+ cells exposed to EcLPS presented an increase of mineralized matrix deposition and higher RUNX2 and ALP mRNA levels when compared to the control group. Conclusions : These results provide evidence that CD105-enriched PDL progenitor cells are able to adapt to continuous Escherichia coli endotoxin challenge, leading to an upregulation of osteogenic activities.

  13. Maternal-fetal attachment differentiates patterns of prenatal smoking and exposure.

    Science.gov (United States)

    Massey, Suena H; Bublitz, Margaret H; Magee, Susanna R; Salisbury, Amy; Niaura, Raymond S; Wakschlag, Lauren S; Stroud, Laura R

    2015-06-01

    Smoking cessation during pregnancy may reflect altruistic motives on behalf of the unborn baby. We test the hypothesis that pregnancy quitters have higher maternal-fetal attachment than persistent smokers, and secondarily explore how maternal-fetal attachment differs among non-smokers, pregnancy quitters, and persistent smokers. Participants were 156 women in the Behavior and Mood in Babies and Mothers study who provided report of smoking throughout pregnancy via timeline follow back interviews, with salivary cotinine confirmation of reported cessation at 30 and 35 week gestation, and postpartum day one. Maternal Fetal Attachment Scale total and subscale scores (role-taking, differentiation of self from fetus, interaction with fetus, attributing characteristics to fetus, giving of self) were examined among non-smokers, pregnancy quitters, and persistent smokers. At 30 weeks, pregnancy quitters scored higher on the 'giving of self' subscale compared to persistent smokers (21.6±2.4 versus 19.9±2.9; p=.004). Maternal 'giving of self' also differentiated pregnancies exposed to cigarette smoking from those without exposure from 30 weeks through delivery (19.9±2.9 versus 21.2±2.2; p=.002). Controlling for age, income, unemployment, gravida, and father's smoking status, 'giving of self' differentiated pregnancy quitters from persistent smokers [OR=5.144; 95% C.I. 1.509 - 17.538; B (SE)=1.638 (.626); p=.009]. Women who reported a greater desire to maintain their personal health for the health of their fetus were more likely to quit smoking during pregnancy. Implications of findings for interventions and understanding mechanisms of risk are discussed. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Long-lasting alterations to DNA methylation and ncRNAs could underlie the effects of fetal alcohol exposure in mice

    Directory of Open Access Journals (Sweden)

    Benjamin I. Laufer

    2013-07-01

    Fetal alcohol spectrum disorders (FASDs are characterized by life-long changes in gene expression, neurodevelopment and behavior. What mechanisms initiate and maintain these changes are not known, but current research suggests a role for alcohol-induced epigenetic changes. In this study we assessed alterations to adult mouse brain tissue by assaying DNA cytosine methylation and small noncoding RNA (ncRNA expression, specifically the microRNA (miRNA and small nucleolar RNA (snoRNA subtypes. We found long-lasting alterations in DNA methylation as a result of fetal alcohol exposure, specifically in the imprinted regions of the genome harboring ncRNAs and sequences interacting with regulatory proteins. A large number of major nodes from the identified networks, such as Pten signaling, contained transcriptional repressor CTCF-binding sites in their promoters, illustrating the functional consequences of alcohol-induced changes to DNA methylation. Next, we assessed ncRNA expression using two independent array platforms and quantitative PCR. The results identified 34 genes that are targeted by the deregulated miRNAs. Of these, four (Pten, Nmnat1, Slitrk2 and Otx2 were viewed as being crucial in the context of FASDs given their roles in the brain. Furthermore, ∼20% of the altered ncRNAs mapped to three imprinted regions (Snrpn-Ube3a, Dlk1-Dio3 and Sfmbt2 that showed differential methylation and have been previously implicated in neurodevelopmental disorders. The findings of this study help to expand on the mechanisms behind the long-lasting changes in the brain transcriptome of FASD individuals. The observed changes could contribute to the initiation and maintenance of the long-lasting effect of alcohol.

  15. Temperature, hydric environment, and prior pathogen exposure alter the experimental severity of chytridiomycosis in boreal toads

    Science.gov (United States)

    Murphy, Peter J.; St-Hilaire, Sophie; Corn, Paul Stephen

    2011-01-01

    Prevalence of the pathogen Batrachochytrium dendrobatidis (Bd), implicated in amphibian population declines worldwide, is associated with habitat moisture and temperature, but few studies have varied these factors and measured the response to infection in amphibian hosts. We evaluated how varying humidity, contact with water, and temperature affected the manifestation of chytridiomycosis in boreal toads Anaxyrus (Bufo) boreas boreas and how prior exposure to Bd affects the likelihood of survival after re-exposure, such as may occur seasonally in long-lived species. Humidity did not affect survival or the degree of Bd infection, but a longer time in contact with water increased the likelihood of mortality. After exposure to ~106 Bd zoospores, all toads in continuous contact with water died within 30 d. Moreover, Bd-exposed toads that were disease-free after 64 d under dry conditions, developed lethal chytridiomycosis within 70 d of transfer to wet conditions. Toads in unheated aquaria (mean = 15°C) survived less than 48 d, while those in moderately heated aquaria (mean = 18°C) survived 115 d post-exposure and exhibited behavioral fever, selecting warmer sites across a temperature gradient. We also found benefits of prior Bd infection: previously exposed toads survived 3 times longer than Bd-naïve toads after re-exposure to 106 zoospores (89 vs. 30 d), but only when dry microenvironments were available. This study illustrates how the outcome of Bd infection in boreal toads is environmentally dependent: when continuously wet, high reinfection rates may overwhelm defenses, but periodic drying, moderate warming, and previous infection may allow infected toads to extend their survival.

  16. Ecotoxicoproteomic assessment of the functional alterations caused by chronic metallic exposures in gammarids.

    Science.gov (United States)

    Gismondi, E; Thomé, J-P; Urien, N; Uher, E; Baiwir, D; Mazzucchelli, G; De Pauw, E; Fechner, L C; Lebrun, J D

    2017-06-01

    Very few ecotoxicological studies have been performed on long-term exposure under controlled conditions, hence limiting the assessment of the impact of chronic and diffuse chemical pressures on the health of aquatic organisms. In this study, an ecotoxicoproteomic approach was used to assess the integrated response and possible acclimation mechanisms in Gammarus fossarum following chronic exposures to Cd, Cu or Pb, at environmentally realistic concentrations (i.e. 0.25, 1.5 and 5 μg/L respectively). After 10-week exposure, changes in protein expression were investigated in caeca of control and exposed males. Gel-free proteomic analyses allowed for the identification of 35 proteins involved in various biological functions, for which 23 were significantly deregulated by metal exposures. The protein deregulation profiles were specific to each metal, providing evidence for metal-specific action sites and responses of gammarids. Among the tested metals, Cu was the most toxic in terms of mortality, probably linked with persistent oxidative stress. Moulting and osmoregulation were the major biological functions affected by Cu in the long-term. In Pb-exposed gammarids, significant deregulations of proteins involved in immune response and cytoskeleton were observed. Reproduction appears to be strongly affected in gammarids chronically exposed to Cd or Pb. Besides, modified expressions of several proteins involved in energy transfer and metabolism highlighted important energetic reshuffling to cope with chronic metal exposures. These results support the fact that metallic pressures induce a functional and energetic cost for individuals of G. fossarum with potential repercussions on population dynamics. Furthermore, this ecotoxicoproteomic study offers promising lines of enquiry in the development of new biomarkers that could make evidence of long-term impacts of metals on the health of organisms. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Differential alteration of lipid antigen presentation to NKT cells due to imbalances in lipid metabolism.

    Science.gov (United States)

    Schümann, Jens; Facciotti, Federica; Panza, Luigi; Michieletti, Mario; Compostella, Federica; Collmann, Anthony; Mori, Lucia; De Libero, Gennaro

    2007-06-01

    Deficiencies in enzymes of the lysosomal glycosphingolipid degradation pathway or in lysosomal lipid transfer proteins cause an imbalance in lipid metabolism and induce accumulation of certain lipids. A possible impact of such an imbalance on the presentation of lipid antigens to lipid-reactive T cells has only been hypothesized but not extensively studied so far. Here we demonstrate that presentation of lipid antigens to, and development of, lipid-reactive CD1d-restricted NKT cells, are impaired in mice deficient in the lysosomal enzyme beta-galactosidase (betaGal) or the lysosomal lipid transfer protein Niemann-Pick C (NPC) 2. Importantly, the residual populations of NKT cells selected in betaGal-/- and NPC2-/- mice showed differential TCR and CD4 repertoire characteristics, suggesting that differential selecting CD1d:lipid antigen complexes are formed. Furthermore, we provide direct evidence that accumulation of lipids impairs lipid antigen presentation in both cases. However, the mechanisms by which imbalanced lipid metabolism affected lipid antigen presentation were different. Based on these results, the impact of lipid accumulation should be generally considered in the interpretation of immunological deficiencies found in mice suffering from lipid metabolic disorders.

  18. Effects of exposure to extremely low-frequency electromagnetic fields on the differentiation of Th17 T cells and regulatory T cells.

    Science.gov (United States)

    Lee, Yun-Jung; Hyung, Kyeong Eun; Yoo, Jong-Sun; Jang, Ye Won; Kim, Soo Jeong; Lee, Do Ik; Lee, Sang Joon; Park, So-Young; Jeong, Ji Hoon; Hwang, Kwang Woo

    2016-10-01

    The potential risks that electromagnetic fields (EMF) pose to human physiology have been debated for several decades, especially considering that EMF is almost omnipresent and some occupations involve regular exposure to particularly strong fields. In the present study, the effects of 60 Hz 0.3 mT EMF on CD4+ T cells were evaluated. Production of T cell related cytokines, IFN-γ and IL-2, was not altered in CD4+ T cells that were exposed to EMF, and cell proliferation was also unaffected. The expression of genes present in a subset of Th17 cells was upregulated following EMF exposure, and the production of effector cytokines of the IL-17A subset also increased. To determine signaling pathways that underlie these effects, phosphorylation of STAT3 and SMAD3, downstream molecules of cytokines critical for Th17 induction, was analyzed. Increased SMAD3 phosphorylation level in cells exposed to EMF, suggesting that SMAD3 may be at least in part causing the increased Th17 cell production. Differentiation of Treg, another CD4+ T cell subset induced by SMAD3 signaling, was also elevated following EMF exposure. These results suggest that 60 Hz 0.3 mT EMF exposure amplifies TGF-β signaling and increases the generation of specific T cell subsets.

  19. Modulation of platelet membrane function via exogenous lipid moiety exposure alters platelet responsiveness to shear.

    Science.gov (United States)

    Leung, S L; Dimasi, A; Heiser, S; Dunn, A; Bluestein, D; Slepian, M

    2015-01-01

    Shear-induced platelet activation may cause life-threatening thrombosis, particularly in patients with mechanical support devices or coronary atherosclerosis. The majority of present anti-platelet agents target or interfere with biochemical, rather than physical mechanisms of platelet activation. Less data and understanding exists with regard to pharmacologic modulation of shear-mediated platelet activation. In this work, we hypothesized that modulating cell membrane properties, via alteration of membrane composition through addition of exogenous lipid moieties, would alter platelet responsiveness to shear. Here we tested fatty acids, lecithin and cholesterol as additive lipid compounds. We demonstrated that incorporation of fatty acids (DHA/EPA) or lecithin into the platelet membrane triggered enhanced sensitivity of platelets to shear-mediated activation. On the other hand, cholesterol incorporation provides significant protection, limiting the effect of shear on platelet activation. These findings provide valuable insight for the development of therapeutic strategies that can modulate shear-mediated platelet activation.

  20. Prenatal ethanol exposure alters ethanol-induced Fos immunoreactivity and dopaminergic activity in the mesocorticolimbic pathway of the adolescent brain.

    Science.gov (United States)

    Fabio, M C; Vivas, L M; Pautassi, R M

    2015-08-20

    Prenatal ethanol exposure (PEE) promotes alcohol intake during adolescence, as shown in clinical and pre-clinical animal models. The mechanisms underlying this effect of prenatal ethanol exposure on postnatal ethanol intake remain, however, mostly unknown. Few studies assessed the effects of moderate doses of prenatal ethanol on spontaneous and ethanol-induced brain activity on adolescence. This study measured, in adolescent (female) Wistar rats prenatally exposed to ethanol (0.0 or 2.0g/kg/day, gestational days 17-20) or non-manipulated (NM group) throughout pregnancy, baseline and ethanol-induced cathecolaminergic activity (i.e., colocalization of c-Fos and tyrosine hydroxylase) in ventral tegmental area (VTA), and baseline and ethanol-induced Fos immunoreactivity (ir) in nucleus accumbens shell and core (AcbSh and AcbC, respectively) and prelimbic (PrL) and infralimbic (IL) prefrontal cortex. The rats were challenged with ethanol (dose: 0.0, 1.25, 2.5 or 3.25g/kg, i.p.) at postnatal day 37. Rats exposed to vehicle prenatally (VE group) exhibited reduced baseline dopaminergic tone in VTA; an effect that was inhibited by prenatal ethanol exposure (PEE group). Dopaminergic activity in VTA after the postnatal ethanol challenge was greater in PEE than in VE or NM animals. Ethanol-induced Fos-ir at AcbSh was found after 1.25g/kg and 2.5g/kg ethanol, in VE and PEE rats, respectively. PEE did not alter ethanol-induced Fos-ir at IL but reduced ethanol-induced Fos-ir at PrL. These results suggest that prenatal ethanol exposure heightens dopaminergic activity in the VTA and alters the response of the mesocorticolimbic pathway to postnatal ethanol exposure. These effects may underlie the enhanced vulnerability to develop alcohol-use disorders of adolescents with a history of in utero ethanol exposure. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  1. Acute chlorine gas exposure produces transient inflammation and a progressive alteration in surfactant composition with accompanying mechanical dysfunction

    Energy Technology Data Exchange (ETDEWEB)

    Massa, Christopher B.; Scott, Pamela; Abramova, Elena; Gardner, Carol; Laskin, Debra L.; Gow, Andrew J., E-mail: Gow@rci.rutgers.edu

    2014-07-01

    Acute Cl{sub 2} exposure following industrial accidents or military/terrorist activity causes pulmonary injury and severe acute respiratory distress. Prior studies suggest that antioxidant depletion is important in producing dysfunction, however a pathophysiologic mechanism has not been elucidated. We propose that acute Cl{sub 2} inhalation leads to oxidative modification of lung lining fluid, producing surfactant inactivation, inflammation and mechanical respiratory dysfunction at the organ level. C57BL/6J mice underwent whole-body exposure to an effective 60 ppm-hour Cl{sub 2} dose, and were euthanized 3, 24 and 48 h later. Whereas pulmonary architecture and endothelial barrier function were preserved, transient neutrophilia, peaking at 24 h, was noted. Increased expression of ARG1, CCL2, RETLNA, IL-1b, and PTGS2 genes was observed in bronchoalveolar lavage (BAL) cells with peak change in all genes at 24 h. Cl{sub 2} exposure had no effect on NOS2 mRNA or iNOS protein expression, nor on BAL NO{sub 3}{sup −} or NO{sub 2}{sup −}. Expression of the alternative macrophage activation markers, Relm-α and mannose receptor was increased in alveolar macrophages and pulmonary epithelium. Capillary surfactometry demonstrated impaired surfactant function, and altered BAL phospholipid and surfactant protein content following exposure. Organ level respiratory function was assessed by forced oscillation technique at 5 end expiratory pressures. Cl{sub 2} exposure had no significant effect on either airway or tissue resistance. Pulmonary elastance was elevated with time following exposure and demonstrated PEEP refractory derecruitment at 48 h, despite waning inflammation. These data support a role for surfactant inactivation as a physiologic mechanism underlying respiratory dysfunction following Cl{sub 2} inhalation. - Highlights: • Effect of 60 ppm*hr Cl{sub 2} gas on lung inflammation and mechanical function examined. • Pulmonary inflammation is transient and minor.

  2. Combined exposure to nicotine and ethanol in adolescent mice differentially affects memory and learning during exposure and withdrawal.

    Science.gov (United States)

    Abreu-Villaça, Yael; Medeiros, Ana H; Lima, Carla S; Faria, Felipe P; Filgueiras, Cláudio C; Manhães, Alex C

    2007-07-19

    Human adolescents often associate tobacco smoking and consumption of alcoholic beverages. In spite of this frequent association, little is known about the basic neurobiology of the dual exposure in the adolescent brain. In the present work, we assessed, through the use of the step-through passive avoidance box (2mA, 2s; test-retest interval of 24h), short- and long-term memory/learning effects of nicotine (NIC) and/or ethanol (ETOH) exposure during adolescence (postnatal days 30-45: PN30-45) in four groups of male and female C57BL/6 mice: (1) concomitant NIC [nicotine free base solution (50microg/ml) in 2% saccharin to drink] and ETOH [ethanol solution (25%, 2g/kg) i.p. injected every other day] exposure; (2) NIC exposure; (3) ETOH exposure; (4) vehicle. During exposure (PN44-45), deficits in memory/learning due to concomitant NIC+ETOH exposure reflected the summation of the two individual sets of effects. During a short-term drug withdrawal (PN49-50), nicotine improved memory/learning, however, ethanol blocked nicotine-induced improvements. One month post-exposure (PN74-75), a significant female-only improvement in memory/learning was observed as a result of co-administration. In conclusion, our results suggest that detrimental effects of nicotine and ethanol on memory/learning during adolescent combined exposure represent a worsened outcome from the dual exposure. However, negative effects of the combined exposure fail to persist during withdrawal. In fact, the combined exposure elicits a sex-dependent late onset beneficial effect on memory/learning during withdrawal.

  3. Repeated Exposure to Neurotoxic Levels of Chlorpyriphos Alters Hippocampal Expression of Neurotrophins and Neuropeptides

    Science.gov (United States)

    2016-01-13

    Nanodrop-1000 Spectrophotometer (Thermo Fisher Scien - tific, Rockford, IL) and Agilent 2100 Bioanalyzer (Agilent Technol- ogies, Santa Clara, CA). RNA...2.4.1. Microarray analysis Antisense RNA (aRNA) libraries were prepared from 100 ng of total RNA obtained from the CA1 region of rat hippocampus as...differentially expressed genes see File 4 in Lee et al. (2015). 2.4.2. RNA-sequencing RNA-seq libraries were prepared using the TruSeq RNA sample

  4. Does prenatal exposure to vitamin D-fortified margarine and milk alter birth weight?

    DEFF Research Database (Denmark)

    Jensen, Camilla B; Berentzen, Tina L; Gamborg, Michael

    2014-01-01

    The present study examined whether exposure to vitamin D from fortified margarine and milk during prenatal life influenced mean birth weight and the risk of high or low birth weight. The study was based on the Danish vitamin D fortification programme, which was a societal intervention...... with mandatory fortification of margarine during 1961-1985 and voluntary fortification of low-fat milk between 1972 and 1976. The influence of prenatal vitamin D exposure on birth weight was investigated among 51 883 Danish children, by comparing birth weight among individuals born during 2 years before or after...... the initiation and termination of vitamin D fortification programmes. In total, four sets of analyses were performed. Information on birth weight was available in the Copenhagen School Health Record Register for all school children in Copenhagen. The mean birth weight was lower among the exposed than non...

  5. Does prenatal exposure to vitamin D-fortified margarine and milk alter birth weight?

    DEFF Research Database (Denmark)

    Jensen, Camilla B; Berentzen, Tina L; Gamborg, Michael

    2014-01-01

    with mandatory fortification of margarine during 1961-1985 and voluntary fortification of low-fat milk between 1972 and 1976. The influence of prenatal vitamin D exposure on birth weight was investigated among 51 883 Danish children, by comparing birth weight among individuals born during 2 years before or after...... the initiation and termination of vitamin D fortification programmes. In total, four sets of analyses were performed. Information on birth weight was available in the Copenhagen School Health Record Register for all school children in Copenhagen. The mean birth weight was lower among the exposed than non...... than non-exposed children (margarine initiation 27·4 (95 % CI 10·8, 44·0) g). No differences in the odds of high (>4000 g) or low ( children exposed and non-exposed to vitamin D fortification prenatally. Prenatal exposure to vitamin D from fortified...

  6. Maternal exposure to an environmentally relevant dose of triclocarban results in perinatal exposure and potential alterations in offspring development in the mouse model.

    Directory of Open Access Journals (Sweden)

    Heather A Enright

    Full Text Available Triclocarban (TCC is among the top 10 most commonly detected wastewater contaminants in both concentration and frequency. Its presence in water, as well as its propensity to bioaccumulate, has raised numerous questions about potential endocrine and developmental effects. Here, we investigated whether exposure to an environmentally relevant concentration of TCC could result in transfer from mother to offspring in CD-1 mice during gestation and lactation using accelerator mass spectrometry (AMS. 14C-TCC (100 nM was administered to dams through drinking water up to gestation day 18, or from birth to post-natal day 10. AMS was used to quantify 14C-concentrations in offspring and dams after exposure. We demonstrated that TCC does effectively transfer from mother to offspring, both trans-placentally and via lactation. TCC-related compounds were detected in the tissues of offspring with significantly higher concentrations in the brain, heart and fat. In addition to transfer from mother to offspring, exposed offspring were heavier in weight than unexposed controls demonstrating an 11% and 8.5% increase in body weight for females and males, respectively. Quantitative real-time polymerase chain reaction (qPCR was used to examine changes in gene expression in liver and adipose tissue in exposed offspring. qPCR suggested alterations in genes involved in lipid metabolism in exposed female offspring, which was consistent with the observed increased fat pad weights and hepatic triglycerides. This study represents the first report to quantify the transfer of an environmentally relevant concentration of TCC from mother to offspring in the mouse model and evaluate bio-distribution after exposure using AMS. Our findings suggest that early-life exposure to TCC may interfere with lipid metabolism and could have implications for human health.

  7. Altered functional connectivity during spatial working memory in children with heavy prenatal alcohol exposure.

    Science.gov (United States)

    Infante, M Alejandra; Moore, Eileen M; Bischoff-Grethe, Amanda; Tapert, Susan F; Mattson, Sarah N; Riley, Edward P

    2017-11-01

    Individuals prenatally exposed to alcohol often have impaired spatial working memory (SWM). This study examines functional connections of frontal and parietal regions that support SWM in children with and without prenatal alcohol exposure. Children ages 10 to 16 with histories of heavy prenatal alcohol exposure (AE group; n = 18) and controls (CON group; n = 19) underwent functional magnetic resonance imaging (fMRI) while performing a SWM task. Whole brain task-related functional connectivity of bilateral dorsolateral prefrontal cortex (DLPFC) and posterior parietal cortex (PPC) seed regions were estimated for each participant using a psychophysiological interaction approach. Children in the AE group were less accurate than children in the CON group when performing the SWM task (p = 0.008). Positive coupling between bilateral DLPFC seeds and regions within the fronto-parietal network was observed in the CON group, whereas the AE group showed negative connectivity. In contrast to the CON group, the AE group showed positive connectivity between PPC seeds and frontal lobe regions. Across seeds, decreased negative coupling with regions outside the fronto-parietal network (e.g., left middle occipital gyrus) were observed in the AE group relative to the CON group. Functional data clusters were considered significant at p alcohol exposure. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Alcohol exposure during pregnancy altered childhood developmental trajectories in a rural South African community.

    Science.gov (United States)

    Davies, Leigh-Anne; Cockcroft, Kate; Olinger, Lynda; Chersich, Matthew; Urban, Michael; Chetty Makkan, Candice M; Turnbull, Oliver H; Olivier, Leana; Viljoen, Denis

    2017-11-01

    This study examined the effects of prenatal alcohol exposure on childhood development trajectories in a rural South African community between 2003 and 2008. We assessed 121 children at 7-12 months (year one) and 5-6 years (year five) using the Griffiths Mental Developmental Scales - Extended Revised, which measures sensorimotor, cognitive and social development, with lower scores indicating developmental delay. We also interviewed their mothers or caregivers. Three groups were identified: 29 with foetal alcohol syndrome (FAS) or partial FAS (pFAS), 57 more who had been exposed to alcohol and 35 controls who had not. The scale's total score was higher in the controls than in the FAS/pFAS group at year one and year five and in the alcohol-exposed group at year five. Many groups' trajectories declined when compared with global norms, but the trajectories in the FAS/pFAS and the alcohol-exposed groups declined more than the controls for eye-hand and performance and total score. Earlier pregnancy recognition in the FAS/pFAS group correlated strongly (r = -0.77) with higher GQ in year five. FAS/pFAS and prenatal alcohol exposure affected the Griffiths scores more than the control group. Efforts are needed to detect pregnancy early and reduce alcohol exposure. ©2017 Foundation Acta Paediatrica. Published by John Wiley & Sons Ltd.

  9. Metformin Exposure During Pregnancy and Lactation Did Not Cause Vascular Reactivity Alteration in Adult Male Offsprings.

    Science.gov (United States)

    Novi, Daniella R B S; Forcato, Simone; Vidigal, Camila B; Loiola, Guilherme H; Gerardin, Daniela C C; Ceravolo, Graziela S

    2017-11-01

    Metformin has been used for the treatment of some metabolic diseases during gestation and the beneficial effects of metformin to the vascular system have been described in diabetic and obese animal models. Nevertheless, the long-term consequences to the vascular system of offsprings maternally exposed to metformin have not yet been characterized. Therefore, we want to test the hypothesis that gestational and lactational exposure to metformin would be safe for the vascular reactivity of male adult offsprings. Wistar female rats were treated with metformin 293 mg·kg·d, by gavage, from gestational day (GD) 0 to GD 21 (METG) or GD 0 until postnatal day 21 (METGL). Control dams received water by gavage in the same periods (CTRG and CTRGL). In male offsprings (75 days), the aortic reactivity to phenylephrine, acetylcholine, and sodium nitroprusside in the presence or absence of endothelium were evaluated. The results demonstrated that aortic contraction and relaxation were similar between groups. These data showed that metformin exposure during pregnancy and lactation did not interfere with aortic reactivity, suggesting that metformin exposure during gestational and lactation are safe for the offsprings' vascular system.

  10. Histopathologic alterations associated with global gene expression due to chronic dietary TCDD exposure in juvenile zebrafish.

    Directory of Open Access Journals (Sweden)

    Qing Liu

    Full Text Available The goal of this project was to investigate the effects and possible developmental disease implication of chronic dietary TCDD exposure on global gene expression anchored to histopathologic analysis in juvenile zebrafish by functional genomic, histopathologic and analytic chemistry methods. Specifically, juvenile zebrafish were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb, and fish were sampled following 0, 7, 14, 28 and 42 d after initiation of the exposure. TCDD accumulated in a dose- and time-dependent manner and 100 ppb TCDD caused TCDD accumulation in female (15.49 ppb and male (18.04 ppb fish at 28 d post exposure. Dietary TCDD caused multiple lesions in liver, kidney, intestine and ovary of zebrafish and functional dysregulation such as depletion of glycogen in liver, retrobulbar edema, degeneration of nasal neurosensory epithelium, underdevelopment of intestine, and diminution in the fraction of ovarian follicles containing vitellogenic oocytes. Importantly, lesions in nasal epithelium and evidence of endocrine disruption based on alternatively spliced vasa transcripts are two novel and significant results of this study. Microarray gene expression analysis comparing vehicle control to dietary TCDD revealed dysregulated genes involved in pathways associated with cardiac necrosis/cell death, cardiac fibrosis, renal necrosis/cell death and liver necrosis/cell death. These baseline toxicological effects provide evidence for the potential mechanisms of developmental dysfunctions induced by TCDD and vasa as a biomarker for ovarian developmental disruption.

  11. Subacute Microcystin-LR Exposure Alters the Metabolism of Thyroid Hormones in Juvenile Zebrafish (Danio Rerio

    Directory of Open Access Journals (Sweden)

    Zidong Liu

    2015-01-01

    Full Text Available Microcystin-LR (MC-LR has been detected extensively in the aquatic environment and has the potential to disturb the thyroid endocrine system. However, limited information is available on the effects of subacute MC-LR exposure on fish thyroid hormone (TH metabolism. In the present study, juvenile zebrafish (Danio rerio were exposed to MC-LR at environmentally relevant concentrations (0, 1, 5, and 25 μg/L for 28 days. Whole-body TH content and thyroid follicle histology were used as direct endpoints to assess thyroid disruption. The activities of iodothyronine deiodinases (IDs and the transcription of selected genes associated with TH synthesis were also investigated to study the underlying mechanisms of endocrine disruption. Exposure of zebrafish to MC-LR significantly increased whole-body thyroxine (T4 content but decreased whole-body triiodothyronine (T3 content. We also observed hypertrophy and hyperplasia of the thyroid follicle epithelial cells, as well as up-regulation of corticotropin-releasing hormone (CRH, thyroid-stimulating hormone (TSH, thyroid peroxidase (TPO, and transthyretin (TTR genes. The decreases in ID1 and ID2 activities coupled with an increase in ID3 activity were observed in MC-LR treatment groups. These results demonstrate that exposure to MC-LR at environmental concentrations results in the disturbance of TH homeostasis by disrupting the synthesis and conversion of THs.

  12. Stable and episodic/bolus patterns of methylmercury exposure on mercury accumulation and histopathologic alterations in the nervous system.

    Science.gov (United States)

    Sakamoto, Mineshi; Kakita, Akiyoshi; Domingo, José L; Yamazaki, Hiroshi; Oliveira, Ricardo B; Sarrazin, Sandra L F; Eto, Komyo; Murata, Katsuyuki

    2017-01-01

    The main purpose of the present study was to compare the blood and brain mercury (Hg) accumulation and neurological alterations in adult male and pregnant female/fetal rats following stable and episodic/bolus patterns of methylmercury (MeHg) exposure. In addition, MeHg accumulation in the human body was estimated by a one-compartment model using three different patterns of MeHg exposure. In the adult male rat experiment, doses of 0.3 and 1.5mg MeHg/kg/day were orally administered to the stable groups for 5 weeks, while 7-fold higher doses of 2.1 and 10.5mg MeHg/kg/once a week were administered to the bolus groups. The blood Hg levels increased constantly in the stable groups, but increased with repeated waves in the bolus groups. At completion of the experiment, there were no significant differences in the brain Hg concentrations or neurological alterations between the stable and bolus groups, when the total doses of MeHg were the same. In the pregnant female rat experiment, a dose of 1mg MeHg/kg/day was administered orally to the stable group for 20 days (until 1day before expected parturition), while a 5-fold higher dose of 5mg MeHg/kg/once every 5 days was administered to the bolus group. In the brains of the maternal/fetal rats, there were no significant differences in the Hg concentrations and neurological alterations between the stable and bolus groups. The mean Hg concentrations in the fetal brains were approximately 2-fold higher than those in the maternal brains for both stable and bolus groups. Using the one-compartment model, the Hg accumulation curves in humans at doses of 7µg MeHg/day, 48µg MeHg/once a week, and 96µg MeHg/once every 2 weeks were estimated to be similar, while the bolus groups showed dose-dependent amplitudes of repeated waves. These results suggest that stable and episodic/bolus patterns of MeHg exposure do not cause differences in Hg accumulation in the blood and brain, or in neurological alterations, when the total doses are the

  13. Alteration of the Carbon and Nitrogen Isotopic Composition in the Martian Surface Rocks Due to Cosmic Ray Exposure

    Science.gov (United States)

    Pavlov, A. A.; Pavlov, A. K.; Ostryakov, V. M.; Vasilyev, G. I.; Mahaffy, P.; Steele, A.

    2014-01-01

    C-13/C-12 and N-15/N-14 isotopic ratios are pivotal for our understanding of the Martian carbon cycle, history of the Martian atmospheric escape, and origin of the organic compounds on Mars. Here we demonstrate that the carbon and nitrogen isotopic composition of the surface rocks on Mars can be significantly altered by the continuous exposure of Martian surface to cosmic rays. Cosmic rays can effectively produce C-13 and N-15 isotopes via spallation nuclear reactions on oxygen atoms in various Martian rocks. We calculate that in the top meter of the Martian rocks, the rates of production of both C-13 and N-15 due to galactic cosmic rays (GCRs) exposure can vary within 1.5-6 atoms/cm3/s depending on rocks' depth and chemical composition. We also find that the average solar cosmic rays can produce carbon and nitrogen isotopes at a rate comparable to GCRs in the top 5-10 cm of the Martian rocks. We demonstrate that if the total carbon content in a surface Martian rock is biological" C-13/C-12 ratio would be effectively erased by cosmic rays over 3.5 billion years of exposure. We found that for the rocks with relatively short exposure ages (e.g., 100 million years), cosmogenic changes in N-15/N-14 ratio are still very significant. We also show that a short exposure to cosmic rays of Allan Hills 84001 while on Mars can explain its high-temperature heavy nitrogen isotopic composition (N-15/N-14). Applications to Martian meteorites and the current Mars Science Laboratory mission are discussed.

  14. Altered resistance to Trichinella spiralis infection following subchronic exposure of adult mice to chemicals of environmental concern

    Energy Technology Data Exchange (ETDEWEB)

    Luebke, R.W.

    1981-01-01

    The effects of subchronic chemical exposure on expulsion of adult Trichinella spiralis from the small intestine of mice and encystment of newborn larvae in the host's musculature were investigated. Exposure to diethylstilbestrol, benzo(a)pyrene, tris-(1,3-dichloro-2-propyl) phosphate, cyclophosphamide, phorbol myristate acetate, and dimethylvinylchloride prior to infection of mice with 200 infective larvae resulted in larger worm burdens in treated animals than in controls 14 days after infection. Worm expulsion was not affected by exposure to tris-(2,3-dibromopropyl)phosphate, orthophenylphenol, and indomethacin. Increased burdens of muscle-phase larvae were found in animals that maintained significant numbers of adult worms in the gut at 14 days, except in mice administered diethylstilbestrol and dimethylvinylchloride. Exposure to diethylstilbestrol and cyclophosphamide resulted in decreased inflammatory reactions in the tissues of the small intestine and development of bone marrow eosinophilia in infected mice. Marrow eosinophilia was likewise decreased in mice given tris-(1,3-dichloro-2-propyl)phosphate before infection. Additional studies with diethylstilbestrol administered either before, at the time of, or after infection showed inhibition of worm expulsion. Drug exposure during a primary infection inhibited the expulsion of a second T. spiralis infection, but did not affect worm elimination when given during a second infection. Treatment with diethylstilbestrol after artificial sensitization of mice with Trichinella antigens decreased delayed hypersensitivity responses to the sensitizing antigen. Immune functions, assessed by lymphoproliferative responses to mitogens and antibody responses to sheep red blood cells, generally correlated with altered host resistance to T. spiralis infection.

  15. Prenatal exposure to dexamethasone in the mouse alters cardiac growth patterns and increases pulse pressure in aged male offspring.

    Directory of Open Access Journals (Sweden)

    Lee O'Sullivan

    Full Text Available Exposure to synthetic glucocorticoids during development can result in later cardiovascular and renal disease in sheep and rats. Although prenatal glucocorticoid exposure is associated with impaired renal development, less is known about effects on the developing heart. This study aimed to examine the effects of a short-term exposure to dexamethasone (60 hours from embryonic day 12.5 on the developing mouse heart, and cardiovascular function in adult male offspring. Dexamethasone (DEX exposed fetuses were growth restricted compared to saline treated controls (SAL at E14.5, but there was no difference between groups at E17.5. Heart weights of the DEX fetuses also tended to be smaller at E14.5, but not different at E17.5. Cardiac AT1aR, Bax, and IGF-1 mRNA expression was significantly increased by DEX compared to SAL at E17.5. In 12-month-old offspring DEX exposure caused an increase in basal blood pressure of ~3 mmHg. In addition, DEX exposed mice had a widened pulse pressure compared to SAL. DEX exposed males at 12 months had an approximate 25% reduction in nephron number compared to SAL, but no difference in cardiomyocyte number. Exposure to DEX in utero appears to adversely impact on nephrogenesis and heart growth but is not associated with a cardiomyocyte deficit in male mice in adulthood, possibly due to compensatory growth of the myocardium following the initial insult. However, the widened pulse pressure may be indicative of altered vascular compliance.

  16. Timing of in utero malaria exposure influences fetal CD4 T cell regulatory versus effector differentiation

    Directory of Open Access Journals (Sweden)

    Mary Prahl

    2016-10-01

    Full Text Available Abstract Background In malaria-endemic areas, the first exposure to malaria antigens often occurs in utero when the fetal immune system is poised towards the development of tolerance. Children exposed to placental malaria have an increased risk of clinical malaria in the first few years of life compared to unexposed children. Recent work has suggested the potential of pregnancy-associated malaria to induce immune tolerance in children living in malaria-endemic areas. A study was completed to evaluate the effect of malaria exposure during pregnancy on fetal immune tolerance and effector responses. Methods Using cord blood samples from a cohort of mother-infant pairs followed from early in pregnancy until delivery, flow cytometry analysis was completed to assess the relationship between pregnancy-associated malaria and fetal cord blood CD4 and dendritic cell phenotypes. Results Cord blood FoxP3+ Treg counts were higher in infants born to mothers with Plasmodium parasitaemia early in pregnancy (12–20 weeks of gestation; p = 0.048, but there was no association between Treg counts and the presence of parasites in the placenta at the time of delivery (by loop-mediated isothermal amplification (LAMP; p = 0.810. In contrast, higher frequencies of activated CD4 T cells (CD25+FoxP3−CD127+ were observed in the cord blood of neonates with active placental Plasmodium infection at the time of delivery (p = 0.035. This population exhibited evidence of effector memory differentiation, suggesting priming of effector T cells in utero. Lastly, myeloid dendritic cells were higher in the cord blood of infants with histopathologic evidence of placental malaria (p < 0.0001. Conclusion Together, these data indicate that in utero exposure to malaria drives expansion of both regulatory and effector T cells in the fetus, and that the timing of this exposure has a pivotal role in determining the polarization of the fetal immune response.

  17. Rim Structure, Stratigraphy, and Aqueous Alteration Exposures Along Opportunity Rover's Traverse of the Noachian Endeavour Crater

    Science.gov (United States)

    Crumpler, L.S.; Arvidson, R. E.; Golombek, M.; Grant, J. A.; Jolliff, B. L.; Mittlefehldt, D. W.

    2017-01-01

    The Mars Exploration Rover Opportunity has traversed 10.2 kilometers along segments of the west rim of the 22-kilometer-diameter Noachian Endeavour impact crater as of sol 4608 (01/09/17). The stratigraphy, attitude of units, lithology, and degradation state of bedrock outcrops exposed on the crater rim have been examined in situ and placed in geologic context. Structures within the rim and differences in physical properties of the identified lithologies have played important roles in localizing outcrops bearing evidence of aqueous alteration.

  18. Cortisol differentially alters claudin isoforms in cultured puffer fish gill epithelia.

    Science.gov (United States)

    Bui, Phuong; Bagherie-Lachidan, Mazdak; Kelly, Scott P

    2010-04-12

    A primary cultured gill epithelium from the puffer fish Tetraodon nigroviridis was developed to examine the corticosteroid regulation of claudin isoform mRNA abundance in fish gills. Preparations were composed of polygonal epithelial cells exhibiting concentric apical microridges and zonula occludens-1 immunoreactivity along cell margins. No evidence was found to indicate the presence of Na(+)-K(+)-ATPase-immunoreactive or mitochondria-rich cells in cultured preparations. Therefore, epithelia appear to be composed of gill pavement cells (PVCs) only. An RT-PCR profile of 12 salinity responsive gill claudin tight junction (TJ) proteins (Tncldn3a, -3c, -6, -8d, -10d, -10e, -11a, -23b, -27a, -27c, -32a, and -33b) revealed the absence of Tncldn6, -10d and -10e in cultured epithelia, suggesting that these isoforms are not associated with gill PVCs. Cortisol treatment of cultured epithelia dose-dependently increased or decreased mRNA abundance of select claudin isoforms. Transcript abundance of several claudin isoforms was unaffected by cortisol treatment. These data provide evidence for the cell specific distribution of claudins in fish gills and suggest that heterogeneous alterations in the abundance of select claudin isoforms contribute to the corticosteroid regulation of gill permeability.

  19. Foods that are perceived as healthy or unhealthy differentially alter young women's state body image.

    Science.gov (United States)

    Hayes, Jacqueline F; D'Anci, Kristen E; Kanarek, Robin B

    2011-10-01

    Body image can be influenced by day-to-day events, including food intake. The present study investigated the effects of foods typically perceived as "healthy" or "unhealthy" on state body image and mood. College-aged women were told the experiment was designed to assess the effects of food on cognition. Using a between-subjects design, participants consumed isocaloric amounts of foods perceived to be healthy (banana) or unhealthy (donut) or ate nothing. Next, participants completed three cognitive tasks. Prior to eating and following the cognitive tests, participants completed the BISS, POMS, the Figure Rating Scale, and the Restraint Scale. Body satisfaction decreased following intake of a donut, but was not altered in the other conditions. Depression scores significantly decreased after intake of either a donut or banana, but did not decrease in the no-food condition. Tension scores decreased significantly after consumption of a banana and in the no-food condition, but did not decrease following consumption of a donut. These results indicate that intake of a food that is perceived as unhealthy negatively affects state body image. Copyright © 2011 Elsevier Ltd. All rights reserved.

  20. Heart rate variability is differentially altered in multiple sclerosis: implications for acute, worsening and progressive disability.

    Science.gov (United States)

    Studer, Valeria; Rocchi, Camilla; Motta, Caterina; Lauretti, Benedetta; Perugini, Jacopo; Brambilla, Laura; Pareja-Gutierrez, Lorena; Camera, Giorgia; Barbieri, Francesca Romana; Marfia, Girolama A; Centonze, Diego; Rossi, Silvia

    2017-01-01

    Sympathovagal imbalance has been associated with poor prognosis in chronic diseases, but there is conflicting evidence in multiple sclerosis. The objective of this study was to investigate the autonomic nervous system dysfunction correlation with inflammation and progression in multiple sclerosis. Heart rate variability was analysed in 120 multiple sclerosis patients and 60 healthy controls during supine rest and head-up tilt test; the normalised units of low frequency and high frequency power were considered to assess sympathetic and vagal components, respectively. Correlation analyses with clinical and radiological markers of disease activity and progression were performed. Sympathetic dysfunction was closely related to the progression of disability in multiple sclerosis: progressive patients showed altered heart rate variability with respect to healthy controls and relapsing-remitting patients, with higher rest low frequency power and lacking the expected low frequency power increase during the head-up tilt test. In relapsing-remitting patients, disease activity, even subclinical, was associated with lower rest low frequency power, whereas stable relapsing-remitting patients did not differ from healthy controls. Less sympathetic reactivity and higher low frequency power at rest were associated with incomplete recovery from relapse. Autonomic balance appears to be intimately linked with both the inflammatory activity of multiple sclerosis, which is featured by an overall hypoactivity of the sympathetic nervous system, and its compensatory plastic processes, which appear inefficient in case of worsening and progressive multiple sclerosis.

  1. Caffeine differentially alters cortical hemodynamic activity during working memory: a near infrared spectroscopy study.

    Science.gov (United States)

    Heilbronner, Urs; Hinrichs, Hermann; Heinze, Hans-Jochen; Zaehle, Tino

    2015-10-01

    Caffeine is a widely used stimulant with potentially beneficial effects on cognition as well as vasoconstrictive properties. In functional magnetic imaging research, caffeine has gained attention as a potential enhancer of the blood oxygenation level-dependent (BOLD) response. In order to clarify changes of oxy- and deoxyhemoglobin (HbO and HbR) induced by caffeine during a cognitive task, we investigated a working memory (WM) paradigm (visual 2-back) using near-infrared spectroscopy (NIRS). Behaviorally, caffeine had no effect on the WM performance but influenced reaction times in the 0-back condition. NIRS data demonstrate caffeine-dependent alterations of the course of the hemodynamic response. The intake of 200 mg caffeine caused a significant decrease of the HbO response between 20 and 40 s after the onset of a 2-back task in the bilateral inferior frontal cortex (IFC). In parallel, the HbR response of the left IFC was significantly increased due to caffeine intake. In line with previous results, we did not detect an effect of caffeine on most aspects of behavior. Effects of caffeine on brain vasculature were detected as general reduction of HbO. Neuronal effects of caffeine are reflected in an increased concentration of HbR in the left hemisphere when performing a verbal memory task and suggest influences on metabolism.

  2. Exposure to a glyphosate-based herbicide during pregnancy and lactation induces neurobehavioral alterations in rat offspring.

    Science.gov (United States)

    Gallegos, Cristina E; Bartos, Mariana; Bras, Cristina; Gumilar, Fernanda; Antonelli, Marta C; Minetti, Alejandra

    2016-03-01

    The impact of sub-lethal doses of herbicides on human health and the environment is a matter of controversy. Due to the fact that evidence particularly of the effects of glyphosate on the central nervous system of rat offspring by in utero exposure is scarce, the purpose of the present study was to assess the neurobehavioral effects of chronic exposure to a glyphosate-containing herbicide during pregnancy and lactation. To this end, pregnant Wistar rats were exposed through drinking water to 0.2% or 0.4% of a commercial formulation of glyphosate (corresponding to a concentration of 0.65 or 1.30g/L of glyphosate, respectively) during pregnancy and lactation and neurobehavioral alterations in offspring were analyzed. The postnatal day on which each pup acquired neonatal reflexes (righting, cliff aversion and negative geotaxis) and that on which eyes and auditory canals were fully opened were recorded for the assessment of sensorimotor development. Locomotor activity and anxiety levels were monitored via open field test and plus maze test, respectively, in 45- and 90-day-old offspring. Pups exposed to a glyphosate-based herbicide showed early onset of cliff aversion reflex and early auditory canal opening. A decrease in locomotor activity and in anxiety levels was also observed in the groups exposed to a glyphosate-containing herbicide. Findings from the present study reveal that early exposure to a glyphosate-based herbicide affects the central nervous system in rat offspring probably by altering mechanisms or neurotransmitter systems that regulate locomotor activity and anxiety. Copyright © 2015 Elsevier Inc. All rights reserved.

  3. Transient Exposure to Ethanol during Zebrafish Embryogenesis Results in Defects in Neuronal Differentiation: An Alternative Model System to Study FASD

    Science.gov (United States)

    Joya, Xavier; Garcia-Algar, Oscar; Vall, Oriol; Pujades, Cristina

    2014-01-01

    Background The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS). In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines. Methodology/Principal Findings In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification. Conclusion Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s) of ethanol-induced developmental toxicity at very early stages of embryonic development. PMID:25383948

  4. Transient exposure to ethanol during zebrafish embryogenesis results in defects in neuronal differentiation: an alternative model system to study FASD.

    Directory of Open Access Journals (Sweden)

    Xavier Joya

    Full Text Available The exposure of the human embryo to ethanol results in a spectrum of disorders involving multiple organ systems, including the impairment of the development of the central nervous system (CNS. In spite of the importance for human health, the molecular basis of prenatal ethanol exposure remains poorly understood, mainly to the difficulty of sample collection. Zebrafish is now emerging as a powerful organism for the modeling and the study of human diseases. In this work, we have assessed the sensitivity of specific subsets of neurons to ethanol exposure during embryogenesis and we have visualized the sensitive embryonic developmental periods for specific neuronal groups by the use of different transgenic zebrafish lines.In order to evaluate the teratogenic effects of acute ethanol exposure, we exposed zebrafish embryos to ethanol in a given time window and analyzed the effects in neurogenesis, neuronal differentiation and brain patterning. Zebrafish larvae exposed to ethanol displayed small eyes and/or a reduction of the body length, phenotypical features similar to the observed in children with prenatal exposure to ethanol. When neuronal populations were analyzed, we observed a clear reduction in the number of differentiated neurons in the spinal cord upon ethanol exposure. There was a decrease in the population of sensory neurons mainly due to a decrease in cell proliferation and subsequent apoptosis during neuronal differentiation, with no effect in motoneuron specification.Our investigation highlights that transient exposure to ethanol during early embryonic development affects neuronal differentiation although does not result in defects in early neurogenesis. These results establish the use of zebrafish embryos as an alternative research model to elucidate the molecular mechanism(s of ethanol-induced developmental toxicity at very early stages of embryonic development.

  5. Cardiac Orienting Responses Differentiate the Impact of Prenatal Alcohol Exposure in Ukrainian Toddlers.

    Science.gov (United States)

    Kable, Julie A; Coles, Claire D; Jones, Kenneth L; Yevtushok, Lyubov; Kulikovsky, Yaroslav; Wertelecki, Wladimir; Chambers, Christina D

    2016-11-01

    Prenatal alcohol exposure (PAE) has been found to impact neurophysiological encoding of environmental events negatively in the first year of life but has not been evaluated in older infants or toddlers. Cardiac orienting responses (ORs) collected during a habituation/dishabituation learning paradigm were obtained from 12- to 18-month-olds to assess the impact of PAE beyond the first year of life. Participants included women and their toddlers who differed in PAE histories and enrolled in a randomized clinical trial of multivitamin/mineral usage during pregnancy. Those who were randomly assigned to the no intervention group were used for this analysis. The habituation/dishabituation paradigm consisted of 10 habituation and 5 dishabituation trials. Baseline heart rate (HR) was collected for 30 seconds prior to stimulus onset, and responses to the stimuli were assessed by sampling HR for 12 seconds poststimulus onset. The speed of the OR in response to auditory stimuli in the dishabituation condition was found to be altered as a function of maternal alcohol use around conception. For visual stimuli, positive histories of PAE were predictive of the magnitude but not the speed of the response on habituation and dishabituation trials. A history of binge drinking was associated with reduced magnitude of the OR response on visual encoding trials, and level of alcohol exposure at the time of conception was predictive of the magnitude of the response on visual dishabituation trials. Cardiac ORs collected in the toddler period were sensitive to the effects of PAE. The magnitude of the OR was more sensitive to the impact of PAE than in previous research with younger infants, and this may be a function of brain maturation. Additional research assessing the predictive utility of using ORs in making decisions about individual risk was recommended. Copyright © 2016 by the Research Society on Alcoholism.

  6. ACBP and cholesterol differentially alter fatty acyl CoA utilization by microsomal ACAT.

    Science.gov (United States)

    Chao, Hsu; Zhou, Minglong; McIntosh, Avery; Schroeder, Friedhelm; Kier, Ann B

    2003-01-01

    Microsomal acyl CoA:cholesterol acyltransferase (ACAT) is stimulated in vitro and/or in intact cells by proteins that bind and transfer both substrates, cholesterol, and fatty acyl CoA. To resolve the role of fatty acyl CoA binding independent of cholesterol binding/transfer, a protein that exclusively binds fatty acyl CoA (acyl CoA binding protein, ACBP) was compared. ACBP contains an endoplasmic reticulum retention motif and significantly colocalized with acyl-CoA cholesteryl acyltransferase 2 (ACAT2) and endoplasmic reticulum markers in L-cell fibroblasts and hepatoma cells, respectively. In the presence of exogenous cholesterol, ACAT was stimulated in the order: ACBP > sterol carrier protein-2 (SCP-2) > liver fatty acid binding protein (L-FABP). Stimulation was in the same order as the relative affinities of the proteins for fatty acyl CoA. In contrast, in the absence of exogenous cholesterol, these proteins inhibited microsomal ACAT, but in the same order: ACBP > SCP-2 > L-FABP. The extracellular protein BSA stimulated microsomal ACAT regardless of the presence or absence of exogenous cholesterol. Thus, ACBP was the most potent intracellular fatty acyl CoA binding protein in differentially modulating the activity of microsomal ACAT to form cholesteryl esters independent of cholesterol binding/transfer ability.

  7. Long-term exposure to bisphenol A or benzo(a)pyrene alters the fate of human mammary epithelial stem cells in response to BMP2 and BMP4, by pre-activating BMP signaling

    Science.gov (United States)

    Clément, Flora; Xu, Xinyi; Donini, Caterina F; Clément, Alice; Omarjee, Soleilmane; Delay, Emmanuel; Treilleux, Isabelle; Fervers, Béatrice; Le Romancer, Muriel; Cohen, Pascale A; Maguer-Satta, Véronique

    2017-01-01

    Bone morphogenetic protein 2 (BMP2) and BMP4 are key regulators of the fate and differentiation of human mammary epithelial stem cells (SCs), as well as of their niches, and are involved in breast cancer development. We established that MCF10A immature mammary epithelial cells reliably reproduce the BMP response that we previously identified in human primary epithelial SCs. In this model, we observed that BMP2 promotes luminal progenitor commitment and expansion, whereas BMP4 prevents lineage differentiation. Environmental pollutants are known to promote cancer development, possibly by providing cells with stem-like features and by modifying their niches. Bisphenols, in particular, were shown to increase the risk of developing breast cancer. Here, we demonstrate that chronic exposure to low doses of bisphenol A (BPA) or benzo(a)pyrene (B(a)P) alone has little effect on SCs properties of MCF10A cells. Conversely, we show that this exposure affects the response of immature epithelial cells to BMP2 and BMP4. Furthermore, the modifications triggered in MCF10A cells on exposure to pollutants appeared to be predominantly mediated by altering the expression and localization of type-1 receptors and by pre-activating BMP signaling, through the phosphorylation of small mothers against decapentaplegic 1/5/8 (SMAD1/5/8). By analyzing stem and progenitor properties, we reveal that BPA prevents the maintenance of SC features prompted by BMP4, whereas promoting cell differentiation towards a myoepithelial phenotype. Inversely, B(a)P prevents BMP2-mediated luminal progenitor commitment and expansion, leading to the retention of stem-like properties. Overall, our data indicate that BPA and B(a)P distinctly alter the fate and differentiation potential of mammary epithelial SCs by modulating BMP signaling. PMID:27740625

  8. Prenatal exposure to a viral mimetic alters behavioural flexibility in male, but not female, rats.

    Science.gov (United States)

    Zhang, Ying; Cazakoff, Brittany N; Thai, Chester A; Howland, John G

    2012-03-01

    Current understanding of the etiology of neurodevelopmental disorders is limited; however, recent epidemiological studies demonstrate a strong correlation between prenatal infection during pregnancy and the development of schizophrenia in adult offspring. In particular, schizophrenia patients subjected to prenatal infection exhibit impairments in executive functions greater than schizophrenia patients not exposed to an infection while in utero. Acute prenatal treatment of rodents with the viral mimetic polyinosinic-polycytidylic acid (PolyI:C) induces behavioural and neuropathological alterations in the adult offspring similar to schizophrenia. However, impairments on tasks of executive function that involve the prefrontal cortex (PFC) have been rarely examined for the prenatal infection model. Hence, we investigated the effects of acute prenatal injection of PolyI:C (4.0 mg/kg, i.v., gestational day 15) on strategy set-shifting and reversal learning in an operant-based task. Our results show male, but not female, PolyI:C-treated adult offspring require more trials to reach criterion and perseverate during set-shifting. An opposite pattern was seen on the reversal day where the PolyI:C-treated male rats made fewer regressive errors. Females took more pre-training days and were slower to respond during the trials when compared to males regardless of prenatal treatment. The present findings validate the utility of the prenatal infection model for examining alterations of executive function, one of the most prominent cognitive symptoms of schizophrenia. Copyright © 2011 Elsevier Ltd. All rights reserved.

  9. Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A.

    Science.gov (United States)

    Yaoi, Takeshi; Itoh, Kyoko; Nakamura, Keiko; Ogi, Hiroshi; Fujiwara, Yasuhiro; Fushiki, Shinji

    2008-11-21

    Bisphenol A (BPA) is one of endocrine disrupting chemicals, being distributed widely in the environment. We have been studying the low dose effects of BPA on murine forebrain development. Here, we have investigated the genome-wide effect of maternal exposure to BPA on the epigenome in mouse forebrain at E12.5 and at E14.5. We scanned CpG methylation status in 2500 NotI loci, representing 48 (de)methylated unique loci. Methylation status in most of them was primarily developmental stage-dependent. Each of almost all cloned NotI loci was located in a CpG island (CGI) adjacent to 5' end of the transcriptional unit. The mRNA expression of two functionally related genes changed with development as well as the exposure to BPA. In both genes, changes at the transcriptional level correlated well with the changes in NotI methylation status. Taken together, epigenetic alterations in promoter-associated CGIs after exposure to BPA may underlie some effects on brain development.

  10. Short-term exposure of arsenite disrupted thyroid endocrine system and altered gene transcription in the HPT axis in zebrafish.

    Science.gov (United States)

    Sun, Hong-Jie; Li, Hong-Bo; Xiang, Ping; Zhang, Xiaowei; Ma, Lena Q

    2015-10-01

    Arsenic (As) pollution in aquatic environment may adversely impact fish health by disrupting their thyroid hormone homeostasis. In this study, we explored the effect of short-term exposure of arsenite (AsIII) on thyroid endocrine system in zebrafish. We measured As concentrations, As speciation, and thyroid hormone thyroxine levels in whole zebrafish, oxidative stress (H2O2) and damage (MDA) in the liver, and gene transcription in hypothalamic-pituitary-thyroid (HPT) axis in the brain and liver tissues of zebrafish after exposing to different AsIII concentrations for 48 h. Result indicated that exposure to AsIII increased inorganic As in zebrafish to 0.46-0.72 mg kg(-1), induced oxidative stress with H2O2 being increased by 1.4-2.5 times and caused oxidative damage with MDA being augmented by 1.6 times. AsIII exposure increased thyroxine levels by 1.3-1.4 times and modulated gene transcription in HPT axis. Our study showed AsIII caused oxidative damage, affected thyroid endocrine system and altered gene transcription in HPT axis in zebrafish. Published by Elsevier Ltd.

  11. Epigenetic Regulation of Immunological Alterations Following Prenatal Exposure to Marijuana Cannabinoids and its Long Term Consequences in Offspring

    Science.gov (United States)

    Zumbrun, Elizabeth E.; Sido, Jessica M.; Nagarkatti, Prakash S.

    2015-01-01

    Use of marijuana during pregnancy is fairly commonplace and can be expected increase in frequency as more states legalize its recreational use. The cannabinoids present in marijuana have been shown to be immunosuppressive, yet the effect of prenatal exposure to cannabinoids on the immune system of the developing fetus, its long term consequences during adult stage of life, and transgenerational effects have not been well characterized. Confounding factors such as coexisting drug use make the impact of cannabis use on progeny inherently difficult to study in a human population. Data from various animal models suggests that in utero exposure to cannabinoids results in profound T cell dysfunction and a greatly reduced immune response to viral antigens. Furthermore, evidence from animal studies indicates that the immunosuppressive effects of cannabinoids can be mediated through epigenetic mechanisms such as altered microRNA, DNA methylation and histone modification profiles. Such studies support the hypothesis that that parental or prenatal exposure to cannabis can trigger epigenetic changes that could have significant immunological consequences for offspring as well as long term transgenerational effects. PMID:25618446

  12. Cholinergic alterations by exposure to pesticides used in control vector: Guppies fish (Poecilia reticulta) as biological model.

    Science.gov (United States)

    Toledo-Ibarra, G A; Rodríguez-Sánchez, E J; Ventura-Ramón, H G; Díaz-Resendiz, K J G; Girón-Pérez, M I

    2018-02-01

    Spinosad and temephos are two of the most used pesticides in Mexico for the control of vector causing disease such as dengue, chikungunya and Zika. The aim of this study was to compare the neurotoxic effects of these two pesticides using guppy fish (Poecilia reticulata) as a model organism. Guppies were exposed for 7 and 21 days to technical grade temephos and spinosad at 1.0 and 0.07 g/L, respectively, (10 and 0.5 mg/L of active substance; concentrations recommended by the Ministery of Health of the State (Secretaría de Salud de Nayarit (SSN) Mexico)). Subsequently, acetylcholinesterase activity (AChE) and acetylcholine concentrations (ACh) in muscle tissue were determined. Temephos exposure decreased AChE activity and increased ACh concentration, whereas exposure to spinosad only increased ACh concentration. Though cholinergic alterations were more severe in fish exposed to temephos, both pesticides were equally lethal during the first seven days after exposure. Nonetheless, temephos was more lethal after 21 days.

  13. Differential Alteration in Expression of Striatal GABAAR Subunits in Mouse Models of Huntington’s Disease

    Directory of Open Access Journals (Sweden)

    Zhuowei Du

    2017-06-01

    Full Text Available Huntington’s disease (HD is a neurodegenerative disorder characterized by progressive motor symptoms that are preceded by cognitive deficits and is considered as a disorder that primarily affects forebrain striatal neurons. To gain a better understanding of the molecular and cellular mechanisms associated with disease progression, we analyzed the expression of proteins involved in GABAergic neurotransmission in the striatum of the R6/1 transgenic mouse model. Western blot, quantitative PCR and immunohistochemical analyses were conducted on male R6/1 mice and age-matched wild type littermates. Analyses were performed on 2 and 6 month-old animals, respectively, before and after the onset of motor symptoms. Expression of GAD 67, GAD 65, NL2, or gephyrin proteins, involved in GABA synthesis or synapse formation did not display major changes. In contrast, expression of α1, α3 and α5 GABAAR subunits was increased while the expression of δ was decreased, suggesting a change in tonic- and phasic inhibitory transmission. Western blot analysis of the striatum from 8 month-old Hdh Q111, a knock-in mouse model of HD with mild deficits, confirmed the α1 subunit increased expression. From immunohistochemical analyses, we also found that α1 subunit expression is increased in medium-sized spiny projection neurons (MSN and decreased in parvalbumin (PV-expressing interneurons at 2 and 6 months in R6/1 mice. Moreover, α2 subunit labeling on the PV and MSN cell membranes was increased at 2 months and decreased at 6 months. Alteration of gene expression in the striatum and modification of GABAA receptor subtypes in both interneurons and projection neurons suggested that HD mutation has a profound effect on synaptic plasticity at an early stage, before the onset of motor symptoms. These results also indicate that cognitive and other behavioral deficits may be associated with changes in GABAergic neurotransmission that consequently could be a relevant target

  14. Differential alterations of cortical glutamatergic binding sites in senile dementia of the Alzheimer type

    Energy Technology Data Exchange (ETDEWEB)

    Chalmers, D.T.; Dewar, D.; Graham, D.I.; Brooks, D.N.; McCulloch, J. (Univ. of Glasgow, Scotland (England))

    1990-02-01

    Involvement of cortical glutamatergic mechanisms in senile dementia of the Alzheimer type (SDAT) has been investigated with quantitative ligand-binding autoradiography. The distribution and density of Na(+)-dependent glutamate uptake sites and glutamate receptor subtypes--kainate, quisqualate, and N-methyl-D-aspartate--were measured in adjacent sections of frontal cortex obtained postmortem from six patients with SDAT and six age-matched controls. The number of senile plaques was determined in the same brain region. Binding of D-(3H)aspartate to Na(+)-dependent uptake sites was reduced by approximately 40% throughout SDAT frontal cortex relative to controls, indicating a general loss of glutamatergic presynaptic terminals. (3H)Kainate receptor binding was significantly increased by approximately 70% in deep layers of SDAT frontal cortex compared with controls, whereas this binding was unaltered in superficial laminae. There was a positive correlation (r = 0.914) between kainate binding and senile plaque number in deep cortical layers. Quisqualate receptors, as assessed by 2-amino-3-hydroxy-5-(3H)methylisoxazole-4-propionic acid binding, were unaltered in SDAT frontal cortex compared with controls. There was a small reduction (25%) in N-methyl-D-aspartate-sensitive (3H)glutamate binding only in superficial cortical layers of SDAT brains relative to control subjects. (3H)Glutamate binding in SDAT subjects was unrelated to senile plaque number in superficial cortical layers (r = 0.104). These results indicate that in the presence of cortical glutamatergic terminal loss in SDAT plastic alterations occur in some glutamate receptor subtypes but not in others.

  15. Differential alterations of resting-state functional connectivity in generalized anxiety disorder and panic disorder.

    Science.gov (United States)

    Cui, Huiru; Zhang, Jie; Liu, Yicen; Li, Qingwei; Li, Hui; Zhang, Lanlan; Hu, Qiang; Cheng, Wei; Luo, Qiang; Li, Jianqi; Li, Wei; Wang, Jijun; Feng, Jianfeng; Li, Chunbo; Northoff, Georg

    2016-04-01

    Generalized anxiety disorder (GAD) and panic disorder (PD) are most common anxiety disorders with high lifetime prevalence while the pathophysiology and disease-specific alterations still remain largely unclear. Few studies have taken a whole-brain perspective in the functional connectivity (FC) analysis of these two disorders in resting state. It limits the ability to identify regionally and psychopathologically specific network abnormalities with their subsequent use as diagnostic marker and novel treatment strategy. The whole brain FC using a novel FC metric was compared, that is, scaled correlation, which they demonstrated to be a reliable FC statistics, but have higher statistical power in two-sample t-test of whole brain FC analysis. About 21 GAD and 18 PD patients were compared with 22 matched control subjects during resting-state, respectively. It was found that GAD patients demonstrated increased FC between hippocampus/parahippocampus and fusiform gyrus among the most significantly changed FC, while PD was mainly associated with greater FC between somatosensory cortex and thalamus. Besides such regional specificity, it was observed that psychopathological specificity in that the disrupted FC pattern in PD and GAD correlated with their respective symptom severity. The findings suggested that the increased FC between hippocampus/parahippocampus and fusiform gyrus in GAD were mainly associated with a fear generalization related neural circuit, while the greater FC between somatosensory cortex and thalamus in PD were more likely linked to interoceptive processing. Due to the observed regional and psychopathological specificity, their findings bear important clinical implications for the potential treatment strategy. © 2016 Wiley Periodicals, Inc.

  16. Epidermal cell proliferation and terminal differentiation in skin organ culture after topical exposure to sodium dodecyl sulphate

    NARCIS (Netherlands)

    Sandt, J.J.M. van de; Bos, T.A.; Rutten, A.A.J.J.L.

    1995-01-01

    Epidermal cell proliferation and differentiation were investigated in vitro after exposure to the anionic surfactant sodium dodecyl sulfate (SDS). Human skin organ cultures were exposed topically to various concentrations of SDS for 22 h, after which the irritant was removed. Cell proliferation was

  17. Use of electronic tongue for differentiation of tomato taste by cultivar, harvest maturity, and chilling or heating exposure

    Science.gov (United States)

    The objective of this research was to evaluate whether an electronic-tongue (etongue) could differentiate “taste” profiles of tomato fruit between different cultivars, harvest maturities, and postharvest chilling or heating exposure. The four cultivars included: two common commercial cultivars, ‘Tyg...

  18. Short-duration exposure to radiofrequency electromagnetic radiation alters the chlorophyll fluorescence of duckweeds (Lemna minor).

    Science.gov (United States)

    Senavirathna, Mudalige Don Hiranya Jayasanka; Takashi, Asaeda; Kimura, Yuichi

    2014-12-01

    Plants growing in natural environments are exposed to radiofrequency electromagnetic radiation (EMR) emitted by various communication network base stations. The environmental concentration of this radiation is increasing rapidly with the congested deployment of base stations. Although numerous scientific studies have been conducted to investigate the effects of EMR on the physiology of humans and animals, there have been few attempts to investigate the effects of EMR on plants. In this study, we attempted to evaluate the effects of EMR on photosynthesis by investigating the chlorophyll fluorescence (ChF) parameters of duckweed fronds. During the experiment, the fronds were tested with 2, 2.5, 3.5, 5.5 and 8 GHz EMR frequencies, which are not widely studied even though there is a potentially large concentration of these frequencies in the environment. The duckweed fronds were exposed to EMR for 30 min, 1 h and 24 h durations with electric field strength of 45-50 V/m for each frequency. The results indicated that exposure to EMR causes a change in the non-photochemical quenching of the duckweeds. The changes varied with the frequency of the EMR and were time-varying within a particular frequency. The temperature remained unchanged in the duckweed fronds upon exposure to EMR, which confirms that the effect is non-thermal.

  19. Alterations in the heme biosynthetic pathway as an index of exposure to toxins

    Energy Technology Data Exchange (ETDEWEB)

    Marks, G.S.; Zelt, D.T.; Cole, S.P.

    1982-07-01

    Under normal circumstances the heme biosynthetic pathway is carefully controlled and porphyrins are formed in only trace amounts. When control mechanisms are disturbed by xenobiotics, porphyrins may be formed and serve as a signal of the interaction between a xenobiotic and the heme biosynthetic pathway. For example, porphyrinuria was an early manifestation of a hexachlorobenzene-induced porphyria outbreak in Turkey. In humans exposed to polybrominated biphenyls and to 2,3,7,8-tetrachlorodibenzo-p-dioxin the urinary porphyrin pattern was significantly different from normal in a large number of exposed individuals. The question is raised whether measurement of urinary porphyrin profiles by improved methods will enable an estimate to be made of the extent of exposure to haloaromatic hydrocarbons in the human population. A wide variety of xenobiotics interact with the prosthetic heme of cytochrome P-450 forming novel N-alkylporphyrins. Identification of these N-alkylporphyrins in body fluids might provide a means of assessing exposure to a variety of xenobiotics in human populations.

  20. Postnatal hyperoxia exposure differentially affects hepatocytes and liver haemopoietic cells in newborn rats.

    Directory of Open Access Journals (Sweden)

    Guya Diletta Marconi

    Full Text Available Premature newborns are frequently exposed to hyperoxic conditions and experimental data indicate modulation of liver metabolism by hyperoxia in the first postnatal period. Conversely, nothing is known about possible modulation of growth factors and signaling molecules involved in other hyperoxic responses and no data are available about the effects of hyperoxia in postnatal liver haematopoiesis. The aim of the study was to analyse the effects of hyperoxia in the liver tissue (hepatocytes and haemopoietic cells and to investigate possible changes in the expression of Vascular Endothelial Growth Factor (VEGF, Matrix Metalloproteinase 9 (MMP-9, Hypoxia-Inducible Factor-1α (HIF-1α, endothelial Nitric Oxide Synthase (eNOS, and Nuclear Factor-kB (NF-kB. Experimental design of the study involved exposure of newborn rats to room air (controls, 60% O2 (moderate hyperoxia, or 95% O2 (severe hyperoxia for the first two postnatal weeks. Immunohistochemical and Western blot analyses were performed. Severe hyperoxia increased hepatocyte apoptosis and MMP-9 expression and decreased VEGF expression. Reduced content in reticular fibers was found in moderate and severe hyperoxia. Some other changes were specifically produced in hepatocytes by moderate hyperoxia, i.e., upregulation of HIF-1α and downregulation of eNOS and NF-kB. Postnatal severe hyperoxia exposure increased liver haemopoiesis and upregulated the expression of VEGF (both moderate and severe hyperoxia and eNOS (severe hyperoxia in haemopoietic cells. In conclusion, our study showed different effects of hyperoxia on hepatocytes and haemopoietic cells and differential involvement of the above factors. The involvement of VEGF and eNOS in the liver haemopoietic response to hyperoxia may be hypothesized.

  1. Ustekinumab improves psoriasis without altering T cell cytokine production, differentiation, and T cell receptor repertoire diversity.

    Directory of Open Access Journals (Sweden)

    Kenshiro Tsuda

    Full Text Available Ustekinumab is a fully human IgG1κ monoclonal antibody targeting interleukin (IL-12/23 p40 subunit. The role of IL-12/23-mediated pathway in the mechanism of various inflammatory disorders especially psoriasis has been well recognized. Recently the long-term efficacy and safety of ustekinumab in patients with moderate-to-severe psoriasis has been evaluated in phase 2/3 clinical trials, and the results showed no significant risk for serious adverse effects, infections, or malignancies. Ustekinumab inhibits the function of the IL-12/23 p40 subunit, and therefore it is believed that inhibition of IL-12 p40 pathway decreases IFN-γ production. The major concern for the use of ustekinumab is the possibility of increased immunosuppression due to low IFN-γ production. However, the effects of ustekinumab on CD4(+ T cell function have not been fully investigated so far. In this study, we explored changes in cytokine production by memory CD4(+ T cells as well as in the differentiation of naïve T cells to helper T cell (Th 1, Th2, or Th17 cells in psoriasis patients treated with ustekinumab. The effect of the treatment on T cell receptor repertoire diversity was also evaluated. The results showed that ustekinumab improves clinical manifestation in patients with psoriasis without affecting cytokine production in memory T cells, T cell maturation, or T cell receptor repertoire diversity. Although the number of patients is limited, the present study suggests that T cell immune response remains unaffected in psoriasis patients treated with ustekinumab.

  2. ORM Expression Alters Sphingolipid Homeostasis and Differentially Affects Ceramide Synthase Activity.

    Science.gov (United States)

    Kimberlin, Athen N; Han, Gongshe; Luttgeharm, Kyle D; Chen, Ming; Cahoon, Rebecca E; Stone, Julie M; Markham, Jonathan E; Dunn, Teresa M; Cahoon, Edgar B

    2016-10-01

    Sphingolipid synthesis is tightly regulated in eukaryotes. This regulation in plants ensures sufficient sphingolipids to support growth while limiting the accumulation of sphingolipid metabolites that induce programmed cell death. Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis and is considered the primary sphingolipid homeostatic regulatory point. In this report, Arabidopsis (Arabidopsis thaliana) putative SPT regulatory proteins, orosomucoid-like proteins AtORM1 and AtORM2, were found to interact physically with Arabidopsis SPT and to suppress SPT activity when coexpressed with Arabidopsis SPT subunits long-chain base1 (LCB1) and LCB2 and the small subunit of SPT in a yeast (Saccharomyces cerevisiae) SPT-deficient mutant. Consistent with a role in SPT suppression, AtORM1 and AtORM2 overexpression lines displayed increased resistance to the programmed cell death-inducing mycotoxin fumonisin B1, with an accompanying reduced accumulation of LCBs and C16 fatty acid-containing ceramides relative to wild-type plants. Conversely, RNA interference (RNAi) suppression lines of AtORM1 and AtORM2 displayed increased sensitivity to fumonisin B1 and an accompanying strong increase in LCBs and C16 fatty acid-containing ceramides relative to wild-type plants. Overexpression lines also were found to have reduced activity of the class I ceramide synthase that uses C16 fatty acid acyl-coenzyme A and dihydroxy LCB substrates but increased activity of class II ceramide synthases that use very-long-chain fatty acyl-coenzyme A and trihydroxy LCB substrates. RNAi suppression lines, in contrast, displayed increased class I ceramide synthase activity but reduced class II ceramide synthase activity. These findings indicate that ORM mediation of SPT activity differentially regulates functionally distinct ceramide synthase activities as part of a broader sphingolipid homeostatic regulatory network. © 2016 American Society of Plant Biologists. All

  3. ORM Expression Alters Sphingolipid Homeostasis and Differentially Affects Ceramide Synthase Activity1[OPEN

    Science.gov (United States)

    Kimberlin, Athen N.; Chen, Ming; Dunn, Teresa M.

    2016-01-01

    Sphingolipid synthesis is tightly regulated in eukaryotes. This regulation in plants ensures sufficient sphingolipids to support growth while limiting the accumulation of sphingolipid metabolites that induce programmed cell death. Serine palmitoyltransferase (SPT) catalyzes the first step in sphingolipid biosynthesis and is considered the primary sphingolipid homeostatic regulatory point. In this report, Arabidopsis (Arabidopsis thaliana) putative SPT regulatory proteins, orosomucoid-like proteins AtORM1 and AtORM2, were found to interact physically with Arabidopsis SPT and to suppress SPT activity when coexpressed with Arabidopsis SPT subunits long-chain base1 (LCB1) and LCB2 and the small subunit of SPT in a yeast (Saccharomyces cerevisiae) SPT-deficient mutant. Consistent with a role in SPT suppression, AtORM1 and AtORM2 overexpression lines displayed increased resistance to the programmed cell death-inducing mycotoxin fumonisin B1, with an accompanying reduced accumulation of LCBs and C16 fatty acid-containing ceramides relative to wild-type plants. Conversely, RNA interference (RNAi) suppression lines of AtORM1 and AtORM2 displayed increased sensitivity to fumonisin B1 and an accompanying strong increase in LCBs and C16 fatty acid-containing ceramides relative to wild-type plants. Overexpression lines also were found to have reduced activity of the class I ceramide synthase that uses C16 fatty acid acyl-coenzyme A and dihydroxy LCB substrates but increased activity of class II ceramide synthases that use very-long-chain fatty acyl-coenzyme A and trihydroxy LCB substrates. RNAi suppression lines, in contrast, displayed increased class I ceramide synthase activity but reduced class II ceramide synthase activity. These findings indicate that ORM mediation of SPT activity differentially regulates functionally distinct ceramide synthase activities as part of a broader sphingolipid homeostatic regulatory network. PMID:27506241

  4. Respiratory syncytial virus can infect basal cells and alter human airway epithelial differentiation.

    Directory of Open Access Journals (Sweden)

    B David Persson

    Full Text Available Respiratory syncytial virus (RSV is a major cause of morbidity and mortality worldwide, causing severe respiratory illness in infants and immune compromised patients. The ciliated cells of the human airway epithelium have been considered to be the exclusive target of RSV, although recent data have suggested that basal cells, the progenitors for the conducting airway epithelium, may also become infected in vivo. Using either mechanical or chemical injury models, we have demonstrated a robust RSV infection of p63+ basal cells in air-liquid interface (ALI cultures of human bronchial epithelial cells. In addition, proliferating basal cells in 2D culture were also susceptible to RSV infection. We therefore tested the hypothesis that RSV infection of this progenitor cell would influence the differentiation status of the airway epithelium. RSV infection of basal cells on the day of seeding (MOI≤0.0001, resulted in the formation of an epithelium that showed a profound loss of ciliated cells and gain of secretory cells as assessed by acetylated α-tubulin and MUC5AC/MUC5B immunostaining, respectively. The mechanism driving the switch in epithelial phenotype is in part driven by the induced type I and type III interferon response that we demonstrate is triggered early following RSV infection. Neutralization of this response attenuates the RSV-induced loss of ciliated cells. Together, these data show that through infection of proliferating airway basal cells, RSV has the potential to influence the cellular composition of the airway epithelium. The resulting phenotype might be expected to contribute towards both the severity of acute infection, as well as to the longer-term consequences of viral exacerbations in patients with pre-existing respiratory diseases.

  5. Age at developmental cortical injury differentially Alters corpus callosum volume in the rat

    Directory of Open Access Journals (Sweden)

    Rosen Glenn D

    2007-11-01

    Full Text Available Abstract Background Freezing lesions to developing rat cortex induced between postnatal day (P one and three (P1 – 3 lead to malformations similar to human microgyria, and further correspond to reductions in brain weight and cortical volume. In contrast, comparable lesions on P5 do not produce microgyric malformations, nor the changes in brain weight seen with microgyria. However, injury occurring at all three ages does lead to rapid auditory processing deficits as measured in the juvenile period. Interestingly, these deficits persist into adulthood only in the P1 lesion case 1. Given prior evidence that early focal cortical lesions induce abnormalities in cortical morphology and connectivity 1234, we hypothesized that the differential behavioral effects of focal cortical lesions on P1, P3 or P5 may be associated with underlying neuroanatomical changes that are sensitive to timing of injury. Clinical studies indicate that humans with perinatal brain injury often show regional reductions in corpus callosum size and abnormal symmetry, which frequently correspond to learning impairments 567. Therefore, in the current study the brains of P1, 3 or 5 lesion rats, previously evaluated for brain weight, and cortical volume changes and auditory processing impairments (P21-90, were further analyzed for changes in corpus callosum volume. Results Results showed a significant main effect of Treatment on corpus callosum volume [F (1,57 = 10.2, P Conclusion Decrements in corpus callosum volume in the P1 and 3 lesion groups are consistent with the reductions in brain weight and cortical volume previously reported for microgyric rats 18. Current results suggest that disruption to the cortical plate during early postnatal development may lead to more widely dispersed neurovolumetric anomalies and subsequent behavioral impairments 1, compared with injury that occurs later in development. Further, these results suggest that in a human clinical setting decreased

  6. Differential diagnosis of alterations in arterial flow and tissue oxygenation on venoarterial extracorporeal membrane oxygenation.

    Science.gov (United States)

    Hofer, Anna; Leitner, Sylvia; Kreuzer, Michaela; Meier, Jens

    2017-09-05

    Venoarterial extracorporeal membrane oxygenation (VA-ECMO) may be life-saving in several clinical situations, but it is also one of the most invasive therapeutic procedures, with significant potential for life-threatening complications. Pulse pressure waves are typically very small or even absent at the onset of ECMO therapy, and will reappear with the improvement of cardiac function. A low pulse pressure may indicate low cardiac output due to heart failure during sustained ECMO support. A sudden loss of pulse pressure during ECMO therapy, however, may reveal complications like pericardial tamponade, hemothorax or pneumothorax. Near infrared spectroscopy (NIRS) has been shown to be useful in detecting cerebral and lower limb ischemic events during ECMO therapy and could furthermore improve differential diagnosis in the event pulsatility of the arterial pressure trace is lost. We are reporting on 3 different complications of ECMO and their impact on arterial pulse pressure, arterial oxygen tension and regional tissue oxygenation measured by NIRS. Pericardial hematoma, overinflation of the lung, and tension pneumothorax may impede cardiac output during VA-ECMO and cause a loss of pulse pressure. Monitoring of regional tissue oxygenation using NIRS, in addition to arterial and mixed venous oxygen tension, may allow early recognition and treatment of ECMO complications. Together with the appearance of a flat, non pulsatile arterial pressure trace as well as a reduction in mixed venous oxygen saturation the improvement of upper body rSO2 measured by NIRS enables timely recognition of complications that interfere with natural cardiac output during VA-ECMO.

  7. Duodenal and ileal glucose infusions differentially alter gastrointestinal peptides, appetite response, and food intake: a tube feeding study.

    Science.gov (United States)

    Poppitt, Sally D; Shin, Hyun Sang; McGill, Anne-Thea; Budgett, Stephanie C; Lo, Kim; Pahl, Malcolm; Duxfield, Janice; Lane, Mark; Ingram, John R

    2017-09-01

    Background: Activation of the ileal brake through the delivery of nutrients into the distal small intestine to promote satiety and suppress food intake provides a new target for weight loss. Evidence is limited, with support from naso-ileal lipid infusion studies. Objective: The objective of the study was to investigate whether glucose infused into the duodenum and ileum differentially alters appetite response, food intake, and secretion of satiety-related gastrointestinal peptides. Design: Fourteen healthy male participants were randomly assigned to a blinded 4-treatment crossover, with each treatment of single-day duration. On the day before the intervention (day 0), a 380-cm multilumen tube (1.75-mm diameter) with independent port access to the duodenum and ileum was inserted, and position was confirmed by X-ray. Subsequently (days 1-4), a standardized breakfast meal was followed midmorning by a 90-min infusion of isotonic glucose (15 g, 235 kJ) or saline to the duodenum or ileum. Appetite ratings were assessed with the use of visual analog scales (VASs), blood samples collected, and ad libitum energy intake (EI) measured at lunch, afternoon snack, and dinner. Results: Thirteen participants completed the 4 infusion days. There was a significant effect of nutrient infused and site (treatment × time, P glucose-to-ileum altered VAS-rated fullness, satisfaction, and thoughts of food compared with saline-to-ileum (Tukey's post hoc, P glucose-to-duodenum [-22%, -988 ± 379 kJ (mean ± SEM), Tukey's post hoc, P Glucose infusion to the ileum increased GLP-1 and PYY secretion, suppressed aspects of VAS-rated appetite, and decreased ad libitum EI at a subsequent meal. Although glucose to the duodenum also suppressed appetite ratings, eating behavior was not altered. This trial was registered at www.anzctr.org.au as ACTRN12612000429853. © 2017 American Society for Nutrition.

  8. Cafeteria diet differentially alters the expression of feeding-related genes through DNA methylation mechanisms in individual hypothalamic nuclei.

    Science.gov (United States)

    Lazzarino, Gisela Paola; Andreoli, María Florencia; Rossetti, María Florencia; Stoker, Cora; Tschopp, María Virgina; Luque, Enrique Hugo; Ramos, Jorge Guillermo

    2017-07-15

    We evaluated the effect of cafeteria diet (CAF) on the mRNA levels and DNA methylation state of feeding-related neuropeptides, and neurosteroidogenic enzymes in discrete hypothalamic nuclei. Besides, the expression of steroid hormone receptors was analyzed. Female rats fed with CAF from weaning increased their energy intake, body weight, and fat depots, but did not develop metabolic syndrome. The increase in energy intake was related to an orexigenic signal of paraventricular (PVN) and ventromedial (VMN) nuclei, given principally by upregulation of AgRP and NPY. This was mildly counteracted by the arcuate nucleus, with decreased AgRP expression and increased POMC and kisspeptin expression. CAF altered the transcription of neurosteroidogenic enzymes in PVN and VMN, and epigenetic mechanisms associated with differential promoter methylation were involved. The changes observed in the hypothalamic nuclei studied could add information about their differential role in food intake control and how their action is disrupted in obesity. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Acute fluoxetine exposure alters crab anxiety-like behaviour, but not aggressiveness.

    Science.gov (United States)

    Hamilton, Trevor James; Kwan, Garfield T; Gallup, Joshua; Tresguerres, Martin

    2016-01-25

    Aggression and responsiveness to noxious stimuli are adaptable traits that are ubiquitous throughout the animal kingdom. Like vertebrate animals, some invertebrates have been shown to exhibit anxiety-like behaviour and altered levels of aggression that are modulated by the neurotransmitter serotonin. To investigate whether this influence of serotonin is conserved in crabs and whether these behaviours are sensitive to human antidepressant drugs; the striped shore crab, Pachygrapsus crassipes, was studied using anxiety (light/dark test) and aggression (mirror test) paradigms. Crabs were individually exposed to acute doses of the selective serotonin reuptake inhibitor, fluoxetine (5 or 25 mg/L), commonly known as Prozac®, followed by behavioural testing. The high dose of fluoxetine significantly decreased anxiety-like behaviour but had no impact on mobility or aggression. These results suggest that anxiety-like behaviour is more sensitive to modulation of serotonin than is aggressiveness in the shore crab.

  10. Selected Melanocortin 1 Receptor Single-Nucleotide Polymorphisms Differentially Alter Multiple Signaling Pathways

    Science.gov (United States)

    Doyle, J. R.; Fortin, J. P.; Beinborn, M.

    2012-01-01

    The melanocortin 1 receptor (MC1R) is a highly polymorphic G protein-coupled receptor, which is known to modulate pigmentation and inflammation. In the current study, we investigated the pharmacological effects of select single-nucleotide polymorphisms (SNPs) (V60L, R163Q, and F196L). After transient expression of MC1Rs in human embryonic kidney 293 cells, basal and ligand-induced cAMP signaling and mitogen-activated protein kinase (MAPK) activation were assessed by using luciferase reporter gene assays and Western blot analysis, respectively. All receptor variants showed decreased basal cAMP activity. With the V60L and F196L variants, the decrease in constitutive activity was attributable, at least in part, to a reduction in surface expression. The F196L variant also displayed a significant reduction in potency for both the peptide agonist α-melanocyte-stimulating hormone (α-MSH) and the small-molecule agonist 1-[1-(3-methyl-l-histidyl-O-methyl-d-tyrosyl)-4-phenyl-4-piperidinyl]-1-butanone (BMS-470539). In MAPK signaling assays, the F196L variant showed decreased phospho-extracellular signal-regulated kinase levels after stimulation with either α-MSH or BMS-470539. In contrast, the R163Q variant displayed a selective loss of α-MSH-induced MAPK activation; whereas responsiveness to the small-molecule agonist BMS-470539 was preserved. Further assessment of MC1R variants in A549 cells, an in vitro model of inflammation, revealed an enhanced inflammatory response resulting from expression of the F196L variant (versus the wild-type MC1R). This alteration in function was restored by treatment with BMS-470539. Overall, these studies illustrate novel signaling profiles linked to distinct MC1R SNPs. Furthermore, our investigations highlight the potential for small-molecule drugs to rescue the function of MC1R variants that show reduced basal and/or α-MSH stimulated activity. PMID:22547573

  11. Sublethal exposure to azamethiphos causes neurotoxicity, altered energy allocation and high mortality during simulated live transport in American lobster.

    Science.gov (United States)

    Couillard, C M; Burridge, L E

    2015-05-01

    In the Bay of Fundy, New Brunswick, sea lice outbreaks in caged salmon are treated with pesticides including Salmosan(®), applied as bath treatments and then released into the surrounding seawater. The effect of chronic exposure to low concentrations of this pesticide on neighboring lobster populations is a concern. Adult male lobsters were exposed to 61 ngL(-1) of azamethiphos (a.i. in Salmosan(®) formulation) continuously for 10 days. In addition to the direct effects of pesticide exposure, effects on the ability to cope with shipping conditions and the persistence of the effects after a 24h depuration period in clean seawater were assessed. Indicators of stress and hypoxia (serum total proteins, hemocyanin and lactate), oxidative damage (protein carbonyls in gills and serum) and altered energy allocation (hepatosomatic and gonadosomatic indices, hepatopancreas lipids) were assessed in addition to neurotoxicity (chlolinesterase activity in muscle). Directly after exposure, azamethiphos-treated lobsters had inhibition of muscle cholinesterase, reduced gonadosomatic index and enhanced hepatosomatic index and hepatopancreas lipid content. All these responses persisted after 24-h depuration, increasing the risk of cumulative impacts with further exposure to chemical or non-chemical stressors. In both control and treated lobsters exposed to simulated shipment conditions, concentrations of protein and lactate in serum, and protein carbonyls in gills increased. However, mortality rate was higher in azamethiphos-treated lobsters (33 ± 14%) than in controls (2.6 ± 4%). Shipment and azamethiphos had cumulative impacts on serum proteins. Both direct effects on neurological function and energy allocation and indirect effect on ability to cope with shipping stress could have significant impacts on lobster population and/or fisheries. Crown Copyright © 2014. Published by Elsevier Inc. All rights reserved.

  12. Altered miRNA expression in the cervix during pregnancy associated with lead and mercury exposure

    Science.gov (United States)

    Sanders, Alison P; Burris, Heather H; Just, Allan C; Motta, Valeria; Amarasiriwardena, Chitra; Svensson, Katherine; Oken, Emily; Solano-Gonzalez, Maritsa; Mercado-Garcia, Adriana; Pantic, Ivan; Schwartz, Joel; Tellez-Rojo, Martha M; Baccarelli, Andrea A; Wright, Robert O

    2015-01-01

    Aim: Toxic metals including lead and mercury are associated with adverse pregnancy outcomes. This study aimed to assess the association between miRNA expression in the cervix during pregnancy with lead and mercury levels. Materials & methods: We obtained cervical swabs from pregnant women (n = 60) and quantified cervical miRNA expression. Women's blood lead, bone lead and toenail mercury levels were analyzed. We performed linear regression to examine the association between metal levels and expression of 74 miRNAs adjusting for covariates. Results: Seventeen miRNAs were negatively associated with toenail mercury levels, and tibial bone lead levels were associated with decreased expression of miR-575 and miR-4286. Conclusion: The findings highlight miRNAs in the human cervix as novel responders to maternal chemical exposure during pregnancy. PMID:26418635

  13. Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure

    DEFF Research Database (Denmark)

    Ziętak, Marika; Kovatcheva-Datchary, Petia; Markiewicz, Lidia H

    2016-01-01

    similar to that of germ-free mice. We observed a marked shift in the microbiome composition at the phylum and family levels within 1 day of acute cold exposure and after 4 weeks at 12°C. Gut microbiota was characterized by increased levels of Adlercreutzia, Mogibacteriaceae, Ruminococcaceae......, and Desulfovibrio and reduced levels of Bacilli, Erysipelotrichaceae, and the genus rc4-4. These genera have been associated with leanness and obesity, respectively. Germ-free mice fed a high-fat diet at room temperature gained less adiposity and improved glucose tolerance when transplanted with caecal microbiota...... of mice housed at 12°C compared to mice transplanted with microbiota from 29°C. Thus, a microbiota-liver-BAT axis may mediate protection against obesity at reduced temperature....

  14. Altered excitability of cultured chromaffin cells following exposure to multi-walled carbon nanotubes.

    Science.gov (United States)

    Gavello, Daniela; Vandael, David H F; Cesa, Roberta; Premoselli, Federica; Marcantoni, Andrea; Cesano, Federico; Scarano, Domenica; Fubini, Bice; Carbone, Emilio; Fenoglio, Ivana; Carabelli, Valentina

    2012-02-01

    We studied the effects of multi-walled carbon nanotubes (MWCNTs) on the electrophysiological properties of cultured mouse chromaffin cells, a model of spontaneously firing cells. The exposure of chromaffin cells to MWCNTs at increasing concentrations (30-263 μg/ml) for 24 h reduced, in a dose-dependent way, both the cell membrane input resistance and the number of spontaneously active cells (from 80-52%). Active cells that survived from the toxic effects of MWCNTs exhibited more positive resting potentials, higher firing frequencies and unaltered voltage-gated Ca(2+), Na(+) and K+ current amplitudes. MWCNTs slowed down the inactivation kinetics of Ca(2+)-dependent BK channels. These electrophysiological effects were accompanied by MWCNTs internalization, as confirmed by transmission electron microscopy, indicating that most of the toxic effects derive from a dose-dependent MWCNTs-cell interaction that damages the spontaneous cell activity.

  15. Alterations in biochemical markers due to mercury (Hg) exposure and its influence on infant's neurodevelopment.

    Science.gov (United States)

    Al-Saleh, Iman; Elkhatib, Rola; Al-Rouqi, Reem; Abduljabbar, Mai; Eltabache, Chafica; Al-Rajudi, Tahreer; Nester, Michael

    2016-11-01

    This study examined the role of oxidative stress due to mercury (Hg) exposure on infant's neurodevelopmental performance. A total of 944 healthy Saudi mothers and their respective infants (aged 3-12 months) were recruited from 57 Primary Health Care Centers in Riyadh City. Total mercury (Hg) was measured in mothers and infants urine and hair samples, as well as mother's blood and breast milk. Methylmercury (MeHg) was determined in the mothers and infants' hair and mother's blood. Urinary 8-hydroxy-2'-deoxyguanosine (8-OHdG), malondialdehyde (MDA), and porphyrins were used to assess oxidative stress. The infant's neurodevelopment was evaluated using Denver Developmental Screening Test II (DDST-II) and Parents' Evaluation of Developmental Status. The median total Hg levels in mother's urine, infant's urine, mother's hair, infant's hair, and mother's blood and breast milk were 0.995μg/l, 0.716μg/l, 0.118μg/g dw, 0.101μg/g dw, 0.635μg/l, and 0.884μg/l respectively. The median MeHg levels in mother's hair, infant's hair, and mother's blood were 0.132μg/g dw, 0.091μg/g dw, and 2.341μg/l respectively. A significant interrelationship between mothers and infants Hg measures in various matrices was noted. This suggests that mother's exposure to different forms of Hg (total and/or MeHg) from various sources contributed significantly to the metal body burden of their respective infants. Even though Hg exposure was low, it induced high oxidative stress in mothers and infants. The influence of multiplicative interaction terms between Hg measures and oxidative stress biomarkers was tested using multiple regression analysis. Significant interactions between the urinary Hg levels in mothers and infants and oxidative stress biomarkers (8-OHdG and MDA) were noted. The MeHg levels in mother-infant hair revealed similar interaction patterns. The p-values for both were below 0.001. These observations suggest that the exposure of our infants to Hg via mothers either during

  16. Altered miRNA expression in the cervix during pregnancy associated with lead and mercury exposure.

    Science.gov (United States)

    Sanders, Alison P; Burris, Heather H; Just, Allan C; Motta, Valeria; Amarasiriwardena, Chitra; Svensson, Katherine; Oken, Emily; Solano-Gonzalez, Maritsa; Mercado-Garcia, Adriana; Pantic, Ivan; Schwartz, Joel; Tellez-Rojo, Martha M; Baccarelli, Andrea A; Wright, Robert O

    2015-01-01

    Toxic metals including lead and mercury are associated with adverse pregnancy outcomes. This study aimed to assess the association between miRNA expression in the cervix during pregnancy with lead and mercury levels. We obtained cervical swabs from pregnant women (n = 60) and quantified cervical miRNA expression. Women's blood lead, bone lead and toenail mercury levels were analyzed. We performed linear regression to examine the association between metal levels and expression of 74 miRNAs adjusting for covariates. Seventeen miRNAs were negatively associated with toenail mercury levels, and tibial bone lead levels were associated with decreased expression of miR-575 and miR-4286. The findings highlight miRNAs in the human cervix as novel responders to maternal chemical exposure during pregnancy.

  17. Exposure to the BPA-Substitute Bisphenol S Causes Unique Alterations of Germline Function.

    Directory of Open Access Journals (Sweden)

    Yichang Chen

    2016-07-01

    Full Text Available Concerns about the safety of Bisphenol A, a chemical found in plastics, receipts, food packaging and more, have led to its replacement with substitutes now found in a multitude of consumer products. However, several popular BPA-free alternatives, such as Bisphenol S, share a high degree of structural similarity with BPA, suggesting that these substitutes may disrupt similar developmental and reproductive pathways. We compared the effects of BPA and BPS on germline and reproductive functions using the genetic model system Caenorhabditis elegans. We found that, similarly to BPA, BPS caused severe reproductive defects including germline apoptosis and embryonic lethality. However, meiotic recombination, targeted gene expression, whole transcriptome and ontology analyses as well as ToxCast data mining all indicate that these effects are partly achieved via mechanisms distinct from BPAs. These findings therefore raise new concerns about the safety of BPA alternatives and the risk associated with human exposure to mixtures.

  18. Identification of the Atlantic cod L-amino acid oxidase and its alterations following bacterial exposure.

    Science.gov (United States)

    Kitani, Yoichiro; Fernandes, Jorge M O; Kiron, Viswanath

    2015-06-01

    Antibacterial factors that are present in epidermal mucus of fish have a potential role in the first line of host defence to bacterial pathogens. This study reports the identification of L-amino acid oxidase (LAO) in Atlantic cod (GmLao) and the changes in the molecule following bacterial exposure. The gmlao transcripts and LAO activity were present on both the body surface and in the internal organs of the fish. Relative mRNA level of gmlao increased significantly in the gills, the spleen and the head kidney (up to 8-fold) of fish that were challenged with the pathogen Vibrio anguillarum. The gmlao expression in skin was 4-fold higher in challenged fish. Our data indicate that LAO may be an important effector of antibacterial defence in Atlantic cod. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Stress Alters the Discriminative Stimulus and Response Rate Effects of Cocaine Differentially in Lewis and Fischer Inbred Rats

    Directory of Open Access Journals (Sweden)

    Therese A. Kosten

    2012-03-01

    Full Text Available Stress enhances the behavioral effects of cocaine, perhaps via hypothalamic-pituitary-adrenal (HPA axis activity. Yet, compared to Fischer 344 (F344 rats, Lewis rats have hyporesponsive HPA axis function and more readily acquire cocaine self-administration. We hypothesized that stress would differentially affect cocaine behaviors in these strains. The effects of three stressors on the discriminative stimulus and response rate effects of cocaine were investigated. Rats of both strains were trained to discriminate cocaine (10 mg/kg from saline using a two-lever, food-reinforced (FR10 procedure. Immediately prior to cumulative dose (1, 3, 10 mg/kg cocaine test sessions, rats were restrained for 15-min, had 15-min of footshock in a distinct context, or were placed in the shock-paired context. Another set of F344 and Lewis rats were tested similarly except they received vehicle injections to test if stress substituted for cocaine. Most vehicle-tested rats failed to respond after stressor exposures. Among cocaine-tested rats, restraint stress enhanced cocaine’s discriminative stimulus effects in F344 rats. Shock and shock-context increased response rates in Lewis rats. Stress-induced increases in corticosterone levels showed strain differences but did not correlate with behavior. These data suggest that the behavioral effects of cocaine can be differentially affected by stress in a strain-selective manner.

  20. Differential methylation between ethnic sub-groups reflects the effect of genetic ancestry and environmental exposures

    Science.gov (United States)

    Galanter, Joshua M; Gignoux, Christopher R; Oh, Sam S; Torgerson, Dara; Pino-Yanes, Maria; Thakur, Neeta; Eng, Celeste; Hu, Donglei; Huntsman, Scott; Farber, Harold J; Avila, Pedro C; Brigino-Buenaventura, Emerita; LeNoir, Michael A; Meade, Kelly; Serebrisky, Denise; Rodríguez-Cintrón, William; Kumar, Rajesh; Rodríguez-Santana, Jose R; Seibold, Max A; Borrell, Luisa N; Burchard, Esteban G; Zaitlen, Noah

    2017-01-01

    Populations are often divided categorically into distinct racial/ethnic groups based on social rather than biological constructs. Genetic ancestry has been suggested as an alternative to this categorization. Herein, we typed over 450,000 CpG sites in whole blood of 573 individuals of diverse Hispanic origin who also had high-density genotype data. We found that both self-identified ethnicity and genetically determined ancestry were each significantly associated with methylation levels at 916 and 194 CpGs, respectively, and that shared genomic ancestry accounted for a median of 75.7% (IQR 45.8% to 92%) of the variance in methylation associated with ethnicity. There was a significant enrichment (p=4.2×10-64) of ethnicity-associated sites amongst loci previously associated environmental exposures, particularly maternal smoking during pregnancy. We conclude that differential methylation between ethnic groups is partially explained by the shared genetic ancestry but that environmental factors not captured by ancestry significantly contribute to variation in methylation. DOI: http://dx.doi.org/10.7554/eLife.20532.001 PMID:28044981

  1. Oppression and exposure as differentiating predictors of types of workplace violence for nurses.

    Science.gov (United States)

    Rodwell, John; Demir, Defne

    2012-08-01

    To extend a model of the antecedents of workplace bullying to apply to a wider range of types of workplace aggression, including bullying and several types of violence, among nurses. Research that has focused on workplace bullying has found that the Demand-Control-Support model, negative affectivity and certain demographic factors play important roles as antecedents of bullying. A cross-sectional design. A validated questionnaire was sent to the work addresses of all nursing and midwifery staff in a medium-to-large hospital in Australia. A total of 273 nurses and midwives returned their completed questionnaires. Ordinal regressions were conducted to assess the antecedents of workplace aggression across bullying and violence. Aspects of the Demand-Control-Support model and job tenure significantly predicted particular forms of violence, while negative affectivity and work schedule were significant for bullying. The patterns of the results suggest key mechanisms that characterise certain forms of violence and distinguish between bullying and types of violence across the range of workplace aggression. In particular, oppression and exposure appear to differentiate types of workplace violence. The study suggests ways in which nursing and hospital managers may act to reduce the likelihood of certain forms of aggression, particularly violence, from occurring. © 2012 Blackwell Publishing Ltd.

  2. Recent exposure to ultrafine particles in school children alters miR-222 expression in the extracellular fraction of saliva.

    Science.gov (United States)

    Vriens, Annette; Nawrot, Tim S; Saenen, Nelly D; Provost, Eline B; Kicinski, Michal; Lefebvre, Wouter; Vanpoucke, Charlotte; Van Deun, Jan; De Wever, Olivier; Vrijens, Karen; De Boever, Patrick; Plusquin, Michelle

    2016-07-26

    Ultrafine particles (children. This study examined whether exposure to fine and ultrafine particulate matter (PM) is associated with changes in the extracellular content of miR-222 and miR-146a of children. Saliva was collected from 80 children at two different time points, circa 11 weeks apart and stabilized for RNA preservation. The extracellular fraction of saliva was obtained by means of differential centrifugation and ultracentrifugation. Expression levels of miR-222 and miR-146a were profiled by qPCR. We regressed the extracellular miRNA expression against recent exposure to ultrafine and fine particles measured at the school site using mixed models, while accounting for sex, age, BMI, passive smoking, maternal education, hours of television use, time of the day and day of the week. Exposure to ultrafine particles (UFP) at the school site was positively associated with miR-222 expression in the extracellular fraction in saliva. For each IQR increase in particles in the class room (+8504 particles/cm(3)) or playground (+28776 particles/cm(3)), miR-222 was, respectively 23.5 % (95 % CI: 3.5 %-41.1 %; p = 0.021) or 29.9 % (95 % CI:10.6 %-49.1 %; p = 0.0027) higher. No associations were found between miR-146a and recent exposure to fine and ultrafine particles. Our results suggest a possible epigenetic mechanism via which cells respond rapidly to small particles, as exemplified by miR-222 changes in the extracellular fraction of saliva.

  3. Gene expression and pathologic alterations in juvenile rainbow trout due to chronic dietary TCDD exposure

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Qing [Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211 (United States); School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave, Milwaukee, WI 53204 (United States); Rise, Matthew L. [Ocean Sciences Centre, Memorial University of Newfoundland, 1 Marine Lab Road, St. John' s, NL, A1C 5S7 (Canada); Spitsbergen, Jan M. [Department of Microbiology, Oregon State University, 220 Nash Hall, Corvallis, OR 97331 (United States); Hori, Tiago S. [Ocean Sciences Centre, Memorial University of Newfoundland, 1 Marine Lab Road, St. John' s, NL, A1C 5S7 (Canada); Mieritz, Mark; Geis, Steven [Wisconsin State Laboratory of Hygiene, 465 Henry Mall, Madison, WI 53706 (United States); McGraw, Joseph E. [School of Pharmacy, Concordia University Wisconsin, 12800 North Lake Shore Drive, Mequon, WI 53097 (United States); Goetz, Giles [School of Aquatic and Fishery Sciences, University of Washington, 1122 Northeast Boat Street, Seattle, WA 98195 (United States); Larson, Jeremy; Hutz, Reinhold J. [Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211 (United States); Carvan, Michael J., E-mail: carvanmj@uwm.edu [Department of Biological Sciences, University of Wisconsin-Milwaukee, Lapham Hall, 3209 N. Maryland Ave., Milwaukee, WI 53211 (United States); School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 E Greenfield Ave, Milwaukee, WI 53204 (United States)

    2013-09-15

    Highlights: •First report of the effects of dietary TCDD in juvenile trout smaller than 20 g. •TCDD uptake was estimated using published models and confirmed by GC. •First report of dietary TCDD-induced lesions in nasal epithelium in any species. •Several useful biomarkers are identified from microarray-based transcriptomics analysis. -- Abstract: The goal of this project was to use functional genomic methods to identify molecular biomarkers as indicators of the impact of TCDD exposure in rainbow trout. Specifically, we investigated the effects of chronic dietary TCDD exposure on whole juvenile rainbow trout global gene expression associated with histopathological analysis. Juvenile rainbow trout were fed Biodiet starter with TCDD added at 0, 0.1, 1, 10 and 100 ppb (ng TCDD/g food), and fish were sampled from each group at 7, 14, 28 and 42 days after initiation of feeding. 100 ppb TCDD caused 100% mortality at 39 days. Fish fed with 100 ppb TCDD food had TCDD accumulation of 47.37 ppb (ng TCDD/g fish) in whole fish at 28 days. Histological analysis from TCDD-treated trout sampled from 28 and 42 days revealed that obvious lesions were found in skin, oropharynx, liver, gas bladder, intestine, pancreas, nose and kidney. In addition, TCDD caused anemia in peripheral blood, decreases in abdominal fat, increases of remodeling of fin rays, edema in pericardium and retrobulbar hemorrhage in the 100 ppb TCDD-treated rainbow trout compared to the control group at 28 days. Dose- and time-dependent global gene expression analyses were performed using the cGRASP 16,000 (16K) cDNA microarray. TCDD-responsive whole body transcripts identified in the microarray experiments have putative functions involved in various biological processes including growth, cell proliferation, metabolic process, and immune system processes. Nine microarray-identified genes were selected for QPCR validation. CYP1A3 and CYP1A1 were common up-regulated genes and HBB1 was a common down

  4. Animal model of autism induced by prenatal exposure to valproate: altered glutamate metabolism in the hippocampus.

    Science.gov (United States)

    Bristot Silvestrin, Roberta; Bambini-Junior, Victorio; Galland, Fabiana; Daniele Bobermim, Larissa; Quincozes-Santos, André; Torres Abib, Renata; Zanotto, Caroline; Batassini, Cristiane; Brolese, Giovana; Gonçalves, Carlos-Alberto; Riesgo, Rudimar; Gottfried, Carmem

    2013-02-07

    Autism spectrum disorders (ASD) are characterized by deficits in social interaction, language and communication impairments and repetitive and stereotyped behaviors, with involvement of several areas of the central nervous system (CNS), including hippocampus. Although neurons have been the target of most studies reported in the literature, recently, considerable attention has been centered upon the functionality and plasticity of glial cells, particularly astrocytes. These cells participate in normal brain development and also in neuropathological processes. The present work investigated hippocampi from 15 (P15) and 120 (P120) days old male rats prenatally exposed to valproic acid (VPA) as an animal model of autism. Herein, we analyzed astrocytic parameters such as glutamate transporters and glutamate uptake, glutamine synthetase (GS) activity and glutathione (GSH) content. In the VPA group glutamate uptake was unchanged at P15 and increased 160% at P120; the protein expression of GLAST did not change neither in P15 nor in P120, while GLT1 decreased 40% at P15 and increased 92% at P120; GS activity increased 43% at P15 and decreased 28% at P120; GSH content was unaltered at P15 and had a 27% increase at P120. These data highlight that the astrocytic clearance and destination of glutamate in the synaptic cleft might be altered in autism, pointing out important aspects to be considered from both pathophysiologic and pharmacological approaches in ASD. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. High psychosis liability is associated with altered autonomic balance during exposure to Virtual Reality social stressors.

    Science.gov (United States)

    Counotte, Jacqueline; Pot-Kolder, Roos; van Roon, Arie M; Hoskam, Olivier; van der Gaag, Mark; Veling, Wim

    2017-06-01

    Social stressors are associated with an increased risk of psychosis. Stress sensitisation is thought to be an underlying mechanism and may be reflected in an altered autonomic stress response. Using an experimental Virtual Reality design, the autonomic stress response to social stressors was examined in participants with different liability to psychosis. Fifty-five patients with recent onset psychotic disorder, 20 patients at ultra-high risk for psychosis, 42 siblings of patients with psychosis and 53 controls were exposed to social stressors (crowdedness, ethnic minority status and hostility) in a Virtual Reality environment. Heart rate variability parameters and skin conductance levels were measured at baseline and during Virtual Reality experiments. High psychosis liability groups had significantly increased heart rate and decreased heart rate variability compared to low liability groups both at baseline and during Virtual Reality experiments. Both low frequency (LF) and high frequency (HF) power were reduced, while the LF/HF ratio was similar between groups. The number of virtual social stressors significantly affected heart rate, HF, LF/HF and skin conductance level. There was no interaction between psychosis liability and amount of virtual social stress. High liability to psychosis is associated with decreased parasympathetic activity in virtual social environments, which reflects generally high levels of arousal, rather than increased autonomic reactivity to social stressors. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Prenatal exposure to aflatoxin B1: developmental, behavioral, and reproductive alterations in male rats

    Science.gov (United States)

    Supriya, Ch.; Reddy, P. Sreenivasula

    2015-06-01

    Previous studies have shown that aflatoxin B1 (AfB1) inhibits androgen biosynthesis as a result of its ability to form a high-affinity complex with the steroidogenic acute regulatory protein. The results of the present study demonstrate the postnatal effects of in utero exposure to AfB1 in the rat. Pregnant Wistar rats were given 10, 20, or 50 μg AfB1/kg body weight daily from gestation day (GD) 12 to GD 19. At parturition, newborns were observed for clinical signs and survival. All animals were born alive and initially appeared to be active. Male pups from control and AfB1-exposed animals were weaned and maintained up to postnatal day (PD) 100. Litter size, birth weight, sex ratio, survival rate, and crown-rump length of the pups were significantly decreased in AfB1-exposed rats when compared to controls. Elapsed time (days) for testes to descend into the scrotal sac was significantly delayed in experimental pups when compared to control pups. Behavioral observations such as cliff avoidance, negative geotaxis, surface rightening activity, ascending wire mesh, open field behavior, and exploratory and locomotory activities were significantly impaired in experimental pups. Body weights and the indices of testis, cauda epididymis, prostate, seminal vesicles, and liver were significantly reduced on PD 100 in male rats exposed to AfB1 during embryonic development when compared with controls. Significant reduction in the testicular daily sperm production, epididymal sperm count, and number of viable, motile, and hypo-osmotic tail coiled sperm was observed in experimental rats. The levels of serum testosterone and activity levels of testicular hydroxysteroid dehydrogenases were significantly decreased in a dose-dependent manner with a significant increase in the serum follicle-stimulating hormone and luteinizing hormone in experimental rats. Deterioration in the testicular and cauda epididymal architecture was observed in experimental rats. The results of fertility

  7. Tributyl phosphate impairs the urea cycle and alters liver pathology and metabolism in mice after short-term exposure based on a metabonomics study.

    Science.gov (United States)

    Zhou, Lili; Zhang, Wenpeng; Xie, Wenping; Chen, Huiming; Yu, Wenlian; Li, Haishan; Shen, Guolin

    2017-12-15

    As a newly emerging environmental contaminant, tributyl phosphate (TBP) is of increasing concern because of the environmental problems it can cause. Studies have suggested that TBP induces hepatocellular adenomas and has malignant potential for hepatocellular carcinoma. However, the mechanisms of its adverse effects are unclear. In this study, metabonomic techniques were used to identify differential endogenous metabolites, draw network metabolic pathways and conduct network analysis to elucidate the underlying mechanisms involved in TBP induced pathological changes of the liver. The metabonomics study showed that TBP altered endogenous metabolites in the plasma and liver. The number of categories of endogenous metabolites with a VIP >1 were 14 in plasma and 20 in liver. The results also showed that TBP impaired urea synthesis in the liver. In addition, results of both in vitro and in vivo experiments indicated that TBP activated nuclear receptor CAR and inhibited CYP3a11 and CYP2b10 activities in the liver of mice after short-term exposure. These effects may be the underlying causes leading to TBP induced hepatocellular adenomas. This study combined metabonomics and other technical methods to clarify the mechanism of TBP-induced liver tumorigenesis from a new perspective. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Chronic intermittent ethanol exposure during adolescence: Effects on stress-induced social alterations and social drinking in adulthood.

    Science.gov (United States)

    Varlinskaya, Elena I; Kim, Esther U; Spear, Linda P

    2017-01-01

    We previously observed lasting and sex-specific detrimental consequences of early adolescent intermittent ethanol exposure (AIE), with male, but not female, rats showing social anxiety-like alterations when tested as adults. The present study used Sprague Dawley rats to assess whether social alterations induced by AIE (3.5g/kg, intragastrically, every other day, between postnatal days [P] 25-45) are further exacerbated by stressors later in life. Another aim was to determine whether AIE alone or in combination with stress influenced intake of a sweetened ethanol solution (Experiment 1) or a sweetened solution ("supersac") alone (Experiment 2) under social circumstances. Animals were exposed to restraint on P66-P70 (90min/day) or left nonstressed, with corticosterone (CORT) levels assessed on day 1 and day 5 in Experiment 2. Social anxiety-like behavior emerged after AIE in non-stressed males, but not females, whereas stress-induced social anxiety was evident only in water-exposed males and females. Adult-typical habituation of the CORT response to repeated restraint was not evident in adult animals after AIE, a lack of habituation reminiscent of that normally evident in adolescents. Neither AIE nor stress affected ethanol intake under social circumstances, although AIE and restraint independently increased adolescent-typical play fighting in males during social drinking. Among males, the combination of AIE and restraint suppressed "supersac" intake; this index of depression-like behavior was not seen in females. The results provide experimental evidence associating adolescent alcohol exposure, later stress, anxiety, and depression, with young adolescent males being particularly vulnerable to long-lasting adverse effects of repeated ethanol. This article is part of a Special Issue entitled SI: Adolescent plasticity. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Functional alterations of alveolar macrophages subjected to smoke exposure and antioxidant lazaroids.

    Science.gov (United States)

    Wang, S; Lantz, R C; Vermeulen, M W; Chen, G J; Breceda, V; Robledo, R F; Hays, A M; Young, S; Witten, M L

    1999-08-01

    Acute inhalation of diesel fuel-polycarbonate plastic (DFPP) smoke causes severe lung injury, leading to acute respiratory distress syndrome (ARDS) and death. It has been reported that the initiation of acute lung injury is associated with the activation of pulmonary alveolar macrophages (PAM). To further explore the pathogenesis, alveolar macrophages (AM) of New Zealand rabbits ventilated and exposed to a 60 tidal volume of DFPP smoke in vivo were recovered at 1 h post-smoke. Smoke exposure induced significant increases in both mRNA and protein levels for PAM tumor necrosis factor-alpha (TNF-alpha), when compared to smoke control. Smoke also induced a biphasic response (inhibited at 2 h, enhanced at 24 h after cell isolation) in the production of superoxide (O2-) by PAM. However, aerosolized lazaroid, U75412E (1.6 mg/kg body weight), significantly attenuated smoke-induced expression in AM TNF-alpha at the protein level but not at the mRNA level, and smoke-induced changes in AM production of O2-. This study suggests that highly expressing AM TNF-alpha following smoke may be a key contributor to the cascade that establishes an acute injury process and exacerbates oxidant-derived cell injury. Whereas, the lazaroid may ameliorate smoke-induced lung injury by attenuating AM TNF-alpha release, in addition to its primary antioxidative mechanism.

  10. Altered Microbiota Contributes to Reduced Diet-Induced Obesity upon Cold Exposure.

    Science.gov (United States)

    Ziętak, Marika; Kovatcheva-Datchary, Petia; Markiewicz, Lidia H; Ståhlman, Marcus; Kozak, Leslie P; Bäckhed, Fredrik

    2016-06-14

    Maintenance of body temperature in cold-exposed animals requires induction of thermogenesis and management of fuel. Here, we demonstrated that reducing ambient temperature attenuated diet-induced obesity (DIO), which was associated with increased iBAT thermogenesis and a plasma bile acid profile similar to that of germ-free mice. We observed a marked shift in the microbiome composition at the phylum and family levels within 1 day of acute cold exposure and after 4 weeks at 12°C. Gut microbiota was characterized by increased levels of Adlercreutzia, Mogibacteriaceae, Ruminococcaceae, and Desulfovibrio and reduced levels of Bacilli, Erysipelotrichaceae, and the genus rc4-4. These genera have been associated with leanness and obesity, respectively. Germ-free mice fed a high-fat diet at room temperature gained less adiposity and improved glucose tolerance when transplanted with caecal microbiota of mice housed at 12°C compared to mice transplanted with microbiota from 29°C. Thus, a microbiota-liver-BAT axis may mediate protection against obesity at reduced temperature. Copyright © 2016 The Author(s). Published by Elsevier Inc. All rights reserved.

  11. Combined exposure to Maneb and Paraquat alters transcriptional regulation of neurogenesis-related genes in mice models of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Desplats Paula

    2012-09-01

    Full Text Available Abstract Background Parkinson's disease (PD is a multifactorial disease where environmental factors act on genetically predisposed individuals. Although only 5% of PD manifestations are associated with specific mutations, majority of PD cases are of idiopathic origin, where environment plays a prominent role. Concurrent exposure to Paraquat (PQ and Maneb (MB in rural workers increases the risk for PD and exposure of adult mice to MB/PQ results in dopamine fiber loss and decreased locomotor activity. While PD is characterized by neuronal loss in the substantia nigra, we previously showed that accumulation of α-synuclein in the limbic system contributes to neurodegeneration by interfering with adult neurogenesis. Results We investigated the effect of pesticides on adult hippocampal neurogenesis in two transgenic models: Line 61, expressing the human wild type SNCA gene and Line LRRK2(G2019S, expressing the human LRRK2 gene with the mutation G2019S. Combined exposure to MB/PQ resulted in significant reduction of neuronal precursors and proliferating cells in non-transgenic animals, and this effect was increased in transgenic mice, in particular for Line 61, suggesting that α-synuclein accumulation and environmental toxins have a synergistic effect. We further investigated the transcription of 84 genes with direct function on neurogenesis. Overexpresion of α-synuclein resulted in the downregulation of 12% of target genes, most of which were functionally related to cell differentiation, while LRRK2 mutation had a minor impact on gene expression. MB/PQ also affected transcription in non-transgenic backgrounds, but when transgenic mice were exposed to the pesticides, profound alterations in gene expression affecting 27% of the studied targets were observed in both transgenic lines. Gene enrichment analysis showed that 1:3 of those genes were under the regulation of FoxF2 and FoxO3A, suggesting a primary role of these proteins in the response to

  12. Changes in capsular serotype alter the surface exposure of pneumococcal adhesins and impact virulence.

    Directory of Open Access Journals (Sweden)

    Carlos J Sanchez

    Full Text Available We examined the contribution of serotype on Streptococcus pneumoniae adhesion and virulence during respiratory tract infection using a panel of isogenic TIGR4 (serotype 4 mutants expressing the capsule types 6A (+6A, 7F (+7F and 23F (+23F as well as a deleted and restored serotype 4 (+4 control strain. Immunoblots, bacterial capture assays with immobilized antibody, and measurement of mean fluorescent intensity by flow cytometry following incubation of bacteria with antibody, all determined that the surface accessibility, but not total protein levels, of the virulence determinants Pneumococcal surface protein A (PspA, Choline binding protein A (CbpA, and Pneumococcal serine-rich repeat protein (PsrP changed with serotype. In vitro, bacterial adhesion to Detroit 562 pharyngeal or A549 lung epithelial cells was modestly but significantly altered for +6A, +7F and +23F. In a mouse model of nasopharyngeal colonization, the number of +6A, +7F, and +23F pneumococci in the nasopharynx was reduced 10 to 100-fold versus +4; notably, only mice challenged with +4 developed bacteremia. Intratracheal challenge of mice confirmed that capsule switch strains were highly attenuated for virulence. Compared to +4, the +6A, +7F, and +23F strains were rapidly cleared from the lungs and were not detected in the blood. In mice challenged intraperitoneally, a marked reduction in bacterial blood titers was observed for those challenged with +6A and +7F versus +4 and +23F was undetectable. These findings show that serotype impacts the accessibility of surface adhesins and, in particular, affects virulence within the respiratory tract. They highlight the complex interplay between capsule and protein virulence determinants.

  13. Chronic Anabolic Androgenic Steroid Exposure Alters Corticotropin Releasing Factor Expression and Anxiety-Like Behaviors in the Female Mouse

    Science.gov (United States)

    Costine, Beth A; Oberlander, Joseph G; Davis, Matthew C; Penatti, Carlos A A; Porter, Donna M; Leaton, Robert N; Henderson, Leslie P

    2010-01-01

    Summary In the past several decades, the therapeutic use of anabolic androgenic steroids (AAS) has been overshadowed by illicit use of these drugs by elite athletes and a growing number of adolescents to enhance performance and body image. As with adults, AAS use by adolescents is associated with a range of behavioral effects, including increased anxiety and altered responses to stress. It has been suggested that adolescents, especially adolescent females, may be particularly susceptible to the effects of these steroids, but few experiments in animal models have been performed to test this assertion. Here we show that chronic exposure of adolescent female mice to a mixture of three commonly abused AAS (testosterone cypionate, nandrolone decanoate and methandrostenolone; 7.5 mg/kg/day for 5 days) significantly enhanced anxiety-like behavior as assessed by the acoustic startle response (ASR), but did not augment the fear-potentiated startle response (FPS) or alter sensorimotor gating as assessed by prepulse inhibition of the acoustic startle response (PPI). AAS treatment also significantly increased the levels of corticotropin releasing factor (CRF) mRNA and somal-associated CRF immunoreactivity in the central amygdala (CeA), as well as neuropil-associated immunoreactivity in the dorsal aspect of the anterolateral division of the bed nucleus of the stria terminalis (dBnST). AAS treatment did not alter CRF receptor 1 or 2 mRNA in either the CeA or the dBnST; CRF immunoreactivity in the ventral BNST, the paraventricular nucleus (PVN) or the median eminence (ME); or peripheral levels of corticosterone. These results suggest that chronic AAS treatment of adolescent female mice may enhance generalized anxiety, but not sensorimotor gating or learned fear, via a mechanism that involves increased CRF-mediated signaling from CeA neurons projecting to the dBnST. PMID:20537804

  14. Effects of radiofrequency exposure emitted from a GSM mobile phone on proliferation, differentiation, and apoptosis of neural stem cells.

    Science.gov (United States)

    Eghlidospour, Mahsa; Ghanbari, Amir; Mortazavi, Seyyed Mohammad Javad; Azari, Hassan

    2017-06-01

    Due to the importance of neural stem cells (NSCs) in plasticity of the nervous system and treating neurodegenerative diseases, the main goal of this study was to evaluate the effects of radiofrequency radiation emitted from a GSM 900-MHz mobile phone with different exposure duration on proliferation, differentiation and apoptosis of adult murine NSCs in vitro. We used neurosphere assay to evaluate NSCs proliferation, and immunofluorescence assay of neural cell markers to examine NSCs differentiation. We also employed alamarBlue and caspase 3 apoptosis assays to assess harmful effects of mobile phone on NSCs. Our results showed that the number and size of resulting neurospheres and also the percentage of cells differentiated into neurons decreased significantly with increasing exposure duration to GSM 900-MHz radiofrequency (RF)-electromagnetic field (EMF). In contrast, exposure to GSM 900-MHz RF-EMF at different durations did not influence cell viability and apoptosis of NSCs and also their astrocytic differentiation. It is concluded that accumulating dose of GSM 900-MHz RF-EMF might have devastating effects on NSCs proliferation and neurogenesis requiring more causations in terms of using mobile devices.

  15. Repeated exposure of adult rats to transient oxidative stress induces various long-lasting alterations in cognitive and behavioral functions.

    Directory of Open Access Journals (Sweden)

    Yoshio Iguchi

    Full Text Available Exposure of neonates to oxidative stress may increase the risk of psychiatric disorders such as schizophrenia in adulthood. However, the effects of moderate oxidative stress on the adult brain are not completely understood. To address this issue, we systemically administrated 2-cyclohexen-1-one (CHX to adult rats to transiently reduce glutathione levels. Repeated administration of CHX did not affect the acquisition or motivation of an appetitive instrumental behavior (lever pressing rewarded by a food outcome under a progressive ratio schedule. In addition, response discrimination and reversal learning were not affected. However, acute CHX administration blunted the sensitivity of the instrumental performance to outcome devaluation, and this effect was prolonged in rats with a history of repeated CHX exposure, representing pro-depression-like phenotypes. On the other hand, repeated CHX administration reduced immobility in forced swimming tests and blunted acute cocaine-induced behaviors, implicating antidepressant-like effects. Multivariate analyses segregated a characteristic group of behavioral variables influenced by repeated CHX administration. Taken together, these findings suggest that repeated administration of CHX to adult rats did not cause a specific mental disorder, but it induced long-term alterations in behavioral and cognitive functions, possibly related to specific neural correlates.

  16. Age at First Exposure to Football Is Associated with Altered Corpus Callosum White Matter Microstructure in Former Professional Football Players.

    Science.gov (United States)

    Stamm, Julie M; Koerte, Inga K; Muehlmann, Marc; Pasternak, Ofer; Bourlas, Alexandra P; Baugh, Christine M; Giwerc, Michelle Y; Zhu, Anni; Coleman, Michael J; Bouix, Sylvain; Fritts, Nathan G; Martin, Brett M; Chaisson, Christine; McClean, Michael D; Lin, Alexander P; Cantu, Robert C; Tripodis, Yorghos; Stern, Robert A; Shenton, Martha E

    2015-11-15

    Youth football players may incur hundreds of repetitive head impacts (RHI) in one season. Our recent research suggests that exposure to RHI during a critical neurodevelopmental period prior to age 12 may lead to greater later-life mood, behavioral, and cognitive impairments. Here, we examine the relationship between age of first exposure (AFE) to RHI through tackle football and later-life corpus callosum (CC) microstructure using magnetic resonance diffusion tensor imaging (DTI). Forty retired National Football League (NFL) players, ages 40-65, were matched by age and divided into two groups based on their AFE to tackle football: before age 12 or at age 12 or older. Participants underwent DTI on a 3 Tesla Siemens (TIM-Verio) magnet. The whole CC and five subregions were defined and seeded using deterministic tractography. Dependent measures were fractional anisotropy (FA), trace, axial diffusivity, and radial diffusivity. Results showed that former NFL players in the AFE <12 group had significantly lower FA in anterior three CC regions and higher radial diffusivity in the most anterior CC region than those in the AFE ≥12 group. This is the first study to find a relationship between AFE to RHI and later-life CC microstructure. These results suggest that incurring RHI during critical periods of CC development may disrupt neurodevelopmental processes, including myelination, resulting in altered CC microstructure.

  17. Exposure to fine particulate matter in the air alters placental structure and the renin-angiotensin system.

    Directory of Open Access Journals (Sweden)

    Sônia de Fátima Soto

    Full Text Available Female Wistar rats were exposed to filtered air (F or to concentrated fine particulate matter (P for 15 days. After mating, the rats were divided into four groups and again exposed to F or P (FF, FP, PF, PP beginning on day 6 of pregnancy. At embryonic day 19, the placenta was collected. The placental structure, the protein and gene expression of TGFβ1, VEGF-A, and its receptor Flk-1 and RAS were evaluated by indirect ELISA and quantitative real-time PCR.Exposure to P decreased the placental mass, size, and surface area as well as the TGFβ1, VEGF-A and Flk-1 content. In the maternal portion of the placenta, angiotensin II (AngII and its receptors AT1 (AT1R and AT2 (AT2R were decreased in the PF and PP groups. In the fetal portion of the placenta, AngII in the FP, PF and PP groups and AT2R in the PF and PP groups were decreased, but AT1R was increased in the FP group. VEGF-A gene expression was lower in the PP group than in the FF group.Exposure to pollutants before and/or during pregnancy alters some characteristics of the placenta, indicating a possible impairment of trophoblast invasion and placental angiogenesis with possible consequences for the maternal-fetal interaction, such as a limitation of fetal nutrition and growth.

  18. Experimental exposure of African catfish Clarias Gariepinus (Burchell, 1822 to phenol: Clinical evaluation, tissue alterations and residue assessment

    Directory of Open Access Journals (Sweden)

    Mai D. Ibrahem

    2012-04-01

    Full Text Available There is lack of information regarding; the toxicological and pathological consequences of phenol stressed Clarias gariepinus; as well as; the susceptibility of the stressed fish to disease occurrence. Static renewal bioassay was experimentally conducted to evaluate the toxic effects of phenol on the African catfish C. gariepinus. Ninety-six-hour acute toxicity tests revealed that the median lethal concentration of phenol (LC50 is 35 mg/L by immersion. Four experimental fish groups were assigned for 3 weeks exposure test; three were exposed 20%, 50% and 70% LC50, the fourth control fish group received a vehicle of dechlorinated water. Abnormal signs including cessation of feeding, nervous manifestations; skin expressed perfuses mucous, black patches with skin erosion and ulcerations in the later stages. All observations were correlated to the time and dose of exposure. Post mortem examination revealed adhesion of the internal organs. For tissue alterations; Skin, gills, brain, liver and kidney showed variable degrees of degenerative changes and necrosis. Muscle residues shown in mean ± SE were 4.3 ± 0.05 and 6.65 ± 0.05 ppm in groups that received 20 and 50% LD50, respectively. Infection with Aeromonas hydrophila resulted in high percent of mortalities with a non significant difference between the challenged fish groups. The study cleared that phenol is toxic to C. gariepinus under experimental conditions.

  19. Trauma exposure relates to heightened stress, altered amygdala morphology and deficient extinction learning: Implications for psychopathology.

    Science.gov (United States)

    Cacciaglia, Raffaele; Nees, Frauke; Grimm, Oliver; Ridder, Stephanie; Pohlack, Sebastian T; Diener, Slawomira J; Liebscher, Claudia; Flor, Herta

    2017-02-01

    Stress exposure causes a structural reorganization in neurons of the amygdala. In particular, animal models have repeatedly shown that both acute and chronic stress induce neuronal hypertrophy and volumetric increase in the lateral and basolateral nuclei of amygdala. These effects are visible on the behavioral level, where stress enhances anxiety behaviors and provokes greater fear learning. We assessed stress and anxiety levels in a group of 18 healthy human trauma-exposed individuals (TR group) compared to 18 non-exposed matched controls (HC group), and related these measurements to amygdala volume. Traumas included unexpected adverse experiences such as vehicle accidents or sudden loss of a loved one. As a measure of aversive learning, we implemented a cued fear conditioning paradigm. Additionally, to provide a biological marker of chronic stress, we measured the sensitivity of the hypothalamus-pituitary-adrenal (HPA) axis using a dexamethasone suppression test. Compared to the HC, the TR group showed significantly higher levels of chronic stress, current stress and trait anxiety, as well as increased volume of the left amygdala. Specifically, we observed a focal enlargement in its lateral portion, in line with previous animal data. Compared to HC, the TR group also showed enhanced late acquisition of conditioned fear and deficient extinction learning, as well as salivary cortisol hypo-suppression to dexamethasone. Left amygdala volumes positively correlated with suppressed morning salivary cortisol. Our results indicate differences in trauma-exposed individuals which resemble those previously reported in animals exposed to stress and in patients with post-traumatic stress disorder and depression. These data provide new insights into the mechanisms through which traumatic stress might prompt vulnerability for psychopathology. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Implications of genomic signatures in the differential vulnerability to fetal alcohol exposure in C57BL/6 and DBA/2 mice

    Directory of Open Access Journals (Sweden)

    Amy C. Lossie

    2014-06-01

    Full Text Available Maternal alcohol consumption inflicts a multitude of phenotypic consequences that range from undetectable changes to severe dysmorphology. Using tightly controlled murine studies that deliver precise amounts of alcohol at discrete developmental stages, our group and other labs demonstrated in prior studies that the C57BL/6 and DBA/2 inbred mouse strains display differential susceptibility to the teratogenic effects of alcohol. Since the phenotypic diversity extends beyond the amount, dosage and timing of alcohol exposure, it is likely that an individual’s genetic background contributes to the phenotypic spectrum. To identify the genomic signatures associated with these observed differences in alcohol-induced dysmorphology, we conducted a microarray-based transcriptome study that also interrogated the genomic signatures between these two lines based on genetic background and alcohol exposure. This approach is called a gene x environment (GxE analysis; one example of a GxE interaction would be a gene whose expression level increases in C57BL/6 animals, but decreases in DBA/2 embryos, following alcohol exposure. We identified 35 candidate genes exhibiting GxE interactions. To identify cis-acting factors that mediated these interactions, we interrogated the proximal promoters of these 35 candidates and found 241 single nucleotide variants (SNVs in 16 promoters. Further investigation indicated that 186 SNVs (15 promoters are predicted to alter transcription factor binding. In addition, 62 SNVs created, removed or altered the placement of a CpG dinucleotide in 13 of the proximal promoters; 53 of which overlapped putative transcription factor binding sites. These 53 SNVs are our top candidates for future studies aimed at examining the effects of alcohol on epigenetic gene regulation.

  1. Education and cause-specific mortality: the mediating role of differential exposure and vulnerability to behavioral risk factors.

    Science.gov (United States)

    Nordahl, Helene; Lange, Theis; Osler, Merete; Diderichsen, Finn; Andersen, Ingelise; Prescott, Eva; Tjønneland, Anne; Frederiksen, Birgitte Lidegaard; Rod, Naja Hulvej

    2014-05-01

    Differential exposures to behavioral risk factors have been shown to play an important mediating role on the education-mortality relation. However, little is known about the extent to which educational attainment interacts with health behavior, possibly through differential vulnerability. In a cohort study of 76,294 participants 30 to 70 years of age, we estimated educational differences in cause-specific mortality from 1980 through 2009 and the mediating role of behavioral risk factors (smoking, alcohol intake, physical activity, and body mass index). With the use of marginal structural models and three-way effect decomposition, we simultaneously regarded the behavioral risk factors as intermediates and clarified the role of their interaction with educational exposure. Rate differences in mortality comparing participants with low to high education were 1,277 (95% confidence interval = 1,062 to 1,492) per 100,000 person-years for men and 746 (598 to 894) per 100,000 person-years for women. Smoking was the strongest mediator for cardiovascular disease, cancer, and respiratory disease mortality when conditioning on sex, age, and cohort. The proportion mediated through smoking was most pronounced in cancer mortality as a combination of the pure indirect effect, owing to differential exposure (men, 42% [25% to 75%]; women, 36% [17% to 74%]) and the mediated interactive effect, owing to differential vulnerability (men, 18% [2% to 35%], women, 26% [8% to 50%]). The mediating effects through body mass index, alcohol intake, or physical activity were partial and varied for the causes of deaths. Differential exposure and vulnerability should be addressed simultaneously, as these mechanisms are not mutually exclusive and may operate at the same time.

  2. Chronic Ethanol Consumption Differentially Alters Gray and White Matter Ethanol 1H Methyl Magnetic Resonance Intensity in the Primate Brain

    Science.gov (United States)

    Kroenke, Christopher D.; Flory, Graham S.; Park, Byung; Shaw, Jessica; Rau, Andrew R.; Grant, Kathleen A.

    2013-01-01

    Background In vivo magnetic resonance spectroscopy (MRS) has previously been used to directly monitor brain ethanol. It has been proposed that the ethanol methyl 1H resonance intensity is larger in ethanol-tolerant individuals than in sensitive individuals. To characterize the relationship between long-term ethanol exposure and the brain ethanol MRS intensity, we present data from a longitudinal experiment conducted using nonhuman primate subjects. Methods In vivo MRS was used to measure the gray matter (GM) and white matter (WM) ethanol methyl 1H MRS intensity in 18 adult male rhesus macaques at four time points throughout the course of a chronic drinking experiment. Time points were prior to ethanol drinking, following a 3-month ethanol induction procedure, and following six, and twelve subsequent months of 22-hours/day of “open access” to ethanol (4% w/v) and water. Results The ethanol methyl 1H MRS intensity, which we observed to be independent of age over the range examined, increased with chronic ethanol exposure in GM and WM. In GM, MRS intensity increased from naive-level following the ethanol induction period (90 g/kg cumulative ethanol intake). In WM, MRS intensity was not significantly different from the ethanol-naïve state until after 6 months of 22-hours free access (110–850 g/kg cumulative intake range). The WM MRS intensity in the ethanol-naive state was positively correlated with future drinking, and the increase in WM MRS intensity was negatively correlated with the amount of ethanol consumed throughout the experiment. Conclusions Chronic exposure to ethanol is associated with brain changes that result in differential increases in ethanol MRS intensity in GM and WM. The ethanol-naïve WM MRS intensity pattern is consistent with its previously proposed relationship to innate tolerance to the intoxicating effects of ethanol. Ethanol-dependent MRS intensity changes in GM required less ethanol exposure than was necessary to produce changes in WM

  3. Gestational exposure to diethylstilbestrol alters cardiac structure/function, protein expression and DNA methylation in adult male mice progeny

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Rami, E-mail: rami.haddad@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Kasneci, Amanda, E-mail: amanda.kasneci@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Mepham, Kathryn, E-mail: katherine.mepham@mail.mcgill.ca [Lady Davis Institute for Medical Research, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); Division of Experimental Medicine, Department of Medicine, McGill University, 850 Sherbrooke Street, Montréal, Québec, Canada H3A 1A2 (Canada); Sebag, Igal A., E-mail: igal.sebag@mcgill.ca [Division of Cardiology, Jewish General Hospital, 3755 chemin Cote Ste Catherine, Montréal, Québec, Canada H3T 1E2 (Canada); and others

    2013-01-01

    Pregnant women, and thus their fetuses, are exposed to many endocrine disruptor compounds (EDCs). Fetal cardiomyocytes express sex hormone receptors making them potentially susceptible to re-programming by estrogenizing EDCs. Diethylstilbestrol (DES) is a proto-typical, non-steroidal estrogen. We hypothesized that changes in adult cardiac structure/function after gestational exposure to the test compound DES would be a proof in principle for the possibility of estrogenizing environmental EDCs to also alter the fetal heart. Vehicle (peanut oil) or DES (0.1, 1.0 and 10.0 μg/kg/da.) was orally delivered to pregnant C57bl/6n dams on gestation days 11.5–14.5. At 3 months, male progeny were left sedentary or were swim trained for 4 weeks. Echocardiography of isoflurane anesthetized mice revealed similar cardiac structure/function in all sedentary mice, but evidence of systolic dysfunction and increased diastolic relaxation after swim training at higher DES doses. The calcium homeostasis proteins, SERCA2a, phospholamban, phospho-serine 16 phospholamban and calsequestrin 2, are important for cardiac contraction and relaxation. Immunoblot analyses of ventricle homogenates showed increased expression of SERCA2a and calsequestrin 2 in DES mice and greater molecular remodeling of these proteins and phospho-serine 16 phospholamban in swim trained DES mice. DES increased cardiac DNA methyltransferase 3a expression and DNA methylation in the CpG island within the calsequestrin 2 promoter in heart. Thus, gestational DES epigenetically altered ventricular DNA, altered cardiac function and expression, and reduced the ability of adult progeny to cardiac remodel when physically challenged. We conclude that gestational exposure to estrogenizing EDCs may impact cardiac structure/function in adult males. -- Highlights: ► Gestational DES changes cardiac SERCA2a and CASQ2 expression. ► Echocardiography identified systolic dysfunction and increased diastolic relaxation. ► DES

  4. Exposure to monomethylarsonous acid (MMA(III)) leads to altered selenoprotein synthesis in a primary human lung cell model.

    Science.gov (United States)

    Meno, Sarah R; Nelson, Rebecca; Hintze, Korry J; Self, William T

    2009-09-01

    Monomethylarsonous acid (MMA(III)), a trivalent metabolite of arsenic, is highly cytotoxic and recent cell culture studies suggest that it might act as a carcinogen. The general consensus of studies indicates that the cytotoxicity of MMA(III) is a result of increased levels of reactive oxygen species (ROS). A longstanding relationship between arsenic and selenium metabolism has led to the use of selenium as a supplement in arsenic exposed populations, however the impact of organic arsenicals (methylated metabolites) on selenium metabolism is still poorly understood. In this study we determined the impact of exposure to MMA(III) on the regulation of expression of TrxR1 and its activity using a primary lung fibroblast line, WI-38. The promoter region of the gene encoding the selenoprotein thioredoxin reductase 1 (TrxR1) contains an antioxidant responsive element (ARE) that has been shown to be activated in the presence of electrophilic compounds. Results from radiolabeled selenoproteins indicate that exposure to low concentrations of MMA(III) resulted in increased synthesis of TrxR1 in WI-38 cells, and lower incorporation of selenium into other selenoproteins. MMA(III) treatment led to increased mRNA encoding TrxR1 in WI-38 cells, while lower levels of mRNA coding for cellular glutathione peroxidase (cGpx) were detected in exposed cells. Luciferase activity of TrxR1 promoter fusions increased with addition of MMA(III), as did expression of a rat quinone reductase (QR) promoter fusion construct. However, MMA(III) induction of the TRX1 promoter fusion was abrogated when the ARE was mutated, suggesting that this regulation is mediated via the ARE. These results indicate that MMA(III) alters the expression of selenoproteins based on a selective induction of TrxR1, and this response to exposure to organic arsenicals that requires the ARE element.

  5. Exposure to a northern contaminant mixture (NCM) alters hepatic energy and lipid metabolism exacerbating hepatic steatosis in obese JCR rats.

    Science.gov (United States)

    Mailloux, Ryan J; Florian, Maria; Chen, Qixuan; Yan, Jin; Petrov, Ivan; Coughlan, Melanie C; Laziyan, Mahemuti; Caldwell, Don; Lalande, Michelle; Patry, Dominique; Gagnon, Claude; Sarafin, Kurtis; Truong, Jocelyn; Chan, Hing Man; Ratnayake, Nimal; Li, Nanqin; Willmore, William G; Jin, Xiaolei

    2014-01-01

    Non-alcoholic fatty liver disease (NAFLD), defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to 10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with or without co-exposure

  6. Transgenerational pancreatic impairment with Igf2/H19 epigenetic alteration induced by p,p'-DDE exposure in early life.

    Science.gov (United States)

    Song, Yang; Yang, Lei

    2017-10-05

    The hypothesis of fetal origins indicates that exposures in early development could induce epigenetic modifications in the male germ-line, affecting the susceptibility of adult-onset disease for generations. p,p'-DDE, the primary metabolite of persistent organochlorine pesticide DDT, is highly correlated with impaired glucose tolerance (IGT) and a strong contributing factor to type 2 diabetes. In our previous study, ancestral p,p'-DDE exposure could induce transgenerational impaired male fertility with sperm Igf2 hypomethylation. It is still unknown whether this germline epigenetic defect would affect the somatic tissue endocrine pancreas. Gestating F0 generation females were exposed to p,p'-DDE from gestation day 8 to 15. The F1 male offspring were mated with female to produce F2 progeny. F3 generation was obtained by intercrossing the control and treated male and female of F2 generation and divided as C♂-C♀, DDE♂-DDE♀, DDE♂-C♀ and C♂-DDE♀. Results indicated that F1 offspring in p,p'-DDE group exhibited impaired glucose tolerance (IGT), abnormal insulin secretion, β-cell dysfunction and altered Igf2 and H19 expression induced by Igf2/H19 hypomethylation, which could be transferred to the F3 offspring through the male germ line. IGT and abnormal insulin secretion were more obvious in males than those in females. Ancestral p,p'-DDE exposure could induce transgenerational pancreatic impairment with Igf2/H19 epigenetic defect. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Exposure to a northern contaminant mixture (NCM alters hepatic energy and lipid metabolism exacerbating hepatic steatosis in obese JCR rats.

    Directory of Open Access Journals (Sweden)

    Ryan J Mailloux

    Full Text Available Non-alcoholic fatty liver disease (NAFLD, defined by the American Liver Society as the buildup of extra fat in liver cells that is not caused by alcohol, is the most common liver disease in North America. Obesity and type 2 diabetes are viewed as the major causes of NAFLD. Environmental contaminants have also been implicated in the development of NAFLD. Northern populations are exposed to a myriad of persistent organic pollutants including polychlorinated biphenyls, organochlorine pesticides, flame retardants, and toxic metals, while also affected by higher rates of obesity and alcohol abuse compared to the rest of Canada. In this study, we examined the impact of a mixture of 22 contaminants detected in Inuit blood on the development and progression of NAFLD in obese JCR rats with or without co-exposure to 10% ethanol. Hepatosteatosis was found in obese rat liver, which was worsened by exposure to 10% ethanol. NCM treatment increased the number of macrovesicular lipid droplets, total lipid contents, portion of mono- and polyunsaturated fatty acids in the liver. This was complemented by an increase in hepatic total cholesterol and cholesterol ester levels which was associated with changes in the expression of genes and proteins involved in lipid metabolism and transport. In addition, NCM treatment increased cytochrome P450 2E1 protein expression and decreased ubiquinone pool, and mitochondrial ATP synthase subunit ATP5A and Complex IV activity. Despite the changes in mitochondrial physiology, hepatic ATP levels were maintained high in NCM-treated versus control rats. This was due to a decrease in ATP utilization and an increase in creatine kinase activity. Collectively, our results suggest that NCM treatment decreases hepatic cholesterol export, possibly also increases cholesterol uptake from circulation, and promotes lipid accumulation and alters ATP homeostasis which exacerbates the existing hepatic steatosis in genetically obese JCR rats with

  8. Altered hematological and immunological parameters in silver catfish (Rhamdia quelen) following short term exposure to sublethal concentration of glyphosate.

    Science.gov (United States)

    Kreutz, Luiz Carlos; Gil Barcellos, Leonardo José; de Faria Valle, Stella; de Oliveira Silva, Tális; Anziliero, Deniz; Davi dos Santos, Ezequiel; Pivato, Mateus; Zanatta, Rafael

    2011-01-01

    Using agrichemicals to control unwanted species has become a necessary and common worldwide practice to improve crop production. Although most currently used agrichemicals are considered relatively safe, continuous usage contributes for soil and water contamination and collateral toxic effects on aquatic species. Few studies correlated the presence of agrichemicals on fish blood cells and natural immune system. Thus, in this study, silver catfish (Rhamdia quelen) were exposed to sublethal concentrations (10% of the LC(50-96 h)) of a glyphosate based herbicide and hematological and natural immune system parameters were evaluated. Silver catfish fingerlings exposed to glyphosate for 96 h had a significant reduction on blood erythrocytes, thrombocytes, lymphocytes and total leukocytes in contrast to a significant increase in the number of immature circulating cells. The effect of glyphosate on natural immune system was evaluated after 24h or 10 days exposure by measuring the phagocytic index of coelomic cells, and lysozyme, total peroxidase, bacteria agglutination, bactericidal activity and natural complement hemolytic activity in the serum of fingerlings. A significant reduction on phagocytic index, serum bacteria agglutination and total peroxidase was observed only after 24h exposure to glyphosate. In contrast, fingerlings exposed to glyphosate for 10 days had a significant lower serum bacteria agglutination and lysozyme activity. Glyphosate had no effect on serum bactericidal and complement natural hemolytic activity after 24h or 10 days exposure. Nonetheless, the information obtained in this study indicates that glyphosate contaminated water contributes to alter blood cells parameters and to reduce the activity of natural immune components important to mediate fish resistance to infecting microorganisms. Copyright © 2010 Elsevier Ltd. All rights reserved.

  9. Perinatal exposure to glyphosate-based herbicide alters the thyrotrophic axis and causes thyroid hormone homeostasis imbalance in male rats.

    Science.gov (United States)

    de Souza, Janaina Sena; Kizys, Marina Malta Letro; da Conceição, Rodrigo Rodrigues; Glebocki, Gabriel; Romano, Renata Marino; Ortiga-Carvalho, Tania Maria; Giannocco, Gisele; da Silva, Ismael Dale Cotrim Guerreiro; Dias da Silva, Magnus Regios; Romano, Marco Aurélio; Chiamolera, Maria Izabel

    2017-02-15

    Glyphosate-based herbicides (GBHs) are widely used in agriculture. Recently, several animal and epidemiological studies have been conducted to understand the effects of these chemicals as an endocrine disruptor for the gonadal system. The aim of the present study was to determine whether GBHs could also disrupt the hypothalamic-pituitary-thyroid (HPT) axis. Female pregnant Wistar rats were exposed to a solution containing GBH Roundup(®)Transorb (Monsanto). The animals were divided into three groups (control, 5mg/kg/day or 50mg/kg/day) and exposed from gestation day 18 (GD18) to post-natal day 5 (PND5). Male offspring were euthanized at PND 90, and blood and tissues samples from the hypothalamus, pituitary, liver and heart were collected for hormonal evaluation (TSH-Thyroid stimulating hormone, T3-triiodothyronine and T4-thyroxine), metabolomic and mRNA analyses of genes related to thyroid hormone metabolism and function. The hormonal profiles showed decreased concentrations of TSH in the exposed groups, with no variation in the levels of the thyroid hormones (THs) T3 and T4 between the groups. Hypothalamus gene expression analysis of the exposed groups revealed a reduction in the expression of genes encoding deiodinases 2 (Dio2) and 3 (Dio3) and TH transporters Slco1c1 (former Oatp1c1) and Slc16a2 (former Mct8). In the pituitary, Dio2, thyroid hormone receptor genes (Thra1 and Thrb1), and Slc16a2 showed higher expression levels in the exposed groups than in the control group. Interestingly, Tshb gene expression did not show any difference in expression profile between the control and exposed groups. Liver Thra1 and Thrb1 showed increased mRNA expression in both GBH-exposed groups, and in the heart, Dio2, Mb, Myh6 (former Mhca) and Slc2a4 (former Glut4) showed higher mRNA expression in the exposed groups. Additionally, correlation analysis between gene expression and metabolomic data showed similar alterations as detected in hypothyroid rats. Perinatal exposure to

  10. Overexpression of plastidial thioredoxins f and m differentially alters photosynthetic activity and response to oxidative stress in tobacco plants

    Directory of Open Access Journals (Sweden)

    Pascal eREY

    2013-10-01

    Full Text Available Plants display a remarkable diversity of thioredoxins (Trxs, reductases controlling the thiol redox status of proteins. The physiological function of many of them remains elusive, particularly for plastidial Trxs f and m, which are presumed based on biochemical data to regulate photosynthetic reactions and carbon metabolism. Recent reports revealed that Trxs f and m participate in vivo in the control of starch metabolism and cyclic photosynthetic electron transfer around photosystem I, respectively. To further delineate their in planta function, we compared the photosynthetic characteristics, the level and/or activity of various Trx targets and the responses to oxidative stress in transplastomic tobacco plants overexpressing either Trx f or Trx m. We found that plants overexpressing Trx m specifically exhibit altered growth, reduced chlorophyll content, impaired photosynthetic linear electron transfer and decreased pools of glutathione and ascorbate. In both transplastomic lines, activities of two enzymes involved in carbon metabolism, NADP-malate dehydrogenase and NADP-glyceraldehyde-3-phosphate dehydrogenase are markedly and similarly altered. In contrast, plants overexpressing Trx m specifically display increased capacity for methionine sulfoxide reductases, enzymes repairing damaged proteins by regenerating methionine from oxidized methionine. Finally, we also observed that transplastomic plants exhibit distinct responses when exposed to oxidative stress conditions generated by methyl viologen or exposure to high light combined with low temperature, the plants overexpressing Trx m being notably more tolerant than Wt and those overexpressing Trx f. Altogether, these data indicate that Trxs f and m fulfill distinct physiological functions. They prompt us to propose that the m type is involved in key processes linking photosynthetic activity, redox homeostasis and antioxidant mechanisms in the chloroplast.

  11. Perfluorinated chemicals: Differential toxicity, inhibition of aromatase activity and alteration of cellular lipids in human placental cells

    Energy Technology Data Exchange (ETDEWEB)

    Gorrochategui, Eva; Pérez-Albaladejo, Elisabet [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Casas, Josefina [Department of Biomedicinal Chemistry, IQAC–CSIC, 08034 Barcelona, Catalonia (Spain); Lacorte, Sílvia, E-mail: slbqam@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain); Porte, Cinta, E-mail: cinta.porte@cid.csic.es [Department of Environmental Chemistry, IDAEA–CSIC, 08034 Barcelona, Catalonia (Spain)

    2014-06-01

    The cytotoxicity of eight perfluorinated chemicals (PFCs), namely, perfluorobutanoic acid (PFBA), perfluorohexanoic acid (PFHxA), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorododecanoic acid (PFDoA), perfluorobutanesulfonate (PFBS), perfluorohexanesulfonate (PFHxS) and perfluorooctanesulfonate (PFOS) was assessed in the human placental choriocarcinoma cell line JEG-3. Only the long chain PFCs – PFOS, PFDoA, PFNA, PFOA – showed significant cytotoxicity in JEG-3 cells with EC50 values in the range of 107 to 647 μM. The observed cytotoxicity was to some extent related to a higher uptake of the longer chain PFCs by cells (PFDoA > PFOS ≫ PFNA > PFOA > PFHxA). Moreover, this work evidences a high potential of PFOS, PFOA and PFBS to act as aromatase inhibitors in placental cells with IC50s in the range of 57–80 μM, the inhibitory effect of PFBS being particularly important despite the rather low uptake of the compound by cells. Finally, exposure of JEG-3 cells to a mixture of the eight PFCs (0.6 μM each) led to a relative increase (up to 3.4-fold) of several lipid classes, including phosphatidylcholines (PCs), plasmalogen PC and lyso plasmalogen PC, which suggests an interference of PFCs with membrane lipids. Overall, this work highlights the ability of the PFC mixture to alter cellular lipid pattern at concentrations well below those that generate toxicity, and the potential of the short chain PFBS, often considered a safe substitute of PFOS, to significantly inhibit aromatase activity in placental cells. - Highlights: • Eight perfluorinated chemicals of different chain lengths have been selected. • Long chain ones – PFOS, PFDoA, PFNA, PFOA – were cytotoxic in placenta cells. • The uptake of long chain perfluorinated chemicals by cells was comparatively higher. • PFOS, PFOA and the short chain PFBS significantly inhibited aromatase activity. • A mixture of perfluorinated chemicals significantly altered placenta cell

  12. Oxytocin differentially alters resting state functional connectivity between amygdala subregions and emotional control networks: Inverse correlation with depressive traits.

    Science.gov (United States)

    Eckstein, Monika; Markett, Sebastian; Kendrick, Keith M; Ditzen, Beate; Liu, Fang; Hurlemann, Rene; Becker, Benjamin

    2017-04-01

    The hypothalamic neuropeptide oxytocin (OT) has received increasing attention for its role in modulating social-emotional processes across species. Previous studies on using intranasal-OT in humans point to a crucial engagement of the amygdala in the observed neuromodulatory effects of OT under task and rest conditions. However, the amygdala is not a single homogenous structure, but rather a set of structurally and functionally heterogeneous nuclei that show distinct patterns of connectivity with limbic and frontal emotion-processing regions. To determine potential differential effects of OT on functional connectivity of the amygdala subregions, 79 male participants underwent resting-state fMRI following randomized intranasal-OT or placebo administration. In line with previous studies OT increased the connectivity of the total amygdala with dorso-medial prefrontal regions engaged in emotion regulation. In addition, OT enhanced coupling of the total amygdala with cerebellar regions. Importantly, OT differentially altered the connectivity of amygdala subregions with distinct up-stream cortical nodes, particularly prefrontal/parietal, and cerebellar down-stream regions. OT-induced increased connectivity with cerebellar regions were largely driven by effects on the centromedial and basolateral subregions, whereas increased connectivity with prefrontal regions were largely mediated by right superficial and basolateral subregions. OT decreased connectivity of the centromedial subregions with core hubs of the emotional face processing network in temporal, occipital and parietal regions. Preliminary findings suggest that effects on the superficial amygdala-prefrontal pathway were inversely associated with levels of subclinical depression, possibly indicating that OT modulation may be blunted in the context of increased pathological load. Together, the present findings suggest a subregional-specific modulatory role of OT on amygdala-centered emotion processing networks in

  13. Differential metamorphosis alters the endocrine response in anuran larvae exposed to T{sub 3} and atrazine

    Energy Technology Data Exchange (ETDEWEB)

    Freeman, Jennifer L. [University of Illinois, Department of Crop Sciences, 1201 W. Gregory Drive, 320 ERML, Urbana, IL 61801 (United States); Beccue, Nathan [University of Illinois, Department of Crop Sciences, 1201 W. Gregory Drive, 320 ERML, Urbana, IL 61801 (United States); Rayburn, A. Lane [University of Illinois, Department of Crop Sciences, 1201 W. Gregory Drive, 320 ERML, Urbana, IL 61801 (United States)]. E-mail: arayburn@uiuc.edu

    2005-11-10

    Pesticide chemical contamination is one of the suspected contributors of the amphibian population decline. The herbicide atrazine is one of the major surface water contaminants in the U.S. A previous study has shown that atrazine at concentrations as low as 100 parts per billion (ppb) increased the time to metamorphosis in Xenopus laevis tadpoles. However, questions remain as to the applicability of a study of a non-native species to a native organism. The possible effects of atrazine on developing Bufo americanus were explored. Atrazine at potentially (albeit high) environmental concentrations was found not to delay the metamorphosis of developing B. americanus tadpoles as observed in X. laevis. Several studies have indicated that atrazine affects thyroid hormones. Since thyroid hormones are critical in amphibian metamorphosis, B. americanus and X. laevis tadpoles were exposed to exogenous 3,5,3'-triiodothyronine (T{sub 3}). X. laevis were found to be more responsive to the effects of exogenous T{sub 3} compared to B. americanus, indicating that X. laevis may be more sensitive to endocrine active chemicals than B. americanus. In X. laevis, nuclear heterogeneity has been associated with metamorphosis. Flow cytometric analysis of the nuclei of normal metamorphing B. americanus indicates a decrease in the amount of thyroid mediated chromatin alterations relative to the nuclei of metamorphing X. laevis. Indications are that the differential response to endocrine disruption is due to the differential role of chromatin associated gene expression during metamorphosis of B. americanus versus X. laevis. A second native species, Hyla versicolor, was observed to have the X. laevis nuclear pattern with respect to metamorphosis. As such, sensitivity to endocrine disruption is hypothesized not to be limited to laboratory non-native species.

  14. HBV core protein allosteric modulators differentially alter cccDNA biosynthesis from de novo infection and intracellular amplification pathways

    Science.gov (United States)

    Guo, Fang; Zhao, Qiong; Cheng, Junjun; Qi, Yonghe; Su, Qing; Wei, Lai; Li, Wenhui; Chang, Jinhong

    2017-01-01

    Hepatitis B virus (HBV) core protein assembles viral pre-genomic (pg) RNA and DNA polymerase into nucleocapsids for reverse transcriptional DNA replication to take place. Several chemotypes of small molecules, including heteroaryldihydropyrimidines (HAPs) and sulfamoylbenzamides (SBAs), have been discovered to allosterically modulate core protein structure and consequentially alter the kinetics and pathway of core protein assembly, resulting in formation of irregularly-shaped core protein aggregates or “empty” capsids devoid of pre-genomic RNA and viral DNA polymerase. Interestingly, in addition to inhibiting nucleocapsid assembly and subsequent viral genome replication, we have now demonstrated that HAPs and SBAs differentially modulate the biosynthesis of covalently closed circular (ccc) DNA from de novo infection and intracellular amplification pathways by inducing disassembly of nucleocapsids derived from virions as well as double-stranded DNA-containing progeny nucleocapsids in the cytoplasm. Specifically, the mistimed cuing of nucleocapsid uncoating prevents cccDNA formation during de novo infection of hepatocytes, while transiently accelerating cccDNA synthesis from cytoplasmic progeny nucleocapsids. Our studies indicate that elongation of positive-stranded DNA induces structural changes of nucleocapsids, which confers ability of mature nucleocapsids to bind CpAMs and triggers its disassembly. Understanding the molecular mechanism underlying the dual effects of the core protein allosteric modulators on nucleocapsid assembly and disassembly will facilitate the discovery of novel core protein-targeting antiviral agents that can more efficiently suppress cccDNA synthesis and cure chronic hepatitis B. PMID:28945802

  15. Differential cysteine labeling and global label-free proteomics reveals an altered metabolic state in skeletal muscle aging.

    Science.gov (United States)

    McDonagh, Brian; Sakellariou, Giorgos K; Smith, Neil T; Brownridge, Philip; Jackson, Malcolm J

    2014-11-07

    The molecular mechanisms underlying skeletal muscle aging and associated sarcopenia have been linked to an altered oxidative status of redox-sensitive proteins. Reactive oxygen and reactive nitrogen species (ROS/RNS) generated by contracting skeletal muscle are necessary for optimal protein function, signaling, and adaptation. To investigate the redox proteome of aging gastrocnemius muscles from adult and old male mice, we developed a label-free quantitative proteomic approach that includes a differential cysteine labeling step. The approach allows simultaneous identification of up- and downregulated proteins between samples in addition to the identification and relative quantification of the reversible oxidation state of susceptible redox cysteine residues. Results from muscles of adult and old mice indicate significant changes in the content of chaperone, glucose metabolism, and cytoskeletal regulatory proteins, including Protein DJ-1, cAMP-dependent protein kinase type II, 78 kDa glucose regulated protein, and a reduction in the number of redox-responsive proteins identified in muscle of old mice. Results demonstrate skeletal muscle aging causes a reduction in redox-sensitive proteins involved in the generation of precursor metabolites and energy metabolism, indicating a loss in the flexibility of the redox energy response. Data is available via ProteomeXchange with identifier PXD001054.

  16. Alteration at translational but not transcriptional level of transferrin receptor expression following manganese exposure at the blood–CSF barrier in vitro

    OpenAIRE

    Li, G. Jane; Zhao, Qiuqu; Zheng, Wei

    2005-01-01

    Manganese exposure alters iron homeostasis in blood and cerebrospinal fluid (CSF), possibly by acting on iron transport mechanisms localized at the blood–brain barrier and/or blood–CSF barrier. This study was designed to test the hypothesis that manganese exposure may change the binding affinity of iron regulatory proteins (IRPs) to mRNAs encoding transferrin receptor (TfR), thereby influencing iron transport at the blood–CSF barrier. A primary culture of choroidal epithelial cells was adapte...

  17. Influenza virus-induced alterations of cytochrome P-450 enzyme activities following exposure of mice to coal and diesel particulates.

    Science.gov (United States)

    Rabovsky, J; Judy, D J; Rodak, D J; Petersen, M

    1986-06-01

    We have investigated a relationship between two detoxication systems, metabolic detoxication through the cytochrome P-450 (P-450) pathway and resistance to infection through interferon (IFN), in mice infected with influenza virus following exposure to coal dust (CD) and diesel exhaust (DE) particulates. Mice were exposed by inhalation to filtered air (FA; control), CD, or DE for 1 month and then inoculated intranasally (IN) with influenza virus. During infection, 7-ethoxycoumarin deethylase (7ECdeEt'ase) and ethylmorphine demethylase (EMdeMe'ase) (monooxygenases), and NADPH cytochrome c reductase (NADPH c red'ase) were measured in liver microsomes. Temporal patterns of enzyme activities were observed with control animals. EMdeMe'ase and NADPH c red'ase exhibited peak values at Day 4 postinfection (27.6 and 482 nmole/min/mg protein, respectively), compared to initial activities (9.1 and 307 nmole/min/mg protein, respectively). 7ECdeEt'ase activity decreased between Days 1-3 postvirus infection and thereafter returned to the original value (1.7 nmole/min/mg protein). When the mice were first exposed to CD or DE particulates for 1 month prior to influenza infection, changes in enzyme temporal patterns were observed. The increased EMdeMe'ase activity at Day 4 was not observed in mice exposed to CD and was reduced in mice exposed to DE. Preexposure to either particulate resulted in the abolition of the increased Day 4 activity of NADPH c red'ase. The 7ECdeEt'ase postinfection temporal pattern was not affected by a preexposure to either particulate. Estimates of the enzyme activities after the 1-month exposure to FA, CD, or DE but before virus infection indicated no changes due to particulate exposure alone. Under these conditions of particulate exposure and virus infection, serum IFN levels in the mice used in this study peaked at Days 4-5 and were unaffected by the 1-month preexposure to CD or DE (Hahon et al., (1985). The data suggest the relationship that exists

  18. Moderate prenatal alcohol exposure and serotonin genotype interact to alter CNS serotonin function in rhesus monkey offspring.

    Science.gov (United States)

    Schneider, Mary L; Moore, Colleen F; Barr, Christina S; Larson, Julie A; Kraemer, Gary W

    2011-05-01

    reduced HVA at baseline. These findings that prenatal alcohol exposure altered central 5-HT activity in genetically sensitive monkeys raise questions about whether abnormal serotonin biological pathways could underlie some of the psychiatric disorders reported in fetal alcohol spectrum disorder. Copyright © 2011 by the Research Society on Alcoholism.

  19. Effects of radiofrequency exposure emitted from a GSM mobile phone on proliferation, differentiation, and apoptosis of neural stem cells

    OpenAIRE

    Eghlidospour, Mahsa; Ghanbari, Amir; Mortazavi, Seyyed Mohammad Javad; Azari, Hassan

    2017-01-01

    Due to the importance of neural stem cells (NSCs) in plasticity of the nervous system and treating neurodegenerative diseases, the main goal of this study was to evaluate the effects of radiofrequency radiation emitted from a GSM 900-MHz mobile phone with different exposure duration on proliferation, differentiation and apoptosis of adult murine NSCs in vitro. We used neurosphere assay to evaluate NSCs proliferation, and immunofluorescence assay of neural cell markers to examine NSCs differen...

  20. Early-Life Exposure to Lead Induces Cognitive Impairment in Elder Mice Targeting SIRT1 Phosphorylation and Oxidative Alterations

    Directory of Open Access Journals (Sweden)

    Lijie Zhang

    2017-06-01

    Full Text Available Pb is a potential risk factor for cognition, mainly mediated by enhanced oxidative stress. Resveratrol, a natural polyphenol with crucial anti-oxidative property, is recently implicated in preventing cognitive deficits in normal aging and neurodegenerative disorders. Its beneficial effects have been linked to sirtuin 1(SIRT1 activation. The aim of this work is to investigate the possible linkage between alterations in Pb-induced oxidative damage and cognitive impairment by prolonged treatment of resveratrol. Male C57BL/6 mice were given Pb(Ac2 treatment or deionized H2O for 12 weeks, and subjected to resveratrol gavage at the dose of 50 mg/kgBw•d or vehicle after Pb exposure. Results from biochemical analysis and immunohistofluorescence showed that Pb induced oxidative DNA damage and decreased cortical antioxidant biomarker. As expected, these abnormalities were improved by resveratrol treatment. Morris water maze test, Western blotting, immunohistofluorescence staining and RT-qPCR indicated that resveratrol ameliorated spatial learning and memory deficits with alterations in hippocampal BDNF-TrkB signaling, promoted nuclear localization and phosphorylation of hippocampal SIRT1, partly increased protein levels of AMPK and PGC-1α involving in modulation of antioxidant response in Pb-exposed mice. Our results support the hypothesis that resveratrol could attenuate Pb-induced cognitive impairment which was associated with activating SIRT1 via modulation of oxidative stress. Additionally, resveratrol also repressed the Pb-induce amyloidogenic processing with resultant decline in cortical Aβ1−−40. Noteworthy, such effects were not mediated by resveratrol treatment alone. These findings emphasize the potential of SIRT1 activator as an efficacious dietary intervention to downgrade the Pb-induced neurotoxic lesion.

  1. Low-dose BPA exposure alters the mesenchymal and epithelial transcriptomes of the mouse fetal mammary gland.

    Directory of Open Access Journals (Sweden)

    Perinaaz R Wadia

    Full Text Available Exposure of rodent fetuses to low doses of the endocrine disruptor bisphenol A (BPA causes subtle morphological changes in the prenatal mammary gland and results in pre-cancerous and cancerous lesions during adulthood. To examine whether the BPA-induced morphological alterations of the fetal mouse mammary glands are a associated with changes in mRNA expression reflecting estrogenic actions and/or b dependent on the estrogen receptor α (ERα, we compared the transcriptomal effects of BPA and the steroidal estrogen ethinylestradiol (EE2 on fetal mammary tissues of wild type and ERα knock-out mice. Mammary glands from fetuses of dams exposed to vehicle, 250 ng BPA/kg BW/d or 10 ng EE2/kg BW/d from embryonic day (E 8 were harvested at E19. Transcriptomal analyses on the ductal epithelium and periductal stroma revealed altered expression of genes involved in the focal adhesion and adipogenesis pathways in the BPA-exposed stroma while genes regulating the apoptosis pathway changed their expression in the BPA-exposed epithelium. These changes in gene expression correlated with previously reported histological changes in matrix organization, adipogenesis, and lumen formation resulting in enhanced maturation of the fat-pad and delayed lumen formation in the epithelium of BPA-exposed fetal mammary glands. Overall similarities in the transcriptomal effects of BPA and EE2 were more pronounced in the epithelium, than in the stroma. In addition, the effects of BPA and EE2 on the expression of various genes involved in mammary stromal-epithelial interactions were suppressed in the absence of ERα. These observations support a model whereby BPA and EE2 act directly on the stroma, which expresses ERα, ERβ and GPR30 in fetal mammary glands, and that the stroma, in turn, affects gene expression in the epithelium, where ERα and ERβ are below the level of detection at this stage of development.

  2. Diabetes and exposure to peritoneal dialysis solutions alter tight junction proteins and glucose transporters of rat peritoneal mesothelial cells.

    Science.gov (United States)

    Debray-García, Yazmin; Sánchez, Elsa I; Rodríguez-Muñoz, Rafael; Venegas, Miguel A; Velazquez, Josue; Reyes, José L

    2016-09-15

    To evaluate alterations in tight junction (TJ) proteins and glucose transporters in rat peritoneal mesothelial cells (RPMC) from diabetic rats and after treatment with peritoneal dialysis solutions (PDS) in vitro. Diabetes was induced in female Wistar rats by streptozotocin (STZ)-injection. Twenty-one days after STZ-injection, peritoneal thickness and mesothelial cell morphology were studied by light microscopy and microvilli length and density by atomic force microscopy. RPMC were obtained from healthy and diabetic rats. Mesothelial phenotype, evaluated by cytokeratin and pan-cadherin, epithelial to mesenchymal transition (EMT), evaluated by alpha-smooth muscle action (α-SMA) and vimentin, TJ proteins, claudins-1 and -2, and occludin, and glucose transporters, sodium and glucose co-transporters (SGLT) -1 and -2 and facilitative glucose transporters (GLUT) -1 and -2 were analyzed. Also, transepithelial electrical resistance (TER) was measured. Oxidative stress was estimated by measuring reactive oxygen species production, and protein carbonylation, receptor for advanced glycation end products (RAGE), nuclear factor erythroid related factor-2 (Nrf-2), and expression of antioxidant enzymes. Peritoneal damage was present 21days after STZ-injection. Diabetes induced changes in TJ and glucose transporters in RPMC together with decreased TER. RPMC from diabetic rats showed oxidative stress, which was enhanced by exposure to PDS. In addition, RPMC from diabetic rats showed early EMT. To our knowledge, this is the first study that shows changes in TJ proteins and glucose transporters of RPMC from diabetic rats. All these alterations might explain the increased peritoneal permeability observed in diabetic patients undergoing peritoneal dialysis. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Prenatal Ethanol Exposure Persistently Alters Endocannabinoid Signaling and Endocannabinoid-Mediated Excitatory Synaptic Plasticity in Ventral Tegmental Area Dopamine Neurons.

    Science.gov (United States)

    Hausknecht, Kathryn; Shen, Ying-Ling; Wang, Rui-Xiang; Haj-Dahmane, Samir; Shen, Roh-Yu

    2017-06-14

    Prenatal ethanol exposure (PE) leads to increased addiction risk which could be mediated by enhanced excitatory synaptic strength in ventral tegmental area (VTA) dopamine (DA) neurons. Previous studies have shown that PE enhances excitatory synaptic strength by facilitating an anti-Hebbian form of long-term potentiation (LTP). In this study, we investigated the effect of PE on endocannabinoid-mediated long-term depression (eCB-LTD) in VTA DA neurons. Rats were exposed to moderate (3 g/kg/d) or high (6 g/kg/d) levels of ethanol during gestation. Whole-cell recordings were conducted in male offspring between 4 and 10 weeks old.We found that PE led to increased amphetamine self-administration. Both moderate and high levels of PE persistently reduced low-frequency stimulation-induced eCB-LTD. Furthermore, action potential-independent glutamate release was regulated by tonic eCB signaling in PE animals. Mechanistic studies for impaired eCB-LTD revealed that PE downregulated CB1 receptor function. Interestingly, eCB-LTD in PE animals was rescued by metabotropic glutamate receptor I activation, suggesting that PE did not impair the synthesis/release of eCBs. In contrast, eCB-LTD in PE animals was not rescued by increasing presynaptic activity, which actually led to LTP in PE animals, whereas LTD was still observed in controls. This result shows that the regulation of excitatory synaptic plasticity is fundamentally altered in PE animals. Together, PE leads to impaired eCB-LTD at the excitatory synapses of VTA DA neurons primarily due to CB1 receptor downregulation. This effect could contribute to enhanced LTP and the maintenance of augmented excitatory synaptic strength in VTA DA neurons and increased addiction risk after PE. SIGNIFICANCE STATEMENT Prenatal ethanol exposure (PE) is among many adverse developmental factors known to increase drug addiction risk. Increased excitatory synaptic strength in VTA DA neurons is a critical cellular mechanism for addiction risk. Our

  4. Continuous versus cyclic progesterone exposure differentially regulates hippocampal gene expression and functional profiles.

    Directory of Open Access Journals (Sweden)

    Liqin Zhao

    Full Text Available This study investigated the impact of chronic exposure to continuous (CoP4 versus cyclic progesterone (CyP4 alone or in combination with 17β-estradiol (E2 on gene expression profiles targeting bioenergetics, metabolism and inflammation in the adult female rat hippocampus. High-throughput qRT-PCR analyses revealed that ovarian hormonal depletion induced by ovariectomy (OVX led to multiple significant gene expression alterations, which were to a great extent reversed by co-administration of E2 and CyP4. In contrast, co-administration of E2 and CoP4 induced a pattern highly resembling OVX. Bioinformatics analyses further revealed clear disparities in functional profiles associated with E2+CoP4 and E2+CyP4. Genes involved in mitochondrial energy (ATP synthase α subunit; Atp5a1, redox homeostasis (peroxiredoxin 5; Prdx5, insulin signaling (insulin-like growth factor I; Igf1, and cholesterol trafficking (liver X receptor α subtype; Nr1h3, differed in direction of regulation by E2+CoP4 (down-regulation relative to OVX and E2+CyP4 (up-regulation relative to OVX. In contrast, genes involved in amyloid metabolism (β-secretase; Bace1 differed only in degree of regulation, as both E2+CoP4 and E2+CyP4 induced down-regulation at different efficacy. E2+CyP4-induced changes could be associated with regulation of progesterone receptor membrane component 1(Pgrmc1. In summary, results from this study provide evidence at the molecular level that differing regimens of hormone therapy (HT can induce disparate gene expression profiles in brain. From a translational perspective, confirmation of these results in a model of natural menopause, would imply that the common regimen of continuous combined HT may have adverse consequences whereas a cyclic combined regimen, which is more physiological, could be an effective strategy to maintain neurological health and function throughout menopausal aging.

  5. Altered Gene Expressions and Cytogenetic Repair Efficiency in Cells with Suppressed Expression of XPA after Proton Exposure

    Science.gov (United States)

    Zhang, Ye; Rohde, Larry H.; Gridley, Daila S.; Mehta, Satish K.; Pierson, Duane L.; Wu, Honglu

    2009-01-01

    Cellular responses to damages from ionizing radiation (IR) exposure are influenced not only by the genes involved in DNA double strand break (DSB) repair, but also by non- DSB repair genes. We demonstrated previously that suppressed expression of several non-DSB repair genes, such as XPA, elevated IR-induced cytogenetic damages. In the present study, we exposed human fibroblasts that were treated with control or XPA targeting siRNA to 250 MeV protons (0 to 4 Gy), and analyzed chromosome aberrations and expressions of genes involved in DNA repair. As expected, after proton irradiation, cells with suppressed expression of XPA showed a significantly elevated frequency of chromosome aberrations compared with control siRNA treated (CS) cells. Protons caused more severe DNA damages in XPA knock-down cells, as 36% cells contained multiple aberrations compared to 25% in CS cells after 4Gy proton irradiation. Comparison of gene expressions using the real-time PCR array technique revealed that expressions of p53 and its regulated genes in irradiated XPA suppressed cells were altered similarly as in CS cells, suggesting that the impairment of IR induced DNA repair in XPA suppressed cells is p53-independent. Except for XPA, which was more than 2 fold down regulated in XPA suppressed cells, several other DNA damage sensing and repair genes (GTSE1, RBBP8, RAD51, UNG and XRCC2) were shown a more than 1.5 fold difference between XPA knock-down cells and CS cells after proton exposure. The possible involvement of these genes in the impairment of DNA repair in XPA suppressed cells will be further investigated.

  6. The cannabinoid receptors agonist WIN55212-2 inhibits macrophageal differentiation and alters expression and phosphorylation of cell cycle control proteins

    Directory of Open Access Journals (Sweden)

    Paulsen Katrin

    2011-12-01

    Full Text Available Abstract In this study we investigated if and how cannabinoid receptor stimulation regulates macrophageal differentiation, which is one of the key steps in the immune effector reaction. For that reason, we used a well established differentiation model system of human U937 myelocytic leukemia cells that differentiate along the monocyte/macrophage lineage upon stimulation with the phorbol ester PMA. Constant cannabinoid receptor (CB stimulation was performed using WIN55212-2, a potent synthetic CB agonist. We found that WIN55212-2 inhibited CB1/2-receptor-dependent PMA-induced differentiation of human myelocytic U937 cells into the macrophageal phenotype, which was associated with impaired vimentin, ICAM-1 and CD11b expression. In the presence of WIN55212-2, cdc2 protein and mRNA expression was progressively enhanced and Tyr-15-phosporylation of cdc2 was reduced in differentiating U937 cells. Additionally, p21Waf1/Cip1 expression was up-regulated. PMA-induced apoptosis was not enhanced by WIN55212-2 and differentiation-associated c-jun expression was not altered. In conclusion, we suppose that WIN55212-2-induced signals interferes with cell-cycle-arrest-signaling in differentiating myelocytic cells and thus inhibits macrophageal differentiation. Thus, it is possible that the cannabinoid system is able to influence one of the key steps in the immune effector function, the monocytic-macrophageal differentiation by alteration of cell cycle control proteins cdc2 and p21, and is therefore representing a promising option for therapeutic intervention in exacerbated immune reactions.

  7. Altered urinary porphyrins and mercury exposure as biomarkers for autism severity in Egyptian children with autism spectrum disorder.

    Science.gov (United States)

    Khaled, Eman M; Meguid, Nagwa A; Bjørklund, Geir; Gouda, Amr; Bahary, Mohamed H; Hashish, Adel; Sallam, Nermin M; Chirumbolo, Salvatore; El-Bana, Mona A

    2016-12-01

    Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder that affects social, communication, and behavioral development. Recent evidence supported but also questioned the hypothetical role of compounds containing mercury (Hg) as contributors to the development of ASD. Specific alterations in the urinary excretion of porphyrin-containing ring catabolites have been associated with exposure to Hg in ASD patients. In the present study, the level of urinary porphyrins, as biomarkers of Hg toxicity in children with ASD, was evaluated, and its correlation with severity of the autistic behavior further explored. A total of 100 children was enrolled in the present study. They were classified into three groups: children with ASD (40), healthy controls (40), and healthy siblings of the ASD children (20). Children with ASD were diagnosed using DSM-IV-TR, ADI-R, and CARS tests. Urinary porphyrins were evaluated within the three groups using high-performance liquid chromatography (HPLC), after plasma evaluation of mercury (Hg) and lead (Pb) in the same groups. Results showed that children with ASD had significantly higher levels of Hg, Pb, and the porphyrins pentacarboxyporphyrin, coproporphyrin, precoproporphyrin, uroporphyrins, and hexacarboxyporphyrin compared to healthy controls and healthy siblings of the ASD children. However, there was no significant statistical difference in the level of heptacarboxyporphyrin among the three groups, while a significant positive correlation between the levels of coproporphyrin and precoproporphyrin and autism severity was observed. Mothers of ASD children showed a higher percentage of dental amalgam restorations compared to the mothers of healthy controls suggesting that high Hg levels in children with ASD may relate to the increased exposure to Hg from maternal dental amalgam during pregnancy and lactation. The results showed that the ASD children in the present study had increased blood Hg and Pb levels compared with

  8. Acute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II Diabetes

    Science.gov (United States)

    Abstract for Society of Toxicology, March 22-25, 2015, San Diego, CAAcute Ozone (O3) Exposure Accelerates Diet-Induced Pulmonary Injury and Metabolic Alterations in a Rat Model of Type II DiabetesS.J. Snow1,3, D. Miller2, V. Bass2, M. Schladweiler3, A. Ledbetter3, J. Richards3, C...

  9. Adaptation in Caco-2 human intestinal cell differentiation and phenolic transport with chronic exposure to phenolic-rich blackberry (Rubus sp.) extract

    Science.gov (United States)

    As evidence mounts for a health-protective role of dietary phenolics, the importance of understanding factors influencing bioavailability increases. Recent evidence has suggested chronic exposure may impact phenolic absorption and metabolism. To explore alterations occurring from chronic dietary e...

  10. Altered calcium handling and increased contraction force in human embryonic stem cell derived cardiomyocytes following short term dexamethasone exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kosmidis, Georgios; Bellin, Milena; Ribeiro, Marcelo C.; Meer, Berend van; Ward-van Oostwaard, Dorien [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); Passier, Robert [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); MIRA, University of Twente (Netherlands); Tertoolen, Leon G.J.; Mummery, Christine L. [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands); Casini, Simona, E-mail: s.casini@amc.uva.nl [Department of Anatomy and Embryology, Leiden University Medical Center, Leiden (Netherlands)

    2015-11-27

    One limitation in using human pluripotent stem cell derived cardiomyocytes (hPSC-CMs) for disease modeling and cardiac safety pharmacology is their immature functional phenotype compared with adult cardiomyocytes. Here, we report that treatment of human embryonic stem cell derived cardiomyocytes (hESC-CMs) with dexamethasone, a synthetic glucocorticoid, activated glucocorticoid signaling which in turn improved their calcium handling properties and contractility. L-type calcium current and action potential properties were not affected by dexamethasone but significantly faster calcium decay, increased forces of contraction and sarcomeric lengths, were observed in hESC-CMs after dexamethasone exposure. Activating the glucocorticoid pathway can thus contribute to mediating hPSC-CMs maturation. - Highlights: • Dexamethasone accelerates Ca{sup 2+} transient decay in hESC-CMs. • Dexamethasone enhances SERCA and NCX function in hESC-CMs. • Dexamethasone increases force of contraction and sarcomere length in hESC-CMs. • Dexamethasone does not alter I{sub Ca,L} and action potential characteristics in hESC-CMs.

  11. DNA content alterations in Tetrahymena pyriformis macronucleus after exposure to food preservatives sodium nitrate and sodium benzoate.

    Science.gov (United States)

    Loutsidou, Ariadni C; Hatzi, Vasiliki I; Chasapis, C T; Terzoudi, Georgia I; Spiliopoulou, Chara A; Stefanidou, Maria E

    2012-12-01

    The toxicity, in terms of changes in the DNA content, of two food preservatives, sodium nitrate and sodium benzoate was studied on the protozoan Tetrahymena pyriformis using DNA image analysis technology. For this purpose, selected doses of both food additives were administered for 2 h to protozoa cultures and DNA image analysis of T. pyriformis nuclei was performed. The analysis was based on the measurement of the Mean Optical Density which represents the cellular DNA content. The results have shown that after exposure of the protozoan cultures to doses equivalent to ADI, a statistically significant increase in the macronuclear DNA content compared to the unexposed control samples was observed. The observed increase in the macronuclear DNA content is indicative of the stimulation of the mitotic process and the observed increase in MOD, accompanied by a stimulation of the protozoan proliferation activity is in consistence with this assumption. Since alterations at the DNA level such as DNA content and uncontrolled mitogenic stimulation have been linked with chemical carcinogenesis, the results of the present study add information on the toxicogenomic profile of the selected chemicals and may potentially lead to reconsideration of the excessive use of nitrates aiming to protect public health.

  12. Adolescent methylphenidate treatment differentially alters adult impulsivity and hyperactivity in the Spontaneously Hypertensive Rat model of ADHD

    Science.gov (United States)

    Somkuwar, S.S.; Kantak, K.M.; Bardo, M.T.; Dwoskin, L.P.

    2016-01-01

    Impulsivity and hyperactivity are two facets of attention deficit/hyperactivity disorder (ADHD). Impulsivity is expressed as reduced response inhibition capacity, an executive control mechanism that prevents premature execution of an intermittently reinforced behavior. During methylphenidate treatment, impulsivity and hyperactivity are decreased in adolescents with ADHD, but there is little information concerning levels of impulsivity and hyperactivity in adulthood after adolescent methylphenidate treatment is discontinued. The current study evaluated impulsivity, hyperactivity as well as cocaine sensitization during adulthood after adolescent methylphenidate treatment was discontinued in the Spontaneously Hypertensive Rat (SHR) model of ADHD. Treatments consisted of oral methylphenidate (1.5 mg/kg) or water vehicle provided Monday-Friday from postnatal day 28–55. During adulthood, impulsivity was measured in SHR and control strains (Wistar Kyoto and Wistar rats) using differential reinforcement of low rate (DRL) schedules. Locomotor activity and cocaine sensitization were measured using the open-field assay. Adult SHR exhibited decreased efficiency of reinforcement under the DRL30 schedule and greater levels of locomotor activity and cocaine sensitization compared to control strains. Compared to vehicle, methylphenidate treatment during adolescence reduced hyperactivity in adult SHR, maintained the lower efficiency of reinforcement, and increased burst responding under DRL30. Cocaine sensitization was not altered following adolescent methylphenidate in adult SHR. In conclusion, adolescent treatment with methylphenidate followed by discontinuation in adulthood had a positive benefit by reducing hyperactivity in adult SHR rats; however, increased burst responding under DRL compared to SHR given vehicle, i.e., elevated impulsivity, constituting an adverse consequence associated with increased risk for cocaine abuse liability. PMID:26657171

  13. Acute and chronic ethanol exposure differentially regulate CB1 receptor function at glutamatergic synapses in the rat basolateral amygdala.

    Science.gov (United States)

    Robinson, Stacey L; Alexander, Nancy J; Bluett, Rebecca J; Patel, Sachin; McCool, Brian A

    2016-09-01

    The endogenous cannabinoid (eCB) system has been suggested to play a key role in ethanol preference and intake, the acute effects of ethanol, and in the development of withdrawal symptoms following ethanol dependence. Ethanol-dependent alterations in glutamatergic signaling within the lateral/basolateral nucleus of the amygdala (BLA) are critical for the development and expression of withdrawal-induced anxiety. Notably, the eCB system significantly regulates both glutamatergic and GABAergic synaptic activity within the BLA. Chronic ethanol exposure significantly alters eCB system expression within regions critical to the expression of emotionality and anxiety-related behavior, including the BLA. Here, we investigated specific interactions between the BLA eCB system and its functional regulation of synaptic activity during acute and chronic ethanol exposure. In tissue from ethanol naïve-rats, a prolonged acute ethanol exposure caused a dose dependent inhibition of glutamatergic synaptic activity via a presynaptic mechanism that was occluded by CB1 antagonist/inverse agonists SR141716a and AM251. Importantly, this acute ethanol inhibition was attenuated following 10 day chronic intermittent ethanol vapor exposure (CIE). CIE exposure also significantly down-regulated CB1-mediated presynaptic inhibition at glutamatergic afferent terminals but spared CB1-inhibition of GABAergic synapses arising from local inhibitory-interneurons. CIE also significantly elevated BLA N-arachidonoylethanolamine (AEA or anandamide) levels and decreased CB1 receptor protein levels. Collectively, these data suggest a dynamic regulation of the BLA eCB system by acute and chronic ethanol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Occupational exposure to electromagnetic fields and sex-differential risk of uveal melanoma

    DEFF Research Database (Denmark)

    Behrens, Thomas Flensted; Lynge, Elsebeth; Cree, Ian

    2010-01-01

    The association between occupational exposure to electromagnetic fields (EMF) and the risk of uveal melanoma was investigated in a case-control study in nine European countries.......The association between occupational exposure to electromagnetic fields (EMF) and the risk of uveal melanoma was investigated in a case-control study in nine European countries....

  15. Exposure to Potentially Traumatic Events in Early Childhood: Differential Links to Emergent Psychopathology

    Science.gov (United States)

    Briggs-Gowan, Margaret J.; Carter, Alice S.; Clark, Roseanne; Augustyn, Marilyn; McCarthy, Kimberly J.; Ford, Julian D.

    2010-01-01

    Research NeedsObjective: To examine associations between exposure to potentially traumatic events (PTEs) and clinical patterns of symptoms and disorders in preschool children. Method: Two hundred and thirteen referred and non-referred children, ages 24 to 48 months (MN = 34.9, SD = 6.7 months) were studied. Lifetime exposure to PTEs (family…

  16. Male-specific alteration in excitatory post-synaptic development and social interaction in pre-natal valproic acid exposure model of autism spectrum disorder.

    Science.gov (United States)

    Kim, Ki Chan; Kim, Pitna; Go, Hyo Sang; Choi, Chang Soon; Park, Jin Hee; Kim, Hee Jin; Jeon, Se Jin; Dela Pena, Ike Campomayor; Han, Seol-Heui; Cheong, Jae Hoon; Ryu, Jong Hoon; Shin, Chan Young

    2013-03-01

    Autism spectrum disorder (ASD) is a pervasive developmental disorder characterized by three main behavioral symptoms including social deficits, impaired communication, and stereotyped and repetitive behaviors. ASD prevalence shows gender bias to male. Prenatal exposure to valproic acid (VPA), a drug used in epilepsy and bipolar disorder, induces autistic symptoms in both human and rodents. As we reported previously, prenatally VPA-exposed animals at E12 showed impairment in social behavior without any overt reproductive toxicity. Social interactions were not significantly different between male and female rats in control condition. However, VPA-exposed male offspring showed significantly impaired social interaction while female offspring showed only marginal deficits in social interaction. Similar male inclination was observed in hyperactivity behavior induced by VPA. In addition to the ASD-like behavioral phenotype, prenatally VPA-exposed rat offspring shows crooked tail phenotype, which was not different between male and female groups. Both male and female rat showed reduced GABAergic neuronal marker GAD and increased glutamatergic neuronal marker vGluT1 expression. Interestingly, despite of the similar increased expression of vGluT1, post-synaptic marker proteins such as PSD-95 and α-CAMKII expression was significantly elevated only in male offspring. Electron microscopy showed increased number of post-synapse in male but not in female at 4 weeks of age. These results might suggest that the altered glutamatergic neuronal differentiation leads to deranged post-synaptic maturation only in male offspring prenatally exposed to VPA. Consistent with the increased post-synaptic compartment, VPA-exposed male rats showed higher sensitivity to electric shock than VPA-exposed female rats. These results suggest that prenatally VPA-exposed rats show the male preponderance of ASD-like behaviors including defective social interaction similar to human autistic patients, which

  17. Application of SSH and a macroarray to investigate altered gene expression in Mytilus edulis in response to exposure to benzo[a]pyrene.

    Science.gov (United States)

    Brown, M; Davies, I M; Moffat, C F; Craft, J A

    2006-07-01

    The lack of genomic resources for aquatic invertebrates restricts their use as sentinel species in coastal environments. It is known that where genomic data are not available, suppression subtractive hybridisation (SSH) can generate cDNA libraries representative of pollutant-responsive gene transcription in aquatic vertebrates. To assess whether the approach was equally suited to aquatic invertebrates, altered gene expression in digestive gland of the mussel, Mytilus edulis, in response to exposure to benzo[a]pyrene (BaP) (1 mg/l) was investigated with SSH and a nylon macroarray. Screening of the subtracted libraries showed 112/250 up-regulated and 25/55 down-regulated clones were positive for differential expression and characterisation of these identified 87 with unique sequence suitable for array on a nylon membrane. The transcripts isolated were from a diverse range of genes involved in general stress, oxidative stress, cell adhesion, transcriptional and translational regulation, transport mechanisms, energy metabolism, cell metabolism, lipid metabolism, protein turnover and activation, lysosomal activity and 22 cryptic clones. Subsequent use of the clones in macroarray format to analyse expression of BaP-responsive genes (0 vs 4 day exposed) showed 0-100-fold increased levels of the forward-subtracted probes and between 0 and 0.1-fold down-regulation of the reverse-subtracted probes. Only 15% of the clones showed less than 2-fold change in expression. The gene ontology of the transcripts isolated demonstrates that BaP elicits a multitude of responses with a major feature being disruption of cellular redox status. The results indicate that the use of SSH and a macroarray is a robust method to discover novel pollutant-responsive genes in aquatic invertebrates.

  18. High CD8+ T cell activation marks a less differentiated HIV-1 specific CD8+ T cell response that is not altered by suppression of viral replication.

    Directory of Open Access Journals (Sweden)

    Jason D Barbour

    Full Text Available The relationship of elevated T cell activation to altered T cell differentiation profiles, each defining features of HIV-1 infection, has not been extensively explored. We hypothesized that anti-retroviral suppression of T cell activation levels would lead to alterations in the T cell differentiation of total and HIV-1 specific CD8+ T cell responses among recently HIV-1 infected adults.We performed a longitudinal study simultaneously measuring T cell activation and maturation markers on both total and antigen-specific T cells in recently infected adults: prior to treatment; after the initiation of HAART; and after treatment was halted. Prior to treatment, HIV-1 Gag-specific CD8+ T cells were predominantly of a highly activated, intermediate memory (CD27+CD28- phenotype, while CMV pp65-specific CD8+ T cells showed a late memory (CD27-CD28-, low activation phenotype. Participants with the highest fraction of late memory (CD27-CD28- HIV-1-specific CD8+ T cells had higher CD4+ T cell counts (rho = +0.74, p = 0.004. In turn, those with the highest fraction of intermediate memory (CD27+ CD28- HIV-1 specific CD8+ T cells had high total CD8+ T cell activation (rho = +0.68, p = 0.01, indicating poorer long-term clinical outcomes. The HIV-1 specific T cell differentiation profile was not readily altered by suppression of T cell activation following HAART treatment.A more differentiated, less activated HIV-1 specific CD8+ T cell response may be clinically protective. Anti-retroviral treatment initiated two to four months after infection lowered T cell activation but had no effect on the differentiation profile of the HIV-1-specific response. Intervention during the first month of acute infection may be required to shift the differentiation phenotype of HIV-1 specific responses to a more clinically favorable profile.

  19. Differential Gene Expression in Explanted Human Retinal Pigment Epithelial Cells 24-Hours Post-Exposure to 532 nm, 3.0 ns Pulsed Laser Light and 1064 nm, 170 ps Pulsed Laser Light 12-Hours Post-Exposure: Results Compendium

    National Research Council Canada - National Science Library

    Obringer, John

    2004-01-01

    .... We assessed the sublethal insult to human retinal pigment epithelial cells using a cadaver organ donor explant system for genes differentially expressed 12 and 24 hours post- exposure using gene...

  20. Moderate alcohol exposure during the rat equivalent to the third trimester of human pregnancy alters dopamine regulation of GABAA receptor-mediated transmission in the basolateral amygdala

    Directory of Open Access Journals (Sweden)

    Marvin Rafael Diaz

    2014-05-01

    Full Text Available Fetal ethanol (EtOH exposure leads to a range of neurobehavioral alterations, including deficits in emotional processing. The basolateral amygdala (BLA plays a critical role in modulating emotional processing, in part, via dopamine (DA regulation of GABA transmission. This BLA modulatory system is acquired during the first two weeks of postnatal life in rodents (equivalent to the 3rd trimester of human pregnancy and we hypothesized that it could be altered by EtOH exposure during this period. We found that exposure of rats to moderate levels of EtOH vapor during the 3rd trimester-equivalent (postnatal days (P 2-12 alters DA modulation of GABAergic transmission in BLA pyramidal neurons during periadolescence. Specifically, D1R-mediated potentiation of spontaneous inhibitory postsynaptic currents (IPSCs was significantly attenuated in EtOH-exposed animals. However, this was associated with a compensatory decrease in D3R-mediated suppression of miniature IPSCs. Western blot analysis revealed that these effects were not a result of altered D1R or D3R levels. BLA samples from EtOH-exposed animals also had significantly lower levels of the DA precursor (L-3,4-dihydroxyphenylalanine but DA levels were not affected. This is likely a consequence of reduced catabolism of DA, as indicated by reduced levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid in the BLA samples. Anxiety-like behavior was not altered in EtOH-exposed animals. This is the first study to demonstrate that the modulatory actions of DA in the BLA are altered by developmental EtOH exposure. Although compensatory adaptations were engaged in our moderate EtOH exposure paradigm, it is possible that these are not able to restore homeostasis and correct anxiety-like behaviors under conditions of heavier EtOH exposure. Therefore, future studies should investigate the potential role of alterations in the modulatory actions of DA in the pathophysiology of fetal alcohol spectrum

  1. Aqueous exposure to the progestin, levonorgestrel, alters anal fin development and reproductive behavior in the eastern mosquitofish (Gambusia holbrooki)

    Science.gov (United States)

    Frankel, Tyler E.; Meyer, Michael T.; Orlando, Edward F.

    2016-01-01

    differences were not significant between the two treatments. LNG caused significant increases in the 4:6 anal fin ratio of males exposed to 100 ng/L, with no effects observed in the 10 ng/L treatment. In addition, the reproductive behavior of control males paired with female mosquitofish exposed to 100 ng/L LNG was also altered, for these males spent more time exhibiting no reproductive behavior, had decreased attending behavior, and a lower number of gonopodial thrusts compared to control males paired to control female mosquitofish. Given the rapid effects on both anal fin morphology and behavior observed in this study, the mosquitofish is an excellent sentinel species for the detection of exposure to LNG and likely other 19-nortestosterone derived contraceptive progestins in the environment.

  2. Early endocrine disruptors exposure acts on 3T3-L1 differentiation and endocrine activity

    Directory of Open Access Journals (Sweden)

    Sofiane Boudalia

    2017-06-01

    Conclusion: This study confirms that EDs singularly or in mixtures, introduced during early stages of life, could affect the differentiation and the endocrine activity of adipocytes, and can act as potential factors for obesity.

  3. Exposure to β-lactams results in the alteration of penicillin-binding proteins in Clostridium perfringens.

    Science.gov (United States)

    Park, Miseon; Rafii, Fatemeh

    2017-06-01

    Clostridium perfringens causes a variety of mild to severe infections in humans and other animals. A decrease in the affinity of penicillin-binding protein (PBP) transpeptidases for β-lactams is considered one of the mechanisms of β-lactam resistance in bacteria. Two strains of C. perfringens isolated from bovines and one isolated from a chicken, which had decreased susceptibility to β-lactams, had variations in the amino acid sequences of the central penicillin-binding regions of the PBPs. β-Lactam-resistant mutants of another C. perfringens strain, ATCC 13124, were selected in vitro to determine the effects of exposure to β-lactams on the PBP genes. Cultures of the wild type rapidly developed resistance to penicillin G, cephalothin and ceftriaxone. The susceptibilities of all of the selected mutants to some other β-lactams also decreased. The largest PBP found in C. perfringens, CPF_2395, appeared to be the primary target of all three drugs. Strain resistant to penicillin G had mutation resulting in the substitution of one amino acid within the central penicillin-binding/transpeptidase domain, but the ceftrioxane and cephalothin-resistant strains had mutations resulting in the substitution of two amino acids in this region. The cephalothin-resistant mutant also had additional mutations in the CPF_0340 and CPF_2218 genes in this critical region. No other mutations were observed in the three other PBPs of the in vitro resistant mutants. Resistance development also altered the growth rate and cell morphology of the mutants, so in addition to the PBPs, some other genes, including regulatory genes, may have been affected during the interaction with β-lactam antibiotics. This is the first study showing the effects of β-lactam drugs on the substitution of amino acids in PBPs of C. perfringens and points to the need for studies to detect other unknown alterations affecting the physiology of resistant strains. Published by Elsevier Ltd.

  4. Elevated mercury exposure and neurochemical alterations in little brown bats (Myotis lucifugus) from a site with historical mercury contamination.

    Science.gov (United States)

    Nam, Dong-Ha; Yates, David; Ardapple, Pedro; Evers, David C; Schmerfeld, John; Basu, Niladri

    2012-05-01

    Despite evidence of persistent methylmercury (MeHg) contamination in the South River (Virginia, USA) ecosystem, there is little information concerning MeHg-associated neurological impacts in resident wildlife. Here we determined mercury (Hg) concentrations in tissues of insectivorous little brown bats (Myotis lucifugus) collected from a reference site and a MeHg-contaminated site in the South River ecosystem. We also explored whether neurochemical biomarkers (monoamine oxidase, MAO; acetylcholinesterase, ChE; muscarinic acetylcholine receptor, mAChR; N-methyl-D-aspartate receptor, NMDAR) previously shown to be altered by MeHg in other wildlife were associated with brain Hg levels in these bats. Concentrations of Hg (total and MeHg) in tissues were significantly higher (10-40 fold difference) in South River bats when compared to reference sites. Mean tissue mercury levels (71.9 ppm dw in liver, 7.14 ppm dw in brain, 132 ppm fw in fur) in the South River bats exceed (sub)-clinical thresholds in mammals. When compared to the South River bats, animals from the reference site showed a greater ability to demethylate MeHg in brain (33.1% of total Hg was MeHg vs. 65.5%) and liver (8.9% of total Hg was MeHg vs. 50.8%) thus suggesting differences in their ability to detoxify and eliminate Hg. In terms of Hg-associated neurochemical biomarker responses, interesting biphasic responses were observed with an inflection point between 1 and 5 ppm dw in the brain. In the reference bats Hg-associated decreases in MAO (r = -0.61; p exposures, differences in Hg metabolism, and the importance of the aforementioned neurochemicals in multiple facets of animal health, altered or perhaps even a lack of expected neurochemical responses in Hg-contaminated bats raise questions about the ecological and physiological impacts of Hg on the bat population as well as the broader ecosystem in the South River.

  5. Occupational exposure to 50 Hz magnetic fields does not alter responses of inflammatory genes and activation of splenic lymphocytes in mice

    Directory of Open Access Journals (Sweden)

    Xue Luo

    2016-04-01

    Full Text Available Objectives: The objective of the present study was to observe the effects of 50 Hz magnetic fields (MFs on the immune function of splenic lymphocytes in mice. Material and Methods: Twenty male Kunming mice (6 weeks old, weighing 18– 25 g, were randomly divided into sham exposure (N = 10 and 500 μT MFs (N = 10 groups. The mice in the MFs group were exposed to 500 μT MFs for 8 h daily (5 days/week for up to 60 days. In vitro study was carried out to examine the effects of 50 Hz MFs on the expression of inflammatory factor genes and a cluster of differentiation 69 (CD69 in mouse prime splenic lymphocytes activated by para-Methoxyamphetamine (PMA and ionomycin. In the in vitro experiments, lymphocytes were isolated from the spleen of 10 healthy Kunming mice, the cells were cultured in the Roswell Park Memorial Institute 1640 medium (RPMI-1640 and exposed to 0 μT, 250 μT, 500 μT, or 1 mT MFs in an incubator under 5% carbon dioxide (CO2 at 37°C for 6 h. The levels of interleukin-2 (IL-2, IL-4, interferon-gamma (IFN-γ, GATA binding protein 3 (GATA-3 and T cell-specific T-box transcription factor (T-bet were assessed by the real-time quantitative reverse transcription polymerase chain reaction (RT-qPCR, respectively. The expression of CD69 was checked using the flow cytometry. Results: Under our experimental conditions, body weight of the mice exposed to occupational, extremely low frequency- electromagnetic fields (ELF-EMFs significantly decreased on day 20 and day 30. There were no significant changes observed in vivo in spleen weight, splenic coefficient, splenic histology profile and cytokine production in spleen tissues. Our in vitro experiments showed that 50 Hz MFs had no effect on the expression of these genes and CD69 to primary splenic cells. Conclusions: In conclusion, under the applied experimental conditions, occupational exposure to 50 Hz magnetic field did not alter responses of inflammatory genes and activation of splenic

  6. Altered ion transport in normal human bronchial epithelial cells following exposure to chemically distinct metal welding fume particles.

    Science.gov (United States)

    Fedan, Jeffrey S; Thompson, Janet A; Meighan, Terence G; Zeidler-Erdely, Patti C; Antonini, James M

    2017-07-01

    Welding fume inhalation causes pulmonary toxicity, including susceptibility to infection. We hypothesized that airway epithelial ion transport is a target of fume toxicity, and investigated the effects of fume particulates from manual metal arc-stainless steel (MMA-SS) and gas metal arc-mild steel (GMA-MS) on ion transport in normal human bronchial epithelium (NHBE) cultured in air-interface. MMA-SS particles, more soluble than GMA-MS particles, contain Cr, Ni, Fe and Mn; GMA-MS particles contain Fe and Mn. MMA-SS or GMA-MS particles (0.0167-166.7μg/cm 2 ) were applied apically to NHBEs. After 18h transepithelial potential difference (V t ), resistance (R t ), and short circuit current (I sc ) were measured. Particle effects on Na + and Cl¯ channels and the Na + ,K + ,2Cl¯-cotransporter were evaluated using amiloride (apical), 5-nitro-2-[(3-phenylpropyl)amino]benzoic acid (NPPB, apical), and bumetanide (basolateral), respectively. MMA-SS (0.0167-16.7μg/cm 2 ) increased basal V t . Only 16.7μg/cm 2 GMA-MS increased basal V t significantly. MMA-SS or GMA-MS exposure potentiated I sc responses (decreases) to amiloride and bumetanide, while not affecting those to NPPB, GMA-MS to a lesser degree than MMA-SS. Variable effects on R t were observed in response to amiloride, and bumetanide. Generally, MMA-SS was more potent in altering responses to amiloride and bumetanide than GMA-MS. Hyperpolarization occurred in the absence of LDH release, but decreases in V t , R t , and I sc at higher fume particulate doses accompanied LDH release, to a greater extent for MMA-SS. Thus, Na + transport and Na + ,K + ,2Cl¯-cotransport are affected by fume exposure; MMA-MS is more potent than GMA-MS. Enhanced Na + absorption and decreased airway surface liquid could compromise defenses against infection. Published by Elsevier Inc.

  7. Chronic prenatal ethanol exposure alters hippocampal GABA(A) receptors and impairs spatial learning in the guinea pig.

    Science.gov (United States)

    Iqbal, U; Dringenberg, H C; Brien, J F; Reynolds, J N

    2004-04-02

    Chronic prenatal ethanol exposure (CPEE) can injure the developing brain, and may lead to the fetal alcohol syndrome (FAS). Previous studies have demonstrated that CPEE upregulates gamma-aminobutyric acid type A (GABA(A)) receptor expression in the cerebral cortex, and decreases functional synaptic plasticity in the hippocampus, in the adult guinea pig. This study tested the hypothesis that CPEE increases GABA(A) receptor expression in the hippocampus of guinea pig offspring that exhibit cognitive deficits in a hippocampal-dependent spatial learning task. Timed, pregnant guinea pigs were treated with ethanol (4 g/kg maternal body weight per day), isocaloric-sucrose/pair-feeding, or water throughout gestation. GABA(A) receptor subunit protein expression in the hippocampus was measured at two development ages: near-term fetus and young adult. In young adult guinea pig offspring, CPEE increased spontaneous locomotor activity in the open-field and impaired task acquisition in the Morris water maze. CPEE did not change GABA(A) receptor subunit protein expression in the near-term fetal hippocampus, but increased expression of the beta2/3-subunit of the GABA(A) receptor in the hippocampus of young adult offspring. CPEE did not change either [(3)H]flunitrazepam binding or GABA potentiation of [(3)H]flunitrazepam binding, but decreased the efficacy of allopregnanolone potentiation of [(3)H]flunitrazepam binding, to hippocampal GABA(A) receptors in adult offspring. Correlational analysis revealed a relationship between increased spontaneous locomotor activity and growth restriction in the hippocampus induced by CPEE. Similarly, an inverse relationship was found between performance in the water maze and the efficacy of allopregnanolone potentiation of [(3)H]flunitrazepam binding in the hippocampus. These data suggest that alterations in hippocampal GABA(A) receptor expression and pharmacological properties contribute to hippocampal-related behavioral and cognitive deficits

  8. Prenatal drug exposure to illicit drugs alters working memory-related brain activity and underlying network properties in adolescence.

    Science.gov (United States)

    Schweitzer, Julie B; Riggins, Tracy; Liang, Xia; Gallen, Courtney; Kurup, Pradeep K; Ross, Thomas J; Black, Maureen M; Nair, Prasanna; Salmeron, Betty Jo

    2015-01-01

    The persistence of effects of prenatal drug exposure (PDE) on brain functioning during adolescence is poorly understood. We explored neural activation to a visuospatial working memory (VSWM) versus a control task using functional magnetic resonance imaging (fMRI) in adolescents with PDE and a community comparison group (CC) of non-exposed adolescents. We applied graph theory metrics to resting state data using a network of nodes derived from the VSWM task activation map to further explore connectivity underlying WM functioning. Participants (ages 12-15 years) included 47 adolescents (27 PDE and 20 CC). All analyses controlled for potentially confounding differences in birth characteristics and postnatal environment. Significant group by task differences in brain activation emerged in the left middle frontal gyrus (BA 6) with the CC group, but not the PDE group, activating this region during VSWM. The PDE group deactivated the culmen, whereas the CC group activated it during the VSWM task. The CC group demonstrated a significant relation between reaction time and culmen activation, not present in the PDE group. The network analysis underlying VSWM performance showed that PDE group had lower global efficiency than the CC group and a trend level reduction in local efficiency. The network node corresponding to the BA 6 group by task interaction showed reduced nodal efficiency and fewer direct connections to other nodes in the network. These results suggest that adolescence reveals altered neural functioning related to response planning that may reflect less efficient network functioning in youth with PDE. Copyright © 2015 Elsevier Inc. All rights reserved.

  9. Claudins in a primary cultured puffer fish (Tetraodon nigroviridis) gill epithelium model alter in response to acute seawater exposure.

    Science.gov (United States)

    Bui, Phuong; Kelly, Scott P

    2015-11-01

    Gill epithelium permeability and qualitative/quantitative aspects of gill claudin (cldn) tight junction (TJ) protein transcriptomics were examined with a primary cultured model gill epithelium developed using euryhaline puffer fish (Tetraodon nigroviridis) gills. The model was prepared using seawater-acclimated fish gills and was cultured on permeable cell culture filter supports. The model is composed of 1-2 confluent layers of gill pavement cells (PVCs), with the outer layer exhibiting prominent apical surface microridges and TJs between adjacent cells. During development of electrophysiological characteristics, the model exhibits a sigmoidal increase in transpithelial resistance (TER) and plateaus around 30 kΩcm(2). At this point paracellular movement of [(3)H]polyethylene glycol (PEG) 4000 was low at ~1.75 cm s(-1)×10(-7). When exposed to apical seawater (SW) epithelia exhibit a marked decrease in TER while PEG flux remained unchanged for at least 6 h. In association with this, transcript encoding cldn TJ proteins cldn3c, -23b, -27a, -27c, -32a and -33b increased during the first 6 h while cldn11a decreased. This suggests that these proteins are involved in maintaining barrier properties between gill PVCs of SW fishes. Gill cldn mRNA abundance also altered 6 and 12 h following abrupt SW exposure of puffer fish, but in a manner that differed qualitatively and quantitatively from the cultured model. This most likely reflects the cellular heterogeneity of whole tissue and/or the contribution of the endocrine system in intact fish. The current study provides insight into the physiological and transcriptomic response of euryhaline fish gill cells to a hyperosmotic environment. Copyright © 2015 Elsevier Inc. All rights reserved.

  10. DNA methylation alterations in response to prenatal exposure of maternal cigarette smoking: A persistent epigenetic impact on health from maternal lifestyle?

    Science.gov (United States)

    Nielsen, Christina H; Larsen, Agnete; Nielsen, Anders L

    2016-02-01

    Despite increased awareness, maternal cigarette smoking during pregnancy continues to be a common habit causing risk for numerous documented negative health consequences in the exposed children. It has been proposed that epigenetic mechanisms constitute the link between prenatal exposure to maternal cigarette smoking (PEMCS) and the diverse pathologies arising in later life. We here review the current literature, focusing on DNA methylation. Alterations in the global DNA methylation patterns were observed after exposure to maternal smoking during pregnancy in placenta, cord blood and buccal epithelium tissue. Further, a number of specific genes exemplified by CYP1A1, AhRR, FOXP3, TSLP, IGF2, AXL, PTPRO, C11orf52, FRMD4A and BDNF are shown to have altered DNA methylation patterns in at least one of these tissue types due to PEMCS. Investigations showing persistence and indications of trans-generational inheritance of DNA methylation alterations induced by smoking exposure are also described. Further, smoking-induced epigenetic manifestations can be both tissue-dependent and gender-specific which show the importance of addressing the relevant sex, tissue and cell types in the future studies linking specific epigenetic alterations to disease development. Moreover, the effect of paternal cigarette smoking and second-hand smoke exposure is documented and accordingly not to be neglected in future investigations and data evaluations. We also outline possible directions for the future research to address how DNA methylation alterations induced by maternal lifestyle, exemplified by smoking, have direct consequences for fetal development and later in life health and behavior of the child.

  11. Differential effects of prenatal chronic high-decibel noise and music exposure on the excitatory and inhibitory synaptic components of the auditory cortex analog in developing chicks (Gallus gallus domesticus).

    Science.gov (United States)

    Kumar, V; Nag, T C; Sharma, U; Jagannathan, N R; Wadhwa, S

    2014-06-06

    Proper development of the auditory cortex depends on early acoustic experience that modulates the balance between excitatory and inhibitory (E/I) circuits. In the present social and occupational environment exposure to chronic loud sound in the form of occupational or recreational noise, is becoming inevitable. This could especially disrupt the functional auditory cortex development leading to altered processing of complex sound and hearing impairment. Here we report the effects of prenatal chronic loud sound (110-dB sound pressure level (SPL)) exposure (rhythmic [music] and arrhythmic [noise] forms) on the molecular components involved in regulation of the E/I balance in the developing auditory cortex analog/Field L (AuL) in domestic chicks. Noise exposure at 110-dB SPL significantly enhanced the E/I ratio (increased expression of AMPA receptor GluR2 subunit and glutamate with decreased expression of GABA(A) receptor gamma 2 subunit and GABA), whereas loud music exposure maintained the E/I ratio. Expressions of markers of synaptogenesis, synaptic stability and plasticity i.e., synaptophysin, PSD-95 and gephyrin were reduced with noise but increased with music exposure. Thus our results showed differential effects of prenatal chronic loud noise and music exposures on the E/I balance and synaptic function and stability in the developing auditory cortex. Loud music exposure showed an overall enrichment effect whereas loud noise-induced significant alterations in E/I balance could later impact the auditory function and associated cognitive behavior. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  12. Continuous and Discontinuous Cigarette Smoke Exposure Differentially Affects Protective Th1 Immunity against Pulmonary Tuberculosis

    Science.gov (United States)

    Shaler, Christopher R.; Horvath, Carly N.; McCormick, Sarah; Jeyanathan, Mangalakumari; Khera, Amandeep; Zganiacz, Anna; Kasinska, Joanna; Stampfli, Martin R.; Xing, Zhou

    2013-01-01

    Pulmonary tuberculosis (TB), caused by Mycobacterium tuberculosis, is the leading cause of death due to a bacterial pathogen. Emerging epidemiologic evidence suggests that the leading risk factor associated with TB mortality is cigarette smoke exposure. Despite this, it remains poorly understood what is the effect of cigarette smoke exposure on anti-TB immunity and whether its potential detrimental effect can be reversed by cigarette smoking cessation. In our current study, we have investigated the impact of both continuous and discontinuous cigarette smoke exposure on the development of anti-mycobacterial type 1 immunity in murine models. We find that while continuous cigarette smoke exposure severely impairs type 1 immunity in the lung, a short-term smoking cessation allows rapid restoration of anti-mycobacterial immunity. The ability of continuous cigarette smoke exposure to dampen type 1 protective immunity is attributed locally to its affects on innate immune cells in the lung. Continuous cigarette smoke exposure locally, by not systemically, impairs APC accumulation and their production of TNF, IL-12, and RANTES, blunts the recruitment of CD4+IFN-γ+ T cells to the lung, and weakens the formation of granuloma. On the other hand, smoking cessation was found to help restore type 1 immunity by rapidly improving the functionality of lung APCs, enhancing the recruitment of CD4+IFN-γ+ T cells to the lung, and promoting the formation of granuloma. Our study for the first time demonstrates that continuous, but not discontinuous, cigarette smoke exposure severely impedes the lung expression of anti-TB Th1 immunity via inhibiting innate immune activation and lung T cell recruitment. Our findings thus suggest cigarette smoking cessation to be beneficial to the control of pulmonary TB. PMID:23527127

  13. Osteogenic differentiation of bone mesenchymal stem cells regulated by osteoblasts under EMF exposure in a co-culture system.

    Science.gov (United States)

    Yu, Ji-zhe; Wu, Hua; Yang, Yong; Liu, Chao-xu; Liu, Yang; Song, Ming-yu

    2014-04-01

    This study examined the osteogenic effect of electromagnetic fields (EMF) under the simulated in vivo conditions. Rat bone marrow mesenchymal stem cells (BMSCs) and rat osteoblasts were co-cultured and exposed to 50 Hz, 1.0 mT EMF for different terms. Unexposed single-cultured BMSCs and osteoblasts were set as controls. Cell proliferation features of single-cultured BMSCs and osteoblasts were studied by using a cell counting kit (CCK-8). For the co-culture system, cells in each group were randomly chosen for alkaline phosphatase (ALP) staining on the day 7. When EMF exposure lasted for 14 days, dishes in each group were randomly chosen for total RNA extraction and von Kossa staining. The mRNA expression of osteogenic markers was detected by using real-time PCR. Our study showed that short-term EMF exposure (2 h/day) could obviously promote proliferation of BMSCs and osteoblasts, while long-term EMF (8 h/day) could promote osteogenic differentiation significantly under co-cultured conditions. Under EMF exposure, osteogenesis-related mRNA expression changed obviously in co-cultured and single-cultured cells. It was noteworthy that most osteogenic indices in osteoblasts were increased markedly after co-culture except Bmp2, which was increased gradually when cells were exposed to EMF. Compared to other indices, the expression of Bmp2 in BMSCs was increased sharply in both single-cultured and co-cultured groups when they were exposed to EMF. The mRNA expression of Bmp2 in BMSCs was approximately four times higher in 8-h EMF group than that in the unexposed group. Our results suggest that Bmp2-mediated cellular interaction induced by EMF exposure might play an important role in the osteogenic differentiation of BMSCs.

  14. Occupational exposure to electromagnetic fields and sex-differential risk of uveal melanoma.

    Science.gov (United States)

    Behrens, Thomas; Lynge, Elsebeth; Cree, Ian; Sabroe, Svend; Lutz, Jean-Michel; Afonso, Noemia; Eriksson, Mikael; Guénel, Pascal; Merletti, Franco; Morales-Suarez-Varela, Maria; Stengrevics, Aivars; Févotte, Joëlle; Llopis-González, Agustin; Gorini, Giuseppe; Sharkova, Galina; Hardell, Lennart; Ahrens, Wolfgang

    2010-11-01

    The association between occupational exposure to electromagnetic fields (EMF) and the risk of uveal melanoma was investigated in a case-control study in nine European countries. Incident cases of uveal melanoma and population as well as hospital controls were included and frequency matched by country, 5-year birth cohort and sex. Subjects were asked whether they had worked close to high-voltage electrical transmission installations, computer screens and various electrical machines, or in complex electrical environments. Measurements of two Scandinavian job-exposure matrices were applied to estimate lifelong cumulative EMF exposure. Unconditional logistic regression analyses, stratified by sex and eye colour were calculated, adjusting for several potential confounders. 293 patients with uveal melanoma and 3198 control subjects were interviewed. Women exposed to electrical transmission installations showed elevated risks (OR 5.81, 95% CI 1.72 to 19.66). Positive associations with exposure to control rooms were seen among men and women, but most risk increases were restricted to subjects with dark iris colour. Application of published EMF measurements revealed stronger risk increases among women compared to men. Again, elevated risks were restricted to subjects with dark eye colour. Although based on a low prevalence of exposure to potential occupational sources of EMF, our data indicate that exposed dark-eyed women may be at particular risk for uveal melanoma.

  15. Glu- and Lys-forms of plasminogen differentially affect phosphatidylserine exposure on the platelet surface

    Directory of Open Access Journals (Sweden)

    D. D. Zhernossekov

    2017-04-01

    Full Text Available Plasminogen/plasmin system is known for its ability to support hemostatic balance of blood. However, plasminogen may be considered as an adhesive ligand and in this way could affect the functioning of blood cells. We showed that exogenous Lys-plasminogen, but not its Glu-form, inhibited platelet aggregation and suppressed platelet α-granule secretion. The aim of this work was to investigate the influence of Glu- and Lys-form of plasminogen on the formation of platelet procoagulant surface using phosphatidylserine exposure as a marker. Human platelets were obtained from human platelet-rich plasma (donors were healthy volunteers, men aged 30-40 years by gel-filtration on Sepharose 2B. Phosphatidylserine exposure on the platelet surface was evaluated by flow cytometry with FITC-conjugated annexin A5. Glu- and Lys-plasminogen have different impact on the platelet functioning. Exogenous Lys-plasminogen has no significant effect on phosphatidylserine exposure, while Glu-plasminogen increases phosphatidylserine exposure on the surface of thrombin- and collagen-activated human platelets. Glu-plasminogen can be considered as a co-stimulator of agonist-induced platelet secretion and procoagulant surface formation. Meanwhile effects of Lys-plasminogen are probably directed at platelet-platelet interactions and not related to agonist-stimulated pro-apoptotic changes. The observed different effects of Glu- and Lys-plasminogen on phosphatidylserine exposure can be explained by their structural peculiarities.

  16. MUTZ-3 derived Langerhans cells in human skin equivalents show differential migration and phenotypic plasticity after allergen or irritant exposure

    Energy Technology Data Exchange (ETDEWEB)

    Kosten, Ilona J.; Spiekstra, Sander W. [Department of Dermatology, VU University Medical Center, Amsterdam (Netherlands); Gruijl, Tanja D. de [Department of Dermatology Medical Oncology, VU University Medical Center, Amsterdam (Netherlands); Gibbs, Susan, E-mail: s.gibbs@acta.nl [Department of Dermatology, VU University Medical Center, Amsterdam (Netherlands); Department of Oral Cell Biology, Academic Center for Dentistry (ACTA), Amsterdam (Netherlands)

    2015-08-15

    After allergen or irritant exposure, Langerhans cells (LC) undergo phenotypic changes and exit the epidermis. In this study we describe the unique ability of MUTZ-3 derived Langerhans cells (MUTZ-LC) to display similar phenotypic plasticity as their primary counterparts when incorporated into a physiologically relevant full-thickness skin equivalent model (SE-LC). We describe differences and similarities in the mechanisms regulating LC migration and plasticity upon allergen or irritant exposure. The skin equivalent consisted of a reconstructed epidermis containing primary differentiated keratinocytes and CD1a{sup +} MUTZ-LC on a primary fibroblast-populated dermis. Skin equivalents were exposed to a panel of allergens and irritants. Topical exposure to sub-toxic concentrations of allergens (nickel sulfate, resorcinol, cinnamaldehyde) and irritants (Triton X-100, SDS, Tween 80) resulted in LC migration out of the epidermis and into the dermis. Neutralizing antibody to CXCL12 blocked allergen-induced migration, whereas anti-CCL5 blocked irritant-induced migration. In contrast to allergen exposure, irritant exposure resulted in cells within the dermis becoming CD1a{sup −}/CD14{sup +}/CD68{sup +} which is characteristic of a phenotypic switch of MUTZ-LC to a macrophage-like cell in the dermis. This phenotypic switch was blocked with anti-IL-10. Mechanisms previously identified as being involved in LC activation and migration in native human skin could thus be reproduced in the in vitro constructed skin equivalent model containing functional LC. This model therefore provides a unique and relevant research tool to study human LC biology in situ under controlled in vitro conditions, and will provide a powerful tool for hazard identification, testing novel therapeutics and identifying new drug targets. - Highlights: • MUTZ-3 derived Langerhans cells integrated into skin equivalents are fully functional. • Anti-CXCL12 blocks allergen-induced MUTZ-LC migration.

  17. Patient exposure in the basic science classroom enhances differential diagnosis formation and clinical decision-making

    Directory of Open Access Journals (Sweden)

    Justin G. Peacock

    2015-02-01

    Full Text Available Purpose. The authors proposed that introducing real patients into a pathology classroom early in medical education would help integrate fundamental principles and disease pathology with clinical presentation and medical history.Methods. Three patients with different pathologies described their history and presentation without revealing their diagnosis. Students were required to submit a differential diagnosis in writing, and then were able to ask questions to arrive at the correct diagnosis. Students were surveyed on the efficacy of patient-based learning.Results. Average student scores on the differential diagnosis assignments significantly improved 32% during the course. From the survey, 72% of students felt that patient encounters should be included in the pathology course next year. Seventy-four percent felt that the differential diagnosis assignments helped them develop clinical decision-making skills. Seventy-three percent felt that the experience helped them know what questions to ask patients. Eighty-six percent felt that they obtained a better understanding of patients’ social and emotional challenges.Discussion. Having students work through the process of differential diagnosis formulation when encountering a real patient and their clinical presentation improved clinical decision-making skills and integrated fundamental concepts with disease pathology during a basic science pathology course.

  18. Differential effects of exposure to ambient vanilla and citris aromas on mood, arousal and food choice

    NARCIS (Netherlands)

    Wijk, de R.A.; Zijlstra, S.

    2012-01-01

    Background Aromas have been associated with physiological, psychological affective and behavioral effects. We tested whether effects of low-level exposure to two ambient food-related aromas (citrus and vanilla) could be measured with small numbers of subjects, low-cost physiological sensors and

  19. DNA methylation is differentially associated with environmental cadmium exposure based on sex and smoking status.

    Science.gov (United States)

    Virani, Shama; Rentschler, Katie M; Nishijo, Muneko; Ruangyuttikarn, Werawan; Swaddiwudhipong, Witaya; Basu, Niladri; Rozek, Laura S

    2016-02-01

    The adverse health effects of cadmium (Cd) are well known in human populations; however, much of what is known about biological mechanisms of Cd comes from in vitro and animal studies. The adverse health outcomes due to high levels of Cd exposure in the population of Mae Sot, Thailand have been extensively characterized. Here, for the first time, this population is being studied in an epigenetic context. The objective of this study was to characterize the association between DNA methylation markers and Cd exposure, taking into account sex and smoking differences, in an adult population at an increased risk of experiencing adverse health outcomes from high body burden of Cd. One hundred and sixty-nine residents from known exposure areas of Mae Sot, Thailand and one hundred residents from non-exposed areas nearby were surveyed in 2012. Urine and blood samples were collected for measurement of urinary Cd (UCd) and DNA methylation of Cd-related markers (DNMT3B, MGMT, LINE-1, MT2A). UCd levels were 7 times higher in the exposed compared to the unexposed populations (exposed median: 7.4 μg/L, unexposed median: 1.0 μg/L, p smoking status. In summary, environmental Cd exposure is associated with gene-specific DNA methylation in a sex and smoking dependent manner. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Total and differential white blood cell counts in Caiman latirostris after in ovo and in vivo exposure to insecticides.

    Science.gov (United States)

    Latorre, María A; Romito, María L; Larriera, Alejandro; Poletta, Gisela L; Siroski, Pablo A

    2016-11-01

    Agricultural activities associated mainly with soybean crops affect the natural environment and wildlife by habitat destruction and the extensive use of agrochemicals. The aim of this study was to evaluate immunotoxic effects of the insecticides cypermethrin (CYP) and endosulfan (END) in Caiman latirostris analyzing total blood cell count (TWBC) and differential white blood cell count (DWBC) after in ovo and in vivo exposure. Eggs (in ovo) and hatchlings (in vivo) from nests harvested in natural habitats were artificially incubated and reared under controlled conditions in the Proyecto Yacaré (Gob.Santa Fe/MUPCN) facilities. Exposure of embryos was performed by topication on the eggshell during the first stage of development. The treatments were distilled water (negative control; NC), ethanol (vehicle control; VC), four groups treated with different concentrations of CYP and four groups with END. In vivo exposure was performed by immersion; treatments were NC, VC, two groups exposed to CYP and two to END. After embryonic exposure to the insecticides, no differences were found in TWBC or DWBC among the neonates exposed to pesticides versus controls. In the in vivo scenario, similar results were obtained for TWBC, but DWBC data showed differences between NC hatchlings and CYP-1 hosts for heterophil, lymphocyte and monocyte levels, and between NC and END-1 hosts for lymphocyte and monocyte levels. Research on the effects of pesticide exposure on this species is of special interest not only to assess the impact on caiman populations, but also to further characterize the species as a potential sentinel of ecosystem health.

  1. Altered mRNA editing and expression of ionotropic glutamate receptors after kainic acid exposure in cyclooxygenase-2 deficient mice.

    Directory of Open Access Journals (Sweden)

    Luca Caracciolo

    2011-05-01

    Full Text Available Kainic acid (KA binds to the AMPA/KA receptors and induces seizures that result in inflammation, oxidative damage and neuronal death. We previously showed that cyclooxygenase-2 deficient (COX-2(-/- mice are more vulnerable to KA-induced excitotoxicity. Here, we investigated whether the increased susceptibility of COX-2(-/- mice to KA is associated with altered mRNA expression and editing of glutamate receptors. The expression of AMPA GluR2, GluR3 and KA GluR6 was increased in vehicle-injected COX-2(-/- mice compared to wild type (WT mice in hippocampus and cortex, whereas gene expression of NMDA receptors was decreased. KA treatment decreased the expression of AMPA, KA and NMDA receptors in the hippocampus, with a significant effect in COX-2(-/- mice. Furthermore, we analyzed RNA editing levels and found that the level of GluR3 R/G editing site was selectively increased in the hippocampus and decreased in the cortex in COX-2(-/- compared with WT mice. After KA, GluR4 R/G editing site, flip form, was increased in the hippocampus of COX-2(-/- mice. Treatment of WT mice with the COX-2 inhibitor celecoxib for two weeks decreased the expression of AMPA/KA and NMDAR subunits after KA, as observed in COX-2(-/- mice. After KA exposure, COX-2(-/- mice showed increased mRNA expression of markers of inflammation and oxidative stress, such as cytokines (TNF-α, IL-1β and IL-6, inducible nitric oxide synthase (iNOS, microglia (CD11b and astrocyte (GFAP. Thus, COX-2 gene deletion can exacerbate the inflammatory response to KA. We suggest that COX-2 plays a role in attenuating glutamate excitotoxicity by modulating RNA editing of AMPA/KA and mRNA expression of all ionotropic glutamate receptor subunits and, in turn, neuronal excitability. These changes may contribute to the increased vulnerability of COX-2(-/- mice to KA. The overstimulation of glutamate receptors as a consequence of COX-2 gene deletion suggests a functional coupling between COX-2 and the

  2. Identification of Immunological Biomarkers Which May Differentiate Latent Tuberculosis from Exposure to Environmental Nontuberculous Mycobacteria in Children

    Science.gov (United States)

    Crampin, Amelia C.; Chisambo, Christina; Kanyika, James; Houben, Rein; Ndhlovu, Richard; Mzembe, Themba; Lalor, Maeve K.; Saul, Jacky; Branson, Keith; Stanley, Carolynne; Ngwira, Bagrey; French, Neil; Ottenhoff, Tom H.; Dockrell, Hazel M.; Gorak-Stolinska, Patricia

    2014-01-01

    A positive gamma interferon (IFN-γ) response to Mycobacterium tuberculosis early secretory antigenic target-6 (ESAT-6)/culture filtrate protein-10 (CFP-10) has been taken to indicate latent tuberculosis (TB) infection, but it may also be due to exposure to environmental nontuberculous mycobacteria in which ESAT-6 homologues are present. We assessed the immune responses to M. tuberculosis ESAT-6 and cross-reactive responses to ESAT-6 homologues of Mycobacterium avium and Mycobacterium kansasii. Archived culture supernatant samples from children at 3 years post-BCG vaccination were tested for cytokine/chemokine responses to M. tuberculosis antigens. Furthermore, the IFN-γ responses to M. tuberculosis antigens were followed up for 40 children at 8 years post-BCG vaccination, and 15 TB patients were recruited as a control group for the M. tuberculosis ESAT-6 response in Malawi. IFN-γ enzyme-linked immunosorbent assays (ELISAs) on supernatants from diluted whole-blood assays, IFN-γ enzyme-linked immunosorbent spot (ELISpot) assays, QuantiFERON TB Gold-In Tube tests, and multiplex bead assays were performed. More than 45% of the responders to M. tuberculosis ESAT-6 showed IFN-γ responses to M. avium and M. kansasii ESAT-6. In response to M. tuberculosis ESAT-6/CFP-10, interleukin 5 (IL-5), IL-9, IL-13, and IL-17 differentiated the stronger IFN-γ responders to M. tuberculosis ESAT-6 from those who preferentially responded to M. kansasii and M. avium ESAT-6. A cytokine/chemokine signature of IL-5, IL-9, IL-13, and IL-17 was identified as a putative immunological biosignature to differentiate latent TB infection from exposure to M. avium and M. kansasii in Malawian children, indicating that this signature might be particularly informative in areas where both TB and exposure to environmental nontuberculous mycobacteria are endemic. PMID:24285818

  3. Differential effects of exposure to ambient vanilla and citrus aromas on mood, arousal and food choice

    Directory of Open Access Journals (Sweden)

    de Wijk René A

    2012-12-01

    Full Text Available Abstract Background Aromas have been associated with physiological, psychological affective and behavioral effects. We tested whether effects of low-level exposure to two ambient food-related aromas (citrus and vanilla could be measured with small numbers of subjects, low-cost physiological sensors and semi-real life settings. Tests included physiological (heart rate, physical activity and response times, psychological (emotions and mood and behavioral (food choice measures in a semi-real life environment for 22 participants. Results Exposure to ambient citrus aroma increased physical activity (P P P P P Conclusions The test battery used in this study demonstrated aroma-specific physiological, psychological and behavioral effects of aromas with similar appeal and intensities, and similar food-related origins. These effects could be measured in (semi- real life environments for freely moving subjects using relatively inexpensive commercially available physiological sensors.

  4. Long-term culture and differentiation of CNS precursors derived from anterior human neural rosettes following exposure to ventralizing factors

    Energy Technology Data Exchange (ETDEWEB)

    Colleoni, Silvia, E-mail: silviacolleoni@avantea.it [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy); Galli, Cesare [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy); Dipartimento Clinico Veterinario, Universita di Bologna, Via Tolara di Sopra 50, 40064 Ozzano Emilia (Italy); Giannelli, Serena G. [Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan (Italy); Armentero, Marie-Therese; Blandini, Fabio [Laboratory of Functional Neurochemistry, Interdepartmental Research Center for Parkinson' s Disease, Neurological Institute C. Mondino, Via Mondino 2, 27100 Pavia (Italy); Broccoli, Vania, E-mail: broccoli.vania@hsr.it [Stem Cells and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, Via Olgettina 58, 20132 Milan (Italy); Lazzari, Giovanna, E-mail: giovannalazzari@avantea.it [Laboratorio di Tecnologie della Riproduzione, Avantea, Via Porcellasco 7/f, 26100 Cremona (Italy)

    2010-04-15

    In this study we demonstrated that neural rosettes derived from human ES cells can give rise either to neural crest precursors, following expansion in presence of bFGF and EGF, or to dopaminergic precursors after exposure to ventralizing factors Shh and FGF8. Both regionalised precursors are capable of extensive proliferation and differentiation towards the corresponding terminally differentiated cell types. In particular, peripheral neurons, cartilage, bone, smooth muscle cells and also pigmented cells were obtained from neural crest precursors while tyrosine hydroxylase and Nurr1 positive dopaminergic neurons were derived from FGF8 and Shh primed rosette cells. Gene expression and immunocytochemistry analyses confirmed the expression of dorsal and neural crest genes such as Sox10, Slug, p75, FoxD3, Pax7 in neural precursors from bFGF-EGF exposed rosettes. By contrast, priming of rosettes with FGF8 and Shh induced the expression of dopaminergic markers Engrailed1, Pax2, Pitx3, floor plate marker FoxA2 and radial glia markers Blbp and Glast, the latter in agreement with the origin of dopaminergic precursors from floor plate radial glia. Moreover, in vivo transplant of proliferating Shh/FGF8 primed precursors in parkinsonian rats demonstrated engraftment and terminal dopaminergic differentiation. In conclusion, we demonstrated the derivation of long-term self-renewing precursors of selected regional identity as potential cell reservoirs for cell therapy applications, such as CNS degenerative diseases, or for the development of toxicological tests.

  5. Chronic neonicotinoid pesticide exposure and parasite stress differentially affects learning in honeybees and bumblebees.

    Science.gov (United States)

    Piiroinen, Saija; Goulson, Dave

    2016-04-13

    Learning and memory are crucial functions which enable insect pollinators to efficiently locate and extract floral rewards. Exposure to pesticides or infection by parasites may cause subtle but ecologically important changes in cognitive functions of pollinators. The potential interactive effects of these stressors on learning and memory have not yet been explored. Furthermore, sensitivity to stressors may differ between species, but few studies have compared responses in different species. Here, we show that chronic exposure to field-realistic levels of the neonicotinoid clothianidin impaired olfactory learning acquisition in honeybees, leading to potential impacts on colony fitness, but not in bumblebees. Infection by the microsporidian parasite Nosema ceranae slightly impaired learning in honeybees, but no interactive effects were observed. Nosema did not infect bumblebees (3% infection success). Nevertheless, Nosema-treated bumblebees had a slightly lower rate of learning than controls, but faster learning in combination with neonicotinoid exposure. This highlights the potential for complex interactive effects of stressors on learning. Our results underline that one cannot readily extrapolate findings from one bee species to others. This has important implications for regulatory risk assessments which generally use honeybees as a model for all bees. © 2016 The Author(s).

  6. Exposure to radio-frequency electromagnetic waves alters acetylcholinesterase gene expression, exploratory and motor coordination-linked behaviour in male rats

    Directory of Open Access Journals (Sweden)

    Adejoke Olukayode Obajuluwa

    Full Text Available Humans in modern society are exposed to an ever-increasing number of electromagnetic fields (EMFs and some studies have demonstrated that these waves can alter brain function but the mechanism still remains unclear. Hence, this study sought to investigate the effect of 2.5 Ghz band radio-frequency electromagnetic waves (RF-EMF exposure on cerebral cortex acetylcholinesterase (AChE activity and their mRNA expression level as well as locomotor function and anxiety-linked behaviour in male rats. Animals were divided into four groups namely; group 1 was control (without exposure, group 2–4 were exposed to 2.5 Ghz radiofrequency waves from an installed WI-FI device for a period of 4, 6 and 8 weeks respectively. The results revealed that WiFi exposure caused a significant increase in anxiety level and affect locomotor function. Furthermore, there was a significant decrease in AChE activity with a concomitant increase in AChE mRNA expression level in WiFi exposed rats when compared with control. In conclusions, these data showed that long term exposure to WiFi may lead to adverse effects such as neurodegenerative diseases as observed by a significant alteration on AChE gene expression and some neurobehavioral parameters associated with brain damage. Keywords: Acetylcholinesterase, Radiofrequency, Electromagnetic waves, mRNA, Gene expression

  7. Effects of cerium dioxide nanoparticles in Oncorhynchus mykiss liver after an acute exposure: assessment of oxidative stress, genotoxicity and histological alterations

    Directory of Open Access Journals (Sweden)

    Ana Cristina Nunes

    2015-12-01

    Full Text Available At present cerium oxide nanoparticles (CeO2 NP have numerous applications ranging from industry to the household, leading to its wide distribution namely in the aquatic environment. The hereby study aimed to assess the toxic effects of CeO2 NPs in Oncorhynchus mykiss liver following an acute exposure (96h to three different concentrations (0.25, 2.5 and 25 mg/L in terms of the genotoxicity (comet assay, oxidative stress response (Catalase CAT; Glutathione S-Transferases GSTs; Thiobarbituric Acid Reactive Substances TBARS and histopathology. CeO2 NP exposure resulted in genotoxic damage in all exposure treatments, inhibition of CAT in the highest concentration and histopathological changes in all exposure concentrations with predominance of progressive and circulatory alterations. However TBARS and GSTs showed no significant differences comparatively to the control (unexposed group. The results suggest that CeO2 NP are able to cause genotoxicity, biochemical impairment and histological alterations in the liver of rainbow trout.

  8. Chemical characterization of exhaled breath to differentiate between patients with malignant plueral mesothelioma from subjects with similar professional asbestos exposure

    Energy Technology Data Exchange (ETDEWEB)

    Gennaro, G. de; Longobardi, F.; Stallone, G.; Trizio, L.; Tutino, M. [University of Bari Aldo Moro, Department of Chemistry, Bari (Italy); Dragonieri, S. [University of Bari Aldo Moro, Department of Pulmonology, Bari (Italy); Musti, M. [University of Bari Aldo Moro, Department of Occupational Medicine, Bari (Italy)

    2010-12-15

    Malignant pleural mesothelioma (MPM) is an aggressive tumour whose main aetiology is the long-term exposure to asbestos fibres. The diagnostic procedure of MPM is difficult and often requires invasive approaches; therefore, it is clinically important to find accurate markers for MPM by new noninvasive methods that may facilitate the diagnostic process and identify patients at an earlier stage. In the present study, the exhaled breath of 13 patients with histology-established diagnosis of MPM, 13 subjects with long-term certified professional exposure to asbestos (EXP) and 13 healthy subjects without exposure to asbestos (healthy controls, HC) were analysed. An analytical procedure to determine volatile organic compounds by sampling of air on a bed of solid sorbent and thermal desorption GC-MS analysis was developed in order to identify the compounds capable of discriminating among the three groups. The application of univariate (ANOVA) and multivariate statistical treatments (PCA, DFA and CP-ANN) showed that cyclopentane and cyclohexane were the dominant variables able to discriminate among the three groups. In particular, it was found that cyclohexane is the only compound able to differentiate the MPM group from the other two; therefore, it can be a possible marker of MPM. Cyclopentane is the dominant compound in the discrimination between EXP and the other groups (MPM and HC); then, it can be considered a good indicator for long-term asbestos exposure. This result suggests the need to perform frequent and thorough investigations on people exposed to asbestos in order to constantly monitor their state of health or possibly to study the evolution of disease over time. (orig.)

  9. Chemical characterization of exhaled breath to differentiate between patients with malignant plueral mesothelioma from subjects with similar professional asbestos exposure.

    Science.gov (United States)

    de Gennaro, G; Dragonieri, S; Longobardi, F; Musti, M; Stallone, G; Trizio, L; Tutino, M

    2010-12-01

    Malignant pleural mesothelioma (MPM) is an aggressive tumour whose main aetiology is the long-term exposure to asbestos fibres. The diagnostic procedure of MPM is difficult and often requires invasive approaches; therefore, it is clinically important to find accurate markers for MPM by new noninvasive methods that may facilitate the diagnostic process and identify patients at an earlier stage. In the present study, the exhaled breath of 13 patients with histology-established diagnosis of MPM, 13 subjects with long-term certified professional exposure to asbestos (EXP) and 13 healthy subjects without exposure to asbestos (healthy controls, HC) were analysed. An analytical procedure to determine volatile organic compounds by sampling of air on a bed of solid sorbent and thermal desorption GC-MS analysis was developed in order to identify the compounds capable of discriminating among the three groups. The application of univariate (ANOVA) and multivariate statistical treatments (PCA, DFA and CP-ANN) showed that cyclopentane and cyclohexane were the dominant variables able to discriminate among the three groups. In particular, it was found that cyclohexane is the only compound able to differentiate the MPM group from the other two; therefore, it can be a possible marker of MPM. Cyclopentane is the dominant compound in the discrimination between EXP and the other groups (MPM and HC); then, it can be considered a good indicator for long-term asbestos exposure. This result suggests the need to perform frequent and thorough investigations on people exposed to asbestos in order to constantly monitor their state of health or possibly to study the evolution of disease over time.

  10. Expression of blood serum proteins and lymphocyte differentiation clusters after chronic occupational exposure to ionizing radiation

    Energy Technology Data Exchange (ETDEWEB)

    Rybkina, Valentina L.; Azizova, Tamara V.; Adamova, Galina V.; Teplyakova, Olga V.; Osovets, Sergey V.; Bannikova, Maria V. [Southern Urals Biophysics Institute, Ozyorsk, Chelyabinsk Region (Russian Federation); Scherthan, Harry; Meineke, Viktor; Doerr, Harald [University of Ulm, Bundeswehr Institute of Radiobiology, Munich (Germany); Zurochka, Alexander V. [Immunology Institute, Yekaterinburg (Russian Federation)

    2014-11-15

    This study aimed to assess effects of chronic occupational exposure on immune status in Mayak workers chronically exposed to ionizing radiation (IR). The study cohort consists of 77 workers occupationally exposed to external gamma-rays at total dose from 0.5 to 3.0 Gy (14 individuals) and workers with combined exposure (external gamma-rays at total dose range 0.7-5.1 Gy and internal alpha-radiation from incorporated plutonium with a body burden of 0.3-16.4 kBq). The control group consists of 43 age- and sex-matched individuals who never were exposed to IR, never involved in any cleanup operations following radiation accidents and never resided at contaminated areas. Enzyme-linked immunoassay and flow cytometry were used to determine the relative concentration of lymphocytes and proteins. The concentrations of T-lymphocytes, interleukin-8 and immunoglobulins G were decreased in external gamma-exposed workers relative to control. Relative concentrations of NKT-lymphocytes, concentrations of transforming growth factor-β, interferon gamma, immunoglobulins A, immunoglobulins M and matrix proteinase-9 were higher in this group as compared with control. Relative concentrations of T-lymphocytes and concentration of interleukin-8 were decreased, while both the relative and absolute concentration of natural killers, concentration of immunoglobulins A and M and matrix proteinase-9 were increased in workers with combined exposure as compared to control. An inverse linear relation was revealed between absolute concentration of T-lymphocytes, relative and absolute concentration of T-helpers cells, concentration of interferon gamma and total absorbed dose from external gamma-rays in exposed workers. For workers with incorporated plutonium, there was an inverse linear relation of absolute concentration of T-helpers as well as direct linear relation of relative concentration of NKT-lymphocytes to total absorbed red bone marrow dose from internal alpha-radiation. In all, chronic

  11. Genetic alterations of hepatocellular carcinoma by random amplified polymorphic DNA analysis and cloning sequencing of tumor differential DNA fragment

    Science.gov (United States)

    Xian, Zhi-Hong; Cong, Wen-Ming; Zhang, Shu-Hui; Wu, Meng-Chao

    2005-01-01

    AIM: To study the genetic alterations and their association with clinicopathological characteristics of hepatocellular carcinoma (HCC), and to find the tumor related DNA fragments. METHODS: DNA isolated from tumors and corresponding noncancerous liver tissues of 56 HCC patients was amplified by random amplified polymorphic DNA (RAPD) with 10 random 10-mer arbitrary primers. The RAPD bands showing obvious differences in tumor tissue DNA corresponding to that of normal tissue were separated, purified, cloned and sequenced. DNA sequences were analyzed and compared with GenBank data. RESULTS: A total of 56 cases of HCC were demonstrated to have genetic alterations, which were detected by at least one primer. The detestability of genetic alterations ranged from 20% to 70% in each case, and 17.9% to 50% in each primer. Serum HBV infection, tumor size, histological grade, tumor capsule, as well as tumor intrahepatic metastasis, might be correlated with genetic alterations on certain primers. A band with a higher intensity of 480 bp or so amplified fragments in tumor DNA relative to normal DNA could be seen in 27 of 56 tumor samples using primer 4. Sequence analysis of these fragments showed 91% homology with Homo sapiens double homeobox protein DUX10 gene. CONCLUSION: Genetic alterations are a frequent event in HCC, and tumor related DNA fragments have been found in this study, which may be associated with hepatocarcin-ogenesis. RAPD is an effective method for the identification and analysis of genetic alterations in HCC, and may provide new information for further evaluating the molecular mechanism of hepatocarcinogenesis. PMID:15996039

  12. Disruption of apoptosis pathways involved in zebrafish gonad differentiation by 17α-ethinylestradiol and fadrozole exposures

    Energy Technology Data Exchange (ETDEWEB)

    Luzio, Ana, E-mail: aluzio@utad.pt [Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801 (Portugal); Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801 (Portugal); Matos, Manuela [University of Lisbon, Faculty of Sciences, BioISI– Biosystems & Integrative Sciences Institute, Campo Grande, 1749-016 Lisbon (Portugal); Department of Genetics and Biotechnology, Life Sciences and Environment School (ECVA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801 (Portugal); Santos, Dércia [Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801 (Portugal); Fontaínhas-Fernandes, António A.; Monteiro, Sandra M. [Centre for the Research and Technology of Agro-Environmental and Biological Sciences, CITAB, Departamento de Biologia e Ambiente (DeBA), University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801 (Portugal); Life Sciences and Environment School, University of Trás-os-Montes and Alto Douro, UTAD, Quinta de Prados, Vila Real, 5000-801 (Portugal); and others

    2016-08-15

    Highlights: • Apoptosis in females is avoided by anti-apoptotic pathways and in males is essential to the “juvenile ovary” failure. • BIRC5 is central to the regulation of zebrafish spermatogenesis. • EE2 did not change sex ratios, but Fadrozole induced masculinization with a significant increase in male proportion. • The few females identified after exposure to Fadrozole may have avoided sex reversal by increasing anti-apoptotic proteins. • EE2 increased the pro-apoptotic genes/proteins in males, promoting gonad differentiation. - Abstract: Zebrafish (Danio rerio) sex determination seems to involve genetic factors (GSD) but also environmental factors (ESD), such as endocrine disrupting chemicals (EDCs) that are known to mimic endogenous hormones and disrupt gonad differentiation. Apoptosis has also been proposed to play a crucial role in zebrafish gonad differentiation. Nevertheless, the interactions between EDCs and apoptosis have received little attention. Thus, this study aimed to assess if and which apoptotic pathways are involved in zebrafish gonad differentiation and how EDCs may interfere with this process. With these purposes, zebrafish were exposed to 17α-ethinylestradiol (EE{sub 2}, 4 ng/L) and fadrozole (Fad, 50 μg/L) from 2 h to 35 days post-fertilization (dpf). Afterwards, a gene expression analysis by qRT-PCR and a stereological analysis, based on systematic sampling and protein immunohistochemistry, were performed. The death receptors (FAS; TRADD), anti-apoptotic (BCL-2; MDM2), pro-apoptotic (CASP-2 and −6) and cell proliferation (BIRC5/survivin; JUN) genes and proteins were evaluated. In general, apoptosis was inhibited in females through the involvement of anti-apoptotic pathways, while in males apoptosis seemed to be crucial to the failure of the “juvenile ovary” development and the induction of testes transformation. The JUN protein was shown to be necessary in juvenile ovaries, while the BIRC5 protein seemed to be involved

  13. Altered microRNA expression profile in exosomes during osteogenic differentiation of human bone marrow-derived mesenchymal stem cells.

    Directory of Open Access Journals (Sweden)

    Ji-Feng Xu

    Full Text Available The physiological role of microRNAs (miRNAs in osteoblast differentiation remains elusive. Exosomal miRNAs isolated from human bone marrow-derived mesenchymal stem cells (BMSCs culture were profiled using miRNA arrays containing probes for 894 human matured miRNAs. Seventy-nine miRNAs (∼8.84% could be detected in exosomes isolated from BMSC culture supernatants when normalized to endogenous control genes RNU44. Among them, nine exosomal miRNAs were up regulated and 4 miRNAs were under regulated significantly (Relative fold>2, p<0.05 when compared with the values at 0 day with maximum changes at 1 to 7 days. Five miRNAs (miR-199b, miR-218, miR-148a, miR-135b, and miR-221 were further validated and differentially expressed in the individual exosomal samples from hBMSCs cultured at different time points. Bioinformatic analysis by DIANA-mirPath demonstrated that RNA degradation, mRNA surveillance pathway, Wnt signaling pathway, RNA transport were the most prominent pathways enriched in quantiles with differential exosomal miRNA patterns related to osteogenic differentiation. These data demonstrated exosomal miRNA is a regulator of osteoblast differentiation.

  14. β-adrenergic receptor-dependent alterations in murine cardiac transcript expression are differentially regulated by gefitinib in vivo.

    Directory of Open Access Journals (Sweden)

    Jennifer A Talarico

    Full Text Available β-adrenergic receptor (βAR-mediated transactivation of epidermal growth factor receptor (EGFR has been shown to promote cardioprotection in a mouse model of heart failure and we recently showed that this mechanism leads to enhanced cell survival in part via regulation of apoptotic transcript expression in isolated primary rat neonatal cardiomyocytes. Thus, we hypothesized that this process could regulate cardiac transcript expression in vivo. To comprehensively assess cardiac transcript alterations in response to acute βAR-dependent EGFR transactivation, we performed whole transcriptome analysis of hearts from C57BL/6 mice given i.p. injections of the βAR agonist isoproterenol in the presence or absence of the EGFR antagonist gefitinib for 1 hour. Total cardiac RNA from each treatment group underwent transcriptome analysis, revealing a substantial number of transcripts regulated by each treatment. Gefitinib alone significantly altered the expression of 405 transcripts, while isoproterenol either alone or in conjunction with gefitinib significantly altered 493 and 698 distinct transcripts, respectively. Further statistical analysis was performed, confirming 473 transcripts whose regulation by isoproterenol were significantly altered by gefitinib (isoproterenol-induced up/downregulation antagonized/promoted by gefinitib, including several known to be involved in the regulation of numerous processes including cell death and survival. Thus, βAR-dependent regulation of cardiac transcript expression in vivo can be modulated by the EGFR antagonist gefitinib.

  15. Chronic ethanol exposure during adolescence through early adulthood in female rats induces emotional and memory deficits associated with morphological and molecular alterations in hippocampus.

    Science.gov (United States)

    Oliveira, Ana Ca; Pereira, Maria Cs; Santana, Luana N da Silva; Fernandes, Rafael M; Teixeira, Francisco B; Oliveira, Gedeão B; Fernandes, Luanna Mp; Fontes-Júnior, Enéas A; Prediger, Rui D; Crespo-López, Maria E; Gomes-Leal, Walace; Lima, Rafael R; Maia, Cristiane do Socorro Ferraz

    2015-06-01

    There is increasing evidence that heavy ethanol exposure in early life may produce long-lasting neurobehavioral consequences, since brain structural maturation continues until adolescence. It is well established that females are more susceptible to alcohol-induced neurotoxicity and that ethanol consumption is increasing among women, especially during adolescence. In the present study, we investigated whether chronic ethanol exposure during adolescence through early adulthood in female rats may induce hippocampal histological damage and neurobehavioral impairments. Female rats were treated with distilled water or ethanol (6.5 g/kg/day, 22.5% w/v) by gavage from the 35(th)-90(th) day of life. Ethanol-exposed animals displayed reduced exploration of the central area and increased number of fecal boluses in the open field test indicative of anxiogenic responses. Moreover, chronic high ethanol exposure during adolescence induced marked impairments on short-term memory of female rats addressed on social recognition and step-down inhibitory avoidance tasks. These neurobehavioral deficits induced by ethanol exposure during adolescence through early adulthood were accompanied by the reduction of hippocampal formation volume as well as the loss of neurons, astrocytes and microglia cells in the hippocampus. These results indicate that chronic high ethanol exposure during adolescence through early adulthood in female rats induces long-lasting emotional and memory deficits associated with morphological and molecular alterations in the hippocampus. © The Author(s) 2015.

  16. Sub chronic exposure to crude oil, dispersed oil and dispersant induces histopathological alterations in the gills of the juvenile rabbit fish (Siganus canaliculatus).

    Science.gov (United States)

    Agamy, Esam

    2013-06-01

    There is little existing information on the sub-lethal effects of experimental exposure of Arabian Gulf fish to oil pollution. This study investigated the potential sub-lethal effects of the water accommodated fraction (WAF) of light Arabian crude oil, dispersed oil and dispersant (Maxi Clean 2) on the gills of the juvenile rabbit fish (Siganus canaliculatus), observing several histopathological biomarkers at different time points and different doses. These laboratory exposures simulated a range of possible oil pollution events. Significant alterations in four health categories (circulatory, proliferative, degenerative and inflammatory) were identified and form the basis for understanding the short-term response of fish to oil. Evaluations of histopathological lesions in gill tissue were carried out following 3, 6, 9, 12, 15, 18 and 21 days of exposure. The main lesions observed and quantified were lamellar capillary aneurysms, vasodilatation of lamellae, hemorrhage, edema, lifting of lamellar and filamentary epithelium and epithelium necrosis, epithelial and chloride cell hypertrophy and hyperplasia, fusion of adjacent lamellae, epitheliocystis and inflammatory infiltration. Exposure of juvenile fish to WAF, dispersant oil and dispersant caused significant changes in the gill lesions and reaction patterns. Dispersed oil caused the most significant effect followed by WAF and then dispersant. The present study is one of the first which explores the relationship between oil pollution and epitheliocystis and reports that exposure to crude oil and dispersed oil increases the prevalence of epitheliocystis formation under controlled laboratory conditions. Copyright © 2013 Elsevier Inc. All rights reserved.

  17. TCR signal strength alters T-DC activation and interaction times and directs the outcome of differentiation.

    Directory of Open Access Journals (Sweden)

    Nicholas eVan Panhuys

    2016-01-01

    Full Text Available The ability of CD4+ T cells to differentiate into effector subsets underpins their ability to shape the immune response and mediate host protection. During T cell receptor induced activation of CD4+ T cells both the quality and quantity of specific activatory peptide/MHC ligands have been shown to control the polarization of naïve CD4+ T cells in addition to co-stimulatory and cytokine based signals. Recently, advances in two photon microscopy and tetramer based cell tracking methods have allowed investigators to greatly extend the study of the role of TCR signaling in effector differentiation under in vivo conditions. In this review we consider data from recent in vivo studies analyzing the role of TCR signal strength in controlling the outcome of CD4+ T cell differentiation and discuss the role of the TCR in controlling the critical nature of CD4+ T cell interactions with dendritic cells during activation. We further propose a model whereby TCR signal strength controls the temporal aspects of T:DC interactions and the implications for this in mediating the downstream signaling events which influence the transcriptional and epigenetic regulation of effector differentiation.