WorldWideScience

Sample records for explosive volcanic eruptions

  1. Rapid laccolith intrusion driven by explosive volcanic eruption.

    Science.gov (United States)

    Castro, Jonathan M; Cordonnier, Benoit; Schipper, C Ian; Tuffen, Hugh; Baumann, Tobias S; Feisel, Yves

    2016-11-23

    Magmatic intrusions and volcanic eruptions are intimately related phenomena. Shallow magma intrusion builds subsurface reservoirs that are drained by volcanic eruptions. Thus, the long-held view is that intrusions must precede and feed eruptions. Here we show that explosive eruptions can also cause magma intrusion. We provide an account of a rapidly emplaced laccolith during the 2011 rhyolite eruption of Cordón Caulle, Chile. Remote sensing indicates that an intrusion began after eruption onset and caused severe (>200 m) uplift over 1 month. Digital terrain models resolve a laccolith-shaped body ∼0.8 km 3 . Deformation and conduit flow models indicate laccolith depths of only ∼20-200 m and overpressures (∼1-10 MPa) that likely stemmed from conduit blockage. Our results show that explosive eruptions may rapidly force significant quantities of magma in the crust to build laccoliths. These iconic intrusions can thus be interpreted as eruptive features that pose unique and previously unrecognized volcanic hazards.

  2. Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions.

    Science.gov (United States)

    Hunt, James E; Cassidy, Michael; Talling, Peter J

    2018-01-18

    Volcanic flank collapses and explosive eruptions are among the largest and most destructive processes on Earth. Events at Mount St. Helens in May 1980 demonstrated how a relatively small (300 km 3 ), but can also occur in complex multiple stages. Here, we show that multistage retrogressive landslides on Tenerife triggered explosive caldera-forming eruptions, including the Diego Hernandez, Guajara and Ucanca caldera eruptions. Geochemical analyses were performed on volcanic glasses recovered from marine sedimentary deposits, called turbidites, associated with each individual stage of each multistage landslide. These analyses indicate only the lattermost stages of subaerial flank failure contain materials originating from respective coeval explosive eruption, suggesting that initial more voluminous submarine stages of multi-stage flank collapse induce these aforementioned explosive eruption. Furthermore, there are extended time lags identified between the individual stages of multi-stage collapse, and thus an extended time lag between the initial submarine stages of failure and the onset of subsequent explosive eruption. This time lag succeeding landslide-generated static decompression has implications for the response of magmatic systems to un-roofing and poses a significant implication for ocean island volcanism and civil emergency planning.

  3. MeMoVolc report on classification and dynamics of volcanic explosive eruptions

    Science.gov (United States)

    Bonadonna, C.; Cioni, R.; Costa, A.; Druitt, T.; Phillips, J.; Pioli, L.; Andronico, D.; Harris, A.; Scollo, S.; Bachmann, O.; Bagheri, G.; Biass, S.; Brogi, F.; Cashman, K.; Dominguez, L.; Dürig, T.; Galland, O.; Giordano, G.; Gudmundsson, M.; Hort, M.; Höskuldsson, A.; Houghton, B.; Komorowski, J. C.; Küppers, U.; Lacanna, G.; Le Pennec, J. L.; Macedonio, G.; Manga, M.; Manzella, I.; Vitturi, M. de'Michieli; Neri, A.; Pistolesi, M.; Polacci, M.; Ripepe, M.; Rossi, E.; Scheu, B.; Sulpizio, R.; Tripoli, B.; Valade, S.; Valentine, G.; Vidal, C.; Wallenstein, N.

    2016-11-01

    Classifications of volcanic eruptions were first introduced in the early twentieth century mostly based on qualitative observations of eruptive activity, and over time, they have gradually been developed to incorporate more quantitative descriptions of the eruptive products from both deposits and observations of active volcanoes. Progress in physical volcanology, and increased capability in monitoring, measuring and modelling of explosive eruptions, has highlighted shortcomings in the way we classify eruptions and triggered a debate around the need for eruption classification and the advantages and disadvantages of existing classification schemes. Here, we (i) review and assess existing classification schemes, focussing on subaerial eruptions; (ii) summarize the fundamental processes that drive and parameters that characterize explosive volcanism; (iii) identify and prioritize the main research that will improve the understanding, characterization and classification of volcanic eruptions and (iv) provide a roadmap for producing a rational and comprehensive classification scheme. In particular, classification schemes need to be objective-driven and simple enough to permit scientific exchange and promote transfer of knowledge beyond the scientific community. Schemes should be comprehensive and encompass a variety of products, eruptive styles and processes, including for example, lava flows, pyroclastic density currents, gas emissions and cinder cone or caldera formation. Open questions, processes and parameters that need to be addressed and better characterized in order to develop more comprehensive classification schemes and to advance our understanding of volcanic eruptions include conduit processes and dynamics, abrupt transitions in eruption regime, unsteadiness, eruption energy and energy balance.

  4. Explosive Volcanic Eruptions from Linear Vents on Earth, Venus and Mars: Comparisons with Circular Vent Eruptions

    Science.gov (United States)

    Glaze, Lori S.; Baloga, Stephen M.; Wimert, Jesse

    2010-01-01

    Conditions required to support buoyant convective plumes are investigated for explosive volcanic eruptions from circular and linear vents on Earth, Venus, and Mars. Vent geometry (linear versus circular) plays a significant role in the ability of an explosive eruption to sustain a buoyant plume. On Earth, linear and circular vent eruptions are both capable of driving buoyant plumes to equivalent maximum rise heights, however, linear vent plumes are more sensitive to vent size. For analogous mass eruption rates, linear vent plumes surpass circular vent plumes in entrainment efficiency approximately when L(sub o) > 3r(sub o) owing to the larger entrainment area relative to the control volume. Relative to circular vents, linear vents on Venus favor column collapse and the formation of pyroclastic flows because the range of conditions required to establish and sustain buoyancy is narrow. When buoyancy can be sustained, however, maximum plume heights exceed those from circular vents. For current atmospheric conditions on Mars, linear vent eruptions are capable of injecting volcanic material slightly higher than analogous circular vent eruptions. However, both geometries are more likely to produce pyroclastic fountains, as opposed to convective plumes, owing to the low density atmosphere. Due to the atmospheric density profile and water content on Earth, explosive eruptions enjoy favorable conditions for producing sustained buoyant columns, while pyroclastic flows would be relatively more prevalent on Venus and Mars. These results have implications for the injection and dispersal of particulates into the planetary atmosphere and the ability to interpret the geologic record of planetary volcanism.

  5. Volcanic sulfur dioxide index and volcanic explosivity index inferred from eruptive volume of volcanoes in Jeju Island, Korea: application to volcanic hazard mitigation

    Science.gov (United States)

    Ko, Bokyun; Yun, Sung-Hyo

    2016-04-01

    Jeju Island located in the southwestern part of Korea Peninsula is a volcanic island composed of lavaflows, pyroclasts, and around 450 monogenetic volcanoes. The volcanic activity of the island commenced with phreatomagmatic eruptions under subaqueous condition ca. 1.8-2.0 Ma and lasted until ca. 1,000 year BP. For evaluating volcanic activity of the most recently erupted volcanoes with reported age, volcanic explosivity index (VEI) and volcanic sulfur dioxide index (VSI) of three volcanoes (Ilchulbong tuff cone, Songaksan tuff ring, and Biyangdo scoria cone) are inferred from their eruptive volumes. The quantity of eruptive materials such as tuff, lavaflow, scoria, and so on, is calculated using a model developed in Auckland Volcanic Field which has similar volcanic setting to the island. The eruptive volumes of them are 11,911,534 m3, 24,987,557 m3, and 9,652,025 m3, which correspond to VEI of 3, 3, and 2, respectively. According to the correlation between VEI and VSI, the average quantity of SO2 emission during an eruption with VEI of 3 is 2-8 × 103 kiloton considering that the island was formed under intraplate tectonic setting. Jeju Island was regarded as an extinct volcano, however, several studies have recently reported some volcanic eruption ages within 10,000 year BP owing to the development in age dating technique. Thus, the island is a dormant volcano potentially implying high probability to erupt again in the future. The volcanoes might have explosive eruptions (vulcanian to plinian) with the possibility that SO2 emitted by the eruption reaches stratosphere causing climate change due to backscattering incoming solar radiation, increase in cloud reflectivity, etc. Consequently, recommencement of volcanic eruption in the island is able to result in serious volcanic hazard and this study provides fundamental and important data for volcanic hazard mitigation of East Asia as well as the island. ACKNOWLEDGMENTS: This research was supported by a grant [MPSS

  6. The global magnitude-frequency relationship for large explosive volcanic eruptions

    Science.gov (United States)

    Rougier, Jonathan; Sparks, R. Stephen J.; Cashman, Katharine V.; Brown, Sarah K.

    2018-01-01

    For volcanoes, as for other natural hazards, the frequency of large events diminishes with their magnitude, as captured by the magnitude-frequency relationship. Assessing this relationship is valuable both for the insights it provides about volcanism, and for the practical challenge of risk management. We derive a global magnitude-frequency relationship for explosive volcanic eruptions of at least 300Mt of erupted mass (or M4.5). Our approach is essentially empirical, based on the eruptions recorded in the LaMEVE database. It differs from previous approaches mainly in our conservative treatment of magnitude-rounding and under-recording. Our estimate for the return period of 'super-eruptions' (1000Gt, or M8) is 17ka (95% CI: 5.2ka, 48ka), which is substantially shorter than previous estimates, indicating that volcanoes pose a larger risk to human civilisation than previously thought.

  7. Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions

    OpenAIRE

    Hunt, James E.; Cassidy, Michael; Talling, Peter J.

    2018-01-01

    Volcanic flank collapses and explosive eruptions are among the largest and most destructive processes on Earth. Events at Mount St. Helens in May 1980 demonstrated how a relatively small (<5 km3) flank collapse on a terrestrial volcano could immediately precede a devastating eruption. The lateral collapse of volcanic island flanks, such as in the Canary Islands, can be far larger (>300 km3), but can also occur in complex multiple stages. Here, we show that multistage retrogressive lands...

  8. The effects and consequences of very large explosive volcanic eruptions.

    Science.gov (United States)

    Self, S

    2006-08-15

    Every now and again Earth experiences tremendous explosive volcanic eruptions, considerably bigger than the largest witnessed in historic times. Those yielding more than 450km3 of magma have been called super-eruptions. The record of such eruptions is incomplete; the most recent known example occurred 26000 years ago. It is more likely that the Earth will next experience a super-eruption than an impact from a large meteorite greater than 1km in diameter. Depending on where the volcano is located, the effects will be felt globally or at least by a whole hemisphere. Large areas will be devastated by pyroclastic flow deposits, and the more widely dispersed ash falls will be laid down over continent-sized areas. The most widespread effects will be derived from volcanic gases, sulphur gases being particularly important. This gas is converted into sulphuric acid aerosols in the stratosphere and layers of aerosol can cover the global atmosphere within a few weeks to months. These remain for several years and affect atmospheric circulation causing surface temperature to fall in many regions. Effects include temporary reductions in light levels and severe and unseasonable weather (including cool summers and colder-than-normal winters). Some aspects of the understanding and prediction of super-eruptions are problematic because they are well outside modern experience. Our global society is now very different to that affected by past, modest-sized volcanic activity and is highly vulnerable to catastrophic damage of infrastructure by natural disasters. Major disruption of services that society depends upon can be expected for periods of months to, perhaps, years after the next very large explosive eruption and the cost to global financial markets will be high and sustained.

  9. The frequency of explosive volcanic eruptions in Southeast Asia.

    Science.gov (United States)

    Whelley, Patrick L; Newhall, Christopher G; Bradley, Kyle E

    There are ~750 active and potentially active volcanoes in Southeast Asia. Ash from eruptions of volcanic explosivity index 3 (VEI 3) and smaller pose mostly local hazards while eruptions of VEI ≥ 4 could disrupt trade, travel, and daily life in large parts of the region. We classify Southeast Asian volcanoes into five groups, using their morphology and, where known, their eruptive history and degassing style. Because the eruptive histories of most volcanoes in Southeast Asia are poorly constrained, we assume that volcanoes with similar morphologies have had similar eruption histories. Eruption histories of well-studied examples of each morphologic class serve as proxy histories for understudied volcanoes in the class. From known and proxy eruptive histories, we estimate that decadal probabilities of VEI 4-8 eruptions in Southeast Asia are nearly 1.0, ~0.6, ~0.15, ~0.012, and ~0.001, respectively.

  10. Shallow magma diversions during explosive diatreme-forming eruptions.

    Science.gov (United States)

    Le Corvec, Nicolas; Muirhead, James D; White, James D L

    2018-04-13

    The diversion of magma is an important mechanism that may lead to the relocation of a volcanic vent. Magma diversion is known to occur during explosive volcanic eruptions generating subterranean excavation and remobilization of country and volcanic rocks. However, feedbacks between explosive crater formation and intrusion processes have not been considered previously, despite their importance for understanding evolving hazards during volcanic eruptions. Here, we apply numerical modeling to test the impacts of excavation and subsequent infilling of diatreme structures on stress states and intrusion geometries during the formation of maar-diatreme complexes. Explosive excavation and infilling of diatremes affects local stress states which inhibits magma ascent and drives lateral diversion at various depths, which are expected to promote intra-diatreme explosions, host rock mixing, and vent migration. Our models demonstrate novel mechanisms explaining the generation of saucer-shaped sills, linked with magma diversion and enhanced intra-diatreme explosive fragmentation during maar-diatreme volcanism. Similar mechanisms will occur at other volcanic vents producing crater-forming eruptions.

  11. Eruption probabilities for the Lassen Volcanic Center and regional volcanism, northern California, and probabilities for large explosive eruptions in the Cascade Range

    Science.gov (United States)

    Nathenson, Manuel; Clynne, Michael A.; Muffler, L.J. Patrick

    2012-01-01

    Chronologies for eruptive activity of the Lassen Volcanic Center and for eruptions from the regional mafic vents in the surrounding area of the Lassen segment of the Cascade Range are here used to estimate probabilities of future eruptions. For the regional mafic volcanism, the ages of many vents are known only within broad ranges, and two models are developed that should bracket the actual eruptive ages. These chronologies are used with exponential, Weibull, and mixed-exponential probability distributions to match the data for time intervals between eruptions. For the Lassen Volcanic Center, the probability of an eruption in the next year is 1.4x10-4 for the exponential distribution and 2.3x10-4 for the mixed exponential distribution. For the regional mafic vents, the exponential distribution gives a probability of an eruption in the next year of 6.5x10-4, but the mixed exponential distribution indicates that the current probability, 12,000 years after the last event, could be significantly lower. For the exponential distribution, the highest probability is for an eruption from a regional mafic vent. Data on areas and volumes of lava flows and domes of the Lassen Volcanic Center and of eruptions from the regional mafic vents provide constraints on the probable sizes of future eruptions. Probabilities of lava-flow coverage are similar for the Lassen Volcanic Center and for regional mafic vents, whereas the probable eruptive volumes for the mafic vents are generally smaller. Data have been compiled for large explosive eruptions (>≈ 5 km3 in deposit volume) in the Cascade Range during the past 1.2 m.y. in order to estimate probabilities of eruption. For erupted volumes >≈5 km3, the rate of occurrence since 13.6 ka is much higher than for the entire period, and we use these data to calculate the annual probability of a large eruption at 4.6x10-4. For erupted volumes ≥10 km3, the rate of occurrence has been reasonably constant from 630 ka to the present, giving

  12. Local and remote infrasound from explosive volcanism

    Science.gov (United States)

    Matoza, R. S.; Fee, D.; LE Pichon, A.

    2014-12-01

    Explosive volcanic eruptions can inject large volumes of ash into heavily travelled air corridors and thus pose a significant societal and economic hazard. In remote volcanic regions, satellite data are sometimes the only technology available to observe volcanic eruptions and constrain ash-release parameters for aviation safety. Infrasound (acoustic waves ~0.01-20 Hz) data fill this critical observational gap, providing ground-based data for remote volcanic eruptions. Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. Advances in infrasound technology and the efficient propagation of infrasound in the atmosphere therefore greatly enhance our ability to monitor volcanoes in remote regions such as the North Pacific Ocean. Infrasound data can be exploited to detect, locate, and provide detailed chronologies of the timing of explosive volcanic eruptions for use in ash transport and dispersal models. We highlight results from case studies of multiple eruptions recorded by the International Monitoring System and dedicated regional infrasound networks (2008 Kasatochi, Alaska, USA; 2008 Okmok, Alaska, USA; 2009 Sarychev Peak, Kuriles, Russian Federation; 2010 Eyjafjallajökull, Icleand) and show how infrasound is currently used in volcano monitoring. We also present progress towards characterizing and modeling the variability in source mechanisms of infrasound from explosive eruptions using dedicated local infrasound field deployments at volcanoes Karymsky, Russian Federation and Sakurajima, Japan.

  13. Conduit Stability and Collapse in Explosive Volcanic Eruptions: Coupling Conduit Flow and Failure Models

    Science.gov (United States)

    Mullet, B.; Segall, P.

    2017-12-01

    Explosive volcanic eruptions can exhibit abrupt changes in physical behavior. In the most extreme cases, high rates of mass discharge are interspaced by dramatic drops in activity and periods of quiescence. Simple models predict exponential decay in magma chamber pressure, leading to a gradual tapering of eruptive flux. Abrupt changes in eruptive flux therefore indicate that relief of chamber pressure cannot be the only control of the evolution of such eruptions. We present a simplified physics-based model of conduit flow during an explosive volcanic eruption that attempts to predict stress-induced conduit collapse linked to co-eruptive pressure loss. The model couples a simple two phase (gas-melt) 1-D conduit solution of the continuity and momentum equations with a Mohr-Coulomb failure condition for the conduit wall rock. First order models of volatile exsolution (i.e. phase mass transfer) and fragmentation are incorporated. The interphase interaction force changes dramatically between flow regimes, so smoothing of this force is critical for realistic results. Reductions in the interphase force lead to significant relative phase velocities, highlighting the deficiency of homogenous flow models. Lateral gas loss through conduit walls is incorporated using a membrane-diffusion model with depth dependent wall rock permeability. Rapid eruptive flux results in a decrease of chamber and conduit pressure, which leads to a critical deviatoric stress condition at the conduit wall. Analogous stress distributions have been analyzed for wellbores, where much work has been directed at determining conditions that lead to wellbore failure using Mohr-Coulomb failure theory. We extend this framework to cylindrical volcanic conduits, where large deviatoric stresses can develop co-eruptively leading to multiple distinct failure regimes depending on principal stress orientations. These failure regimes are categorized and possible implications for conduit flow are discussed, including

  14. Reconstructing an Explosive Basaltic Eruption in the Pinacate Volcanic Field, NW Sonora, Mexico

    Science.gov (United States)

    Zawacki, E. E.; Clarke, A. B.; Arrowsmith, R.; Lynch, D. J.

    2017-12-01

    Tephra deposits from explosive volcanic eruptions provide a means to reconstruct eruption characteristics, such as column height and erupted volume. Parameters like these are essential in assessing the explosivity of past eruptions and associated volcanic hazards. We applied such methods to a basaltic tephra deposit from one of the youngest eruptions in the Pinacate volcanic field (NW Sonora, Mexico). This roughly circular tephra blanket extends 13 km E-W and 13 km N-S, and covers an area of at least 135 km2. The source vent of this eruption is hypothesized to be the Tecolote volcano (lat 31.877, long -113.362), which is dated to 27 ± 6 ka (40Ar/39Ar). Fifty-three pits were dug across the extent of the tephra deposit to measure its thickness, record stratigraphy, characterize grain size distribution, and determine maximum clast size. Isopleth and isopach maps were created from these data to determine the column height (>9 km), estimate mass eruption rate (>2.1x106 kg/s), and calculate the erupted volume (>4.2x10-2 km3). Stratigraphic descriptions support two distinct episodes of tephra production. Unit A is dispersed in an approximately circular pattern ( 6.5 km radius) with its center shifted to the east of the vent. The distribution of Unit B is oblate ( 9.5 km major axis, 4.5 km minor axis) and trends to the southeast of the vent. Lava samples were collected from each of the seven Tecolote flows for XRF and ICP-MS geochemical analyses. These samples were compared to geochemical signatures from a Tecolote bomb, tephra from Units A and B, and cinder from the La Laja cone, which is the youngest dated cone in the field at 12 ± 4 ka (40Ar/39Ar). The La Laja sample is geochemically distinct from all Tecolote samples, confirming that it did not contribute to the two tephra units. Tephra from Unit A and Unit B have distinct signatures and fit within the geochemical evolution of the Tecolote lavas, supporting two explosive episodes from the Tecolote volcano, which has

  15. Explosive volcanism, shock metamorphism and the K-T boundary

    International Nuclear Information System (INIS)

    Desilva, S.L.; Sharpton, V.L.

    1988-01-01

    The issue of whether shocked quartz can be produced by explosive volcanic events is important in understanding the origin of the K-T boundary constituents. Proponents of a volcanic origin for the shocked quartz at the K-T boundary cite the suggestion of Rice, that peak overpressures of 1000 kbars can be generated during explosive volcanic eruptions, and may have occurred during the May, 1980 eruption of Mt. St. Helens. Attention was previously drawn to the fact that peak overpressures during explosive eruptions are limited by the strength of the rock confining the magma chamber to less than 8 kbars even under ideal conditions. The proposed volcanic mechanisms for generating pressures sufficient to shock quartz are further examined. Theoretical arguments, field evidence and petrographic data are presented showing that explosive volcanic eruptions cannot generate shock metamorphic features of the kind seen in minerals at the K-T boundary

  16. Tropical explosive volcanic eruptions can trigger El Niño by cooling tropical Africa.

    Science.gov (United States)

    Khodri, Myriam; Izumo, Takeshi; Vialard, Jérôme; Janicot, Serge; Cassou, Christophe; Lengaigne, Matthieu; Mignot, Juliette; Gastineau, Guillaume; Guilyardi, Eric; Lebas, Nicolas; Robock, Alan; McPhaden, Michael J

    2017-10-03

    Stratospheric aerosols from large tropical explosive volcanic eruptions backscatter shortwave radiation and reduce the global mean surface temperature. Observations suggest that they also favour an El Niño within 2 years following the eruption. Modelling studies have, however, so far reached no consensus on either the sign or physical mechanism of El Niño response to volcanism. Here we show that an El Niño tends to peak during the year following large eruptions in simulations of the Fifth Coupled Model Intercomparison Project (CMIP5). Targeted climate model simulations further emphasize that Pinatubo-like eruptions tend to shorten La Niñas, lengthen El Niños and induce anomalous warming when occurring during neutral states. Volcanically induced cooling in tropical Africa weakens the West African monsoon, and the resulting atmospheric Kelvin wave drives equatorial westerly wind anomalies over the western Pacific. This wind anomaly is further amplified by air-sea interactions in the Pacific, favouring an El Niño-like response.El Niño tends to follow 2 years after volcanic eruptions, but the physical mechanism behind this phenomenon is unclear. Here the authors use model simulations to show that a Pinatubo-like eruption cools tropical Africa and drives westerly wind anomalies in the Pacific favouring an El Niño response.

  17. Explosive volcanism on Mercury: Analysis of vent and deposit morphology and modes of eruption

    Science.gov (United States)

    Jozwiak, Lauren M.; Head, James W.; Wilson, Lionel

    2018-03-01

    The MESSENGER mission revealed, for the first time, conclusive evidence of explosive volcanism on Mercury. Several previous works have cataloged the appearance and location of explosive volcanism on the planet using a variety of identifying characteristics, including vent presence and deposit color as seen in multispectral image mosaics. We present here a comprehensive catalog of vents of likely volcanic origin; our classification scheme emphasizes vent morphology. We have analyzed the morphologies of all vents in our catalog, and recognize three main morphologies: "simple vent", "pit vent", and "vent-with-mound". The majority of vents we identify are located within impact craters. The spatial distribution of vents does not correlate with the locations of volcanic smooth plains deposits, in contrast to the Moon, nor do vents correlate with the locations of large impact basins (except for the Caloris and Tolstoj basins). Using the degradation state of the vent host crater as a proxy for maximum age, we suggest that vent formation has been active through the Mansurian and into the Kuiperian periods, although the majority of vents were likely formed much earlier in mercurian history. The morphologies and locations of vents are used to investigate a set of plausible formation geometries. We find that the most likely and most prevalent formation geometry is that of a dike, stalled at depth, which then explosively vents to the surface. We compare the vent and deposit size of mercurian pyroclastic deposits with localized and regional lunar pyroclastic deposits, and find a range of possible eruption energies and corresponding variations in eruption style. Localized lunar pyroclastic deposits and the majority of mercurian pyroclastic deposits show evidence for eruption that is consistent with the magmatic foam at the top of a dike reaching a critical gas volume fraction. A subset of mercurian vents, including the prominent Copland-Rachmaninoff vent to the northeast of the

  18. Violent Explosive Eruptions in the Ararat Valley, Armenia and Associated Volcanic Hazards

    Science.gov (United States)

    Meliksetian, Khachatur; Savov, Ivan; Connor, Charles; Gevorgyan, Hripsime; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Jrbashyan, Ruben; Ghukasyan, Yura

    2016-04-01

    The Anatolian-Armenian-Iranian volcanically active orogenic plateau is located in the collision zone between the Arabian and Eurasian plates. The majority of regional geodynamic and petrologic models of collision-related magmatism use the model proposed by Keskin (2003), where volcanism is driven by Neo-Tethyan slab break-off, however an updated model by Neill et al. (2015) and Skolbeltsyn et al.(2014) comprise break-off of two slabs. One of the significant (and understudied) features of the regionally extensive collision zone volcanism is the diversity of eruption styles and also the presence of large number of highly explosive (Plinian) eruptions with VEI≥5 during the Middle-Upper Pleistocene. Geological records of the Ararat depression include several generations of thick low aspect ratio Quaternary ignimbrites erupted from Aragats volcano, as well as up to 3 m thick ash and pumice fall deposit from the Holocene-historically active Ararat volcano. The Ararat tephra fall deposit is studied at 12 newly discovered outcrops covering an area ˜1000 km2. It is noteworthy, that the Ararat tephra deposits are loose and unwelded and observed only in cross-sections in small depressions or in areas where they were rapidly covered by younger, colluvium deposits, presumably of Holocene age. Therefore, the spatial extent of the explosive deposits of Ararat is much bigger but not well preserved due to rapid erosion. Whole rock elemental, isotope (Sr, Nd) and mineral chemistry data demonstrate significant difference in the magma sources of the large Aragats and Ararat stratovolcanoes. Lavas and pyroclastic products of Aragats are high K calc-alkaline, and nearly always deprived from H2O rich phases such as amphibole. In contrasts lavas and pyroclastic products from Ararat are medium K calc-alkaline and volatile-rich (>4.6 wt% H2O and amphibole bearing) magmas. Here we shall attempt to reveal possible geochemical triggers of explosive eruptions in these volcanoes and assess

  19. Pushing the Volcanic Explosivity Index to its limit and beyond: Constraints from exceptionally weak explosive eruptions at Kīlauea in 2008

    Science.gov (United States)

    Houghton, Bruce F.; Swanson, Don; Rausch, J.; Carey, R.J.; Fagents, S.A.; Orr, Tim R.

    2013-01-01

    Estimating the mass, volume, and dispersal of the deposits of very small and/or extremely weak explosive eruptions is difficult, unless they can be sampled on eruption. During explosive eruptions of Halema‘uma‘u Crater (Kīlauea, Hawaii) in 2008, we constrained for the first time deposits of bulk volumes as small as 9–300 m3 (1 × 104 to 8 × 105 kg) and can demonstrate that they show simple exponential thinning with distance from the vent. There is no simple fit for such products within classifications such as the Volcanic Explosivity Index (VEI). The VEI is being increasingly used as the measure of magnitude of explosive eruptions, and as an input for both hazard modeling and forecasting of atmospheric dispersal of tephra. The 2008 deposits demonstrate a problem for the use of the VEI, as originally defined, which classifies small, yet ballistic-producing, explosive eruptions at Kīlauea and other basaltic volcanoes as nonexplosive. We suggest a simple change to extend the scale in a fashion inclusive of such very small deposits, and to make the VEI more consistent with other magnitude scales such as the Richter scale for earthquakes. Eruptions of this magnitude constitute a significant risk at Kīlauea and elsewhere because of their high frequency and the growing number of “volcano tourists” visiting basaltic volcanoes.

  20. 3-D high-speed imaging of volcanic bomb trajectory in basaltic explosive eruptions

    Science.gov (United States)

    Gaudin, D.; Taddeucci, J; Houghton, Bruce F.; Orr, Tim R.; Andronico, D.; Del Bello, E.; Kueppers, U.; Ricci, T.; Scarlato, P.

    2016-01-01

    Imaging, in general, and high speed imaging in particular are important emerging tools for the study of explosive volcanic eruptions. However, traditional 2-D video observations cannot measure volcanic ejecta motion toward and away from the camera, strongly hindering our capability to fully determine crucial hazard-related parameters such as explosion directionality and pyroclasts' absolute velocity. In this paper, we use up to three synchronized high-speed cameras to reconstruct pyroclasts trajectories in three dimensions. Classical stereographic techniques are adapted to overcome the difficult observation conditions of active volcanic vents, including the large number of overlapping pyroclasts which may change shape in flight, variable lighting and clouding conditions, and lack of direct access to the target. In particular, we use a laser rangefinder to measure the geometry of the filming setup and manually track pyroclasts on the videos. This method reduces uncertainties to 10° in azimuth and dip angle of the pyroclasts, and down to 20% in the absolute velocity estimation. We demonstrate the potential of this approach by three examples: the development of an explosion at Stromboli, a bubble burst at Halema'uma'u lava lake, and an in-flight collision between two bombs at Stromboli.

  1. Ozone depletion following future volcanic eruptions

    Science.gov (United States)

    Eric Klobas, J.; Wilmouth, David M.; Weisenstein, Debra K.; Anderson, James G.; Salawitch, Ross J.

    2017-07-01

    While explosive volcanic eruptions cause ozone loss in the current atmosphere due to an enhancement in the availability of reactive chlorine following the stratospheric injection of sulfur, future eruptions are expected to increase total column ozone as halogen loading approaches preindustrial levels. The timing of this shift in the impact of major volcanic eruptions on the thickness of the ozone layer is poorly known. Modeling four possible climate futures, we show that scenarios with the smallest increase in greenhouse gas concentrations lead to the greatest risk to ozone from heterogeneous chemical processing following future eruptions. We also show that the presence in the stratosphere of bromine from natural, very short-lived biogenic compounds is critically important for determining whether future eruptions will lead to ozone depletion. If volcanic eruptions inject hydrogen halides into the stratosphere, an effect not considered in current ozone assessments, potentially profound reductions in column ozone would result.

  2. Using Volcanic Lightning Measurements to Discern Variations in Explosive Volcanic Activity

    Science.gov (United States)

    Behnke, S. A.; Thomas, R. J.; McNutt, S. R.; Edens, H. E.; Krehbiel, P. R.; Rison, W.

    2013-12-01

    VHF observations of volcanic lightning have been made during the recent eruptions of Augustine Volcano (2006, Alaska, USA), Redoubt Volcano (2009, Alaska, USA), and Eyjafjallajökull (2010, Iceland). These show that electrical activity occurs both on small scales at the vent of the volcano, concurrent with an eruptive event and on large scales throughout the eruption column during and subsequent to an eruptive event. The small-scale discharges at the vent of the volcano are often referred to as 'vent discharges' and are on the order of 10-100 meters in length and occur at rates on the order of 1000 per second. The high rate of vent discharges produces a distinct VHF signature that is sometimes referred to as 'continuous RF' radiation. VHF radiation from vent discharges has been observed at sensors placed as far as 100 km from the volcano. VHF and infrasound measurements have shown that vent discharges occur simultaneously with the onset of eruption, making their detection an unambiguous indicator of explosive volcanic activity. The fact that vent discharges are observed concurrent with explosive volcanic activity indicates that volcanic ejecta are charged upon eruption. VHF observations have shown that the intensity of vent discharges varies between eruptive events, suggesting that fluctuations in eruptive processes affect the electrification processes giving rise to vent discharges. These fluctuations may be variations in eruptive vigor or variations in the type of eruption; however, the data obtained so far do not show a clear relationship between eruption parameters and the intensity or occurrence of vent discharges. Further study is needed to clarify the link between vent discharges and eruptive behavior, such as more detailed lightning observations concurrent with tephra measurements and other measures of eruptive strength. Observations of vent discharges, and volcanic lightning observations in general, are a valuable tool for volcano monitoring, providing a

  3. Seasonal variations of volcanic eruption frequencies

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    Do volcanic eruptions have a tendency to occur more frequently in the months of May and June? Some past evidence suggests that they do. The present study, based on the new eruption catalog of Simkin et al.(1981), investigates the monthly statistics of the largest eruptions, grouped according to explosive magnitude, geographical latitude, and year. At the 2-delta level, no month-to-month variations in eruption frequency are found to be statistically significant. Examination of previously published month-to-month variations suggests that they, too, are not statistically significant. It is concluded that volcanism, at least averaged over large portions of the globe, is probably not periodic on a seasonal or annual time scale.

  4. Global time-size distribution of volcanic eruptions on Earth.

    Science.gov (United States)

    Papale, Paolo

    2018-05-01

    Volcanic eruptions differ enormously in their size and impacts, ranging from quiet lava flow effusions along the volcano flanks to colossal events with the potential to affect our entire civilization. Knowledge of the time and size distribution of volcanic eruptions is of obvious relevance for understanding the dynamics and behavior of the Earth system, as well as for defining global volcanic risk. From the analysis of recent global databases of volcanic eruptions extending back to more than 2 million years, I show here that the return times of eruptions with similar magnitude follow an exponential distribution. The associated relative frequency of eruptions with different magnitude displays a power law, scale-invariant distribution over at least six orders of magnitude. These results suggest that similar mechanisms subtend to explosive eruptions from small to colossal, raising concerns on the theoretical possibility to predict the magnitude and impact of impending volcanic eruptions.

  5. Io - One of at Least Four Simultaneous Erupting Volcanic Eruptions

    Science.gov (United States)

    1979-01-01

    This photo of an active volcanic eruption on Jupiter's satellite Io was taken 1 hour, 52 minutes after the accompanying picture, late in the evening of March 4, 1979, Pacific time. On the limb of the satellite can be seen one of at least four simultaneous volcanic eruptions -- the first such activity ever observed on another celestial body. Seen against the limb are plume-like structures rising more than 60 miles (100 kilometers) above the surface. Several eruptions have been identified with volcanic structures on the surface of Io, which have also been identified by Voyager 1's infrared instrument as being abnormally hot -- several hundred degrees warmer than surrounding terrain. The fact that several eruptions appear to be occurring at the same time suggests that Io has the most active surface in the solar system and that volcanism is going on there essentially continuously. Another characteristic of the observed volcanism is that it appears to be extremely explosive, with velocities more than 2,000 miles an hour (at least 1 kilometer per second). That is more violent than terrestrial volcanoes like Etna, Vesuvius or Krakatoa.

  6. Correlations of volcanic ash texture with explosion earthquakes from vulcanian eruptions at Sakurajima volcano, Japan

    Science.gov (United States)

    Miwa, T.; Toramaru, A.; Iguchi, M.

    2009-07-01

    We compare the texture of volcanic ash with the maximum amplitude of explosion earthquakes ( Aeq) for vulcanian eruptions from Sakurajima volcano. We analyze the volcanic ash emitted by 17 vulcanian eruptions from 1974 to 1987. Using a stereoscopic microscope, we classify the glassy particles into smooth surface particles (S-type particles) and non-smooth surface particles (NS-type particles) according to their surface conditions—gloss or non-gloss appearance—as an indicator of the freshness of the particles. S-type particles are further classified into V-type particles (those including vesicles) and NV-type particles (those without vesicles) by means of examinations under a polarized microscopic of polished thin sections. Cross-correlated examinations against seismological data show that: 1) the number fraction of S-type particles (S-fraction) has a positive correlation with Aeq, 2) the number ratio of NV-type particles to V-type particles (the N/V number ratio) has a positive correlation with Aeq, and 3) for explosions accompanied with BL-type earthquake swarms, the N/V number ratio has a negative correlation with the duration of the BL-Swarms. BL-Swarms refer to the phenomenon of numerous BL-type earthquakes occurring within a few days, prior to an increase in explosive activity [Kamo, K., 1978. Some phenomena before the summit crater eruptions at Sakura-zima volcano. Bull. Volcanol. Soc. Japan., 23, 53-64]. The positive correlation between the N/V number ratio and Aeq could indicate that a large amount of separated gas from fresh magma results in a large Aeq. Plagioclase microlite textual analysis of NV-type particles from five explosive events without BL-Swarms shows that the plagioclase microlite number density (MND) and the L/ W (length/width) ratio have a positive correlation with Aeq. A comparison between textural data (MND, L/ W ratio, crystallinity) and the result of a decompression-induced crystallization experiment [Couch, S., Sparks, R

  7. Impacts of a Pinatubo-size volcanic eruption on ENSO

    KAUST Repository

    Predybaylo, Evgeniya; Stenchikov, Georgiy L.; Wittenberg, Andrew T.; Zeng, Fanrong

    2017-01-01

    Observations and model simulations of the climate responses to strong explosive low-latitude volcanic eruptions suggest a significant increase in the likelihood of El Niño during the eruption and posteruption years, though model results have been

  8. Presenting Numerical Modelling of Explosive Volcanic Eruption to a General Public

    Science.gov (United States)

    Demaria, C.; Todesco, M.; Neri, A.; Blasi, G.

    2001-12-01

    Numerical modeling of explosive volcanic eruptions has been widely applied, during the last decades, to study pyroclastic flows dispersion along volcano's flanks and to evaluate their impact on urban areas. Results from these transient multi-phase and multi-component simulations are often reproduced in form of computer animations, representing the spatial and temporal evolution of relevant flow variables (such as temperature, or particle concentration). Despite being a sophisticated, technical tool to analyze and share modeling results within the scientific community, these animations truly look like colorful cartoons showing an erupting volcano and are especially suited to be shown to a general public. Thanks to their particular appeal, and to the large interest usually risen by exploding volcanoes, these animations have been presented several times on television and magazines and are currently displayed in a permanent exposition, at the Vesuvius Observatory in Naples. This work represents an effort to produce an accompanying tool for these animations, capable of explaining to a large audience the scientific meaning of what can otherwise look as a graphical exercise. Dealing with research aimed at the study of dangerous, explosive volcanoes, improving the general understanding of these scientific results plays an important role as far as risk perception is concerned. An educated population has better chances to follow an appropriate behavior, i.e.: one that could lead, on the long period, to a reduction of the potential risk. In this sense, a correct divulgation of scientific results, while improving the confidence of the population in the scientific community, should belong to the strategies adopted to mitigate volcanic risk. Due to the relevance of the long term final goal of such divulgation experiment, this work represents an interdisciplinary effort, combining scientific expertise and specific competence from the modern communication science and risk

  9. Seismic tremors and magma wagging during explosive volcanism.

    Science.gov (United States)

    Jellinek, A Mark; Bercovici, David

    2011-02-24

    Volcanic tremor is a ubiquitous feature of explosive eruptions. This oscillation persists for minutes to weeks and is characterized by a remarkably narrow band of frequencies from about 0.5 Hz to 7 Hz (refs 1-4). Before major eruptions, tremor can occur in concert with increased gas flux and related ground deformation. Volcanic tremor is thus of particular value for eruption forecasting. Most models for volcanic tremor rely on specific properties of the geometry, structure and constitution of volcanic conduits as well as the gas content of the erupting magma. Because neither the initial structure nor the evolution of the magma-conduit system will be the same from one volcano to the next, it is surprising that tremor characteristics are so consistent among different volcanoes. Indeed, this universality of tremor properties remains a major enigma. Here we employ the contemporary view that silicic magma rises in the conduit as a columnar plug surrounded by a highly vesicular annulus of sheared bubbles. We demonstrate that, for most geologically relevant conditions, the magma column will oscillate or 'wag' against the restoring 'gas-spring' force of the annulus at observed tremor frequencies. In contrast to previous models, the magma-wagging oscillation is relatively insensitive to the conduit structure and geometry, which explains the narrow band of tremor frequencies observed around the world. Moreover, the model predicts that as an eruption proceeds there will be an upward drift in both the maximum frequency and the total signal frequency bandwidth, the nature of which depends on the explosivity of the eruption, as is often observed.

  10. Modeling Volcanic Eruption Parameters by Near-Source Internal Gravity Waves.

    Science.gov (United States)

    Ripepe, M; Barfucci, G; De Angelis, S; Delle Donne, D; Lacanna, G; Marchetti, E

    2016-11-10

    Volcanic explosions release large amounts of hot gas and ash into the atmosphere to form plumes rising several kilometers above eruptive vents, which can pose serious risk on human health and aviation also at several thousands of kilometers from the volcanic source. However the most sophisticate atmospheric models and eruptive plume dynamics require input parameters such as duration of the ejection phase and total mass erupted to constrain the quantity of ash dispersed in the atmosphere and to efficiently evaluate the related hazard. The sudden ejection of this large quantity of ash can perturb the equilibrium of the whole atmosphere triggering oscillations well below the frequencies of acoustic waves, down to much longer periods typical of gravity waves. We show that atmospheric gravity oscillations induced by volcanic eruptions and recorded by pressure sensors can be modeled as a compact source representing the rate of erupted volcanic mass. We demonstrate the feasibility of using gravity waves to derive eruption source parameters such as duration of the injection and total erupted mass with direct application in constraining plume and ash dispersal models.

  11. New insights on entrainment and condensation in volcanic plumes: Constraints from independent observations of explosive eruptions and implications for assessing their impacts

    Science.gov (United States)

    Aubry, Thomas J.; Jellinek, A. Mark

    2018-05-01

    The turbulent entrainment of atmosphere and the condensation of water vapor govern the heights of explosive volcanic plumes. These processes thus determine the delivery and the lifetime of volcanic ash and aerosols into the atmosphere. Predictions of plume heights using one-dimensional "integral" models of volcanic plumes, however, suffer from very large uncertainties, related to parameterizations for entrainment and condensation. In particular, the wind entrainment coefficient β, which governs the contribution of crosswinds to turbulent entrainment, is subject to uncertainties of one order of magnitude, leading to relative uncertainties of the order of 50% on plume height. In this study, we use a database of 94 eruptive phases with independent estimates of mass eruption rate and plume height to constrain and evaluate four popular 1D models. We employ re-sampling methods to account for observational uncertainties. We show that plume height predictions are significantly improved when: i) the contribution of water vapor condensation to the plume buoyancy flux is excluded; and ii) the wind entrainment coefficient β is held constant between 0.1 and 0.4. We explore implications of these results for predicting the climate impacts of explosive eruptions and the likelihood that eruptions will form stable umbrella clouds or devastating pyroclastic flows. Last, we discuss the sensitivity of our results to the definition of plume height in the model in light of a recent set of laboratory experiments and draw conclusions for improving future databases of eruption parameters.

  12. Soil radon pulses related to the initial phase of volcanic eruptions

    International Nuclear Information System (INIS)

    Segovia, N.; Mena, M.

    1999-01-01

    Soil radon behaviour related to the initial phase of volcanic eruptions is analysed from reported values related to the explosivity of four American stratovolcaneos: El Chicon (1982) and Popocatepetl (1994) in Mexico, Poas (1987-1990) in Costa Rica and Cerro Negro (1982) in Nicaragua. The measurements in the field were performed with solid-state nuclear track detectors and electrets. The ratio between the magnitudes of the radon in soil peaks generated when the eruptive period started and the average radon values corresponding to quiescence periods indicate a dependence on the volcanic eruptive index for each one of the eruptive periods

  13. Shallow magma diversions during explosive maar-diatreme eruptions in mafic volcanic fields

    Science.gov (United States)

    Le Corvec, N.; Muirhead, J.; White, J. D. L.

    2017-12-01

    Maar-diatremes are inverted conical structures formed by subterranean excavation and remobilization of country rocks during explosive volcanism and common in mafic volcanic fields. We focus on impacts of excavation and filling of maar-diatremes on the local state of stress, and its subsequent influence on underlying feeder dikes, which are critical for understanding the development of intrusive networks that feed surface eruptions. We address this issue using finite element models in COMSOL Multiphysics®. Inverted conical structures of varying sizes are excavated in a gravitationally loaded elastic half-space, and then progressively filled with volcaniclastic material, resulting in changes in the orientations and magnitudes of stresses generated within surrounding rocks and within the filling portion of the maar-diatreme. Our results show that rapid unloading during maar-diatreme excavation generates a horizontal compressive stress state beneath diatremes. These stresses allow magma to divert laterally as saucer-shaped sills and circumferential dikes at varying depths in the shallow feeder system, and produce intrusion geometries consistent with both field observations from exhumed volcanic fields and conceptual models of diatreme growth. Stresses generated in these models also provide an explanation for the evolving locations of fragmentation zones over the course of diatreme's filling. In particular, results from this study suggest that: (1) extensional stresses at the base of the diatreme fill favor magma ascent in the lower half of the structure, and possibly promote volatile exsolution and magma fragmentation; and (2) increased filling of diatremes creates a shallow compressive stress state that can inhibit magma ascent to the surface, promoting widespread intra-diatreme explosions, efficient mixing of host rock, and upward widening of the diatreme structure.

  14. Beyond baking soda: Demonstrating the link between volcanic eruptions and viscosity to all ages

    Science.gov (United States)

    Smithka, I. N.; Walters, R. L.; Harpp, K. S.

    2014-12-01

    Public interest in volcanic eruptions and societal relevance of volcanic hazards provide an excellent basis for successful earth science outreach. During a museum-based earth science outreach event free and open to the public, we used two new interactive experiments to illustrate the relationship between gas content, magma viscosity, and eruption style. Learning objectives for visitors are to understand: how gas drives volcanic eruptions, the differences between effusive and explosive eruption styles, viscosity's control on gas pressure within a magma reservoir, and the role of gas pressure on eruption style. Visitors apply the scientific method by asking research questions and testing hypotheses by conducting the experiments. The demonstrations are framed with real life examples of volcanic eruptions (e.g., Mt. St. Helens eruption in 1980), providing context for the scientific concepts. The first activity demonstrates the concept of fluid viscosity and how gas interacts with fluids of different viscosities. Visitors blow bubbles into water and corn syrup. The corn syrup is so viscous that bubbles are trapped, showing how a more viscous material builds up higher gas pressure. Visitors are asked which kind of magma (high or low viscosity) will produce an explosive eruption. To demonstrate an explosive eruption, visitors add an Alka-Seltzer tablet to water in a snap-top film canister. The reaction rapidly produces carbon dioxide gas, increasing pressure in the canister until the lid pops off and the canister launches a few meters into the air (tinyurl.com/nzsgfoe). Increasing gas pressure in the canister is analogous to gas pressure building within a magma reservoir beneath a volcano. The lid represents high-viscosity magma that prevents degassing, causing gas pressure to reach explosive levels. This interactive activity is combined with a display of an effusive eruption: add vinegar to baking soda in a model volcano to produce a quick-flowing eruption. These

  15. The 2010 Eyja eruption evolution by using IR satellite sensors measurements: retrieval comparison and insights into explosive volcanic processes

    Science.gov (United States)

    Piscini, A.; Corradini, S.; Merucci, L.; Scollo, S.

    2010-12-01

    The 2010 April-May Eyja eruption caused an unprecedented disruption to economic, political and cultural activities in Europe and across the world. Because of the harming effects of fine ash particles on aircrafts, many European airports were in fact closed causing millions of passengers to be stranded, and with a worldwide airline industry loss estimated of about 2.5 billion Euros. Both security and economical issues require robust and affordable volcanic cloud retrievals that may be really improved through the intercomparison among different remote sensing instruments. In this work the Thermal InfraRed (TIR) measurements of different polar and geostationary satellites instruments as the Moderate Resolution Imaging Spectroradiometer (MODIS), the Advanced Very High Resolution Radiometer (AVHRR) and the Spin Enhanced Visible and Infrared Imager (SEVIRI), have been used to retrieve the volcanic ash and SO2 in the entire eruption period over Iceland. The ash retrievals (mass, AOD and effective radius) have been carried out by means of the split window BTD technique using the channels centered around 11 and 12 micron. The least square fit procedure is used for the SO2 retrieval by using the 7.3 and 8.7 micron channels. The simulated TOA radiance Look-Up Table (LUT) needed for both the ash and SO2 column abundance retrievals have been computed using the MODTRAN 4 Radiative Transfer Model. Further, the volcanic plume column altitude and ash density have been computed and compared, when available, with ground observations. The results coming from the retrieval of different IR sensors show a good agreement over the entire eruption period. The column height, the volcanic ash and the SO2 emission trend confirm the indentified different phases occurred during the Eyja eruption. We remark that the retrieved volcanic plume evolution can give important insights into eruptive dynamics during long-lived explosive activity.

  16. Automated detection and cataloging of global explosive volcanism using the International Monitoring System infrasound network

    Science.gov (United States)

    Matoza, Robin S.; Green, David N.; Le Pichon, Alexis; Shearer, Peter M.; Fee, David; Mialle, Pierrick; Ceranna, Lars

    2017-04-01

    We experiment with a new method to search systematically through multiyear data from the International Monitoring System (IMS) infrasound network to identify explosive volcanic eruption signals originating anywhere on Earth. Detecting, quantifying, and cataloging the global occurrence of explosive volcanism helps toward several goals in Earth sciences and has direct applications in volcanic hazard mitigation. We combine infrasound signal association across multiple stations with source location using a brute-force, grid-search, cross-bearings approach. The algorithm corrects for a background prior rate of coherent unwanted infrasound signals (clutter) in a global grid, without needing to screen array processing detection lists from individual stations prior to association. We develop the algorithm using case studies of explosive eruptions: 2008 Kasatochi, Alaska; 2009 Sarychev Peak, Kurile Islands; and 2010 Eyjafjallajökull, Iceland. We apply the method to global IMS infrasound data from 2005-2010 to construct a preliminary acoustic catalog that emphasizes sustained explosive volcanic activity (long-duration signals or sequences of impulsive transients lasting hours to days). This work represents a step toward the goal of integrating IMS infrasound data products into global volcanic eruption early warning and notification systems. Additionally, a better understanding of volcanic signal detection and location with the IMS helps improve operational event detection, discrimination, and association capabilities.

  17. Systematic change in global patterns of streamflow following volcanic eruptions.

    Science.gov (United States)

    Iles, Carley E; Hegerl, Gabriele C

    2015-11-01

    Following large explosive volcanic eruptions precipitation decreases over much of the globe1-6, particularly in climatologically wet regions4,5. Stratospheric volcanic aerosols reflect sunlight, which reduces evaporation, whilst surface cooling stabilises the atmosphere and reduces its water-holding capacity7. Circulation changes modulate this global precipitation reduction on regional scales1,8-10. Despite the importance of rivers to people, it has been unclear whether volcanism causes detectable changes in streamflow given large natural variability. Here we analyse observational records of streamflow volume for fifty large rivers from around the world which cover between two and 6 major volcanic eruptions in the 20 th and late 19 th century. We find statistically significant reductions in flow following eruptions for the Amazon, Congo, Nile, Orange, Ob, Yenisey and Kolyma amongst others. When data from neighbouring rivers are combined - based on the areas where climate models simulate either an increase or a decrease in precipitation following eruptions - a significant (peruptions is detected in northern South American, central African and high-latitude Asian rivers, and on average across wet tropical and subtropical regions. We also detect a significant increase in southern South American and SW North American rivers. This suggests that future volcanic eruptions could substantially affect global water availability.

  18. Furthering the investigation of eruption styles through quantitative shape analyses of volcanic ash particles

    Science.gov (United States)

    Nurfiani, D.; Bouvet de Maisonneuve, C.

    2018-04-01

    Volcanic ash morphology has been quantitatively investigated for various aims such as studying the settling velocity of ash for modelling purposes and understanding the fragmentation processes at the origin of explosive eruptions. In an attempt to investigate the usefulness of ash morphometry for monitoring purposes, we analyzed the shape of volcanic ash particles through a combination of (1) traditional shape descriptors such as solidity, convexity, axial ratio and form factor and (2) fractal analysis using the Euclidean Distance transform (EDT) method. We compare ash samples from the hydrothermal eruptions of Iwodake (Japan) in 2013, Tangkuban Perahu (Indonesia) in 2013 and Marapi (Sumatra, Indonesia) in 2015, the dome explosions of Merapi (Java, Indonesia) in 2013, the Vulcanian eruptions of Merapi in 2010 and Tavurvur (Rabaul, Papaua New Guinea) in 2014, and the Plinian eruption of Kelud (Indonesia) in 2014. Particle size and shape measurements were acquired from a Particle Size Analyzer with a microscope camera attached to the instrument. Clear differences between dense/blocky particles from hydrothermal or dome explosions and vesicular particles produced by the fragmentation of gas-bearing molten magma are well highlighted by conventional shape descriptors and the fractal method. In addition, subtle differences between dense/blocky particles produced by hydrothermal explosions, dome explosions, or quench granulation during phreatomagmatic eruptions can be evidenced with the fractal method. The combination of shape descriptors and fractal analysis is therefore potentially able to distinguish between juvenile and non-juvenile magma, which is of importance for eruption monitoring.

  19. Lidar observations of stratospheric aerosol layer after the Mt. Pinatubo volcanic eruption

    International Nuclear Information System (INIS)

    Nagai, Tomohiro; Uchino, Osamu; Fujimoto, Toshifumi.

    1992-01-01

    The volcano Mt. Pinatubo located on the Luzon Island, Philippines, had explosively erupted on June 15, 1991. The volcanic eruptions such as volcanic ash, SO2 and H2O reached into the stratosphere over 30 km altitude by the NOAA-11 satellite observation and this is considered one of the biggest volcanic eruptions in this century. A grandiose volcanic eruption influences the atmosphere seriously and causes many climatic effects globally. There had been many impacts on radiation, atmospheric temperature and stratospheric ozone after some past volcanic eruptions. The main cause of volcanic influence depends on stratospheric aerosol, that stay long enough to change climate and other meteorological conditions. Therefore it is very important to watch stratospheric aerosol layers carefully and continuously. Standing on this respect, we do not only continue stratospheric aerosol observation at Tsukuba but also have urgently developed another lidar observational point at Naha in Okinawa Island. This observational station could be thought valuable since there is no lidar observational station in this latitudinal zone and it is much nearer to Mt. Pinatubo. Especially, there is advantage to link up these two stations on studying the transportation mechanism in the stratosphere. In this paper, we present the results of lidar observations at Tsukuba and Naha by lidar systems with Nd:YAG laser

  20. Lidar Observations of Stratospheric Aerosol Layer After the Mt. Pinatubo Volcanic Eruption

    Science.gov (United States)

    Nagai, Tomohiro; Uchino, Osamu; Fujimoto, Toshifumi

    1992-01-01

    The volcano Mt. Pinatubo located on the Luzon Island, Philippines, had explosively erupted on June 15, 1991. The volcanic eruptions such as volcanic ash, SO2 and H2O reached into the stratosphere over 30 km altitude by the NOAA-11 satellite observation and this is considered one of the biggest volcanic eruptions in this century. A grandiose volcanic eruption influences the atmosphere seriously and causes many climatic effects globally. There had been many impacts on radiation, atmospheric temperature and stratospheric ozone after some past volcanic eruptions. The main cause of volcanic influence depends on stratospheric aerosol, that stay long enough to change climate and other meteorological conditions. Therefore it is very important to watch stratospheric aerosol layers carefully and continuously. Standing on this respect, we do not only continue stratospheric aerosol observation at Tsukuba but also have urgently developed another lidar observational point at Naha in Okinawa Island. This observational station could be thought valuable since there is no lidar observational station in this latitudinal zone and it is much nearer to Mt. Pinatubo. Especially, there is advantage to link up these two stations on studying the transportation mechanism in the stratosphere. In this paper, we present the results of lidar observations at Tsukuba and Naha by lidar systems with Nd:YAG laser.

  1. Small volcanic eruptions and the stratospheric sulfate aerosol burden

    Science.gov (United States)

    Pyle, David M.

    2012-09-01

    Understanding of volcanic activity and its impacts on the atmosphere has evolved in discrete steps, associated with defining eruptions. The eruption of Krakatau, Indonesia, in August 1883 was the first whose global reach was recorded through observations of atmospheric phenomena around the world (Symons 1888). The rapid equatorial spread of Krakatau's ash cloud revealed new details of atmospheric circulation, while the vivid twilights and other optical phenomena were soon causally linked to the effects of particles and gases released from the volcano (e.g. Stothers 1996, Schroder 1999, Hamilton 2012). Later, eruptions of Agung, Bali (1963), El Chichón, Mexico (1982) and Pinatubo, Philippines (1991) led to a fuller understanding of how volcanic SO2 is transformed to a long-lived stratospheric sulfate aerosol, and its consequences (e.g. Meinel and Meinel 1967, Rampino and Self 1982, Hoffman and Rosen 1983, Bekki and Pyle 1994, McCormick et al 1995). While our ability to track the dispersal of volcanic emissions has been transformed since Pinatubo, with the launch of fleets of Earth-observing satellites (e.g. NASA's A-Train; ESA's MetOp) and burgeoning networks of ground-based remote-sensing instruments (e.g. lidar and sun-photometers; infrasound and lightning detection systems), there have been relatively few significant eruptions. Thus, there have been limited opportunities to test emerging hypotheses including, for example, the vexed question of the role of 'smaller' explosive eruptions in perturbations of the atmosphere—those that may just be large enough to reach the stratosphere (of size 'VEI 3', Newhall and Self 1982, Pyle 2000). Geological evidence, from ice-cores and historical eruptions, suggests that small explosive volcanic eruptions with the potential to transport material into the stratosphere should be frequent (5-10 per decade), and responsible for a significant proportion of the long-term time-averaged flux of volcanic sulfur into the stratosphere

  2. Thermal vesiculation during volcanic eruptions.

    Science.gov (United States)

    Lavallée, Yan; Dingwell, Donald B; Johnson, Jeffrey B; Cimarelli, Corrado; Hornby, Adrian J; Kendrick, Jackie E; von Aulock, Felix W; Kennedy, Ben M; Andrews, Benjamin J; Wadsworth, Fabian B; Rhodes, Emma; Chigna, Gustavo

    2015-12-24

    Terrestrial volcanic eruptions are the consequence of magmas ascending to the surface of the Earth. This ascent is driven by buoyancy forces, which are enhanced by bubble nucleation and growth (vesiculation) that reduce the density of magma. The development of vesicularity also greatly reduces the 'strength' of magma, a material parameter controlling fragmentation and thus the explosive potential of the liquid rock. The development of vesicularity in magmas has until now been viewed (both thermodynamically and kinetically) in terms of the pressure dependence of the solubility of water in the magma, and its role in driving gas saturation, exsolution and expansion during decompression. In contrast, the possible effects of the well documented negative temperature dependence of solubility of water in magma has largely been ignored. Recently, petrological constraints have demonstrated that considerable heating of magma may indeed be a common result of the latent heat of crystallization as well as viscous and frictional heating in areas of strain localization. Here we present field and experimental observations of magma vesiculation and fragmentation resulting from heating (rather than decompression). Textural analysis of volcanic ash from Santiaguito volcano in Guatemala reveals the presence of chemically heterogeneous filaments hosting micrometre-scale vesicles. The textures mirror those developed by disequilibrium melting induced via rapid heating during fault friction experiments, demonstrating that friction can generate sufficient heat to induce melting and vesiculation of hydrated silicic magma. Consideration of the experimentally determined temperature and pressure dependence of water solubility in magma reveals that, for many ascent paths, exsolution may be more efficiently achieved by heating than by decompression. We conclude that the thermal path experienced by magma during ascent strongly controls degassing, vesiculation, magma strength and the effusive-explosive

  3. Stratospheric sulfate from the Gareloi eruption, 1980: Contribution to the ''ambient'' aerosol by a poorly documented volcanic eruption

    International Nuclear Information System (INIS)

    Sedlacek, W.A.; Mroz, E.J.; Heiken, G.

    1981-01-01

    While sampling stratospheric aerosols during July--August 1980 a plume of ''fresh'' volcanic debris was observed in the Northern hemisphere. The origin of this material seems to be a poorly documented explosive eruption of Gareloi valcano in the Aleutian Islands. The debris was sampled at an altitude of 19.2 km: almost twice the height of observed eruption clouds. Such remote, unobserved or poorly documented eruptions may be a source that helps maintain the ''ambient'' stratospheric aerosol background

  4. TWO-DIMENSIONAL SIMULATIONS OF EXPLOSIVE ERUPTIONS OF KICK-EM JENNY AND OTHER SUBMARINE VOLCANOS

    Directory of Open Access Journals (Sweden)

    Galen Gisler

    2006-01-01

    Full Text Available Kick-em Jenny, in the Eastern Caribbean, is a submerged volcanic cone that has erupted a dozen or more times since its discovery in 1939. The most likely hazard posed by this volcano is to shipping in the immediate vicinity (through volcanic missiles or loss-of-buoyancy, but it is of interest to estimate upper limits on tsunamis that might be produced by a catastrophic explosive eruption. To this end, we have performed two-dimensional simulations of such an event in a geometry resembling that of Kick-em Jenny with our SAGE adaptive mesh Eulerian multifluid compressible hydrocode. We use realistic equations of state for air, water, and basalt, and follow the event from the initial explosive eruption, through the generation of a transient water cavity and the propagation of waves away from the site. We find that even for extremely catastrophic explosive eruptions, tsunamis from Kick-em Jenny are unlikely to pose significant danger to nearby islands. For comparison, we have also performed simulations of explosive eruptions at the much larger shield volcano Vailulu'u in the Samoan chain, where the greater energy available can produce a more impressive wave. In general, however, we conclude that explosive eruptions do not couple well to water waves. The waves that are produced from such events are turbulent and highly dissipative, and don't propagate well. This is consistent with what we have found previously in simulations of asteroid-impact generated tsunamis. Non-explosive events, however, such as landslides or gas hydrate releases, do couple well to waves, and our simulations of tsunamis generated by sub- aerial and sub-aqueous landslides demonstrate this.

  5. Pigeonholing pyroclasts: Insights from the 19 March 2008 explosive eruption of Kīlauea volcano

    Science.gov (United States)

    Houghton, Bruce F.; Swanson, D.A.; Carey, R.J.; Rausch, J.; Sutton, A.J.

    2011-01-01

    We think, conventionally, of volcanic explosive eruptions as being triggered in one of two ways: by release and expansion of volatiles dissolved in the ejected magma (magmatic explosions) or by transfer of heat from magma into an external source of water (phreatic or phreatomagmatic explosions). We document here an event where neither magma nor an external water source was involved in explosive activity at K??lauea. Instead, the eruption was powered by the expansion of decoupled magmatic volatiles released from deeper magma, which was not ejected by the eruption, and the trigger was a collapse of near-surface wall rocks that then momentarily blocked that volatile flux. Mapping of the advected fall deposit a day after this eruption has highlighted the difficulty of constraining deposit edges from unobserved or prehistoric eruptions of all magnitudes. Our results suggest that the dispersal area of advected fall deposits could be miscalculated by up to 30% of the total, raising issues for accurate hazard zoning and assessment. Eruptions of this type challenge existing classification schemes for pyroclastic deposits and explosive eruptions and, in the past, have probably been interpreted as phreatic explosions, where the eruptive mechanism has been assumed to involve flashing of groundwater to steam. ?? 2011 Geological Society of America.

  6. Sunset Crater, AZ: Evolution of a highly explosive basaltic eruption as indicated by granulometry and clast componentry

    Science.gov (United States)

    Allison, C. M.; Clarke, A. B.; Pioli, L.; Alfano, F.

    2011-12-01

    Basaltic scoria cone volcanoes are the most abundant volcanic edifice on Earth and occur in all tectonic settings. Basaltic magmas have lower viscosities, higher temperatures, and lower volatile contents than silicic magmas, and therefore generally have a lower potential for explosive activity. However, basaltic eruptions display great variability in eruptive style, from mild lava flows to more energetic explosions with large plumes. The San Francisco Volcanic Field (SFVF) in northern Arizona, active from 6 Ma-present, consists of over 600 volcanoes, mostly alkali basalt scoria cones, and five silicic centers [Wood and Kienle (1990), Cambridge University Press]. The eruption of Sunset Crater in the SFVF during the Holocene was an anomalously large basaltic explosive eruption, consisting of eight tephra-bearing phases and three lava flows [Amos (1986), MS thesis, ASU]. Typical scoria cone-forming eruptions have volumes sorted. Future work will include textural analysis of bubbles and crystals to understand the ascent and cooling history of the different clast types, and also to better interpret differences in abundance as related to variations in eruption or vent dynamics.

  7. Explosive Volcanic Activity at Extreme Depths: Evidence from the Charles Darwin Volcanic Field, Cape Verdes

    Science.gov (United States)

    Kwasnitschka, T.; Devey, C. W.; Hansteen, T. H.; Freundt, A.; Kutterolf, S.

    2013-12-01

    Volcanic eruptions on the deep sea floor have traditionally been assumed to be non-explosive as the high-pressure environment should greatly inhibit steam-driven explosions. Nevertheless, occasional evidence both from (generally slow-) spreading axes and intraplate seamounts has hinted at explosive activity at large water depths. Here we present evidence from a submarine field of volcanic cones and pit craters called Charles Darwin Volcanic Field located at about 3600 m depth on the lower southwestern slope of the Cape Verdean Island of Santo Antão. We examined two of these submarine volcanic edifices (Tambor and Kolá), each featuring a pit crater of 1 km diameter, using photogrammetric reconstructions derived from ROV-based imaging followed by 3D quantification using a novel remote sensing workflow, aided by sampling. The measured and calculated parameters of physical volcanology derived from the 3D model allow us, for the first time, to make quantitative statements about volcanic processes on the deep seafloor similar to those generated from land-based field observations. Tambor cone, which is 2500 m wide and 250 m high, consists of dense, probably monogenetic medium to coarse-grained volcaniclastic and pyroclastic rocks that are highly fragmented, probably as a result of thermal and viscous granulation upon contact with seawater during several consecutive cycles of activity. Tangential joints in the outcrops indicate subsidence of the crater floor after primary emplacement. Kolá crater, which is 1000 m wide and 160 m deep, appears to have been excavated in the surrounding seafloor and shows stepwise sagging features interpreted as ring fractures on the inner flanks. Lithologically, it is made up of a complicated succession of highly fragmented deposits, including spheroidal juvenile lapilli, likely formed by spray granulation. It resembles a maar-type deposit found on land. The eruption apparently entrained blocks of MORB-type gabbroic country rocks with

  8. The eruptive chronology of the Ampato-Sabancaya volcanic complex (Southern Peru)

    Science.gov (United States)

    Samaniego, Pablo; Rivera, Marco; Mariño, Jersy; Guillou, Hervé; Liorzou, Céline; Zerathe, Swann; Delgado, Rosmery; Valderrama, Patricio; Scao, Vincent

    2016-09-01

    We have reconstructed the eruptive chronology of the Ampato-Sabancaya volcanic complex (Southern Peru) on the basis of extensive fieldwork, and a large dataset of geochronological (40K-40Ar, 14C and 3He) and geochemical (major and trace element) data. This volcanic complex is composed of two successive edifices that have experienced discontinuous volcanic activity from Middle Pleistocene to Holocene times. The Ampato compound volcano consists of a basal edifice constructed over at least two cone-building stages dated at 450-400 ka and 230-200 ka. After a period of quiescence, the Ampato Upper edifice was constructed firstly during an effusive stage (80-70 ka), and then by the formation of three successive peaks: the Northern, Southern (40-20 ka) and Central cones (20-10 ka). The Southern peak, which is the biggest, experienced large explosive phases, resulting in deposits such as the Corinta plinian fallout. During the Holocene, eruptive activity migrated to the NE and constructed the mostly effusive Sabancaya edifice. This cone comprised many andesitic and dacitic blocky lava flows and a young terminal cone, mostly composed of pyroclastic material. Most samples from the Ampato-Sabancaya define a broad high-K magmatic trend composed of andesites and dacites with a mineral assemblage of plagioclase, amphibole, biotite, ortho- and clino-pyroxene, and Fe-Ti oxides. A secondary trend also exists, corresponding to rare dacitic explosive eruptions (i.e. Corinta fallout and flow deposits). Both magmatic trends are derived by fractional crystallisation involving an amphibole-rich cumulate with variable amounts of upper crustal assimilation. A marked change in the overall eruptive rate has been identified between Ampato ( 0.1 km3/ka) and Sabancaya (0.6-1.7 km3/ka). This abrupt change demonstrates that eruptive rates have not been homogeneous throughout the volcano's history. Based on tephrochronologic studies, the Late Holocene Sabancaya activity is characterised by strong

  9. High-speed imaging of explosive eruptions: applications and perspectives

    Science.gov (United States)

    Taddeucci, Jacopo; Scarlato, Piergiorgio; Gaudin, Damien; Capponi, Antonio; Alatorre-Ibarguengoitia, Miguel-Angel; Moroni, Monica

    2013-04-01

    Explosive eruptions, being by definition highly dynamic over short time scales, necessarily call for observational systems capable of relatively high sampling rates. "Traditional" tools, like as seismic and acoustic networks, have recently been joined by Doppler radar and electric sensors. Recent developments in high-speed camera systems now allow direct visual information of eruptions to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Here we summarize the methods employed to gather and process high-speed videos of explosive eruptions, and provide an overview of the several applications of these new type of data in understanding different aspects of explosive volcanism. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed videos reveal multiple, discrete ejection pulses within a single Strombolian

  10. Reconstructing the eruption magnitude and energy budgets for the pre-historic eruption of the monogenetic ˜5 ka Mt. Gambier Volcanic Complex, south-eastern Australia

    Science.gov (United States)

    van Otterloo, Jozua; Cas, Raymond A. F.

    2013-12-01

    Understanding explosive volcanic eruptions, especially phreatomagmatic eruptions, their intensities and energy budgets is of major importance when it comes to risk and hazard studies. With only a few historic occurrences of phreatomagmatic activity, a large amount of our understanding comes from the study of pre-historic volcanic centres, which causes issues when it comes to preservation and vegetation. In this research, we show that using 3D geometrical modelling it is possible to obtain volume estimates for different deposits of a pre-historic, complex, monogenetic centre, the Mt. Gambier Volcanic Complex, south-eastern Australia. Using these volumes, we further explore the energy budgets and the magnitude of this eruption (VEI 4), including dispersal patterns (eruption columns varying between 5 and 10 km, dispersed towards north-east to south), to further our understanding of intraplate, monogenetic eruptions involving phreatomagmatic activity. We also compare which thermodynamic model fits best in the creation of the maar crater of Mt. Gambier: the major-explosion-dominated model or the incremental growth model. In this case, the formation of most of the craters can best be explained by the latter model.

  11. Maars to calderas: end-members on a spectrum of explosive volcanic depressions

    Directory of Open Access Journals (Sweden)

    Danilo M. Palladino

    2015-07-01

    Full Text Available We discuss maar-diatremes and calderas as end-members on a spectrum of negative volcanic landforms (depressions produced by explosive eruptions (note – we focus on calderas formed during explosive eruptions, recognizing that some caldera types are not related to such activity. The former are dominated by ejection of material during numerous discrete phreatomagmatic explosions, brecciation, and subsidence of diatreme fill, while the latter are dominated by subsidence over a partly evacuated magma chamber during sustained, magmatic volatile-driven discharge. Many examples share characteristics of both, including landforms that are identified as maars but preserve deposits from non-phreatomagmatic explosive activity, and ambiguous structures that appear to be coalesced maars but that also produced sustained explosive eruptions with likely magma reservoir subsidence. A convergence of research directions on issues related to magma-water interaction and shallow reservoir mechanics is an important avenue toward developing a unified picture of the maar-diatreme-caldera spectrum.

  12. The climatic effect of explosive volcanic activity: Analysis of the historical data

    Science.gov (United States)

    Bryson, R. A.; Goodman, B. M.

    1982-01-01

    By using the most complete available records of direct beam radiation and volcanic eruptions, an historical analysis of the role of the latter in modulating the former was made. A very simple fallout and dispersion model was applied to the historical chronology of explosive eruptions. The resulting time series explains about 77 percent of the radiation variance, as well as suggests that tropical and subpolar eruptions are more important than mid-latitude eruptions in their impact on the stratospheric aerosol optical depth. The simpler climatic models indicate that past hemispheric temperature can be stimulated very well with volcanic and CO2 inputs and suggest that climate forecasting will also require volcano forecasting. There is some evidence that this is possible some years in advance.

  13. Sedimentology, eruptive mechanism and facies architecture of basaltic scoria cones from the Auckland Volcanic Field (New Zealand)

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly

    2016-09-01

    Scoria cones are a common type of basaltic to andesitic small-volume volcanoes (e.g. 10- 1-10- 5 km3) that results from gas-bubble driven explosive eruptive styles. Although they are small in volume, they can produce complex eruptions, involving multiple eruptive styles. Eight scoria cones from the Quaternary Auckland Volcanic Field in New Zealand were selected to define the eruptive style variability from their volcanic facies architecture. The reconstruction of their eruptive and pyroclastic transport mechanisms was established on the basis of study of their volcanic sedimentology, stratigraphy, and measurement of their pyroclast density, porosity, Scanning Electron Microscopy, 2D particle morphology analysis and Visible and Near Visible Infrared Spectroscopy. Collection of these data allowed defining three end-member types of scoria cones inferred to be constructed from lava-fountaining, transitional fountaining and Strombolian type, and explosive Strombolian type. Using the physical and field-based characteristics of scoriaceous samples a simple generalised facies model of basaltic scoria cones for the AVF is developed that can be extended to other scoria cones elsewhere. The typical AVF scoria cone has an initial phreatomagmatic phases that might reduce the volume of magma available for subsequent scoria cone forming eruptions. This inferred to have the main reason to have decreased cone volumes recognised from Auckland in comparison to other volcanic fields evolved dominantly in dry eruptive condition (e.g. no external water influence). It suggests that such subtle eruptive style variations through a scoria cone evolution need to be integrated into the hazard assessment of a potentially active volcanic field such as that in Auckland.

  14. Increased rates of large‐magnitude explosive eruptions in Japan in the late Neogene and Quaternary

    Science.gov (United States)

    Sparks, R. S. J.; Wallace, L. M.; Engwell, S. L.; Scourse, E. M.; Barnard, N. H.; Kandlbauer, J.; Brown, S. K.

    2016-01-01

    Abstract Tephra layers in marine sediment cores from scientific ocean drilling largely record high‐magnitude silicic explosive eruptions in the Japan arc for up to the last 20 million years. Analysis of the thickness variation with distance of 180 tephra layers from a global data set suggests that the majority of the visible tephra layers used in this study are the products of caldera‐forming eruptions with magnitude (M) > 6, considering their distances at the respective drilling sites to their likely volcanic sources. Frequency of visible tephra layers in cores indicates a marked increase in rates of large magnitude explosive eruptions at ∼8 Ma, 6–4 Ma, and further increase after ∼2 Ma. These changes are attributed to major changes in tectonic plate interactions. Lower rates of large magnitude explosive volcanism in the Miocene are related to a strike‐slip‐dominated boundary (and temporary cessation or deceleration of subduction) between the Philippine Sea Plate and southwest Japan, combined with the possibility that much of the arc in northern Japan was submerged beneath sea level partly due to previous tectonic extension of northern Honshu related to formation of the Sea of Japan. Changes in plate motions and subduction dynamics during the ∼8 Ma to present period led to (1) increased arc‐normal subduction in southwest Japan (and resumption of arc volcanism) and (2) shift from extension to compression of the upper plate in northeast Japan, leading to uplift, crustal thickening and favorable conditions for accumulation of the large volumes of silicic magma needed for explosive caldera‐forming eruptions. PMID:27656115

  15. Volcanic eruptions on Io

    Science.gov (United States)

    Strom, R. G.; Schneider, N. M.; Terrile, R. J.; Hansen, C.; Cook, A. F.

    1981-01-01

    Nine eruption plumes which were observed during the Voyager 1 encounter with Io are discussed. During the Voyager 2 encounter, four months later, eight of the eruptions were still active although the largest became inactive sometime between the two encounters. Plumes range in height from 60 to over 300 km with corresponding ejection velocities of 0.5 to 1.0 km/s and plume sources are located on several plains and consist of fissures or calderas. The shape and brightness distribution together with the pattern of the surface deposition on a plume 3 is simulated by a ballistic model with a constant ejection velocity of 0.5 km/s and ejection angles which vary from 0-55 deg. The distribution of active and recent eruptions is concentrated in the equatorial regions and indicates that volcanic activity is more frequent and intense in the equatorial regions than in the polar regions. Due to the geologic setting of certain plume sources and large reservoirs of volatiles required for the active eruptions, it is concluded that sulfur volcanism rather than silicate volcanism is the most likely driving mechanism for the eruption plumes.

  16. Do volcanic eruptions affect climate? Sulfur gases may cause cooling

    Science.gov (United States)

    Self, Stephen; Rampino, Michael R.

    1988-01-01

    The relationship between volcanic eruptions on earth and the observed climatic changes is investigated. The results of the comparison and analyses of volcanologic and climatologic data sets for the years between 1880 and 1980 indicate that changes in temperature caused by even of the largest eruptions recorded during this time were about the same as normal variations in temperature. However, when temperature records for several months or years preceding and following a given eruption were analyzed, a statistically significant temperature decrease of 0.2-0.5 C was found for the periods of one to two years immediately following some of the 19th and 20th century explosive events that prodiced large aerosol clouds (e.g., Krakatau and Agung eruptions). It is suggested that the content of sulfur in the erupted magma determines the size of aerosol cloud producing the cooling effect.

  17. Volcanic Eruptions and Climate: Outstanding Research Issues

    Science.gov (United States)

    Robock, Alan

    2016-04-01

    Large volcanic eruptions inject sulfur gases into the stratosphere, which convert to sulfate aerosols with an e-folding residence time of about one year. The radiative and chemical effects of this aerosol cloud produce responses in the climate system. Based on observations after major eruptions of the past and experiments with numerical models of the climate system, we understand much about their climatic impact, but there are also a number of unanswered questions. Volcanic eruptions produce global cooling, and are an important natural cause of interannual, interdecadal, and even centennial-scale climate change. One of the most interesting volcanic effects is the "winter warming" of Northern Hemisphere continents following major tropical eruptions. During the winter in the Northern Hemisphere following every large tropical eruption of the past century, surface air temperatures over North America, Europe, and East Asia were warmer than normal, while they were colder over Greenland and the Middle East. This pattern and the coincident atmospheric circulation correspond to the positive phase of the Arctic Oscillation. While this response is observed after recent major eruptions, most state-of-the-art climate models have trouble simulating winter warming. Why? High latitude eruptions in the Northern Hemisphere, while also producing global cooling, do not have the same impact on atmospheric dynamics. Both tropical and high latitude eruptions can weaken the Indian and African summer monsoon, and the effects can be seen in past records of flow in the Nile and Niger Rivers. Since the Mt. Pinatubo eruption in the Philippines in 1991, there have been no large eruptions that affected climate, but the cumulative effects of small eruptions over the past decade have had a small effect on global temperature trends. Some important outstanding research questions include: How much seasonal, annual, and decadal predictability is possible following a large volcanic eruption? Do

  18. Using Digital Cameras to Detect Warning Signs of Volcanic Eruptions

    Science.gov (United States)

    Girona, T.; Huber, C.; Trinh, K. T.; Protti, M.; Pacheco, J. F.

    2017-12-01

    Monitoring volcanic outgassing is fundamental to improve the forecasting of volcanic eruptions. Recent efforts have led to the advent of new methods to measure the concentration and flux of volcanic gases with unprecedented temporal resolution, thus allowing us to obtain reliable high-frequency (up to 1 Hz) time series of outgassing activity. These high-frequency methods have shown that volcanic outgassing can be periodic sometimes (with periodicities ranging from 101 s to 103 s), although it remains unknown whether the spectral features of outgassing reflect the processes that ultimately trigger volcanic unrest and eruptions. In this study, we explore the evolution of the spectral content of the outgassing activity of Turrialba volcano (Costa Rica) using digital images (with digital brightness as a proxy for the emissions of water vapor [Girona et al., 2015]). Images were taken at 1 km distance with 1 Hz sampling rate, and the time period analyzed (from April 2016 to April 2017) is characterized by episodes of quiescent outgassing, ash explosions, and sporadic eruptions of ballistics. Our preliminary results show that: 1) quiescent states of Turrialba volcano are characterized by outgassing frequency spectra with fractal distribution; 2) superimposed onto the fractal frequency spectra, well-defined pulses with period around 100 s emerge hours to days before some of the eruptions of ballistics. An important conclusion of this study is that digital cameras can be potentially used in real-time volcano monitoring to detect warning signs of eruptions, as well as to better understand subsurface processes and track the changing conditions below volcanic craters. Our ongoing study also explores the correlation between the evolution of the spectral content of outgassing, infrasound data, and shallow seismicity. Girona, T., F. Costa, B. Taisne, B. Aggangan, and S. Ildefonso (2015), Fractal degassing from Erebus and Mayon volcanoes revealed by a new method to monitor H2O

  19. Acoustic and tephra records of explosive eruptions at West Mata submarine volcano, NE Lau Basin

    Science.gov (United States)

    Dziak, R. P.; Bohnenstiehl, D. R.; Baker, E. T.; Matsumoto, H.; Caplan-Auerbach, J.; Mack, C. J.; Embley, R. W.; Merle, S. G.; Walker, S. L.; Lau, T. A.

    2013-12-01

    West Mata is a 1200 m deep submarine volcano where explosive boninite eruptions were directly observed in May 2009. Here we present long-term acoustic and tephra records of West Mata explosion activity from three deployments of hydrophone and particle sensor moorings beginning on 8 January 2009. These records provide insights into the character of explosive magma degassing occurring at the volcano's summit vent until the decline and eventual cessation of the eruption during late 2010 and early 2011. The detailed acoustic records show three types of volcanic signals, 1) discrete explosions, 2) diffuse explosions, and 3) volcanic tremor. Discrete explosions are short duration, high amplitude broad-band signals caused by rapid gas bubble release. Diffuse signals are likely a result of 'trap-door' explosions where a quench cap of cooled lava forms over the magmatic vent but gas pressure builds underneath the cap. This pressure eventually causes the cap to breach and gas is explosively released until pressure reduces and the cap once again forms. Volcanic tremor is typified by narrow-band, long-duration signals with overtones, as well as narrow-band tones that vary frequency over time between 60-100 Hz. The harmonic tremor is thought to be caused by modulation of rapid, short duration gas explosion pulses and not a magma resonance phenomenon. The variable frequency tones may be caused by focused degassing or hydrothermal fluid flow from a narrow volcanic vent or conduit. High frequency (>30 Hz) tremor-like bands of energy are a result of interference caused by multipath wide-band signals, including sea-surface reflected acoustic phases, that arrive at the hydrophone with small time delays. Acoustic data suggest that eruption velocities for a single explosion range from 4-50 m s-1, although synchronous arrival of explosion signals has complicated our efforts to estimate long-term gas flux. Single explosions exhibit ~4-40 m3 s-1 of total volume flux (gas and rock) but

  20. The Climate Response to Explosive Volcanism in the Last Millennium Reanalysis

    Science.gov (United States)

    Emile-Geay, J.; Erb, M. P.; Hakim, G. J.; Anchukaitis, K. J.; Toohey, M.; Steig, E. J.

    2017-12-01

    Explosive volcanism substantially affects the climate system via the direct effect of radiative forcing anomalies and ensuing influences on, and feedback to, major modes of ocean-atmosphere variability. Eruptions therefore offer unparalleled natural experiments with which to study the climate response to stratospheric aerosol loading. While the instrumental record provides a few, modest examples of such eruptions, the Common Era provides a much larger sample with more dramatic instances [Sigl et al, Nature, 2015]. Here we leverage the Last Millennium Reanalysis (LMR, Hakim et al [JGR-Atm, 2016]), to probe the climate response to explosive volcanism. LMR fuses information from general circulation models and a recent multiproxy compilation [PAGES 2k Consortium, Sci Data, 2017] to depict Common Era climate: surface temperature, 500mb geopotential height, precipitation and drought indices are reconstructed at annual resolution over the past 2,000 years, with error estimates. Using forcing estimates from Toohey & Sigl [ESDD, 2017], the reconstructions shows a 0.2K cooling following the 20 largest eruptions since 750, with maximum impacts over Northern Eurasia and western North America. Comparison to the N-TREND temperature reconstruction [Anchukaitis et al, QSR 2017], which uses a completely independent methodology, shows remarkable agreement in the magnitude and spatial patterns. Surprisingly, reconstructed temperature recovers slowly (10-15y) after major eruptions, a result at odds with conventional wisdom [Robock, Rev. Geophys. 2000] but consistent with modeling results [Pausata et al, PNAS, 2015], and suggestive of an active role for ocean dynamics. Preliminary results show a marginally significant, El Niño-like sea-surface temperature response immediately after the eruption, accompanied by a significant weakening of the Walker circulation and a southward shift of the Intertropical Convergence Zone. A comparison to PMIP3 simulations shows greater magnitudes of

  1. Estimating Losses from Volcanic Ash in case of a Mt. Baekdu Eruption

    Science.gov (United States)

    Yu, Soonyoung; Yoon, Seong-Min; Kim, Sung-Wook; Choi, Eun-Kyeong

    2014-05-01

    We will present the preliminary result of economic losses in South Korea in case of a Mt. Baedu eruption. The Korean peninsula has Mt. Baekdu in North Korea, which will soon enter an active phase, according to volcanologists. The anticipated eruption will be explosive given the viscous and grassy silica-rich magma, and is expected to be one of the largest in recent millennia. We aim to assess the impacts of this eruption to South Korea and help government prepare for the volcanic disasters. In particular, the economic impact from volcanic ash is estimated given the distance from Mt. Baedu to South Korea. In order to scientifically estimate losses from volcanic ash, we need volcanic ash thickness, inventory database, and damage functions between ash thickness and damage ratios for each inventory item. We use the volcanic ash thickness calculated by other research groups in Korea, and they estimated the ash thickness for each eruption scenario using average wind fields. Damage functions are built using the historical damage data in the world, and inventory database is obtained from available digital maps in Korea. According to the preliminary results, the economic impact from volcanic ash is not significant because the ash is rarely deposited in South Korea under general weather conditions. However, the ash can impact human health and environment. Also worst case scenarios can have the significant economic impacts in Korea, and may result in global issues. Acknowledgement: This research was supported by a grant [NEMA-BAEKDUSAN-2012-1-3] from the Volcanic Disaster Preparedness Research Center sponsored by National Emergency Management Agency of Korea.

  2. Volcanic hazards from Bezymianny- and Bandai-type eruptions

    Science.gov (United States)

    Siebert, L.; Glicken, H.; Ui, T.

    1987-01-01

    Major slope failures are a significant degradational process at volcanoes. Slope failures and associated explosive eruptions have resulted in more than 20 000 fatalities in the past 400 years; the historic record provides evidence for at least six of these events in the past century. Several historic debris avalanches exceed 1 km3 in volume. Holocene avalanches an order of magnitude larger have traveled 50-100 km from the source volcano and affected areas of 500-1500 km2. Historic eruptions associated with major slope failures include those with a magmatic component (Bezymianny type) and those solely phreatic (Bandai type). The associated gravitational failures remove major segments of the volcanoes, creating massive horseshoe-shaped depressions commonly of caldera size. The paroxysmal phase of a Bezymianny-type eruption may include powerful lateral explosions and pumiceous pyroclastic flows; it is often followed by construction of lava dome or pyroclastic cone in the new crater. Bandai-type eruptions begin and end with the paroxysmal phase, during which slope failure removes a portion of the edifice. Massive volcanic landslides can also occur without related explosive eruptions, as at the Unzen volcano in 1792. The main potential hazards from these events derive from lateral blasts, the debris avalanche itself, and avalanche-induced tsunamis. Lateral blasts produced by sudden decompression of hydrothermal and/or magmatic systems can devastate areas in excess of 500km2 at velocities exceeding 100 m s-1. The ratio of area covered to distance traveled for the Mount St. Helens and Bezymianny lateral blasts exceeds that of many pyroclastic flows or surges of comparable volume. The potential for large-scale lateral blasts is likely related to the location of magma at the time of slope failure and appears highest when magma has intruded into the upper edifice, as at Mount St. Helens and Bezymianny. Debris avalanches can move faster than 100 ms-1 and travel tens of

  3. Using Spectroscopy to Infer the Eruption Style and Volatile History of Volcanic Tephras

    Science.gov (United States)

    McBride, M. J.; Horgan, B. H. N.; Rowe, M. C.; Wall, K. T.; Oxley, B. M.

    2017-12-01

    The interaction between volatiles and magma strongly influences volcanic eruption styles, and results in an increase in the glass component of volcanic tephra. On Earth, both phreatomagmatic and magmatic explosive eruptions create glassy tephras. Phreatomagmatic eruptions form abundant glass by quickly quenching lava through interaction with meteoric water while magmatic eruptions create less glass through slower cooling within larger pyroclasts or eruption columns. Wall et al. (2014) used X-ray diffraction (XRD) of diverse tephra samples to show that glass content correlates with eruption style, as magmatic samples contain less glass than phreatomagmatic samples. While use of XRD is limited to Earth and the Curiosity rover on Mars, orbital spectroscopy is much a more common technique in the exploration of terrestrial bodies. In this study, we evaluate whether or not spectroscopy can be used to infer eruption style and thus volatile history. Visible/near-infrared (VNIR) and thermal-infrared (TIR) spectra were collected of the Wall et al. (2014) tephra samples, and were analyzed for trends related to glass content and thus eruption style. VNIR spectra can detect glass at high abundances as well as hydrothermal alteration minerals produced during interactions with meteoric water. Using TIR, glass abundances can be derived by deconvolving the spectra with a standard spectral library; however, due to the non-unique spectral shape of glass, intermediate to high glass abundances in tephras are difficult to differentiate using TIR alone. Synthetic mixtures of glass and crystalline minerals verify these results. Therefore, the most effective method for determining glass abundance and thus eruption style from volcanic deposits is a combination of VNIR and TIR spectral analysis. Using standard planetary remote sensing instrumentation to infer eruption styles will provide a new window into the volcanic and volatile histories of terrestrial bodies.

  4. [Effects of volcanic eruptions on human health in Iceland. Review].

    Science.gov (United States)

    Gudmundsson, Gunnar; Larsen, Guðrun

    2016-01-01

    Volcanic eruptions are common in Iceland and have caused health problems ever since the settlement of Iceland. Here we describe volcanic activity and the effects of volcanic gases and ash on human health in Iceland. Volcanic gases expelled during eruptions can be highly toxic for humans if their concentrations are high, irritating the mucus membranes of the eyes and upper respiratory tract at lower concentrations. They can also be very irritating to the skin. Volcanic ash is also irritating for the mucus membranes of the eyes and upper respiratory tract. The smalles particles of volcanic ash can reach the alveoli of the lungs. Described are four examples of volcanic eruptions that have affected the health of Icelanders. The eruption of Laki volcanic fissure in 1783-1784 is the volcanic eruption that has caused the highest mortality and had the greatest effects on the well-being of Icelanders. Despite multiple volcanic eruptions during the last decades in Iceland mortality has been low and effects on human health have been limited, although studies on longterm effects are lacking. Studies on the effects of the Eyjafjallajökul eruption in 2010 on human health showed increased physical and mental symptoms, especially in those having respiratory disorders. The Directorate of Health in Iceland and other services have responded promptly to recurrent volcanic eruptions over the last few years and given detailed instructions on how to minimize the effects on the public health. Key words: volcanic eruptions, Iceland, volcanic ash, volcanic gases, health effects, mortality. Correspondence: Gunnar Guðmundsson, ggudmund@landspitali.is.

  5. Centennial-scale climate change from decadally-paced explosive volcanism: a coupled sea ice-ocean mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Zhong, Y. [University of Colorado, INSTAAR, Boulder, CO (United States); Miller, G.H. [University of Colorado, INSTAAR, Boulder, CO (United States); University of Colorado, Department of Geological Sciences, Boulder, CO (United States); Otto-Bliesner, B.L.; Holland, M.M.; Bailey, D.A. [NCAR, Boulder, CO (United States); Schneider, D.P. [NCAR, Boulder, CO (United States); University of Colorado, CIRES, Boulder, CO (United States); Geirsdottir, A. [University of Iceland, Department of Earth Sciences and Institute of Earth Sciences, Reykjavik (Iceland)

    2011-12-15

    Northern Hemisphere summer cooling through the Holocene is largely driven by the steady decrease in summer insolation tied to the precession of the equinoxes. However, centennial-scale climate departures, such as the Little Ice Age, must be caused by other forcings, most likely explosive volcanism and changes in solar irradiance. Stratospheric volcanic aerosols have the stronger forcing, but their short residence time likely precludes a lasting climate impact from a single eruption. Decadally paced explosive volcanism may produce a greater climate impact because the long response time of ocean surface waters allows for a cumulative decrease in sea-surface temperatures that exceeds that of any single eruption. Here we use a global climate model to evaluate the potential long-term climate impacts from four decadally paced large tropical eruptions. Direct forcing results in a rapid expansion of Arctic Ocean sea ice that persists throughout the eruption period. The expanded sea ice increases the flux of sea ice exported to the northern North Atlantic long enough that it reduces the convective warming of surface waters in the subpolar North Atlantic. In two of our four simulations the cooler surface waters being advected into the Arctic Ocean reduced the rate of basal sea-ice melt in the Atlantic sector of the Arctic Ocean, allowing sea ice to remain in an expanded state for > 100 model years after volcanic aerosols were removed from the stratosphere. In these simulations the coupled sea ice-ocean mechanism maintains the strong positive feedbacks of an expanded Arctic Ocean sea ice cover, allowing the initial cooling related to the direct effect of volcanic aerosols to be perpetuated, potentially resulting in a centennial-scale or longer change of state in Arctic climate. The fact that the sea ice-ocean mechanism was not established in two of our four simulations suggests that a long-term sea ice response to volcanic forcing is sensitive to the stability of the seawater

  6. Sequential assimilation of volcanic monitoring data to quantify eruption potential: Application to Kerinci volcano

    Science.gov (United States)

    Zhan, Yan; Gregg, Patricia M.; Chaussard, Estelle; Aoki, Yosuke

    2017-12-01

    Quantifying the eruption potential of a restless volcano requires the ability to model parameters such as overpressure and calculate the host rock stress state as the system evolves. A critical challenge is developing a model-data fusion framework to take advantage of observational data and provide updates of the volcanic system through time. The Ensemble Kalman Filter (EnKF) uses a Monte Carlo approach to assimilate volcanic monitoring data and update models of volcanic unrest, providing time-varying estimates of overpressure and stress. Although the EnKF has been proven effective to forecast volcanic deformation using synthetic InSAR and GPS data, until now, it has not been applied to assimilate data from an active volcanic system. In this investigation, the EnKF is used to provide a “hindcast” of the 2009 explosive eruption of Kerinci volcano, Indonesia. A two-sources analytical model is used to simulate the surface deformation of Kerinci volcano observed by InSAR time-series data and to predict the system evolution. A deep, deflating dike-like source reproduces the subsiding signal on the flanks of the volcano, and a shallow spherical McTigue source reproduces the central uplift. EnKF predicted parameters are used in finite element models to calculate the host-rock stress state prior to the 2009 eruption. Mohr-Coulomb failure models reveal that the shallow magma reservoir is trending towards tensile failure prior to 2009, which may be the catalyst for the 2009 eruption. Our results illustrate that the EnKF shows significant promise for future applications to forecasting the eruption potential of restless volcanoes and hind-cast the triggering mechanisms of observed eruptions.

  7. Explosive Volcanism in Io's Lava Lakes - The Key To Constraining Eruption Temperature?

    Science.gov (United States)

    Davies, A. G.; Keszthelyi, L. P.; McEwen, A. S.

    2010-12-01

    Active lava lakes are open volcanic systems, where lava circulates between a magma chamber and the surface. Rare on Earth, lava lakes may be common on Io, the highly volcanic jovian moon (e.g., [1]). Io’s low atmospheric pressure means that activity within Io’s lava lakes may be explosive, exposing lava at near-liquid temperatures (currently poorly constrained for Io). Lava lakes are therefore important targets for future missions to Io [2, 3]. With this in mind, hand-held infrared imagers were used to collect thermal emission data from the phonolite Erebus (Antarctica) lava lake [4] and the basalt lava lake at Erta’Ale (Ethiopia). Temperature-area distributions and the integrated thermal emission spectra for each lava lake were determined from the data. These calculated spectra have been used to test models developed for analysis of remote sensing data of lava lakes and lava flows on both Earth and Io, where no ground-truth exists. The silicate cooling model [5] assumes, for the lava lake model variant, that the existing surface crust has been created at a fixed rate. Model output consists of a synthesized thermal emission spectrum, estimate of surface age range, and a rate of surface crust area formation. The cooling model provides accurate reproductions of actual thermal spectra and the total emitting area to within a few percent of actual emitting area. Model resurfacing rates broadly agree with observed behaviour at both lakes. Despite different composition lavas, the short-wavelength infrared thermal emission spectra from the two terrestrial lava lakes studied are very similar in shape, and, importantly, bear a striking similarity to spectra of Pele, an Io volcano that has been proposed to be a persistent, active lava lake [6] and which is the source of a 300-km high dust and gas plume. Our study of the cooling of the hottest lava exposed at Erta’Ale yields constraints on the ability of multispectral imagers to determine eruption temperature. We find

  8. Volcaniclastic dykes tell on fracturing, explosive eruption and lateral collapse at Stromboli volcano (Italy)

    Science.gov (United States)

    Vezzoli, Luigina; Corazzato, Claudia

    2016-05-01

    In the upper part of the Stromboli volcano, in the Le Croci and Bastimento areas, two dyke-like bodies of volcanic breccia up to two-metre thick crosscut and intrude the products of Vancori and Neostromboli volcanoes. We describe the lithofacies association of these unusual volcaniclastic dykes, interpret the setting of dyke-forming fractures and the emplacement mechanism of internal deposits, and discuss their probable relationships with the explosive eruption and major lateral collapse events that occurred at the end of the Neostromboli period. The dyke volcaniclastic deposits contain juvenile magmatic fragments (pyroclasts) suggesting a primary volcanic origin. Their petrographic characteristics are coincident with the Neostromboli products. The architecture of the infilling deposits comprises symmetrically-nested volcaniclastic units, separated by sub-vertical boundaries, which are parallel to the dyke margins. The volcanic units are composed of distinctive lithofacies. The more external facies is composed of fine and coarse ash showing sub-vertical laminations, parallel to the contact wall. The central facies comprises stratified, lithic-rich breccia and lapilli-tuff, whose stratification is sub-horizontal and convolute, discordant to the dyke margins. Only at Le Croci dyke, the final unit shows a massive tuff-breccia facies. The volcaniclastic dykes experienced a polyphasic geological evolution comprising three stages. The first phase consisted in fracturing, explosive intrusion related to magma rising and upward injection of magmatic fluids and pyroclasts. The second phase recorded the dilation of fractures and their role as pyroclastic conduits in an explosive eruption possibly coeval with the lateral collapse of the Neostromboli lava cone. Finally, in the third phase, the immediately post-eruption mass-flow remobilization of pyroclastic deposits took place on the volcano slopes.

  9. Volcanic eruption plumes on Io

    International Nuclear Information System (INIS)

    Strom, R.G.; Terrile, R.J.; Masursky, H.; Hansen, C.

    1979-01-01

    The detection of an umbrella-shaped plume extending about 280 km above the bright limb of Io was one of the most important discoveries made during the Voyager 1 encounter with the jovian system. This discovery proves that Io is volcanically active at present, and the number and magnitude of these eruptions indicate that Io is the most volcanically active body so far discovered in the Solar System. Preliminary analyses of these eruptive plumes are presented. (U.K.)

  10. Winter warming from large volcanic eruptions

    Science.gov (United States)

    Robock, Alan; Mao, Jianping

    1992-01-01

    An examination of the Northern Hemisphere winter surface temperature patterns after the 12 largest volcanic eruptions from 1883-1992 shows warming over Eurasia and North America and cooling over the Middle East which are significant at the 95-percent level. This pattern is found in the first winter after tropical eruptions, in the first or second winter after midlatitude eruptions, and in the second winter after high latitude eruptions. The effects are independent of the hemisphere of the volcanoes. An enhanced zonal wind driven by heating of the tropical stratosphere by the volcanic aerosols is responsible for the regions of warming, while the cooling is caused by blocking of incoming sunlight.

  11. Possible effects of volcanic eruptions on stratospheric minor constituent chemistry

    Science.gov (United States)

    Stolarski, R. S.; Butler, D. M.

    1979-01-01

    Although stratosphere penetrating volcanic eruptions have been infrequent during the last half century, periods have existed in the last several hundred years when such eruptions were significantly more frequent. Several mechanisms exist for these injections to affect stratospheric minor constituent chemistry, both on the long-term average and for short-term perturbations. These mechanisms are reviewed and, because of the sensitivity of current models of stratospheric ozone to chlorine perturbations, quantitative estimates are made of chlorine injection rates. It is found that, if chlorine makes up as much as 0.5 to 1% of the gases released and if the total gases released are about the same magnitude as the fine ash, then a major stratosphere penetrating eruption could deplete the ozone column by several percent. The estimate for the Agung eruption of 1963 is just under 1% an amount not excluded by the ozone record but complicated by the peak in atmospheric nuclear explosions at about the same time.

  12. Volcanic eruptions and solar activity

    Science.gov (United States)

    Stothers, Richard B.

    1989-01-01

    The historical record of large volcanic eruptions from 1500 to 1980 is subjected to detailed time series analysis. In two weak but probably statistically significant periodicities of about 11 and 80 yr, the frequency of volcanic eruptions increases (decreases) slightly around the times of solar minimum (maximum). Time series analysis of the volcanogenic acidities in a deep ice core from Greenland reveals several very long periods ranging from about 80 to about 350 yr which are similar to the very slow solar cycles previously detected in auroral and C-14 records. Solar flares may cause changes in atmospheric circulation patterns that abruptly alter the earth's spin. The resulting jolt probably triggers small earthquakes which affect volcanism.

  13. Interaction of Volcanic Forcing and El Nino: Sensitivity to the Eruption Magnitude and El Nino Intensity

    KAUST Repository

    Predybaylo, Evgeniya; Wittenberg, Andrew; Stenchikov, Georgiy L.

    2015-01-01

    Volcanic aerosols formed in the stratosphere after strong explosive eruptions influence Earth's radiative balance, affecting atmospheric and oceanic temperatures and circulation. It was observed that the recent volcanic eruptions frequently occurred in El Nino years. Analysis of the paleo data confirms that the probability of a sequent El Nino occurrence after the eruption increases. To better understand the physical mechanism of this interaction we employed ocean-atmosphere coupled climate model CM2.1, developed in the Geophysical Fluid Dynamics Laboratory, and conducted a series of numerical experiments using initial conditions with different El Nino Southern Oscillation (ENSO) strengths forced by volcanic eruptions of different magnitudes, Pinatubo of June 1991 and Tambora of April 1815: (i) strong ENSO/Pinatubo, (ii) weak ENSO/Pinatubo, (iii) strong ENSO/Tambora. The amount of ejected material from the Tambora eruption was about three times greater than that of the Pinatubo eruption. The initial conditions with El Nino were sampled from the CM2.1 long control run. Our simulations show the enhancement of El Nino in the second year after an eruption. We found that the spatial-temporal structure of model responses is sensitive to both the magnitude of an eruption and the strength of El Nino. We analyzed the ocean dynamic in the tropical Pacific for all cases to uncover the physical mechanism, resulting in the enhanced and/or prolonged El Nino.

  14. Interaction of Volcanic Forcing and El Nino: Sensitivity to the Eruption Magnitude and El Nino Intensity

    KAUST Repository

    Predybaylo, Evgeniya

    2015-04-01

    Volcanic aerosols formed in the stratosphere after strong explosive eruptions influence Earth\\'s radiative balance, affecting atmospheric and oceanic temperatures and circulation. It was observed that the recent volcanic eruptions frequently occurred in El Nino years. Analysis of the paleo data confirms that the probability of a sequent El Nino occurrence after the eruption increases. To better understand the physical mechanism of this interaction we employed ocean-atmosphere coupled climate model CM2.1, developed in the Geophysical Fluid Dynamics Laboratory, and conducted a series of numerical experiments using initial conditions with different El Nino Southern Oscillation (ENSO) strengths forced by volcanic eruptions of different magnitudes, Pinatubo of June 1991 and Tambora of April 1815: (i) strong ENSO/Pinatubo, (ii) weak ENSO/Pinatubo, (iii) strong ENSO/Tambora. The amount of ejected material from the Tambora eruption was about three times greater than that of the Pinatubo eruption. The initial conditions with El Nino were sampled from the CM2.1 long control run. Our simulations show the enhancement of El Nino in the second year after an eruption. We found that the spatial-temporal structure of model responses is sensitive to both the magnitude of an eruption and the strength of El Nino. We analyzed the ocean dynamic in the tropical Pacific for all cases to uncover the physical mechanism, resulting in the enhanced and/or prolonged El Nino.

  15. Assessment of the atmospheric impact of volcanic eruptions

    Science.gov (United States)

    Sigurdsson, H.

    1988-01-01

    The dominant global impact of volcanic activity is likely to be related to the effects of volcanic gases on the Earth's atmosphere. Volcanic gas emissions from individual volcanic arc eruptions are likely to cause increases in the stratospheric optical depth that result in surface landmass temperature decline of 2 to 3 K for less than a decade. Trachytic and intermediate magmas are much more effective in this regard than high-silica magmas, and may also lead to extensive ozone depletion due to effect of halogens and magmatic water. Given the assumed relationship between arc volcanism and subduction rate, and the relatively small variation in global spreading rates in the geologic record, it is unlikely that the rates of arc volcanism have varied greatly during the Cenozoic. Hotspot related basaltic fissure eruptions in the subaerial environment have a higher mass yield of sulfur, but lofting of the valcanic aerosol to levels above the tropopause is required for a climate impact. High-latitude events, such as the Laki 1783 eruption can easily penetrate the tropopause and enter the stratosphere, but formation of a stratospheric volcanic aerosol form low-latitude effusive basaltic eruptions is problematical, due to the elevated low-latitude tropopause. Due to the high sulfur content of hotspot-derived basaltic magmas, their very high mass eruption rates and the episodic behavior, hotspots must be regarded as potentially major modifiers of Earth's climate through the action of their volcanic volatiles on the chemistry and physics of the atmosphere.

  16. Radiative and Dynamical Feedbacks Limit the Climate Response to Extremely Large Volcanic Eruptions

    Science.gov (United States)

    Wade, D. C.; Vidal, C. M.; Keeble, J. M.; Griffiths, P. T.; Archibald, A. T.

    2017-12-01

    Explosive volcanic eruptions are a major cause of chemical and climatic perturbations to the atmosphere, injecting chemically and radiatively active species such as sulfur dioxide (SO2) into the stratosphere. The rate determining step for sulfate aerosol production is SO2 + OH +M → HSO3 +M. This means that chemical feedbacks on the hydroxyl radical, OH, can modulate the production rate of sulfate aerosol and hence the climate effects of large volcanic eruptions. Radiative feedbacks due to aerosols, ozone and sulfur dioxide and subsequent dynamical changes also affect the evolution of the aerosol cloud. Here we assess the role of radiative and chemical feedbacks on sulfate aerosol production using UM-UKCA, a chemistry-climate model coupled to GLOMAP, a prognostic modal aerosol model. A 200 Tg (10x Pinatubo) emission scenario is investigated. Accounting for radiative feedbacks, the SO2 lifetime is 55 days compared to 26 days in the baseline 20 Tg (1x Pinatubo) simulation. By contrast, if all radiative feedbacks are neglected the lifetime is 73 days. Including radiative feedbacks reduces the SO2 lifetime: heating of the lower stratosphere by aerosol increases upwelling and increases transport of water vapour across the tropopause, increasing OH concentrations. The maximum effective radius of the aerosol particles increases from 1.09 µm to 1.34 µm as the production of aerosol is quicker. Larger and fewer aerosol particles are produced which are less effective at scattering shortwave radiation and will more quickly sediment from the stratosphere. As a result, the resulting climate cooling by the eruption will be less strong when accounting for these radiative feedbacks. We illustrate the consequences of these effects for the 1257 Samalas eruption, the largest common era volcanic eruption, using UM-UKCA in a coupled atmosphere-ocean configuration. As a potentially halogen rich eruption, we investigate the differing ozone response to halogen-rich and halogen

  17. Volcanic Eruptions and Climate

    Science.gov (United States)

    LeGrande, Allegra N.; Anchukaitis, Kevin J.

    2015-01-01

    Volcanic eruptions represent some of the most climatically important and societally disruptive short-term events in human history. Large eruptions inject ash, dust, sulfurous gases (e.g. SO2, H2S), halogens (e.g. Hcl and Hbr), and water vapor into the Earth's atmosphere. Sulfurous emissions principally interact with the climate by converting into sulfate aerosols that reduce incoming solar radiation, warming the stratosphere and altering ozone creation, reducing global mean surface temperature, and suppressing the hydrological cycle. In this issue, we focus on the history, processes, and consequences of these large eruptions that inject enough material into the stratosphere to significantly affect the climate system. In terms of the changes wrought on the energy balance of the Earth System, these transient events can temporarily have a radiative forcing magnitude larger than the range of solar, greenhouse gas, and land use variability over the last millennium. In simulations as well as modern and paleoclimate observations, volcanic eruptions cause large inter-annual to decadal-scale changes in climate. Active debates persist concerning their role in longer-term (multi-decadal to centennial) modification of the Earth System, however.

  18. Impacts of a Pinatubo-size volcanic eruption on ENSO

    KAUST Repository

    Predybaylo, Evgeniya

    2017-01-16

    Observations and model simulations of the climate responses to strong explosive low-latitude volcanic eruptions suggest a significant increase in the likelihood of El Niño during the eruption and posteruption years, though model results have been inconclusive and have varied in magnitude and even sign. In this study, we test how this spread of responses depends on the initial phase of El Niño-Southern Oscillation (ENSO) in the eruption year and on the eruption\\'s seasonal timing. We employ the Geophysical Fluid Dynamics Laboratory CM2.1 global coupled general circulation model to investigate the impact of the Pinatubo 1991 eruption, assuming that in 1991 ENSO would otherwise be in central or eastern Pacific El Niño, La Niña, or neutral phases. We obtain statistically significant El Niño responses in a year after the eruption for all cases except La Niña, which shows no response in the eastern equatorial Pacific. The eruption has a weaker impact on eastern Pacific El Niños than on central Pacific El Niños. We find that the ocean dynamical thermostat and (to a lesser extent) wind changes due to land-ocean temperature gradients are the main feedbacks affecting El Niño development after the eruption. The El Niño responses to eruptions occurring in summer are more pronounced than for winter and spring eruptions. That the climate response depends on eruption season and initial ENSO phase may help to reconcile apparent inconsistencies among previous studies.

  19. The Variable Climate Impact of Volcanic Eruptions

    Science.gov (United States)

    Graf, H.

    2011-12-01

    The main effect of big volcanic eruptions in the climate system is due to their efficient transport of condensable gases and their precursors into the stratosphere. There the formation of aerosols leads to effects on atmospheric radiation transfer inducing a reduction of incoming solar radiation by reflection (i.e. cooling of the Earth surface) and absorption of near infrared radiation (i.e. heating) in the aerosol laden layers. In the talk processes determining the climate effect of an eruption will be illustrated by examples, mainly from numerical modelling. The amount of gases released from a magma during an eruption and the efficiency of their transport into very high altitudes depends on the geological setting (magma type) and eruption style. While mid-sized eruption plumes of Plinian style quickly can develop buoyancy by entrainment of ambient air, very large eruptions with high magma flux rates often tend to collapsing plumes and co-ignimbrite style. These cover much bigger areas and are less efficient in entraining ambient air. Vertical transport in these plumes is chaotic and less efficient, leading to lower neutral buoyancy height and less gas and particles reaching high stratospheric altitudes. Explosive energy and amount of released condensable gases are not the only determinants for the climatic effect of an eruption. The effect on shortwave radiation is not linear with the amount of aerosols formed since according to the Lambert-Beer Law atmospheric optical depth reaches a saturation limit with increased absorber concentration. In addition, if more condensable gas is available for aerosol growth, particles become larger and this affects their optical properties to less reflection and more absorption. Larger particles settle out faster, thus reducing the life time of the aerosol disturbance. Especially for big tropical eruptions the strong heating of the stratosphere in low latitudes leads to changes in atmospheric wave propagation by strengthened

  20. Volcanic eruptions are cooling the earth

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern

    2005-01-01

    The article discusses how volcanic eruptions may influence the climate. The environmental impacts both on the earth surface and the atmosphere are surveyed. Some major eruptions in modern times are mentioned

  1. Influences on the variability of eruption sequences and style transitions in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly; Cronin, Shane J.; Procter, Jonathan; Agustín-Flores, Javier

    2014-10-01

    Monogenetic basaltic volcanism is characterised by a complex array of eruptive behaviours, reflecting spatial and temporal variability of the magmatic properties (e.g. composition, eruptive volume, magma flux) as well as environmental factors at the vent site (e.g. availability of water, country rock geology, faulting). These combine to produce changes in eruption style over brief periods (minutes to days) in many eruption episodes. Monogenetic eruptions in some volcanic fields often start with a phreatomagmatic vent-opening phase that later transforms into "dry" magmatic explosive or effusive activity, with a strong variation in the duration and importance of this first phase. Such an eruption sequence pattern occurred in 83% of the known eruption in the 0.25 My-old Auckland Volcanic Field (AVF), New Zealand. In this investigation, the eruptive volumes were compared with the sequences of eruption styles preserved in the pyroclastic record at each volcano of the AVF, as well as environmental influencing factors, such as distribution and thickness of water-saturated semi- to unconsolidated sediments, topographic position, distances from known fault lines. The AVF showed that there is no correlation between ejecta ring volumes and environmental influencing factors that is valid for the entire AVF. In contrary, using a set of comparisons of single volcanoes with well-known and documented sequences, resultant eruption sequences could be explained by predominant patterns of the environment in which these volcanoes were erupted. Based on the spatial variability of these environmental factors, a first-order susceptibility hazard map was constructed for the AVF that forecasts areas of largest likelihood for phreatomagmatic eruptions by overlaying topographical and shallow geological information. Combining detailed phase-by-phase breakdowns of eruptive volumes and the event sequences of the AVF, along with the new susceptibility map, more realistic eruption scenarios can be

  2. Global monsoon precipitation responses to large volcanic eruptions.

    Science.gov (United States)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-04-11

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do.

  3. Infrasound and SO2 Observations of the 2011 Explosive Eruption of Nabro Volcano, Eritrea

    Science.gov (United States)

    Fee, D.; Carn, S. A.; Prata, F.

    2011-12-01

    SO2 measurements to investigate the relationship between degassing and infrasound, and to speculate on possible eruption source mechanisms. This example, in addition to other recent work, demonstrates the utility of using regional and global infrasound arrays to characterize explosive volcanic eruptions, particularly in remote and poorly monitored regions. Further, comparison of SO2 emissions and infrasound lends insight into degassing processes and shows the potential to use infrasound as a real-time, remote means to detect hazardous emissions.

  4. Can rain cause volcanic eruptions?

    Science.gov (United States)

    Mastin, Larry G.

    1993-01-01

    Volcanic eruptions are renowned for their violence and destructive power. This power comes ultimately from the heat and pressure of molten rock and its contained gases. Therefore we rarely consider the possibility that meteoric phenomena, like rainfall, could promote or inhibit their occurrence. Yet from time to time observers have suggested that weather may affect volcanic activity. In the late 1800's, for example, one of the first geologists to visit the island of Hawaii, J.D. Dana, speculated that rainfall influenced the occurrence of eruptions there. In the early 1900's, volcanologists suggested that some eruptions from Mount Lassen, Calif., were caused by the infiltration of snowmelt into the volcano's hot summit. Most such associations have not been provable because of lack of information; others have been dismissed after careful evaluation of the evidence.

  5. A model for calculating eruptive volumes for monogenetic volcanoes — Implication for the Quaternary Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly; Cronin, Shane J.; Agustín-Flores, Javier; Smith, Ian E. M.; Lindsay, Jan

    2013-10-01

    Monogenetic basaltic volcanism is characterised by a complex array of behaviours in the spatial distribution of magma output and also temporal variability in magma flux and eruptive frequency. Investigating this in detail is hindered by the difficulty in evaluating ages of volcanic events as well as volumes erupted in each volcano. Eruptive volumes are an important input parameter for volcanic hazard assessment and may control eruptive scenarios, especially transitions between explosive and effusive behaviour and the length of eruptions. Erosion, superposition and lack of exposure limit the accuracy of volume determination, even for very young volcanoes. In this study, a systematic volume estimation model is developed and applied to the Auckland Volcanic Field in New Zealand. In this model, a basaltic monogenetic volcano is categorised in six parts. Subsurface portions of volcanoes, such as diatremes beneath phreatomagmatic volcanoes, or crater infills, are approximated by geometrical considerations, based on exposed analogue volcanoes. Positive volcanic landforms, such as scoria/spatter cones, tephras rings and lava flow, were defined by using a Light Detection and Ranging (LiDAR) survey-based Digital Surface Model (DSM). Finally, the distal tephra associated with explosive eruptions was approximated using published relationships that relate original crater size to ejecta volumes. Considering only those parts with high reliability, the overall magma output (converted to Dense Rock Equivalent) for the post-250 ka active Auckland Volcanic Field in New Zealand is a minimum of 1.704 km3. This is made up of 1.329 km3 in lava flows, 0.067 km3 in phreatomagmatic crater lava infills, 0.090 km3 within tephra/tuff rings, 0.112 km3 inside crater lava infills, and 0.104 km3 within scoria cones. Using the minimum eruptive volumes, the spatial and temporal magma fluxes are estimated at 0.005 km3/km2 and 0.007 km3/ka. The temporal-volumetric evolution of Auckland is

  6. Indirect Climatic Effects of Major Volcanic Eruptions

    Science.gov (United States)

    Hofmann, D. J.

    2007-05-01

    The direct effects on climate, related to atmospheric emissions to the atmosphere following major volcanic eruptions, are well-known although the sparseness of such eruptions make detailed study on the range of such variations difficult. In general terms, infrared absorption by volcanic emissions to the stratosphere result in local heating early in the event when gaseous sulfur compounds exist. This early period is followed by gas to particle conversion, on a time scale of 1-2 months, promoting the formation of sulfuric acid-water droplets. Coagulation and droplet growth result in the "volcanic stratospheric aerosol layer" which is related to the predominant direct climatic effect of large eruptions, the cooling of the troposphere by backscattering of solar visible radiation to space with a recovery time scale of 1-2 years. In this paper we will discuss some of the less-known "indirect" effects of the volcanic stratospheric aerosol on climate. We label them indirect as they act on climate through intermediary atmospheric constituents. The intermediaries in the volcanic indirect climatic effect are generally atmospheric greenhouse gases or other atmospheric gases and conditions which affect greenhouse gases. For example, cooling of the troposphere following major eruptions reduces the growth rate of atmospheric carbon dioxide related to respiration by the terrestrial biosphere. In addition, redirection of part of the direct solar beam into diffuse radiation by the volcanic stratospheric aerosol stimulates plant photosynthesis, further reducing the carbon dioxide growth rate. The growth rate of the second-most important atmospheric greenhouse gas, methane, is also affected by volcanic emissions. Volcanic stratospheric aerosol particles provide surface area which catalyzes heterogeneous chemical reactions thus stimulating removal of stratospheric ozone, also a greenhouse gas. Although major droughts usually related to ENSO events have opposite effects on carbon

  7. Explosive dome eruptions modulated by periodic gas-driven inflation

    Science.gov (United States)

    Johnson, Jeffrey B.; Lyons, John; Andrews, B. J.; Lees, J.M.

    2014-01-01

    Volcan Santiaguito (Guatemala) “breathes” with extraordinary regularity as the edifice's conduit system accumulates free gas, which periodically vents to the atmosphere. Periodic pressurization controls explosion timing, which nearly always occurs at peak inflation, as detected with tiltmeters. Tilt cycles in January 2012 reveal regular 26 ± 6 min inflation/deflation cycles corresponding to at least ~101 kg/s of gas fluxing the system. Very long period (VLP) earthquakes presage explosions and occur during cycles when inflation rates are most rapid. VLPs locate ~300 m below the vent and indicate mobilization of volatiles, which ascend at ~50 m/s. Rapid gas ascent feeds pyroclast-laden eruptions lasting several minutes and rising to ~1 km. VLPs are not observed during less rapid inflation episodes; instead, gas vents passively through the conduit producing no infrasound and no explosion. These observations intimate that steady gas exsolution and accumulation in shallow reservoirs may drive inflation cycles at open-vent silicic volcanoes.

  8. Effects of Volcanic Eruptions on Stratospheric Ozone Recovery

    Science.gov (United States)

    Rosenfield, Joan E.

    2002-01-01

    The effects of the stratospheric sulfate aerosol layer associated with the Mt. Pinatubo volcano and future volcanic eruptions on the recovery of the ozone layer is studied with an interactive two-dimensional photochemical model. The time varying chlorine loading and the stratospheric cooling due to increasing carbon dioxide have been taken into account. The computed ozone and temperature changes associated with the Mt. Pinatubo eruption in 1991 agree well with observations. Long model runs out to the year 2050 have been carried out, in which volcanoes having the characteristics of the Mount Pinatubo volcano were erupted in the model at 10-year intervals starting in the year 2010. Compared to a non-volcanic run using background aerosol loading, transient reductions of globally averaged column ozone of 2-3 percent were computed as a result of each of these eruptions, with the ozone recovering to that computed for the non-volcanic case in about 5 years after the eruption. Computed springtime Arctic column ozone losses of from 10 to 18 percent also recovered to the non-volcanic case within 5 years. These results suggest that the long-term recovery of ozone would not be strongly affected by infrequent volcanic eruptions with a sulfur loading approximating Mt. Pinatubo. Sensitivity studies in which the Arctic lower stratosphere was forced to be 4 K and 10 K colder resulted in transient ozone losses of which also recovered to the non-volcanic case in 5 years. A case in which a volcano five times Mt. Pinatubo was erupted in the year 2010 led to maximum springtime column ozone losses of 45 percent which took 10 years to recover to the background case. Finally, in order to simulate a situation in which frequent smaller volcanic eruptions result in increasing the background sulfate loading, a simulation was made in which the background aerosol was increased by 10 percent per year. This resulted in a delay of the recovery of column ozone to 1980 values of more than 10 years.

  9. Electrostatic phenomena in volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Lane, S J; James, M R; Gilbert, J S, E-mail: s.lane@lancaster.ac.uk [Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ (United Kingdom)

    2011-06-23

    Electrostatic phenomena have long been associated with the explosive eruption of volcanoes. Lightning generated in volcanic plumes is a spectacular atmospheric electrical event that requires development of large potential gradients over distances of up to kilometres. This process begins as hydrated liquid rock (magma) ascends towards Earth's surface. Pressure reduction causes water supersaturation in the magma and the development of bubbles of supercritical water, where deeper than c. 1000 m, and water vapour at shallower depths that drives flow expansion. The generation of high strain rates in the expanding bubbly magma can cause it to fracture in a brittle manner, as deformation relaxation timescales are exceeded. The brittle fracture provides the initial charge separation mechanism, known as fractoemission. The resulting mixture of charged silicate particles and ions evolves over time, generating macro-scale potential gradients in the atmosphere and driving processes such as particle aggregation. For the silicate particles, aggregation driven by electrostatic effects is most significant for particles smaller than c. 100 {mu}m. Aggregation acts to change the effective aerodynamic behaviour of silicate particles, thus altering the sedimentation rates of particles from volcanic plumes from the atmosphere. The presence of liquid phases also promotes aggregation processes and lightning.

  10. Sequential Assimilation of Volcanic Monitoring Data to Quantify Eruption Potential: Application to Kerinci Volcano, Sumatra

    Directory of Open Access Journals (Sweden)

    Yan Zhan

    2017-12-01

    Full Text Available Quantifying the eruption potential of a restless volcano requires the ability to model parameters such as overpressure and calculate the host rock stress state as the system evolves. A critical challenge is developing a model-data fusion framework to take advantage of observational data and provide updates of the volcanic system through time. The Ensemble Kalman Filter (EnKF uses a Monte Carlo approach to assimilate volcanic monitoring data and update models of volcanic unrest, providing time-varying estimates of overpressure and stress. Although the EnKF has been proven effective to forecast volcanic deformation using synthetic InSAR and GPS data, until now, it has not been applied to assimilate data from an active volcanic system. In this investigation, the EnKF is used to provide a “hindcast” of the 2009 explosive eruption of Kerinci volcano, Indonesia. A two-sources analytical model is used to simulate the surface deformation of Kerinci volcano observed by InSAR time-series data and to predict the system evolution. A deep, deflating dike-like source reproduces the subsiding signal on the flanks of the volcano, and a shallow spherical McTigue source reproduces the central uplift. EnKF predicted parameters are used in finite element models to calculate the host-rock stress state prior to the 2009 eruption. Mohr-Coulomb failure models reveal that the host rock around the shallow magma reservoir is trending toward tensile failure prior to 2009, which may be the catalyst for the 2009 eruption. Our results illustrate that the EnKF shows significant promise for future applications to forecasting the eruption potential of restless volcanoes and hind-cast the triggering mechanisms of observed eruptions.

  11. Reduced cooling following future volcanic eruptions

    Science.gov (United States)

    Hopcroft, Peter O.; Kandlbauer, Jessy; Valdes, Paul J.; Sparks, R. Stephen J.

    2017-11-01

    Volcanic eruptions are an important influence on decadal to centennial climate variability. Large eruptions lead to the formation of a stratospheric sulphate aerosol layer which can cause short-term global cooling. This response is modulated by feedback processes in the earth system, but the influence from future warming has not been assessed before. Using earth system model simulations we find that the eruption-induced cooling is significantly weaker in the future state. This is predominantly due to an increase in planetary albedo caused by increased tropospheric aerosol loading with a contribution from associated changes in cloud properties. The increased albedo of the troposphere reduces the effective volcanic aerosol radiative forcing. Reduced sea-ice coverage and hence feedbacks also contribute over high-latitudes, and an enhanced winter warming signal emerges in the future eruption ensemble. These findings show that the eruption response is a complex function of the environmental conditions, which has implications for the role of eruptions in climate variability in the future and potentially in the past.

  12. Global monsoon precipitation responses to large volcanic eruptions

    Science.gov (United States)

    Liu, Fei; Chai, Jing; Wang, Bin; Liu, Jian; Zhang, Xiao; Wang, Zhiyuan

    2016-01-01

    Climate variation of global monsoon (GM) precipitation involves both internal feedback and external forcing. Here, we focus on strong volcanic forcing since large eruptions are known to be a dominant mechanism in natural climate change. It is not known whether large volcanoes erupted at different latitudes have distinctive effects on the monsoon in the Northern Hemisphere (NH) and the Southern Hemisphere (SH). We address this issue using a 1500-year volcanic sensitivity simulation by the Community Earth System Model version 1.0 (CESM1). Volcanoes are classified into three types based on their meridional aerosol distributions: NH volcanoes, SH volcanoes and equatorial volcanoes. Using the model simulation, we discover that the GM precipitation in one hemisphere is enhanced significantly by the remote volcanic forcing occurring in the other hemisphere. This remote volcanic forcing-induced intensification is mainly through circulation change rather than moisture content change. In addition, the NH volcanic eruptions are more efficient in reducing the NH monsoon precipitation than the equatorial ones, and so do the SH eruptions in weakening the SH monsoon, because the equatorial eruptions, despite reducing moisture content, have weaker effects in weakening the off-equatorial monsoon circulation than the subtropical-extratropical volcanoes do. PMID:27063141

  13. Eruptive origins of a lacustrine pyroclastic succession: insights from the middle Huka Falls Formation, Taupo Volcanic Zone, New Zealand

    International Nuclear Information System (INIS)

    Cattell, H.J.; Cole, J.W.; Oze, C.; Allen, S.R.

    2014-01-01

    Current and ancestral lakes within the central Taupo Volcanic Zone (TVZ) provide depocentres for pyroclastic deposits, providing a reliable record of eruption history. These lakes can also be the source of explosive eruptions that directly feed pyroclast-rich density currents. The lithofacies characteristics of pyroclastic deposits allow discrimination between eruption-fed and resedimented facies. The most frequently recognised styles of subaqueous eruptions in the TVZ are shallow-water phreatomagmatic and phreatoplinian eruptions that form subaerial eruption columns. However, deeper source conditions (>150 m water depth) could generate subaqueous explosive eruptions that feed water-supported pyroclast-rich density currents, similar to neptunian eruptions. Such deep-water eruptions have not previously been recognised in the TVZ. Here we study a subsurface deposit, the middle Huka Falls Formation (MHFF), in the Wairakei-Tauhara geothermal fields (Wairakei-Tauhara), TVZ, which we interpret to be the product of a relatively deep-water pyroclastic eruption (150-250 m). The largely subsurface Huka Falls Formation records past sedimentary and volcaniclastic deposition in ancient Lake Huka. Deposits examined from eight drill cores reveal a lithic-rich lower unit, a middle volumetrically dominant pumice lapilli-tuff and an upper thinly bedded suspension-settled tuff unit. A coarse lithic lapilli-tuff within the lower unit is locally thick and coarse near well THM12, suggesting proximity to a source located beneath Lake Huka. This research provides an understanding of the origin of the MHFF deposit and offers insights for evaluating and interpreting the diversity of subaqueous volcanic lake deposits elsewhere. (author)

  14. An Overview of the Dynamics of the Volcanic Paroxysmal Explosive Activity, and Related Seismicity, at Andesitic and Dacitic Volcanoes (1960–2010

    Directory of Open Access Journals (Sweden)

    Vyacheslav M. Zobin

    2018-05-01

    Full Text Available Understanding volcanic paroxysmal explosive activity requires the knowledge of many associated processes. An overview of the dynamics of paroxysmal explosive eruptions (PEEs at andesitic and dacitic volcanoes occurring between 1960 and 2010 is presented here. This overview is based mainly on a description of the pre-eruptive and eruptive events, as well as on the related seismic measurements. The selected eruptions are grouped according to their Volcanic Explosivity Index (VEI. A first group includes three eruptions of VEI 5-6 (Mount St. Helens, 1980; El Chichón, 1982; Pinatubo, 1991 and a second group includes three eruptions of VEI 3 (Usu volcano, 1977; Soufriere Hills Volcano (SHV, 1996, and Volcán de Colima, 2005. The PEEs of the first group have similarity in their developments that allows to propose a 5-stage scheme of their dynamics process. Between these stages are: long (more than 120 years period of quiescence (stage 1, preliminary volcano-tectonic (VT earthquake swarm (stage 2, period of phreatic explosions (stage 3 and then, PEE appearance (stage 4. It was shown also that the PEEs of this group during their Plinian stage “triggered” the earthquake sequences beneath the volcanic structures with the maximum magnitude of earthquakes proportional to the volume of ejecta of PEEs (stage 5. Three discussed PEEs of the second group with lower VEI developed in more individual styles, not keeping within any general scheme. Among these, one PEE (SHV may be considered as partly following in development to the PEEs of the first group, having stages 1, 3, and 4. The PEEs of Usu volcano and of Volcán de Colima had no preliminary long-term stages of quiescence. The PEE at Usu volcano came just at the end of the preceding short swarm of VT earthquakes. At Volcán de Colima, no preceding swarm of VT occurred. This absence of any regularity in development of lower VEI eruptions may refer, among other reasons, to different conditions of opening

  15. Multi-decadal satellite measurements of passive and eruptive volcanic SO2 emissions

    Science.gov (United States)

    Carn, Simon; Yang, Kai; Krotkov, Nickolay; Prata, Fred; Telling, Jennifer

    2015-04-01

    Periodic injections of sulfur gas species (SO2, H2S) into the stratosphere by volcanic eruptions are among the most important, and yet unpredictable, drivers of natural climate variability. However, passive (lower tropospheric) volcanic degassing is the major component of total volcanic emissions to the atmosphere on a time-averaged basis, but is poorly constrained, impacting estimates of global emissions of other volcanic gases (e.g., CO2). Stratospheric volcanic emissions are very well quantified by satellite remote sensing techniques, and we report ongoing efforts to catalog all significant volcanic SO2 emissions into the stratosphere and troposphere since 1978 using measurements from the ultraviolet (UV) Total Ozone Mapping Spectrometer (TOMS; 1978-2005), Ozone Monitoring Instrument (OMI; 2004 - present) and Ozone Mapping and Profiler Suite (OMPS; 2012 - present) instruments, supplemented by infrared (IR) data from HIRS, MODIS and AIRS. The database, intended for use as a volcanic forcing dataset in climate models, currently includes over 600 eruptions releasing a total of ~100 Tg SO2, with a mean eruption discharge of ~0.2 Tg SO2. Sensitivity to SO2 emissions from smaller eruptions greatly increased following the launch of OMI in 2004, but uncertainties remain on the volcanic flux of other sulfur species other than SO2 (H2S, OCS) due to difficulty of measurement. Although the post-Pinatubo 1991 era is often classified as volcanically quiescent, many smaller eruptions (Volcanic Explosivity Index [VEI] 3-4) since 2000 have injected significant amounts of SO2 into the upper troposphere - lower stratosphere (UTLS), peaking in 2008-2011. We also show how even smaller (VEI 2) tropical eruptions can impact the UTLS and sustain above-background stratospheric aerosol optical depth, thus playing a role in climate forcing on short timescales. To better quantify tropospheric volcanic degassing, we use ~10 years of operational SO2 measurements by OMI to identify the

  16. Impact of volcanic eruptions on the marine carbon cycle

    Science.gov (United States)

    Segschneider, Joachim; Ulrike, Niemeier; Martin, Wiesner; Claudia, Timmreck

    2010-05-01

    The impact of volcanic eruptions on the marine carbon cycle is investigated for the example of the Pinatubo eruption with model simulations of the distribution of the ash cloud and deposition on the ocean surface and the impact of the nutrient addition from ash leachates on the oceanic biological production and hence biological carbon pump. Natural variations of aerosols, especially due to large-magnitude volcanic eruptions, are recognized as a significant climate forcing, altering the Earth's radiation balance and thus tending to cause global temperature changes. While the impact of such events on climate and the terrestrial biosphere is relatively well documented, scientific knowledge of their effects on marine ecosystems and consequent feedbacks to the atmosphere is still very limited. In the deep sea, subaerial eruptive events of global significance are commonly recorded as widespread ash layers, which were often found to be associated with increased abundances of planktic organisms. This has led to the hypothesis that the influx of volcanic ash may provide an external nutrient source for primary production (in particular through iron fertilization) in ocean surface waters. Recent laboratory experiments have demonstrated that pristine volcanic ash indeed releases significant amounts of macronutrients and bioactive trace metals (including phosphate, iron and silica) adsorbed to the surface of the ash particles. The release of these components most likely has its largest impact in ocean regions where their availability is crucial for the growth of oceanic biomass, which are the high-nutrient but low-productivity (low-iron) areas in the Pacific and the Southern Ocean. These in turn are neighbored by most of those subaerially active volcanoes that are capable of ejecting huge amounts of aerosols into the high-velocity stratospheric wind fields. The dispersal and fallout of ash thus has a high potential to induce globally significant, transient net CO2 removal from

  17. On a Possible Unified Scaling Law for Volcanic Eruption Durations.

    Science.gov (United States)

    Cannavò, Flavio; Nunnari, Giuseppe

    2016-03-01

    Volcanoes constitute dissipative systems with many degrees of freedom. Their eruptions are the result of complex processes that involve interacting chemical-physical systems. At present, due to the complexity of involved phenomena and to the lack of precise measurements, both analytical and numerical models are unable to simultaneously include the main processes involved in eruptions thus making forecasts of volcanic dynamics rather unreliable. On the other hand, accurate forecasts of some eruption parameters, such as the duration, could be a key factor in natural hazard estimation and mitigation. Analyzing a large database with most of all the known volcanic eruptions, we have determined that the duration of eruptions seems to be described by a universal distribution which characterizes eruption duration dynamics. In particular, this paper presents a plausible global power-law distribution of durations of volcanic eruptions that holds worldwide for different volcanic environments. We also introduce a new, simple and realistic pipe model that can follow the same found empirical distribution. Since the proposed model belongs to the family of the self-organized systems it may support the hypothesis that simple mechanisms can lead naturally to the emergent complexity in volcanic behaviour.

  18. Remote Sensing and GIS as Tools for Identifying Risk for Phreatomagmatic Eruptions in the Bishoftu Volcanic Field, Ethiopia

    Science.gov (United States)

    Pennington, H. G.; Graettinger, A.

    2017-12-01

    Bishoftu is a fast-growing town in the Oromia region of Ethiopia, located 47 km southeast of the nation's capital, Addis Ababa. It is situated atop a monogenetic basaltic volcanic field, called the Bishoftu Volcanic Field (BVF), which is composed of maar craters, scoria cones, lava flows, and rhyolite domes. Although not well dated, the morphology and archeological evidence have been used to infer a Holocene age, indicating that the community is exposed to continued volcanic risk. The presence of phreatomagmatic constructs in particular indicates that the hazards are not only vent-localized, but may have far reaching impacts. Hazard mapping is an essential tool for evaluating and communicating risks. This study presents the results of GIS analyses of proximal and distal syn-eruptive hazards associated with phreatomagmatic eruptions in the BVF. A digitized infrastructure map based on a SPOT 6 satellite image is used to identify the areas at risk from eruption scenarios. Parameters such as wind direction, vent location, and explosion energy are varied for hazard simulations to quantify the area impacted by different eruption scenarios. Proximal syn-eruptive hazards include tephra fall, base pyroclastic surges, and ballistic bombs. Distal hazards include predominantly ash fall. Eruption scenarios are simulated using Eject and Plumeria models as well as similar case studies from other urban volcanic fields. Within 5 km of the volcanic field center, more than 30 km2 of residential and commercial/industrial infrastructure will be damaged by proximal syn-eruptive hazards, in addition to 34 km2 of agricultural land, 291 km of roads, more than 10 km of railway, an airport, and two health centers. Within 100 km of the volcanic field center, ash fall will affect 3946 km2 of agricultural land, 179 km2 of residential land, and 28 km2 of commercial/industrial land. Approximately 2700 km of roads and railways, 553 km of waterways, an airport, and 14 health centers are located

  19. The 2010 explosive eruption of Java's Merapi volcano—A ‘100-year’ event

    Science.gov (United States)

    Surono,; Jousset, Philippe; Pallister, John S.; Boichu, Marie; Buongiorno, M. Fabrizia; Budisantoso, Agus; Costa, Fidel; Andreastuti, Supriyati; Prata, Fred; Schneider, David; Clarisse, Lieven; Humaida, Hanik; Sumarti, Sri; Bignami, Christian; Griswold, Julia P.; Carn, Simon A.; Oppenheimer, Clive; Lavigne, Franck

    2012-01-01

    Merapi volcano (Indonesia) is one of the most active and hazardous volcanoes in the world. It is known for frequent small to moderate eruptions, pyroclastic flows produced by lava dome collapse, and the large population settled on and around the flanks of the volcano that is at risk. Its usual behavior for the last decades abruptly changed in late October and early November 2010, when the volcano produced its largest and most explosive eruptions in more than a century, displacing at least a third of a million people, and claiming nearly 400 lives. Despite the challenges involved in forecasting this ‘hundred year eruption’, we show that the magnitude of precursory signals (seismicity, ground deformation, gas emissions) was proportional to the large size and intensity of the eruption. In addition and for the first time, near-real-time satellite radar imagery played an equal role with seismic, geodetic, and gas observations in monitoring eruptive activity during a major volcanic crisis. The Indonesian Center of Volcanology and Geological Hazard Mitigation (CVGHM) issued timely forecasts of the magnitude of the eruption phases, saving 10,000–20,000 lives. In addition to reporting on aspects of the crisis management, we report the first synthesis of scientific observations of the eruption. Our monitoring and petrologic data show that the 2010 eruption was fed by rapid ascent of magma from depths ranging from 5 to 30 km. Magma reached the surface with variable gas content resulting in alternating explosive and rapid effusive eruptions, and released a total of ~ 0.44 Tg of SO2. The eruptive behavior seems also related to the seismicity along a tectonic fault more than 40 km from the volcano, highlighting both the complex stress pattern of the Merapi region of Java and the role of magmatic pressurization in activating regional faults. We suggest a dynamic triggering of the main explosions on 3 and 4 November by the passing seismic waves generated by regional

  20. An Estimate of the Likelihood for a Climatically Significant Volcanic Eruption Within the Present Decade (2000-2009)

    Science.gov (United States)

    Wilson, Robert M.; Franklin, M. Rose (Technical Monitor)

    2000-01-01

    Since 1750, the number of cataclysmic volcanic eruptions (i.e., those having a volcanic explosivity index, or VEI, equal to 4 or larger) per decade is found to span 2-11, with 96% located in the tropics and extra-tropical Northern Hemisphere, A two-point moving average of the time series has higher values since the 1860s than before, measuring 8.00 in the 1910s (the highest value) and measuring 6.50 in the 1980s, the highest since the 18 1 0s' peak. On the basis of the usual behavior of the first difference of the two-point moving averages, one infers that the two-point moving average for the 1990s will measure about 6.50 +/- 1.00, implying that about 7 +/- 4 cataclysmic volcanic eruptions should be expected during the present decade (2000-2009). Because cataclysmic volcanic eruptions (especially, those having VEI equal to 5 or larger) nearly always have been associated with episodes of short-term global cooling, the occurrence of even one could ameliorate the effects of global warming. Poisson probability distributions reveal that the probability of one or more VEI equal to 4 or larger events occurring within the next ten years is >99%, while it is about 49% for VEI equal to 5 or larger events and 18% for VEI equal to 6 or larger events. Hence, the likelihood that a, climatically significant volcanic eruption will occur within the next 10 years appears reasonably high.

  1. Natural radioactivity in volcanic ash from Mt. Pinatubo eruption

    International Nuclear Information System (INIS)

    Duran, E.B.; De Vera, C.M.; Garcia, T.Y.; Dela Cruz, F.M.; Esguerra, L.V.; Castaneda, S.S.

    1992-01-01

    Last June 15, 1991, a major pyroclastic eruption occurred from Mt. Pinatubo volcano located in Zambales, Central Luzon. The radiological impact of this eruption was assessed based on the concentrations of the principal naturally occurring radionuclides observed in volcanic ash. The volcanic ash samples were collected from locations which are within 50-km radius of Mt. Pinatubo at various times after the eruption. The mean activity concentrations in Bq/kg wet weight of the natural radionuclides in volcanic ash were as follows: 12.6 for 238 U, 14.0 for 232 Th and 330 for 40 K. These values are significantly higher than the mean activity concentrations of these radionuclides observed in topsoil in the same provinces before the eruption. This suggests that with the deposition of large quantities of volcanic ash and lahar in Central Luzon and concomitant topographic changes, the distribution and quantities of radionuclides which gave rise to terrestrial radiation may have also changed. Outdoor radon concentrations measured three days and later after the eruption were within normal background values. (auth.). 4 refs.; 5 tabs.; 1 fig

  2. Scaling properties of planetary calderas and terrestrial volcanic eruptions

    Directory of Open Access Journals (Sweden)

    L. Sanchez

    2012-11-01

    Full Text Available Volcanism plays an important role in transporting internal heat of planetary bodies to their surface. Therefore, volcanoes are a manifestation of the planet's past and present internal dynamics. Volcanic eruptions as well as caldera forming processes are the direct manifestation of complex interactions between the rising magma and the surrounding host rock in the crust of terrestrial planetary bodies. Attempts have been made to compare volcanic landforms throughout the solar system. Different stochastic models have been proposed to describe the temporal sequences of eruptions on individual or groups of volcanoes. However, comprehensive understanding of the physical mechanisms responsible for volcano formation and eruption and more specifically caldera formation remains elusive. In this work, we propose a scaling law to quantify the distribution of caldera sizes on Earth, Mars, Venus, and Io, as well as the distribution of calderas on Earth depending on their surrounding crustal properties. We also apply the same scaling analysis to the distribution of interevent times between eruptions for volcanoes that have the largest eruptive history as well as groups of volcanoes on Earth. We find that when rescaled with their respective sample averages, the distributions considered show a similar functional form. This result implies that similar processes are responsible for caldera formation throughout the solar system and for different crustal settings on Earth. This result emphasizes the importance of comparative planetology to understand planetary volcanism. Similarly, the processes responsible for volcanic eruptions are independent of the type of volcanism or geographical location.

  3. Modelling the dynamics and hazards of explosive eruptions: Where we are now, and confronting the next challenges (Sergey Soloviev Medal Lecture)

    Science.gov (United States)

    Neri, Augusto

    2017-04-01

    Understanding of explosive eruption dynamics and assessment of their hazards continue to represent challenging issues to the present-day volcanology community. This is largely due to the complex and diverse nature of the phenomena, and the variability and unpredictability of volcanic processes. Nevertheless, important and continuing progress has been made in the last few decades in understanding fundamental processes and in forecasting the occurrences of these phenomena, thanks to significant advances in field, experimental and theoretical modeling investigations. For over four decades, for example, volcanologists have made major progress in the description of the nature of explosive eruptions, considerably aided by the development, improvement, and application of physical-mathematical models. Integral steady-state homogeneous flow models were first used to investigate the different controlling mechanisms and to infer the genesis and evolution of the phenomena. Through continuous improvements and quantum-leap developments, a variety of transient, 3D, multiphase flow models of volcanic phenomena now can implement state-of-the-art formulations of the underlying physics, new-generation analytical and experimental data, as well as high-performance computational techniques. These numerical models have proved to be able to provide key insights in the understanding of the dynamics of explosive eruptions (e.g. convective plumes, collapsing columns, pyroclastic density currents, short-lived explosions, etc.), as well as to represent a valuable tool in the quantification of potential eruptive scenarios and associated hazards. Simplified models based on a reduction of the system complexity have been also proved useful, combined with Monte Carlo and statistical methods, to generate quantitative probabilistic hazard maps at different space and time scales, some including the quantification of important sources of uncertainty. Nevertheless, the development of physical models

  4. Serreta 1998-2001 submarine volcanic eruption, offshore Terceira (Azores): Characterization of the vent and inferences about the eruptive dynamics

    Science.gov (United States)

    Casas, David; Pimentel, Adriano; Pacheco, José; Martorelli, Eleonora; Sposato, Andrea; Ercilla, Gemma; Alonso, Belen; Chiocci, Francesco

    2018-05-01

    High-resolution bathymetric data and seafloor sampling were used to characterize the most recent volcanic eruption in the Azores region, the 1998-2001 Serreta submarine eruption. The vent of the eruption is proposed to be an asymmetric topographic high, composed of two coalescing volcanic cones, underlying the location where lava balloons had been observed at the sea surface during the eruption. The volcanic products related to the 1998-2001 eruption are constrained to an area of 0.5 km2 around the proposed vent position. A submarine Strombolian-style eruption producing basaltic lava balloons, ash and coarse scoriaceous materials with limited lateral dispersion led to the buildup of the cones. The 1998-2001 Serreta eruption shares many similarities with other intermediate-depth lava balloon-forming eruptions (e.g., the 1891 eruption offshore Pantelleria and the 2011-2012 eruption south of El Hierro), revealing the particular conditions needed for the production of this unusual and scarcely documented volcanic product.

  5. Long-term volcanic hazard forecasts based on Somma-Vesuvio past eruptive activity

    Science.gov (United States)

    Lirer, Lucio; Petrosino, Paola; Alberico, Ines; Postiglione, Immacolata

    2001-02-01

    Distributions of pyroclastic deposits from the main explosive events at Somma-Vesuvio during the 8,000-year B.P.-A.D. 1906 time-span have been analysed to provide maps of volcanic hazard for long-term eruption forecasting. In order to define hazard ratings, the spatial distributions and loads (kg/m2) exerted by the fall deposits on the roofs of buildings have been considered. A load higher than 300 kg/m2 is defined as destructive. The relationship load/frequency (the latter defined as the number of times that an area has been impacted by the deposition of fall deposits) is considered to be a suitable parameter for differentiating among areas according to hazard rating. Using past fall deposit distributions as the basis for future eruptive scenarios, the total area that could be affected by the products of a future Vesuvio explosive eruption is 1,500 km2. The perivolcanic area (274 km2) has the greatest hazard rating because it could be buried by pyroclastic flow deposits thicker than 0.5 m and up to several tens of metres in thickness. Currently, the perivolcanic area also has the highest risk because of the high exposed value, mainly arising from the high population density.

  6. Relationship between eruption plume heights and seismic source amplitudes of eruption tremors and explosion events

    Science.gov (United States)

    Mori, A.; Kumagai, H.

    2016-12-01

    It is crucial to analyze and interpret eruption tremors and explosion events for estimating eruption size and understanding eruption phenomena. Kumagai et al. (EPS, 2015) estimated the seismic source amplitudes (As) and cumulative source amplitudes (Is) for eruption tremors and explosion events at Tungurahua, Ecuador, by the amplitude source location (ASL) method based on the assumption of isotropic S-wave radiation in a high-frequency band (5-10 Hz). They found scaling relations between As and Is for eruption tremors and explosion events. However, the universality of these relations is yet to be verified, and the physical meanings of As and Is are not clear. In this study, we analyzed the relations between As and Is for eruption tremors and explosion events at active volcanoes in Japan, and estimated As and Is by the ASL method. We obtained power-law relations between As and Is, in which the powers were different between eruption tremors and explosion events. These relations were consistent with the scaling relations at Tungurahua volcano. Then, we compared As with maximum eruption plume heights (H) during eruption tremors analyzed in this study, and found that H was proportional to 0.21 power of As. This relation is similar to the plume height model based on the physical process of plume rise, which indicates that H is proportional to 0.25 power of volumetric flow rate for plinian eruptions. This suggests that As may correspond to volumetric flow rate. If we assume a seismic source with volume changes and far-field S-wave, As is proportional to the source volume rate. This proportional relation and the plume height model give rise to the relation that H is proportional to 0.25 power of As. These results suggest that we may be able to estimate plume heights in realtime by estimating As during eruptions from seismic observations.

  7. The dispersal of ash during explosive eruptions from central volcanoes and calderas: an underestimated hazard for the central Mediterranean area

    Energy Technology Data Exchange (ETDEWEB)

    Sulpizio, Roberto [CIRISIVU, c/o Dipartimento Geomineralogico, via Orabona 4, 70125, Bari (Italy); Caron, Benoit; Zanchetta, Giovanni; Santacroce, Roberto [Dipartimento di Scienze della Terra, via S. Maria 53, 56126, Pisa (Italy); Giaccio, Biagio [Istituto di Geologia Ambientale e Geoingegneria, CNR, Via Bolognola 7, 00138 Rome (Italy); Paterne, Martine [LSCE, Laboratoire Mixte CEA-CNRS-UVSQ, Avenue de la Terrasse 91198 Gif-sur-Yvette Cedex (France); Siani, Giuseppe [IDES-UMR 8148, Universite Paris-XI, 91405 Orsay Cedex (France)], E-mail: r.sulpizio@geomin.uniba.it

    2008-10-01

    The central Mediterranean area comprises some of the most active volcanoes of the northern hemisphere. Some of their names recall myths or events in human history: Somma-Vesuvius, Etna, Stromboli, Vulcano, Ischia and Campi Flegrei. These volcanoes are still active today, and produce both effusive and explosive eruptions. In particular, explosive eruptions can produce and disperse large amount of volcanic ash, which pose a threat to environment, economy and human health over a large part of the Mediterranean area. We present and discuss data of ash dispersal from some explosive eruptions of southern Italy volcanoes, which dispersed centimetre -thick ash blankets hundred of kilometres from the source, irrespective of the more limited dispersal of the respective coarse grained fallout and PDC deposits. The collected data also highlight the major role played by lower atmosphere winds in dispersal of ash from weak plumes and ash clouds that accompany PDC emplacement.

  8. Sulphur-rich volcanic eruptions and stratospheric aerosols

    Science.gov (United States)

    Rampino, M. R.; Self, S.

    1984-01-01

    Data from direct measurements of stratospheric optical depth, Greenland ice-core acidity, and volcanological studies are compared, and it is shown that relatively small but sulfur-rich volcanic eruptions can have atmospheric effects equal to or even greater than much larger sulfur-poor eruptions. These small eruptions are probably the most frequent cause of increased stratospheric aerosols. The possible sources of the excess sulfur released in these eruptions are discussed.

  9. Ash production by attrition in volcanic conduits and plumes.

    Science.gov (United States)

    Jones, T J; Russell, J K

    2017-07-17

    Tephra deposits result from explosive volcanic eruption and serve as indirect probes into fragmentation processes operating in subsurface volcanic conduits. Primary magmatic fragmentation creates a population of pyroclasts through volatile-driven decompression during conduit ascent. In this study, we explore the role that secondary fragmentation, specifically attrition, has in transforming primary pyroclasts upon transport in volcanic conduits and plumes. We utilize total grain size distributions from a suite of natural and experimentally produced tephra to show that attrition is likely to occur in all explosive volcanic eruptions. Our experimental results indicate that fine ash production and surface area generation is fast (eruption column stability, tephra dispersal, aggregation, volcanic lightening generation, and has concomitant effects on aviation safety and Earth's climate.

  10. Inclusion of ash and SO2 emissions from volcanic eruptions in WRF-Chem: development and some applications

    Directory of Open Access Journals (Sweden)

    M. Stuefer

    2013-04-01

    Full Text Available We describe a new functionality within the Weather Research and Forecasting (WRF model with coupled Chemistry (WRF-Chem that allows simulating emission, transport, dispersion, transformation and sedimentation of pollutants released during volcanic activities. Emissions from both an explosive eruption case and a relatively calm degassing situation are considered using the most recent volcanic emission databases. A preprocessor tool provides emission fields and additional information needed to establish the initial three-dimensional cloud umbrella/vertical distribution within the transport model grid, as well as the timing and duration of an eruption. From this source condition, the transport, dispersion and sedimentation of the ash cloud can be realistically simulated by WRF-Chem using its own dynamics and physical parameterization as well as data assimilation. Examples of model applications include a comparison of tephra fall deposits from the 1989 eruption of Mount Redoubt (Alaska and the dispersion of ash from the 2010 Eyjafjallajökull eruption in Iceland. Both model applications show good coincidence between WRF-Chem and observations.

  11. The 2007 and 2014 eruptions of Stromboli at match: monitoring the potential occurrence of effusion-driven basaltic paroxysmal explosions from a volcanic CO2 flux perspective

    Science.gov (United States)

    Liuzzo, Marco; Aiuppa, Alessandro; Salerno, Giuseppe; Burton, Mike; Federico, Cinzia; Caltabiano, Tommaso; Giudice, Gaetano; Giuffrida, Giovanni

    2015-04-01

    The recent effusive unrests of Stromboli occurred in 2002 and 2007 were both punctuated by short-lived, violent paroxysmal explosions generated from the volcano's summit craters. When effusive activity recently resumed on Stromboli, on 6 August 2014, much concern was raised therefore on whether or not a paroxysm would have occurred again. The occurrence of these potentially hazardous events has stimulated research toward understanding the mechanisms through which effusive eruptions can perturb the volcano's plumbing system, to eventually trigger a paroxysm. The anomalously large CO2 gas emissions measured prior to the 15 March 2007 paroxysmal explosion of Stromboli [1] have first demonstrated the chance to predict days in advance the effusive-to-explosive transition. Here 2007 and 2014 volcanic CO2 flux records have been compared for exploring causes/conditions that had not triggered any paroxysm event in the 2014 case. We show that the 2007 and 2014 datasets shared both similarities and remarkable differences. The pre-eruptive trends of CO2 and SO2 flux emissions were strikingly similar in both 2007 and 2014, indicating similar conditions within the plumbing system prior to onset of both effusive crises. In both events, the CO2 flux substantially accelerated (relative to the pre-eruptive mean flux) after onset of the effusion. However, this CO2 flux acceleration was a factor 3 lower in 2014 than in 2007, and the excess CO2 flux (the fraction of CO2 not associated with the shallowly emplaced/erupted magma, and therefore contributed by the deep magmatic system) never returned to the very high levels observed prior to the 15 March 2007 paroxysm. We conclude therefore that, although similar quantities of magma were effusively erupted in 2007 and 2014, the deep magmatic system was far less perturbed in the most recent case. We speculate that the rate at which the deep magmatic system is decompressed, rather than the level of de-compression itself, determine if the deep

  12. The Te Rere and Okareka eruptive episodes : Okataina Volcanic Centre, Taupo Volcanic Zone, New Zealand

    International Nuclear Information System (INIS)

    Nairn, I.A.

    1992-01-01

    The Te Rere and Okareka eruptive episodes occurred within the Okataina Volcanic Centre at c. 21 000 and 18 000 yr B.P., respectively. The widespread rhyolitic pumice fall deposits of Te Rere Ash (volume 5 km 3 ) and Okareka Ash (6 km 3 ) are only rarely exposed in near-source areas, and locations of their vent areas have been uncertain. New exposures and petrographic and chemical analyses show that the Te Rere episode eruptions occurred from multiple vents, up to 20 km apart, on the Haroharo linear vent zone. The Okareka episode eruptions occurred from vents since buried beneath the Tarawera volcanic massif. Eruption of the rhyolitic Okareka pumice fall was immediately preceded by a small basaltic scoria eruption, apparently from vents close to those for the following rhyolite eruptions. Dacitic mixed pumices scattered within the rhyolite pumice layers immediately overlying the scoria were formed by mixing of the basalt and rhyolite magmas. The Te Rere and Okareka pyroclastic eruptions were both followed by extrusion of voluminous rhyolite lavas. These eruptive episodes mark the commencement of growth of the present-day Haroharo and Tarawera volcanic complexes. (author). 27 refs., 14 figs., 6 tabs

  13. The Role of Volcanic Activity in Climate and Global Change

    KAUST Repository

    Stenchikov, Georgiy L.

    2015-09-23

    Explosive volcanic eruptions are magnificent events that in many ways affect the Earth\\'s natural processes and climate. They cause sporadic perturbations of the planet\\'s energy balance, activating complex climate feedbacks and providing unique opportunities to better quantify those processes. We know that explosive eruptions cause cooling in the atmosphere for a few years, but we have just recently realized that volcanic signals can be seen in the subsurface ocean for decades. The volcanic forcing of the previous two centuries offsets the ocean heat uptake and diminishes global warming by about 30%. The explosive volcanism of the twenty-first century is unlikely to either cause any significant climate signal or to delay the pace of global warming. The recent interest in dynamic, microphysical, chemical, and climate impacts of volcanic eruptions is also excited by the fact that these impacts provide a natural analogue for climate geoengineering schemes involving deliberate development of an artificial aerosol layer in the lower stratosphere to counteract global warming. In this chapter we aim to discuss these recently discovered volcanic effects and specifically pay attention to how we can learn about the hidden Earth-system mechanisms activated by explosive volcanic eruptions. To demonstrate these effects we use our own model results when possible along with available observations, as well as review closely related recent publications.

  14. Critical review of a new volcanic eruption chronology

    Science.gov (United States)

    Neuhäuser, Dagmar L.; Neuhäuser, Ralph

    2016-04-01

    Sigl. et al. (2015, Nature) present historical evidence for 32 volcanic eruptions to evaluate their new polar ice core 10-Be chronology - 24 are dated within three years of sulfur layers in polar ice. Most of them can be interpreted as weather phenomena (Babylonia: disk of sun like moon, reported for only one day, e.g. extinction due to clouds), Chinese sunspot reports (pellet, black vapor, etc.), solar eclipses, normal ice-halos and coronae (ring, bow, etc.), one aurora (redness), red suns due to mist drops in wet fog or fire-smoke, etc. Volcanic dust may facilitate detections of sunspots and formation of Bishop's ring, but tend to inhibit ice-halos, which are otherwise often reported in chronicles. We are left with three reports possibly indicating volcanic eruptions, namely fulfilling genuine criteria for atmospheric disturbances due to volcanic dust, e.g. bluish or faint sun, orange sky, or fainting of stars for months (BCE 208, 44-42, and 32). Among the volcanic eruptions used to fix the chronology (CE 536, 626, 939, 1257), the reports cited for the 930s deal only with 1-2 days, at least one reports an eclipse. In the new chronology, there is a sulfur detection eight years after the Vesuvius eruption, but none in CE 79. It may appear surprising that, from BCE 500 to 1, all five northern sulfur peaks labeled in figure 2 in Sigl et al. are systematically later by 2-4 years than the (corresponding?) southern peaks, while all five southern peaks from CE 100 to 600 labeled in figure 2 are systematically later by 1-4 years than the (corresponding?) northern peaks. Furthermore, in most of their six strongest volcanic eruptions, temperatures decreased years before their sulfur dating - correlated with weak solar activity as seen in radiocarbon, so that volcanic climate forcing appears dubious here. Also, their 10-Be peaks at CE 775 and 994 are neither significant nor certain in dating.

  15. Months between rejuvenation and volcanic eruption at Yellowstone caldera, Wyoming

    Science.gov (United States)

    Till, Christy B.; Vazquez, Jorge A.; Boyce, Jeremy W

    2015-01-01

    Rejuvenation of previously intruded silicic magma is an important process leading to effusive rhyolite, which is the most common product of volcanism at calderas with protracted histories of eruption and unrest such as Yellowstone, Long Valley, and Valles, USA. Although orders of magnitude smaller in volume than rare caldera-forming super-eruptions, these relatively frequent effusions of rhyolite are comparable to the largest eruptions of the 20th century and pose a considerable volcanic hazard. However, the physical pathway from rejuvenation to eruption of silicic magma is unclear particularly because the time between reheating of a subvolcanic intrusion and eruption is poorly quantified. This study uses geospeedometry of trace element profiles with nanometer resolution in sanidine crystals to reveal that Yellowstone’s most recent volcanic cycle began when remobilization of a near- or sub-solidus silicic magma occurred less than 10 months prior to eruption, following a 220,000 year period of volcanic repose. Our results reveal a geologically rapid timescale for rejuvenation and effusion of ~3 km3 of high-silica rhyolite lava even after protracted cooling of the subvolcanic system, which is consistent with recent physical modeling that predict a timescale of several years or less. Future renewal of rhyolitic volcanism at Yellowstone is likely to require an energetic intrusion of mafic or silicic magma into the shallow subvolcanic reservoir and could rapidly generate an eruptible rhyolite on timescales similar to those documented here.

  16. Smelters as Analogs for a Volcanic Eruption at Yucca Mountain

    International Nuclear Information System (INIS)

    Ross, Benjamin

    2004-01-01

    The distribution of trace radionuclides in secondary metal smelters provides an analog for spent fuel released from packages during a volcanic eruption. The fraction of the inventory of a radionuclide that would be released into the air in a volcanic eruption is called the dust partitioning factor. In consequence analyses of a volcanic eruption at Yucca Mountain, a value of one has been used for this parameter for all elements. This value is too high for the refractory elements. Reducing the dust partitioning factor for refractory elements to a value equal to the fraction of the magma that becomes ash would still yield conservative estimates of how much radioactivity would be released in an eruption

  17. Tephra from the 1979 soufriere explosive eruption.

    Science.gov (United States)

    Sigurdsson, H

    1982-06-04

    The explosive phase of the 1979 Soufriere eruption produced 37.5 x 10(6) cubic meters (dense-rock equivalent) of tephra, consisting of about 40 percent juvenile basaltic andesite and 60 percent of a nonjuvenile component derived from the fragmentation of the 1971-1972 lava island during phreatomagmatic explosions. The unusually fine grain size, poor sorting, and bimodality of the land deposit are attributed to particle aggregation and the formation of accretionary lapilli in a wet eruption column.

  18. Global Significant Volcanic Eruptions Database, 4360 BC to present

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Significant Volcanic Eruptions Database is a global listing of over 600 eruptions from 4360 BC to the present. A significant eruption is classified as one that...

  19. Classification of Volcanic Eruptions on Io and Earth Using Low-Resolution Remote Sensing Data

    Science.gov (United States)

    Davies, A. G.; Keszthelyi, L. P.

    2005-01-01

    Two bodies in the Solar System exhibit high-temperature active volcanism: Earth and Io. While there are important differences in the eruptions on Earth and Io, in low-spatial-resolution data (corresponding to the bulk of available and foreseeable data of Io), similar styles of effusive and explosive volcanism yield similar thermal flux densities. For example, a square metre of an active pahoehoe flow on Io looks very similar to a square metre of an active pahoehoe flow on Earth. If, from observed thermal emission as a function of wavelength and change in thermal emission with time, the eruption style of an ionian volcano can be constrained, estimates of volumetric fluxes can be made and compared with terrestrial volcanoes using techniques derived for analysing terrestrial remotely-sensed data. In this way we find that ionian volcanoes fundamentally differ from their terrestrial counterparts only in areal extent, with Io volcanoes covering larger areas, with higher volumetric flux. Io outbursts eruptions have enormous implied volumetric fluxes, and may scale with terrestrial flood basalt eruptions. Even with the low-spatial resolution data available it is possible to sometimes constrain and classify eruption style both on Io and Earth from the integrated thermal emission spectrum. Plotting 2 and 5 m fluxes reveals the evolution of individual eruptions of different styles, as well as the relative intensity of eruptions, allowing comparison to be made from individual eruptions on both planets. Analyses like this can be used for interpretation of low-resolution data until the next mission to the jovian system. For a number of Io volcanoes (including Pele, Prometheus, Amirani, Zamama, Culann, Tohil and Tvashtar) we do have high/moderate resolution imagery to aid determination of eruption mode from analyses based only on low spatial-resolution data.

  20. Magmatic Ascent and Eruption Processes on Mercury

    Science.gov (United States)

    Head, J. W.; Wilson, L.

    2018-05-01

    MESSENGER volcanic landform data and information on crustal composition allow us to model the generation, ascent, and eruption of magma; Mercury explosive and effusive eruption processes differ significantly from other terrestrial planetary bodies.

  1. A model of vulcanian explosions

    International Nuclear Information System (INIS)

    Woods, A.W.

    1995-01-01

    We present a model of the initial stages of the explosive eruption of magma from a volcanic conduit as occurs in Vulcanian style eruptions. We assume there is a volatile rich (1-10 wt%) mixture of magma, vaporised groundwater and exsolved volatiles, trapped at high pressure (1-100 atm) just below a plug in a volcanic conduit. If the plug disrupts, there is an explosive eruption in which a rarefaction wave propagates into the conduit allowing the volatile rich mixture to expand and discharge into the atmosphere ahead of the vent. Typically, the explosions are so rapid that coarse grained ejecta (>0.5 mm) do not remain in thermal equilibrium with the gas, and this leads to significantly lower velocities and temperatures than predicted by an equilibrium model. Material may erupt from the vent at speeds of 100-400 m s -1 with an initial mass flux of order 10 7 -10 9 kg s -1 , consistent with video observations of eruptions and measurements of the ballistic dispersal of large clasts. (orig.)

  2. Bromine release during Plinian eruptions along the Central American Volcanic Arc

    Science.gov (United States)

    Hansteen, T. H.; Kutterolf, S.; Appel, K.; Freundt, A.; Perez-Fernandez, W.; Wehrmann, H.

    2010-12-01

    Volcanoes of the Central American Volcanic Arc (CAVA) have produced at least 72 highly explosive eruptions within the last 200 ka. The eruption columns of all these “Plinian” eruptions reached well into the stratosphere such that their released volatiles may have influenced atmospheric chemistry and climate. While previous research has focussed on the sulfur and chlorine emissions during such large eruptions, we here present measurements of the heavy halogen bromine by means of synchrotron radiation induced micro-XRF microanalysis (SR-XRF) with typical detection limits at 0.3 ppm (in Fe rich standard basalt ML3B glass). Spot analyses of pre-eruptive glass inclusions trapped in minerals formed in magma reservoirs were compared with those in matrix glasses of the tephras, which represent the post-eruptive, degassed concentrations. The concentration difference between inclusions and matrix glasses, multiplied by erupted magma mass determined by extensive field mapping, yields estimates of the degassed mass of bromine. Br is probably hundreds of times more effective in destroying ozone than Cl, and can accumulate in the stratosphere over significant time scales. Melt inclusions representing deposits of 22 large eruptions along the CAVA have Br contents between 0.5 and 13 ppm. Br concentrations in matrix glasses are nearly constant at 0.4 to 1.5 ppm. However, Br concentrations and Cl/Br ratios vary along the CAVA. The highest values of Br contents (>8 ppm) and lowest Cl/Br ratios (170 to 600) in melt inclusions occur across central Nicaragua and southern El Salvador, and correlate with bulk-rock compositions of high Ba/La > 85 as well as low La/Yb discharged 700 kilotons of Br. On average, each of the remaining 21 CAVA eruptions studied have discharged c.100 kilotons of bromine. During the past 200 ka, CAVA volcanoes have emitted a cumulative mass of 3.2 Mt of Br through highly explosive eruptions. There are six periods in the past (c. 2ka, 6ka, 25ka, 40ka, 60ka, 75

  3. Eruptive history of the Elysium volcanic province of Mars

    International Nuclear Information System (INIS)

    Tanaka, K.L.; Scott, D.H.

    1987-01-01

    New geologic mapping of the Elysium volcanic province at 1:2,000,000 scale and crater counts provide a basis for describing its overall eruptive history. Four stages are listed and described in order of their relative age. They are also distinguished by eruption style and location. Stage 1: Central volcanism at Hecates and Albor Tholi. Stage 2: Shield and complex volcanism at Elysium Mons and Elysium Fossae. Stage 3: Rille volcanism at Elysium Fossae and Utopia Planitia. Stage 4: Flood lava and pyroclastic eruptions at Hecates Tholus and Elysium Mons. Tectonic and channeling activity in the Elysium region is intimately associated with volcanism. Recent work indicates that isostatic uplift of Tharsis, loading by Elysium Mons, and flexural uplift of the Elysium rise produced the stresses responsible for the fracturing and wrinkle-ridge formation in the region. Coeval faulting and channel formation almost certainly occurred in the pertinent areas in Stages 2 to 4. Older faults east of the lava flows and channels on Hecates Tholus may be coeval with Stage 1

  4. [Effects of volcanic eruptions on environment and health].

    Science.gov (United States)

    Zuskin, Eugenija; Mustajbegović, Jadranka; Doko Jelinić, Jagoda; Pucarin-Cvetković, Jasna; Milosević, Milan

    2007-12-01

    Volcanoes pose a threat to almost half a billion people; today there are approximately 500 active volcanoes on Earth, and every year there are 10 to 40 volcanic eruptions. Volcanic eruptions produce hazardous effects for the environment, climate, and the health of the exposed persons, and are associated with the deterioration of social and economic conditions. Along with magma and steam (H2O), the following gases surface in the environment: carbon dioxide (CO2) and sulphur dioxide (SO2), carbon monoxide (CO), hydrogen sulphide (H2S), carbon sulphide (CS), carbon disulfide (CS2), hydrogen chloride (HCl), hydrogen (H2), methane (CH4), hydrogen fluoride (HF), hydrogen bromide (HBr) and various organic compounds, as well as heavy metals (mercury, lead, gold).Their unfavourable effects depend on the distance from a volcano, on magma viscosity, and on gas concentrations. The hazards closer to the volcano include pyroclastic flows, flows of mud, gases and steam, earthquakes, blasts of air, and tsunamis. Among the hazards in distant areas are the effects of toxic volcanic ashes and problems of the respiratory system, eyes and skin, as well as psychological effects, injuries, transport and communication problems, waste disposal and water supplies issues, collapse of buildings and power outage. Further effects are the deterioration of water quality, fewer periods of rain, crop damages, and the destruction of vegetation. During volcanic eruptions and their immediate aftermath, increased respiratory system morbidity has been observed as well as mortality among those affected by volcanic eruptions. Unfavourable health effects could partly be prevented by timely application of safety measures.

  5. Impact of major volcanic eruptions on stratospheric water vapour

    Directory of Open Access Journals (Sweden)

    M. Löffler

    2016-05-01

    Full Text Available Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry–climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg – Modular Earth Submodel System (ECHAM/MESSy Atmospheric Chemistry (EMAC model, performed within the Earth System Chemistry integrated Modelling (ESCiMo project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño–Southern Oscillation (ENSO are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  6. Sea surface temperature and sea ice variability in the subpolar North Atlantic from explosive volcanism of the late thirteenth century

    DEFF Research Database (Denmark)

    Sicre, M. -A.; Khodri, M.; Mignot, J.

    2013-01-01

    In this study, we use IP25 and alkenone biomarker proxies to document the subdecadal variations of sea ice and sea surface temperature in the subpolar North Atlantic induced by the decadally paced explosive tropical volcanic eruptions of the second half of the thirteenth century. The short-and long......-term evolutions of both variables were investigated by cross analysis with a simulation of the IPSL-CM5A LR model. Our results show short-term ocean cooling and sea ice expansion in response to each volcanic eruption. They also highlight that the long response time of the ocean leads to cumulative surface cooling...... and subsurface heat buildup due to sea ice capping. As volcanic forcing relaxes, the surface ocean rapidly warms, likely amplified by subsurface heat, and remains almost ice free for several decades....

  7. Divergent El Niño responses to volcanic eruptions at different latitudes over the past millennium

    Science.gov (United States)

    Liu, Fei; Li, Jinbao; Wang, Bin; Liu, Jian; Li, Tim; Huang, Gang; Wang, Zhiyuan

    2017-08-01

    Detection and attribution of El Niño-Southern Oscillation (ENSO) responses to radiative forcing perturbation are critical for predicting the future change of ENSO under global warming. One of such forcing perturbation is the volcanic eruption. Our understanding of the responses of ENSO system to explosive tropical volcanic eruptions remains controversial, and we know little about the responses to high-latitude eruptions. Here, we synthesize proxy-based ENSO reconstructions, to show that there exist an El Niño-like response to the Northern Hemisphere (NH) and tropical eruptions and a La Niña-like response to the Southern Hemisphere (SH) eruptions over the past millennium. Our climate model simulation results show good agreement with the proxy records. The simulation reveals that due to different meridional thermal contrasts, the westerly wind anomalies can be excited over the tropical Pacific to the south of, at, or to the north of the equator in the first boreal winter after the NH, tropical, or SH eruptions, respectively. Thus, the eastern-Pacific El Niño can develop and peak in the second winter after the NH and tropical eruptions via the Bjerknes feedback. The model simulation only shows a central-Pacific El Niño-like response to the SH eruptions. The reason is that the anticyclonic wind anomaly associated with the SH eruption-induced southeast Pacific cooling will excite westward current anomalies and prevent the development of eastern-Pacific El Niño-like anomaly. These divergent responses to eruptions at different latitudes and in different hemispheres underline the sensitivity of the ENSO system to the spatial structure of radiative disturbances in the atmosphere.

  8. Hail formation triggers rapid ash aggregation in volcanic plumes.

    Science.gov (United States)

    Van Eaton, Alexa R; Mastin, Larry G; Herzog, Michael; Schwaiger, Hans F; Schneider, David J; Wallace, Kristi L; Clarke, Amanda B

    2015-08-03

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized 'wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits.

  9. Diverse Eruptive Activity Revealed by Acoustic and Electromagnetic Observations of the 14 July 2013 Intense Vulcanian Eruption of Tungurahua Volcano, Ecuador

    Science.gov (United States)

    Anderson, J. F.; Johnson, J. B.; Steele, A. L.; Ruiz, M. C.; Brand, B. D.

    2018-04-01

    During the powerful July 2013 eruption of Tungurahua volcano, Ecuador, we recorded exceptionally high amplitude, long-period infrasound (1,600-Pa peak-to-peak amplitude, 5.5-s period) on sensors within 2 km of the vent alongside electromagnetic signals from volcanic lightning serendipitously captured as interference. This explosion was one of Tungurahua's most powerful vulcanian eruptions since recent activity began in 1999, and its acoustic wave is among the most powerful volcanic infrasound ever recorded anywhere. We use these data to quantify erupted volume from the main explosion and to classify postexplosive degassing into distinct emission styles. Additionally, we demonstrate a highly effective method of recording lightning-related electromagnetic signals alongside infrasound. Detailed chronologies of powerful vulcanian eruptions are rare; this study demonstrates that diverse eruptive processes can occur in such eruptions and that near-vent infrasound and electromagnetic data can elucidate them.

  10. Robust satellite techniques for monitoring volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Pergola, N.; Pietrapertosa, C. [Consiglio Nazionale delle Ricerche, Istituto di Metodologie Avanzate, Tito Scalo, PZ (Italy); Lacava, T.; Tramutoli, V. [Potenza Universita' della Basilicata, Potenza (Italy). Dipt. di Ingegneria e Fisica dell' Ambiente

    2001-04-01

    Through this paper the robust approach to monitoring volcanic aerosols by satellite is applied to an extended set of events affecting Stromboli and Etna volcanoes to assess its performance in automated detection of eruptive clouds and in monitoring pre-eruptive emission activities. Using only NOAA/AVHRR data at hand (without any specific atmospheric model or ancillary ground-based measurements) the proposed method automatically discriminates meteorological from eruptive volcanic clouds and, in several cases, identified pre-eruptive anomalies in the emission rates not identified by traditional methods. The main merit of this approach is its effectiveness in recognising field anomalies also in the presence of a highly variable surface background as well as its intrinsic exportability not only on different geographic areas but also on different satellite instrumental packages. In particular, the possibility to extend the proposed method to the incoming new MSG/SEVIRI satellite package (which is going to fly next year) with its improved spectral (specific bands for SO{sub 2}) and temporal (up to 15 min) resolutions has been evaluated representing the natural continuation of this work.

  11. The onset of the volcanism in the Ciomadul Volcanic Dome Complex (Eastern Carpathians): Eruption chronology and magma type variation

    Science.gov (United States)

    Molnár, Kata; Harangi, Szabolcs; Lukács, Réka; Dunkl, István; Schmitt, Axel K.; Kiss, Balázs; Garamhegyi, Tamás; Seghedi, Ioan

    2018-04-01

    Combined zircon U-Th-Pb and (U-Th)/He dating was applied to refine the eruption chronology of the last 2 Myr for the andesitic and dacitic Pilişca volcano and Ciomadul Volcanic Dome Complex (CVDC), the youngest volcanic area of the Carpathian-Pannonian region, located in the southernmost Harghita, eastern-central Europe. The proposed eruption ages, which are supported also by the youngest zircon crystallization ages, are much younger than the previously determined K/Ar ages. By dating every known eruption center in the CVDC, repose times between eruptive events were also accurately determined. Eruption of the andesite at Murgul Mare (1865 ± 87 ka) and dacite of the Pilişca volcanic complex (1640 ± 37 ka) terminated an earlier pulse of volcanic activity within the southernmost Harghita region, west of the Olt valley. This was followed by the onset of the volcanism in the CVDC, which occurred after several 100s kyr of eruptive quiescence. At ca. 1 Ma a significant change in the composition of erupted magma occurred from medium-K calc-alkaline compositions to high-K dacitic (Baba-Laposa dome at 942 ± 65 ka) and shoshonitic magmas (Malnaş and Bixad domes; 964 ± 46 ka and 907 ± 66 ka, respectively). Noteworthy, eruptions of magmas with distinct chemical compositions occurred within a restricted area, a few km from one another. These oldest lava domes of the CVDC form a NNE-SSW striking tectonic lineament along the Olt valley. Following a brief (ca. 100 kyr) hiatus, extrusion of high-K andesitic magma continued at Dealul Mare (842 ± 53 ka). After another ca. 200 kyr period of quiescence two high-K dacitic lava domes extruded (Puturosul: 642 ± 44 ka and Balvanyos: 583 ± 30 ka). The Turnul Apor lava extrusion occurred after a ca. 200 kyr repose time (at 344 ± 33 ka), whereas formation of the Haramul Mic lava dome (154 ± 16 ka) represents the onset of the development of the prominent Ciomadul volcano. The accurate determination of eruption dates shows that the

  12. Geochemistry of volcanic ashes, thermal waters and gases ejected during the 1979 eruption of Ontake Volcano, Japan

    International Nuclear Information System (INIS)

    Sugiura, Tumomu; Sugisaki, Ryuichi; Mizutani, Yoshihiko; Kusakabe, Minoru.

    1980-01-01

    Ontake Volcano suddenly began to erupt on its south-western flank near the summit at 05sup(h)20sup(m) on Oct. 28, 1979, forming several new craters and ejecting large amounts of volcanic ash and steam. Up to that time, the volcano had been believed to be dormant, though there were weak geothermal activities at a part of the south-western flank of the volcano, Jigokudani. This paper reports some results obtained by preliminary examination of volcanic ashes, thermal waters and gases collected on and around Ontake Volcano during the early stage of eruptive activity. The volcanic ashes are homogeneous in chemical and mineralogical compositions, and similar in chemical composition to the pre-historic volcanic ashes. The ashes contain pyrite, anhydrite, cristobalite and clay minerals. The sulfur isotopic equilibrium temperature is estimated to be about 400 0 C for pyrite-anhydrite pairs in the volcanic ashes. The estimated temperature is apparently too high for the temperature of phreatic explosion. The interpretation of this isotopic data remains unsettled. The thermal waters collected from the boiling pools in craters are enriched in D and 18 O. The isotopic enrichment is probably caused by evaporation of water at the surface of boiling pool. The hydrogen and oxygen isotopic data also suggest that spring waters issuing around Ontake Volcano are meteoric in origin. Nigorigo Hot Spring, about 4 km north-west of Ontake Volcano, showed significant increase in the concentrations of major dissolved chemical components soon after the eruption, but since then no significant change in chemical and isotopic composition has been observed. (author)

  13. The Climate and Human Impacts of Major Explosive Volcanism AD670-730, A Multi-proxy Assessment

    Science.gov (United States)

    Gao, C.; Ludlow, F.

    2013-12-01

    Chronologically secure volcanic events can provide an important tool to improve ice core dating as well as our understanding of volcano-climate responses. However, there is a substantial lack of reference horizons for ice-core dating during the first millennium, excepting the Taupo (New Zealand, AD186×10) and Vesuvius (Italy, AD 79) eruptions. In this exploratory case-study, we use a total of 20 ice core records, 9 from the Arctic and 11 from the Antarctic, together with historical records to examine the occurrence and climatic impact of explosive volcanism, AD 670-730. Sulfate signals comparable in magnitude to the sizeable 1815 Tambora eruption are detected in all of the ice-core time series, with different cores attributing the timing of eruptions to AD 676×2, 688×2, or 700×2, respectively. Historical records of widespread frost damage, anomalously warm winters, drought, famine and mortality from Chinese, European and Middle Eastern chronicles suggest substantial climate and social perturbations during AD 677-685 and AD 699-709. The distinctive double-peak feature seen in the majority of the volcanic signals from both poles at AD 676×2 and AD 688×2 suggests that these signals may belong to the same eruption, with those cores dating the signals to c.AD 676 generally considered to have a more precise chronology. Combining the evidence from natural and historical anthropogenic records and taking into account uncertainties (e.g. resolution, dating accuracy) associated with individual ice cores, we propose that a (most-likely) low-latitude eruption took place around AD676, followed by another possible eruption around AD700, identifiable by the significant acidity in polar ice-caps and historical documents. Unique historical observations of 'blood rain' in Ireland (often associated with Saharan sand deposition, but also plausibly with iron and manganese-rich tephra falls) also suggest a high-latitude eruption (possibly Icelandic) at AD693, corresponding to a

  14. Decade of stratospheric sulfate measurements compared with observations of volcanic eruptions

    International Nuclear Information System (INIS)

    Sedlacek, W.A.; Mroz, E.J.; Lazrus, A.L.; Gandrud, B.W.

    1983-01-01

    Sulfate aerosol concentrations in the stratosphere have been measured for 11 years (1971--1981) using portions of filters collected by the Department of Energy's High Altitude Sampling Program. Data collected seasonally at altitudes between 13 km and 20 km spanning latitudes from 75 0 N to 51 0 S are reported. These data are compared with the reported altitudes of volcanic eruption plumes during the same decade. From this comparison it is concluded that (1) several unreported volcanic eruptions or eruptions to altitudes higher than reported did occur during the decade, (2) the e-fold removal time for sulfate aerosol from the stratosphere following the eruption of Volcan Fuego in 1974 was 11.2 +- 1.2 months, (3) the volcanic contribution to the average stratospheric sulfate concentration over the decade was greater than 50%, and (4) there may be evidence for an anthropogenic contribution to stratospheric sulfate that increases at the rate of 6 to 8% per year

  15. An Estimation of the Likelihood of Significant Eruptions During 2000-2009 Using Poisson Statistics on Two-Point Moving Averages of the Volcanic Time Series

    Science.gov (United States)

    Wilson, Robert M.

    2001-01-01

    Since 1750, the number of cataclysmic volcanic eruptions (volcanic explosivity index (VEI)>=4) per decade spans 2-11, with 96 percent located in the tropics and extra-tropical Northern Hemisphere. A two-point moving average of the volcanic time series has higher values since the 1860's than before, being 8.00 in the 1910's (the highest value) and 6.50 in the 1980's, the highest since the 1910's peak. Because of the usual behavior of the first difference of the two-point moving averages, one infers that its value for the 1990's will measure approximately 6.50 +/- 1, implying that approximately 7 +/- 4 cataclysmic volcanic eruptions should be expected during the present decade (2000-2009). Because cataclysmic volcanic eruptions (especially those having VEI>=5) nearly always have been associated with short-term episodes of global cooling, the occurrence of even one might confuse our ability to assess the effects of global warming. Poisson probability distributions reveal that the probability of one or more events with a VEI>=4 within the next ten years is >99 percent. It is approximately 49 percent for an event with a VEI>=5, and 18 percent for an event with a VEI>=6. Hence, the likelihood that a climatically significant volcanic eruption will occur within the next ten years appears reasonably high.

  16. Experimental modelling of fragmentation applied to volcanic explosions

    Science.gov (United States)

    Haug, Øystein Thordén; Galland, Olivier; Gisler, Galen R.

    2013-12-01

    Explosions during volcanic eruptions cause fragmentation of magma and host rock, resulting in fragments with sizes ranging from boulders to fine ash. The products can be described by fragment size distributions (FSD), which commonly follow power laws with exponent D. The processes that lead to power-law distributions and the physical parameters that control D remain unknown. We developed a quantitative experimental procedure to study the physics of the fragmentation process through time. The apparatus consists of a Hele-Shaw cell containing a layer of cohesive silica flour that is fragmented by a rapid injection of pressurized air. The evolving fragmentation of the flour is monitored with a high-speed camera, and the images are analysed to obtain the evolution of the number of fragments (N), their average size (A), and the FSD. Using the results from our image-analysis procedure, we find transient empirical laws for N, A and the exponent D of the power-law FSD as functions of the initial air pressure. We show that our experimental procedure is a promising tool for unravelling the complex physics of fragmentation during phreatomagmatic and phreatic eruptions.

  17. Improving global detection of volcanic eruptions using the Ozone Monitoring Instrument (OMI

    Directory of Open Access Journals (Sweden)

    V. J. B. Flower

    2016-11-01

    Full Text Available Volcanic eruptions pose an ever-present threat to human populations around the globe, but many active volcanoes remain poorly monitored. In regions where ground-based monitoring is present the effects of volcanic eruptions can be moderated through observational alerts to both local populations and service providers, such as air traffic control. However, in regions where volcano monitoring is limited satellite-based remote sensing provides a global data source that can be utilised to provide near-real-time identification of volcanic activity. This paper details a volcanic plume detection method capable of identifying smaller eruptions than is currently feasible, which could potentially be incorporated into automated volcanic alert systems. This method utilises daily, global observations of sulfur dioxide (SO2 by the Ozone Monitoring Instrument (OMI on NASA's Aura satellite. Following identification and classification of known volcanic eruptions in 2005–2009, the OMI SO2 data, analysed using a logistic regression analysis, permitted the correct classification of volcanic events with an overall accuracy of over 80 %. Accurate volcanic plume identification was possible when lower-tropospheric SO2 loading exceeded ∼ 400 t. The accuracy and minimal user input requirements of the developed procedure provide a basis for incorporation into automated SO2 alert systems.

  18. A submarine volcanic eruption leads to a novel microbial habitat.

    Science.gov (United States)

    Danovaro, Roberto; Canals, Miquel; Tangherlini, Michael; Dell'Anno, Antonio; Gambi, Cristina; Lastras, Galderic; Amblas, David; Sanchez-Vidal, Anna; Frigola, Jaime; Calafat, Antoni M; Pedrosa-Pàmies, Rut; Rivera, Jesus; Rayo, Xavier; Corinaldesi, Cinzia

    2017-04-24

    Submarine volcanic eruptions are major catastrophic events that allow investigation of the colonization mechanisms of newly formed seabed. We explored the seafloor after the eruption of the Tagoro submarine volcano off El Hierro Island, Canary Archipelago. Near the summit of the volcanic cone, at about 130 m depth, we found massive mats of long, white filaments that we named Venus's hair. Microscopic and molecular analyses revealed that these filaments are made of bacterial trichomes enveloped within a sheath and colonized by epibiotic bacteria. Metagenomic analyses of the filaments identified a new genus and species of the order Thiotrichales, Thiolava veneris. Venus's hair shows an unprecedented array of metabolic pathways, spanning from the exploitation of organic and inorganic carbon released by volcanic degassing to the uptake of sulfur and nitrogen compounds. This unique metabolic plasticity provides key competitive advantages for the colonization of the new habitat created by the submarine eruption. A specialized and highly diverse food web thrives on the complex three-dimensional habitat formed by these microorganisms, providing evidence that Venus's hair can drive the restart of biological systems after submarine volcanic eruptions.

  19. Volcanism and associated hazards: the Andean perspective

    Science.gov (United States)

    Tilling, R. I.

    2009-12-01

    Andean volcanism occurs within the Andean Volcanic Arc (AVA), which is the product of subduction of the Nazca Plate and Antarctica Plates beneath the South America Plate. The AVA is Earth's longest but discontinuous continental-margin volcanic arc, which consists of four distinct segments: Northern Volcanic Zone, Central Volcanic Zone, Southern Volcanic Zone, and Austral Volcanic Zone. These segments are separated by volcanically inactive gaps that are inferred to indicate regions where the dips of the subducting plates are too shallow to favor the magma generation needed to sustain volcanism. The Andes host more volcanoes that have been active during the Holocene (past 10 000 years) than any other volcanic region in the world, as well as giant caldera systems that have produced 6 of the 47 largest explosive eruptions (so-called "super eruptions") recognized worldwide that have occurred from the Ordovician to the Pleistocene. The Andean region's most powerful historical explosive eruption occurred in 1600 at Huaynaputina Volcano (Peru). The impacts of this event, whose eruptive volume exceeded 11 km3, were widespread, with distal ashfall reported at distances >1000 km away. Despite the huge size of the Huaynaputina eruption, human fatalities from hazardous processes (pyroclastic flows, ashfalls, volcanogenic earthquakes, and lahars) were comparatively small owing to the low population density at the time. In contrast, lahars generated by a much smaller eruption (Colombia) killed about 25 000 people - the worst volcanic disaster in the Andean region as well as the second worst in the world in the 20th century. The Ruiz tragedy has been attributed largely to ineffective communications of hazards information and indecisiveness by government officials, rather than any major deficiencies in scientific data. Ruiz's disastrous outcome, however, together with responses to subsequent hazardous eruptions in Chile, Colombia, Ecuador, and Peru has spurred significant

  20. Eruption mass estimation using infrasound waveform inversion and ash and gas measurements: Evaluation at Sakurajima Volcano, Japan [Comparison of eruption masses at Sakurajima Volcano, Japan calculated by infrasound waveform inversion and ground-based sampling

    International Nuclear Information System (INIS)

    Fee, David; Izbekov, Pavel; Kim, Keehoon; Yokoo, Akihiko; Lopez, Taryn

    2017-01-01

    Eruption mass and mass flow rate are critical parameters for determining the aerial extent and hazard of volcanic emissions. Infrasound waveform inversion is a promising technique to quantify volcanic emissions. Although topography may substantially alter the infrasound waveform as it propagates, advances in wave propagation modeling and station coverage permit robust inversion of infrasound data from volcanic explosions. The inversion can estimate eruption mass flow rate and total eruption mass if the flow density is known. However, infrasound-based eruption flow rates and mass estimates have yet to be validated against independent measurements, and numerical modeling has only recently been applied to the inversion technique. Furthermore we present a robust full-waveform acoustic inversion method, and use it to calculate eruption flow rates and masses from 49 explosions from Sakurajima Volcano, Japan.

  1. Complex explosive volcanic activity on the Moon within Oppenheimer crater, Icarus

    Science.gov (United States)

    Bennett, Kristen A; Horgan, Briony H N; Gaddis, Lisa R.; Greenhagen, Benjamin T; Allen, Carlton C.; Hayne, Paul O; Bell, James F III; Paige, David A.

    2016-01-01

    Oppenheimer Crater is a floor-fractured crater located within the South Pole-Aitken basin on the Moon, and exhibits more than a dozen localized pyroclastic deposits associated with the fractures. Localized pyroclastic volcanism on the Moon is thought to form as a result of intermittently explosive Vulcanian eruptions under low effusion rates, in contrast to the higher-effusion rate, Hawaiian-style fire fountaining inferred to form larger regional deposits. We use Lunar Reconnaissance Orbiter Camera images and Diviner Radiometer mid-infrared data, Chandrayaan-1 orbiter Moon Mineralogy Mapper near-infrared spectra, and Clementine orbiter Ultraviolet/Visible camera images to test the hypothesis that the pyroclastic deposits in Oppenheimer crater were emplaced via Vulcanian activity by constraining their composition and mineralogy. Mineralogically, we find that the deposits are variable mixtures of orthopyroxene and minor clinopyroxene sourced from the crater floor, juvenile clinopyroxene, and juvenile iron-rich glass, and that the mineralogy of the pyroclastics varies both across the Oppenheimer deposits as a whole and within individual deposits. We observe similar variability in the inferred iron content of pyroclastic glasses, and note in particular that the northwest deposit, associated with Oppenheimer U crater, contains the most iron-rich volcanic glass thus far identified on the Moon, which could be a useful future resource. We propose that this variability in mineralogy indicates variability in eruption style, and that it cannot be explained by a simple Vulcanian eruption. A Vulcanian eruption should cause significant country rock to be incorporated into the pyroclastic deposit; however, large areas within many of the deposits exhibit spectra consistent with high abundances of juvenile phases and very little floor material. Thus, we propose that at least the most recent portion of these deposits must have erupted via a Strombolian or more continuous fire

  2. Remote observations of eruptive clouds and surface thermal activity during the 2009 eruption of Redoubt volcano

    Science.gov (United States)

    Webley, P. W.; Lopez, T. M.; Ekstrand, A. L.; Dean, K. G.; Rinkleff, P.; Dehn, J.; Cahill, C. F.; Wessels, R. L.; Bailey, J. E.; Izbekov, P.; Worden, A.

    2013-06-01

    Volcanoes often erupt explosively and generate a variety of hazards including volcanic ash clouds and gaseous plumes. These clouds and plumes are a significant hazard to the aviation industry and the ground features can be a major hazard to local communities. Here, we provide a chronology of the 2009 Redoubt Volcano eruption using frequent, low spatial resolution thermal infrared (TIR), mid-infrared (MIR) and ultraviolet (UV) satellite remote sensing data. The first explosion of the 2009 eruption of Redoubt Volcano occurred on March 15, 2009 (UTC) and was followed by a series of magmatic explosive events starting on March 23 (UTC). From March 23-April 4 2009, satellites imaged at least 19 separate explosive events that sent ash clouds up to 18 km above sea level (ASL) that dispersed ash across the Cook Inlet region. In this manuscript, we provide an overview of the ash clouds and plumes from the 19 explosive events, detailing their cloud-top heights and discussing the variations in infrared absorption signals. We show that the timing of the TIR data relative to the event end time was critical for inferring the TIR derived height and true cloud top height. The ash clouds were high in water content, likely in the form of ice, which masked the negative TIR brightness temperature difference (BTD) signal typically used for volcanic ash detection. The analysis shown here illustrates the utility of remote sensing data during volcanic crises to measure critical real-time parameters, such as cloud-top heights, changes in ground-based thermal activity, and plume/cloud location.

  3. Geomorphic consequences of volcanic eruptions in Alaska: A review

    Science.gov (United States)

    Waythomas, Christopher F.

    2015-01-01

    Eruptions of Alaska volcanoes have significant and sometimes profound geomorphic consequences on surrounding landscapes and ecosystems. The effects of eruptions on the landscape can range from complete burial of surface vegetation and preexisting topography to subtle, short-term perturbations of geomorphic and ecological systems. In some cases, an eruption will allow for new landscapes to form in response to the accumulation and erosion of recently deposited volcaniclastic material. In other cases, the geomorphic response to a major eruptive event may set in motion a series of landscape changes that could take centuries to millennia to be realized. The effects of volcanic eruptions on the landscape and how these effects influence surface processes has not been a specific focus of most studies concerned with the physical volcanology of Alaska volcanoes. Thus, what is needed is a review of eruptive activity in Alaska in the context of how this activity influences the geomorphology of affected areas. To illustrate the relationship between geomorphology and volcanic activity in Alaska, several eruptions and their geomorphic impacts will be reviewed. These eruptions include the 1912 Novarupta–Katmai eruption, the 1989–1990 and 2009 eruptions of Redoubt volcano, the 2008 eruption of Kasatochi volcano, and the recent historical eruptions of Pavlof volcano. The geomorphic consequences of eruptive activity associated with these eruptions are described, and where possible, information about surface processes, rates of landscape change, and the temporal and spatial scale of impacts are discussed.A common feature of volcanoes in Alaska is their extensive cover of glacier ice, seasonal snow, or both. As a result, the generation of meltwater and a variety of sediment–water mass flows, including debris-flow lahars, hyperconcentrated-flow lahars, and sediment-laden water floods, are typical outcomes of most types of eruptive activity. Occasionally, such flows can be quite

  4. Discovering Parameters for Ancient Mars Atmospheric Profiles by Modeling Volcanic Eruptions

    Science.gov (United States)

    Meyer, A.; Clarke, A. B.; Van Eaton, A. R.; Mastin, L. G.

    2017-12-01

    Evidence of explosive volcanic deposits on Mars motivates questions about the behavior of eruption plumes in the Ancient and current Martian atmosphere. Early modeling studies suggested that Martian plumes may rise significantly higher than their terrestrial equivalents (Wilson and Head, 1994, Rev. Geophys., 32, 221-263). We revisit the issue using a steady-state 1-D model of volcanic plumes (Plumeria: Mastin, 2014, JGR, doi:10.1002/2013JD020604) along with a range of reasonable temperature and pressures. The model assumes perfect coupling of particles with the gas phase in the plume, and Stokes number analysis indicates that this is a reasonable assumption for particle diameters less than 5 mm to 1 micron. Our estimates of Knudsen numbers support the continuum assumption. The tested atmospheric profiles include an estimate of current Martian atmosphere based on data from voyager mission (Seif, A., Kirk, D.B., (1977) Geophys., 82,4364-4378), a modern Earth-like atmosphere, and several other scenarios based on variable tropopause heights and near-surface atmospheric density estimates from the literature. We simulated plume heights using mass eruption rates (MER) ranging from 1 x 103 to 1 x 1010 kg s-1 to create a series of new theoretical MER-plume height scaling relationships that may be useful for considering plume injection heights, climate impacts, and global-scale ash dispersal patterns in Mars' recent and ancient geological past. Our results show that volcanic plumes in a modern Martian atmosphere may rise up to three times higher than those on Earth. We also find that the modern Mars atmosphere does not allow eruption columns to collapse, and thus does not allow for the formation of column-collapse pyroclastic density currents, a phenomenon thought to have occurred in Mars' past based on geological observations. The atmospheric density at the surface, and especially the height of the tropopause, affect the slope of the MER-plume height curve and control

  5. Large explosive basaltic eruptions at Katla volcano, Iceland: Fragmentation, grain size and eruption dynamics

    Science.gov (United States)

    Schmith, Johanne; Höskuldsson, Ármann; Holm, Paul Martin; Larsen, Guðrún

    2018-04-01

    Katla volcano in Iceland produces hazardous large explosive basaltic eruptions on a regular basis, but very little quantitative data for future hazard assessments exist. Here details on fragmentation mechanism and eruption dynamics are derived from a study of deposit stratigraphy with detailed granulometry and grain morphology analysis, granulometric modeling, componentry and the new quantitative regularity index model of fragmentation mechanism. We show that magma/water interaction is important in the ash generation process, but to a variable extent. By investigating the large explosive basaltic eruptions from 1755 and 1625, we document that eruptions of similar size and magma geochemistry can have very different fragmentation dynamics. Our models show that fragmentation in the 1755 eruption was a combination of magmatic degassing and magma/water-interaction with the most magma/water-interaction at the beginning of the eruption. The fragmentation of the 1625 eruption was initially also a combination of both magmatic and phreatomagmatic processes, but magma/water-interaction diminished progressively during the later stages of the eruption. However, intense magma/water interaction was reintroduced during the final stages of the eruption dominating the fine fragmentation at the end. This detailed study of fragmentation changes documents that subglacial eruptions have highly variable interaction with the melt water showing that the amount and access to melt water changes significantly during eruptions. While it is often difficult to reconstruct the progression of eruptions that have no quantitative observational record, this study shows that integrating field observations and granulometry with the new regularity index can form a coherent model of eruption evolution.

  6. Volcanic activity in the Acambay Graben: a < 25 Ka subplinian eruption from the Temascalcingo volcano and implications for volcanic hazard.

    Science.gov (United States)

    Pedrazzi, Dario; Aguirre Díaz, Gerardo; Sunyé Puchol, Ivan; Bartolini, Stefania; Geyer, Adelina

    2016-04-01

    The Trans-Mexican Volcanic Belt (TMVB) contains a large number of stratovolcanoes, some well-known, as Popocatepetl, Iztaccihuatl, Nevado de Toluca, or Colima and many others of more modest dimensions that are not well known but constitute the majority in the TMVB. Such volcanoes are, for example, Tequila, San Juan, Sangangüey, Cerro Culiacán, Cerro Grande, El Zamorano, La Joya, Palo Huerfano, Jocotitlán, Altamirano and Temascalcingo, among many others. The Temascalcingo volcano (TV) is an andesitic-dacitic stratovolcano located in the Trans-Mexican Volcanic Belt (TMVB) at the eastern part of the Acambay Graben (northwest portion of Estado de México). The TV is composed mainly by dacitic, porphyritic lavas, block and ash deposits and subordinate pumice fall deposits and ignimbrites (Roldán-Quintana et al., 2011). The volcanic structure includes a summit caldera that has a rectangular shape, 2.5×3.5 km, with the largest side oriented E-W, parallel to major normal faults affecting the edifice. The San Mateo Pumice eruption is one of the greatest paroxysmal episodes of this volcano with pumice deposits mainly exposed at the scarp of the Acambay-Tixmadeje fault and at the northern and northeastern flanks of TV. It overlies a paleosol dated at 25 Ka. A NE-trending dispersion was obtained from field data covering an area of at least 80 km2. These deposits overlie older lava flows and mud flows and are discontinuously covered and eroded by younger reworked deposits of Temascalcingo volcano. This event represents a highly explosive phase that generated a relatively thick and widespread pumice fallout deposit that may occur again in future eruptions. A similar eruption today would have a significantly impact in the region, overall due to the fact that there has been no systematic assessment of the volcanic hazard in any of the studies that have been conducted so far in the area. So, this is a pending and urgent subject that must be tackled without delay. Financed by

  7. Experimental constraints on forecasting the location of volcanic eruptions from pre-eruptive surface deformation

    Science.gov (United States)

    Guldstrand, Frank; Galland, Olivier; Hallot, Erwan; Burchardt, Steffi

    2018-02-01

    Volcanic eruptions pose a threat to lives and property when volcano flanks and surroundings are densely populated. The local impact of an eruption depends firstly on its location, whether it occurs near a volcano summit, or down on the flanks. Then forecasting, with a defined accuracy, the location of a potential, imminent eruption would significantly improve the assessment and mitigation of volcanic hazards. Currently, the conventional volcano monitoring methods based on the analysis of surface deformation assesses whether a volcano may erupt but are not implemented to locate imminent eruptions in real time. Here we show how surface deformation induced by ascending eruptive feeders can be used to forecast the eruption location through a simple geometrical analysis. Our analysis builds on the results of 33 scaled laboratory experiments simulating magma intrusions in a brittle crust, during which the intrusion-induced surface deformation was systematically monitored at high spatial and temporal resolution. In all the experiments, surface deformation preceding the eruptions resulted in systematic uplift, regardless of the intrusion shape. The analysis of the surface deformation patterns leads to the definition of a vector between the centre of the uplifted zone and the point of maximum uplift, which systematically acted as a precursor to the eruption’s location. The temporal evolution of this vector indicated the direction in which the subsequent eruption would occur and ultimately the location itself, irrespective of the feeder shapes. Our findings represent a new approach on how surface deformation on active volcanoes could be analysed and used prior to an eruption with a real potential to improve hazard mitigation.

  8. Establishing the chronology of explosive super-eruptions in the record of the Yellowstone hotspot track (Invited)

    Science.gov (United States)

    Reichow, M. K.; Branney, M. J.; Knott, T.; Storey, M.; Finn, D. R.; Coe, R. S.; McCurry, M. O.; Bonnichsen, B.

    2013-12-01

    Although caldera-forming super-eruptions (≥450 km3) are amongst the most catastrophic events to affect the Earth's surface, we do not know how often they occur globally, and how large the individual eruptions are. This is because, with a few exceptions, the vast volcanic stratigraphies at many large igneous provinces have not yet been resolved in sufficient detail to isolate and quantify the individual events. Much progress is needed on this if we are to verify the past and potential environmental and climatic impact of these super-eruptions. We are reconstructing the history of catastrophic eruptions in the youngest and best-preserved large intra continental volcanic province worldwide, by resolving the vast Miocene rhyolitic volcanic stratigraphy of the central Snake River Plain, Idaho. Large explosive eruptions, several previously un-documented, generated an unusually hot (searing-hot rhyolitic glass 5-100 m thick. The density currents also generated thermal atmospheric plumes (phoenix clouds) that dispersed 100's to 1000's of km3 rhyolitic ash 1000's of km across continental USA and beyond. High-precision chronology and quantification of the erupted volumes and the frequency of eruptions is needed to assess the likely significant wider impact of these events on climate and ecosystems. To determine the size of the individual events, we have been correlating each soil-bounded eruption-unit regionally. This is hindered by their abundance, and closely similar appearance within monotonous successions exposed in distant (50-200 km) mountain ranges. To tackle this we are employing a combination of tools to isolate and correlate individual layers: field logging coupled with characterization of the whole-rock, glass, and mineral chemistries, together with high-precision 40Ar/39Ar dating, U-Pb zircon dating, with detailed paleomagnetic characterisation of polarities and secular variations. This multidisciplinary approach is yielding robust ';fingerprints'; to

  9. Geochemistry and volatile content of magmas feeding explosive eruptions at Telica volcano (Nicaragua)

    Science.gov (United States)

    Robidoux, P.; Rotolo, S. G.; Aiuppa, A.; Lanzo, G.; Hauri, E. H.

    2017-07-01

    Telica volcano, in north-west Nicaragua, is a young stratovolcano of intermediate magma composition producing frequent Vulcanian to phreatic explosive eruptions. The Telica stratigraphic record also includes examples of (pre)historic sub-Plinian activity. To refine our knowledge of this very active volcano, we analyzed major element composition and volatile content of melt inclusions from some stratigraphically significant Telica tephra deposits. These include: (1) the Scoria Telica Superior (STS) deposit (2000 to 200 years Before Present; Volcanic Explosive Index, VEI, of 2-3) and (2) pyroclasts from the post-1970s eruptive cycle (1982; 2011). Based on measurements with nanoscale secondary ion mass spectrometry, olivine-hosted (forsterite [Fo] > 80) glass inclusions fall into 2 distinct clusters: a group of H2O-rich (1.8-5.2 wt%) inclusions, similar to those of nearby Cerro Negro volcano, and a second group of CO2-rich (360-1700 μg/g CO2) inclusions (Nejapa, Granada). Model calculations show that CO2 dominates the equilibrium magmatic vapor phase in the majority of the primitive inclusions (XCO2 > 0.62-0.95). CO2, sulfur (generally 400 MPa) and early crystallization of magmas. Chlorine exhibits a wide concentration range (400-2300 μg/g) in primitive olivine-entrapped melts (likely suggesting variable source heterogeneity) and is typically enriched in the most differentiated melts (1000-3000 μg/g). Primitive, volatile-rich olivine-hosted melt inclusions (entrapment pressures, 5-15 km depth) are exclusively found in the largest-scale Telica eruptions (exemplified by STS in our study). These eruptions are thus tentatively explained as due to injection of deep CO2-rich mafic magma into the shallow crustal plumbing system. More recent (post-1970), milder (VEI 1-2) eruptions, instead, do only exhibit evidence for low-pressure (P viscosity of resident magma in shallow plumbing system (< 2.4 km), due to crystallization and degassing.

  10. Historical evidence for a connection between volcanic eruptions and climate change

    Science.gov (United States)

    Rampino, Michael R.

    1991-01-01

    The times of historical volcanic aerosol clouds were compared with changes in atmospheric temperatures on regional, hemispheric, and global scales. These involve either a direct comparison of individual significant eruption years with temperature records, or a comparison of eruption years with composited temperature records for several years before and after chosen sets of eruptions. Some studies have challenged the connection between individual eruptions and climate change. Mass and Portman (1989) recently suggested that the volcanic signal was present, but smaller than previously thought. In a study designed to test the idea that eruptions could cause small changes in climate, Hansen and other (1978) chose one of the best monitored eruptions at the time, the 1963 eruption of Agung volcano on the island of Bali. Using a simple radiation-balance model, in which an aerosol cloud in the tropics was simulated, this basic pattern of temperature change in the tropics and subtropics was reproduced. There may be natural limits to the atmospheric effects of any volcanic eruption. Self-limiting physical and chemical effects in eruption clouds were proposed. Model results suggest that aerosol microphysical processes of condensation and coagulation produce larger aerosols as the SO2 injection rate is increased. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on regional temperatures where the effects of volcanic aerosol clouds can be amplified by perturbed atmospheric circulation patterns, especially changes in mid-latitudes where meridional circulation patterns may develop. Such climatic perturbations can be detected in proxy evidence such as decreases in tree-ring widths and frost damage rings in climatically sensitive parts of the world, changes in treelines, weather anomalies such as unusually cold summers, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures.

  11. Constraining the dynamics of 2014-15 Bardarbunga-Holuhraun intrusion and eruption using seismic noise

    Science.gov (United States)

    Caudron, Corentin; Donaldson, Clare; White, Robert

    2016-04-01

    The 2010 Eyjafjallajokull volcanic eruption explosively emitted a large quantity of ash in the atmosphere and paralysed the European airspace for weeks. Several seismic scientific studies already contributed to the understanding of this complex eruption (e.g., Tarasewicz et al., 2012). Although an excellent network of seismometers recorded this eruption, some volcanological and seismological aspects are still poorly understood. In order to gain further constraints on the dynamics of this ground-breaking eruptions, we mine the seismic dataset using the seismic ambient noise technique between pairs of stations and the Seismic Amplitude Ratio Analysis (SARA). Our preliminary results reveal a strong contamination of the Cross Correlation Functions (CCF) by the volcanic tremor, particularly above 0.5 Hz even for station pairs located >50 km from the volcano. Although this volcanic tremor precludes the monitoring of the seismic velocities, it literally illuminated the medium. The two phases of the eruptions (i.e., effusive and explosive) are clearly distinguished in these functions due to their different locations. During the explosive phase, an intriguing shift of the main peaks of the cross correlation functions is evidenced (early May 2010). It is remarkably consistent with the downward migration proposed by Tarasewicz et al. (2012) and is interpreted as a migration of the volcanic tremor. SARA methodology, which is continuously imaging and tracking any significant seismicity at a 10-min time scale (Taisne et al., 2010), is applied in the 5-15 Hz frequency band in order to image to continuously migrating microseismicity. The analysis displays several shallow migrations (above 5 km of depth, in March 2010) preceding the effusive phase of the eruption. Interestingly, the results also evidence a fast and deep migration (> 5 km) starting a few hours before the beginning of the explosive phase (13 April 2010). These preliminary results may shed light on the triggering of

  12. Experimental Constraints on Forecasting the Location of Volcanic Eruptions from Pre-eruptive Surface Deformation

    Directory of Open Access Journals (Sweden)

    Frank Guldstrand

    2018-02-01

    Full Text Available Volcanic eruptions pose a threat to lives and property when volcano flanks and surroundings are densely populated. The local impact of an eruption depends firstly on its location, whether it occurs near a volcano summit, or down on the flanks. Then forecasting, with a defined accuracy, the location of a potential, imminent eruption would significantly improve the assessment and mitigation of volcanic hazards. Currently, the conventional volcano monitoring methods based on the analysis of surface deformation assesses whether a volcano may erupt but are not implemented to locate imminent eruptions in real time. Here we show how surface deformation induced by ascending eruptive feeders can be used to forecast the eruption location through a simple geometrical analysis. Our analysis builds on the results of 33 scaled laboratory experiments simulating the emplacement of viscous magma intrusions in a brittle, cohesive Coulomb crust under lithostatic stress conditions. The intrusion-induced surface deformation was systematically monitored at high spatial and temporal resolution. In all the experiments, surface deformation preceding the eruptions resulted in systematic uplift, regardless of the intrusion shape. The analysis of the surface deformation patterns leads to the definition of a vector between the center of the uplifted area and the point of maximum uplift, which systematically acted as a precursor to the eruption's location. The temporal evolution of this vector indicated the direction in which the subsequent eruption would occur and ultimately the location itself, irrespective of the feeder shapes. Our findings represent a new approach on how surface deformation on active volcanoes that are not in active rifts could be analysed and used prior to an eruption with a real potential to improve hazard mitigation.

  13. Timing and climate forcing of volcanic eruptions for the past 2,500 years.

    Science.gov (United States)

    Sigl, M; Winstrup, M; McConnell, J R; Welten, K C; Plunkett, G; Ludlow, F; Büntgen, U; Caffee, M; Chellman, N; Dahl-Jensen, D; Fischer, H; Kipfstuhl, S; Kostick, C; Maselli, O J; Mekhaldi, F; Mulvaney, R; Muscheler, R; Pasteris, D R; Pilcher, J R; Salzer, M; Schüpbach, S; Steffensen, J P; Vinther, B M; Woodruff, T E

    2015-07-30

    Volcanic eruptions contribute to climate variability, but quantifying these contributions has been limited by inconsistencies in the timing of atmospheric volcanic aerosol loading determined from ice cores and subsequent cooling from climate proxies such as tree rings. Here we resolve these inconsistencies and show that large eruptions in the tropics and high latitudes were primary drivers of interannual-to-decadal temperature variability in the Northern Hemisphere during the past 2,500 years. Our results are based on new records of atmospheric aerosol loading developed from high-resolution, multi-parameter measurements from an array of Greenland and Antarctic ice cores as well as distinctive age markers to constrain chronologies. Overall, cooling was proportional to the magnitude of volcanic forcing and persisted for up to ten years after some of the largest eruptive episodes. Our revised timescale more firmly implicates volcanic eruptions as catalysts in the major sixth-century pandemics, famines, and socioeconomic disruptions in Eurasia and Mesoamerica while allowing multi-millennium quantification of climate response to volcanic forcing.

  14. Eruptive and environmental processes recorded by diatoms in volcanically-dispersed lake sediments from the Taupo Volcanic Zone, New Zealand

    Science.gov (United States)

    Harper, Margaret A.; Pledger, Shirley A.; Smith, Euan G. C.; Van Eaton, Alexa; Wilson, Colin J. N.

    2015-01-01

    Late Pleistocene diatomaceous sediment was widely dispersed along with volcanic ash (tephra) across and beyond New Zealand by the 25.4 ka Oruanui supereruption from Taupo volcano. We present a detailed analysis of the diatom populations in the Oruanui tephra and the newly discovered floras in two other eruptions from the same volcano: the 28.6 ka Okaia and 1.8 ka Taupo eruptions. For comparison, the diatoms were also examined in Late Pleistocene and Holocene lake sediments from the Taupo Volcanic Zone (TVZ). Our study demonstrates how these microfossils provide insights into the lake history of the TVZ since the Last Glacial Maximum. Morphometric analysis of Aulacoseira valve dimensions provides a useful quantitative tool to distinguish environmental and eruptive processes within and between individual tephras. The Oruanui and Okaia diatom species and valve dimensions are highly consistent with a shared volcanic source, paleolake and eruption style (involving large-scale magma-water interaction). They are distinct from lacustrine sediments sourced elsewhere in the TVZ. Correspondence analysis shows that small, intact samples of erupted lake sediment (i.e., lithic clasts in ignimbrite) contain heterogeneous diatom populations, reflecting local variability in species composition of the paleolake and its shallowly-buried sediments. Our analysis also shows a dramatic post-Oruanui supereruption decline in Cyclostephanos novaezelandiae, which likely reflects a combination of (1) reorganisation of the watershed in the aftermath of the eruption, and (2) overall climate warming following the Last Glacial Maximum. This decline is reflected in substantially lower proportions of C. novaezelandiae in the 1.8 ka Taupo eruption deposits, and even fewer in post-1.8 ka sediments from modern (Holocene) Lake Taupo. Our analysis highlights how the excellent preservation of siliceous microfossils in volcanic tephra may fingerprint the volcanic source region and retain a valuable record

  15. Stress field control during large caldera-forming eruptions

    Directory of Open Access Journals (Sweden)

    Antonio Costa

    2016-10-01

    Full Text Available Crustal stress field can have a significant influence on the way magma is channelled through the crust and erupted explosively at the surface. Large Caldera Forming Eruptions (LCFEs can erupt hundreds to thousands of cubic kilometres of magma in a relatively short time along fissures under the control of a far-field extensional stress. The associated eruption intensities are estimated in the range 109 - 1011 kg/s. We analyse syn-eruptive dynamics of LCFEs, by simulating numerically explosive flow of magma through a shallow dyke conduit connected to a magma chamber that in turn is fed by a deeper magma reservoir, both under the action of an extensional far-field stress. Results indicate that huge amounts of high viscosity silicic magma can be erupted over timescales of a few to several hours. Our study provides answers to outstanding questions relating to the intensity and duration of catastrophic volcanic eruptions in the past. In addition, it presents far-reaching implications for the understanding of dynamics and intensity of large-magnitude volcanic eruptions on Earth and to highlight the necessity of a future research to advance our knowledge of these rare catastrophic events.

  16. How Did Climate and Humans Respond to Past Volcanic Eruptions?

    Science.gov (United States)

    Toohey, Matthew; Ludlow, Francis; Legrande, Allegra N.

    2016-01-01

    To predict and prepare for future climate change, scientists are striving to understand how global-scale climatic change manifests itself on regional scales and also how societies adapt or don't to sometimes subtle and complex climatic changes. In this regard, the strongest volcanic eruptions of the past are powerful test cases, showcasing how the broad climate system responds to sudden changes in radiative forcing and how societies have responded to the resulting climatic shocks. These issues were at the heart of the inaugural workshop of the Volcanic Impacts on Climate and Society (VICS) Working Group, convened in June 2016 at the Lamont-Doherty Earth Observatory of Columbia University in Palisades, N.Y. The 3-day meeting gathered approximately 50 researchers, who presented work intertwining the history of volcanic eruptions and the physical processes that connect eruptions with human and natural systems on a global scale.

  17. Acoustic waves in the atmosphere and ground generated by volcanic activity

    International Nuclear Information System (INIS)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru

    2012-01-01

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  18. Acoustic waves in the atmosphere and ground generated by volcanic activity

    Energy Technology Data Exchange (ETDEWEB)

    Ichihara, Mie; Lyons, John; Oikawa, Jun; Takeo, Minoru [Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan); Instituto Geofisico, Escuela Politecnica Nacional, Ladron de Guevara E11-253, Aptdo 2759, Quito (Ecuador); Earthquake Research Institute, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032 (Japan)

    2012-09-04

    This paper reports an interesting sequence of harmonic tremor observed in the 2011 eruption of Shinmoe-dake volcano, southern Japan. The main eruptive activity started with ashcloud forming explosive eruptions, followed by lava effusion. Harmonic tremor was transmitted into the ground and observed as seismic waves at the last stage of the effusive eruption. The tremor observed at this stage had unclear and fluctuating harmonic modes. In the atmosphere, on the other hand, many impulsive acoustic waves indicating small surface explosions were observed. When the effusion stopped and the erupted lava began explosive degassing, harmonic tremor started to be transmitted also to the atmosphere and observed as acoustic waves. Then the harmonic modes became clearer and more stable. This sequence of harmonic tremor is interpreted as a process in which volcanic degassing generates an open connection between the volcanic conduit and the atmosphere. In order to test this hypothesis, a laboratory experiment was performed and the essential features were successfully reproduced.

  19. A comparison of volcanic eruption processes on Earth, Moon, Mars, Io and Venus

    International Nuclear Information System (INIS)

    Wilson, L.; Lancaster Univ.; Head, J.W. III

    1983-01-01

    The silicate planets and satellites display a wide range of physical, chemical and atmospheric characteristics which may influence the nature of volcanism, a major geological process common to the evolution of the surfaces of these bodies. Consideration of the process of magma ascent and eruption from first principles allows predictions to be made concerning volcanic eruption styles and expected landforms and deposits on each planetary body. Examination of actual landforms and deposits in light of these predictions leads to a better understanding of the nature of volcanic eruption processes and outlines outstanding problems. (author)

  20. Volcanic eruption crisis and the challenges of geoscience education in Indonesia

    Science.gov (United States)

    Hariyono, E.; Liliasari, Tjasyono, B.; Madlazim

    2016-02-01

    The study aims was to describe of the profile of geoscience education conducted at the institution of teacher education for answer challenges of volcanic eruption crisis in Indonesia. The method used is descriptive analysis based on result of test and interview to 31 students of physics pre-service teachers about volcanoes through field study. The results showed that the students have a low understanding of volcanic material and there are several problems associated with the volcanoes concept. Other facts are geoscience learning does not support to the formation of geoscience knowledge and skills, dominated by theoretical studies and less focused on effort to preparing students towards disasters particularly to the volcanic eruption. As a recommendation, this require to restructuring geoscience education so as relevant with the social needs. Through courses accordingly, we can greatly help student's physics prospective teacher to improve their participations to solve problems of volcanic eruption crisis in the society.

  1. Assessment of the potential respiratory hazard of volcanic ash from future Icelandic eruptions: a study of archived basaltic to rhyolitic ash samples.

    Science.gov (United States)

    Damby, David E; Horwell, Claire J; Larsen, Gudrun; Thordarson, Thorvaldur; Tomatis, Maura; Fubini, Bice; Donaldson, Ken

    2017-09-11

    The eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011), Iceland, triggered immediate, international consideration of the respiratory health hazard of inhaling volcanic ash, and prompted the need to estimate the potential hazard posed by future eruptions of Iceland's volcanoes to Icelandic and Northern European populations. A physicochemical characterization and toxicological assessment was conducted on a suite of archived ash samples spanning the spectrum of past eruptions (basaltic to rhyolitic magmatic composition) of Icelandic volcanoes following a protocol specifically designed by the International Volcanic Health Hazard Network. Icelandic ash can be of a respirable size (up to 11.3 vol.% fiber-like particles were observed, but those present comprised glass or sodium oxides, and are not related to pathogenic natural fibers, like asbestos or fibrous zeolites, thereby limiting concern of associated respiratory diseases. None of the samples contained cristobalite or tridymite, and only one sample contained quartz, minerals of interest due to the potential to cause silicosis. Sample surface areas are low, ranging from 0.4 to 1.6 m 2  g -1 , which aligns with analyses on ash from other eruptions worldwide. All samples generated a low level of hydroxyl radicals (HO • ), a measure of surface reactivity, through the iron-catalyzed Fenton reaction compared to concurrently analyzed comparative samples. However, radical generation increased after 'refreshing' sample surfaces, indicating that newly erupted samples may display higher reactivity. A composition-dependent range of available surface iron was measured after a 7-day incubation, from 22.5 to 315.7 μmol m -2 , with mafic samples releasing more iron than silicic samples. All samples were non-reactive in a test of red blood cell-membrane damage. The primary particle-specific concern is the potential for future eruptions of Iceland's volcanoes to generate fine, respirable material and, thus, to

  2. Detecting hidden volcanic explosions from Mt. Cleveland Volcano, Alaska with infrasound and ground-couples airwaves

    Science.gov (United States)

    De Angelis, Slivio; Fee, David; Haney, Matthew; Schneider, David

    2012-01-01

    In Alaska, where many active volcanoes exist without ground-based instrumentation, the use of techniques suitable for distant monitoring is pivotal. In this study we report regional-scale seismic and infrasound observations of volcanic activity at Mt. Cleveland between December 2011 and August 2012. During this period, twenty explosions were detected by infrasound sensors as far away as 1827 km from the active vent, and ground-coupled acoustic waves were recorded at seismic stations across the Aleutian Arc. Several events resulting from the explosive disruption of small lava domes within the summit crater were confirmed by analysis of satellite remote sensing data. However, many explosions eluded initial, automated, analyses of satellite data due to poor weather conditions. Infrasound and seismic monitoring provided effective means for detecting these hidden events. We present results from the implementation of automatic infrasound and seismo-acoustic eruption detection algorithms, and review the challenges of real-time volcano monitoring operations in remote regions. We also model acoustic propagation in the Northern Pacific, showing how tropospheric ducting effects allow infrasound to travel long distances across the Aleutian Arc. The successful results of our investigation provide motivation for expanded efforts in infrasound monitoring across the Aleutians and contributes to our knowledge of the number and style of vulcanian eruptions at Mt. Cleveland.

  3. A compositional tipping point governing the mobilization and eruption style of rhyolitic magma.

    Science.gov (United States)

    Di Genova, D; Kolzenburg, S; Wiesmaier, S; Dallanave, E; Neuville, D R; Hess, K U; Dingwell, D B

    2017-12-13

    The most viscous volcanic melts and the largest explosive eruptions on our planet consist of calcalkaline rhyolites. These eruptions have the potential to influence global climate. The eruptive products are commonly very crystal-poor and highly degassed, yet the magma is mostly stored as crystal mushes containing small amounts of interstitial melt with elevated water content. It is unclear how magma mushes are mobilized to create large batches of eruptible crystal-free magma. Further, rhyolitic eruptions can switch repeatedly between effusive and explosive eruption styles and this transition is difficult to attribute to the rheological effects of water content or crystallinity. Here we measure the viscosity of a series of melts spanning the compositional range of the Yellowstone volcanic system and find that in a narrow compositional zone, melt viscosity increases by up to two orders of magnitude. These viscosity variations are not predicted by current viscosity models and result from melt structure reorganization, as confirmed by Raman spectroscopy. We identify a critical compositional tipping point, independently documented in the global geochemical record of rhyolites, at which rhyolitic melts fluidize or stiffen and that clearly separates effusive from explosive deposits worldwide. This correlation between melt structure, viscosity and eruptive behaviour holds despite the variable water content and other parameters, such as temperature, that are inherent in natural eruptions. Thermodynamic modelling demonstrates how the observed subtle compositional changes that result in fluidization or stiffening of the melt can be induced by crystal growth from the melt or variation in oxygen fugacity. However, the rheological effects of water and crystal content alone cannot explain the correlation between composition and eruptive style. We conclude that the composition of calcalkaline rhyolites is decisive in determining the mobilization and eruption dynamics of Earth

  4. A compositional tipping point governing the mobilization and eruption style of rhyolitic magma

    Science.gov (United States)

    di Genova, D.; Kolzenburg, S.; Wiesmaier, S.; Dallanave, E.; Neuville, D. R.; Hess, K. U.; Dingwell, D. B.

    2017-12-01

    The most viscous volcanic melts and the largest explosive eruptions on our planet consist of calcalkaline rhyolites. These eruptions have the potential to influence global climate. The eruptive products are commonly very crystal-poor and highly degassed, yet the magma is mostly stored as crystal mushes containing small amounts of interstitial melt with elevated water content. It is unclear how magma mushes are mobilized to create large batches of eruptible crystal-free magma. Further, rhyolitic eruptions can switch repeatedly between effusive and explosive eruption styles and this transition is difficult to attribute to the rheological effects of water content or crystallinity. Here we measure the viscosity of a series of melts spanning the compositional range of the Yellowstone volcanic system and find that in a narrow compositional zone, melt viscosity increases by up to two orders of magnitude. These viscosity variations are not predicted by current viscosity models and result from melt structure reorganization, as confirmed by Raman spectroscopy. We identify a critical compositional tipping point, independently documented in the global geochemical record of rhyolites, at which rhyolitic melts fluidize or stiffen and that clearly separates effusive from explosive deposits worldwide. This correlation between melt structure, viscosity and eruptive behaviour holds despite the variable water content and other parameters, such as temperature, that are inherent in natural eruptions. Thermodynamic modelling demonstrates how the observed subtle compositional changes that result in fluidization or stiffening of the melt can be induced by crystal growth from the melt or variation in oxygen fugacity. However, the rheological effects of water and crystal content alone cannot explain the correlation between composition and eruptive style. We conclude that the composition of calcalkaline rhyolites is decisive in determining the mobilization and eruption dynamics of Earth

  5. The largest deep-ocean silicic volcanic eruption of the past century.

    Science.gov (United States)

    Carey, Rebecca; Soule, S Adam; Manga, Michael; White, James; McPhie, Jocelyn; Wysoczanski, Richard; Jutzeler, Martin; Tani, Kenichiro; Yoerger, Dana; Fornari, Daniel; Caratori-Tontini, Fabio; Houghton, Bruce; Mitchell, Samuel; Ikegami, Fumihiko; Conway, Chris; Murch, Arran; Fauria, Kristen; Jones, Meghan; Cahalan, Ryan; McKenzie, Warren

    2018-01-01

    The 2012 submarine eruption of Havre volcano in the Kermadec arc, New Zealand, is the largest deep-ocean eruption in history and one of very few recorded submarine eruptions involving rhyolite magma. It was recognized from a gigantic 400-km 2 pumice raft seen in satellite imagery, but the complexity of this event was concealed beneath the sea surface. Mapping, observations, and sampling by submersibles have provided an exceptionally high fidelity record of the seafloor products, which included lava sourced from 14 vents at water depths of 900 to 1220 m, and fragmental deposits including giant pumice clasts up to 9 m in diameter. Most (>75%) of the total erupted volume was partitioned into the pumice raft and transported far from the volcano. The geological record on submarine volcanic edifices in volcanic arcs does not faithfully archive eruption size or magma production.

  6. Dispersion of the Volcanic Sulfate Cloud from the Mount Pinatubo Eruption

    Science.gov (United States)

    Aquila, Valentina; Oman, Luke D.; Stolarski, Richard S.; Colarco, Peter R.; Newman, Paul A.

    2012-01-01

    We simulate the transport of the volcanic cloud from the 1991 eruption of Mount Pinatubo with the GEOS-5 general circulation model. Our simulations are in good agreement with observational data. We tested the importance of initial condition corresponding to the specific meteorological situation at the time of the eruption by employing reanalysis from MERRA. We found no significant difference in the transport of the cloud. We show how the inclusion of the interaction between volcanic sulfate aerosol and radiation is essential for a reliable simulation of the transport of the volcanic cloud. The absorption of long wave radiation by the volcanic sulfate induces a rising of the volcanic cloud up to the middle stratosphere, combined with divergent motion from the latitude of the eruption to the tropics. Our simulations indicate that the cloud diffuses to the northern hemisphere through a lower stratospheric pathway, and to mid- and high latitudes of the southern hemisphere through a middle stratospheric pathway, centered at about 30 hPa. The direction of the middle stratospheric pathway depends on the season. We did not detect any significant change of the mixing between tropics and mid- and high latitudes in the southern hemisphere.

  7. Constraining Transient Climate Sensitivity Using Coupled Climate Model Simulations of Volcanic Eruptions

    KAUST Repository

    Merlis, Timothy M.; Held, Isaac M.; Stenchikov, Georgiy L.; Zeng, Fanrong; Horowitz, Larry W.

    2014-01-01

    Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean surface temperature (GMST) is analyzed to determine whether a fast component of the climate sensitivity of relevance to the transient climate response (TCR; defined with the 1%yr-1 CO2-increase scenario) can be estimated from shorter-time-scale climate changes. The fast component of the climate sensitivity estimated from the response of the climate model to volcanic forcing is similar to that of the simulations forced by abrupt CO2 changes but is 5%-15% smaller than the TCR. In addition, the partition between the top-of-atmosphere radiative restoring and ocean heat uptake is similar across radiative forcing agents. The possible asymmetry between warming and cooling climate perturbations, which may affect the utility of volcanic eruptions for estimating the TCR, is assessed by comparing simulations of abrupt CO2 doubling to abrupt CO2 halving. There is slightly less (~5%) GMST change in 0.5 × CO2 simulations than in 2 × CO2 simulations on the short (~10 yr) time scales relevant to the fast component of the volcanic signal. However, inferring the TCR from volcanic eruptions is more sensitive to uncertainties from internal climate variability and the estimation procedure. The response of the GMST to volcanic eruptions is similar in GFDL CM2.1 and GFDL Climate Model, version 3 (CM3), even though the latter has a higher TCR associated with a multidecadal time scale in its response. This is consistent with the expectation that the fast component of the climate sensitivity inferred from volcanic eruptions is a lower bound for the TCR.

  8. Constraining Transient Climate Sensitivity Using Coupled Climate Model Simulations of Volcanic Eruptions

    KAUST Repository

    Merlis, Timothy M.

    2014-10-01

    Coupled climate model simulations of volcanic eruptions and abrupt changes in CO2 concentration are compared in multiple realizations of the Geophysical Fluid Dynamics Laboratory Climate Model, version 2.1 (GFDL CM2.1). The change in global-mean surface temperature (GMST) is analyzed to determine whether a fast component of the climate sensitivity of relevance to the transient climate response (TCR; defined with the 1%yr-1 CO2-increase scenario) can be estimated from shorter-time-scale climate changes. The fast component of the climate sensitivity estimated from the response of the climate model to volcanic forcing is similar to that of the simulations forced by abrupt CO2 changes but is 5%-15% smaller than the TCR. In addition, the partition between the top-of-atmosphere radiative restoring and ocean heat uptake is similar across radiative forcing agents. The possible asymmetry between warming and cooling climate perturbations, which may affect the utility of volcanic eruptions for estimating the TCR, is assessed by comparing simulations of abrupt CO2 doubling to abrupt CO2 halving. There is slightly less (~5%) GMST change in 0.5 × CO2 simulations than in 2 × CO2 simulations on the short (~10 yr) time scales relevant to the fast component of the volcanic signal. However, inferring the TCR from volcanic eruptions is more sensitive to uncertainties from internal climate variability and the estimation procedure. The response of the GMST to volcanic eruptions is similar in GFDL CM2.1 and GFDL Climate Model, version 3 (CM3), even though the latter has a higher TCR associated with a multidecadal time scale in its response. This is consistent with the expectation that the fast component of the climate sensitivity inferred from volcanic eruptions is a lower bound for the TCR.

  9. Supercomputer modeling of volcanic eruption dynamics

    Energy Technology Data Exchange (ETDEWEB)

    Kieffer, S.W. [Arizona State Univ., Tempe, AZ (United States); Valentine, G.A. [Los Alamos National Lab., NM (United States); Woo, Mahn-Ling [Arizona State Univ., Tempe, AZ (United States)

    1995-06-01

    Our specific goals are to: (1) provide a set of models based on well-defined assumptions about initial and boundary conditions to constrain interpretations of observations of active volcanic eruptions--including movies of flow front velocities, satellite observations of temperature in plumes vs. time, and still photographs of the dimensions of erupting plumes and flows on Earth and other planets; (2) to examine the influence of subsurface conditions on exit plane conditions and plume characteristics, and to compare the models of subsurface fluid flow with seismic constraints where possible; (3) to relate equations-of-state for magma-gas mixtures to flow dynamics; (4) to examine, in some detail, the interaction of the flowing fluid with the conduit walls and ground topography through boundary layer theory so that field observations of erosion and deposition can be related to fluid processes; and (5) to test the applicability of existing two-phase flow codes for problems related to the generation of volcanic long-period seismic signals; (6) to extend our understanding and simulation capability to problems associated with emplacement of fragmental ejecta from large meteorite impacts.

  10. Explosive to Effusive Transition in Intermediate Volcanism: An Analysis of Changing Magma System Conditions in Dominica

    Science.gov (United States)

    Bersson, J.; Waters, L. E.; Frey, H. M.; Nicolaysen, K. P.; Manon, M. R. F.

    2017-12-01

    The oscillation between explosive and effusive intermediate (59-62 wt% SiO2) volcanism in the Roseau Valley on Dominica, an island in the Lesser Antilles Arc, provides an opportunity to investigate temporal changes in the magmatic system. Here, we test the relationship between the Roseau ignimbrites (1-65 ka) and the Micotrin dome ( 1.1 ka) which are proposed to originate from the same magmatic system, with a detailed petrologic analysis of phenocrysts to determine commonalities or changes in pre-eruptive conditions (i.e., intensive variables). The ignimbrites are saturated in five phenocrysts (plagioclase + orthopyroxene + clinopyroxene + ilmenite + magnetite ± amphibole ± quartz), and the lava dome contains the same assemblage, but with notable differences: amphiboles are entirely reacted, and quartz occurs in greater abundance. Plagioclase in the ignimbrites ranges in composition from An46-93, and those in the dome range from An46-85. Two Fe-Ti oxide geo-thermometry reveal pre-eruptive temperatures from 730-820°C for three different ignimbrite units, whereas the pre-eruptive temperature for the dome is slightly hotter (850±23°C). Values of fO2 (relative to NNO) derived from Fe-Ti oxide oxygen-barometry range from +0.3 to +1.32 ΔNNO for the ignimbrites, which overlap with those from the dome (+0.5 to +0.9 ΔNNO). Pre-eruptive temperatures, plagioclase compositions, whole rock and glass compositions are incorporated into a plagioclase-liquid hygrometer to determine pre-eruptive melt H2O contents for each sample. H2O contents for ignimbrites range from 7.1-9.3 wt%, and those from the lava dome range from 6.7-7.1 wt%. Application of a H2O solubility model shows that water contents for the Roseau magmas correspond to pressures of 3-5 kbar. The most notable difference between the explosive and effusive magmas is that the lava dome has a higher pre-eruptive temperature than the ignimbrites. However, the results collectively suggest that more recent volcanism in

  11. Initial fate of fine ash and sulfur from large volcanic eruptions

    Directory of Open Access Journals (Sweden)

    S. Self

    2009-11-01

    Full Text Available Large volcanic eruptions emit huge amounts of sulfur and fine ash into the stratosphere. These products cause an impact on radiative processes, temperature and wind patterns. In simulations with a General Circulation Model including detailed aerosol microphysics, the relation between the impact of sulfur and fine ash is determined for different eruption strengths and locations, one in the tropics and one in high Northern latitudes. Fine ash with effective radii between 1 μm and 15 μm has a lifetime of several days only. Nevertheless, the strong absorption of shortwave and long-wave radiation causes additional heating and cooling of ±20 K/day and impacts the evolution of the volcanic cloud. Depending on the location of the volcanic eruption, transport direction changes due to the presence of fine ash, vortices develop and temperature anomalies at ground increase. The results show substantial impact on the local scale but only minor impact on the evolution of sulfate in the stratosphere in the month after the simulated eruptions.

  12. Spreading of Somma-Vesuvio Volcanic Complex: is the Hazard for Plinian Eruptions being reduced?

    Science.gov (United States)

    Borgia, A.; Tizzani, P.; Solaro, G.; Luongo, G.; Fusi, N.

    2003-12-01

    Contrary to what is the common knowledge, a detailed structural study of active faulting and rifting of the summit area of Somma-Vesuvio volcanic complex, combined with INSAR, levelling data and seismic profiling at sea suggests that the present-day long-term dynamic behaviour of the complex and of its summit caldera is characterized by volcanic spreading. The structural evolution is controlled by a number of asymmetric, intersecting leaf-grabens. The boundary faults of these grabens intersect at different angles the Somma caldera walls generating a set of wedge-horsts. While normal faulting characterizes the Somma caldera walls, the lavas of the past 150 years, infilling the caldera, have been rifted all around the southern, eastern and northern base of Vesuvio's cone, which, in turn, is being displaced seaward. Associated to the subsidence and extension of the summit area, relative uplift occurs along the coast; in addition, deformation of recent sediments 6-18 km offshore also indicate compression and uplift, which appears to be unrelated to regional tectonics. A preliminary evaluation indicates that rifting of the lavas is in the order of 1-2 mm/a with a southwestward average direction of displacement. Based on these data, we suggest that a wide sector of Somma-Vesuvio is spreading on its plastic sedimentary substratum, which have been identified by drilling. Volcanic spreading appears to have controlled the magmatic evolution and the energy decrease of major historic explosive eruptions since 79 AD. If our interpretation is correct, major plinian eruptions should not occur in the near future. On the other hand, rifting around the caldera suggests that volcanic activity could soon be renewed.

  13. DSCOVR/EPIC observations of SO2 reveal dynamics of young volcanic eruption clouds

    Science.gov (United States)

    Carn, S. A.; Krotkov, N. A.; Taylor, S.; Fisher, B. L.; Li, C.; Bhartia, P. K.; Prata, F. J.

    2017-12-01

    Volcanic emissions of sulfur dioxide (SO2) and ash have been measured by ultraviolet (UV) and infrared (IR) sensors on US and European polar-orbiting satellites since the late 1970s. Although successful, the main limitation of these observations from low Earth orbit (LEO) is poor temporal resolution (once per day at low latitudes). Furthermore, most currently operational geostationary satellites cannot detect SO2, a key tracer of volcanic plumes, limiting our ability to elucidate processes in fresh, rapidly evolving volcanic eruption clouds. In 2015, the launch of the Earth Polychromatic Imaging Camera (EPIC) aboard the Deep Space Climate Observatory (DSCOVR) provided the first opportunity to observe volcanic clouds from the L1 Lagrange point. EPIC is a 10-band spectroradiometer spanning UV to near-IR wavelengths with two UV channels sensitive to SO2, and a ground resolution of 25 km. The unique L1 vantage point provides continuous observations of the sunlit Earth disk, from sunrise to sunset, offering multiple daily observations of volcanic SO2 and ash clouds in the EPIC field of view. When coupled with complementary retrievals from polar-orbiting UV and IR sensors such as the Ozone Monitoring Instrument (OMI), the Ozone Mapping and Profiler Suite (OMPS), and the Atmospheric Infrared Sounder (AIRS), we demonstrate how the increased observation frequency afforded by DSCOVR/EPIC permits more timely volcanic eruption detection and novel analyses of the temporal evolution of volcanic clouds. Although EPIC has detected several mid- to high-latitude volcanic eruptions since launch, we focus on recent eruptions of Bogoslof volcano (Aleutian Islands, AK, USA). A series of EPIC exposures from May 28-29, 2017, uniquely captures the evolution of SO2 mass in a young Bogoslof eruption cloud, showing separation of SO2- and ice-rich regions of the cloud. We show how analyses of these sequences of EPIC SO2 data can elucidate poorly understood processes in transient eruption

  14. Assessing and optimizing infra-sound networks to monitor volcanic eruptions

    International Nuclear Information System (INIS)

    Tailpied, Dorianne

    2016-01-01

    Understanding infra-sound signals is essential to monitor compliance with the Comprehensive Nuclear-Test ban Treaty, and also to demonstrate the potential of the global monitoring infra-sound network for civil and scientific applications. The main objective of this thesis is to develop a robust tool to estimate and optimize the performance of any infra-sound network to monitor explosive sources such as volcanic eruptions. Unlike previous studies, the developed method has the advantage to consider realistic atmospheric specifications along the propagation path, source frequency and noise levels at the stations. It allows to predict the attenuation and the minimum detectable source amplitude. By simulating the performances of any infra-sound networks, it is then possible to define the optimal configuration of the network to monitor a specific region, during a given period. When carefully adding a station to the existing network, performance can be improved by a factor of 2. However, it is not always possible to complete the network. A good knowledge of detection capabilities at large distances is thus essential. To provide a more realistic picture of the performance, we integrate the atmospheric longitudinal variability along the infra-sound propagation path in our simulations. This thesis also contributes in providing a confidence index taking into account the uncertainties related to propagation and atmospheric models. At high frequencies, the error can reach 40 dB. Volcanic eruptions are natural, powerful and valuable calibrating sources of infra-sound, worldwide detected. In this study, the well instrumented volcanoes Yasur, in Vanuatu, and Etna, in Italy, offer a unique opportunity to validate our attenuation model. In particular, accurate comparisons between near-field recordings and far-field detections of these volcanoes have helped to highlight the potential of our simulation tool to remotely monitor volcanoes. Such work could significantly help to prevent

  15. Monitoring El Hierro submarine volcanic eruption events with a submarine seismic array

    Science.gov (United States)

    Jurado, Maria Jose; Molino, Erik; Lopez, Carmen

    2013-04-01

    A submarine volcanic eruption took place near the southernmost emerged land of the El Hierro Island (Canary Islands, Spain), from October 2011 to February 2012. The Instituto Geografico Nacional (IGN) seismic stations network evidenced seismic unrest since July 2012 and was a reference also to follow the evolution of the seismic activity associated with the volcanic eruption. From the beginning of the eruption a geophone string was installed less than 2 km away from the new volcano, next to La Restinga village shore, to record seismic activity related to the volcanic activity, continuously and with special interest on high frequency events. The seismic array was endowed with 8, high frequency, 3 component, 250 Hz, geophone cable string with a separation of 6 m between them. The analysis of the dataset using spectral techniques allows the characterization of the different phases of the eruption and the study of its dynamics. The correlation of the data analysis results with the observed sea surface activity (ash and lava emission and degassing) and also with the seismic activity recorded by the IGN field seismic monitoring system, allows the identification of different stages suggesting the existence of different signal sources during the volcanic eruption and also the posteruptive record of the degassing activity. The study shows that the high frequency capability of the geophone array allow the study of important features that cannot be registered by the standard seismic stations. The accumulative spectral amplitude show features related to eruptive changes.

  16. Enhancement of eruption explosivity by heterogeneous bubble nucleation triggered by magma mingling.

    Science.gov (United States)

    Paredes-Mariño, Joali; Dobson, Katherine J; Ortenzi, Gianluigi; Kueppers, Ulrich; Morgavi, Daniele; Petrelli, Maurizio; Hess, Kai-Uwe; Laeger, Kathrin; Porreca, Massimiliano; Pimentel, Adriano; Perugini, Diego

    2017-12-04

    We present new evidence that shows magma mingling can be a key process during highly explosive eruptions. Using fractal analysis of the size distribution of trachybasaltic fragments found on the inner walls of bubbles in trachytic pumices, we show that the more mafic component underwent fracturing during quenching against the trachyte. We propose a new mechanism for how this magmatic interaction at depth triggered rapid heterogeneous bubble nucleation and growth and could have enhanced eruption explosivity. We argue that the data support a further, and hitherto unreported contribution of magma mingling to highly explosive eruptions. This has implications for hazard assessment for those volcanoes in which evidence of magma mingling exists.

  17. Classifying the Sizes of Explosive Eruptions using Tephra Deposits: The Advantages of a Numerical Inversion Approach

    Science.gov (United States)

    Connor, C.; Connor, L.; White, J.

    2015-12-01

    Explosive volcanic eruptions are often classified by deposit mass and eruption column height. How well are these eruption parameters determined in older deposits, and how well can we reduce uncertainty using robust numerical and statistical methods? We describe an efficient and effective inversion and uncertainty quantification approach for estimating eruption parameters given a dataset of tephra deposit thickness and granulometry. The inversion and uncertainty quantification is implemented using the open-source PEST++ code. Inversion with PEST++ can be used with a variety of forward models and here is applied using Tephra2, a code that simulates advective and dispersive tephra transport and deposition. The Levenburg-Marquardt algorithm is combined with formal Tikhonov and subspace regularization to invert eruption parameters; a linear equation for conditional uncertainty propagation is used to estimate posterior parameter uncertainty. Both the inversion and uncertainty analysis support simultaneous analysis of the full eruption and wind-field parameterization. The combined inversion/uncertainty-quantification approach is applied to the 1992 eruption of Cerro Negro (Nicaragua), the 2011 Kirishima-Shinmoedake (Japan), and the 1913 Colima (Mexico) eruptions. These examples show that although eruption mass uncertainty is reduced by inversion against tephra isomass data, considerable uncertainty remains for many eruption and wind-field parameters, such as eruption column height. Supplementing the inversion dataset with tephra granulometry data is shown to further reduce the uncertainty of most eruption and wind-field parameters. We think the use of such robust models provides a better understanding of uncertainty in eruption parameters, and hence eruption classification, than is possible with more qualitative methods that are widely used.

  18. Explosive processes during the 2015 eruption of Axial Seamount, as recorded by seafloor hydrophones

    Science.gov (United States)

    Caplan-Auerbach, J.; Dziak, R. P.; Haxel, J.; Bohnenstiehl, D. R.; Garcia, C.

    2017-04-01

    Following the installation of the Ocean Observatories Initiative cabled array, the 2015 eruption of Axial Seamount, Juan de Fuca ridge, became the first submarine eruption to be captured in real time by seafloor seismic and acoustic instruments. This eruption also marked the first instance where the entire eruption cycle of a submarine volcano, from the previous eruption in 2011 to the end of the month-long 2015 event, was monitored continuously using autonomous ocean bottom hydrophones. Impulsive sounds associated with explosive lava-water interactions are identified within hydrophone records during both eruptions. Explosions within the caldera are acoustically distinguishable from those occurring in association with north rift lava flows erupting in 2015. Acoustic data also record a series of broadband diffuse events, occurring in the waning phase of the eruption, and are interpreted as submarine Hawaiian explosions. This transition from gas-poor to gas-rich eruptive activity coincides with an increase in water temperature within the caldera and with a decrease in the rate of deflation. The last recorded diffuse events coincide with the end of the eruption, represented by the onset of inflation. All the observed explosion signals couple strongly into the water column, and only weakly into the solid Earth, demonstrating the importance of hydroacoustic observations as a complement to seismic and geodetic studies of submarine eruptions.

  19. Divergent responses of tropical cyclone genesis factors to strong volcanic eruptions at different latitudes

    Science.gov (United States)

    Yan, Qing; Zhang, Zhongshi; Wang, Huijun

    2018-03-01

    To understand the behaviors of tropical cyclones (TCs), it is very important to explore how TCs respond to anthropogenic greenhouse gases and natural forcings. Volcanic eruptions are a major natural forcing mechanism because they inject sulphate aerosols into the stratosphere, which modulate the global climate by absorbing and scattering solar radiation. The number of Atlantic hurricanes is thought to be reduced following strong tropical eruptions, but whether the response of TCs varies with the locations of the volcanoes and the different ocean basins remains unknown. Here, we use the Community Earth System Model-Last Millennium Ensemble to investigate the response of the large-scale environmental factors that spawn TCs to strong volcanic eruptions at different latitudes. A composite analysis indicates that tropical and northern hemisphere volcanic eruptions lead to significantly unfavorable conditions for TC genesis over the whole Pacific basin and the North Atlantic during the 3 years post-eruption, relative to the preceding 3 years. Southern hemisphere volcanic eruptions result in obviously unfavorable conditions for TC formation over the southwestern Pacific, but more favorable conditions over the North Atlantic. The mean response over the Indian Ocean is generally muted and insignificant. It should be noted that volcanic eruptions impact on environmental conditions through both the direct effect (i.e. on radiative forcing) and the indirect effect (i.e. on El Niño-Southern Oscillation), which is not differentiated in this study. In addition, the spread of the TC genesis response is considerably large for each category of eruptions over each ocean basin, which is also seen in the observational/proxy-based records. This large spread is attributed to the differences in stratospheric aerosol distributions, initial states and eruption intensities, and makes the short-term forecast of TC activity following the next large eruption challenging.

  20. The global precipitation response to volcanic eruptions in the CMIP5 models

    International Nuclear Information System (INIS)

    Iles, Carley E; Hegerl, Gabriele C

    2014-01-01

    We examine the precipitation response to volcanic eruptions in the Coupled Model Intercomparison Project Phase 5 (CMIP5) historical simulations compared to three observational datasets, including one with ocean coverage. Global precipitation decreases significantly following eruptions in CMIP5 models, with the largest decrease in wet tropical regions. This also occurs in observational land data, and ocean data in the boreal cold season. Monsoon rainfall decreases following eruptions in both models and observations. In response to individual eruptions, the ITCZ shifts away from the hemisphere with the greater concentration of aerosols in CMIP5. Models undergo a longer-lasting ocean precipitation response than over land, but the response in the short satellite record is too noisy to confirm this. We detect the influence of volcanism on precipitation in all three datasets in the cold season, although the models underestimate the size of the response. In the warm season the volcanic influence is only marginally detectable. (letter)

  1. Hubble Captures Volcanic Eruption Plume From Io

    Science.gov (United States)

    1997-01-01

    The Hubble Space Telescope has snapped a picture of a 400-km-high (250-mile-high) plume of gas and dust from a volcanic eruption on Io, Jupiter's large innermost moon.Io was passing in front of Jupiter when this image was taken by the Wide Field and Planetary Camera 2 in July 1996. The plume appears as an orange patch just off the edge of Io in the eight o'clock position, against the blue background of Jupiter's clouds. Io's volcanic eruptions blasts material hundreds of kilometers into space in giant plumes of gas and dust. In this image, material must have been blown out of the volcano at more than 2,000 mph to form a plume of this size, which is the largest yet seen on Io.Until now, these plumes have only been seen by spacecraft near Jupiter, and their detection from the Earth-orbiting Hubble Space Telescope opens up new opportunities for long-term studies of these remarkable phenomena.The plume seen here is from Pele, one of Io's most powerful volcanos. Pele's eruptions have been seen before. In March 1979, the Voyager 1 spacecraft recorded a 300-km-high eruption cloud from Pele. But the volcano was inactive when the Voyager 2 spacecraft flew by Jupiter in July 1979. This Hubble observation is the first glimpse of a Pele eruption plume since the Voyager expeditions.Io's volcanic plumes are much taller than those produced by terrestrial volcanos because of a combination of factors. The moon's thin atmosphere offers no resistance to the expanding volcanic gases; its weak gravity (one-sixth that of Earth) allows material to climb higher before falling; and its biggest volcanos are more powerful than most of Earth's volcanos.This image is a contrast-enhanced composite of an ultraviolet image (2600 Angstrom wavelength), shown in blue, and a violet image (4100 Angstrom wavelength), shown in orange. The orange color probably occurs because of the absorption and/or scattering of ultraviolet light in the plume. This light from Jupiter passes through the plume and is

  2. Grain size and shape analysis of the AD 1226 tephra layer, Reykjanes volcanic system

    Science.gov (United States)

    Ösp Magnúsdóttir, Agnes; Höskuldsson, Ármann; Larsen, Guðrún; Tumi Guðmunsson, Magnús; Sigurgeirsson, Magnús Á.

    2014-05-01

    Recent explosive eruptions in Iceland have drawn attention to long range tephra transport in the atmosphere. In Iceland tephra forming explosion eruptions are frequent, due to abundance of water. However, the volcanism on the island is principally basaltic. Volcanism along the Reykjanes Peninsula is divided into five distinct volcanic systems. Volcano-tectonic activity within these systems is periodic, with recurrence intervals in the range of 1 ka. Last volcano-tectonic sequence began around AD 940, shortly after settlement of Iceland, and lasted through AD 1340. During this period activity was characterized by basaltic fissure eruptions. Furthermore, this activity period on the Reykjanes peninsula began within the eastern most volcanic system and gradually moved towards the west across the peninsula. The 1226 eruption was a basaltic fissure eruption with in the Reykjanes volcanic system. The eruption began on land and gradually progressed towards the SW until the volcanic fissure extended into the sea. Water-magma interaction changed the eruption from effusive into explosive forming the largest tephra layer on the peninsula. Due to its close proximity to the Keflavik international airport and that of the capital of Iceland it is important to get an insight into, the characteristics, generation and distribution of such tephra deposits. In this eruption the tephra produced had an approximate volume of 0.1 km3 and covered an area of some 3500 km2 within the 0.5 cm isopach. Total grain size distribution of this tephra layer will be presented along with analysis of principal grain shapes of the finer portion of the tephra layer as a function of distance from the source. The tephra grain size is dominated by particles finer than 1 millimeter with an almost complete absence of large grains independent of distance from the source. Comprehensive understanding of the characteristics of tephra generated in this eruption can help us to understand hazards posed by future

  3. Fluidal deep-sea volcanic ash as an indicator of explosive volcanism (Invited)

    Science.gov (United States)

    Clague, D. A.; Portner, R. A.; Paduan, J. B.; Dreyer, B. M.

    2013-12-01

    Fluidal glassy lava fragments are now known to be abundant at sites of submarine eruptions including the mid-ocean ridge system, near-ridge seamount chains, mid-plate volcanoes and the submarine rifts of ocean islands, deep-sea (4200m) alkalic lava fields, back-arc spreading centers, and arc volcanoes. Fluidal fragments at these diverse settings have compositions including basanite, tholeiite, boninite, andesite, dacite, and rhyolite. Fragments include straight, bent, curved, and coiled Pele's hair; flat, curved, twisted, folded, bent, or keeled ribbons; and flat, curved, or intensely folded limu o Pele. Most of these morphologies attach to blocky glass fragments. The fluidal fragments from different settings and depths are strikingly similar in morphology with variable vesicularity and particle thickness. They have been sampled flat and steep, rocky to sediment-covered substrates. Two different mechanisms are proposed to explain their origin: magmatic-volatile fragmentation during eruption and sea floor lava-water interactions. Volatiles in the melts and ambient water are present in all submarine volcanic settings, making it difficult to separate their role in forming the fragments. Submarine bubble-burst (strombolian) activity has been observed in situ at an active vent at -1200m on West Mata Volcano. However, lava-water interaction at elevated pressure has not been observed to make such fluidal fragments except in laboratory simulations. Lava-water interaction models suggest that pore water in sediment trapped beneath advancing lava flows migrates into the overlying flow where it expands to steam, and the expanding steam bubble escapes explosively through the flow top to form the fluidal fragments. This is different from the hollow (water-filled) pillars that form in inflating flows as trapped water escapes. Pillars grow upwards at contacts between flow lobes, thus the water exiting through pillars never enters (or exits) the molten lava flow interior. Another

  4. Impacts of high-latitude volcanic eruptions on ENSO and AMOC.

    Science.gov (United States)

    Pausata, Francesco S R; Chafik, Leon; Caballero, Rodrigo; Battisti, David S

    2015-11-10

    Large volcanic eruptions can have major impacts on global climate, affecting both atmospheric and ocean circulation through changes in atmospheric chemical composition and optical properties. The residence time of volcanic aerosol from strong eruptions is roughly 2-3 y. Attention has consequently focused on their short-term impacts, whereas the long-term, ocean-mediated response has not been well studied. Most studies have focused on tropical eruptions; high-latitude eruptions have drawn less attention because their impacts are thought to be merely hemispheric rather than global. No study to date has investigated the long-term effects of high-latitude eruptions. Here, we use a climate model to show that large summer high-latitude eruptions in the Northern Hemisphere cause strong hemispheric cooling, which could induce an El Niño-like anomaly, in the equatorial Pacific during the first 8-9 mo after the start of the eruption. The hemispherically asymmetric cooling shifts the Intertropical Convergence Zone southward, triggering a weakening of the trade winds over the western and central equatorial Pacific that favors the development of an El Niño-like anomaly. In the model used here, the specified high-latitude eruption also leads to a strengthening of the Atlantic Meridional Overturning Circulation (AMOC) in the first 25 y after the eruption, followed by a weakening lasting at least 35 y. The long-lived changes in the AMOC strength also alter the variability of the El Niño-Southern Oscillation (ENSO).

  5. Explosive eruptions triggered by rockfalls at Kīlauea volcano, Hawaii

    Science.gov (United States)

    Orr, Tim R.; Thelen, Weston A.; Patrick, Matthew R.; Swanson, Donald A.; Wilson, David C.

    2012-01-01

    Ongoing eruptive activity at Kīlauea volcano’s (Hawai‘i) summit has been controlled in part by the evolution of its vent from a 35-m-diameter opening into a collapse crater 150 m across. Geologic observations, in particular from a network of webcams, have provided an unprecedented look at collapse crater development, lava lake dynamics, and shallow outgassing processes. These observations show unequivocally that the hundreds of transient outgassing bursts and weak explosive eruptions that have punctuated the vent’s otherwise nearly steady-state behavior, and that are associated with composite seismic events, were triggered by rockfalls from the vent walls onto the top of the lava column. While the process by which rockfalls drive the explosive bursts is not fully understood, we believe that it is initiated by the generation of a rebound splash, or Worthington jet, which then undergoes fragmentation. The external triggering of low-energy outgassing events by rockfalls represents a new class of small transient explosive eruptions.

  6. Climatic impact of volcanic eruptions

    Science.gov (United States)

    Rampino, Michael R.

    1991-01-01

    Studies have attempted to 'isolate' the volcanic signal in noisy temperature data. This assumes that it is possible to isolate a distinct volcanic signal in a record that may have a combination of forcings (ENSO, solar variability, random fluctuations, volcanism) that all interact. The key to discovering the greatest effects of volcanoes on short-term climate may be to concentrate on temperatures in regions where the effects of aerosol clouds may be amplified by perturbed atmospheric circulation patterns. This is especially true in subpolar and midlatitude areas affected by changes in the position of the polar front. Such climatic perturbation can be detected in proxy evidence such as decrease in tree-ring widths and frost rings, changes in the treeline, weather anomalies, severity of sea-ice in polar and subpolar regions, and poor grain yields and crop failures. In low latitudes, sudden temperature drops were correlated with the passage overhead of the volcanic dust cloud (Stothers, 1984). For some eruptions, such as Tambora, 1815, these kinds of proxy and anectdotal information were summarized in great detail in a number of papers and books (e.g., Post, 1978; Stothers, 1984; Stommel and Stommel, 1986; C. R. Harrington, in press). These studies lead to the general conclusion that regional effects on climate, sometimes quite severe, may be the major impact of large historical volcanic aerosol clouds.

  7. Psychosocial and environmental distress resulting from a volcanic eruption: Study protocol.

    Science.gov (United States)

    Warsini, Sri; Usher, Kim; Buettner, Petra; Mills, Jane; West, Caryn; Methods, Res

    2015-01-01

    To examine the psychosocial and environmental distress resulting from the 2010 eruption of the Merapi volcano and explore the experience of living in an environment damaged by a volcanic eruption. Natural disasters cause psychosocial responses in survivors. While volcanic eruptions are an example of a natural disaster, little is currently known about the psychosocial impact on survivors. Volcanic eruptions also cause degradation of the environment, which is linked to environmental distress. However, little is currently known of this phenomenon. An explanatory mixed method study. The research will be divided into three phases. The first phase will involve instrument modification, translation and testing. The second phase will involve a survey to a larger sample using the modified and tested questionnaire. The third phase will involve the collection of interviews from a sub set of the same participants as the second phase. Quantitative data will be analyzed to determine the extent of psychosocial and environmental distress experienced by the participants. Qualitative data will be analyzed to explain the variation among the participants. The results of the study will be used to develop strategies to support survivors in the future and to help ameliorate distress.

  8. Alarm systems detect volcanic tremor and earthquake swarms during Redoubt eruption, 2009

    Science.gov (United States)

    Thompson, G.; West, M. E.

    2009-12-01

    We ran two alarm algorithms on real-time data from Redoubt volcano during the 2009 crisis. The first algorithm was designed to detect escalations in continuous seismicity (tremor). This is implemented within an application called IceWeb which computes reduced displacement, and produces plots of reduced displacement and spectrograms linked to the Alaska Volcano Observatory internal webpage every 10 minutes. Reduced displacement is a measure of the amplitude of volcanic tremor, and is computed by applying a geometrical spreading correction to a displacement seismogram. When the reduced displacement at multiple stations exceeds pre-defined thresholds and there has been a factor of 3 increase in reduced displacement over the previous hour, a tremor alarm is declared. The second algorithm was to designed to detect earthquake swarms. The mean and median event rates are computed every 5 minutes based on the last hour of data from a real-time event catalog. By comparing these with thresholds, three swarm alarm conditions can be declared: a new swarm, an escalation in a swarm, and the end of a swarm. The end of swarm alarm is important as it may mark a transition from swarm to continuous tremor. Alarms from both systems were dispatched using a generic alarm management system which implements a call-down list, allowing observatory scientists to be called in sequence until someone acknowledged the alarm via a confirmation web page. The results of this simple approach are encouraging. The tremor alarm algorithm detected 26 of the 27 explosive eruptions that occurred from 23 March - 4 April. The swarm alarm algorithm detected all five of the main volcanic earthquake swarm episodes which occurred during the Redoubt crisis on 26-27 February, 21-23 March, 26 March, 2-4 April and 3-7 May. The end-of-swarm alarms on 23 March and 4 April were particularly helpful as they were caused by transitions from swarm to tremor shortly preceding explosive eruptions; transitions which were

  9. Phreatomagmatic eruptions through unconsolidated coastal plain sequences, Maungataketake, Auckland Volcanic Field (New Zealand)

    Science.gov (United States)

    Agustín-Flores, Javier; Németh, Károly; Cronin, Shane J.; Lindsay, Jan M.; Kereszturi, Gábor; Brand, Brittany D.; Smith, Ian E. M.

    2014-04-01

    Maungataketake is a monogenetic basaltic volcano formed at ~ 85-89 ka in the southern part of the Auckland Volcanic Field (AVF), New Zealand. It comprises a basal 1100-m diameter tuff ring, with a central scoria/spatter cone and lava flows. The tuff ring was formed under hydrogeological and geographic conditions very similar to the present. The tuff records numerous density stratified, wet base surges that radiated outward up to 1 km, decelerating rapidly and becoming less turbulent with distance. The pyroclastic units dominantly comprise fine-grained expelled grains from various sedimentary deposits beneath the volcano mixed with a minor component of juvenile pyroclasts (~ 35 vol.%). Subtle lateral changes relate to deceleration with distance and vertical transformations are minor, pointing to stable explosion depths and conditions, with gradual transitions between units and no evidence for eruptive pauses. This volcano formed within and on ~ 60 m-thick Plio/Pleistocene, poorly consolidated, highly permeable shelly sands and silts (Kaawa Formation) capped by near-impermeable, water-saturated muds (Tauranga Group). These sediments rest on moderately consolidated Miocene-aged permeable turbiditic sandstones and siltstones (Waitemata Group). Magma-water fuelled thermohydraulic explosions remained in the shallow sedimentary layers, excavating fine-grained sediments without brittle fragmentation required. On the whole, the resulting cool, wet pyroclastic density currents were of low energy. The unconsolidated shallow sediments deformed to accommodate rapidly rising magma, leading to development of complex sill-like bodies and a range of magma-water contact conditions at any time. The weak saturated sediments were also readily liquefied to provide an enduring supply of water and fine sediment to the explosion loci. Changes in magma flux and/or subsequent stabilisation of the conduit area by a lava ring-barrier led to ensuing Strombolian and fire-fountaining eruption

  10. Some isotopic and geochemical anomalies observed in Mexico prior to large scale earthquakes and volcanic eruptions

    International Nuclear Information System (INIS)

    Cruz R, S. de la; Armienta, M.A.; Segovia A, N.

    1992-05-01

    A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichon, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analysed. (Author)

  11. Some isotopic and geochemical anomalies observed in Mexico prior to large scale earthquakes and volcanic eruptions

    Energy Technology Data Exchange (ETDEWEB)

    Cruz R, S. de la; Armienta, M A; Segovia A, N

    1992-05-15

    A brief account of some experiences obtained in Mexico, related with the identification of geochemical precursors of volcanic eruptions and isotopic precursors of earthquakes and volcanic activity is given. The cases of three recent events of volcanic activity and one large earthquake are discussed in the context of an active geological environment. The positive results in the identification of some geochemical precursors that helped to evaluate the eruptive potential during two volcanic crises (Tacana 1986 and Colima 1991), and the significant radon-in-soil anomalies observed during a volcanic catastrophic eruption (El Chichon, 1982) and prior to a major earthquake (Michoacan, 1985) are critically analysed. (Author)

  12. Dispersal of volcaniclastic material by buoyant water plumes in deep-ocean explosive basaltic eruptions

    Science.gov (United States)

    Barreyre, T.; Soule, S.; Reves-Sohn, R. A.

    2009-12-01

    The ability of mid-ocean ridge (MOR) volcanic systems to generate explosive eruptions is inhibited by the large hydrostatic pressures associated with their deep-sea location, which suppress volatile exsolution from the magma, and which preclude the generation of steam from lava-water interaction. Nevertheless, volcaniclastic material indicative of explosive activity has been found along many parts of the global MOR, raising important questions regarding the volatile systematics within mid-ocean ridge magmatic systems, and the processes by which volcaniclastic material may be dispersed during deep-sea eruptions. In this study we measured the settling velocities of volcaniclastic grains recovered from the Gakkel Ridge, Loihi Seamount, and Axial Volcano, and developed empirical settling velocity models as a function of particle size for three different particle shapes (angular, sheet, and rod). We then used the Morton, Turner, Taylor turbulent plume model to investigate how a plume of buoyant water may distribute this volcaniclastic material during a deep-sea eruption so that the physical characteristics of the deposits may be used to constrain the location and size (i.e., energy) of the eruptions that produced them. We ran the turbulent plume model for conditions ranging from a typical black smoker (~150 MW) to a megaplume (~30000 MW), and for water column density stratifications and currents corresponding to nominal conditions for the Arctic and Pacific Oceans. We found that maximum dispersal distances for the dominant size of volcaniclastic material within buoyant water plumes range from Pele). These distances are insufficient to explain the areal extent of the volcaniclastic deposits observed along the 85°E segment of the Gakkel Ridge and various portions of the Juan de Fuca Ridge, indicating that additional energy in the form of momentum from expanding gases is required to produce the observed deposits.

  13. Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments

    Science.gov (United States)

    Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.

    2016-01-01

    The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05–0.45 MPa s−1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.

  14. Magma decompression rates during explosive eruptions of Kīlauea volcano, Hawaii, recorded by melt embayments

    Science.gov (United States)

    Ferguson, David J.; Gonnermann, Helge M.; Ruprecht, Philipp; Plank, Terry; Hauri, Erik H.; Houghton, Bruce F.; Swanson, Donald A.

    2016-10-01

    The decompression rate of magma as it ascends during volcanic eruptions is an important but poorly constrained parameter that controls many of the processes that influence eruptive behavior. In this study, we quantify decompression rates for basaltic magmas using volatile diffusion in olivine-hosted melt tubes (embayments) for three contrasting eruptions of Kīlauea volcano, Hawaii. Incomplete exsolution of H2O, CO2, and S from the embayment melts during eruptive ascent creates diffusion profiles that can be measured using microanalytical techniques, and then modeled to infer the average decompression rate. We obtain average rates of ~0.05-0.45 MPa s-1 for eruptions ranging from Hawaiian style fountains to basaltic subplinian, with the more intense eruptions having higher rates. The ascent timescales for these magmas vary from around ~5 to ~36 min from depths of ~2 to ~4 km, respectively. Decompression-exsolution models based on the embayment data also allow for an estimate of the mass fraction of pre-existing exsolved volatiles within the magma body. In the eruptions studied, this varies from 0.1 to 3.2 wt% but does not appear to be the key control on eruptive intensity. Our results do not support a direct link between the concentration of pre-eruptive volatiles and eruptive intensity; rather, they suggest that for these eruptions, decompression rates are proportional to independent estimates of mass discharge rate. Although the intensity of eruptions is defined by the discharge rate, based on the currently available dataset of embayment analyses, it does not appear to scale linearly with average decompression rate. This study demonstrates the utility of the embayment method for providing quantitative constraints on magma ascent during explosive basaltic eruptions.

  15. Determining Volcanic Deformation at San Miguel Volcano, El Salvador by Integrating Radar Interferometry and Seismic Analyses

    Science.gov (United States)

    Schiek, C. G.; Hurtado, J. M.; Velasco, A. A.; Buckley, S. M.; Escobar, D.

    2008-12-01

    From the early 1900's to the present day, San Miguel volcano has experienced many small eruptions and several periods of heightened seismic activity, making it one of the most active volcanoes in the El Salvadoran volcanic chain. Prior to 1969, the volcano experienced many explosive eruptions with Volcano Explosivity Indices (VEI) of 2. Since then, eruptions have decreased in intensity to an average VEI of 1. Eruptions mostly consist of phreatic explosions and central vent eruptions. Due to the explosive nature of this volcano, it is important to study the origins of the volcanism and its relationship to surface deformation and earthquake activity. We analyze these interactions by integrating interferometric synthetic aperture radar (InSAR) results with earthquake source location data from a ten-month (March 2007-January 2008) seismic deployment. The InSAR results show a maximum of 7 cm of volcanic inflation from March 2007 to mid-October 2007. During this time, seismic activity increased to a Real-time Seismic-Amplitude Measurement (RSAM) value of >400. Normal RSAM values for this volcano are earthquakes that occurred between March 2007 and January 2008 suggests a fault zone through the center of the San Miguel volcanic cone. This fault zone is most likely where dyke propagation is occurring. Source mechanisms will be determined for the earthquakes associated with this fault zone, and they will be compared to the InSAR deformation field to determine if the mid-October seismic activity and observed surface deformation are compatible.

  16. Human survival in volcanic eruptions: Thermal injuries in pyroclastic surges, their causes, prognosis and emergency management.

    Science.gov (United States)

    Baxter, Peter J; Jenkins, Susanna; Seswandhana, Rosadi; Komorowski, Jean-Christophe; Dunn, Ken; Purser, David; Voight, Barry; Shelley, Ian

    2017-08-01

    This study of burns patients from two eruptions of Merapi volcano, Java, in 1994 and 2010, is the first detailed analysis to be reported of thermal injuries in a large series of hospitalised victims of pyroclastic surges, one of the most devastating phenomena in explosive eruptions. Emergency planners in volcanic crises in populated areas have to integrate the health sector into disaster management and be aware of the nature of the surge impacts and the types of burns victims to be expected in a worst scenario, potentially in numbers and in severity that would overwhelm normal treatment facilities. In our series, 106 patients from the two eruptions were treated in the same major hospital in Yogyakarta and a third of these survived. Seventy-eight per cent were admitted with over 40% TBSA (total body surface area) burns and around 80% of patients were suspected of having at least some degree of inhalation injury as well. Thirty five patients suffered over 80% TBSA burns and only one of these survived. Crucially, 45% of patients were in the 40-79% TBSA range, with most suspected of suffering from inhalation injury, for whom survival was most dependent on the hospital treatment they received. After reviewing the evidence from recent major eruptions and outlining the thermal hazards of surges, we relate the type and severity of the injuries of these patients to the temperatures and dynamics of the pyroclastic surges, as derived from the environmental impacts and associated eruption processes evaluated in our field surveys and interviews conducted by our multi-disciplinary team. Effective warnings, adequate evacuation measures, and political will are all essential in volcanic crises in populated areas to prevent future catastrophes on this scale. Copyright © 2017 Elsevier Ltd and ISBI. All rights reserved.

  17. Assessment of the potential respiratory hazard of volcanic ash from future Icelandic eruptions: A study of archived basaltic to rhyolitic ash samples

    Science.gov (United States)

    Damby, David; Horwell, Claire J.; Larsen, Gudrun; Thordarson, Thorvaldur; Tomatis, Maura; Fubini, Bice; Donaldson, Ken

    2017-01-01

    BackgroundThe eruptions of Eyjafjallajökull (2010) and Grímsvötn (2011), Iceland, triggered immediate, international consideration of the respiratory health hazard of inhaling volcanic ash, and prompted the need to estimate the potential hazard posed by future eruptions of Iceland’s volcanoes to Icelandic and Northern European populations. MethodsA physicochemical characterization and toxicological assessment was conducted on a suite of archived ash samples spanning the spectrum of past eruptions (basaltic to rhyolitic magmatic composition) of Icelandic volcanoes following a protocol specifically designed by the International Volcanic Health Hazard Network. ResultsIcelandic ash can be of a respirable size (up to 11.3 vol.% < 4 μm), but the samples did not display physicochemical characteristics of pathogenic particulate in terms of composition or morphology. Ash particles were generally angular, being composed of fragmented glass and crystals. Few fiber-like particles were observed, but those present comprised glass or sodium oxides, and are not related to pathogenic natural fibers, like asbestos or fibrous zeolites, thereby limiting concern of associated respiratory diseases. None of the samples contained cristobalite or tridymite, and only one sample contained quartz, minerals of interest due to the potential to cause silicosis. Sample surface areas are low, ranging from 0.4 to 1.6 m2 g−1, which aligns with analyses on ash from other eruptions worldwide. All samples generated a low level of hydroxyl radicals (HO•), a measure of surface reactivity, through the iron-catalyzed Fenton reaction compared to concurrently analyzed comparative samples. However, radical generation increased after ‘refreshing’ sample surfaces, indicating that newly erupted samples may display higher reactivity. A composition-dependent range of available surface iron was measured after a 7-day incubation, from 22.5 to 315.7 μmol m−2, with mafic samples releasing more iron

  18. Stratospheric sulfuric acid fraction and mass estimate for the 1982 volcanic eruption of El Chichon

    Science.gov (United States)

    Hofmann, D. J.; Rosen, J. M.

    1983-01-01

    The stratospheric sulfuric acid fraction and mass for the 1982 volcanic eruptions of El Chichon are investigated using data from balloon soundings at Laramie (41 deg N) and in southern Texas (27-29 deg N). The total stratospheric mass of these eruptions is estimated to be approximately 8 Tg about 6.5 months after the eruption with possibly as much as 20 Tg in the stratosphere about 45 days after the eruption. Observations of the aerosol in Texas revealed two primary layers, both highly volatile at 150 C. Aerosol in the upper layer at about 25 km was composed of an approximately 80 percent H2SO4 solution while the lower layer at approximately 18 km was composed of a 60-65 percent H2SO4 solution aerosol. It is calculated that an H2SO4 vapor concentration of at least 3 x 10 to the 7th molecules/cu cm is needed to sustain the large droplets in the upper layer. An early bi-modal nature in the size distribution indicates droplet nucleation from the gas phase during the first 3 months, while the similarity of the large particle profiles 2 months apart shows continued particle growth 6.5 months after the explosion.

  19. The vertical distribution of volcanic SO2 plumes measured by IASI

    Directory of Open Access Journals (Sweden)

    E. Carboni

    2016-04-01

    Full Text Available Sulfur dioxide (SO2 is an important atmospheric constituent that plays a crucial role in many atmospheric processes. Volcanic eruptions are a significant source of atmospheric SO2 and its effects and lifetime depend on the SO2 injection altitude. The Infrared Atmospheric Sounding Interferometer (IASI on the METOP satellite can be used to study volcanic emission of SO2 using high-spectral resolution measurements from 1000 to 1200 and from 1300 to 1410 cm−1 (the 7.3 and 8.7 µm SO2 bands returning both SO2 amount and altitude data. The scheme described in Carboni et al. (2012 has been applied to measure volcanic SO2 amount and altitude for 14 explosive eruptions from 2008 to 2012. The work includes a comparison with the following independent measurements: (i the SO2 column amounts from the 2010 Eyjafjallajökull plumes have been compared with Brewer ground measurements over Europe; (ii the SO2 plumes heights, for the 2010 Eyjafjallajökull and 2011 Grimsvötn eruptions, have been compared with CALIPSO backscatter profiles. The results of the comparisons show that IASI SO2 measurements are not affected by underlying cloud and are consistent (within the retrieved errors with the other measurements. The series of analysed eruptions (2008 to 2012 show that the biggest emitter of volcanic SO2 was Nabro, followed by Kasatochi and Grímsvötn. Our observations also show a tendency for volcanic SO2 to reach the level of the tropopause during many of the moderately explosive eruptions observed. For the eruptions observed, this tendency was independent of the maximum amount of SO2 (e.g. 0.2 Tg for Dalafilla compared with 1.6 Tg for Nabro and of the volcanic explosive index (between 3 and 5.

  20. The influence of eruption season on the global aerosol evolution and radiative impact of tropical volcanic eruptions

    Directory of Open Access Journals (Sweden)

    M. Toohey

    2011-12-01

    Full Text Available Simulations of tropical volcanic eruptions using a general circulation model with coupled aerosol microphysics are used to assess the influence of season of eruption on the aerosol evolution and radiative impacts at the Earth's surface. This analysis is presented for eruptions with SO2 injection magnitudes of 17 and 700 Tg, the former consistent with estimates of the 1991 Mt. Pinatubo eruption, the later a near-"super eruption". For each eruption magnitude, simulations are performed with eruptions at 15° N, at four equally spaced times of year. Sensitivity to eruption season of aerosol optical depth (AOD, clear-sky and all-sky shortwave (SW radiative flux is quantified by first integrating each field for four years after the eruption, then calculating for each cumulative field the absolute or percent difference between the maximum and minimum response from the four eruption seasons. Eruption season has a significant influence on AOD and clear-sky SW radiative flux anomalies for both eruption magnitudes. The sensitivity to eruption season for both fields is generally weak in the tropics, but increases in the mid- and high latitudes, reaching maximum values of ~75 %. Global mean AOD and clear-sky SW anomalies show sensitivity to eruption season on the order of 15–20 %, which results from differences in aerosol effective radius for the different eruption seasons. Smallest aerosol size and largest cumulative impact result from a January eruption for Pinatubo-magnitude eruption, and from a July eruption for the near-super eruption. In contrast to AOD and clear-sky SW anomalies, all-sky SW anomalies are found to be insensitive to season of eruption for the Pinatubo-magnitude eruption experiment, due to the reflection of solar radiation by clouds in the mid- to high latitudes. However, differences in all-sky SW anomalies between eruptions in different seasons are significant for the larger eruption magnitude, and the ~15 % sensitivity to

  1. UK Hazard Assessment for a Laki-type Volcanic Eruption

    Science.gov (United States)

    Witham, Claire; Felton, Chris; Daud, Sophie; Aspinall, Willy; Braban, Christine; Loughlin, Sue; Hort, Matthew; Schmidt, Anja; Vieno, Massimo

    2014-05-01

    Following the impacts of the Eyjafjallajokull eruption in 2010, two types of volcanic eruption have been added to the UK Government's National Risk Register for Civil Emergencies. One of these, a large gas-rich volcanic eruption, was identified as a high impact natural hazard, one of the three highest priority natural hazards faced by the UK. This eruption scenario is typified by the Laki eruption in Iceland in 1783-1784. The Civil Contingency Secretariat (CCS) of the UK's Cabinet Office, responsible for Civil Protection in the UK, has since been working on quantifying the risk and better understanding its potential impacts. This involves cross-cutting work across UK Government departments and the wider scientific community in order to identify the capabilities needed to respond to an effusive eruption, to exercise the response and develop increased resilience where possible. As part of its current work, CCS has been working closely with the UK Met Office and other UK agencies and academics (represented by the co-authors and others) to generate and assess the impacts of a 'reasonable worst case scenario', which can be used for decision making and preparation in advance of an eruption. Information from the literature and the findings of an expert elicitation have been synthesised to determine appropriate eruption source term parameters and associated uncertainties. This scenario is then being used to create a limited ensemble of model simulations of the dispersion and chemical conversion of the emissions of volcanic gases during such an eruption. The UK Met Office's NAME Lagrangian dispersion model and the Centre for Ecology and Hydrology's EMEP4UK Eulerian model are both being used. Modelling outputs will address the likelihood of near-surface concentrations of sulphur and halogen species being above specified health thresholds. Concentrations at aviation relevant altitudes will also be evaluated, as well as the effects of acid deposition of volcanic species on

  2. Central San Juan caldera cluster: Regional volcanic framework

    Science.gov (United States)

    Lipman, Peter W.

    2000-01-01

    Eruption of at least 8800 km3 of dacitic-rhyolitic magma as 9 major ash-slow sheets (individually 150-5000 km3) was accompanied by recurrent caldera subsidence between 28.3 and about 26.5 Ma in the central San Juan Mountains, Colorado. Voluminous andesitic-decitic lavas and breccias were erupted from central volcanoes prior to the ash-flow eruptions, and similar lava eruptions continued within and adjacent to the calderas during the period of explosive volcanism, making the central San Juan caldera cluster an exceptional site for study of caldera-related volcanic processes. Exposed calderas vary in size from 10 to 75 km in maximum diameter, the largest calderas being associated with the most voluminous eruptions. After collapse of the giant La Garita caldera during eruption if the Fish Canyon Tuff at 17.6 Ma, seven additional explosive eruptions and calderas formed inside the La Garita depression within about 1 m.y. Because of the nested geometry, maximum loci of recurrently overlapping collapse events are inferred to have subsided as much as 10-17 km, far deeper than the roof of the composite subvolcanic batholith defined by gravity data, which represents solidified caldera-related magma bodies. Erosional dissection to depths of as much as 1.5 km, although insufficient to reach the subvolcanic batholith, has exposed diverse features of intracaldera ash-flow tuff and interleaved caldera-collapse landslide deposits that accumulated to multikilometer thickness within concurrently subsiding caldera structures. The calderas display a variety of postcollapse resurgent uplift structures, and caldera-forming events produced complex fault geometries that localized late mineralization, including the epithermal base- and precious-metal veins of the well-known Creede mining district. Most of the central San Juan calderas have been deeply eroded, and their identification is dependent on detailed geologic mapping. In contrast, the primary volcanic morphology of the

  3. Electrical activity during the 2006 Mount St. Augustine volcanic eruptions

    Science.gov (United States)

    Thomas, Ronald J.; Krehbiel, Paul R.; Rison, William; Edens, H. E.; Aulich, G. D.; McNutt, S.R.; Tytgat, Guy; Clark, E.

    2007-01-01

    By using a combination of radio frequency time-of-arrival and interferometer measurements, we observed a sequence of lightning and electrical activity during one of Mount St. Augustine's eruptions. The observations indicate that the electrical activity had two modes or phases. First, there was an explosive phase in which the ejecta from the explosion appeared to be highly charged upon exiting the volcano, resulting in numerous apparently disorganized discharges and some simple lightning. The net charge exiting the volcano appears to have been positive. The second phase, which followed the most energetic explosion, produced conventional-type discharges that occurred within plume. Although the plume cloud was undoubtedly charged as a result of the explosion itself, the fact that the lightning onset was delayed and continued after and well downwind of the eruption indicates that in situ charging of some kind was occurring, presumably similar in some respects to that which occurs in normal thunderstorms.

  4. Volcanic precursors in light of eruption mechanisms at Vesuvius

    Directory of Open Access Journals (Sweden)

    Roberto Scandone

    2013-11-01

    Full Text Available Vesuvius entered a quiescent stage after the eruption of March-April 1944. The eruption was not much different or larger than other before, like for example the one of 1906, but it occurred at the end of a long period during which it was observed a decreasing trend of explosivity of eruptions [Scandone et al. 2008]. The parallel increase in the frequency of slow effusive eruptions, with respect to violent strombolian eruptions, point out to a process of average slower rate of magma ascent possibly due to a progressive sealing of the ascent path of magma to the surface. The small caldera collapse following the 1944 explosive phase effectively sealed the upper conduit, and since then the volcano entered a quiescence stage that was unusual with respect to the pattern of activity of the previous 300 years when the maximum repose time had been of 7 years (after the eruption of 1906. Most of the uncertainty on the duration of the present stage and character of a future renewal of activity derives by the basic questions regarding the nature of the current repose: due to a diminished supply of magma, related with structural condition or a sealing of the upper ascent path to the surface? Possibly the variation of structural conditions caused average slower ascent rates of magma favoring its cooling in the upper part of the crust, and effectively sealing the ascent path.

  5. Towards forecasting volcanic eruptions on a global scale

    Science.gov (United States)

    Hooper, A. J.; Heimisson, E. R.; Gaddes, M.; Bagnardi, M.; Sigmundsson, F.; Spaans, K.; Parks, M.; Gudmundsson, M. T.; Ebmeier, S. K.; Holohan, E. P.; Wright, T. J.; Jonsdottir, K.; Hreinsdottir, S.; Dumont, S.; Ofeigsson, B.; Vogfjord, K. S.

    2016-12-01

    Volcanic eruptions can cause loss of life, damage health, and have huge economic impacts, providing strong societal motivation for predicting eruptive behavior prior to and during eruptions. I will present here recent progress we have made in mechanical modelling with a predictive capacity, and how we are expanding volcano monitoring to a global scale. The eruption of Bardarbunga volcano, Iceland, in 2014-2015 was the largest eruption there for more than 200 years, producing 1.6 km3of lava. Prior to eruption, magma propagated almost 50 km beneath the surface, over a period of two weeks. Key questions to answer in advance of such eruptions are: will it erupt, where, how much and for how long? We developed a model based on magma taking a path that maximizes energy release, which aligns well with the actual direction taken. Our model also predicts eruption in a topographic low, as actually occurred. As magma was withdrawn, the volcano surface sagged downwards. A coupled model of magma flow and piston-like collapse predicts a declining magma flow rate and ground subsidence rate, in accordance with that observed. With such a model, observations can be used to predict the timescale and rates of eruption, even before one starts. The primary data needed to constrain these predictive models are measurements of surface deformation. In Iceland, this is achieved using high accuracy GPS, however, most volcanoes have no ground instrumentation. A recent ESA mission, Sentinel-1, can potentially image deformation at almost all subaerial volcanoes every 6 days, using a technique called interferometric synthetic aperture radar (InSAR). This will allow us to detect early stages of magma migration at any volcano, then task other satellites to acquire data at a higher rate. We are working on a system to process all Sentinel-1 data in near-real time, which is a big data challenge. We have also developed new algorithms that maximize signal extraction from each new acquisition and

  6. Collateral variations between the concentrations of mercury and other water soluble ions in volcanic ash samples and volcanic activity during the 2014-2016 eruptive episodes at Aso volcano, Japan

    Science.gov (United States)

    Marumoto, Kohji; Sudo, Yasuaki; Nagamatsu, Yoshizumi

    2017-07-01

    During 2014-2016, the Aso volcano, located in the center of the Kyushu Islands, Japan, erupted and emitted large amounts of volcanic gases and ash. Two episodes of the eruption were observed; firstly Strombolian magmatic eruptive episodes from 25 November 2014 to the middle of May 2015, and secondly phreatomagmatic and phreatic eruptive episodes from September 2015 to February 2016. Bulk chemical analyses on total mercury (Hg) and major ions in water soluble fraction in volcanic ash fall samples were conducted. During the Strombolian magmatic eruptive episodes, total Hg concentrations averaged 1.69 ± 0.87 ng g- 1 (N = 33), with a range from 0.47 to 3.8 ng g- 1. In addition, the temporal variation of total Hg concentrations in volcanic ash varied with the amplitude change of seismic signals. In the Aso volcano, the volcanic tremors are always observed during eruptive stages and quiet interludes, and the amplitudes of tremors increase at eruptive stages. So, the temporal variation of total Hg concentrations could provide an indication of the level of volcanic activity. During the phreatomagmatic and phreatic eruptive episodes, on the other hand, total Hg concentrations in the volcanic ash fall samples averaged 220 ± 88 ng g- 1 (N = 5), corresponding to 100 times higher than those during the Strombolian eruptive episode. Therefore, it is possible that total Hg concentrations in volcanic ash samples are largely varied depending on the eruptive type. In addition, the ash fall amounts were also largely different among the two eruptive episodes. This can be also one of the factors controlling Hg concentrations in volcanic ash.

  7. Investigating the consequences of urban volcanism using a scenario approach I: Development and application of a hypothetical eruption in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Deligne, Natalia I.; Fitzgerald, Rebecca H.; Blake, Daniel M.; Davies, Alistair J.; Hayes, Josh L.; Stewart, Carol; Wilson, Grant; Wilson, Thomas M.; Castelino, Renella; Kennedy, Ben M.; Muspratt, Scott; Woods, Richard

    2017-04-01

    What happens when a city has a volcanic eruption within its boundaries? To explore the consequences of this rare but potentially catastrophic combination, we develop a detailed multi-hazard scenario of an Auckland Volcanic Field (AVF) eruption; the AVF underlies New Zealand's largest city, Auckland. We start with an existing AVF unrest scenario sequence and develop it through a month-long hypothetical eruption based on geologic investigations of the AVF and historic similar eruptions from around the world. We devise a credible eruption sequence and include all volcanic hazards that could occur in an AVF eruption. In consultation with Civil Defence and Emergency Management staff, we create a series of evacuation maps for before, during, and after the hypothetical eruption sequence. Our result is a versatile scenario with many possible applications, developed further in companion papers that explore eruption consequences on transportation and water networks. However, here we illustrate one application: evaluating the consequences of an eruption on electricity service provision. In a collaborative approach between scientists and electricity service providers, we evaluate the impact of the hypothetical eruption to electricity generation, transmission, and distribution infrastructure. We then evaluate how the impacted network functions, accounting for network adaptations (e.g., diverting power away from evacuated areas), site access, and restoration factors. We present a series of regional maps showing areas with full service, rolling outages, and no power as a result of the eruption. This illustrative example demonstrates how a detailed scenario can be used to further understand the ramifications of urban volcanism on local and regional populations, and highlights the importance of looking beyond damage to explore the consequences of volcanism.

  8. On numerical simulation of the global distribution of sulfate aerosol produced by a large volcanic eruption

    Energy Technology Data Exchange (ETDEWEB)

    Pudykiewicz, J.A.; Dastoor, A.P. [Atmospheric Environment Service, Quebec (Canada)

    1994-12-31

    Volcanic eruptions play an important role in the global sulfur cycle of the Earth`s atmosphere and can significantly perturb the global atmospheric chemistry. The large amount of sulfate aerosol produced by the oxidation of SO{sub 2} injected into the atmosphere during volcanic eruptions also has a relatively big influence on the radiative equilibrium of the Earth`s climatic system. The submicron particles of the sulfate aerosol reflect solar radiation more effectively than they trap radiation in the infrared range. The effect of this is observed as cooling of the Earth`s surface. The modification of the global radiation budget following volcanic eruption can subsequently cause significant fluctuations of atmospheric variables on a subclimatic scale. The resulting perturbation of weather patterns has been observed and well documented since the eruptions of Mt. Krakatau and Mt. Tambora. The impact of the sulfate aerosol from volcanic eruptions on the radiative equilibrium of the Earth`s atmosphere was also confirmed by the studies done with Global Circulation Models designed to simulate climate. The objective of the present paper is to present a simple and effective method to estimate the global distribution of the sulfate aerosol produced as a consequence of volcanic eruptions. In this study we will present results of the simulation of global distribution of sulfate aerosol from the eruption of Mt Pinatubo.

  9. Magmatic controls on eruption dynamics of the 1950 yr B.P. eruption of San Antonio Volcano, Tacaná Volcanic Complex, Mexico-Guatemala

    Science.gov (United States)

    Mora, Juan Carlos; Gardner, James Edward; Macías, José Luis; Meriggi, Lorenzo; Santo, Alba Patrizia

    2013-07-01

    San Antonio Volcano, in the Tacaná Volcanic Complex, erupted ~ 1950 yr. B.P., with a Pelean type eruption that produced andesitic pyroclastic surges and block-and-ash flows destroying part of the volcano summit and producing a horse-shoe shaped crater open to the SW. Between 1950 and 800 yr B.P. the eruption continued with effusive andesites followed by a dacite lava flow and a summit dome, all from a single magma batch. All products consist of phenocrysts and microphenocrysts of zoned plagioclase, amphibole, pyroxene, magnetite ± ilmenite, set in partially crystallized groundmass of glass and microlites of the same mineral phases, except for the lack of amphibole. Included in the andesitic blocks of the block-and-ash flow deposit are basaltic andesite enclaves with elongated and ellipsoidal forms and chilled margins. The enclaves have intersertal textures with brown glass between microphenocrysts of plagioclase, hornblende, pyroxene, and olivine, and minor proportions of phenocrysts of plagioclase, hornblende, and pyroxene. A compositional range obtained of blocks and enclaves resulted from mixing between andesite (866 °C ± 22) and basaltic andesite (enclaves, 932 °C ± 22), which may have triggered the explosive Pelean eruption. Vestiges of that mixing are preserved as complex compositional zones in plagioclase and clinopyroxene-rich reaction rims in amphibole in the andesite. Whole-rock chemistry, geothermometry, experimental petrology and modeling results suggest that after the mixing event the eruption tapped hybrid andesitic magma (≤ 900 °C) and ended with effusive dacitic magma (~ 825 °C), all of which were stored at ~ 200 MPa water pressure. A complex open-system evolution that involved crustal end-members best explains the generation of effusive dacite from the hybrid andesite. Amphibole in the dacite is rimmed by reaction products of plagioclase, orthopyroxene, and Fe-Ti oxides produced by decompression during ascent. Amphibole in the andesite

  10. Assessing the impact of a future volcanic eruption on decadal predictions

    Science.gov (United States)

    Illing, Sebastian; Kadow, Christopher; Pohlmann, Holger; Timmreck, Claudia

    2018-06-01

    The likelihood of a large volcanic eruption in the future provides the largest uncertainty concerning the evolution of the climate system on the timescale of a few years, but also an excellent opportunity to learn about the behavior of the climate system, and our models thereof. So the following question emerges: how predictable is the response of the climate system to future eruptions? By this we mean to what extent will the volcanic perturbation affect decadal climate predictions and how does the pre-eruption climate state influence the impact of the volcanic signal on the predictions? To address these questions, we performed decadal forecasts with the MiKlip prediction system, which is based on the MPI-ESM, in the low-resolution configuration for the initialization years 2012 and 2014, which differ in the Pacific Decadal Oscillation (PDO) and North Atlantic Oscillation (NAO) phase. Each forecast contains an artificial Pinatubo-like eruption starting in June of the first prediction year and consists of 10 ensemble members. For the construction of the aerosol radiative forcing, we used the global aerosol model ECHAM5-HAM in a version adapted for volcanic eruptions. We investigate the response of different climate variables, including near-surface air temperature, precipitation, frost days, and sea ice area fraction. Our results show that the average global cooling response over 4 years of about 0.2 K and the precipitation decrease of about 0.025 mm day-1 is relatively robust throughout the different experiments and seemingly independent of the initialization state. However, on a regional scale, we find substantial differences between the initializations. The cooling effect in the North Atlantic and Europe lasts longer and the Arctic sea ice increase is stronger in the simulations initialized in 2014. In contrast, the forecast initialized in 2012 with a negative PDO shows a prolonged cooling in the North Pacific basin.

  11. Volcanic Ash Impacts on Air Traffic from the 2009 Mt. Redoubt Eruption

    Science.gov (United States)

    Murray, J. J.; Matus, A. V.; Hudnall, L. A.; Krueger, A. J.; Haynes, J. A.; Pippin, M. R.

    2009-12-01

    The dispersion of volcanic ash during the March 2009 eruption of Mt. Redoubt created the potential for major problems for aviation. Mt. Redoubt is located 110 km west-southwest of Alaska Airlines hub in Anchorage. It last erupted in 1990 and caused an estimated $101 million cost to the aviation industry (Waythomas, 1998). This study was conducted to assist in improving warning systems, policy and procedures for addressing the impact of volcanic ash on aviation. The study had two primary components. First, the altitude and extent of SO2 dispersion was determined through analysis of synoptic meteorological conditions and satellite imagery. Second, impacts on aviation from the volcanic ash dispersion were investigated. OMI SO2 column measurements were employed to assess the altitude and extent of SO2 dispersion of volcanic ash. To accomplish this, OMI data were assimilated with CALIPSO backscatter profiles, geopotential height plots, and HYSPLIT forward model trajectories. Volcanic Ash Advisories were compared to airport and pilot reports to assess aviation impacts. The eruption produced a complex dispersion of volcanic ash. Volcanic ash altitudes estimated for 23 March 2009 indicate that the majority of the plume remained at approximately 8 km, although reports indicate that the initial plume may have reached as high as18 km (60,000 ft). A low pressure system which passed over the eruption area appears to have entrained most of the ash at approximately 8 km, however the CALIPSO satellite indicates that dispersion also extended to 10 km and 16 km. Atmospheric patterns suggest dispersion at approximately 3 km near Hudson Bay. Analysis of 25 March 2009 indicates that much of the ash plume was dispersed at higher altitudes, where CALIPSO data locates the stratospheric ash plume at approximately 14 km above mean sea level. By the time the eruptions had subsided in April, Alaska Airlines had cancelled 295 flights and disrupted the flights of over 20,000 passengers. This

  12. Evidence of Influence of Human Activities and Volcanic Eruptions on Environmental Perchlorate from a 300-Year Greenland Ice Core Record.

    Science.gov (United States)

    Cole-Dai, Jihong; Peterson, Kari Marie; Kennedy, Joshua Andrew; Cox, Thomas S; Ferris, David G

    2018-06-26

    A 300-year (1700-2007) chronological record of environmental perchlorate, reconstructed from high-resolution analysis of a central Greenland ice core, shows that perchlorate levels in the post-1980 atmosphere were two-to-three times those of the pre-1980 environment. While this confirms recent reports of increased perchlorate in Arctic snow since 1980 compared with the levels for the prior decades (1930-1980), the longer Greenland record demonstrates that the Industrial Revolution and other human activities, which emitted large quantities of pollutants and contaminants, did not significantly impact environmental perchlorate, as perchlorate levels remained stable throughout the eighteenth, nineteenth, and much of the twentieth centuries. The increased levels since 1980 likely result from enhanced atmospheric perchlorate production, rather than from direct release from perchlorate manufacturing and applications. The enhancement is probably influenced by the emission of organic chlorine compounds in the last several decades. Prior to 1980, no significant long-term temporal trends in perchlorate concentration are observed. Brief (a few years) high concentration episodes appear frequently over an apparently stable and low background (~1 ng kg‒1). Several such episodes coincide in time with large explosive volcanic eruptions including the 1912 Novarupta/Katmai eruption in Alaska. It appears that atmospheric perchlorate production is impacted by large eruptions in both high and low latitudes, but not by small eruptions and non-explosive degassing.

  13. Contrastive research of ionospheric precursor anomalies between Calbuco volcanic eruption on April 23 and Nepal earthquake on April 25, 2015

    Science.gov (United States)

    Li, Wang; Guo, Jinyun; Yue, Jianping; Yang, Yang; Li, Zhen; Lu, Deikai

    2016-05-01

    On April 23, 2015, the VEI4 (volcanic explosive index) Calbuco volcano abruptly erupted in Chile and the Mw7.9 Nepal earthquake occurred on April 25. In order to investigate the similarities and differences between total electron content (TEC) anomalies preceding these two types of geophysical activities, the TEC time series over preparation zones before the volcanic eruption and earthquake extracted from global ionosphere map were analyzed. We used sunspot numbers (SSN), Bz, Dst, and Kp indices to represent the solar-terrestrial environment and eliminate the effects of solar and geomagnetic activities on ionosphere by the sliding interquartile range method with the 27-day window. The results indicate that TEC-negative and -positive anomalies appeared in the 14th and 6th day before the eruption, respectively. The anomalies lasted about 4-6 h with a magnitude of 15-20 TECU. The TEC anomalies were also observed on the 14th and 6th day before the Nepal earthquake with a duration of 6-8 h, and the absolute magnitude of TEC anomalies was within 12-20 TECU. These findings indicate that the magnitude of TEC anomalies preceding volcanic eruption was larger, and the duration of TEC anomalies before the earthquake was longer, which may be associated with their particular physical mechanisms. The TEC anomalies before the Nepal earthquake in the Eastern hemisphere occurred in the afternoon local time, but those before the eruption were observed in the night local time. Peak regions of TEC anomalies did not coincide with the epicenters of geophysical activities, and the TEC anomalies also appeared in the magnetic conjugated region. Both the TEC anomalies in the preparation zone and conjugated region were distributed near the boundaries of equatorial anomaly zone and moved along the boundaries. In the moving process, sometimes the extent or magnitude of TEC anomalies in the conjugated region was larger than that in the preparation zone. Many more GPS stations and receivers

  14. Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER) project and a next-generation real-time volcano hazard assessment system

    Science.gov (United States)

    Takarada, S.

    2012-12-01

    The first Workshop of Asia-Pacific Region Global Earthquake and Volcanic Eruption Risk Management (G-EVER1) was held in Tsukuba, Ibaraki Prefecture, Japan from February 23 to 24, 2012. The workshop focused on the formulation of strategies to reduce the risks of disasters worldwide caused by the occurrence of earthquakes, tsunamis, and volcanic eruptions. More than 150 participants attended the workshop. During the workshop, the G-EVER1 accord was approved by the participants. The Accord consists of 10 recommendations like enhancing collaboration, sharing of resources, and making information about the risks of earthquakes and volcanic eruptions freely available and understandable. The G-EVER Hub website (http://g-ever.org) was established to promote the exchange of information and knowledge among the Asia-Pacific countries. Several G-EVER Working Groups and Task Forces were proposed. One of the working groups was tasked to make the next-generation real-time volcano hazard assessment system. The next-generation volcano hazard assessment system is useful for volcanic eruption prediction, risk assessment, and evacuation at various eruption stages. The assessment system is planned to be developed based on volcanic eruption scenario datasets, volcanic eruption database, and numerical simulations. Defining volcanic eruption scenarios based on precursor phenomena leading up to major eruptions of active volcanoes is quite important for the future prediction of volcanic eruptions. Compiling volcanic eruption scenarios after a major eruption is also important. A high quality volcanic eruption database, which contains compilations of eruption dates, volumes, and styles, is important for the next-generation volcano hazard assessment system. The volcanic eruption database is developed based on past eruption results, which only represent a subset of possible future scenarios. Hence, different distributions from the previous deposits are mainly observed due to the differences in

  15. Russian eruption warning systems for aviation

    Science.gov (United States)

    Neal, C.; Girina, O.; Senyukov, S.; Rybin, A.; Osiensky, J.; Izbekov, P.; Ferguson, G.

    2009-01-01

    More than 65 potentially active volcanoes on the Kamchatka Peninsula and the Kurile Islands pose a substantial threat to aircraft on the Northern Pacific (NOPAC), Russian Trans-East (RTE), and Pacific Organized Track System (PACOTS) air routes. The Kamchatka Volcanic Eruption Response Team (KVERT) monitors and reports on volcanic hazards to aviation for Kamchatka and the north Kuriles. KVERT scientists utilize real-time seismic data, daily satellite views of the region, real-time video, and pilot and field reports of activity to track and alert the aviation industry of hazardous activity. Most Kurile Island volcanoes are monitored by the Sakhalin Volcanic Eruption Response Team (SVERT) based in Yuzhno-Sakhalinsk. SVERT uses daily moderate resolution imaging spectroradiometer (MODIS) satellite images to look for volcanic activity along this 1,250-km chain of islands. Neither operation is staffed 24 h per day. In addition, the vast majority of Russian volcanoes are not monitored seismically in real-time. Other challenges include multiple time-zones and language differences that hamper communication among volcanologists and meteorologists in the US, Japan, and Russia who share the responsibility to issue official warnings. Rapid, consistent verification of explosive eruptions and determination of cloud heights remain significant technical challenges. Despite these difficulties, in more than a decade of frequent eruptive activity in Kamchatka and the northern Kuriles, no damaging encounters with volcanic ash from Russian eruptions have been recorded. ?? Springer Science+Business Media B.V. 2009.

  16. Observations of the altitude of the volcanic plume during the eruption of Eyjafjallajökull, April–May 2010

    Directory of Open Access Journals (Sweden)

    P. Arason

    2011-09-01

    Full Text Available The eruption of Eyjafjallajökull volcano in 2010 lasted for 39 days, 14 April–23 May. The eruption had two explosive phases separated by a phase with lava formation and reduced explosive activity. The height of the plume was monitored every 5 min with a C-band weather radar located in Keflavík International Airport, 155 km distance from the volcano. Furthermore, several web cameras were mounted with a view of the volcano, and their images saved every five seconds. Time series of the plume-top altitude were constructed from the radar observations and images from a web camera located in the village Hvolsvöllur at 34 km distance from the volcano. This paper presents the independent radar and web camera time series and performs cross validation. The results show good agreement between the time series for the range when both series are available. However, while the radar altitudes are semi-discrete the data availability was much higher than for the web camera, indicating how essential weather radars are as eruption plume monitoring devices. The echo top radar series of the altitude of the volcanic plume are publicly available from the Pangaea Data Publisher (http://dx.doi.org/10.1594/PANGAEA.760690.

  17. Enhanced ice sheet melting driven by volcanic eruptions during the last deglaciation.

    Science.gov (United States)

    Muschitiello, Francesco; Pausata, Francesco S R; Lea, James M; Mair, Douglas W F; Wohlfarth, Barbara

    2017-10-24

    Volcanic eruptions can impact the mass balance of ice sheets through changes in climate and the radiative properties of the ice. Yet, empirical evidence highlighting the sensitivity of ancient ice sheets to volcanism is scarce. Here we present an exceptionally well-dated annual glacial varve chronology recording the melting history of the Fennoscandian Ice Sheet at the end of the last deglaciation (∼13,200-12,000 years ago). Our data indicate that abrupt ice melting events coincide with volcanogenic aerosol emissions recorded in Greenland ice cores. We suggest that enhanced ice sheet runoff is primarily associated with albedo effects due to deposition of ash sourced from high-latitude volcanic eruptions. Climate and snowpack mass-balance simulations show evidence for enhanced ice sheet runoff under volcanically forced conditions despite atmospheric cooling. The sensitivity of past ice sheets to volcanic ashfall highlights the need for an accurate coupling between atmosphere and ice sheet components in climate models.

  18. Volcanic signals in oceans

    KAUST Repository

    Stenchikov, Georgiy L.

    2009-08-22

    Sulfate aerosols resulting from strong volcanic explosions last for 2–3 years in the lower stratosphere. Therefore it was traditionally believed that volcanic impacts produce mainly short-term, transient climate perturbations. However, the ocean integrates volcanic radiative cooling and responds over a wide range of time scales. The associated processes, especially ocean heat uptake, play a key role in ongoing climate change. However, they are not well constrained by observations, and attempts to simulate them in current climate models used for climate predictions yield a range of uncertainty. Volcanic impacts on the ocean provide an independent means of assessing these processes. This study focuses on quantification of the seasonal to multidecadal time scale response of the ocean to explosive volcanism. It employs the coupled climate model CM2.1, developed recently at the National Oceanic and Atmospheric Administration\\'s Geophysical Fluid Dynamics Laboratory, to simulate the response to the 1991 Pinatubo and the 1815 Tambora eruptions, which were the largest in the 20th and 19th centuries, respectively. The simulated climate perturbations compare well with available observations for the Pinatubo period. The stronger Tambora forcing produces responses with higher signal-to-noise ratio. Volcanic cooling tends to strengthen the Atlantic meridional overturning circulation. Sea ice extent appears to be sensitive to volcanic forcing, especially during the warm season. Because of the extremely long relaxation time of ocean subsurface temperature and sea level, the perturbations caused by the Tambora eruption could have lasted well into the 20th century.

  19. Holocene volcanism of the upper McKenzie River catchment, central Oregon Cascades, USA

    Science.gov (United States)

    Deligne, Natalia I.; Conrey, Richard M.; Cashman, Katharine V.; Champion, Duane E.; Amidon, William H.

    2016-01-01

    To assess the complexity of eruptive activity within mafic volcanic fields, we present a detailed geologic investigation of Holocene volcanism in the upper McKenzie River catchment in the central Oregon Cascades, United States. We focus on the Sand Mountain volcanic field, which covers 76 km2 and consists of 23 vents, associated tephra deposits, and lava fields. We find that the Sand Mountain volcanic field was active for a few decades around 3 ka and involved at least 13 eruptive units. Despite the small total volume erupted (∼1 km3 dense rock equivalent [DRE]), Sand Mountain volcanic field lava geochemistry indicates that erupted magmas were derived from at least two, and likely three, different magma sources. Single units erupted from one or more vents, and field data provide evidence of both vent migration and reoccupation. Overall, our study shows that mafic volcanism was clustered in space and time, involved both explosive and effusive behavior, and tapped several magma sources. These observations provide important insights on possible future hazards from mafic volcanism in the central Oregon Cascades.

  20. Reconstructing volcanic plume evolution integrating satellite and ground-based data: application to the 23 November 2013 Etna eruption

    Science.gov (United States)

    Poret, Matthieu; Corradini, Stefano; Merucci, Luca; Costa, Antonio; Andronico, Daniele; Montopoli, Mario; Vulpiani, Gianfranco; Freret-Lorgeril, Valentin

    2018-04-01

    Recent explosive volcanic eruptions recorded worldwide (e.g. Hekla in 2000, Eyjafjallajökull in 2010, Cordón-Caulle in 2011) demonstrated the necessity for a better assessment of the eruption source parameters (ESPs; e.g. column height, mass eruption rate, eruption duration, and total grain-size distribution - TGSD) to reduce the uncertainties associated with the far-travelling airborne ash mass. Volcanological studies started to integrate observations to use more realistic numerical inputs, crucial for taking robust volcanic risk mitigation actions. On 23 November 2013, Etna (Italy) erupted, producing a 10 km height plume, from which two volcanic clouds were observed at different altitudes from satellites (SEVIRI, MODIS). One was retrieved as mainly composed of very fine ash (i.e. PM20), and the second one as made of ice/SO2 droplets (i.e. not measurable in terms of ash mass). An atypical north-easterly wind direction transported the tephra from Etna towards the Calabria and Apulia regions (southern Italy), permitting tephra sampling in proximal (i.e. ˜ 5-25 km from the source) and medial areas (i.e. the Calabria region, ˜ 160 km). A primary TGSD was derived from the field measurement analysis, but the paucity of data (especially related to the fine ash fraction) prevented it from being entirely representative of the initial magma fragmentation. To better constrain the TGSD assessment, we also estimated the distribution from the X-band weather radar data. We integrated the field and radar-derived TGSDs by inverting the relative weighting averages to best fit the tephra loading measurements. The resulting TGSD is used as input for the FALL3D tephra dispersal model to reconstruct the whole tephra loading. Furthermore, we empirically modified the integrated TGSD by enriching the PM20 classes until the numerical results were able to reproduce the airborne ash mass retrieved from satellite data. The resulting TGSD is inverted by best-fitting the field, ground

  1. Production of low molecular weight hydrocarbons by volcanic eruptions on early Mars.

    Science.gov (United States)

    Segura, Antígona; Navarro-González, Rafael

    2005-10-01

    Methane and other larger hydrocarbons have been proposed as possible greenhouse gases on early Mars. In this work we explore if volcanic processes may have been a source for such molecules based on theoretical and experimental considerations. Geologic evidence and numerical simulations indicate that explosive volcanism was widely distributed throughout Mars. Volcanic lightning is typically produced in such explosive volcanism. Therefore this geologic setting was studied to determine if lightning could be a source for hydrocarbons in volcanic plumes. Volcanic lightning was simulated by focusing a high-energy infrared laser beam inside of a Pyrex reactor that contained the proposed volcanic gas mixture composed of 64% CH(4), 24% H(2), 10% H(2)O and 2% N(2), according to an accretion model and the nitrogen content measured in Martian meteorites. The analysis of products was performed by gas chromatography coupled to infrared and mass spectroscopy. Eleven hydrocarbons were identified among the products, of which acetylene (C(2)H(2)) was the most abundant. A thermochemical model was used to determine which hydrocarbons could arise only from volcanic heat. In this case, acetylene and ethylene are formed at magmatic temperatures. Our results indicate that explosive volcanism may have injected into the atmosphere of early Mars approximately 6 x 10(12) g yr(-1) of acetylene, and approximately 2 x 10(12) g yr(-1) of 1,3-butadiyne, both produced by volcanic lightning, approximately 5 x 10(11) g yr(-1) of ethylene produced by volcanic heat, and 10(13) g yr(-1) of methane.

  2. Transition from phreatic to phreatomagmatic explosive activity of Zhupanovsky volcano (Kamchatka) in 2013-2016 due to volcanic cone collapse

    Science.gov (United States)

    Gorbach, Natalia; Plechova, Anastasiya; Portnyagin, Maxim

    2017-04-01

    Zhupanovsky volcano, situated 70 km north from Petropavlovsk-Kamchatsky city, resumed its activity in October 2013 [3]. In 2014 and in the first half of 2015, episodic explosions with ash plumes rising up to 6-8 km above sea level occurred on Priemish cone - one of four cones on the Zhupanovsky volcanic edifice [1]. In July 2015 after a series of seismic and explosive events, the southern sector of the active cone collapsed. The landslide and lahar deposits resulted from the collapse formed a large field on the volcano slopes [2]. In November 2015 and January-March 2016, a series of powerful explosions took place sending ash up to 8-10 km above sea level. No pure magmatic, effusive or extrusive, activity has been observed on Zhupanovsky in 2013-2016. We have studied the composition, morphology and textural features of ash particles produced by the largest explosive events of Zhupanovsky in the period from October 2013 to March 2016. The main components of the ash were found to be hydrothermally altered particles and lithics, likely originated by the defragmentation of rocks composing the volcanic edifice. Juvenile glass fragments occur in very subordinate quantities. The maximum amount of glass particles (up to 7%) was found in the ash erupted in January-March 2016, after the cone collapse. We suggest that the phreatic to phreatomagmatic explosive activity of Zhupanovsky volcano in 2013-2016 was initially caused by the intrusion of a new magma batch under the volcano. The intrusion and associated degassing of magma led to heating, overpressure and instability in the hydrothermal system of the volcano, causing episodic, predominantly phreatic explosions. Decompression of the shallow magmatic and hydrothermal system of the volcano due to the cone collapse in July 2015 facilitated a larger involvement of the magmatic component in the eruption and more powerful explosions. [1] Girina O.A. et al., 2016 Geophysical Research Abstracts Vol. 18, EGU2016-2101, doi: 10

  3. Impact of Tropical Volcanic Eruptions on Hadley Circulation Using a High-Resolution AGCM

    KAUST Repository

    Dogar, Muhammad Mubashar

    2018-03-31

    The direct radiative effects of volcanic eruptions resulting in solar dimming, stratospheric warming, global surface cooling and reduction in rainfall are well documented. However, eruptions also cause indirect climatic impacts that are not well understood. For example, solar dimming induced by volcanic aerosols could cause changes in tropical Hadley circulation that in turn largely affect evaporation and precipitation patterns. Therefore, understanding the sensitivity of HC to volcanism is essential, as this circulation is directly related to precipitation changes in the tropics and with other large-scale circulations. Hence, to better understand the post-eruption sensitivity of HC and associated changes in the hydrologic cycle, simulations for the El Chichón and Pinatubo tropical eruptions were conducted using a high-resolution atmospheric model (HIRAM), effectively at 25 and 50 km grid spacing. The model simulated results are then compared with observational and reanalysis products. Both the model and observational analysis show posteruption weakening, shrinking and equatorward displacement of the updraft branch of HC caused by the equatorward shift of midlatitude jets and hemispheric land-sea thermal gradient. The Intertropical Convergence Zone (ITCZ) is tightly coupled to the rising branch of HC, hence, post-eruption weakening and equatorward displacement of HC cause weakening of ITCZ that adversely affects rainfall distribution in the monsoon-fed regions, especially the South Asian and African tropical rain-belt regions. The modelproduced post-eruption distribution of cloud contents suggests a southward shift of ITCZ. The HIRAM results are largely in agreement with the reanalysis, observations and previous studies indicating that this model performs reasonably well in reproducing the global and regional-scale dynamic changes caused by volcanic radiative forcing.

  4. Impact of Tropical Volcanic Eruptions on Hadley Circulation Using a High-Resolution AGCM

    KAUST Repository

    Dogar, Muhammad Mubashar

    2018-01-01

    The direct radiative effects of volcanic eruptions resulting in solar dimming, stratospheric warming, global surface cooling and reduction in rainfall are well documented. However, eruptions also cause indirect climatic impacts that are not well understood. For example, solar dimming induced by volcanic aerosols could cause changes in tropical Hadley circulation that in turn largely affect evaporation and precipitation patterns. Therefore, understanding the sensitivity of HC to volcanism is essential, as this circulation is directly related to precipitation changes in the tropics and with other large-scale circulations. Hence, to better understand the post-eruption sensitivity of HC and associated changes in the hydrologic cycle, simulations for the El Chichón and Pinatubo tropical eruptions were conducted using a high-resolution atmospheric model (HIRAM), effectively at 25 and 50 km grid spacing. The model simulated results are then compared with observational and reanalysis products. Both the model and observational analysis show posteruption weakening, shrinking and equatorward displacement of the updraft branch of HC caused by the equatorward shift of midlatitude jets and hemispheric land-sea thermal gradient. The Intertropical Convergence Zone (ITCZ) is tightly coupled to the rising branch of HC, hence, post-eruption weakening and equatorward displacement of HC cause weakening of ITCZ that adversely affects rainfall distribution in the monsoon-fed regions, especially the South Asian and African tropical rain-belt regions. The modelproduced post-eruption distribution of cloud contents suggests a southward shift of ITCZ. The HIRAM results are largely in agreement with the reanalysis, observations and previous studies indicating that this model performs reasonably well in reproducing the global and regional-scale dynamic changes caused by volcanic radiative forcing.

  5. Nano-volcanic Eruption of Silver

    Science.gov (United States)

    Lin, Shih-Kang; Nagao, Shijo; Yokoi, Emi; Oh, Chulmin; Zhang, Hao; Liu, Yu-Chen; Lin, Shih-Guei; Suganuma, Katsuaki

    2016-10-01

    Silver (Ag) is one of the seven metals of antiquity and an important engineering material in the electronic, medical, and chemical industries because of its unique noble and catalytic properties. Ag thin films are extensively used in modern electronics primarily because of their oxidation-resistance. Here we report a novel phenomenon of Ag nano-volcanic eruption that is caused by interactions between Ag and oxygen (O). It involves grain boundary liquation, the ejection of transient Ag-O fluids through grain boundaries, and the decomposition of Ag-O fluids into O2 gas and suspended Ag and Ag2O clusters. Subsequent coating with re-deposited Ag-O and the de-alloying of O yield a conformal amorphous Ag coating. Patterned Ag hillock arrays and direct Ag-to-Ag bonding can be formed by the homogenous crystallization of amorphous coatings. The Ag “nano-volcanic eruption” mechanism is elaborated, shedding light on a new mechanism of hillock formation and new applications of amorphous Ag coatings.

  6. Volcanic ash leaching as a means of tracing the environmental impact of the 2011 Grímsvötn eruption, Iceland.

    Science.gov (United States)

    Cabré, J; Aulinas, M; Rejas, M; Fernandez-Turiel, J L

    2016-07-01

    The Grímsvötn volcanic eruption, from 21 to 28 May, 2011, was the largest eruption of the Grímsvötn Volcanic System since 1873, with a Volcanic Explosivity Index (VEI) of magnitude 4. The main geochemical features of the potential environmental impact of the volcanic ash-water interaction were determined using two different leaching methods as proxies (batch and vertical flow-through column experiments). Ash consists of glass with minor amounts of plagioclase, clinopyroxene, diopside, olivine and iron sulphide; this latter mineral phase is very rare in juvenile ash. Ash grain morphology and size reflect the intense interaction of magma and water during eruption. Batch and column leaching tests in deionised water indicate that Na, K, Ca, Mg, Si, Cl, S and F had the highest potential geochemical fluxes to the environment. Release of various elements from volcanic ash took place immediately through dissolution of soluble salts from the ash surface. Element solubilities of Grímsvötn ash regarding bulk ash composition were <1 %. Combining the element solubilities and the total estimated mass of tephra (7.29 × 10(14) g), the total inputs of environmentally important elements were estimated to be 8.91 × 10(9) g Ca, 7.02 × 10(9) g S, 1.10 × 10(9) g Cl, 9.91 × 10(8) g Mg, 9.91 × 10(8) g Fe and 1.45 × 10(8) g P The potential environmental problems were mainly associated with the release of F (5.19 × 10(9) g).

  7. Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption

    Science.gov (United States)

    Prata, Fred; Woodhouse, Mark; Huppert, Herbert E.; Prata, Andrew; Thordarson, Thor; Carn, Simon

    2017-09-01

    The separation of volcanic ash and sulfur dioxide (SO2) gas is sometimes observed during volcanic eruptions. The exact conditions under which separation occurs are not fully understood but the phenomenon is of importance because of the effects volcanic emissions have on aviation, on the environment, and on the earth's radiation balance. The eruption of Grímsvötn, a subglacial volcano under the Vatnajökull glacier in Iceland during 21-28 May 2011 produced one of the most spectacular examples of ash and SO2 separation, which led to errors in the forecasting of ash in the atmosphere over northern Europe. Satellite data from several sources coupled with meteorological wind data and photographic evidence suggest that the eruption column was unable to sustain itself, resulting in a large deposition of ash, which left a low-level ash-rich atmospheric plume moving southwards and then eastwards towards the southern Scandinavian coast and a high-level predominantly SO2 plume travelling northwards and then spreading eastwards and westwards. Here we provide observational and modelling perspectives on the separation of ash and SO2 and present quantitative estimates of the masses of ash and SO2 that erupted, the directions of transport, and the likely impacts. We hypothesise that a partial column collapse or sloughing fed with ash from pyroclastic density currents (PDCs) occurred during the early stage of the eruption, leading to an ash-laden gravity intrusion that was swept southwards, separated from the main column. Our model suggests that water-mediated aggregation caused enhanced ash removal because of the plentiful supply of source water from melted glacial ice and from entrained atmospheric water. The analysis also suggests that ash and SO2 should be treated with separate source terms, leading to improvements in forecasting the movement of both types of emissions.

  8. New Style of Volcanic Eruption Activity Identified in Galileo NIMS data at Marduk Fluctus, Io

    Science.gov (United States)

    Davies, A. G.; Davies, R. L.; Veeder, G. J.; de Kleer, K.; De Pater, I.; Matson, D.

    2017-12-01

    Analysis of observations of Marduk Fluctus, Io, by the Galileo Near Infrared Mapping Spectrometer (NIMS) reveals a style of volcanic activity not previously seen on Io - a very short-duration, highly-changeable, powerful thermal event, similar to what might be expected from a strombolian-like explosion. Marduk Fluctus is a persistent active volcano characterised by ≈3600 km2 of silicate flows [1]. Between 1996 and 2001, NIMS obtained 44 observations of Marduk Fluctus at a wide variety of spatial and spectral resolutions. Six observations were obtained during Galileo orbit E4, with five nighttime observations obtained on 1996 Dec 19 in the space of less than three hours. Three of these observations were each separated by one minute. Compared to the previous observation obtained a few hours earlier, the first two of these three observations show an order of magnitude increase in spectral radiance (corrected for emission angle). Spectral radiance then dropped back to the background level one minute later. The emission angles for these five E4 observations are large (>70°), but even without the emission angle radiance correction the spike in activity is still a factor of five larger than the pre- and post-spike radiances. The NIMS spectrum of the central observation shows a shift in peak of thermal emission to short wavelengths characteristic of the exposure of a large area of incandescent lava. The rapid increase and decrease in activity suggests an equally rapid physical process, the most likely being a large strombolian explosion that generated small clasts that cooled rapidly. The presence of such events provide an additional volcanic process that can be imaged with the intent of determining lava composition from eruption temperature, an important constraint on internal composition and state. For this particular eruption type, eruption temperature can be constrained if non-saturated, multiple-wavelength IR observations are obtained simultaneously and with very

  9. Ocean response to volcanic eruptions in Coupled Model Intercomparison Project 5 simulations

    KAUST Repository

    Ding, Yanni

    2014-09-01

    We examine the oceanic impact of large tropical volcanic eruptions as they appear in ensembles of historical simulations from eight Coupled Model Intercomparison Project Phase 5 models. These models show a response that includes lowering of global average sea surface temperature by 0.1–0.3 K, comparable to the observations. They show enhancement of Arctic ice cover in the years following major volcanic eruptions, with long-lived temperature anomalies extending to the middepth and deep ocean on decadal to centennial timescales. Regional ocean responses vary, although there is some consistent hemispheric asymmetry associated with the hemisphere in which the eruption occurs. Temperature decreases and salinity increases contribute to an increase in the density of surface water and an enhancement in the overturning circulation of the North Atlantic Ocean following these eruptions. The strength of this overturning increase varies considerably from model to model and is correlated with the background variability of overturning in each model. Any cause/effect relationship between eruptions and the phase of El Niño is weak.

  10. Holocene volcanic geology, volcanic hazard, and risk on Taveuni, Fiji

    International Nuclear Information System (INIS)

    Cronin, S.J.; Neall, V.E.

    2001-01-01

    The Holocene volcanic geology of Taveuni has been mapped in order to produce a volcanic hazard and risk assessment for the island. Taveuni is the third-largest island of the Fiji group and home to 14,500 people. At least cubic km 2.7 of olivine-alkali-basalt magma was erupted from over 100 events throughout the Holocene. Vents are concentrated along a northeast-striking rift zone that is parallel to other regional structural trends. There is an overall trend of younging southward along the rift. Holocene lavas and tephras are grouped within six newly defined eruptive periods, established on a basis of radiocarbon dating. Within these periods, 14 tephra layers, useful as local marker horizons, are recognised. At least 58% of Holocene eruptions produced lava flows, while almost all produced some tephra. Individual eruption event volumes ranged between 0.001 and cubic km 0.20 (dense rock equivalent). Many eruptions involved at least some phases of phreatic and/or phreato-magmatic activity, although dominant hydrovolcanic activity was limited to only a few events. A volcanic hazard map is presented, based on the Holocene geology map and statistical analyses of eruption recurrence. The highest levels of ground-based and near-vent hazards are concentrated along the southern portion of the island's rift axis, with the paths of initial lava flows predicted from present topography. Tephra fall hazards are based on eruption parameters interpreted from mapped Holocene tephra layers. Hawaiian explosive-style eruptions appear to be a dominant eruptive process, with prevailing low-level (<3 km) southeasterly winds dispersing most tephra to the northwestern quadrant. Vulnerable elements (population centres, infrastructure, and economy) on Taveuni have been considered in deriving a volcanic risk assessment for the island. A number of infrastructural and subdivision developments are either under way or planned for the island, driven by its highly fertile soils and availability of

  11. Eruptive shearing of tube pumice: pure and simple

    OpenAIRE

    Dingwell, Donald B.; Lavallée, Yan; Hess, Kai-Uwe; Flaws, Asher; Marti, Joan; Nichols, Alexander R. L.; Gilg, H. Albert; Schillinger, Burkhard

    2016-01-01

    Understanding the physicochemical conditions extant and mechanisms operative during explosive volcanism is essential for reliable forecasting and mitigation of volcanic events. Rhyolitic pumices reflect highly vesiculated magma whose bubbles can serve as a strain indicator for inferring the state of stress operative immediately prior to eruptive fragmentation. Obtaining the full kinematic picture reflected in bubble population geometry has been extremely difficult, involving dissection of a s...

  12. Improving scaling methods to estimate eruption energies from volcanic crater structures using blast experiments

    Science.gov (United States)

    Sonder, I.; Graettinger, A. H.; Valentine, G.; Schmid, A.; Zimanowski, B.; Majji, M.; Ross, P.; White, J. D.; Taddeucci, J.; Lube, G.; Kueppers, U.; Bowman, D. C.

    2013-12-01

    In an ongoing effort to understand the relevant processes behind the formation of volcanic crater-, maar-, and diatreme structures, experiments producing craters with radii exceeding one meter were conducted at University at Buffalos Geohazards Field Station. A chemical explosive was used as energy source for the tests, and detonated in prepared test beds made from several stratified, compacted aggregates. The amount of explosive, as well as its depth of burial were varied in the twelve experiments. The detonations were recorded by a diverse set of sensors including high-speed/high-definition cameras, seismic and electric field sensors, normal- and infrasound microphones. Morphology and structures were documented after each blast by manual measurements and semi-automated photogrammetry. After all blasts were complete the structures excavated and analyzed. The measured sensor signals were evaluated and related to blast energies, depths of burial and crater morphologies. Former experiments e.g. performed by Goto et al. (2001; Geophys. Res. Lett. 28, 4287-4290) considered craters of single blasts at a given lateral position and found empirical relationships emphasizing the importance of length scaling with the cube root of the blasts energy E. For example the depth of burial producing the largest crater radius--the ';optimal' depth--is proportional to E1/3, as is the corresponding radius. Resembling natural processes creating crater and diatreme structures the experiments performed here feature several blasts at one lateral position. The dependencies on E1/3 could be roughly confirmed. Also the scaled depth correlated with the sensor signals capturing the blasts dynamics. However, significant scatter was introduced by the pre-existing morphologies. Using a suitable re-definition for the charges depth of burial (';eruption depth'), accounting for a pre-existing (crater) morphology, the measured dependencies of morphology and blast dynamics on E can be improved

  13. Multi-model comparison of the volcanic sulfate deposition from the 1815 eruption of Mt. Tambora

    Directory of Open Access Journals (Sweden)

    L. Marshall

    2018-02-01

    Full Text Available The eruption of Mt. Tambora in 1815 was the largest volcanic eruption of the past 500 years. The eruption had significant climatic impacts, leading to the 1816 year without a summer, and remains a valuable event from which to understand the climatic effects of large stratospheric volcanic sulfur dioxide injections. The eruption also resulted in one of the strongest and most easily identifiable volcanic sulfate signals in polar ice cores, which are widely used to reconstruct the timing and atmospheric sulfate loading of past eruptions. As part of the Model Intercomparison Project on the climatic response to Volcanic forcing (VolMIP, five state-of-the-art global aerosol models simulated this eruption. We analyse both simulated background (no Tambora and volcanic (with Tambora sulfate deposition to polar regions and compare to ice core records. The models simulate overall similar patterns of background sulfate deposition, although there are differences in regional details and magnitude. However, the volcanic sulfate deposition varies considerably between the models with differences in timing, spatial pattern and magnitude. Mean simulated deposited sulfate on Antarctica ranges from 19 to 264 kg km−2 and on Greenland from 31 to 194 kg km−2, as compared to the mean ice-core-derived estimates of roughly 50 kg km−2 for both Greenland and Antarctica. The ratio of the hemispheric atmospheric sulfate aerosol burden after the eruption to the average ice sheet deposited sulfate varies between models by up to a factor of 15. Sources of this inter-model variability include differences in both the formation and the transport of sulfate aerosol. Our results suggest that deriving relationships between sulfate deposited on ice sheets and atmospheric sulfate burdens from model simulations may be associated with greater uncertainties than previously thought.

  14. Volcanic Eruptions in the Southern Red Sea During 2007–2013

    KAUST Repository

    Jonsson, Sigurjon; Xu, Wenbin

    2015-01-01

    The first volcanic eruption known to occur in the southern Red Sea in over a century started on Jebel at Tair Island in September 2007. The early phase of the eruption was energetic, with lava reaching the shore of the small island within hours, destroying a Yemeni military outpost and causing a few casualties. The eruption lasted several months, producing a new summit cone and lava covering an area of 5.9 km2, which is about half the area of the island. The Jebel at Tair activity was followed by two more eruptions within the Zubair archipelago, about 50 km to the southeast, in 2011–2012 and 2013, both of which started on the seafloor and resulted in the formation of new islands. The first of these eruptions started in December 2011 in the northern part of the archipelago and lasted for about one month, generating a small (0.25 km2) oval-shaped island. Coastal erosion during the first two years following the end of the eruption has reduced the size of the island to 0.19 km2. The second event occurred in the central part of the Zubair Islands and lasted roughly two months (September–November, 2013), forming a larger (0.68 km2) island. The recent volcanic eruptions in the southern Red Sea are a part of increased activity seen in the entire southern Red Sea region following the onset of a rifting episode in Afar (Ethiopia) in 2005.

  15. Volcanic Eruptions in the Southern Red Sea During 2007–2013

    KAUST Repository

    Jonsson, Sigurjon

    2015-04-03

    The first volcanic eruption known to occur in the southern Red Sea in over a century started on Jebel at Tair Island in September 2007. The early phase of the eruption was energetic, with lava reaching the shore of the small island within hours, destroying a Yemeni military outpost and causing a few casualties. The eruption lasted several months, producing a new summit cone and lava covering an area of 5.9 km2, which is about half the area of the island. The Jebel at Tair activity was followed by two more eruptions within the Zubair archipelago, about 50 km to the southeast, in 2011–2012 and 2013, both of which started on the seafloor and resulted in the formation of new islands. The first of these eruptions started in December 2011 in the northern part of the archipelago and lasted for about one month, generating a small (0.25 km2) oval-shaped island. Coastal erosion during the first two years following the end of the eruption has reduced the size of the island to 0.19 km2. The second event occurred in the central part of the Zubair Islands and lasted roughly two months (September–November, 2013), forming a larger (0.68 km2) island. The recent volcanic eruptions in the southern Red Sea are a part of increased activity seen in the entire southern Red Sea region following the onset of a rifting episode in Afar (Ethiopia) in 2005.

  16. Characterizing Volcanic Eruptions on Venus: Some Realistic (?) Scenarios

    Science.gov (United States)

    Stofan, E. R.; Glaze, L. S.; Grinspoon, D. H.

    2011-01-01

    When Pioneer Venus arrived at Venus in 1978, it detected anomalously high concentrations of SO2 at the top of the troposphere, which subsequently declined over the next five years. This decline in SO2 was linked to some sort of dynamic process, possibly a volcanic eruption. Observations of SO2 variability have persisted since Pioneer Venus. More recently, scientists from the Venus Express mission announced that the SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) instrument had measured varying amounts of SO2 in the upper atmosphere; VIRTIS (Visible and Infrared Thermal Imaging Spectrometer) measured no similar variations in the lower atmosphere (ESA, 4 April, 2008). In addition, Fegley and Prinn stated that venusian volcanoes must replenish SO2 to the atmosphere, or it would react with calcite and disappear within 1.9 my. Fegley and Tremain suggested an eruption rate on the order of approx 1 cubic km/year to maintain atmospheric SO2; Bullock and Grinspoon posit that volcanism must have occurred within the last 20-50 my to maintain the sulfuric acid/water clouds on Venus. The abundance of volcanic deposits on Venus and the likely thermal history of the planet suggest that it is still geologically active, although at rates lower than Earth. Current estimates of resurfacing rates range from approx 0.01 cubic km/yr to approx 2 cubic km/yr. Demonstrating definitively that Venus is still volcanically active, and at what rate, would help to constrain models of evolution of the surface and interior, and help to focus future exploration of Venus.

  17. Eruption dynamics and explosive-effusive transitions during the 1400 cal BP eruption of Opala volcano, Kamchatka, Russia

    Science.gov (United States)

    Andrews, Benjamin J.; Dufek, Josef; Ponomareva, Vera

    2018-05-01

    Deposits and pumice from the 1400 cal BP eruption of Opala volcano record activity that occurred at the explosive-effusive transition, resulting in intermittent, or stop-start, behavior, where explosive activity resumed following a pause. The eruption deposited distinctive, biotite-bearing rhyolite tephra across much of Kamchatka, and its stratigraphy consists of a lithic-rich pumice fall, overlain by pumice falls and pyroclastic density deposits, with the proportion of the latter increasing with height. This sequence repeats such that the middle of the total deposit is marked by a lithic-rich fall with abundant obsidian clasts. Notably, the eruptive pumice are poorly vesiculated, with vesicle textures that record fragmentation of a partially collapsed magmatic foam. The eruption vent, Baranii Amphitheater is filled with obsidian lavas of the same composition as the rhyolite tephra. Based upon the stratigraphic and compositional relations, we divide the eruption into four phases. Phase I initiated with eruption of a lithic-rich pumice fall, followed by eruption of Plinian falls and pyroclastic density currents. During Phase II, the eruption paused for at least 5-6 h; in this time, microlites nucleated and began to grow in the magma. Phase III essentially repeated the Phase I sequence. Obsidian lavas were emplaced during Phase IV. The pumice textures suggest that the magma ascended very near the threshold decompression rate for the transition between explosive (fast) and effusive (slow) behavior. The pause during Phase II likely occurred as decompression slowed enough for the magma to develop sufficient permeability for gas to escape resulting in collapse of the magmatic foam, stopping the eruption and temporarily sealing the conduit. After about 5-6 h, eruption resumed with, once again, magma decompressing very near the explosive-effusive transition. Phase III ended when the decompression rate slowed and lava dome emplacement began. Distributions of pumice and

  18. The 2008 phreatomagmatic eruption of Okmok volcano, Aleutian Islands, Alaska: Chronology, deposits, and landform changes

    Science.gov (United States)

    Jessica Larsen,; Neal, Christina; Schaefer, Janet R.; Kaufman, Max; Lu, Zhong

    2015-01-01

    Okmok volcano, Aleutian Islands, Alaska, explosively erupted over a five-week period between July 12 and August 23, 2008. The eruption was predominantly phreatomagmatic, producing fine-grained tephra that covered most of northeastern Umnak Island. The eruption had a maximum Volcanic Explosivity Index (VEI) of 4, with eruption column heights up to 16 km during the opening phase. Several craters and a master tuff cone formed in the caldera as a result of phreatomagmatic explosions and accumulated tephra-fall and surge deposits. Ascending magma continuously interacted with an extensive shallow groundwater table in the caldera, resulting in the phreatomagmatic character of the eruption. Syneruptive explosion and collapse processes enlarged a pre-existing lake, created a second, entirely new lake, and formed new, deep craters. A field of ephemeral collapse pits and collapse escarpments formed where rapid groundwater withdrawal removed material from beneath capping lava flows. This was the first significant phreatomagmatic event in the U.S. since the Ukinrek Maars eruption in 1977.

  19. Volcanic Ash and Aviation - the 2014 Eruptions of Kelut and Sangeang Api, Indonesia

    Science.gov (United States)

    Tupper, A. C.; Jansons, E.

    2014-12-01

    Two significant eruptions in Indonesia during the first part of 2014 have highlighted the continuing challenges of safe air traffic management around volcanic ash clouds. The stratospheric eruption of Kelut (also known as Kelud) in Java late on 13 February 2014 resulted in widespread aviation disruption over Indonesia and at least one serious volcanic ash encounter from an international airline. An upper-tropospheric eruption of Sangeang Api in the Lesser Sunda Islands on 30 May 2014 did not result in any known aircraft encounters, but did result in many delays and flight cancellations between Indonesia and Australia. In both cases, the eruption and resultant ash clouds were relatively well observed, if subject to the usual issues in characterising such clouds. For example, as tropical eruptions frequently reach 15 km amsl and above due to the height of the tropical tropopause, it is frequently very difficult to provide an accurate estimation of conditions at the cruising levels of aircraft, at 10-11 km (or lower for shorter domestic routes). More critically, the challenge of linking operational results from two scientific professions (volcanology and meteorology) with real-time aviation users remains strongly evident. Situational awareness of domestic and international airlines, ground-based monitoring and communications prior to and during the eruption, receiving and sharing pilot reports of volcanic ash, and appropriate flight responses all remain inadequate even in relatively fine conditions, with an unacceptable ongoing risk of serious aviation encounters should improvements not be made. Despite the extensive efforts of the International Civil Aviation Organization, World Meteorological Organization, and all partners in the International Airways Volcano Watch, and despite the acceleration of work on the issue since 2010, volcanic ash management remains sub-optimal.

  20. Conceptual model of volcanism and volcanic hazards of the region of Ararat valley, Armenia

    Science.gov (United States)

    Meliksetian, Khachatur; Connor, Charles; Savov, Ivan; Connor, Laura; Navasardyan, Gevorg; Manucharyan, Davit; Ghukasyan, Yura; Gevorgyan, Hripsime

    2015-04-01

    Armenia and the adjacent volcanically active regions in Iran, Turkey and Georgia are located in the collision zone between the Arabian and Eurasian lithospheric plates. The majority of studies of regional collision related volcanism use the model proposed by Keskin, (2003) where volcanism is driven by Neo-Tethyan slab break-off. In Armenia, >500 Quaternary-Holocene volcanoes from the Gegham, Vardenis and Syunik volcanic fields are hosted within pull-apart structures formed by active faults and their segments (Karakhanyan et al., 2002), while tectonic position of the large in volume basalt-dacite Aragats volcano and periphery volcanic plateaus is different and its position away from major fault lines necessitates more complex volcano-tectonic setup. Our detailed volcanological, petrological and geochemical studies provide insight into the nature of such volcanic activity in the region of Ararat Valley. Most magmas, such as those erupted in Armenia are volatile-poor and erupt fairly hot. Here we report newly discovered tephra sequences in Ararat valley, that were erupted from historically active Ararat stratovolcano and provide evidence for explosive eruption of young, mid K2O calc-alkaline and volatile-rich (>4.6 wt% H2O; amph-bearing) magmas. Such young eruptions, in addition to the ignimbrite and lava flow hazards from Gegham and Aragats, present a threat to the >1.4 million people (~ ½ of the population of Armenia). We will report numerical simulations of potential volcanic hazards for the region of Ararat valley near Yerevan that will include including tephra fallout, lava flows and opening of new vents. Connor et al. (2012) J. Applied Volcanology 1:3, 1-19; Karakhanian et al. (2002), JVGR, 113, 319-344; Keskin, M. (2003) Geophys. Res. Lett. 30, 24, 8046.

  1. The 1723 A.D. violent strombolian and phreatomagmatic eruption at Volcan Irazu, Costa Rica

    International Nuclear Information System (INIS)

    Alvarado, Guillermo E.; Schminke, Hans-Ulrich

    2013-01-01

    The deposits exposed at the top of the Volcan Irazu are analyzed and compared with the account of the Spanish governor Don Diego de la Haya, about the Volcan Irazu eruption from February 16 to December 11, 1723. The research has incurred chemical analyzes, obtained by x-ray fluorescence, analysis of pellets, measured by spectrometers, and the use of the Oxiquant analysis program with calibration of standards and international certificates. The eruption has started with the increase of a small magmatic batch of basaltic andesite, which has led to a rapid initial contact and a final eruption due to the contrasting density and temperature of the two magmas. The deposits are interpreted as the strombolian type. The composition of the magma is observed without alteration during the eruption. The eruption is accompanied by tectonic volcano tremors that have facilitated the interaction of magma gas and water. A new eruption projected at this intensity could cause great losses in agriculture, industry, infrastructure and airplanes [es

  2. Atmospheric processes affecting the separation of volcanic ash and SO2 in volcanic eruptions: inferences from the May 2011 Grímsvötn eruption

    Directory of Open Access Journals (Sweden)

    F. Prata

    2017-09-01

    Full Text Available The separation of volcanic ash and sulfur dioxide (SO2 gas is sometimes observed during volcanic eruptions. The exact conditions under which separation occurs are not fully understood but the phenomenon is of importance because of the effects volcanic emissions have on aviation, on the environment, and on the earth's radiation balance. The eruption of Grímsvötn, a subglacial volcano under the Vatnajökull glacier in Iceland during 21–28 May 2011 produced one of the most spectacular examples of ash and SO2 separation, which led to errors in the forecasting of ash in the atmosphere over northern Europe. Satellite data from several sources coupled with meteorological wind data and photographic evidence suggest that the eruption column was unable to sustain itself, resulting in a large deposition of ash, which left a low-level ash-rich atmospheric plume moving southwards and then eastwards towards the southern Scandinavian coast and a high-level predominantly SO2 plume travelling northwards and then spreading eastwards and westwards. Here we provide observational and modelling perspectives on the separation of ash and SO2 and present quantitative estimates of the masses of ash and SO2 that erupted, the directions of transport, and the likely impacts. We hypothesise that a partial column collapse or sloughing fed with ash from pyroclastic density currents (PDCs occurred during the early stage of the eruption, leading to an ash-laden gravity intrusion that was swept southwards, separated from the main column. Our model suggests that water-mediated aggregation caused enhanced ash removal because of the plentiful supply of source water from melted glacial ice and from entrained atmospheric water. The analysis also suggests that ash and SO2 should be treated with separate source terms, leading to improvements in forecasting the movement of both types of emissions.

  3. Geoarchaeological tsunami deposits at Palaikastro (Crete) and the Late Minoan IA eruption of Santorini

    NARCIS (Netherlands)

    Bruins, Hendrik J.; MacGillivray, J. Alexander; Synolakis, Costas E.; Benjamini, Chaim; Keller, Joerg; Kisch, Hanan J.; Kleugel, Andreas; van der Plicht, Johannes; Klügel, Andreas

    The explosive eruption at Santorini in the Aegean Sea during the second millennium BCE was the largest Holocene volcanic upheaval in the Eastern Mediterranean region. The eruption was disastrous for the Minoan settlements at Santorini, but the effect on human society in the neighbouring islands and

  4. Short-period volcanic gas precursors to phreatic eruptions: Insights from Poás Volcano, Costa Rica

    Science.gov (United States)

    de Moor, Maarten; Aiuppa, Alessandro; Pacheco, Javier; Avard, Geoffroy; Kern, Christoph; Liuzzo, Marco; Martinez, Maria; Giudice, Gaetano; Fischer, Tobias P.

    2016-01-01

    Volcanic eruptions involving interaction with water are amongst the most violent and unpredictable geologic phenomena on Earth. Phreatic eruptions are exceptionally difficult to forecast by traditional geophysical techniques. Here we report on short-term precursory variations in gas emissions related to phreatic blasts at Poás volcano, Costa Rica, as measured with an in situ multiple gas analyzer that was deployed at the edge of the erupting lake. Gas emitted from this hyper-acid crater lake approaches magmatic values of SO2/CO2 1–6 days prior to eruption. The SO2 flux derived from magmatic degassing through the lake is measureable by differential optical absorption spectrometry (sporadic campaign measurements), which allows us to constrain lake gas output and input for the major gas species during eruptive and non-eruptive periods. We can further calculate power supply to the hydrothermal system using volatile mass balance and thermodynamics, which indicates that the magmatic heat flux into the shallow hydrothermal system increases from ∼27 MW during quiescence to ∼59 MW during periods of phreatic events. These transient pulses of gas and heat from the deeper magmatic system generate both phreatic eruptions and the observed short-term changes in gas composition, because at high gas flux scrubbing of sulfur by the hydrothermal system is both kinetically and thermodynamically inhibited whereas CO2gas is always essentially inert in hyperacid conditions. Thus, the SO2/CO2 of lake emissions approaches magmatic values as gas and power supply to the sub-limnic hydrothermal system increase, vaporizing fluids and priming the hydrothermal system for eruption. Our results suggest that high-frequency real-time gas monitoring could provide useful short-term eruptive precursors at volcanoes prone to phreatic explosions.

  5. Concentration variance decay during magma mixing: a volcanic chronometer.

    Science.gov (United States)

    Perugini, Diego; De Campos, Cristina P; Petrelli, Maurizio; Dingwell, Donald B

    2015-09-21

    The mixing of magmas is a common phenomenon in explosive eruptions. Concentration variance is a useful metric of this process and its decay (CVD) with time is an inevitable consequence during the progress of magma mixing. In order to calibrate this petrological/volcanological clock we have performed a time-series of high temperature experiments of magma mixing. The results of these experiments demonstrate that compositional variance decays exponentially with time. With this calibration the CVD rate (CVD-R) becomes a new geochronometer for the time lapse from initiation of mixing to eruption. The resultant novel technique is fully independent of the typically unknown advective history of mixing - a notorious uncertainty which plagues the application of many diffusional analyses of magmatic history. Using the calibrated CVD-R technique we have obtained mingling-to-eruption times for three explosive volcanic eruptions from Campi Flegrei (Italy) in the range of tens of minutes. These in turn imply ascent velocities of 5-8 meters per second. We anticipate the routine application of the CVD-R geochronometer to the eruptive products of active volcanoes in future in order to constrain typical "mixing to eruption" time lapses such that monitoring activities can be targeted at relevant timescales and signals during volcanic unrest.

  6. Submarine Volcanic Eruptions and Potential Analogs for Venus

    Science.gov (United States)

    Wilson, L.; Mouginismark, P. J.; Fryer, P.; Gaddis, L. R.

    1985-01-01

    As part of an analysis program to better understand the diversity of volcanic processes on the terrestrial planets, an investigation of the volcanic landforms which exist on the Earth's ocean floor was initiated. In part, this analysis is focused toward gaining a better understanding of submarine volcanic landforms in their own right, but also it is hoped that these features may show similarities to volcanic landforms on Venus, due to the high ambient water (Earth) and atmospheric (Venus) pressures. A series of numerical modelling experiments was performed to investigate the relative importance of such attributes as water pressure and temperature on the eruption process, and to determine the rate of cooling and emplacement of lava flows in the submarine environment. Investigations to date show that the confining water pressure and the buoyancy effects of the surrounding water significantly affect the styles of volcanism on the ocean floor. In the case of Venusian volcanism, confining pressures will not be as great as that found at the ocean's abyssal plains, but nevertheless the general trend toward reducing magma vesiculation will hold true for Venus as well as the ocean floor. Furthermore, other analogs may also be found between submarine volcanism and Venusian activity.

  7. Volcanism at 1.45 Ma within the Yellowstone Volcanic Field, United States

    Science.gov (United States)

    Rivera, Tiffany A.; Furlong, Ryan; Vincent, Jaime; Gardiner, Stephanie; Jicha, Brian R.; Schmitz, Mark D.; Lippert, Peter C.

    2018-05-01

    Rhyolitic volcanism in the Yellowstone Volcanic Field has spanned over two million years and consisted of both explosive caldera-forming eruptions and smaller effusive flows and domes. Effusive eruptions have been documented preceding and following caldera-forming eruptions, however the temporal and petrogenetic relationships of these magmas to the caldera-forming eruptions are relatively unknown. Here we present new 40Ar/39Ar dates for four small-volume eruptions located on the western rim of the second-cycle caldera, the source of the 1.300 ± 0.001 Ma Mesa Falls Tuff. We supplement our new eruption ages with whole rock major and trace element chemistry, Pb isotopic ratios of feldspar, and paleomagnetic and rock magnetic analyses. Eruption ages for the effusive Green Canyon Flow (1.299 ± 0.002 Ma) and Moonshine Mountain Dome (1.302 ± 0.003 Ma) are in close temporal proximity to the eruption age of the Mesa Falls Tuff. In contrast, our results indicate a period of volcanism at ca 1.45 Ma within the Yellowstone Volcanic Field, including the eruption of the Bishop Mountain Flow (1.458 ± 0.002 Ma) and Tuff of Lyle Spring (1.450 ± 0.003 Ma). These high-silica rhyolites are chemically and isotopically distinct from the Mesa Falls Tuff and related 1.3 Ma effusive eruptions. The 40Ar/39Ar data from the Tuff of Lyle Spring demonstrate significant antecrystic inheritance, prevalent within the upper welded ash-flow tuff matrix, and minimal within individual pumice. Antecrysts are up to 20 kyr older than the eruption, with subpopulations of grains occurring every few thousand years. We interpret these results as an indicator for the timing of magmatic pulses into a growing magmatic system that would ultimately erupt the Tuff of Lyle Spring, and which we more broadly interpret as the tempo of crustal accumulation associated with bimodal magmatism. We propose a system whereby chemically, isotopically, and temporally distinct, isolated small-volume magma batches are

  8. Lidar- and balloon-borne particle counter comparisons following recent volcanic eruptions

    Science.gov (United States)

    Hofmann, D. J.; Rosen, J. M.; Reiter, R.; Jager, H.

    1983-01-01

    Balloon-borne particle counter measurements at Laramie, Wyoming (41 deg N) are used to calculate the expected lidar backscatter at 0.694 micron wavelength from July 1979 to February 1982, a period which included at least four detectable perturbations of the stratospheric aerosol layer due to volcanic eruptions. These calculations are compared with lidar measurements conducted at Garmisch-Partenkirchen (47.5 deg N) during the same period. While the agreement is generally good using only the main mode in the particle size distribution (radius about 0.07 micron) during approximately the first 6 months following a major volcanic eruption, a measured secondary mode near 1 micron radius, when included, improves the agreement. Calculations of the expected backscatter at 25-30 km reveal that substantial number of particles diffuse into this high altitude region about 7 months after a major eruption, and these particles should be taken into account when normalizing lidar at these altitudes.

  9. The Campanian Ignimbrite Eruption: New Data on Volcanic Ash Dispersal and Its Potential Impact on Human Evolution

    Science.gov (United States)

    Fitzsimmons, Kathryn E.; Hambach, Ulrich; Veres, Daniel; Iovita, Radu

    2013-01-01

    The Campanian Ignimbrite (CI) volcanic eruption was the most explosive in Europe in the last 200,000 years. The event coincided with the onset of an extremely cold climatic phase known as Heinrich Event 4 (HE4) approximately 40,000 years ago. Their combined effect may have exacerbated the severity of the climate through positive feedbacks across Europe and possibly globally. The CI event is of particular interest not only to investigate the role of volcanism on climate forcing and palaeoenvironments, but also because its timing coincides with the arrival into Europe of anatomically modern humans, the demise of Neanderthals, and an associated major shift in lithic technology. At this stage, however, the degree of interaction between these factors is poorly known, based on fragmentary and widely dispersed data points. In this study we provide important new data from Eastern Europe which indicate that the magnitude of the CI eruption and impact of associated distal ash (tephra) deposits may have been substantially greater than existing models suggest. The scale of the eruption is modelled by tephra distribution and thickness, supported by local data points. CI ashfall extends as far as the Russian Plain, Eastern Mediterranean and northern Africa. However, modelling input is limited by very few data points in Eastern Europe. Here we investigate an unexpectedly thick CI tephra deposit in the southeast Romanian loess steppe, positively identified using geochemical and geochronological analyses. We establish the tephra as a widespread primary deposit, which blanketed the topography both thickly and rapidly, with potentially catastrophic impacts on local ecosystems. Our discovery not only highlights the need to reassess models for the magnitude of the eruption and its role in climatic transition, but also suggests that it may have substantially influenced hominin population and subsistence dynamics in a region strategic for human migration into Europe. PMID:23799050

  10. Program for Volcanic Risk Reduction in the Americas: Translation of Science into Policy and Practice

    Science.gov (United States)

    Mangan, Margaret; Pierson, Thomas; Wilkinson, Stuart; Westby, Elizabeth; Driedger, Carolyn; Ewert, John

    2016-04-01

    In 2013, the United States Geological Survey (USGS) and the U.S. Agency for International Development/Office of Foreign Disaster Assistance (USAID/OFDA) inaugurated Volcanic Risk Reduction in the Americas, a program that brings together binational delegations of scientists, civil authorities, and emergency response managers to discuss the challenges of integrating volcano science into crisis response and risk reduction practices. During reciprocal visits, delegations tour areas impacted by volcanic unrest and/or eruption, meet with affected communities, and exchange insights and best practices. The 2013 exchange focused on hazards at Mount Rainier (Washington, USA) and Nevado del Ruiz (Caldas/Tolima, Colombia). Both of these volcanoes are highly susceptible to large volcanic mudflows (lahars). The Colombia-USA exchange allowed participants to share insights on lahar warning systems, self-evacuation planning, and effective education programs for at-risk communities. [See Driedger and Ewert (2015) Abstract 76171 presented at 2015 Fall AGU, San Francisco, Calif., Dec 14-18]. The second exchange, in 2015, took place between the USA and Chile, focusing on the Long Valley volcanic region (California, USA) and Chaitén volcano (Lagos, Chile) - both are centers of rhyolite volcanism. The high viscosity of rhyolite magma can cause explosive eruptions with widespread destruction. The rare but catastrophic "super eruptions" of the world have largely been the result of rhyolite volcanism. Chaitén produced the world's first explosive rhyolite eruption in the age of modern volcano monitoring in 2008-2009. Rhyolite eruptions of similar scale and style have occurred frequently in the Long Valley volcanic region, most recently about 600 years ago. The explosivity and relative rarity of rhyolite eruptions create unique challenges to risk reduction efforts. The recent Chaitén eruption was unexpected - little was known of Chaitén's eruptive history, and because of this, monitoring

  11. Generation, ascent and eruption of magma on the Moon: New insights into source depths, magma supply, intrusions and effusive/explosive eruptions (Part 2: Predicted emplacement processes and observations)

    Science.gov (United States)

    Head, James W.; Wilson, Lionel

    2017-02-01

    We utilize a theoretical analysis of the generation, ascent, intrusion and eruption of basaltic magma on the Moon to develop new insights into magma source depths, supply processes, transport and emplacement mechanisms via dike intrusions, and effusive and explosive eruptions. We make predictions about the intrusion and eruption processes and compare these with the range of observed styles of mare volcanism, and related features and deposits. Density contrasts between the bulk mantle and regions with a greater abundance of heat sources will cause larger heated regions to rise as buoyant melt-rich diapirs that generate partial melts that can undergo collection into magma source regions; diapirs rise to the base of the anorthositic crustal density trap (when the crust is thicker than the elastic lithosphere) or, later in history, to the base of the lithospheric rheological trap (when the thickening lithosphere exceeds the thickness of the crust). Residual diapiric buoyancy, and continued production and arrival of diapiric material, enhances melt volume and overpressurizes the source regions, producing sufficient stress to cause brittle deformation of the elastic part of the overlying lithosphere; a magma-filled crack initiates and propagates toward the surface as a convex upward, blade-shaped dike. The volume of magma released in a single event is likely to lie in the range 102 km3 to 103 km3, corresponding to dikes with widths of 40-100 m and both vertical and horizontal extents of 60-100 km, favoring eruption on the lunar nearside. Shallower magma sources produce dikes that are continuous from the source region to the surface, but deeper sources will propagate dikes that detach from the source region and ascend as discrete penny-shaped structures. As the Moon cools with time, the lithosphere thickens, source regions become less abundant, and rheological traps become increasingly deep; the state of stress in the lithosphere becomes increasingly contractional

  12. NanoSIMS results from olivine-hosted melt embayments: Magma ascent rate during explosive basaltic eruptions

    Science.gov (United States)

    Lloyd, Alexander S.; Ruprecht, Philipp; Hauri, Erik H.; Rose, William; Gonnermann, Helge M.; Plank, Terry

    2014-08-01

    The explosivity of volcanic eruptions is governed in part by the rate at which magma ascends and degasses. Because the time scales of eruptive processes can be exceptionally fast relative to standard geochronometers, magma ascent rate remains difficult to quantify. Here we use as a chronometer concentration gradients of volatile species along open melt embayments within olivine crystals. Continuous degassing of the external melt during magma ascent results in diffusion of volatile species from embayment interiors to the bubble located at their outlets. The novel aspect of this study is the measurement of concentration gradients in five volatile elements (CO2, H2O, S, Cl, F) at fine-scale (5-10 μm) using the NanoSIMS. The wide range in diffusivity and solubility of these different volatiles provides multiple constraints on ascent timescales over a range of depths. We focus on four 100-200 μm, olivine-hosted embayments erupted on October 17, 1974 during the sub-Plinian eruption of Volcán de Fuego. H2O, CO2, and S all decrease toward the embayment outlet bubble, while F and Cl increase or remain roughly constant. Compared to an extensive melt inclusion suite from the same day of the eruption, the embayments have lost both H2O and CO2 throughout the entire length of the embayment. We fit the profiles with a 1-D numerical diffusion model that allows varying diffusivities and external melt concentrations as a function of pressure. Assuming a constant decompression rate from the magma storage region at approximately 220 MPa to the surface, H2O, CO2 and S profiles for all embayments can be fit with a relatively narrow range in decompression rates of 0.3-0.5 MPa/s, equivalent to 11-17 m/s ascent velocity and an 8 to 12 minute duration of magma ascent from ~ 10 km depth. A two stage decompression model takes advantage of the different depth ranges over which CO2 and H2O degas, and produces good fits given an initial stage of slow decompression (0.05-0.3 MPa/s) at high

  13. Explosive eruptive history of Pantelleria, Italy: Repeated caldera collapse and ignimbrite emplacement at a peralkaline volcano

    Science.gov (United States)

    Jordan, Nina J.; Rotolo, Silvio G.; Williams, Rebecca; Speranza, Fabio; McIntosh, William C.; Branney, Michael J.; Scaillet, Stéphane

    2018-01-01

    A new, pre-Green Tuff (46 ka) volcanic stratigraphy is presented for the peralkaline Pantelleria Volcano, Italy. New 40Ar/39Ar and paleomagnetic data are combined with detailed field studies to develop a comprehensive stratigraphic reconstruction of the island. We find that the pre-46 ka succession is characterised by eight silica-rich peralkaline (trachyte to pantellerite) ignimbrites, many of which blanketed the entire island. The ignimbrites are typically welded to rheomorphic, and are commonly associated with lithic breccias and/or pumice deposits. They record sustained radial pyroclastic density currents fed by low pyroclastic fountains. The onset of ignimbrite emplacement is typically preceded (more rarely followed) by pumice fallout with limited dispersal, and some eruptions lack any associated pumice fall deposit, suggesting the absence of tall eruption columns. Particular attention is given to the correlation of well-developed lithic breccias in the ignimbrites, interpreted as probable tracers of caldera collapses. They record as many as five caldera collapse events, in contrast to the two events reported to date. Inter-ignimbrite periods are characterised by explosive and effusive eruptions with limited dispersal, such as small pumice cones, as well as pedogenesis. These periods have similar characteristics as the current post-Green Tuff activity on the island, and, while not imminent, it is reasonable to postulate the occurrence of another ignimbrite-forming eruption sometime in the future.

  14. Correlation and stratigraphic eruption age of the pyroclastic flow deposits and wide spread volcanic ashes intercalated in the Pliocene-Pleistocene strata, central Japan

    International Nuclear Information System (INIS)

    Nagahashi, Yoshitaka; Satoguchi, Yasufumi; Yoshikawa, Shusaku

    2000-01-01

    Three pyroclastic flow deposits in the Takayama and Omine area, central Honshu, are correlated to the distal widespread volcanic ashes intercalated in the Plio-Pleistocene boundary strata in central Japan. The correlation is based on these stratigraphic relationships, facies, magnetostratigraphy, petrographic properties such as mineral assemblage, refractive index and chemical composition of the volcanic glasses and orthopyroxene. As the result of these correlation, the eruption age of the proximal pyroclastic flow deposits have become clear. And precise correlation between proximal eruption units and distal depositional units is now possible. Ho-Kd 39 Tephra erupted at about 1.76 Ma, forming a co-ignimbrite ash, which deposited in the Kanto sedimentary basin. Eb-Fukuda Tephra erupted at about 1.75 Ma, and distal volcaniclastic deposit sedimented in the Kinki, Niigata and Kanto sedimentary basins. The eruptional and depositional phase are divided into the stage 1, stage 2 (early), stage 2 (late) and stage 3. Stage 1 is phreato-plinian type eruption phase, forming distal ash fall deposit. Stage 2 (early) is plinian pumice fall, intra-plinian pyroclastic flow and plinian pumice fall eruption phase, forming distal ash fall. Stage 2 (late) is final eruptional phase of the biggest pyroclastic flow of the Eb-Fukuda Tephra, forming a co-ignimbrite ash fall. Stage 3 is resedimented stage after the end of the explosive eruption. It is notable that resedimented volcaniclastic deposit reached Osaka sedimentary basin 300 km away from the eruption center. Om-SK110 Tephra erupted at about 1.65 Ma, divided into the stage 1, stage 2 and stage 3. Stage 1 is eruption phase of the plinian pumice fall and first pyroclastic flow. Stage 2 is pauses in eruption activity. Stage 3 is second pyroclastic flow phase, it is inferred that the pyroclastic flow of the stage 3 directly entered the Niigata sedimentary basin and simultaneously formed a co-ignimbrite ash. (author)

  15. Historic hydrovolcanism at Deception Island (Antarctica): implications for eruption hazards

    Science.gov (United States)

    Pedrazzi, Dario; Németh, Károly; Geyer, Adelina; Álvarez-Valero, Antonio M.; Aguirre-Díaz, Gerardo; Bartolini, Stefania

    2018-01-01

    Deception Island (Antarctica) is the southernmost island of the South Shetland Archipelago in the South Atlantic. Volcanic activity since the eighteenth century, along with the latest volcanic unrest episodes in the twentieth and twenty-first centuries, demonstrates that the volcanic system is still active and that future eruptions are likely. Despite its remote location, the South Shetland Islands are an important touristic destination during the austral summer. In addition, they host several research stations and three summer field camps. Deception Island is characterised by a Quaternary caldera system with a post-caldera succession and is considered to be part of an active, dispersed (monogenetic), volcanic field. Historical post-caldera volcanism on Deception Island involves monogenetic small-volume (VEI 2-3) eruptions such forming cones and various types of hydrovolcanic edifices. The scientific stations on the island were destroyed, or severely damaged, during the eruptions in 1967, 1969, and 1970 mainly due to explosive activity triggered by the interaction of rising (or erupting) magma with surface water, shallow groundwater, and ice. We conducted a detailed revision (field petrology and geochemistry) of the historical hydrovolcanic post-caldera eruptions of Deception Island with the aim to understand the dynamics of magma-water interaction, as well as characterise the most likely eruptive scenarios from future eruptions. We specifically focused on the Crimson Hill (estimated age between 1825 and 1829), and Kroner Lake (estimated age between 1829 and 1912) eruptions and 1967, 1969, and 1970 events by describing the eruption mechanisms related to the island's hydrovolcanic activity. Data suggest that the main hazards posed by volcanism on the island are due to fallout, ballistic blocks and bombs, and subordinate, dilute PDCs. In addition, Deception Island can be divided into five areas of expected activity due to magma-water interaction, providing additional

  16. Sulfur mass loading of the atmosphere from volcanic eruptions: Calibration of the ice core record on basis of sulfate aerosol deposition in polar regions from the 1982 El Chichon eruption

    Science.gov (United States)

    Sigurdsson, Haraldur; Laj, Paolo

    1990-01-01

    Major volcanic eruptions disperse large quantities of sulfur compound throughout the Earth's atmosphere. The sulfuric acid aerosols resulting from such eruptions are scavenged by snow within the polar regions and appear in polar ice cores as elevated acidity layers. Glacio-chemical studies of ice cores can, thus, provide a record of past volcanism, as well as the means for understanding the fate of volcanic sulfur in the atmosphere. The primary objectives of this project are to study the chemistry and physical properties of volcanic fallout in a Greenland Ice Core in order to evaluate the impact of the volcanic gases on the atmospheric chemistry and the total atmospheric mass of volcanic aerosols emitted by major volcanic eruptions. We propose to compare the ice core record to other atmospheric records performed during the last 10 years to investigate transport and deposition of volcanic materials.

  17. Characterization of volcanic deposits and geoarchaeological studies from the 1815 eruption of Tambora volcano

    Directory of Open Access Journals (Sweden)

    Igan Supriatman Sutawidjaja

    2014-06-01

    Full Text Available http://dx.doi.org/10.17014/ijog.vol1no1.20066aThe eruption of Tambora volcano on the island of Sumbawa in 1815 is generally considered as the largest and the most violent volcanic event in recorded history. The cataclysmic eruption occurred on 11 April 1815 was initiated by Plinian eruption type on 5 April and killed more than 90,000 people on Sumbawa and nearby Lombok. The type plinian eruptions occurred twice and ejected gray pumice and ash, to form stratified deposits as thick as 40-150 cm on the slopes and mostly distributed over the district west of the volcano. Following this, at about 7 pm, on 11 April the first pyroclastic surge was generated and progressively became greater extending to almost whole direction, mainly to the north, west, and south districts from the eruption center. The deadliest volcanic eruption buried ancient villages by pyroclastic surge and flow deposits in almost intact state, thus preserving important archaeological evidence for the period. High preservation in relatively stable conditions and known date of the eruptions provide approximate dating for the archaeological remains. Archaeological excavations on the site uncovered a variety of remains were relieved by ground penetrating radar (GPR to map structural remains of the ancient villages under the pyroclastic surge and flow deposits. These traverses showed that GPR could define structures as deep as 10 m (velocity 0.090 m/ns and could accurately map the thickness of the stratified volcanic deposits in the Tambora village area.    

  18. Magmatic densities control erupted volumes in Icelandic volcanic systems

    Science.gov (United States)

    Hartley, Margaret; Maclennan, John

    2018-04-01

    Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ). By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallisation under Iceland.

  19. Magmatic Densities Control Erupted Volumes in Icelandic Volcanic Systems

    Directory of Open Access Journals (Sweden)

    Margaret Hartley

    2018-04-01

    Full Text Available Magmatic density and viscosity exert fundamental controls on the eruptibility of magmas. In this study, we investigate the extent to which magmatic physical properties control the eruptibility of magmas from Iceland's Northern Volcanic Zone (NVZ. By studying subaerial flows of known age and volume, we are able to directly relate erupted volumes to magmatic physical properties, a task that has been near-impossible when dealing with submarine samples dredged from mid-ocean ridges. We find a strong correlation between magmatic density and observed erupted volumes on the NVZ. Over 85% of the total volume of erupted material lies close to a density and viscosity minimum that corresponds to the composition of basalts at the arrival of plagioclase on the liquidus. These magmas are buoyant with respect to the Icelandic upper crust. However, a number of small-volume eruptions with densities greater than typical Icelandic upper crust are also found in Iceland's neovolcanic zones. We use a simple numerical model to demonstrate that the eruption of magmas with higher densities and viscosities is facilitated by the generation of overpressure in magma chambers in the lower crust and uppermost mantle. This conclusion is in agreement with petrological constraints on the depths of crystallization under Iceland.

  20. Chronology and References of Volcanic Eruptions and Selected Unrest in the United States, 1980-2008

    Science.gov (United States)

    Diefenbach, Angela K.; Guffanti, Marianne; Ewert, John W.

    2009-01-01

    The United States ranks as one of the top countries in the world in the number of young, active volcanoes within its borders. The United States, including the Commonwealth of the Northern Mariana Islands, is home to approximately 170 geologically active (age activity, unrest, that do not culminate in eruptions. Monitoring volcanic activity in the United States is the responsibility of the U.S. Geological Survey (USGS) Volcano Hazards Program (VHP) and is accomplished with academic, Federal, and State partners. The VHP supports five Volcano Observatories - the Alaska Volcano Observatory (AVO), Cascades Volcano Observatory (CVO), Yellowstone Volcano Observatory (YVO), Long Valley Observatory (LVO), and Hawaiian Volcano Observatory (HVO). With the exception of HVO, which was established in 1912, the U.S. Volcano Observatories have been established in the past 27 years in response to specific volcanic eruptions or sustained levels of unrest. As understanding of volcanic activity and hazards has grown over the years, so have the extent and types of monitoring networks and techniques available to detect early signs of anomalous volcanic behavior. This increased capability is providing us with a more accurate gauge of volcanic activity in the United States. The purpose of this report is to (1) document the range of volcanic activity that U.S. Volcano Observatories have dealt with, beginning with the 1980 eruption of Mount St. Helens, (2) describe some overall characteristics of the activity, and (3) serve as a quick reference to pertinent published literature on the eruptions and unrest documented in this report.

  1. Seismic equivalents of volcanic jet scaling laws and multipoles in acoustics

    Science.gov (United States)

    Haney, Matthew M.; Matoza, Robin S.; Fee, David; Aldridge, David F.

    2018-04-01

    We establish analogies between equivalent source theory in seismology (moment-tensor and single-force sources) and acoustics (monopoles, dipoles and quadrupoles) in the context of volcanic eruption signals. Although infrasound (acoustic waves volcanic eruptions may be more complex than a simple monopole, dipole or quadrupole assumption, these elementary acoustic sources are a logical place to begin exploring relations with seismic sources. By considering the radiated power of a harmonic force source at the surface of an elastic half-space, we show that a volcanic jet or plume modelled as a seismic force has similar scaling with respect to eruption parameters (e.g. exit velocity and vent area) as an acoustic dipole. We support this by demonstrating, from first principles, a fundamental relationship that ties together explosion, torque and force sources in seismology and highlights the underlying dipole nature of seismic forces. This forges a connection between the multipole expansion of equivalent sources in acoustics and the use of forces and moments as equivalent sources in seismology. We further show that volcanic infrasound monopole and quadrupole sources exhibit scalings similar to seismicity radiated by volume injection and moment sources, respectively. We describe a scaling theory for seismic tremor during volcanic eruptions that agrees with observations showing a linear relation between radiated power of tremor and eruption rate. Volcanic tremor over the first 17 hr of the 2016 eruption at Pavlof Volcano, Alaska, obeyed the linear relation. Subsequent tremor during the main phase of the eruption did not obey the linear relation and demonstrates that volcanic eruption tremor can exhibit other scalings even during the same eruption.

  2. Effects of volcanic eruptions on China's monsoon precipitation over the past 700 years

    Science.gov (United States)

    Zhuo, Z.; Gao, C.

    2013-12-01

    Tropical volcanic eruptions were found to affect precipitation especially in Asia and Africa monsoon region. However, studies with different types of eruptions suggested different impacts as well as the spatial patterns. In this study, we combined the Monsoon Asia Drought Atlas (MADA, [Cook et al., 2010]) and the Chinese Historical Drought Disaster Index (CHDDI) compiled from the historic meteorological records to study the effect of volcanic eruptions on China's monsoon precipitation over the past 700 years. Histories of past volcanism were compiled from the IVI2[Gao et al., 2008] and Crowley2013[Crowley and Unterman, 2013] reconstructions. Volcanic events were classified into 2×Pinatubo, 1×Pinatubo , ≥5 Tg sulfate aerosols injection in the northern hemisphere (NH) stratosphere for IVI2; and NH sulfate flux more than 20/15/10/5 kg km-2 for Crowley2013. In both cases, average MADA show a drying trend over mainland China from year zero(0) to year three(+3) after the eruption; and the more sulfate aerosol injected into the NH stratosphere or the larger the sulfate flux, the more severe this drying trend seem to reveal. In comparison, a wetting trend was found in the eruption year with Southern Hemisphere (SH) only injections. Superposed epoch analysis with a 10,000 Monte Carlo resampling procedure showed that 97.9% (96.9%) of the observed MADA values are statistically significant at the 95% (99%) confidence level. The drying is probably caused by a reduction of the latent heat flux due to volcanic aerosol' cooling effect, leading to the weakening of south Asian monsoon and decrease of moisture vapor over tropical oceans, which contribute to a reduced moisture flux over china. Spatial distribution of the average MADA show a southward movement of the driest areas in eastern China from year zero to year three after the 1×Pinatubo and 2×Pinatubo eruptions, whereas part of north china experienced unusual wetting condition. This is in good agreement with CHDDI, which

  3. Frictional-faulting model for harmonic tremor before Redoubt Volcano eruptions

    Science.gov (United States)

    Dmitrieva, Ksenia; Hotovec-Ellis, Alicia J.; Prejean, Stephanie G.; Dunham, Eric M.

    2013-01-01

    Seismic unrest, indicative of subsurface magma transport and pressure changes within fluid-filled cracks and conduits, often precedes volcanic eruptions. An intriguing form of volcano seismicity is harmonic tremor, that is, sustained vibrations in the range of 0.5–5 Hz. Many source processes can generate harmonic tremor. Harmonic tremor in the 2009 eruption of Redoubt Volcano, Alaska, has been linked to repeating earthquakes of magnitudes around 0.5–1.5 that occur a few kilometres beneath the vent. Before many explosions in that eruption, these small earthquakes occurred in such rapid succession—up to 30 events per second—that distinct seismic wave arrivals blurred into continuous, high-frequency tremor. Tremor abruptly ceased about 30 s before the explosions. Here we introduce a frictional-faulting model to evaluate the credibility and implications of this tremor mechanism. We find that the fault stressing rates rise to values ten orders of magnitude higher than in typical tectonic settings. At that point, inertial effects stabilize fault sliding and the earthquakes cease. Our model of the Redoubt Volcano observations implies that the onset of volcanic explosions is preceded by active deformation and extreme stressing within a localized region of the volcano conduit, at a depth of several kilometres.

  4. Thallium as a tracer for preindustrial volcanic eruptions in an ice core record from Illimani, Bolivia.

    Science.gov (United States)

    Kellerhals, Thomas; Tobler, Leonhard; Brütsch, Sabina; Sigl, Michael; Wacker, Lukas; Gäggeler, Heinz W; Schwikowski, Margit

    2010-02-01

    Trace element records from glacier and ice sheet archives provide insights into biogeochemical cycles, atmospheric circulation changes, and anthropogenic pollution history. We present the first continuous high-resolution thallium (Tl) record, derived from an accurately dated ice core from tropical South America, and discuss Tl as a tracer for volcanic eruptions. We identify four prominent Tl peaks and propose that they represent signals from the massive explosive eruptions of the "unknown 1258" A.D. volcano, of Kuwae ( approximately 1450 A.D.), Tambora (1815 A.D.), and Krakatoa (1883 A.D.). The highly resolved record was obtained with an improved setup for the continuous analysis of trace elements in ice with inductively coupled plasma sector field mass spectrometry (ICP-SFMS). The new setup allowed for a stronger initial acidification of the meltwater and shorter tubing length, thereby reducing the risk of memory effects and losses of analytes to the capillary walls. With a comparison of the continuous method to the established conventional decontamination and analysis procedure for discrete samples, we demonstrate the accuracy of the continuous method for Tl analyses.

  5. Lunar mare volcanism - Stratigraphy, eruption conditions, and the evolution of secondary crusts

    Science.gov (United States)

    Head, James W., III; Wilson, Lionel

    1992-01-01

    Recent developments in the geological analysis of lunar mare volcanism are reviewed. Analysis of returned samples and photogeological and remote sensing studies shows that mare volcanism began prior to the end of heavy bombardment (the period of cryptomare formation), in pre-Nectarian times, and continued until the Copernical Period, the total duration approaching 3.5-4 Ga. Stratigraphic analysis shows that the flux was not constant, but peaked in early lunar history, during the Imbrian Period. Average volcanic output rate during this period was about 0.01 cu cm/a. Volcanic landforms indicate that many eruptions were of high volume and long duration. Some eruptions associated with sinuous rills may have lasted a year and emplaced 1000 cu km of lava, representing the equivalent in one year of about 70,000 yr at the average flux. The occurrence of farside maria within craters whose diameter is generally near to or less than the thickness of the crust may be accounted for by the difference between local and regional compensation.

  6. Medieval Irish chronicles reveal persistent volcanic forcing of severe winter cold events, 431–1649 CE

    International Nuclear Information System (INIS)

    Ludlow, Francis; Stine, Alexander R; Leahy, Paul; Kiely, Gerard; Murphy, Enda; Mayewski, Paul A; Taylor, David; Killen, James; Hennessy, Mark; Baillie, Michael G L

    2013-01-01

    Explosive volcanism resulting in stratospheric injection of sulfate aerosol is a major driver of regional to global climatic variability on interannual and longer timescales. However, much of our knowledge of the climatic impact of volcanism derives from the limited number of eruptions that have occurred in the modern period during which meteorological instrumental records are available. We present a uniquely long historical record of severe short-term cold events from Irish chronicles, 431–1649 CE, and test the association between cold event occurrence and explosive volcanism. Thirty eight (79%) of 48 volcanic events identified in the sulfate deposition record of the Greenland Ice Sheet Project 2 ice-core correspond to 37 (54%) of 69 cold events in this 1219 year period. We show this association to be statistically significant at the 99.7% confidence level, revealing both the consistency of response to explosive volcanism for Ireland’s climatically sensitive Northeast Atlantic location and the large proportional contribution of volcanism to historic cold event frequencies here. Our results expose, moreover, the extent to which volcanism has impacted winter-season climate for the region, and can help to further resolve the complex spatial patterns of Northern Hemisphere winter-season cooling versus warming after major eruptions. (letter)

  7. Volcanic eruptions recorded in the Illimani ice core (Bolivia: 1918–1998 and Tambora periods

    Directory of Open Access Journals (Sweden)

    M. De Angelis

    2003-01-01

    Full Text Available Acid layers of volcanic origin detected in polar snow and ice layers are commonly used to document past volcanic activity on a global scale or, conversely, to date polar ice cores. Although most cataclysmic eruptions of the last two centuries (Pinatubo, El Chichon, Agung, Krakatoa, Cosiguina, Tambora, etc. occurred in the tropics, cold tropical glaciers have not been used for the reconstruction of past volcanism. The glaciochemical study of a 137 m ice core drilled in 1999 close to the summit of Nevado Illimani (Eastern Bolivian Andes, 16°37' S, 67°46' W, 6350 m asl demonstrates, for the first time, that such eruptions are recorded by both their tropospheric and stratospheric deposits. An 80-year ice sequence (1918-1998 and the Tambora years have been analyzed in detail. In several cases, ash, chloride and fluoride were also detected. The ice records of the Pinatubo (1991, Agung (1963 and Tambora (1815 eruptions are discussed in detail. The potential impact of less important regional eruptions is discussed.

  8. The flow structure of jets from transient sources and implications for modeling short-duration explosive volcanic eruptions

    Science.gov (United States)

    Chojnicki, K. N.; Clarke, A. B.; Adrian, R. J.; Phillips, J. C.

    2014-12-01

    We used laboratory experiments to examine the rise process in neutrally buoyant jets that resulted from an unsteady supply of momentum, a condition that defines plumes from discrete Vulcanian and Strombolian-style eruptions. We simultaneously measured the analog-jet discharge rate (the supply rate of momentum) and the analog-jet internal velocity distribution (a consequence of momentum transport and dilution). Then, we examined the changes in the analog-jet velocity distribution over time to assess the impact of the supply-rate variations on the momentum-driven rise dynamics. We found that the analog-jet velocity distribution changes significantly and quickly as the supply rate varied, such that the whole-field distribution at any instant differed considerably from the time average. We also found that entrainment varied in space and over time with instantaneous entrainment coefficient values ranging from 0 to 0.93 in an individual unsteady jet. Consequently, we conclude that supply-rate variations exert first-order control over jet dynamics, and therefore cannot be neglected in models without compromising their capability to predict large-scale eruption behavior. These findings emphasize the fundamental differences between unsteady and steady jet dynamics, and show clearly that: (i) variations in source momentum flux directly control the dynamics of the resulting flow; (ii) impulsive flows driven by sources of varying flux cannot reasonably be approximated by quasi-steady flow models. New modeling approaches capable of describing the time-dependent properties of transient volcanic eruption plumes are needed before their trajectory, dilution, and stability can be reliably computed for hazards management.

  9. Correlating the electrification of volcanic plumes with ashfall textures at Sakurajima Volcano, Japan

    Science.gov (United States)

    Smith, Cassandra M.; Van Eaton, Alexa R.; Charbonnier, Sylvain; McNutt, Stephen R.; Behnke, Sonja A.; Thomas, Ronald J.; Edens, Harald E.; Thompson, Glenn

    2018-06-01

    Volcanic lightning detection has become a useful resource for monitoring remote, under-instrumented volcanoes. Previous studies have shown that the behavior of volcanic plume electrification responds to changes in the eruptive processes and products. However, there has not yet been a study to quantify the links between ash textures and plume electrification during an actively monitored eruption. In this study, we examine a sequence of vulcanian eruptions from Sakurajima Volcano in Japan to compare ash textural properties (grain size, shape, componentry, and groundmass crystallinity) to plume electrification using a lightning mapping array and other monitoring data. We show that the presence of the continual radio frequency (CRF) signal is more likely to occur during eruptions that produce large seismic amplitudes (>7 μm) and glass-rich volcanic ash with more equant particle shapes. We show that CRF is generated during energetic, impulsive eruptions, where charge buildup is enhanced by secondary fragmentation (milling) as particles travel out of the conduit and into the gas-thrust region of the plume. We show that the CRF signal is influenced by a different electrification process than later volcanic lightning. By using volcanic CRF and lightning to better understand the eruptive event and its products these key observations will help the monitoring community better utilize volcanic electrification as a method for monitoring and understanding ongoing explosive eruptions.

  10. A first Event-tree for the Bárðarbunga volcanic system (Iceland): from the volcanic crisis in 2014 towards a tool for hazard assessment

    Science.gov (United States)

    Barsotti, Sara; Tumi Gudmundsson, Magnús; Jónsdottir, Kristín; Vogfjörd, Kristín; Larsen, Gudrun; Oddsson, Björn

    2015-04-01

    Bárdarbunga volcano is part of a large volcanic system that had its last confirmed eruption before the present unrest in 1910. This system is partially covered by ice within the Vatnajökull glacier and it extends further to the NNE as well as to SW. Based on historical data, its eruptive activity has been predominantly characterized by explosive eruptions, originating beneath the glacier, and important effusive eruptions in the ice-free part of the system itself. The largest explosive eruptions took place on the southern side of the fissure system in AD 1477 producing about 10 km3 of tephra. Due to the extension and location of this volcanic system, the range of potential eruptive scenarios and associated hazards is quite wide. Indeed, it includes: inundation, due to glacial outburst; tephra fallout, due to ash-rich plume generated by magma-water interaction; abundant volcanic gas release; and lava flows. Most importantly these phenomena are not mutually exclusive and might happen simultaneously, creating the premise for a wide spatial and temporal impact. During the ongoing volcanic crisis at Bárdarbunga, which started on 16 August, 2014, the Icelandic Meteorological Office, together with the University of Iceland and Icelandic Civil Protection started a common effort of drawing, day-by-day, the potential evolution of the ongoing rifting event and, based on the newest data from the monitoring networks, updated and more refined scenarios have been identified. Indeed, this volcanic crisis created the occasion for pushing forward the creation of the first Event-tree for the Bárðarbunga volcanic system. We adopted the approach suggested by Newhall and Pallister (2014) and a preliminary ET made of nine nodes has been constructed. After the two initial nodes (restless and genesis) the ET continues with the identification of the location of aperture of future eruptive vents. Due to the complex structure of the system and historical eruptions, this third node

  11. Experimental estimates of the energy budget of hydrothermal eruptions; application to 2012 Upper Te Maari eruption, New Zealand

    Science.gov (United States)

    Montanaro, Cristian; Scheu, Bettina; Cronin, Shane J.; Breard, Eric C. P.; Lube, Gert; Dingwell, Donald B.

    2016-10-01

    Sudden hydrothermal eruptions occur in many volcanic settings and may include high-energy explosive phases. Ballistics launched by such events, together with ash plumes and pyroclastic density currents, generate deadly proximal hazards. The violence of hydrothermal eruptions (or explosive power) depends on the energy available within the driving-fluids (gas or liquid), which also influences the explosive mechanisms, volumes, durations, and products of these eruptions. Experimental studies in addition to analytical modeling were used here to elucidate the fragmentation mechanism and aspects of energy balance within hydrothermal eruptions. We present results from a detailed study of recent event that occurred on the 6th of August 2012 at Upper Te Maari within the Tongariro volcanic complex (New Zealand). The eruption was triggered by a landslide from this area, which set off a rapid stepwise decompression of the hydrothermal system. Explosive blasts were directed both westward and eastward of the collapsed area, with a vertical ash plume sourced from an adjacent existing crater. All explosions ejected blocks on ballistic trajectories, hundreds of which impacted New Zealand's most popular hiking trail and a mountain lodge, 1.4 km from the explosion locus. We have employed rocks representative of the eruption source area to perform rapid decompression experiments under controlled laboratory conditions that mimic hydrothermal explosions under controlled laboratory conditions. An experimental apparatus for 34 by 70 mm cylindrical samples was built to reduce the influence of large lithic enclaves (up to 30 mm in diameter) within the rock. The experiments were conducted in a temperature range of 250 °C-300 °C and applied pressure between 4 MPa and 6.5 MPa, which span the range of expected conditions below the Te Maari crater. Within this range we tested rapid decompression of pre-saturated samples from both liquid-dominated conditions and the vapor-dominated field

  12. Volcanic eruptions on Io: Heat flow, resurfacing, and lava composition

    Science.gov (United States)

    Blaney, Diana L.; Johnson, Torrence V.; Matson, Dennis L.; Veeder, Glenn J.

    1995-01-01

    We model an infrared outburst on Io as being due to a large, erupting lava flow which increased its area at a rate of 1.5 x 10(exp 5)/sq m and cooled from 1225 to 555 K over the 2.583-hr period of observation. The inferred effusion rate of 3 x 10(exp 5) cu m/sec for this eruption is very high, but is not unprece- dented on the Earth and is similar to the high eruption rates suggested for early lunar volcanism. Eruptions occur approxi- mately 6% of the time on Io. These eruptions provide ample resurfacing to explain Io's lack of impact craters. We suggest that the large total radiometric heat flow, 10(exp 14) W, and the size and temperature distribution of the thermal anomalies (McEwen et al. 1992; Veeder et al. 1994) can be accounted for by a series of silicate lava flows in various stages of cooling. We propose that the whole suite of Io's currently observed thermal anomalies was produced by multiple, high-eruptive-rate silicate flows within the past century.

  13. Global temperature response to the major volcanic eruptions in multiple reanalysis data sets

    Directory of Open Access Journals (Sweden)

    M. Fujiwara

    2015-12-01

    Full Text Available The global temperature responses to the eruptions of Mount Agung in 1963, El Chichón in 1982, and Mount Pinatubo in 1991 are investigated using nine currently available reanalysis data sets (JRA-55, MERRA, ERA-Interim, NCEP-CFSR, JRA-25, ERA-40, NCEP-1, NCEP-2, and 20CR. Multiple linear regression is applied to the zonal and monthly mean time series of temperature for two periods, 1979–2009 (for eight reanalysis data sets and 1958–2001 (for four reanalysis data sets, by considering explanatory factors of seasonal harmonics, linear trends, Quasi-Biennial Oscillation, solar cycle, and El Niño Southern Oscillation. The residuals are used to define the volcanic signals for the three eruptions separately, and common and different responses among the older and newer reanalysis data sets are highlighted for each eruption. In response to the Mount Pinatubo eruption, most reanalysis data sets show strong warming signals (up to 2–3 K for 1-year average in the tropical lower stratosphere and weak cooling signals (down to −1 K in the subtropical upper troposphere. For the El Chichón eruption, warming signals in the tropical lower stratosphere are somewhat smaller than those for the Mount Pinatubo eruption. The response to the Mount Agung eruption is asymmetric about the equator with strong warming in the Southern Hemisphere midlatitude upper troposphere to lower stratosphere. Comparison of the results from several different reanalysis data sets confirms the atmospheric temperature response to these major eruptions qualitatively, but also shows quantitative differences even among the most recent reanalysis data sets. The consistencies and differences among different reanalysis data sets provide a measure of the confidence and uncertainty in our current understanding of the volcanic response. The results of this intercomparison study may be useful for validation of climate model responses to volcanic forcing and for assessing proposed

  14. Exploring the Potential Impacts of Historic Volcanic Eruptions on the Contemporary Global Food System

    Science.gov (United States)

    Puma, Michael J.; Chon, S.; Wada, Y.

    2015-01-01

    A better understanding of volcanic impacts on crops is urgently needed, as volcanic eruptions and the associated climate anomalies can cause unanticipated shocks to food production. Such shocks are a major concern given the fragility of the global food system.

  15. Evaluation of Kilauea Eruptions By Using Stable Isotope Analysis

    Science.gov (United States)

    Rahimi, K. E.; Bursik, M. I.

    2016-12-01

    Kilauea, on the island of Hawaii, is a large volcanic edifice with numerous named vents scattered across its surface. Halema`uma`u crater sits with Kilauea caldera, above the magma reservoir, which is the main source of lava feeding most vents on Kilauea volcano. Halema`uma`u crater produces basaltic explosive activity ranging from weak emission to sub-Plinian. Changes in the eruption style are thought to be due to the interplay between external water and magma (phreatomagmatic/ phreatic), or to segregation of gas from magma (magmatic) at shallow depths. Since there are three different eruption mechanisms (phreatomagmatic, phreatic, and magmatic), each eruption has its own isotope ratios. The aim of this study is to evaluate the eruption mechanism by using stable isotope analysis. Studying isotope ratios of D/H and δ18O within fluid inclusion and volcanic glass will provide an evidence of what driven the eruption. The results would be determined the source of water that drove an eruption by correlating the values with water sources (groundwater, rainwater, and magmatic water) since each water source has a diagnostic value of D/H and δ18O. These results will provide the roles of volatiles in eruptions. The broader application of this research is that these methods could help volcanologists forecasting and predicting the current volcanic activity by mentoring change in volatiles concentration within deposits.

  16. Supervolcanoes within an ancient volcanic province in Arabia Terra, Mars.

    Science.gov (United States)

    Michalski, Joseph R; Bleacher, Jacob E

    2013-10-03

    Several irregularly shaped craters located within Arabia Terra, Mars, represent a new type of highland volcanic construct and together constitute a previously unrecognized Martian igneous province. Similar to terrestrial supervolcanoes, these low-relief paterae possess a range of geomorphic features related to structural collapse, effusive volcanism and explosive eruptions. Extruded lavas contributed to the formation of enigmatic highland ridged plains in Arabia Terra. Outgassed sulphur and erupted fine-grained pyroclastics from these calderas probably fed the formation of altered, layered sedimentary rocks and fretted terrain found throughout the equatorial region. The discovery of a new type of volcanic construct in the Arabia volcanic province fundamentally changes the picture of ancient volcanism and climate evolution on Mars. Other eroded topographic basins in the ancient Martian highlands that have been dismissed as degraded impact craters should be reconsidered as possible volcanic constructs formed in an early phase of widespread, disseminated magmatism on Mars.

  17. Scientific Drilling in a Central Italian Volcanic District

    Directory of Open Access Journals (Sweden)

    Paola Montone

    2007-09-01

    Full Text Available The Colli Albani Volcanic District, located 15 km SE of Rome (Fig. 1, is part of the Roman Magmatic Province, a belt of potassic to ultra-potassic volcanic districts that developed along the Tyrrhenian Sea margin since Middle Pleistocene time (Conticelli and Peccerillo, 1992; Marra et al., 2004; Giordano et al., 2006 and references therein. Eruption centers are aligned along NW-SE oriented majorextensional structures guiding the dislocation of Meso-Cenozoic siliceous-carbonate sedimentary successions at the rear of the Apennine belt. Volcanic districts developed in structural sectors with most favorable conditions for magma uprise. In particular, the Colli Albani volcanism is located in a N-S shear zone where it intersects the extensional NW- and NE-trending fault systems. In the last decade, geochronological measurements allowed for reconstructions of the eruptive history and led to the classification as "dormant" volcano. The volcanic history may be roughly subdivided into three main phases marked by different eruptive mechanisms andmagma volumes. The early Tuscolano-Artemisio Phase (ca. 561–351 ky, the most explosive and voluminous one, is characterized by five large pyroclastic flow-forming eruptions. After a ~40-ky-long dormancy, a lesser energetic phase of activity took place (Faete Phase; ca. 308–250 ky, which started with peripheral effusive eruptions coupled with subordinate hydromagmatic activity. A new ~50-ky-long dormancypreceded the start of the late hydromagmatic phase (ca. 200–36 ky, which was dominated by pyroclastic-surge eruptions, with formation of several monogenetic or multiple maars and/or tuff rings.

  18. Assessing hazards to aviation from sulfur dioxide emitted by explosive Icelandic eruptions

    OpenAIRE

    Schmidt, A; Witham, CS; Theys, N; Richards, NAD; Thordarson, T; Szpek, K; Feng, W; Hort, MC; Woolley, AM; Jones, AR; Redington, AL; Johnson, BT; Hayward, CL; Carslaw, KS

    2014-01-01

    Volcanic eruptions take place in Iceland about once every 3 to 5 years. Ash emissions from these eruptions can cause significant disruption to air traffic over Europe and the North Atlantic as is evident from the 2010 eruption of Eyjafjallajökull. Sulfur dioxide (SO2) is also emitted by volcanoes, but there are no criteria to define when airspace is considered hazardous or nonhazardous. However, SO2 is a well-known ground-level pollutant that can have detrimental effects on human health. We h...

  19. Observations of the loss of stratospheric NO2 following volcanic eruptions

    Science.gov (United States)

    Coffey, M. T.; Mankin, William G.

    1993-01-01

    Observations of stratospheric column amounts of nitrogen dioxide (NO2), nitric oxide (NO) and nitric acid (HNO3) have been made following major eruptions of the El Chichon and Mt. Pintatubo volcanoes. Midlatitude abundances of NO2 and NO were reduced by as much as 70% in the months following the appearance of the volcanic aerosols as compared to volcanically quite periods. There are heterogeneous reactions which could occur on the volcanic aerosols to convert NO2 into HNO3 but no commensurate increase in HNO3 column amounts was observed at the times of NO2 decrease.

  20. Detection and characterization of volcanic ash plumes over Lille during the Eyjafjallajökull eruption

    Directory of Open Access Journals (Sweden)

    A. Mortier

    2013-04-01

    Full Text Available Routine sun-photometer and micro-lidar measurements were performed in Lille, northern France, in April and May 2010 during the Eyjafjallajökull volcanic eruption. The impact of such an eruption emphasized significance of hazards for human activities and importance of observations of the volcanic aerosol particles. This paper presents the main results of a joint micro-lidar/sun-photometer analysis performed in Lille, where volcanic ash plumes were observed during at least 22 days, whenever weather conditions permitted. Aerosol properties retrieved from automatic sun-photometer measurements (AERONET were strongly changed during the volcanic aerosol plumes transport over Lille. In most cases, the aerosol optical depth (AOD increased, whereas Ångström exponent decreased, thus indicating coarse-mode dominance in the volume size distribution. Moreover, the non-spherical fraction retrieved by AERONET significantly increased. The real part of the complex refractive index was up to 1.55 at 440 nm during the eruption, compared to background data of about 1.46 before the eruption. Collocated lidar data revealed that several aerosol layers were present between 2 and 5 km, all originating from the Iceland region as confirmed by backward trajectories. The volcanic ash AOD was derived from lidar extinction profiles and sun-photometer AOD, and its maximum was estimated around 0.37 at 532 nm on 18 April 2010. This value was observed at an altitude of 1700 m and corresponds to an ash mass concentration (AMC slightly higher than 1000 μg m−3 (±50%. An effective lidar ratio of ash particles of 48 sr was retrieved at 532 nm for 17 April during the early stages of the eruption, a value which agrees with several other studies carried out on this topic. Even though the accuracy of the retrievals is not as high as that obtained from reference multiwavelength lidar systems, this study demonstrates the opportunity of micro-lidar and sun-photometer joint data

  1. Volcanic Eruptions as the Cause of the Little Ice Age

    Science.gov (United States)

    Zambri, B.; Robock, A.

    2017-12-01

    Both external forcing (solar radiation, volcanic eruptions) and internal fluctuations have been proposed to explain such multi-centennial perturbations as the Little Ice Age. Confidence in these hypotheses is limited due to the limited number of proxies, as well as only one observed realization of the Last Millennium. Here, we evaluate different hypotheses on the origin of Little Ice Age-like anomalies, focusing in particular on the long-term response of North Atlantic and Arctic climate perturbations to solar and volcanic perturbations. For that, we conduct a range of sensitivity tests carried out with the Community Earth System Model (CESM) at the National Center for Atmospheric Research, focusing in particular on the sensitivity to initial conditions and the strength of solar and volcanic forcing. By comparing the climate response to various combinations of external perturbations, we demonstrate nonlinear interactions that are necessary to explain trends observed in the fully coupled system and discuss physical mechanisms through which these external forcings can trigger multidecadal modes of the Atlantic Multidecadal Oscillation and subsequently lead to a Little-Ice-Age-like regime. For that, we capture and compare patterns of the coupled atmosphere-sea-ice-ocean response as revealed through a range of data analysis techniques. We show that the large 1257 Samalas, 1452 Kuwae, and 1600 Huaynaputina volcanic eruptions were the main causes of the multi-centennial glaciation associated with the Little Ice Age.

  2. Assessing future vent opening locations at the Somma-Vesuvio volcanic complex: 1. A new information geodatabase with uncertainty characterizations

    Science.gov (United States)

    Tadini, A.; Bisson, M.; Neri, A.; Cioni, R.; Bevilacqua, A.; Aspinall, W. P.

    2017-06-01

    This study presents new and revised data sets about the spatial distribution of past volcanic vents, eruptive fissures, and regional/local structures of the Somma-Vesuvio volcanic system (Italy). The innovative features of the study are the identification and quantification of important sources of uncertainty affecting interpretations of the data sets. In this regard, the spatial uncertainty of each feature is modeled by an uncertainty area, i.e., a geometric element typically represented by a polygon drawn around points or lines. The new data sets have been assembled as an updatable geodatabase that integrates and complements existing databases for Somma-Vesuvio. The data are organized into 4 data sets and stored as 11 feature classes (points and lines for feature locations and polygons for the associated uncertainty areas), totaling more than 1700 elements. More specifically, volcanic vent and eruptive fissure elements are subdivided into feature classes according to their associated eruptive styles: (i) Plinian and sub-Plinian eruptions (i.e., large- or medium-scale explosive activity); (ii) violent Strombolian and continuous ash emission eruptions (i.e., small-scale explosive activity); and (iii) effusive eruptions (including eruptions from both parasitic vents and eruptive fissures). Regional and local structures (i.e., deep faults) are represented as linear feature classes. To support interpretation of the eruption data, additional data sets are provided for Somma-Vesuvio geological units and caldera morphological features. In the companion paper, the data presented here, and the associated uncertainties, are used to develop a first vent opening probability map for the Somma-Vesuvio caldera, with specific attention focused on large or medium explosive events.

  3. Magma fluxes and recurreance rate of eruptions at Nevado de Toluca volcano (Mexico)

    Science.gov (United States)

    Weber, Gregor; Probst, Line; Arce, José L.; Caricchi, Luca

    2017-04-01

    Forecasting the frequency and size of volcanic eruptions is a long-term goal for hazard mitigation. The frequency at which a given crustal magmatic system is driven towards a critical state and the magnitude of the resulting volcanic events are linked to the supply rate of fresh magma, crustal properties, and tectonic setting. Our ability to forecast the recurrence rate of eruptions is hampered by the lack of data on key variables such as the average magma flux locally and globally. The aim of this project is to identify the average magma supply rate and injection frequency for eruptions of different magnitude and eruptive style. We centred our study at Nevado de Toluca in Mexico, a subduction-related volcano with an eruptive history spanning about 1.5 million years of comparatively well documented effusive and explosive eruptions dominantly of dacitic composition. We carry out in-situ high precision zircon geochronology for a sequence of eruptions of different magnitude to obtain a distribution of crystal ages from which average crustal magma fluxes can be calculated. Eruptive fluxes will be constrained by extracting lava flow volumes from a digital elevation model. A combination of whole rock and mineral chemistry will provide quantitative insights on petrogenetic processes and on the frequency at which intensive parameters changed within the magma reservoir before the eruptions. Our results will be integrated in a global database including other volcanic systems and literature data to attempt to identify similarities and differences between magmatic reservoirs feeding volcanic eruptions of different magnitude. The final target of this project is to identify the physical factors controlling the recurrence rate of volcanic eruptions at regional and global scale.

  4. The Run-up to Volcanic Eruption Unveiled by Forensic Petrology and Geophysical Observations

    Science.gov (United States)

    Rasmussen, D. J.; Plank, T. A.; Roman, D. C.

    2017-12-01

    Volcanoes often warn of impending eruptions. However, one of the greatest challenges in volcano research is translating precursory geophysical signals into physical magmatic processes. Petrology offers powerful tools to study eruption run-up that benefit from direct response to magmatic forcings. Developing these tools, and tying them to geophysical observations, will help us identify eruption triggers (e.g., magmatic recharge, gas build-up, tectonic events) and understand the significance of monitored signals of unrest. We present an overview of petrologic tools used for studying eruption run-up, highlighting results from our study of the 1999 eruption of Shishaldin volcano. Olivine crystals contain chemical gradients, the consequence of diffusion following magma mixing events, which is modeled to determine mixing timescales. Modeled timescales provide strong evidence for at least three mixing events, which were triggered by magmatic recharge. Petrologic barometers indicate these events occurred at very shallow depths (within the volcanic edifice). The first mixing event occurred nine months before eruption, which was signaled by a swarm of deep-long period earthquake. Minor recharge events followed over two months, which are indicated by a second deep-long period earthquake swarm and a change in the local stress orientation measured by shear-wave splitting. Following these events, the system was relatively quiet until a large mixing event occurred 45 days prior to eruption, which was heralded by a large earthquake (M5.2). Following this event, geophysical signals of unrest intensified and became continuous. The final mixing event, beginning roughly a week before eruption, represents the final perturbation to the system before eruption. Our findings point to a relatively long run-up, which was subtle at first and intensified several weeks before eruption. This study highlights the strong link between geophysical signals of volcanic unrest and magmatic events, and

  5. NO2 column changes induced by volcanic eruptions

    Science.gov (United States)

    Johnston, Paul V.; Keys, J. Gordon; Mckenzie, Richard L.

    1994-01-01

    Nitrogen dioxide slant column amounts measured by ground-based remote sensing from Lauder, New Zealand (45 deg S) and Campbell Island (53 deg S) during the second half of 1991 and early 1992 show anomalously low values that are attributed to the effects of volcanic eruptions. It is believed that the eruptions of Mount Pinatubo in the Philippines in June 1991 and possibly Mount Hudson in Chile in August 1991 are responsible for the stratospheric changes, which first became apparent in July 1991. The effects in the spring of 1991 are manifested as a reduction in the retrieved NO2 column amounts from normal levels by 35 to 45 percent, and an accompanying increase in the overnight decay of NO2. The existence of an accurate long-term record of column NO2 from the Lauder site enables us to quantify departures from the normal seasonal behavior with some confidence. Simultaneous retrievals of column ozone agree well with Dobson measurements, confirming that only part of the NO2 changes can be attributed to a modification of the scattering geometry by volcanic aerosols. Other reasons for the observed behavior are explored, including the effects of stratospheric temperature increases resulting from the aerosol loading and the possible involvement of heterogeneous chemical processes.

  6. Characterization of the volcanic eruption emissions using neutron activation analysis

    International Nuclear Information System (INIS)

    Pla, Rita R.; Tafuri, Victoria V.

    1997-01-01

    Characterization of the volcanic particulate material has been performed by analyzing aerosols and ashes with instrumental neutron activation analysis. Crustal enrichment factors were calculated using the elemental concentration and clustering techniques, and multivariate analysis were done. The analytical and data treatment methodologies allowed the sample differentiation from their geographical origin viewpoint, based on their chemical composition patterns, which are related to the deposit formation processes, which consist of direct deposition from the volcanic cloud, and removal by wind action after the end of the eruption, and and finally the deposition. (author). 8 refs., 5 figs

  7. Effect of heterogeneities on evaluating earthquake triggering of volcanic eruptions

    Directory of Open Access Journals (Sweden)

    J. Takekawa

    2013-02-01

    Full Text Available Recent researches have indicated coupling between volcanic eruptions and earthquakes. Some of them calculated static stress transfer in subsurface induced by the occurrences of earthquakes. Most of their analyses ignored the spatial heterogeneity in subsurface, or only took into account the rigidity layering in the crust. On the other hand, a smaller scale heterogeneity of around hundreds of meters has been suggested by geophysical investigations. It is difficult to reflect that kind of heterogeneity in analysis models because accurate distributions of fluctuation are not well understood in many cases. Thus, the effect of the ignorance of the smaller scale heterogeneity on evaluating the earthquake triggering of volcanic eruptions is also not well understood. In the present study, we investigate the influence of the assumption of homogeneity on evaluating earthquake triggering of volcanic eruptions using finite element simulations. The crust is treated as a stochastic media with different heterogeneous parameters (correlation length and magnitude of velocity perturbation in our simulations. We adopt exponential and von Karman functions as spatial auto-correlation functions (ACF. In all our simulation results, the ignorance of the smaller scale heterogeneity leads to underestimation of the failure pressure around a chamber wall, which relates to dyke initiation. The magnitude of the velocity perturbation has a larger effect on the tensile failure at the chamber wall than the difference of the ACF and the correlation length. The maximum effect on the failure pressure in all our simulations is about twice larger than that in the homogeneous case. This indicates that the estimation of the earthquake triggering due to static stress transfer should take account of the heterogeneity of around hundreds of meters.

  8. 10,000 Years of explosive eruptions of Merapi Volcano, Central Java: archaeological and modern implications

    Science.gov (United States)

    Newhall, C.G.; Bronto, S.; Alloway, B.; Banks, N.G.; Bahar, I.; Del Marmol, M.A.; Hadisantono, R.D.; Holcomb, R.T.; McGeehin, J.; Miksic, J.N.; Rubin, M.; Sayudi, S.D.; Sukhyar, R.; Andreastuti, Supriyati; Tilling, R.I.; Torley, R.; Trimble, D.; Wirakusumah, A.D.

    2000-01-01

    Stratigraphy and radiocarbon dating of pyroclastic deposits at Merapi Volcano, Central Java, reveals ~10,000 years of explosive eruptions. Highlights include: (1) Construction of an Old Merapi stratovolcano to the height of the present cone or slightly higher. Our oldest age for an explosive eruption is 9630±60 14C y B.P.; construction of Old Merapi certainly began earlier. (2) Collapse(s) of Old Merapi that left a somma rim high on its eastern slope and sent one or more debris avalanche(s) down its southern and western flanks. Impoundment of Kali Progo to form an early Lake Borobudur at ~3400 14C y B.P. hints at a possible early collapse of Merapi. The latest somma-forming collapse occurred ~1900 14C y B.P. The current cone, New Merapi, began to grow soon thereafter. (3) Several large and many small Buddhist and Hindu temples were constructed in Central Java between 732 and ~900 A.D. (roughly, 1400-1000 14C y B.P.). Explosive Merapi eruptions occurred before, during and after temple construction. Some temples were destroyed and (or) buried soon after their construction, and we suspect that this destruction contributed to an abrupt shift of power and organized society to East Java in 928 A.D. Other temples sites, though, were occupied by "caretakers" for several centuries longer. (4) A partial collapse of New Merapi occurred 14C y B.P. Eruptions ~700-800 14C y B.P. (12-14th century A.D.) deposited ash on the floors of (still-occupied?) Candi Sambisari and Candi Kedulan. We speculate but cannot prove that these eruptions were triggered by (the same?) partial collapse of New Merapi, and that the eruptions, in turn, ended "caretaker" occupation at Candi Sambisari and Candi Kedulan. A new or raised Lake Borobudur also existed during part or all of the 12-14th centuries, probably impounded by deposits from Merapi. (5) Relatively benign lava-dome extrusion and dome-collapse pyroclastic flows have dominated activity of the 20th century, but explosive eruptions much

  9. Volcanology and hazards of phreatomagmatic basaltic eruptions

    DEFF Research Database (Denmark)

    Schmith, Johanne

    Iceland is one of the most active terrestrial volcanic regions on Earth with an average of more than 20 eruptions per century. Around 80% of all events are tephra generating explosive eruptions, but less than 10 % of all known tephra layers have been mapped. Recent hazard assessment models show...... that the two key parameters for hazard assessment modeling are total grain size distribution (TGSD) and eruptive style. These two parameters have been determined for even fewer eruptive events in Iceland. One of the most hazardous volcanoes in Iceland is Katla and no data set of TGSD or other eruptive...... parameters exist. Katla has not erupted for 99 years, but at least 2 of the 20 eruptions since the settlement of Iceland in 871 have reached Northern Europe as visible tephra fall. These eruptions occurred in 1755 and 1625 and remain enigmatic both in terms of actual size and eruption dynamics. This work...

  10. Post-eruptive sediment transport and surface processes on unvegetated volcanic hillslopes - A case study of Black Tank scoria cone, Cima Volcanic Field, California

    Science.gov (United States)

    Kereszturi, Gábor; Németh, Károly

    2016-08-01

    Conical volcanic edifices that are made up from lapilli to block/bomb pyroclastic successions, such as scoria cones, are widespread in terrestrial and extraterrestrial settings. Eruptive processes responsible for establishing the final facies architecture of a scoria cone are not well linked to numerical simulations of their post-eruptive sediment transport. Using sedimentological, geomorphic and 2D fragment morphology data from a 15-ky-old scoria cone from the Cima Volcanic Field, California, this study provides field evidence of the various post-eruptive sediment transport and degradation processes of scoria cones located in arid to semi-arid environments. This study has revealed that pyroclast morphologies vary downslope due to syn-eruptive granular flows, along with post-eruptive modification by rolling, bouncing and sliding of individual particles down a slope, and overland flow processes. The variability of sediment transport rates on hillslopes are not directly controlled by local slope angle variability and the flank length but rather by grain size, and morphological characteristics of particles, such as shape irregularity of pyroclast fragments and block/lapilli ratio. Due to the abundance of hillslopes degrading in unvegetated regions, such as those found in the Southwestern USA, granulometric influences should be accounted for in the formulation of sediment transport laws for geomorphic modification of volcanic terrains over long geologic time.

  11. Psychological aspects in a volcanic crisis: El Hierro Island eruption (October, 2011).

    Science.gov (United States)

    Lopez, P.; Llinares, A.; Garcia, A.; Marrero, J. M.; Ortiz, R.

    2012-04-01

    The recent eruption on the El Hierro Island (Canary Islands, Spain) has shown that Psychology plays an important role in the emergence management of a natural phenomenon. However, Psychology continues to have no social coverage it deserves in the mitigation of the effects before, during and after the occurrence of a natural phenomenon. Keep in mind that an unresolved psychological problem involves an individual and collective mismatch may become unrecoverable. The population of El Hierro has been under a state of alert since July 2011, when seismic activity begins, until the occurrence of submarine eruption in October 2011 that is held for more than three months. During this period the inhabitants of the small island have gone through different emotional states ranging from confusion to disappointment. A volcanic eruption occurs not unexpectedly, allowing to have a time of preparation / action before the disaster. From the psychological point of view people from El Hierro Island have responded to different stages of the same natural process. Although the island of El Hierro is of volcanic origin, the population has no historical memory since the last eruption occurred in 1793. Therefore, the educational system does not adequately address the formation in volcanic risk. As a result people feel embarrassment when the seismovolcanic crisis begins, although no earthquakes felt. As an intermediate stage, when the earthquakes are felt by the population, scientists and operational Emergency Plan care to inform and prepare actions in case of a possible eruption. The population feel safe despite the concerns expressed by not knowing where, how and when the eruption will occur. Once started the submarine eruption, taking into account that all the actions (evacuation, relocation, etc.) have worked well and that both their basic needs and security are covered there are new states of mind. These new emotional states ranging from disenchantment with the phenomenology of the

  12. Credible occurrence probabilities for extreme geophysical events: earthquakes, volcanic eruptions, magnetic storms

    Science.gov (United States)

    Love, Jeffrey J.

    2012-01-01

    Statistical analysis is made of rare, extreme geophysical events recorded in historical data -- counting the number of events $k$ with sizes that exceed chosen thresholds during specific durations of time $\\tau$. Under transformations that stabilize data and model-parameter variances, the most likely Poisson-event occurrence rate, $k/\\tau$, applies for frequentist inference and, also, for Bayesian inference with a Jeffreys prior that ensures posterior invariance under changes of variables. Frequentist confidence intervals and Bayesian (Jeffreys) credibility intervals are approximately the same and easy to calculate: $(1/\\tau)[(\\sqrt{k} - z/2)^{2},(\\sqrt{k} + z/2)^{2}]$, where $z$ is a parameter that specifies the width, $z=1$ ($z=2$) corresponding to $1\\sigma$, $68.3\\%$ ($2\\sigma$, $95.4\\%$). If only a few events have been observed, as is usually the case for extreme events, then these "error-bar" intervals might be considered to be relatively wide. From historical records, we estimate most likely long-term occurrence rates, 10-yr occurrence probabilities, and intervals of frequentist confidence and Bayesian credibility for large earthquakes, explosive volcanic eruptions, and magnetic storms.

  13. Was there a volcanic eruption off Vietnam in AD 608?

    Science.gov (United States)

    Khoo, T. T.

    In the Sui-shu (Annals of the Sui Dynasty, 581-618), there is a record that returning envoys of the Chinese court to a state in northeastern Malay peninsula had in April-June AD 608 reached the state of Lin-i where for a whole day's sail the air around the vessel was yellowish and fetid. Lin-i was located at the southern end of the Annam Highlands chain and it is interpreted here that the phenominon reported could be due to a volcanic eruption in the Poulo Cecir-Ile des Cendres-Veteran volcanic islands group near the area. During the months of May to June the winds of the southwest monsoon, too, blow from the volcanic area toward the southern end of the Annam Highlands.

  14. Degassing during quiescence as a trigger of magma ascent and volcanic eruptions.

    Science.gov (United States)

    Girona, Társilo; Costa, Fidel; Schubert, Gerald

    2015-12-15

    Understanding the mechanisms that control the start-up of volcanic unrest is crucial to improve the forecasting of eruptions at active volcanoes. Among the most active volcanoes in the world are the so-called persistently degassing ones (e.g., Etna, Italy; Merapi, Indonesia), which emit massive amounts of gas during quiescence (several kilotonnes per day) and erupt every few months or years. The hyperactivity of these volcanoes results from frequent pressurizations of the shallow magma plumbing system, which in most cases are thought to occur by the ascent of magma from deep to shallow reservoirs. However, the driving force that causes magma ascent from depth remains unknown. Here we demonstrate that magma ascent can be triggered by the passive release of gas during quiescence, which induces the opening of pathways connecting deep and shallow magma reservoirs. This top-down mechanism for volcanic eruptions contrasts with the more common bottom-up mechanisms in which magma ascent is only driven by processes occurring at depth. A cause-effect relationship between passive degassing and magma ascent can explain the fact that repose times are typically much longer than unrest times preceding eruptions, and may account for the so frequent unrest episodes of persistently degassing volcanoes.

  15. Two weather radar time series of the altitude of the volcanic plume during the May 2011 eruption of Grímsvötn, Iceland

    Directory of Open Access Journals (Sweden)

    G. N. Petersen

    2012-10-01

    Full Text Available The eruption of Grímsvötn volcano in Iceland in 2011 lasted for a week, 21–28 May. The eruption was explosive and peaked during the first hours, with the eruption plume reaching 20–25 km altitude. The height of the plume was monitored every 5 min with a C-band weather radar located at Keflavík International Airport and a mobile X-band radar, 257 km and 75 km distance from the volcano respectively. In addition, photographs taken during the first half-hour of the eruption give information regarding the initial rise. Time series of the plume-top altitude were constructed from the radar observations. This paper presents the two independent radar time series. The series have been cross validated and there is a good agreement between them. The echo top radar series of the altitude of the volcanic plume are publicly available from the Pangaea Data Publisher (doi:10.1594/PANGAEA.778390.

  16. A multidisciplinary system for monitoring and forecasting Etna volcanic plumes

    Science.gov (United States)

    Coltelli, Mauro; Prestifilippo, Michele; Spata, Gaetano; Scollo, Simona; Andronico, Daniele

    2010-05-01

    One of the most active volcanoes in the world is Mt. Etna, in Italy, characterized by frequent explosive activity from the central craters and from fractures opened along the volcano flanks which, during the last years, caused several damages to aviation and forced the closure of the Catania International Airport. To give precise warning to the aviation authorities and air traffic controller and to assist the work of VAACs, a novel system for monitoring and forecasting Etna volcanic plumes, was developed at the Istituto Nazionale di Geofisica e Vulcanologia, sezione di Catania, the managing institution for the surveillance of Etna volcano. Monitoring is carried out using multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager (SEVIRI) on board the Meteosat Second Generation geosynchronous satellite able to track the volcanic plume with a high time resolution, visual and thermal cameras used to monitor the explosive activity, three continuous wave X-band disdrometers which detect ash dispersal and fallout, sounding balloons used to evaluate the atmospheric fields, and finally field data collected after the end of the eruptive event needed to extrapolate important features of explosive activity. Forecasting is carried out daily using automatic procedures which download weather forecast data obtained by meteorological mesoscale models from the Italian Air Force national Meteorological Office and from the hydrometeorological service of ARPA-SIM; run four different tephra dispersal models using input parameters obtained by the analysis of the deposits collected after few hours since the eruptive event similar to 22 July 1998, 21-24 July 2001 and 2002-03 Etna eruptions; plot hazard maps on ground and in air and finally publish them on a web-site dedicated to the Italian Civil Protection. The system has been already tested successfully during several explosive events occurring at Etna in 2006, 2007 and 2008. These events produced eruption

  17. Impacts of a volcanic eruption on the forest birdcommunity of Montserrat, Lesser Antilles.

    Science.gov (United States)

    B. DALSGAARD; G. M. HILTON; G. A. L. GRAY; L. AYMER; J. BOATSWAIN; J. FENTON DALEY; J. MARTIN; L. MARTIN; P. MURRAIN; W. J. ARENDT; W. OLESEN GIBBONSD

    2007-01-01

    Volcanic eruptions are an important and natural source of catastrophic disturbance to ecological communities. However, opportunities to study them are relatively rare. Here we report on the effects of the eruption of the Soufrière Hills volcano on the forest bird community of the Lesser Antillean island of Montserrat. The island’s species-poor avifauna includes 11...

  18. The 26.5 ka Oruanui eruption, New Zealand : a review of the roles of volcanism and climate in the post-eruptive sedimentary response

    International Nuclear Information System (INIS)

    Manville, V.R.; Wilson, C.J.N.

    2004-01-01

    The landscape response to large explosive pyroclastic volcanic eruptions is one of the most dramatic processes in sedimentology and geomorphology. Processes of post-eruptive erosion and resedimentation are maximised by large erupted volumes, abundant unconsolidated ash-sized material, destruction of the vegetation cover (particularly by burial by ignimbrite), and inhibition of vegetation regrowth (e.g., by harsh climatic conditions). The 26.5 ka Oruanui eruption from Taupo volcano in the central North Island of New Zealand created optimal conditions for a large-scale sedimentary response that was influenced and prolonged by the succeeding climatic nadir of the Last Glacial Maximum. About 530 km 3 of rhyolitic magma was erupted as 420 km 3 of fall deposits, 320 km 3 of pyroclastic density current deposits (mostly non-welded ignimbrite), and 430 km 3 of primary intracaldera fill. The eruption, and formation of the Oruanui caldera, destroyed one major lake but created the forerunner to modern Lake Taupo. This lake initially stably overflowed to the northwest before breaking out in a catastrophic flood during establishment of a northeasterly outlet along the line of the modern Waikato River. Suppression of revegetation by the contemporaneous harsh periglacial climate contributed to intense erosion and remobilisation of Oruanui pyroclastic units, triggering massive downstream fluvial aggradation in impacted catchments. In particular, aggradation caused the lower 180 km of the Waikato River to avulse from its long-established route via the Hauraki Plains into the Hamilton Basin where it was subsequently trapped. Aeolian reworking created localised dune fields, while generation of tephric loess formed deposits over much of the central North Island. The initial perturbation to fluvial sedimentary systems created by the eruption was generally sustained by climatic conditions until c. 17 ka. Climatic amelioration eventually stabilised primary sediment sources through the re

  19. DomeHaz, a Global Hazards Database: Understanding Cyclic Dome-forming Eruptions, Contributions to Hazard Assessments, and Potential for Future Use and Integration with Existing Cyberinfrastructure

    Science.gov (United States)

    Ogburn, S. E.; Calder, E.; Loughlin, S.

    2013-12-01

    Dome-forming eruptions can extend for significant periods of time and can be dangerous; nearly all dome-forming eruptions have been associated with some level of explosive activity. Large Plinian explosions with a VEI ≥ 4 sometimes occur in association with dome-forming eruptions. Many of the most significant volcanic events of recent history are in this category. The 1902-1905 eruption of Mt. Pelée, Martinique; the 1980-1986 eruption of Mount St. Helens, USA; and the 1991 eruption of Mt. Pinatubo, Philippines all demonstrate the destructive power of VEI ≥ 4 dome-forming eruptions. Global historical analysis is a powerful tool for decision-making as well as for scientific discovery. In the absence of monitoring data or a knowledge of a volcano's eruptive history, global analysis can provide a method of understanding what might be expected based on similar eruptions. This study investigates the relationship between large explosive eruptions and lava dome growth and develops DomeHaz, a global database of dome-forming eruptions from 1000 AD to present. It is currently hosted on VHub (https://vhub.org/groups/domedatabase/), a community cyberinfrastructure for sharing data, collaborating, and modeling. DomeHaz contains information about 367 dome-forming episodes, including duration of dome growth, duration of pauses in extrusion, extrusion rates, and the timing and magnitude of associated explosions. Data sources include the The Smithsonian Institution Global Volcanism Program (GVP), Bulletin of the Global Volcanism Network, and all relevant published review papers, research papers, and reports. This database builds upon previous work (e.g Newhall and Melson, 1983) in light of newly available data for lava dome eruptions. There have been 46 new dome-forming eruptions, 13 eruptions that continued past 1982, 151 new dome-growth episodes, and 8 VEI ≥ 4 events since Newhall and Melson's work in 1983. Analysis using DomeHaz provides useful information regarding the

  20. Parameterization of strombolian explosions: constraint from simultaneous physical and geophysical measurements (Invited)

    Science.gov (United States)

    gurioli, L.; Harris, A. J.

    2013-12-01

    Strombolian activity is the most common type of explosive eruption (by frequency) experienced by Earth's volcanoes. It is commonly viewed as consisting of a succession of short discrete explosions where fragments of incandescent magma are ejected a few tens to hundreds meters into the air. This kind of activity is generally restricted to basaltic or basaltic-andesitic magmas because these systems have the sufficiently low viscosities so as to allow gas coalescence and decoupled slug ascent. Mercalli (1907) proposed one of the first formal classifications of explosive activity based on the character of the erupted products and descriptions of case-type eruptions. Later, Walker (1973) devised a classification based on grain size and dispersion, within which strombolian explosions formed the low-to-middle end of the classification. Other classifications have categorized strombolian activity on the basis of erupted magnitude and/or intensity, such as Newhall and Self's (1982) Volcanic Explosivity Index (VEI). Classification can also be made on the basis of explosion mechanism, where strombolian eruptions have become associated with bursting of large gas bubbles, as opposed to release of locked in bubble populations in rapidly ascending magma that feed sustained fountains. Finally, strombolian eruptions can be defined on the basis of geophysical metrics for the explosion source and plume ascent dynamics. Recently, the volcanology community has begun to discuss the difficulty of actually placing strombolian explosions within the compartments defined by each scheme. New sampling strategies in active strombolian volcanic fields have allowed us to parameterize these mildly explosive events both physically and geophysically. Our data show that individual 'normal' and "major" explosions at Stromboli are extremely small, meaning that the classical deposit-based classification thresholds need to be reduced, or a new category defined, if the 'strombolian' eruption style at

  1. Effects of megascale eruptions on Earth and Mars

    Science.gov (United States)

    Thordarson, T.; Rampino, M.; Keszthelyi, L.P.; Self, S.

    2009-01-01

    Volcanic features are common on geologically active earthlike planets. Megascale or "super" eruptions involving >1000 Gt of magma have occurred on both Earth and Mars in the geologically recent past, introducing prodigious volumes of ash and volcanic gases into the atmosphere. Here we discuss felsic (explosive) and mafi c (flood lava) supereruptions and their potential atmospheric and environmental effects on both planets. On Earth, felsic supereruptions recur on average about every 100-200,000 years and our present knowledge of the 73.5 ka Toba eruption implies that such events can have the potential to be catastrophic to human civilization. A future eruption of this type may require an unprecedented response from humankind to assure the continuation of civilization as we know it. Mafi c supereruptions have resulted in atmospheric injection of volcanic gases (especially SO2) and may have played a part in punctuating the history of life on Earth. The contrast between the more sustained effects of flood basalt eruptions (decades to centuries) and the near-instantaneous effects of large impacts (months to years) is worthy of more detailed study than has been completed to date. Products of mafi c supereruptions, signifi cantly larger than known from the geologic record on Earth, are well preserved on Mars. The volatile emissions from these eruptions most likely had global dispersal, but the effects may not have been outside what Mars endures even in the absence of volcanic eruptions. This is testament to the extreme variability of the current Martian atmosphere: situations that would be considered catastrophic on Earth are the norm on Mars. ?? 2009 The Geological Society of America.

  2. Subaerial records of large-scale explosive volcanism and tsunami along an oceanic arc, Tonga, SW Pacific

    Science.gov (United States)

    Cronin, S. J.; Smith, I. E.

    2015-12-01

    We present a new chronology of major terrestrial eruptions and tsunami events for the central Tongan Arc. The active Tonga-Kermadec oceanic arc extends 2500 km northward of New Zealand and hosts many tens of submarine volcanoes with around a dozen forming islands. Despite its obious volcanic setting, the impacts of explosive volcanism and volcano-tectonic related tsunami are an often overlooked in archaeological and paleo-botanical histories, mainly due the lack of good Holocene subaerial exposures. The inhabited small uplifted coral platform islands east of the volcanic arc in Tonga collectively cover only gods flying overhead with baskets of ash, and an analysis of the high-level wind distribution patterns, lake and wetland sites were investigated along the Tongan chain. In most cases former lagoon basins lifted above sea-level by a combination of tectonic rise and the lowering of mean sea levels by around 2 m since the Mid-Holocene form closed lake or swampy depressions. Coring reveaed between 6 and 20 mineral layers at each site, withn humic sediment or peat. Over thirty new radiocarbon dates were collected to develop a chronology for the sequences and the mineral layers were examined mineralogically and geochemically. These sites reveal mainly tephra fall layers of particles.

  3. Strong Constraints on Aerosol-Cloud Interactions from Volcanic Eruptions

    Science.gov (United States)

    Malavelle, Florent F.; Haywood, Jim M.; Jones, Andy; Gettelman, Andrew; Clarisse, Lieven; Bauduin, Sophie; Allan, Richard P.; Karset, Inger Helene H.; Kristjansson, Jon Egill; Oreopoulos, Lazaros; hide

    2017-01-01

    Aerosols have a potentially large effect on climate, particularly through their interactions with clouds, but the magnitude of this effect is highly uncertain. Large volcanic eruptions produce sulfur dioxide, which in turn produces aerosols; these eruptions thus represent a natural experiment through which to quantify aerosol-cloud interactions. Here we show that the massive 2014-2015 fissure eruption in Holuhraun, Iceland, reduced the size of liquid cloud droplets - consistent with expectations - but had no discernible effect on other cloud properties. The reduction in droplet size led to cloud brightening and global-mean radiative forcing of around minus 0.2 watts per square metre for September to October 2014. Changes in cloud amount or cloud liquid water path, however, were undetectable, indicating that these indirect effects, and cloud systems in general, are well buffered against aerosol changes. This result will reduce uncertainties in future climate projections, because we are now able to reject results from climate models with an excessive liquid-water-path response.

  4. Stratospheric chlorine injection by volcanic eruptions - HCl scavenging and implications for ozone

    Science.gov (United States)

    Tabazadeh, A.; Turco, R. P.

    1993-01-01

    Because the output of volatile chlorine during a major volcanic event can greatly exceed the annual anthropogenic emissions of chlorine to the atmosphere, the fate of volcanic chlorine must be known. Although numerous observations have shown that volcanoes do not significantly contribute to the stratospheric chlorine burden, no quantitative explanation has been published. Hydrogen chloride (HCl) scavenging processes during the early phases of a volcanic eruption are discussed. A plume dynamics and thermodynamics model is used to show that HCl removal in condensed supercooled water can reduce HCl vapor concentrations by up to four orders of magnitude, preventing substantial stratospheric chlorine injection.

  5. Statistical eruption forecast for the Chilean Southern Volcanic Zone: typical probabilities of volcanic eruptions as baseline for possibly enhanced activity following the large 2010 Concepción earthquake

    Directory of Open Access Journals (Sweden)

    Y. Dzierma

    2010-10-01

    Full Text Available A probabilistic eruption forecast is provided for ten volcanoes of the Chilean Southern Volcanic Zone (SVZ. Since 70% of the Chilean population lives in this area, the estimation of future eruption likelihood is an important part of hazard assessment. After investigating the completeness and stationarity of the historical eruption time series, the exponential, Weibull, and log-logistic distribution functions are fit to the repose time distributions for the individual volcanoes and the models are evaluated. This procedure has been implemented in two different ways to methodologically compare details in the fitting process. With regard to the probability of at least one VEI ≥ 2 eruption in the next decade, Llaima, Villarrica and Nevados de Chillán are most likely to erupt, while Osorno shows the lowest eruption probability among the volcanoes analysed. In addition to giving a compilation of the statistical eruption forecasts along the historically most active volcanoes of the SVZ, this paper aims to give "typical" eruption probabilities, which may in the future permit to distinguish possibly enhanced activity in the aftermath of the large 2010 Concepción earthquake.

  6. Volcanic suppression of Nile summer flooding triggers revolt and constrains interstate conflict in ancient Egypt.

    Science.gov (United States)

    Manning, Joseph G; Ludlow, Francis; Stine, Alexander R; Boos, William R; Sigl, Michael; Marlon, Jennifer R

    2017-10-17

    Volcanic eruptions provide tests of human and natural system sensitivity to abrupt shocks because their repeated occurrence allows the identification of systematic relationships in the presence of random variability. Here we show a suppression of Nile summer flooding via the radiative and dynamical impacts of explosive volcanism on the African monsoon, using climate model output, ice-core-based volcanic forcing data, Nilometer measurements, and ancient Egyptian writings. We then examine the response of Ptolemaic Egypt (305-30 BCE), one of the best-documented ancient superpowers, to volcanically induced Nile suppression. Eruptions are associated with revolt onset against elite rule, and the cessation of Ptolemaic state warfare with their great rival, the Seleukid Empire. Eruptions are also followed by socioeconomic stress with increased hereditary land sales, and the issuance of priestly decrees to reinforce elite authority. Ptolemaic vulnerability to volcanic eruptions offers a caution for all monsoon-dependent agricultural regions, presently including 70% of world population.The degree to which human societies have responded to past climatic changes remains unclear. Here, using a novel combination of approaches, the authors show how volcanically-induced suppression of Nile summer flooding led to societal unrest in Ptolemaic Egypt (305-30 BCE).

  7. Monitoring Io's Volcanic Activity in the Visible and Infrared from JUICE - It's All About (Eruption) Style

    Science.gov (United States)

    Davies, A. G.; Matson, D.; McEwen, A. S.; Keszthelyi, L. P.

    2012-12-01

    The European Space Agency's Jupiter Icy Moons Explorer (JUICE) will provide many opportunities for long-range monitoring of Io's extraordinary silicate, high-temperature volcanic activity [1, 2]. A considerable amount of valuable work can be performed even with relatively low-spatial-resolution observations [2]. Techniques developed from the examination and analysis of Galileo Near Infrared Mapping Spectrometer (NIMS) data, as well as observations of terrestrial silicate volcanic activity, allows the identification of likely eruption style [2] at many locations where the entire eruption is sub-pixel. Good temporal coverage, especially for episodic eruptions (including high-energy "outburst" eruptions), is important for modelling purposes. With opportunities to observe Io on a regular basis (hours-days) during cruise/orbital reduction phases, a visible-to-near-infrared mapping spectrometer (covering ~0.4-5.5 μm) is the best instrument to chart the magnitude and variability of Io's volcanic activity, allowing comparison with an existing and constantly expanding set of Io observations [e.g. 1, 3]. The eruption temperature of Io's dominant silicate lava, a constraint on interior composition and conditions, is a major unanswered question in the wake of the Galileo mission [1]. A careful approach to instrument design is needed to ensure that observations by both imager and IR spectrometer on JUICE are capable of determining lava eruption temperature [e.g., 4] in low spatial resolution data. With an ideal thermal target (e.g., an outburst eruption, or the proposed lava lake at Pele) the imager should obtain multi-spectral data in a rapid sequence to allow stability of the thermal source to be quantified. Observations by imager and spectrometer have to be contemporaneous and unsaturated. References: [1] Davies, A. (2007) "Volcanism on Io", Cam. Univ. Press. [2] Davies, A. et al. (2010) JVGR, 194, 75-99. [3] Veeder, G. et al. (2012) Icarus, 219, 701-722. [4] Davies, A. et

  8. Holocene eruption history in Iceland - Eruption frequency vs. Tephra layer frequency

    Science.gov (United States)

    Oladottir, B. A.; Larsen, G.

    2012-12-01

    Volcanic deposits of all kinds are used to reconstruct eruption history of volcanoes and volcanic zones. In Iceland tephra is the ideal volcanic deposit to study eruption history as two out of every three eruptions taking place there during the last 11 centuries have been explosive, leaving tephra as their only product. If eruptions producing both lava and tephra are included three out of every four eruptions have produced tephra. Tephra dispersal and deposition depends on factors such as eruption magnitude, eruption cloud height, duration of eruption and prevailing wind directions at the time of eruption. Several outcrops around a particular volcano must therefore be measured to obtain optimal information of its eruption history. Vegetation in the area of deposition is also of great importance for its preservation. Tephra deposited on un-vegetated land is rapidly eroded by wind and water, and deposits up to few tens of cm thickness may be lost from the record. Such tephra deposited on grassy or forested land is at least partly sheltered from the wind after deposition. Soon after tephra deposition (how soon depends on tephra thickness) the root system of the vegetation creates an even better shelter for the tephra and when this stage is reached the tephra is preserved in the soil for millennia, given that no soil erosion takes place. Vegetation is often boosted in the first years after tephra deposition which in turn helps tephra preservation. A setback of using soil sections for reconstructing Holocene eruption history is the lack of soil at the beginning of the era but for that time period tephra records in lake and marine sediments can be used. When tephra stratigraphy in soil sections is measured to study eruption history and eruption frequency of a volcano it must be kept in mind that what is seen is in fact the tephra layer frequency. One section only shows tephra layers deposited in that location and more importantly only the layers preserved there. The

  9. River basin affected by rare perturbation events: the Chaiten volcanic eruption.

    Science.gov (United States)

    Picco, Lorenzo; Iroumé, Andrés; Oss-Cazzador, Daniele; Ulloa, Hector

    2017-04-01

    Natural disasters can strongly and rapidly affect a wide array of environments. Among these, volcanic eruptions can exert severe impacts on the dynamic equilibrium of riverine environment. The production and subsequent mobilization of large amounts of sediment all over the river basin, can strongly affect both hydrology and sediment and large wood transport dynamics. The aim of this research is to quantify the impact of a volcanic eruption along the Blanco River basin (Southern Chile), considering the geomorphic settings, the sediment dynamics and wood transport. Moreover, an overview on the possible management strategies to reduce the risks will be proposed. The research was carried out mainly along a 2.2 km-long reach of the fourth-order Blanco stream. Almost the entire river basin was affected by the volcanic eruption, several meters of tephra (up to 8 m) were deposited, affecting the evergreen forest and the fluvial corridor. Field surveys and remote sense analysis were carried out to investigate the effect of such extreme event. A Terrestrial Laser Scanner (TLS) was used to detect the morphological changes by computing Difference of Dems (DoDs), while field surveys were carried out to detect the amount of in-channel wood; moreover aerial photos have been analyzed to detect the extension of the impact of volcanic eruption over the river basin. As expected, the DoDs analysis permitted to detect predominant erosional processes along the channel network. In fact, over 190569 m2 there was erosion that produced about 362999 m3 of sediment mobilized, while the deposition happened just over 58715 m2 for a total amount of 23957 m3. Looking then to the LW recruited and transported downstream, was possible to detect as along the active channel corridor a total amount of 113 m3/ha of wood was present. Moreover, analyzing aerial photographs taken before and after the volcanic eruption was possible to define as a total area of about 2.19 km2 was affected by tephra

  10. Satellite-based detection of volcanic sulphur dioxide from recent eruptions in Central and South America

    Directory of Open Access Journals (Sweden)

    D. Loyola

    2008-01-01

    Full Text Available Volcanic eruptions can emit large amounts of rock fragments and fine particles (ash into the atmosphere, as well as several gases, including sulphur dioxide (SO2. These ejecta and emissions are a major natural hazard, not only to the local population, but also to the infrastructure in the vicinity of volcanoes and to aviation. Here, we describe a methodology to retrieve quantitative information about volcanic SO2 plumes from satellite-borne measurements in the UV/Visible spectral range. The combination of a satellite-based SO2 detection scheme and a state-of-the-art 3D trajectory model enables us to confirm the volcanic origin of trace gas signals and to estimate the plume height and the effective emission height. This is demonstrated by case-studies for four selected volcanic eruptions in South and Central America, using the GOME, SCIAMACHY and GOME-2 instruments.

  11. Soil radon concentration and volcanic activity of Mt. Etna before and after the 2002 eruption

    International Nuclear Information System (INIS)

    Imme, G.; La Delfa, S.; Lo Nigro, S.; Morelli, D.; Patane, G.

    2006-01-01

    Soil radon investigation, using a continuous measurement device, has been performed on Mt. Etna in order to observe possible anomalies due to seismic and/or volcanic activity. In October 2002 an eruptive event occurred. Measurements, performed on the NE flank, have shown a possible correlation between eruptive activity of the volcano and soil radon concentration anomaly. The study of the seismic activity recorded in the same flank has, also, allowed to characterize the volcano dynamics and to correlate it with the variations of radon. The obtained results seem to indicate a possible dependence on volcanic activity of the radon concentration

  12. Insights into the Toba Super-Eruption using SEM Analysis of Ash Deposits

    Science.gov (United States)

    Gatti, E.; Achyuthan, H.; Durant, A. J.; Gibbard, P.; Mokhtar, S.; Oppenheimer, C.; Raj, R.; Shridar, A.

    2010-12-01

    The ~74 ka Youngest Toba Tuff (YTT) super-eruption of Toba volcano, Northern Sumatra, was the largest eruption of the Quaternary (magnitude M= 8.8) and injected massive quantities of volcanic gases and ash into the stratosphere. YTT deposits covered at least 40,000,000 km2 of Southeast Asia and are preserved in river valleys across peninsular India and Malaysia, and in deep-sea tephra layers in the Indian Ocean, Bay of Bengal and South China Sea. Initial studies hypothesized the eruption caused immediate and substantial global cooling during the ~ 1 kyr between Dansgaard-Oeschger events 19 and 20 which devastated ecosystems and hominid populations. A more recent review argues against severe post-YTT climatic deterioration and cannot find clear evidence for considerable impacts on ecosystems or bio-diversity. The determination of the eruptive parameters is crucial in this issue to document the eruption and understand the potential impacts from future super-volcanic eruptions. Volcanic ash deposits can offer dramatic insights into key eruptive parameters, including magnitude, duration and plume height. The composition and shape of volcanic ashes can be used to interpret physical properties of an erupting magma and tephra transport, while textural characteristics such as grain roughness and surface vescicularity can provide insights into degassing history, volatile content and explosive activity of the volcano. We present a stratigraphic and sedimentological analysis of YTT deposits in stratified contexts at three localities in India, at two sites in Peninsular Malaysia, and at several localities around Lake Toba and on Samosir Island, Sumatra. These sites offer excellent constraints on the spatial distribution of YTT deposits which can be used to infer dispersal directions of the cloud, and provide insights into environmental controls on preservation of tephra beds. The research aims at a systematic interpretation of the Toba tephra to understand the volcanic

  13. Magma extrusion during the Ubinas 2013-2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring

    Science.gov (United States)

    Coppola, Diego; Macedo, Orlando; Ramos, Domingo; Finizola, Anthony; Delle Donne, Dario; del Carpio, José; White, Randall; McCausland, Wendy; Centeno, Riky; Rivera, Marco; Apaza, Fredy; Ccallata, Beto; Chilo, Wilmer; Cigolini, Corrado; Laiolo, Marco; Lazarte, Ivonne; Machaca, Roger; Masias, Pablo; Ortega, Mayra; Puma, Nino; Taipe, Edú

    2015-09-01

    After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013-2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intrusion inside the edifice, (ii) extrusion and growing of a lava plug at the bottom of the summit crater coupled with increasing explosive activity and finally, (iii) disruption of the lava plug and gradual decline of the explosive activity. The occurrence of the 8.2 Mw Iquique (Chile) earthquake (365 km away from Ubinas) on April 1st, 2014, may have perturbed most of the analyzed parameters, suggesting a prompt interaction with the ongoing volcanic activity. In particular, the analysis of thermal and seismic datasets shows that the earthquake may have promoted the most intense thermal and explosive phase that culminated in a major explosion on April 19th, 2014. These results reveal the efficiency of space-based thermal observations in detecting the extrusion of hot magma within deep volcanic craters and in tracking its evolution. We emphasize that, in combination with other geophysical and geochemical datasets, MIROVA is an essential tool for monitoring remote volcanoes with rather difficult accessibility, like those of the Andes that reach remarkably high altitudes.

  14. Volcanic Hazard Education through Virtual Field studies of Vesuvius and Laki Volcanoes

    Science.gov (United States)

    Carey, S.; Sigurdsson, H.

    2011-12-01

    Volcanic eruptions pose significant hazards to human populations and have the potential to cause significant economic impacts as shown by the recent ash-producing eruptions in Iceland. Demonstrating both the local and global impact of eruptions is important for developing an appreciation of the scale of hazards associated with volcanic activity. In order to address this need, Web-based virtual field exercises at Vesuvius volcano in Italy and Laki volcano in Iceland have been developed as curriculum enhancements for undergraduate geology classes. The exercises are built upon previous research by the authors dealing with the 79 AD explosive eruption of Vesuvius and the 1783 lava flow eruption of Laki. Quicktime virtual reality images (QTVR), video clips, user-controlled Flash animations and interactive measurement tools are used to allow students to explore archeological and geological sites, collect field data in an electronic field notebook, and construct hypotheses about the impacts of the eruptions on the local and global environment. The QTVR images provide 360o views of key sites where students can observe volcanic deposits and formations in the context of a defined field area. Video sequences from recent explosive and effusive eruptions of Carribean and Hawaiian volcanoes are used to illustrate specific styles of eruptive activity, such as ash fallout, pyroclastic flows and surges, lava flows and their effects on the surrounding environment. The exercises use an inquiry-based approach to build critical relationships between volcanic processes and the deposits that they produce in the geologic record. A primary objective of the exercises is to simulate the role of a field volcanologist who collects information from the field and reconstructs the sequence of eruptive processes based on specific features of the deposits. Testing of the Vesuvius and Laki exercises in undergraduate classes from a broad spectrum of educational institutions shows a preference for the

  15. Sensitivity of a coupled climate-carbon cycle model to large volcanic eruptions during the last millennium

    Energy Technology Data Exchange (ETDEWEB)

    Brovkin, Victor; Lorenz, Stephan J.; Jungclaus, Johann; Raddatz, Thomas; Timmreck, Claudia; Reick, Christian H.; Segschneider, Joachim; Six, Katharina (Max Planck Inst. for Meteorology Hamburg (Germany))

    2010-11-15

    The sensitivity of the climate-biogeochemistry system to volcanic eruptions is investigated using the comprehensive Earth System Model developed at the Max Planck Institute for Meteorology. The model includes an interactive carbon cycle with modules for terrestrial biosphere as well as ocean biogeochemistry. The volcanic forcing is based on a recent reconstruction for the last 1200 yr. An ensemble of five simulations is performed and the averaged response of the system is analysed in particular for the largest eruption of the last millennium in the year 1258. After this eruption, the global annual mean temperature drops by 1 K and recovers slowly during 10 yr. Atmospheric CO{sub 2} concentration declines during 4 yr after the eruption by ca. 2 ppmv to its minimum value and then starts to increase towards the pre-eruption level. This CO{sub 2} decrease is explained mainly by reduced heterotrophic respiration on land in response to the surface cooling, which leads to increased carbon storage in soils, mostly in tropical and subtropical regions. The ocean acts as a weak carbon sink, which is primarily due to temperature-induced solubility. This sink saturates 2 yr after the eruption, earlier than the land uptake.

  16. Sensitivity of a coupled climate-carbon cycle model to large volcanic eruptions during the last millennium

    International Nuclear Information System (INIS)

    Brovkin, Victor; Lorenz, Stephan J.; Jungclaus, Johann; Raddatz, Thomas; Timmreck, Claudia; Reick, Christian H.; Segschneider, Joachim; Six, Katharina

    2010-01-01

    The sensitivity of the climate-biogeochemistry system to volcanic eruptions is investigated using the comprehensive Earth System Model developed at the Max Planck Institute for Meteorology. The model includes an interactive carbon cycle with modules for terrestrial biosphere as well as ocean biogeochemistry. The volcanic forcing is based on a recent reconstruction for the last 1200 yr. An ensemble of five simulations is performed and the averaged response of the system is analysed in particular for the largest eruption of the last millennium in the year 1258. After this eruption, the global annual mean temperature drops by 1 K and recovers slowly during 10 yr. Atmospheric CO 2 concentration declines during 4 yr after the eruption by ca. 2 ppmv to its minimum value and then starts to increase towards the pre-eruption level. This CO 2 decrease is explained mainly by reduced heterotrophic respiration on land in response to the surface cooling, which leads to increased carbon storage in soils, mostly in tropical and subtropical regions. The ocean acts as a weak carbon sink, which is primarily due to temperature-induced solubility. This sink saturates 2 yr after the eruption, earlier than the land uptake.

  17. King's Bowl Pit Crater, Lava Field and Eruptive Fissure, Idaho - A Multipurpose Volcanic Planetary Analog

    Science.gov (United States)

    Hughes, S. S.; Garry, B.; Kobs-Nawotniak, S. E.; Sears, D. W. G.; Borg, C.; Elphic, R. C.; Haberle, C. W.; Kobayashi, L.; Lim, D. S. S.; Sears, H.; Skok, J. R.; Heldmann, J. L.

    2014-12-01

    King's Bowl (KB) and its associated eruptive fissure and lava field on the eastern Snake River Plain, is being investigated by the NASA SSERVI FINESSE (Field Investigations to Enable Solar System Science and Exploration) team as a planetary analog to similar pits on the Moon, Mars and Vesta. The 2,220 ± 100 BP basaltic eruption in Craters of the Moon National Monument and Preserve represents early stages of low shield growth, which was aborted when magma supply was cut off. Compared to mature shields, KB is miniscule, with ~0.02 km3 of lava over ~3 km2, yet the ~6 km long series of fissures, cracks and pits are well-preserved for analog studies of volcanic processes. The termination of eruption was likely related to proximity of the 2,270 ± 50 BP eruption of the much larger Wapi lava field (~5.5 km3 over 325 km2 area) on the same rift. Our investigation extends early work by R. Greeley and colleagues, focusing on imagery, compositional variations, ejecta distribution, dGPS profiles and LiDAR scans of features related to: (1) fissure eruptions - spatter ramparts, cones, feeder dikes, extension cracks; (2) lava lake formation - surface morphology, squeeze-ups, slab pahoehoe lava mounds, lava drain-back, flow lobe overlaps; and (3) phreatic steam blasts - explosion pits, ejecta blankets of ash and blocks. Preliminary results indicate multiple fissure eruptions and growth of a basin-filled lava lake up to ~ 10 m thick with outflow sheet lava flows. Remnant mounds of original lake crust reveal an early high lava lake level, which subsided as much as 5 m as the molten interior drained back into the fissure system. Rapid loss of magma supply led to the collapse of fissure walls allowing groundwater influx that triggered multiple steam blasts along at least 500 m. Early blasts occurred while lake magma pressure was still high enough to produce squeeze-ups when penetrated by ejecta blocks. The King's Bowl pit crater exemplifies processes of a small, but highly energetic

  18. VOLCANIC RISK ASSESSMENT - PROBABILITY AND CONSEQUENCES

    International Nuclear Information System (INIS)

    G.A. Valentine; F.V. Perry; S. Dartevelle

    2005-01-01

    Risk is the product of the probability and consequences of an event. Both of these must be based upon sound science that integrates field data, experiments, and modeling, but must also be useful to decision makers who likely do not understand all aspects of the underlying science. We review a decision framework used in many fields such as performance assessment for hazardous and/or radioactive waste disposal sites that can serve to guide the volcanological community towards integrated risk assessment. In this framework the underlying scientific understanding of processes that affect probability and consequences drive the decision-level results, but in turn these results can drive focused research in areas that cause the greatest level of uncertainty at the decision level. We review two examples of the determination of volcanic event probability: (1) probability of a new volcano forming at the proposed Yucca Mountain radioactive waste repository, and (2) probability that a subsurface repository in Japan would be affected by the nearby formation of a new stratovolcano. We also provide examples of work on consequences of explosive eruptions, within the framework mentioned above. These include field-based studies aimed at providing data for ''closure'' of wall rock erosion terms in a conduit flow model, predictions of dynamic pressure and other variables related to damage by pyroclastic flow into underground structures, and vulnerability criteria for structures subjected to conditions of explosive eruption. Process models (e.g., multiphase flow) are important for testing the validity or relative importance of possible scenarios in a volcanic risk assessment. We show how time-dependent multiphase modeling of explosive ''eruption'' of basaltic magma into an open tunnel (drift) at the Yucca Mountain repository provides insight into proposed scenarios that include the development of secondary pathways to the Earth's surface. Addressing volcanic risk within a decision

  19. Search for possible relationship between volcanic ash particles and thunderstorm lightning activity

    Science.gov (United States)

    Várai, A.; Vincze, M.; Lichtenberger, J.; Jánosi, I. M.

    2011-12-01

    Explosive volcanic eruptions that eject columns of ash from the crater often generate lightning discharges strong enough to be remotely located by very low frequency radio waves. A fraction of volcanic ash particles can stay and disperse long enough to have an effect on weather phenomena days later such as thunderstorms and lightnings. In this work we report on lightning activity analysis over Europe following two recent series of volcanic eruptions in order to identify possible correlations between ash release and subsequent thunderstorm flash frequency. Our attempts gave negative results which can be related to the fact that we have limited information on local atmospheric variables of high enough resolution, however lightning frequency is apparently determined by very local circumstances.

  20. Search for possible relationship between volcanic ash particles and thunderstorm lightning activity

    International Nuclear Information System (INIS)

    Várai, A; Vincze, M; Jánosi, I M; Lichtenberger, J

    2011-01-01

    Explosive volcanic eruptions that eject columns of ash from the crater often generate lightning discharges strong enough to be remotely located by very low frequency radio waves. A fraction of volcanic ash particles can stay and disperse long enough to have an effect on weather phenomena days later such as thunderstorms and lightnings. In this work we report on lightning activity analysis over Europe following two recent series of volcanic eruptions in order to identify possible correlations between ash release and subsequent thunderstorm flash frequency. Our attempts gave negative results which can be related to the fact that we have limited information on local atmospheric variables of high enough resolution, however lightning frequency is apparently determined by very local circumstances.

  1. A statistical method linking geological and historical eruption time series for volcanic hazard estimations: Applications to active polygenetic volcanoes

    Science.gov (United States)

    Mendoza-Rosas, Ana Teresa; De la Cruz-Reyna, Servando

    2008-09-01

    The probabilistic analysis of volcanic eruption time series is an essential step for the assessment of volcanic hazard and risk. Such series describe complex processes involving different types of eruptions over different time scales. A statistical method linking geological and historical eruption time series is proposed for calculating the probabilities of future eruptions. The first step of the analysis is to characterize the eruptions by their magnitudes. As is the case in most natural phenomena, lower magnitude events are more frequent, and the behavior of the eruption series may be biased by such events. On the other hand, eruptive series are commonly studied using conventional statistics and treated as homogeneous Poisson processes. However, time-dependent series, or sequences including rare or extreme events, represented by very few data of large eruptions require special methods of analysis, such as the extreme-value theory applied to non-homogeneous Poisson processes. Here we propose a general methodology for analyzing such processes attempting to obtain better estimates of the volcanic hazard. This is done in three steps: Firstly, the historical eruptive series is complemented with the available geological eruption data. The linking of these series is done assuming an inverse relationship between the eruption magnitudes and the occurrence rate of each magnitude class. Secondly, we perform a Weibull analysis of the distribution of repose time between successive eruptions. Thirdly, the linked eruption series are analyzed as a non-homogeneous Poisson process with a generalized Pareto distribution as intensity function. As an application, the method is tested on the eruption series of five active polygenetic Mexican volcanoes: Colima, Citlaltépetl, Nevado de Toluca, Popocatépetl and El Chichón, to obtain hazard estimates.

  2. Volcanic Eruption Forecasts From Accelerating Rates of Drumbeat Long-Period Earthquakes

    Science.gov (United States)

    Bell, Andrew F.; Naylor, Mark; Hernandez, Stephen; Main, Ian G.; Gaunt, H. Elizabeth; Mothes, Patricia; Ruiz, Mario

    2018-02-01

    Accelerating rates of quasiperiodic "drumbeat" long-period earthquakes (LPs) are commonly reported before eruptions at andesite and dacite volcanoes, and promise insights into the nature of fundamental preeruptive processes and improved eruption forecasts. Here we apply a new Bayesian Markov chain Monte Carlo gamma point process methodology to investigate an exceptionally well-developed sequence of drumbeat LPs preceding a recent large vulcanian explosion at Tungurahua volcano, Ecuador. For more than 24 hr, LP rates increased according to the inverse power law trend predicted by material failure theory, and with a retrospectively forecast failure time that agrees with the eruption onset within error. LPs resulted from repeated activation of a single characteristic source driven by accelerating loading, rather than a distributed failure process, showing that similar precursory trends can emerge from quite different underlying physics. Nevertheless, such sequences have clear potential for improving forecasts of eruptions at Tungurahua and analogous volcanoes.

  3. Volcanic lightning and plume behavior reveal evolving hazards during the April 2015 eruption of Calbuco volcano, Chile

    Science.gov (United States)

    Van Eaton, Alexa; Amigo, Álvaro; Bertin, Daniel; Mastin, Larry G.; Giacosa, Raúl E; González, Jerónimo; Valderrama, Oscar; Fontijn, Karen; Behnke, Sonja A

    2016-01-01

    Soon after the onset of an eruption, model forecasts of ash dispersal are used to mitigate the hazards to aircraft, infrastructure and communities downwind. However, it is a significant challenge to constrain the model inputs during an evolving eruption. Here we demonstrate that volcanic lightning may be used in tandem with satellite detection to recognize and quantify changes in eruption style and intensity. Using the eruption of Calbuco volcano in southern Chile on 22-23 April 2015, we investigate rates of umbrella cloud expansion from satellite observations, occurrence of lightning, and mapped characteristics of the fall deposits. Our remote-sensing analysis gives a total erupted volume that is within uncertainty of the mapped volume (0.56 ±0.28 km3 bulk). Observations and volcanic plume modeling further suggest that electrical activity was enhanced both by ice formation in the ash clouds >10 km asl and development of a low-level charge layer from ground-hugging currents.

  4. Potential impact on water resources from future volcanic eruptions at Long Valley, Mono County, California, U.S.A

    International Nuclear Information System (INIS)

    Hopson, R.F.

    1991-01-01

    Earthquakes, ground deformation, and increased geothermal activity at Long Valley caldera after mid-1980 suggest the possibility of a volcanic eruption in the near future. An eruption there could have serious consequences for the City of Los Angeles, depending on the magnitude and volume of materials ejected because surface water in Mono Basin plus surface and groundwater in Owens Valley accounts for about 80% of its water supply. Eruptions of moderate to very large magnitude could impede the supply of water from this area for several days, weeks, or even years by discharging small to large volumes of volcanic ash and causing lahars. Soon after an eruption, water quality would likely be affected by the accumulation of organic debris and microorganisms in surface waters

  5. Integrated, multi-parameter, investigation of eruptive dynamics at Santiaguito lava dome, Guatemala

    Science.gov (United States)

    Lavallée, Yan; De Angelis, Silvio; Rietbrock, Andreas; Lamb, Oliver; Hornby, Adrian; Lamur, Anthony; Kendrick, Jackie E.; von Aulock, Felix W.; Chigna, Gustavo

    2016-04-01

    Understanding the nature of the signals generated at volcanoes is central to hazard mitigation efforts. Systematic identification and understanding of the processes responsible for the signals associated with volcanic activity are only possible when high-resolution data are available over relatively long periods of time. For this reason, in November 2014, the Liverpool Earth Observatory (LEO), UK, in collaboration with colleagues of the Instituto Nacional de Sismologia, Meteorologia e Hidrologia (INSIVUMEH), Guatemala, installed a large multi-parameter geophysical monitoring network at Santiaguito - the most active volcano in Guatemala. The network, which is to date the largest temporary deployment on Santiaguito, includes nine three-component broadband seismometers, three tiltmeters, and five infrasound microphones. Further, during the initial installation campaign we conducted visual and thermal infrared measurements of surface explosive activity and collected numerous rock samples for geochemical, geophysical and rheological characterisation. Activity at Santiaguito began in 1922, with the extrusion of a series of lava domes. In recent years, persistent dome extrusion has yielded spectacularly episodic piston-like motion displayed by characteristic tilt/seismic patterns (Johnson et al, 2014). This cyclicity episodically concludes with gas emissions or gas-and-ash explosions, observed to progress along a complex fault system in the dome. The explosive activity is associated with distinct geophysical signals characterised by the presence of very-long period earthquakes as well as more rapid inflation/deflation cycles; the erupted ash further evidences partial melting and thermal vesiculation resulting from fault processes (Lavallée et al., 2015). One year of data demonstrates the regularity of the periodicity and intensity of the explosions; analysis of infrasound data suggests that each explosion expulses on the order of 10,000-100,000 kg of gas and ash. We

  6. A 36,000-Year-Old Volcanic Eruption Depicted in the Chauvet-Pont d'Arc Cave (Ardèche, France)?

    Science.gov (United States)

    Nomade, Sébastien; Genty, Dominique; Sasco, Romain; Scao, Vincent; Féruglio, Valérie; Baffier, Dominique; Guillou, Hervé; Bourdier, Camille; Valladas, Hélène; Reigner, Edouard; Debard, Evelyne; Pastre, Jean-François; Geneste, Jean-Michel

    2016-01-01

    Among the paintings and engravings found in the Chauvet-Pont d'Arc cave (Ardèche, France), several peculiar spray-shape signs have been previously described in the Megaloceros Gallery. Here we document the occurrence of strombolian volcanic activity located 35 km northwest of the cave, and visible from the hills above the cave entrance. The volcanic eruptions were dated, using 40Ar/39Ar, between 29 ± 10 ka and 35 ± 8 ka (2σ), which overlaps with the 14C AMS and thermoluminescence ages of the first Aurignacian occupations of the cave in the Megaloceros Gallery. Our work provides the first evidence of an intense volcanic activity between 40 and 30 ka in the Bas-Vivarais region, and it is very likely that Humans living in the Ardèche river area witnessed one or several eruptions. We propose that the spray-shape signs found in the Chauvet-Pont d'Arc cave could be the oldest known depiction of a volcanic eruption, predating by more than 34 ka the description by Pliny the Younger of the Vesuvius eruption (AD 79) and by 28 ka the Çatalhöyük mural discovered in central Turkey.

  7. Characterize Eruptive Processes at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Valentine, G.

    2001-01-01

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain shapes

  8. Characterize Eruptive Processes at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Valentine

    2001-12-20

    This Analysis/Model Report (AMR), ''Characterize Eruptive Processes at Yucca Mountain, Nevada'', presents information about natural volcanic systems and the parameters that can be used to model their behavior. This information is used to develop parameter-value distributions appropriate for analysis of the consequences of volcanic eruptions through a potential repository at Yucca Mountain. Many aspects of this work are aimed at resolution of the Igneous Activity Key Technical Issue (KTI) as identified by the Nuclear Regulatory Commission (NRC 1998, p. 3), Subissues 1 and 2, which address the probability and consequence of igneous activity at the proposed repository site, respectively. Within the framework of the Disruptive Events Process Model Report (PMR), this AMR provides information for the calculations in two other AMRs ; parameters described herein are directly used in calculations in these reports and will be used in Total System Performance Assessment (TSPA). Compilation of this AMR was conducted as defined in the Development Plan, except as noted. The report begins with considerations of the geometry of volcanic feeder systems, which are of primary importance in predicting how much of a potential repository would be affected by an eruption. This discussion is followed by one of the physical and chemical properties of the magmas, which influences both eruptive styles and mechanisms for interaction with radioactive waste packages. Eruptive processes including the ascent velocity of magma at depth, the onset of bubble nucleation and growth in the rising magmas, magma fragmentation, and velocity of the resulting gas-particle mixture are then discussed. The duration of eruptions, their power output, and mass discharge rates are also described. The next section summarizes geologic constraints regarding the interaction between magma and waste packages. Finally, they discuss bulk grain size produced by relevant explosive eruptions and grain

  9. Living through a volcanic eruption: Understanding the experience of survivors as a phenomenological existential phenomenon.

    Science.gov (United States)

    Warsini, Sri; Mills, Jane; West, Caryn; Usher, Kim

    2016-06-01

    Mount Merapi in Indonesia is the most active volcano in the world with its 4-6-year eruption cycle. The mountain and surrounding areas are populated by hundreds of thousands of people who live near the volcano despite the danger posed to their wellbeing. The aim of this study was to explore the lived experience of people who survived the most recent eruption of Mount Merapi, which took place in 2010. Investigators conducted interviews with 20 participants to generate textual data that were coded and themed. Three themes linked to the phenomenological existential experience (temporality and relationality) of living through a volcanic eruption emerged from the data. These themes were: connectivity, disconnection and reconnection. Results indicate that the close relationship individuals have with Mount Merapi and others in their neighbourhood outweighs the risk of living in the shadow of an active volcano. This is the first study to analyze the phenomenological existential elements of living through a volcanic eruption. © 2016 Australian College of Mental Health Nurses Inc.

  10. Degassing vs. eruptive styles at Mt. Etna volcano (Sicily, Italy): Volatile stocking, gas fluxing, and the shift from low-energy to highly-explosive basaltic eruptions

    Science.gov (United States)

    Moretti, Roberto; Métrich, Nicole; Di Renzo, Valeria; Aiuppa, Alessandro; Allard, Patrick; Arienzo, Ilenia

    2017-04-01

    Basaltic magmas can transport and release large amounts of volatiles into the atmosphere, especially in subduction zones, where slab-derived fluids enrich the mantle wedge. Depending on magma volatile content, basaltic volcanoes thus display a wide spectrum of eruptive styles, from common Strombolian-type activity to Plinian events. Mt. Etna in Sicily, is a typical basaltic volcano where the volatile control on such a variable activity can be investigated. Based on a melt inclusion study in products from Strombolian or lava-fountain activity to Plinian eruptions, here we show that for the same initial volatile content, different eruptive styles reflect variable degassing paths throughout the composite Etnean plumbing system. The combined influence of i) crystallization, ii) deep degassing and iii) CO2 gas fluxing can explain the evolution of H2O, CO2, S and Cl in products from such a spectrum of activity. Deep crystallization produces the CO2-rich gas fluxing the upward magma portions, which will become buoyant and easily mobilized in small gas-rich batches stored within the plumbing system. When reaching gas dominated conditions (i.e., a gas/melt mass ratio of 0.3 and CO2,gas/H2Ogas molar ratio 5 ), these will erupt effusively or mildly explosively, whilst in case of the 122 BC Plinian eruption, open-system degassing conditions took place within the plumbing system, such that continuous CO2-fluxing determined gas accumulation on top of the magmatic system. The emission of such a cap in the early eruptive phase triggered the arrival of deep H2O-rich whose fast decompression and bubble nucleation lead to the highly explosive character, enhanced by abundant microlite crystallization and consequent increase of magma effective viscosity. This could explain why open system basaltic systems like Etna may experience highly explosive or even Plinian episodes during eruptions that start with effusive to mildly explosive phases. The proposed mechanism also determines a

  11. Unraveling the diversity in arc volcanic eruption styles: Examples from the Aleutian volcanic arc, Alaska

    Science.gov (United States)

    Larsen, Jessica F.

    2016-11-01

    The magmatic systems feeding arc volcanoes are complex, leading to a rich diversity in eruptive products and eruption styles. This review focuses on examples from the Aleutian subduction zone, encompassed within the state of Alaska, USA because it exhibits a rich diversity in arc structure and tectonics, sediment and volatile influx feeding primary magma generation, crustal magma differentiation processes, with the resulting outcome the production of a complete range in eruption styles from its diverse volcanic centers. Recent and ongoing investigations along the arc reveal controls on magma production that result in diversity of eruptive products, from crystal-rich intermediate andesites to phenocryst-poor, melt-rich silicic and mafic magmas and a spectrum in between. Thus, deep to shallow crustal "processing" of arc magmas likely greatly influences the physical and chemical character of the magmas as they accumulate in the shallow crust, the flow physics of the magmas as they rise in the conduit, and eruption style through differences in degassing kinetics of the bubbly magmas. The broad spectrum of resulting eruption styles thus depends on the bulk magma composition, melt phase composition, and the bubble and crystal content (phenocrysts and/or microlites) of the magma. Those fundamental magma characteristics are in turn largely determined by the crustal differentiation pathway traversed by the magma as a function of tectonic location in the arc, and/or the water content and composition of the primary magmas. The physical and chemical character of the magma, set by the arc differentiation pathway, as it ascends towards eruption determines the kinetic efficiency of degassing versus the increasing internal gas bubble overpressure. The balance between degassing rate and the rate at which gas bubble overpressure builds then determines the conditions of fragmentation, and ultimately eruption intensity.

  12. Local seismic hazard assessment in explosive volcanic settings by 3D numerical analyses

    Science.gov (United States)

    Razzano, Roberto; Pagliaroli, Alessandro; Moscatelli, Massimiliano; Gaudiosi, Iolanda; Avalle, Alessandra; Giallini, Silvia; Marcini, Marco; Polpetta, Federica; Simionato, Maurizio; Sirianni, Pietro; Sottili, Gianluca; Vignaroli, Gianluca; Bellanova, Jessica; Calamita, Giuseppe; Perrone, Angela; Piscitelli, Sabatino

    2017-04-01

    This work deals with the assessment of local seismic response in the explosive volcanic settings by reconstructing the subsoil model of the Stracciacappa maar (Sabatini Volcanic District, central Italy), whose pyroclastic succession records eruptive phases ended about 0.09 Ma ago. Heterogeneous characteristics of the Stracciacappa maar (stratification, structural setting, lithotypes, and thickness variation of depositional units) make it an ideal case history for understanding mechanisms and processes leading to modifications of amplitude-frequency-duration of seismic waves generated at earthquake sources and propagating through volcanic settings. New geological map and cross sections, constrained with recently acquired geotechnical and geophysical data, illustrate the complex geometric relationships among different depositional units forming the maar. A composite interfingering between internal lacustrine sediments and epiclastic debris, sourced from the rim, fills the crater floor; a 45 meters thick continuous coring borehole was drilled in the maar with sampling of undisturbed samples. Electrical Resistivity Tomography surveys and 2D passive seismic arrays were also carried out for constraining the geological model and the velocity profile of the S-waves, respectively. Single station noise measurements were collected in order to define natural amplification frequencies. Finally, the nonlinear cyclic soil behaviour was investigated through simple shear tests on the undisturbed samples. The collected dataset was used to define the subsoil model for 3D finite difference site response numerical analyses by using FLAC 3D software (ITASCA). Moreover, 1D and 2D numerical analyses were carried out for comparison purposes. Two different scenarios were selected as input motions: a moderate magnitude (volcanic event) and a high magnitude (tectonic event). Both earthquake scenarios revealed significant ground motion amplification (up to 15 in terms of spectral acceleration

  13. High speed imaging, lightning mapping arrays and thermal imaging: a synergy for the monitoring of electrical discharges at the onset of volcanic explosions

    Science.gov (United States)

    Gaudin, Damien; Cimarelli, Corrado; Behnke, Sonja; Cigala, Valeria; Edens, Harald; McNutt, Stefen; Smith, Cassandra; Thomas, Ronald; Van Eaton, Alexa

    2017-04-01

    Volcanic lightning is being increasingly studied, due to its great potential for the detection and monitoring of ash plumes. Indeed, it is observed in a large number of ash-rich volcanic eruptions and it produces electromagnetic waves that can be detected remotely in all weather conditions. Electrical discharges in volcanic plume can also significantly change the structural, chemical and reactivity properties of the erupted material. Although electrical discharges are detected in various regions of the plume, those happening at the onset of an explosion are of particular relevance for the early warning and the study of volcanic jet dynamics. In order to better constrain the electrical activity of young volcanic plumes, we deployed at Sakurajima (Japan) in 2015 a multiparametric set-up including: i) a lightning mapping array (LMA) of 10 VHF antennas recording the electromagnetic waves produced by lightning at a sample rate of 25 Msps; ii) a visible-light high speed camera (5000 frames per second, 0.5 m pixel size, 300 m field of view) shooting short movies (approx. duration 1 s) at different stages of the plume evolution, showing the location of discharges in relation to the plume; and iii) a thermal camera (25 fps, 1.5 m pixel size, 800 m field of view) continuously recording the plume and allowing the estimation of its main source parameters (volume, rise velocity, mass eruption rate). The complementarity of these three setups is demonstrated by comparing and aggregating the data at various stages of the plume development. In the earliest stages, the high speed camera spots discrete small discharges, that appear on the LMA data as peaks superimposed to the continuous radio frequency (CRF) signal. At later stages, flashes happen less frequently and increase in length. The correspondence between high speed camera and LMA data allows to define a direct correlation between the length of the flash and the intensity of the electromagnetic signal. Such correlation is

  14. Composition and evolution of volcanic aerosol from eruptions of Kasatochi, Sarychev and Eyjafjallajökull in 2008–2010 based on CARIBIC observations

    Directory of Open Access Journals (Sweden)

    S. M. Andersson

    2013-02-01

    Full Text Available Large volcanic eruptions impact significantly on climate and lead to ozone depletion due to injection of particles and gases into the stratosphere where their residence times are long. In this the composition of volcanic aerosol is an important but inadequately studied factor. Samples of volcanically influenced aerosol were collected following the Kasatochi (Alaska, Sarychev (Russia and also during the Eyjafjallajökull (Iceland eruptions in the period 2008–2010. Sampling was conducted by the CARIBIC platform during regular flights at an altitude of 10–12 km as well as during dedicated flights through the volcanic clouds from the eruption of Eyjafjallajökull in spring 2010. Elemental concentrations of the collected aerosol were obtained by accelerator-based analysis. Aerosol from the Eyjafjallajökull volcanic clouds was identified by high concentrations of sulphur and elements pointing to crustal origin, and confirmed by trajectory analysis. Signatures of volcanic influence were also used to detect volcanic aerosol in stratospheric samples collected following the Sarychev and Kasatochi eruptions. In total it was possible to identify 17 relevant samples collected between 1 and more than 100 days following the eruptions studied. The volcanically influenced aerosol mainly consisted of ash, sulphate and included a carbonaceous component. Samples collected in the volcanic cloud from Eyjafjallajökull were dominated by the ash and sulphate component (∼45% each while samples collected in the tropopause region and LMS mainly consisted of sulphate (50–77% and carbon (21–43%. These fractions were increasing/decreasing with the age of the aerosol. Because of the long observation period, it was possible to analyze the evolution of the relationship between the ash and sulphate components of the volcanic aerosol. From this analysis the residence time (1/e of sulphur dioxide in the studied volcanic cloud was estimated to be 45 ± 22 days.

  15. Mixing-to-eruption timescales: an integrated model combining numerical simulations and high-temperature experiments with natural melts

    Science.gov (United States)

    Montagna, Chiara; Perugini, Diego; De Campos, Christina; Longo, Antonella; Dingwell, Donald Bruce; Papale, Paolo

    2015-04-01

    Arrival of magma from depth into shallow reservoirs and associated mixing processes have been documented as possible triggers of explosive eruptions. Quantifying the timing from beginning of mixing to eruption is of fundamental importance in volcanology in order to put constraints about the possible onset of a new eruption. Here we integrate numerical simulations and high-temperature experiment performed with natural melts with the aim to attempt identifying the mixing-to-eruption timescales. We performed two-dimensional numerical simulations of the arrival of gas-rich magmas into shallow reservoirs. We solve the fluid dynamics for the two interacting magmas evaluating the space-time evolution of the physical properties of the mixture. Convection and mingling develop quickly into the chamber and feeding conduit/dyke. Over time scales of hours, the magmas in the reservoir appear to have mingled throughout, and convective patterns become harder to identify. High-temperature magma mixing experiments have been performed using a centrifuge and using basaltic and phonolitic melts from Campi Flegrei (Italy) as initial end-members. Concentration Variance Decay (CVD), an inevitable consequence of magma mixing, is exponential with time. The rate of CVD is a powerful new geochronometer for the time from mixing to eruption/quenching. The mingling-to-eruption time of three explosive volcanic eruptions from Campi Flegrei (Italy) yield durations on the order of tens of minutes. These results are in perfect agreement with the numerical simulations that suggest a maximum mixing time of a few hours to obtain a hybrid mixture. We show that integration of numerical simulation and high-temperature experiments can provide unprecedented results about mixing processes in volcanic systems. The combined application of numerical simulations and CVD geochronometer to the eruptive products of active volcanoes could be decisive for the preparation of hazard mitigation during volcanic unrest.

  16. Northern hemispheric response to large volcanic eruptions in relation to El Nino - winter case studies

    International Nuclear Information System (INIS)

    Kirchner, I.

    1994-01-01

    A large part of the global climate variability is attributed to variations of the Indian Monsoon and of El Nino/Southern Oscillation. Facing the recent violent volcanic eruption of Mount Pinatubo in June 1991, and searching for the climate signal of the increased greenhouse effect, the climate impact of volcanic aerosols becomes more and more interesting

  17. Variation of Surface Air Temperature in Relation to El Nino and Cataclysmic Volcanic Eruptions, 1796-1882

    Science.gov (United States)

    Wilson, Robert M.

    1999-01-01

    During the contemporaneous interval of 1796-1882 a number of significant decreases in temperature are found in the records of Central England and Northern Ireland. These decreases appear to be related to the occurrences of El Nino and/or cataclysmic volcanic eruptions. For example, a composite of residual temperatures of the Central England dataset, centering temperatures on the yearly onsets of 20 El Nino of moderate to stronger strength, shows that, on average, the change in temperature varied by about +/- 0.3 C from normal being warmer during the boreal fall-winter leading up to the El Nino year and cooler during the spring-summer of the El Nino year. Also, the influence of El Nino on Central England temperatures appears to last about 1-2 years. Similarly, a composite of residual temperatures of the Central England dataset, centering temperatures on the month of eruption for 26 cataclysmic volcanic eruptions, shows that, on average, the change in temperature decreased by about 0.1 - 0.2 C, typically, 1-2 years after the eruption, although for specific events, like Tambora, the decrease was considerably greater. Additionally, tropical eruptions appear to produce greater changes in temperature than extratropical eruptions, and eruptions occurring in boreal spring-summer appear to produce greater changes in temperature than those occurring in fall-winter.

  18. Satellite Observations of Volcanic Clouds from the Eruption of Redoubt Volcano, Alaska, 2009

    Science.gov (United States)

    Dean, K. G.; Ekstrand, A. L.; Webley, P.; Dehn, J.

    2009-12-01

    Redoubt Volcano began erupting on 23 March 2009 (UTC) and consisted of 19 events over a 14 day period. The volcano is located on the Alaska Peninsula, 175 km southwest of Anchorage, Alaska. The previous eruption was in 1989/1990 and seriously disrupted air traffic in the region, including the near catastrophic engine failure of a passenger airliner. Plumes and ash clouds from the recent eruption were observed on a variety of satellite data (AVHRR, MODIS and GOES). The eruption produced volcanic clouds up to 19 km which are some of the highest detected in recent times in the North Pacific region. The ash clouds primarily drifted north and east of the volcano, had a weak ash signal in the split window data and resulted in light ash falls in the Cook Inlet basin and northward into Alaska’s Interior. Volcanic cloud heights were measured using ground-based radar, and plume temperature and wind shear methods but each of the techniques resulted in significant variations in the estimates. Even though radar showed the greatest heights, satellite data and wind shears suggest that the largest concentrations of ash may be at lower altitudes in some cases. Sulfur dioxide clouds were also observed on satellite data (OMI, AIRS and Calipso) and they primarily drifted to the east and were detected at several locations across North America, thousands of kilometers from the volcano. Here, we show time series data collected by the Alaska Volcano Observatory, illustrating the different eruptive events and ash clouds that developed over the subsequent days.

  19. Aggregation in particle rich environments: a textural study of examples from volcanic eruptions, meteorite impacts, and fluidized bed processing

    Science.gov (United States)

    Mueller, Sebastian B.; Kueppers, Ulrich; Huber, Matthew S.; Hess, Kai-Uwe; Poesges, Gisela; Ruthensteiner, Bernhard; Dingwell, Donald B.

    2018-04-01

    Aggregation is a common process occurring in many diverse particulate gas mixtures (e.g. those derived from explosive volcanic eruptions, meteorite impact events, and fluid bed processing). It results from the collision and sticking of particles suspended in turbulent gas/air. To date, there is no generalized model of the underlying physical processes. Here, we investigate aggregates from 18 natural deposits (16 volcanic deposits and two meteorite impact deposits) as well as aggregates produced experimentally via fluidized bed techniques. All aggregates were analyzed for their size, internal structuring, and constituent particle size distribution. Commonalities and differences between the aggregate types are then used to infer salient features of the aggregation process. Average core to rim ratios of internally structured aggregates (accretionary lapilli) is found to be similar for artificial and volcanic aggregates but up to an order of magnitude different than impact-related aggregates. Rim structures of artificial and volcanic aggregates appear to be physically similar (single, sub-spherical, regularly-shaped rims) whereas impact-related aggregates more often show multiple or irregularly shaped rims. The particle size distributions (PSDs) of all three aggregate types are similar (< 200 μm). This proves that in all three environments, aggregation occurs under broadly similar conditions despite the significant differences in source conditions (particle volume fraction, particle size distribution, particle composition, temperature), residence times, plume conditions (e.g., humidity and temperature), and dynamics of fallout and deposition. Impact-generated and volcanic aggregates share many similarities, and in some cases may be indistinguishable without their stratigraphic context.

  20. Monitoring of lightning from the April-May 2010 Eyjafjallajoekull volcanic eruption using a very low frequency lightning location network

    International Nuclear Information System (INIS)

    Bennett, A J; Odams, P; Edwards, D; Arason, P.

    2010-01-01

    The April-May 2010 explosive eruption of the Eyjafjallajoekull volcano in Iceland produced a tephra plume extending to an altitude of over 9 km. During many, but not all, of the periods of significant volcanic activity the plume was sufficiently electrified to generate lightning. This lightning was located by the UK Met Office long-range lightning location network (ATDnet), operating in the very low frequency radio spectrum. An approximately linear relationship between hourly lightning count rate and radar-derived plume height was found. A minimum plume height for lightning generation of sufficient strength to be detected by ATDnet was shown to be 5 km above sea level. It is not clear why some plumes exceeding 5 km did not produce lightning detected by ATDnet, although ambient atmospheric conditions may be an important factor.

  1. Monitoring of lightning from the April-May 2010 Eyjafjallajoekull volcanic eruption using a very low frequency lightning location network

    Energy Technology Data Exchange (ETDEWEB)

    Bennett, A J; Odams, P; Edwards, D [Met Office, FitzRoy Road, Exeter EX1 3PB (United Kingdom); Arason, P., E-mail: alec.bennett@metoffice.gov.uk [Icelandic Meteorological Office, Bustaoavegi 9, IS-150 ReykjavIk (Iceland)

    2010-10-15

    The April-May 2010 explosive eruption of the Eyjafjallajoekull volcano in Iceland produced a tephra plume extending to an altitude of over 9 km. During many, but not all, of the periods of significant volcanic activity the plume was sufficiently electrified to generate lightning. This lightning was located by the UK Met Office long-range lightning location network (ATDnet), operating in the very low frequency radio spectrum. An approximately linear relationship between hourly lightning count rate and radar-derived plume height was found. A minimum plume height for lightning generation of sufficient strength to be detected by ATDnet was shown to be 5 km above sea level. It is not clear why some plumes exceeding 5 km did not produce lightning detected by ATDnet, although ambient atmospheric conditions may be an important factor.

  2. A 36,000-Year-Old Volcanic Eruption Depicted in the Chauvet-Pont d’Arc Cave (Ardèche, France)?

    Science.gov (United States)

    Nomade, Sébastien; Genty, Dominique; Sasco, Romain; Scao, Vincent; Féruglio, Valérie; Baffier, Dominique; Guillou, Hervé; Bourdier, Camille; Valladas, Hélène; Reigner, Edouard; Debard, Evelyne; Pastre, Jean–François; Geneste, Jean-Michel

    2016-01-01

    Among the paintings and engravings found in the Chauvet-Pont d’Arc cave (Ardèche, France), several peculiar spray-shape signs have been previously described in the Megaloceros Gallery. Here we document the occurrence of strombolian volcanic activity located 35 km northwest of the cave, and visible from the hills above the cave entrance. The volcanic eruptions were dated, using 40Ar/39Ar, between 29 ± 10 ka and 35 ± 8 ka (2σ), which overlaps with the 14C AMS and thermoluminescence ages of the first Aurignacian occupations of the cave in the Megaloceros Gallery. Our work provides the first evidence of an intense volcanic activity between 40 and 30 ka in the Bas-Vivarais region, and it is very likely that Humans living in the Ardèche river area witnessed one or several eruptions. We propose that the spray-shape signs found in the Chauvet-Pont d’Arc cave could be the oldest known depiction of a volcanic eruption, predating by more than 34 ka the description by Pliny the Younger of the Vesuvius eruption (AD 79) and by 28 ka the Çatalhöyük mural discovered in central Turkey. PMID:26745626

  3. Tertiary volcanic rocks and uranium in the Thomas Range and northern Drum Mountains, Juab County, Utah

    Science.gov (United States)

    Lindsey, David A.

    1982-01-01

    The Thomas Range and northern Drum Mountains have a history of volcanism, faulting, and mineralization that began about 42 m.y. (million years) ago. Volcanic activity and mineralization in the area can be divided into three stages according to the time-related occurrence of rock types, trace-element associations, and chemical composition of mineral deposits. Compositions of volcanic rocks changed abruptly from rhyodacite-quartz latite (42-39 m.y. ago) to rhyolite (38-32 m.y. ago) to alkali rhyolite (21 and 6-7 m.y. ago); these stages correspond to periods of chalcophile and siderophile metal mineralization, no mineralization(?), and lithophile metal mineralization, respectively. Angular unconformities record episodes of cauldron collapse and block faulting between the stages of volcanic activity and mineralization. The youngest angular unconformity formed between 21 and 7 m.y. ago during basin-and-range faulting. Early rhyodacite-quartz latite volcanism from composite volcanoes and fissures produced flows, breccias, and ash-flow tuff of the Drum Mountains Rhyodacite and Mt. Laird Tuff. Eruption of the Mt. Laird Tuff about 39 m.y. ago from an area north of Joy townsite was accompanied by collapse of the Thomas caldera. Part of the roof of the magma chamber did not collapse, or the magma was resurgent, as is indicated by porphyry dikes and plugs in the Drum Mountains. Chalcophile and siderophile metal mineralization, resulting in deposits of copper, gold, and manganese, accompanied early volcanism. Te middle stage of volcanic activity was characterized by explosive eruption of rhyolitic ash-flow tuffs and collapse of the Dugway Valley cauldron. Eruption of the Joy Tuff 38 m.y. ago was accompanied by subsidence of this cauldron and was followed by collapse and sliding of Paleozoic rocks from the west wall of the cauldron. Landslides in The Dell were covered by the Dell Tuff, erupted 32 m.y. ago from an unknown source to the east. An ash flow of the Needles Range

  4. Eruptive and Geomorphic Processes at the Lathrop Wells Scoria Cone

    International Nuclear Information System (INIS)

    G. Valentine; D.J. Krier; F.V. Perry; G. Heiken

    2006-01-01

    The ∼80 ka Lathrop Wells volcano (southern Nevada, U.S.A.) preserves evidence for a range of explosive processes and emplacement mechanisms of pyroclastic deposits and lava fields in a small-volume basaltic center. Early cone building by Strombolian bursts was accompanied by development of a fan-like lava field reaching ∼800 m distance from the cone, built upon a gently sloping surface. Lava flows carried rafts of cone deposits, which provide indirect evidence for cone facies in lieu of direct exposures in the active quarry. Subsequent activity was of a violent Strombolian nature, with many episodes of sustained eruption columns up to a few km in height. These deposited layers of scoria lapilli and ash in different directions depending upon wind direction at the time of a given episode, reaching up to ∼20 km from the vent, and also produced the bulk of the scoria cone. Lava effusion migrated from south to north around the eastern base of the cone as accumulation of lavas successively reversed the topography at the base of the cone. Late lavas were emplaced during violent Strombolian activity and continued for some time after explosive eruptions had waned. Volumes of the eruptive products are: fallout--0.07 km 3 , scoria cone--0.02 km 3 , and lavas--0.03 km 3 . Shallow-derived xenolith concentrations suggest an upper bound on average conduit diameter of ∼21 m in the uppermost 335 m beneath the volcano. The volcano was constructed over a period of at least seven months with cone building occurring only during part of that time, based upon analogy with historical eruptions. Post-eruptive geomorphic evolution varied for the three main surface types that were produced by volcanic activity: (1) scoria cone, (2) low relief surfaces (including lavas) with abundant pyroclastic material, and (3) lavas with little pyroclastic material. The role of these different initial textures must be accounted for in estimating relative ages of volcanic surfaces, and failure to

  5. Eruptive and Geomorphic Processes at the Lathrop Wells Scoria Cone

    Energy Technology Data Exchange (ETDEWEB)

    G. Valentine; D.J. Krier; F.V. Perry; G. Heiken

    2006-08-03

    The {approx}80 ka Lathrop Wells volcano (southern Nevada, U.S.A.) preserves evidence for a range of explosive processes and emplacement mechanisms of pyroclastic deposits and lava fields in a small-volume basaltic center. Early cone building by Strombolian bursts was accompanied by development of a fan-like lava field reaching {approx}800 m distance from the cone, built upon a gently sloping surface. Lava flows carried rafts of cone deposits, which provide indirect evidence for cone facies in lieu of direct exposures in the active quarry. Subsequent activity was of a violent Strombolian nature, with many episodes of sustained eruption columns up to a few km in height. These deposited layers of scoria lapilli and ash in different directions depending upon wind direction at the time of a given episode, reaching up to {approx}20 km from the vent, and also produced the bulk of the scoria cone. Lava effusion migrated from south to north around the eastern base of the cone as accumulation of lavas successively reversed the topography at the base of the cone. Late lavas were emplaced during violent Strombolian activity and continued for some time after explosive eruptions had waned. Volumes of the eruptive products are: fallout--0.07 km{sup 3}, scoria cone--0.02 km{sup 3}, and lavas--0.03 km{sup 3}. Shallow-derived xenolith concentrations suggest an upper bound on average conduit diameter of {approx}21 m in the uppermost 335 m beneath the volcano. The volcano was constructed over a period of at least seven months with cone building occurring only during part of that time, based upon analogy with historical eruptions. Post-eruptive geomorphic evolution varied for the three main surface types that were produced by volcanic activity: (1) scoria cone, (2) low relief surfaces (including lavas) with abundant pyroclastic material, and (3) lavas with little pyroclastic material. The role of these different initial textures must be accounted for in estimating relative ages of

  6. Radiative effects of the El Chichon volcanic eruption. Preliminary results concerning remote sensing

    Science.gov (United States)

    Bandeen, W. R.; Fraser, R. S.

    1982-01-01

    The aerosols and gases resulting from the El Chichon volcanic eruption had, and may still have, significant effects on satellite measurements of the properties of the Earth's atmosphere. The sea surface temperature measured by the AVHRR was biased up to -2.5 C for many months. The total amount of ozone derived from TOMS with a standard algorithm was greatly in excess of the possible value. This apparent excess can now be explained in terms of additional absorption by SO2. Infrared temperature sounders have observed both positive and negative anomalies. These effects and others on many satellite measurements are addressed following a discussion of the history and composition of the ejecta remaining in the stratosphere. Finally, recommendations are made for further study to account for the effects of volcanic eruptions on satellite observations and for use of such observations to measure the characteristics of the ejecta.

  7. Localization of Volcanic Activity: Topographic Effects on Dike Propagation, Eruption and COnduit Formation

    Energy Technology Data Exchange (ETDEWEB)

    E.S. Gaffney; B. Damjanac

    2006-05-12

    Magma flow in a dike rising in a crack whose strike runs from a highland or a ridge to an adjacent lowland has been modeled to determine the effect of topography on the flow. It is found that there is a distinct tendency for the flow to be diverted away from the highland end of the strike toward the lowland. Separation of the geometric effect of the topography from its effect on lateral confining stresses on the crack indicates that both contribute to the effect but that the effect of stress is less important. Although this analysis explains a tendency for volcanic eruptions to occur in low lands, it does not preclude eruptions on highlands. The particular configuration modeled mimics topography around the proposed nuclear waste repository at Yucca Mountain, Nevada, so that the results may indicate some reduction in the volcanic hazard to the site.

  8. Localization of Volcanic Activity: Topographic Effects on Dike Propagation, Eruption and Conduit Formation

    International Nuclear Information System (INIS)

    E.S. Gaffney; B. Damjanac

    2006-01-01

    Magma flow in a dike rising in a crack whose strike runs from a highland or a ridge to an adjacent lowland has been modeled to determine the effect of topography on the flow. It is found that there is a distinct tendency for the flow to be diverted away from the highland end of the strike toward the lowland. Separation of the geometric effect of the topography from its effect on lateral confining stresses on the crack indicates that both contribute to the effect but that the effect of stress is less important. Although this analysis explains a tendency for volcanic eruptions to occur in low lands, it does not preclude eruptions on highlands. The particular configuration modeled mimics topography around the proposed nuclear waste repository at Yucca Mountain, Nevada, so that the results may indicate some reduction in the volcanic hazard to the site

  9. On the mechanism of explosive eruption of mount erebus volcano: the dynamics of the rupture structure in a cavitating layer

    International Nuclear Information System (INIS)

    Bol'shakova, E S; Kedrinskiy, V K

    2016-01-01

    This paper presents the results of an experimental simulation of rupture development in heavily cavitating magma melt flow in volcanic conduits and its effect on the structure of explosive volcanic eruptions. The dynamics of the state of a layer of distilled water (similar in the density of cavitation nuclei to magma melt) under shock-wave loading was studied. The experiments were performed using electromagnetic hydrodynamic shock tubes (EM HST) with maximum capacitor bank energy of up to 100 J and 5 kJ. It was found that the topology of the rupture formed on the membrane surface did not change during its development. Empirical estimates were obtained for the proportion of the capacitor bank energy expended in the development of the rupture and the characteristic time of its existence. The study revealed a number of fundamentally new physical effects in the cavity dynamics in a cavitating medium: a cavitation “boundary layer” is formed on the surface of the quasi-empty rupture, which is transformed into a cluster of high energy density upon closure of the flow. (paper)

  10. Opportunities for Monitoring Io's Volcanic Activity in the Visible and Infrared From JUICE - It's All About (Eruption) Style

    Science.gov (United States)

    Davies, Ashley; Matson, D.; McEwen, A. S.; Keszthelyi, L.

    2012-10-01

    The ESA Jupiter Icy Moons Explorer (JUICE) provides many opportunities for long-range monitoring of Io’s extraordinary silicate volcanic activity [1, 2]. A considerable amount of valuable work can be performed even with relatively low-spatial-resolution observations [2]. Techniques developed from the study of Galileo NIMS data and observations of terrestrial silicate volcanism allow the identification of likely eruption style [2] at many locations where the entire eruption is sub-pixel. Good temporal coverage, especially for episodic eruptions (including high-energy “outburst” eruptions), is important for modelling purposes. With opportunities to observe Io on a regular basis (hours-days) during cruise/orbital reduction phases, a visible-to-near-infrared mapping spectrometer (covering 0.4-5.5 µm) is the best instrument to chart the magnitude and variability of Io’s volcanic activity, allowing comparison with an existing and constantly expanding set of Io observations [e.g. 1, 3]. The eruption temperature of Io’s dominant silicate lava, a constraint on interior composition and conditions, is a major unanswered question in the wake of the Galileo mission [1]. A careful approach to instrument design is needed to ensure that observations by both imager and IR spectrometer on JUICE are capable of determining lava eruption temperature [e.g., 4] in low spatial resolution data. With an ideal thermal target (e.g., outburst eruption; the proposed lava lake at Pele) the imager should obtain multi-spectral data in a rapid sequence to allow stability of the thermal source to be quantified. Observations by imager and spectrometer have to be contemporaneous and unsaturated. References: [1] Davies, A. (2007) “Volcanism on Io”, Cam. Univ. Press. [2] Davies et al. (2010) JVGR, 194, 75-99. [3] Veeder et al. (2012) Icarus, 219, 701-722. [4] Davies et al. (2011) GRL, 38, L21308. This work was performed at the Jet Propulsion Laboratory-California Institute of Technology

  11. Pre-eruptive conditions of the ~31 ka rhyolitic magma of Tlaloc volcano, Sierra Nevada Volcanic Range, Central Mexico

    Science.gov (United States)

    Macias, J.; Arce, J.; Rueda, H.; Gardner, J.

    2008-12-01

    Tlaloc volcano is located at the northern tip of the Sierra Nevada Volcanic Range in Central Mexico. This Pleistocene to Recent volcanic range consists from north to south of Tlaloc-Telapón-Teyotl-Iztaccíhuatl-and- Popocatépetl volcanoes. While andesitic to barely dacitic volcanism dominates the southern part of the range (i.e. Popocatépetl and Iztaccíhuatl); dacitic and rare rhyolithic volcanism (i.e. Telapón, Tlaloc) dominates the northern end. The known locus of rhyolitic magmatism took place at Tlaloc volcano with a Plinian-Subplinian eruption that occurred 31 ka ago. The eruption emplaced the so-called multilayered fallout and pumiceous pyroclastic flows (~2 km3 DRE). The deposit consists of 95% vol. of juvenile particles (pumice + crystals) and minor altered lithics 5% vol. The mineral association of the pumice fragments (74-76 % wt. SiO2) consists of quartz + plagioclase + sanidine + biotite and rare oxides set in a glassy groundmass with voids. Melt inclusions in quartz phenocrysts suggest that prior to the eruption the rhyolitic contain ~7% of H2O and Nevado de Toluca volcano (~6 km) some 50 km to the southwest.

  12. Magma extrusion during the Ubinas 2013–2014 eruptive crisis based on satellite thermal imaging (MIROVA) and ground-based monitoring

    Science.gov (United States)

    Coppola, Diego; Macedo, Orlando; Ramos, Domingo; Finizola, Anthony; Delle Donne, Dario; del Carpio, Jose; White, Randall A.; McCausland, Wendy; Centeno, Riky; Rivera, Marco; Apaza, Fredy; Ccallata, Beto; Chilo, Wilmer; Cigolini, Corrado; Laiolo, Marco; Lazarte, Ivonne; Machaca, Roger; Masias, Pablo; Ortega, Mayra; Puma, Nino; Taipe, Edú

    2015-01-01

    After 3 years of mild gases emissions, the Ubinas volcano entered in a new eruptive phase on September 2nd, 2013. The MIROVA system (a space-based volcanic hot-spot detection system), allowed us to detect in near real time the thermal emissions associated with the eruption and provided early evidence of magma extrusion within the deep summit crater. By combining IR data with plume height, sulfur emissions, hot spring temperatures and seismic activity, we interpret the thermal output detected over Ubinas in terms of extrusion rates associated to the eruption. We suggest that the 2013–2014 eruptive crisis can be subdivided into three main phases: (i) shallow magma intrusion inside the edifice, (ii) extrusion and growing of a lava plug at the bottom of the summit crater coupled with increasing explosive activity and finally, (iii) disruption of the lava plug and gradual decline of the explosive activity. The occurrence of the 8.2 Mw Iquique (Chile) earthquake (365 km away from Ubinas) on April 1st, 2014, may have perturbed most of the analyzed parameters, suggesting a prompt interaction with the ongoing volcanic activity. In particular, the analysis of thermal and seismic datasets shows that the earthquake may have promoted the most intense thermal and explosive phase that culminated in a major explosion on April 19th, 2014.These results reveal the efficiency of space-based thermal observations in detecting the extrusion of hot magma within deep volcanic craters and in tracking its evolution. We emphasize that, in combination with other geophysical and geochemical datasets, MIROVA is an essential tool for monitoring remote volcanoes with rather difficult accessibility, like those of the Andes that reach remarkably high altitudes.

  13. Stratigraphy, sedimentology and eruptive mechanisms in the tuff cone of El Golfo (Lanzarote, Canary Islands)

    Science.gov (United States)

    Pedrazzi, Dario; Martí, Joan; Geyer, Adelina

    2013-07-01

    The tuff cone of El Golfo on the western coast of Lanzarote (Canary Islands) is a typical hydrovolcanic edifice. Along with other edifices of the same age, it was constructed along a fracture oriented NEE-SWW that coincides with the main structural trend of recent volcanism in this part of the island. We conducted a detailed stratigraphic study of the succession of deposits present in this tuff cone and here interpret them in light of the depositional processes and eruptive dynamics that we were able to infer. The eruptive sequence is represented by a succession of pyroclastic deposits, most of which were emplaced by flow, plus a number of air-fall deposits and ballistic blocks and bombs. We distinguished five different eruptive/depositional stages on the basis of differences in inferred current flow regimes and fragmentation efficiencies represented by the resulting deposits; the different stages may be related to variations in the explosive energy. Eight lithofacies were identified based on sedimentary discontinuities, grain size, components, variations in primary laminations and bedforms. The volcanic edifice was constructed very rapidly around the vent, and this is inferred to have controlled the amount of water that was able to enter the eruption conduit. The sedimentological characteristics of the deposits and the nature and distribution of palagonitic alteration suggest that most of the pyroclastic succession in El Golfo was deposited in a subaerial environment. This type of hydrovolcanic explosive activity is common in the coastal zones of Lanzarote and the other Canary Islands and is one of the main potential hazards that could threaten the human population of this archipelago. Detailed studies of these hydrovolcanic eruptions such as the one we present here can help volcanologists understand the hazards that this type of eruption can generate and provide essential information for undertaking risk assessment in similar volcanic environments.

  14. Was millennial scale climate change during the Last Glacial triggered by explosive volcanism?

    Science.gov (United States)

    Baldini, James U L; Brown, Richard J; McElwaine, Jim N

    2015-11-30

    The mechanisms responsible for millennial scale climate change within glacial time intervals are equivocal. Here we show that all eight known radiometrically-dated Tambora-sized or larger NH eruptions over the interval 30 to 80 ka BP are associated with abrupt Greenland cooling (>95% confidence). Additionally, previous research reported a strong statistical correlation between the timing of Southern Hemisphere volcanism and Dansgaard-Oeschger (DO) events (>99% confidence), but did not identify a causative mechanism. Volcanic aerosol-induced asymmetrical hemispheric cooling over the last few hundred years restructured atmospheric circulation in a similar fashion as that associated with Last Glacial millennial-scale shifts (albeit on a smaller scale). We hypothesise that following both recent and Last Glacial NH eruptions, volcanogenic sulphate injections into the stratosphere cooled the NH preferentially, inducing a hemispheric temperature asymmetry that shifted atmospheric circulation cells southward. This resulted in Greenland cooling, Antarctic warming, and a southward shifted ITCZ. However, during the Last Glacial, the initial eruption-induced climate response was prolonged by NH glacier and sea ice expansion, increased NH albedo, AMOC weakening, more NH cooling, and a consequent positive feedback. Conversely, preferential SH cooling following large SH eruptions shifted atmospheric circulation to the north, resulting in the characteristic features of DO events.

  15. Bidecadal North Atlantic ocean circulation variability controlled by timing of volcanic eruptions.

    Science.gov (United States)

    Swingedouw, Didier; Ortega, Pablo; Mignot, Juliette; Guilyardi, Eric; Masson-Delmotte, Valérie; Butler, Paul G; Khodri, Myriam; Séférian, Roland

    2015-03-30

    While bidecadal climate variability has been evidenced in several North Atlantic paleoclimate records, its drivers remain poorly understood. Here we show that the subset of CMIP5 historical climate simulations that produce such bidecadal variability exhibits a robust synchronization, with a maximum in Atlantic Meridional Overturning Circulation (AMOC) 15 years after the 1963 Agung eruption. The mechanisms at play involve salinity advection from the Arctic and explain the timing of Great Salinity Anomalies observed in the 1970s and the 1990s. Simulations, as well as Greenland and Iceland paleoclimate records, indicate that coherent bidecadal cycles were excited following five Agung-like volcanic eruptions of the last millennium. Climate simulations and a conceptual model reveal that destructive interference caused by the Pinatubo 1991 eruption may have damped the observed decreasing trend of the AMOC in the 2000s. Our results imply a long-lasting climatic impact and predictability following the next Agung-like eruption.

  16. Snow and ice perturbation during historical volcanic eruptions and the formation of lahars and floods

    Science.gov (United States)

    Major, Jon J.; Newhall, Christopher G.

    1989-10-01

    Historical eruptions have produced lahars and floods by perturbing snow and ice at more than 40 volcanoes worldwide. Most of these volcanoes are located at latitudes higher than 35°; those at lower latitudes reach altitudes generally above 4000 m. Volcanic events can perturb mantles of snow and ice in at least five ways: (1) scouring and melting by flowing pyroclastic debris or blasts of hot gases and pyroclastic debris, (2) surficial melting by lava flows, (3) basal melting of glacial ice or snow by subglacial eruptions or geothermal activity, (4) ejection of water by eruptions through a crater lake, and (5) deposition of tephra fall. Historical records of volcanic eruptions at snow-clad volcanoes show the following: (1) Flowing pyroclastic debris (pyroclastic flows and surges) and blasts of hot gases and pyroclastic debris are the most common volcanic events that generate lahars and floods; (2) Surficial lava flows generally cannot melt snow and ice rapidly enough to form large lahars or floods; (3) Heating the base of a glacier or snowpack by subglacial eruptions or by geothermal activity can induce basal melting that may result in ponding of water and lead to sudden outpourings of water or sediment-rich debris flows; (4) Tephra falls usually alter ablation rates of snow and ice but generally produce little meltwater that results in the formation of lahars and floods; (5) Lahars and floods generated by flowing pyroclastic debris, blasts of hot gases and pyroclastic debris, or basal melting of snow and ice commonly have volumes that exceed 105 m3. The glowing lava (pyroclastic flow) which flowed with force over ravines and ridges...gathered in the basin quickly and then forced downwards. As a result, tremendously wide and deep pathways in the ice and snow were made and produced great streams of water (Wolf 1878).

  17. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions

    KAUST Repository

    Driscoll, Simon; Bozzo, Alessio; Gray, Lesley J.; Robock, Alan; Stenchikov, Georgiy L.

    2012-01-01

    The ability of the climate models submitted to the Coupled Model Intercomparison Project 5 (CMIP5) database to simulate the Northern Hemisphere winter climate following a large tropical volcanic eruption is assessed. When sulfate aerosols are produced by volcanic injections into the tropical stratosphere and spread by the stratospheric circulation, it not only causes globally averaged tropospheric cooling but also a localized heating in the lower stratosphere, which can cause major dynamical feedbacks. Observations show a lower stratospheric and surface response during the following one or two Northern Hemisphere (NH) winters, that resembles the positive phase of the North Atlantic Oscillation (NAO). Simulations from 13 CMIP5 models that represent tropical eruptions in the 19th and 20th century are examined, focusing on the large-scale regional impacts associated with the large-scale circulation during the NH winter season. The models generally fail to capture the NH dynamical response following eruptions. They do not sufficiently simulate the observed post-volcanic strengthened NH polar vortex, positive NAO, or NH Eurasian warming pattern, and they tend to overestimate the cooling in the tropical troposphere. The findings are confirmed by a superposed epoch analysis of the NAO index for each model. The study confirms previous similar evaluations and raises concern for the ability of current climate models to simulate the response of a major mode of global circulation variability to external forcings. This is also of concern for the accuracy of geoengineering modeling studies that assess the atmospheric response to stratosphere-injected particles.

  18. Coupled Model Intercomparison Project 5 (CMIP5) simulations of climate following volcanic eruptions

    KAUST Repository

    Driscoll, Simon

    2012-09-16

    The ability of the climate models submitted to the Coupled Model Intercomparison Project 5 (CMIP5) database to simulate the Northern Hemisphere winter climate following a large tropical volcanic eruption is assessed. When sulfate aerosols are produced by volcanic injections into the tropical stratosphere and spread by the stratospheric circulation, it not only causes globally averaged tropospheric cooling but also a localized heating in the lower stratosphere, which can cause major dynamical feedbacks. Observations show a lower stratospheric and surface response during the following one or two Northern Hemisphere (NH) winters, that resembles the positive phase of the North Atlantic Oscillation (NAO). Simulations from 13 CMIP5 models that represent tropical eruptions in the 19th and 20th century are examined, focusing on the large-scale regional impacts associated with the large-scale circulation during the NH winter season. The models generally fail to capture the NH dynamical response following eruptions. They do not sufficiently simulate the observed post-volcanic strengthened NH polar vortex, positive NAO, or NH Eurasian warming pattern, and they tend to overestimate the cooling in the tropical troposphere. The findings are confirmed by a superposed epoch analysis of the NAO index for each model. The study confirms previous similar evaluations and raises concern for the ability of current climate models to simulate the response of a major mode of global circulation variability to external forcings. This is also of concern for the accuracy of geoengineering modeling studies that assess the atmospheric response to stratosphere-injected particles.

  19. Doppler weather radar observations of the 2009 eruption of Redoubt Volcano, Alaska

    Science.gov (United States)

    Schneider, David J.; Hoblitt, Richard P.

    2013-01-01

    The U.S. Geological Survey (USGS) deployed a transportable Doppler C-band radar during the precursory stage of the 2009 eruption of Redoubt Volcano, Alaska that provided valuable information during subsequent explosive events. We describe the capabilities of this new monitoring tool and present data captured during the Redoubt eruption. The MiniMax 250-C (MM-250C) radar detected seventeen of the nineteen largest explosive events between March 23 and April 4, 2009. Sixteen of these events reached the stratosphere (above 10 km) within 2–5 min of explosion onset. High column and proximal cloud reflectivity values (50 to 60 dBZ) were observed from many of these events, and were likely due to the formation of mm-sized accretionary tephra-ice pellets. Reflectivity data suggest that these pellets formed within the first few minutes of explosion onset. Rapid sedimentation of the mm-sized pellets was observed as a decrease in maximum detection cloud height. The volcanic cloud from the April 4 explosive event showed lower reflectivity values, due to finer particle sizes (related to dome collapse and related pyroclastic flows) and lack of significant pellet formation. Eruption durations determined by the radar were within a factor of two compared to seismic and pressure-sensor derived estimates, and were not well correlated. Ash dispersion observed by the radar was primarily in the upper troposphere below 10 km, but satellite observations indicate the presence of volcanogenic clouds in the stratosphere. This study suggests that radar is a valuable complement to traditional seismic and satellite monitoring of explosive eruptions.

  20. Is the onset of the 6th century 'dark age' in Maya history related to explosive volcanism?

    Science.gov (United States)

    Nooren, Kees; Hoek, Wim Z.; Van der Plicht, Hans; Sigl, Michael; Galop, Didier; Torrescano-Valle, Nuria; Islebe, Gerald; Huizinga, Annika; Winkels, Tim; Middelkoop, Hans; Van Bergen, Manfred

    2016-04-01

    Maya societies in Southern Mexico, Guatemala and Belize experienced a 'dark age' during the second half of the 6th century. This period, also known as the 'Maya Hiatus', is characterized by cultural downturn, political instability and abandonment of many sites in the Central Maya Lowlands. Many theories have been postulated to explain the occurrence of this 'dark age' in Maya history. A possible key role of a large volcanic eruption in the onset of this 'dark age' will be discussed. Volcanic deposits recovered from the sedimentary archive of lake Tuspán and the Usumacinta-Grijalva delta were studied in detail and the combination of multiple dating techniques allowed the reconstruction of the timing of a large 6th century eruption. Volcanic glass shards were fingerprinted to indicate the source volcano and high resolution pollen records were constructed to indicate the environmental impact of the eruption. Results are compared with available archaeological data and causality with the disruption of Maya civilization will be evaluated.

  1. Resolving the architecture of monogenetic feeder systems from exposures of extinct volcanic fields

    Science.gov (United States)

    Muirhead, J.; Van Eaton, A. R.; Re, G.; White, J. D. L.; Ort, M. H.

    2016-12-01

    Monogenetic volcanic fields pose hazards to a number of major cities worldwide. During an eruption, the evolution of the intrusive feeder network modulates eruption behavior and location, as well as the warning signs of impending activity. However, historical examples of monogenetic eruptions are rare, particularly those monitored with the modern tools required to constrain the geometry and interconnectivity of subsurface intrusive feeders (e.g., InSAR, GPS). Geologic exposures in extinct fields around the Colorado Plateau provide clues to the geometry of shallow intrusions (<1000 m depth) that feed monogenetic volcanoes. We present field- and satellite-based observations of exposed intrusions in the Hopi Buttes volcanic field (Arizona), which reveal that many eruptions were fed by interconnected dike-sill systems. Results from the Hopi Buttes show that volcanic cone alignment studies are biased to the identification of dike intrusions, and thereby neglect the important contributions of sills to shallow feeder systems. For example, estimates of intruded volumes in fields exhumed by uplift and erosion in Utah and Arizona show that sills make up 30 - 92% of the shallow intruded volume within 1000 m of the paleosurface. By transporting magma toward and away from eruptive conduits, these sills likely played a role in modulating eruption styles (e.g., explosive vs effusive) and controlling lateral vent migrations. Sill transitions at Hopi Buttes would have produced detectable surface uplifts, and illustrate the importance of geological studies for informing interpretations of geodetic and seismological data during volcanic crises.

  2. Holocene tephrostratigraphy of southern Chiloé Continental (Andean southern volcanic zone; ~43°S), Chile

    Science.gov (United States)

    Lachowycz, S.; Smith, V. C.; Pyle, D. M.; Mather, T. A.

    2012-12-01

    The eruptive history of the volcanoes in the southern part of the Andean Southern Volcanic Zone (42.5-45°S) is very poorly constrained: only several late Quaternary eruptions have been identified, mostly from study of sparse roadcuts [1]. In this study, we further constrain the Holocene explosive eruption history around 43°S by identifying and analysing tephra layers preserved in a ~3.25m long peat core from Cuesta Moraga [2], ~35km east of Yanteles volcano. Cryptotephra was extracted following the method of [3], in addition to macrotephra; owing to the vicinity of the sampling site to the tephra sources, cryptotephra was found throughout the core stratigraphy, but was sufficiently variable in concentration that discrete layers were identifiable and attributed to specific eruptions. Chemical analysis of the glass by electron microprobe shows that the tephra layers originate from a number of volcanoes in the region. This new tephrostratigraphy improves our knowledge of the important history of explosive volcanism in this area, potentially tying the tephrostratigraphies of surrounding areas (e.g., [4]) and allowing improved evaluation of regional volcanic risk. [1] Naranjo, J.A.., and C. R. Stern, 2004. Holocene tephrochronology of the southernmost part (42°30'-45°S) of the Andean Southern Volcanic Zone. Revista geológica de Chile, 31, pp. 225-240. [2] Heusser, C.J., et al., 1992. Paleoecology of late Quaterary deposits in Chiloé Continental, Chile. Revista Chilena de Historia Natural, 65, pp. 235-245. [3] Blockley, S.P.E., et al., 2005. A new and less destructive laboratory procedure for the physical separation of distal glass tephra shards from sediments. Quaternary Science Reviews, 24, pp. 1952-1960. [4] Watt, S.F.L., et al., 2011. Holocene tephrochronology of the Hualaihue region (Andean southern volcanic zone, ~42°S), southern Chile. Quaternary International, 246, pp. 324-343.

  3. Temperature reconstruction and volcanic eruption signal from tree-ring width and maximum latewood density over the past 304 years in the southeastern Tibetan Plateau.

    Science.gov (United States)

    Li, Mingqi; Huang, Lei; Yin, Zhi-Yong; Shao, Xuemei

    2017-11-01

    This study presents a 304-year mean July-October maximum temperature reconstruction for the southeastern Tibetan Plateau based on both tree-ring width and maximum latewood density data. The reconstruction explained 58% of the variance in July-October maximum temperature during the calibration period (1958-2005). On the decadal scale, we identified two prominent cold periods during AD 1801-1833 and 1961-2003 and two prominent warm periods during AD 1730-1800 and 1928-1960, which are consistent with other reconstructions from the nearby region. Based on the reconstructed temperature series and volcanic eruption chronology, we found that most extreme cold years were in good agreement with major volcanic eruptions, such as 1816 after the Tambora eruption in 1815. Also, clusters of volcanic eruptions probably made the 1810s the coldest decade in the past 300 years. Our results indicated that fingerprints of major volcanic eruptions can be found in the reconstructed temperature records, while the responses of regional climate to these eruption events varied in space and time in the southeastern Tibetan Plateau.

  4. Subaqueous early eruptive phase of the late Aptian Rajmahal volcanism, India: Evidence from volcaniclastic rocks, bentonite, black shales, and oolite

    Directory of Open Access Journals (Sweden)

    Naresh C. Ghose

    2017-07-01

    Full Text Available The late Aptian (118–115 Ma continental flood basalts of the Rajmahal Volcanic Province (RVP are part of the Kerguelen Large Igneous Province, and constitute the uppermost part of the Gondwana Supergroup on the eastern Indian shield margin. The lower one-third of the Rajmahal volcanic succession contains thin layers of plant fossil-rich inter-trappean sedimentary rocks with pyroclasts, bentonite, grey and black shale/mudstone and oolite, whereas the upper two-thirds consist of sub-aerial fine-grained aphyric basalts with no inter-trappean material. At the eastern margin and the north-central sector of the RVP, the volcanics in the lower part include rhyolites and dacites overlain by enstatite-bearing basalts and enstatite-andesites. The pyroclastic rocks are largely felsic in composition, and comprise ignimbrite as well as coarse-grained tuff with lithic clasts, and tuff breccia with bombs, lapilli and ash that indicate explosive eruption of viscous rhyolitic magma. The rhyolites/dacites (>68 wt.% are separated from the andesites (<60 wt.% by a gap in silica content indicating their formation through upper crustal anatexis with only heat supplied by the basaltic magma. On the other hand, partially melted siltstone xenoliths in enstatite-bearing basalts suggest that the enstatite-andesites originated through mixing of the upper crust with basaltic magma, crystallizing orthopyroxene at a pressure-temperature of ∼3 kb/1150 °C. In contrast, the northwestern sector of the RVP is devoid of felsic-intermediate rocks, and the volcaniclastic rocks are predominantly mafic (basaltic in composition. Here, the presence of fine-grained tuffs, tuff breccia containing sideromelane shards and quenched texture, welded tuff breccia, peperite, shale/mudstone and oolite substantiates a subaqueous environment. Based on these observations, we conclude that the early phase of Rajmahal volcanism occurred under predominantly subaqueous conditions. The presence

  5. A Late Holocene explosive mafic eruption of Villarrica volcano, Southern Andes: The Chaimilla deposit

    Science.gov (United States)

    Costantini, L.; Pioli, L.; Bonadonna, C.; Clavero, J.; Longchamp, C.

    2011-03-01

    Villarrica (Chile) is one of the most active volcanoes in South America having erupted about 60 times in the last 460 years. Although its historical eruptive activity has been mainly effusive and weakly explosive, it had strong explosive behaviour in postglacial times. Chaimilla (activity. The deposit is dispersed over an area of 250 km 2 and consists of 8 units (A-H) which were grouped into four sequences. Stratigraphic data suggest that the eruption had a relatively short duration and evolved from i) an Opening phase, dispersing ash, lapilli clasts, accretionary lapilli, blocks and bombs, to ii) a Pulsatory phase, originating a series of magmatic explosions, to iii) a Collapsing phase, characterised by unstable plumes which emplaced a series of pyroclastic density currents intercalated with thin fallout layers and finally to iv) a Climactic phase forming a more sustained plume which eventually collapsed generating the final pyroclastic density currents. The deposit (fall and flow) has a minimum cumulative volume of 0.6 km 3, with the main sustained phase being associated with a VEI 4 and the flow units having a minimum estimated total volume of 0.04 km 3. The erupted material has a homogenous chemical composition but displays a remarkable variability in both textural and physical properties. The density distribution of juvenile products shows a clear bimodality characterised by two main populations: P1 and P2. Population P1 consists of highly vesicular clasts (modal density around 1000 kg m - 3 ) with mostly sub-spherical bubbles and moderately crystallised groundmass with large-sized microlites. Clasts from population P2 are poorly vesicular (modal density around 1600 kg m - 3 ) with irregular to collapsed bubbles and numerous smaller microlites. The variability of both vesicularity and microlite characteristics suggests the involvement of two magma batches with distinct pre-eruptive degassing and rising histories. Our eruption conceptual model implies the

  6. Progress in Near Real-Time Volcanic Cloud Observations Using Satellite UV Instruments

    Science.gov (United States)

    Krotkov, N. A.; Yang, K.; Vicente, G.; Hughes, E. J.; Carn, S. A.; Krueger, A. J.

    2011-12-01

    Volcanic clouds from explosive eruptions can wreak havoc in many parts of the world, as exemplified by the 2010 eruption at the Eyjafjöll volcano in Iceland, which caused widespread disruption to air traffic and resulted in economic impacts across the globe. A suite of satellite-based systems offer the most effective means to monitor active volcanoes and to track the movement of volcanic clouds globally, providing critical information for aviation hazard mitigation. Satellite UV sensors, as part of this suite, have a long history of making unique near-real time (NRT) measurements of sulfur dioxide (SO2) and ash (aerosol Index) in volcanic clouds to supplement operational volcanic ash monitoring. Recently a NASA application project has shown that the use of near real-time (NRT,i.e., not older than 3 h) Aura/OMI satellite data produces a marked improvement in volcanic cloud detection using SO2 combined with Aerosol Index (AI) as a marker for ash. An operational online NRT OMI AI and SO2 image and data product distribution system was developed in collaboration with the NOAA Office of Satellite Data Processing and Distribution. Automated volcanic eruption alarms, and the production of volcanic cloud subsets for multiple regions are provided through the NOAA website. The data provide valuable information in support of the U.S. Federal Aviation Administration goal of a safe and efficient National Air Space. In this presentation, we will highlight the advantages of UV techniques and describe the advances in volcanic SO2 plume height estimation and enhanced volcanic ash detection using hyper-spectral UV measurements, illustrated with Aura/OMI observations of recent eruptions. We will share our plan to provide near-real-time volcanic cloud monitoring service using the Ozone Mapping and Profiler Suite (OMPS) on the Joint Polar Satellite System (JPSS).

  7. VOLCANIC TSUNAMI GENERATING SOURCE MECHANISMS IN THE EASTERN CARIBBEAN REGION

    Directory of Open Access Journals (Sweden)

    George Pararas-Carayannis

    2004-01-01

    Full Text Available Earthquakes, volcanic eruptions, volcanic island flank failures and underwater slides have generated numerous destructive tsunamis in the Caribbean region. Convergent, compressional and collisional tectonic activity caused primarily from the eastward movement of the Caribbean Plate in relation to the North American, Atlantic and South American Plates, is responsible for zones of subduction in the region, the formation of island arcs and the evolution of particular volcanic centers on the overlying plate. The inter-plate tectonic interaction and deformation along these marginal boundaries result in moderate seismic and volcanic events that can generate tsunamis by a number of different mechanisms. The active geo-dynamic processes have created the Lesser Antilles, an arc of small islands with volcanoes characterized by both effusive and explosive activity. Eruption mechanisms of these Caribbean volcanoes are complex and often anomalous. Collapses of lava domes often precede major eruptions, which may vary in intensity from Strombolian to Plinian. Locally catastrophic, short-period tsunami-like waves can be generated directly by lateral, direct or channelized volcanic blast episodes, or in combination with collateral air pressure perturbations, nuéss ardentes, pyroclastic flows, lahars, or cascading debris avalanches. Submarine volcanic caldera collapses can also generate locally destructive tsunami waves. Volcanoes in the Eastern Caribbean Region have unstable flanks. Destructive local tsunamis may be generated from aerial and submarine volcanic edifice mass edifice flank failures, which may be triggered by volcanic episodes, lava dome collapses, or simply by gravitational instabilities. The present report evaluates volcanic mechanisms, resulting flank failure processes and their potential for tsunami generation. More specifically, the report evaluates recent volcanic eruption mechanisms of the Soufriere Hills volcano on Montserrat, of Mt. Pel

  8. Long-term changes in explosive and effusive behaviour at andesitic arc volcanoes: Chronostratigraphy of the Centre Hills Volcano, Montserrat

    Science.gov (United States)

    Coussens, Maya; Cassidy, Michael; Watt, Sebastian F. L.; Jutzeler, Martin; Talling, Peter J.; Barfod, Dan; Gernon, Thomas M.; Taylor, Rex; Hatter, Stuart J.; Palmer, Martin R.; Montserrat Volcano Observatory

    2017-03-01

    Volcanism on Montserrat (Lesser Antilles arc) has migrated southwards since the formation of the Silver Hills 2.5 Ma, and has formed three successively active volcanic centres. The Centre Hills volcano was the focus of volcanism from 1-0.4 Ma, before activity commenced at the currently active Soufrière Hills volcano. The history of activity at these two volcanoes provides an opportunity to investigate the pattern of volcano behaviour on an andesitic arc island over the lifetime of individual volcanoes. Here, we describe the pyroclastic stratigraphy of subaerial exposures around central Montserrat; identifying 11 thick (> 1 m) pumiceous units derived from sustained explosive eruptions of Centre Hills from 0.8-0.4 Ma. Over 10 other, less well- exposed pumiceous units have also been identified. The pumice-rich units are interbedded with andesite lava breccias derived from effusive, dome-forming eruptions of Centre Hills. The stratigraphy indicates that large (up to magnitude 5) explosive eruptions occurred throughout the history of Centre Hills, alongside effusive activity. This behaviour at Centre Hills contrasts with Soufrière Hills, where deposits from sustained explosive eruptions are much less common and restricted to early stages of activity at the volcano, from 175-130 ka. Subsequent eruptions at Soufriere Hills have been dominated by andesitic effusive eruptions. The bulk composition, petrography and mineral chemistry of volcanic rocks from Centre Hills and Soufrière Hills are similar throughout the history of both volcanoes, except for occasional, transient departures to different magma compositions, which mark shifts in vent location or dominant eruption style. For example, the final recorded eruption of Centre Hills, before the initiation of activity at Soufrière Hills, was more silicic than any other identified eruption on Montserrat; and the basaltic South Soufrière Hills episode marked the transition to the current stage of predominantly effusive

  9. Changes in shear-wave splitting before volcanic eruptions

    Science.gov (United States)

    Liu, Sha; Crampin, Stuart

    2015-04-01

    We have shown that observations of shear-wave splitting (SWS) monitor stress-accumulation and stress-relaxation before earthquakes which allows the time, magnitude, and in some circumstances fault-plane of impending earthquakes to be stress-forecast. (We call this procedure stress-forecasting rather than predicting or forecasting to emphasise the different formalism.) We have stress-forecast these parameters successfully three-days before a 1988 M5 earthquake in SW Iceland, and identified characteristic anomalies retrospectively before ~16 other earthquakes in Iceland and elsewhere. SWS monitors microcrack geometry and shows that microcracks are so closely spaced that they verge on fracturing and earthquakes. Phenomena verging on failure in this way are critical-systems with 'butterfly wings' sensitivity. Such critical-systems are very common. The Earth is an archetypal complex heterogeneous interactive phenomenon and must be expected to be a critical-system. We claim this critical system as a New Geophysics of a critically-microcracked rock mass. Such critical systems impose a range of fundamentally-new properties on conventional sub-critical physics/geophysics, one of which is universality. Consequently it is expected that we observe similar stress-accumulation and stress-relaxation before volcanic eruptions to those before earthquakes. There are three eruptions where appropriate changes in SWS have been observed similar to those observed before earthquakes. These are: the 1996 Gjálp fissure eruption, Vatnajökull, Iceland; a 2001 flank eruption on Mount Etna, Sicily (reported by Francesca Bianco, INGV, Naples); and the 2010 Eyjafjajökull ash-cloud eruption, SW Iceland. These will be presented in the same normalised format as is used before earthquakes. The 1996 Gjálp eruption showed a 2½-month stress-accumulation, and a ~1-year stress-relaxation (attributed to the North Atlantic Ridge adjusting to the magma injection beneath the Vatnajökull Ice Cap). The

  10. Monitoring and forecasting Etna volcanic plumes

    Directory of Open Access Journals (Sweden)

    S. Scollo

    2009-09-01

    Full Text Available In this paper we describe the results of a project ongoing at the Istituto Nazionale di Geofisica e Vulcanologia (INGV. The objective is to develop and implement a system for monitoring and forecasting volcanic plumes of Etna. Monitoring is based at present by multispectral infrared measurements from the Spin Enhanced Visible and Infrared Imager on board the Meteosat Second Generation geosynchronous satellite, visual and thermal cameras, and three radar disdrometers able to detect ash dispersal and fallout. Forecasting is performed by using automatic procedures for: i downloading weather forecast data from meteorological mesoscale models; ii running models of tephra dispersal, iii plotting hazard maps of volcanic ash dispersal and deposition for certain scenarios and, iv publishing the results on a web-site dedicated to the Italian Civil Protection. Simulations are based on eruptive scenarios obtained by analysing field data collected after the end of recent Etna eruptions. Forecasting is, hence, supported by plume observations carried out by the monitoring system. The system was tested on some explosive events occurred during 2006 and 2007 successfully. The potentiality use of monitoring and forecasting Etna volcanic plumes, in a way to prevent threats to aviation from volcanic ash, is finally discussed.

  11. Evolution of the magma feeding system during a Plinian eruption: The case of Pomici di Avellino eruption of Somma-Vesuvius, Italy

    Science.gov (United States)

    Massaro, S.; Costa, A.; Sulpizio, R.

    2018-01-01

    The current paradigm for volcanic eruptions is that magma erupts from a deep magma reservoir through a volcanic conduit, typically modelled with fixed rigid geometries such as cylinders. This simplistic view of a volcanic eruption does not account for the complex dynamics that usually characterise a large explosive event. Numerical simulations of magma flow in a conduit combined with volcanological and geological data, allow for the first description of a physics-based model of the feeding system evolution during a sustained phase of an explosive eruption. The method was applied to the Plinian phase of the Pomici di Avellino eruption (PdA, 3945 ±10 cal yr BP) from Somma-Vesuvius (Italy). Information available from volcanology, petrology, and lithology studies was used as input data and as constraints for the model. In particular, Mass Discharge Rates (MDRs) assessed from volcanological methods were used as target values for numerical simulations. The model solutions, which are non-unique, were constrained using geological and volcanological data, such as volume estimates and types of lithic components in the fall deposits. Three stable geometric configurations of the feeding system (described assuming elliptical cross-section of variable dimensions) were assessed for the Eruptive Units 2 and 3 (EU2, EU3), which form the magmatic Plinian phase of PdA eruption. They describe the conduit system geometry at time of deposition of EU2 base, EU2 top, and EU3. A 7-km deep dyke (length 2 a = 200-4 00 m, width 2 b = 10- 12 m), connecting the magma chamber to the surface, characterised the feeding system at the onset of the Plinian phase (EU2 base). The feeding system rapidly evolved into hybrid geometric configuration, with a deeper dyke (length 2 a = 600- 800 m, width 2 b = 50 m) and a shallower cylindrical conduit (diameter D = 50 m, dyke-to-cylinder transition depth ∼2100 m), during the eruption of the EU2 top. The deeper dyke reached the dimensions of 2 a = 2000 m and

  12. Preliminary volcano-hazard assessment for the Katmai volcanic cluster, Alaska

    Science.gov (United States)

    Fierstein, Judy; Hildreth, Wes

    2000-01-01

    The world’s largest volcanic eruption of the 20th century broke out at Novarupta (fig. 1) in June 1912, filling with hot ash what came to be called the Valley of Ten Thousand Smokes and spreading downwind more fallout than all other historical Alaskan eruptions combined. Although almost all the magma vented at Novarupta, most of it had been stored beneath Mount Katmai 10 km away, which collapsed during the eruption. Airborne ash from the 3-day event blanketed all of southern Alaska, and its gritty fallout was reported as far away as Dawson, Ketchikan, and Puget Sound (fig. 21). Volcanic dust and sulfurous aerosol were detected within days over Wisconsin and Virginia; within 2 weeks over California, Europe, and North Africa; and in latter-day ice cores recently drilled on the Greenland ice cap. There were no aircraft in Alaska in 1912—fortunately! Corrosive acid aerosols damage aircraft, and ingestion of volcanic ash can cause abrupt jet-engine failure. Today, more than 200 flights a day transport 20,000 people and a fortune in cargo within range of dozens of restless volcanoes in the North Pacific. Air routes from the Far East to Europe and North America pass over and near Alaska, many flights refueling in Anchorage. Had this been so in 1912, every airport from Dillingham to Dawson and from Fairbanks to Seattle would have been enveloped in ash, leaving pilots no safe option but to turn back or find refuge at an Aleutian airstrip west of the ash cloud. Downwind dust and aerosol could have disrupted air traffic anywhere within a broad swath across Canada and the Midwest, perhaps even to the Atlantic coast. The great eruption of 1912 focused scientific attention on Novarupta, and subsequent research there has taught us much about the processes and hazards associated with such large explosive events (Fierstein and Hildreth, 1992). Moreover, work in the last decade has identified no fewer than 20 discrete volcanic vents within 15 km of Novarupta (Hildreth and others

  13. Hazard map for volcanic ballistic impacts at El Chichón volcano (Mexico)

    Science.gov (United States)

    Alatorre-Ibarguengoitia, Miguel; Ramos-Hernández, Silvia; Jiménez-Aguilar, Julio

    2014-05-01

    The 1982 eruption of El Chichón Volcano in southeastern Mexico had a strong social and environmental impact. The eruption resulted in the worst volcanic disaster in the recorded history of Mexico, causing about 2,000 casualties, displacing thousands, and producing severe economic losses. Even when some villages were relocated after the 1982 eruption, many people still live and work in the vicinities of the volcano and may be affected in the case of a new eruption. The hazard map of El Chichón volcano (Macías et al., 2008) comprises pyroclastic flows, pyroclastic surges, lahars and ash fall but not ballistic projectiles, which represent an important threat to people, infrastructure and vegetation in the case of an eruption. In fact, the fatalities reported in the first stage of the 1982 eruption were caused by roof collapse induced by ashfall and lithic ballistic projectiles. In this study, a general methodology to delimit the hazard zones for volcanic ballistic projectiles during volcanic eruptions is applied to El Chichón volcano. Different scenarios are defined based on the past activity of the volcano and parameterized by considering the maximum kinetic energy associated with ballistic projectiles ejected during previous eruptions. A ballistic model is used to reconstruct the "launching" kinetic energy of the projectiles observed in the field. The maximum ranges expected for the ballistics in the different explosive scenarios defined for El Chichón volcano are presented in a ballistic hazard map which complements the published hazard map. These maps assist the responsible authorities to plan the definition and mitigation of restricted areas during volcanic crises.

  14. May 2011 eruption of Telica Volcano, Nicaragua: Multidisciplinary observations

    Science.gov (United States)

    Witter, M. R.; Geirsson, H.; La Femina, P. C.; Roman, D. C.; Rodgers, M.; Muñoz, A.; Morales, A.; Tenorio, V.; Chavarria, D.; Feineman, M. D.; Furman, T.; Longley, A.

    2011-12-01

    Telica volcano, an andesitic stratovolcano in north-western Nicaragua, erupted in May 2011. The eruption, produced ash but no lava and required the evacuation of over 500 people; no injuries were reported. We present the first detailed report of the eruption, using information from the TElica Seismic ANd Deformation (TESAND) network, that provides real-time data, along with visual observations, ash leachate analysis, and fumarole temperature measurements. Telica is located in the Maribios mountain range. It is one of the most active volcanoes in Nicaragua and has frequent small explosions and rare large (VEI 4) eruptions, with the most recent sizable eruptions (VEI 2) occurring in 1946 and 1999. The 2011 eruption is the most explosive since 1999. The eruption consisted of a series of ash explosions, with the first observations from May 8, 2011 when local residents reported ash fall NE of the active crater. Popping sounds could be heard coming from the crater on May 10. On May 13, the activity intensified and continued with some explosions every day for about 2 weeks. The well-defined plumes originated from the northern part of the crater. Ash fall was reported 4 km north of the active crater on May 14. The largest explosion at 2:54 pm (local time) on May 21 threw rocks from the crater and generated a column 2 km in height. Fresh ash samples were collected on May 16, 18, and 21 and preliminary inspection shows that the majority of the material is fragmented rock and crystalline material, i.e. not juvenile. Ash leachates (ash:water = 1:25) contain a few ppb As, Se, and Cd; tens of ppb Co and Ni; and up to a few hundred ppb Cu and Zn. Telica typically has hundreds of small seismic events every day, even when the volcano is not erupting. The TESAND network detected an increase in the rate and magnitude of seismic activity, with a maximum magnitude of 3.3. Elevated fumarole temperatures at locations near the active vent were also observed throughout the May 2011

  15. The Pacific SST response to volcanic eruptions over the past millennium based on the CESM-LME

    Science.gov (United States)

    Man, W.; Zuo, M.

    2017-12-01

    The impact of the northern hemispheric, tropical and southern hemispheric volcanic eruptions on the Pacific sea surface temperature (SST) and its mechanism are investigated using the Community Earth System Model Last Millennium Ensemble. Analysis of the simulations indicates that the Pacific SST features a significant El Niño-like pattern a few months after the northern hemispheric and tropical eruptions, and with a weaker such tendency after the southern hemispheric eruptions. Furthermore, the Niño3 index peaks lagging one and a half years after the northern hemispheric and tropical eruptions. Two years after all three types of volcanic eruptions, a La Niña-like pattern over the equatorial Pacific is observed, which seems to form an El Niño-Southern Oscillation (ENSO) cycle. In addition, the westerly anomalies at 850 hPa over the western-to-central Pacific appear ahead of the warm SST; hence, the El Niño-like warming over the eastern Pacific can be attributed to the weakening of the trade winds. We further examined the causes of westerly anomalies and find that a shift of the intertropical convergence zone (ITCZ) can explain the El Niño-like response to the northern hemispheric eruptions, which is not applicable for tropical or southern hemispheric eruptions. Instead, the reduction in the zonal equatorial SST gradient through the ocean dynamical thermostat mechanism, combined with the land-sea thermal contrast between the Maritime Continent (MC) and the surrounding ocean and the divergent wind induced by the decreased precipitation over the MC, can trigger the westerly anomalies over the equatorial Pacific, which is applicable for all three types of eruptions.

  16. Chronology of the 2015 eruption of Hakone volcano, Japan: geological background, mechanism of volcanic unrest and disaster mitigation measures during the crisis

    Science.gov (United States)

    Mannen, Kazutaka; Yukutake, Yohei; Kikugawa, George; Harada, Masatake; Itadera, Kazuhiro; Takenaka, Jun

    2018-04-01

    The 2015 eruption of Hakone volcano was a very small phreatic eruption, with total erupted ash estimated to be in the order of only 102 m3 and ballistic blocks reaching less than 30 m from the vent. Precursors, however, had been recognized at least 2 months before the eruption and mitigation measures were taken by the local governments well in advance. In this paper, the course of precursors, the eruption and the post-eruptive volcanic activity are reviewed, and a preliminary model for the magma-hydrothermal process that caused the unrest and eruption is proposed. Also, mitigation measures taken during the unrest and eruption are summarized and discussed. The first precursors observed were an inflation of the deep source and deep low-frequency earthquakes in early April 2015; an earthquake swarm then started in late April. On May 3, steam wells in Owakudani, the largest fumarolic area on the volcano, started to blowout. Seismicity reached its maximum in mid-May and gradually decreased; however, at 7:32 local time on June 29, a shallow open crack was formed just beneath Owakudani as inferred from sudden tilt change and InSAR analysis. The same day mud flows and/or debris flows likely started before 11:00 and ash emission began at about 12:30. The volcanic unrest and the eruption of 2015 can be interpreted as a pressure increase in the hydrothermal system, which was triggered by magma replenishment to a deep magma chamber. Such a pressure increase was also inferred from the 2001 unrest and other minor unrests of Hakone volcano during the twenty-first century. In fact, monitoring of repeated periods of unrest enabled alerting prior to the 2015 eruption. However, since open crack formation seems to occur haphazardly, eruption prediction remains impossible and evacuation in the early phase of volcanic unrest is the only way to mitigate volcanic hazard.[Figure not available: see fulltext.

  17. Occurrence of an unknown Atlantic eruption in the Chaîne des Puys volcanic field (Massif Central, France)

    Science.gov (United States)

    Jouannic, G.; Walter-Simonnet, A. V.; Bossuet, G.; Cubizolle, H.; Boivin, P.; Devidal, J. L.; Oberlin, C.

    2014-08-01

    A volcanic ash layer, called MF1, was recently identified in Holocene sediments from the Gourgon and Molhiac peat bogs (Monts du Forez, French Massif Central). This ash layer consists of colorless shards with a heterogeneous trachytic to rhyolitic composition. The trace elements analyzed by Laser Ablation Inductively Coupled Plasma Mass Spectrometry (LA-ICP-MS) attest to a local origin. Radiocarbon dating of peat samples taken within and below the ash layer indicates the best age at 6339 ± 61 cal yr BP, i.e. an age contemporaneous with the volcanic activity of Montchal, Montcineyre and Pavin volcanoes from the Chaîne des Puys volcanic field. These volcanoes are characterized by basaltic and trachytic products, thus the rhyolitic composition of MF1 tephra suggests that it is likely originated from an unknown eruption. These results again confirm the interest of studying the distal volcanic ash fallouts in order to establish or specify records of past eruptions of volcanic fields. Identification of this new tephra layer also provides an additional tephrochronological marker for Eastern French Massif Central.

  18. Active spreading processes at ultraslow mid-ocean ridges: The 1999-2001 seismo-volcanic episode at 85°E Gakkel ridge, Arctic Ocean

    Science.gov (United States)

    Schlindwein, Vera; Riedel, Carsten; Korger, Edith; Läderach, Christine

    2010-05-01

    seismicity migration, the swarm activated the rift valley boundary faults in a large area. Along the entire Gakkel ridge, normal fault earthquakes occur predominantly at volcanic centres pointing to strong tectonomagmatic interplay. - unusual change in swarm characteristics: Following 2-3 months of predominantly tectonic faulting, the swarm displays increasing non-double couple character events and an abrupt change in event rate preceded by three conspicuous events of high similarity located in the vicinity of potentially active volcanic structures. Brittle faulting may thus trigger later volcanic discharge or it could be in turn triggered by rising melts. - unusual volcanic discharge: In 2007, Sohn et al. (2008) discovered abundant pyroclastic deposits containing limu o Pele at the 85°E volcanic complex and therefore postulated recent deep submarine explosive volcanism at this site. In order to drive these explosive eruptions at 4 km water depth, high volume fractions of magmatic volatiles must be accumulated locally, for example at the top of a magma chamber under a thick and stable lithospheric roof. Together with the Strombolian eruptions which we inferred from the seismoacoustic explosion signals recorded in 2001, this indicates that an explosive eruption style may be common for volcanic spreading events at ultraslow spreading ridges. Sohn et al. (2008), Explosive volcanism on the ultraslow-spreading Gakkel Ridge, Arctic Ocean, Nature, 453,doi:10.1038/nature07075.

  19. Seismic constraints on caldera dynamics from the 2015 Axial Seamount eruption.

    Science.gov (United States)

    Wilcock, William S D; Tolstoy, Maya; Waldhauser, Felix; Garcia, Charles; Tan, Yen Joe; Bohnenstiehl, DelWayne R; Caplan-Auerbach, Jacqueline; Dziak, Robert P; Arnulf, Adrien F; Mann, M Everett

    2016-12-16

    Seismic observations in volcanically active calderas are challenging. A new cabled observatory atop Axial Seamount on the Juan de Fuca ridge allows unprecedented real-time monitoring of a submarine caldera. Beginning on 24 April 2015, the seismic network captured an eruption that culminated in explosive acoustic signals where lava erupted on the seafloor. Extensive seismic activity preceding the eruption shows that inflation is accommodated by the reactivation of an outward-dipping caldera ring fault, with strong tidal triggering indicating a critically stressed system. The ring fault accommodated deflation during the eruption and provided a pathway for a dike that propagated south and north beneath the caldera's east wall. Once north of the caldera, the eruption stepped westward, and a dike propagated along the extensional north rift. Copyright © 2016, American Association for the Advancement of Science.

  20. Evidence for water influx from a caldera lake during the explosive hydromagmatic eruption of 1790, Kilauea volcano, Hawaii

    Science.gov (United States)

    Mastin, L.G.

    1997-01-01

    In 1790 a major hydromagmatic eruption at the summit of Kilauea volcano, Hawaii, deposited up to 10 m of pyroclastic fall and surge deposits and killed several dozen Hawaiian natives who were crossing the island. Previous studies have hypothesized that the explosivity of this eruption was due to the influx of groundwater into the conduit and mixing of the groundwater with ascending magma. This study proposes that surface water, not groundwater, was the agent responsible for the explosiveness of the eruption. That is, a lake or pond may have existed in the caldera in 1790 and explosions may have taken place when magma ascended into the lake from below. That assertion is based on two lines of evidence: (1) high vesicularity (averaging 73% of more than 3000 lapilli) and high vesicle number density (105-107 cm-3 melt) of pumice clasts suggest that some phases of the eruption involved vigorous, sustained magma ascent; and (2) numerical calculations suggest that under most circumstances, hydrostatic pressure would not be sufficient to drive water into the eruptive conduit during vigorous magma ascent unless the water table were above the ground surface. These results are supported by historical data on the rate of infilling of the caldera floor during the early 1800s. When extrapolated back to 1790, they suggest that the caldera floor was below the water table.

  1. Modulations of stratospheric ozone by volcanic eruptions

    Science.gov (United States)

    Blanchette, Christian; Mcconnell, John C.

    1994-01-01

    We have used a time series of aerosol surface based on the measurements of Hofmann to investigate the modulation of total column ozone caused by the perturbation to gas phase chemistry by the reaction N2O5(gas) + H2O(aero) yields 2HNO3(gas) on the surface of stratospheric aerosols. We have tested a range of values for its reaction probability, gamma = 0.02, 0.13, and 0.26 which we compared to unperturbed homogeneous chemistry. Our analysis spans a period from Jan. 1974 to Oct. 1994. The results suggest that if lower values of gamma are the norm then we would expect larger ozone losses for highly enhanced aerosol content that for larger values of gamma. The ozone layer is more sensitive to the magnitude of the reaction probability under background conditions than during volcanically active periods. For most conditions, the conversion of NO2 to HNO3 is saturated for reaction probability in the range of laboratory measurements, but is only absolutely saturated following major volcanic eruptions when the heterogeneous loss dominates the losses of N2O5. The ozone loss due to this heterogeneous reaction increases with the increasing chlorine load. Total ozone losses calculated are comparable to ozone losses reported from TOMS and Dobson data.

  2. Hydrological sensitivity of volcanically disturbed watersheds—a lesson reinforced at Pinatubo

    Science.gov (United States)

    Major, J. J.; Janda, R. J.

    2016-12-01

    The climactic June 1991 eruption of Mount Pinatubo devastated many surrounding catchments with thick pyroclastic fall and flow deposits, and subsequent hydrogeomorphic responses were dramatic and persisted for years. But in the 24 hours preceding the climactic eruption there was less devastating eruptive activity that had more subtle, yet significant, impact on catchment hydrology. Stratigraphic relations show damaging lahars swept all major channels east of the volcano, starting late on June 14 and continuing through (and in some instances after) midday on June 15, before the climactic phase of the eruption began and before Typhoon Yunya struck the region. These early lahars were preceded by relatively small explosions and pyroclastic surges that emplaced fine-grained ash in the upper catchments, locally damaged or destroyed vegetation, reduced hillside infiltration capacity, and smoothed surface roughness. Thus the lahars, likely triggered by typical afternoon monsoon storms perhaps enhanced by local thermal influences of fresh volcanic deposits, did not result from extraordinary tropical rainfall or exceptional volcaniclastic deposition. Instead, direct rainfall-runoff volume increased substantially as a consequence of vegetation damage and moderate deposition of fine ash. Rapid runoff from hillsides to channels initiated hillside and bank erosion as well as channel scour, producing debris flows and hyperconcentrated flows. Timing of some lahars varied across catchments as well as downstream within catchments with respect to climactic pumice fall, demonstrating complex interplay among volcanic processes, variations in catchment disturbance, and rainfall timing and intensity. Occurrence of these early lahars supports the hypothesis that eruptions that deposit fine ash in volcanic catchments can instigate major hydrogeomorphic responses even when volcanic disturbances are modest—an effect that can be masked by later eruption impacts.

  3. Eruptive dynamics and hazards associated with obsidian bearing ignimbrites of the Geghama Volcanic Highland, Central Armenia: a textural insight

    Science.gov (United States)

    Matthews, Zoe; Manning, Christina J.

    2017-04-01

    The Geghama Volcanic highland in central Armenia is an ideal setting to study the young ( 750-25 ka [1]) volcanism that characterises the Lesser Caucasus region. The volcanism in the area is bimodal in composition: the eastern highlands are dominated by numerous monogenetic scoria cones, whilst the west shows more evolved volcanism centered on two obsidian bearing, polygenetic domes (Hatis and Gutanasar) [2]. Activity at Hatis and Gutanasar is thought to have spanned 550ka-200ka [3] and produced a range of products including obsidian flows, ignimbrites and basaltic scoria cones, consistent with long lived and complex magma storage systems. During a similar time period there is evidence for the presence of hominin groups in the surrounding region [3] and it is likely that at least some of the volcanic activity at Hatis and Gutanasar impacted on their distribution [4]. A better understanding of the eruptive behaviour of these volcanoes during this period could therefore shed light on the effect of volcanic activity on the dispersal of man through this period. Whilst large regional studies have striven to better understand the timing and source of volcanism in Armenia, there have been few detailed studies on single volcanoes. Obsidian is ubiquitous within the volcanic material of both Gutanasar and Hatis as lava flows, dome deposits and within ignimbrites. This study aims to better understand the eruptive history of Gutanasar, with specific focus upon the determination of the petrogenetic history of obsidian lenses observed within the ignimbrite deposits. Identification of these obsidians as the result of welding or in-situ melting will help constrain eruptive volumes and flow thickness, important for the reconstruction of palaeo-volcanic hazards. In order to interpret how this obsidian was deposited, macro textural analysis is combined with micro textural measurements of microlite crystals. Quantitative measurements of microlites in obsidian can provide significant

  4. The mechanisms of fine particle generation and electrification during Mount St. Helens volcanic eruption

    Science.gov (United States)

    Cheng, R. J.

    1982-01-01

    Microscopical investigation of volcanic ash collected from ground stations during Mount St. Helens eruptions reveal a distinctive bimodel size distribution with high concentrations of particle ranges at (1) 200-100 microns and (2) 20-0.1 microns. Close examination of individual particles shows that most larger ones are solidified magma particles of porous pumice with numerous gas bubbles in the interior and the smaller ones are all glassy fragments without any detectable gas bubbles. Elemental analysis demonstrates that the fine fragments all have a composition similar to that of the larger pumice particles. Laboratory experiments suggest that the formation of the fine fragments is by bursting of glassy bubbles from a partially solidified surface of a crystallizing molten magma particle. The production of gas bubbles is due to the release of absorbed gases in molten magma particles when solubility decreases during phase transition. Diffusion cloud chamber experiments strongly indicate that sub-micron volcanic fragments are highly hygroscopic and extremely active as cloud condensation nuclei. Ice crystals also are evidently formed on those fragments in a supercooled (-20 C) cloud chamber. It has been reported that charge generation from ocean volcanic eruptions is due to contact of molten lava with sea water. This seems to be insufficient to explain the observed rapid and intense lightning activities over Mount St. Helens eruptions. Therefore, a hypothesis is presented here that highly electrically charged fine solid fragments are ejected by bursting of gas bubbles from the surface of a crystallizing molten magma particles.

  5. Pre-eruptive volatile and erupted gas phase characterization of the 2014 basalt of Bárðarbunga volcanic system, Iceland.

    Science.gov (United States)

    Haddadi, Baptiste; Moune, Séverine; Sigmarsson, Olgeir; Gauthier, Pierre-Jean; Gouhier, Mathieu

    2015-04-01

    The 2014 Holuhraun eruption on the Bárðarbunga Volcanic System is the largest fissure eruption in Iceland since the 1783 Laki eruption. The eruption started end of August 2014 and has been characterized by large emission of SO2 into the atmosphere. It provides a rare opportunity to study in details magmatic and degassing processes during a large-volume fissure eruption. In order to characterize the pre-eruptive magmatic composition and to assess the plume chemistry at the eruption site, lava and tephra were sampled together with the eruption plume. The basalt composition is olivine tholeiite with MgO close to 7 wt%. It is phenocryst-poor with plagioclase as the dominant mineral phase but olivine and clinopyroxene are also present together with sulphide globules composed principally of pyrite and chalcopyrite. The volatile (S, Cl and F) and major element concentrations were measured by the electron microprobe in melt inclusions (MIs) trapped in plagioclase and clinopyroxene and groundmass glass. The MIs composition ranges from fairly primitive basaltic compositions (MgO: 9.03 wt%) down to evolved qz-tholeiites (MgO: 5.57 wt%), with estimated pre-eruptive S concentrations of 1500 ppm. Tephra groundmass glass contains 400 ppm S, whereas Cl and F concentrations are respectively slightly lower and indistinguishable from those in the MIs. This implies limited exsolution of halogens but 75% of the initial sulphur content. Relatively to their total iron content, MIs are sulphur saturated, and their oxygen fugacity close to the FMQ buffer. The difference between the estimated initial volatile concentrations measured in the MIs and in the tephra groundmass (i.e. the so-called petrological method) yields 7.2 Mt SO2, limited HCl and no HF atmospheric mass loading from the Holuhraun 2014 eruption. The SO2/HCl molar ratio of the gas phase, calculated from the MIs, is 13 and 14, respectively, using average and estimated pre-eruptive S and Cl concentrations in the MIs. Filter

  6. El Chichón's "surprise" eruption in 1982: lessons for reducing volcano risk

    Science.gov (United States)

    Tilling, R.I.

    2009-01-01

    During one week (28 March–4 April 1982), three powerful explosive eruptions (VEI 5) of El Chichón Volcano caused the worst volcanic disaster in Mexico's recorded history. Pyroclastic flows and surges obliterated nine villages, killing about 2,000 people, and ashfalls downwind posed socio–economic hardships for many thousands of inhabitants of the States of Chiapas and Tabasco. The unexpected and vigorous eruption of 28 caused a hasty, confused evacuation of most villagers in the area. Activity was greatly diminished the next five days, and then the most powerful and lethal eruptions occurred 3–4 April—tragically, after many evacuees were allowed by authorities to return home.

  7. Petrography and petrology of the Nornahraun eruption of the Bárðarbunga volcanic system, Iceland

    Science.gov (United States)

    Guðfinnsson, Guðmundur H.; Halldórsson, Sæmundur Ari; Bali, Enikő; Jakobsson, Sigurður; Sverrisdóttir, Guðrún; Höskuldssson, Ármann; Riishuus, Morten S.; Þórðarson, Þorvaldur; The 2014 Nornahraun Eruption Team

    2015-04-01

    The on-going fissure eruption north of Dyngjujökull is becoming the largest of its kind in Iceland since the 1783-84 Laki eruption. The erupted lava is olivine tholeiite, containing up to 5% normative olivine. It is relatively macrocryst-poor, initially containing less than 1% phenocrysts by volume, increasing to over 1% as the eruption has progressed. Plagioclase is the dominant macrocryst phase but olivine and augite are also present. In most of the samples, crystallization of the groundmass is substantial, with plagioclase and augite as the key groundmass minerals and minor olivine. It features subophitic texture, typical for olivine tholeiites, where the interstitial glass contains dendritic Fe-Ti oxide. During the first two months of the eruption, magma composition has been constant, displaying uniform major and trace element composition and nearly uniform isotopic compositions (Halldórsson et al. (a), this session). The major and trace element contents, in addition to the isotope ratios of lead, are indistinguishable from basalts in the Bárðarbunga volcanic system (Halldórsson et al. (b), this session). The compositional trends are consistent with crystallization along the ol-plag-cpx cotectic. Crystallization depth estimates, based on the pressure dependence of the cotectic (Yang et al., 1996), indicate that the magma equilibrated at a minimum depth between 6-9 km, consistent with depth estimates derived from CO2-bearing fluid inclusions trapped in plagioclase phenocrysts (Bali et al., this session). The bulk of the earthquakes associated with this volcano-tectonic episode are also in this range (e.g., Sigmundsson et al., 2015). Calculations with several different magma geothermometers suggest that the temperature of the magma as it rises to the surface is about 1170-1180°C, in good agreement with on-site measurements by thermal imaging cameras. The eruption has been characterized by steady, high emission of SO2. The sulfur-rich nature of the lava is

  8. Lighting Observations During the Mt. Augustine Volcanic Eruptions With the Portable Lightning Mapping Stations

    Science.gov (United States)

    Rison, W.; Krehbiel, P.; Thomas, R.; Edens, H.; Aulich, G.; O'Connor, N.; Kieft, S.; McNutt, S.; Tytgat, G.; Clark, E.

    2006-12-01

    Following the initial eruptions of Mt. Augustine on January 11-17 2006, we quickly prepared and deployed a first contingent of two portable mapping stations. This was our first use of the newly-developed portable stations, and we were able to deploy them in time to observe the second set of explosive eruptions during the night of January~27-28. The stations were located 17~km apart on the west coast of the Kenai Peninsula, 100~km distant from Augustine on the far western side of Cook Inlet. The stations comprised a minimal network capable of determining the azimuthal direction of VHF radiation sources from electrical discharges, and thus the transverse location of the electrical activity relative to the volcano. The time series data from the southern, Homer station for the initial, energetic explosion at 8:31 pm on January~27 revealed the occurrence of spectacular lightning, which from the two-station data drifted southward from Augustine with time, in the same direction as the plume from the eruption. About 300 distinct lightning discharges occurred over an 11-minute time interval, beginning 2-3~min after the main explosion. The lightning quickly became increasingly complex with time and developed large horizontal extents. One of the final discharges of the sequence lasted 600~ms and had a transverse extent of 15~km, extending to 22~km south of Augustine's summit. In addition to this more usual form of lightning, continuous bursts of radio frequency radiation occurred during the explosion itself, indicating that the tephra was highly charged upon being ejected from the volcano. A completely unplanned and initially missed but one of several fortuitous aspects of the observations was that the Homer station functioned as a 'sea-surface interferometer' whose interference pattern can be used to determine the altitude variation with time for some discharges. The station's VHF antenna was located on the edge of a bluff 210~m above Cook Inlet and received both the direct

  9. Stratigraphy and eruption age of the volcanic rocks in the west of Miyanoharu area, Kumamoto Prefecture

    International Nuclear Information System (INIS)

    Kamata, Hiroki

    1985-01-01

    The detailed stratigraphic survey, K-Ar age determinations and NRM measurements of the volcanic rocks in the west of Miyanoharu area revealed the volcanic history as follows: Hornblende andesite lava with plagioclase megacryst (Yoshinomoto lava) erupted during 2.8 - 2.5 Ma (Gauss normal epoch), accompanied by small amount of pyroclastic materials. After this eruption, Kamitarumizu hypersthene-augite andesite lava (1.7 - 1.3 Ma; reversed), Yabakei pyroclastic flow (0.99 Ma; Jaramillo normal event), Yamakogawa biotite rhyolite lava (0.9 Ma; reversed) and Daikanbo hypersthene-augite andesite lava (0.8 Ma; normal) erupted successively prior to the Aso-1 pyroclastic flow (0.3 - 0.4 Ma). Both the K-Ar ages and NRM data are consistent with the stratigraphic sequence (Fig. 2), which suggests that the activity of andesite and rhyolite is intercalated with each other during Pleistocene in the studied area. The compiled radiometric age data in the central-north Kyushu show that the age of volcanic activity that has previously been inferred as middle Miocene is of Pliocene, and its distribution is limited within the quadrilateral (60 km x 40 km) where the pre-Tertiary basement rocks are absent. The distribution of volcanic rocks is historically zonated such that the rocks of older age up to 5 Ma develop toward the outer rim of the quadrilateral, which coincides with the 0 mgal contour bordering the large low Bouguer anomaly. These facts suggest that the volcanic activity is remarkably relevant to the subsidence of this area, where the volcano-tectonic depression has been formed after 5 Ma to the present, and filled with lavas and pyroclastic materials with scarce sedimentary rocks in the tension stress field during Plio-Pleistocene age. (Kubozono, M.)

  10. A mixture of exponentials distribution for a simple and precise assessment of the volcanic hazard

    Directory of Open Access Journals (Sweden)

    A. T. Mendoza-Rosas

    2009-03-01

    Full Text Available The assessment of volcanic hazard is the first step for disaster mitigation. The distribution of repose periods between eruptions provides important information about the probability of new eruptions occurring within given time intervals. The quality of the probability estimate, i.e., of the hazard assessment, depends on the capacity of the chosen statistical model to describe the actual distribution of the repose times. In this work, we use a mixture of exponentials distribution, namely the sum of exponential distributions characterized by the different eruption occurrence rates that may be recognized inspecting the cumulative number of eruptions with time in specific VEI (Volcanic Explosivity Index categories. The most striking property of an exponential mixture density is that the shape of the density function is flexible in a way similar to the frequently used Weibull distribution, matching long-tailed distributions and allowing clustering and time dependence of the eruption sequence, with distribution parameters that can be readily obtained from the observed occurrence rates. Thus, the mixture of exponentials turns out to be more precise and much easier to apply than the Weibull distribution. We recommended the use of a mixture of exponentials distribution when regimes with well-defined eruption rates can be identified in the cumulative series of events. As an example, we apply the mixture of exponential distributions to the repose-time sequences between explosive eruptions of the Colima and Popocatépetl volcanoes, México, and compare the results obtained with the Weibull and other distributions.

  11. The 1902-3 eruptions of the Soufrière, St Vincent: Impacts, relief and response

    Science.gov (United States)

    Pyle, David M.; Barclay, Jenni; Armijos, Maria Teresa

    2018-05-01

    Retrospective analysis of the contemporary colonial and scientific records of a major explosive eruption of the Soufrière of St Vincent from 1902 to 1903 reveals how this significant and prolonged event presented challenges to the authorities charged with managing the crisis and its aftermath. In a small-island setting vulnerable to multiple hazards, the spatial footprint of the volcanic hazard and the nature and intensity of the hazard effects were rather different to those of other recurrent hazards such as hurricanes. The eruption affected the same parts of the island that had been impacted by prior explosive eruptions in 1718 and 1812, and hurricanes in 1831 and 1898, with consequences that disproportionately affected those working in and around the large sugar estates. The official response to the eruption, both in terms of short-term relief and remediation, was significantly accelerated by the existence of mature plans for land-reform following the collapse of the sugar market, and ongoing plans for rebuilding in the aftermath of the destructive hurricane of 1898. The picture that this analysis helps to illuminate provides insights both into the nature of the particular eruptive episode, and the human and social response to that episode. This not only informs discussion and planning for future explosive eruptions on St Vincent, but provides important empirical evidence for building effective responses in similar multihazard contexts.

  12. Volcanic ash hazards and aviation risk: Chapter 4

    Science.gov (United States)

    Guffanti, Marianne C.; Tupper, Andrew C.

    2015-01-01

    The risks to safe and efficient air travel from volcanic-ash hazards are well documented and widely recognized. Under the aegis of the International Civil Aviation Organization, globally coordinated mitigation procedures are in place to report explosive eruptions, detect airborne ash clouds and forecast their expected movement, and issue specialized messages to warn aircraft away from hazardous airspace. This mitigation framework is based on the integration of scientific and technical capabilities worldwide in volcanology, meteorology, and atmospheric physics and chemistry. The 2010 eruption of Eyjafjallajökull volcano in Iceland, which led to a nearly week-long shutdown of air travel into and out of Europe, has prompted the aviation industry, regulators, and scientists to work more closely together to improve how hazardous airspace is defined and communicated. Volcanic ash will continue to threaten aviation and scientific research will continue to influence the risk-mitigation framework.

  13. Hydrothermal and magmatic components in the Ruapehu, Pinatubo, Lonquimay and Yasur volcanic ashes

    International Nuclear Information System (INIS)

    Reyes, A.G.; Trompetter, W.J.

    2005-01-01

    Fresh ash from explosive volcanic eruptions of Ruapehu in New Zealand (1995-1996), Pinatubo in the Philippines (1991), Lonquimay in Chile (1989) and Ysur in Vanuatu (1988) were leached in distilled water in a boiling water bath. The leachates were analysed by ion chromatography and ICP-MS and the chemical composition of leached ash measured by IBA, NAA and XRF. Water-soluble minerals adhering on ash surfaces were examined under SEM-EDX and thin sections of the ash were mineralogically analysed under petrographic microscope. The leachates contain mainly adsorbed material from the volcanic plume and the leached ash insoluble plume precipitates or primary volcanic mineral. At Yasur and Lonquimay, where the erupted material is entirely magmatic, the F/S and F/Cl ratios are 100x to 1000x higher and the S/B ratio 10x lower than in Pinatubo where an extensive hydrothermal system had been extant prior to eruption. In Ruhapehu, the adsorbed material contains a significant component of evaporated Crater Lake water. (author). 9 refs., 1 fig

  14. Palaeomagnetic constraints on the age of Lomo Negro volcanic eruption (El Hierro, Canary Islands)

    Science.gov (United States)

    Villasante-Marcos, Víctor; Pavón-Carrasco, Francisco Javier

    2014-12-01

    A palaeomagnetic study has been carried out in 29 cores drilled at six different sites from the volcanic products of Lomo Negro eruption (El Hierro, Canary Islands, Spain). Systematic thermal and alternating field demagnetization of the samples' natural remanent magnetization revealed a northward, stable palaeomagnetic direction similar in all the samples. Rock magnetic experiments indicate that this palaeomagnetic component is carried by a mixture of high-Ti and low-Ti titanomagnetite crystals typical of basaltic lithologies that have experienced a significant degree of oxyexsolution during subaerial cooling. The well constrained palaeomagnetic direction of Lomo Negro lavas was used to perform a palaeomagnetic dating of the volcanic event, using the SHA.DIF.14k global geomagnetic model restricted for the last 3000 yr. It can be unambiguously concluded that Lomo Negro eruption occurred well before the previously proposed date of 1793 AD, with three different age ranges being statistically possible during the last 3 ka: 115 BC-7 AD, 410-626 AD and 1499-1602 AD. The calibration of a previously published non-calibrated 14C dating suggests a XVI c. date for Lomo Negro eruption. This conclusion leaves open the possibility that the seismic crisis occurred at El Hierro in 1793 AD was related to an intrusive magmatic event that either did not reach the surface or either culminated in an unregistered submarine eruption similar to the one occurred in 2011-2012 at the southern off-shore ridge of the island.

  15. Crustal deformation and volcanism at active plate boundaries

    Science.gov (United States)

    Geirsson, Halldor

    Most of Earth's volcanoes are located near active tectonic plate boundaries, where the tectonic plates move relative to each other resulting in deformation. Likewise, subsurface magma movement and pressure changes in magmatic systems can cause measurable deformation of the Earth's surface. The study of the shape of Earth and therefore studies of surface deformation is called geodesy. Modern geodetic techniques allow precise measurements (˜1 mm accuracy) of deformation of tectonic and magmatic systems. Because of the spatial correlation between tectonic boundaries and volcanism, the tectonic and volcanic deformation signals can become intertwined. Thus it is often important to study both tectonic and volcanic deformation processes simultaneously, when one is trying to study one of the systems individually. In this thesis, I present research on crustal deformation and magmatic processes at active plate boundaries. The study areas cover divergent and transform plate boundaries in south Iceland and convergent and transform plate boundaries in Central America, specifically Nicaragua and El Salvador. The study is composed of four main chapters: two of the chapters focus on the magma plumbing system of Hekla volcano, Iceland and the plate boundary in south Iceland; one chapter focuses on shallow controls of explosive volcanism at Telica volcano, Nicaragua; and the fourth chapter focuses on co- and post-seismic deformation from a Mw = 7.3 earthquake which occurred offshore El Salvador in 2012. Hekla volcano is located at the intersection of a transform zone and a rift zone in Iceland and thus is affected by a combination of shear and extensional strains, in addition to co-seismic and co-rifting deformation. The inter-eruptive deformation signal from Hekla is subtle, as observed by a decade (2000-2010) of GPS data in south Iceland. A simultaneous inversion of this data for parameters describing the geometry and source characteristics of the magma chamber at Hekla, and

  16. Petrology and geochemistry of Late Holocene felsic magmas from Rungwe volcano (Tanzania), with implications for trachytic Rungwe Pumice eruption dynamics

    NARCIS (Netherlands)

    Fontijn, K.; Elburg, M.A.; Nikogosian, I.K.; van Bergen, M.J.; Ernst, G.G.J.

    2013-01-01

    Rungwe in southern Tanzania is an active volcanic centre in the East African Rift System, characterised by Plinian-style explosive eruptions of metaluminous to slightly peralkaline trachytic silica-undersaturated magmas during its late Holocene history. Variations in whole-rock major and trace

  17. Reference dataset of volcanic ash physicochemical and optical properties for atmospheric measurement retrievals and transport modelling

    Science.gov (United States)

    Vogel, Andreas; Durant, Adam; Sytchkova, Anna; Diplas, Spyros; Bonadonna, Costanza; Scarnato, Barbara; Krüger, Kirstin; Kylling, Arve; Kristiansen, Nina; Stohl, Andreas

    2016-04-01

    Explosive volcanic eruptions emit up to 50 wt.% (total erupted mass) of fine ash particles (estimates of the volcanic source term and the nature of the constituent volcanic ash properties. Consequently, it is important to include a quantitative assessment of measurement uncertainties of ash properties to provide realistic ash forecast uncertainty. Currently, information on volcanic ash physicochemical and optical properties is derived from a small number of somewhat dated publications. In this study, we provide a reference dataset for physical (size distribution and shape), chemical (bulk vs. surface chemistry) and optical properties (complex refractive index in the UV-vis-NIR range) of a representative selection of volcanic ash samples from 10 different volcanic eruptions covering the full variability in silica content (40-75 wt.% SiO2). Through the combination of empirical analytical methods (e.g., image analysis, Energy Dispersive Spectroscopy, X-ray Photoelectron Spectroscopy, Transmission Electron Microscopy and UV/Vis/NIR/FTIR Spectroscopy) and theoretical models (e.g., Bruggeman effective medium approach), it was possible to fully capture the natural variability of ash physicochemical and optical characteristics. The dataset will be applied in atmospheric measurement retrievals and atmospheric transport modelling to determine the sensitivity to uncertainty in ash particle characteristics.

  18. Locating the depth of magma supply for volcanic eruptions, insights from Mt. Cameroon.

    Science.gov (United States)

    Geiger, Harri; Barker, Abigail K; Troll, Valentin R

    2016-10-07

    Mt. Cameroon is one of the most active volcanoes in Africa and poses a possible threat to about half a million people in the area, yet knowledge of the volcano's underlying magma supply system is sparse. To characterize Mt. Cameroon's magma plumbing system, we employed mineral-melt equilibrium thermobarometry on the products of the volcano's two most recent eruptions of 1999 and 2000. Our results suggest pre-eruptive magma storage between 20 and 39 km beneath Mt. Cameroon, which corresponds to the Moho level and below. Additionally, the 1999 eruption products reveal several shallow magma pockets between 3 and 12 km depth, which are not detected in the 2000 lavas. This implies that small-volume magma batches actively migrate through the plumbing system during repose intervals. Evolving and migrating magma parcels potentially cause temporary unrest and short-lived explosive outbursts, and may be remobilized during major eruptions that are fed from sub-Moho magma reservoirs.

  19. Atmospheric Despersal and Disposition of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    G. Keating; W.Statham

    2004-01-01

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model

  20. Atmospheric Dispersal and Dispostion of Tephra From a Potential Volcanic Eruption at Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    G. Keating; W.Statham

    2004-02-12

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (ASHPLUME) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. The ASHPLUME conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The ASHPLUME mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report will improve and clarify the previous documentation of the ASHPLUME mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model.

  1. Proximal stratigraphy and event sequence of the c. 5600 cal. yr BP Whakatane rhyolite eruption episode from Haroharo volcano, Okataina Volcanic Centre, New Zealand

    International Nuclear Information System (INIS)

    Kobayashi, T.; Nairn, I.; Smith, V.; Shane, P.

    2005-01-01

    The c. 5600 cal. yr BP Whakatane eruption episode consisted of a sequence of intracaldera rhyolite eruptions from at least five vents spread over 11 km of the Haroharo linear vent zone within Okataina Volcanic Centre. Initial vent-opening eruptions from the Haroharo vent produced coarse lithic clast 'blast beds' and pyroclastic density currents surges). These were immediately followed by eruption of very mobile pumiceous pyroclastic surges from the Makatiti vent 6 km to the southwest. Major plinian eruptions from the Makatiti vent then dispersed Whakatane Tephra pumice fall deposits (bulk volume c. 6 km 3 ) across the northeastern North Island while smaller explosive eruptions produced pyroclastic flows and falls from the Haroharo-Rotokohu vents and at the Pararoa vent on the caldera rim 11 km northeast from Makatiti. The pyroclastic eruptions at all vents were followed by the extrusion of lava flows and domes; extruded lava volumes ranged from 0.03 km 3 for the Pararoa dome to 7.5 km 3 for the Makatiti-Tapahoro lava flows and domes. Minor variations in whole rock and glass chemistry show that the three main vent areas each tapped a slightly different high-silica rhyolite magma. About 10 km 3 of M-type magma was erupted from the Makatiti-Tapahoro vents; c. 1.3 km 3 of H-type magma from the Haroharo-Rotokohu vents, and 0.04 km 3 of P-type magma from the Pararoa vent. There are no significant weathering or erosional breaks within the Whakatane eruptive sequence, which suggests that all Whakatane eruptions occurred within a short time interval. However, extrusion of the Haroharo dome within the Makatiti pyroclastic eruption sequence suggests a duration of c. 2 yr for the main pyroclastic eruption phase. Emplacement of the following voluminous (7.5 km 3 ) lavas from the Makatiti-Tapahoro vents would have occurred over >10 yr at the c. 10-20 m 3 /s inferred extrusion rates. (author). 19 refs., 16 figs., 7 tabs

  2. Volcano seismicity and ground deformation unveil the gravity-driven magma discharge dynamics of a volcanic eruption.

    Science.gov (United States)

    Ripepe, Maurizio; Donne, Dario Delle; Genco, Riccardo; Maggio, Giuseppe; Pistolesi, Marco; Marchetti, Emanuele; Lacanna, Giorgio; Ulivieri, Giacomo; Poggi, Pasquale

    2015-05-18

    Effusive eruptions are explained as the mechanism by which volcanoes restore the equilibrium perturbed by magma rising in a chamber deep in the crust. Seismic, ground deformation and topographic measurements are compared with effusion rate during the 2007 Stromboli eruption, drawing an eruptive scenario that shifts our attention from the interior of the crust to the surface. The eruption is modelled as a gravity-driven drainage of magma stored in the volcanic edifice with a minor contribution of magma supplied at a steady rate from a deep reservoir. Here we show that the discharge rate can be predicted by the contraction of the volcano edifice and that the very-long-period seismicity migrates downwards, tracking the residual volume of magma in the shallow reservoir. Gravity-driven magma discharge dynamics explain the initially high discharge rates observed during eruptive crises and greatly influence our ability to predict the evolution of effusive eruptions.

  3. Degassing Processes at Persistently Active Explosive Volcanoes

    Science.gov (United States)

    Smekens, Jean-Francois

    Among volcanic gases, sulfur dioxide (SO2) is by far the most commonly measured. More than a monitoring proxy for volcanic degassing, SO 2 has the potential to alter climate patterns. Persistently active explosive volcanoes are characterized by short explosive bursts, which often occur at periodic intervals numerous times per day, spanning years to decades. SO 2 emissions at those volcanoes are poorly constrained, in large part because the current satellite monitoring techniques are unable to detect or quantify plumes of low concentration in the troposphere. Eruption plumes also often show high concentrations of ash and/or aerosols, which further inhibit the detection methods. In this work I focus on quantifying volcanic gas emissions at persistently active explosive volcanoes and their variations over short timescales (minutes to hours), in order to document their contribution to natural SO2 flux as well as investigate the physical processes that control their behavior. In order to make these measurements, I first develop and assemble a UV ground-based instrument, and validate it against an independently measured source of SO2 at a coal-burning power plant in Arizona. I establish a measurement protocol and demonstrate that the instrument measures SO 2 fluxes with Indonesia), a volcano that has been producing cycles of repeated explosions with periods of minutes to hours for the past several decades. Semeru produces an average of 21-71 tons of SO2 per day, amounting to a yearly output of 8-26 Mt. Using the Semeru data, along with a 1-D transient numerical model of magma ascent, I test the validity of a model in which a viscous plug at the top of the conduit produces cycles of eruption and gas release. I find that it can be a valid hypothesis to explain the observed patterns of degassing at Semeru. Periodic behavior in such a system occurs for a very narrow range of conditions, for which the mass balance between magma flux and open-system gas escape repeatedly

  4. Volcanic Eruption Observations from an Elevated Point of the Stromboli Using Thermal Infrared Hyperspectral Imaging

    Science.gov (United States)

    Morton, V.; Gagnon, M. A.; Marcotte, F.; Gouhier, M.; Smekens, J. F.

    2017-12-01

    Many urban areas are located near active volcanoes around the world. Therefore, scientific research on different indicators of imminent eruptions is carried out on an ongoing basis. Due to the hazardous and unpredictable behavior of volcanoes, remote sensing technologies are normally preferred for investigations. Over the years, the Telops Hyper-Cam, a high-performance infrared hyperspectral camera, has established itself as a reference tool for investigating gas clouds over large distances. In order to illustrate the benefits of standoff infrared hyperspectral imaging for characterizing volcanic processes, many different measurements were carried out from an elevated point ( 800 m) of the Stromboli volcano (Italy) by researchers from the Université Blaise-Pascal (Clermont-Ferrand, France). The Stromboli volcano is well known for its periodic eruptions of small magnitude containing various proportions of ash, lava and gases. Imaging was carried out at a relatively high spectral and spatial resolution before and during eruptions from the North-East (NE) craters. Both sulfur dioxide (SO2) and sulfur tetrafluoride (SiF4) could be successfully identified within the volcano's plume from their distinct spectral features. During the passive degassing phase, a total amount of 3.3 kg of SO2 and 0.8 g of SiF4 were estimated. A violent eruption from NE1 crater was then observed and a total of 45 g and and 7 g of SO2 and SiF4 were estimated respectively. These results are in good agreement with previous work using a UV-SO2 camera. Finally, a smaller eruption from NE2 crater was observed. Total amounts of 3 kg and 17 g of SO2 and SiF4 were estimated respectively. Quantitative chemical maps for both gases will be presented. The results show that standoff thermal infrared hyperspectral imaging provides unique insights for a better understanding of volcanic eruptions.

  5. Volcanism on Io

    Science.gov (United States)

    Davies, Ashley Gerard

    2014-03-01

    Preface; Introduction; Part I. Io, 1610 to 1995: Galileo to Galileo: 1. Io, 1610-1979; 2. Between Voyager and Galileo: 1979-95; 3. Galileo at Io; Part II. Planetary Volcanism: Evolution and Composition: 4. Io and Earth: formation, evolution, and interior structure; 5. Magmas and volatiles; Part III. Observing and Modeling Volcanic Activity: 6. Observations: thermal remote sensing of volcanic activity; 7. Models of effusive eruption processes; 8. Thermal evolution of volcanic eruptions; Part IV. Galileo at Io: the Volcanic Bestiary: 9. The view from Galileo; 10. The lava lake at Pele; 11. Pillan and Tvashtar: lava fountains and flows; 12. Prometheus and Amirani: Effusive activity and insulated flows; 13. Loki Patera: Io's powerhouse; 14. Other volcanoes and eruptions; Part V. Volcanism on Io: The Global View: 15. Geomorphology: paterae, shields, flows and mountains; 16. Volcanic plumes; 17. Hot spots; Part VI. Io after Galileo: 18. Volcanism on Io: a post-Galileo view; 19. The future of Io observations; Appendix 1; Appendix 2; References; Index.

  6. Major Optical Depth Perturbations to the Stratosphere from Volcanic Eruptions: Stellar-Extinction Period, 1961-1978

    Science.gov (United States)

    Stothers, Richard B.; Hansen, James E. (Technical Monitor)

    2001-01-01

    A revised chronology of stratospheric aerosol extinction due to volcanic eruptions has been assembled for the period 1961-1978, which immediately precedes the era of dedicated satellite measurements. On the whole, the most accurate data consist of published observations of stellar extinction, supplemented in part by other kinds of observational data. The period covered encompasses the important eruptions of Agung (1963) and Fuego (1974), whose dust veils are discussed with respect to their transport, decay, and total mass. The effective (area-weighted mean) radii of the aerosols for both eruptions are found to be 0.3-0.4 microns. It is confirmed that, among known tropical eruptions, Agung's dust was unique for a low-latitude eruption in remaining almost entirely confined to the hemisphere of its production. A new table of homogeneous visual optical depth perturbations, listed by year and by hemisphere, is provided for the whole period 1881-1978, including the pyrheliometric period before 1961 that was investigated previously.

  7. Climatic effects and impacts of the 1815 eruption of Mount Tambora in the Czech Lands

    Czech Academy of Sciences Publication Activity Database

    Brázdil, Rudolf; Řezníčková, Ladislava; Valášek, H.; Dolák, Lukáš; Kotyza, O.

    2016-01-01

    Roč. 12, č. 6 (2016), s. 1361-1374 ISSN 1814-9324 R&D Projects: GA MŠk(CZ) LO1415; GA ČR GA13-28093S Institutional support: RVO:67179843 Keywords : explosive volcanic - eruptions * temperature observations * central-europe * ice-age * summer * precipitation * documentary * consequences * responses * aerosols Subject RIV: EH - Ecology, Behaviour Impact factor: 3.543, year: 2016

  8. Residentś risk perception of and response to SO2 risk in east Iceland during the volcanic eruption in Bárðarbunga/Holuhraun 2014-2015

    Science.gov (United States)

    Gísladóttir, Guðrún; Jóhannesdóttir, Guðrún

    2016-04-01

    Many Icelandic communities are exposed to volcanic eruptions every two to three years. In order to reduce risk and enhance resilience in communities exposed to volcanic hazards, involvement of local communities is essential during all phases of disaster management, from prevention and preparedness, to response and recovery. Preparedness plans for volcanic eruptions are in place for many of the volcanic hazards in Iceland especially evacuation of residents due to immediate threat from glacial outburst floods from sub-glacial eruptions. Some of the recent risks associated with volcanic eruptions have had a slow onset (volcanic gas) while others have had a sudden onset (volcanic ash). The risks are both linked to air quality in inhabited areas and dispersal are highly dependent on prevailing winds so timely forecast and modelling is needed in order to inform the population about the risk. Without preparedness plans many communities in Iceland were exposed to an unanticipated volcanic gas risks from Sulphur Dioxide (SO2) in 2014-2015 during an eruption in Bárðarbunga/Holuhraun. With no system in place to measure the highly toxic gas from the eruption, the Environmental Agency, The Department of Civil Protection and Emergency Management and the Directorate of Health set up a system with over 40 handheld gas detectors and online links to 7 detectors around Iceland to monitor the gas. The defined health limit of SO2 is 350 μg/m3 for one hour, while 2600 μg/m3 for 15 minutes for working outdoors. Nevertheless, some communities in Iceland experienced much higher values and the highest measured concentration in communities during the eruption was 21.000 μg/m3. When the concentration of SO2 reached the level of >1000 μg/m3 a warning was issued and SMS text messages were sent to all mobile phones in the affected area. In order to engage with residents during the eruption the Civil Protection and local authorities, Directorate of Health, scientist and specialists

  9. Volcanic hazards to airports

    Science.gov (United States)

    Guffanti, M.; Mayberry, G.C.; Casadevall, T.J.; Wunderman, R.

    2009-01-01

    Volcanic activity has caused significant hazards to numerous airports worldwide, with local to far-ranging effects on travelers and commerce. Analysis of a new compilation of incidents of airports impacted by volcanic activity from 1944 through 2006 reveals that, at a minimum, 101 airports in 28 countries were affected on 171 occasions by eruptions at 46 volcanoes. Since 1980, five airports per year on average have been affected by volcanic activity, which indicates that volcanic hazards to airports are not rare on a worldwide basis. The main hazard to airports is ashfall, with accumulations of only a few millimeters sufficient to force temporary closures of some airports. A substantial portion of incidents has been caused by ash in airspace in the vicinity of airports, without accumulation of ash on the ground. On a few occasions, airports have been impacted by hazards other than ash (pyroclastic flow, lava flow, gas emission, and phreatic explosion). Several airports have been affected repeatedly by volcanic hazards. Four airports have been affected the most often and likely will continue to be among the most vulnerable owing to continued nearby volcanic activity: Fontanarossa International Airport in Catania, Italy; Ted Stevens Anchorage International Airport in Alaska, USA; Mariscal Sucre International Airport in Quito, Ecuador; and Tokua Airport in Kokopo, Papua New Guinea. The USA has the most airports affected by volcanic activity (17) on the most occasions (33) and hosts the second highest number of volcanoes that have caused the disruptions (5, after Indonesia with 7). One-fifth of the affected airports are within 30 km of the source volcanoes, approximately half are located within 150 km of the source volcanoes, and about three-quarters are within 300 km; nearly one-fifth are located more than 500 km away from the source volcanoes. The volcanoes that have caused the most impacts are Soufriere Hills on the island of Montserrat in the British West Indies

  10. Geology of the Ugashik-Mount Peulik Volcanic Center, Alaska

    Science.gov (United States)

    Miller, Thomas P.

    2004-01-01

    The Ugashik-Mount Peulik volcanic center, 550 km southwest of Anchorage on the Alaska Peninsula, consists of the late Quaternary 5-km-wide Ugashik caldera and the stratovolcano Mount Peulik built on the north flank of Ugashik. The center has been the site of explosive volcanism including a caldera-forming eruption and post-caldera dome-destructive activity. Mount Peulik has been formed entirely in Holocene time and erupted in 1814 and 1845. A large lava dome occupies the summit crater, which is breached to the west. A smaller dome is perched high on the southeast flank of the cone. Pyroclastic-flow deposits form aprons below both domes. One or more sector-collapse events occurred early in the formation of Mount Peulik volcano resulting in a large area of debris-avalanche deposits on the volcano's northwest flank. The Ugashik-Mount Peulik center is a calcalkaline suite of basalt, andesite, dacite, and rhyolite, ranging in SiO2 content from 51 to 72 percent. The Ugashik-Mount Peulik magmas appear to be co-genetic in a broad sense and their compositional variation has probably resulted from a combination of fractional crystallization and magma-mixing. The most likely scenario for a future eruption is that one or more of the summit domes on Mount Peulik are destroyed as new magma rises to the surface. Debris avalanches and pyroclastic flows may then move down the west and, less likely, east flanks of the volcano for distances of 10 km or more. A new lava dome or series of domes would be expected to form either during or within some few years after the explosive disruption of the previous dome. This cycle of dome disruption, pyroclastic flow generation, and new dome formation could be repeated several times in a single eruption. The volcano poses little direct threat to human population as the area is sparsely populated. The most serious hazard is the effect of airborne volcanic ash on aircraft since Mount Peulik sits astride heavily traveled air routes connecting the U

  11. Crustal CO2 liberation during the 2006 eruption and earthquake events at Merapi volcano, Indonesia

    Science.gov (United States)

    Troll, Valentin R.; Hilton, David R.; Jolis, Ester M.; Chadwick, Jane P.; Blythe, Lara S.; Deegan, Frances M.; Schwarzkopf, Lothar M.; Zimmer, Martin

    2012-06-01

    High-temperature volcanic gas is widely considered to originate from ascending, mantle-derived magma. In volcanic arc systems, crustal inputs to magmatic gases mainly occur via subducted sediments in the mantle source region. Our data from Merapi volcano, Indonesia imply, however, that during the April-October 2006 eruption significant quantities of CO2 were added from shallow crustal sources. We show that prior to the 2006 events, summit fumarole gas δ13C(CO2) is virtually constant (δ13C1994-2005 = -4.1 ± 0.3‰), but during the 2006 eruption and after the shallow Yogyakarta earthquake of late May, 2006 (M6.4; hypocentres at 10-15 km depth), carbon isotope ratios increased to -2.4 ± 0.2‰. This rise in δ13C is consistent with considerable addition of crustal CO2 and coincided with an increase in eruptive intensity by a factor of ˜3 to 5. We postulate that this shallow crustal volatile input supplemented the mantle-derived volatile flux at Merapi, intensifying and sustaining the 2006 eruption. Late-stage volatile additions from crustal contamination may thus provide a trigger for explosive eruptions independently of conventional magmatic processes.

  12. Periodicity in the BrO/SO2 molar ratios in the volcanic gas plume of Cotopaxi and its correlation with the Earth tides during the eruption in 2015

    Science.gov (United States)

    Dinger, Florian; Bobrowski, Nicole; Warnach, Simon; Bredemeyer, Stefan; Hidalgo, Silvana; Arellano, Santiago; Galle, Bo; Platt, Ulrich; Wagner, Thomas

    2018-03-01

    We evaluated NOVAC (Network for Observation of Volcanic and Atmospheric Change) gas emission data from the 2015 eruption of the Cotopaxi volcano (Ecuador) for BrO/SO2 molar ratios. The BrO/SO2 molar ratios were very small prior to the phreatomagmatic explosions in August 2015, significantly higher after the explosions, and continuously increasing until the end of the unrest period in December 2015. These observations together with similar findings in previous studies at other volcanoes (Mt. Etna, Nevado del Ruiz, Tungurahua) suggest a possible link between a drop in BrO/SO2 and a future explosion. In addition, the observed relatively high BrO/SO2 molar ratios after December 2015 imply that bromine degassed predominately after sulfur from the magmatic melt. Furthermore, statistical analysis of the data revealed a conspicuous periodic pattern with a periodicity of about 2 weeks in a 3-month time series. While the time series is too short to rule out a chance recurrence of transient geological or meteorological events as a possible origin for the periodic signal, we nevertheless took this observation as a motivation to examine the influence of natural forcings with periodicities of around 2 weeks on volcanic gas emissions. One strong aspirant with such a periodicity are the Earth tides, which are thus central in this study. We present the BrO/SO2 data, analyse the reliability of the periodic signal, discuss a possible meteorological or eruption-induced origin of this signal, and compare the signal with the theoretical ground surface displacement pattern caused by the Earth tides. Our central result is the observation of a significant correlation between the BrO/SO2 molar ratios with the north-south and vertical components of the calculated tide-induced surface displacement with correlation coefficients of 47 and 36 %, respectively. From all other investigated parameters, only the correlation between the BrO/SO2 molar ratios and the relative humidity in the local

  13. Evolution of the 2015 Cotopaxi eruption revealed by combined geochemical & seismic observations

    Science.gov (United States)

    Hidalgo, Silvana; Battaglia, Jean; Arellano, Santiago; Sierra, Daniel; Bernard, Benjamin; Parra, Rene; Kelly, Peter; Dinger, Florian; Barrington, Charlotte; Samaniego, Pablo

    2018-01-01

    Through integration of multiple data streams to monitor volcanic unrest scientists are able to make more robust eruption forecast and to obtain a more holistic interpretation of volcanic systems. We examined gas emission and gas geochemistry, seismic and petrologic data recorded during the 2015 unrest of Cotopaxi (Ecuador) in order to decipher the origin and temporal evolution of this eruption. Identification of families of similar seismic events and the use of seismic amplitude ratios reveals temporal changes in volcanic processes. SO2 (300 to 24000 t/d), BrO/SO2 (5-10 x10-5), SO2/HCl (5.8 ± 4.8 and 6.6 ± 3.0) and CO2/SO2 (0.6 to 2.1) measured throughout the eruption indicate a shallow magmatic source. Bulk ash and glass chemistry indicate a homogenous andesitic (SiO2 wt%=56.94 ± 0.25) magma having undergone extensive S-exsolution and degassing during ascent. These data lead us to interpret this eruption as a magma intrusion and ascend to shallow levels. The intrusion progressively interacted with the hydrothermal system, boiled off water, and produced hydromagmatic explosions. A small volume of this intrusion continued to fragment and produced episodic ash emissions until it was sufficiently degassed and rheologically stiff. Based on the 470 kt of measured SO2 we estimate that ~ 65.3 x106 m3 of magma were required to supply the emitted gases. This volume exceeds the volume of erupted juvenile material by a factor of 50. This result emphasizes the importance of careful monitoring of Cotopaxi to identify the intrusion of a new batch of magma, which could rejuvenate the non-erupted material.

  14. The Novarupta-Katmai eruption of 1912 - largest eruption of the twentieth century; centennial perspectives

    Science.gov (United States)

    Hildreth, Wes; Fierstein, Judy

    2012-01-01

    The explosive outburst at Novarupta (Alaska) in June 1912 was the 20th century's most voluminous volcanic eruption. Marking its centennial, we illustrate and document the complex eruptive sequence, which was long misattributed to nearby Mount Katmai, and how its deposits have provided key insights about volcanic and magmatic processes. It was one of the few historical eruptions to produce a collapsed caldera, voluminous high-silica rhyolite, wide compositional zonation (51-78 percent SiO2), banded pumice, welded tuff, and an aerosol/dust veil that depressed global temperature measurably. It emplaced a series of ash flows that filled what became the Valley of Ten Thousand Smokes, sustaining high-temperature metal-transporting fumaroles for a decade. Three explosive episodes spanned ~60 hours, depositing ~17 km3 of fallout and 11±2 km3 of ignimbrite, together representing ~13.5 km3 of zoned magma. No observers were nearby and no aircraft were in Alaska, and so the eruption narrative was assembled from scattered villages and ship reports. Because volcanology was in its infancy and the early investigations (1915-23) were conducted under arduous expeditionary conditions, many provocative misapprehensions attended reports based on those studies. Fieldwork at Katmai was not resumed until 1953, but, since then, global advances in physical volcanology and chemical petrology have gone hand in hand with studies of the 1912 deposits, clarifying the sequence of events and processes and turning the eruption into one of the best studied in the world. To provide perspective on this century-long evolution, we describe the geologic and geographic setting of the eruption - in a remote, sparsely inhabited wilderness; we review the cultural and scientific contexts at the time of the eruption and early expeditions; and we compile a chronology of the many Katmai investigations since 1912. Products of the eruption are described in detail, including eight layers of regionwide fallout

  15. Pre-Venus-Transit Dark Lunar Eclipse Reveals a Very Large Volcanic Eruption in 1761

    Science.gov (United States)

    Pang, Kevin

    2009-01-01

    Kepler's third law states Sun-planet distances in AU. International observations of the solar parallax during the 1761/1769 Venus transits gave us the first AU in miles. Benjamin Franklin promoted American participation in the project. While serving as Ambassador to France he observed that a "dry fog” from the 1783 Laki eruption in Iceland had obscured the Sun, and led to a cold summer and winter. Using Benjamin Franklin's method I analyzed photometric observations of the dark lunar eclipse made just before the 1761 Venus transit, ice core, tree ring, and Chinese weather data, and conclude that a very large previously unknown volcanic eruption in early 1761 had cooled the world climate. Observers worldwide found the 18 May 1761 totally eclipsed Moon very dark or invisible, e.g., Wargentin could not see the Moon for 38 minutes even with a 2-ft telescope (Phil. Trans. 52, 208, 1761-1762). Since the totally eclipsed Moon is illuminated only by sunlight refracted by the Earth's atmosphere, the obscuration must have been very severe. Ice cores from Greenland and Antarctica have large sulfuric acid contents in 1761-1762, precipitated from the global volcanic acid cloud (Zeilinski, J. Geophys. Res. 102, 26625, 1997). Frost-damaged rings in American bristlecone pines confirm that 1761 was very cold (LaMarche, Nature 307, 121, 1984). Contemporary Chinese chronicles report that heavy sustained snow fell from the Tropic of Cancer to the Yellow River. Wells and rivers froze, e.g., Taihu "Great Lake” and nearby Yangtze tributaries were not navigable. Innumerable trees, birds and livestock perished, etc. All observations are consistent with the above conclusion. Finally Benjamin Franklin's criteria for a climate-altering volcanic eruption are still universally used. Moreover his legacy continues to inspire climate researchers. See Pang, Eos 74, no. 43, 106, 1993; and as cited in "Earth in Balance,” Al Gore, p. 379, 1993.

  16. Multiparametric Experiments and Multiparametric Setups for Metering Explosive Eruptions

    Science.gov (United States)

    Taddeucci, J.; Scarlato, P.; Del Bello, E.

    2016-12-01

    Explosive eruptions are multifaceted processes best studied by integrating a variety of observational perspectives. This need marries well with the continuous stream of new means that technological progress provides to volcanologists to parameterize these eruptions. Since decades, new technologies have been tested and integrated approaches have been attempted during so-called multiparametric experiments, i.e., short field campaigns with many, different instruments (and scientists) targeting natural laboratory volcanoes. Recently, portable multiparametric setups have been developed, including a few, highly complementary instruments to be rapidly deployed at any erupting volcano. Multiparametric experiments and setups share most of their challenges, like technical issues, site logistics, and data processing and interpretation. Our FAMoUS (FAst MUltiparametric Setup) setup pivots around coupled, high-speed imaging (visible and thermal) and acoustic (infrasonic to audible) recording, plus occasional seismic recording and sample collection. FAMoUS provided new insights on pyroclasts ejection and settling and jet noise dynamics at volcanoes worldwide. In the last years we conducted a series of BAcIO (Broadband ACquisition and Imaging Operation) experiments at Stromboli (Italy). These hosted state-of-the-art and prototypal eruption-metering technologies, including: multiple high-speed high-definition cameras for 3-D imaging; combined visible-infrared-ultraviolet imaging; in-situ and remote gas measurements; UAV aerial surveys; Doppler radar, and microphone arrays. This combined approach provides new understandings of the fundamental controls of Strombolian-style activity, and allows for crucial cross-validation of instruments and techniques. Several documentary expeditions participated in the BAcIO, attesting its tremendous potential for public outreach. Finally, sharing field work promotes interdisciplinary discussions and cooperation like nothing in the world.

  17. The 2003 phreatomagmatic eruptions of Anatahan volcano - Textural and petrologic features of deposits at an emergent island volcano

    Science.gov (United States)

    Pallister, J.S.; Trusdell, F.A.; Brownfield, I.K.; Siems, D.F.; Budahn, J.R.; Sutley, S.F.

    2005-01-01

    Stratigraphic and field data are used in conjunction with textural and chemical evidence (including data from scanning electron microscope, electron microprobe, X-ray fluorescence, X-ray diffraction, and instrumental neutron activation analysis) to establish that the 2003 eruption of Anatahan volcano was mainly phreatomagmatic, dominated by explosive interaction of homogeneous composition low-viscosity crystal-poor andesite magma with water. The hydromagmatic mode of eruption contributed to the significant height of initial eruptive columns and to the excavation and eruption of altered rock debris from the sub-volcanic hydrothermal system. Volatile contents of glass inclusions in equilibrium phenocrysts less abundances of these constituents in matrix glass times the estimated mass of juvenile magma indicate minimum emissions of 19 kt SO2 and 13 kt Cl. This petrologic estimate of SO2 emission is an order-of-magnitude less than an estimate from TOMS. Similarly, inferred magma volumes from the petrologic data are an order of magnitude greater than those modeled from deformation data. Both discrepancies indicate additional sources of volatiles, likely derived from a separate fluid phase in the magma. The paucity of near-source volcanic-tectonic earthquakes preceding the eruption, and the dominance of sustained long-period tremor are attributed to the ease of ascent of the hot low-viscosity andesite, followed by a shallow phreatomagmatic mode of eruption. Phreatomagmatic eruptions are probably more common at emergent tropical island volcanoes, where shallow fresh-water lenses occur at near-sea-level vents. These relations suggest that phreatomagmatic explosions contributed to the formation of many of the near-sea-level craters and possibly even to the small calderas at the other Mariana islands.

  18. Understanding the eruption mechanisms of the explosive Bellecombe Eruptions on Piton de la Fournaise, La Réunion

    Science.gov (United States)

    Morgan, K.; Ort, M. H.; Di Muro, A.; Parnell, R. A.; Huff, W. D.

    2017-12-01

    Piton de la Fournaise (PdF) is an active basaltic volcano on La Réunion island. The Bellecombe Tephra was deposited from at least three unusually explosive eruptions between 3000-5000 ka. The Bellecombe eruptions were interpreted recently to have been due to rapid depressurization of the hydrothermal system when a deep fracture opened after lateral, seaward-directed sliding of the eastern flank, late in a large effusive eruption. This project tests this hypothesis by physically, mineralogically, and chemically characterizing the Bellecombe Tephra to look for evidence of the involvement of the PdF hydrothermal system in the eruptions and understand where the eruptions initiated. The Bellecombe tephra consists of three units separated by incipient soils. Both the Upper and Lower Bellecombe deposits are mostly medium to very fine ash. Lower Bellecombe deposits, from the first two eruptions, are mostly beds of glassy ash containing minor lithic grains and olivine crystals. Hydrothermal minerals, mostly smectite, are present in a few Lower Bellecombe beds. Since these minerals are only present in some beds, the smectite formed before deposition rather than as a product of surficial alteration. The Upper Bellecombe deposits record a third eruption and vary between clast-supported crystal- and lithic-rich lapilli beds and ash beds with abundant ash pellets. The crystals are mostly olivine, with lesser pyroxene and plagioclase and sparse hydrothermal quartz. Gabbro and oceanite clasts are abundant and trachytic pumice rare in these deposits. Hydrothermal minerals are common in most Upper Bellecombe beds. The presence of smectite in some of the Lower Bellecombe beds suggests these deposits came from a system below 200 ºC. Clays in the Upper Bellecombe beds - smectite and mixed layer R0 illite/smectite - imply a system at 40-140 ºC. The hydrothermal system was involved, but might not have been the primary impetus for these eruptions, since hydrothermal minerals are not

  19. Exploring Links Between Global Climate and Explosive Arc Volcanism in Tephra-Rich Quaternary Sediments: A Pilot Study from IODP Expedition 350 Site 1437B, Izu Bonin Rear-Arc Region

    Science.gov (United States)

    Corry-Saavedra, K.; Straub, S. M.; Bolge, L.; Schindlbeck, J. C.; Kutterolf, S.; Woodhead, J. D.

    2015-12-01

    Fallout tephra in marine sediment provide an excellent archive of explosive arc volcanism that can be directly related to the other parameters of climate change, such as ice volume data, IRD (ice-rafted debris) input, etc. Current studies are based on 'discrete' tephra beds, which are produced by major eruptions and visible with the naked eye. Yet the more common, but less explosive arc eruptions that are more continuous through time produce 'disperse' tephra, which is concealed by the non-volcanic host sediment and invisible to the eye. The proportion of disperse tephra in marine sediments is known to be significant and may be critical in elucidating potential synchronicity between arc volcanism and glacial cycles. We conducted a pilot study in young sediments of IODP Hole 1437B drilled at 31°47.3911'N and 139°01.5788'E at the rear-arc of the Izu Bonin volcanic arc. By means of δ18O (Vautravers, in revision), eleven climatic cycles are recorded in uppermost 120 meter of carbonate mud that is interspersed by cm-thick tephra fallout layers. We selected six tephra layers, ranging from 0.2 to 1.16 million years in age, and sampled those vertically, starting from carbonate mud below the basal contact throughout the typical gradational top into the carbonate mud above. From each tephra bed, volcanic particles (>125 micrometer) were handpicked. All other samples were powdered and leached in buffered acetic acid and hydroxylamine hydrochloride to remove the carbonate and authigenous fraction, respectively. Major and trace element abundances (except for SiO2) from all samples were determined by ICP-MS and ICP-OES methods. Strong binary mixing trends are revealed between the pure tephra end member, and detrital sediment component. The tephra is derived from the Izu Bonin volcanic front and rear-arc, while the sediment component is presumably transported by ocean surface currents from the East China Sea. Our data show that mixing proportions change systematically with

  20. Post-Eruption Deformation Processes Measured Using ALOS-1 and UAVSAR InSAR at Pacaya Volcano, Guatemala

    Directory of Open Access Journals (Sweden)

    Lauren N. Schaefer

    2016-01-01

    Full Text Available Pacaya volcano is a persistently active basaltic cone complex located in the Central American Volcanic Arc in Guatemala. In May of 2010, violent Volcanic Explosivity Index-3 (VEI-3 eruptions caused significant topographic changes to the edifice, including a linear collapse feature 600 m long originating from the summit, the dispersion of ~20 cm of tephra and ash on the cone, the emplacement of a 5.4 km long lava flow, and ~3 m of co-eruptive movement of the southwest flank. For this study, Interferometric Synthetic Aperture Radar (InSAR images (interferograms processed from both spaceborne Advanced Land Observing Satellite-1 (ALOS-1 and aerial Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR data acquired between 31 May 2010 and 10 April 2014 were used to measure post-eruptive deformation events. Interferograms suggest three distinct deformation processes after the May 2010 eruptions, including: (1 subsidence of the area involved in the co-eruptive slope movement; (2 localized deformation near the summit; and (3 emplacement and subsequent subsidence of about a 5.4 km lava flow. The detection of several different geophysical signals emphasizes the utility of measuring volcanic deformation using remote sensing techniques with broad spatial coverage. Additionally, the high spatial resolution of UAVSAR has proven to be an excellent compliment to satellite data, particularly for constraining motion components. Measuring the rapid initiation and cessation of flank instability, followed by stabilization and subsequent influence on eruptive features, provides a rare glimpse into volcanic slope stability processes. Observing these and other deformation events contributes both to hazard assessment at Pacaya and to the study of the stability of stratovolcanoes.

  1. Controls on magma permeability in the volcanic conduit during the climactic phase of the Kos Plateau Tuff eruption (Aegean Arc)

    Science.gov (United States)

    Degruyter, W.; Bachmann, O.; Burgisser, A.

    2010-01-01

    X-ray computed microtomography (µCT) was applied to pumices from the largest Quaternary explosive eruption of the active South Aegean Arc (the Kos Plateau Tuff; KPT) in order to better understand magma permeability within volcanic conduits. Two different types of pumices (one with highly elongated bubbles, tube pumice; and the other with near spherical bubbles, frothy pumice) produced synchronously and with identical chemical composition were selected for µCT imaging to obtain porosity, tortuosity, bubble size and throat size distributions. Tortuosity drops on average from 2.2 in frothy pumice to 1.5 in tube pumice. Bubble size and throat size distributions provide estimates for mean bubble size (~93-98 μm) and mean throat size (~23-29 μm). Using a modified Kozeny-Carman equation, variations in porosity, tortuosity, and throat size observed in KPT pumices explain the spread found in laboratory measurements of the Darcian permeability. Measured difference in inertial permeability between tube and frothy pumices can also be partly explained by the same variables but require an additional parameter related to the internal roughness of the porous medium (friction factor f 0 ). Constitutive equations for both types of permeability allow the quantification of laminar and turbulent gas escape during ascent of rhyolitic magma in volcanic conduits.

  2. Bringing the world to a standstill: an investigation into the effects of a Novarupta scale volcanic eruption on today's aviation industry

    Science.gov (United States)

    Welchman, R. A.

    2010-12-01

    Novarupta erupted in Alaska on 6th June 1912 and was the biggest of the 21st century. It erupted for 60 hours and sent an ash cloud over 32,000m into the air. People were stranded for several days, houses destroyed, villages abandoned and food supplies disrupted for a long period after the eruption. Ash was recorded to have travelled over 9,500km away in Africa, demonstrating potentially global impacts. The eruption occurred when Alaska had very little aviation industry, today however the airspace above Alaska is one of the busiest in the world. The eruption in Iceland in 2010 which disrupted the European airspace for several weeks and closed it completely for five days, brought to light just how disruptive a volcanic eruption can be, even in countries where volcanic activity is not considered a hazard. It was an expensive event for the aviation industry and caused much disruption. Simulations of a Katmai scale eruption were run in the ‘present-day’, using the PUFF ash fall model. Simulations were run for one week from the start the eruption. A ‘worst-case’ scenario is presented based on data from 2005-2009. It is a hypothetical eruption started on 17th January 2005 and it shows that ash is likely to cause havoc in North America, Europe and parts of Asia. At least 43 airports on average would be severely affected each day of the simulation, leading to several of the major air routes being affected. Where financial data is available, an estimated cost of this event is presented. A 500 hr simulation is presented to demonstrate the possible global effects that could occur within three weeks of an eruption. It shows ash being transported across the equator at high altitudes to the southern hemisphere in Asia as well as the whole of the northern hemisphere being engulfed. The complex implications an eruption like this would have on national and international infrastructures is presented. The results could aid further scientific studies, governmental bodies and

  3. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    C. Harrington

    2004-01-01

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit by Igneous Intrusion''. This model report provides direct inputs to

  4. Multispectral Observations of Explosive Gas Emissions from Santiaguito, Guatemala

    Science.gov (United States)

    Carn, S. A.; Watson, M.; Thomas, H.; Rodriguez, L. A.; Campion, R.; Prata, F. J.

    2016-12-01

    Santiaguito volcano, Guatemala, has been persistently active for decades, producing frequent explosions from its actively growing lava dome. Repeated release of volcanic gases contains information about conduit processes during the cyclical explosions at Santiaguito, but the composition of the gas phase and the amount of volatiles released in each explosion remains poorly constrained. In addition to its persistent activity, Santiaguito offers an exceptional opportunity to investigate lava dome degassing processes since the upper surface of the active lava dome can be viewed from the summit of neighboring Santa Maria. In January 2016 we conducted multi-spectral observations of Santiaguito's explosive eruption plumes and passive degassing from multiple perspectives as part of the first NSF-sponsored `Workshop on Volcanoes' instrument deployment. Gas measurements included open-path Fourier-Transform infrared (OP-FTIR) spectroscopy from the Santa Maria summit, coincident with ultraviolet (UV) and infrared (IR) camera and UV Differential Optical Absorption Spectroscopy (DOAS) from the El Mirador site below Santiaguito's active Caliente lava dome. Using the OP-FTIR in passive mode with the Caliente lava dome as the source of IR radiation, we were able to collect IR spectra at high temporal resolution prior to and during two explosions of Santiaguito on 7-8 January, with volcanic SO2 and H2O emissions detected. UV and IR camera data provide constraints on the total SO2 burden in the emissions (and potentially the volcanic ash burden), which coupled with the FTIR gas ratios provides new constraints on the mass and composition of volatiles driving explosions at Santiaguito. All gas measurements indicate significant volatile release during explosions with limited degassing during repose periods. In this presentation we will present ongoing analysis of the unique Santiaguito gas dataset including estimation of the total volatile mass released in explosions and an

  5. Petrography of the Paleogene Volcanic Rocks of the Sierra Maestra, Southeastern Cuba

    Science.gov (United States)

    Bemis, V. L.

    2006-12-01

    This study is a petrographic analysis of over 200 specimens of the Paleogene volcanic rocks of the Sierra Maestra (Southerneastern Cuba), a key structure in the framework of the northern Caribbean plate boundary evolution. The purpose of this study is to understand the eruptive processes and the depositional environments. The volcanic sequence in the lower part of the Sierra Maestra begins with highly porphyritic pillow lavas, topped by massive tuffs and autoclastic flows. The presence of broken phenocrystals, palagonitic glass and hyaloclastites in this section of the sequence suggests that the prevalent mode of eruption was explosive. The absence of welding in the tuffs suggests that the rocks were emplaced in a deep submarine environment. Coherent flows, much less common than the massive tuffs, show evidence of autoclastic fracturing, also indicating low temperature-submarine environments. These observations support the hypothesis that the Sierra Maestra sequence may be neither part of the Great Antilles Arc of the Mesozoic nor any other fully developed volcanic arc, rather a 250 km long, submarine eruptive system of dikes, flows and sills, most likely a back-arc structure. The volcanic rocks of the upper sequence are all very fine grained, reworked volcaniclastic materials, often with the structures of distal turbidities, in mode and texture similar to those drilled on the Cayman Rise. This study suggests that the Sierra Maestra most likely records volcanism of diverse sources: a local older submarine source, and one or more distal younger sources, identifiable with the pan-Caribbean volcanic events of the Tertiary.

  6. Potential ash impact from Antarctic volcanoes: Insights from Deception Island's most recent eruption.

    Science.gov (United States)

    Geyer, A; Marti, A; Giralt, S; Folch, A

    2017-11-28

    Ash emitted during explosive volcanic eruptions may disperse over vast areas of the globe posing a threat to human health and infrastructures and causing significant disruption to air traffic. In Antarctica, at least five volcanoes have reported historic activity. However, no attention has been paid to the potential socio-economic and environmental consequences of an ash-forming eruption occurring at high southern latitudes. This work shows how ash from Antarctic volcanoes may pose a higher threat than previously believed. As a case study, we evaluate the potential impacts of ash for a given eruption scenario from Deception Island, one of the most active volcanoes in Antarctica. Numerical simulations using the novel MMB-MONARCH-ASH model demonstrate that volcanic ash emitted from Antarctic volcanoes could potentially encircle the globe, leading to significant consequences for global aviation safety. Results obtained recall the need for performing proper hazard assessment on Antarctic volcanoes, and are crucial for understanding the patterns of ash distribution at high southern latitudes with strong implications for tephrostratigraphy, which is pivotal to synchronize palaeoclimatic records.

  7. Effects of volcanic deposit disaggregation on exposed water composition

    Science.gov (United States)

    Back, W. E.; Genareau, K. D.

    2016-12-01

    Explosive volcanic eruptions produce a variety of hazards. Pyroclastic material can be introduced to water through ash fallout, pyroclastic flows entering water bodies, and/or lahars. Remobilization of tephras can occur soon after eruption or centuries later, introducing additional pyroclastic material into the environment. Introduction of pyroclastic material may alter the dissolved element concentration and pH of exposed waters, potentially impacting drinking water supplies, agriculture, and ecology. This study focuses on the long-term impacts of volcanic deposits on water composition due to the mechanical breakup of volcanic deposits over time. Preliminary work has shown that mechanical milling of volcanic deposits will cause significant increases in dissolved element concentrations, conductivity, and pH of aqueous solutions. Pyroclastic material from seven eruptions sites was collected, mechanically milled to produce grain sizes Soufriere Hills, Ruapehu), mafic (Lathrop Wells) and ultramafic (mantle xenoliths) volcanic deposits. Lathrop Wells has an average bulk concentration of 49.15 wt.% SiO2, 6.11 wt. % MgO, and 8.39 wt. % CaO and produces leachate concentrations of 85.69 mg/kg for Ca and 37.22 mg/kg for Mg. Taupo and Valles Caldera samples have a bulk concentration of 72.9 wt.% SiO2, 0.59 wt. % MgO, and 1.48 wt. % CaO, and produces leachate concentrations of 4.08 mg/kg for Ca and 1.56 mg/kg for Mg. Similar testing will be conducted on the intermediate and ultramafic samples to test the hypothesis that bulk magma composition and mineralogy will directly relate to the increased dissolved element concentration of exposed waters. The measured effects on aqueous solutions will aid in evaluation of impacts to marine and freshwater systems exposed to volcanic deposits.

  8. WSR-88D observations of volcanic ash

    Science.gov (United States)

    Wood, J.; Scott, C.; Schneider, D.

    2007-01-01

    Conclusions that may impact operations are summarized below: ??? Current VCPs may not be optimal for the scharacterization of volcanic events. Therefore, the development of a new VCP that combines the enhanced low level elevation density and increased temporal resolution of VCP 12 with the enhanced sensitivity of VCP 31. ??? Given currently available scan strategies, this preliminary investigation would suggest that it is advisable to use VCP 12 during the initial explosive phase of an eruptive event. Once the maximum reflectivity has dropped below 30 dBZ, VCP 31 should be used. ??? This study clearly indicates that WSR-88D Level II data offers many advantages over Level III data currently available in Alaska. The ability to access this data would open up greater opportunities for research. Given the proximity of WSR-88D platforms to active volcanoes in Alaska, as well as in the western Lower 48 states and Hawaii, radar data will likely play a major operational role when volcanic eruptions again pose a threat to life and property. The utilization of this tool to its maximum capability is vital.

  9. Spatial and temporal variations of diffuse CO2 degassing at El Hierro volcanic system: Relation to the 2011-2012 submarine eruption

    Science.gov (United States)

    Melián, Gladys; Hernández, Pedro A.; Padrón, Eleazar; Pérez, Nemesio M.; Barrancos, José; Padilla, Germán.; Dionis, Samara; Rodríguez, Fátima; Calvo, David; Nolasco, Dacil

    2014-09-01

    We report herein the results of extensive diffuse CO2 emission surveys performed on El Hierro Island in the period 1998-2012. More than 17,000 measurements of the diffuse CO2 efflux were carried out, most of them during the volcanic unrest period that started in July 2011. Two significant precursory signals based on geochemical and geodetical studies suggest that a magma intrusion processes might have started before 2011 in El Hierro Island. During the preeruptive and eruptive periods, the time series of the diffuse CO2 emission released by the whole island experienced two significant increases. The first started almost 2 weeks before the onset of the submarine eruption, reflecting a clear geochemical anomaly in CO2 emission, most likely due to increasing release of deep-seated magmatic gases to the surface. The second one, between 24 October and 27 November 2011, started before the most energetic seismic events of the volcanic-seismic unrest. The data presented here demonstrate that combined continuous monitoring studies and discrete surveys of diffuse CO2 emission provide important information to optimize the early warning system in volcano monitoring programs and to monitor the evolution of an ongoing volcanic eruption, even though it is a submarine eruption.

  10. High-resolution 40Ar/39Ar geochronology of volcanic rocks from the Siebengebirge (Central Germany)—Implications for eruption timescales and petrogenetic evolution of intraplate volcanic fields

    Science.gov (United States)

    Przybyla, Thomas; Pfänder, Jörg A.; Münker, Carsten; Kolb, Melanie; Becker, Maike; Hamacher, Uli

    2017-11-01

    A key parameter in understanding mantle dynamics beneath continents is the temporal evolution of intraplate volcanism in response to lithospheric thinning and asthenospheric uplift. To contribute to a better understanding of how intraplate volcanic fields evolve through time, we present a high precision 40Ar/39Ar age dataset for volcanic rocks from the Siebengebirge volcanic field (SVF) from central Germany, one of the best studied and compositionally most diverse intraplate volcanic fields of the Cenozoic Central European Volcanic Province (CEVP). Petrological and geochemical investigations suggest that the formation of the different rock types that occur in the SVF can be explained by a combination of assimilation and fractional crystallisation processes, starting from at least two different parental magmas with different levels of silica saturation (alkali basaltic and basanitic), and originating from different mantle sources. These evolved along two differentiation trends to latites and trachytes, and to tephrites and tephriphonolites, respectively. In contrast to their petrogenesis, the temporal evolution of the different SVF suites is poorly constrained. Previous K/Ar ages suggested a time of formation between about 28 and 19 Ma for the mafic rocks, and of about 27 to 24 Ma for the differentiated rocks. Our results confirm at high precision that the differentiated lithologies of both alkaline suites (40Ar/39Ar ages from 25.3 ± 0.2 Ma to 25.9 ± 0.3 Ma) erupted contemporaneously within a very short time period of 0.6 Ma, whereas the eruption of mafic rocks (basanites) lasted at least 8 Ma (40Ar/39Ar ages from 22.2 ± 0.2 Ma to 29.5 ± 0.3 Ma). This implies that felsic magmatism in the central SVF was likely a single event, possibly triggered by an intense phase of rifting, and that ongoing melting and eruption of mostly undifferentiated mafic lavas dominate the > 8 Ma long magmatic history of this region. Among the mafic lavas, most basanites and tephrites

  11. Salt shell fallout during the ash eruption at the Nakadake crater, Aso volcano, Japan: evidence of an underground hydrothermal system surrounding the erupting vent

    Science.gov (United States)

    Shinohara, Hiroshi; Geshi, Nobuo; Yokoo, Akihiko; Ohkura, Takahiro; Terada, Akihiko

    2018-03-01

    A hot and acid crater lake is located in the Nakadake crater, Aso volcano, Japan. The volume of water in the lake decreases with increasing activity, drying out prior to the magmatic eruptions. Salt-rich materials of various shapes were observed, falling from the volcanic plume during the active periods. In May 2011, salt flakes fell from the gas plume emitted from an intense fumarole when the acid crater lake was almost dry. The chemical composition of these salt flakes was similar to those of the salts formed by the drying of the crater lake waters, suggesting that they originated from the crater lake water. The salt flakes are likely formed by the drying up of the crater lake water droplets sprayed into the plume by the fumarolic gas jet. In late 2014, the crater lake dried completely, followed by the magmatic eruptions with continuous ash eruptions and intermittent Strombolian explosions. Spherical hollow salt shells were observed on several occasions during and shortly after the weak ash eruptions. The chemical composition of the salt shells was similar to the salts formed by the drying of the crater lake water. The hollow structure of the shells suggests that they were formed by the heating of hydrothermal solution droplets suspended by a mixed stream of gas and ash in the plume. The salt shells suggest the existence of a hydrothermal system beneath the crater floor, even during the course of magmatic eruptions. Instability of the magmatic-hydrothermal interface can cause phreatomagmatic explosions, which often occur at the end of the eruptive phase of this volcano.

  12. The 2006 Eruption of Raoul Volcano (Kermadecs): A Phreato-magmatic Event From a Hydrothermally-Sealed Volcanic Conduit System.

    Science.gov (United States)

    Christenson, B. W.; Reyes, A. G.; Werner, C. A.

    2006-12-01

    The March 17, 2006 eruption from Raoul volcano (Kermadec Islands, NZ), which tragically claimed the life of NZ Department of Conservation staff member Mark Kearney, is being interpreted as a magmatic-hydrothermal event triggered by shaking associated with regional earthquake swarm activity. Although the eruption released ca. 200 T of SO2, thus confirming its magmatic nature, it occurred without significant precursory volcanic seismicity, and without any of the precursory responses of the volcanic hydrothermal system which were observed prior to the last eruption in 1964. Raoul Island has a long and varied eruption history dating back > 1.4 ma, and has been hydrothermally active throughout historic time. Present day fumarolic and hotspring discharges within Raoul caldera point to the existence of a small but well established, mixed meteoric - seawater hydrothermal system within the volcano. Magmatic signatures are apparent in fumarolic gas discharges, but are heavily masked by their interaction with hydrothermal system fluids (eg. near complete scrubbing of sulphur and halogen gases from the boiling point fumarolic discharges). A diffuse degassing study conducted in 2004 revealed that ca. 80 T/d CO2 is passively discharged from the volcano, suggesting that ongoing (albeit low level) convective degassing of magma occurs at depth. Interestingly, vent locations from the 2006 eruption correspond to areas of relatively low CO2 discharge on the crater floor in 2004. This, in conjunction with the preliminary findings of abundant hydrothermal mineralisation (calcite, anhydrite, quartz) in eruption ejecta, suggests that the main volcanic conduits had become effectively sealed during the interval since the last eruption. Calcite-hosted fluid inclusions are CO2 clathrate-bearing, and have relatively low homogenisation temperatures (165-180 °C), suggesting that the seal environment was both gas-charged and shallowly seated (< 200 m). Shaking associated with the regional

  13. Soil gas radon and volcanic activity at El Hierro (Canary Islands) before and after the 2011-2012 submarine eruption

    Science.gov (United States)

    Barrancos, J.; Padilla, G.; Hernandez Perez, P. A.; Padron, E.; Perez, N.; Melian Rodriguez, G.; Nolasco, D.; Dionis, S.; Rodriguez, F.; Calvo, D.; Hernandez, I.

    2012-12-01

    El Hierro is the youngest and southernmost island of the Canarian archipelago and represents the summit of a volcanic shield elevating from the surrounding seafloor at depth of 4000 m to up to 1501 m above sea level. The island is believed to be near the present hotspot location in the Canaries with the oldest subaerial rocks dated at 1.12 Ma. The subaerial parts of the El Hierro rift zones (NE, NW and S Ridges) are characterized by tightly aligned dyke complexes with clusters of cinder cones as their surface expressions. Since July 16, 2011, an anomalous seismicity at El Hierro Island was recorded by IGN seismic network. Volcanic tremor started at 05:15 hours on October 10, followed on the afternoon of October 12 by a green discolouration of seawater, strong bubbling and degassing indicating the initial stage of submarine volcanic eruption at approximately 2 km off the coast of La Restinga, El Hierro. Soil gas 222Rn and 220Rn activities were continuously measured during the period of the recent volcanic unrest occurred at El Hierro, at two different geochemical stations, HIE02 and HIE03. Significant increases in soil 222Rn activity and 222Rn/220Rn ratio from the soil were observed at both stations prior the submarine eruption off the coast of El Hierro, showing the highest increases before the eruption onset and the occurrence of the strongest seismic event (M=4.6). A statistical analysis showed that the long-term trend of the filtered data corresponded closely to the seismic energy released during the volcanic unrest. The observed increases of 222Rn are related to the rock fracturing processes (seismic activity) and the magmatic CO2 outflow increase, as observed in HIE03 station. Under these results, we find that continuous soil radon studies are important for evaluating the volcanic activity of El Hierro and they demonstrate the potential of applying continuous monitoring of soil radon to improve and optimize the detection of early warning signals of future

  14. Holocene tephra-fall deposits of southern and austral Andes volcanic zones (33-54oS): eruption recurrence

    International Nuclear Information System (INIS)

    Naranjo, J.A.; Polanco, E.; Lara, L; Moreno, H; Stern, C.R

    2001-01-01

    Radiometric 14 C dating is a very useful tool to study the chronostratigraphy of pyroclastic deposits. In addition, 14 C ages are essential parameters for the estimation of the recurrence time of the explosive volcanic activity. The origin, distribution and relative age of mappable Holocene tephra-fall deposits of the Southern Andes Volcanic Zone (SVZ) and Austral Andes Volcanic Zone (AVZ) from 33 o S-54 o S, were studied and their recurrence period is analysed (au)

  15. The Influence of Volcanic Eruptions on the Climate of Tropical South America During the Last Millennium in an Isotope-Enabled General Circulation Model

    Science.gov (United States)

    Colose, Christopher M.; LeGrande, Allegra N.; Vuille, Mathias

    2016-01-01

    Currently, little is known on how volcanic eruptions impact large-scale climate phenomena such as South American paleo-intertropical Convergence Zone (ITCZ) position and summer monsoon behavior. In this paper, an analysis of observations and model simulations is employed to assess the influence of large volcanic eruptions on the climate of tropical South America. This problem is first considered for historically recent volcanic episodes for which more observations are available but where fewer events exist and the confounding effects of El Niño-Southern Oscillation (ENSO) lead to inconclusive interpretation of the impact of volcanic eruptions at the continental scale. Therefore, we also examine a greater number of reconstructed volcanic events for the period 850 CE to present that are incorporated into the NASA GISS ModelE2-R simulation of the last millennium. An advantage of this model is its ability to explicitly track water isotopologues throughout the hydrologic cycle and simulating the isotopic imprint following a large eruption. This effectively removes a degree of uncertainty associated with error-prone conversion of isotopic signals into climate variables, and allows for a direct comparison between GISS simulations and paleoclimate proxy records. Our analysis reveals that both precipitation and oxygen isotope variability respond with a distinct seasonal and spatial structure across tropical South America following an eruption. During austral winter, the heavy oxygen isotope in precipitation is enriched, likely due to reduced moisture convergence in the ITCZ domain and reduced rainfall over northern South America. During austral summer, however, more negative values of the precipitation isotopic composition are simulated over Amazonia, despite reductions in rainfall, suggesting that the isotopic response is not a simple function of the "amount effect". During the South American monsoon season, the amplitude of the temperature response to volcanic forcing is

  16. Tephra Sedimentation from a Short-term Wind-affected Volcanic Plume of the 8 October 2016 Aso Nakadake Eruption, Japan

    Science.gov (United States)

    Tsuji, T.; Nishizaka, N.; Onishi, K.

    2017-12-01

    Sedimentation processes during explosive volcanic eruptions can be constrained based on detailed analysis of grain-size variation of tephra deposits. Especially, an accurate description of the amount of fine particles has also significant implications for the assessment of specific tephra hazards. Grain size studies for single short-term eruption has advantage to contribute understanding the sedimentation processes because it is simple compared to long-lasting eruption. The 2016 Aso Nakadake eruption, Japan represents an ideal for the study of short-term eruptions thanks to an accurate investigation. Then, we investigate the grain size variation with distance from the vent and sedimentological features of the deposit to discuss the sedimentation processes of the tephra fragments. The eruption provided pyroclastic flow deposit and fallout tephra which distributed NE to ENE direction from the vent. The deposits between 4 and 20 km from vent consist of fine-coated lapilli to coarse ash, ash pellet and mud droplet in ascending degree. The samples are lapilli-bearing within 20 km from vent and those outside of 20 km mainly consist of ash particles. Detailed analyses of individual samples highlight a rapid decay of maximum and mean grain size for the deposit from proximal to distal. The decay trend of maximum grain-size is approximated by three segments of exponential curves with two breaks-in-slope at 10 and 40 km from vent. Most of the sampled deposits are characterized by bimodal grain-size distributions, with the modes of the coarse subpopulation decreasing with distance from vent and those of the fine subpopulation being mostly stable. The fine subpopulation has been interpreted as being mostly associated with size-selective sedimentation processes (e.g., particle aggregation) confirmed by the existence of fine-coated particles, ash pellet and mud droplet. As the fine-coated particles generally have a higher terminal velocity than the individual constituent

  17. Temporal evolution of the Roccamonfina volcanic complex (Pleistocene), Central Italy

    Science.gov (United States)

    Rouchon, V.; Gillot, P. Y.; Quidelleur, X.; Chiesa, S.; Floris, B.

    2008-10-01

    The Roccamonfina volcanic complex (RVC), in southern Italy, is an Early to Middle Pleistocene stratovolcano sharing temporal and morphological characteristics with the Somma-Vesuvius and the Alban Hills; both being associated with high volcanic hazard for the cities of Naples and Rome, respectively. The RVC is important for the understanding of volcanic evolution in the Roman and Campanian volcanic provinces. We report a comprehensive study of its evolution based on morphological, geochemical and K-Ar geochronological data. The RVC was active from c.a. 550 ka to 150 ka. Its evolution is divided into five stages, defining a volcanic pulse recurrence time of c.a. 90-100 kyr. The two initial stages, consisted in the construction of two successive stratovolcanoes of the tephrite-phonolite, namely "High-K series". The first stage was terminated by a major plinian eruption emplacing the trachytic Rio Rava pumices at 439 ± 9 ka. At the end of the second stage, the last High-K series stratovolcano was destroyed by a large sector collapse and the emplacement of the Brown Leucitic Tuff (BLT) at 353 ± 5 ka. The central caldera of the RVC is the result of the overlapping of the Rio Rava and of the BLT explosions. The plinian eruption of the BLT is related to the emptying of a stratified, deep-seated HKS magma chamber during the upwelling of K series (KS) magma, marking a major geochemical transition and plumbing system re-organization. The following stage was responsible for the emplacement of the Lower White Trachytic Tuff at 331 ± 2 ka, and of basaltic-trachytic effusive products erupted through the main vent. The subsequent activity was mainly restricted to the emplacement of basaltic-shoshonitic parasitic cones and lava flows, and of minor subplinian deposits of the Upper White Trachytic Tuff between 275 and 230 ka. The northern crater is most probably a maar that formed by the phreatomagmatic explosion of the Yellow Trachytic Tuff at 230 ka. The latest stage of

  18. Contrasting eruption styles of the 147 Kimberlite, Fort à la Corne, Saskatchewan, Canada

    Science.gov (United States)

    Lefebvre, Nathalie; Kurszlaukis, Stephan

    2008-06-01

    The Cretaceous Fort à la Corne (FALC) kimberlite field was active over a time span of ~ 20 Ma with contemporaneous terrestrial (Mannville Group) to marine (Lower Colorado Group) background sedimentation. Steep-sided pipes, craters and positive landform volcanoes such as scoria or tuff cones are thought to have formed during that period. The 147 Kimberlite is located in the SE section of the field's main cluster and is part of the large (~ 377.5 ha) Orion North volcanic complex. Based on logging of 25 drill cores, the morphology of the country rock/kimberlite interface suggests excavation of a complex crater field down to the upper portion of the Mannville Group sedimentary deposits. At least two types of volcaniclastic deposits are identified: a main kimberlite unit that is typically characterized by crustal xenolith-poor (1-2%), normal graded beds possibly deposited as turbidites in a subaqueous environment, originating from the nearby 148 tephra cone and infilling the adjacent 147 crater, and a second unit, located on the NE margin of the 147 Kimberlite, that represents a thick (~ 60 m) sequence of large (up to 22 m) sedimentary country rock blocks located at least 60 m above their original stratigraphic position. We suggest the following time sequence of events: Crater excavation as a consequence of a shallow magma fragmentation level within the uppermost country rock sequences, together with several closely spaced eruptive centres initially formed the complex, intercalated crater field. Subsequently, ongoing eruptions with a fragmentation level above the country rock produced the lithic fragment poor main infill of the 148 Kimberlite. Resedimentation from the outer flanks of the 148 tephra cone resulted in the deposition of turbidites in the 147 area. A consolidation phase solidified the lowermost portion of the main infill in 147. A subsequent explosion(s) occurred within the Mannville Group in the 147 area, ejecting large blocks of sedimentary country rocks

  19. Naples between two fires: eruptive scenarios for the next eruptions by an integrated volcanological-probabilistic approach.

    Science.gov (United States)

    Mastrolorenzo, G.; Pappalardo, L.; de Natale, G.; Troise, C.; Rossano, S.; Panizza, A.

    2009-04-01

    Probabilistic approaches based on available volcanological data from real eruptions of Campi Flegrei and Somma-Vesuvius, are assembled in a comprehensive assessment of volcanic hazards at the Neapolitan area. This allows to compare the volcanic hazards related to the different types of events, which can be used for evaluating the conditional probability of flows and falls hazard in case of a volcanic crisis. Hazard maps are presented, based on a rather complete set of numerical simulations, produced using field and laboratory data as input parameters relative to a large range (VEI 1 to 5) of fallout and pyroclastic-flow events and their relative occurrence. The results allow us to quantitatively evaluate and compare the hazard related to pyroclastic fallout and density currents (PDCs) at the Neapolitan volcanoes and their surroundings, including the city of Naples. Due to its position between the two volcanic areas, the city of Naples is particularly exposed to volcanic risk from VEI>2 eruptions, as recorded in the local volcanic succession. Because dominant wind directions, the area of Naples is particularly prone to fallout hazard from Campi Flegrei caldera eruptions in the VEI range 2-5. The hazard from PDCs decreases roughly radially with distance from the eruptive vents and is strongly controlled by the topographic heights. Campi Flegrei eruptions are particularly hazardous for Naples, although the Camaldoli and Posillipo hills produce an effective barrier to propagation to the very central part of Naples. PDCs from Vesuvius eruptions with VEI>4 can cover the city of Naples, whereas even VEI>3 eruptions have a moderate fallout hazard there.

  20. The Elusive Evidence of Volcanic Lightning.

    Science.gov (United States)

    Genareau, K; Gharghabi, P; Gafford, J; Mazzola, M

    2017-11-14

    Lightning strikes are known to morphologically alter and chemically reduce geologic formations and deposits, forming fulgurites. A similar process occurs as the result of volcanic lightning discharge, when airborne volcanic ash is transformed into lightning-induced volcanic spherules (LIVS). Here, we adapt the calculations used in previous studies of lightning-induced damage to infrastructure materials to determine the effects on pseudo-ash samples of simplified composition. Using laboratory high-current impulse experiments, this research shows that within the lightning discharge channel there is an ideal melting zone that represents roughly 10% or less of the total channel radius at which temperatures are sufficient to melt the ash, regardless of peak current. The melted ash is simultaneously expelled from the channel by the heated, expanding air, permitting particles to cool during atmospheric transport before coming to rest in ash fall deposits. The limited size of this ideal melting zone explains the low number of LIVS typically observed in volcanic ash despite the frequent occurrence of lightning during explosive eruptions.

  1. Using Satellite Observations to Evaluate the AeroCOM Volcanic Emissions Inventory and the Dispersal of Volcanic SO2 Clouds in MERRA

    Science.gov (United States)

    Hughes, Eric J.; Krotkov, Nickolay; da Silva, Arlindo; Colarco, Peter

    2015-01-01

    Simulation of volcanic emissions in climate models requires information that describes the eruption of the emissions into the atmosphere. While the total amount of gases and aerosols released from a volcanic eruption can be readily estimated from satellite observations, information about the source parameters, like injection altitude, eruption time and duration, is often not directly known. The AeroCOM volcanic emissions inventory provides estimates of eruption source parameters and has been used to initialize volcanic emissions in reanalysis projects, like MERRA. The AeroCOM volcanic emission inventory provides an eruptions daily SO2 flux and plume top altitude, yet an eruption can be very short lived, lasting only a few hours, and emit clouds at multiple altitudes. Case studies comparing the satellite observed dispersal of volcanic SO2 clouds to simulations in MERRA have shown mixed results. Some cases show good agreement with observations Okmok (2008), while for other eruptions the observed initial SO2 mass is half of that in the simulations, Sierra Negra (2005). In other cases, the initial SO2 amount agrees with the observations but shows very different dispersal rates, Soufriere Hills (2006). In the aviation hazards community, deriving accurate source terms is crucial for monitoring and short-term forecasting (24-h) of volcanic clouds. Back trajectory methods have been developed which use satellite observations and transport models to estimate the injection altitude, eruption time, and eruption duration of observed volcanic clouds. These methods can provide eruption timing estimates on a 2-hour temporal resolution and estimate the altitude and depth of a volcanic cloud. To better understand the differences between MERRA simulations and volcanic SO2 observations, back trajectory methods are used to estimate the source term parameters for a few volcanic eruptions and compared to their corresponding entry in the AeroCOM volcanic emission inventory. The nature of

  2. Towards real-time eruption forecasting in the Auckland Volcanic Field: application of BET_EF during the New Zealand National Disaster Exercise `Ruaumoko'

    Science.gov (United States)

    Lindsay, Jan; Marzocchi, Warner; Jolly, Gill; Constantinescu, Robert; Selva, Jacopo; Sandri, Laura

    2010-03-01

    The Auckland Volcanic Field (AVF) is a young basaltic field that lies beneath the urban area of Auckland, New Zealand’s largest city. Over the past 250,000 years the AVF has produced at least 49 basaltic centers; the last eruption was only 600 years ago. In recognition of the high risk associated with a possible future eruption in Auckland, the New Zealand government ran Exercise Ruaumoko in March 2008, a test of New Zealand’s nation-wide preparedness for responding to a major disaster resulting from a volcanic eruption in Auckland City. The exercise scenario was developed in secret, and covered the period of precursory activity up until the eruption. During Exercise Ruaumoko we adapted a recently developed statistical code for eruption forecasting, namely BET_EF (Bayesian Event Tree for Eruption Forecasting), to independently track the unrest evolution and to forecast the most likely onset time, location and style of the initial phase of the simulated eruption. The code was set up before the start of the exercise by entering reliable information on the past history of the AVF as well as the monitoring signals expected in the event of magmatic unrest and an impending eruption. The average probabilities calculated by BET_EF during Exercise Ruaumoko corresponded well to the probabilities subjectively (and independently) estimated by the advising scientists (differences of few percentage units), and provided a sound forecast of the timing (before the event, the eruption probability reached 90%) and location of the eruption. This application of BET_EF to a volcanic field that has experienced no historical activity and for which otherwise limited prior information is available shows its versatility and potential usefulness as a tool to aid decision-making for a wide range of volcano types. Our near real-time application of BET_EF during Exercise Ruaumoko highlighted its potential to clarify and possibly optimize decision-making procedures in a future AVF eruption

  3. The Tephra Layer From the Plinian Eruption in ™r‘faj”kull 1362, Southeast Iceland

    Science.gov (United States)

    Selbekk, R. S.

    2002-12-01

    Pyroclastic fallout from the 1362 eruption of ™r‘faj”kull forms one of the volcanic marker horizons of the North Atlantic. This contribution reports the mineralogical and geochemical characteristics of the ™r‘faj”kull 1362 fallout and its grain-size distribution. A non-rifting 120 km long volcanic lineament some 50 km east of the Eastern Rift-Zone of Iceland is defined by transitional and alkalic volcanic rocks resting unconformably on late Tertiary strata. ™r‘faj”kull which forms the southern termination of this off-rift liniment is an ice-covered stratovolcano (2200 masl) composed mostly of subglacially formed hyaloclastite ranging from basalts to rhyolites. The two historical (1100 yrs) eruptions of ™r‘faj”kull include a small explosive eruption in 1727 and a large devastating Plinian eruption associated with major lahars and a caldera collapse in 1362. Between 1 and 2 km3 dense rock equivalent or 5-10 km3 of rhyolitic pumice was erupted and the fallout was mainly towards ESE. Tentative modelling of the PT-conditions of the magma formation, based on glass/mineral equilibria, indicates that the source was a near-eutectic melt in equilibrium with fayalite, hedenbergite, oligoclase and hematite at some 0.2 GPa pressure. A profile through the fallout was sampled at elevation of about 1100 masl on the SE flank of the volcano. A deposit of 1.8 m thickness was collected in 14 units for examination of composition, mineralogy and grain-size distribution during the eruption. In the profile the fallout is fine grained vesicular glass (1-3% minerals, 3% lithic fragments) with bubble wall thickness in the low micron range. The high and even vesiculation of the glass indicates fast magma ascent and explains the extreme mechanical fragmentation within the eruptive column, yielding between 50 and 80 wt% of less than 0.25 mm grain size. A reconstruction of the Plinian phase, based on grain-size analysis and abundance of lithic fragments, reveals that the

  4. Multiple dendrochronological responses to the eruption of Cinder Cone, Lassen Volcanic National Park, California

    Science.gov (United States)

    Sheppard, P.R.; Ort, M.H.; Anderson, K.C.; Clynne, M.A.; May, E.M.

    2009-01-01

    Two dendrochronological properties – ring width and ring chemistry – were investigated in trees near Cinder Cone in Lassen Volcanic National Park, northeastern California, for the purpose of re-evaluating the date of its eruption. Cinder Cone is thought to have erupted in AD 1666 based on ring-width evidence, but interpreting ring-width changes alone is not straightforward because many forest disturbances can cause changes in ring width. Old Jeffrey pines growing in Cinder Cone tephra and elsewhere for control comparison were sampled. Trees growing in tephra show synchronous ring-width changes at AD 1666, but this ring-width signal could be considered ambiguous for dating the eruption because changes in ring width can be caused by other events. Trees growing in tephra also show changes in ring phosphorus, sulfur, and sodium during the late 1660s, but inter-tree variability in dendrochemical signals makes dating the eruption from ring chemistry alone difficult. The combination of dendrochemistry and ring-width signals improves confidence in dating the eruption of Cinder Cone over the analysis of just one ring-growth property. These results are similar to another case study using dendrochronology of ring width and ring chemistry at Parícutin, Michoacán, Mexico, a cinder cone that erupted beginning in 1943. In both cases, combining analysis with ring width and ring chemistry improved confidence in the dendro-dating of the eruptions.

  5. Conduit degassing and thermal controls on eruption styles at Mount St. Helens

    Science.gov (United States)

    Schneider, Andrew; Rempel, Alan W.; Cashman, Katharine V.

    2012-12-01

    The explosivity of silicic eruptions depends on the interplay between magma rheology, exsolution kinetics, and degassing. Magma degassing is governed by the competing effects of vertical transport within the conduit and the lateral flux of gas out of the conduit (Diller et al., 2006; Jaupart and Allegre, 1991). We combine a simplified treatment of these degassing processes with thermodynamic modeling to examine the conditions present at Mount St. Helens during the spine extruding eruption from 2004 to 2008. We find that two parameters are primarily responsible for controlling the eruptive style: the magma chamber temperature, and a dimensionless parameter that gauges the efficiency of lateral degassing. Together, these parameters determine whether and where magma can solidify at depth to form a dense solid plug that is gradually extruded as a volcanic spine. We show that the small (50 oC) decrease in magma chamber temperature between eruptive activity in the 1980s and that of 2004-2008, combined with a modest increase in degassing efficiency associated with lower volumetric flux, can explain the observed change in erupted material from viscous lava flows to solidified spines. More generally, we suggest that similar threshold behavior may explain observed abrupt transitions in effusive eruptive styles at other intermediate composition volcanoes. Finally, we extrapolate our results to suggest that the increase in degassing efficiency accompanying decreasing magma supply rates may have caused the transition from explosive to effusive activity in late 1980.

  6. A relation to predict the failure of materials and potential application to volcanic eruptions and landslides.

    Science.gov (United States)

    Hao, Shengwang; Liu, Chao; Lu, Chunsheng; Elsworth, Derek

    2016-06-16

    A theoretical explanation of a time-to-failure relation is presented, with this relationship then used to describe the failure of materials. This provides the potential to predict timing (tf - t) immediately before failure by extrapolating the trajectory as it asymptotes to zero with no need to fit unknown exponents as previously proposed in critical power law behaviors. This generalized relation is verified by comparison with approaches to criticality for volcanic eruptions and creep failure. A new relation based on changes with stress is proposed as an alternative expression of Voight's relation, which is widely used to describe the accelerating precursory signals before material failure and broadly applied to volcanic eruptions, landslides and other phenomena. The new generalized relation reduces to Voight's relation if stress is limited to increase at a constant rate with time. This implies that the time-derivatives in Voight's analysis may be a subset of a more general expression connecting stress derivatives, and thus provides a potential method for forecasting these events.

  7. An independently dated 2000-yr volcanic record from Law Dome, East Antarctica, including a new perspective on the dating of the 1450s CE eruption of Kuwae, Vanuatu

    Directory of Open Access Journals (Sweden)

    C. T. Plummer

    2012-11-01

    Full Text Available Volcanic eruptions are an important cause of natural climate variability. In order to improve the accuracy of climate models, precise dating and magnitude of the climatic effects of past volcanism are necessary. Here we present a 2000-yr record of Southern Hemisphere volcanism recorded in ice cores from the high accumulation Law Dome site, East Antarctica. The ice cores were analysed for a suite of chemistry signals and are independently dated via annual layer counting, with 11 ambiguous years at 23 BCE, which has presently the lowest error of all published long Antarctic ice cores. Independently dated records are important to avoid circular dating where volcanic signatures are assigned a date from some external information rather than using the date it is found in the ice core. Forty-five volcanic events have been identified using the sulphate chemistry of the Law Dome record. The low dating error and comparison with the NGRIP (North Greenland Ice Core Project volcanic records (on the GICC05 timescale suggest Law Dome is the most accurately dated Antarctic volcanic dataset, which will improve the dating of individual volcanic events and potentially allow better correlation between ice core records, leading to improvements in global volcanic forcing datasets. One of the most important volcanic events of the last two millennia is the large 1450s CE event, usually assigned to the eruption of Kuwae, Vanuatu. In this study, we review the evidence surrounding the presently accepted date for this event, and make the case that two separate eruptions have caused confusion in the assignment of this event. Volcanic sulphate deposition estimates are important for modelling the climatic response to eruptions. The largest volcanic sulphate events in our record are dated at 1458 CE (Kuwae?, Vanuatu, 1257 and 422 CE (unidentified.

  8. Diverse Eruptions at Approximately 2,200 Years B.P. on the Great Rift, Idaho: Inferences for Magma Dynamics Along Volcanic Rift Zones

    Science.gov (United States)

    Hughes, S. S.; Nawotniak, S. E. Kobs; Borg, C.; Mallonee, H. C.; Purcell, S.; Neish, C.; Garry, W. B.; Haberle, C. W.; Lim, D. S. S.; Heldmann, J. L.

    2016-01-01

    Compositionally and morphologically diverse lava flows erupted on the Great Rift of Idaho approximately 2.2 ka (kilo-annum, 1000 years ago) during a volcanic "flare-up" of activity following an approximately 2 ky (kiloyear, 1000 years) hiatus in eruptions. Volcanism at Craters of the Moon (COTM), Wapi and Kings Bowl lava fields around this time included primitive and evolved compositions, separated over 75 kilometers along the approximately 85 kilometers-long rift, with striking variability in lava flow emplacement mechanisms and surface morphologies. Although the temporal associations may be coincidental, the system provides a planetary analog to better understand magma dynamics along rift systems, including that associated with lunar floor-fractured craters. This study aims to help bridge the knowledge gap between ancient rift volcanism evident on the Moon and other terrestrial planets, and active rift volcanism, e.g., at Hawai'i and Iceland.

  9. The evolution of hydrous magmas in the Tongariro Volcanic Centre : the 10 ka Pahoka-Mangamate eruptions

    International Nuclear Information System (INIS)

    Auer, A.; Palin, J.M.; White, J.D.L.; Nakagawa, M.; Stirling, C.

    2015-01-01

    The majority of arc-type andesites in the Tongariro Volcanic Centre are highly porphyritic, hornblende-free, two-pyroxene andesites. An exception is tephras from the c. 10,000 ka Pahoka-Mangamate event. Magmas of these Plinian eruptions bypassed the extensive crustal mush columns under the central volcanoes and sequentially derived a series of almost aphyric rocks spanning a compositional range from dacite to basaltic andesite. Mineral composition, trace element and isotopic data suggest that this eruptive series tapped a mid-crustal magma reservoir, resulting in the initial eruption of an hydrous dacitic magma and several following eruptions characterised by less-evolved and less-hydrous compositions at progressively higher temperatures and substantially lower 87 Sr/ 86 Sr ratios. Systematic changes in magma chemistry are also reflected in a sequential change in phenocryst content starting with an early hornblende-plagioclase-dominated assemblage to a late olivine-plagioclase-dominated assemblage. (author).

  10. Characteristics of volcanic reservoirs and distribution rules of effective reservoirs in the Changling fault depression, Songliao Basin

    Directory of Open Access Journals (Sweden)

    Pujun Wang

    2015-11-01

    Full Text Available In the Songliao Basin, volcanic oil and gas reservoirs are important exploration domains. Based on drilling, logging, and 3D seismic (1495 km2 data, 546 sets of measured physical properties and gas testing productivity of 66 wells in the Changling fault depression, Songliao Basin, eruptive cycles and sub-lithofacies were distinguished after lithologic correction of the 19,384 m volcanic well intervals, so that a quantitative analysis was conducted on the relation between the eruptive cycles, lithologies and lithofacies and the distribution of effective reservoirs. After the relationship was established between lithologies, lithofacies & cycles and reservoir physical properties & oil and gas bearing situations, an analysis was conducted on the characteristics of volcanic reservoirs and the distribution rules of effective reservoirs. It is indicated that 10 eruptive cycles of 3 sections are totally developed in this area, and the effective reservoirs are mainly distributed at the top cycles of eruptive sequences, with those of the 1st and 3rd Members of Yingcheng Formation presenting the best reservoir properties. In this area, there are mainly 11 types of volcanic rocks, among which rhyolite, rhyolitic tuff, rhyolitic tuffo lava and rhyolitic volcanic breccia are the dominant lithologies of effective reservoirs. In the target area are mainly developed 4 volcanic lithofacies (11 sub-lithofacies, among which upper sub-lithofacies of effusive facies and thermal clastic sub-lithofacies of explosion lithofacies are predominant in effective reservoirs. There is an obvious corresponding relationship between the physical properties of volcanic reservoirs and the development degree of effective reservoirs. The distribution of effective reservoirs is controlled by reservoir physical properties, and the formation of effective reservoirs is influenced more by porosity than by permeability. It is concluded that deep volcanic gas exploration presents a good

  11. Probing the Source of Explosive Volcanic Eruptions (Sergey Soloviev Medal Lecture)

    Science.gov (United States)

    Eichelberger, John C.

    2015-04-01

    What if we knew where magma is located under a volcano and its current state? Such information would transform volcanology. For extreme events, we typically know where the vulnerabilities are: people, lifelines, and critical infrastructure, but seldom do we know the 'source term' beforehand. For restless calderas such as Campi Flegrei, Italy and Yellowstone, USA, the threat is silicic magma within the caldera itself. Great effort has gone into finding such bodies through surface measurements. 'Discovery' is declared when consensus is achieved. But there is a difference between consensus and knowledge. By following certain conventions in finding magma bodies (aseismic volume, seismic attenuation, Mogi source location, water and CO2 content of melt inclusions) and depicting them in accepted ways (oblate spheroids or lenses with an impossible solid/liquid boundary discontinuity), we perpetuate myths that mislead even ourselves. The consensus view of the Long Valley Caldera, USA, magma reservoir has evolved over 40 years from a 104 km3 balloon to two tiny pockets of magma, in part because drilling revealed a temperature of 100°C at 3 km depth over the 'balloon'. Oil and gas exploration is free of fanciful reservoirs because there is ground truth. Geophysics and geology define a possible reservoir and a well is drilled. If oil is not there, the model needs revision. The situation is worse for conditions of magma storage. The heretofore-unknowable roof zone of magma chambers has been invoked for separating melt from crystals and/or for accumulating vapor and evolved magma leading to eruption. Anything is possible when there are no data. The accidental (but technically remarkable) drilling discovery of rhyolite magma at 2,100 m depth under Krafla Caldera, Iceland by Landsvirkjun Co. and the Iceland Deep Drilling Project opens the door to properly detect magma and to understand how magma evolves, energizes hydrothermal systems, and erupts. A new project before the

  12. Geomorphometric reconstruction of post-eruptive surfaces of the Virunga Volcanic Province (East African Rift), constraint of erosion ratio and relative chronology

    Science.gov (United States)

    Lahitte, Pierre; Poppe, Sam; Kervyn, Matthieu

    2016-04-01

    Quaternary volcanic landforms result from a complex evolution, involving volcanic constructional events and destructive ones by collapses and long-term erosion. Quantification, by morphometric approaches, of the evolution through time of the volcano shape allows the estimation of relative ages between volcanoes sharing the same climate and eruptive conditions. We apply such method to six volcanoes of the Virunga Volcanic Province in the western branch of the East African Rift Valley that still has rare geochronological constraints. As they have comparable sizes, volcanic history and erupted products, these edifices may have undergone comparable conditions of erosion which justify the deduction of relative chronology from their erosion pattern. Our GIS-based geomorphometric approach, the SHAPEVOLC algorithm, quantifies erupted or dismantled volumes by numerically modeling topographies resulting from the eruptive construction of each volcano. Constraining points are selected by analyses of morphometric properties of each cell of the current DEM, as the loci where the altitude is still representative of the un-eroded volcanic surfaces. A primary elevation surface is firstly adjusted to these constraining points by modeling a first-order pseudo-radial surface defined by: 1. the curve best fitting the concave-upwards volcano profile; 2. the location and elevation of the volcano summit; and 3. the possible eccentricity and azimuth parameters that allow to stretch and contract contours to adjust the shape of the model to the elliptically-shaped surface of the volcano. A second-order surface is next computed by local adjustment of the first-order surface to the constraining points to obtain the definitive primary elevation surface of the considered volcanic construct. Amount of erosion is obtained by summing the difference in elevation between reconstructed surfaces and current ones that allows to establish relative ages of volcanoes. For the 6 studied Virunga volcanoes

  13. Miocene magmatism in the Bodie Hills volcanic field, California and Nevada: A long-lived eruptive center in the southern segment of the ancestral Cascades arc

    Science.gov (United States)

    John, David A.; du Bray, Edward A.; Blakely, Richard J.; Fleck, Robert J.; Vikre, Peter; Box, Stephen E.; Moring, Barry C.

    2012-01-01

    The Middle to Late Miocene Bodie Hills volcanic field is a >700 km2, long-lived (∼9 Ma) but episodic eruptive center in the southern segment of the ancestral Cascades arc north of Mono Lake (California, U.S.). It consists of ∼20 major eruptive units, including 4 trachyandesite stratovolcanoes emplaced along the margins of the field, and numerous, more centrally located silicic trachyandesite to rhyolite flow dome complexes. Bodie Hills volcanism was episodic with two peak periods of eruptive activity: an early period ca. 14.7–12.9 Ma that mostly formed trachyandesite stratovolcanoes and a later period between ca. 9.2 and 8.0 Ma dominated by large trachyandesite-dacite dome fields. A final period of small silicic dome emplacement occurred ca. 6 Ma. Aeromagnetic and gravity data suggest that many of the Miocene volcanoes have shallow plutonic roots that extend to depths ≥1–2 km below the surface, and much of the Bodie Hills may be underlain by low-density plutons presumably related to Miocene volcanism.Compositions of Bodie Hills volcanic rocks vary from ∼50 to 78 wt% SiO2, although rocks with Bodie Hills rocks are porphyritic, commonly containing 15–35 vol% phenocrysts of plagioclase, pyroxene, and hornblende ± biotite. The oldest eruptive units have the most mafic compositions, but volcanic rocks oscillated between mafic and intermediate to felsic compositions through time. Following a 2 Ma hiatus in volcanism, postsubduction rocks of the ca. 3.6–0.1 Ma, bimodal, high-K Aurora volcanic field erupted unconformably onto rocks of the Miocene Bodie Hills volcanic field.At the latitude of the Bodie Hills, subduction of the Farallon plate is inferred to have ended ca. 10 Ma, evolving to a transform plate margin. However, volcanism in the region continued until 8 Ma without an apparent change in rock composition or style of eruption. Equidimensional, polygenetic volcanoes and the absence of dike swarms suggest a low differential horizontal stress regime

  14. Mars Global Surveyor Data Analysis Program. Origins of Small Volcanic Cones: Eruption Mechanisms and Implications for Water on Mars

    Science.gov (United States)

    Fagents, Sarah A.; Greeley, Ronald; Thordarson, Thorvaldur

    2002-01-01

    The goal of the proposed work was to determine the origins of small volcanic cones observed in Mars Global Surveyor (MGS) data, and their implications for regolith ice stores and magma volatile contents. For this 1-year study, our approach involved a combination of: Quantitative morphologic analysis and interpretation of Mars Orbiter Camera (MOC) and Mars Orbiter Laser Altimeter (MOLA) data; Numerical modeling of eruption processes responsible for producing the observed features; Fieldwork on terrestrial analogs in Iceland. Following this approach, this study succeeded in furthering our understanding of (i) the spatial and temporal distribution of near-surface water ice, as defined by the distribution and sizes of rootless volcanic cones ("pseudocraters"), and (ii) the properties, eruption conditions, and volatile contents of magmas producing primary vent cones.

  15. The 2011 submarine volcanic eruption of El Hierro Island (Canary Islands, Spain)

    Science.gov (United States)

    López, C.; Blanco, M. J.

    2012-04-01

    On 10 October 2011 a submarine volcanic eruption began 2 km SW of La Restinga village in the South coast of El Hierro Island (Spain). It became the first submarine eruption reported in 500 years of historical record in the Canary Islands. The eruption took place after three months of intensive seismic activity and ground deformation. The first signal evidencing the eruption was a harmonic tremor signal, located somewhere in the South sector of El Hierro Island and registered in every seismic station on the island. On the following day, the tremoŕs amplitude increased up enough to be felt by the residents of La Restinga. The first visual evidence of the eruption was observed during the afternoon of 12 October, a large light-green coloured area on the sea surface, 2 km to the SW of La Restinga. Three days later, steaming lava fragments were observed floating on the sea, in the area where the vent was supposed to be located. These fragments had a bomb-like shape and their sizes ranged between 10 and 40 cm long. They were bicoloured, a black outer part with a basaltic composition, and a white inner part, highly vesiculated and rich in silica content (>60%). This type of fragments was only observed during the first days of the eruption. Within the next two months further emission episodes have been observed with turbulent water, foam rings and large bubbles on the sea surface. On the 27th of November new lava fragments were observed while floating and degassing on the sea surface. Most of them were "lava balloons" or hollow fragments of lavas, with sizes between 30 and 200 cm, and highly vesiculated outer crust of basaltic-basanitic and sideromelane composition. The emission of these products continues intermitently up to date (January 2012) During the eruption, the GPS monitoring network detected episodes of inflation-deflation and a maximum vertical deformation of 4 cm. The horizontal deformation, which had reached up to 5 cm before the eruption, remains stable. The

  16. Importance of nanoparticles and colloids from volcanic ash for riverine transport of trace elements to the ocean: evidence from glacial-fed rivers after the 2010 eruption of Eyjafjallajökull Volcano, Iceland.

    Science.gov (United States)

    Tepe, Nathalie; Bau, Michael

    2014-08-01

    Volcanic ashes are often referenced as examples for natural nanoparticles, yet the particle size distribution eruptions at Eyjafjallajökull in 2010. In addition to the dissolved concentrations of rare earth elements (REE), Zr, Hf, Nb, and Th in the 450 nm-filtered waters, we also studied the respective filter residues (river particulates >450 nm) and volcanic ash. In spite of the low solubilities and high particle-reactivities of the elements studied, most water samples show high dissolved concentrations, such as up to 971 ng/kg of Ce and 501 ng/kg of Zr. Except for the pure glacial meltwater and glacial base flow, all waters display the same shale-normalized REE patterns with pronounced light and heavy REE depletion and positive Eu anomalies. While such patterns are unusual for river waters, they are similar to those of the respective river particulates and the volcanic ash, though at different concentration levels. The distribution of dissolved Zr, Hf, Nb, and Th in the waters also matches that of filter residues and ash. This strongly suggests that in all 450 nm-filtered river waters, the elements studied are associated with solid ash particles smaller than 450 nm. This reveals that volcanic ash-derived nanoparticles and colloids are present in these glacial-fed rivers and that such ultrafine particles control the trace element distribution in the surface runoff. Subsequent to explosive volcanic eruptions, these waters provide terrigenous input from landmasses to estuaries, that is characterized by a unique trace element signature and that subsequent to modification by estuarine processes delivers a pulse of nutrients to coastal seawater in regions not affected by plume fall-out. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Active Volcanic Eruptions on Io

    Science.gov (United States)

    1996-01-01

    Six views of the volcanic plume named Prometheus, as seen against Io's disk and near the bright limb (edge) of the satellite by the SSI camera on the Galileo spacecraft during its second (G2) orbit of Jupiter. North is to the top of each frame. To the south-southeast of Prometheus is another bright spot that appears to be an active plume erupting from a feature named Culann Patera. Prometheus was active 17 years ago during both Voyager flybys, but no activity was detected by Voyager at Culann. Both of these plumes were seen to glow in the dark in an eclipse image acquired by the imaging camera during Galileo's first (G1) orbit, and hot spots at these locations were detected by Galileo's Near-Infrared Mapping Spectrometer.The plumes are thought to be driven by heating sulfur dioxide in Io's subsurface into an expanding fluid or 'geyser'. The long-lived nature of these eruptions requires that a substantial supply of sulfur dioxide must be available in Io's subsurface, similar to groundwater. Sulfur dioxide gas condenses into small particles of 'snow' in the expanding plume, and the small particles scatter light and appear bright at short wavelengths. The images shown here were acquired through the shortest-wavelength filter (violet) of the Galileo camera. Prometheus is about 300 km wide and 75 km high and Culann is about 150 km wide and less than 50 km high. The images were acquired on September 4, 1996 at a range of 2,000,000 km (20 km/pixel resolution). Prometheus is named after the Greek fire god and Culann is named after the Celtic smith god.The Jet Propulsion Laboratory, Pasadena, CA manages the Galileo mission for NASA's Office of Space Science, Washington, DC. JPL is an operating division of California Institute of Technology (Caltech).This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov. Background information and educational context for the images can

  18. The 1793 Eruption of San Martin Volcano (Los Tuxtlas, Veracruz, Mexico)

    Science.gov (United States)

    Espindola, J. M.; Zamora-Camacho, A.; Godinez, M. L.; Rodriguez-Elizarraras, S.

    2007-12-01

    San Martin Tuxtla Volcano is located in the State of Veracruz, Eastern Mexico (18.572N, 95.169W, 1650 masl). Its last eruption, which occurred 1793, was described by D. Jose Moziño, a naturalist sent by the Viceroy-of the then New Spain-to report on the eruption. The activity lasted for several months with distinct events of explosive character, which produced thick ash fall deposits in its vicinity. The explosions were heard, among other places, in the coasts of Tampico some 500km NW from the volcano. The ash fall reached distances up to 200 Km from the crater and covered an area of about 112,000 Km2. Following the description of Moziño and the results of field studies we make a reconstruction of the eruption. We identified the air fall deposit from this eruption and present an isopach map. We present radiocarbon ages of the paleosoils under the ash bed as an indirect evidence of its age. This data together with present day wind velocities, and a diffusion-advection model of the dispersion of ashes allow to estimate in at least 10km the altitude reached by some of the eruptive plumes. An estimation of the minimum volume of ash erupted, based on the reconstructed isopachs, is of about 1.3 x 108 m3. Microphotographs of the ashes suggest that the activity was of phreatomagmatic and strombolian nature. Finally, we address some aspects of the volcanic risk in the area derived from our study.

  19. Earthquakes and Volcanic Processes at San Miguel Volcano, El Salvador, Determined from a Small, Temporary Seismic Network

    Science.gov (United States)

    Hernandez, S.; Schiek, C. G.; Zeiler, C. P.; Velasco, A. A.; Hurtado, J. M.

    2008-12-01

    The San Miguel volcano lies within the Central American volcanic chain in eastern El Salvador. The volcano has experienced at least 29 eruptions with Volcano Explosivity Index (VEI) of 2. Since 1970, however, eruptions have decreased in intensity to an average of VEI 1, with the most recent eruption occurring in 2002. Eruptions at San Miguel volcano consist mostly of central vent and phreatic eruptions. A critical challenge related to the explosive nature of this volcano is to understand the relationships between precursory surface deformation, earthquake activity, and volcanic activity. In this project, we seek to determine sub-surface structures within and near the volcano, relate the local deformation to these structures, and better understand the hazard that the volcano presents in the region. To accomplish these goals, we deployed a six station, broadband seismic network around San Miguel volcano in collaboration with researchers from Servicio Nacional de Estudios Territoriales (SNET). This network operated continuously from 23 March 2007 to 15 January 2008 and had a high data recovery rate. The data were processed to determine earthquake locations, magnitudes, and, for some of the larger events, focal mechanisms. We obtained high precision locations using a double-difference approach and identified at least 25 events near the volcano. Ongoing analysis will seek to identify earthquake types (e.g., long period, tectonic, and hybrid events) that occurred in the vicinity of San Miguel volcano. These results will be combined with radar interferometric measurements of surface deformation in order to determine the relationship between surface and subsurface processes at the volcano.

  20. Geology and geochronology of the Tana Basin, Ethiopia: LIP volcanism, super eruptions and Eocene-Oligocene environmental change

    Science.gov (United States)

    Prave, A. R.; Bates, C. R.; Donaldson, C. H.; Toland, H.; Condon, D. J.; Mark, D.; Raub, T. D.

    2016-06-01

    New geological and geochronological data define four episodes of volcanism for the Lake Tana region in the northern Ethiopian portion of the Afro-Arabian Large Igneous Province (LIP): pre-31 Ma flood basalt that yielded a single 40Ar/39Ar age of 34.05 ± 0.54 / 0.56 Ma; thick and extensive felsic ignimbrites and rhyolites (minimum volume of 2- 3 ×103 km3) erupted between 31.108 ± 0.020 / 0.041 Ma and 30.844 ± 0.027 / 0.046 Ma (U-Pb CA-ID-TIMS zircon ages); mafic volcanism bracketed by 40Ar/39Ar ages of 28.90 ± 0.12 / 0.14 Ma and 23.75 ± 0.02 / 0.04 Ma; and localised scoraceous basalt with an 40Ar/39Ar age of 0.033 ± 0.005 / 0.005 Ma. The felsic volcanism was the product of super eruptions that created a 60-80 km diameter caldera marked by km-scale caldera-collapse fault blocks and a steep-sided basin filled with a minimum of 180 m of sediment and the present-day Lake Tana. These new data enable mapping, with a finer resolution than previously possible, Afro-Arabian LIP volcanism onto the timeline of the Eocene-Oligocene transition and show that neither the mafic nor silicic volcanism coincides directly with perturbations in the geochemical records that span that transition. Our results reinforce the view that it is not the development of a LIP alone but its rate of effusion that contributes to inducing global-scale environmental change.

  1. ATMOSPHERIC DISPERSAL AND DEPOSITION OF TEPHRA FROM A POTENTIAL VOLCANIC ERUPTION AT YUCCA MOUNTAIN, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    C. Harrington

    2004-10-25

    The purpose of this model report is to provide documentation of the conceptual and mathematical model (Ashplume) for atmospheric dispersal and subsequent deposition of ash on the land surface from a potential volcanic eruption at Yucca Mountain, Nevada. This report also documents the ash (tephra) redistribution conceptual model. These aspects of volcanism-related dose calculation are described in the context of the entire igneous disruptive events conceptual model in ''Characterize Framework for Igneous Activity'' (BSC 2004 [DIRS 169989], Section 6.1.1). The Ashplume conceptual model accounts for incorporation and entrainment of waste fuel particles associated with a hypothetical volcanic eruption through the Yucca Mountain repository and downwind transport of contaminated tephra. The Ashplume mathematical model describes the conceptual model in mathematical terms to allow for prediction of radioactive waste/ash deposition on the ground surface given that the hypothetical eruptive event occurs. This model report also describes the conceptual model for tephra redistribution from a basaltic cinder cone. Sensitivity analyses and model validation activities for the ash dispersal and redistribution models are also presented. Analyses documented in this model report update the previous documentation of the Ashplume mathematical model and its application to the Total System Performance Assessment (TSPA) for the License Application (TSPA-LA) igneous scenarios. This model report also documents the redistribution model product outputs based on analyses to support the conceptual model. In this report, ''Ashplume'' is used when referring to the atmospheric dispersal model and ''ASHPLUME'' is used when referencing the code of that model. Two analysis and model reports provide direct inputs to this model report, namely ''Characterize Eruptive Processes at Yucca Mountain, Nevada and Number of Waste Packages Hit

  2. High-precision 40Ar/39Ar dating of Quaternary basalts from Auckland Volcanic Field, New Zealand, with implications for eruption rates and paleomagnetic correlations

    Science.gov (United States)

    Leonard, Graham S.; Calvert, Andrew T.; Hopkins, Jenni L.; Wilson, Colin J. N.; Smid, Elaine R.; Lindsay, Jan M.; Champion, Duane E.

    2017-09-01

    The Auckland Volcanic Field (AVF), which last erupted ca. 550 years ago, is a late Quaternary monogenetic basaltic volcanic field (ca. 500 km2) in the northern North Island of New Zealand. Prior to this study only 12 out of the 53 identified eruptive centres of the AVF had been reliably dated. Careful sample preparation and 40Ar/39Ar analysis has increased the number of well-dated centres in the AVF to 35. The high precision of the results is attributed to selection of fresh, non-vesicular, non-glassy samples from lava flow interiors. Sample selection was coupled with separation techniques that targeted only the groundmass of samples with 10 μm wide, coupled with ten-increment furnace step-heating of large quantities (up to 200 mg) of material. The overall AVF age data indicate an onset at 193.2 ± 2.8 ka, an apparent six-eruption flare-up from 30 to 34 ka, and a ≤ 10 kyr hiatus between the latest and second-to-latest eruptions. Such non-uniformity shows that averaging the number of eruptions over the life-span of the AVF to yield a mean eruption rate is overly simplistic. Together with large variations in eruption volumes, and the large sizes and unusual chemistry within the latest eruptions (Rangitoto 1 and Rangitoto 2), our results illuminate a complex episodic eruption history. In particular, the rate of volcanism in AVF has increased since 60 ka, suggesting that the field is still in its infancy. Multiple centres with unusual paleomagnetic inclination and declination orientations are confirmed to fit into a number of geomagnetic excursions, with five identified in the Mono Lake, two within the Laschamp, one within the post-Blake or Blake, and two possibly within the Hilina Pali.

  3. Rising from the ashes: Changes in salmonid fish assemblages after 30 months of the Puyehue-Cordon Caulle volcanic eruption.

    Science.gov (United States)

    Lallement, Mailén; Macchi, Patricio J; Vigliano, Pablo; Juarez, Santiago; Rechencq, Magalí; Baker, Matthew; Bouwes, Nicolaas; Crowl, Todd

    2016-01-15

    Events such as volcanic eruptions may act as disturbance agents modifying the landscape spatial diversity and increasing environmental instability. On June 4, 2011 the Puyehue-Cordon Caulle volcanic complex located on Chile (2236 m.a.s.l., 40° 02' 24" S- 70° 14' 26" W) experience a rift zone eruption ejecting during the first day 950 million metric tons into the atmosphere. Due to the westerly winds predominance, ash fell differentially upon 24 million ha of Patagonia Argentinean, been thicker deposits accumulated towards the West. In order to analyze changes on stream fish assemblages we studied seven streams 8, 19 and 30 months after the eruption along the ash deposition gradient, and compare those data to pre eruption ones. Habitat features and structure of the benthic macroinvertebrate food base of fish was studied. After the eruption, substantial environmental changes were observed in association with the large amount of ash fallout. In western sites, habitat loss due to ash accumulation, changes in the riparian zone and morphology of the main channels were observed. Turbidity was the water quality variable which reflected the most changes throughout time, with NTU values decreasing sharply from West to East sites. In west sites, increased Chironomid densities were recorded 8 months after the initial eruption as well as low EPT index values. These relationships were reversed in the less affected streams farther away from the volcano. Fish assemblages were greatly influenced both by habitat and macroinvertebrate changes. The eruption brought about an initial sharp decline in fish densities and the almost total loss of young of the year in the most western streams affecting recruitment. This effect diminished rapidly with distance from the emission center. Thirty months after the eruption, environmental changes are still occurring as a consequence of basin wide ash remobilization and transport.

  4. C-14 dating of volcanic eruptions. Application to the dating of a volcano of the french Massif Central

    Energy Technology Data Exchange (ETDEWEB)

    Delibrias, G; Labeyrie, J; Pelletier, H; Perquis, M Th [Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The volcanic eruption of Puy-de-la-Vache (Puy-de-Dome) has been dated by means of age measurements carried out on charcoal fragments found under a flow of lava; the result is 7650 {+-} 350 years. (author) [French] Une mesure d'age effectuee sur des fragments de charbons de bois trouves sous une coulee de lave, au Puy-de-la-Vache (Puy-de-Dome) a permis de dater cette eruption; le resultat est de 7650 {+-} 350 ans. (auteur)

  5. Volcanic Eruptions in Kamchatka

    Science.gov (United States)

    2007-01-01

    [figure removed for brevity, see original site] [figure removed for brevity, see original site] Sheveluch Stratovolcano Click on the image for full resolution TIFF Klyuchevskoy Stratovolcano Click on the image for full resolution TIFF One of the most volcanically active regions of the world is the Kamchatka Peninsula in eastern Siberia, Russia. It is not uncommon for several volcanoes to be erupting at the same time. On April 26, 2007, the Advanced Spaceborne Thermal Emission and Reflection Radioneter (ASTER) on NASA's Terra spacecraft captured these images of the Klyuchevskoy and Sheveluch stratovolcanoes, erupting simultaneously, and 80 kilometers (50 miles) apart. Over Klyuchevskoy, the thermal infrared data (overlaid in red) indicates that two open-channel lava flows are descending the northwest flank of the volcano. Also visible is an ash-and-water plume extending to the east. Sheveluch volcano is partially cloud-covered. The hot flows highlighted in red come from a lava dome at the summit. They are avalanches of material from the dome, and pyroclastic flows. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. ASTER is one of five Earth-observing instruments launched December 18, 1999, on NASA's Terra spacecraft. The instrument was built by Japan's Ministry of Economy, Trade and Industry. A joint U.S./Japan science team is responsible for validation and calibration of the instrument and the data products. The broad spectral coverage and high spectral resolution of ASTER provides scientists in numerous disciplines with critical information for surface mapping, and monitoring of dynamic conditions and temporal change. Example applications are: monitoring glacial advances and retreats; monitoring potentially active volcanoes; identifying crop stress; determining cloud morphology and

  6. Timing and compositional evolution of Late Pleistocene to Holocene volcanism within the Harrat Rahat volcanic field, Kingdom of Saudi Arabia

    Science.gov (United States)

    Stelten, M. E.; Downs, D. T.; Dietterich, H. R.

    2017-12-01

    Harrat Rahat is one of the largest ( 20,000 km2) of 15 active Cenozoic volcanic fields that stretch 3,000 km along the western Arabian Peninsula from Yemen to Syria. The Harrat Rahat volcanic field is 310 km long (N-S) by 75 km wide (E-W), and is dominated by alkalic basalts with minor hawaiite, mugearite, benmoreite, and trachyte eruptives. The timing of volcanism within greater Harrat Rahat is poorly constrained, but field relations and geochronology indicate that northern Harrat Rahat hosted the most recent eruptions. To better constrain the timing and compositional evolution of Harrat Rahat during this recent phase, we present 743 geochemical analyses, 144 40Ar/39Ar ages, and 9 36Cl exposure ages for volcanic strata from northernmost Harrat Rahat. These data demonstrate that volcanism has been ongoing from at least 1.2 Ma to the present, with the most recent eruption known from historical accounts at 1256 CE. Basalt has erupted persistently from 1.2 Ma to the present, but more evolved volcanism has been episodic. Benmoreite erupted at 1.1 Ma and between 550 to 400 ka. Trachytic volcanism has only occurred over the past 150 ka, with the most recent eruption at 5 ka. Aside from the well-documented basaltic eruption at 1256 CE, prior workers interpreted 6 additional basaltic eruptions during the Holocene. However, our 36Cl exposure ages demonstrate that these erupted between 60 to 13 ka. Interestingly, in the northern part of our field area, where the spatial density of volcanic vents is low, young volcanism (<150 ka) is dominated by basaltic eruptions. Conversely, young volcanism in the southern part of our field area, where volcanic vent density is high, is dominated by trachyte. This observation is consistent with a process wherein the time-integrated effects of basaltic influx into the crust in the south produced a mafic intrusive complex, through which younger basaltic magmas cannot ascend. Instead, these magmas stall and produce trachyte, likely through

  7. Evolution of submarine eruptive activity during the 2011-2012 El Hierro event as documented by hydroacoustic images and remotely operated vehicle observations

    Science.gov (United States)

    Somoza, L.; González, F. J.; Barker, S. J.; Madureira, P.; Medialdea, T.; de Ignacio, C.; Lourenço, N.; León, R.; Vázquez, J. T.; Palomino, D.

    2017-08-01

    Submarine volcanic eruptions are frequent and important events, yet they are rarely observed. Here we relate bathymetric and hydroacoustic images from the 2011 to 2012 El Hierro eruption with surface observations and deposits imaged and sampled by ROV. As a result of the shallow submarine eruption, a new volcano named Tagoro grew from 375 to 89 m depth. The eruption consisted of two main phases of edifice construction intercalated with collapse events. Hydroacoustic images show that the eruptions ranged from explosive to effusive with variable plume types and resulting deposits, even over short time intervals. At the base of the edifice, ROV observations show large accumulations of lava balloons changing in size and type downslope, coinciding with the area where floating lava balloon fallout was observed. Peaks in eruption intensity during explosive phases generated vigorous bubbling at the surface, extensive ash, vesicular lapilli and formed high-density currents, which together with periods of edifice gravitational collapse, produced extensive deep volcaniclastic aprons. Secondary cones developed in the last stages and show evidence for effusive activity with lava ponds and lava flows that cover deposits of stacked lava balloons. Chaotic masses of heterometric boulders around the summit of the principal cone are related to progressive sealing of the vent with decreasing or variable magma supply. Hornitos represent the final eruptive activity with hydrothermal alteration and bacterial mats at the summit. Our study documents the distinct evolution of a submarine volcano and highlights the range of deposit types that may form and be rapidly destroyed in such eruptions.Plain Language SummaryToday and through most of geological history, the greatest number and volume of volcanic eruptions on Earth have occurred underwater. However, in comparison to subaerial eruption, little is known about submarine eruptive processes as they are dangerous to cruise it over

  8. Tectonic evolution of the central-eastern sector of Trans Mexican Volcanic Belt and its influence on the eruptive history of the Nevado de Toluca volcano (Mexico)

    Science.gov (United States)

    Bellotti, F.; Capra, L.; Groppelli, G.; Norini, G.

    2006-11-01

    The Nevado de Toluca is an andesitic to dacitic stratovolcano of Late Pliocene-Holocene age located within the central and eastern sectors of the Trans Mexican Volcanic Belt. Morphostructural analysis, aerial photograph and satellite image interpretation, structural analysis and geological fieldwork were methods used to investigate the relationship between the evolution of the volcano and the tectonic framework of its basement. The study revealed that the area of Nevado de Toluca is affected by three main fault systems that intersect close to the volcanic edifice. These are from oldest to youngest, the Taxco-Querétaro, San Antonio and Tenango fault systems. The NNW-SSE Taxco-Querétaro fault system was active in the area since Early Miocene, and is characterized by right-lateral transtensive movement. Its reactivation during Early to Middle Pleistocene was responsible for the emplacement of andesitic to dacitic lava flows and domes of La Cieneguilla Supersynthem. The NE-SW San Antonio fault system was active during Late Pliocene, before the reactivation of the Taxco-Querétaro fault system, and is characterized by extensional left-lateral oblique-slip kinematics. The youngest is the E-W Tenango fault system that has been active since Late Pleistocene. This fault system is characterized by transtensive left-lateral strike-slip movement, and partly coeval with the youngest eruptive phase, the Nevado Supersynthem, which formed the present summit cone of the Nevado de Toluca volcano. The stress re-orientation from the Taxco-Querétaro to the Tenango fault system during Late Pleistocene is responsible for the ˜ 1 Ma hiatus in the magmatic activity between 1.15 Ma and 42 ka. After this period of repose, the eruptive style drastically changed from effusive to explosive with the emission of dacitic products. The methodology presented here furnish new data that can be used to better assess the complex structural evolution of this sector of the Trans Mexican Volcanic Belt

  9. Volcanic ash and aviation–The challenges of real-time, global communication of a natural hazard

    Science.gov (United States)

    Lechner, Peter; Tupper, Andrew C.; Guffanti, Marianne C.; Loughlin, Sue; Casadevall, Thomas

    2017-01-01

    More than 30 years after the first major aircraft encounters with volcanic ash over Indonesia in 1982, it remains challenging to inform aircraft in flight of the exact location of potentially dangerous ash clouds on their flight path, particularly shortly after the eruption has occurred. The difficulties include reliably forecasting and detecting the onset of significant explosive eruptions on a global basis, observing the dispersal of eruption clouds in real time, capturing their complex structure and constituents in atmospheric transport models, describing these observations and modelling results in a manner suitable for aviation users, delivering timely warning messages to the cockpit, flight planners and air traffic management systems, and the need for scientific development in order to undertake operational enhancements. The framework under which these issues are managed is the International Airways Volcano Watch (IAVW), administered by the International Civil Aviation Organization (ICAO). ICAO outlines in its standards and recommended practices (International Civil Aviation Organization, 2014) the basic volcanic monitoring and communication that is necessary at volcano observatories in Member States (countries). However, not all volcanoes are monitored and not all countries with volcanoes have mandated volcano observatories or equivalents. To add to the efforts of volcano observatories, a system of Meteorological Watch Offices, Air Traffic Management Area Control Centres, and nine specialist Volcanic Ash Advisory Centres (VAACs) are responsible for observing, analysing, forecasting and communicating the aviation hazard (airborne ash), using agreed techniques and messages in defined formats. Continuous improvement of the IAVW framework is overseen by expert groups representing the operators of the system, the user community, and the science community. The IAVW represents a unique marriage of two scientific disciplines - volcanology and meteorology - with the

  10. Externally triggered renewed bubble nucleation in basaltic magma: the 12 October 2008 eruption at Halema‘uma‘u Overlook vent, Kīlauea, Hawai‘i, USA

    Science.gov (United States)

    Carey, Rebecca J.; Manga, Michael; Degruyter, Wim; Swanson, Donald; Houghton, Bruce F.; Orr, Tim R.; Patrick, Matthew R.

    2012-01-01

    From October 2008 until present, dozens of small impulsive explosive eruptions occurred from the Overlook vent on the southeast side of Halema‘uma‘u Crater, at Kīlauea volcano, USA. These eruptions were triggered by rockfalls from the walls of the volcanic vent and conduit onto the top of the lava column. Here we use microtextural observations and data from clasts erupted during the well-characterized 12 October 2008 explosive eruption at Halema‘uma‘u to extend existing models of eruption triggering. We present a potential mechanism for this eruption by combining microtextural observations with existing geophysical and visual data sets. We measure the size and number density of bubbles preserved in juvenile ejecta using 2D images and X-ray microtomography. Our data suggest that accumulations of large bubbles with diameters of >50μm to at least millimeters existed at shallow levels within the conduit prior to the 12 October 2008 explosion. Furthermore, a high number density of small bubbles nucleation of bubbles. Visual observations, combined with preexisting geophysical data, suggest that the impact of rockfalls onto the magma free surface induces pressure changes over short timescales that (1) nucleated new additional bubbles in the shallow conduit leading to high number densities of small bubbles and (2) expanded the preexisting bubbles driving upward acceleration. The trigger of eruption and bubble nucleation is thus external to the degassing system.

  11. Stochastic Modeling of Past Volcanic Crises

    Science.gov (United States)

    Woo, Gordon

    2018-01-01

    The statistical foundation of disaster risk analysis is past experience. From a scientific perspective, history is just one realization of what might have happened, given the randomness and chaotic dynamics of Nature. Stochastic analysis of the past is an exploratory exercise in counterfactual history, considering alternative possible scenarios. In particular, the dynamic perturbations that might have transitioned a volcano from an unrest to an eruptive state need to be considered. The stochastic modeling of past volcanic crises leads to estimates of eruption probability that can illuminate historical volcanic crisis decisions. It can also inform future economic risk management decisions in regions where there has been some volcanic unrest, but no actual eruption for at least hundreds of years. Furthermore, the availability of a library of past eruption probabilities would provide benchmark support for estimates of eruption probability in future volcanic crises.

  12. Periodicity in the BrO∕SO2 molar ratios in the volcanic gas plume of Cotopaxi and its correlation with the Earth tides during the eruption in 2015

    Directory of Open Access Journals (Sweden)

    F. Dinger

    2018-03-01

    Full Text Available We evaluated NOVAC (Network for Observation of Volcanic and Atmospheric Change gas emission data from the 2015 eruption of the Cotopaxi volcano (Ecuador for BrO∕SO2 molar ratios. The BrO∕SO2 molar ratios were very small prior to the phreatomagmatic explosions in August 2015, significantly higher after the explosions, and continuously increasing until the end of the unrest period in December 2015. These observations together with similar findings in previous studies at other volcanoes (Mt. Etna, Nevado del Ruiz, Tungurahua suggest a possible link between a drop in BrO∕SO2 and a future explosion. In addition, the observed relatively high BrO∕SO2 molar ratios after December 2015 imply that bromine degassed predominately after sulfur from the magmatic melt. Furthermore, statistical analysis of the data revealed a conspicuous periodic pattern with a periodicity of about 2 weeks in a 3-month time series. While the time series is too short to rule out a chance recurrence of transient geological or meteorological events as a possible origin for the periodic signal, we nevertheless took this observation as a motivation to examine the influence of natural forcings with periodicities of around 2 weeks on volcanic gas emissions. One strong aspirant with such a periodicity are the Earth tides, which are thus central in this study. We present the BrO∕SO2 data, analyse the reliability of the periodic signal, discuss a possible meteorological or eruption-induced origin of this signal, and compare the signal with the theoretical ground surface displacement pattern caused by the Earth tides. Our central result is the observation of a significant correlation between the BrO∕SO2 molar ratios with the north–south and vertical components of the calculated tide-induced surface displacement with correlation coefficients of 47 and 36 %, respectively. From all other investigated parameters, only the correlation between the BrO∕SO2 molar

  13. Sustained effects of volcanic ash on biofilm stoichiometry, enzyme activity and community composition in North- Patagonia streams.

    Science.gov (United States)

    Carrillo, Uara; Díaz-Villanueva, Verónica; Modenutti, Beatriz

    2018-04-15

    Volcanic eruptions are extreme perturbations that affect ecosystems. These events can also produce persistent effects in the environment for several years after the eruption, with increased concentrations of suspended particles and the introduction of elements in the water column. On 4th June 2011, the Puyehue-Cordón Caulle Volcanic Complex (40.59°S-72.11°W, 2200m.a.s.l.) erupted explosively in southern Chile. The area affected by the volcano was devastated; a thick layer of volcanic ash (up to 30cm) was deposited in areas 50 km east of the volcano towards Argentina. The aim of the present study was to evaluate the effect of volcanic ash deposits on stream ecosystems four years after the eruption, comparing biofilm stoichiometry, alkaline phosphatase activity, and primary producer's assemblage in streams which were severely affected by the volcano with unaffected streams. We confirmed in the laboratory that ash deposited in the catchment of affected streams still leach phosphorus (P) into the water four years after eruption. Results indicate that affected streams still receive volcanic particles and that these particles release P, thus stream water exhibits high P concentration. Biofilm P content was higher and the C:P ratio lower in affected streams compared to unaffected streams. As a consequence of less P in unaffected streams, the alkaline phosphatase activity was higher compared to affected streams. Cyanobacteria increased their abundances (99.9% of total algal biovolume) in the affected streams suggesting that the increase in P may positively affect this group. On the contrary, unaffected streams contained a diatom dominant biofilm. In this way, local heterogeneity was created between sub-catchments located within 30 km of each other. These types of events should be seen as opportunities to gather valuable ecological information about how severe disturbances, like volcanic eruptions, shape landscapes and lotic systems for several years after the event

  14. C-14 dating of volcanic eruptions. Application to the dating of a volcano of the french Massif Central

    International Nuclear Information System (INIS)

    Delibrias, G.; Labeyrie, J.; Pelletier, H.; Perquis, M.Th.

    1960-01-01

    The volcanic eruption of Puy-de-la-Vache (Puy-de-Dome) has been dated by means of age measurements carried out on charcoal fragments found under a flow of lava; the result is 7650 ± 350 years. (author) [fr

  15. Estimating the Global Agricultural Impact of Solar Radiation Management using Volcanic Eruptions as Natural Experiments

    Science.gov (United States)

    Proctor, J.; Hsiang, S. M.; Burney, J. A.; Burke, M.; Schlenker, W.

    2017-12-01

    Solar radiation management (SRM) is increasingly considered an option for managing global temperatures, yet the economic impacts of ameliorating climatic changes by scattering sunlight back to space remain largely unknown. Though SRM may increase crop yields by reducing heat stress, its impacts from concomitant changes in available sunlight have never been empirically estimated. Here we use the volcanic eruptions that inspired modern SRM proposals as natural experiments to provide the first estimates of how the stratospheric sulfate aerosols (SS) created by the eruptions of El Chichon and Pinatubo altered the quantity and quality of global sunlight, how those changes in sunlight impacted global crop yields, and the total effect that SS may have on yields in an SRM scenario when the climatic and sunlight effects are jointly considered. We find that the sunlight-mediated impact of SS on yields is negative for both C4 (maize) and C3 (soy, rice, wheat) crops. Applying our yield model to a geoengineering scenario using SS-based SRM from 2050-2069, we find that SRM damages due to scattering sunlight are roughly equal in magnitude to SRM benefits from cooling. This suggests that SRM - if deployed using SS similar to those emitted by the volcanic eruptions it seeks to mimic - would attenuate little of the damages from climate change to global agriculture on net. Our approach could be extended to study SRM impacts on other global systems, such as human health or ecosystem function.

  16. The Tarawera eruption, Lake Rotomahana, and the origin of the Pink and White Terraces

    Science.gov (United States)

    Keam, Ronald F.

    2016-03-01

    This chapter introduces the historical and geographical background for the scientific studies at Tarawera and Lake Rotomahana in the Taupo Volcanic Zone of New Zealand as detailed in this Special Issue of the Journal of Volcanology and Geothermal Research. It also presents the results of some original investigations. These are based partly on the large body of historical information that exists about the 1886 Tarawera eruption and the geothermal system at Rotomahana, and partly on the results of dedicated geological studies by other researchers within the Okataina Volcanic Centre where the historical events took place. Specifically, the new material here presented includes a detailed analysis of a previously almost neglected narrative by the only observer to witness the 1886 eruption from the southeast of the erupting craters and leave an account of his observations. The importance of a co-operative interplay between pre-existing tectonic deformation and its responses to strong seismic activity induced by magmatic intrusion is emphasised as being a major determinant in the course of the eruption, and as the main trigger of the eruption explosions that were audible throughout half of the land area of New Zealand. The chapter then concentrates on showing how the recent geological studies, in conjunction with ideas on the architecture of geysers, permit an explanation to be given as to how the unique Pink and White Terraces came to be formed.

  17. Supplement of: The Influence of Volcanic Eruptions on the Climate of Tropical South America During the Last Millennium in an Isotope-Enabled General Circulation Model

    Science.gov (United States)

    Colose, Christopher; LeGrande, Allegra N.; Vuille, Mathias

    2016-01-01

    Currently, little is known on how volcanic eruptions impact large-scale climate phenomena such as South American paleo-intertropical Convergence Zone (ITCZ) position and summer monsoon behavior. In this paper, an analysis of observations and model simulations is employed to assess the influence of large volcanic eruptions on the climate of tropical South America. This problem is first considered for historically recent volcanic episodes for which more observations are available but where fewer events exist and the confounding effects of El NioSouthern Oscillation (ENSO) lead to inconclusive interpretation of the impact of volcanic eruptions at the continental scale. Therefore, we also examine a greater number of reconstructed volcanic events for the period 850CE to present that are incorporated into the NASA GISS ModelE2-R simulation of the last millennium.An advantage of this model is its ability to explicitly track water isotopologues throughout the hydrologic cycle and simulating the isotopic imprint following a large eruption. This effectively removes a degree of uncertainty associated with error-prone conversion of isotopic signals into climate variables, and allows for a direct comparison between GISS simulations and paleoclimate proxy records.Our analysis reveals that both precipitation and oxygen isotope variability respond with a distinct seasonal and spatial structure across tropical South America following an eruption. During austral winter, the heavy oxygen isotope in precipitation is enriched, likely due to reduced moisture convergence in the ITCZ domain and reduced rainfall over northern South America. During austral summer, however, more negative values of the precipitation isotopic composition are simulated over Amazonia, despite reductions in rainfall, suggesting that the isotopic response is not a simple function of the amount effect. During the South American monsoon season, the amplitude of the temperature response to volcanic forcing is larger

  18. A sensitivity analysis of volcanic aerosol dispersion in the stratosphere. [Mt. Fuego, Guatemala eruptions

    Science.gov (United States)

    Butler, C. F.

    1979-01-01

    A computer sensitivity analysis was performed to determine the uncertainties involved in the calculation of volcanic aerosol dispersion in the stratosphere using a 2 dimensional model. The Fuego volcanic event of 1974 was used. Aerosol dispersion processes that were included are: transport, sedimentation, gas phase sulfur chemistry, and aerosol growth. Calculated uncertainties are established from variations in the stratospheric aerosol layer decay times at 37 latitude for each dispersion process. Model profiles are also compared with lidar measurements. Results of the computer study are quite sensitive (factor of 2) to the assumed volcanic aerosol source function and the large variations in the parameterized transport between 15 and 20 km at subtropical latitudes. Sedimentation effects are uncertain by up to a factor of 1.5 because of the lack of aerosol size distribution data. The aerosol chemistry and growth, assuming that the stated mechanisms are correct, are essentially complete in several months after the eruption and cannot explain the differences between measured and modeled results.

  19. First experimental observations on melting and chemical modification of volcanic ash during lightning interaction.

    Science.gov (United States)

    Mueller, S P; Helo, C; Keller, F; Taddeucci, J; Castro, J M

    2018-01-23

    Electrification in volcanic ash plumes often leads to syn-eruptive lightning discharges. High temperatures in and around lightning plasma channels have the potential to chemically alter, re-melt, and possibly volatilize ash fragments in the eruption cloud. In this study, we experimentally simulate temperature conditions of volcanic lightning in the laboratory, and systematically investigate the effects of rapid melting on the morphology and chemical composition of ash. Samples of different size and composition are ejected towards an artificially generated electrical arc. Post-experiment ash morphologies include fully melted spheres, partially melted particles, agglomerates, and vesiculated particles. High-speed imaging reveals various processes occurring during the short lightning-ash interactions, such as particle melting and rounding, foaming, and explosive particle fragmentation. Chemical analyses of the flash-melted particles reveal considerable bulk loss of Cl, S, P and Na through thermal vaporization. Element distribution patterns suggest convection as a key process of element transport from the interior of the melt droplet to rim where volatiles are lost. Modeling the degree of sodium loss delivers maximum melt temperatures between 3290 and 3490 K. Our results imply that natural lighting strikes may be an important agent of syn-eruptive morphological and chemical processing of volcanic ash.

  20. Doubly stochastic models for volcanic hazard assessment at Campi Flegrei caldera

    CERN Document Server

    Bevilacqua, Andrea

    2016-01-01

    This study provides innovative mathematical models for assessing the eruption probability and associated volcanic hazards, and applies them to the Campi Flegrei caldera in Italy. Throughout the book, significant attention is devoted to quantifying the sources of uncertainty affecting the forecast estimates. The Campi Flegrei caldera is certainly one of the world’s highest-risk volcanoes, with more than 70 eruptions over the last 15,000 years, prevalently explosive ones of varying magnitude, intensity and vent location. In the second half of the twentieth century the volcano apparently once again entered a phase of unrest that continues to the present. Hundreds of thousands of people live inside the caldera and over a million more in the nearby city of Naples, making a future eruption of Campi Flegrei an event with potentially catastrophic consequences at the national and European levels.

  1. A historical analysis of Plinian unrest and the key promoters of explosive activity.

    Science.gov (United States)

    Winson, A. E. G.; Newhall, C. G.; Costa, F.

    2015-12-01

    Plinian eruptions are the largest historically recorded volcanic phenomena, and have the potential to be widely destructive. Yet when a volcano becomes newly restless we are unable to anticipate whether or not a large eruption is imminent. We present the findings from a multi-parametric study of 42 large explosive eruptions (29 Plinian and 13 Sub-plinian) that form the basis for a new Bayesian Belief network that addresses this question. We combine the eruptive history of the volcanoes that have produced these large eruptions with petrological studies, and reported unrest phenomena to assess the probability of an eruption being plinian. We find that the 'plinian probability' is increased most strongly by the presence of an exsolved volatile phase in the reservoir prior to an eruption. In our survey 60% of the plinian eruptions, had an excess SO2 gas phase of more than double than it is calculated by petrologic studies alone. Probability is also increased by three related and more easily observable parameters: a high plinian Ratio (that is the ratio of VEI≥4 eruptions in a volcanoes history to the number of all VEI≥2 eruptions in the history), a repose time of more than 1000 years, and a Repose Ratio (the ratio of the average return of VEI≥4 eruptions in the volcanic record to the repose time since the last VEI≥4) of greater than 0.7. We looked for unrest signals that potentially are indicative of future plinian activity and report a few observations from case studies but cannot say if these will generally appear. Finally we present a retrospective analysis of the probabilities of eruptions in our study becoming plinian, using our Bayesian belief network. We find that these probabilities are up to about 4 times greater than those calculate from an a priori assessment of the global eruptive catalogue.

  2. Pyroclastic Density Current Hazards in the Auckland Volcanic Field, New Zealand

    Science.gov (United States)

    Brand, B. D.; Gravley, D.; Clarke, A. B.; Bloomberg, S. H.

    2012-12-01

    The most dangerous phenomena associated with phreatomagmatic eruptions are dilute pyroclastic density currents (PDCs). These are turbulent, ground-hugging sediment gravity currents that travel radially away from the explosive center at up to 100 m/s. The Auckland Volcanic Field (AVF), New Zealand, consists of approximately 50 eruptive centers, at least 39 of which have had explosive phreatomagmatic behaviour. A primary concern for future AVF eruptions is the impact of dilute PDCs in and around the Auckland area. We combine field observations from the Maungataketake tuff ring, which has one of the best exposures of dilute PDC deposits in the AVF, with a quantitative model for flow of and sedimentation from a radially-spreading, steady-state, depth-averaged dilute PDC (modified from Bursik and Woods, 1996 Bull Volcanol 58:175-193). The model allows us to explore the depositional mechanisms, macroscale current dynamics, and potential impact on societal infrastructure of dilute PDCs from a future AVF eruption. The lower portion of the Maungataketake tuff ring pyroclastic deposits contains trunks, limbs and fragments of Podocarp trees (strength of the wood, we calculate that dynamic pressures (Pdyn) of 10-75 kPa are necessary to topple trees of this size and composition. Thus the two main criteria for model success based on the field evidence include (a) Pdyn must be >10 kPa nearer than 0.9 km to the vent, and 35 kPa can be expected within 3 km from source, ensuring complete destruction of the area; Pdyn > 15 kPa up to 5 km from source, resulting in heavy structural damage to most buildings and near destruction of weaker buildings; and Pdyn <10 kPa at ~6 km from source, resulting in severe damage to weaker structures at least up to this distance. This exercise illustrates our ability to combine field measurements with numerical techniques to explore controlling parameters of dilute PDC dynamics. These tools can be used to understand and estimate the damage potential and

  3. Long-range hazard assessment of volcanic ash dispersal for a Plinian eruptive scenario at Popocatépetl volcano (Mexico): implications for civil aviation safety

    Science.gov (United States)

    Bonasia, Rosanna; Scaini, Chiara; Capra, Lucia; Nathenson, Manuel; Siebe, Claus; Arana-Salinas, Lilia; Folch, Arnau

    2014-01-01

    Popocatépetl is one of Mexico's most active volcanoes threatening a densely populated area that includes Mexico City with more than 20 million inhabitants. The destructive potential of this volcano is demonstrated by its Late Pleistocene-Holocene eruptive activity, which has been characterized by recurrent Plinian eruptions of large magnitude, the last two of which destroyed human settlements in pre-Hispanic times. Popocatépetl's reawakening in 1994 produced a crisis that culminated with the evacuation of two villages on the northeastern flank of the volcano. Shortly after, a monitoring system and a civil protection contingency plan based on a hazard zone map were implemented. The current volcanic hazards map considers the potential occurrence of different volcanic phenomena, including pyroclastic density currents and lahars. However, no quantitative assessment of the tephra hazard, especially related to atmospheric dispersal, has been performed. The presence of airborne volcanic ash at low and jet-cruise atmospheric levels compromises the safety of aircraft operations and forces re-routing of aircraft to prevent encounters with volcanic ash clouds. Given the high number of important airports in the surroundings of Popocatépetl volcano and considering the potential threat posed to civil aviation in Mexico and adjacent regions in case of a Plinian eruption, a hazard assessment for tephra dispersal is required. In this work, we present the first probabilistic tephra dispersal hazard assessment for Popocatépetl volcano. We compute probabilistic hazard maps for critical thresholds of airborne ash concentrations at different flight levels, corresponding to the situation defined in Europe during 2010, and still under discussion. Tephra dispersal mode is performed using the FALL3D numerical model. Probabilistic hazard maps are built for a Plinian eruptive scenario defined on the basis of geological field data for the "Ochre Pumice" Plinian eruption (4965 14C yr BP

  4. Bayesian inversion of data from effusive volcanic eruptions using physics-based models: Application to Mount St. Helens 2004--2008

    Science.gov (United States)

    Anderson, Kyle; Segall, Paul

    2013-01-01

    Physics-based models of volcanic eruptions can directly link magmatic processes with diverse, time-varying geophysical observations, and when used in an inverse procedure make it possible to bring all available information to bear on estimating properties of the volcanic system. We develop a technique for inverting geodetic, extrusive flux, and other types of data using a physics-based model of an effusive silicic volcanic eruption to estimate the geometry, pressure, depth, and volatile content of a magma chamber, and properties of the conduit linking the chamber to the surface. A Bayesian inverse formulation makes it possible to easily incorporate independent information into the inversion, such as petrologic estimates of melt water content, and yields probabilistic estimates for model parameters and other properties of the volcano. Probability distributions are sampled using a Markov-Chain Monte Carlo algorithm. We apply the technique using GPS and extrusion data from the 2004–2008 eruption of Mount St. Helens. In contrast to more traditional inversions such as those involving geodetic data alone in combination with kinematic forward models, this technique is able to provide constraint on properties of the magma, including its volatile content, and on the absolute volume and pressure of the magma chamber. Results suggest a large chamber of >40 km3 with a centroid depth of 11–18 km and a dissolved water content at the top of the chamber of 2.6–4.9 wt%.

  5. The spatial and temporal `cost' of volcanic eruptions: assessing economic impact, business inoperability, and spatial distribution of risk in the Auckland region, New Zealand

    Science.gov (United States)

    McDonald, Garry W.; Smith, Nicola J.; Kim, Joon-hwan; Cronin, Shane J.; Proctor, Jon N.

    2017-07-01

    Volcanic risk assessment has historically concentrated on quantifying the frequency, magnitude, and potential diversity of physical processes of eruptions and their consequent impacts on life and property. A realistic socio-economic assessment of volcanic impact must however take into account dynamic properties of businesses and extend beyond only measuring direct infrastructure/property loss. The inoperability input-output model, heralded as one of the 10 most important accomplishments in risk analysis over the last 30 years (Kujawaski Syst Eng. 9:281-295, 2006), has become prominent over the last decade in the economic impact assessment of business disruptions. We develop a dynamic inoperability input-output model to assess the economic impacts of a hypothetical volcanic event occurring at each of 7270 unique spatial locations throughout the Auckland Volcanic Field, New Zealand. This field of at least 53 volcanoes underlies the country's largest urban area, the Auckland region, which is home to 1.4 million people and responsible for 35.3% (NZ201481.2 billion) of the nation's GDP (Statistics New Zealand 2015). We apply volcanic event characteristics for a small-medium-scale volcanic eruption scenario and assess the economic impacts of an `average' eruption in the Auckland region. Economic losses are quantified both with, and without, business mitigation and intervention responses in place. We combine this information with a recent spatial hazard probability map (Bebbington and Cronin Bull Volcanol. 73(1):55-72, 2011) to produce novel spatial economic activity `at risk' maps. Our approach demonstrates how business inoperability losses sit alongside potential life and property damage assessment in enhancing our understanding of volcanic risk mitigation.

  6. Geohazards (floods and landslides in the Ndop plain, Cameroon volcanic line

    Directory of Open Access Journals (Sweden)

    Wotchoko Pierre

    2016-07-01

    Full Text Available The Ndop Plain, located along the Cameroon Volcanic Line (CVL, is a volcano-tectonic plain, formed by a series of tectonic movements, volcanic eruptions and sedimentation phases. Floods (annually and landslides (occasionally occur with devastating environmental effects. However, this plain attracts a lot of inhabitants owing to its fertile alluvial soils. With demographic explosion in the plain, the inhabitants (143,000 people tend to farm and inhabit new zones which are prone to these geohazards. In this paper, we use field observations, laboratory analyses, satellite imagery and complementary methods using appropriate software to establish hazard (flood and landslide maps of the Ndop Plain. Natural factors as well as anthropogenic factors are considered.

  7. Analysis on the Capacity Building Efforts for Mitigating Volcanic Risks during 2010 Eruption of Mount Merapi, Central Java, Indonesia

    Directory of Open Access Journals (Sweden)

    SARI BAHAGIARTI KUSUMAYUDHA

    2012-12-01

    Full Text Available Mount Merapi is one of the most active volcanoes on the World erupted again during October to November 2010. Its climax activities happened on 5th November at 00.10 pm, with different type of eruption from Mount Merapi of last 50 years. Ordinary, Mount Merapi activity starts from lava dome development, followed by dome collapse to create pyroclastic flow. This specific character of eruption is called Merapi type. The pyroclastic flows at that time killed 341 people and buried many villages on the southeastern slope, while the secondary hazard of lahar destroyed many other human settlements and infrastructures on the western slope of the volcano. Actually, capacity building program in the areas of around Mount Merapi has been established since more than 15 years ago. In most villages, there are community associations that well trained on volcanic hazard mitigation and early warning system. The association name is Association of Mountains Belt of Merapi. Map of Mount Merapi hazards was also already set by the Center of Volcanology and Geologic Disaster Mitigation. Unfortunately, human are not able to order the nature. The character of Mount Merapi eruption in the year 2010 was inconsistent. There was much higher gas pressure, much longer distant of pyroclastic flow, and much greater volume of volcanic material poured from the crater. This made people and stake holders very astonished in handling the evacuation. However, a socio-cultural factor in this respect is that the local people and agriculturists view Mount Merapi as a God which gives them fertile soil and water for agriculture and are reluctant to move away even under an impending threat of a volcanic hazard. This mind-set of people is a challenge in capacity building as the people prefer in-situ protective measures rather than moving away.

  8. Trace elements deposition in the Tierra del Fuego region (south Patagonia) by using lichen transplants after the Puyehue-Cordón Caulle (north Patagonia) volcanic eruption in 2011.

    Science.gov (United States)

    Conti, Marcelo Enrique; Jasan, Raquel; Finoia, Maria Grazia; Iavicoli, Ivo; Plá, Rita

    2016-04-01

    Lichen Usnea barbata transplants were tested as a biomonitor of atmospheric deposition in an apparently pristine environment that is Tierra del Fuego region (Patagonia, Argentina). The present survey is connected with the volcanic eruption that started in north Patagonia on June 4, 2011 from the Puyehue-Cordón Caulle volcano, Chile (north Patagonia, at 1700 km of distance of our sampling sites). Lichens were collected in September 2011 (one month of exposure) and September 2012 (1 year of exposure) in 27 sites covering the northern region of the province where trees are not present. The atmospheric deposition of 27 elements by using Neutron Activation Analysis (NAA) was determined in the collected samples. The first aim of the study was to evaluate the influence of the volcanic eruption on the regional atmospheric deposition comparing our results with baseline data we determined in U. barbata in 2006 in the same sites. The second aim was to test possible patterns of bioaccumulation between the two sampling campaigns after the volcanic eruption. With respect to 2006 baseline levels, we found significant higher levels for As, Ba, Co, Cr, Cs, Na, Sb and U in lichens collected after 1 month of exposure (first sampling campaign--2011). Between the two sampling campaigns (2011-2012) after the eruption, lichens reflected the natural contamination by volcanic ashes with significantly higher median levels of Br, Cr, Fe, K, Na, Sc, and Se. Results confirmed the very good aptitude of U. barbata to reflect the levels of elements in the environment at global scale and to reflect the volcanic emissions at distant places. Volcanic eruptions cause the emission in the atmosphere of elevated levels of particulate matter. In this regard, our findings demonstrate the importance to evaluate the metal composition of the particles to avoid possible health effects.

  9. Integrating science and education during an international, multi-parametric investigation of volcanic activity at Santiaguito volcano, Guatemala

    Science.gov (United States)

    Lavallée, Yan; Johnson, Jeffrey; Andrews, Benjamin; Wolf, Rudiger; Rose, William; Chigna, Gustavo; Pineda, Armand

    2016-04-01

    In January 2016, we held the first scientific/educational Workshops on Volcanoes (WoV). The workshop took place at Santiaguito volcano - the most active volcano in Guatemala. 69 international scientists of all ages participated in this intensive, multi-parametric investigation of the volcanic activity, which included the deployment of seismometers, tiltmeters, infrasound microphones and mini-DOAS as well as optical, thermographic, UV and FTIR cameras around the active vent. These instruments recorded volcanic activity in concert over a period of 3 to 9 days. Here we review the research activities and present some of the spectacular observations made through this interdisciplinary efforts. Observations range from high-resolution drone and IR footage of explosions, monitoring of rock falls and quantification of the erupted mass of different gases and ash, as well as morphological changes in the dome caused by recurring explosions (amongst many other volcanic processes). We will discuss the success of such integrative ventures in furthering science frontiers and developing the next generation of geoscientists.

  10. Observations of volcanic plumes using small balloon soundings

    Science.gov (United States)

    Voemel, H.

    2015-12-01

    Eruptions of volcanoes are very difficult to predict and for practical purposes may occur at any time. Any observing system intending to observe volcanic eruptions has to be ready at any time. Due to transport time scales, emissions of large volcanic eruptions, in particular injections into the stratosphere, may be detected at locations far from the volcano within days to weeks after the eruption. These emissions may be observed using small balloon soundings at dedicated sites. Here we present observations of particles of the Icelandic Grimsvotn eruption at the Meteorological Observatory Lindenberg, Germany in the months following the eruption and observations of opportunity of other volcanic particle events. We also present observations of the emissions of SO2 from the Turrialba volcano at San Jose, Costa Rica. We argue that dedicated sites for routine observations of the clean and perturbed atmosphere using small sounding balloons are an important element in the detection and quantification of emissions from future volcanic eruptions.

  11. Unearthing The Eruptive Personality Of El Salvador's Santa Ana (Ilamatepec) Volcano Though In-depth Stratigraphic Analysis Of Pre-1904 Deposits

    Science.gov (United States)

    Gallant, E.; Martinez-Hackert, B.

    2011-12-01

    The Santa Ana (Ilamatepec) volcano (2384 m) in densely populated El Salvador Central America presents serious volcanic hazard potential. The volcano is a prevalent part of every day life in El Salvador; the sugarcane and coffee belt of the country are to its Southern and Western flanks, recreational areas lies to its East, and second and third largest cities of El Salvador exist within its 25 km radius. Understanding the eruptive characteristics and history is imperative due to the volcano's relative size (the highest in the country) and it's explosive, composite nature. Historical records indicate at least 9 potential VEI 3 eruptions since 1521 AD. The volcano's relative inaccessibility and potential hazards do not promote a vast reservoir of research activity, as can be seen in the scarcity of published papers on topics prior to the 1904 eruption. This research represents the first steps towards creating a comprehensive stratigraphic record of the crater and characterizing its eruptive history, with an eventual goal of recreating the volcanic structure prior to its collapse. Samples of pre-1904 eruptive material were taken from the southern wall of an E-W oriented fluvial gully located within the SSW of the tertiary crater. These were analyzed using thin sections and optical microscopy, grain size distribution techniques, and scanning electron microscopy. The 15-layer sequence indicates an explosive history characterized by intense phreatomagmatic phases, plinian, sub-plinian and basaltic/andesitic composition strombolian activity. Another poster within the session will discuss an older sequence within the walls of the secondary crater. Further detailed studies will be required to gain a better understanding of the characteristics of Santa Ana Volcano.

  12. Contrasting styles of post-caldera volcanism along the Main Ethiopian Rift: Implications for contemporary volcanic hazards

    Science.gov (United States)

    Fontijn, Karen; McNamara, Keri; Zafu Tadesse, Amdemichael; Pyle, David M.; Dessalegn, Firawalin; Hutchison, William; Mather, Tamsin A.; Yirgu, Gezahegn

    2018-05-01

    The Main Ethiopian Rift (MER, 7-9°N) is the type example of a magma-assisted continental rift. The rift axis is populated with regularly spaced silicic caldera complexes and central stratovolcanoes, interspersed with large fields of small mafic scoria cones. The recent (latest Pleistocene to Holocene) history of volcanism in the MER is poorly known, and no eruptions have occurred in the living memory of the local population. Assessment of contemporary volcanic hazards and associated risk is primarily based on the study of the most recent eruptive products, typically those emplaced within the last 10-20 ky. We integrate new and published field observations and geochemical data on tephra deposits from the main Late Quaternary volcanic centres in the central MER to assess contemporary volcanic hazards. Most central volcanoes in the MER host large mid-Pleistocene calderas, with typical diameters of 5-15 km, and associated ignimbrites of trachyte and peralkaline rhyolite composition. In contrast, post-caldera activity at most centres comprises eruptions of peralkaline rhyolitic magmas as obsidian flows, domes and pumice cones. The frequency and magnitude of events varies between individual volcanoes. Some volcanoes have predominantly erupted obsidian lava flows in their most recent post-caldera stage (Fentale), whereas other have had up to 3 moderate-scale (VEI 3-4) explosive eruptions per millennium (Aluto). At some volcanoes we find evidence for multiple large explosive eruptions (Corbetti, Bora-Baricha, Boset-Bericha) which have deposited several centimetres to metres of pumice and ash in currently densely populated regions. This new overview has important implications when assessing the present-day volcanic hazard in this rapidly developing region. Supplementary Table 2 Main Ethiopian Rift outcrop localities with brief description of geology. All coordinates in Latitude - Longitude, WGS84 datum. Sample names (as listed in Supplementary Table 3a) follow outcrop name

  13. Characterization of a volcanic ash episode in southern Finland caused by the Grimsvötn eruption in Iceland in May 2011

    Directory of Open Access Journals (Sweden)

    V.-M. Kerminen

    2011-12-01

    Full Text Available The volcanic eruption of Grimsvötn in Iceland in May 2011 affected surface-layer air quality at several locations in Northern Europe. In Helsinki, Finland, the main pollution episode lasted for more than 8 h around the noon of 25 May. We characterized this episode by relying on detailed physical, chemical and optical aerosol measurements. The analysis was aided by air mass trajectory calculations, satellite measurements, and dispersion model simulations. During the episode, volcanic ash particles were present at sizes from less than 0.5 μm up to sizes >10 μm. The mass mean diameter of ash particles was a few μm in the Helsinki area, and the ash enhanced PM10 mass concentrations up to several tens of μg m−3. Individual particle analysis showed that some ash particles appeared almost non-reacted during the atmospheric transportation, while most of them were mixed with sea salt or other type of particulate matter. Also sulfate of volcanic origin appeared to have been transported to our measurement site, but its contribution to the aerosol mass was minor due the separation of ash-particle and sulfur dioxide plumes shortly after the eruption. The volcanic material had very little effect on PM1 mass concentrations or sub-micron particle number size distributions in the Helsinki area. The aerosol scattering coefficient was increased and visibility was slightly decreased during the episode, but in general changes in aerosol optical properties due to volcanic aerosols seem to be difficult to be distinguished from those induced by other pollutants present in a continental boundary layer. The case investigated here demonstrates clearly the power of combining surface aerosol measurements, dispersion model simulations and satellite measurements in analyzing surface air pollution episodes caused by volcanic eruptions. None of these three approaches alone would be sufficient to forecast, or even to unambiguously identify

  14. Particle transport in subaqueous eruptions: An experimental investigation

    Science.gov (United States)

    Verolino, A.; White, J. D. L.; Zimanowski, B.

    2018-01-01

    Subaqueous volcanic eruptions are natural events common under the world's oceans. Here we report results from bench-scale underwater explosions that entrain and eject particles into a water tank. Our aim was to examine how particles are transferred to the water column and begin to sediment from it, and to visualize and interpret evolution of the 'eruption' cloud. Understanding particle transfer to water is a key requirement for using deposit characteristics to infer behaviour and evolution of an underwater eruption. For the experiments here, we used compressed argon to force different types of particles, under known driving pressures, into water within a container, and recorded the results at 1 MPx/frame and 1000 fps. Three types of runs were completed: (1) particles within water were driven into a water-filled container; (2) dry particles were driven into water; (3) dry particles were driven into air at atmospheric pressure. Across the range of particles used for all subaqueous runs, we observed: a) initial doming, b) a main expansion of decompressing gas, and c) a phase of necking, when a forced plume separated from the driving jet. Phase c did not take place for the subaerial runs. A key observation is that none of the subaqueous explosions produced a single, simple, open cavity; in all cases, multiphase mixtures of gas bubbles, particles and water were formed. Explosions in which the expanding argon ejects particles in air, analogous to delivery of particles created in an explosion, produce jets and forced plumes that release particles into the tank more readily than do those in which particles in water are driven into the tank. The latter runs mimic propulsion of an existing vent slurry by an explosion. Explosions with different particle types also yielded differences in behaviour controlled primarily by particle mass, particle density, and particle-population homogeneity. Particles were quickly delivered into the water column during plume rise following

  15. Merapi 2010 eruption—Chronology and extrusion rates monitored with satellite radar and used in eruption forecasting

    Science.gov (United States)

    Pallister, John S.; Schneider, David; Griswold, Julia P.; Keeler, Ronald H.; Burton, William C.; Noyles, Christopher; Newhall, Christopher G.; Ratdomopurbo, Antonius

    2013-01-01

    Despite dense cloud cover, satellite-borne commercial Synthetic Aperture Radar (SAR) enabled frequent monitoring of Merapi volcano's 2010 eruption. Near-real-time interpretation of images derived from the amplitude of the SAR signals and timely delivery of these interpretations to those responsible for warnings, allowed satellite remote sensing for the first time to play an equal role with in situ seismic, geodetic and gas monitoring in guiding life-saving decisions during a major volcanic crisis. Our remotely sensed data provide an observational chronology for the main phase of the 2010 eruption, which lasted 12 days (26 October–7 November, 2010). Unlike the prolonged low-rate and relatively low explosivity dome-forming and collapse eruptions of recent decades at Merapi, the eruption began with an explosive eruption that produced a new summit crater on 26 October and was accompanied by an ash column and pyroclastic flows that extended 8 km down the flanks. This initial explosive event was followed by smaller explosive eruptions on 29 October–1 November, then by a period of rapid dome growth on 1–4 November, which produced a summit lava dome with a volume of ~ 5 × 106 m3. A paroxysmal VEI 4 magmatic eruption (with ash column to 17 km altitude) destroyed this dome, greatly enlarged the new summit crater and produced extensive pyroclastic flows (to ~ 16 km radial distance in the Gendol drainage) and surges during the night of 4–5 November. The paroxysmal eruption was followed by a period of jetting of gas and tephra and by a second short period (12 h) of rapid dome growth on 6 November. The eruption ended with low-level ash and steam emissions that buried the 6 November dome with tephra and continued at low levels until seismicity decreased to background levels by about 23 November. Our near-real-time commercial SAR documented the explosive events on 26 October and 4–5 November and high rates of dome growth (> 25 m3 s− 1). An event tree

  16. Equatorward dispersion of a high-latitude volcanic plume and its relation to the Asian summer monsoon: a case study of the Sarychev eruption in 2009

    Science.gov (United States)

    Wu, Xue; Griessbach, Sabine; Hoffmann, Lars

    2017-11-01

    Tropical volcanic eruptions have been widely studied for their significant contribution to stratospheric aerosol loading and global climate impacts, but the impact of high-latitude volcanic eruptions on the stratospheric aerosol layer is not clear and the pathway of transporting aerosol from high latitudes to the tropical stratosphere is not well understood. In this work, we focus on the high-latitude volcano Sarychev (48.1° N, 153.2° E), which erupted in June 2009, and the influence of the Asian summer monsoon (ASM) on the equatorward dispersion of the volcanic plume. First, the sulfur dioxide (SO2) emission time series and plume height of the Sarychev eruption are estimated with SO2 observations of the Atmospheric Infrared Sounder (AIRS) and a backward trajectory approach using the Lagrangian particle dispersion model Massive-Parallel Trajectory Calculations (MPTRAC). Then, the transport and dispersion of the plume are simulated using the derived SO2 emission time series. The transport simulations are compared with SO2 observations from AIRS and validated with aerosol observations from the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS). The MPTRAC simulations show that about 4 % of the sulfur emissions were transported to the tropical stratosphere within 50 days after the beginning of the eruption, and the plume dispersed towards the tropical tropopause layer (TTL) through isentropic transport above the subtropical jet. The MPTRAC simulations and MIPAS aerosol data both show that between the potential temperature levels of 360 and 400 K, the equatorward transport was primarily driven by anticyclonic Rossby wave breaking enhanced by the ASM in boreal summer. The volcanic plume was entrained along the anticyclone flows and reached the TTL as it was transported southwestwards into the deep tropics downstream of the anticyclone. Further, the ASM anticyclone influenced the pathway of aerosols by isolating an aerosol hole inside of the ASM, which

  17. Magma viscosity estimation based on analysis of erupted products. Potential assessment for large-scale pyroclastic eruptions

    International Nuclear Information System (INIS)

    Takeuchi, Shingo

    2010-01-01

    After the formulation of guidelines for volcanic hazards in site evaluation for nuclear installations (e.g. JEAG4625-2009), it is required to establish appropriate methods to assess potential of large-scale pyroclastic eruptions at long-dormant volcanoes, which is one of the most hazardous volcanic phenomena on the safety of the installations. In considering the volcanic dormancy, magma eruptability is an important concept. The magma eruptability is dominantly controlled by magma viscosity, which can be estimated from petrological analysis of erupted materials. Therefore, viscosity estimation of magmas erupted in past eruptions should provide important information to assess future activities at hazardous volcanoes. In order to show the importance of magma viscosity in the concept of magma eruptability, this report overviews dike propagation processes from a magma chamber and nature of magma viscosity. Magma viscosity at pre-eruptive conditions of magma chambers were compiled based on previous petrological studies on past eruptions in Japan. There are only 16 examples of eruptions at 9 volcanoes satisfying data requirement for magma viscosity estimation. Estimated magma viscosities range from 10 2 to 10 7 Pa·s for basaltic to rhyolitic magmas. Most of examples fall below dike propagation limit of magma viscosity (ca. 10 6 Pa·s) estimated based on a dike propagation model. Highly viscous magmas (ca. 10 7 Pa·s) than the dike propagation limit are considered to lose eruptability which is the ability to form dikes and initiate eruptions. However, in some cases, small precursory eruptions of less viscous magmas commonly occurred just before climactic eruptions of the highly viscous magmas, suggesting that the precursory dike propagation by the less viscous magmas induced the following eruptions of highly viscous magmas (ca. 10 7 Pa·s). (author)

  18. A unique volcanic field in Tharsis, Mars: Pyroclastic cones as evidence for explosive eruptions

    Czech Academy of Sciences Publication Activity Database

    Brož, Petr; Hauber, E.

    2012-01-01

    Roč. 218, č. 1 (2012), s. 88-99 ISSN 0019-1035 R&D Projects: GA MŠk ME09011 Institutional research plan: CEZ:AV0Z30120515 Keywords : Mars * volcanism * Mars surface Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 3.161, year: 2012

  19. The Eruption Forecasting Information System (EFIS) database project

    Science.gov (United States)

    Ogburn, Sarah; Harpel, Chris; Pesicek, Jeremy; Wellik, Jay; Pallister, John; Wright, Heather

    2016-04-01

    The Eruption Forecasting Information System (EFIS) project is a new initiative of the U.S. Geological Survey-USAID Volcano Disaster Assistance Program (VDAP) with the goal of enhancing VDAP's ability to forecast the outcome of volcanic unrest. The EFIS project seeks to: (1) Move away from relying on the collective memory to probability estimation using databases (2) Create databases useful for pattern recognition and for answering common VDAP questions; e.g. how commonly does unrest lead to eruption? how commonly do phreatic eruptions portend magmatic eruptions and what is the range of antecedence times? (3) Create generic probabilistic event trees using global data for different volcano 'types' (4) Create background, volcano-specific, probabilistic event trees for frequently active or particularly hazardous volcanoes in advance of a crisis (5) Quantify and communicate uncertainty in probabilities A major component of the project is the global EFIS relational database, which contains multiple modules designed to aid in the construction of probabilistic event trees and to answer common questions that arise during volcanic crises. The primary module contains chronologies of volcanic unrest, including the timing of phreatic eruptions, column heights, eruptive products, etc. and will be initially populated using chronicles of eruptive activity from Alaskan volcanic eruptions in the GeoDIVA database (Cameron et al. 2013). This database module allows us to query across other global databases such as the WOVOdat database of monitoring data and the Smithsonian Institution's Global Volcanism Program (GVP) database of eruptive histories and volcano information. The EFIS database is in the early stages of development and population; thus, this contribution also serves as a request for feedback from the community.

  20. Effects of recent volcanic eruptions on aquatic habitat in the Drift River, Alaska, USA: Implications at other Cook Inlet region volcanoes

    Science.gov (United States)

    Dorava, J.M.; Milner, A.M.

    1999-01-01

    Numerous drainages supporting productive salmon habitat are surrounded by active volcanoes on the west side of Cook Inlet in south-central Alaska. Eruptions have caused massive quantities of flowing water and sediment to enter the river channels emanating from glaciers and snowfields on these volcanoes. Extensive damage to riparian and aquatic habitat has commonly resulted, and benthic macroinvertebrate and salmonid communities can be affected. Because of the economic importance of Alaska's fisheries, detrimental effects on salmonid habitat can have significant economic implications. The Drift River drains glaciers on the northern and eastern flanks of Redoubt Volcano: During and following eruptions in 1989-1990, severe physical disturbances to the habitat features of the river adversely affected the fishery. Frequent eruptions at other Cook Inlet region volcanoes exemplify the potential effects of volcanic activity on Alaska's important commercial, sport, and subsistence fisheries. Few studies have documented the recovery of aquatic habitat following volcanic eruptions. The eruptions of Redoubt Volcano in 1989-1990 offered an opportunity to examine the recovery of the macroinvertebrate community. Macroinvertebrate community composition and structure in the Drift River were similar in both undisturbed and recently disturbed sites. Additionally, macroinvertebrate samples from sites in nearby undisturbed streams were highly similar to those from some Drift River sites. This similarity and the agreement between the Drift River macroinvertebrate community composition and that predicted by a qualitative model of typical macroinvertebrate communities in glacier-fed rivers indicate that the Drift River macroinvertebrate community is recovering five years after the disturbances associated with the most recent eruptions of Redoubt Volcano.