WorldWideScience

Sample records for explosion triggering experiments

  1. Steam explosion triggering and efficiency studies

    International Nuclear Information System (INIS)

    Buxton, L.D.; Nelson, L.S.; Benedick, W.B.

    1979-01-01

    A program at Sandia Laboratories to provide relevant data on the interaction of molten LWR core materials with water is described. Two different subtasks were established. The first was the performance of laboratory-scale experiments to investigate the ability to trigger steam explosions for realistic LWR core melt simulants under a wide range of initial conditions. The second was the performance of field-scale experiments to investigate the efficiency of converting the thermal energy of the melt into mechanical work in much larger steam explosions

  2. Dimensional analysis of small-scale steam explosion experiments

    International Nuclear Information System (INIS)

    Huh, K.; Corradini, M.L.

    1986-01-01

    Dimensional analysis applied to Nelson's small-scale steam explosion experiments to determine the qualitative effect of each relevant parameter for triggering a steam explosion. According to experimental results, the liquid entrapment model seems to be a consistent explanation for the steam explosion triggering mechanism. The three-dimensional oscillatory wave motion of the vapor/liquid interface is analyzed to determine the necessary conditions for local condensation and production of a coolant microjet to be entrapped in fuel. It is proposed that different contact modes between fuel and coolant may involve different initiation mechanisms of steam explosions

  3. The effect of binary oxide materials on a single droplet vapor explosion triggering

    International Nuclear Information System (INIS)

    Hansson, R.C.; Manickam, L.T.; Dinh, T.N.

    2011-01-01

    In order to explore the fundamental mechanism dictated by the material influence on triggering, fine fragmentation and subsequent vapor explosion energetics, a series of experiments using a mixture of eutectic and non-eutectic binary oxide were initiated. Dynamics of the hot liquid (WO 3 -CaO) droplet and the volatile liquid (water) were investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography, called SHARP (Simultaneous High-speed Acquisition of X-ray Radiography and Photography). The acquired images followed by further analysis showed a milder interaction for the non-eutectic melt composition for the tests with low melt superheat, whether no evident differences between eutectic and non-eutectic melt compositions regarding bubble dynamics, energetics and melt preconditioning was perceived for the high melt superheat tests. (author)

  4. The effect of binary oxide materials on a single droplet vapor explosion triggering

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, R.C.; Manickam, L.T.; Dinh, T.N. [Royal Inst. of Tech., Stockholm (Sweden)

    2011-07-01

    In order to explore the fundamental mechanism dictated by the material influence on triggering, fine fragmentation and subsequent vapor explosion energetics, a series of experiments using a mixture of eutectic and non-eutectic binary oxide were initiated. Dynamics of the hot liquid (WO{sub 3}-CaO) droplet and the volatile liquid (water) were investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography, called SHARP (Simultaneous High-speed Acquisition of X-ray Radiography and Photography). The acquired images followed by further analysis showed a milder interaction for the non-eutectic melt composition for the tests with low melt superheat, whether no evident differences between eutectic and non-eutectic melt compositions regarding bubble dynamics, energetics and melt preconditioning was perceived for the high melt superheat tests. (author)

  5. Steam explosion triggering phenomena: stainless steel and corium-E simulants studied with a floodable arc melting apparatus

    International Nuclear Information System (INIS)

    Nelson, L.S.; Buxton, L.D.

    1978-05-01

    Laboratory-scale experiments on the thermal interaction of light water reactor core materials with water have been performed. Samples (10--35 g) of Type 304 stainless steel and Corium-E simulants were each flooded with approximately 1.5 litres of water to determine whether steam explosions would occur naturally. Many of the experiments also employed artificially induced pressure transients in an attempt to initiate steam explosions. Vigorous interactions were not observed when the triggering pulse was not applied, and for stainless steel the triggering pulse initiated only coarse fragmentation. Two-stage, pressure-producing interactions were triggered for an ''oxidic'' Corium-E simulant. An impulse-initiated gas release theory has been simulated to explain the initial sample fragmentation. Although the delayed second stage of the event is not fully understood, it does not appear to be readily explained with classical vapor explosion theory. Rather, some form of metastability of the melt seems to be involved

  6. An effect of corium composition variations on occurrence of a steam explosion in the TROI experiments

    International Nuclear Information System (INIS)

    Kim, J. W.; Park, I. K.; Hong, S. W.; Min, B. T.; Shin, Y. S.; Song, J. H.; Kim, H. D.

    2003-01-01

    Recently series of steam explosion experiments have been performed in the TROI facility using corium melts of various compositions. The compositions (UO 2 : ZrO 2 ) of the corium were 0 : 100, 50 : 50, 70 : 30, 80 : 20 and 87 : 13 in weight percent and the mass of the corium was about 10kg. An experiment using 0 : 100 corium (pure zirconia) caused a steam explosion. An experiment using 50 : 50 corium did not cause a steam explosion while a steam spike occurred in an experiment using 70 : 30 corium which was the eutectic point of corium. A steam spike is considered to be the fact that a triggering of a steam explosion occurred but a propagation process does not occur so as to cause a weak interaction. However, the possibility of a steam explosion with this composition can not be ruled out since many steam explosions occurred in the previous experiments. In the two experiments using 80 : 20 corium, a steam spike occurred in one experiment but no steam explosion occurred in the other experiment. However, the triggerability of a steam explosion with this composition is not clear since few steam explosions occurred in the previous experiments. And no steam explosion occurred in an experiment using 87 : 13 corium of which urania content was the greatest among the experiments performed in the TROI facility. From this, the possibility of a steam explosion or a steam spike is appeared to be high in the non-mush zone. It is considered that an explosive interaction could easily occur with the eutectic composition. Since the solidification temperature around the eutectic point is low, the melt is likely to maintain its liquid state at the time of triggering so as to cause an explosive phenomenon

  7. Explosive eruptions triggered by rockfalls at Kīlauea volcano, Hawaii

    Science.gov (United States)

    Orr, Tim R.; Thelen, Weston A.; Patrick, Matthew R.; Swanson, Donald A.; Wilson, David C.

    2012-01-01

    Ongoing eruptive activity at Kīlauea volcano’s (Hawai‘i) summit has been controlled in part by the evolution of its vent from a 35-m-diameter opening into a collapse crater 150 m across. Geologic observations, in particular from a network of webcams, have provided an unprecedented look at collapse crater development, lava lake dynamics, and shallow outgassing processes. These observations show unequivocally that the hundreds of transient outgassing bursts and weak explosive eruptions that have punctuated the vent’s otherwise nearly steady-state behavior, and that are associated with composite seismic events, were triggered by rockfalls from the vent walls onto the top of the lava column. While the process by which rockfalls drive the explosive bursts is not fully understood, we believe that it is initiated by the generation of a rebound splash, or Worthington jet, which then undergoes fragmentation. The external triggering of low-energy outgassing events by rockfalls represents a new class of small transient explosive eruptions.

  8. A single sphere film boiling model for trigger ability and explosion potential

    International Nuclear Information System (INIS)

    Park, Ik Kyu; Kim, Jong Hwan; Hong, Seong Ho; Hong, Seong Wan

    2012-01-01

    The main causes for the controversy about the corium explosiveness are the hydrogen effect, large voided mixture, material property, poor triggering event (wrong position, weak triggering, wrong time), and low superheat due to a high melting temperature. It has been suggested that a steam explosion of the corium/water system must be suppressed due to the physical properties of corium such as high temperature, high density, multicomponent oxide melt, and low thermal conductivity. It was also claimed that the magnitude of the effect on the FCI results of corium/water systems is on the order of higher density, higher temperature, and non eutectic composition. This concept of a material effect is supported to some degree by parametric experimental results. However, the parametric results between the steam explosion pressure and the material compositions do not directly provide an understanding of the mechanism for the material difference affecting a steam explosion process, even though the sensitivity results can reveal the trends of some parameters affecting the FCI results. This concept of a material effect is supported to some degree by parametric experimental results. The parametric tests themselves also provide us with information on the effect of each initial parameter on a steam explosion. However, sensitivity studies between the steam explosion pressure and the initial value of a parameter do not directly provide an understanding of the steam explosion process. Handling the explosion res sure and initial condition without a mixing could not contribute to a code development process. We need a certain parameter for representing mixing, but we cannot measure it during the FCI tests. The particle size distribution collected after the FCI tests can be a good indicator for explaining a mixing process. In this paper, TROI tests were analyzed in view of a particle size response for various types of fuel coolant explosions. The heat losses and remnants were calculated

  9. Steam explosion triggering and efficiency studies

    International Nuclear Information System (INIS)

    Buxton, L.D.; Nelson, L.S.; Benedick, W.B.

    1979-01-01

    Laboratory experiments on the thermal interaction of simulated light water reactor (LWR) fuel melts and water are summarized. Their purpose was to investigate the possibility of steam explosions occurring for a range of hypothetical accident conditions. Pressure, temperature, hot liquid motion and cold liquid motion were monitored during the experiments

  10. Enhancement of eruption explosivity by heterogeneous bubble nucleation triggered by magma mingling.

    Science.gov (United States)

    Paredes-Mariño, Joali; Dobson, Katherine J; Ortenzi, Gianluigi; Kueppers, Ulrich; Morgavi, Daniele; Petrelli, Maurizio; Hess, Kai-Uwe; Laeger, Kathrin; Porreca, Massimiliano; Pimentel, Adriano; Perugini, Diego

    2017-12-04

    We present new evidence that shows magma mingling can be a key process during highly explosive eruptions. Using fractal analysis of the size distribution of trachybasaltic fragments found on the inner walls of bubbles in trachytic pumices, we show that the more mafic component underwent fracturing during quenching against the trachyte. We propose a new mechanism for how this magmatic interaction at depth triggered rapid heterogeneous bubble nucleation and growth and could have enhanced eruption explosivity. We argue that the data support a further, and hitherto unreported contribution of magma mingling to highly explosive eruptions. This has implications for hazard assessment for those volcanoes in which evidence of magma mingling exists.

  11. Analysis of KROTOS KS-2 and KS-4 steam explosion experiments with TEXAS-VI

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ronghua, E-mail: rhchen@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Wang, Jun [Nuclear Engineering and Engineering Physics, College of Engineering, University of Wisconsin Madison, WI 53706 (United States); Su, G.H.; Qiu, Suizheng [State Key Laboratory of Multiphase Flow in Power Engineering, School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an 710049 (China); Corradini, M.L., E-mail: Corradini@engr.wisc.edu [Nuclear Engineering and Engineering Physics, College of Engineering, University of Wisconsin Madison, WI 53706 (United States)

    2016-12-01

    Highlights: • The KS-2 and KS-4 steam explosion experiments were analyzed by TEXAS-VI. • The coarse mixing status up to the explosion triggering time was well predicted by TEXAS-VI. • The predicted dynamic explosion pressure was in good agreement with the experimental results. - Abstract: TEXAS-VI is a transient, three-field, one-dimensional mechanistic model for the steam explosion phenomena. A fuel solidification model and associated fragmentation criteria of the solidifying particle for both the mixing phase and explosion phase were developed and incorporated into TEXAS-VI to account for solidification. In the present study, TEXAS-VI was used to analyze the KS-2 and KS-4 steam explosion experiments, which were performed in the KROTOS facility as part of the OECD-SERENA-2 program. In the simulation, the KROTOS experimental facility was modeled as Eulerian control volumes based on the facility geometry. The molten corium jet was divided up into a series of LaGrangian master particles equal to the initial jet diameter. Both the mixing phase and the explosion phase of the experiments were simulated by TEXAS-VI. Comparison to test data indicates that the fuel jet kinematics and the vapor volume during the mixing phase were well predicted by TEXAS-VI. The TEXAS-VI prediction of the dynamic explosion pressure at different axial locations in the test was also in good agreement with the experimental results. The maximum pressure of KS-2 and KS-4 predicted by TEXAS-VI were 16.7 MPa and 41.9 MPa, respectively. The KS-4 maximum steam explosion pressure predicted by TEXAS-VI was higher than that of KS-2, which was consistent with experiment observation. The observed differences of the dynamic explosion pressure between the KS-2 and KS-4 experiments were also successfully simulated by TEXAS-VI. This suggests that TEXAS-VI is able to analyze the effect of prototypic melt compositions on the steam explosion phenomena. Additional benchmarking and evaluations are ongoing.

  12. Explosive performance on the non-proliferation experiment

    Energy Technology Data Exchange (ETDEWEB)

    McKown, T.O. [Los Alamos National Lab., NM (United States)

    1994-12-31

    The Explosive Effects Physics Project at the Los Alamos National Laboratory planned and conducted experiments on the Non-Proliferation Experiment (NPE) as part of its effort to define source functions for seismic waves. Since all investigations were contingent on the performance of the emplaced chemical explosive, an array of diagnostic measurements was fielded in the emplaced explosive. The CORRTEX (COntinuous Reflectometry for Radius vs Time EXperiment) system was used to investigate the explosive initiation and to determine the detonation velocities on three levels and in a number of radial directions. The CORRTEX experiments fielded in the explosive chamber will be described, including a description of the explosive emplacement from the perspective of its impact on the CORRTEX results. The data obtained are reviewed and the resulting detonation velocities are reported. A variation of detonation velocity with depth in the explosive and the apparent underdetonation and overdetonation of the explosive in different radial directions is reported.

  13. Kaliski's explosive driven fusion experiments

    International Nuclear Information System (INIS)

    Marshall, J.

    1979-01-01

    An experiment performed by a group in Poland on the production of DD fusion neutrons by purely explosive means is discussed. A method for multiplying shock velocities ordinarily available from high explosives by a factor of ten is described, and its application to DD fusion experiments is discussed

  14. Steam explosions of single drops of pure and alloyed molten aluminum

    International Nuclear Information System (INIS)

    Nelson, L.S.

    1995-01-01

    Studies of steam explosion phenomena have been performed related to the hypothetical meltdown of the core and other components of aluminum alloy-fueled production reactors. Our objectives were to characterise the triggers, if any, required to initiate these explosions and to determine the energetics and chemical processes associated with these events. Three basic studies have been carried out with 1-10 g single drops of molten aluminum or aluminum-based alloys: untriggered experiments in which drops of melt were released into water; triggered experiments in which thermal-type steam explosions occurred; and one triggered experiment in which an ignition-type steam explosion occurred. In untriggered experiments, spontaneous steam explosions never occurred during the free fall through water of single drops of pure Al or of the alloys studied here. Moreover, spontaneous explosions never occurred upon or during contact of the globules with several underwater surfaces. When Li was present in the alloy, H 2 was generated as a stream of bubbles as the globules fell through the water, and also as they froze on the bottom surface of the chamber. The triggered experiments were performed with pure Al and the 6061 alloy. Bare bridgewire discharges and those focused with cylindrical reflectors produced a small first bubble that collapsed and was followed by a larger second bubble. When the bridgewire was discharged at one focus of an ellipsoidal reflector, a melt drop at the other focus triggered only very mildly in spite of a 30-fold increase in peak pressure above that of the bridgewire discharge without the reflector. Experiments were also performed with globules of high purity Al in which the melt release temperature was progressively increased. Moderate thermal-type explosions were produced over the temperature range 1273-1673 K. At about 1773 K, however, one experiment produced a brilliant flash of light and bubble growth about an order of magnitude faster than normal; it

  15. Vulnerability of industrial facilities to attacks with improvised explosive devices aimed at triggering domino scenarios

    International Nuclear Information System (INIS)

    Landucci, Gabriele; Reniers, Genserik; Cozzani, Valerio; Salzano, Ernesto

    2015-01-01

    Process- and chemical plants may constitute a critical target for a terrorist attack. In the present study, the analysis of industrial accidents induced by intentional acts of interference is carried out focusing on accident chains triggered by attacks with home-made (improvised) explosives. The effects of blast waves caused by improvised explosive devices are compared with those expected from a net equivalent charge of TNT by using a specific methodology for the assessment of stand-off distances. It is demonstrated that a home-made explosive device has a TNT efficiency comprised between 0.2 and 0.5. The model was applied to a case study, demonstrating the potentiality of improvised explosives in causing accident escalation sequences and severe effects on population and assets. The analysis of the case-study also allowed obtaining suggestions for an adequate security management. - Highlights: • Improvised explosives possibly used for terrorist attacks were described. • The TNT efficiency of ANFO and TATP was characterized. • Domino effects caused by an attack with improvised explosive were analyzed. • Domino scenarios induced by an attack were compared to conventional scenarios

  16. Explosive performance on the non-proliferation experiment

    Energy Technology Data Exchange (ETDEWEB)

    McKown, T.O.

    1994-03-01

    The non-proliferation experiment, originally called the chemical kiloton experiment, was planned and executed by Lawrence Livermore National Laboratory to investigate the seismic yield relationship and distinguishing seismic signals between a nuclear event and a large mass conventional explosion. The Los Alamos National Laboratory planned and conducted experiments to further their studies of the source function for signals observed seismically. Since all investigations were contingent on the performance of the emplaced chemical explosive, an array of diagnostic measurements was fielded in the emplaced explosive. The CORRTEX system was used to investigate the explosive initiation and to determine the detonation velocities in multiple levels and in numerous directions. A description of the CORRTEX experiments fielded, a review of the data obtained and some interpretations of the data are reported.

  17. Nucleation Characteristics in Physical Experiments/explosions

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.

    1976-01-01

    Large-scale vapor explosion experiments have shown that intimate contact between hot and cold liquids, and a temperature upon contact that is greater than the spontaneous nucleation temperature of the system, are two necessary conditions for the onset of large scale vapor explosions. A model, based on spontaneous nucleation of the homogeneous type, has been proposed to describe the relevant processes and the resulting energetics for explosive boiling systems. The model considers that spontaneous nucleation cannot occur either during the relief time for constant volume heating or until the thermal boundary layer is sufficiently thick to support a vapor cavity of the critical size. After nucleation, bubble growth does not occur until an acoustic wave establishes a pressure gradient in the cold liquid. These considerations lead to the prediction that, for a given temperature, drops greater than a critical size will remain in film boiling due to coalescence of vapor nuclei and drops smaller than this value will wet and be captured by the hot liquid surface. These results are compared to small drop data for well-wetted systems and excellent agreement is obtained between the observed behavior and the model predictions. In conclusion: A model, based on spontaneous nucleation, has been proposed to describe vaporization potential and behavior upon contact in a liquid/liquid system. This behavior is determined by the size of the liquid mass, single-phase pressurization and acoustic relief, nucleation frequency due to random density fluctuations, the initiation of unstable growth and acoustic relief, and the development of the thermal boundary layer in the cold liquid. The proposed model predicts that the stability of a given size drop upon intimate contact with another liquid is extremely dependent upon the interface temperature. For low interface temperatures, large masses will be captured by the hot liquid and the resulting vaporization rates will be extremely low because

  18. Triggering and Energetics of a Single Drop Vapor Explosion: The Role of Entrapped Non-Condensable Gases

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, Roberta Concilio [Royal Institute of Technology, Stockholm (Sweden)

    2009-11-15

    The present work pertains to a research program to study Molten Fuel-Coolant Interactions (MFCI), which may occur in a nuclear power plant during a hypothetical severe accident. Dynamics of the hot liquid (melt) droplet and the volatile liquid (coolant) were investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography. The current study is concerned with the MISTEE-NCG test campaign, in which a considerable amount of non-condensable gases (NCG) are present in the film that enfolds the molten droplet. The SHARP images for the MISTEE-NCG tests were analyzed and special attention was given to the morphology (aspect ratio) and dynamics of the air/ vapor bubble, as well as the melt drop preconditioning. Energetics of the vapor explosion (conversion ratio) were also evaluated. The MISTEE.NCG tests showed two main aspects when compared to the MISTEE test series (without entrapped air). First, analysis showed that the melt preconditioning still strongly depends on the coolant subcooling. Second, in respect to the energetics, the tests consistently showed a reduced conversion ratio compared to that of the MISTEE test series

  19. Explosive Leidenfrost droplets

    Science.gov (United States)

    Colinet, Pierre; Moreau, Florian; Dorbolo, Stéphane

    2017-11-01

    We show that Leidenfrost droplets made of an aqueous solution of surfactant undergo a violent explosion in a wide range of initial volumes and concentrations. This unexpected behavior turns out to be triggered by the formation of a gel-like shell, followed by a sharp temperature increase. Comparing a simple model of the radial surfactant distribution inside a spherical droplet with experiments allows highlighting the existence of a critical surface concentration for the shell to form. The temperature rise (attributed to boiling point elevation with surface concentration) is a key feature leading to the explosion, instead of the implosion (buckling) scenario reported by other authors. Indeed, under some conditions, this temperature increase is shown to be sufficient to trigger nucleation and growth of vapor bubbles in the highly superheated liquid bulk, stretching the surrounding elastic shell up to its rupture limit. The successive timescales characterizing this explosion sequence are also discussed. Funding sources: F.R.S. - FNRS (ODILE and DITRASOL projects, RD and SRA positions of P. Colinet and S. Dorbolo), BELSPO (IAP 7/38 MicroMAST project).

  20. Mechanical constraints on the triggering of vulcanian explosions at Santiaguito volcano, Guatemala

    Science.gov (United States)

    Hornby, Adrian; Lavallée, Yan; Collinson, Amy; Neuberg, Jurgen; De Angelis, Silvio; Kendrick, Jackie; Lamur, Anthony

    2016-04-01

    to failure shows a non-linear increase as viscous deformation becomes more important (i.e. temperature is increased or strain rate decreased). This allows us to constrain timescales for fracture propagation for given temperature-strain rate scenarios. We use these results, together with monitoring data and the results of numerical modelling to compare the probability of fractures propagating from the top-down or bottom-up prior to explosions at Santiaguito. Thus, we shed light on the triggers and signals leading to vulcanian explosions, which may be widely applicable to vulcanian explosions at active volcanoes.

  1. Safety engineering experiments of explosives

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Noboru

    1987-07-24

    The outline of large scale experiments carried out every year since 1969 to obtain fundamental data and then establish the safety engineering standards concerning the manufacturing, storage and transportation, etc. of all explosives was described. Because it becomes recently difficult to ensure the safety distance in powder magazines and powder plants, the sandwich structure with sand is thought to be suitable as the neighboring barrier walls. The special vertical structure for embankments to provide against a emergency explosion is effective to absorb the blast. Explosion behaviors such as initiating sensitivity, detonation, sympathetic detonation, and shock occurence of the ANFO explosives in place of dynamite and the slurry explosives were studied. The safety engineering standards for the manufacturing and application of explosives were studied to establish because accidents by tabacco fire are not still distinguished. Much data concerning early stage fire fighting, a large quantity of flooding and shock occurence from a assumption of ignition during machining in the propellants manufacturing plant, could be obtained. Basic studies were made to prevent pollution in blasting sites. Collected data are utilized for the safety administration after sufficient discussion. (4 figs, 2 tabs, 3 photos, 17 refs)

  2. The preliminary results of steam explosion experiments in TROI

    International Nuclear Information System (INIS)

    Song, J.H.; Park, I.K.; Chang, Y.J.; Min, B.T.; Hong, S.W.; Kim, H.D.

    2001-01-01

    Korea Atomic Energy Research Institute (KAERI) launched an intermediate scale steam explosion experiment named 'Test for Real corium Interaction with water (TROI)' using reactor material to investigate the effect of material composition, multi-dimensional melt-water interaction, and hydrogen generation. The melt-water interaction is confined in a pressure vessel with the multi-dimensional fuel and water pool geometry. The cold crucible technology, where the mixture of oxide powder in a water-cooled cage is heated by high frequency induction, is employed. It minimizes unwanted inclusion of impurities during the melting process. The data acquisition system and instrumentations which measure the static and dynamic pressure, temperatures of melt and water are set up. In the first series of tests using several kg of ZrO 2 , melt water interaction is made in a heated water pool at 95 Celsius degrees without triggering. A steam spike pressure at about 10 bar is observed. The morphology of debris shows that there was a mild local steam explosion. The melt water interaction was monitored by video cameras. The UO 2 tests are scheduled around March of 2001, in parallel with the improvements of the design of test facility. (authors)

  3. Traveling ionospheric disturbances triggered by the 2009 North Korean underground nuclear explosion

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, X.; Tang, L. [Wuhan Univ. (China). School of Geodesy and Geomatics

    2015-04-01

    Underground nuclear explosions (UNEs) can induce acoustic-gravity waves, which disturb the ionosphere and initiate traveling ionospheric disturbances (TIDs). In this paper, we employ a multi-step and multi-order numerical difference method with dual-frequency GPS data to detect ionospheric disturbances triggered by the North Korean UNE on 25 May 2009. Several International GNSS Service (IGS) stations with different distances (400 to 1200 km) from the epicenter were chosen for the experiment. The results show that there are two types of disturbances in the ionospheric disturbance series: high-frequency TIDs with periods of approximately 1 to 2 min and low-frequency waves with period spectrums of 2 to 5 min. The observed TIDs are situated around the epicenter of the UNE, and show similar features, indicating the origin of the observed disturbances is the UNE event. According to the amplitudes, periods and average propagation velocities, the high-frequency and low-frequency TIDs can be attributed to the acoustic waves in the lower ionosphere and higher ionosphere, respectively. (orig.)

  4. An Evaluation of Triggering Timing for the TROI Tests

    International Nuclear Information System (INIS)

    Park, Ik Kyu; Kim, Jong Hwan; Hong, Seong Wan

    2009-01-01

    In the postulated reactor severe accident, the molten corium can be poured into the remained reactor coolant of the lower pressure vessel or the reactor cavity. This might severely threaten the containment integrity, and thus, the experimental and analytical efforts have been done to reveal this risk. It is generally received by the steam explosion experts that the in-vessel steam explosion steam explosion would not challenge the integrity of the vessel and the containment. The ex-vessel explosion, however, cannot be excluded from the factor to threaten the integrity of the cavity and more the reactor vessel. The worse thing of ex-vessel situation is that water is subcooled under a relative low pressure. The results of steam explosion experiments indicate that the subcooled water under a low pressure might be a good environment to make a strong steam explosion. Furthermore, the calculation results for evaluating ex-vessel steam explosion work are too scattered each other. Thus, the conversion ratio of ex-vessel explosion is still remained as a resolved issue. SERENA phase 2 project which has been conducted since 1st Oct. 2007 is aimed a resolution of the uncertainties on the void fraction, the solidification, and the melt composition effect by performing a limited number of well-designed tests with advanced instrumentations to clarify the nature of a prototypic material with mild steam explosion characteristics and to provide innovative experimental data for a computer code validation. The steam explosion results such as explosion pressure, conversion ratio, and the debris configuration are strongly affected by the initial conditions. Meanwhile, some events like triggering magnitude might not be important for the steam explosion results. The initial conditions of the steam explosion, called premixture, are determined by three factors: first one is melt and water condition, second one is a mixing process, and the other is the triggering timing. The mixing process is

  5. Installation for low temperature vapor explosion experiment

    International Nuclear Information System (INIS)

    Nilsuwankosit, Sunchai; Archakositt, Urith

    2000-01-01

    A preparation for the experiment on the low temperature vapor explosion was planned at the department of Nuclear Technology, Chulalongkorn University, Thailand. The objective of the experiment was to simulate the interaction between the molten fuel and the volatile cooling liquid without resorting to the high temperature. The experiment was expected to involve the injection of the liquid material at a moderate temperature into the liquid material with the very low boiling temperature in order to observe the level of the pressurization as a function of the temperatures and masses of the applied materials. For this purpose, the liquid nitrogen and the water were chosen as the coolant and the injected material for this experiment. Due to the size of the installation and the scale of the interaction, only lumped effect of various parameters on the explosion was expected from the experiment at this initial stage. (author)

  6. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Estimation of trigger condition for vapor explosion. JAERI's nuclear research promotion program, H10-027-1. Contract research

    International Nuclear Information System (INIS)

    Nariai, Hideki

    2002-03-01

    The experimental and analytical researches were conducted to study melted core material and coolant interaction including solidification and vapor explosion which is one of the most unidentified thermal hydraulic phenomena during sever accident of nuclear reactor. At first, the effect of the material properties on vapor explosion and solidification was examined to clarify the dominant factors for the spontaneous vapor explosion. Next, the interfacial phenomena of the high temperature melt material and violent boiling behavior of water at the interface was visually observed in the experiment. The interfacial phenomena were physically modeled. Finally, trigger phenomena from liquid-liquid contact to atomization were clarified through the forced collapse experiment of vapor film around a molten droplet by using pressure wave generation device. It is indicated by applying the results obtained in the present study to the actual reactor conditions that the possibility of the vapor explosion is extremely unlikely in the actual reactor accident sequence, since the surface of the molten uranium oxide is solidified in the water and the liquid-liquid contact can not be achieved. It should be noted that the decrease of the solidified temperature by metal compounds and the increase of the molten core temperature. (author)

  7. A strategy for the application of steam explosion codes to reactor analysis

    International Nuclear Information System (INIS)

    Moriyama, Kiyofumi; Nakamura, Hideo

    2006-01-01

    A technical view on the strategy for the application of steam explosion codes for plant scale analysis is described. It includes assumption of triggering at the time of peak premixed melt mass, tuning of the explosion model on typical alumina steam explosion data, consideration of void and solidification effects as primary mechanism to limit the premixed mass and explosion energetics, choice of simple heat partition models affecting evaporation. The view was developed through experiences in development, verification and application of a steam explosion simulation code, JASMINE, at Japan Atomic Energy Agency (JAEA), as well as participation in OECD SERENA Phase-1 program. (author)

  8. Phenomenological modelling of steam explosions

    International Nuclear Information System (INIS)

    Corradini, M.L.; Drumheller, D.S.

    1980-01-01

    During a hypothetical core meltdown accident, an important safety issue to be addressed is the potential for steam explosions. This paper presents analysis and modelling of experimental results. There are four observations that can be drawn from the analysis: (1) vapor explosions are suppressed by noncondensible gases generated by fuel oxidation, by high ambient pressure, and by high water temperatures; (2) these effects appear to be trigger-related in that an explosion can again be induced in some cases by increasing the trigger magnitude; (3) direct fuel liquid-coolant liquid contact can explain small scale fuel fragmentation; (4) heat transfer during the expansion phase of the explosion can reduce the work potential

  9. Aluminum-Enhanced Underwater Electrical Discharges for Steam Explosion Triggering

    International Nuclear Information System (INIS)

    HOGELAND, STEVE R.; NELSON, LLOYD S.; ROTH, THOMAS CHRISTOPHER

    1999-01-01

    For a number of years, we have been initiating steam explosions of single drops of molten materials with pressure and flow (bubble growth) transients generated by discharging a capacitor bank through gold bridgewires placed underwater. Recent experimental and theoretical advances in the field of steam explosions, however, have made it important to substantially increase these relatively mild transients in water without using high explosives, if possible. To do this with the same capacitor bank, we have discharged similar energies through tiny strips of aluminum foil submerged in water. By replacing the gold wires with the aluminum strips, we were able to add the energy of the aluminum-water combustion to that normally deposited electrically by the bridgewire explosion in water. The chemical enhancement of the explosive characteristics of the discharges was substantial: when the same electrical energies were discharged through the aluminum strips, peak pressures increased as much as 12-fold and maximum bubble volumes as much as 5-fold above those generated with the gold wires. For given weights of aluminum, the magnitudes of both parameters appeared to exceed those produced by the underwater explosion of equivalent weights of high explosives

  10. Background on the commercial explosive chosen for the non-proliferation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Mammele, M.E.

    1994-12-31

    The requirements of the Chemical Kiloton Experiment as outlined in the original explosives bid package provided DYNO NOBEL/Alpha-Ireco, Inc. with a unique challenge. The size of the chamber, the total volume of explosives required, the chemical energy equivalent of one kiloton, the time-frame of loading the chamber, transportation, safety, were all necessary considerations in choosing this particular explosive. The rationale for choosing this particular emulsion/ANFO blend of blasting agent explosive will be presented. DYNO NOBEL INC in-house theoretical predictions as to the explosive performance potential of the blasting agent will be compared to some of the actual data acquired upon detonation. The results of this type of experiment may provide new insight as to the efficiency of the energy release of typical commercial explosives.

  11. First level trigger of the DIRAC experiment

    International Nuclear Information System (INIS)

    Afanas'ev, L.G.; Karpukhin, V.V.; Kulikov, A.V.; Gallas, M.

    2001-01-01

    The logic of the first level trigger of the DIRAC experiment at CERN is described. A parallel running of different trigger modes with tagging of events and optional independent prescaling is realized. A CAMAC-based trigger system is completely computer controlled

  12. The trigger supervisor: Managing triggering conditions in a high energy physics experiment

    International Nuclear Information System (INIS)

    Wadsworth, B.; Lanza, R.; LeVine, M.J.; Scheetz, R.A.; Videbaek, F.

    1987-01-01

    A trigger supervisor, implemented in VME-bus hardware, is described, which enables the host computer to dynamically control and monitor the trigger configuration for acquiring data from multiple detector partitions in a complex experiment

  13. Soviet experience with peaceful uses of nuclear explosions

    International Nuclear Information System (INIS)

    Nordyke, M.D.

    1976-01-01

    The Soviet Union is pursuing an active program for developing peaceful uses of nuclear explosions (PNE). They have reported 16 explosions, with applications ranging from putting out oil-well fires and stimulating oil recovery to creating instant dams and canals. The data reported generally agree with U.S. experience. Seismic data collected by western sources on explosions outside the known Soviet test sites indicate that the Soviet program is at least twice as large as they have reported. The accelerated pace of these events suggests that in some applications the Soviet PNE program is approaching routine industrial technology

  14. Research on the fundamental process of thermal-hydraulic behaviors in severe accident. Estimation of trigger condition for vapor explosion. JAERI's nuclear research promotion program, H10-027-1. Contract research

    Energy Technology Data Exchange (ETDEWEB)

    Nariai, Hideki [Tsukuba Univ., Institute of Engineering Mechanics and Systems, Tsukuba, Ibaraki (Japan)

    2002-03-01

    The experimental and analytical researches were conducted to study melted core material and coolant interaction including solidification and vapor explosion which is one of the most unidentified thermal hydraulic phenomena during sever accident of nuclear reactor. At first, the effect of the material properties on vapor explosion and solidification was examined to clarify the dominant factors for the spontaneous vapor explosion. Next, the interfacial phenomena of the high temperature melt material and violent boiling behavior of water at the interface was visually observed in the experiment. The interfacial phenomena were physically modeled. Finally, trigger phenomena from liquid-liquid contact to atomization were clarified through the forced collapse experiment of vapor film around a molten droplet by using pressure wave generation device. It is indicated by applying the results obtained in the present study to the actual reactor conditions that the possibility of the vapor explosion is extremely unlikely in the actual reactor accident sequence, since the surface of the molten uranium oxide is solidified in the water and the liquid-liquid contact can not be achieved. It should be noted that the decrease of the solidified temperature by metal compounds and the increase of the molten core temperature. (author)

  15. Triggers for a high sensitivity charm experiment

    International Nuclear Information System (INIS)

    Christian, D.C.

    1994-07-01

    Any future charm experiment clearly should implement an E T trigger and a μ trigger. In order to reach the 10 8 reconstructed charm level for hadronic final states, a high quality vertex trigger will almost certainly also be necessary. The best hope for the development of an offline quality vertex trigger lies in further development of the ideas of data-driven processing pioneered by the Nevis/U. Mass. group

  16. The Trigger System of the CMS Experiment

    OpenAIRE

    Felcini, Marta

    2008-01-01

    We give an overview of the main features of the CMS trigger and data acquisition (DAQ) system. Then, we illustrate the strategies and trigger configurations (trigger tables) developed for the detector calibration and physics program of the CMS experiment, at start-up of LHC operations, as well as their possible evolution with increasing luminosity. Finally, we discuss the expected CPU time performance of the trigger algorithms and the CPU requirements for the event filter farm at start-up.

  17. Effect of type of explosives and physical-mechanical properties of explosive rock on formation of toxic gases in atmosphere of shafts

    Science.gov (United States)

    Mindeli, E. O.; Khudyakov, M. Y.

    1981-01-01

    The quality of toxic gases formed during explosive work in underground shafts depends upon the type of explosives and the conditions of explosion. Several types of explosives and rocks were examined. All remaining conditions were maintained the same (sandy-argillaceous stemming, electrical method of explosions, diameter of blast holes, and the direct triggering of charges).

  18. Advancing Explosion Source Theory through Experimentation: Results from Seismic Experiments Since the Moratorium on Nuclear Testing

    Science.gov (United States)

    Bonner, J. L.; Stump, B. W.

    2011-12-01

    On 23 September 1992, the United States conducted the nuclear explosion DIVIDER at the Nevada Test Site (NTS). It would become the last US nuclear test when a moratorium ended testing the following month. Many of the theoretical explosion seismic models used today were developed from observations of hundreds of nuclear tests at NTS and around the world. Since the moratorium, researchers have turned to chemical explosions as a possible surrogate for continued nuclear explosion research. This talk reviews experiments since the moratorium that have used chemical explosions to advance explosion source models. The 1993 Non-Proliferation Experiment examined single-point, fully contained chemical-nuclear equivalence by detonating over a kiloton of chemical explosive at NTS in close proximity to previous nuclear explosion tests. When compared with data from these nearby nuclear explosions, the regional and near-source seismic data were found to be essentially identical after accounting for different yield scaling factors for chemical and nuclear explosions. The relationship between contained chemical explosions and large production mining shots was studied at the Black Thunder coal mine in Wyoming in 1995. The research led to an improved source model for delay-fired mining explosions and a better understanding of mining explosion detection by the International Monitoring System (IMS). The effect of depth was examined in a 1997 Kazakhstan Depth of Burial experiment. Researchers used local and regional seismic observations to conclude that the dominant mechanism for enhanced regional shear waves was local Rg scattering. Travel-time calibration for the IMS was the focus of the 1999 Dead Sea Experiment where a 10-ton shot was recorded as far away as 5000 km. The Arizona Source Phenomenology Experiments provided a comparison of fully- and partially-contained chemical shots with mining explosions, thus quantifying the reduction in seismic amplitudes associated with partial

  19. The multilevel trigger system of the DIRAC experiment

    International Nuclear Information System (INIS)

    Afanas'ev, L.; Gallas, M.; Goldin, D.

    2002-01-01

    The multilevel trigger system of the DIRAC experiment at CERN is presented. It includes a fast first level trigger as well as various trigger processors to select events with a pair of pions having a low relative momentum typical of the physical process under study. One of these processors employs the drift chamber data, another one is based on a neural network algorithm and the others use various hit-map detector correlations. Two versions of the trigger system used at different stages of the experiment are described. The complete system reduces the event rate by a factor of 1000, with efficiency ≥ 95 % of detecting the events in the relative momentum range of interest

  20. Electronic trigger for the ASP experiment

    International Nuclear Information System (INIS)

    Wilson, R.J.

    1985-11-01

    The Anomalous Single Photon (ASP) electronic trigger is described. The experiments is based on an electromagnetic calorimeter composed of arrays of lead glass blocks, read out with photo-multiplier tubes, surrounding the interaction point at the PEP storage ring. The primary requirement of the trigger system is to be sensitive to low energy (approx. =0.5 GeV and above) photons whilst discriminating against high backgrounds at PEP. Analogue summing of the PMT signals and a sequence of programmable digital look-up tables produces a ''dead-timeless'' trigger for the beam collision rate of 408 kHz. 6 refs., 6 figs

  1. Unconfined deflagrative explosions without turbulence: experiments and model

    International Nuclear Information System (INIS)

    Lannoy, A.

    1989-01-01

    This paper reviews laboratory, balloon and open field experiments which have been performed to study the deflagration regime in free air. In a first part, are considered different models available to estimate deflagrative unconfined explosions effects, without turbulence. Then, a description is given of the known performed tests, which indicate the effective scale of various experiments, their operating conditions and the type of measurements carried out. Results are presented and discussed. The influence on the explosion force of different parameters (fuel concentration gradients, flammable mixture shape and size, ignition energy) is estimated. The overall conclusion of this survey is that flammable mixtures drifting over open field and ignited, will burn with low flame speed and consequently will generate very weak pressure effects [fr

  2. A trigger simulation framework for the ALICE experiment

    International Nuclear Information System (INIS)

    Antinori, F; Carminati, F; Gheata, A; Gheata, M

    2011-01-01

    A realistic simulation of the trigger system in a complex HEP experiment is essential for performing detailed trigger efficiency studies. The ALICE trigger simulation is evolving towards a framework capable of replaying the full trigger chain starting from the input to the individual trigger processors and ending with the decision mechanisms of the ALICE central trigger processor. This paper describes the new ALICE trigger simulation framework that is being tested and deployed. The framework handles details like trigger levels, signal delays and busy signals, implementing the trigger logic via customizable trigger device objects managed by a robust scheduling mechanism. A big advantage is the high flexibility of the framework, which is able to mix together components described with very different levels of detail. The framework is being gradually integrated within the ALICE simulation and reconstruction frameworks.

  3. Comparing CTH simulations and experiments on explosively loaded rings

    Science.gov (United States)

    Braithwaite, C. H.; Aydelotte, Brady; Collins, Adam; Thadhani, Naresh; Williamson, David Martin

    2012-03-01

    A series of experiments were conducted on explosively loaded metallic rings for the purpose of studying fragmentation. In addition to the collection of fragments for analysis, the radial velocity of the expanding ring was measured with photon Doppler velocimetry (PDV) and the arrangement was imaged using high speed photography. Both the ring material and the material used as the explosive container were altered and the results compared with simulations performed in CTH. Good agreement was found between the simulations and the experiments. The maximum radial velocity attained was approximately 380 m/s, which was achieved through loading with a 5g PETN based charge.

  4. Sub-sonic thermal explosions investigated by radiography

    Energy Technology Data Exchange (ETDEWEB)

    Smilowitz, Laura B [Los Alamos National Laboratory; Henson, Bryan F [Los Alamos National Laboratory; Romero, Jerry J [Los Alamos National Laboratory; Asay, Blaine W [Los Alamos National Laboratory

    2010-01-01

    This paper reviews the past 5 years of experiments utilizing radiographic techniques to study defiagration in thermal explosions in HMX based formulations. Details of triggering and timing synchronization are given. Radiographic images collected using both protons and x-rays are presented. Comparisons of experiments with varying size, case confinement, binder, and synchronization are presented. Techniques for quantifying the data in the images are presented and a mechanism for post-ignition burn propagation in a thermal explosion is discussed. From these experiments, we have observed a mechanism for sub-sonic defiagration with both gas phase convective and solid phase conductive burning. The convective front velocity is directly measured from the radiographic images and consumes only a small fraction of the HE. It lights the HE as it passes beginning the slower solid state conductive burn process. This mechanism is used to create a model to simulate the radiographic results and a comparison will be shown.

  5. Correlations between the disintegration of melt and the measured impulses in steam explosions

    Energy Technology Data Exchange (ETDEWEB)

    Froehlich, G.; Linca, A.; Schindler, M. [Univ. of Stuttgart (Germany)

    1995-09-01

    To find our correlations in steam explosions (melt water interactions) between the measured impulses and the disintegration of the melt, experiments were performed in three configurations i.e. stratified, entrapment and jet experiments. Linear correlations were detected between the impulse and the total surface of the fragments. Theoretical considerations point out that a linear correlation assumes superheating of a water layer around the fragments of a constant thickness during the fragmentation process to a constant temperature (here the homogeneous nucleation temperature of water was assumed) and a constant expansion velocity of the steam in the main expansion time. The correlation constant does not depend on melt temperature and trigger pressure, but it depends on the configuration of the experiment or of a scenario of an accident. Further research is required concerning the correlation constant. For analysing steam explosion accidents the explosivity is introduced. The explosivity is a mass specific impulse. The explosivity is linear correlated with the degree of fragmentation. Knowing the degree of fragmentation with proper correlation constant the explosivity can be calculated and from the explosivity combined with the total mass of fragments the impulse is obtained which can be used to an estimation of the maximum force.

  6. A high-voltage triggered pseudospark discharge experiment

    International Nuclear Information System (INIS)

    Ramaswamy, K.; Destler, W.W.; Rodgers, J.

    1996-01-01

    The design and execution of a pulsed high-voltage (350 endash 400 keV) triggered pseudospark discharge experiment is reported. Experimental studies were carried out to obtain an optimal design for stable and reliable pseudospark operation in a high-voltage regime (approx-gt 350 kV). Experiments were performed to determine the most suitable fill gas for electron-beam formation. The pseudospark discharge is initiated by a trigger mechanism involving a flashover between the trigger electrode and hollow cathode housing. Experimental results characterizing the electron-beam energy using the range-energy method are reported. Source size imaging was carried out using an x-ray pinhole camera and a novel technique using Mylar as a witness plate. It was experimentally determined that strong pinching occurred later in time and was associated with the lower-energy electrons. copyright 1996 American Institute of Physics

  7. A study of the effect of binary oxide materials in a single droplet vapor explosion

    Energy Technology Data Exchange (ETDEWEB)

    Hansson, R.C., E-mail: rch@kth.se [Royal Institute of Technology, Stockholm (Sweden); Dinh, T.N.; Manickam, L.T. [Royal Institute of Technology, Stockholm (Sweden)

    2013-11-15

    In an effort to explore fundamental mechanisms that may govern the effect of melt material on vapor explosion's triggering, fine fragmentation and energetics, a series of experiments using a binary-oxide mixture with eutectic and non-eutectic compositions were performed. Interactions of a hot liquid (WO{sub 3}–CaO) droplet and a volatile liquid (water) were investigated in well-controlled, externally triggered, single-droplet experiments conducted in the Micro-interactions in steam explosion experiments (MISTEE) facility. The tests were visualized by means of a synchronized digital cinematography and continuous X-ray radiography system, called simultaneous high-speed acquisition of X-ray radiography and photography (SHARP). The acquired images followed by further analysis indicate milder interactions for the droplet with non-eutectic melt composition in the tests with low melt superheat, whereas no evident differences between eutectic and non-eutectic melt compositions regarding bubble dynamics, energetics and melt preconditioning was observed in the tests with higher melt superheat.

  8. A study of the effect of binary oxide materials in a single droplet vapor explosion

    International Nuclear Information System (INIS)

    Hansson, R.C.; Dinh, T.N.; Manickam, L.T.

    2013-01-01

    In an effort to explore fundamental mechanisms that may govern the effect of melt material on vapor explosion's triggering, fine fragmentation and energetics, a series of experiments using a binary-oxide mixture with eutectic and non-eutectic compositions were performed. Interactions of a hot liquid (WO 3 –CaO) droplet and a volatile liquid (water) were investigated in well-controlled, externally triggered, single-droplet experiments conducted in the Micro-interactions in steam explosion experiments (MISTEE) facility. The tests were visualized by means of a synchronized digital cinematography and continuous X-ray radiography system, called simultaneous high-speed acquisition of X-ray radiography and photography (SHARP). The acquired images followed by further analysis indicate milder interactions for the droplet with non-eutectic melt composition in the tests with low melt superheat, whereas no evident differences between eutectic and non-eutectic melt compositions regarding bubble dynamics, energetics and melt preconditioning was observed in the tests with higher melt superheat

  9. The ATLAS Trigger: Recent Experience and Future Plans

    CERN Document Server

    The ATLAS collaboration

    2009-01-01

    This paper will give an overview of the ATLAS trigger design and its innovative features. It will describe the valuable experience gained in running the trigger reconstruction and event selection in the fastchanging environment of the detector commissioning during 2008. It will also include a description of the trigger selection menu and its 2009 deployment plan from first collisions to the nominal luminosity. ATLAS is one of the two general-purpose detectors at the Large Hadron Collider (LHC). The trigger system needs to efficiently reject a large rate of background events and still select potentially interesting ones with high efficiency. After a first level trigger implemented in custom electronics, the trigger event selection is made by the High Level Trigger (HLT) system, implemented in software. To reduce the processing time to manageable levels, the HLT uses seeded, step-wise and fast selection algorithms, aiming at the earliest possible rejection of background events. The ATLAS trigger event selection...

  10. Modeling a High Explosive Cylinder Experiment

    Science.gov (United States)

    Zocher, Marvin A.

    2017-06-01

    Cylindrical assemblies constructed from high explosives encased in an inert confining material are often used in experiments aimed at calibrating and validating continuum level models for the so-called equation of state (constitutive model for the spherical part of the Cauchy tensor). Such is the case in the work to be discussed here. In particular, work will be described involving the modeling of a series of experiments involving PBX-9501 encased in a copper cylinder. The objective of the work is to test and perhaps refine a set of phenomenological parameters for the Wescott-Stewart-Davis reactive burn model. The focus of this talk will be on modeling the experiments, which turned out to be non-trivial. The modeling is conducted using ALE methodology.

  11. Vapor explosion studies for nuclear and non-nuclear industries

    Energy Technology Data Exchange (ETDEWEB)

    Taleyarkhan, Rusi P. [Arden L. Bement, Jr. Professor Nuclear Engineering, School of Nuclear Engineering, 1290 Nuclear Engineering Building, Room 108C, Purdue University, West Lafayette, IN 47905 (United States)]. E-mail: rusi@purdue.edu

    2005-05-01

    Energetic melt-water explosions are a well-established contributor to risk for nuclear reactors, and even more so for the metal casting industry. In-depth studies were undertaken in an industry-national laboratory collaborative effort to understand the root causes of explosion triggering and to evaluate methods for prevention. The steam explosion triggering studies (SETS) facility was devised and implemented for deriving key insights into explosion prevention. Data obtained indicated that onset of base surface-entrapment induced explosive boiling-caused trigger shocks is a result of complex combination of surface wettability, type of coating (organic versus inorganic), degree of coating wearoff, existence of bypass pathways for pressure relief, charring and non-condensable gas (NCG) release potential. Of these parameters NCGs were found to play a preeminent role on explosion prevention by stabilizing the melt-water steam interface and acting as a shock absorber. The role of NCGs was experimentally confirmed using SETS for their effect on stable film boiling using a downward facing heated body through which gases were injected. The presence of NCGs in the steam film layer caused a significant delay in the transitioning of film-to-nucleate boiling. The role of NCGs on explosion prevention was thereafter demonstrated more directly by introducing molten metal drops into water pools with and without NCG bubbling. Whereas spontaneous and energetic explosions took place without NCG injection, only benign quenching occurred in the presence of NCGs. Gravimetric analyses of organic coatings which are known to prevent explosion onset were also found to release significant NCGs during thermal attack by melt in the presence of water. These findings offer a novel, simple, cost-effective technique for deriving fundamental insights into melt-water explosions as well as for explosion prevention under most conditions of interest to metal casting, and possibly for nuclear reactor

  12. Towards a Level-1 Tracking Trigger for the ATLAS Experiment

    CERN Document Server

    De Santo, A; The ATLAS collaboration

    2016-01-01

    In preparation for the high-luminosity phase of the Large Hadron Collider, ATLAS is planning a trigger upgrade that will enable the experiment to use tracking information already at the first trigger level. This will provide enhanced background rejection power at trigger level while preserving much needed flexibility for the trigger system. The status and current plans for the new ATLAS Level-1 tracking trigger are presented.

  13. Simulation of first SERENA KROTOS steam explosion experiment

    International Nuclear Information System (INIS)

    Leskovar, Matjaz; Ursic, Mitja

    2009-01-01

    A steam explosion may occur when, during a severe reactor accident, the molten core comes into contact with the coolant water. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. To resolve the open issues in steam explosion understanding and modeling, the OECD program SERENA Phase 2 was launched at the end of year 2007, focusing on nuclear applications. SERENA comprises an experimental program, which is being carried out in the complementary KROTOS and TROI corium facilities, accompanied by a comprehensive analytical program, where also pre- and post-test calculations are foreseen. In the paper the sensitivity post-test calculations of the first SERENA KROTOS experiment KS-1, which were performed with the code MC3D, are presented and discussed. Since the results of the SERENA tests are restricted to SERENA members, only the various calculation results are given, not comparing them to experimental measurements. Various premixing and explosion simulations were performed on a coarse and a fine numerical mesh, applying two different jet breakup models (global, local) and varying the minimum bubble diameter in the explosion simulations (0.5 mm, 5 mm). The simulations revealed that all varied parameters have a significant influence on the calculation results, as was expected since the fuel coolant interaction process is a highly complex phenomenon. The results of the various calculations are presented in comparison and the observed differences are discussed and explained. (author)

  14. Trigger Menu-aware Monitoring for the ATLAS experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00441925; The ATLAS collaboration

    2017-01-01

    Changes in the trigger menu, the online algorithmic event-selection of the ATLAS experiment at the LHC, are followed by adjustments to the ATLAS trigger monitoring systems. During Run 1, and so far in Run 2, ATLAS has deployed monitoring updates with the installation of new software releases at Tier-0, the first level of the ATLAS computing grid. Having to wait for a new software release to be installed at Tier-0, in order to update ATLAS offline trigger monitoring configurations, results in a lag with respect to the modification of the trigger menu. We present the design and implementation of a `trigger menu-aware' monitoring system that aims to simplify the ATLAS operational workflows by allowing monitoring configuration changes to be made at the Tier-0 site by utilising an Oracle SQL database.

  15. GPU-based real-time triggering in the NA62 experiment

    CERN Document Server

    Ammendola, R.; Cretaro, P.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P.S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.; Vicini, P.

    2016-01-01

    Over the last few years the GPGPU (General-Purpose computing on Graphics Processing Units) paradigm represented a remarkable development in the world of computing. Computing for High-Energy Physics is no exception: several works have demonstrated the effectiveness of the integration of GPU-based systems in high level trigger of different experiments. On the other hand the use of GPUs in the low level trigger systems, characterized by stringent real-time constraints, such as tight time budget and high throughput, poses several challenges. In this paper we focus on the low level trigger in the CERN NA62 experiment, investigating the use of real-time computing on GPUs in this synchronous system. Our approach aimed at harvesting the GPU computing power to build in real-time refined physics-related trigger primitives for the RICH detector, as the the knowledge of Cerenkov rings parameters allows to build stringent conditions for data selection at trigger level. Latencies of all components of the trigger chain have...

  16. An Experimental Study on the Dynamics of a Single Droplet Vapor Explosion

    International Nuclear Information System (INIS)

    Concilio Hansson, Roberta

    2010-01-01

    The present study aims to develop a mechanistic understanding of the thermal-hydraulic processes in a vapor explosion, which may occur in nuclear power plants during a hypothetical severe accident involving interactions of high-temperature corium melt and volatile coolant. Over the past several decades, a large body of literature has been accumulated on vapor explosion phenomenology and methods for assessment of the related risk. Vapor explosion is driven by a rapid fragmentation of high temperature melt droplets, leading to a substantial increase of heat transfer areas and subsequent explosive evaporation of the volatile coolant. Constrained by the liquid-phase coolant, the rapid vapor production in the interaction zone causes pressurization and dynamic loading on surrounding structures. While such a general understanding has been established, the triggering mechanism and subsequent dynamic fine fragmentation have yet not been clearly understood. A few mechanistic fragmentation models have been proposed, however, computational efforts to simulate the phenomena generated a large scatter of results. Dynamics of the hot liquid (melt) droplet and the volatile liquid (coolant) are investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography, called SHARP (Simultaneous High-speed Acquisition of X-ray Radiography and Photography). After an elaborate image processing, the SHARP images depict the evolution of both melt material (dispersal) and coolant (bubble dynamics), and their microscale interactions, i.e. the triggering phenomenology. The images point to coolant entrainment into the droplet surface as the mechanism for direct contact/mixing ultimately responsible for energetic interactions. Most importantly, the MISTEE data reveals an inverse

  17. An Experimental Study on the Dynamics of a Single Droplet Vapor Explosion

    Energy Technology Data Exchange (ETDEWEB)

    Concilio Hansson, Roberta

    2010-07-01

    The present study aims to develop a mechanistic understanding of the thermal-hydraulic processes in a vapor explosion, which may occur in nuclear power plants during a hypothetical severe accident involving interactions of high-temperature corium melt and volatile coolant. Over the past several decades, a large body of literature has been accumulated on vapor explosion phenomenology and methods for assessment of the related risk. Vapor explosion is driven by a rapid fragmentation of high temperature melt droplets, leading to a substantial increase of heat transfer areas and subsequent explosive evaporation of the volatile coolant. Constrained by the liquid-phase coolant, the rapid vapor production in the interaction zone causes pressurization and dynamic loading on surrounding structures. While such a general understanding has been established, the triggering mechanism and subsequent dynamic fine fragmentation have yet not been clearly understood. A few mechanistic fragmentation models have been proposed, however, computational efforts to simulate the phenomena generated a large scatter of results. Dynamics of the hot liquid (melt) droplet and the volatile liquid (coolant) are investigated in the MISTEE (Micro-Interactions in Steam Explosion Experiments) facility by performing well-controlled, externally triggered, single-droplet experiments, using a high-speed visualization system with synchronized digital cinematography and continuous X-ray radiography, called SHARP (Simultaneous High-speed Acquisition of X-ray Radiography and Photography). After an elaborate image processing, the SHARP images depict the evolution of both melt material (dispersal) and coolant (bubble dynamics), and their microscale interactions, i.e. the triggering phenomenology. The images point to coolant entrainment into the droplet surface as the mechanism for direct contact/mixing ultimately responsible for energetic interactions. Most importantly, the MISTEE data reveals an inverse

  18. Recycled memories : can flashbacks be triggered through experience design?

    OpenAIRE

    Fridriksson, Fridrik Steinn

    2013-01-01

    This paper examines the phenomenon flashbacks, often named the Proust phenomenon, through the lens of experience design. The research question is Can flashbacks be triggered through experience design? It would then be possible to call flashbacks memories recycled memories. To answer the question former studies were researched, mainly from the standpoint of cognitive psychology. The thesis discusses how different senses produce flashbacks and how they can be used as triggers. The difference be...

  19. Hydrodynamics of Explosion Experiments and Models

    CERN Document Server

    Kedrinskii, Valery K

    2005-01-01

    Hydronamics of Explosion presents the research results for the problems of underwater explosions and contains a detailed analysis of the structure and the parameters of the wave fields generated by explosions of cord and spiral charges, a description of the formation mechanisms for a wide range of cumulative flows at underwater explosions near the free surface, and the relevant mathematical models. Shock-wave transformation in bubbly liquids, shock-wave amplification due to collision and focusing, and the formation of bubble detonation waves in reactive bubbly liquids are studied in detail. Particular emphasis is placed on the investigation of wave processes in cavitating liquids, which incorporates the concepts of the strength of real liquids containing natural microinhomogeneities, the relaxation of tensile stress, and the cavitation fracture of a liquid as the inversion of its two-phase state under impulsive (explosive) loading. The problems are classed among essentially nonlinear processes that occur unde...

  20. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    OpenAIRE

    Qingjie Jiao; Qiushi Wang; Jianxin Nie; Xueyong Guo; Wei Zhang; Wenqi Fan

    2018-01-01

    To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-...

  1. Boiling characteristics of dilute polymer solutions and implications for the suppression of vapor explosions

    Energy Technology Data Exchange (ETDEWEB)

    Bang, K.H.; Kim, M.H. [Univ. of Science and Technology, Pohang (Korea, Republic of)

    1995-09-01

    Quenching experiments of hot solid spheres in dilute aqueous solutions of polyethylene oxide polymer have been conducted for the purpose of investigating the physical mechanisms of the suppression of vapor explosions in this polymer solutions. Two spheres of 22.2mm and 9.5mm-diameter were tested in the polymer solutions of various concentrations at 30{degrees}C. Minimum film boiling temperature ({Delta}T{sub MFB}) in this highly-subcooled liquid rapidly decreased from over 700{degrees}c for pure water to about 150{degrees}C as the polymer concentration was increased up to 300ppm for 22.2mm sphere, and it decreased to 350{degrees}C for 9.5mm sphere. This rapid reduction of minimum film boiling temperature in the PEO aqueous solutions can explain its ability of the suppression of spontaneous vapor explosions. The ability of suppression of vapor explosions by dilute polyethylene oxide solutions against an external trigger pressure was tested by dropping molten tin into the polymer solutions at 25{degrees}C. It was observed that in 50ppm solutions more mass fragmented than in pure water, but produced weaker explosion pressures. The explosion was completely suppressed in 300ppm solutions with the external trigger. The debris size distributions of fine fragments smaller than 0.7mm were shown almost identical regardless of the polymer concentrations.

  2. Explosive Infrasonic Events: Sensor Comparison Experiment (SCE)

    Energy Technology Data Exchange (ETDEWEB)

    Schnurr, J. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Garces, M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Rodgers, A. J. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-02-06

    SCE (sensor comparison experiment) 1 through 4 consists of a series of four controlled above-ground explosions designed to provide new data for overpressure propagation. Infrasound data were collected by LLNL iPhones and other sensors. Origin times, locations HOB, and yields are not being released at this time and are therefore not included in this report. This preliminary report will be updated as access to additional data changes, or instrument responses are determined.

  3. Study of film boiling collapse behavior during vapor explosion

    International Nuclear Information System (INIS)

    Yagi, Masahiro; Yamano, Norihiro; Sugimoto, Jun; Abe, Yutaka; Adachi, Hiromichi; Kobayashi, Tomoyoshi.

    1996-06-01

    Possible large scale vapor explosions are safety concern in nuclear power plants during severe accident. In order to identify the occurrence of the vapor explosion and to estimate the magnitude of the induced pressure pulse, it is necessary to investigate the triggering condition for the vapor explosion. As a first step of this study, scooping analysis was conducted with a simulation code based on thermal detonation model. It was found that the pressure at the collapse of film boiling much affects the trigger condition of vapor explosion. Based on this analytical results, basic experiments were conducted to clarify the collapse conditions of film boiling on a high temperature solid ball surface. Film boiling condition was established by flooding water onto a high temperature stainless steel ball heated by a high frequency induction heater. After the film boiling was established, the pressure pulse generated by a shock tube was applied to collapse the steam film on the ball surface. As the experimental boundary conditions, materials and size of the balls, magnitude of pressure pulse and initial temperature of the carbon and stainless steel balls were varied. The transients of pressure and surface temperature were measured. It was found that the surface temperature on the balls sharply decreased when the pressure wave passed through the film on balls. Based on the surface temperature behavior, the film boiling collapse pattern was found to be categorized into several types. Especially, the pattern for stainless steel ball was categorized into three types; no collapse, collapse and reestablishment after collapse. It was thus clarified that the film boiling collapse behavior was identified by initial conditions and that the pressure required to collapse film boiling strongly depended on the initial surface temperature. The present results will provide a useful information for the analysis of vapor explosions based on the thermal detonation model. (J.P.N.)

  4. An experimental study of steam explosions involving chemically reactive metal

    International Nuclear Information System (INIS)

    Cho, D.H.; Armstrong, D.R.; Gunther, W.H.; Basu, S.

    1997-01-01

    An experimental study of molten zirconium-water explosions was conducted. A 1-kg mass of zirconium melt was dropped into a column of water. Explosions took place only when an external trigger was used. In the triggered tests, the extent of oxidation of the zirconium melt was very extensive. However, the explosion energetics estimated were found to be very small compared to the potential chemical energy available from the oxidation reaction. Zirconium is of particular interest, since it is a component of the core materials of the current nuclear power reactors. This paper describes the test apparatus and summarizes the results of four tests conducted using pure zirconium melt

  5. Rock Springs Site 12 hydraulic/explosive true in situ oil shale fracturing experiment

    Energy Technology Data Exchange (ETDEWEB)

    Parrish, R.L.; Boade, R.R.; Stevens, A.L.; Long, A. Jr.; Turner, T.F.

    1980-06-01

    The experiment plan involved the creation and characterization of three horizontal hydraulic fractures, followed by the insertion and simultaneous detonation of slurry explosive in the two lower fractures. Core analyses, wellbore logging, and airflow and /sup 85/Kr tracer tests were used for site characterization and assessment of the hydraulic and explosive fracturing. Tiltmeters, wellhead pressure and flow gages, and in-formation pressure, flow and crack-opening sensors were used to monitor hydrofracture creation and explosive insertion. Explosive detonation diagnostic data were taken with stress and time-of-arrival gages and surface and in-formation accelerometers. The post-fracturing assessments indicated that: (1) hydrofracture creation and explosive insertion and detonation were accomplished essentially as planned; (2) induced fractures were randomly distributed through the shale with no extensively fractured regions or dislocation of shale; and (3) enhancement of permeability was limited to enlargement of the explosive-filled fractures.

  6. Trigger Menu-aware Monitoring for the ATLAS experiment

    Science.gov (United States)

    Hoad, Xanthe; ATLAS Collaboration

    2017-10-01

    We present a“trigger menu-aware” monitoring system designed for the Run-2 data-taking of the ATLAS experiment at the LHC. Unlike Run-1, where a change in the trigger menu had to be matched by the installation of a new software release at Tier-0, the new monitoring system aims to simplify the ATLAS operational workflows. This is achieved by integrating monitoring updates in a quick and flexible manner via an Oracle DB interface. We present the design and the implementation of the menu-aware monitoring, along with lessons from the operational experience of the new system with the 2016 collision data.

  7. The Level 0 Trigger Processor for the NA62 experiment

    International Nuclear Information System (INIS)

    Chiozzi, S.; Gamberini, E.; Gianoli, A.; Mila, G.; Neri, I.; Petrucci, F.; Soldi, D.

    2016-01-01

    In the NA62 experiment at CERN, the intense flux of particles requires a high-performance trigger for the data acquisition system. A Level 0 Trigger Processor (L0TP) was realized, performing the event selection based on trigger primitives coming from sub-detectors and reducing the trigger rate from 10 to 1 MHz. The L0TP is based on a commercial FPGA device and has been implemented in two different solutions. The performance of the two systems are highlighted and compared.

  8. The Level 0 Trigger Processor for the NA62 experiment

    Energy Technology Data Exchange (ETDEWEB)

    Chiozzi, S. [INFN, Ferrara (Italy); Gamberini, E. [University of Ferrara and INFN, Ferrara (Italy); Gianoli, A. [INFN, Ferrara (Italy); Mila, G. [University of Turin and INFN, Turin (Italy); Neri, I., E-mail: neri@fe.infn.it [University of Ferrara and INFN, Ferrara (Italy); Petrucci, F. [University of Ferrara and INFN, Ferrara (Italy); Soldi, D. [University of Turin and INFN, Turin (Italy)

    2016-07-11

    In the NA62 experiment at CERN, the intense flux of particles requires a high-performance trigger for the data acquisition system. A Level 0 Trigger Processor (L0TP) was realized, performing the event selection based on trigger primitives coming from sub-detectors and reducing the trigger rate from 10 to 1 MHz. The L0TP is based on a commercial FPGA device and has been implemented in two different solutions. The performance of the two systems are highlighted and compared.

  9. Triggering, front-end electronics, and data acquisition for high-rate beauty experiments

    International Nuclear Information System (INIS)

    Johnson, M.; Lankford, A.J.

    1988-04-01

    The working group explored the feasibility of building a trigger and an electronics data acquisition system for both collider and fixed target experiments. There appears to be no fundamental technical limitation arising from either the rate or the amount of data for a collider experiment. The fixed target experiments will likely require a much higher rate because of the smaller cross section. Rates up to one event per RF bucket (50 MHz) appear to be feasible. Higher rates depend on the details of the particular experiment and trigger. Several ideas were presented on multiplicity jump and impact parameter triggers for fixed target experiments. 14 refs., 3 figs

  10. Fuel-Coolant Interaction Experiments in the TROI Facility

    Energy Technology Data Exchange (ETDEWEB)

    Min, B. T.; Hong, S. W.; Hong, S. H.; Park, I. K.; Kim, H. Y.; Song, J. H.; Kim, H. D

    2006-03-15

    A steam explosion has long been a concern in case of severe accidents in a nuclear reactor, since it might threaten the integrity of the containment. Although many studies have been performed on a steam explosion, there are still some remaining unsolved issues such as the explosivity of the real core material (corium) and the estimation of the energy conversion ratio. At the Korea Atomic Energy Research Institute (KAERI), the TROI steam explosion experiments were performed, in order to investigate the explosivity of corium. The TROI experiments were carried out to provide the experimental data for a proper estimation of a structural loading resulting from a steam explosion. These experiments were performed with prototypic materials such as ZrO{sub 2} melt and a mixture of ZrO{sub 2} and UO{sub 2} melt (corium). Total 46 tests were conducted in the TROI test series from year 2000 to the end of year 2004. The main test parameters were the variations on the composition of the melt, geometry of the interaction vessel, sub-cooling, ambient pressure, and amount of melt. Additionally the effects of an external trigger and argon environment were investigated. The main findings are that the composition, geometry, and inert gas had dominant effects on energetic steam explosions. In addition, the strength of the steam explosion was not that much strong compared to that of alumina, such as KROTOS-44. Even though efforts were made to maximize the strength of a steam explosion by increasing the amount of melt mass in water (increasing water depth), and fuel fraction (using a narrow test section), it did not work. The test results suggest that the melt of pure zirconia or eutectic corium in a wide test section leads to energetic spontaneous or triggered steam explosions, while the melt of other compositions does not.

  11. The ATLAS online High Level Trigger framework: Experience reusing offline software components in the ATLAS trigger

    International Nuclear Information System (INIS)

    Wiedenmann, Werner

    2010-01-01

    Event selection in the ATLAS High Level Trigger is accomplished to a large extent by reusing software components and event selection algorithms developed and tested in an offline environment. Many of these offline software modules are not specifically designed to run in a heavily multi-threaded online data flow environment. The ATLAS High Level Trigger (HLT) framework based on the GAUDI and ATLAS ATHENA frameworks, forms the interface layer, which allows the execution of the HLT selection and monitoring code within the online run control and data flow software. While such an approach provides a unified environment for trigger event selection across all of ATLAS, it also poses strict requirements on the reused software components in terms of performance, memory usage and stability. Experience of running the HLT selection software in the different environments and especially on large multi-node trigger farms has been gained in several commissioning periods using preloaded Monte Carlo events, in data taking periods with cosmic events and in a short period with proton beams from LHC. The contribution discusses the architectural aspects of the HLT framework, its performance and its software environment within the ATLAS computing, trigger and data flow projects. Emphasis is also put on the architectural implications for the software by the use of multi-core processors in the computing farms and the experiences gained with multi-threading and multi-process technologies.

  12. Nuclear explosive driven experiments

    International Nuclear Information System (INIS)

    Ragan, C.E.

    1981-01-01

    Ultrahigh pressures are generated in the vicinity of a nuclear explosion. We have developed diagnostic techniques to obtain precise high pressures equation-of-state data in this exotic but hostile environment

  13. Recent Advances in Understanding Large Scale Vapour Explosions

    International Nuclear Information System (INIS)

    Board, S.J.; Hall, R.W.

    1976-01-01

    In foundries, violent explosions occur occasionally when molten metal comes into contact with water. If similar explosions can occur with other materials, hazardous situations may arise for example in LNG marine transportation accidents, or in liquid cooled reactor incidents when molten UO 2 contacts water or sodium coolant. Over the last 10 years a large body of experimental data has been obtained on the behaviour of small quantities of hot material in contact with a vaporisable coolant. Such experiments generally give low energy yields, despite producing fine fragmentation of the molten material. These events have been interpreted in terms of a wide range of phenomena such as violent boiling, liquid entrainment, bubble collapse, superheat, surface cracking and many others. Many of these studies have been aimed at understanding the small scale behaviour of the particular materials of interest. However, understanding the nature of the energetic events which were the original cause for concern may also be necessary to give confidence that violent events cannot occur for these materials in large scale situations. More recently, there has been a trend towards larger experiments and some of these have produced explosions of moderately high efficiency. Although occurrence of such large scale explosions can depend rather critically on initial conditions in a way which is not fully understood, there are signs that the interpretation of these events may be more straightforward than that of the single drop experiments. In the last two years several theoretical models for large scale explosions have appeared which attempt a self contained explanation of at least some stages of such high yield events: these have as their common feature a description of how a propagating breakdown of an initially quasi-stable distribution of materials is induced by the pressure and flow field caused by the energy release in adjacent regions. These models have led to the idea that for a full

  14. Disease-induced resource constraints can trigger explosive epidemics

    Science.gov (United States)

    Böttcher, L.; Woolley-Meza, O.; Araújo, N. A. M.; Herrmann, H. J.; Helbing, D.

    2015-11-01

    Advances in mathematical epidemiology have led to a better understanding of the risks posed by epidemic spreading and informed strategies to contain disease spread. However, a challenge that has been overlooked is that, as a disease becomes more prevalent, it can limit the availability of the capital needed to effectively treat those who have fallen ill. Here we use a simple mathematical model to gain insight into the dynamics of an epidemic when the recovery of sick individuals depends on the availability of healing resources that are generated by the healthy population. We find that epidemics spiral out of control into “explosive” spread if the cost of recovery is above a critical cost. This can occur even when the disease would die out without the resource constraint. The onset of explosive epidemics is very sudden, exhibiting a discontinuous transition under very general assumptions. We find analytical expressions for the critical cost and the size of the explosive jump in infection levels in terms of the parameters that characterize the spreading process. Our model and results apply beyond epidemics to contagion dynamics that self-induce constraints on recovery, thereby amplifying the spreading process.

  15. ALPHA visual data collection. STX005-025: melt drop steam explosion experiments

    International Nuclear Information System (INIS)

    Moriyama, Kiyofumi; Yamano, Norihiro; Maruyama, Yu; Kudo, Tamotsu; Sugimoto, Jun

    1999-03-01

    Steam explosion is a phenomenon in which a high temperature liquid gives its internal energy to a low temperature volatile liquid extremely quickly causing rapid evaporation and shock wave generation. In the field of nuclear reactor safety research regarding severe accidents in LWRs, steam explosions involving molten fuel and coolant has been recognized as a potential threat to the integrity of the reactor containment vessel. In the ALPHA (Assessment of Loads and Performance of Containment in Hypothetical Accident) program, experiments were performed to investigate the phenomenology of vapor explosions using iron-alumina thermite melt as a simulant of molten core. This report collects the experimental results especially emphasizing the visual observations by high speed photography. (author)

  16. Simulation of steam explosion in stratified melt-coolant configuration

    International Nuclear Information System (INIS)

    Leskovar, Matjaž; Centrih, Vasilij; Uršič, Mitja

    2016-01-01

    Highlights: • Strong steam explosions may develop spontaneously in stratified configurations. • Considerable melt-coolant premixed layer formed in subcooled water with hot melts. • Analysis with MC3D code provided insight into stratified steam explosion phenomenon. • Up to 25% of poured melt was mixed with water and available for steam explosion. • Better instrumented experiments needed to determine dominant mixing process. - Abstract: A steam explosion is an energetic fuel coolant interaction process, which may occur during a severe reactor accident when the molten core comes into contact with the coolant water. In nuclear reactor safety analyses steam explosions are primarily considered in melt jet-coolant pool configurations where sufficiently deep coolant pool conditions provide complete jet breakup and efficient premixture formation. Stratified melt-coolant configurations, i.e. a molten melt layer below a coolant layer, were up to now believed as being unable to generate strong explosive interactions. Based on the hypothesis that there are no interfacial instabilities in a stratified configuration it was assumed that the amount of melt in the premixture is insufficient to produce strong explosions. However, the recently performed experiments in the PULiMS and SES (KTH, Sweden) facilities with oxidic corium simulants revealed that strong steam explosions may develop spontaneously also in stratified melt-coolant configurations, where with high temperature melts and subcooled water conditions a considerable melt-coolant premixed layer is formed. In the article, the performed study of steam explosions in a stratified melt-coolant configuration in PULiMS like conditions is presented. The goal of this analytical work is to supplement the experimental activities within the PULiMS research program by addressing the key questions, especially regarding the explosivity of the formed premixed layer and the mechanisms responsible for the melt-water mixing. To

  17. Simulation of TROI steam explosion behaviour using the COMETA code

    International Nuclear Information System (INIS)

    Arun Kumar Nayak; Hyun Sun Park; Bal Raj Sehgal; Alessandro Annunziato

    2005-01-01

    Full text of publication follows: During a severe accident in a nuclear reactor, the core can melt and the molten corium while interacting with water may cause an energetic fuel coolant interaction which is known as steam explosion. Such phenomena can occur inside the reactor vessel during flooding of a degraded core or when molten corium falls into the lower head filled with water. Similar phenomena may occur outside the reactor vessel when molten corium is ejected into a flooded reactor cavity or into the flooded containment after the vessel failure. The interaction of molten corium with water is one of the most complex thermal hydraulic and chemical phenomena. Recently in the TROI test series carried out at KAERI (Korean Atomic Energy Research Institute) in Korea, steam explosions were observed. In those tests, the UO 2 /ZrO 2 compositions were close to that of prototypic case. In this paper, we have numerically simulated the melt coolant interaction of TROI tests using the computer code, COMETA (Core MElt Thermalhydraulic Analysis) developed by JRC (Joint Research Center), at Ispra in Italy. The COMETA code was primarily developed to analyse, with sufficient detail, both the thermal-hydraulics and the fuel fragmentation phenomena during the melt quenching tests as conducted in the FARO facility. The code solves the conservation equations of mass, momentum and energy for the fluid using a conventional two-fluid model. Fuel fragmentation model considers the molten jet, its break up in drops and accumulation as fused-debris on the bottom. An explicit coupling between the thermal hydraulics and fuel fragmentation for the energy transfer is considered. The code has been extensively validated in the past for melt quenching in a series of experiments in the FARO facility. In this work, we first simulated the pre-mix and triggering phases of the TROI-13 tests for which the test data were available. The melt jet trajectory, void fraction and pressure profile were

  18. Steam explosions of molten iron oxide drops: easier initiation at small pressurizations

    International Nuclear Information System (INIS)

    Nelson, L.S.; Duda, P.M.

    1982-01-01

    Steam explosions caused by hot molten materials contacting liquid water following a possible light water nuclear reactor core overheat have been investigated by releasing single drops of a core melt simulant, molten iron oxide, into liquid water. Small steam explosions were triggered shortly afterwards by applying a pressure pulse to the water. The threshold peak pulse level above which an explosion always occurs was studied at ambient pressures between 0.083 and 1.12 MPa. It was found that the threshold decreased to a minimum in the range 0.2 - 0.8 MPa and then increased again. The effect of easier initiation as ambient pressure increases may have an important role in the triggering and propagation of a large scale steam explosion through a coarsely premixed dispersion of melt in water. (U.K.)

  19. R-22 vapor explosions

    International Nuclear Information System (INIS)

    Anderson, R.P.; Armstrong, D.R.

    1977-01-01

    Previous experimental and theoretical studies of R-22 vapor explosions are reviewed. Results from two experimental investigations of vapor explosions in a medium scale R-22/water system are reported. Measurements following the drop of an unrestrained mass of R-22 into a water tank demonstrated the existence of two types of interaction behavior. Release of a constrained mass of R-22 beneath the surface of a water tank improved the visual resolution of the system thus allowing identification of two interaction mechansims: at low water temperatures, R-22/water contact would produce immediate violent boiling; at high water temperatures a vapor film formed around its R-22 as it was released, explosions were generated by a surface wave which initiated at a single location and propagated along the vapor film as a shock wave. A new vapor explosion model is proposed, it suggests explosions are the result of a sequence of three independent steps: an initial mixing phase, a trigger and growth phase, and a mature phase where a propagating shock wave accelerates the two liquids into a collapsing vapor layer causing a high velocity impact which finely fragments and intermixes the two liquids

  20. Level Zero Trigger Processor for the NA62 experiment

    Science.gov (United States)

    Soldi, D.; Chiozzi, S.

    2018-05-01

    The NA62 experiment is designed to measure the ultra-rare decay K+ arrow π+ ν bar nu branching ratio with a precision of ~ 10% at the CERN Super Proton Synchrotron (SPS). The trigger system of NA62 consists in three different levels designed to select events of physics interest in a high beam rate environment. The L0 Trigger Processor (L0TP) is the lowest level system of the trigger chain. It is hardware implemented using programmable logic. The architecture of the NA62 L0TP system is a new approach compared to existing systems used in high-energy physics experiments. It is fully digital, based on a standard gigabit Ethernet communication between detectors and the L0TP Board. The L0TP Board is a commercial development board, mounting a programmable logic device (FPGA). The primitives generated by sub-detectors are sent asynchronously using the UDP protocol to the L0TP during the entire beam spill period. The L0TP realigns in time the primitives coming from seven different sources and performs a data selection based on the characteristics of the event such as energy, multiplicity and topology of hits in the sub-detectors. It guarantees a maximum latency of 1 ms. The maximum input rate is about 10 MHz for each sub-detector, while the design maximum output trigger rate is 1 MHz. A description of the trigger algorithm is presented here.

  1. The fast trigger scintillator for the JETSET experiment (PS202/LEAR)

    International Nuclear Information System (INIS)

    Sefzick, T.

    1988-12-01

    In the present thesis the trigger detector of the JETSET experiment (PS202) at the LEAR/CERN consisting of scintillation counters is presented. After giving a start signal in a second stage of the trigger electronics the determination of the position of the traversed points of the reaction products is performed with the information of the scintillation detector. A third following trigger stage shall study the position informations given by the second stage under kinematical points of view. The present diploma thesis deals especially with the first two trigger stages. As basic conditions the components of a scintillation counter are treated and calibration and testing possibilities presented. For this belongs a fast light pulser with green or blue LED. Results of the studies which scintillator and light-guide materials are most suitable for the JETSET experiment are presented. (orig./HSI) [de

  2. Modeling the fine fragmentation following the triggering stage of a vapor explosion

    International Nuclear Information System (INIS)

    Darbord, I.

    1997-01-01

    In the frame of PWR severe accidents, where the core melt, this thesis studies one of the stages of an FCI (fuel coolant interaction) or vapor explosion. An FCI is a rapid evaporation of a coolant when it comes into contact with a hot liquid. More precisely, the subject of this study is the triggering stage of the FCI, when a fuel drop of diameter around one centimeter breaks up into many fragments, diameter of which is around a hundred micrometers. The model describes the cyclic collapse and growth of a vapor bubble around the fuel droplet and its fragmentation. The main features of the model are: - the destabilization of the film or the vapor bubble due to the growth of Rayleigh-Taylor instabilities (those form coolant jets that contact the fuel surface); - The mechanisms of fragmentation, following the contacts (in the case of entrapment of a certain amount of coolant in the fuel, the entrapped coolant evaporates violently after it has been heated to the homogeneous nucleation temperature); - the transient heat transfer from the fragments to the coolant and the elevated vapor production, which leads to an important expansion of the bubble (about this point, the cooling of the fragments has been described by a transient heat transfer coefficient linked to nucleate boiling). The results of the model show good agreement with experimental data. (Author)

  3. On a possible second-level trigger for the experiment DISTO

    International Nuclear Information System (INIS)

    Bussa, M.P.; Fava, L.; Ferrero, L.; Grasso, A.; Ivanov, V.V.; Kisel', I.V.; Konotopskaya, E.V.; Pontecorvo, G.B.; Joint Inst. for Nuclear Research, Dubna

    1995-01-01

    A two-level trigger is to be applied for suppression of the background and for effective selection of events involving short-lived Λ-, Σ- and φ-particles in the experiment DISTO. The first-level trigger is applied for track recognition, in searching for a secondary vertex, and for identifying the detected particles. 10 refs., 14 figs., 1 tab

  4. The second level trigger of the L3 experiment. Pt. 1

    International Nuclear Information System (INIS)

    Bertsch, Y.; Blaising, J.J.; Bonnefon, H.; Chollet-Le Flour, F.; Degre, A.; Dromby, G.; Lecoq, J.; Morand, R.; Moynot, M.; Perrot, G.; Riccadonna, X.

    1993-07-01

    The second level trigger of the L3 experiment performs online background rejection and reduces the first level trigger rate to a value fitting with the third level trigger processing capability. Designed around a set of 3 bit-slice XOP microprocessors, it can process up to 500 first level triggers per second without significant dead time in the data acquisition. The system described here ensures the L3 data taking since the beginning of LEP in July 1989 and the online rejection since 1990. (authors). 24 refs., 8 figs., 3 tabs

  5. Experiments on interactions between zirconium-containing melt and water (ZREX). Hydrogen generation and chemical augmentation of energetics

    Energy Technology Data Exchange (ETDEWEB)

    Cho, D.H.; Armstrong, D.R.; Gunther, W.H. [Argonne National Lab., IL (United States); Basu, S.

    1998-01-01

    The results of the first data series of experiments on interactions between zirconium-containing melt and water are described. These experiments involved dropping 1-kg batches of pure zirconium or zirconium-zirconium dioxide mixture melt into a column of water. A total of nine tests were conducted, including four with pure zirconium melt and five with Zr-ZrO{sub 2} mixture melt. Explosions took place only in those tests which were externally triggered. While the extent of zirconium oxidation in the triggered experiments was quite extensive, the estimated explosion energetics were found to be very small compared to the combined thermal and chemical energy available. (author)

  6. Explosive Outflows from Forming Massive Stars

    OpenAIRE

    Bally, J.; Ginsburg, A.; Kasliwal, M. M.

    2016-01-01

    AO imaging of the near IR [Fe ii] and H_2 lines and ALMA CO J = 2 − 1 data confirms the explosive nature of the BN/KL outflow in Orion. N-body interactions in compact groups may be responsible for the production of powerful, explosive protostellar outflows and luminous infrared flares. The Orion event may have been triggered by a protostellar merger. First results of a search for Orion-like events in 200 nearby galaxies with the SPitzer InfraRed Intensive Transients Survey (SPIRITS) are brief...

  7. Weapons Experiments Division Explosives Operations Overview

    Energy Technology Data Exchange (ETDEWEB)

    Laintz, Kenneth E. [Los Alamos National Laboratory

    2012-06-19

    Presentation covers WX Division programmatic operations with a focus on JOWOG-9 interests. A brief look at DARHT is followed by a high level overview of explosives research activities currently being conducted within in the experimental groups of WX-Division. Presentation covers more emphasis of activities and facilities at TA-9 as these efforts have been more traditionally aligned with ongoing collaborative explosive exchanges covered under JOWOG-9.

  8. Preliminary Analysis of Ex-Vessel Steam Explosion using TEXAS-V code for APR1400

    International Nuclear Information System (INIS)

    Song, Sung Chu; Lee, Jung Jae; Cho, Yong Jin; Hwang, Taesuk

    2013-01-01

    The purpose of this study is to explore input development and the audit calculation using TEXAS-V code for ex-vessel steam explosion for a flooded reactor cavity of APR1400. TEXAS computational models are one of the simplified tools for simulations of fuel-coolant interaction during mixing, triggering and explosion phase. The models of TEXAS code were validated by performing the fundamental experimental investigation in the KROTOS facility at JRC, Ispra. The experiments such as KROTOS and FARO experiment are aimed at providing benchmark data to examine the effect of fuel-coolant initial conditions and mixing on explosion energetics with alumina and prototypical core material. TEXAS-V code used in this study was to analyze and predict the ex-vessel steam explosion for a reactor scale. The input deck to simulate the flooded reactor cavity of APR1400 is developed and base case calculation is performed. This study will provide a base for further study. The code will be of use for the evaluation and sensitivity study of ex-vessel steam explosion for ERVC strategy in the future studies. Analysis result of this study is similar to the result of other study. Through this study, it is found that TEXAS-V could be the used as a tool for predicting the steam explosion load on a reactor scale, as fast running computer code. In addition, TEXAS-V code could be to evaluate the impact of various uncertainties, which are not clearly understood yet, to provide a conservative envelope for the steam explosion

  9. Preliminary Analysis of Ex-Vessel Steam Explosion using TEXAS-V code for APR1400

    Energy Technology Data Exchange (ETDEWEB)

    Song, Sung Chu; Lee, Jung Jae; Cho, Yong Jin; Hwang, Taesuk [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2013-10-15

    The purpose of this study is to explore input development and the audit calculation using TEXAS-V code for ex-vessel steam explosion for a flooded reactor cavity of APR1400. TEXAS computational models are one of the simplified tools for simulations of fuel-coolant interaction during mixing, triggering and explosion phase. The models of TEXAS code were validated by performing the fundamental experimental investigation in the KROTOS facility at JRC, Ispra. The experiments such as KROTOS and FARO experiment are aimed at providing benchmark data to examine the effect of fuel-coolant initial conditions and mixing on explosion energetics with alumina and prototypical core material. TEXAS-V code used in this study was to analyze and predict the ex-vessel steam explosion for a reactor scale. The input deck to simulate the flooded reactor cavity of APR1400 is developed and base case calculation is performed. This study will provide a base for further study. The code will be of use for the evaluation and sensitivity study of ex-vessel steam explosion for ERVC strategy in the future studies. Analysis result of this study is similar to the result of other study. Through this study, it is found that TEXAS-V could be the used as a tool for predicting the steam explosion load on a reactor scale, as fast running computer code. In addition, TEXAS-V code could be to evaluate the impact of various uncertainties, which are not clearly understood yet, to provide a conservative envelope for the steam explosion.

  10. Conceptual design of the first level trigger for the SDC experiment

    International Nuclear Information System (INIS)

    Drinkard, J.; Griffin, G.; Lankford, A.J.; Schmid, B.; Stoker, D.; Tarazi, J.; Lipniacka, A.; Brisson, J.C.; Hubbard, R.; Le Du, P.; Thooris, B.; Yashioka, H.; Hamatsu, R.; Nickerson, R.B.; Chapman, J.; Dunn, A.; Mann, J.; Miao, C.; Vejcik, S.; Dasu, S.; Gorski, T.; Lackey, J.; Smith, W.H.; Temple, W.; Coupal, D.

    1994-07-01

    We report on a conceptual design of the First Level Trigger for the SDC Experiment at the SSC. Level 1 algorithms employ barrel and intermediate trackers, and electromagnetic and hadronic calorimeters. Results of simulations of background rates and efficiencies are presented together with a discussion of the simulation method. Tracking and calorimetric triggers are discussed in detail. Some hardware implementation ideas for the trigger algorithms are mentioned. (authors). 8 refs., 4 figs., 2 tabs

  11. Shot H3837: Darht's First Dual-Axis Explosive Experiment

    Science.gov (United States)

    Mendez, Jacob; McNeil, Wendy Vogan; Harsh, James; Hull, Lawrence

    2011-06-01

    Test H3837 was the first explosive shot performed in front of both flash x-ray axes at the Los Alamos Dual Axis Radiographic HydroTest (DARHT) facility. Executed in November 2009, the shot was an explosively-driven metal flyer plate in a series of experiments designed to explore equation-of-state properties of shocked materials. Imaging the initial shock wave traveling through the flyer plate, DARHT Axis II captured the range of motion from the shock front emergence in the flyer to breakout at the free surface; the Axis I pulse provided a perpendicular perspective of the shot at a time coinciding with the third pulse of Axis II. Since the days of the Manhattan Project, penetrating radiography with multiple frames from different viewing angles has remained a high-profile goal at the Laboratory. H3837 is merely the beginning of a bright future for two-axis penetrating radiography.

  12. The ATLAS online High Level Trigger framework experience reusing offline software components in the ATLAS trigger

    CERN Document Server

    Wiedenmann, W

    2009-01-01

    Event selection in the Atlas High Level Trigger is accomplished to a large extent by reusing software components and event selection algorithms developed and tested in an offline environment. Many of these offline software modules are not specifically designed to run in a heavily multi-threaded online data flow environment. The Atlas High Level Trigger (HLT) framework based on the Gaudi and Atlas Athena frameworks, forms the interface layer, which allows the execution of the HLT selection and monitoring code within the online run control and data flow software. While such an approach provides a unified environment for trigger event selection across all of Atlas, it also poses strict requirements on the reused software components in terms of performance, memory usage and stability. Experience of running the HLT selection software in the different environments and especially on large multi-node trigger farms has been gained in several commissioning periods using preloaded Monte Carlo events, in data taking peri...

  13. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    Directory of Open Access Journals (Sweden)

    Qingjie Jiao

    2018-03-01

    Full Text Available To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20 based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm grows gradually; shock wave energy (Es continues increasing, bubble energy (Eb increases then decreases peaking at 15% for both formulas, and the total energy (E and energy release rate (η peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.

  14. The effect of explosive percentage on underwater explosion energy release of hexanitrohexaazaisowurtzitane and octogen based aluminized explosives

    Science.gov (United States)

    Jiao, Qingjie; Wang, Qiushi; Nie, Jianxin; Guo, Xueyong; Zhang, Wei; Fan, Wenqi

    2018-03-01

    To control the explosion energy output by optimizing explosive components is a key requirement in a number of different application areas. The effect of different Al/O Ratio on underwater explosion of aluminized explosives has been studied detailedly. However, the effect of explosive percentage in the same Al/O Ratio is rarely researched, especially for Hexanitrohexaazaisowurtzitane (CL-20) based aluminized explosives. In this study, we performed the underwater explosion experiments with 1.2-kilogram explosives in order to investigate the explosion energy released from CL-20 and Octogen (HMX) based aluminized explosives. The percentage of the explosive varied from 5% to 30% and it is shown that: the shockwave peak pressure (pm) grows gradually; shock wave energy (Es) continues increasing, bubble energy (Eb) increases then decreases peaking at 15% for both formulas, and the total energy (E) and energy release rate (η) peak at 20% for CL-20 and 15% for HMX. This paper outlines the physical mechanism of Eb change under the influence of an aluminium initial reaction temperature and reaction active detonation product percentage coupling. The result shows that CL-20 is superior as a new high explosive and has promising application prospects in the regulation of explosive energy output for underwater explosives.

  15. A first-level calorimeter trigger for the ATLAS experiment

    International Nuclear Information System (INIS)

    Perera, V.; Edwards, J.; Gee, N.

    1995-01-01

    In the RD27 collaboration the authors have carried out system studies on the implementation of the first level calorimeter trigger processor system for the ATLAS experiment to be mounted at the Large Hadron Collider (LHC) at CERN. A demonstrator trigger system operated successfully with the RD3 and RD33 calorimeters at the full 40 MHz LHC bunch crossing (BC) rate. The prototype application-specific integrated circuits (ASICs) in this system each processed data from only a single trigger cell and its environment, which would lead to an extremely large system for ATLAS. Using eight-bit parallel data even the use of ASICs, processing multiple trigger cells would demand unacceptably large numbers of input pins and module connections. Initial studies of this I/O problem produced a solution based on asynchronous transmission of zero-suppressed and BC-tagged data on 160 Mbit/s serial links. This approach appeared to be feasible but would have introduced additional latency of about 20 BCs. Further studies have led to the design of a fully-synchronous calorimeter trigger processor system using commercial high-speed optical links. The links will terminate in multi-chip modules (MCMs) incorporating custom-designed integrated optics, and the trigger algorithms will be implemented in ASICs

  16. Impulsive shock induced single drop steam explosion visualized by high-speed x-ray radiography and photography - metallic melt

    International Nuclear Information System (INIS)

    Park, H. S.; Hansson, R. C.; Sehgal, B. R.

    2003-01-01

    Experimental investigation of fine fragmentation process during vapor explosion was conducted in a small-scale single drop system employing continuous high-speed X-ray radiography and photography. A molten tin drop of about 0.7 g at approximately 1000 .deg. C was dropped into a water pool, at temperatures ranging from 20 to 90 .deg. C, and the explosion was triggered by an external shock pulse of about 1 MPa. X-ray radiographs show that finely fragmented melt particles accelerates to the vapor bubble boundary and forms a particle shell during the period of vapor bubble expansion due to vapor explosions. From the photographs, it was possible to observe a number of counter-jets on the vapor boundary. For tests with highly subcooled coolant, local explosion due to external impulsive shock trigger initiates the stratified mode of explosion along the entire melt surface. For tests with lower subcooled coolant local explosions were initiated by an external impulsive shock trigger and by collapse of vapor/gas pocket attached on the top of the melt drop. Transient spatial distribution map of melt fragments during vapor explosion was obtained by a series of image processing and calibration tests

  17. The new Global Muon Trigger of the CMS experiment

    CERN Document Server

    Fulcher, Jonathan Richard; Rabady, Dinyar Sebastian; Reis, Thomas; Sakulin, Hannes

    2016-01-01

    For the 2016 physics data runs the L1 trigger system of the Compact Muon Solenoid (CMS) experiment underwent a major upgrade to cope with the increasing instantaneous luminosity of the CERN LHC whilst maintaining a high event selection efficiency for the CMS physics program. Most subsystem specific trigger processor boards were replaced with powerful general purpose processor boards, conforming to the MicroTCA standard, whose tasks are performed by firmware on an FPGA of the Xilinx Virtex 7 family. Furthermore, the muon trigger system moved from a subsystem centered approach, where each of the three muon detector systems provides muon candidates to the Global Muon Trigger (GMT), to a region based system, where muon track finders (TFs) combine information from the subsystems to generate muon candidates in three detector regions, that are then sent to the upgraded GMT. The upgraded GMT receives up to 108 muons from the processors of the muon TFs in the barrel, overlap, and endcap detector regions. The muons are...

  18. CT-TRX1, a triggered-reconnection compact toroid experiment

    International Nuclear Information System (INIS)

    Hoffman, A.L.

    1980-05-01

    A new compact toroid experiment, CT-TRX1, based on the field reversed theta pinch is under construction. The unique feature of this experiment is the incorporation of several quasi-steady and pulsed magnets to carefully control the reconnection process. The motivation for this emphasis is to duplicate and extend the results reported by Kurtmullaev, et al., where delayed reconnection produced efficient axial shock heating and resulted in large diameter compact toroids which exhibited complete MHD stability for the 100 μsec decay time of their pulsed magnets. CT-TRX1 incorporates moderate E/sub theta/ radial shock heating, along with the triggered reconnection capability, to investigate the full range of conditions between the USSR experiments and the radial shock heated experiments at LASL, where m = 2 rotational instabilities occur. An additional feature of CT-TRX1 is the incorporation of a compound magnet which will provide long magnetic field decay times. The requirements for both high field quasi-steady outer magnets, and several high voltage, individually triggered pulsed inner magnets, present unique engineering design problems which are discussed

  19. Trigger Menu-aware Monitoring for the ATLAS experiment

    CERN Document Server

    Hoad, Xanthe; The ATLAS collaboration

    2016-01-01

    Changes in the trigger menu, the online algorithmic event-selection of the ATLAS experiment at the LHC in response to luminosity and detector changes are followed by adjustments in their monitoring system. This is done to ensure that the collected data is useful, and can be properly reconstructed at Tier-0, the first level of the computing grid. During Run 1, ATLAS deployed monitoring updates with the installation of new software releases at Tier-0. This created unnecessary overhead for developers and operators, and unavoidably led to different releases for the data-taking and the monitoring setup. We present a "trigger menu-aware" monitoring system designed for the ATLAS Run 2 data-taking. The new monitoring system aims to simplify the ATLAS operational workflows, and allows for easy and flexible monitoring configuration changes at the Tier-0 site via an Oracle DB interface. We present the design and the implementation of the menu-aware monitoring, along with lessons from the operational experience of the ne...

  20. Towards a Level-1 tracking trigger for the ATLAS experiment

    CERN Document Server

    Cerri, A; The ATLAS collaboration

    2014-01-01

    The future plans for the LHC accelerator allow, through a schedule of phased upgrades, an increase in the average instantaneous luminosity by a factor 5 with respect to the original design luminosity. The ATLAS experiment at the LHC will be able to maximise the physics potential from this higher luminosity only if the detector, trigger and DAQ infrastructure are adapted to handle the sustained increase in particle production rates. In this paper the changes expected to be required to the ATLAS detectors and trigger system to fulfill the requirement for working in such high luminosity scenario are described. The increased number of interactions per bunch crossing will result in higher occupancy in the detectors and increased rates at each level of the trigger system. The trigger selection will improve the selectivity partly from increased granularity for the sub detectors and the consequent higher resolution. One of the largest challenges will be the provision of tracking information at the first trigger level...

  1. Development of a level-1 trigger and timing system for the Double Chooz neutrino experiment

    International Nuclear Information System (INIS)

    Reinhold, Bernd

    2009-01-01

    The measurement of the mixing angle θ 13 is the goal of several running and planned experiments. The experiments are either accelerator based (super)beam experiments (e.g. MINOS, T2K, Nova) or reactor anti-neutrino disappearance experiments (e.g. Daya Bay, RENO or Double Chooz). In order to measure or constrain θ 13 with the Double Chooz experiment the overall systematic errors have to be controlled at the one-percent or sub-percent level. The limitation of the systematic errors is achieved through various means and techniques. E.g. the experiment consists of two identical detectors at different baselines, which allow to make a differential anti-neutrino flux measurement, where basically only relative normalisation errors remain. The requirements on the systematic errors put also strong constraints on the quality of all components and materials used for both detectors, most prominently on the stability and radiopurity of the scintillator, the photomultiplier tubes, the vessels containing the detector liquids and the shielding against ambient radioactivity. The readout electronics, trigger and data acquisition system have to operate reliably as an integrated and highly efficient whole over several years. The trigger is provided by the Level-1 Trigger and Timing System, which is the subject of this thesis. It has to provide a highly efficient trigger (at the 0.1% level) for neutrino-induced events as well as for several types of background events. Its decision is realized in hardware and based on energy depositions in the muon veto and the target region. The Level-1 Trigger and Timing System furthermore provides a common System Clock and an absolute timestamp for each event. The Level-1 Trigger and Timing System consists of two types of VME modules, several Trigger Boards and a Trigger Master Board, which have been custom-designed and developed in the electronics workshop of our institute for this experiment and purpose, starting in 2005. In this thesis all

  2. Development of a level-1 trigger and timing system for the Double Chooz neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Reinhold, Bernd

    2009-02-25

    The measurement of the mixing angle {theta}{sub 13} is the goal of several running and planned experiments. The experiments are either accelerator based (super)beam experiments (e.g. MINOS, T2K, Nova) or reactor anti-neutrino disappearance experiments (e.g. Daya Bay, RENO or Double Chooz). In order to measure or constrain {theta}{sub 13} with the Double Chooz experiment the overall systematic errors have to be controlled at the one-percent or sub-percent level. The limitation of the systematic errors is achieved through various means and techniques. E.g. the experiment consists of two identical detectors at different baselines, which allow to make a differential anti-neutrino flux measurement, where basically only relative normalisation errors remain. The requirements on the systematic errors put also strong constraints on the quality of all components and materials used for both detectors, most prominently on the stability and radiopurity of the scintillator, the photomultiplier tubes, the vessels containing the detector liquids and the shielding against ambient radioactivity. The readout electronics, trigger and data acquisition system have to operate reliably as an integrated and highly efficient whole over several years. The trigger is provided by the Level-1 Trigger and Timing System, which is the subject of this thesis. It has to provide a highly efficient trigger (at the 0.1% level) for neutrino-induced events as well as for several types of background events. Its decision is realized in hardware and based on energy depositions in the muon veto and the target region. The Level-1 Trigger and Timing System furthermore provides a common System Clock and an absolute timestamp for each event. The Level-1 Trigger and Timing System consists of two types of VME modules, several Trigger Boards and a Trigger Master Board, which have been custom-designed and developed in the electronics workshop of our institute for this experiment and purpose, starting in 2005. In

  3. Liquid explosives

    CERN Document Server

    Liu, Jiping

    2015-01-01

    The book drawing on the author's nearly half a century of energetic materials research experience intends to systematically review the global researches on liquid explosives. The book focuses on the study of the conception, explosion mechanism, properties and preparation of liquid explosives. It provides a combination of theoretical knowledge and practical examples in a reader-friendly style. The book is likely to be interest of university researchers and graduate students in the fields of energetic materials, blasting engineering and mining.

  4. The ATLAS muon trigger: Experience and performance in the first 3 years of LHC pp runs

    International Nuclear Information System (INIS)

    Ventura, Andrea

    2013-01-01

    The ATLAS experiment at CERN's Large Hadron Collider (LHC) deploys a three-level processing scheme for the trigger system. The Level-1 muon trigger system gets its input from fast muon trigger detectors. Sector logic boards select muon candidates, which are passed via an interface board to the central trigger processor and then to the High Level Trigger (HLT). The muon HLT is purely software based and encompasses a Level-2 trigger followed by an event filter for a staged trigger approach. It has access to the data of the precision muon detectors and other detector elements to refine the muon hypothesis. The ATLAS experiment has taken data with high efficiency continuously over entire running periods from 2010 to 2012, for which sophisticated triggers to guard the highest physics output while reducing effectively the event rate were mandatory. The ATLAS muon trigger has successfully adapted to this challenging environment. The selection strategy has been optimized for the various physics analyses involving muons in the final state. This work briefly summarizes these three years of experience in the ATLAS muon trigger and reports about efficiency, resolution, and general performance of the muon trigger

  5. Drift Tubes Trigger System of the CMS Experiment at LHC : Commissioning and Performances

    CERN Document Server

    Battilana, Carlo

    2009-01-01

    In this thesis the performances of the CMS Drift Tubes Local Trigger System of the CMS detector are studied. CMS is one of the general purpose experiments that will operate at the Large Hadron Collider at CERN. Results from data collected during the Cosmic Run At Four Tesla (CRAFT) commissioning exercise, a globally coordinated run period where the full experiment was involved and configured to detect cosmic rays crossing the CMS cavern, are presented. These include analyses on the precision and accuracy of the trigger reconstruction mechanism and measurement of the trigger efficiency. The description of a method to perform system synchronization is also reported, together with a comparison of the outcomes of trigger electronics and its software emulator code.

  6. A demonstration of a Time Multiplexed Trigger for the CMS experiment

    Energy Technology Data Exchange (ETDEWEB)

    Frazier, R; Newbold, D [University of Bristol, H.H. Wills Physics Laboratory, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Fayer, S; Hall, G; Hunt, C; Iles, G; Rose, A [Imperial College London, Blackett Laboratory, Prince Consort Road, London SW7 2BW (United Kingdom)

    2012-01-15

    A novel approach to first-level hardware triggering in the LHC experiments has been studied and a prototype system built. Calorimeter trigger primitive data ( {approx} 5 Tb/s) are re-organised and time-multiplexed so that a single processing node (FPGA) may access the data corresponding to the entire detector for a given bunch crossing. This provides maximal flexibility in the construction of new trigger algorithms, which will be an important factor in ensuring adequate trigger performance at the very high levels of background expected at the upgraded LHC. A test system that incorporates all the key technologies for a final system and demonstrates the time-multiplexing and algorithm performance is presented.

  7. Material properties influence on steam explosion efficiency. Prototypic versus simulant melts, eutectic versus non-eutectic melts

    International Nuclear Information System (INIS)

    Leskovar, M.; Mavko, B.

    2006-01-01

    A steam explosion may occur during a severe nuclear reactor accident if the molten core comes into contact with the coolant water. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. Details of processes taking place prior and during the steam explosion have been experimentally studied for a number of years with adjunct efforts in modelling these processes to address the scaling of these experiments. Steam explosion experiments have shown that there are important differences of behaviour between simulant and prototypical melts, and that also at prototypical melts the fuel coolant interactions depend on the composition of the corium. In experiments with prototypic materials no spontaneous steam explosions occurred (except with an eutectic composition), whereas with simulant materials the steam explosions were triggered spontaneously. The energy conversion ratio of steam explosions with prototypic melts is at least one order of magnitude lower than the energy conversion ratio of steam explosions with simulant melts. Although the different behaviour of prototypic and simulant melts has been known for a number of years, there is no reliable explanation for these differences. Consequently it is not possible to reliably estimate whether corium would behave so non-explosive also in reactor conditions, where the mass of poured melt is nearly three orders of magnitude larger than in experimental conditions. An even more fascinating material effect was observed recently at corium experiments with eutectic and non-eutectic compositions. It turned out that eutectic corium always exploded spontaneously, whereas non-eutectic corium never exploded spontaneously. In the paper, a possible explanation of both material effects (prototypic/simulant melts, eutectic/non-eutectic corium) on the steam explosion is provided. A model for the calculation of the

  8. The CMS High Level Trigger System: Experience and Future Development

    CERN Document Server

    Bauer, Gerry; Bowen, Matthew; Branson, James G; Bukowiec, Sebastian; Cittolin, Sergio; Coarasa, J A; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Flossdorf, Alexander; Gigi, Dominique; Glege, Frank; Gomez-Reino, R; Hartl, Christian; Hegeman, Jeroen; Holzner, André; Y L Hwong; Masetti, Lorenzo; Meijers, Frans; Meschi, Emilio; Mommsen, R K; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Polese, Giovanni; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schwick, Christoph; Shpakov, Dennis; Simon, M; Spataru, A C; Sumorok, Konstanty

    2012-01-01

    The CMS experiment at the LHC features a two-level trigger system. Events accepted by the first level trigger, at a maximum rate of 100 kHz, are read out by the Data Acquisition system (DAQ), and subsequently assembled in memory in a farm of computers running a software high-level trigger (HLT), which selects interesting events for offline storage and analysis at a rate of order few hundred Hz. The HLT algorithms consist of sequences of offline-style reconstruction and filtering modules, executed on a farm of 0(10000) CPU cores built from commodity hardware. Experience from the operation of the HLT system in the collider run 2010/2011 is reported. The current architecture of the CMS HLT, its integration with the CMS reconstruction framework and the CMS DAQ, are discussed in the light of future development. The possible short- and medium-term evolution of the HLT software infrastructure to support extensions of the HLT computing power, and to address remaining performance and maintenance issues, are discussed.

  9. The evolution of the Trigger and Data Acquisition System in the ATLAS experiment

    CERN Document Server

    Krasznahorkay, A; The ATLAS collaboration

    2013-01-01

    The ATLAS experiment, aimed at recording the results of LHC proton-proton collisions, is upgrading its Trigger and Data Acquisition (TDAQ) system during the current LHC first long shutdown. The purpose of such upgrade is to add robustness and flexibility to the selection and the conveyance of the physics data, simplify the maintenance of the infrastructure, exploit new technologies and, overall, make ATLAS data-taking capable of dealing with increasing event rates. The TDAQ system used to date is organised in a three-level selection scheme, including a hardware-based first-level trigger and second- and third-level triggers implemented as separate software systems distributed on commodity hardware nodes. The second-level trigger operates over limited regions of the detector, the so-called Regions-of-Interest (RoI). The third-level trigger deals instead with complete events. While this architecture was successfully operated well beyond the original design goals, the accumulated experience stimulated interest to...

  10. A silicon track trigger for the DOe experiment

    International Nuclear Information System (INIS)

    Narain, Meenakshi

    2000-01-01

    The design of a processor to trigger on long-lived particles (e.g. b-quarks) for the DOe experiment at the Fermilab Tevatron is presented. This device reconstructs the trajectory of the charged particles in the DOe tracking system, which consists of a central fiber tracker and a silicon microstrip tracker. The r-phi impact parameter resolution of the fitted tracks is about 40 μm. This enables the identification of the long-lived b-quarks produced in the decays of various particles, e.g. the top quarks, Higgs Boson, techni-particles and other exotic particles produced in pp-bar collisions at the Tevatron. In this report we describe the design of the architecture and algorithms for the Silicon Track Trigger

  11. A silicon track trigger for the DOe experiment

    CERN Document Server

    Narain, M

    2000-01-01

    The design of a processor to trigger on long-lived particles (e.g. b-quarks) for the DOe experiment at the Fermilab Tevatron is presented. This device reconstructs the trajectory of the charged particles in the DOe tracking system, which consists of a central fiber tracker and a silicon microstrip tracker. The r-phi impact parameter resolution of the fitted tracks is about 40 mu m. This enables the identification of the long-lived b-quarks produced in the decays of various particles, e.g. the top quarks, Higgs Boson, techni-particles and other exotic particles produced in pp-bar collisions at the Tevatron. In this report we describe the design of the architecture and algorithms for the Silicon Track Trigger.

  12. Experimental investigation of the trigger problem in magnetic reconnection

    International Nuclear Information System (INIS)

    Katz, Noam; Egedal, Jan; Fox, Will; Le, Ari; Vrublevskis, Arturs; Bonde, Jeff

    2011-01-01

    Magnetic reconnection releases magnetic energy not only in steady state, but also in time-dependent and often explosive events. Here, we investigate the trigger mechanism for this explosive release by using a toroidal experiment in the strong guide-field regime. We observe spontaneous reconnection events with exponentially growing reconnection rates, and we characterize the full 3D dynamics of these events using multiple internal probes. The reconnection is asymmetric: it begins at one toroidal location and propagates around in both directions. The spontaneous onset is facilitated by an interaction between the x-line current channel and a global mode, which appears in the electrostatic potential. It is this mode which breaks axisymmetry and enables a localized decrease in x-line current. We apply a simple model - which relies on ion polarization currents for current continuity - to reproduce the exponential growth and compute the growth rate. The result agrees well with the experimental growth rate.

  13. Ultrasonically triggered ignition at liquid surfaces.

    Science.gov (United States)

    Simon, Lars Hendrik; Meyer, Lennart; Wilkens, Volker; Beyer, Michael

    2015-01-01

    Ultrasound is considered to be an ignition source according to international standards, setting a threshold value of 1mW/mm(2) [1] which is based on theoretical estimations but which lacks experimental verification. Therefore, it is assumed that this threshold includes a large safety margin. At the same time, ultrasound is used in a variety of industrial applications where it can come into contact with explosive atmospheres. However, until now, no explosion accidents have been reported in connection with ultrasound, so it has been unclear if the current threshold value is reasonable. Within this paper, it is shown that focused ultrasound coupled into a liquid can in fact ignite explosive atmospheres if a specific target positioned at a liquid's surface converts the acoustic energy into a hot spot. Based on ignition tests, conditions could be derived that are necessary for an ultrasonically triggered explosion. These conditions show that the current threshold value can be significantly augmented. Copyright © 2014 Elsevier B.V. All rights reserved.

  14. What factors control superficial lava dome explosivity?

    Science.gov (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoît; Morgan, Daniel J

    2015-09-30

    Dome-forming eruption is a frequent eruptive style and a major hazard on numerous volcanoes worldwide. Lava domes are built by slow extrusion of degassed, viscous magma and may be destroyed by gravitational collapse or explosion. The triggering of lava dome explosions is poorly understood: here we propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite precipitation. Both processes generate an impermeable and rigid carapace allowing overpressurisation of the inner parts of the lava dome by the rapid input of vesiculated magma batches. The relative thickness of the cristobalite-rich carapace is an inverse function of the external lava dome surface area. Explosive activity is thus more likely to occur at the onset of lava dome extrusion, in agreement with observations, as the likelihood of superficial lava dome explosions depends inversely on lava dome volume. This new result is of interest for the whole volcanological community and for risk management.

  15. The design of a flexible Global Calorimeter Trigger system for the Compact Muon Solenoid experiment

    Energy Technology Data Exchange (ETDEWEB)

    Brooke, J J [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Cussans, D G [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Frazier, R J E [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Galagedera, S B [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom); Heath, G P [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Huckvale, B J [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Nash, S J [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Newbold, D M [H.H. Wills Physics Lab, University of Bristol, Tyndall Avenue, Bristol BS8 1TL (United Kingdom); Shah, A A [Science and Technology Facilities Council, Rutherford Appleton Laboratory, Didcot OX11 0QX (United Kingdom)

    2007-10-15

    We have developed a novel design of triggering system as part of the pipelined hardware Level-1 trigger logic for the CMS experiment at LHC. The Global Calorimeter Trigger is the last element in the processing of calorimeter data, and provides most of the input to the final Level-1 decision. We present the detailed functional requirements for this system. Our design meets the requirements using generic, configurable Trigger Processing Modules built from commercial programmable logic and high-speed serial data links. We describe the hardware, firmware and software components of this solution. CMS has chosen an alternative solution to build the final trigger system; we discuss the implications of our experiences for future development projects along similar lines.

  16. Towards a Level-1 Tracking Trigger for the ATLAS Experiment

    CERN Document Server

    De Santo, A; The ATLAS collaboration

    2014-01-01

    Plans for a physics-driven upgrade of the LHC foresee staged increases of the accelerator's average instantaneous luminosity, of up to a factor of five compared to the original design. In order to cope with the sustained luminosity increase, and the resulting higher detector occupancy and particle interaction rates, the ATLAS experiment is planning phased upgrades of the trigger system and of the DAQ infrastructure. In the new conditions, maintaining an adequate signal acceptance for electro-weak processes will pose unprecedented challenges, as the default solution to cope with the higher rates would be to increase thresholds on the transverse momenta of physics objects (leptons, jets, etc). Therefore the possibility to apply fast processing at the first trigger level in order to use tracking information as early as possible in the trigger selection represents a most appealing opportunity, which can preserve the ATLAS trigger's selectivity without reducing its flexibility. Studies to explore the feasibility o...

  17. Tracking in the trigger from the CDF experience to CMS upgrade

    CERN Document Server

    Palla, F

    2007-01-01

    Precise tracking information in the online selection of interesting physics events is extremely beneficial at hadron colliders. The CDF experiment at the Tevatron, has shown for the first time the impact of the tracking in triggers, allowing to achieve unprecedented precision in B-physics measurements. The CMS experiment at LHC will largely make use of tracking information at high level trigger, after the Level-1 acceptance. The increased luminosity of the Super-LHC collider will impose to CMS a drastic revision of the Level-1 trigger strategy, incorporating the tracker information at the first stage of the selection. After a review of the CDF and CMS approaches we will discuss several possible Level-1 tracker based concepts for the upgraded CMS detector at Super-LHC. One approach is based on associative memories, which has already been demonstrated in CDF. It makes use of binary readout in the front end electronics, followed by transfer of the full granularity data off detector using optical links to dedicat...

  18. Internal interface for RFC muon trigger electronics at CMS experiment

    CERN Document Server

    Pozniak, Krzysztof T; Pietrusinski, Michall

    2004-01-01

    The paper describes design and practical realization of an internal communication layer referred to as the Internal Interface (II). The system was realized for the RFC Muon Trigger of the CMS experiment. Fully automatic implementation of the communication layer is realized in the FPGA chips and in the control software. The methodology of implementation was presented in the description form of the interface structure from the sides of hardware and software. The examples of the communication layer realizations were given for the RFC Muon Trigger.

  19. High energy physics experiment triggers and the trustworthiness of software

    International Nuclear Information System (INIS)

    Nash, T.

    1991-10-01

    For all the time and frustration that high energy physicists expend interacting with computers, it is surprising that more attention is not paid to the critical role computers play in the science. With large, expensive colliding beam experiments now dependent on complex programs working at startup, questions of reliability -- the trustworthiness of software -- need to be addressed. This issue is most acute in triggers, used to select data to record -- and data to discard -- in the real time environment of an experiment. High level triggers are built on codes that now exceed 2 million source lines -- and for the first time experiments are truly dependent on them. This dependency will increase at the accelerators planned for the new millennium (SSC and LHC), where cost and other pressures will reduce tolerance for first run problems, and the high luminosities will make this on-line data selection essential. A sense of this incipient crisis motivated the unusual juxtaposition to topics in these lectures. 37 refs., 1 fig

  20. High-level trigger system for the LHC ALICE experiment

    CERN Document Server

    Bramm, R; Lien, J A; Lindenstruth, V; Loizides, C; Röhrich, D; Skaali, B; Steinbeck, T M; Stock, Reinhard; Ullaland, K; Vestbø, A S; Wiebalck, A

    2003-01-01

    The central detectors of the ALICE experiment at LHC will produce a data size of up to 75 MB/event at an event rate less than approximately equals 200 Hz resulting in a data rate of similar to 15 GB/s. Online processing of the data is necessary in order to select interesting (sub)events ("High Level Trigger"), or to compress data efficiently by modeling techniques. Processing this data requires a massive parallel computing system (High Level Trigger System). The system will consist of a farm of clustered SMP-nodes based on off- the-shelf PCs connected with a high bandwidth low latency network.

  1. Analysis and realization of a high resolution trigger for DM2 experiment

    International Nuclear Information System (INIS)

    Bertrand, J.L.

    1984-01-01

    The construction of a high resolution trigger has been carried out from its theoretical design to building. The term trigger is applied to an almost real-time system for track filtering in particle detection. Curved tracks are detected (with a magnetic field) and the detector is of a revolution symmetry type. The concept of a ''hybrid'' trigger with features in between those of the so-called ''CELLO R0'' and ''MARK II'' types is launched. It allows a positive versatility for the optimization of the different features. Besides a specific structure, some hardware and software implements have been designed for development and tests. The ''TRIGGER LENT'' is presently in operation in the DM2 experiment [fr

  2. The fluid dynamics of microjet explosions caused by extremely intense X-ray pulses

    Science.gov (United States)

    Stan, Claudiu; Laksmono, Hartawan; Sierra, Raymond; Milathianaki, Despina; Koglin, Jason; Messerschmidt, Marc; Williams, Garth; Demirci, Hasan; Botha, Sabine; Nass, Karol; Stone, Howard; Schlichting, Ilme; Shoeman, Robert; Boutet, Sebastien

    2014-11-01

    Femtosecond X-ray scattering experiments at free-electron laser facilities typically requires liquid jet delivery methods to bring samples to the region of interaction with X-rays. We have imaged optically the damage process in water microjets due to intense hard X-ray pulses at the Linac Coherent Light Source (LCLS), using time-resolved imaging techniques to record movies at rates up to half a billion frames per second. For pulse energies larger than a few percent of the maximum pulse energy available at LCLS, the X-rays deposit energies much larger than the latent heat of vaporization in water, and induce a phase explosion that opens a gap in the jet. The LCLS pulses last a few tens of femtoseconds, but the full evolution of the broken jet is orders of magnitude slower - typically in the microsecond range - due to complex fluid dynamics processes triggered by the phase explosion. Although the explosion results in a complex sequence of phenomena, they lead to an approximately self-similar flow of the liquid in the jet.

  3. The second level trigger of the L3 experiment. Pt. 1

    International Nuclear Information System (INIS)

    Bertsch, Y.; Blaising, J.J.; Bonnefon, H.; Chollet-Leflour, F.; Degre, A.; Dromby, G.; Lecoq, J.; Morand, R.; Moynot, M.; Perrot, G.; Riccadonna, X.

    1994-01-01

    The second level trigger of the L3 experiment performs online background rejection and reduces the first level trigger rate to a value fitting with the third level trigger processing capability. Designed around a set of three bit-slice XOP microprocessors, it can process up to 500 first level triggers per second without significant dead time in the data acquisition. At each LEP beam crossing (45/90 kHz) the complete trigger information (5 kbytes) is memorized in a 1.4 gigabyte bandwidth real dual port memory. The XOP processor builds up the trigger block in less than 400 μs, and signs the background or physics origin of the current event in less than 3 ms. These very high performances rely essentially on the association of parallelism with high speed ECL technology, provided by dedicated processors fully integrated in Fastbus. Emphasis is given here to the specific hardware developed, to its operation and technical aspects of its installation and integration. The system described here ensures the L3 data taking since the beginning of LEP in July 1989 and the online rejection since 1990. (orig.)

  4. Flexible trigger menu implementation on the Global Trigger for the CMS Level-1 trigger upgrade

    Science.gov (United States)

    MATSUSHITA, Takashi; CMS Collaboration

    2017-10-01

    The CMS experiment at the Large Hadron Collider (LHC) has continued to explore physics at the high-energy frontier in 2016. The integrated luminosity delivered by the LHC in 2016 was 41 fb-1 with a peak luminosity of 1.5 × 1034 cm-2s-1 and peak mean pile-up of about 50, all exceeding the initial estimations for 2016. The CMS experiment has upgraded its hardware-based Level-1 trigger system to maintain its performance for new physics searches and precision measurements at high luminosities. The Global Trigger is the final step of the CMS Level-1 trigger and implements a trigger menu, a set of selection requirements applied to the final list of objects from calorimeter and muon triggers, for reducing the 40 MHz collision rate to 100 kHz. The Global Trigger has been upgraded with state-of-the-art FPGA processors on Advanced Mezzanine Cards with optical links running at 10 GHz in a MicroTCA crate. The powerful processing resources of the upgraded system enable implementation of more algorithms at a time than previously possible, allowing CMS to be more flexible in how it handles the available trigger bandwidth. Algorithms for a trigger menu, including topological requirements on multi-objects, can be realised in the Global Trigger using the newly developed trigger menu specification grammar. Analysis-like trigger algorithms can be represented in an intuitive manner and the algorithms are translated to corresponding VHDL code blocks to build a firmware. The grammar can be extended in future as the needs arise. The experience of implementing trigger menus on the upgraded Global Trigger system will be presented.

  5. Upgrade of the Global Muon Trigger for the Compact Muon Solenoid experiment at CERN

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00356020; Widmann, Eberhard

    The Large Hadron Collider is a large particle accelerator at the CERN research laboratory, designed to provide particle physics experiments with collisions at unprecedented centre-of-mass energies. For its second running period both the number of colliding particles and their collision energy were increased. To cope with these more challenging conditions and maintain the excellent performance seen during the first running period, the Level-1 trigger of the Compact Muon Solenoid experiment --- a sophisticated electronics system designed to filter events in real-time --- was upgraded. This upgrade consisted of the complete replacement of the trigger electronics and a full redesign of the system's architecture. While the calorimeter trigger path now follows a time-multiplexed processing model where the entire trigger data for a collision are received by a single processing board, the muon trigger path was split into regional track finding systems where each newly introduced track finder receives data from all th...

  6. Smart Trigger Pre-Processor Custom Electronics for the PHENIX Experiment

    International Nuclear Information System (INIS)

    Nagle, James L.

    2003-01-01

    OAK-B135 The document provides a final technical report on activities and accomplishments of the experimental relativistic heavy ion physics group at the University of Colorado at Boulder as supported by the Outstanding Junior Investigator Program, Division of Nuclear Physics at the Department of Energy. All of the goals of the grant proposal were achieved during this last year of the Outstanding Junior Investigator funding period. The development of a Smart Trigger Pre-Processor module for fast trigger primitive calculations in the PHENIX experiment has been completed. We finalized the board design, constructed and tested two prototype modules, and with additional funding from the PHENIX project, we fabricated a full set of 15 modules for the Muon Tracking system. During Run-4 at RHIC:, we have begun the process of integrating these modules into the PHENIX data acquisition system, Additionally, we put a large Effort into developing new trigger and fast-track analysis methods for J j J data filtering and reconstruction. These algorithms make use of the trigger primitivE∼s generated via the new electronics

  7. The evolution of the Trigger and Data Acquisition System in the ATLAS experiment

    CERN Document Server

    Krasznahorkay, A; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment, aimed at recording the results of LHC proton-proton collisions, is upgrading its Trigger and Data Acquisition (TDAQ) system during the current LHC first long shutdown. The purpose of the upgrade is to add robustness and flexibility to the selection and the conveyance of the physics data, simplify the maintenance of the infrastructure, exploit new technologies and, overall, make ATLAS data-taking capable of dealing with increasing event rates. The TDAQ system used to date is organised in a three-level selection scheme, including a hardware-based first-level trigger and second- and third-level triggers implemented as separate software systems distributed on separate, commodity hardware nodes. While this architecture was successfully operated well beyond the original design goals, the accumulated experience stimulated interest to explore possible evolutions. We will also be upgrading the hardware of the TDAQ system by introducing new elements to it. For the high-level trigger, the current p...

  8. Pigeonholing pyroclasts: Insights from the 19 March 2008 explosive eruption of Kīlauea volcano

    Science.gov (United States)

    Houghton, Bruce F.; Swanson, D.A.; Carey, R.J.; Rausch, J.; Sutton, A.J.

    2011-01-01

    We think, conventionally, of volcanic explosive eruptions as being triggered in one of two ways: by release and expansion of volatiles dissolved in the ejected magma (magmatic explosions) or by transfer of heat from magma into an external source of water (phreatic or phreatomagmatic explosions). We document here an event where neither magma nor an external water source was involved in explosive activity at K??lauea. Instead, the eruption was powered by the expansion of decoupled magmatic volatiles released from deeper magma, which was not ejected by the eruption, and the trigger was a collapse of near-surface wall rocks that then momentarily blocked that volatile flux. Mapping of the advected fall deposit a day after this eruption has highlighted the difficulty of constraining deposit edges from unobserved or prehistoric eruptions of all magnitudes. Our results suggest that the dispersal area of advected fall deposits could be miscalculated by up to 30% of the total, raising issues for accurate hazard zoning and assessment. Eruptions of this type challenge existing classification schemes for pyroclastic deposits and explosive eruptions and, in the past, have probably been interpreted as phreatic explosions, where the eruptive mechanism has been assumed to involve flashing of groundwater to steam. ?? 2011 Geological Society of America.

  9. Trigger Algorithms for Alignment and Calibration at the CMS Experiment

    CERN Document Server

    Fernandez Perez Tomei, Thiago Rafael

    2017-01-01

    The data needs of the Alignment and Calibration group at the CMS experiment are reasonably different from those of the physics studies groups. Data are taken at CMS through the online event selection system, which is implemented in two steps. The Level-1 Trigger is implemented on custom-made electronics and dedicated to analyse the detector information at a coarse-grained scale, while the High Level Trigger (HLT) is implemented as a series of software algorithms, running in a computing farm, that have access to the full detector information. In this paper we describe the set of trigger algorithms that is deployed to address the needs of the Alignment and Calibration group, how it fits in the general infrastructure of the HLT, and how it feeds the Prompt Calibration Loop (PCL), allowing for a fast turnaround for the alignment and calibration constants.

  10. Fire and explosion hazards to flora and fauna from explosives.

    Science.gov (United States)

    Merrifield, R

    2000-06-30

    Deliberate or accidental initiation of explosives can produce a range of potentially damaging fire and explosion effects. Quantification of the consequences of such effects upon the surroundings, particularly on people and structures, has always been of paramount importance. Information on the effects on flora and fauna, however, is limited, with probably the weakest area lying with fragmentation of buildings and their effects on different small mammals. Information has been used here to gain an appreciation of the likely magnitude of the potential fire and explosion effects on flora and fauna. This is based on a number of broad assumptions and a variety of data sources including World War II bomb damage, experiments performed with animals 30-40 years ago, and more recent field trials on building break-up under explosive loading.

  11. Recent experience and future evolution of the CMS High Level Trigger System

    CERN Document Server

    Bauer, Gerry; Branson, James; Bukowiec, Sebastian Czeslaw; Chaze, Olivier; Cittolin, Sergio; Coarasa Perez, Jose Antonio; Deldicque, Christian; Dobson, Marc; Dupont, Aymeric; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gomez-Reino Garrido, Robert; Hartl, Christian; Holzner, Andre Georg; Masetti, Lorenzo; Meijers, Franciscus; Meschi, Emilio; Mommsen, Remigius; Nunez Barranco Fernandez, Carlos; O'Dell, Vivian; Orsini, Luciano; Paus, Christoph Maria Ernst; Petrucci, Andrea; Pieri, Marco; Polese, Giovanni; Racz, Attila; Raginel, Olivier; Sakulin, Hannes; Sani, Matteo; Schwick, Christoph; Spataru, Andrei Cristian; Stoeckli, Fabian; Sumorok, Konstanty

    2012-01-01

    The CMS experiment at the LHC uses a two-stage trigger system, with events flowing from the first level trigger at a rate of 100 kHz. These events are read out by the Data Acquisition system (DAQ), assembled in memory in a farm of computers, and finally fed into the high-level trigger (HLT) software running on the farm. The HLT software selects interesting events for offline storage and analysis at a rate of a few hundred Hz. The HLT algorithms consist of sequences of offline-style reconstruction and filtering modules, executed on a farm of 0(10000) CPU cores built from commodity hardware. Experience from the 2010-2011 collider run is detailed, as well as the current architecture of the CMS HLT, and its integration with the CMS reconstruction framework and CMS DAQ. The short- and medium-term evolution of the HLT software infrastructure is discussed, with future improvements aimed at supporting extensions of the HLT computing power, and addressing remaining performance and maintenance issues.

  12. Excavation research with chemical explosives

    Energy Technology Data Exchange (ETDEWEB)

    Vandenberg, William E; Day, Walter C [U.S. Army Engineer Nuclear Cratering Group, Lawrence Radiation Laboratory, Livermore, CA (United States)

    1970-05-01

    The US Army Engineer Nuclear Cratering Group (NCG) is located at the Lawrence Radiation Laboratory in Livermore, California. NCG was established in 1962 and assigned responsibility for technical program direction of the Corps of Engineers Nuclear Excavation Research Program. The major part of the experimental program has been the execution of chemical explosive excavation experiments. In the past these experiments were preliminary to planned nuclear excavation experiments. The experience gained and technology developed in accomplishing these experiments has led to an expansion of NCG's research mission. The overall research and development mission now includes the development of chemical explosive excavation technology to enable the Corps of Engineers to more economically accomplish Civil Works Construction projects of intermediate size. The current and future chemical explosive excavation experiments conducted by NCG will be planned so as to provide data that can be used in the development of both chemical and nuclear excavation technology. In addition, whenever possible, the experiments will be conducted at the specific sites of authorized Civil Works Construction Projects and will be designed to provide a useful portion of the engineering structures planned in that project. Currently, the emphasis in the chemical explosive excavation program is on the development of design techniques for producing specific crater geometries in a variety of media. Preliminary results of two such experiments are described in this paper; Project Pre-GONDOLA III, Phase III, Reservoir Connection Experiment; and a Safety Calibration Series for Project TUGBOAT, a small boat harbor excavation experiment.

  13. Excavation research with chemical explosives

    International Nuclear Information System (INIS)

    Vandenberg, William E.; Day, Walter C.

    1970-01-01

    The US Army Engineer Nuclear Cratering Group (NCG) is located at the Lawrence Radiation Laboratory in Livermore, California. NCG was established in 1962 and assigned responsibility for technical program direction of the Corps of Engineers Nuclear Excavation Research Program. The major part of the experimental program has been the execution of chemical explosive excavation experiments. In the past these experiments were preliminary to planned nuclear excavation experiments. The experience gained and technology developed in accomplishing these experiments has led to an expansion of NCG's research mission. The overall research and development mission now includes the development of chemical explosive excavation technology to enable the Corps of Engineers to more economically accomplish Civil Works Construction projects of intermediate size. The current and future chemical explosive excavation experiments conducted by NCG will be planned so as to provide data that can be used in the development of both chemical and nuclear excavation technology. In addition, whenever possible, the experiments will be conducted at the specific sites of authorized Civil Works Construction Projects and will be designed to provide a useful portion of the engineering structures planned in that project. Currently, the emphasis in the chemical explosive excavation program is on the development of design techniques for producing specific crater geometries in a variety of media. Preliminary results of two such experiments are described in this paper; Project Pre-GONDOLA III, Phase III, Reservoir Connection Experiment; and a Safety Calibration Series for Project TUGBOAT, a small boat harbor excavation experiment

  14. Evolution of the Trigger and Data Acquisition System in the ATLAS experiment

    CERN Document Server

    Kama, Sami; The ATLAS collaboration

    2012-01-01

    The ATLAS detector is designed to observe proton-proton collisions delivered by the LHC accelerator. The ATLAS Trigger and Data Acquisition (TDAQ) system is responsible for the selection and the conveyance of physics data, reducing the rate of stored events from the initial 40 MHz LHC frequency to several hundreds Hz. The TDAQ system is organised in a three-level selection scheme, including a hardware-based first-level trigger and second- and third-level triggers implemented as software systems distributed on commodity hardware nodes. The second-level trigger operates over limited regions of the detector, the so-called Regions-of-Interest (RoI). The last selection step deals instead with complete events. In the current design, the second and third trigger levels are separate systems. While this architecture was successfully operated well beyond the original design goals, the accumulated experience stimulated interest to explore possible evolutions. One attractive direction is to merge the second and third tri...

  15. Evolution of the Trigger and Data Acquisition System in the ATLAS experiment

    CERN Document Server

    Kama, S; The ATLAS collaboration

    2012-01-01

    The ATLAS detector is designed to observe proton-proton collisions delivered by the LHC accelerator. The ATLAS Trigger and Data Acquisition (TDAQ) system is responsible for the selection and the conveyance of physics data, reducing the rate of stored events from the initial $40\\MHz$ LHC frequency to several hundreds Hz. The TDAQ system is organized in a three-level selection scheme, including a hardware-based first-level trigger and second- and third-level triggers implemented as software systems distributed on commodity hardware nodes. The second-level trigger operates over limited regions of the detector, the so-called Regions-of-Interest (RoI). The last selection step deals instead with complete events. In the current design, the second and third trigger levels are separate systems. While this architecture was successfully operated well beyond the original design goals, the accumulated experience stimulated interest to explore possible evolutions. One attractive direction is to merge the second and third t...

  16. Safety assessment of in-vessel vapor explosion loads in next generation reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bang, Kwang Hyun; Cho, Jong Rae; Choi, Byung Uk; Kim, Ki Yong; Lee, Kyung Jung [Korea Maritime University, Busan (Korea); Park, Ik Kyu [Seoul National University, Seoul (Korea)

    1998-12-01

    A safety assessment of the reactor vessel lower head integrity under in-vessel vapor explosion loads has been performed. The premixing and explosion calculations were performed using TRACER-II code. Using the calculated explosion pressures imposed on the lower head inner wall, strain calculations were performed using ANSYS code. The explosion analyses show that the explosion impulses are not altered significantly by the uncertain parameters of triggering location and time, fuel and vapor volume fractions in uniform premixture bounding calculations within the conservative ranges. Strain analyses using the calculated pressure loads on the lower head inner wall show that the vapor explosion-induced lower head failure is physically unreasonable. The static analysis using the conservative explosion-end pressure of 7,246 psia shows that the maximum equivalent strain is 4.3% at the bottom of lower head, which is less than the allowable threshold value of 11%. (author). 24 refs., 40 figs., 3 tabs.

  17. arXiv Level Zero Trigger Processor for the NA62 experiment

    CERN Document Server

    INSPIRE-00584493; Chiozzi, Stefano

    2018-05-02

    The NA62 experiment is designed to measure the ultra-rare decay K+ arrow π+ ν  branching ratio with a precision of ~ 10% at the CERN Super Proton Synchrotron (SPS). The trigger system of NA62 consists in three different levels designed to select events of physics interest in a high beam rate environment. The L0 Trigger Processor (L0TP) is the lowest level system of the trigger chain. It is hardware implemented using programmable logic. The architecture of the NA62 L0TP system is a new approach compared to existing systems used in high-energy physics experiments. It is fully digital, based on a standard gigabit Ethernet communication between detectors and the L0TP Board. The L0TP Board is a commercial development board, mounting a programmable logic device (FPGA). The primitives generated by sub-detectors are sent asynchronously using the UDP protocol to the L0TP during the entire beam spill period. The L0TP realigns in time the primitives coming from seven different sources and performs a data selectio...

  18. Experience with the custom-developed ATLAS Offline Trigger Monitoring Framework and Reprocessing Infrastructure

    CERN Document Server

    Bartsch, V

    2012-01-01

    After about two years of data taking with the ATLAS detector manifold experience with the custom-developed trigger monitoring and reprocessing infrastructure could be collected. The trigger monitoring can be roughly divided into online and offline monitoring. The online monitoring calculates and displays all rates at every level of the trigger and evaluates up to 3000 data quality histograms. The physics analysis relevant data quality information is being checked and recorded automatically. The offline trigger monitoring provides information depending of the physics motivated different trigger streams after a run has finished. Experts are checking the information being guided by the assessment of algorithms checking the current histograms with a reference. The experts are recording their assessment in a so-called data quality defects which are used to select data for physics analysis. In the first half of 2011 about three percent of all data had an intolerable defect resulting from the ATLAS trigger system. T...

  19. A Level 1 Tracking Trigger for the CMS Experiment at the LHC Phase 2 Luminosity Upgrade

    CERN Document Server

    Pozzobon, Nicola

    2011-01-01

    The second decade of Large Hadron Collider operations, from about 2020 onwards, envisages a remarkable increase in collider instantaneous luminosity, one order of magnitude above the project one. This luminosity increase presents several challenges to the LHC experiments. The present tracker of the Compact Muon Solenoid experiment must be replaced with a system providing excellent tracking quality at higher luminosities, as well as Tracking Trigger inputs to the existing “Level 0” CMS trigger system at the full 40 MHz bunch-crossing rate. The minimal requirements for a Tracking Trigger would be the capability to confirm the presence of high-pT tracks associated with Calorimeter and/or Muon Level 0 triggers. The ability to provide eective isolation criteria may also be required, and would in any case substantially improve the Trigger performance. Maintaining the data rates generated by Tracking Trigger inputs within a manageable bandwidth requires sensor modules able to locally sparsify the data. Measuring...

  20. Upon the reconstruction of accidents triggered by tire explosion. Analytical model and case study

    Science.gov (United States)

    Gaiginschi, L.; Agape, I.; Talif, S.

    2017-10-01

    Accident Reconstruction is important in the general context of increasing road traffic safety. In the casuistry of traffic accidents, those caused by tire explosions are critical under the severity of consequences, because they are usually happening at high speeds. Consequently, the knowledge of the running speed of the vehicle involved at the time of the tire explosion is essential to elucidate the circumstances of the accident. The paper presents an analytical model for the kinematics of a vehicle which, after the explosion of one of its tires, begins to skid, overturns and rolls. The model consists of two concurent approaches built as applications of the momentum conservation and energy conservation principles, and allows determination of the initial speed of the vehicle involved, by running backwards the sequences of the road event. The authors also aimed to both validate the two distinct analytical approaches by calibrating the calculation algorithms on a case study

  1. Scanning the melting curve of tungsten by a submicrosecond wire-explosion experiment

    International Nuclear Information System (INIS)

    Kloss, A.; Hess, H.; Schneidenbach, H.; Grossjohann, R.

    1999-01-01

    Measurements of temperature and density during a wire-explosion experiment at atmospheric pressure are described. The measurements encompass a parameter range from the solid to near the critical point. The influence of a polytetra-fluoroethylene coating of the wire, necessary to prevent surface discharges, on the temperature and density measurements is investigated. The melting curve of tungsten up to 4,000 K is determined

  2. Muon triggers in search for charm and beauty in hybrid emulsion experiments

    International Nuclear Information System (INIS)

    Romano, G.

    1984-01-01

    This chapter presents calculations which are mainly based on the results obtained with the dump used in the experiment NA19 at CERN. The easiest way to trigger on muons (even on-line) is to place a dump behind the target. Background triggers are due to muons produced in the primary interaction (mainly Drell-Yan) or resulting from short lived particles (charm decays are a source of background in a search for beauty) or from long lived particle decays. Among the possible on-line and/or off-line triggers, those based on the presence of one or more muons seem particularly promising due to the sizeable branching ratio of the new flavors into leptons and to the good selection power against background. Charmed and beauty particles produce, on average, muons with much higher transverse momenta than background, and thus a trigger requiring a low number of muons (1 or 2) could be equally or even more selective than a multimuon trigger, while keeping a larger fraction of the signal

  3. Development of a novel scintillation-trigger detector for the MTV experiment using aluminum-metallized film tapes

    Science.gov (United States)

    Tanaka, S.; Ozaki, S.; Sakamoto, Y.; Tanuma, R.; Yoshida, T.; Murata, J.

    2014-07-01

    A new type of a trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, which uses aluminum-metallized film tape for wrapping to achieve the required assembling precision of ±0.5 mm. The MTV experiment uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The barrel-type trigger counter is placed inside the CDC to generate a trigger signal using 1 mm thick, 300 mm long thin plastic scintillation counters. Detection efficiency and light attenuation compared with conventional wrapping materials are studied.

  4. Development of a novel scintillation-trigger detector for the MTV experiment using aluminum-metallized film tapes

    International Nuclear Information System (INIS)

    Tanaka, S.; Ozaki, S.; Sakamoto, Y.; Tanuma, R.; Yoshida, T.; Murata, J.

    2014-01-01

    A new type of a trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, which uses aluminum-metallized film tape for wrapping to achieve the required assembling precision of ±0.5 mm. The MTV experiment uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The barrel-type trigger counter is placed inside the CDC to generate a trigger signal using 1 mm thick, 300 mm long thin plastic scintillation counters. Detection efficiency and light attenuation compared with conventional wrapping materials are studied

  5. Industrial accidents triggered by lightning.

    Science.gov (United States)

    Renni, Elisabetta; Krausmann, Elisabeth; Cozzani, Valerio

    2010-12-15

    Natural disasters can cause major accidents in chemical facilities where they can lead to the release of hazardous materials which in turn can result in fires, explosions or toxic dispersion. Lightning strikes are the most frequent cause of major accidents triggered by natural events. In order to contribute towards the development of a quantitative approach for assessing lightning risk at industrial facilities, lightning-triggered accident case histories were retrieved from the major industrial accident databases and analysed to extract information on types of vulnerable equipment, failure dynamics and damage states, as well as on the final consequences of the event. The most vulnerable category of equipment is storage tanks. Lightning damage is incurred by immediate ignition, electrical and electronic systems failure or structural damage with subsequent release. Toxic releases and tank fires tend to be the most common scenarios associated with lightning strikes. Oil, diesel and gasoline are the substances most frequently released during lightning-triggered Natech accidents. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. Explosion of lithium-thionyl-chloride battery due to presence of lithium nitride

    DEFF Research Database (Denmark)

    Hennesø, E.; Hedlund, Frank Huess

    2015-01-01

    An explosion of a lithium–thionyl-chloride (Li–SOCl2) battery during production (assembly) leads to serious worker injury. The accident cell batch had been in a dry-air intermediate storage room for months before being readied with thionyl chloride electrolyte. Metallic lithium can react...... with atmospheric nitrogen to produce lithium nitride. Nodules of lithium nitride were found to be present on the lithium foil in other cells of the accident batch. The investigation attributed the explosion to the formation of porous lithium nitride during intermediate storage and a violent exothermal...... decomposition with the SOCl2–LiAlCl4 electrolyte triggered by welding. The literature is silent on hazards of explosion of Li–SOCl2 cells associated with the presence of lithium nitride. The silence is intriguing. Possible causes may be that such explosions are very rare, that explosions go unpublished...

  7. Experimental study on vapor explosion induced by pressure pulse in coarse mixing of hot molten metal and water

    International Nuclear Information System (INIS)

    Inoue, A.; Tobita, Y.; Aritomi, M.; Takahashi, M.; Matsuzaki, M.

    2004-01-01

    An experimental study was done to investigate characteristics of metal-water interaction, when a mount of hot liquid metal is injected into the water. The test section is a vertical shock tube of 60mm in inner diameter and 1200mm in length. A special injector which is designed to inject hot metal of controlled volume and flow rate is attached at the top of the tube. When the hot metal is injected in the water and comes down at a position of the test vessel, a trigger pressure pulse is generated at the bottom of the test tube. Local transient pressures along the tube are measured by piezo pressure transducers. The following items were investigated in the experiment; 1) The criteria to cause a vapor explosion, 2) Transient behaviors and propagation characteristics of pressure wave in the mixing region. 3) Effects of triggering pulse, injection temperature and mass of hot molten metal on the peak pressure. The probability of the vapor explosion jumped when the interface temperature at the molten metal-water direct contact is higher than the homogeneous nucleation temperature of water and the triggering pulse becomes larger than 0.9MPa. Two types of the pressure propagation modes are observed, one is the detonative mode with a sharp rise and other is usual pressure mode with a mild rise. (author)

  8. Flexible trigger menu implementation on the Global Trigger for the CMS Level-1 trigger upgrade

    CERN Document Server

    Matsushita, Takashi

    2017-01-01

    The CMS experiment at the Large Hadron Collider (LHC) has continued to explore physics at the high-energy frontier in 2016. The integrated luminosity delivered by the LHC in 2016 was 41~fb$^{-1}$ with a peak luminosity of 1.5 $\\times$ 10$^{34}$ cm$^{-2}$s$^{-1}$ and peak mean pile-up of about 50, all exceeding the initial estimations for 2016. The CMS experiment has upgraded its hardware-based Level-1 trigger system to maintain its performance for new physics searches and precision measurements at high luminosities. The Global Trigger is the final step of the CMS \\mbox{Level-1} trigger and implements a trigger menu, a set of selection requirements applied to the final list of objects from calorimeter and muon triggers, for reducing the 40 MHz collision rate to 100 kHz. The Global Trigger has been upgraded with state-of-the-art FPGA processors on Advanced Mezzanine Cards with optical links running at 10 GHz in a MicroTCA crate. The powerful processing resources of the upgraded system enable implemen...

  9. The behavior limestone under explosive load

    Science.gov (United States)

    Orlov, M. Yu; Orlova, Yu N.; Bogomolov, G. N.

    2016-11-01

    Limestone behavior under explosive loading was investigated. The behavior of the limestone by the action of the three types of explosives, including granular, ammonite and emulsion explosives was studied in detail. The shape and diameter of the explosion craters were obtained. The observed fragments after the blast have been classified as large, medium and small fragments. Three full-scale experiments were carried out. The research results can be used as a qualitative test for the approbation of numerical methods.

  10. Muon trigger, flavour tagging and physics performance of the LHCb experiment; Trigger a muons, etiquetage de la saveur et performances physiques de l'experience LHCb

    Energy Technology Data Exchange (ETDEWEB)

    Leroy, O

    2007-10-15

    The LHCb experiment that is being settled in CERN is dedicated to the study of CP violation and rare decays in the field of beauty hadrons. The phenomenological background necessary to an adequate understanding of the physics of flavor is presented in the first chapter, it is shown how the flavordynamics can open the way to new physics. The second chapter is dedicated to a brief presentation of the LHCb detector. Two aspects of the design of the muon trigger are more detailed: the radiation resistance of the opto-electronic transmitters and the simulated performances of the trigger. The third chapter reviews the tasks linked to the tagging of the savors of B mesons which will be an important step in all the experiments made at LHCb. The recent progress in heavy savor physics as well as the expected contribution of LHCb in this field are presented in the fourth chapter, especially the search for new physics in penguin diagrams b {yields} s.

  11. An FPGA-based trigger for the phase II of the MEG experiment

    Energy Technology Data Exchange (ETDEWEB)

    Baldini, A. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Bemporad, C.; Cei, F. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Dipartimento di Fisica, Università di Pisa (Italy); Galli, L.; Grassi, M.; Morsani, F. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Nicolò, D., E-mail: donato.nicolo@pi.infn.it [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Dipartimento di Fisica, Università di Pisa (Italy); Ritt, S. [Paul Scherrer Institut, Villigen AG (Switzerland); Venturini, M. [Istituto Nazionale di Fisica Nucleare, Pisa (Italy); Scuola Normale Superiore, Pisa (Italy)

    2016-07-11

    For the phase II of MEG, we are going to develop a combined trigger and DAQ system. Here we focus on the former side, which operates an on-line reconstruction of detector signals and event selection within 450 μs from event occurrence. Trigger concentrator boards (TCB) are under development to gather data from different crates, each connected to a set of detector channels, to accomplish higher-level algorithms to issue a trigger in the case of a candidate signal event. We describe the major features of the new system, in comparison with phase I, as well as its performances in terms of selection efficiency and background rejection. - Highlights: • A new, two-level trigger scheme for the phase-II of the MEG experiment is presented. • Improvements with respect to phase-I are underlined. • The role of detector upgrades and the use of a new generation of FPGA as well are emphasized.

  12. Modelling of vapour explosion in stratified geometrie

    International Nuclear Information System (INIS)

    Picchi, St.

    1999-01-01

    When a hot liquid comes into contact with a colder volatile liquid, one can obtain in some conditions an explosive vaporization, told vapour explosion, whose consequences can be important on neighbouring structures. This explosion needs the intimate mixing and the fine fragmentation between the two liquids. In a stratified vapour explosion, these two liquids are initially superposed and separated by a vapor film. A triggering of the explosion can induce a propagation of this along the film. A study of experimental results and existent models has allowed to retain the following main points: - the explosion propagation is due to a pressure wave propagating through the medium; - the mixing is due to the development of Kelvin-Helmholtz instabilities induced by the shear velocity between the two liquids behind the pressure wave. The presence of the vapour in the volatile liquid explains experimental propagation velocity and the velocity difference between the two fluids at the pressure wave crossing. A first model has been proposed by Brayer in 1994 in order to describe the fragmentation and the mixing of the two fluids. Results of the author do not show explosion propagation. We have therefore built a new mixing-fragmentation model based on the atomization phenomenon that develops itself during the pressure wave crossing. We have also taken into account the transient aspect of the heat transfer between fuel drops and the volatile liquid, and elaborated a model of transient heat transfer. These two models have been introduced in a multi-components, thermal, hydraulic code, MC3D. Results of calculation show a qualitative and quantitative agreement with experimental results and confirm basic options of the model. (author)

  13. Korea-France collaboration for the preparation of joint proposal for the OECD project on the steam explosion experiments

    International Nuclear Information System (INIS)

    Song, Jin Ho; Kim, H. D.; Kim, J. H.; Hong, S. W.; Min, B. T.; Park, I. K.

    2004-07-01

    There are some difficulties in design of the new reactor containment and in establishment of accident management strategy for operating reactors, since there exist a few phenomenological uncertainties in a steam explosion which occurs at the time of the interaction between the corium melt and coolant. So, the OECD/NEA recommended a research which could finalize the unsolved issues in a steam explosion and then an international collaborative research involving US, France, Germany, Japan and Korea, so called the SERENA (Steam Explosion Resolution for Nuclear Application) started in 2002. The first phase of this collaborative research is an analytical research and the second phase is planned to be an experimental research which will start in 2005. Korea and France agreed that both countries would cooperate in the second phase of the SERENA program at the specialist meetings and collaborative committee between the KAERI (Korea Atomic Energy Research Institute) and the CEA (Commissariat a l'Energie Atomique). This preparation research is performed in order to carry out the agreement between Korea and France and propose a collaborative research to the SERENA second phase. The contents of this research is to perform a collaborative research between Korea and France to propose an international collaborative research on a steam explosion research to the OECD. The scope includes the technical exchange for the construction of an international collaborative research and the preparation of a proposal for an international collaborative research for the OECD steam explosion program. Two steam explosion specialist meetings were held to discuss the technical issues in the TROI and KROTOS experiments. A formal accession and amendment agreement for the collaboration was contracted between the KAERI/KINS/CEA/IRSN. And the KAERI's capability to perform an international collaborative research was proved by advertizing the TROI test results to the USNRC/CSARP and JAERI. Also, the English

  14. Radiographic x-ray flux monitoring during explosive experiments by copper activation

    International Nuclear Information System (INIS)

    Goosman, D.R.

    1986-01-01

    During radiographic experiments involving explosives, it is valuable to have a method of monitoring the x-ray flux ratio between the dynamic experiment and an x-ray taken of a static object for comparison. The standard method of monitoring with thermoluminescent detectors suffers the disadvantages of being sensitive to temperature, shock, uv radiation, cleanliness and saturation. A flux monitoring system is being studied which is not subject to any of the above disadvantages and is based upon the 63Cu(photon,n)62Cu reaction. The 62Cu has a 10 min half life and is counted by a nuclear pulse counting system within a few minutes of an explosive test. 170 microcoulomb of 19.3 MeV electrons hitting 1.18 mm of Ta produces x-rays which illuminate a 0.8mm thick by 1.6 cm diameter Cu disk placed 46 cm from the Ta. The activated Cu is placed in a counting system with a window between 400 to 600 keV and produces about 42,500 counts in the first 100 sec. counting period. Less than 0.2% of the initial activity is due to other reactions. Photo-induced neutrons in Be parts of the system are shown to produce a negligible effect in the Cu. The main disadvantage of the Cu activation is its sensitivity to electron energy. Monte-Carlo calculations of the excitation function for our accelerator are shown, along with excitation functions for three other configurations

  15. Radiographic x-ray flux monitoring during explosive experiments by copper activation

    International Nuclear Information System (INIS)

    Goosman, D.R.

    1986-01-01

    During radiographic experiments involving explosives, it is valuable to have a method of monitoring the X-ray flux ratio between the dynamic experiment and an X-ray taken of a static object for comparison. The standard method of monitoring with thermoluminescent detectors suffers the disadvantages of being sensitive to temperature, shock, UV radiation, cleanliness and saturation. We are studying an additional flux monitoring system which is not subject to any of the above disadvantages and is based upon the 63 Cu(photon,n) 62 Cu reaction. The 62 Cu has a 10 min. half-life and is counted by a nuclear pulse-counting system within a few minutes of an explosive test. 170 MicroCoulomb of 19.3 MeV electrons hitting 1.18mm of Ta produces X-rays which illuminate a 0.8mm thick by 1.6cm diameter Cu disk placed 46cm from the Ta. The activated Cu is placed in a counting system with a window between 400-600 keV and produces about 42500 counts in the first 100 sec counting period. Less than 0.2% of the initial activity is due to other reactions. Photo-induced neutrons in Be parts of the system are shown to produce a negligible effect in the Cu. The main disadvantage of the Cu activation is its sensitivity to electron energy. Monte-Carlo calculations of the excitation function for our accelerator are shown, along with excitation functions for three other configurations

  16. Thermal decomposition and reaction of confined explosives

    International Nuclear Information System (INIS)

    Catalano, E.; McGuire, R.; Lee, E.; Wrenn, E.; Ornellas, D.; Walton, J.

    1976-01-01

    Some new experiments designed to accurately determine the time interval required to produce a reactive event in confined explosives subjected to temperatures which will cause decomposition are described. Geometry and boundary conditions were both well defined so that these experiments on the rapid thermal decomposition of HE are amenable to predictive modelling. Experiments have been carried out on TNT, TATB and on two plastic-bonded HMX-based high explosives, LX-04 and LX-10. When the results of these experiments are plotted as the logarithm of the time to explosion versus 1/T K (Arrhenius plot), the curves produced are remarkably linear. This is in contradiction to the results obtained by an iterative solution of the Laplace equation for a system with a first order rate heat source. Such calculations produce plots which display considerable curvature. The experiments have also shown that the time to explosion is strongly influenced by the void volume in the containment vessel. Results of the experiments with calculations based on the heat flow equations coupled with first-order models of chemical decomposition are compared. The comparisons demonstrate the need for a more realistic reaction model

  17. Seismic coupling of nuclear explosions

    International Nuclear Information System (INIS)

    Larson, D.B.

    1989-01-01

    The new Giant Magnet Experimental Facility employing digital recording of explosion induced motion has been constructed and successfully tested. Particle velocity and piezoresistance gage responses can be measured simultaneously thus providing the capability for determining the multi-component stress-strain history in the test material. This capability provides the information necessary for validation of computer models used in simulation of nuclear underground testing, chemical explosion testing, dynamic structural response, earth penetration response, and etc. This report discusses fully coupled and cavity decoupled explosions of the same energy (0.622 kJ) were carried out as experiments to study wave propagation and attenuation in polymethylmethacrylate (PMMA). These experiments produced particle velocity time histories at strains from 2 x 10 -3 to as low as 5.8 x 10 -6 . Other experiments in PMMA, reported recently by Stout and Larson 8 provide additional particle velocity data to strains of 10 -1

  18. A 40 MHz Trigger-free Readout Architecture for the LHCb Experiment

    CERN Document Server

    Alessio, F; Guzik, Z

    2009-01-01

    The LHCb experiment is considering an upgrade towards a trigger-free 40 MHz complete event readout in which the event selection will only be performed on a processing farm by a high-level software trigger with access to all detector information. This would allow operating LHCb at ten times the current design luminosity and improving the trigger efficiencies in order to collect more than ten times the statistics foreseen in the first phase. In this paper we present the new architecture in consideration. In particular, we investigate new technologies and protocols for the distribution of timing and synchronous control commands, and rate control. This so called Timing and Fast Control (TFC) system will also perform a central destination control for the events and manage the load balancing of the readout network and the event filter farm. The TFC system will be centred on a single FPGA-based multimaster allowing concurrent stand-alone operation of any subset of sub-detectors. The TFC distribution network under in...

  19. First Operational Experience with the LHC Beam Dump Trigger Synchronisation Unit

    CERN Document Server

    Antoine, A; Magnin, N; Juteau, P; Voumard, N

    2011-01-01

    Two LHC Beam Dumping Systems (LBDS) remove the counter-rotating beams safely from the collider during setting up of the accelerator, at the end of a physics run and in case of emergencies. Dump requests can come from 3 different sources: the machine protection system in emergency cases, the machine timing system for scheduled dumps or the LBDS itself in case of internal failures. These dump requests are synchronized with the 3 μs beam abort gap in a fail-safe redundant Trigger Synchronization Unit (TSU) based on a Digital Phase Locked Loop (DPLL), locked onto the LHC beam revolution frequency with a maximum phase error of 40 ns. The synchronized trigger pulses coming out of the TSU are then distributed to the high voltage generators of the beam dump kickers through a redundant fault-tolerant trigger distribution system. This paper describes the operational experience gained with the TSU since its commissioning with beam in 2009, and highlights the improvements, which have been implemented f...

  20. Breeding system and bumblebee drone pollination of an explosively pollen-releasing plant, Meliosma tenuis (Sabiaceae).

    Science.gov (United States)

    Wong Sato, A A; Kato, M

    2018-05-01

    Explosive pollen release is a mechanism used by some angiosperms that serves to attach pollen to a pollinator's body. It is usually adopted by species with zygomorphic tubular flowers and pollinated by birds and bees. The tree genus Meliosma (Sabiaceae, Proteales) has unique disc-like flowers that are externally actinomorphic, but internally zygomorphic, and release pollen explosively. To elucidate the adaptive significance of explosive pollen release, we observed flowering behaviour, the breeding system and pollinator visits to flowers of the Japanese species Meliosma tenuis in a temperate forest. Flowers bloomed in June and were nectariferous and protandrous. Explosive pollen release was triggered by slight tactile stimuli to anther filaments or staminodes in male-stage flowers. Because pollen cannot come into contact with the pistils enclosed by staminodes, M. tenuis is functionally protandrous. Artificial pollination treatments revealed that M. tenuis is allogamous. The dominant flower visitors were nectar-seeking drones of the bumblebee species Bombus ardens (Apidae). The drones' behaviour, pollen attachment on their bodies and fruit set of visit-restricted flowers suggest that they are the only agent triggering the explosive pollen release mechanism, and are the main pollinator of M. tenuis. The finding that bumblebee workers rarely visit these flowers suggests that the explosive pollen release has another function, namely to discourage pollen-harvesting bumblebee workers. © 2018 German Society for Plant Sciences and The Royal Botanical Society of the Netherlands.

  1. Development of a surrogate model for analysis of ex-vessel steam explosion in Nordic type BWRs

    Energy Technology Data Exchange (ETDEWEB)

    Grishchenko, Dmitry, E-mail: dmitry@safety.sci.kth.se; Basso, Simone, E-mail: simoneb@kth.se; Kudinov, Pavel, E-mail: pavel@safety.sci.kth.se

    2016-12-15

    Highlights: • Severe accident. • Steam explosion. • Surrogate model. • Sensitivity study. • Artificial neural networks. - Abstract: Severe accident mitigation strategy adopted in Nordic type Boiling Water Reactors (BWRs) employs ex-vessel core melt cooling in a deep pool of water below reactor vessel. Energetic fuel–coolant interaction (steam explosion) can occur during molten core release into water. Dynamic loads can threaten containment integrity increasing the risk of fission products release to the environment. Comprehensive uncertainty analysis is necessary in order to assess the risks. Computational costs of the existing fuel–coolant interaction (FCI) codes is often prohibitive for addressing the uncertainties, including the effect of stochastic triggering time. This paper discusses development of a computationally efficient surrogate model (SM) for prediction of statistical characteristics of steam explosion impulses in Nordic BWRs. The TEXAS-V code was used as the Full Model (FM) for the calculation of explosion impulses. The surrogate model was developed using artificial neural networks (ANNs) and the database of FM solutions. Statistical analysis was employed in order to treat chaotic response of steam explosion impulse to variations in the triggering time. Details of the FM and SM implementation and their verification are discussed in the paper.

  2. The RPC LVL1 trigger system of the muon spectrometer of the ATLAS experiment at LHC

    CERN Document Server

    Aielli, G; Alviggi, M G; Biglietti, M; Bocci, V; Brambilla, Elena; Camarri, P; Canale, V; Caprio, M A; Cardarelli, R; Carlino, G; Cataldi, G; Chiodini, G; Conventi, F; De Asmundis, R; Della Pietra, M; Della Volpe, D; Di Ciaccio, A; Di Mattia, A; Di Simone, A; Falciano, S; Gorini, E; Grancagnolo, F; Iengo, P; Liberti, B; Luminari, L; Nisati, A; Pastore, F; Patricelli, S; Perrino, R; Petrolo, E; Primavera, M; Sekhniaidze, G; Spagnolo, S; Salamon, A; Santonico, R; Vari, R; Veneziano, Stefano

    2004-01-01

    The ATLAS Trigger System has been designed to reduce the LHC interaction rate of about 1 GHz to the foreseen storage rate of about 100 Hz. Three trigger levels are applied in order to fulfill such a requirement. A detailed simulation of the ATLAS experiment including the hardware components and the logic of the Level-1 Muon trigger in the barrel of the muon spectrometer has been performed. This simulation has been used not only to evaluate the performances of the system but also to optimize the trigger logic design. In the barrel of the muon spectrometer the trigger will be given by means of resistive plate chambers (RPCs) working in avalanche mode. Before being mounted on the experiment, accurate quality tests with cosmic rays are carried out on each RPC chamber using the test station facility of the INFN and University laboratory of Napoli. All working parameters are measured and the uniformity of the efficiency on the whole RPC surface is required. A summary of the Napoli cosmic rays tests, together with a...

  3. Triggered fragmentation experiment with sodium, silicone oil and pentane

    International Nuclear Information System (INIS)

    Morita, T.

    1990-12-01

    Within the analysis of severe hypothetical fast breeder accidents the consequences of a fuel-coolant-interaction have to be considered, i.e. the thermal interaction between hot molten fuel and sodium. For the detailed understanding of the fragmentation during the thermal interaction of a hot liquid droplet with a cold fluid series of experiments were performed with sodium and solicone oil as hot liquid and pentane as cold easily volatile fluid. For the precise observation of the reaction an efficient high speed camera with a maximum recording frequency of 1x105 f/s was used. So the fragmentation caused by boiling phenomena could be observed. The pictures were used to estimate quantitatively e.g. the volume of the reaction zone and its expansion rate. By a special measuring device for the first time results on the time dependent portion of the liquid within the reaction zone could be gained. Based on the measured results of the experiments the course of a typical reaction, which can be devided into six phases, is presented and physically explained in this report. The influence of experimental parameters, as pressure of the external trigger and temperature of the hot liquid droplet, was investigated and from this the role of the homogeneous nucleation temperature and the external trigger for the reaction was deduced. (orig.) [de

  4. A first level trigger approach for the CBM experiment

    International Nuclear Information System (INIS)

    Steinle, Christian Alexander

    2012-01-01

    In view of the very heavy CBM experiment constraints on the first level trigger, no conventional trigger is obviously applicable. Hence a fast trigger algorithm with the goal of realization in reconfigurable hardware had to be developed to fulfil all requirements of the experiment. In this connection the general Hough transform, which is already utilized in several other experiments, is used as a basis. This approach constitutes further a global method for tracking, which transforms all particle interaction points with the detector stations by means of a defined formula into a parameter space corresponding to the momentum of the particle tracks. This formula is of course developed especially for the given environment of CBM and defines thus the core of the applied three dimensional Hough transform. As the main focus of attention is furthermore on the realization of the needed data throughput, the necessary complex formula calculations give reason to outsource predefined formula results in look-up tables. This circumstance offers then collaterally the possibility to utilize any other sufficiently precise method like Runge-Kutta of fourth order for example to compute these look-up tables, because this computation can be evidently done offline without any effect on the Hough transform's processing speed. For algorithm simulation purposes the CBMROOT framework provides the module 'track', which is written in the programming language C++. This module includes many analyses for the determination of algorithm parameters, which can be even executed automatically to some extent. In addition to this, there are of course also analyses for the measurement of the algorithm's quality as well as for the individual rating of each partial step of the algorithm. Consequently the milestone of a customizable level one tracking algorithm, which can be used without any specific knowledge, is now obtained. Besides this, the investigated concepts are explicitly considered in the

  5. A first level trigger approach for the CBM experiment

    Energy Technology Data Exchange (ETDEWEB)

    Steinle, Christian Alexander

    2012-07-01

    In view of the very heavy CBM experiment constraints on the first level trigger, no conventional trigger is obviously applicable. Hence a fast trigger algorithm with the goal of realization in reconfigurable hardware had to be developed to fulfil all requirements of the experiment. In this connection the general Hough transform, which is already utilized in several other experiments, is used as a basis. This approach constitutes further a global method for tracking, which transforms all particle interaction points with the detector stations by means of a defined formula into a parameter space corresponding to the momentum of the particle tracks. This formula is of course developed especially for the given environment of CBM and defines thus the core of the applied three dimensional Hough transform. As the main focus of attention is furthermore on the realization of the needed data throughput, the necessary complex formula calculations give reason to outsource predefined formula results in look-up tables. This circumstance offers then collaterally the possibility to utilize any other sufficiently precise method like Runge-Kutta of fourth order for example to compute these look-up tables, because this computation can be evidently done offline without any effect on the Hough transform's processing speed. For algorithm simulation purposes the CBMROOT framework provides the module 'track', which is written in the programming language C++. This module includes many analyses for the determination of algorithm parameters, which can be even executed automatically to some extent. In addition to this, there are of course also analyses for the measurement of the algorithm's quality as well as for the individual rating of each partial step of the algorithm. Consequently the milestone of a customizable level one tracking algorithm, which can be used without any specific knowledge, is now obtained. Besides this, the investigated concepts are explicitly

  6. A first level trigger approach for the CBM experiment

    Energy Technology Data Exchange (ETDEWEB)

    Steinle, Christian Alexander

    2012-07-01

    In view of the very heavy CBM experiment constraints on the first level trigger, no conventional trigger is obviously applicable. Hence a fast trigger algorithm with the goal of realization in reconfigurable hardware had to be developed to fulfil all requirements of the experiment. In this connection the general Hough transform, which is already utilized in several other experiments, is used as a basis. This approach constitutes further a global method for tracking, which transforms all particle interaction points with the detector stations by means of a defined formula into a parameter space corresponding to the momentum of the particle tracks. This formula is of course developed especially for the given environment of CBM and defines thus the core of the applied three dimensional Hough transform. As the main focus of attention is furthermore on the realization of the needed data throughput, the necessary complex formula calculations give reason to outsource predefined formula results in look-up tables. This circumstance offers then collaterally the possibility to utilize any other sufficiently precise method like Runge-Kutta of fourth order for example to compute these look-up tables, because this computation can be evidently done offline without any effect on the Hough transform's processing speed. For algorithm simulation purposes the CBMROOT framework provides the module 'track', which is written in the programming language C++. This module includes many analyses for the determination of algorithm parameters, which can be even executed automatically to some extent. In addition to this, there are of course also analyses for the measurement of the algorithm's quality as well as for the individual rating of each partial step of the algorithm. Consequently the milestone of a customizable level one tracking algorithm, which can be used without any specific knowledge, is now obtained. Besides this, the investigated concepts are explicitly considered in the

  7. Study on explosion field temperature testing system based on wireless data transmission

    International Nuclear Information System (INIS)

    Wang Xinling; Sun Yunqiang

    2011-01-01

    The accurate measurement of the transient temperature value produced by explosive blasting may provide the basis for distinguishing the types of the explosive, the power contrast of the explosive and the performance evaluation in the weapons research process. To solve the problems of the Universal Test System emplaced inconveniently and the stored testing system need to be recycled, it has designed the explosion field application in wireless sensor system of temperature measurement. The system based on PIC16F877A micro controller, CPLD complex programmable logic devices and nRF24L01 wireless transmission chip sensor. The system adopts the Tungsten-Rhenium Thermocouple as the temperature sensor, DS600 temperature sensor for cold temperature compensation. This system has arrangement convenient, high-speed data acquisition, trigger and working parameters of adjustable characteristics, has been successfully applied in a test system. (authors)

  8. Headspace concentrations of explosive vapors in containers designed for canine testing and training: theory, experiment, and canine trials.

    Science.gov (United States)

    Lotspeich, Erica; Kitts, Kelley; Goodpaster, John

    2012-07-10

    It is a common misconception that the amount of explosive is the chief contributor to the quantity of vapor that is available to trained canines. In fact, this quantity (known as odor availability) depends not only on the amount of explosive material, but also the container volume, explosive vapor pressure and temperature. In order to better understand odor availability, headspace experiments were conducted and the results were compared to theory. The vapor-phase concentrations of three liquid explosives (nitromethane, nitroethane and nitropropane) were predicted using the Ideal Gas Law for containers of various volumes that are in use for canine testing. These predictions were verified through experiments that varied the amount of sample, the container size, and the temperature. These results demonstrated that the amount of sample that is needed to saturate different sized containers is small, predictable and agrees well with theory. In general, and as expected, once the headspace of a container is saturated, any subsequent increase in sample volume will not result in the release of more vapors. The ability of canines to recognize and alert to differing amounts of nitromethane has also been studied. In particular, it was found that the response of trained canines is independent of the amount of nitromethane present, provided it is a sufficient quantity to saturate the container in which it is held. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

  9. The Phase-1 Upgrade for the Level-1 Muon Barrel Trigger of the ATLAS Experiment at LHC

    CERN Document Server

    Izzo, Vincenzo; The ATLAS collaboration

    2018-01-01

    The Level-1 Muon Barrel Trigger of the ATLAS Experiment at LHC makes use of Resistive Plate Chamber (RPC) detectors. The on-detector trigger electronics modules are able to identify muons with predefined transverse momentum values (pT) by executing a coincidence logic on signals coming from the various detector layers. On-detector trigger boards then transfer trigger data to the off-detector electronics. A complex trigger system processes the incoming data by combining trigger information from the barrel and the endcap regions, and providing the combined muon candidate to the Central Trigger Processor (CTP). For almost a decade, the Level-1 Trigger system operated very well, despite the challenging requirements on trigger efficiency and performance, and the continuously increasing LHC luminosity. In order to cope with these constraints, various upgrades for the full trigger system were already deployed, and others have been designed to be installed in the next years. Most of the upgrades to the trigger system...

  10. Results from a MA16-based neural trigger in an experiment looking for beauty

    International Nuclear Information System (INIS)

    Baldanza, C.; Beichter, J.; Bisi, F.; Bruels, N.; Bruschini, C.; Cotta-Ramusino, A.; D'Antone, I.; Malferrari, L.; Mazzanti, P.; Musico, P.; Novelli, P.; Odorici, F.; Odorico, R.; Passaseo, M.; Zuffa, M.

    1996-01-01

    Results from a neural-network trigger based on the digital MA16 chip of Siemens are reported. The neural trigger has been applied to data from the WA92 experiment, looking for beauty particles, which have been collected during a run in which a neural trigger module based on Intel's analog neural chip ETANN operated, as already reported. The MA16 board hosting the chip has a 16-bit I/O precision and a 53-bit precision for internal calculations. It operated at 50 MHz, yielding a response time for a 16 input-variable net of 3 μs for a Fisher discriminant (1-layer net) and of 6 μs for a 2-layer net. Results are compared with those previously obtained with the ETANN trigger. (orig.)

  11. Results from a MA16-based neural trigger in an experiment looking for beauty

    Energy Technology Data Exchange (ETDEWEB)

    Baldanza, C. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Beichter, J. [Siemens AG, ZFE T ME2, 81730 Munich (Germany); Bisi, F. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Bruels, N. [Siemens AG, ZFE T ME2, 81730 Munich (Germany); Bruschini, C. [INFN/Genoa, Via Dodecaneso 33, 16146 Genoa (Italy); Cotta-Ramusino, A. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); D`Antone, I. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Malferrari, L. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Mazzanti, P. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Musico, P. [INFN/Genoa, Via Dodecaneso 33, 16146 Genoa (Italy); Novelli, P. [INFN/Genoa, Via Dodecaneso 33, 16146 Genoa (Italy); Odorici, F. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Odorico, R. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy); Passaseo, M. [CERN, 1211 Geneva 23 (Switzerland); Zuffa, M. [Istituto Nazionale di Fisica Nucleare, Bologna (Italy)

    1996-07-11

    Results from a neural-network trigger based on the digital MA16 chip of Siemens are reported. The neural trigger has been applied to data from the WA92 experiment, looking for beauty particles, which have been collected during a run in which a neural trigger module based on Intel`s analog neural chip ETANN operated, as already reported. The MA16 board hosting the chip has a 16-bit I/O precision and a 53-bit precision for internal calculations. It operated at 50 MHz, yielding a response time for a 16 input-variable net of 3 {mu}s for a Fisher discriminant (1-layer net) and of 6 {mu}s for a 2-layer net. Results are compared with those previously obtained with the ETANN trigger. (orig.).

  12. The concept of explosives malfunctioning in rock blasting

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Q.

    1993-11-01

    The purpose is to identify the critical conditions that cause malfunctioning for some commonly used explosives. Experiments are described that measure sympathetic detonation, desensitization, and cut-offs for two variables: spacing and delay. Explosive malfunctioning is depicted on a delay spacing chart that has different regions. On the chart, the shape and size of each region can vary from one explosive to another. Results are presented from over 70 blasts, that were conducted in the underground drift at the CANMET Experimental Mine, to identify the malfunctioning characteristics of specific emulsion, water gel, and dynamite explosives. For each experiment, two parallel blastholes (with diameter of 32 mm and depth of 1.7 m) were drilled downwards, and full coupling was achieved. The results are presented for the three types of explosives tested. 11 refs., 7 figs.

  13. Data Driven Trigger Design and Analysis for the NOvA Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kurbanov, Serdar [Univ. of Virginia, Charlottesville, VA (United States)

    2016-01-01

    This thesis primarily describes analysis related to studying the Moon shadow with cosmic rays, an analysis using upward-going muons trigger data, and other work done as part of MSc thesis work conducted at Fermi National Laboratory. While at Fermilab I made hardware and software contributions to two experiments - NOvA and Mu2e. NOvA is a neutrino experiment with the primary goal of measuring parameters related to neutrino oscillation. This is a running experiment, so it's possible to provide analysis of real beam and cosmic data. Most of this work was related to the Data-Driven Trigger (DDT) system of NOvA. The results of the Upward-Going muon analysis was presented at ICHEP in August 2016. The analysis demonstrates the proof of principle for a low-mass dark matter search. Mu2e is an experiment currently being built at Fermilab. Its primary goal is to detect the hypothetical neutrinoless conversion from a muon into an electron. I contributed to the production and tests of Cathode Strip Chambers (CSCs) which are required for testing the Cosmic Ray Veto (CRV) system for the experiment. This contribution is described in the last chapter along with a short description of the technical work provided for the DDT system of the NOvA experiment. All of the work described in this thesis will be extended by the next generation of UVA graduate students and postdocs as new data is collected by the experiment. I hope my eorts of have helped lay the foundation for many years of beautiful results from Mu2e and NOvA.

  14. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    International Nuclear Information System (INIS)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R.

    2008-03-01

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to the

  15. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R. [Royal Institute of Technology (KTH), (Sweden)

    2008-03-15

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to

  16. Level 3 trigger algorithm and hardware platform for the HADES experiment

    International Nuclear Information System (INIS)

    Kirschner, Daniel Georg

    2007-01-01

    One focus of the HADES experiment is the investigation of the decay of light vector mesons inside a dense medium into lepton pairs. These decays provide a conceptually ideal tool to study the invariant mass of the vector meson in-medium, since the lepton pairs of these meson decays leave the reaction without further strong interaction. Thus, no final state interaction affects the measurement. Unfortunately, the branching ratios of vector mesons into lepton pairs are very small (∼ 10 -5 ). This calls for a high rate, high acceptance experiment. In addition, a sophisticated real time trigger system is used in HADES to enrich the interesting events in the recorded data. The focus of this thesis is the development of a next generation real time trigger method to improve the enrichment of lepton events in the HADES trigger. In addition, a flexible hardware platform (GE-MN) was developed to implement and test the trigger method. The GE-MN features two Gigabit-Ethernet interfaces for data transport, a VMEbus for slow control and configuration, and a TigerSHARC DSP for data processing. It provides the experience to discuss the challenges and benefits of using a commercial standard network technology based system in an experiment. The developed and tested trigger method correlates the ring information of the HADES RICH with the fired wires (cells) of the HADES MDC detector. This correlation method operates by calculating for each event the cells which should have seen the signal of a traversing lepton, and compares these calculated cells to all the cells that did see a signal. The cells which should have fired are calculated from the polar and azimuthal angle information of the RICH rings by assuming a straight line in space, which is starting at the target and extending into a direction given by the ring angles. The line extends through the inner MDC chambers and the traversed cells are those that should have been hit. To compensate different sources for inaccuracies not

  17. Level 3 trigger algorithm and hardware platform for the HADES experiment

    Energy Technology Data Exchange (ETDEWEB)

    Kirschner, Daniel Georg

    2007-10-26

    One focus of the HADES experiment is the investigation of the decay of light vector mesons inside a dense medium into lepton pairs. These decays provide a conceptually ideal tool to study the invariant mass of the vector meson in-medium, since the lepton pairs of these meson decays leave the reaction without further strong interaction. Thus, no final state interaction affects the measurement. Unfortunately, the branching ratios of vector mesons into lepton pairs are very small ({approx} 10{sup -5}). This calls for a high rate, high acceptance experiment. In addition, a sophisticated real time trigger system is used in HADES to enrich the interesting events in the recorded data. The focus of this thesis is the development of a next generation real time trigger method to improve the enrichment of lepton events in the HADES trigger. In addition, a flexible hardware platform (GE-MN) was developed to implement and test the trigger method. The GE-MN features two Gigabit-Ethernet interfaces for data transport, a VMEbus for slow control and configuration, and a TigerSHARC DSP for data processing. It provides the experience to discuss the challenges and benefits of using a commercial standard network technology based system in an experiment. The developed and tested trigger method correlates the ring information of the HADES RICH with the fired wires (cells) of the HADES MDC detector. This correlation method operates by calculating for each event the cells which should have seen the signal of a traversing lepton, and compares these calculated cells to all the cells that did see a signal. The cells which should have fired are calculated from the polar and azimuthal angle information of the RICH rings by assuming a straight line in space, which is starting at the target and extending into a direction given by the ring angles. The line extends through the inner MDC chambers and the traversed cells are those that should have been hit. To compensate different sources for

  18. The new Level-1 Topological Trigger for the ATLAS experiment at the Large Hadron Collider

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00047907; The ATLAS collaboration

    2017-01-01

    At the CERN Large Hadron Collider, the world’s most powerful particle accelerator, the ATLAS experiment records high-energy proton collision to investigate the properties of fundamental particles. These collisions take place at a 40 MHz, and the ATLAS trigger system selects the interesting ones, reducing the rate to 1 kHz, allowing for their storage and subsequent offline analysis. The ATLAS trigger system is organized in two levels, with increasing degree of details and of accuracy. The first level trigger reduces the event rate to 100 kHz with a decision latency of less than 2.5 micro seconds. It is composed of the calorimeter trigger, muon trigger and central trigger processor. A new component of the first-level trigger was introduced in 2015: the Topological Processor (L1Topo). It allows to use detailed real-time information from the Level-1 calorimeter and muon systems, to compute advanced kinematic quantities using state of the art FPGA processors, and to select interesting events based on several com...

  19. Implementation and synchronisation of the First Level Global Trigger for the CMS experiment at LHC

    International Nuclear Information System (INIS)

    Taurok, A.; Bergauer, H.; Padrta, M.

    2001-01-01

    The hardware implementation of the First Level Global Trigger for the Compact Muon Solenoid experiment at the CERN Large Hadron Collider is described. Special emphasis is given to the algorithm logic and the synchronisation procedure. Up to 128 different trigger algorithms are calculated in parallel by the Global Trigger (GT) for every beam crossing taking place at 25 ns intervals. Already, at the first trigger level the GT is able to select complex topological event configurations by performing fast calculations. The electronics is based on VME and relies completely on Field Programmable Gate Arrays (FPGA) technology. The electronic circuits are optimised for speed by exploiting, to a great extent, the small look-up tables provided in the FPGA chips

  20. Chemical Explosion Experiments to Improve Nuclear Test Monitoring - Developing a New Paradigm for Nuclear Test Monitoring with the Source Physics Experiments (SPE)

    International Nuclear Information System (INIS)

    Snelson, Catherine M.; Abbott, Robert E.; Broome, Scott T.; Mellors, Robert J.; Patton, Howard J.; Sussman, Aviva J.; Townsend, Margaret J.; Walter, William R.

    2013-01-01

    A series of chemical explosions, called the Source Physics Experiments (SPE), is being conducted under the auspices of the U.S. Department of Energy's National Nuclear Security Administration (NNSA) to develop a new more physics-based paradigm for nuclear test monitoring. Currently, monitoring relies on semi-empirical models to discriminate explosions from earthquakes and to estimate key parameters such as yield. While these models have been highly successful monitoring established test sites, there is concern that future tests could occur in media and at scale depths of burial outside of our empirical experience. This is highlighted by North Korean tests, which exhibit poor performance of a reliable discriminant, mb:Ms (Selby et al., 2012), possibly due to source emplacement and differences in seismic responses for nascent and established test sites. The goal of SPE is to replace these semi-empirical relationships with numerical techniques grounded in a physical basis and thus applicable to any geologic setting or depth

  1. A review of steam explosions with special emphasis on the Swedish and Finnish BWRs. APRI 4, Phase 2 Report

    Energy Technology Data Exchange (ETDEWEB)

    Sehgal, B.R.; Haraldsson, H.O.; Yang, Z.L. [Sehgal Konsult, Stockholm (Sweden)

    2002-04-01

    The objective of the present study is to perform a critical review of ex-vessel steam explosion in Swedish and Finnish reactor containments in a hypothetical severe accident. The review performed is related to a broader program funded by APRI whose focus is related to severe accidents. A critical review of the current knowledge base on the subject is performed, including those results obtained from other studies and assessments conducted earlier under auspice of APRI. Several limiting mechanisms which may significantly impact the assessment of steam explosion loads are identified, taking into account specific reactor-design features and accident progression scenarios. In addition, generic discussion is provided on the effect of melt physical properties on the steam explosion energetics. Thermal hydraulic conditions of pre-mixture and its explosivity are evaluated using models and methods developed by the researchers at Royal Institute of Technology (RIT). The report includes a wealth of information on details with respect to quantification of vessel melt sources for ex-vessel FCIs; and with respect to the models of steam explosion premixing, triggerability and explosivity employed in the present assessment. These and other models e.g. on vessel failure, melt jet fragmentation etc. are products of the continuing research conducted at the Division of Nuclear Power Safety at RIT. The general conclusion of the present study can be summarized as: Though substantial progress have been made in premixing research verifying the mixing limit concept, there is still a need to improve jet breakup models and validate the existing models against melt jet experiments. The understanding of the triggering mechanisms is still very pool. Though various analytical models have been developed based on the thermal detonation concepts, the need still exists in both experimental and analytical research to understand better the droplet fragmentation during the explosion or propagation phase

  2. A review of steam explosions with special emphasis on the Swedish and Finnish BWRs. APRI 4, Phase 2 Report

    International Nuclear Information System (INIS)

    Sehgal, B.R.; Haraldsson, H.O.; Yang, Z.L.

    2002-04-01

    The objective of the present study is to perform a critical review of ex-vessel steam explosion in Swedish and Finnish reactor containments in a hypothetical severe accident. The review performed is related to a broader program funded by APRI whose focus is related to severe accidents. A critical review of the current knowledge base on the subject is performed, including those results obtained from other studies and assessments conducted earlier under auspice of APRI. Several limiting mechanisms which may significantly impact the assessment of steam explosion loads are identified, taking into account specific reactor-design features and accident progression scenarios. In addition, generic discussion is provided on the effect of melt physical properties on the steam explosion energetics. Thermal hydraulic conditions of pre-mixture and its explosivity are evaluated using models and methods developed by the researchers at Royal Institute of Technology (RIT). The report includes a wealth of information on details with respect to quantification of vessel melt sources for ex-vessel FCIs; and with respect to the models of steam explosion premixing, triggerability and explosivity employed in the present assessment. These and other models e.g. on vessel failure, melt jet fragmentation etc. are products of the continuing research conducted at the Division of Nuclear Power Safety at RIT. The general conclusion of the present study can be summarized as: Though substantial progress have been made in premixing research verifying the mixing limit concept, there is still a need to improve jet breakup models and validate the existing models against melt jet experiments. The understanding of the triggering mechanisms is still very pool. Though various analytical models have been developed based on the thermal detonation concepts, the need still exists in both experimental and analytical research to understand better the droplet fragmentation during the explosion or propagation phase

  3. The Phase-1 Upgrade for the Level-1 Muon Barrel Trigger of the ATLAS Experiment at LHC

    CERN Document Server

    Izzo, Vincenzo; The ATLAS collaboration

    2018-01-01

    The Level-1 Barrel Trigger of the ATLAS Experiment is based on Resistive Plate Chambers (RPC) detectors. The on-detector trigger electronics identifies muons with specific values of transverse momentum (pT), by using coincidences between different layers of detectors. Trigger data is then transferred from on-detector to the off-detector trigger electronics boards. Data is processed by a complex system, which combines trigger data from the Barrel and the End-cap regions, and provides the combined muon candidate to the Central Trigger Processor (CTP). The system has been performing very well for almost a decade. However, in order to cope with continuously increasing LHC luminosity and more demanding requirements on trigger efficiency and performance, various upgrades for the full trigger system were already deployed, and others are foreseen in the next years. Most of the trigger upgrades are based on state-of-the-art technologies and allow designing more complex trigger menus, increasing processing power and da...

  4. The Phase-1 Upgrade for the Level-1 Muon Barrel Trigger of the ATLAS Experiment at LHC

    CERN Document Server

    Izzo, Vincenzo; The ATLAS collaboration

    2018-01-01

    The Level-1 Muon Barrel Trigger of the ATLAS Experiment at LHC makes use of Resistive Plate Chamber (RPC) detectors. The on-detector trigger electronics modules are able to identify muons with predefined transverse momentum values (pT) by executing a coincidence logic on signals coming from the various detector layers. Then, on-detector trigger boards transfer trigger data to the off-detector electronics. A complex trigger system processes the incoming data by combining trigger information from the Barrel and the End-cap regions, and by providing the combined muon candidate to the Central Trigger Processor (CTP). For almost a decade, the Level-1 Trigger system has been operating very well, despite the challenging requirements on trigger efficiency and performance, and the continuously increasing LHC luminosity. In order to cope with these constraints, various upgrades for the full trigger system were already deployed, and others have been designed to be installed in the next years. Most of the upgrades to the...

  5. Data analysis at the CMS level-1 trigger: migrating complex selection algorithms from offline analysis and high-level trigger to the trigger electronics

    CERN Document Server

    Wulz, Claudia

    2017-01-01

    With ever increasing luminosity at the LHC, optimum online data selection is becoming more and more important. While in the case of some experiments (LHCb and ALICE) this task is being completely transferred to computer farms, the others -- ATLAS and CMS -- will not be able to do this in the medium-term future for technological, detector-related reasons. Therefore, these experiments pursue the complementary approach of migrating more and more of the offline and high-level trigger intelligence into the trigger electronics. The presentation illustrates how the level-1 trigger of the CMS experiment and in particular its concluding stage, the so-called ``Global Trigger", take up this challenge.

  6. GPUs for fast triggering and pattern matching at the CERN experiment NA62

    International Nuclear Information System (INIS)

    Lamanna, Gianluca; Collazuol, Gianmaria; Sozzi, Marco

    2011-01-01

    In rare decays experiments an effective trigger is crucial to reduce both the quantity of data written on tape and the bandwidth requirements for the DAQ (Data Acquisition) system. A multilevel architecture is commonly used to achieve a higher reduction factor, exploiting dedicated custom hardware and flexible software in standard computers. In this paper we discuss the possibility to use commercial video card processors (GPU) to build a fast and effective trigger system, both at hardware and software level. The case of fast pattern matching in the RICH detector of the NA62 experiment at CERN aiming at measuring the Branching Ratio of the ultra rare decay K + →π + νν-bar is considered as use case although the versatility and the customizability of this approach easily allow exporting the concept to different contexts.

  7. An on-line non-leptonic neural trigger applied to an experiment looking for beauty

    CERN Document Server

    Baldanza, C; Cotta-Ramusino, A; D'Antone, I; Malferrari, L; Mazzanti, P; Odorici, F; Odorico, R; Zuffa, M; Bruschini, C; Musico, P; Novelli, P; Passaseo, M

    1994-01-01

    Results from a non-leptonic neural-network trigger hosted by experiment WA92, looking for beauty particle production from 350 GeV 1t- on a Cu target, are presented. The neural trigger has been used to send on a special data stream (the Fast Stream) events to be analyzed with high priority. The non-leptonic signature uses microvertex detector data and was devised so as to enrich the fraction of events containing C3 secondary vertices (i.e, vertices having three tracks whith sum of electric charges equal to +1 or -1). The neural trigger module consists of a VME crate hosting two ET ANN analog neural chips from Intel. The neural trigger operated for two continuous weeks during the WA92 1 993 run. For an acceptance of 15% for C3 events, the neural trigger yields a C3 enrichment factor of 6.6-7.l (depending on the event sample considered), which multiplied by that already provided by the standard non-leptonic trigger leads to a global C3 enrichment factor of -1 50. In the event sample selected by the neural trigge...

  8. The TOTEM modular trigger system

    Energy Technology Data Exchange (ETDEWEB)

    Bagliesi, M.G., E-mail: mg.bagliesi@pi.infn.i [University of Siena and INFN Pisa (Italy); Berretti, M.; Cecchi, R.; Greco, V.; Lami, S.; Latino, G.; Oliveri, E.; Pedreschi, E.; Scribano, A.; Spinella, F.; Turini, N. [University of Siena and INFN Pisa (Italy)

    2010-05-21

    The TOTEM experiment will measure the total cross-section with the luminosity independent method and study elastic and diffractive scattering at the LHC. We are developing a modular trigger system, based on programmable logic, that will select meaningful events within 2.5{mu}s. The trigger algorithm is based on a tree structure in order to obtain information compression. The trigger primitive is generated directly on the readout chip, VFAT, that has a specific fast output that gives low resolution hits information. In two of the TOTEM detectors, Roman Pots and T2, a coincidence chip will perform track recognition directly on the detector readout boards, while for T1 the hits are transferred from the VFATs to the trigger hardware. Starting from more than 2000 bits delivered by the detector electronics, we extract, in a first step, six trigger patterns of 32 LVDS signals each; we build, then, on a dedicated board, a 1-bit (L1) trigger signal for the TOTEM experiment and 16 trigger bits to the CMS experiment global trigger system for future common data taking.

  9. The TOTEM modular trigger system

    International Nuclear Information System (INIS)

    Bagliesi, M.G.; Berretti, M.; Cecchi, R.; Greco, V.; Lami, S.; Latino, G.; Oliveri, E.; Pedreschi, E.; Scribano, A.; Spinella, F.; Turini, N.

    2010-01-01

    The TOTEM experiment will measure the total cross-section with the luminosity independent method and study elastic and diffractive scattering at the LHC. We are developing a modular trigger system, based on programmable logic, that will select meaningful events within 2.5μs. The trigger algorithm is based on a tree structure in order to obtain information compression. The trigger primitive is generated directly on the readout chip, VFAT, that has a specific fast output that gives low resolution hits information. In two of the TOTEM detectors, Roman Pots and T2, a coincidence chip will perform track recognition directly on the detector readout boards, while for T1 the hits are transferred from the VFATs to the trigger hardware. Starting from more than 2000 bits delivered by the detector electronics, we extract, in a first step, six trigger patterns of 32 LVDS signals each; we build, then, on a dedicated board, a 1-bit (L1) trigger signal for the TOTEM experiment and 16 trigger bits to the CMS experiment global trigger system for future common data taking.

  10. On transient electric fields observed in chemical release experiments by rockets

    International Nuclear Information System (INIS)

    Marklund, G.; Brenning, N.; Holmgren, G.; Haerendel, G.

    1986-06-01

    As a follow-up to the successful chemical release experiment Trigger in 1977, the TOR (Trigger Optimized Repetition) rocket was launched from Esrange on Oct. 24, 1984. Like in the Trigger experiment a large amplitude electric field pulse of 200 mV/m was detected shortly after the explosion. The central part of the pulse was found to be clearly correlated with an intense layer of swept up ambient particles behind a propagating shock-front. The field was directed towards the centre of the expanding ionized cloud, which is indicative of a polarisation electric field source. Expressions for this radial polarisation field and the much weaker azimuthal induced electric field are derived from a simple cylindrical model for the field and the expanding neutral cloud. Time profiles of the radial electric field are shown to be in good agreement with observations. (authors)

  11. High level trigger system for the ALICE experiment

    International Nuclear Information System (INIS)

    Frankenfeld, U.; Roehrich, D.; Ullaland, K.; Vestabo, A.; Helstrup, H.; Lien, J.; Lindenstruth, V.; Schulz, M.; Steinbeck, T.; Wiebalck, A.; Skaali, B.

    2001-01-01

    The ALICE experiment at the Large Hadron Collider (LHC) at CERN will detect up to 20,000 particles in a single Pb-Pb event resulting in a data rate of ∼75 MByte/event. The event rate is limited by the bandwidth of the data storage system. Higher rates are possible by selecting interesting events and subevents (High Level trigger) or compressing the data efficiently with modeling techniques. Both require a fast parallel pattern recognition. One possible solution to process the detector data at such rates is a farm of clustered SMP nodes, based on off-the-shelf PCs, and connected by a high bandwidth, low latency network

  12. Reactive flow modeling of small scale detonation failure experiments for a baseline non-ideal explosive

    Energy Technology Data Exchange (ETDEWEB)

    Kittell, David E.; Cummock, Nick R.; Son, Steven F. [School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907 (United States)

    2016-08-14

    Small scale characterization experiments using only 1–5 g of a baseline ammonium nitrate plus fuel oil (ANFO) explosive are discussed and simulated using an ignition and growth reactive flow model. There exists a strong need for the small scale characterization of non-ideal explosives in order to adequately survey the wide parameter space in sample composition, density, and microstructure of these materials. However, it is largely unknown in the scientific community whether any useful or meaningful result may be obtained from detonation failure, and whether a minimum sample size or level of confinement exists for the experiments. In this work, it is shown that the parameters of an ignition and growth rate law may be calibrated using the small scale data, which is obtained from a 35 GHz microwave interferometer. Calibration is feasible when the samples are heavily confined and overdriven; this conclusion is supported with detailed simulation output, including pressure and reaction contours inside the ANFO samples. The resulting shock wave velocity is most likely a combined chemical-mechanical response, and simulations of these experiments require an accurate unreacted equation of state (EOS) in addition to the calibrated reaction rate. Other experiments are proposed to gain further insight into the detonation failure data, as well as to help discriminate between the role of the EOS and reaction rate in predicting the measured outcome.

  13. The ATLAS trigger: high-level trigger commissioning and operation during early data taking

    International Nuclear Information System (INIS)

    Goncalo, R

    2008-01-01

    The ATLAS experiment is one of the two general-purpose experiments due to start operation soon at the Large Hadron Collider (LHC). The LHC will collide protons at a centre of mass energy of 14 TeV, with a bunch-crossing rate of 40 MHz. The ATLAS three-level trigger will reduce this input rate to match the foreseen offline storage capability of 100-200 Hz. This paper gives an overview of the ATLAS High Level Trigger focusing on the system design and its innovative features. We then present the ATLAS trigger strategy for the initial phase of LHC exploitation. Finally, we report on the valuable experience acquired through in-situ commissioning of the system where simulated events were used to exercise the trigger chain. In particular we show critical quantities such as event processing times, measured in a large-scale HLT farm using a complex trigger menu

  14. Explosion Generated Seismic Waves and P/S Methods of Discrimination from Earthquakes with Insights from the Nevada Source Physics Experiments

    Science.gov (United States)

    Walter, W. R.; Ford, S. R.; Pitarka, A.; Pyle, M. L.; Pasyanos, M.; Mellors, R. J.; Dodge, D. A.

    2017-12-01

    The relative amplitudes of seismic P-waves to S-waves are effective at identifying underground explosions among a background of natural earthquakes. These P/S methods appear to work best at frequencies above 2 Hz and at regional distances ( >200 km). We illustrate this with a variety of historic nuclear explosion data as well as with the recent DPRK nuclear tests. However, the physical basis for the generation of explosion S-waves, and therefore the predictability of this P/S technique as a function of path, frequency and event properties such as size, depth, and geology, remains incompletely understood. A goal of current research, such as the Source Physics Experiments (SPE), is to improve our physical understanding of the mechanisms of explosion S-wave generation and advance our ability to numerically model and predict them. The SPE conducted six chemical explosions between 2011 and 2016 in the same borehole in granite in southern Nevada. The explosions were at a variety of depths and sizes, ranging from 0.1 to 5 tons TNT equivalent yield. The largest were observed at near regional distances, with P/S ratios comparable to much larger historic nuclear tests. If we control for material property effects, the explosions have very similar P/S ratios independent of yield or magnitude. These results are consistent with explosion S-waves coming mainly from conversion of P- and surface waves, and are inconsistent with source-size based models. A dense sensor deployment for the largest SPE explosion allowed this conversion to be mapped in detail. This is good news for P/S explosion identification, which can work well for very small explosions and may be ultimately limited by S-wave detection thresholds. The SPE also showed explosion P-wave source models need to be updated for small and/or deeply buried cases. We are developing new P- and S-wave explosion models that better match all the empirical data. Historic nuclear explosion seismic data shows that the media in which

  15. A T0/Trigger detector for the External Target Experiment at CSR

    Science.gov (United States)

    Hu, D.; Shao, M.; Sun, Y.; Li, C.; Chen, H.; Tang, Z.; Zhang, Y.; Zhou, J.; Zeng, H.; Zhao, X.; You, W.; Song, G.; Deng, P.; Lu, J.; Zhao, L.

    2017-06-01

    A new T0/Trigger detector based on multi-gap resistive plate chamber (MRPC) technology has been constructed and tested for the external target experiment (ETE) at HIRFL-CSR. It measures the multiplicity and timing information of particles produced in heavy-ion collisions at the target region, providing necessary event collision time (T0) and collision centrality with high precision. Monte-Carlo simulation shows a time resolution of several tens of picosecond can be achieved at central collisions. The experimental tests have been performed for this prototype detector at the CSR-ETE. The preliminary results are shown to demonstrate the performance of the T0/Trigger detector.

  16. Relative source comparison of the NPE to underground nuclear explosions at local distances

    Energy Technology Data Exchange (ETDEWEB)

    Smith, A.T. [Lawrence Livermore National Lab., CA (United States)

    1994-12-31

    The Non-Proliferation Experiment (NPE) provides an opportunity to compare broadband characteristics of chemical to nuclear explosions at a group of local stations (4 to 40 km distant). The locations for these stations were established on bedrock to record a small partially decoupled nuclear explosion and two nearby nuclear experiments, all shots within {open_quotes}N{close_quotes} Tunnel on Rainier Mesa, Area 12. These sites were also occupied to record aftershocks from the Little Skull Mountain earthquake and chemical explosions from the USGS Sierra Experiment. To minimize calibration errors during this period, redundant instrumentation were used for each event. THe analysis emphasizes the source characteristics of the different explosions. The 300-lb chemical calibration explosion allows removal of path effects from each explosion. The NPE and nearby experiments produce very similar waveforms. The decoupled nuclear explosion and the 300-lb chemical calibration explosion show higher frequency content consistent with a higher corner frequency for the sources.

  17. Hydrocarbon production with nuclear explosives

    International Nuclear Information System (INIS)

    Wade Watkins, J.

    1970-01-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  18. Hydrocarbon production with nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Wade Watkins, J [Petroleum Research, Bureau of Mines, U.S. Department of the Interior, Washington, DC (United States)

    1970-05-01

    The tremendous energy of nuclear explosives and the small dimensions of the explosive package make an ideal combination for drill-hole explosive emplacement in deep, thick hydrocarbon deposits. Potential applications exist in fracturing low permeability natural-gas and petroleum formations for stimulating production, fracturing oil shale to permit in situ retorting, and creating storage chimneys for natural gas, liquefied petroleum gas, petroleum, petroleum products, helium, and other fluids. Calculations show, for example, that less than 100 shots per year would be needed to stabilize the natural gas reserves to production ratio. Under the Government-industry Plowshare program, two experiments, Projects Gasbuggy and Rulison, were conducted to stimulate natural gas production from low-permeability formations. Incomplete information indicates that both were technically successful. Potential problems associated with the use of nuclear explosives for underground engineering applications are radioactive contamination, maximum yield limitations, high costs of detonating contained nuclear explosives, and adverse public opinion. Results at Project Gasbuggy and other considerations indicated that the problem of radioactive contamination was about as predicted and not an insurmountable one. Also, it was demonstrated that shots at adequate depths could be detonated without appreciable damage to existing surface and subsurface buildings, natural features, and equipment. However, costs must be reduced and the public must be better informed before these techniques can be widely used in field operations. On the basis of present knowledge, the potential of nuclear-explosive stimulation of hydrocarbon production appears good. Additional field experiments will be required to adequately explore that potential. (author)

  19. Relating triggering processes in lab experiments with earthquakes.

    Science.gov (United States)

    Baro Urbea, J.; Davidsen, J.; Kwiatek, G.; Charalampidou, E. M.; Goebel, T.; Stanchits, S. A.; Vives, E.; Dresen, G.

    2016-12-01

    Statistical relations such as Gutenberg-Richter's, Omori-Utsu's and the productivity of aftershocks were first observed in seismology, but are also common to other physical phenomena exhibiting avalanche dynamics such as solar flares, rock fracture, structural phase transitions and even stock market transactions. All these examples exhibit spatio-temporal correlations that can be explained as triggering processes: Instead of being activated as a response to external driving or fluctuations, some events are consequence of previous activity. Although different plausible explanations have been suggested in each system, the ubiquity of such statistical laws remains unknown. However, the case of rock fracture may exhibit a physical connection with seismology. It has been suggested that some features of seismology have a microscopic origin and are reproducible over a vast range of scales. This hypothesis has motivated mechanical experiments to generate artificial catalogues of earthquakes at a laboratory scale -so called labquakes- and under controlled conditions. Microscopic fractures in lab tests release elastic waves that are recorded as ultrasonic (kHz-MHz) acoustic emission (AE) events by means of piezoelectric transducers. Here, we analyse the statistics of labquakes recorded during the failure of small samples of natural rocks and artificial porous materials under different controlled compression regimes. Temporal and spatio-temporal correlations are identified in certain cases. Specifically, we distinguish between the background and triggered events, revealing some differences in the statistical properties. We fit the data to statistical models of seismicity. As a particular case, we explore the branching process approach simplified in the Epidemic Type Aftershock Sequence (ETAS) model. We evaluate the empirical spatio-temporal kernel of the model and investigate the physical origins of triggering. Our analysis of the focal mechanisms implies that the occurrence

  20. Single-charge craters excavated during subsurface high-explosive experiments at Big Black Test Site, Mississippi

    International Nuclear Information System (INIS)

    Woodruff, W.R.; Bryan, J.B.

    1978-01-01

    Single-charge and row-charge subsurface cratering experiments were performed to learn how close-spacing enhances single-crater dimensions. Our first experimental phase established cratering curves for 60-lb charges of the chemical explosive. For the second phase, to be described in a subsequent report, the Row-cratering experiments were designed and executed. This data report contains excavated dimensions and auxiliary data for the single-charge cratering experiments. The dimensions for the row-charge experiments will be in the other report. Significant changes in the soil's water content appeared to cause a variability in the excavated dimensions. This variability clouded the interpretation and application of the cratering curves obtained

  1. Analysis of ex-vessel steam explosion with MC3D

    International Nuclear Information System (INIS)

    Leskovar, M.; Mavko, B.

    2007-01-01

    An ex-vessel steam explosion may occur when, during a severe reactor accident, the reactor vessel fails and the molten core pours into the water in the reactor cavity. A steam explosion is a fuel coolant interaction process where the heat transfer from the melt to water is so intense and rapid that the timescale for heat transfer is shorter than the timescale for pressure relief. This can lead to the formation of shock waves and production of missiles that may endanger surrounding structures. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. In the paper, different scenarios of ex-vessel steam explosions in a typical pressurized water reactor cavity are analyzed with the code MC3D, which was developed for the simulation of fuel-coolant interactions. A comprehensive parametric study was performed varying the location of the melt release (central, left and right side melt pour), the cavity water subcooling, the primary system overpressure at vessel failure and the triggering time for explosion calculations. The main purpose of the study was to determine the most challenging ex-vessel steam explosion cases in a typical pressurized water reactor and to estimate the expected pressure loadings on the cavity walls. The performed analysis shows that for some ex-vessel steam explosion scenarios significantly higher pressure loads are predicted than obtained in the OECD programme SERENA Phase 1. (author)

  2. Trigger electronics of the new Fluorescence Detectors of the Telescope Array Experiment

    International Nuclear Information System (INIS)

    Tameda, Yuichiro; Taketa, Akimichi; Smith, Jeremy D.; Tanaka, Manobu; Fukushima, Masaki; Jui, Charles C.H.; Kadota, Ken'ichi; Kakimoto, Fumio; Matsuda, Takeshi; Matthews, John N.; Ogio, Shoichi; Sagawa, Hiroyuki; Sakurai, Nobuyuki; Shibata, Tatsunobu; Takeda, Masahiro; Thomas, Stanton B.; Tokuno, Hisao; Tsunesada, Yoshiki

    2009-01-01

    The Telescope Array Project is an experiment designed to observe Ultra High Energy Cosmic Rays via a 'hybrid' detection technique utilizing both fluorescence light detectors (FDs) and scintillator surface particle detectors (SDs). We have installed three FD stations and 507 SDs in the Utah desert, and initiated observations from March 2008. The northern FD station reuses 14 telescopes from the High Resolution Fly's Eye, HiRes-I station. Each of the two southern FD stations contains 12 new telescopes utilizing new FADC electronics. Each telescope is instrumented with a camera composed of 256 PMTs. Since the detectors are composed of many PMTs and each PMT detects fluorescence photons together with the vast amount of night sky background, a sophisticated triggering system is required. In this paper, we describe the trigger electronics of these new FD stations. We also discuss performance of the FDs with this triggering system, in terms of efficiencies and apertures for various detector configurations.

  3. Electronics, trigger, data acquisition, and computing working group on future B physics experiments

    International Nuclear Information System (INIS)

    Geer, S.

    1993-01-01

    Electronics, trigger, data acquisition, and computing: this is a very broad list of topics. Nevertheless in a modern particle physics experiment one thinks in terms of a data pipeline in which the front end electronics, the trigger and data acquisition, and the offline reconstruction are linked together. In designing any piece of this pipeline it is necessary to understand the bigger picture of the data flow, data rates and volume, and the input rate, output rate, and latencies for each part of the pipeline. All of this needs to be developed with a clear understanding of the requirements imposed by the physics goals of the experiment; the signal efficiencies, background rates, and the amount of recorded information that needs to be propagated through the pipeline to select and analyse the events of interest. The technology needed to meet the demanding high data volume needs of the next round of B physics experiments appears to be available, now or within a couple of years. This seems to be the case for both fixed target and collider B physics experiments. Although there are many differences between the various data pipelines that are being proposed, there are also striking similarities. All experiments have a multi-level trigger scheme (most have levels 1, 2, and 3) where the final level consists of a computing farm that can run offline-type code and reduce the data volume by a factor of a few. Finally, the ability to reconstruct large data volumes offline in a reasonably short time, and making large data volumes available to many physicists for analysis, imposes severe constraints on the foreseen data pipelines, and a significant uncertainty in evaluating the various approaches proposed

  4. The fracture of concrete under explosive shock loading

    International Nuclear Information System (INIS)

    Watson, A.J.; Sanderson, A.J.

    1982-01-01

    Concrete fracture close to the point of application of high explosive shock pressures has been studied experimentally by placing an explosive charge on the edge of a concrete slab. The extent of the crushing and cracking produced by a semi cylindrical diverging plane compressive stress pulse has been measured and complementary experiments gave the pressure transmitted at an explosive to concrete interface and the stress-strain relation for concrete at explosive strain rates. (orig.) [de

  5. Triggering for charm, beauty, and truth

    International Nuclear Information System (INIS)

    Appel, J.A.

    1982-02-01

    As the search for more and more rare processes accelerates, the need for more and more effective event triggers also accelerates. In the earliest experiments, a simple coincidence often sufficed not only as the event trigger, but as the complete record of an event of interest. In today's experiments, not only has the fast trigger become more sophisticated, but one or more additional level of trigger processing precedes writing event data to magnetic tape for later analysis. Further search experiments will certainly require further expansion in the number of trigger levels required to filter those rare events of particular interest

  6. Surface-wave generation by underground nuclear explosions releasing tectonic strain

    International Nuclear Information System (INIS)

    Patton, H.J.

    1980-01-01

    Seismic surface-wave generation by underground nuclear explosions releasing tectonic strain is studied through a series of synthetic radiation-pattern calculations based on the earthquake-trigger model. From amplitude and phase radiation patterns for 20-s Rayleigh waves, inferences are made about effects on surface-wave magnitude, M/sub s/, and waveform character. The focus of this study is a comparison between two mechanisms of tectonic strain release: strike-slip motion on vertical faults and thrust motion on 45 0 dipping faults. The results of our calculations show that Rayleigh-wave amplitudes of the dip-slip model at F values between 0.75 and 1.5 are significantly lower than amplitudes of the strike-slip model or of the explosion source alone. This effect translates into M/sub s/ values about 0.5 units lower than M/sub s/ of the explosion alone. Waveform polarity reversals occur in two of four azimuthal quadrants for the strike-slip model and in all azimuths of the dip-slip-thrust model for F values above about 3. A cursory examination of waveforms from presumed explosions in eastern Kazakhstan suggests that releases of tectonic strain are accompanying the detonation of many of these explosions. Qualitatively, the observations seem to favor the dip-slip-thrust model, which, in the case of a few explosions, must have F values above 3

  7. Gas explosion characterization, wave propagation (small-scale experiments)

    International Nuclear Information System (INIS)

    Larsen, G.C.

    1985-01-01

    A number of experiments have been performed with blast waves arising from the ignition of homogeneous and well defined mixtures of methane, oxygen and nitrogen, contained within spherical balloons with controlled initial dimensions. In the initial small scale experiments pressure characteristics, ground reflection phenomena and pressure distribution on box like obstacles were studied. Both configurations with one box and two closely spaced boxes have been considered, and a wave-wave interaction phenomenom was observed in the case of closely spaced obstacles. Main emphasis has been placed on the half scale field experiments. In these, the maximum flame speed has been of the order of 100 m/s, resulting in positive peak pressures of 50-100.10 2 Pa in 5 - 10 m distance from the source. The explosion process was found to be reasonable symmetric. The attenuation of the blast wave due to vegetation and the influence of obstacles as banks, walls and houses on the pressure field have been investigated. The presence of the bank and the house was felt in a zone with a length corresponding to a typical dimension of the obstacles, whereas the overall pressure field is shown to be unaffected by the type of obstacles and vegetation investigated. For the wall and house, reflection factors have been established, and some variation over the surface has been measured. The scatter of the pressure measurements is estimated for stable, neutral and unstable atmospheric conditions, and an attempt to determine the ground reflection factor has been performed. Finally the accelerations of a house exposed to the blast wave have been examined

  8. Suppression of stratified explosive interactions

    Energy Technology Data Exchange (ETDEWEB)

    Meeks, M.K.; Shamoun, B.I.; Bonazza, R.; Corradini, M.L. [Wisconsin Univ., Madison, WI (United States). Dept. of Nuclear Engineering and Engineering Physics

    1998-01-01

    Stratified Fuel-Coolant Interaction (FCI) experiments with Refrigerant-134a and water were performed in a large-scale system. Air was uniformly injected into the coolant pool to establish a pre-existing void which could suppress the explosion. Two competing effects due to the variation of the air flow rate seem to influence the intensity of the explosion in this geometrical configuration. At low flow rates, although the injected air increases the void fraction, the concurrent agitation and mixing increases the intensity of the interaction. At higher flow rates, the increase in void fraction tends to attenuate the propagated pressure wave generated by the explosion. Experimental results show a complete suppression of the vapor explosion at high rates of air injection, corresponding to an average void fraction of larger than 30%. (author)

  9. Modelling of local/global architectures for second level trigger at the LHC experiment

    International Nuclear Information System (INIS)

    Hajduk, Z.; Iwanski, W.; Korecyl, K.; Strong, J.

    1994-01-01

    Different architectures of the second level triggering system for experiments on LHC have been simulated. The basic scheme was local/global system with distributed computing power. As a tool the authors have used the object-oriented MODSIM II language

  10. Explosive simulants for testing explosive detection systems

    Science.gov (United States)

    Kury, John W.; Anderson, Brian L.

    1999-09-28

    Explosives simulants that include non-explosive components are disclosed that facilitate testing of equipment designed to remotely detect explosives. The simulants are non-explosive, non-hazardous materials that can be safely handled without any significant precautions. The simulants imitate real explosives in terms of mass density, effective atomic number, x-ray transmission properties, and physical form, including moldable plastics and emulsions/gels.

  11. FCI experiments in the corium/water system

    Energy Technology Data Exchange (ETDEWEB)

    Huhtiniemi, I.; Hohmann, H.; Magallon, D.

    1995-09-01

    The KROTOS fuel coolant interaction (FCI) tests aim at providing benchmark data to examine the effect of fuel/coolant initial conditions and mixing on explosion energetics. Experiments, fundamental in nature, are performed in well-controlled geometries and are complementary to the FARO large scale tests. Recently, a new test series was started using 3 kg of prototypical core material (80 w/o UO{sub 2}, 20 w/o ZrO{sub 2}) which was poured into a water column of {le} 1.25 m in height (95 mm and 200 mm in diameter) under 0.1 MPa ambient pressure. Four tests have been performed in the test section of 95 mm in diameter (ID) with different subcooling levels (10-80K) and with and without an external trigger. Additionally, one test has been performed with a test section of 200 mm in diameter (ID) and with an external trigger. No spontaneous or triggered energetic FCIs (steam explosions) have been observed in these corium tests. This is in sharp contrast with the steam explosions observed in the previously reported Al{sub 2}O{sub 3} test series which had the same initial conditions of ambient pressure and subcooling. The post-test analysis of the corium experiments indicated that strong vaporisation at the melt/water contact led to a partial expulsion of the melt from the test section into the pressure vessel. In order to avoid this and to obtain a good penetration and premixing os the corium melt, an additional test has been performed with a larger diameter test section. In all the UO{sub 2}-ZrO{sub 2} tests an efficient quenching process (0.7-1.2 MW/kg-melt) with total fuel fragmentation (mass mean diameter 1.4-2.5 mm) was observed. Results from Al{sub 2}O{sub 3} tests under the same initial conditions are also presented for further confirmation of the observed differences in behaviour between Al{sub 2}O{sub 3} and UO{sub 2}-ZrO{sub 2} melts.

  12. Shock-induced explosive chemistry in a deterministic sample configuration.

    Energy Technology Data Exchange (ETDEWEB)

    Stuecker, John Nicholas; Castaneda, Jaime N.; Cesarano, Joseph, III (,; ); Trott, Wayne Merle; Baer, Melvin R.; Tappan, Alexander Smith

    2005-10-01

    Explosive initiation and energy release have been studied in two sample geometries designed to minimize stochastic behavior in shock-loading experiments. These sample concepts include a design with explosive material occupying the hole locations of a close-packed bed of inert spheres and a design that utilizes infiltration of a liquid explosive into a well-defined inert matrix. Wave profiles transmitted by these samples in gas-gun impact experiments have been characterized by both velocity interferometry diagnostics and three-dimensional numerical simulations. Highly organized wave structures associated with the characteristic length scales of the deterministic samples have been observed. Initiation and reaction growth in an inert matrix filled with sensitized nitromethane (a homogeneous explosive material) result in wave profiles similar to those observed with heterogeneous explosives. Comparison of experimental and numerical results indicates that energetic material studies in deterministic sample geometries can provide an important new tool for validation of models of energy release in numerical simulations of explosive initiation and performance.

  13. The fastbus trigger modules for the SAT detector in the DELPHI experiment at LEP, CERN

    International Nuclear Information System (INIS)

    Alvsvaag, S.J.

    1992-09-01

    This thesis describes the functionality and performance of the fastbus trigger modules for the Small Angle Tagger (SAT) detector in the DELPHI experiment at the LEP machine at CERN. The main purpose of the modules is to provide a Bhabha trigger for the SAT calorimeter used for luminosity measurements. The author has bee responsible for the design, production, testing and installation of the trigger modules. All the test programs necessary to confirm that the modules function according to the specifications are included in this work. Is does not, however, aim to make detailed technical descriptions of the modules. 44 refs., 39 figs., 18 tabs

  14. Operational experience with the ALICE High Level Trigger

    Science.gov (United States)

    Szostak, Artur

    2012-12-01

    The ALICE HLT is a dedicated real-time system for online event reconstruction and triggering. Its main goal is to reduce the raw data volume read from the detectors by an order of magnitude, to fit within the available data acquisition bandwidth. This is accomplished by a combination of data compression and triggering. When HLT is enabled, data is recorded only for events selected by HLT. The combination of both approaches allows for flexible data reduction strategies. Event reconstruction places a high computational load on HLT. Thus, a large dedicated computing cluster is required, comprising 248 machines, all interconnected with InfiniBand. Running a large system like HLT in production mode proves to be a challenge. During the 2010 pp and Pb-Pb data-taking period, many problems were experienced that led to a sub-optimal operational efficiency. Lessons were learned and certain crucial changes were made to the architecture and software in preparation for the 2011 Pb-Pb run, in which HLT had a vital role performing data compression for ALICE's largest detector, the TPC. An overview of the status of the HLT and experience from the 2010/2011 production runs are presented. Emphasis is given to the overall performance, showing an improved efficiency and stability in 2011 compared to 2010, attributed to the significant improvements made to the system. Further opportunities for improvement are identified and discussed.

  15. Operational experience with the ALICE High Level Trigger

    International Nuclear Information System (INIS)

    Szostak, Artur

    2012-01-01

    The ALICE HLT is a dedicated real-time system for online event reconstruction and triggering. Its main goal is to reduce the raw data volume read from the detectors by an order of magnitude, to fit within the available data acquisition bandwidth. This is accomplished by a combination of data compression and triggering. When HLT is enabled, data is recorded only for events selected by HLT. The combination of both approaches allows for flexible data reduction strategies. Event reconstruction places a high computational load on HLT. Thus, a large dedicated computing cluster is required, comprising 248 machines, all interconnected with InfiniBand. Running a large system like HLT in production mode proves to be a challenge. During the 2010 pp and Pb-Pb data-taking period, many problems were experienced that led to a sub-optimal operational efficiency. Lessons were learned and certain crucial changes were made to the architecture and software in preparation for the 2011 Pb-Pb run, in which HLT had a vital role performing data compression for ALICE's largest detector, the TPC. An overview of the status of the HLT and experience from the 2010/2011 production runs are presented. Emphasis is given to the overall performance, showing an improved efficiency and stability in 2011 compared to 2010, attributed to the significant improvements made to the system. Further opportunities for improvement are identified and discussed.

  16. Preliminary experiment research of explosively driven opening switch

    International Nuclear Information System (INIS)

    Li Xiaolin; Chen Dongqun; Li Da; Cao Shengguang; Chen Yingcong

    2010-01-01

    In pulse power technology field, many loads require high current pulse with fast risetime, but sometimes, the common high current pulse powers don't satisfy request, thus there need pulse erection switches of sorts to shorten pulse risetime. Explosively driven opening switch (EDOS) is a good choice, it has simple structure and excellent performance, the primary parameters of EDOS are opening time, opening resistance, opening current and dissipation energy, which determine its performance and range for applications. For this, two kinds of EDOS are designed and manufactured, in the later experiments, the power supply is a 200 μF capacitor and the conductor is 0.03 mm copper foil, the results indicate that the two kinds of EDOS have good performance, the opening time is about 1-3 μs, the opening resistance is about 1-2 Ω, the opening current is about 24-31 kA and the average dissipation energy is about 0.125-0.34 kJ per groove, the capability of conduction current is adjusted by the thickness of conductor along with different opening current. (authors)

  17. Realization of a second level neural network trigger for the H1 experiment at HERA

    International Nuclear Information System (INIS)

    Koehne, J.K.; Fent, J.; Froechtenicht, W.; Gaede, F.; Gruber, A.; Haberer, W.; Kiesling, C.; Kobler, T.; Moeck, J.; Wegner, A.; Goldner, D.; Kraemerkaemper, T.; Kolander, M.; Kolanoski, H.

    1997-01-01

    Since 1996 the H1 experiment is fully equipped with two independent fast pattern recognition systems operating as second level triggers (L2). The decision time is 20 μs. One of the two is the neural network trigger. It runs an array of presently ten VME-boards with CNAPS 1064 chips (20 MHz, 128 Mcps) by adaptive solutions. The input trigger data from the detector components arrive in various formats on a 8 x 16 bit wide 10 MHz bus. Before usable as 8-bit input values to the CNAPS they are preprocessed by several bit-manipulating algorithms and arithmetic functions implemented on XILINX 4008 field programmable gate arrays (FPGA). The startup strategy for the new system is to concentrate on photoproduction channels or low multiplicity final states which so far could only be efficiently triggered with unacceptable high rates. (orig.)

  18. Effects of molten material temperatures and coolant temperatures on vapor explosion

    Institute of Scientific and Technical Information of China (English)

    LI Tianshu; YANG Yanhua; YUAN Minghao; HU Zhihua

    2007-01-01

    An observable experiment facility for low-temperature molten materials to be dropped into water was set up in this study to investigate the mechanism of the vapor explosion. The effect of the fuel and coolant interaction(FCI) on the vapor explosion during the severe accidents of a fission nuclear reactor has been studied. The experiment results showed that the molten material temperature has an important effect on the vapor explosion behavior and pressure. The increase of the coolant temperature would decrease the pressure of the vapor explosion.

  19. Evolution of the Trigger and Data Acquisition System for the ATLAS experiment

    CERN Document Server

    Negri, A; The ATLAS collaboration

    2012-01-01

    The ATLAS experiment at the Large Hadron Collider at CERN relies on a complex and highly distributed Trigger and Data Acquisition (TDAQ) system to gather and select particle collision data at unprecedented energy and rates. The TDAQ is composed of three levels which reduces the event rate from the design bunch-crossing rate of 40 MHz to an average event recording rate of about 200 Hz. The first part of this paper gives an overview of the operational performance of the DAQ system during 2011 and the first months of data taking in 2012. It describes how the flexibility inherent in the design of the system has be exploited to meet the changing needs of ATLAS data taking and in some cases push performance beyond the original design performance specification. The experience accumulated in the TDAQ system operation during these years stimulated also interest to explore possible evolutions, despite the success of the current design. One attractive direction is to merge three systems - the second trigger level (L2), ...

  20. Research topics in explosives - a look at explosives behaviors

    International Nuclear Information System (INIS)

    Maienschein, J L

    2014-01-01

    The behaviors of explosives under many conditions - e.g., sensitivity to inadvertent reactions, explosion, detonation - are controlled by the chemical and physical properties of the explosive materials. Several properties are considered for a range of improvised and conventional explosives. Here I compare these properties across a wide range of explosives to develop an understanding of explosive behaviors. For improvised explosives, which are generally heterogeneous mixtures of ingredients, a range of studies is identified as needed to more fully understand their behavior and properties. For conventional explosives, which are generally comprised of crystalline explosive molecules held together with a binder, I identify key material properties that determine overall sensitivity, including the extremely safe behavior of Insensitive High Explosives, and discuss an approach to predicting the sensitivity or insensitivity of an explosive.

  1. Close-in airblast from underground explosions

    Energy Technology Data Exchange (ETDEWEB)

    Vortman, L J [Sandia Laboratories, Albuquerque, NM (United States)

    1970-05-15

    Air overpressures as a function of time have been measured from surface zero to about 170 ft/lb{sup 1/3} along the ground from nuclear and chemical explosions. Charge depths varied from the surface to depths below which explosion gases are contained. A ground-shock-induced air pressure pulse is clearly distinguishable from the pulse caused by venting gases. Measured peak overpressures show reasonable agreement with the theoretical treatment by Monta. In a given medium the suppression of blast with explosion burial depth is a function of the relative distance at which the blast is observed. Rates of suppression of peak overpressure with charge burial are different for the two pulses. Rates are determined for each pulse over the range of distances at which measurements have been made of air overpressure from chemical explosions in several media. Nuclear data are available from too few shots for similar dependence on burial depth and distance to be developed, but it is clear that the gas venting peak overpressure from nuclear explosions is much more dependent on medium than that from chemical explosions. For above-ground explosions, experiment has shown that airblast from a I-kiloton nuclear explosion is equal to that from a 0.5-kiloton TNT explosion. Data on ground-shock-induced airblast is now sufficient to show that a similar relationship may exist for buried explosions. Because of medium dependence of the gas venting pulse from nuclear explosions, data from additional nuclear events will be required before a chemical/nuclear airblast equivalence can be determined for the gas-venting pulse. (author)

  2. Modeling the fine fragmentation following the triggering stage of a vapor explosion; Modelisation de la fragmentaton fine lors de la phase de declenchement d`une explosion de vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Darbord, I [CEA Grenoble, 38 (France). Service d` Etudes et de Modelisation Thermohydraulique

    1997-06-11

    In the frame of PWR severe accidents, where the core melt, this thesis studies one of the stages of an FCI (fuel coolant interaction) or vapor explosion. An FCI is a rapid evaporation of a coolant when it comes into contact with a hot liquid. More precisely, the subject of this study is the triggering stage of the FCI, when a fuel drop of diameter around one centimeter breaks up into many fragments, diameter of which is around a hundred micrometers. The model describes the cyclic collapse and growth of a vapor bubble around the fuel droplet and its fragmentation. The main features of the model are: - the destabilization of the film or the vapor bubble due to the growth of Rayleigh-Taylor instabilities (those form coolant jets that contact the fuel surface); - The mechanisms of fragmentation, following the contacts (in the case of entrapment of a certain amount of coolant in the fuel, the entrapped coolant evaporates violently after it has been heated to the homogeneous nucleation temperature); - the transient heat transfer from the fragments to the coolant and the elevated vapor production, which leads to an important expansion of the bubble (about this point, the cooling of the fragments has been described by a transient heat transfer coefficient linked to nucleate boiling). The results of the model show good agreement with experimental data. (Author) 68 refs.

  3. Modelling and simulation of gas explosions in complex geometries

    Energy Technology Data Exchange (ETDEWEB)

    Saeter, Olav

    1998-12-31

    This thesis presents a three-dimensional Computational Fluid Dynamics (CFD) code (EXSIM94) for modelling and simulation of gas explosions in complex geometries. It gives the theory and validates the following sub-models : (1) the flow resistance and turbulence generation model for densely packed regions, (2) the flow resistance and turbulence generation model for single objects, and (3) the quasi-laminar combustion model. It is found that a simple model for flow resistance and turbulence generation in densely packed beds is able to reproduce the medium and large scale MERGE explosion experiments of the Commission of European Communities (CEC) within a band of factor 2. The model for a single representation is found to predict explosion pressure in better agreement with the experiments with a modified k-{epsilon} model. This modification also gives a slightly improved grid independence for realistic gas explosion approaches. One laminar model is found unsuitable for gas explosion modelling because of strong grid dependence. Another laminar model is found to be relatively grid independent and to work well in harmony with the turbulent combustion model. The code is validated against 40 realistic gas explosion experiments. It is relatively grid independent in predicting explosion pressure in different offshore geometries. It can predict the influence of ignition point location, vent arrangements, different geometries, scaling effects and gas reactivity. The validation study concludes with statistical and uncertainty analyses of the code performance. 98 refs., 96 figs, 12 tabs.

  4. Multi-stage volcanic island flank collapses with coeval explosive caldera-forming eruptions.

    Science.gov (United States)

    Hunt, James E; Cassidy, Michael; Talling, Peter J

    2018-01-18

    Volcanic flank collapses and explosive eruptions are among the largest and most destructive processes on Earth. Events at Mount St. Helens in May 1980 demonstrated how a relatively small (300 km 3 ), but can also occur in complex multiple stages. Here, we show that multistage retrogressive landslides on Tenerife triggered explosive caldera-forming eruptions, including the Diego Hernandez, Guajara and Ucanca caldera eruptions. Geochemical analyses were performed on volcanic glasses recovered from marine sedimentary deposits, called turbidites, associated with each individual stage of each multistage landslide. These analyses indicate only the lattermost stages of subaerial flank failure contain materials originating from respective coeval explosive eruption, suggesting that initial more voluminous submarine stages of multi-stage flank collapse induce these aforementioned explosive eruption. Furthermore, there are extended time lags identified between the individual stages of multi-stage collapse, and thus an extended time lag between the initial submarine stages of failure and the onset of subsequent explosive eruption. This time lag succeeding landslide-generated static decompression has implications for the response of magmatic systems to un-roofing and poses a significant implication for ocean island volcanism and civil emergency planning.

  5. Trigger system study of the dimuon spectrometer in the ALICE experiment at CERN-LHC

    International Nuclear Information System (INIS)

    Roig, O.

    1999-12-01

    This work is a contribution to the study of nucleus-nucleus collisions at the LHC with ALICE. The aim of this experiment is to search for a new phase of matter, the quark-gluon plasma (QGP). The dimuon forward spectrometer should measure one of the most promising probes of the QGP, the production of heavy quark vector mesons (J/ψ, γ, γ', γ'') through their muonic decays. The dimuon trigger selects the interesting events performing a cut on the transverse momentum of the tracks. The trigger decision is taken by a dedicated electronics using RPC (''Resistive Plate Chambers'') detector information. We have made our own R and D program on the RPC detector with various beam tests. We show the performances obtained during these tests of a low resistivity RPC operating in streamer mode. The ALICE requirements concerning the rate capability, the cluster size and the time resolution are fulfilled. We have optimised the trigger with simulations which include a complete description of the read-out planes and the trigger logic (algorithm). In particular, a technique of clustering is proposed and validated. A method called ''Ds reduction'' is introduced in order to limit the effects of combinatorial background on the trigger rates. The efficiencies and the trigger rates are calculated for Pb-Pb, Ca-Ca, p-p collisions at the LHC. Other more sophisticated cuts, on the invariant mass for example, using again the RPC information have been simulated but have not shown significant improvements of the trigger rates. (author)

  6. Inhomogeneous wire explosion in water

    International Nuclear Information System (INIS)

    Hwangbo, C.K.; Kong, H.J.; Lee, S.S.

    1980-01-01

    Inhomogeneous processes are observed in underwater copper wire explosion induced by a condensed capacitor discharge. The wire used is 0.1 mm in diameter and 10 mm long, and the capacitor of 2 μF is charged to 5 KV. A N 2 laser is used for the diagnostic of spatial extension of exploding copper vapour. The photographs obtained in this experiment show unambiguously the inhomogeneous explosion along the exploding wire. The quenching of plasma by the surrounding water inhibits the expansion of the vapour. It is believed the observed inhomogeneous explosion along the wire is located and localized around Goronkin's striae, which was first reported by Goronkin and discussed by Froengel as a pre-breakdown phenomenon. (author)

  7. Development of an FPGA-based multipoint laser pyroshock measurement system for explosive bolts

    International Nuclear Information System (INIS)

    Abbas, Syed Haider; Lee, Jung-Ryul; Jang, Jae-Kyeong; Kim, Zaeill

    2016-01-01

    Pyroshock can cause failure to the objective of an aerospace structure by damaging its sensitive electronic equipment, which is responsible for performing decisive operations. A pyroshock is the high intensity shock wave that is generated when a pyrotechnic device is explosively triggered to separate, release, or activate structural subsystems of an aerospace architecture. Pyroshock measurement plays an important role in experimental simulations to understand the characteristics of pyroshock on the host structure. This paper presents a technology to measure a pyroshock wave at multiple points using laser Doppler vibrometers (LDVs). These LDVs detect the pyroshock wave generated due to an explosive-based pyrotechnical event. Field programmable gate array (FPGA) based data acquisition is used in the study to acquire pyroshock signals simultaneously from multiple channels. This paper describes the complete system design for multipoint pyroshock measurement. The firmware architecture for the implementation of multichannel data acquisition on an FPGA-based development board is also discussed. An experiment using explosive bolts was configured to test the reliability of the system. Pyroshock was generated using explosive excitation on a 22-mm-thick steel plate. Three LDVs were deployed to capture the pyroshock wave at different points. The pyroshocks captured were displayed as acceleration plots. The results showed that our system effectively captured the pyroshock wave with a peak-to-peak magnitude of 303 741 g. The contribution of this paper is a specialized architecture of firmware design programmed in FPGA for data acquisition of large amount of multichannel pyroshock data. The advantages of the developed system are the near-field, multipoint, non-contact, and remote measurement of a pyroshock wave, which is dangerous and expensive to produce in aerospace pyrotechnic tests.

  8. Development of an FPGA-based multipoint laser pyroshock measurement system for explosive bolts

    Energy Technology Data Exchange (ETDEWEB)

    Abbas, Syed Haider; Lee, Jung-Ryul [Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of); Jang, Jae-Kyeong [The Engineering Institute-Korea, Chonbuk National University, Jeonju (Korea, Republic of); Kim, Zaeill [The 4th R& D Institute-1st directorate, Agency for Defense Development, Daejeon (Korea, Republic of)

    2016-07-15

    Pyroshock can cause failure to the objective of an aerospace structure by damaging its sensitive electronic equipment, which is responsible for performing decisive operations. A pyroshock is the high intensity shock wave that is generated when a pyrotechnic device is explosively triggered to separate, release, or activate structural subsystems of an aerospace architecture. Pyroshock measurement plays an important role in experimental simulations to understand the characteristics of pyroshock on the host structure. This paper presents a technology to measure a pyroshock wave at multiple points using laser Doppler vibrometers (LDVs). These LDVs detect the pyroshock wave generated due to an explosive-based pyrotechnical event. Field programmable gate array (FPGA) based data acquisition is used in the study to acquire pyroshock signals simultaneously from multiple channels. This paper describes the complete system design for multipoint pyroshock measurement. The firmware architecture for the implementation of multichannel data acquisition on an FPGA-based development board is also discussed. An experiment using explosive bolts was configured to test the reliability of the system. Pyroshock was generated using explosive excitation on a 22-mm-thick steel plate. Three LDVs were deployed to capture the pyroshock wave at different points. The pyroshocks captured were displayed as acceleration plots. The results showed that our system effectively captured the pyroshock wave with a peak-to-peak magnitude of 303 741 g. The contribution of this paper is a specialized architecture of firmware design programmed in FPGA for data acquisition of large amount of multichannel pyroshock data. The advantages of the developed system are the near-field, multipoint, non-contact, and remote measurement of a pyroshock wave, which is dangerous and expensive to produce in aerospace pyrotechnic tests.

  9. The ATLAS High Level Trigger Configuration and Steering, Experience with the First 7 TeV Collisions

    CERN Document Server

    Stelzer, J; The ATLAS collaboration

    2011-01-01

    In March 2010 the four LHC experiments saw the first proton-proton collisions at a center-of-mass energy of 7 TeV. Still within the year a collision rate of nearly 10 MHz was expected. At ATLAS, events of potential physics interest for are selected by a three-level trigger system, with a final recording rate of about 200 Hz. The first level (L1) is implemented in customized hardware, the two levels of the high level trigger (HLT) are software triggers. For the ATLAS physics program more than 500 trigger signatures are defined. The HLT tests each signature on each L1-accepted event, the test outcome is recorded for later analysis. The HLT-Steering is responsible for this. It foremost ensures the independence of each signature test and an unbiased trigger decisions. Yet, to minimize data readout and execution time, cached detector data and once-calculated trigger objects are reused to form the decision. Some signature tests are performed only on a scaled-down fraction of candidate events, in order to reduce the...

  10. A proposed Drift Tubes-seeded muon track trigger for the CMS experiment at the High Luminosity-LHC

    CERN Document Server

    AUTHOR|(CDS)2070813; Lazzizzera, Ignazio; Vanini, Sara; Zotto, Pierluigi

    2016-01-01

    The LHC program at 13 and 14 TeV, after the observation of the candidate SM Higgs boson, will help clarify future subjects of study and shape the needed tools. Any upgrade of the LHC experiments for unprecedented luminosities, such as the High Luminosity-LHC ones, must then maintain the acceptance on electroweak processes that can lead to a detailed study of the properties of the candidate Higgs boson. The acceptance of the key lepton, photon and hadron triggers should be kept such that the overall physics acceptance, in particular for low-mass scale processes, can be the same as the one the experiments featured in 2012.In such a scenario, a new approach to early trigger implementation is needed. One of the major steps will be the inclusion of high-granularity tracking sub-detectors, such as the CMS Silicon Tracker, in taking the early trigger decision. This contribution can be crucial in several tasks, including the confirmation of triggers in other subsystems, and the improvement of the on-line momentum mea...

  11. GPUs for the realtime low-level trigger of the NA62 experiment at CERN

    CERN Document Server

    Ammendola, R; Biagioni, A; Chiozzi, S; Cotta Ramusino, A; Fantechi, R; Fiorini, M; Gianoli, A; Graverini, E; Lamanna, G; Lonardo, A; Messina, A; Neri, I; Pantaleo, F; Paolucci, P S; Piandani, R; Pontisso, L; Simula, F; Sozzi, M; Vicini, P

    2015-01-01

    A pilot project for the use of GPUs (Graphics processing units) in online triggering ap- plications for high energy physics experiments (HEP) is presented. GPUs offer a highly parallel architecture and the fact that most of the chip resources are devoted to computa- tion. Moreover, they allow to achieve a large computing power using a limited amount of space and power. The application of online parallel computing on GPUs is shown for the synchronous low level trigger of NA62 experiment at CERN. Direct GPU communication using a FPGA-based board has been exploited to reduce the data transmission latency and results on a first field test at CERN will be highlighted. This work is part of a wider project named GAP (GPU application project), intended to study the use of GPUs in real-time applications in both HEP and medical imagin

  12. RPCs as trigger detector for the ATLAS experiment performances, simulation and application to the level-1 di-muon trigger

    CERN Document Server

    Di Simone, A; Di Ciaccio, A

    2005-01-01

    In the muon spectrometer different detectors are used to provide trigger functionality and precision momentum measurements. In the pseudorapidity range |eta|<1 the first level muon trigger is based on Resistive Plate Chambers, gas ionization detectors which are characterized by a fast response and an excellent time resolution (<1.5ns). The working principles of the Resistive Plate Chambers will be illustrated in chapter 3. Given the long time of operation expected for the ATLAS experiment (~10 years), ageing phenomena have been carefully studied, in order to ensure stable long-term operation of all the subdetectors. Concerning Resistive Plate Chambers, a very extensive ageing test has been performed at CERN's Gamma Irradiation Facility on three production chambers. The results of this test are presented in chapter 4. One of the most commonly used gases in RPCs operation is C2H2F4, which during the gas discharge can produce fluorine ions. Being F one of the most aggressive elements in nature, the presenc...

  13. Experience of Percutaneous Trigger Finger Release under Local ...

    African Journals Online (AJOL)

    Background: Trigger finger is a common disorder of upper extremity. Majority of the patients can be treated conservatively but some resistant cases eventually need surgery. Aim: The aim of this study is to evaluate the results of percutaneous trigger finger release under local anesthesia. Subjects and Methods: This is a ...

  14. Seismic coupling of nuclear explosions. Volume 2

    Energy Technology Data Exchange (ETDEWEB)

    Larson, D B [ed.; Defense Advanced Research Projects Agency, Arlington, VA (United States)

    1989-12-31

    The new Giant Magnet Experimental Facility employing digital recording of explosion induced motion has been constructed and successfully tested. Particle velocity and piezoresistance gage responses can be measured simultaneously thus providing the capability for determining the multi-component stress-strain history in the test material. This capability provides the information necessary for validation of computer models used in simulation of nuclear underground testing, chemical explosion testing, dynamic structural response, earth penetration response, and etc. This report discusses fully coupled and cavity decoupled explosions of the same energy (0.622 kJ) were carried out as experiments to study wave propagation and attenuation in polymethylmethacrylate (PMMA). These experiments produced particle velocity time histories at strains from 2 {times} 10{sup {minus}3} to as low as 5.8 {times} 10{sup {minus}6}. Other experiments in PMMA, reported recently by Stout and Larson{sup 8} provide additional particle velocity data to strains of 10{sup {minus}1}.

  15. The LHCb trigger

    CERN Document Server

    Hernando Morata, Jose Angel

    2006-01-01

    The LHCb experiment relies on an efficient trigger to select a rate up to 2 kHz of events useful for physics analysis from an initial rate of 10 MHz of visible collisions. In this contribution, we describe the different LHCb trigger algorithms and present their expected performance.

  16. A fast filter processor as a part of the trigger logic in an elastic scattering experiment

    International Nuclear Information System (INIS)

    Kenyon Gjerpe, I.

    1981-01-01

    A fast special purpose processor as a part of the trigger logic in an elastic scattering experiment is described. The decision to incorporate such a processor was taken because the trigger rate was estimated to be an order of magnitude higher than the date taking capability of the on-line minicomputer, a NORD 10. The processor is capable of checking the coplanarity and the opening angle of the two outgoing tracks within about 100 μs. This is done with a spatial resolution of 1 mm by using two points each track given by 3 MWPCs. For comparison this is two orders of magnitude faster than the same algorithm coded in assembly language on a PDP 11/40. The main contribution to this increased speed is due to extensive use of pipelining and parallelism. When running with the processor in the trigger, 75% more elastic events per incoming beam particle were collected, and 3 times as many elastic events per trigger were recorded on to tape for further in-depth analysis, than previously. Due to major improvements in the primary trigger logic this was less than the gain initially anticipated. A first version of the processor was designed and constructed in the CERN DD division by J. Joosten, M. Letheren and B. Martin under the supervision of C. Verkerk. The author was involved in the final design, construction and testing, and subsequently was responsible for the intergration, programming and running of the processor in the experiment. (orig.)

  17. Accreting white dwarf models for type I supernovae. I. Presupernova evolution and triggering mechanisms

    International Nuclear Information System (INIS)

    Nomoto, K.

    1982-01-01

    The evolution of carbon-oxygen white dwarfs accreting helium in binary systems has been investigated from the onset of accretion up to the point at which a thermonuclear explosion occurs as a plausible explosion model for a Type I supernova. Although the accreted material has been assumed to be helium, our results should also be applicable to the more general case of accretion of hydrogen-rich material, since hydrogen shell burning leads to the development of a helium zone. Several cases with different accretion rates of helium and different initial masses of the white dwarf have been studied. The relationship between the conditions in the binary system and the triggering mechanism for the supernova explosion is discussed, especially for the cases with relatively slow accretion rate. It is found that the growth of a helium zone on the carbon-oxygen core leads to a supernova explosion which is triggered either by the off-center helium detonation for slow and intermediate accretion rates, or by the carbon deflagration for slow and rapid accretion rates. Both helium detonation and carbon deflagration are possible for the case for the slow accretion since, in this case, the initial mass of the white dwarf is an important parameter for determining the mode of ignition. Finally, various modes of building up the helium zone on the white dwarf, namely, direct transfer of helium from the companion star and the various types and strength of the hydrogen shell flashes are discussed in some detail

  18. ECO steam explosion experiments on the conversion of thermal into mechanical energy

    International Nuclear Information System (INIS)

    Cherdron, W.; Kaiser, A.; Schuetz, W.; Will, H.

    2001-01-01

    In case of a steam explosion, e.g. as a consequence of a severe reactor accident, part of the thermal energy of the melt is transferred into mechanical energy. At Forschungszentrum Karlsruhe, so-called ECO experiments, are being directed to measure the conversion factor under well-defined conditions. In ECO, alumina from a thermite reaction is used as a simulating material instead of corium. Dimensions of the test facility as well as major test conditions, e.g. temperature and release mode of the melt, water inventory and test procedure, are based on the former PREMIX experimental series. In the paper, results of the first test, ECO 01, are given. (orig.)

  19. New Mix Explosives for Explosive Welding

    Science.gov (United States)

    Andreevskikh, Leonid

    2011-06-01

    Suggested and tested were some mix explosives--powder mixtures of a brisant high explosive (HE = RDX, PETN) and an inert diluent (baking soda)--for use in explosive welding. RDX and PETN were selected in view of their high throwing ability and low critical diameter. Since the decomposition of baking soda yields a huge amount of gaseous products, its presence ensures (even at a low HE percentage) a throwing speed that is sufficient for realization of explosive welding, at a reduced brisant action of charge. Mix chargers containing 30-70 wt % HE (the rest baking soda) have been tested experimentally and optimized. For study of possibility to reduce critical diameter of HE mixture, the mixture was prepared where HE crystal sizes did not exceed 10 μm. The tests, which were performed with this HE, revealed that the mixture detonated stably with the velocity D ~ 2 km/s, if the layer thickness was d = 2 mm. The above explosives afford to markedly diminish deformations within the oblique impact zone and thus to carry out explosive welding of hollow items and thin metallic foils.

  20. Five-component propagation model for steam explosion analysis

    International Nuclear Information System (INIS)

    Yang, Y.; Moriyama, Kiyofumi; Park, H.S.; Maruyama, Yu; Sugimoto, Jun

    1999-01-01

    A five-field simulation code JASMINE-pro has been developed at JAERI for the calculation of the propagation and explosion phase of steam explosions. The basic equations and the constitutive relationships specifically utilized in the propagation models in the code are introduced in this paper. Some calculations simulating the KROTOS 1D and 2D steam explosion experiments are also stated in the paper to show the present capability of the code. (author)

  1. The steam explosion potential for an unseated SRS reactor septifoil

    International Nuclear Information System (INIS)

    Allison, D.K.; Hyder, M.L.; Yau, W.W.F.; Smith, D.C.

    1992-01-01

    Control rods in the Savannah River Site's K Reactor are contained within housings composed of seven channels (''septifoils''). Each septifoil is suspended from the top of the reactor and is normally seated on an upflow pin that channels coolant to the septifoil. Forced flow to the septifoil would be eliminated in the unlikely event of a septifoil unseated upon installation, i.e., if the septifoil is not aligned with its upflow pin. If this event were not detected, control rod melting and the interaction of molten metal with water might occur. This paper describes a methodology used to address the issue of steam explosions that might arise by this mechanism. The probability of occurrence of a damaging steam explosion given an unseated septifoil was found to be extremely low. The primary reasons are: (1) the high probability that melting will not occur, (2) the possibility of material holdup by contact with the outer septifoil housing, (3) the relative shallowness of the pool 'Of water into which molten material might fall, (4) the probable absence of a trigger, and (5) the relatively large energy release required to damage a nearby fuel assembly. The methodology is based upon the specification of conditions prevailing within the septifoil at the time molten material is expected to contact water, and upon information derived from the available experimental data base, supplemented by recent prototypic experiments

  2. 78 FR 64246 - Commerce in Explosives; List of Explosives Materials

    Science.gov (United States)

    2013-10-28

    ..., including non-cap sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. [[Page 64247

  3. The trigger for $K^0 \\rightarrow \\pi^{0}\\pi^{0}$ decays of the NA48 experiment at CERN

    OpenAIRE

    Barr, Giles David; Cundy, Donald C; Formenti, F; Gorini, B; Hallgren, Björn I; Iwanski, W; Kapusta, P; Laverrière, G C; Lenti, M; Mikulec, I; Velasco, M; Vossnack, O; Wahl, H; Ziolkowski, M; Porcu, M

    2001-01-01

    The trigger used for the collection of the samples of $K^{0}$ yields $\\pi^{0}\\pi^{0}$ decays in the NA48 experiment at CERN uses a novel pipeline design in order to satisfy the demanding specifications of a high rate kaon beam. The trigger algorithms, architecture and performance are described.

  4. Multi-scale fracture damage associated with underground chemical explosions

    Science.gov (United States)

    Swanson, E. M.; Sussman, A. J.; Wilson, J. E.; Townsend, M. J.; Prothro, L. B.; Gang, H. E.

    2018-05-01

    Understanding rock damage induced by explosions is critical for a number of applications including the monitoring and verification of underground nuclear explosions, mine safety issues, and modeling fluid flow through fractured rock. We use core observations, televiewer logs, and thin section observations to investigate fracture damage associated with two successive underground chemical explosions (SPE2 and SPE3) in granitic rock at both the mesoscale and microscale. We compare the frequency and orientations of core-scale fractures, and the frequency of microfractures, between a pre-experiment core and three post-experiment cores. Natural fault zones and explosion-induced fractures in the vicinity of the explosive source are readily apparent in recovered core and in thin sections. Damage from faults and explosions is not always apparent in fracture frequency plots from televiewer logs, although orientation data from these logs suggests explosion-induced fracturing may not align with the pre-existing fracture sets. Core-scale observations indicate the extent of explosion-induced damage is 10.0 m after SPE2 and 6.8 m after SPE3, despite both a similar size and location for both explosions. At the microscale, damage is observed to a range distance of 10.2 ± 0.9 m after SPE2, and 16.6 ± 0.9 and 11.2 ± 0.6 in two different cores collected after SPE3. Additional explosion-induced damage, interpreted to be the result of spalling, is readily apparent near the surface, but only in the microfracture data. This depth extent and intensity of damage in the near-surface region also increased after an additional explosion. This study highlights the importance of evaluating structural damage at multiple scales for a more complete characterization of the damage, and particularly shows the importance of microscale observations for identifying spallation-induced damage.

  5. Installation, commissioning and performance of the trigger system of the Double Chooz experiment and the analysis of hydrogen capture neutrino events

    Energy Technology Data Exchange (ETDEWEB)

    Lucht, Sebastian

    2013-11-18

    The Double Chooz experiment is a reactor antineutrino experiment located at Chooz, a small town in the Ardennes region in the north of France close to the Belgium border. The aim of the experiment is to measure the leptonic mixing angle θ{sub 13}. The antineutrino flux is measured by two identical detectors at different distances from the reactor cores used as neutrino source, in a so called ''disappearance'' experiment. Double Chooz is a precision experiment because previous experiments indicated a small value of θ{sub 13}. Therefore, the systematic uncertainties introduced by background events and detector related components have to be as small as possible. The detector and all electronic components have been designed accordingly. The first part of this thesis describes the trigger and timing system of the Double Chooz experiment. This system triggers the data acquisition of the detector. It continuously monitors the signals of the photomultiplier tubes (PMTs) of the detector. These signals are summed for groups of PMTs (group signal) and for all PMTs (sum signal). The group signals are the input signals to the trigger system. They are discriminated by one threshold resulting in a multiplicity condition on the number of active group signal discriminators. The sum signal is discriminated by four thresholds. The default trigger configuration for the Double Chooz experiment is based on a combination on the sum signal discriminators and the multiplicity condition. In addition, the trigger system provides a common clock signal for all data acquisition components and an online event classification to allow an online data reduction. The trigger system was installed and commissioned in 2011. In this thesis the commissioning of the trigger system and its performance is presented. Furthermore the development and tests of possible improvements for the trigger system are presented and discussed. The second part of this thesis introduces a complementary

  6. Response of Radon in a seismic calibration explosion, Israel

    International Nuclear Information System (INIS)

    Zafrir, H.; Steinitz, G.; Malik, U.; Haquin, G.; Gazit-Yaari, N.

    2009-01-01

    Radon measurements were performed at shallow levels during an in-land 20-ton seismic calibration explosion experiment, simulating a 2.6-M L earthquake, to investigate the influence of the explosive blast and the transitory seismic wave fields on the Radon transport in the country rock, adjacent to the focus of the explosion. The experiment was conducted in a basalt quarry in the northern margin of the Beit Shean valley (Israel). Five gamma-ray sensors were placed, at a depth of about 2 m, along a line located 17-150 m from the edge of the explosion zone. Measurements commenced 4 days before and continued for 9 days after the explosion with 15 min integrations. A 10-s sampling was used in the interval of several hours before and after the explosion itself. Diurnal variations of Radon, reflecting the typical variation pattern of Radon in the shallow environment, were registered before and after the explosion. No significant change in the overall Radon concentration was observed as a consequence of the main explosion as well as three smaller experimental shots (0.5-2 tons) in the 2 h prior to the calibration blast. The seismological data indicate that the transient excess pressure at the farthest Radon sensor was above 5 bar m -1 during 0.2-0.4 s, and evidently much higher at the nearest sensors, but none of the sensors responded by recording any exceptional change in the Radon concentration. Moreover the hypothesis that additional Radon may emanate from solid grains as a result of the excess local pressure exerted by the blast is also not observed. In contrast to a real earthquake event an explosion experiment has neither eventual preceding nor following geodynamic activity. Therefore the absence of significant Radon anomalies during or after the blast does not contradict assumptions, observations or conclusions as the occurrence of Radon anomalies prior or after an earthquake event due to associated long-term geodynamic processes.

  7. Development of compressible density-based steam explosion simulation code ESE-2

    International Nuclear Information System (INIS)

    Leskovar, M.

    2004-01-01

    A steam explosion is a fuel coolant interaction process by which the energy of the corium is transferred to water in a time-scale smaller than the time-scale for system pressure relief and induces dynamic loading of surrounding structures. A strong enough steam explosion in a nuclear power plant could jeopardize the containment integrity and so lead to a direct release of radioactive material to the environment. To help finding answers on open questions regarding steam explosion understanding and modelling, the steam explosion simulation code ESE-2 is being developed. In contrast to the developed simulation code ESE-1, where the multiphase flow equations are solved with pressure-based numerical methods (best suited for incompressible flow), in ESE-2 densitybased numerical methods (best suited for compressible flow) are used. Therefore ESE-2 will enable an accurate treatment of the whole steam explosion process, which consists of the premixing, triggering, propagation and expansion phase. In the paper the basic characteristics of the mathematical model and the numerical solution procedure in ESE-2 are described. The essence of the numerical treatment is that the convective terms in the multiphase flow equations are calculated with the AUSM+ scheme, which is very time efficient since no field-by-field wave decomposition is needed, using second order accurate discretization. (author)

  8. The use of contained nuclear explosions to create underground reservoirs, and experience of operating these for gas condensate storage

    International Nuclear Information System (INIS)

    Kedrovskij, O.L.; Myasnikov, K.V.; Leonov, E.A.; Romadin, N.M.; Dorodnov, V.F.; Nikiforov, G.A.

    1975-01-01

    Investigations on the creation of underground reservoirs by means of nuclear explosions have been going on in the Soviet Union for many years. In this paper the authors consider three main kinds of sites or formations that can be used for constructing reservoirs by this method, namely, low-permeable rocks, worked-out mines and rock salt formations. Formulae are given for predicting the mechanical effect of an explosion in rocks, taking their strength characteristics into account. Engineering procedures are described for sealing and restoring the emplacement holes, so that they can be used for operating the underground reservoir. Experience with the contruction and operation of a 50 000 m 3 gas-condensate reservoir in a rock salt formation is described. In the appendix to the paper a method is presented for calculating the stability of spherical cavities created by nuclear explosions in rock salt, allowing for the development of elasto-plastic deformations and creep

  9. Primary explosives

    Energy Technology Data Exchange (ETDEWEB)

    Matyas, Robert; Pachman, Jiri [Pardubice Univ. (Czech Republic). Faculty of Chemical Technology

    2013-06-01

    The first chapter provides background such as the basics of initiation and differences between requirements on primary explosives used in detonators and igniters. The authors then clarify the influence of physical characteristics on explosive properties, focusing on those properties required for primary explosives. Furthermore, the issue of sensitivity is discussed. All the chapters on particular groups of primary explosives are structured in the same way, including introduction, physical and chemical properties, explosive properties, preparation and documented use.

  10. The processor farm for online triggering and full event reconstruction of the HERA-B experiment at HERA

    International Nuclear Information System (INIS)

    Gellrich, A.; Dippel, R.; Gensch, U.; Kowallik, R.; Legrand, I.C.; Leich, H.; Sun, F.; Wegner, P.

    1996-01-01

    The main goal of the HERA-B experiment which start taking data in 1988 is to study CP violation in B decays. This article describes the concept and the planned implementation of a multi-processor system, called processor farm,as the last part of the data acquisition and trigger system of the HERA B experiment. The third level trigger task and a full online event reconstruction will be performed on this processor farm, consisting of more then 100 powerful RISC processors which are based on commercial hardware boards. The controlling will be done by a real-time operating system which provides a software development environment, including FORTRAN and C compilers. (author)

  11. Upgrade of the global muon trigger at the CMS experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00282545; Sakulin, Hannes

    2016-09-14

    The Compact Muon Solenoid (CMS) experiment is one of two general purpose detectors at the Large Hadron Collider (LHC) at the particle physics research laboratory in Geneva (CERN). As such it allows a broad array of physics analyses from precision measurements of the standard model of particle physics to searches for exotic new particles. A series of upgrades and maintenance procedures took place in the first shut down from 2013 to 2015. The aim was to prepare the LHC for the collision energy of 13 TeV and further increase its luminosity. During this shut down also upgrades of the CMS experiment were installed.Due to the high rate of collisions at the LHC, it is impossible to record all such events. In order to reduce the event rate to a manageable level, a trigger system is deployed that selects interesting events. At the CMS experiment this system is divided into two levels: A first hardware based system that is optimised for speed and a second that is software based and applies more time consuming and preci...

  12. Multiparametric Experiments and Multiparametric Setups for Metering Explosive Eruptions

    Science.gov (United States)

    Taddeucci, J.; Scarlato, P.; Del Bello, E.

    2016-12-01

    Explosive eruptions are multifaceted processes best studied by integrating a variety of observational perspectives. This need marries well with the continuous stream of new means that technological progress provides to volcanologists to parameterize these eruptions. Since decades, new technologies have been tested and integrated approaches have been attempted during so-called multiparametric experiments, i.e., short field campaigns with many, different instruments (and scientists) targeting natural laboratory volcanoes. Recently, portable multiparametric setups have been developed, including a few, highly complementary instruments to be rapidly deployed at any erupting volcano. Multiparametric experiments and setups share most of their challenges, like technical issues, site logistics, and data processing and interpretation. Our FAMoUS (FAst MUltiparametric Setup) setup pivots around coupled, high-speed imaging (visible and thermal) and acoustic (infrasonic to audible) recording, plus occasional seismic recording and sample collection. FAMoUS provided new insights on pyroclasts ejection and settling and jet noise dynamics at volcanoes worldwide. In the last years we conducted a series of BAcIO (Broadband ACquisition and Imaging Operation) experiments at Stromboli (Italy). These hosted state-of-the-art and prototypal eruption-metering technologies, including: multiple high-speed high-definition cameras for 3-D imaging; combined visible-infrared-ultraviolet imaging; in-situ and remote gas measurements; UAV aerial surveys; Doppler radar, and microphone arrays. This combined approach provides new understandings of the fundamental controls of Strombolian-style activity, and allows for crucial cross-validation of instruments and techniques. Several documentary expeditions participated in the BAcIO, attesting its tremendous potential for public outreach. Finally, sharing field work promotes interdisciplinary discussions and cooperation like nothing in the world.

  13. Data analysis at Level-1 Trigger level

    CERN Document Server

    Wittmann, Johannes; Aradi, Gregor; Bergauer, Herbert; Jeitler, Manfred; Wulz, Claudia; Apanasevich, Leonard; Winer, Brian; Puigh, Darren Michael

    2017-01-01

    With ever increasing luminosity at the LHC, optimum online data selection is getting more and more important. While in the case of some experiments (LHCb and ALICE) this task is being completely transferred to computer farms, the others - ATLAS and CMS - will not be able to do this in the medium-term future for technological, detector-related reasons. Therefore, these experiments pursue the complementary approach of migrating more and more of the offline and High-Level Trigger intelligence into the trigger electronics. This paper illustrates how the Level-1 Trigger of the CMS experiment and in particular its concluding stage, the Global Trigger, take up this challenge.

  14. Forming a three-dimensional porous organic network via solid-state explosion of organic single crystals.

    Science.gov (United States)

    Bae, Seo-Yoon; Kim, Dongwook; Shin, Dongbin; Mahmood, Javeed; Jeon, In-Yup; Jung, Sun-Min; Shin, Sun-Hee; Kim, Seok-Jin; Park, Noejung; Lah, Myoung Soo; Baek, Jong-Beom

    2017-11-17

    Solid-state reaction of organic molecules holds a considerable advantage over liquid-phase processes in the manufacturing industry. However, the research progress in exploring this benefit is largely staggering, which leaves few liquid-phase systems to work with. Here, we show a synthetic protocol for the formation of a three-dimensional porous organic network via solid-state explosion of organic single crystals. The explosive reaction is realized by the Bergman reaction (cycloaromatization) of three enediyne groups on 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene. The origin of the explosion is systematically studied using single-crystal X-ray diffraction and differential scanning calorimetry, along with high-speed camera and density functional theory calculations. The results suggest that the solid-state explosion is triggered by an abrupt change in lattice energy induced by release of primer molecules in the 2,3,6,7,14,15-hexaethynyl-9,10-dihydro-9,10-[1,2]benzenoanthracene crystal lattice.

  15. Industry potential of large scale uses for peaceful nuclear explosives

    Energy Technology Data Exchange (ETDEWEB)

    Russell, P L [Bureau of Mines, Denver, CO (United States)

    1969-07-01

    The industrial potential for peaceful uses of nuclear explosions entering a critical stage of development. Should Project Gasbuggy, an experiment to determine to what extent an underground nuclear explosion can stimulate the production of natural gas from low-permeability formations, prove a technical or economic success, a great step forward will have been made. Should other experiments now being considered in natural gas, oil shale, copper, coal, water resources, underground storage, and others, also demonstrate technical or economic advantage, it is conceivable to expect peaceful nuclear explosion to grow from our current rate of one or two experimental shots per year to hundreds of production explosions per year. This growth rate could be severely restricted or reduced to zero if public safety and environmental control cannot be exercised. (author)

  16. Industry potential of large scale uses for peaceful nuclear explosives

    International Nuclear Information System (INIS)

    Russell, P.L.

    1969-01-01

    The industrial potential for peaceful uses of nuclear explosions entering a critical stage of development. Should Project Gasbuggy, an experiment to determine to what extent an underground nuclear explosion can stimulate the production of natural gas from low-permeability formations, prove a technical or economic success, a great step forward will have been made. Should other experiments now being considered in natural gas, oil shale, copper, coal, water resources, underground storage, and others, also demonstrate technical or economic advantage, it is conceivable to expect peaceful nuclear explosion to grow from our current rate of one or two experimental shots per year to hundreds of production explosions per year. This growth rate could be severely restricted or reduced to zero if public safety and environmental control cannot be exercised. (author)

  17. CTBT calibration explosions at the Semipalatinsk test site (1997-2000)

    International Nuclear Information System (INIS)

    Leith, W.; Kluchko, L.J.; Knowles, C.P.; Linger, D.A.; Gabriel, L.; Belyashova, N.N.; Tukhvatulin, Sh.T.; Demin, V.N.; Konovalov, V.E.

    2000-01-01

    The article shows the results of experiments, conducted together by American and Kazakhstan researchers at the Semipalatinsk test site during 6 chemical calibration explosions and preparation of the seventh between 1997 and 2000. The main goal of the experiments is calibration of International Monitoring System for Comprehensive Test Ban Treaty and development of understanding of explosions as seismic sources. (author)

  18. Results from an on-line non-leptonic neural trigger implemented in an experiment looking for beauty

    International Nuclear Information System (INIS)

    Baldanza, C.; Musico, P.; Novelli, P.; Passaseo, M.

    1995-01-01

    Results from a non-leptonic neural-network trigger hosted by experiment WA92, looking for beauty particle production from 350 GeV negative pions on a fixed Cu target, are presented. The neural trigger has been used to send events selected by means of a non-leptonic signature based on microvertex detector information to a special data stream, meant for early analysis. The non-leptonic signature, defined in a neural-network fashion, was devised so as to enrich the selected sample in the number of events containing C3 secondary vertices (i.e, vertices having three tracks with sum of electric charges equal to +1 or -1), which are sought for further analysis to identify charm and beauty non-leptonic decays. The neural trigger module consists of a VME crate hosting two MA16 digital neural chips from Siemens and two ETANN analog neural chips from Intel. During the experimental run, only the ETANN chips were operational. The neural trigger operated for two continuous weeks during the WA92 1993 run. For an acceptance of 15% for C3 events, the neural trigger yields a C3 enrichment factor of 6.6-7.1 (depending on the event sample considered), which multiplied by that already provided by the standard trigger leads to a global C3 enrichment factor of similar 150. In the event sample selected by the neural trigger, one every similar 7 events contains a C3 vertex. The response time of the neural trigger module is 5.8 μs. (orig.)

  19. Results from an on-line non-leptonic neural trigger implemented in an experiment looking for beauty

    Energy Technology Data Exchange (ETDEWEB)

    Baldanza, C. [INFN, Bologna (Italy). ANNETTHE; Bisi, F. [INFN, Bologna (Italy). ANNETTHE; Cotta-Ramusino, A. [INFN, Bologna (Italy). ANNETTHE; D`Antone, I. [INFN, Bologna (Italy). ANNETTHE; Malferrari, L. [INFN, Bologna (Italy). ANNETTHE; Mazzanti, P. [INFN, Bologna (Italy). ANNETTHE; Odorici, F. [INFN, Bologna (Italy). ANNETTHE; Odorico, R. [INFN, Bologna (Italy). ANNETTHE; Zuffa, M. [INFN, Bologna (Italy). ANNETTHE; Bruschini, C. [Istituto Nazionale di Fisica Nucleare, Genoa (Italy); Musico, P. [Istituto Nazionale di Fisica Nucleare, Genoa (Italy); Novelli, P. [Istituto Nazionale di Fisica Nucleare, Genoa (Italy); Passaseo, M. [European Organization for Nuclear Research, Geneva (Switzerland)

    1995-07-15

    Results from a non-leptonic neural-network trigger hosted by experiment WA92, looking for beauty particle production from 350 GeV negative pions on a fixed Cu target, are presented. The neural trigger has been used to send events selected by means of a non-leptonic signature based on microvertex detector information to a special data stream, meant for early analysis. The non-leptonic signature, defined in a neural-network fashion, was devised so as to enrich the selected sample in the number of events containing C3 secondary vertices (i.e, vertices having three tracks with sum of electric charges equal to +1 or -1), which are sought for further analysis to identify charm and beauty non-leptonic decays. The neural trigger module consists of a VME crate hosting two MA16 digital neural chips from Siemens and two ETANN analog neural chips from Intel. During the experimental run, only the ETANN chips were operational. The neural trigger operated for two continuous weeks during the WA92 1993 run. For an acceptance of 15% for C3 events, the neural trigger yields a C3 enrichment factor of 6.6-7.1 (depending on the event sample considered), which multiplied by that already provided by the standard trigger leads to a global C3 enrichment factor of similar 150. In the event sample selected by the neural trigger, one every similar 7 events contains a C3 vertex. The response time of the neural trigger module is 5.8 {mu}s. (orig.).

  20. Contribution to the design and implementation of the trigger and acquisition system of the L3 experiment at LEP

    International Nuclear Information System (INIS)

    Cai, X.

    1994-10-01

    The thesis is devoted to the trigger and data acquisition system of the L3 experiment at LEP. It is a large distributed system with multiple levels to trigger, collect and record events detected by the L3 detector. The three trigger levels are designed to reduce a possible first level trigger rate of 100 Hz to a few Hz. The readout and event building systems have intermediate buffering so that the only dead time is only introduced during digitization of the detector signals. The emphasis of this thesis is on the Hadron Calorimeter (one of the sub detectors) readout system, the L3 event building system and the upgraded level-3-trigger system. Both hardware and software are described. (author). 126 refs., 48 figs., 23 tabs

  1. The NA27 trigger

    International Nuclear Information System (INIS)

    Bizzarri, R.; Di Capua, E.; Falciano, S.; Iori, M.; Marel, G.; Piredda, G.; Zanello, L.; Haupt, L.; Hellman, S.; Holmgren, S.O.; Johansson, K.E.

    1985-05-01

    We have designed and implemented a minimum bias trigger together with a fiducial volume trigger for the experiment NA27, performed at the CERN SPS. A total of more than 3 million bubble chamber pictures have been taken with a triggered cross section smaller than 75% of the total inelastic cross section. Events containing charm particles were triggered with an efficiency of 98 +2 sub(-3)%. With the fiducial volume trigger, the probability for a picture to contain an interaction in the visible hydrogen increased from 47.3% to 59.5%, reducing film cost and processing effort with about 20%. The improvement in data taking rate is shown to be negligible. (author)

  2. Geometrical Acceptance Analysis for RPC PAC Trigger

    CERN Document Server

    Seo, Eunsung

    2010-01-01

    The CMS(Compact Muon Solenoid) is one of the four experiments that will analyze the collision results of the protons accelerated by the Large Hardron Collider(LHC) at CERN(Conseil Europen pour la Recherche Nuclaire). In case of the CMS experiment, the trigger system is divided into two stages : The Level-1 Trigger and High Level Trigger. The RPC(Resistive Plate Chamber) PAC(PAttern Comparator) Trigger system, which is a subject of this thesis, is a part of the Level-1 Muon Trigger System. Main task of the PAC Trigger is to identify muons, measures transverse momenta and select the best muon candidates for each proton bunch collision occurring every 25 ns. To calculate the value of PAC Trigger efficiency for triggerable muon, two terms of different efficiencies are needed ; acceptance efficiency and chamber efficiency. Main goal of the works described in this thesis is obtaining the acceptance efficiency of the PAC Trigger in each logical cone. Acceptance efficiency is a convolution of the chambers geometry an...

  3. The Lived Experience of Lupus Flares: Features, Triggers, and Management in an Australian Female Cohort

    Directory of Open Access Journals (Sweden)

    Marline L. Squance

    2014-01-01

    Full Text Available Individuals living with lupus commonly experience daily backgrounds of symptoms managed to acceptable tolerance levels to prevent organ damage. Despite management, exacerbation periods (flares still occur. Varied clinical presentations and unpredictable symptom exacerbation patterns provide management and assessment challenges. Patient perceptions of symptoms vary with perceived impact, lifestyles, available support, and self-management capacity. Therefore, to increase our understanding of lupus’ health impacts and management, it was important to explore lupus flare characteristics from the patient viewpoint. Lupus flares in 101 Australian female patients were retrospectively explored with the use of a novel flare definition. Qualitative methods were used to explore patient-perceived flare symptoms, triggers, and management strategies adopted to alleviate symptom exacerbations. A mean of 29.9 flare days, with 6.8 discrete flares, was experienced. The study confirmed that patients perceive stress, infection, and UV light as flare triggers and identified new potential triggers of temperature and weather changes, work, and chemical exposure from home cleaning. The majority of flares were self-managed with patients making considered management choices without medical input. Barriers to seeking medical support included appointment timings and past negative experiences reflecting incongruence between clinician and patient views of symptom impact, assessment, and ultimately flare occurrence.

  4. Triggering the GRANDE array

    International Nuclear Information System (INIS)

    Wilson, C.L.; Bratton, C.B.; Gurr, J.; Kropp, W.; Nelson, M.; Sobel, H.; Svoboda, R.; Yodh, G.; Burnett, T.; Chaloupka, V.; Wilkes, R.J.; Cherry, M.; Ellison, S.B.; Guzik, T.G.; Wefel, J.; Gaidos, J.; Loeffler, F.; Sembroski, G.; Goodman, J.; Haines, T.J.; Kielczewska, D.; Lane, C.; Steinberg, R.; Lieber, M.; Nagle, D.; Potter, M.; Tripp, R.

    1990-01-01

    A brief description of the Gamma Ray And Neutrino Detector Experiment (GRANDE) is presented. The detector elements and electronics are described. The trigger logic for the array is then examined. The triggers for the Gamma Ray and the Neutrino portions of the array are treated separately. (orig.)

  5. Charging method of water hole with ANFO explosive

    Energy Technology Data Exchange (ETDEWEB)

    Shimizu, Susumu

    1988-02-28

    It has been investigated how to charge a water hole with an inexpensive explosive for blasting. An experiment was made using the combination of a plasticized resin hose and the ANFO charger as the method for making the most of the ANFO explosive aiming at charging a hole with the explosive at a low cost without damaging the hole wall. The experimental result indicates that any water hole with spring water can be charged with the explosive using the ANFO charger combined with the plasticized resin hose. The method is superior to conventional methods in cost and workability because the working atmosphere is not aggravated and the hole wall is not damaged without using an expensive vacuum collector. Charging a blasting hole 165 mm or less in diameter with the explosive will be investigated for commercialization in future. (4 figs)

  6. On-line trigger processor in PETRA/DORIS experiments at DESY

    CERN Document Server

    ölschläger, R

    1981-01-01

    Data, presented at a poster session, on on-line trigger processing are given. Brief details of trigger processors at the detectors CELLO, TASSO and ARAUS are shown, including: general working method; IC technology; power consumption; logic elements for trigger decision; number of chambers; number of input wires; execution time; parameter variation; links to host computer; cost; test features. (0 refs).

  7. Raman hyperspectral imaging in conjunction with independent component analysis as a forensic tool for explosive analysis: The case of an ATM explosion.

    Science.gov (United States)

    Almeida, Mariana Ramos; Logrado, Lucio Paulo Lima; Zacca, Jorge Jardim; Correa, Deleon Nascimento; Poppi, Ronei Jesus

    2017-11-01

    In this work, Raman hyperspectral imaging, in conjunction with independent component analysis, was employed as an analytical methodology to detect an ammonium nitrate fuel oil (ANFO) explosive in banknotes after an ATM explosion experiment. The proposed methodology allows for the identification of the ANFO explosive without sample preparation or destroying the sample, at quantities as small as 70μgcm -2 . The explosive was identified following ICA data decomposition by the characteristic nitrate band at 1044cm -1 . The use of Raman hyperspectral imaging and independent component analysis shows great potential for identifying forensic samples by providing chemical and spatial information. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Nondestructive test for assembly relationship of initiating explosive device

    International Nuclear Information System (INIS)

    Wang Xiangang; Zhang Chaozong; Guo Zhiping

    2009-01-01

    A 3D computed tomography (CT) method to inspect assembly relationship of initiating explosive device and to nondestructively evaluate assembly relationship by building geometric model from CT images was described. The experiment result proves that this method accurately inspects assembly relationship of initiating explosive device. (authors)

  9. Investigation of index finger triggering force using a cadaver experiment: Effects of trigger grip span, contact location, and internal tendon force.

    Science.gov (United States)

    Chang, Joonho; Freivalds, Andris; Sharkey, Neil A; Kong, Yong-Ku; Mike Kim, H; Sung, Kiseok; Kim, Dae-Min; Jung, Kihyo

    2017-11-01

    A cadaver study was conducted to investigate the effects of triggering conditions (trigger grip span, contact location, and internal tendon force) on index finger triggering force and the force efficiency of involved tendons. Eight right human cadaveric hands were employed, and a motion simulator was built to secure and control the specimens. Index finger triggering forces were investigated as a function of different internal tendon forces (flexor digitorum profundus + flexor digitorum superficialis = 40, 70, and 100 N), trigger grip spans (40, 50, and 60 mm), and contact locations between the index finger and a trigger. Triggering forces significantly increased when internal tendon forces increased from 40 to 100 N. Also, trigger grip spans and contact locations had significant effects on triggering forces; maximum triggering forces were found at a 50 mm span and the most proximal contact location. The results revealed that only 10-30% of internal tendon forces were converted to their external triggering forces. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Development of a new scintillation-trigger detector for the MTV experiment using aluminum-metallized film tape

    Science.gov (United States)

    Sakamoto, Yuko; Ozaki, Sachi; Tanaka, Saki; Tanuma, Ryosuke; Yoshida, Tatsuru; Murata, Jiro

    2014-09-01

    A new type of trigger-scintillation counter array designed for the MTV experiment at TRIUMF-ISAC has been developed, using aluminum-metallized film tape for wrapping. The MTV experiment aims to perform the finest precision test of time reversal symmetry in nuclear beta decay. In that purpose, we search non-zero T-Violating transverse polarization of electrons emitted from polarized Li-8 nuclei. It uses a cylindrical drift chamber (CDC) as the main electron-tracking detector. The trigger-scintillation counter consists of 12-segmented 1 mm thick 300 mm long thin plastic scintillation counters. This counter is placed inside the CDC to generate a trigger signal. The required assembling precision of +-0.5 mm was a tricky point when we tried to use conventional total reflection mode. Indeed, produce an air-layer surrounding the scintillating bar to keep good light transmission was the main issue. For this reason, we tried to use a new wrapping material made of metallized-aluminum tape, which has a good mirror-like reflecting surface on both sides of the tape. Through this report, we will compare detection efficiency and light attenuation between conventional and new wrapping materials.

  11. Topological Trigger Developments

    CERN Multimedia

    Likhomanenko, Tatiana

    2015-01-01

    The main b-physics trigger algorithm used by the LHCb experiment is the so-called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger utilized a custom boosted decision tree algorithm, selected an almost 100% pure sample of b-hadrons with a typical efficiency of 60-70%, and its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and uBoost. The topological trigger algorithm is designed to select all "interesting" decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. These inclu...

  12. L2TTMON Monitoring Program for L2 Topological Trigger in H1 Experiment - User's Guide

    International Nuclear Information System (INIS)

    Banas, E.; Ducorps, A.

    1999-01-01

    Monitoring software for the L2 Topological Trigger in H1 experiment consists of two parts working on two different computers. The hardware read-out and data processing is done on a fast FIC 8234 computer working with the OS9 real time operating system. The Macintosh Quadra is used as a Graphic User Interface for accessing the OS9 trigger monitoring software. The communication between both computers is based on the parallel connection between the Macintosh and the VME crate, where the FIC computer is placed. The special designed protocol (client-server) is used to communicate between both nodes. The general scheme of monitoring for the L2 Topological Trigger and detailed description of using of the monitoring software in both nodes are given in this guide. (author)

  13. Conceptual investigations of a trigger extension for muons from pp collisions in the CMS experiment

    International Nuclear Information System (INIS)

    Erdogan, Yusuf

    2015-01-01

    As of 2023, the Large Hadron Collider can provide its experiments with five to ten times more luminosity than the current design value of 10 34 cm -2 s -1 . This upgrade will allow for the measurement of physics processes with very small cross sections. However, at these high luminosities, due to the pileup interactions, the detector occupancy will be very high. This will cause, on the one hand, a systematic increase of the trigger rates for single muons. On the other hand, amplified by the limited momentum resolution of the muon system, mismeasurements of the transverse momenta of muons will be dominant in the high momentum regime. In this region, the trigger rate distribution will saturate and the rate limitation with a transverse momentum threshold will be difficult. Furthermore, the quality of the single muon trigger at Level 1 will be decreased due to coincident particle transitions causing ambiguities in the innermost muon chambers. In 2007, a concept called Muon Track fast Tag (MTT) was introduced to address these trigger challenges. The studies, performed in this thesis, are divided into three parts. Concerning the MTT proposal, the main part deals with conceptual investigations on the possible trigger extension for muons from proton proton collisions in the CMS experiment. Thereby, the focus lies on the fundamental question of the muon detection capability of a scintillator system with SiPM readout. Such a system is the Hadron Outer calorimeter of CMS which is used for studies to answer this question. In the second part, the integration of the MTT system in the geometry description of the CMS detector is outlined. Thereby, it is written as a technical recipe which allows the understanding of the implementation of a new detector system in the CMS detector description. The last part of this thesis focuses on the Geant 4 simulations of the first MTT prototype. In this part, together with the simulation setup, selected results are introduced.

  14. What factors control the superficial lava dome explosivity?

    Science.gov (United States)

    Boudon, Georges; Balcone-Boissard, Hélène; Villemant, Benoit; Morgan, Daniel J.

    2015-04-01

    Dome-forming eruption is a frequent eruptive style; lava domes result from intermittent, slow extrusion of viscous lava. Most dome-forming eruptions produce highly microcrystallized and highly- to almost totally-degassed magmas which have a low explosive potential. During lava dome growth, recurrent collapses of unstable parts are the main destructive process of the lava dome, generating concentrated pyroclastic density currents (C-PDC) channelized in valleys. These C-PDC have a high, but localized, damage potential that largely depends on the collapsed volume. Sometimes, a dilute ash cloud surge develops at the top of the concentrated flow with an increased destructive effect because it may overflow ridges and affect larger areas. In some cases, large lava dome collapses can induce a depressurization of the magma within the conduit, leading to vulcanian explosions. By contrast, violent, laterally directed, explosions may occur at the base of a growing lava dome: this activity generates dilute and turbulent, highly-destructive, pyroclastic density currents (D-PDC), with a high velocity and propagation poorly dependent on the topography. Numerous studies on lava dome behaviors exist, but the triggering of lava dome explosions is poorly understood. Here, seven dome-forming eruptions are investigated: in the Lesser Antilles arc: Montagne Pelée, Martinique (1902-1905, 1929-1932 and 650 y. BP eruptions), Soufrière Hills, Montserrat; in Guatemala, Santiaguito (1929 eruption); in La Chaîne des Puys, France (Puy de Dome and Puy Chopine eruptions). We propose a new model of superficial lava-dome explosivity based upon a textural and geochemical study (vesicularity, microcrystallinity, cristobalite distribution, residual water contents, crystal transit times) of clasts produced by these key eruptions. Superficial explosion of a growing lava dome may be promoted through porosity reduction caused by both vesicle flattening due to gas escape and syn-eruptive cristobalite

  15. Liquid-liquid contact in vapor explosion

    International Nuclear Information System (INIS)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This phenomenon is called a vapor explosion. One method of producing intimate, liquid-liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. The report describes experiments in which cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials

  16. Gas explosion in domestic buildings. The vented gas explosion[sub][/sub

    Directory of Open Access Journals (Sweden)

    Tadeusz Chyży

    2014-08-01

    Full Text Available In this paper, the basic information, related to the so-called vented gas explosion, has been presented. The vented explosion it is an explosion, during which the destruction of the weakest elements of the structure occurs. Through the resulting holes (decompressing surfaces can flow both combustion products and non-burned gas mixture. In consequence, reduction of the maximum explosion pressure[i] P[sub]red [/sub][/i] may be significant. Often, a gas explosion occurs inside residential buildings. In this case, natural vents are window and door openings.[b]Keywords[/b]: gas, explosion, combustion, explosion vents

  17. The LHCb trigger and data acquisition system

    CERN Document Server

    Dufey, J P; Harris, F; Harvey, J; Jost, B; Mato, P; Müller, E

    2000-01-01

    The LHCb experiment is the most recently approved of the 4 experiments under construction at CERNs LHC accelerator. It is a special purpose experiment designed to precisely measure the CP violation parameters in the B-B system. Triggering poses special problems since the interesting events containing B-mesons are immersed in a large background of inelastic p-p reactions. We therefore decided to implement a 4 level triggering scheme. The LHCb Data Acquisition (DAQ) system will have to cope with an average trigger rate of ~40 kHz, after two levels of hardware triggers, and an average event size of ~100 kB. Thus an event-building network which can sustain an average bandwidth of 4 GB/s is required. A powerful software trigger farm will have to be installed to reduce the rate from the 40 kHz to ~100 Hz of events written to permanent storage. In this paper we outline the general architecture of the Trigger and DAQ system and the readout protocols we plan to implement. First results of simulations of the behavior o...

  18. The Level-1 Global Muon Trigger for the CMS Experiment

    OpenAIRE

    Sakulin, H; Taurok, Anton

    2003-01-01

    The three independent Level-1 muon trigger systems in CMS deliver up to 16 muon candidates per bunch crossing, each described by transverse momentum, direction, charge and quality. The Global Muon Trigger combines these measurements in order to find the best four muon candidates in the entire detector and attaches bits from the calorimeter trigger to denote calorimetric isolation and confirmation. A single-board logic design is presented: via a special front panel and a custom back plane more...

  19. FPGA-based fast pipeline-parameterized-sorter implementation for first level trigger systems in HEP experiments

    CERN Document Server

    Pozniak, Krzysztof T

    2004-01-01

    The paper describes a behavioral model of fast, pipeline sorter dedicated to electronic triggering applications in the experiments of high energy physics (HEP). The sorter was implemented in FPGA for the RPC Muon Detector of CMS experiment (LHC accelerator, CERN) and for Backing Calorimeter (BAC) in ZEUS experiment (HERA accelerator, DESY) . A general principle of the applied sorting algorithm was presented. The implementation results were debated in detail for chosen FPGA chips by ALTERA and XILINX manufactures. The realization costs have been calculated as function of system parameters.

  20. Readout and triggering of the Soudan 2 nucleon decay experiment

    International Nuclear Information System (INIS)

    Thron, J.L.

    1984-01-01

    The readout and triggering electronics for the Soudan 2 proton decay detector is presented. Pratically all the electronics is implemented in CMOS. The triggering scheme is highly flexible and software controllable

  1. Droplet solidification and the potential for steam explosions

    International Nuclear Information System (INIS)

    Epstein, M.; Fauske, H.K.; Luangdilok, W.

    2009-01-01

    It is well known that under certain circumstances a mixture of coarse-hot (molten) drops in water formed from pouring a hot melt into water explodes. This so-called 'steam explosion' is generally believed to involve steam-bubble-collapse-induced fine fragmentation of the melt drops and concomitant water vaporization on a timescale that is short compared with the steam pressure relief time. Motivated by the idea put forth by Okkonen and Sehgal that rapid solidification would render UO 2 -containing (Corium) melt drops stiff and resistant to the steam-bubble-collapse-induced fragmentation required to support an explosion, here we combine solidification theory with an available theory of the stability of thin, submerged crusts subject to acceleration to predict the 'cutoff time' beyond which melt-drop fragmentation is suppressed by crust cover rigidity. Illustration calculations show that the cutoff time for Corium melt drops in water is a fraction of a second and probably shorter than the time it takes to form the explosion-prerequisite-coarse-premixture configuration of melt drops in water, while the opposite is true for the molten aluminum oxide/water system for which the window of opportunity for an explosion is predicted to be several seconds. These theoretical findings are consistent with early experiments that revealed molten uranium oxide or Corium pours into water to be non-explosive and that produced steam explosions upon pouring molten aluminum oxide into water. Also in this paper, the recent TROI Corium/water interaction experiments are examined and it is concluded that they do not contravene the earlier experimental observations that the pouring of prototypical Corium mixtures into water does not result in steam explosions with destructive potential. (author)

  2. Surface and body waves from surface and underground explosions

    International Nuclear Information System (INIS)

    Kusubov, A.S.

    1976-06-01

    The characteristics of surface and ground waves were recorded for surface and underground explosions up to 100 tons and 40 kt in magnitude, respectively, and a preliminary analysis of these results is presented. The experiments were conducted at NTS in the Yucca Flats, Nevada. Ground motions were detected with triaxial geophones along seismic lines extending up to 16 miles from the point of explosions. A comparison of Rayleigh waves generated by surface and underground explosions in the same lake bed is presented indicating a very different behavior of surface and ground waves from the two types of explosions. The magnitude of the transverse wave for surface shots was smaller by a factor of two than its longitudinal counterpart. The dependence of apparent periods on the blast energy was not apparent at a fixed distance from the explosions. Changes in the apparent period with distance for both types of explosion are compared indicating a strong layering effect of the lake bed. The ground motion study was complimented by excavation of cavities generated by the explosions

  3. Trigger Menu in 2017

    CERN Document Server

    The ATLAS collaboration

    2018-01-01

    This document summarises the trigger menu deployed by the ATLAS experiment during 2017 data taking at proton-proton collision centre-of-mass energies of $\\sqrt{s}=13$ TeV and $\\sqrt{s}=5$ TeV at the LHC and describes the improvements with respect to the trigger system and menu used in 2016 data taking.

  4. Coulomb explosion of “hot spot”

    Energy Technology Data Exchange (ETDEWEB)

    Oreshkin, V. I., E-mail: oreshkin@ovpe.hcei.tsc.ru [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); Tomsk Polytechnic University, Tomsk (Russian Federation); Oreshkin, E. V. [P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Chaikovsky, S. A. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation); P. N. Lebedev Physical Institute, RAS, Moscow (Russian Federation); Institute of Electrophysics, UD, RAS, Ekaterinburg (Russian Federation); Artyomov, A. P. [Institute of High Current Electrons, SB, RAS, Tomsk (Russian Federation)

    2016-09-15

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  5. Coulomb explosion of “hot spot”

    International Nuclear Information System (INIS)

    Oreshkin, V. I.; Oreshkin, E. V.; Chaikovsky, S. A.; Artyomov, A. P.

    2016-01-01

    The study presented in this paper has shown that the generation of hard x rays and high-energy ions, which are detected in pinch implosion experiments, may be associated with the Coulomb explosion of the hot spot that is formed due to the outflow of the material from the pinch cross point. During the process of material outflow, the temperature of the hot spot plasma increases, and conditions arise for the plasma electrons to become continuously accelerated. The runaway of electrons from the hot spot region results in the buildup of positive space charge in this region followed by a Coulomb explosion. The conditions for the hot spot plasma electrons to become continuously accelerated have been revealed, and the estimates have been obtained for the kinetic energy of the ions generated by the Coulomb explosion.

  6. Thermal hazard assessment of AN and AN-based explosives

    Energy Technology Data Exchange (ETDEWEB)

    Turcotte, T.; Lightfoot, P. D.; Fouchard, R.; Jones, D. E. G. [Natural Resources Canada, CANMET Canadian Explosives Research Laboratory, Ottawa, ON (Canada)

    2002-12-01

    Ammonium-based aqeous solutions of various concentrations are processed in both the fertilizer and explosives industry, and ammonium nitrate emulsions form the basis of bulk ammonium nitrate emulsion explosives. Major accidents involving overheating of large quantities of these products are not uncommon. To provide guidance to handling large bulk quantities of these materials laboratory experiments must be carried out in such a way as to minimize heat losses from the samples. In this study experiments were performed on pure ammonium, the popular commercial explosive ANFO, various aqueous ammonium solutions and typical bulk and packaged ammonium nitrate emulsions, using two laboratory-scale calorimeters (accelerating rate calorimeter and adiabatic Dewar calorimeter). The objective of the experiments was to study the effects of sample mass, atmosphere, and formulation on the resulting onset temperatures. Result from the two techniques were compared and a method for extrapolating these results to large-scale inventories was proposed. 22 refs., 4 tabs., 14 figs.

  7. Architecture of a Level 1 Track Trigger for the CMS Experiment

    CERN Document Server

    Heintz, Ulrich

    2010-01-01

    The luminosity goal for the Super-LHC is 1035/cm2/s. At this luminosity the number of proton-proton interactions in each beam crossing will be in the hundreds. This will stress many components of the CMS detector. One system that has to be upgraded is the trigger system. To keep the rate at which the level 1 trigger fires manageable, information from the tracker has to be integrated into the level 1 trigger. Current design proposals foresee tracking detectors that perform on-detector filtering to reject hits from low-momentum particles. In order to build a trigger system, the filtered hit data from different layers and sectors of the tracker will have to be transmitted off the detector and brought together in a logic processor that generates trigger tracks within the time window allowed by the level 1 trigger latency. I will describe a possible architecture for the off-detector logic that accomplishes this goal.

  8. The ATLAS hadronic tau trigger

    International Nuclear Information System (INIS)

    Shamim, Mansoora

    2012-01-01

    The extensive tau physics programs of the ATLAS experiment relies heavily on trigger to select hadronic decays of tau lepton. Such a trigger is implemented in ATLAS to efficiently collect signal events, while keeping the rate of multi-jet background within the allowed bandwidth. This contribution summarizes the performance of the ATLAS hadronic tau trigger system during 2011 data taking period and improvements implemented for the 2012 data collection.

  9. Effect of degree of subcooling on vapor explosion

    International Nuclear Information System (INIS)

    Xu Zhihong; Yang Yanhua; Li Tianshu

    2010-01-01

    In order to investigate the mechanism of the vapor explosion, an observable experiment equipment for low-temperature molten materials to be dropped into water was designed. In the experiment, molten material jet was injected into water to experimentally obtain the visualized information. This experiment results show that the degree of subcooling restrains the explosion. In order to validate the result by other aspects, the breakup experiment was conducted. Results show that the degree of water subcooling is important to melt breakup. High temperature of water is easy to increase the vapor generation during molten material falling, which decrease the drag and accelerated the molten material falling. At the same time, more vapor appear around the molten metal decrease the heat transfer amount between water and molten materials. The two experimental results coincide. (authors)

  10. Sensitivity of numerical dispersion modeling to explosive source parameters

    International Nuclear Information System (INIS)

    Baskett, R.L.; Cederwall, R.T.

    1991-01-01

    The calculation of downwind concentrations from non-traditional sources, such as explosions, provides unique challenges to dispersion models. The US Department of Energy has assigned the Atmospheric Release Advisory Capability (ARAC) at the Lawrence Livermore National Laboratory (LLNL) the task of estimating the impact of accidental radiological releases to the atmosphere anywhere in the world. Our experience includes responses to over 25 incidents in the past 16 years, and about 150 exercises a year. Examples of responses to explosive accidents include the 1980 Titan 2 missile fuel explosion near Damascus, Arkansas and the hydrogen gas explosion in the 1986 Chernobyl nuclear power plant accident. Based on judgment and experience, we frequently estimate the source geometry and the amount of toxic material aerosolized as well as its particle size distribution. To expedite our real-time response, we developed some automated algorithms and default assumptions about several potential sources. It is useful to know how well these algorithms perform against real-world measurements and how sensitive our dispersion model is to the potential range of input values. In this paper we present the algorithms we use to simulate explosive events, compare these methods with limited field data measurements, and analyze their sensitivity to input parameters. 14 refs., 7 figs., 2 tabs

  11. The ATLAS trigger high-level trigger commissioning and operation during early data taking

    CERN Document Server

    Goncalo, R

    2008-01-01

    The ATLAS experiment is one of the two general-purpose experiments due to start operation soon at the Large Hadron Collider (LHC). The LHC will collide protons at a centre of mass energy of 14~TeV, with a bunch-crossing rate of 40~MHz. The ATLAS three-level trigger will reduce this input rate to match the foreseen offline storage capability of 100-200~Hz. After the Level 1 trigger, which is implemented in custom hardware, the High-Level Trigger (HLT) further reduces the rate from up to 100~kHz to the offline storage rate while retaining the most interesting physics. The HLT is implemented in software running in commercially available computer farms and consists of Level 2 and Event Filter. To reduce the network data traffic and the processing time to manageable levels, the HLT uses seeded, step-wise reconstruction, aiming at the earliest possible rejection. Data produced during LHC commissioning will be vital for calibrating and aligning sub-detectors, as well as for testing the ATLAS trigger and setting up t...

  12. Experience of Initial Symptoms of Breast Cancer and Triggers for Action in Ethiopia

    International Nuclear Information System (INIS)

    Dye, T.D.; Hobden, C.; Reeler, A.; Dye, T.D.; Bogale, S.; Tilahun, Y.; Deressa, T.

    2012-01-01

    Objective. This study assessed the initial experiences, symptoms, and actions of patients in Ethiopia ultimately determined to have breast cancer. Methods. 69 participants in a comprehensive breast cancer treatment program at the main national cancer hospital in Ethiopia were interviewed using mixed qualitative and quantitative approaches. Participants narratives of their initial cancer experience were coded and analyzed for themes around their symptoms, time to seeking advice, triggers for action, and contextual factors. The assessment was approved by the Addis Ababa University Faculty of Medicine Institutional Review Board. Results. Nearly all women first noticed lumps, though few sought medical advice within the first year (average time to action: 1.5 years). Eventually, changes in their symptoms motivated most participants to seek advice. Most participants did not think the initial lump would be cancer, nor was a lump of any particular concern until symptoms changed. Conclusion. Given the frequency with which lumps are the first symptom noticed, raising awareness among participants that lumps should trigger medical consultation could contribute significantly to more rapid medical advice-seeking among women in Ethiopia. Primary care sites should be trained and equipped to offer evaluation of lumps so that women can be referred appropriately for assessment if needed

  13. A Level 1 Tracking Trigger for the CMS Experiment

    CERN Document Server

    Pozzobon, Nicola

    2011-01-01

    The LHC machine is planned to be upgraded in the next decade in order to deliver a luminosity about 5 to 10 times larger than the design one of $10^{34}$ cm$^{-2}$s$^{-1}$. In this scenario, a novel tracking system for the CMS experiment is required to be conceived and built. The main requirements on the CMS tracker are presented. Particular emphasis will be given to the challenging capability of the tracker to provide useful information for the Level 1 hardware trigger, complementary to the muon system and calorimeter ones. Different approaches based on pattern hit correlation within closely placed sensors are currently under evaluation, making use of either strips or macro-pixels. A proposal to optimize the data flow at the front-end ASIC and develop a tracking algorithm to provide tracks at Level 1 will be presented.

  14. Development of Advanced Gaseous Detectors for Muon Tracking and Triggering in Collider Experiments

    CERN Document Server

    Guan, Liang; Zhao, Zhengguo; Zhu, Junjie

    High luminosity and high energy collider experiments impose big challenges to conventional gaseous detectors used for muon tracking and triggering. Stringent requirements, in terms of time and spatial resolutions, rate capabilities etc. are expected. In the context of ATLAS muon upgrade project, we present extensive researches and developments of advanced gas detectors for precision muon tracking and triggering in high rate environments. Particularly, this dissertation focuses on the studies of Micro-mesh Gaseous structure (Micromegas), thin gap Resistive Plate Chamber (RPC) and small strip Thin Gap multi-wire Chambers (sTGC). In this dissertation, we first present a novel method, based on thermally bonding micro-meshes to anodes, to construct Micromegas detectors. Without employing the traditional photo-lithography process, it is a convenient alternative to build Micromegas. Both experimental and simulation studies of basic performance parameters of thermo-bonded Micromegas will be reported. Development...

  15. Development of a non-explosive release actuator using shape memory alloy wire.

    Science.gov (United States)

    Yoo, Young Ik; Jeong, Ju Won; Lim, Jae Hyuk; Kim, Kyung-Won; Hwang, Do-Soon; Lee, Jung Ju

    2013-01-01

    We have developed a newly designed non-explosive release actuator that can replace currently used release devices. The release mechanism is based on a separation mechanism, which relies on segmented nuts and a shape memory alloy (SMA) wire trigger. A quite fast and simple trigger operation is made possible through the use of SMA wire. This actuator is designed to allow a high preload with low levels of shock for the solar arrays of medium-size satellites. After actuation, the proposed device can be easily and instantly reset. Neither replacement, nor refurbishment of any components is necessary. According to the results of a performance test, the release time, preload capacity, and maximum shock level are 50 ms, 15 kN, and 350 G, respectively. In order to increase the reliability of the actuator, more than ten sets of performance tests are conducted. In addition, the proposed release actuator is tested under thermal vacuum and extreme vibration environments. No degradation or damage was observed during the two environment tests, and the release actuator was able to operate successfully. Considering the test results as a whole, we conclude that the proposed non-explosive release actuator can be applied reliably to intermediate-size satellites to replace existing release systems.

  16. General phenomenology of underground nuclear explosions; Phenomenologie generale des explosions nucleaires souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Derlich, S; Supiot, F [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    An essentially qualitatively description is given of the phenomena related to underground nuclear explosions (explosion of a single unit, of several units in line, and simultaneous explosions). In the first chapter are described the phenomena which are common to contained explosions and to explosions forming craters (formation and propagation of a shock-wave causing the vaporization, the fusion and the fracturing of the medium). The second chapter describes the phenomena related to contained explosions (formation of a cavity with a chimney). The third chapter is devoted to the phenomenology of test explosions which form a crater; it describes in particular the mechanism of formation and the different types of craters as a function of the depth of the explosion and of the nature of the ground. The aerial phenomena connected with explosions which form a crater: shock wave in the air and focussing at a large distance, and dust clouds, are also dealt with. (authors) [French] On donne une description essentiellement qualitative des phenomenes lies aux explosions nucleaires souterraines (explosion d'un seul engin, d'engins en ligne et explosions simultanees). Dans un premier chapitre sont decrits les phenomenes communs aux explosions contenues et aux explosions formant un cratere (formation et propagation d'une onde de choc provoquant la vaporisation, la fusion et la fracturation du milieu). Le deuxieme chapitre decrit les phenomenes lies aux tirs contenus (formation d'une cavite et d'une cheminee). Le troisieme chapitre est consacre a la phenomenologie des tirs formant un cratere et decrit notamment le mecanisme de formation et les differents types de crateres en fonction de la profondeur d'explosion et de la nature du terrain. Les phenomenes aeriens lies aux explosions formant un cratere: onde de pression aerienne et focalisation a grande distance, nuages de poussieres, sont egalement abordes. (auteurs)

  17. The Evolution of the Trigger and Data Acquisition System in the ATLAS Experiment

    CERN Document Server

    Garelli, N; The ATLAS collaboration

    2014-01-01

    The ATLAS experiment, aimed at recording the results of LHC proton-proton collisions, is upgrading its Trigger and Data Acquisition (TDAQ) system during the current LHC first long shutdown. The purpose of such upgrade is to add robustness and flexibility to the selection and the conveyance of the physics data, simplify the maintenance of the infrastructure, exploit new technologies and, overall, make ATLAS data-taking capable of dealing with increasing event rates. \

  18. Ex-Vessel Steam Explosion Analysis of Central Melt Pour Scenario

    International Nuclear Information System (INIS)

    Ursic, M.; Leskovar, M.

    2008-01-01

    An ex-vessel steam explosion may develop during a severe reactor accident when the reactor vessel fails and the molten core interacts with the coolant in the reactor cavity. At this process part of the corium energy is intensively transferred to water in a very short time scale. The water vaporizes at high pressure and expands, doing work on its surrounding. Although the steam explosion has probably a low probability of occurrence, it is an important nuclear safety issue in case of a severe reactor accident. Namely, the formed very high pressure region induces dynamic loadings on the surrounding structures that may potentially lead to an early release of the radioactive material into the environment. Although the steam explosion events have being studied for several years, the level of the process and consequences understanding is still not adequate. To increase the level of confidence the OECD programme SERENA (Steam Explosion REsolution for Nuclear Applications) was established in 2002. The objectives of the program were to evaluate capabilities of the current generation of the FCI (Fuel-Coolant Interaction) computer codes in predicting the steam explosion induced loads, identifying key FCI phenomena and associated uncertainties impacting the predictability of the steam explosion energetics in the reactor situations and proposing confirmatory research to reduce the uncertainties to acceptable levels for the steam explosion risk assessment. To get a better insight into the most challenging ex-vessel steam explosions, analyses for different locations of the melt release, the cavity water sub-cooling, the primary system pressure overpressure and the triggering time were preformed for a typical pressurized water reactor cavity. The results of some scenarios revealed that significantly higher pressure loads are predicted than obtained in the OECD programme SERENA Phase 1. Among the performed analyses for the central melt pour scenarios, the maximum pressure loads were

  19. Development of a monitoring tool to validate trigger level analysis in the ATLAS experiment

    CERN Document Server

    Hahn, Artur

    2014-01-01

    This report summarizes my thirteen week summer student project at CERN from June 30th until September 26th of 2014. My task was to contribute to a monitoring tool for the ATLAS experiment, comparing jets reconstructed by the trigger to fully offline reconstructed and saved events by creating a set of insightful histograms to be used during run 2 of the Large Hadron Collider, planned to start in early 2015. The motivation behind this project is to validate the use of data taken solely from the high level trigger for analysis purposes. Once the code generating the plots was completed, it was tested on data collected during run 1 up to the year 2012 and Monte Carlo simulated events with center-of-mass energies ps = 8TeV and ps = 14TeV.

  20. High-speed imaging of explosive eruptions: applications and perspectives

    Science.gov (United States)

    Taddeucci, Jacopo; Scarlato, Piergiorgio; Gaudin, Damien; Capponi, Antonio; Alatorre-Ibarguengoitia, Miguel-Angel; Moroni, Monica

    2013-04-01

    Explosive eruptions, being by definition highly dynamic over short time scales, necessarily call for observational systems capable of relatively high sampling rates. "Traditional" tools, like as seismic and acoustic networks, have recently been joined by Doppler radar and electric sensors. Recent developments in high-speed camera systems now allow direct visual information of eruptions to be obtained with a spatial and temporal resolution suitable for the analysis of several key eruption processes. Here we summarize the methods employed to gather and process high-speed videos of explosive eruptions, and provide an overview of the several applications of these new type of data in understanding different aspects of explosive volcanism. Our most recent set up for high-speed imaging of explosive eruptions (FAMoUS - FAst, MUltiparametric Set-up,) includes: 1) a monochrome high speed camera, capable of 500 frames per second (fps) at high-definition (1280x1024 pixel) resolution and up to 200000 fps at reduced resolution; 2) a thermal camera capable of 50-200 fps at 480-120x640 pixel resolution; and 3) two acoustic to infrasonic sensors. All instruments are time-synchronized via a data logging system, a hand- or software-operated trigger, and via GPS, allowing signals from other instruments or networks to be directly recorded by the same logging unit or to be readily synchronized for comparison. FAMoUS weights less than 20 kg, easily fits into four, hand-luggage-sized backpacks, and can be deployed in less than 20' (and removed in less than 2', if needed). So far, explosive eruptions have been recorded in high-speed at several active volcanoes, including Fuego and Santiaguito (Guatemala), Stromboli (Italy), Yasur (Vanuatu), and Eyjafiallajokull (Iceland). Image processing and analysis from these eruptions helped illuminate several eruptive processes, including: 1) Pyroclasts ejection. High-speed videos reveal multiple, discrete ejection pulses within a single Strombolian

  1. Time-Dependent Moment Tensors of the First Four Source Physics Experiments (SPE) Explosions

    Science.gov (United States)

    Yang, X.

    2015-12-01

    We use mainly vertical-component geophone data within 2 km from the epicenter to invert for time-dependent moment tensors of the first four SPE explosions: SPE-1, SPE-2, SPE-3 and SPE-4Prime. We employ a one-dimensional (1D) velocity model developed from P- and Rg-wave travel times for Green's function calculations. The attenuation structure of the model is developed from P- and Rg-wave amplitudes. We select data for the inversion based on the criterion that they show consistent travel times and amplitude behavior as those predicted by the 1D model. Due to limited azimuthal coverage of the sources and the mostly vertical-component-only nature of the dataset, only long-period, diagonal components of the moment tensors are well constrained. Nevertheless, the moment tensors, particularly their isotropic components, provide reasonable estimates of the long-period source amplitudes as well as estimates of corner frequencies, albeit with larger uncertainties. The estimated corner frequencies, however, are consistent with estimates from ratios of seismogram spectra from different explosions. These long-period source amplitudes and corner frequencies cannot be fit by classical P-wave explosion source models. The results motivate the development of new P-wave source models suitable for these chemical explosions. To that end, we fit inverted moment-tensor spectra by modifying the classical explosion model using regressions of estimated source parameters. Although the number of data points used in the regression is small, the approach suggests a way for the new-model development when more data are collected.

  2. Um Processador Rápido de Corte em Momento Transverso para o Trigger da Experiência CP-LEAR

    CERN Document Server

    Machado, Emanuel Tito Mendes

    Neste trabalho pretendemos mostrar alguns aspectos importantes no desenho de instrumentação para sistemas de selecção de eventos (trigger), que se revelaram importantes no desenho do sistema de trigger de CP–LEAR. Para isso, fazemos um zoom progressivo sobre a experiência. Começamos por mostrar o que são sistemas de trigger, quais as suas propriedades e diversidade, e que tipos de sistemas são usados e em que circunstâncias. É também feito um apanhado do state of the art dos diversos componentes e soluções utilizadas para a resolução dos problemas típicos destes sistemas. A seguir, apresentamos CP–LEAR, descrevendo a física em que se apoia o seu método. Aqui introduzimos o conceito de simetrias, e em que circunstâncias podemos falar de violação de simetria. Seguidamente, introduzimos o sistema de kaões neutros, apresentamos o fenómeno de violação CP, e descrevemos o método de CP–LEAR utilizado para o seu estudo. Depois de apresentar o detector utilizado na experiência, começa...

  3. Computer simulation of explosion crater in dams with different buried depths of explosive

    Science.gov (United States)

    Zhang, Zhichao; Ye, Longzhen

    2018-04-01

    Based on multi-material ALE method, this paper conducted a computer simulation on the explosion crater in dams with different buried depths of explosive using LS-DYNA program. The results turn out that the crater size increases with the increase of buried depth of explosive at first, but closed explosion cavity rather than a visible crater is formed when the buried depth of explosive increases to some extent. The soil in the explosion cavity is taken away by the explosion products and the soil under the explosion cavity is compressed with its density increased. The research can provide some reference for the anti-explosion design of dams in the future.

  4. CMS Triggers for the LHC Startup

    CERN Document Server

    Nhan Nguyen, Chi

    2009-01-01

    The LHC will collide proton beams at a bunch-crossing rate of 40 MHz. At the design luminosity of $10^{34}$ cm$^{-2}$s$^{-1}$ each crossing results in an average of about 20 inelastic pp events. The CMS trigger system is designed to reduce the input rate to about 100 Hz. This task is carried out in two steps, namely the Level-1 (L1) and the High-Level trigger (HLT). The L1 trigger is built of customized fast electronics and is designed to reduce the rate to 100 kHz. The HLT is implemented in a filter farm running on hundreds of CPUs and is designed to reduce the rate by another factor of ~1000. It combines the traditional L2 and L3 trigger components in a novel way and allows the coherent tuning of the HLT algorithms to accommodate multiple physics channels. We will discuss the strategies for optimizing triggers covering the experiment`s early physics program.

  5. The second level trigger of the L3 experiment. Pt. 2

    International Nuclear Information System (INIS)

    Beingessner, S.P.; Blaising, J.J.; Chollet-Le Flour, F.; Degre, A.; Dromby, G.; Goy, C.; Lecoq, J.; Morand, R.; Moynot, M.; Perrot, G.; Rosier-Lees, S.; Forconi, G.

    1993-07-01

    The events recorded by the L3 Data Acquisition System are selected by three levels of trigger. The event filtering performed by software at the second trigger level is described. First coded offline in FORTRAN, the filtering software is microcoded for online execution in a farm of 3 XOP processors operating in a round robin mode. It identifies and rejects background events. Depending on running conditions and trigger type, rejection factors ranging from 45% to 80% are obtained on first level energy, muon and tec triggers. Selection efficiencies greater than 99.95% are achieved. (authors). 14 refs., 3 figs., 2 tabs

  6. BTeV detached vertex trigger

    International Nuclear Information System (INIS)

    Gottschalk, E.E.

    2001-01-01

    BTeV is a collider experiment that has been approved to run in the Tevatron at Fermilab. The experiment will conduct precision studies of CP violation using a forward-geometry detector. The detector will be optimized for high-rate detection of beauty and charm particles produced in collisions between protons and anti-protons. BTeV will trigger on beauty and charm events by taking advantage of the main difference between these heavy quark events and more typical hadronic events - the presence of detached beauty and charm decay vertices. The first stage of the BTeV trigger will receive data from a pixel vertex detector at a rate of 100 gb s -1 , reconstruct tracks and vertices for every beam crossing, reject 99% of beam crossings that do not produce beauty or charm particles, and trigger on beauty events with high efficiency. An overview of the trigger design and its influence on the design of the pixel vertex detector is presented

  7. Hail formation triggers rapid ash aggregation in volcanic plumes.

    Science.gov (United States)

    Van Eaton, Alexa R; Mastin, Larry G; Herzog, Michael; Schwaiger, Hans F; Schneider, David J; Wallace, Kristi L; Clarke, Amanda B

    2015-08-03

    During explosive eruptions, airborne particles collide and stick together, accelerating the fallout of volcanic ash and climate-forcing aerosols. This aggregation process remains a major source of uncertainty both in ash dispersal forecasting and interpretation of eruptions from the geological record. Here we illuminate the mechanisms and timescales of particle aggregation from a well-characterized 'wet' eruption. The 2009 eruption of Redoubt Volcano, Alaska, incorporated water from the surface (in this case, a glacier), which is a common occurrence during explosive volcanism worldwide. Observations from C-band weather radar, fall deposits and numerical modelling demonstrate that hail-forming processes in the eruption plume triggered aggregation of ∼95% of the fine ash and stripped much of the erupted mass out of the atmosphere within 30 min. Based on these findings, we propose a mechanism of hail-like ash aggregation that contributes to the anomalously rapid fallout of fine ash and occurrence of concentrically layered aggregates in volcanic deposits.

  8. Vapor Explosions with Subcooled Freon

    International Nuclear Information System (INIS)

    Henry, R.E.; Fauske, Hans K.; McUmber, L.M.

    1976-01-01

    Explosive vapor formation accompanied by destructive shock waves, can be produced when two liquids, at much different temperatures, are brought into intimate contact. A proposed analytical model states that the interface temperature upon contact between the two liquid systems, gust be greater than or equal to the spontaneous nucleation temperature of that liquid-liquid system and that the thermal boundary layer must be sufficiently developed to support a critical size cavity. For time scales greater than 10-12 sec, the interface temperature upon contact of two semi-infinite masses, with constant thermal properties, can be related to the initial liquid temperatures. The spontaneous nucleation behavior at the interface can either be heterogeneous or homogeneous in nature. In either case, the critical size cavities, which initiate the vaporization process, are produced by local density fluctuations within the cold liquid. For homogeneous conditions, the two liquids present a well-wetted system and the vapor embryos are produced entirely within the cold liquid. For heterogeneous conditions, which result from poor, or imperfect wetting, at the liquid-liquid interface, the critical sized cavities are created at the interface at somewhat lower temperatures. A sequence of experiments, using Freon-22 and water, Freon-22 and mineral oil, and Freon-12 and mineral oil have been performed to test this spontaneous nucleation premise. For Freon-22 at its normal boiling point, the interface temperature of the water must be at least 77 deg. C before the interface temperature equals or exceeds the minimum homogeneous nucleation value of 54 deg. C and 84 deg. C before the interface temperature equals 60 deg. C where the homogeneous nucleation rate becomes truly explosive. The Freon-water test demonstrated explosive interactions for water temperatures considerably lower than this value and this was attributed to the heterogeneous nucleation characteristics of that particular system

  9. The Jefferson Lab Trigger Supervisor System

    International Nuclear Information System (INIS)

    Ed Jastrzembsi; David Abbott; Graham Heyes; R.W. MacLeod; Carl Timmer; Elliott Wolin

    2000-01-01

    We discuss the design and performance of a Trigger Supervisor System for use in nuclear physics experiments at Jefferson Lab. We also discuss the enhanced features of a new Trigger Supervisor Module now under construction

  10. Detonation and fragmentation modeling for the description of large scale vapor explosions

    International Nuclear Information System (INIS)

    Buerger, M.; Carachalios, C.; Unger, H.

    1985-01-01

    The thermal detonation modeling of large-scale vapor explosions is shown to be indispensable for realistic safety evaluations. A steady-state as well as transient detonation model have been developed including detailed descriptions of the dynamics as well as the fragmentation processes inside a detonation wave. Strong restrictions for large-scale vapor explosions are obtained from this modeling and they indicate that the reactor pressure vessel would even withstand explosions with unrealistically high masses of corium involved. The modeling is supported by comparisons with a detonation experiment and - concerning its key part - hydronamic fragmentation experiments. (orig.) [de

  11. Plasma Discharge Initiation of Explosives in Rock Blasting Application: A Case Study

    International Nuclear Information System (INIS)

    Chae, Jae-Ou; Jeong, Young-Jun; Shmelev, V M; Denicaev, A A; Poutchkov, V M; Ravi, V

    2006-01-01

    A plasma discharge initiation system for the explosive volumetric combustion charge was designed, investigated and developed for practical application. Laboratory scale experiments were carried out before conducting the large scale field tests. The resultant explosions gave rise to less noise, insignificant seismic vibrations and good specific explosive consumption for rock blasting. Importantly, the technique was found to be safe and environmentally friendly

  12. The Jefferson Lab Trigger Supervisor System

    International Nuclear Information System (INIS)

    Jastrzembski, E.; Abbott, D.J.; Heyes, W.G.; MacLeod, R.W.; Timmer, C.; Wolin, E.

    1999-01-01

    The authors discuss the design and performance of a Trigger Supervisor System for use in nuclear physics experiments at Jefferson Lab. They also discuss the enhanced features of a new Trigger Supervisor Module now under construction

  13. Preliminary experiments using light-initiated high explosive for driving thin flyer plates

    International Nuclear Information System (INIS)

    Benham, R.A.

    1980-02-01

    Light-initiated high explosive, silver acelytide - silver-nitrate (SASN), has been used to produce simulated x ray blow-off impulse loading on reentry vehicles to study the system structural response. SASN can be used to accelerate thin flyer plates to high terminal velocities which, in turn, can deliver a pressure pulse that can be tailored to the target material. This process is important for impulse tests where both structural and material response is desired. The theories used to calculate the dynamic state of the flyer plate prior to impact are summarized. Data from several experiments are presented which indicate that thin flyer plates can be properly accelerated and that there are predictive techniques available which are adequate to calculate the motion of the flyer plate. Recommendations are made for future study that must be undertaken to make the SASN flyer plate technique usable

  14. A high-resolution TDC-based board for a fully digital trigger and data acquisition system in the NA62 experiment at CERN

    CERN Document Server

    Pedreschi, Elena; Angelucci, Bruno; Avanzini, Carlo; Galeotti, Stefano; Lamanna, Gianluca; Magazzù, Guido; Pinzino, Jacopo; Piandani, Roberto; Sozzi, Marco; Spinella, Franco; Venditti, Stefano

    2015-01-01

    A Time to Digital Converter (TDC) based system, to be used for most sub-detectors in the high-flux rare-decay experiment NA62 at CERN SPS, was built as part of the NA62 fully digital Trigger and Data AcQuisition system (TDAQ), in which the TDC Board (TDCB) and a general-purpose motherboard (TEL62) will play a fundamental role. While TDCBs, housing four High Performance Time to Digital Converters (HPTDC), measure hit times from sub-detectors, the motherboard processes and stores them in a buffer, produces trigger primitives from different detectors and extracts only data related to the lowest trigger level decision, once this is taken on the basis of the trigger primitives themselves. The features of the TDCB board developed by the Pisa NA62 group are extensively discussed and performance data is presented in order to show its compliance with the experiment requirements.

  15. THE SUPERNOVA TRIGGERED FORMATION AND ENRICHMENT OF OUR SOLAR SYSTEM

    Energy Technology Data Exchange (ETDEWEB)

    Gritschneder, M.; Lin, D. N. C. [Kavli Institute for Astronomy and Astrophysics, Peking University, Yi He Yuan Lu 5, Hai Dian, 100871 Beijing (China); Murray, S. D. [Lawrence Livermore National Laboratory, University of California, Livermore, CA 94550 (United States); Yin, Q.-Z. [Department of Geology, University of California, Davis, CA 95616 (United States); Gong, M.-N., E-mail: gritschneder@pku.edu.cn [Department of Physics, Tsinghua University, Hai Dian, 100084 Beijing (China)

    2012-01-20

    We investigate the enrichment of the pre-solar cloud core with short-lived radionuclides, especially {sup 26}Al. The homogeneity and the surprisingly small spread in the ratio {sup 26}Al/{sup 27}Al observed in the overwhelming majority of calcium-aluminium-rich inclusions in a vast variety of primitive chondritic meteorites places strong constraints on the formation of the solar system. Freshly synthesized radioactive {sup 26}Al has to be included and well mixed within 20 kyr. After discussing various scenarios including X-winds, asymptotic giant branch stars, and Wolf-Rayet stars, we come to the conclusion that triggering the collapse of a cold cloud core by a nearby supernova (SN) is the most promising scenario. We then narrow down the vast parameter space by considering the pre-explosion survivability of such a clump as well as the cross-section necessary for sufficient enrichment. We employ numerical simulations to address the mixing of the radioactively enriched SN gas with the pre-existing gas and the forced collapse within 20 kyr. We show that a cold clump of 10 M{sub Sun} at a distance of 5 pc can be sufficiently enriched in {sup 26}Al and triggered into collapse fast enough-within 18 kyr after encountering the SN shock-for a range of different metallicities and progenitor masses, even if the enriched material is assumed to be distributed homogeneously in the entire SN bubble. In summary, we envision an environment for the birthplace of the solar system 4.567 Gyr ago similar to the situation of the pillars in M16 nowadays, where molecular cloud cores adjacent to an H II region will be hit by an SN explosion in the future. We show that the triggered collapse and formation of the solar system as well as the required enrichment with radioactive {sup 26}Al are possible in this scenario.

  16. The Level 0 Pixel Trigger system for the ALICE experiment

    International Nuclear Information System (INIS)

    Rinella, G Aglieri; Kluge, A; Krivda, M

    2007-01-01

    The ALICE Silicon Pixel Detector contains 1200 readout chips. Fast-OR signals indicate the presence of at least one hit in the 8192 pixel matrix of each chip. The 1200 bits are transmitted every 100 ns on 120 data readout optical links using the G-Link protocol. The Pixel Trigger System extracts and processes them to deliver an input signal to the Level 0 trigger processor targeting a latency of 800 ns. The system is compact, modular and based on FPGA devices. The architecture allows the user to define and implement various trigger algorithms. The system uses advanced 12-channel parallel optical fiber modules operating at 1310 nm as optical receivers and 12 deserializer chips closely packed in small area receiver boards. Alternative solutions with multi-channel G-Link deserializers implemented directly in programmable hardware devices were investigated. The design of the system and the progress of the ALICE Pixel Trigger project are described in this paper

  17. Triggering on New Physics with the CMS Detector

    Energy Technology Data Exchange (ETDEWEB)

    Bose, Tulika [Boston Univ., MA (United States)

    2016-07-29

    The BU CMS group led by PI Tulika Bose has made several significant contributions to the CMS trigger and to the analysis of the data collected by the CMS experiment. Group members have played a leading role in the optimization of trigger algorithms, the development of trigger menus, and the online operation of the CMS High-Level Trigger. The group’s data analysis projects have concentrated on a broad spectrum of topics that take full advantage of their strengths in jets and calorimetry, trigger, lepton identification as well as their considerable experience in hadron collider physics. Their publications cover several searches for new heavy gauge bosons, vector-like quarks as well as diboson resonances.

  18. An FPGA-based trigger processor for a measurement of deeply virtual Compton scattering at the COMPASS-II experiment

    Energy Technology Data Exchange (ETDEWEB)

    Schopferer, Sebastian

    2013-12-16

    The COMPASS-II experiment at CERN is focusing on a measurement of the deeply virtual Compton scattering. Several upgrades of the experimental setup have been performed in 2012, namely the construction of a long liquid hydrogen target and a surrounding recoil proton detector called CAMERA. Based on a time-of-flight measurement between two barrels of scintillators, the CAMERA detector allows to detect protons with a kinetic energy down to 35 MeV, which leave the target under large polar angles. At the same time, protons can be distinguished from other particles resulting from background processes by means of an energy loss measurement in the scintillating material. In order to extend the existing COMPASS trigger scheme, a digital trigger system has been developed, which is detailed in the thesis at hand. The trigger system is able to select events with a recoil proton in the final state while suppressing background events, using the particle identification capabilities of the CAMERA detector. Challenging selection criteria based on both the time-of-flight and the energy loss measurement call for a powerful programmable logic board. At the same time, the integration into the existing COMPASS trigger system poses strict constraints on the latency of the trigger decision. For the implementation of the proton trigger system, a new FPGA-based trigger and DAQ hardware called TIGER has been built. The module is operated in two firmware configurations, serving two distinct purposes. Firstly, the trigger processor is responsible for the generation of a trigger signal based on recoil particles, which is included in the global first-level trigger decision. Secondly, a readout concentrator allows to multiplex the data streams of up to 18 readout modules into one link to the DAQ. The CAMERA detector and the corresponding readout and trigger electronics was commissioned during a test run in autumn 2012. This thesis contains details about the trigger concept, the development of the

  19. Triggering Artefacts

    DEFF Research Database (Denmark)

    Mogensen, Preben Holst; Robinson, Mike

    1995-01-01

    and adapting them to specific situations need not be ad hoc.Triggering artefacts are a way of systematically challenging both designers' preunderstandings and the conservatism of work practice. Experiences from the Great Belt tunnel and bridge project are used to illustrate howtriggering artefacts change...

  20. LHCb Topological Trigger Reoptimization

    CERN Document Server

    INSPIRE-00400931; Ilten, Philip; Khairullin, Egor; Rogozhnikov, Alex; Ustyuzhanin, Andrey; Williams, Michael

    2015-12-23

    The main b-physics trigger algorithm used by the LHCb experiment is the so-called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger, which utilized a custom boosted decision tree algorithm, selected a nearly 100% pure sample of b-hadrons with a typical efficiency of 60-70%; its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and neural networks. The topological trigger algorithm is designed to select all "interesting" decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. ...

  1. Experimental-theoretical investigation of the thermal explosion

    International Nuclear Information System (INIS)

    Zyszkowski, W.

    It is suggested that thermal explosions are caused by the latent heat of fusion liberated when the heat transfer at the surface of the molten metal mass is sufficiently intensive to subcool the metal below the solidification point. From a couple of experiments performed by the authors on different metals brought into contact in the molten state with cold water as well as from experiments of the same kind in other laboratories it can be concluded that thermal explosions appear only under special, precisely determined conditions. The experimental techniques applied in this work comprise measurement of the temperature history during the thermal interaction of the hot and the cold liquid and simultaneously observe and record the phenomena by fast photography

  2. Synchronization trigger for HSFC in the optical diagnosis of intense electron beam cathodes

    International Nuclear Information System (INIS)

    Yang Jie; Shu Ting; Zhang Jun; Yang Jianhua; Liu Lie; Yin Yi; Luo Ling

    2010-01-01

    This paper presents an intense electron beam cathodes optical diagnosis platform, which consists of an accelerator using a water-dielectric helical pulse forming line (PFL) and a high speed framing camera (HSFC-PRO) with an minimum exposure of 3 ns. HSFC-PRO must work synchronously with the explosive process of the intense electron beam cathodes in order to obtain correct data. On one hand, the high voltage electrical pulse from the PFL is delayed by a water-dielectric helix line with a nearly 110ns electrical length. On the other hand, The synchronization trigger signal for the HSFC-PRO is obtained from the pre d elayed high voltage electrical pulse from the PFL. A TTL signal (5 V) with rising edge is required to trigger the HSFC. The rise time (10% to 90%) should be <20ns. As a result, the negative-edge attenuated electrical pulse with a about 25 ns rise time from the PFL can not trigger the HSFC immediately.Consequently, the polarity of the attenuated high voltage electrical pulse from the PFL is reversed by a pulse transformer. Then it is converted subsequently into a TTL signal (5 V) with rising edge via a monostable multivibrator , The rise time (10% to 90%) is <5 ns, which is suitable for HSFC absequently. This established optical diagnosis platform can supply an electrical pulse with its output voltage of 200-400 kV, risetime of ∼35ns and pulse width(FWHM) of ∼110ns. By means of delaying the electrical pulse, the synchronization trigger problem of the HSFC-PRO has been solved properly, with correlative time precision of about ns level, which sets a running start for the following intensive research of explosive emission cathodes. (authors)

  3. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R. [VTT Energy, Espoo (Finland). Energy Systems

    1997-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  4. Understanding vented gas explosions

    Energy Technology Data Exchange (ETDEWEB)

    Lautkaski, R [VTT Energy, Espoo (Finland). Energy Systems

    1998-12-31

    The report is an introduction to vented gas explosions for nonspecialists, particularly designers of plants for flammable gases and liquids. The phenomena leading to pressure generation in vented gas explosions in empty and congested rooms are reviewed. The four peak model of vented gas explosions is presented with simple methods to predict the values of the individual peaks. Experimental data on the external explosion of dust and gas explosions is discussed. The empirical equation relating the internal and external peak pressures in vented dust explosions is shown to be valid for gas explosion tests in 30 m{sup 3} and 550 m{sup 3} chambers. However, the difficulty of predicting the internal peak pressure in large chambers remains. Methods of explosion relief panel design and principles of vent and equipment layout to reduce explosion overpressures are reviewed. (orig.) 65 refs.

  5. BTeV trigger/DAQ innovations

    International Nuclear Information System (INIS)

    Votava, Margaret

    2005-01-01

    The BTeV experiment was a collider based high energy physics (HEP) B-physics experiment proposed at Fermilab. It included a large-scale, high speed trigger/data acquisition (DAQ) system, reading data off the detector at 500 Gbytes/sec and writing to mass storage at 200 Mbytes/sec. The online design was considered to be highly credible in terms of technical feasibility, schedule and cost. This paper will give an overview of the overall trigger/DAQ architecture, highlight some of the challenges, and describe the BTeV approach to solving some of the technical challenges. At the time of termination in early 2005, the experiment had just passed its baseline review. Although not fully implemented, many of the architecture choices, design, and prototype work for the online system (both trigger and DAQ) were well on their way to completion. Other large, high-speed online systems may have interest in the some of the design choices and directions of BTeV, including (a) a commodity-based tracking trigger running asynchronously at full rate, (b) the hierarchical control and fault tolerance in a large real time environment, (c) a partitioning model that supports offline processing on the online farms during idle periods with plans for dynamic load balancing, and (d) an independent parallel highway architecture

  6. Characterization Of High Explosives Detonations Via Laser-Induced Plasmas

    Energy Technology Data Exchange (ETDEWEB)

    Villa-Aleman, E. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2015-10-08

    One objective of the Department of Energy’s National Security Administration is to develop technologies that can help the United States government to detect foreign nuclear weapons development activities. The realm of high explosive (HE) experiments is one of the key areas to assess the nuclear ambitions of a country. SRNL has participated in the collection of particulates from HE experiments and characterized the material with the purpose to correlate particulate matter with HE. Since these field campaigns are expensive, on-demand simulated laboratory-scale explosion experiments are needed to further our knowledge of the chemistry and particle formation in the process. Our goal is to develop an experimental test bed in the laboratory to test measurement concepts and correlate particle formation processes with the observables from the detonation fireball. The final objective is to use this knowledge to tailor our experimental setups in future field campaigns. The test bed uses pulsed laser-induced plasmas to simulate micro-explosions, with the intent to study the temporal behavior of the fireball observed in field tests. During FY15, a plan was prepared and executed which assembled two laser ablation systems, procured materials for study, and tested a Step-Scan Fourier Transform Infrared Spectrometer (SS-FTIR). Designs for a shadowgraph system for shock wave analysis, design for a micro-particulate collector from ablated pulse were accomplished. A novel spectroscopic system was conceived and a prototype system built for acquisition of spectral/temporal characterization of a high speed event such as from a high explosive detonation. Experiments and analyses will continue into FY16.

  7. The STAR Level-3 trigger system

    International Nuclear Information System (INIS)

    Adler, C.; Berger, J.; Demello, M.; Dietel, T.; Flierl, D.; Landgraf, J.; Lange, J.S.; LeVine, M.J.; Ljubicic, A.; Nelson, J.; Roehrich, D.; Stock, R.; Struck, C.; Yepes, P.

    2003-01-01

    The STAR Level-3 trigger issues a trigger decision upon a complete online reconstruction of Au+Au collisions at relativistic heavy ion collider energies. Central interactions are processed up to a rate of 50 s -1 including a simple analysis of physics observables. The setup of the processor farm and the event reconstruction as well as experiences and the proposed trigger algorithms are described

  8. Explosive material treatment in particular the explosive compaction of powders

    International Nuclear Information System (INIS)

    Pruemmer, R.

    1985-01-01

    The constructive use of explosives in the last decades has led to new procedures in manufacturing techniques. The most important of these are explosive forming and cladding, the latter especially for the production of compound materials. The method of explosive compaction has the highest potential for further innovation. Almost theoretical densities are achievable in the green compacts as the pressure released by detonating explosives are very high. Also, the production of new conditions of materials (metastable high pressure phases) is possible. (orig.) [de

  9. Aesthetic Experience as an Essential Factor to Trigger Positive Environmental Consciousness

    Directory of Open Access Journals (Sweden)

    Po-Ching Wang

    2018-04-01

    Full Text Available The current environmental attitude models are primarily composed of environmental knowledge, value, and intention. However, environmental aestheticians have maintained that aesthetic experience triggered by nature is the cornerstone of promoting environmental ethics. To verify this belief, this study proposes a new framework, which integrates the rational and emotional approaches, to describe the environmental attitudes of the public. Questionnaires are used to collect data from college students in Taiwan, and a total of 275 valid responses are received. The collected data are analyzed using structural equation modeling. The results support the proposed hypotheses. In addition to reconfirming the importance of environmental knowledge in the traditional models, this study confirms that aesthetic experience is also a determining dimension. The findings show that rational cognition and aesthetic perception complement and interact with each other and can strengthen environmental ethics, thereby enhancing the intention of pro-environmental behavior. The results of this study can serve as a reference for environmental protection or environmental education practice.

  10. Approximating the r-process on earth with thermonuclear explosions

    International Nuclear Information System (INIS)

    Becker, S.A.

    1992-01-01

    The astrophysical r-process can be approximately simulated in certain types of thermonuclear explosions. Between 1952 and 1969 twenty-three nuclear tests were fielded by the United States which had as one of their objectives the production of heavy transuranic elements. Of these tests, fifteen were at least partially successful. Some of these shots were conducted under the project Plowshare Peaceful Nuclear Explosion Program as scientific research experiments. A review of the program, target nuclei used, and heavy element yields achieved, will be presented as well as discussion of plans for a new experiment in a future nuclear test

  11. Understanding the shock and detonation response of high explosives at the continuum and meso scales

    Science.gov (United States)

    Handley, C. A.; Lambourn, B. D.; Whitworth, N. J.; James, H. R.; Belfield, W. J.

    2018-03-01

    The shock and detonation response of high explosives has been an active research topic for more than a century. In recent years, high quality data from experiments using embedded gauges and other diagnostic techniques have inspired the development of a range of new high-fidelity computer models for explosives. The experiments and models have led to new insights, both at the continuum scale applicable to most shock and detonation experiments, and at the mesoscale relevant to hotspots and burning within explosive microstructures. This article reviews the continuum and mesoscale models, and their application to explosive phenomena, gaining insights to aid future model development and improved understanding of the physics of shock initiation and detonation propagation. In particular, it is argued that "desensitization" and the effect of porosity on high explosives can both be explained by the combined effect of thermodynamics and hydrodynamics, rather than the traditional hotspot-based explanations linked to pressure-dependent reaction rates.

  12. Millisecond-period meltdown experiments on prompt-burst effects and molten-tin-water dropping experiments

    International Nuclear Information System (INIS)

    Wright, R.W.; Coats, R.L.; Schmidt, T.R.; Arakeri, V.H.

    1976-01-01

    The U.S. Nuclear Regulatory Commission has initiated a program of confirmatory research for the safety assessment of LMFBR plants. In the sodium-fuel interactions area, this research includes a series of real-time in-pile experiments on the pressure and work potential of prompt-burst excursions as well as laboratory dropping experiments with molten tin and water. The in-pile experiments are performed by Sandia Laboratories in the Annular Core Pulse Reactor (ACPR), which has a minimum period of 1.3 milliseconds. These single-pin experiments are performed in a piston-loaded, stagnent-sodium autoclave, that is conceptually similar to the one used in the S-11 TREAT test. Unlike the S-11 test, however, realistic radial temperature profiles are obtained in the fuel, the cladding, and the sodium by pre-pulsing the reactor about 1/2 second before the main pulse. A series of preparatory runs have been made with helium-filled capsules and at low energy with sodium-filled capsules. The first significant fuel-coolant interaction run is scheduled for late March 1976. This will be a double-pulsed run at 2700 j/gm UO 2 . A continuing series of experiments is planned with oxide and advanced fuels in both fresh and irradiated form. In molten-tin-water dropping experiments at UCLA, microsecond duration multi-flash photography has been used for event diagnostics. Transition or nucleate boiling was found to trigger energetic interactions or vapor explosions. Temperature stratification in the water was found to reduce the threshold tin temperature necessary to produce vapor explosions below that the predicted by the coolant homogeneous nucleation hypothesis. Interaction zone growth times of a few msec. were measured. (auth.)

  13. Millisecond-Period Meltdown Experiments on Prompt - Burst Effects and Molten-Tin-Water Dropping Experiments

    International Nuclear Information System (INIS)

    Wright, R.W.; Coats, R.L.; Schmidt, T.R.; Arakeri, V.H.

    1976-01-01

    The U.S. Nuclear Regulatory Commission has initiated a program of confirmatory research for the safety assessment of LMFBR plants. In the sodium-fuel interactions area, this research includes a series of real-time in-pile experiments on the pressure and work potential of prompt-burst excursions as well as laboratory dropping experiments with molten tin and water. The in-pile experiments are performed by Sandia Laboratories in the Annular Core Pulse Reactor (ACPR), which has a minimum period of 1.3 milliseconds. These single-pin experiments are performed in a piston-loaded, stagnant-sodium autoclave, that is conceptually similar to the one used in the S-11 TREAT test. Unlike the S-11 test, however, realistic radial temperature profiles are obtained in the fuel, the cladding, and the sodium by pre-pulsing the reactor about 1/2 second before the main pulse. A series of preparatory runs have been made with helium-filled capsules and at low energy with sodium-filled capsules. The first significant fuel-coolant interaction run is scheduled for late March 1976. This will be a double-pulsed run at 2700 j/gm UO 2 . A continuing series of experiments is planned with oxide and advanced fuels in both fresh and irradiated form. In molten-tin-water dropping experiments at UCLA, microsecond duration multi-flash photography has been used for event diagnostics. Transition or nucleate boiling was found to trigger energetic interactions or vapor explosions. Temperature stratification in the water was found to reduce the threshold tin temperature necessary to produce vapor explosions below that the predicted by the coolant homogeneous nucleation hypothesis. Interaction zone growth times of a few msec were measured

  14. Strong explosions impact on buildings representative of an industrial facility; Impact de fortes explosions sur les batiments representatifs d'une installation industrielle

    Energy Technology Data Exchange (ETDEWEB)

    Trelat, S

    2006-12-15

    The goal of this study is to focus on the analysis of blast wave damage to structures when blast wave is consequence of explosive charge detonation. The objective is to propose useful tools to predict charges on structure. All experiences are realized in laboratory. The experimental investigation consists in simulating a detonation of a stoichiometric propane-oxygen mixture at ground level or at higher altitude. The study is going to give us experimental data on blast wave effects on a structure. For that, two types of structures frequently found on industrial site are going to be used: a parallelepipedal structure and a cylindrical structure, both with known dimensions. Finally, the important point of the problem is to determine an energetic equivalence between TNT and gas used in the experiments, in order to model TNT explosions at full scale by gaseous explosions at reduced scale. (author)

  15. Study of the initiation and the escalade phases of a vapour explosion; Etude de la phase d'initiation et d'escalade d'une explosion de vapeur

    Energy Technology Data Exchange (ETDEWEB)

    Lamome, J

    2007-09-15

    The steam explosion triggering issue is discussed here by studying at the thermal fragmentation (small pressure perturbation) of a hot water droplet surrounded by a stable steam film. Fragmentation seems to be the consequence of local contacts between the droplet and the coolant. However, the exact mechanism altering the droplet following the above mentioned contacts is uncertain. After a study of the proportions in place, we realized a contact can fragment the droplet in a very short period of time. Therefore, we adopted an approach considering the contact as the explosion criteria. In order to validate this approach, we researched the explosion levels of the experimental variations based on the surrounding pressure and on the coolant's temperature. The model found again the experimental variations, the levels were found again with some uncertainty. The contact is obtained by 2 mechanisms inducing liquid's proximity: a steam film global compression due to the disturbance and the amplification of the interface defaults between the coolant and the steam. It appears it is the mechanism of global compression that explains mostly the experimental variations. Following these results, we conducted model's extrapolations in order to come as close as possible of the conditions in which steam explosion can occur on an industrial scale (i.e. in the water pressured nuclear reactors). (author)

  16. Explosive coalescence of magnetic islands and explosive particle acceleration

    International Nuclear Information System (INIS)

    Tajima, T.; Sakai, J.I.

    1985-07-01

    An explosive reconnection process associated with the nonlinear evolution of the coalescence instability is found through studies of the electromagnetic particle simulation and the magnetohydrodynamic particle simulation. The explosive coalescence is a process of magnetic collapse, in which we find the magnetic and electrostatic field energies and temperatures (ion temperature in the coalescing direction, in particular) explode toward the explosion time t 0 as (t 0 - t)/sup -8/3/, (t 0 - t) -4 , and (t 0 - t)/sup -8/3/, respectively for a canonical case. Single-peak, double-peak, and triple-peak structures of magnetic energy, temperature, and electrostatic energy, respectively, are observed on the simulation as overshoot amplitude oscillations and are theoretically explained. The heuristic model of Brunel and Tajima is extended to this explosive coalescence in order to extract the basic process. Since the explosive coalescence exhibits self-similarity, a temporal universality, we theoretically search for a self-similar solution to the two-fluid plasma equations

  17. 75 FR 1085 - Commerce in Explosives; List of Explosive Materials (2009R-18T)

    Science.gov (United States)

    2010-01-08

    ... sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. Fulminate of mercury. Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating...

  18. 75 FR 70291 - Commerce in Explosives; List of Explosive Materials (2010R-27T)

    Science.gov (United States)

    2010-11-17

    ..., including non-cap sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting.... Explosive conitrates. Explosive gelatins. Explosive liquids. Explosive mixtures containing oxygen-releasing... powder. Fulminate of mercury. Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating...

  19. The double Chooz hardware trigger system

    Energy Technology Data Exchange (ETDEWEB)

    Cucoanes, Andi; Beissel, Franz; Reinhold, Bernd; Roth, Stefan; Stahl, Achim; Wiebusch, Christopher [RWTH Aachen (Germany)

    2008-07-01

    The double Chooz neutrino experiment aims to improve the present knowledge on {theta}{sub 13} mixing angle using two similar detectors placed at {proportional_to}280 m and respectively 1 km from the Chooz power plant reactor cores. The detectors measure the disappearance of reactor antineutrinos. The hardware trigger has to be very efficient for antineutrinos as well as for various types of background events. The triggering condition is based on discriminated PMT sum signals and the multiplicity of groups of PMTs. The talk gives an outlook to the double Chooz experiment and explains the requirements of the trigger system. The resulting concept and its performance is shown as well as first results from a prototype system.

  20. Emplacement and stemming of nuclear explosives for Plowshare applications

    Energy Technology Data Exchange (ETDEWEB)

    Cramer, J L [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-15

    This paper will discuss the various methods used for emplacement and design considerations that must be taken into account when the emplacement and stemming method is selected. The step-by-step field procedure will not be discussed in this paper. The task of emplacing and stemming the nuclear explosive is common to all Plowshare experiments today. All present-day applications of a nuclear explosive for Plowshare experiments require that the detonation take place some distance below the surface of the ground. This is normally done by lowering the explosive into an emplacement hole to a desired depth and then backfilling the hole with a suitable stemming material. At first glance it scenes like a very straightforward, simple task to perform. It would appear to be a task that could become a standard procedure for all experiments; however, this is not the case. In actuality, the emplacement and stemming of a nuclear explosive must almost be a custom design. It varies with the application of the experiment, i.e., cratering or underground engineering. It also varies with the condition of the hole, the available equipment to do the job, the actual purpose of the stemming, possible postshot reentry, hydrology, geology, and future production. A very important item that must always be considered is the protection of the firing and signal cables during the downhole and stemming operation. Each of these things must be considered; ignoring any one of them could jeopardize one of the objectives of the experiment or perhaps even the experiment itself. It should be emphasized that for a multiple-shot program such as would be used to develop a gas field where the geology, depths of burial etc. are the same, the emplacement and stemming operation would be standardized, as would all other parts of the program. However, for individual experiments in totally different areas, complete standardization of the emplacement and stemming is impossible.

  1. Emplacement and stemming of nuclear explosives for Plowshare applications

    International Nuclear Information System (INIS)

    Cramer, J.L.

    1970-01-01

    This paper will discuss the various methods used for emplacement and design considerations that must be taken into account when the emplacement and stemming method is selected. The step-by-step field procedure will not be discussed in this paper. The task of emplacing and stemming the nuclear explosive is common to all Plowshare experiments today. All present-day applications of a nuclear explosive for Plowshare experiments require that the detonation take place some distance below the surface of the ground. This is normally done by lowering the explosive into an emplacement hole to a desired depth and then backfilling the hole with a suitable stemming material. At first glance it scenes like a very straightforward, simple task to perform. It would appear to be a task that could become a standard procedure for all experiments; however, this is not the case. In actuality, the emplacement and stemming of a nuclear explosive must almost be a custom design. It varies with the application of the experiment, i.e., cratering or underground engineering. It also varies with the condition of the hole, the available equipment to do the job, the actual purpose of the stemming, possible postshot reentry, hydrology, geology, and future production. A very important item that must always be considered is the protection of the firing and signal cables during the downhole and stemming operation. Each of these things must be considered; ignoring any one of them could jeopardize one of the objectives of the experiment or perhaps even the experiment itself. It should be emphasized that for a multiple-shot program such as would be used to develop a gas field where the geology, depths of burial etc. are the same, the emplacement and stemming operation would be standardized, as would all other parts of the program. However, for individual experiments in totally different areas, complete standardization of the emplacement and stemming is impossible

  2. The present status of scientific applications of nuclear explosions

    International Nuclear Information System (INIS)

    Cowan, G.A.; Diven, B.C.

    1970-01-01

    This is the fourth in a series of symposia which started, in 1957 at Livermore with the purpose of examining the peaceful uses of nuclear explosives. Although principal emphasis has b een placed on technological applications, the discussions have, from the outset, included the fascinating question of scientific uses. Of the possible scientific applications which were mentioned at the 1957 meeting, the proposals which attracted most attention involved uses of nuclear explosions for research in seismology. It is interesting to note that since then a very large and stimulating body of data in the field of seismology has been collected from nuclear tests. Ideas for scientific applications of nuclear explosions go back considerably further than 1957. During the war days Otto Frisch at Los Alamos suggested that a fission bomb would provide an excellent source of fast neutrons which could be led down a vacuum pipe and used for experiments in a relatively unscattered state. This idea, reinvented, modified, and elaborated upon in the ensuing twenty-five years, provides the basis for much of the research discussed in this morning's program. In 1952 a somewhat different property of nuclear explosions, their ability to produce intense neutron exposures on internal targets and to synthesize large quantities of multiple neutron capture products, was dramatically brought to our attention by analysis of debris from the first large thermonuclear explosion (Mike) in which the elements einsteinium and fermiun were observed for the first time. The reports of the next two Plowshare symposia in 1959 and 1964 help record the fascinating development of the scientific uses of neutrons in nuclear explosions. Starting with two 'wheel' experiments in 1958 to measure symmetry of fission in 235-U resonances, the use of external beams of energy-resolved neutrons was expanded on the 'Gnome' experiment in 1961 to include the measurement of neutron capture excitation functions for 238-U, 232-Th

  3. Liquid-liquid contact in vapor explosion. [LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Segev, A.

    1978-08-01

    The contact of two liquid materials, one of which is at a temperature substantially above the boiling point of the other, can lead to fast energy conversion and a subsequent shock wave. This phenomenon is called a vapor explosion. One method of producing intimate, liquid-liquid contact (which is known to be a necessary condition for vapor explosion) is a shock tube configuration. Such experiments in which water was impacted upon molten aluminum showed that very high pressures, even larger than the thermodynamic critical pressure, could occur. The mechanism by which such sharp pressure pulses are generated is not yet clear. The report describes experiments in which cold liquids (Freon-11, Freon-22, water, or butanol) were impacted upon various hot materials (mineral oil, silicone oil, water, mercury, molten Wood's metal or molten salt mixture).

  4. Steam explosion - physical foundations and relation to nuclear reactor safety

    International Nuclear Information System (INIS)

    Schumann, U.

    1982-08-01

    'Steam explosion' means the sudden evaporation of a fluid by heat exchange with a hotter material. Other terms are 'vapour explosion', 'thermal explosion', and 'energetic fuel-coolant interaction (FCI)'. In such an event a large fraction of the thermal energy initially stored in the hot material may possibly be converted into mechanical work. For pressurized water reactors one discusses (e.g. in risk analysis studies) a core melt-down accident during which molten fuel comes into contact with water. In the analysis of the consequences one has to investigate steam explosions. In this report an overview over the state of the knowledge is given. The overview is based on an extensive literature review. The objective of the report is to provide the basic knowledge which is required for understanding of the most important theories on the process of steam explosions. Following topics are treated: overview on steam explosion incidents, work potential, spontaneous nucleation, concept of detonation, results of some typical experiments, hydrodynamic fragmentation of drops, bubbles and jets, coarse mixtures, film-boiling, scenario of a core melt-down accident with possible steam-explosion in a pressurized water reactor. (orig.) [de

  5. UA1 upgrade first-level calorimeter trigger processor

    International Nuclear Information System (INIS)

    Bains, N.; Charlton, D.; Ellis, N.; Garvey, J.; Gregory, J.; Jimack, M.P.; Jovanovic, P.; Kenyon, I.R.; Baird, S.A.; Campbell, D.; Cawthraw, M.; Coughlan, J.; Flynn, P.; Galagedera, S.; Grayer, G.; Halsall, R.; Shah, T.P.; Stephens, R.; Eisenhandler, E.; Fensome, I.; Landon, M.

    1989-01-01

    A new first-level trigger processor has been built for the UA1 experiment on the Cern SppS Collider. The processor exploits the fine granularity of the new UA1 uranium-TMP calorimeter to improve the selectivity of the trigger. The new electron trigger has improved hadron jet rejection, achieved by requiring low energy deposition around the electromagnetic cluster. A missing transverse energy trigger and a total energy trigger have also been implemented. (orig.)

  6. Externally triggered renewed bubble nucleation in basaltic magma: the 12 October 2008 eruption at Halema‘uma‘u Overlook vent, Kīlauea, Hawai‘i, USA

    Science.gov (United States)

    Carey, Rebecca J.; Manga, Michael; Degruyter, Wim; Swanson, Donald; Houghton, Bruce F.; Orr, Tim R.; Patrick, Matthew R.

    2012-01-01

    From October 2008 until present, dozens of small impulsive explosive eruptions occurred from the Overlook vent on the southeast side of Halema‘uma‘u Crater, at Kīlauea volcano, USA. These eruptions were triggered by rockfalls from the walls of the volcanic vent and conduit onto the top of the lava column. Here we use microtextural observations and data from clasts erupted during the well-characterized 12 October 2008 explosive eruption at Halema‘uma‘u to extend existing models of eruption triggering. We present a potential mechanism for this eruption by combining microtextural observations with existing geophysical and visual data sets. We measure the size and number density of bubbles preserved in juvenile ejecta using 2D images and X-ray microtomography. Our data suggest that accumulations of large bubbles with diameters of >50μm to at least millimeters existed at shallow levels within the conduit prior to the 12 October 2008 explosion. Furthermore, a high number density of small bubbles nucleation of bubbles. Visual observations, combined with preexisting geophysical data, suggest that the impact of rockfalls onto the magma free surface induces pressure changes over short timescales that (1) nucleated new additional bubbles in the shallow conduit leading to high number densities of small bubbles and (2) expanded the preexisting bubbles driving upward acceleration. The trigger of eruption and bubble nucleation is thus external to the degassing system.

  7. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 1 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Beck Colleen M,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  8. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 2 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  9. The Off-Site Plowshare and Vela Uniform Programs: Assessing Potential Environmental Liabilities through an Examination of Proposed Nuclear Projects,High Explosive Experiments, and High Explosive Construction Activities Volume 3 of 3

    Energy Technology Data Exchange (ETDEWEB)

    Beck Colleen M.,Edwards Susan R.,King Maureen L.

    2011-09-01

    This document presents the results of nearly six years (2002-2008) of historical research and field studies concerned with evaluating potential environmental liabilities associated with U.S. Atomic Energy Commission projects from the Plowshare and Vela Uniform Programs. The Plowshare Program's primary purpose was to develop peaceful uses for nuclear explosives. The Vela Uniform Program focused on improving the capability of detecting, monitoring and identifying underground nuclear detonations. As a result of the Project Chariot site restoration efforts in the early 1990s, there were concerns that there might be other project locations with potential environmental liabilities. The Desert Research Institute conducted archival research to identify projects, an analysis of project field activities, and completed field studies at locations where substantial fieldwork had been undertaken for the projects. Although the Plowshare and Vela Uniform nuclear projects are well known, the projects that are included in this research are relatively unknown. They are proposed nuclear projects that were not executed, proposed and executed high explosive experiments, and proposed and executed high explosive construction activities off the Nevada Test Site. The research identified 170 Plowshare and Vela Uniform off-site projects and many of these had little or no field activity associated with them. However, there were 27 projects that merited further investigation and field studies were conducted at 15 locations.

  10. Experience of Percutaneous Trigger Finger Release under Local ...

    African Journals Online (AJOL)

    New Delhi, India. ... This procedure is easy, quicker, less complications and economical with good results. ... Sahu and Gupta: Trigger finger release under local anesthesia .... the most cost-effective treatment is two trials of corticosteroid.

  11. Explosion hazard in liquid nitrogen cooled fusion systems

    International Nuclear Information System (INIS)

    Brereton, S.J.

    1988-01-01

    The explosion hazard associated with the use of liquid nitrogen in a radiation environment in fusion facilities has been investigated. The principal product of irradiating liquid nitrogen is thought to be ozone, resulting from the action of radiation on oxygen impurity. Ozone is a very unstable material, and explosions may occur as it rapidly decomposes to oxygen. Occurrences of this problem in irradiated liquid nitrogen systems are reviewed. An empirical expression, from early experiments, for the yield of ozone in liquid nitrogen-oxygen mixtures exposed to gamma radiation is employed to assess the degree of ozone explosion hazard expected at fusion facilities. The problem is investigated for the Compact Ignition Tokamak (CIT) as a particular example. 16 refs., 5 figs., 1 tab

  12. Concept of the CMS Trigger Supervisor

    CERN Document Server

    Magrans de Abril, Ildefons; Varela, Joao

    2006-01-01

    The Trigger Supervisor is an online software system designed for the CMS experiment at CERN. Its purpose is to provide a framework to set up, test, operate and monitor the trigger components on one hand and to manage their interplay and the information exchange with the run control part of the data acquisition system on the other. The Trigger Supervisor is conceived to provide a simple and homogeneous client interface to the online software infrastructure of the trigger subsystems. This document specifies the functional and non-functional requirements, design and operational details, and the components that will be delivered in order to facilitate a smooth integration of the trigger software in the context of CMS.

  13. Experimental Study of Structure/Behavior Relationship for a Metallized Explosive

    Science.gov (United States)

    Bukovsky, Eric; Reeves, Robert; Gash, Alexander; Glumac, Nick

    2017-06-01

    Metal powders are commonly added to explosive formulations to modify the blast behavior. Although detonation velocity is typically reduced compared to the neat explosive, the metal provides other benefits. Aluminum is a common additive to increase the overall energy output and high-density metals can be useful for enhancing momentum transfer to a target. Typically, metal powder is homogeneously distributed throughout the material; in this study, controlled distributions of metal powder in explosive formulations were investigated. The powder structures were printed using powder bed printing and the porous structures were filled with explosives to create bulk explosive composites. In all cases, the overall ratio between metal and explosive was maintained, but the powder distribution was varied. Samples utilizing uniform distributions to represent typical materials, discrete pockets of metal powder, and controlled, graded powder distributions were created. Detonation experiments were performed to evaluate the influence of metal powder design on the output pressure/time and the overall impulse. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  14. The second level trigger system of FAST

    CERN Document Server

    Martínez,G; Berdugo, J; Casaus, J; Casella, V; De Laere, D; Deiters, K; Dick, P; Kirkby, J; Malgeri, L; Mañá, C; Marín, J; Pohl, M; Petitjean, C; Sánchez, E; Willmott, C

    2009-01-01

    The Fibre Active Scintillator Target (FAST) experiment is a novel imaging particle detector currently operating in a high-intensity π+ beam at the Paul Scherrer Institute (PSI), Villigen, Switzerland. The detector is designed to perform a high precision measurement of the μ+ lifetime, in order to determine the Fermi constant, Gf, to 1 ppm precision. A dedicated second level (LV2) hardware trigger system has been developed for the experiment. It performs an online analysis of the π/μ decay chain by identifying the stopping position of each beam particle and detecting the subsequent appearance of the muon. The LV2 trigger then records the muon stop pixel and selectively triggers the Time-to-Digital Converters (TDCs) in the vicinity. A detailed description of the trigger system is presented in this paper.

  15. The ATLAS High Level Trigger Steering Framework and the Trigger 
Configuration System.

    CERN Document Server

    Pérez Cavalcanti, Tiago; The ATLAS collaboration

    2011-01-01

    The ATLAS High Level Trigger Steering Framework and the Trigger 
Configuration System.
 
The ATLAS detector system installed in the Large Hadron Collider (LHC) 
at CERN is designed to study proton-proton and nucleus-nucleus 
collisions with a maximum center of mass energy of 14 TeV at a bunch 
collision rate of 40MHz.  In March 2010 the four LHC experiments saw 
the first proton-proton collisions at 7 TeV. Still within the year a 
collision rate of nearly 10 MHz is expected. At ATLAS, events of 
potential interest for ATLAS physics are selected by a three-level 
trigger system, with a final recording rate of about 200 Hz. The first 
level (L1) is implemented in custom hardware; the two levels of 
the high level trigger (HLT) are software triggers, running on large 
farms of standard computers and network devices. 

Within the ATLAS physics program more than 500 trigger signatures are 
defined. The HLT tests each signature on each L1-accepted event; the 
test outcome is recor...

  16. The ATLAS Muon and Tau Trigger

    CERN Document Server

    Dell'Asta, L; The ATLAS collaboration

    2013-01-01

    [Muon] The ATLAS experiment at CERN's Large Hadron Collider (LHC) deploys a three-levels processing scheme for the trigger system. The level-1 muon trigger system gets its input from fast muon trigger detectors. Fast sector logic boards select muon candidates, which are passed via an interface board to the central trigger processor and then to the High Level Trigger (HLT). The muon HLT is purely software based and encompasses a level-2 (L2) trigger followed by an event filter (EF) for a staged trigger approach. It has access to the data of the precision muon detectors and other detector elements to refine the muon hypothesis. Trigger-specific algorithms were developed and are used for the L2 to increase processing speed for instance by making use of look-up tables and simpler algorithms, while the EF muon triggers mostly benefit from offline reconstruction software to obtain most precise determination of the track parameters. There are two algorithms with different approaches, namely inside-out and outside-in...

  17. Performance of the ATLAS Muon Trigger and Phase-1 Upgrade of Level-1 Endcap Muon Trigger

    CERN Document Server

    Mizukami, Atsushi; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment utilises a trigger system to efficiently record interesting events. It consists of first-level and high-level triggers. The first-level trigger is implemented with custom-built hardware to reduce the event rate from 40 MHz to100 kHz. Then the software-based high-level triggers refine the trigger decisions reducing the output rate down to 1 kHz. Events with muons in the final state are an important signature for many physics topics at the LHC. An efficient trigger on muons and a detailed understanding of its performance are required. Trigger efficiencies are, for example, obtained from the muon decay of Z boson, with a Tag&Probe method, using proton-proton collision data collected in 2016 at a centre-of-mass energy of 13 TeV. The LHC is expected to increase its instantaneous luminosity to $3\\times10^{34} \\rm{cm^{-2}s^{-1}}$ after the phase-1 upgrade between 2018-2020. The upgrade of the ATLAS trigger system is mandatory to cope with this high-luminosity. In the phase-1 upgrade, new det...

  18. Pulling the trigger on LHC electronics

    CERN Document Server

    CERN. Geneva

    2001-01-01

    The conditions at CERN's Large Hadron Collider pose severe challenges for the designers and builders of front-end, trigger and data acquisition electronics. A recent workshop reviewed the encouraging progress so far and discussed what remains to be done. The LHC experiments have addressed level one trigger systems with a variety of high-speed hardware. The CMS Calorimeter Level One Regional Trigger uses 160 MHz logic boards plugged into the front and back of a custom backplane, which provides point-to-point links between the cards. Much of the processing in this system is performed by five types of 160 MHz digital applications-specific integrated circuits designed using Vitesse submicron high-integration gallium arsenide gate array technology. The LHC experiments make extensive use of field programmable gate arrays (FPGAs). These offer programmable reconfigurable logic, which has the flexibility that trigger designers need to be able to alter algorithms so that they can follow the physics and detector perform...

  19. Quantum control for initiation and detection of explosives

    International Nuclear Information System (INIS)

    Greenfield, Margo T.; McGrane, Shawn D.; Scharff, R. Jason; Moore, David S.

    2010-01-01

    We employ quantum control methods towards detection and quantum controlled initiation (QCI) of energetic materials. Ultrafast pulse shaping of broadband Infrared (∼750 nm to 850 run) and ultraviolet (266 nm, 400 nm) light is utilized for control. The underlying principals behind optimal control can be utilized to both detect and initiate explosives. In each case, time dependent phase shaped electric fields drive the chemical systems towards a desired state. For optimal dynamic detection of explosives (ODD-Ex) a phase specific broadband infrared pulse is created which increases not only the sensitivity of detection but also the selectivity of an explosive's spectral signatures in a background of interferents. QCI on the other hand, seeks to initiate explosives by employing shaped ultraviolet light. QCI is ideal for use with explosive detonators as it removes the possibility of unintentional initiation from an electrical source while adding an additional safety feature, initiation only with the proper pulse shape. Quantum control experiments require: (1) the ability to phase and amplitude shape the laser pulse and (2) the ability to effectively search for the pulse shape which controls the reaction. In these adaptive experiments we utilize both global and local optimization search routines such as genetic algorithm, differential evolution, and downhill simplex. Pulse shaping the broadband IR light, produced by focusing 800 nm light through a pressurized tube of Argon, is straightforward as commercial pulse shapers are available at and around 800 nm. Pulse shaping in the UV requires a home built shaper. Our system is an acoustic optical modulator (AOM) pulse shaper in which consists of a fused silica AOM crystal placed in the Fourier plane of a 4-f zero dispersion compressor.

  20. Steam explosion pretreatment of softwood: the effect of the explosive decompression on enzymatic digestibility.

    Science.gov (United States)

    Pielhop, Thomas; Amgarten, Janick; von Rohr, Philipp Rudolf; Studer, Michael H

    2016-01-01

    Steam explosion pretreatment has been examined in many studies for enhancing the enzymatic digestibility of lignocellulosic biomass and is currently the most common pretreatment method in commercial biorefineries. The information available about the effect of the explosive decompression on the biochemical conversion is, however, very limited, and no studies prove that the latter is actually enhanced by the explosion. Hence, it is of great value to discern between the effect of the explosion on the one hand and the steaming on the other hand, to identify their particular influences on enzymatic digestibility. The effect of the explosive decompression in the steam explosion pretreatment of spruce wood chips on their enzymatic cellulose digestibility was studied systematically. The explosion had a high influence on digestibility, improving it by up to 90 % compared to a steam pretreatment without explosion. Two factors were identified to be essentially responsible for the effect of the explosion on enzymatic digestibility: pretreatment severity and pressure difference of the explosion. A higher pretreatment severity can soften up and weaken the lignocellulose structure more, so that the explosion can better break up the biomass and decrease its particle size, which enhances its digestibility. In particular, increasing the pressure difference of the explosion leads to more defibration, a smaller particle size and a better digestibility. Though differences were found in the micro- and nanostructure of exploded and non-exploded biomass, the only influence of the explosion on digestibility was found to be the macroscopic particle size reduction. Steam explosion treatments with a high severity and a high pressure difference of the explosion lead to a comparatively high cellulose digestibility of the-typically very recalcitrant-softwood biomass. This is the first study to show that explosion can enhance the enzymatic digestibility of lignocellulosic biomass. If the

  1. A trigger card for event rejection in the RMC experiment at TRIUMF

    International Nuclear Information System (INIS)

    Bennett, P.; Chan, R.; Daviel, S.; Ko, S.; Blecher, M.; Hasinoff, M.; Sample, D.; Wright, D.; Poutissou, R.

    1990-01-01

    A trigger card has been designed and constructed to improve the trigger efficiency of a large solid angle pair spectrometer to be used for the measurement of radiative muon capture at TRIUMF. A number of these trigger cards are connected to FASTBUS pipeline TDCs via the FASTBUS auxiliary connector, to provide coarse information on the tracks of charged particles in a drift chamber. The trigger cards produce a majority OR of groups of six signals from the chamber, allowing very fast on-line event rejection. The performance of the cards and other relevant technical issues will be discussed in this article

  2. The Level-0 Muon Trigger for the LHCb experiment

    CERN Document Server

    Aslanides, E; Cogan, J; Duval, P Y; Le Gac, R; Leroy, O; Liotard, PL; Marin, F; Favard, S; Tsaregorodtsev, A

    2006-01-01

    The Level-0 Muon Trigger looks for straight tracks crossing the five muon stations of the LHCb muon detector and measures their transverse momentum. The tracking uses a road algorithm relying on the projectivity of the muon detector. The architecture of the Level-0 muon trigger is pipeline and massively parallel. Receiving 130 GBytes/s of input data, it reconstructs muon candidates for each bunch crossing (25 ns) in less than 1.2 $\\mu$S. It relies on an intensive use of high speed multigigabit serial links where high speed serializers/deserializers are embedded in Field Programmable Gate Arrays (FPGAs).

  3. Proceedings of the workshop on triggering and data acquisition for experiments at the Supercollider

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, R. [ed.

    1989-04-01

    This meeting covered the following subjects: triggering requirements for SSC physics; CDF level 3 trigger; D0 trigger design; AMY trigger systems; Zeus calorimeter first level trigger; data acquisition for the Zeus Central Tracking Detector; trigger and data acquisition aspects for SSC tracking; data acquisition systems for the SSC; validating triggers in CDF level 3; optical data transmission at SSC; time measurement system at SSC; SSC/BCD data acquisition system; microprocessors and other processors for triggering and filtering at the SSC; data acquisition, event building, and on-line processing; LAA real-time benchmarks; object-oriented system building at SSC; and software and project management. Selected papers are indexed separately for inclusion in the Energy Science and Technology Database.

  4. A hybrid type Ia supernova with an early flash triggered by helium-shell detonation.

    Science.gov (United States)

    Jiang, Ji-An; Doi, Mamoru; Maeda, Keiichi; Shigeyama, Toshikazu; Nomoto, Ken'ichi; Yasuda, Naoki; Jha, Saurabh W; Tanaka, Masaomi; Morokuma, Tomoki; Tominaga, Nozomu; Ivezić, Željko; Ruiz-Lapuente, Pilar; Stritzinger, Maximilian D; Mazzali, Paolo A; Ashall, Christopher; Mould, Jeremy; Baade, Dietrich; Suzuki, Nao; Connolly, Andrew J; Patat, Ferdinando; Wang, Lifan; Yoachim, Peter; Jones, David; Furusawa, Hisanori; Miyazaki, Satoshi

    2017-10-04

    Type Ia supernovae arise from the thermonuclear explosion of white-dwarf stars that have cores of carbon and oxygen. The uniformity of their light curves makes these supernovae powerful cosmological distance indicators, but there have long been debates about exactly how their explosion is triggered and what kind of companion stars are involved. For example, the recent detection of the early ultraviolet pulse of a peculiar, subluminous type Ia supernova has been claimed as evidence for an interaction between a red-giant or a main-sequence companion and ejecta from a white-dwarf explosion. Here we report observations of a prominent but red optical flash that appears about half a day after the explosion of a type Ia supernova. This supernova shows hybrid features of different supernova subclasses, namely a light curve that is typical of normal-brightness supernovae, but with strong titanium absorption, which is commonly seen in the spectra of subluminous ones. We argue that this early flash does not occur through previously suggested mechanisms such as the companion-ejecta interaction. Instead, our simulations show that it could occur through detonation of a thin helium shell either on a near-Chandrasekhar-mass white dwarf, or on a sub-Chandrasekhar-mass white dwarf merging with a less-massive white dwarf. Our finding provides evidence that one branch of previously proposed explosion models-the helium-ignition branch-does exist in nature, and that such a model may account for the explosions of white dwarfs in a mass range wider than previously supposed.

  5. Upgrade trigger & reconstruction strategy: 2017 milestone

    CERN Document Server

    Albrecht, Johannes; Campora Perez, Daniel Hugo; Cattaneo, Marco; Marco, Clemencic; Couturier, Ben; Dziurda, Agnieszka; Fitzpatrick, Conor; Fontana, Marianna; Grillo, Lucia; Hasse, Christoph; Hill, Donal; Jones, Christopher Rob; Lemaitre, Florian; Lupton, Olli; Matev, Rosen; Pearce, Alex; Polci, Francesco; Promberger, Laura; Ponce, Sebastien; Quagliani, Renato; Raven, Gerhard; Sciascia, Barbara; Schiller, Manuel Tobias; Stahl, Sascha; Szymanski, Maciej Pawel; Chefdeville, Maximilien

    2018-01-01

    The LHCb collaboration is currently preparing an update of the experiment to take data in Run 3 of the LHC. The dominant feature of this upgrade is a trigger-less readout of the full detector followed by a full software trigger. To make optimal use of the collected data, the events are reconstructed at the inelastic collision rate of 30 MHz. This document presents the baseline trigger and reconstruction strategy as of the end of 2017.

  6. Calorimetry triggering in ATLAS

    CERN Document Server

    Igonkina, O; Adragna, P; Aharrouche, M; Alexandre, G; Andrei, V; Anduaga, X; Aracena, I; Backlund, S; Baines, J; Barnett, B M; Bauss, B; Bee, C; Behera, P; Bell, P; Bendel, M; Benslama, K; Berry, T; Bogaerts, A; Bohm, C; Bold, T; Booth, J R A; Bosman, M; Boyd, J; Bracinik, J; Brawn, I, P; Brelier, B; Brooks, W; Brunet, S; Bucci, F; Casadei, D; Casado, P; Cerri, A; Charlton, D G; Childers, J T; Collins, N J; Conde Muino, P; Coura Torres, R; Cranmer, K; Curtis, C J; Czyczula, Z; Dam, M; Damazio, D; Davis, A O; De Santo, A; Degenhardt, J; Delsart, P A; Demers, S; Demirkoz, B; Di Mattia, A; Diaz, M; Djilkibaev, R; Dobson, E; Dova, M, T; Dufour, M A; Eckweiler, S; Ehrenfeld, W; Eifert, T; Eisenhandler, E; Ellis, N; Emeliyanov, D; Enoque Ferreira de Lima, D; Faulkner, P J W; Ferland, J; Flacher, H; Fleckner, J E; Flowerdew, M; Fonseca-Martin, T; Fratina, S; Fhlisch, F; Gadomski, S; Gallacher, M P; Garitaonandia Elejabarrieta, H; Gee, C N P; George, S; Gillman, A R; Goncalo, R; Grabowska-Bold, I; Groll, M; Gringer, C; Hadley, D R; Haller, J; Hamilton, A; Hanke, P; Hauser, R; Hellman, S; Hidvgi, A; Hillier, S J; Hryn'ova, T; Idarraga, J; Johansen, M; Johns, K; Kalinowski, A; Khoriauli, G; Kirk, J; Klous, S; Kluge, E-E; Koeneke, K; Konoplich, R; Konstantinidis, N; Kwee, R; Landon, M; LeCompte, T; Ledroit, F; Lei, X; Lendermann, V; Lilley, J N; Losada, M; Maettig, S; Mahboubi, K; Mahout, G; Maltrana, D; Marino, C; Masik, J; Meier, K; Middleton, R P; Mincer, A; Moa, T; Monticelli, F; Moreno, D; Morris, J D; Mller, F; Navarro, G A; Negri, A; Nemethy, P; Neusiedl, A; Oltmann, B; Olvito, D; Osuna, C; Padilla, C; Panes, B; Parodi, F; Perera, V J O; Perez, E; Perez Reale, V; Petersen, B; Pinzon, G; Potter, C; Prieur, D P F; Prokishin, F; Qian, W; Quinonez, F; Rajagopalan, S; Reinsch, A; Rieke, S; Riu, I; Robertson, S; Rodriguez, D; Rogriquez, Y; Rhr, F; Saavedra, A; Sankey, D P C; Santamarina, C; Santamarina Rios, C; Scannicchio, D; Schiavi, C; Schmitt, K; Schultz-Coulon, H C; Schfer, U; Segura, E; Silverstein, D; Silverstein, S; Sivoklokov, S; Sjlin, J; Staley, R J; Stamen, R; Stelzer, J; Stockton, M C; Straessner, A; Strom, D; Sushkov, S; Sutton, M; Tamsett, M; Tan, C L A; Tapprogge, S; Thomas, J P; Thompson, P D; Torrence, E; Tripiana, M; Urquijo, P; Urrejola, P; Vachon, B; Vercesi, V; Vorwerk, V; Wang, M; Watkins, P M; Watson, A; Weber, P; Weidberg, T; Werner, P; Wessels, M; Wheeler-Ellis, S; Whiteson, D; Wiedenmann, W; Wielers, M; Wildt, M; Winklmeier, F; Wu, X; Xella, S; Zhao, L; Zobernig, H; de Seixas, J M; dos Anjos, A; Asman, B; Özcan, E

    2009-01-01

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2 105 to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  7. EXPLOSIVE NUCLEOSYNTHESIS IN THE NEUTRINO-DRIVEN ASPHERICAL SUPERNOVA EXPLOSION OF A NON-ROTATING 15 Msun STAR WITH SOLAR METALLICITY

    International Nuclear Information System (INIS)

    Fujimoto, Shin-ichiro; Kotake, Kei; Hashimoto, Masa-aki; Ono, Masaomi; Ohnishi, Naofumi

    2011-01-01

    We investigate explosive nucleosynthesis in a non-rotating 15 M sun star with solar metallicity that explodes by a neutrino-heating supernova (SN) mechanism aided by both standing accretion shock instability (SASI) and convection. To trigger explosions in our two-dimensional hydrodynamic simulations, we approximate the neutrino transport with a simple light-bulb scheme and systematically change the neutrino fluxes emitted from the protoneutron star. By a post-processing calculation, we evaluate abundances and masses of the SN ejecta for nuclei with a mass number ≤70, employing a large nuclear reaction network. Aspherical abundance distributions, which are observed in nearby core-collapse SN remnants, are obtained for the non-rotating spherically symmetric progenitor, due to the growth of a low-mode SASI. The abundance pattern of the SN ejecta is similar to that of the solar system for models whose masses range between (0.4-0.5) M sun of the ejecta from the inner region (≤10, 000 km) of the precollapse core. For the models, the explosion energies and the 56 Ni masses are ≅ 10 51 erg and (0.05-0.06) M sun , respectively; their estimated baryonic masses of the neutron star are comparable to the ones observed in neutron-star binaries. These findings may have little uncertainty because most of the ejecta is composed of matter that is heated via the shock wave and has relatively definite abundances. The abundance ratios for Ne, Mg, Si, and Fe observed in the Cygnus loop are reproduced well with the SN ejecta from an inner region of the 15 M sun progenitor.

  8. LHCb Topological Trigger Reoptimization

    International Nuclear Information System (INIS)

    Likhomanenko, Tatiana; Khairullin, Egor; Rogozhnikov, Alex; Ustyuzhanin, Andrey; Ilten, Philip; Williams, Michael

    2015-01-01

    The main b-physics trigger algorithm used by the LHCb experiment is the so- called topological trigger. The topological trigger selects vertices which are a) detached from the primary proton-proton collision and b) compatible with coming from the decay of a b-hadron. In the LHC Run 1, this trigger, which utilized a custom boosted decision tree algorithm, selected a nearly 100% pure sample of b-hadrons with a typical efficiency of 60-70%; its output was used in about 60% of LHCb papers. This talk presents studies carried out to optimize the topological trigger for LHC Run 2. In particular, we have carried out a detailed comparison of various machine learning classifier algorithms, e.g., AdaBoost, MatrixNet and neural networks. The topological trigger algorithm is designed to select all ’interesting” decays of b-hadrons, but cannot be trained on every such decay. Studies have therefore been performed to determine how to optimize the performance of the classification algorithm on decays not used in the training. Methods studied include cascading, ensembling and blending techniques. Furthermore, novel boosting techniques have been implemented that will help reduce systematic uncertainties in Run 2 measurements. We demonstrate that the reoptimized topological trigger is expected to significantly improve on the Run 1 performance for a wide range of b-hadron decays. (paper)

  9. TRIGGER

    CERN Multimedia

    Wesley Smith

    Level-1 Trigger Hardware and Software The hardware of the trigger components has been mostly finished. The ECAL Endcap Trigger Concentrator Cards (TCC) are in production while Barrel TCC firmware has been upgraded, and the Trigger Primitives can now be stored by the Data Concentrator Card for readout by the DAQ. The Regional Calorimeter Trigger (RCT) system is complete, and the timing is being finalized. All 502 HCAL trigger links to RCT run without error. The HCAL muon trigger timing has been equalized with DT, RPC, CSC and ECAL. The hardware and firmware for the Global Calorimeter Trigger (GCT) jet triggers are being commissioned and data from these triggers is available for readout. The GCT energy sums from rings of trigger towers around the beam pipe beam have been changed to include two rings from both sides. The firmware for Drift Tube Track Finder, Barrel Sorter and Wedge Sorter has been upgraded, and the synchronization of the DT trigger is satisfactory. The CSC local trigger has operated flawlessly u...

  10. Application of Fault Management Theory to the Quantitive Selection of a Launch Vehicle Abort Trigger Suite

    Science.gov (United States)

    Lo, Yunnhon; Johnson, Stephen B.; Breckenridge, Jonathan T.

    2014-01-01

    SHM/FM theory has been successfully applied to the selection of the baseline set Abort Triggers for the NASA SLS center dot Quantitative assessment played a useful role in the decision process ? M&FM, which is new within NASA MSFC, required the most "new" work, as this quantitative analysis had never been done before center dot Required development of the methodology and tool to mechanize the process center dot Established new relationships to the other groups ? The process is now an accepted part of the SLS design process, and will likely be applied to similar programs in the future at NASA MSFC ? Future improvements center dot Improve technical accuracy ?Differentiate crew survivability due to an abort, vs. survivability even no immediate abort occurs (small explosion with little debris) ?Account for contingent dependence of secondary triggers on primary triggers ?Allocate "? LOC Benefit" of each trigger when added to the previously selected triggers. center dot Reduce future costs through the development of a specialized tool ? Methodology can be applied to any manned/unmanned vehicle, in space or terrestrial

  11. Seismic explosion sources on an ice cap

    DEFF Research Database (Denmark)

    Shulgin, Alexey; Thybo, Hans

    2015-01-01

    crustal model can be modelled. A crucial challenge for applying the technique is to control the sources. Here, we present data that describe the efficiency of explosive sources in the ice cover. Analysis of the data shows, that the ice cap traps a significant amount of energy, which is observed......Controlled source seismic investigation of crustal structure below ice covers is an emerging technique. We have recently conducted an explosive refraction/wide-angle reflection seismic experiment on the ice cap in east-central Greenland. The data-quality is high for all shot points and a full...

  12. Youngest Stellar Explosion in Our Galaxy Discovered

    Science.gov (United States)

    2008-05-01

    Astronomers have found the remains of the youngest supernova, or exploded star, in our Galaxy. The supernova remnant, hidden behind a thick veil of gas and dust, was revealed by the National Science Foundation's Very Large Array (VLA) and NASA's Chandra X-Ray Observatory, which could see through the murk. The object is the first example of a "missing population" of young supernova remnants. 1985 and 2008 VLA Images Move cursor over image to blink. VLA Images of G1.9+0.3 in 1985 and 2008: Circle for size comparison. CREDIT: Green, et al., NRAO/AUI/NSF From observing supernovae in other galaxies, astronomers have estimated that about three such stellar explosions should occur in our Milky Way every century. However, the most recent one known until now occurred around 1680, creating the remnant called Cassiopeia A. The newly-discovered object is the remnant of an explosion only about 140 years ago. "If the supernova rate estimates are correct, there should be the remnants of about 10 supernova explosions in the Milky Way that are younger than Cassiopeia A," said David Green of the University of Cambridge in the UK, who led the VLA study. "It's great to finally track one of them down." Supernova explosions, which mark the violent death of a star, release tremendous amounts of energy and spew heavy elements such as calcium and iron into interstellar space. They thus seed the clouds of gas and dust from which new stars and planets are formed and, through their blast shocks, can even trigger such formation. The lack of evidence for young supernova remnants in the Milky Way had caused astronomers to wonder if our Galaxy, which appears otherwise normal, differed in some unknown way from others. Alternatively, scientists thought that the "missing" Milky Way supernovae perhaps indicated that their understanding of the relationship between supernovae and other galactic processes was in error. The astronomers made their discovery by measuring the expansion of the debris from

  13. Studies of the laser-induced fluorescence of explosives and explosive compositions.

    Energy Technology Data Exchange (ETDEWEB)

    Hargis, Philip Joseph, Jr. (,; .); Thorne, Lawrence R.; Phifer, Carol Celeste; Parmeter, John Ethan; Schmitt, Randal L.

    2006-10-01

    Continuing use of explosives by terrorists throughout the world has led to great interest in explosives detection technology, especially in technologies that have potential for standoff detection. This LDRD was undertaken in order to investigate the possible detection of explosive particulates at safe standoff distances in an attempt to identify vehicles that might contain large vehicle bombs (LVBs). The explosives investigated have included the common homogeneous or molecular explosives, 2,4,6-trinitrotoluene (TNT), pentaerythritol tetranitrate (PETN), cyclonite or hexogen (RDX), octogen (HMX), and the heterogeneous explosive, ammonium nitrate/fuel oil (ANFO), and its components. We have investigated standard excited/dispersed fluorescence, laser-excited prompt and delayed dispersed fluorescence using excitation wavelengths of 266 and 355 nm, the effects of polarization of the laser excitation light, and fluorescence imaging microscopy using 365- and 470-nm excitation. The four nitro-based, homogeneous explosives (TNT, PETN, RDX, and HMX) exhibit virtually no native fluorescence, but do exhibit quenching effects of varying magnitude when adsorbed on fluorescing surfaces. Ammonium nitrate and fuel oil mixtures fluoresce primarily due to the fuel oil, and, in some cases, due to the presence of hydrophobic coatings on ammonium nitrate prill or impurities in the ammonium nitrate itself. Pure ammonium nitrate shows no detectable fluorescence. These results are of scientific interest, but they provide little hope for the use of UV-excited fluorescence as a technique to perform safe standoff detection of adsorbed explosive particulates under real-world conditions with a useful degree of reliability.

  14. The second level trigger system of FAST

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, G. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)], E-mail: gustavo.martinez@ciemat.es; Barcyzk, A. [CERN, CH-1211 Geneva 23 (Switzerland); Berdugo, J.; Casaus, J. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Casella, C.; De Laere, S. [Universite de Geneve, 30 quai Ernest-Anserment, CH-1211 Geneva 4 (Switzerland); Deiters, K.; Dick, P. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Kirkby, J.; Malgeri, L. [CERN, CH-1211 Geneva 23 (Switzerland); Mana, C.; Marin, J. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain); Pohl, M. [Universite de Geneve, 30 quai Ernest-Anserment, CH-1211 Geneva 4 (Switzerland); Petitjean, C. [Paul Scherrer Institut, 5232 Villigen PSI (Switzerland); Sanchez, E.; Willmott, C. [CIEMAT, Avenida Complutense 22, 28040 Madrid (Spain)

    2009-10-11

    The Fibre Active Scintillator Target (FAST) experiment is a novel imaging particle detector currently operating in a high-intensity {pi}{sup +} beam at the Paul Scherrer Institute (PSI), Villigen, Switzerland. The detector is designed to perform a high precision measurement of the {mu}{sup +} lifetime, in order to determine the Fermi constant, G{sub f}, to 1 ppm precision. A dedicated second level (LV2) hardware trigger system has been developed for the experiment. It performs an online analysis of the {pi}/{mu} decay chain by identifying the stopping position of each beam particle and detecting the subsequent appearance of the muon. The LV2 trigger then records the muon stop pixel and selectively triggers the Time-to-Digital Converters (TDCs) in the vicinity. A detailed description of the trigger system is presented in this paper.

  15. Pyroshock Prediction of Ridge-Cut Explosive Bolts Using Hydrocodes

    Directory of Open Access Journals (Sweden)

    Juho Lee

    2016-01-01

    Full Text Available Pyrotechnic release devices such as explosive bolts are prevalent for many applications due to their merits: high reliability, high power-to-weight ratio, reasonable cost, and more. However, pyroshock generated by an explosive event can cause failures in electric components. Although pyroshock propagations are relatively well understood through many numerical and experimental studies, the prediction of pyroshock generation is still a very difficult problem. This study proposes a numerical method for predicting the pyroshock of a ridge-cut explosive bolt using a commercial hydrocode (ANSYS AUTODYN. A numerical model is established by integrating fluid-structure interaction and complex material models for high explosives and metals, including high explosive detonation, shock wave transmission and propagation, and stress wave propagation. To verify the proposed numerical scheme, pyroshock measurement experiments of the ridge-cut explosive bolts with two types of surrounding structures are performed using laser Doppler vibrometers (LDVs. The numerical analysis results provide accurate prediction in both the time (acceleration and frequency domains (maximax shock response spectra. In maximax shock response spectra, the peaks due to vibration modes of the structures are observed in both the experimental and numerical results. The numerical analysis also helps to identify the pyroshock generation source and the propagation routes.

  16. Water containing explosive for big diameter use. [Slurry of ammonium nitrate and monomethyl lamine

    Energy Technology Data Exchange (ETDEWEB)

    Sunakawa, Tomoji; Fujita, Koichi; Kodama, Taro; Suzuki, Masahiro; Ono, Naoki

    1988-05-11

    This is a report concerning the design and experiment of water containing explosive which can be used as a substitute of ANFO. As the water containing explosive, slurry type was taken which consists of ammonium nitrate and monomethyl amine as main components and density of which was more than 1.2, explosion speed 4880 m/s, F value 7790 atm*L/Kg. Experiments were conducted for variuous loading length. From the result, it was recognized that at least 4.5 m of loading length was neccessary for achieving better result than the case whlen only ANFO was used. (1 fig, 1 tab)

  17. 76 FR 64974 - Commerce in Explosives; List of Explosive Materials (2011R-18T)

    Science.gov (United States)

    2011-10-19

    ... slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Esters of nitro-substituted alcohols. Ethyl-tetryl. Explosive conitrates. Explosive gelatins. Explosive... silver. Fulminating gold. Fulminating mercury. Fulminating platinum. Fulminating silver. G Gelatinized...

  18. The present status of scientific applications of nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Cowan, G A; Diven, B C [Los Alamos Scientific Laboratory, University of California, Los Alamos, NM (United States)

    1970-05-15

    This is the fourth in a series of symposia which started, in 1957 at Livermore with the purpose of examining the peaceful uses of nuclear explosives. Although principal emphasis has {sup b}een placed on technological applications, the discussions have, from the outset, included the fascinating question of scientific uses. Of the possible scientific applications which were mentioned at the 1957 meeting, the proposals which attracted most attention involved uses of nuclear explosions for research in seismology. It is interesting to note that since then a very large and stimulating body of data in the field of seismology has been collected from nuclear tests. Ideas for scientific applications of nuclear explosions go back considerably further than 1957. During the war days Otto Frisch at Los Alamos suggested that a fission bomb would provide an excellent source of fast neutrons which could be led down a vacuum pipe and used for experiments in a relatively unscattered state. This idea, reinvented, modified, and elaborated upon in the ensuing twenty-five years, provides the basis for much of the research discussed in this morning's program. In 1952 a somewhat different property of nuclear explosions, their ability to produce intense neutron exposures on internal targets and to synthesize large quantities of multiple neutron capture products, was dramatically brought to our attention by analysis of debris from the first large thermonuclear explosion (Mike) in which the elements einsteinium and fermiun were observed for the first time. The reports of the next two Plowshare symposia in 1959 and 1964 help record the fascinating development of the scientific uses of neutrons in nuclear explosions. Starting with two 'wheel' experiments in 1958 to measure symmetry of fission in 235-U resonances, the use of external beams of energy-resolved neutrons was expanded on the 'Gnome' experiment in 1961 to include the measurement of neutron capture excitation functions for 238-U, 232

  19. Software trigger for the TOPAZ detector at TRISTAN

    International Nuclear Information System (INIS)

    Tsukamoto, T.; Yamauchi, M.; Enomoto, R.

    1990-01-01

    A new software trigger system was developed and installed at the TOPAZ detector to the trigger system for the TRISTAN e + e - collider to take data efficiently in the scheduled high luminosity experiment. This software trigger requires two or more charged tracks originated at the interaction point by examining the timing of signals from the time projection chamber. To execute the vertex finding very quickly, four microprocessors are used in parallel. By this new trigger the rate of the track trigger was reduced down to 30-40% with very small inefficiency. The additional dead time by this trigger is negligible. (orig.)

  20. 77 FR 58410 - Commerce in Explosives; List of Explosive Materials (2012R-10T)

    Science.gov (United States)

    2012-09-20

    ... sensitive slurry and water gel explosives. Blasting caps. Blasting gelatin. Blasting powder. BTNEC [bis.... Esters of nitro-substituted alcohols. Ethyl-tetryl. Explosive conitrates. Explosive gelatins. Explosive.... Fulminate of silver. Fulminating gold. Fulminating mercury. Fulminating platinum. Fulminating silver. G...

  1. Timing calibration of the trigger system for the drift tube detector of the OPERA neutrino oscillation experiment

    International Nuclear Information System (INIS)

    Lenkeit, Jan

    2015-11-01

    The OPERA experiment searches for ν μ → ν τ oscillations in an almost pure ν μ beam. The goal is to observe the oscillations in appearance mode by using a large-scale lead/emulsion target to resolve individual ν τ interactions. Magnetic spectrometers measure the charge and momentum of beam induced muons leaving the target sections. The Precision Tracker, a drift tube detector consisting of almost 10000 drift tubes, provides the tracking information inside the spectrometers. The coordinate measurement in the drift tubes is derived from a time measurement relative to an external trigger signal. In order to reach the required momentum resolution of less than 25 % for particle momenta up to 25 GeV, the uncertainty on the trigger timing must not exceed a value of 5 ns. In this thesis, a procedure for the timing calibration of the trigger system is presented. A step-by-step calibration of the corresponding signal paths is described. Applying all calibration results, a spatial resolution of 255 μm is achieved for the Precision Tracker, meeting the specified requirements. Furthermore, a method using the calibrated trigger system for performing time of flight measurements with atmospheric muons is developed. The average error on the measured flight times is ±4.5 ns.

  2. A review of vapor explosion information pertinent to the SRS reactors

    International Nuclear Information System (INIS)

    Hyder, M.L.; Allison, D.K.

    1992-04-01

    Vapor explosions are explosive events resulting from the mixing of two liquids, one of which is heated to a temperature well above the boiling point of the second. Under some circumstances mixing of the liquids can boil part of the lower boiling liquid so quickly that the expanding vapor generates a strong pressure wave and explosion. If the lower boiling liquid is water, as is frequently the case, the event is called a ''steam explosion''. Analyses in support of the K-Reactor Probabilistic Risk Assessment have shown that steam explosions generated by the interaction of molten reactor fuel with water contribute significantly to the risk of reactor operation at the SRS. This calculated risk incorporates a conservative treatment of the uncertainties associated with such explosions. Study of steam explosions involving molten reactor materials has been included in the Severe Accident Analysis Program (SAAP) in order to obtain a better evaluation of their importance, and, if possible, to find ways to avoid them. This paper presents a brief review and summary of steam explosion experience from literature accounts, along with the results of experimental studies from the SAAP. It concludes with an evaluation of current knowledge, and suggestions for future development. 71 refs

  3. Calorimetry triggering in ATLAS

    International Nuclear Information System (INIS)

    Igonkina, O; Achenbach, R; Andrei, V; Adragna, P; Aharrouche, M; Bauss, B; Bendel, M; Alexandre, G; Anduaga, X; Aracena, I; Backlund, S; Bogaerts, A; Baines, J; Barnett, B M; Bee, C; P, Behera; Bell, P; Benslama, K; Berry, T; Bohm, C

    2009-01-01

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2 | 10 5 to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  4. Calorimetry Triggering in ATLAS

    International Nuclear Information System (INIS)

    Igonkina, O.; Achenbach, R.; Adragna, P.; Aharrouche, M.; Alexandre, G.; Andrei, V.; Anduaga, X.; Aracena, I.; Backlund, S.; Baines, J.; Barnett, B.M.; Bauss, B.; Bee, C.; Behera, P.; Bell, P.; Bendel, M.; Benslama, K.; Berry, T.; Bogaerts, A.; Bohm, C.; Bold, T.; Booth, J.R.A.; Bosman, M.; Boyd, J.; Bracinik, J.; Brawn, I.P.; Brelier, B.; Brooks, W.; Brunet, S.; Bucci, F.; Casadei, D.; Casado, P.; Cerri, A.; Charlton, D.G.; Childers, J.T.; Collins, N.J.; Conde Muino, P.; Coura Torres, R.; Cranmer, K.; Curtis, C.J.; Czyczula, Z.; Dam, M.; Damazio, D.; Davis, A.O.; De Santo, A.; Degenhardt, J.

    2011-01-01

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2/10 5 to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  5. Calorimetry triggering in ATLAS

    Energy Technology Data Exchange (ETDEWEB)

    Igonkina, O [Nikhef National Institute for Subatomic Physics, Amsterdam (Netherlands); Achenbach, R; Andrei, V [Kirchhoff Institut fuer Physik, Universitaet Heidelberg, Heidelberg (Germany); Adragna, P [Physics Department, Queen Mary, University of London, London (United Kingdom); Aharrouche, M; Bauss, B; Bendel, M [Institut fr Physik, Universitt Mainz, Mainz (Germany); Alexandre, G [Section de Physique, Universite de Geneve, Geneva (Switzerland); Anduaga, X [Universidad Nacional de La Plata, La Plata (Argentina); Aracena, I [Stanford Linear Accelerator Center (SLAC), Stanford (United States); Backlund, S; Bogaerts, A [European Laboratory for Particle Physics (CERN), Geneva (Switzerland); Baines, J; Barnett, B M [STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, Oxon (United Kingdom); Bee, C [Centre de Physique des Particules de Marseille, IN2P3-CNRS, Marseille (France); P, Behera [Iowa State University, Ames, Iowa (United States); Bell, P [School of Physics and Astronomy, University of Manchester, Manchester (United Kingdom); Benslama, K [University of Regina, Regina (Canada); Berry, T [Department of Physics, Royal Holloway and Bedford New College, Egham (United Kingdom); Bohm, C [Fysikum, Stockholm University, Stockholm (Sweden)

    2009-04-01

    The ATLAS experiment is preparing for data taking at 14 TeV collision energy. A rich discovery physics program is being prepared in addition to the detailed study of Standard Model processes which will be produced in abundance. The ATLAS multi-level trigger system is designed to accept one event in 2 | 10{sup 5} to enable the selection of rare and unusual physics events. The ATLAS calorimeter system is a precise instrument, which includes liquid Argon electro-magnetic and hadronic components as well as a scintillator-tile hadronic calorimeter. All these components are used in the various levels of the trigger system. A wide physics coverage is ensured by inclusively selecting events with candidate electrons, photons, taus, jets or those with large missing transverse energy. The commissioning of the trigger system is being performed with cosmic ray events and by replaying simulated Monte Carlo events through the trigger and data acquisition system.

  6. Tracking at High Level Trigger in CMS

    CERN Document Server

    Tosi, Mia

    2016-01-01

    The trigger systems of the LHC detectors play a crucial role in determining the physics capabili- ties of the experiments. A reduction of several orders of magnitude of the event rate is needed to reach values compatible with detector readout, offline storage and analysis capability. The CMS experiment has been designed with a two-level trigger system: the Level-1 Trigger (L1T), implemented on custom-designed electronics, and the High Level Trigger (HLT), a stream- lined version of the CMS offline reconstruction software running on a computer farm. A software trigger system requires a trade-off between the complexity of the algorithms, the sustainable out- put rate, and the selection efficiency. With the computing power available during the 2012 data taking the maximum reconstruction time at HLT was about 200 ms per event, at the nominal L1T rate of 100 kHz. Track reconstruction algorithms are widely used in the HLT, for the reconstruction of the physics objects as well as in the identification of b-jets and ...

  7. ATLAS FTK: Fast Track Trigger

    CERN Document Server

    Volpi, Guido; The ATLAS collaboration

    2015-01-01

    An overview of the ATLAS Fast Tracker processor is presented, reporting the design of the system, its expected performance, and the integration status. The next LHC runs, with a significant increase in instantaneous luminosity, will provide a big challenge to the trigger and data acquisition systems of all the experiments. An intensive use of the tracking information at the trigger level will be important to keep high efficiency in interesting events, despite the increase in multiple p-p collisions per bunch crossing (pile-up). In order to increase the use of tracks within the High Level Trigger (HLT), the ATLAS experiment planned the installation of an hardware processor dedicated to tracking: the Fast TracKer (FTK) processor. The FTK is designed to perform full scan track reconstruction at every Level-1 accept. To achieve this goal, the FTK uses a fully parallel architecture, with algorithms designed to exploit the computing power of custom VLSI chips, the Associative Memory, as well as modern FPGAs. The FT...

  8. The DOe Silicon Track Trigger

    International Nuclear Information System (INIS)

    Steinbrueck, Georg

    2003-01-01

    We describe a trigger preprocessor to be used by the DOe experiment for selecting events with tracks from the decay of long-lived particles. This Level 2 impact parameter trigger utilizes information from the Silicon Microstrip Tracker to reconstruct tracks with improved spatial and momentum resolutions compared to those obtained by the Level 1 tracking trigger. It is constructed of VME boards with much of the logic existing in programmable processors. A common motherboard provides the I/O infrastructure and three different daughter boards perform the tasks of identifying the roads from the tracking trigger data, finding the clusters in the roads in the silicon detector, and fitting tracks to the clusters. This approach provides flexibility for the design, testing and maintenance phases of the project. The track parameters are provided to the trigger framework in 25 μs. The effective impact parameter resolution for high-momentum tracks is 35 μm, dominated by the size of the Tevatron beam

  9. Four-channel high speed synchronized acquisition multiple trigger storage measurement system

    International Nuclear Information System (INIS)

    Guo Jian; Wang Wenlian; Zhang Zhijie

    2010-01-01

    A new storage measurement system based on the CPLD, MCU and FLASH (large-capacity flash memory) is proposed. The large capacity storage characteristic of the FLASH MEMORY is used to realize multi channel synchronized acquisition and the function of multiple records and read once. The function of multi channel synchronization, high speed data acquisition, the triggering several times, and the adjustability of working parameters expands the application of storage measurement system. The storage measurement system can be used in a variety of pressure and temperature test in explosion field. (authors)

  10. Pulsed laser triggered high speed microfluidic fluorescence activated cell sorter†‡

    Science.gov (United States)

    Wu, Ting-Hsiang; Chen, Yue; Park, Sung-Yong; Hong, Jason; Teslaa, Tara; Zhong, Jiang F.; Di Carlo, Dino; Teitell, Michael A.

    2014-01-01

    We report a high speed and high purity pulsed laser triggered fluorescence activated cell sorter (PLACS) with a sorting throughput up to 20 000 mammalian cells s−1 with 37% sorting purity, 90% cell viability in enrichment mode, and >90% purity in high purity mode at 1500 cells s−1 or 3000 beads s−1. Fast switching (30 μs) and a small perturbation volume (~90 pL) is achieved by a unique sorting mechanism in which explosive vapor bubbles are generated using focused laser pulses in a single layer microfluidic PDMS channel. PMID:22361780

  11. Blast from explosive evaporation of carbon dioxide : Experiment, modeling and physics

    NARCIS (Netherlands)

    Van der Voort, M.M.; Van den berg, A.C.; Roekaerts, D.J.E.M.; Xie, M.; De Bruijn, P.C.J.

    2012-01-01

    Explosive evaporation of a superheated liquid is a relevant hazard in the process industry. A vessel rupture during storage, transport or handling may lead to devastating blast effects. In order to assess the risk associated with this hazard or to design protective measures, an accurate prediction

  12. Blast from explosive evaporation of carbon dioxide: Experiment, modeling and physics

    NARCIS (Netherlands)

    Voort, M.M. van der; Berg, A.C. van den; Roekaerts, D.J.E.M.; Xie, M.; Bruijn, P.C.J. de

    2012-01-01

    Explosive evaporation of a superheated liquid is a relevant hazard in the process industry. A vessel rupture during storage, transport or handling may lead to devastating blast effects. In order to assess the risk associated with this hazard or to design protective measures, an accurate prediction

  13. Electronic system of the RPC Muon Trigger in CMS experiment at LHC accelerator (Elektroniczny system trygera mionowego RPC w eksperymencie CMS akceleratora LHC

    CERN Document Server

    Bialkowska, H

    2009-01-01

    This paper presents implementation of distributed, multichannel electronic measurement system for RPC - based Muon Trigger in the CMS experiment at LHC. The introduction shortly describes the research aims of LHC and shows the metrological requirements for CMS - good spatial and time resolution, and possibility to estimate multiple physical parameters from registered collisions of particles. Further the paper describes RPC Muon Trigger consisting of 200 000 independent channels for position measurement. The first part of the paper presents the functional structure of the system in the context of requirements put by the CMS experiment, like global triggering system and data acquisition. The second part describes the hardware solutions used in particular parts of the RPC detector measuremnt system and shows some test results. The paper has a digest and overview nature.

  14. Explosive mutation accumulation triggered by heterozygous human Pol ε proofreading-deficiency is driven by suppression of mismatch repair

    Science.gov (United States)

    Campbell, Brittany B; Ungerleider, Nathan; Light, Nicholas; Wu, Tong; LeCompte, Kimberly G; Goksenin, A Yasemin; Bunnell, Bruce A; Tabori, Uri; Shlien, Adam

    2018-01-01

    Tumors defective for DNA polymerase (Pol) ε proofreading have the highest tumor mutation burden identified. A major unanswered question is whether loss of Pol ε proofreading by itself is sufficient to drive this mutagenesis, or whether additional factors are necessary. To address this, we used a combination of next generation sequencing and in vitro biochemistry on human cell lines engineered to have defects in Pol ε proofreading and mismatch repair. Absent mismatch repair, monoallelic Pol ε proofreading deficiency caused a rapid increase in a unique mutation signature, similar to that observed in tumors from patients with biallelic mismatch repair deficiency and heterozygous Pol ε mutations. Restoring mismatch repair was sufficient to suppress the explosive mutation accumulation. These results strongly suggest that concomitant suppression of mismatch repair, a hallmark of colorectal and other aggressive cancers, is a critical force for driving the explosive mutagenesis seen in tumors expressing exonuclease-deficient Pol ε. PMID:29488881

  15. Commissioning the ATLAS Level-1 Central Trigger System

    CERN Document Server

    Sherman, Daniel

    2010-01-01

    The ATLAS Level-1 central trigger is a critical part of ATLAS operation. It receives the 40 MHz bunch clock from the LHC and distributes it to all sub-detectors. It initiates their read-out by forming the Level-1 Accept decision, which is based on information from the calorimeter and muon trigger processors and a variety of additional trigger inputs from detectors in the forward region. It also provides trigger summary information to the data acquisition system and the Level-2 trigger system. In this paper, we present the completion of the installed central trigger system, its performance during cosmic-ray data taking and the experience gained with triggering on the first LHC beams.

  16. Underground nuclear explosions

    International Nuclear Information System (INIS)

    Higgins, Gary H.

    1970-01-01

    In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)

  17. Underground nuclear explosions

    Energy Technology Data Exchange (ETDEWEB)

    Higgins, Gary H [Lawrence Radiation Laboratory, University of California, Livermore, CA (United States)

    1970-05-01

    In the Third Plowshare Symposium, held in 1964, data from a number of nuclear explosions were presented. At that time the basic elements of the nuclear explosion appeared to be well understood and relationships for predicting the gross nuclear effects were presented. Since that time, additional work has been done and many of the concepts have been extended. For example, nuclear explosions have been conducted at greater depths and with much greater yields. The physical and chemical properties of the material in which the explosions occur have been more accurately measured and related to explosion effects. Interpretation of the new information seems to indicate that the earlier relationships are valid over the ranges of energy and depths for which data is available but that effects relating to cavity and chimney sizes or fracturing had been overestimated at great depths of burst and higher yields. (author)

  18. TRIGGER

    CERN Multimedia

    Wesley Smith

    Level-1 Trigger Hardware and Software The trigger synchronization procedures for running with cosmic muons and operating with the LHC were reviewed during the May electronics week. Firmware maintenance issues were also reviewed. Link tests between the new ECAL endcap trigger concentrator cards (TCC48) and the Regional Calorimeter Trigger have been performed. Firmware for the energy sum triggers and an upgraded tau trigger of the Global Calorimeter Triggers has been developed and is under test. The optical fiber receiver boards for the Track-Finder trigger theta links of the DT chambers are now all installed. The RPC trigger is being made more robust by additional chamber and cable shielding and also by firmware upgrades. For the CSC’s the front-end and trigger motherboard firmware have been updated. New RPC patterns and DT/CSC lookup tables taking into account phi asymmetries in the magnetic field configuration are under study. The motherboard for the new pipeline synchronizer of the Global Trigg...

  19. Spectral content of seismic movements produced by underground nuclear explosions; Contenu spectral des mouvements seismiques dus aux explosions nucleaires souterraines

    Energy Technology Data Exchange (ETDEWEB)

    Albaret, A; Duclaux, F [Commissariat a l' Energie Atomique, Bruyeres-le-Chatel (France). Centre d' Etudes

    1969-07-01

    After a summary of available data, both theoretical and experimental, concerning the spectral content of seismic movements, a description is given of the experiments carried out during the French nuclear explosions in the Sahara, and of the results obtained on the volume waves. A comparison is then made with certain American results. A new method is described for studying the amplitude spectra; it has made it possible to show that the amount of low frequencies in the spectrum increases with the power of the explosion, and decreases with the distance to the zero point and with the filtering effect of the weathered zone. A calculation is then made of the low cut-off ground filter, this giving a better representation of the initial seismic phenomenon. (authors) [French] Apres avoir resume les connaissances disponibles, aussi bien theoriques qu'experimentales, sur le contenu spectral des mouvements seismiques, on decrit les experiences effectuees a l'occasion des explosions nucleaires francaises du Sahara et les resultats obtenus sur les ondes de volume. Puis on les compare avec certains resultats americains. On decrit une nouvelle methode d'etude des spectres d'amplitudes qui montre que le spectre est d'autant plus riche en basses frequences que la puissance de l'explosion est grande, que la distance au point zero est faible et qu'il est moins filtre par la zone alteree superficielle. Puis on calcule le filtre terrain coupe-bas qui permet de donner une representation plus fidele du phenomene seismique initial. (auteurs)

  20. Performance of the ATLAS trigger system in 2015

    Energy Technology Data Exchange (ETDEWEB)

    Aaboud, M. [Univ. Mohamed Premier et LPTPM, Oujda (Morocco). Faculte des Sciences; Aad, G. [CPPM, Aix-Marseille Univ. et CNRS/IN2P3, Marseille (France); Abbott, B. [Oklahoma Univ., Norman, OK (United States). Homer L. Dodge Dept. of Physics and Astronomy; Collaboration: Atlas Collaboration; and others

    2017-05-15

    During 2015 the ATLAS experiment recorded 3.8 fb{sup -1} of proton-proton collision data at a centre-of-mass energy of 13 TeV. The ATLAS trigger system is a crucial component of the experiment, responsible for selecting events of interest at a recording rate of approximately 1 kHz from up to 40 MHz of collisions. This paper presents a short overview of the changes to the trigger and data acquisition systems during the first long shutdown of the LHC and shows the performance of the trigger system and its components based on the 2015 proton-proton collision data. (orig.)

  1. Performance of the ATLAS Trigger System in 2015

    CERN Document Server

    Aaboud, Morad; Abbott, Brad; Abdallah, Jalal; Abdinov, Ovsat; Abeloos, Baptiste; Aben, Rosemarie; AbouZeid, Ossama; Abraham, Nicola; Abramowicz, Halina; Abreu, Henso; Abreu, Ricardo; Abulaiti, Yiming; Acharya, Bobby Samir; Adachi, Shunsuke; Adamczyk, Leszek; Adams, David; Adelman, Jahred; Adomeit, Stefanie; Adye, Tim; Affolder, Tony; Agatonovic-Jovin, Tatjana; Aguilar-Saavedra, Juan Antonio; Ahlen, Steven; Ahmadov, Faig; Aielli, Giulio; Akerstedt, Henrik; Åkesson, Torsten Paul Ake; Akimov, Andrei; Alberghi, Gian Luigi; Albert, Justin; Albrand, Solveig; Alconada Verzini, Maria Josefina; Aleksa, Martin; Aleksandrov, Igor; Alexa, Calin; Alexander, Gideon; Alexopoulos, Theodoros; Alhroob, Muhammad; Ali, Babar; Aliev, Malik; Alimonti, Gianluca; Alison, John; Alkire, Steven Patrick; Allbrooke, Benedict; Allen, Benjamin William; Allport, Phillip; Aloisio, Alberto; Alonso, Alejandro; Alonso, Francisco; Alpigiani, Cristiano; Alshehri, Azzah Aziz; Alstaty, Mahmoud; Alvarez Gonzalez, Barbara; Άlvarez Piqueras, Damián; Alviggi, Mariagrazia; Amadio, Brian Thomas; Amaral Coutinho, Yara; Amelung, Christoph; Amidei, Dante; Amor Dos Santos, Susana Patricia; Amorim, Antonio; Amoroso, Simone; Amundsen, Glenn; Anastopoulos, Christos; Ancu, Lucian Stefan; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anders, Gabriel; Anders, John Kenneth; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Angelidakis, Stylianos; Angelozzi, Ivan; Angerami, Aaron; Anghinolfi, Francis; Anisenkov, Alexey; Anjos, Nuno; Annovi, Alberto; Antel, Claire; Antonelli, Mario; Antonov, Alexey; Antrim, Daniel Joseph; Anulli, Fabio; Aoki, Masato; Aperio Bella, Ludovica; Arabidze, Giorgi; Arai, Yasuo; Araque, Juan Pedro; Arce, Ayana; Arduh, Francisco Anuar; Arguin, Jean-Francois; Argyropoulos, Spyridon; Arik, Metin; Armbruster, Aaron James; Armitage, Lewis James; Arnaez, Olivier; Arnold, Hannah; Arratia, Miguel; Arslan, Ozan; Artamonov, Andrei; Artoni, Giacomo; Artz, Sebastian; Asai, Shoji; Asbah, Nedaa; Ashkenazi, Adi; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astalos, Robert; Atkinson, Markus; Atlay, Naim Bora; Augsten, Kamil; Avolio, Giuseppe; Axen, Bradley; Ayoub, Mohamad Kassem; Azuelos, Georges; Baak, Max; Baas, Alessandra; Baca, Matthew John; Bachacou, Henri; Bachas, Konstantinos; Backes, Moritz; Backhaus, Malte; Bagiacchi, Paolo; Bagnaia, Paolo; Bai, Yu; Baines, John; Bajic, Milena; Baker, Oliver Keith; Baldin, Evgenii; Balek, Petr; Balestri, Thomas; Balli, Fabrice; Balunas, William Keaton; Banas, Elzbieta; Banerjee, Swagato; Bannoura, Arwa A E; Barak, Liron; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Barillari, Teresa; Barisits, Martin-Stefan; Barklow, Timothy; Barlow, Nick; Barnes, Sarah Louise; Barnett, Bruce; Barnett, Michael; Barnovska-Blenessy, Zuzana; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barranco Navarro, Laura; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Bartoldus, Rainer; Barton, Adam Edward; Bartos, Pavol; Basalaev, Artem; Bassalat, Ahmed; Bates, Richard; Batista, Santiago Juan; Batley, Richard; Battaglia, Marco; Bauce, Matteo; Bauer, Florian; Bawa, Harinder Singh; Beacham, James; Beattie, Michael David; Beau, Tristan; Beauchemin, Pierre-Hugues; Bechtle, Philip; Beck, Hans~Peter; Becker, Kathrin; Becker, Maurice; Beckingham, Matthew; Becot, Cyril; Beddall, Andrew; Beddall, Ayda; Bednyakov, Vadim; Bedognetti, Matteo; Bee, Christopher; Beemster, Lars; Beermann, Thomas; Begel, Michael; Behr, Janna Katharina; Bell, Andrew Stuart; Bella, Gideon; Bellagamba, Lorenzo; Bellerive, Alain; Bellomo, Massimiliano; Belotskiy, Konstantin; Beltramello, Olga; Belyaev, Nikita; Benary, Odette; Benchekroun, Driss; Bender, Michael; Bendtz, Katarina; Benekos, Nektarios; Benhammou, Yan; Benhar Noccioli, Eleonora; Benitez, Jose; Benjamin, Douglas; Bensinger, James; Bentvelsen, Stan; Beresford, Lydia; Beretta, Matteo; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Beringer, Jürg; Berlendis, Simon; Bernard, Nathan Rogers; Bernius, Catrin; Bernlochner, Florian Urs; Berry, Tracey; Berta, Peter; Bertella, Claudia; Bertoli, Gabriele; Bertolucci, Federico; Bertram, Iain Alexander; Bertsche, Carolyn; Bertsche, David; Besjes, Geert-Jan; Bessidskaia Bylund, Olga; Bessner, Martin Florian; Besson, Nathalie; Betancourt, Christopher; Bethani, Agni; Bethke, Siegfried; Bevan, Adrian John; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Biedermann, Dustin; Bielski, Rafal; Biesuz, Nicolo Vladi; Biglietti, Michela; Bilbao De Mendizabal, Javier; Billoud, Thomas Remy Victor; Bilokon, Halina; Bindi, Marcello; Bingul, Ahmet; Bini, Cesare; Biondi, Silvia; Bisanz, Tobias; Bjergaard, David Martin; Black, Curtis; Black, James; Black, Kevin; Blackburn, Daniel; Blair, Robert; Blazek, Tomas; Bloch, Ingo; Blocker, Craig; Blue, Andrew; Blum, Walter; Blumenschein, Ulrike; Blunier, Sylvain; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Bock, Christopher; Boehler, Michael; Boerner, Daniela; Bogaerts, Joannes Andreas; Bogavac, Danijela; Bogdanchikov, Alexander; Bohm, Christian; Boisvert, Veronique; Bokan, Petar; Bold, Tomasz; Boldyrev, Alexey; Bomben, Marco; Bona, Marcella; Boonekamp, Maarten; Borisov, Anatoly; Borissov, Guennadi; Bortfeldt, Jonathan; Bortoletto, Daniela; Bortolotto, Valerio; Bos, Kors; Boscherini, Davide; Bosman, Martine; Bossio Sola, Jonathan David; Boudreau, Joseph; Bouffard, Julian; Bouhova-Thacker, Evelina Vassileva; Boumediene, Djamel Eddine; Bourdarios, Claire; Boutle, Sarah Kate; Boveia, Antonio; Boyd, James; Boyko, Igor; Bracinik, Juraj; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Breaden Madden, William Dmitri; Brendlinger, Kurt; Brennan, Amelia Jean; Brenner, Lydia; Brenner, Richard; Bressler, Shikma; Bristow, Timothy Michael; Britton, Dave; Britzger, Daniel; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brooijmans, Gustaaf; Brooks, Timothy; Brooks, William; Brosamer, Jacquelyn; Brost, Elizabeth; Broughton, James; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Bruni, Alessia; Bruni, Graziano; Bruni, Lucrezia Stella; Brunt, Benjamin; Bruschi, Marco; Bruscino, Nello; Bryant, Patrick; Bryngemark, Lene; Buanes, Trygve; Buat, Quentin; Buchholz, Peter; Buckley, Andrew; Budagov, Ioulian; Buehrer, Felix; Bugge, Magnar Kopangen; Bulekov, Oleg; Bullock, Daniel; Burckhart, Helfried; Burdin, Sergey; Burgard, Carsten Daniel; Burger, Angela Maria; Burghgrave, Blake; Burka, Klaudia; Burke, Stephen; Burmeister, Ingo; Burr, Jonathan Thomas Peter; Busato, Emmanuel; Büscher, Daniel; Büscher, Volker; Bussey, Peter; Butler, John; Buttar, Craig; Butterworth, Jonathan; Butti, Pierfrancesco; Buttinger, William; Buzatu, Adrian; Buzykaev, Aleksey; Cabrera Urbán, Susana; Caforio, Davide; Cairo, Valentina; Cakir, Orhan; Calace, Noemi; Calafiura, Paolo; Calandri, Alessandro; Calderini, Giovanni; Calfayan, Philippe; Callea, Giuseppe; Caloba, Luiz; Calvente Lopez, Sergio; Calvet, David; Calvet, Samuel; Calvet, Thomas Philippe; Camacho Toro, Reina; Camarda, Stefano; Camarri, Paolo; Cameron, David; Caminal Armadans, Roger; Camincher, Clement; Campana, Simone; Campanelli, Mario; Camplani, Alessandra; Campoverde, Angel; Canale, Vincenzo; Canepa, Anadi; Cano Bret, Marc; Cantero, Josu; Cao, Tingting; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capua, Marcella; Carbone, Ryne Michael; Cardarelli, Roberto; Cardillo, Fabio; Carli, Ina; Carli, Tancredi; Carlino, Gianpaolo; Carlson, Benjamin Taylor; Carminati, Leonardo; Carney, Rebecca; Caron, Sascha; Carquin, Edson; Carrillo-Montoya, German D; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Casolino, Mirkoantonio; Casper, David William; Castaneda-Miranda, Elizabeth; Castelijn, Remco; Castelli, Angelantonio; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Caudron, Julien; Cavaliere, Viviana; Cavallaro, Emanuele; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Ceradini, Filippo; Cerda Alberich, Leonor; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cervelli, Alberto; Cetin, Serkant Ali; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Stephen Kam-wah; Chan, Yat Long; Chang, Philip; Chapman, John Derek; Charlton, Dave; Chatterjee, Avishek; Chau, Chav Chhiv; Chavez Barajas, Carlos Alberto; Che, Siinn; Cheatham, Susan; Chegwidden, Andrew; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Karen; Chen, Shenjian; Chen, Shion; Chen, Xin; Chen, Ye; Cheng, Hok Chuen; Cheng, Huajie; Cheng, Yangyang; Cheplakov, Alexander; Cheremushkina, Evgenia; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Chevalier, Laurent; Chiarella, Vitaliano; Chiarelli, Giorgio; Chiodini, Gabriele; Chisholm, Andrew; Chitan, Adrian; Chizhov, Mihail; Choi, Kyungeon; Chomont, Arthur Rene; Chouridou, Sofia; Chow, Bonnie Kar Bo; Christodoulou, Valentinos; Chromek-Burckhart, Doris; Chudoba, Jiri; Chuinard, Annabelle Julia; Chwastowski, Janusz; Chytka, Ladislav; Ciapetti, Guido; Ciftci, Abbas Kenan; Cinca, Diane; Cindro, Vladimir; Cioara, Irina Antonela; Ciocca, Claudia; Ciocio, Alessandra; Cirotto, Francesco; Citron, Zvi Hirsh; Citterio, Mauro; Ciubancan, Mihai; Clark, Allan G; Clark, Brian Lee; Clark, Michael; Clark, Philip James; Clarke, Robert; Clement, Christophe; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Colasurdo, Luca; Cole, Brian; Colijn, Auke-Pieter; Collot, Johann; Colombo, Tommaso; Compostella, Gabriele; Conde Muiño, Patricia; Coniavitis, Elias; Connell, Simon Henry; Connelly, Ian; Consorti, Valerio; Constantinescu, Serban; Conti, Geraldine; Conventi, Francesco; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cormier, Felix; Cormier, Kyle James Read; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Cottin, Giovanna; Cowan, Glen; Cox, Brian; Cranmer, Kyle; Crawley, Samuel Joseph; Cree, Graham; Crépé-Renaudin, Sabine; Crescioli, Francesco; Cribbs, Wayne Allen; Crispin Ortuzar, Mireia; Cristinziani, Markus; Croft, Vince; Crosetti, Giovanni; Cueto, Ana; Cuhadar Donszelmann, Tulay; Cummings, Jane; Curatolo, Maria; Cúth, Jakub; Czirr, Hendrik; Czodrowski, Patrick; D'amen, Gabriele; D'Auria, Saverio; D'Onofrio, Monica; Da Cunha Sargedas De Sousa, Mario Jose; Da Via, Cinzia; Dabrowski, Wladyslaw; Dado, Tomas; Dai, Tiesheng; Dale, Orjan; Dallaire, Frederick; Dallapiccola, Carlo; Dam, Mogens; Dandoy, Jeffrey; Dang, Nguyen Phuong; Daniells, Andrew Christopher; Dann, Nicholas Stuart; Danninger, Matthias; Dano Hoffmann, Maria; Dao, Valerio; Darbo, Giovanni; Darmora, Smita; Dassoulas, James; Dattagupta, Aparajita; Davey, Will; David, Claire; Davidek, Tomas; Davies, Merlin; Davison, Peter; Dawe, Edmund; Dawson, Ian; De, Kaushik; de Asmundis, Riccardo; De Benedetti, Abraham; De Castro, Stefano; De Cecco, Sandro; De Groot, Nicolo; de Jong, Paul; De la Torre, Hector; De Lorenzi, Francesco; De Maria, Antonio; De Pedis, Daniele; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dearnaley, William James; Debbe, Ramiro; Debenedetti, Chiara; Dedovich, Dmitri; Dehghanian, Nooshin; Deigaard, Ingrid; Del Gaudio, Michela; Del Peso, Jose; Del Prete, Tarcisio; Delgove, David; Deliot, Frederic; Delitzsch, Chris Malena; Dell'Acqua, Andrea; Dell'Asta, Lidia; Dell'Orso, Mauro; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delsart, Pierre-Antoine; DeMarco, David; Demers, Sarah; Demichev, Mikhail; Demilly, Aurelien; Denisov, Sergey; Denysiuk, Denys; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Deterre, Cecile; Dette, Karola; Deviveiros, Pier-Olivier; Dewhurst, Alastair; Dhaliwal, Saminder; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Clemente, William Kennedy; Di Donato, Camilla; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Di Valentino, David; Diaconu, Cristinel; Diamond, Miriam; Dias, Flavia; Diaz, Marco Aurelio; Diehl, Edward; Dietrich, Janet; Díez Cornell, Sergio; Dimitrievska, Aleksandra; Dingfelder, Jochen; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djobava, Tamar; Djuvsland, Julia Isabell; Barros do Vale, Maria Aline; Dobos, Daniel; Dobre, Monica; Doglioni, Caterina; Dolejsi, Jiri; Dolezal, Zdenek; Donadelli, Marisilvia; Donati, Simone; Dondero, Paolo; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dova, Maria-Teresa; Doyle, Tony; Drechsler, Eric; Dris, Manolis; Du, Yanyan; Duarte-Campderros, Jorge; Duchovni, Ehud; Duckeck, Guenter; Ducu, Otilia Anamaria; Duda, Dominik; Dudarev, Alexey; Dudder, Andreas Christian; Duffield, Emily Marie; Duflot, Laurent; Dührssen, Michael; Dumancic, Mirta; Duncan, Anna Kathryn; Dunford, Monica; Duran Yildiz, Hatice; Düren, Michael; Durglishvili, Archil; Duschinger, Dirk; Dutta, Baishali; Dyndal, Mateusz; Eckardt, Christoph; Ecker, Katharina Maria; Edgar, Ryan Christopher; Edwards, Nicholas Charles; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Ekelof, Tord; El Kacimi, Mohamed; Ellajosyula, Venugopal; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Elliot, Alison; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Emeliyanov, Dmitry; Enari, Yuji; Endner, Oliver Chris; Ennis, Joseph Stanford; Erdmann, Johannes; Ereditato, Antonio; Ernis, Gunar; Ernst, Jesse; Ernst, Michael; Errede, Steven; Ertel, Eugen; Escalier, Marc; Esch, Hendrik; Escobar, Carlos; Esposito, Bellisario; Etienvre, Anne-Isabelle; Etzion, Erez; Evans, Hal; Ezhilov, Alexey; Ezzi, Mohammed; Fabbri, Federica; Fabbri, Laura; Facini, Gabriel; Fakhrutdinov, Rinat; Falciano, Speranza; Falla, Rebecca Jane; Faltova, Jana; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farina, Christian; Farina, Edoardo Maria; Farooque, Trisha; Farrell, Steven; Farrington, Sinead; Farthouat, Philippe; Fassi, Farida; Fassnacht, Patrick; Fassouliotis, Dimitrios; Faucci Giannelli, Michele; Favareto, Andrea; Fawcett, William James; Fayard, Louis; Fedin, Oleg; Fedorko, Wojciech; Feigl, Simon; Feligioni, Lorenzo; Feng, Cunfeng; Feng, Eric; Feng, Haolu; Fenyuk, Alexander; Feremenga, Last; Fernandez Martinez, Patricia; Fernandez Perez, Sonia; Ferrando, James; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferreira de Lima, Danilo Enoque; Ferrer, Antonio; Ferrere, Didier; Ferretti, Claudio; Fiedler, Frank; Filipčič, Andrej; Filipuzzi, Marco; Filthaut, Frank; Fincke-Keeler, Margret; Finelli, Kevin Daniel; Fiolhais, Miguel; Fiorini, Luca; Fischer, Adam; Fischer, Cora; Fischer, Julia; Fisher, Wade Cameron; Flaschel, Nils; Fleck, Ivor; Fleischmann, Philipp; Fletcher, Gareth Thomas; Fletcher, Rob Roy MacGregor; Flick, Tobias; Flierl, Bernhard Matthias; Flores Castillo, Luis; Flowerdew, Michael; Forcolin, Giulio Tiziano; Formica, Andrea; Forti, Alessandra; Foster, Andrew Geoffrey; Fournier, Daniel; Fox, Harald; Fracchia, Silvia; Francavilla, Paolo; Franchini, Matteo; Francis, David; Franconi, Laura; Franklin, Melissa; Frate, Meghan; Fraternali, Marco; Freeborn, David; Fressard-Batraneanu, Silvia; Friedrich, Felix; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fusayasu, Takahiro; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gabrielli, Alessandro; Gabrielli, Andrea; Gach, Grzegorz; Gadatsch, Stefan; Gagliardi, Guido; Gagnon, Louis Guillaume; Gagnon, Pauline; Galea, Cristina; Galhardo, Bruno; Gallas, Elizabeth; Gallop, Bruce; Gallus, Petr; Galster, Gorm Aske Gram Krohn; Gan, KK; Ganguly, Sanmay; Gao, Jun; Gao, Yanyan; Gao, Yongsheng; Garay Walls, Francisca; García, Carmen; García Navarro, José Enrique; Garcia-Sciveres, Maurice; Gardner, Robert; Garelli, Nicoletta; Garonne, Vincent; Gascon Bravo, Alberto; Gasnikova, Ksenia; Gatti, Claudio; Gaudiello, Andrea; Gaudio, Gabriella; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gazis, Evangelos; Gecse, Zoltan; Gee, Norman; Geich-Gimbel, Christoph; Geisen, Marc; Geisler, Manuel Patrice; Gellerstedt, Karl; Gemme, Claudia; Genest, Marie-Hélène; Geng, Cong; Gentile, Simonetta; Gentsos, Christos; George, Simon; Gerbaudo, Davide; Gershon, Avi; Ghasemi, Sara; Ghneimat, Mazuza; Giacobbe, Benedetto; Giagu, Stefano; Giannetti, Paola; Gibson, Stephen; Gignac, Matthew; Gilchriese, Murdock; Gillam, Thomas; Gillberg, Dag; Gilles, Geoffrey; Gingrich, Douglas; Giokaris, Nikos; Giordani, MarioPaolo; Giorgi, Filippo Maria; Giraud, Pierre-Francois; Giromini, Paolo; Giugni, Danilo; Giuli, Francesco; Giuliani, Claudia; Giulini, Maddalena; Gjelsten, Børge Kile; Gkaitatzis, Stamatios; Gkialas, Ioannis; Gkougkousis, Evangelos Leonidas; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glaysher, Paul; Glazov, Alexandre; Goblirsch-Kolb, Maximilian; Godlewski, Jan; Goldfarb, Steven; Golling, Tobias; Golubkov, Dmitry; Gomes, Agostinho; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Giulia; Gonella, Laura; Gongadze, Alexi; González de la Hoz, Santiago; Gonzalez-Sevilla, Sergio; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Goshaw, Alfred; Gössling, Claus; Gostkin, Mikhail Ivanovitch; Goudet, Christophe Raymond; Goujdami, Driss; Goussiou, Anna; Govender, Nicolin; Gozani, Eitan; Graber, Lars; Grabowska-Bold, Iwona; Gradin, Per Olov Joakim; Grafström, Per; Gramling, Johanna; Gramstad, Eirik; Grancagnolo, Sergio; Gratchev, Vadim; Gravila, Paul Mircea; Gray, Heather; Graziani, Enrico; Greenwood, Zeno Dixon; Grefe, Christian; Gregersen, Kristian; Gregor, Ingrid-Maria; Grenier, Philippe; Grevtsov, Kirill; Griffiths, Justin; Grillo, Alexander; Grimm, Kathryn; Grinstein, Sebastian; Gris, Philippe Luc Yves; Grivaz, Jean-Francois; Groh, Sabrina; Gross, Eilam; Grosse-Knetter, Joern; Grossi, Giulio Cornelio; Grout, Zara Jane; Guan, Liang; Guan, Wen; Guenther, Jaroslav; Guescini, Francesco; Guest, Daniel; Gueta, Orel; Gui, Bin; Guido, Elisa; Guillemin, Thibault; Guindon, Stefan; Gul, Umar; Gumpert, Christian; Guo, Jun; Guo, Yicheng; Gupta, Ruchi; Gupta, Shaun; Gustavino, Giuliano; Gutierrez, Phillip; Gutierrez Ortiz, Nicolas Gilberto; Gutschow, Christian; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haber, Carl; Hadavand, Haleh Khani; Haddad, Nacim; Hadef, Asma; Hageböck, Stephan; Hagihara, Mutsuto; Hajduk, Zbigniew; Hakobyan, Hrachya; Haleem, Mahsana; Haley, Joseph; Halladjian, Garabed; Hallewell, Gregory David; Hamacher, Klaus; Hamal, Petr; Hamano, Kenji; Hamilton, Andrew; Hamity, Guillermo Nicolas; Hamnett, Phillip George; Han, Liang; Hanagaki, Kazunori; Hanawa, Keita; Hance, Michael; Haney, Bijan; Hanke, Paul; Hanna, Remie; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Maike Christina; Hansen, Peter Henrik; Hara, Kazuhiko; Hard, Andrew; Harenberg, Torsten; Hariri, Faten; Harkusha, Siarhei; Harrington, Robert; Harrison, Paul Fraser; Hartjes, Fred; Hartmann, Nikolai Marcel; Hasegawa, Makoto; Hasegawa, Yoji; Hasib, Ahmed; Hassani, Samira; Haug, Sigve; Hauser, Reiner; Hauswald, Lorenz; Havranek, Miroslav; Hawkes, Christopher; Hawkings, Richard John; Hayakawa, Daiki; Hayden, Daniel; Hays, Chris; Hays, Jonathan Michael; Hayward, Helen; Haywood, Stephen; Head, Simon; Heck, Tobias; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heim, Timon; Heinemann, Beate; Heinrich, Jochen Jens; Heinrich, Lukas; Heinz, Christian; Hejbal, Jiri; Helary, Louis; Hellman, Sten; Helsens, Clement; Henderson, James; Henderson, Robert; Heng, Yang; Henkelmann, Steffen; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Herbert, Geoffrey Henry; Herde, Hannah; Herget, Verena; Hernández Jiménez, Yesenia; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hesketh, Gavin Grant; Hessey, Nigel; Hetherly, Jeffrey Wayne; Higón-Rodriguez, Emilio; Hill, Ewan; Hill, John; Hiller, Karl Heinz; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirschbuehl, Dominic; Hoad, Xanthe; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoenig, Friedrich; Hohn, David; Holmes, Tova Ray; Homann, Michael; Honda, Takuya; Hong, Tae Min; Hooberman, Benjamin Henry; Hopkins, Walter; Horii, Yasuyuki; Horton, Arthur James; Hostachy, Jean-Yves; Hou, Suen; Hoummada, Abdeslam; Howarth, James; Hoya, Joaquin; Hrabovsky, Miroslav; Hristova, Ivana; Hrivnac, Julius; Hryn'ova, Tetiana; Hrynevich, Aliaksei; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Hu, Qipeng; Hu, Shuyang; Huang, Yanping; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Huhtinen, Mika; Huo, Peng; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibragimov, Iskander; Iconomidou-Fayard, Lydia; Ideal, Emma; Idrissi, Zineb; Iengo, Paolo; Igonkina, Olga; Iizawa, Tomoya; Ikai, Takashi; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuriy; Iliadis, Dimitrios; Ilic, Nikolina; Introzzi, Gianluca; Ioannou, Pavlos; Iodice, Mauro; Iordanidou, Kalliopi; Ippolito, Valerio; Ishijima, Naoki; Ishino, Masaya; Ishitsuka, Masaki; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Ito, Fumiaki; Iturbe Ponce, Julia Mariana; Iuppa, Roberto; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jabbar, Samina; Jackson, Brett; Jackson, Paul; Jain, Vivek; Jakobi, Katharina Bianca; Jakobs, Karl; Jakobsen, Sune; Jakoubek, Tomas; Jamin, David Olivier; Jana, Dilip; Jansky, Roland; Janssen, Jens; Janus, Michel; Janus, Piotr Andrzej; Jarlskog, Göran; Javadov, Namig; Javůrek, Tomáš; Jeanneau, Fabien; Jeanty, Laura; Jejelava, Juansher; Jeng, Geng-yuan; Jennens, David; Jenni, Peter; Jeske, Carl; Jézéquel, Stéphane; Ji, Haoshuang; Jia, Jiangyong; Jiang, Hai; Jiang, Yi; Jiang, Zihao; Jiggins, Stephen; Jimenez Pena, Javier; Jin, Shan; Jinaru, Adam; Jinnouchi, Osamu; Jivan, Harshna; Johansson, Per; Johns, Kenneth; Johnson, William Joseph; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Sarah; Jones, Tim; Jongmanns, Jan; Jorge, Pedro; Jovicevic, Jelena; Ju, Xiangyang; Juste Rozas, Aurelio; Köhler, Markus Konrad; Kaczmarska, Anna; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kahn, Sebastien Jonathan; Kaji, Toshiaki; Kajomovitz, Enrique; Kalderon, Charles William; Kaluza, Adam; Kama, Sami; Kamenshchikov, Andrey; Kanaya, Naoko; Kaneti, Steven; Kanjir, Luka; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kaplan, Laser Seymour; Kapliy, Anton; Kar, Deepak; Karakostas, Konstantinos; Karamaoun, Andrew; Karastathis, Nikolaos; Kareem, Mohammad Jawad; Karentzos, Efstathios; Karnevskiy, Mikhail; Karpov, Sergey; Karpova, Zoya; Karthik, Krishnaiyengar; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kasahara, Kota; Kashif, Lashkar; Kass, Richard; Kastanas, Alex; Kataoka, Yousuke; Kato, Chikuma; Katre, Akshay; Katzy, Judith; Kawade, Kentaro; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kazanin, Vassili; Keeler, Richard; Kehoe, Robert; Keller, John; Kempster, Jacob Julian; Keoshkerian, Houry; Kepka, Oldrich; Kerševan, Borut Paul; Kersten, Susanne; Keyes, Robert; Khader, Mazin; Khalil-zada, Farkhad; Khanov, Alexander; Kharlamov, Alexey; Kharlamova, Tatyana; Khoo, Teng Jian; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kido, Shogo; Kilby, Callum; Kim, Hee Yeun; Kim, Shinhong; Kim, Young-Kee; Kimura, Naoki; Kind, Oliver Maria; King, Barry; King, Matthew; Kirk, Julie; Kiryunin, Andrey; Kishimoto, Tomoe; Kisielewska, Danuta; Kiss, Florian; Kiuchi, Kenji; Kivernyk, Oleh; Kladiva, Eduard; Klein, Matthew Henry; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klimek, Pawel; Klimentov, Alexei; Klingenberg, Reiner; Klioutchnikova, Tatiana; Kluge, Eike-Erik; Kluit, Peter; Kluth, Stefan; Knapik, Joanna; Kneringer, Emmerich; Knoops, Edith; Knue, Andrea; Kobayashi, Aine; Kobayashi, Dai; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kodys, Peter; Koffas, Thomas; Koffeman, Els; Köhler, Nicolas Maximilian; Koi, Tatsumi; Kolanoski, Hermann; Kolb, Mathis; Koletsou, Iro; Komar, Aston; Komori, Yuto; Kondo, Takahiko; Kondrashova, Nataliia; Köneke, Karsten; König, Adriaan; Kono, Takanori; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kopeliansky, Revital; Koperny, Stefan; Köpke, Lutz; Kopp, Anna Katharina; Korcyl, Krzysztof; Kordas, Kostantinos; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Kortner, Oliver; Kortner, Sandra; Kosek, Tomas; Kostyukhin, Vadim; Kotwal, Ashutosh; Koulouris, Aimilianos; Kourkoumeli-Charalampidi, Athina; Kourkoumelis, Christine; Kouskoura, Vasiliki; Kowalewska, Anna Bozena; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozakai, Chihiro; Kozanecki, Witold; Kozhin, Anatoly; Kramarenko, Viktor; Kramberger, Gregor; Krasnopevtsev, Dimitriy; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kravchenko, Anton; Kretz, Moritz; Kretzschmar, Jan; Kreutzfeldt, Kristof; Krieger, Peter; Krizka, Karol; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Krumnack, Nils; Kruse, Mark; Kruskal, Michael; Kubota, Takashi; Kucuk, Hilal; Kuday, Sinan; Kuechler, Jan Thomas; Kuehn, Susanne; Kugel, Andreas; Kuger, Fabian; Kuhl, Thorsten; Kukhtin, Victor; Kukla, Romain; Kulchitsky, Yuri; Kuleshov, Sergey; Kuna, Marine; Kunigo, Takuto; Kupco, Alexander; Kurashige, Hisaya; Kurchaninov, Leonid; Kurochkin, Yurii; Kurth, Matthew Glenn; Kus, Vlastimil; Kuwertz, Emma Sian; Kuze, Masahiro; Kvita, Jiri; Kwan, Tony; Kyriazopoulos, Dimitrios; La Rosa, Alessandro; La Rosa Navarro, Jose Luis; La Rotonda, Laura; Lacasta, Carlos; Lacava, Francesco; Lacey, James; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Remi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Lammers, Sabine; Lampl, Walter; Lançon, Eric; Landgraf, Ulrich; Landon, Murrough; Lanfermann, Marie Christine; Lang, Valerie Susanne; Lange, J örn Christian; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lanza, Agostino; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Lasagni Manghi, Federico; Lassnig, Mario; Laurelli, Paolo; Lavrijsen, Wim; Law, Alexander; Laycock, Paul; Lazovich, Tomo; Lazzaroni, Massimo; Le, Brian; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Quilleuc, Eloi; LeBlanc, Matthew Edgar; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Claire Alexandra; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Benoit; Lefebvre, Guillaume; Lefebvre, Michel; Legger, Federica; Leggett, Charles; Lehan, Allan; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leight, William Axel; Leister, Andrew Gerard; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Lemmer, Boris; Leney, Katharine; Lenz, Tatjana; Lenzi, Bruno; Leone, Robert; Leone, Sandra; Leonidopoulos, Christos; Leontsinis, Stefanos; Lerner, Giuseppe; Leroy, Claude; Lesage, Arthur; Lester, Christopher; Levchenko, Mikhail; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levy, Mark; Lewis, Dave; Leyton, Michael; Li, Bing; Li, Changqiao; Li, Haifeng; Li, Lei; Li, Liang; Li, Qi; Li, Shu; Li, Xingguo; Li, Yichen; Liang, Zhijun; Liberti, Barbara; Liblong, Aaron; Lichard, Peter; Lie, Ki; Liebal, Jessica; Liebig, Wolfgang; Limosani, Antonio; Lin, Simon; Lin, Tai-Hua; Lindquist, Brian Edward; Lionti, Anthony Eric; Lipeles, Elliot; Lipniacka, Anna; Lisovyi, Mykhailo; Liss, Tony; Lister, Alison; Litke, Alan; Liu, Bo; Liu, Dong; Liu, Hao; Liu, Hongbin; Liu, Jian; Liu, Jianbei; Liu, Kun; Liu, Lulu; Liu, Minghui; Liu, Yanlin; Liu, Yanwen; Livan, Michele; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lo Sterzo, Francesco; Lobodzinska, Ewelina Maria; Loch, Peter; Loebinger, Fred; Loew, Kevin Michael; Loginov, Andrey; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Long, Brian Alexander; Long, Jonathan David; Long, Robin Eamonn; Longo, Luigi; Looper, Kristina Anne; Lopez Lopez, Jorge Andres; Lopez Mateos, David; Lopez Paredes, Brais; Lopez Paz, Ivan; Lopez Solis, Alvaro; Lorenz, Jeanette; Lorenzo Martinez, Narei; Losada, Marta; Lösel, Philipp Jonathan; Lou, XinChou; Lounis, Abdenour; Love, Jeremy; Love, Peter; Lu, Haonan; Lu, Nan; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Luedtke, Christian; Luehring, Frederick; Lukas, Wolfgang; Luminari, Lamberto; Lundberg, Olof; Lund-Jensen, Bengt; Luzi, Pierre Marc; Lynn, David; Lysak, Roman; Lytken, Else; Lyubushkin, Vladimir; Ma, Hong; Ma, Lian Liang; Ma, Yanhui; Maccarrone, Giovanni; Macchiolo, Anna; Macdonald, Calum Michael; Maček, Boštjan; Machado Miguens, Joana; Madaffari, Daniele; Madar, Romain; Maddocks, Harvey Jonathan; Mader, Wolfgang; Madsen, Alexander; Maeda, Junpei; Maeland, Steffen; Maeno, Tadashi; Maevskiy, Artem; Magradze, Erekle; Mahlstedt, Joern; Maiani, Camilla; Maidantchik, Carmen; Maier, Andreas Alexander; Maier, Thomas; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Malaescu, Bogdan; Malecki, Pawel; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Malone, Caitlin; Malone, Claire; Maltezos, Stavros; Malyukov, Sergei; Mamuzic, Judita; Mancini, Giada; Mandelli, Luciano; Mandić, Igor; Maneira, José; Manhaes de Andrade Filho, Luciano; Manjarres Ramos, Joany; Mann, Alexander; Manousos, Athanasios; Mansoulie, Bruno; Mansour, Jason Dhia; Mantifel, Rodger; Mantoani, Matteo; Manzoni, Stefano; Mapelli, Livio; Marceca, Gino; March, Luis; Marchiori, Giovanni; Marcisovsky, Michal; Marjanovic, Marija; Marley, Daniel; Marroquim, Fernando; Marsden, Stephen Philip; Marshall, Zach; Marti-Garcia, Salvador; Martin, Brian Thomas; Martin, Tim; Martin, Victoria Jane; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martin-Haugh, Stewart; Martoiu, Victor Sorin; Martyniuk, Alex; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Massa, Ignazio; Massa, Lorenzo; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mättig, Peter; Mattmann, Johannes; Maurer, Julien; Maxfield, Stephen; Maximov, Dmitriy; Mazini, Rachid; Maznas, Ioannis; Mazza, Simone Michele; Mc Fadden, Neil Christopher; Mc Goldrick, Garrin; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McClymont, Laurie; McDonald, Emily; Mcfayden, Josh; Mchedlidze, Gvantsa; McMahon, Steve; McNamara, Peter Charles; McPherson, Robert; Medinnis, Michael; Meehan, Samuel; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meineck, Christian; Meirose, Bernhard; Melini, Davide; Mellado Garcia, Bruce Rafael; Melo, Matej; Meloni, Federico; Menary, Stephen Burns; Meng, Lingxin; Meng, Xiangting; Mengarelli, Alberto; Menke, Sven; Meoni, Evelin; Mergelmeyer, Sebastian; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meyer, Carsten; Meyer, Christopher; Meyer, Jean-Pierre; Meyer, Jochen; Meyer Zu Theenhausen, Hanno; Miano, Fabrizio; Middleton, Robin; Miglioranzi, Silvia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Milesi, Marco; Milic, Adriana; Miller, David; Mills, Corrinne; Milov, Alexander; Milstead, David; Minaenko, Andrey; Minami, Yuto; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Minegishi, Yuji; Ming, Yao; Mir, Lluisa-Maria; Mistry, Khilesh; Mitani, Takashi; Mitrevski, Jovan; Mitsou, Vasiliki A; Miucci, Antonio; Miyagawa, Paul; Mizukami, Atsushi; Mjörnmark, Jan-Ulf; Mlynarikova, Michaela; Moa, Torbjoern; Mochizuki, Kazuya; Mogg, Philipp; Mohapatra, Soumya; Molander, Simon; Moles-Valls, Regina; Monden, Ryutaro; Mondragon, Matthew Craig; Mönig, Klaus; Monk, James; Monnier, Emmanuel; Montalbano, Alyssa; Montejo Berlingen, Javier; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Morange, Nicolas; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morgenstern, Stefanie; Mori, Daniel; Mori, Tatsuya; Morii, Masahiro; Morinaga, Masahiro; Morisbak, Vanja; Moritz, Sebastian; Morley, Anthony Keith; Mornacchi, Giuseppe; Morris, John; Mortensen, Simon Stark; Morvaj, Ljiljana; Moschovakos, Paris; Mosidze, Maia; Moss, Harry James; Moss, Josh; Motohashi, Kazuki; Mount, Richard; Mountricha, Eleni; Moyse, Edward; Muanza, Steve; Mudd, Richard; Mueller, Felix; Mueller, James; Mueller, Ralph Soeren Peter; Mueller, Thibaut; Muenstermann, Daniel; Mullen, Paul; Mullier, Geoffrey; Munoz Sanchez, Francisca Javiela; Murillo Quijada, Javier Alberto; Murray, Bill; Musheghyan, Haykuhi; Muškinja, Miha; Myagkov, Alexey; Myska, Miroslav; Nachman, Benjamin Philip; Nackenhorst, Olaf; Nagai, Koichi; Nagai, Ryo; Nagano, Kunihiro; Nagasaka, Yasushi; Nagata, Kazuki; Nagel, Martin; Nagy, Elemer; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakamura, Tomoaki; Nakano, Itsuo; Naranjo Garcia, Roger Felipe; Narayan, Rohin; Narrias Villar, Daniel Isaac; Naryshkin, Iouri; Naumann, Thomas; Navarro, Gabriela; Nayyar, Ruchika; Neal, Homer; Nechaeva, Polina; Neep, Thomas James; Negri, Andrea; Negrini, Matteo; Nektarijevic, Snezana; Nellist, Clara; Nelson, Andrew; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Neubauer, Mark; Neumann, Manuel; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen, Duong Hai; Nguyen Manh, Tuan; Nickerson, Richard; Nicolaidou, Rosy; Nielsen, Jason; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Jon Kerr; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nisius, Richard; Nobe, Takuya; Nomachi, Masaharu; Nomidis, Ioannis; Nooney, Tamsin; Norberg, Scarlet; Nordberg, Markus; Norjoharuddeen, Nurfikri; Novgorodova, Olga; Nowak, Sebastian; Nozaki, Mitsuaki; Nozka, Libor; Ntekas, Konstantinos; Nurse, Emily; Nuti, Francesco; O'grady, Fionnbarr; O'Neil, Dugan; O'Rourke, Abigail Alexandra; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Obermann, Theresa; Ocariz, Jose; Ochi, Atsuhiko; Ochoa, Ines; Ochoa-Ricoux, Juan Pedro; Oda, Susumu; Odaka, Shigeru; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohman, Henrik; Oide, Hideyuki; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olariu, Albert; Oleiro Seabra, Luis Filipe; Olivares Pino, Sebastian Andres; Oliveira Damazio, Denis; Olszewski, Andrzej; Olszowska, Jolanta; Onofre, António; Onogi, Kouta; Onyisi, Peter; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlando, Nicola; Orr, Robert; Osculati, Bianca; Ospanov, Rustem; Otero y Garzon, Gustavo; Otono, Hidetoshi; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Oussoren, Koen Pieter; Ouyang, Qun; Owen, Mark; Owen, Rhys Edward; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pachal, Katherine; Pacheco Pages, Andres; Pacheco Rodriguez, Laura; Padilla Aranda, Cristobal; Pagáčová, Martina; Pagan Griso, Simone; Paganini, Michela; Paige, Frank; Pais, Preema; Pajchel, Katarina; Palacino, Gabriel; Palazzo, Serena; Palestini, Sandro; Palka, Marek; Pallin, Dominique; Panagiotopoulou, Evgenia; Panagoulias, Ilias; Pandini, Carlo Enrico; Panduro Vazquez, William; Pani, Priscilla; Panitkin, Sergey; Pantea, Dan; Paolozzi, Lorenzo; Papadopoulou, Theodora; Papageorgiou, Konstantinos; Paramonov, Alexander; Paredes Hernandez, Daniela; Parker, Adam Jackson; Parker, Michael Andrew; Parker, Kerry Ann; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pascuzzi, Vincent; Pasqualucci, Enrico; Passaggio, Stefano; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Pater, Joleen; Pauly, Thilo; Pearce, James; Pearson, Benjamin; Pedersen, Lars Egholm; Pedersen, Maiken; Pedraza Lopez, Sebastian; Pedro, Rute; Peleganchuk, Sergey; Penc, Ondrej; Peng, Cong; Peng, Haiping; Penwell, John; Peralva, Bernardo; Perego, Marta Maria; Perepelitsa, Dennis; Perez Codina, Estel; Perini, Laura; Pernegger, Heinz; Perrella, Sabrina; Peschke, Richard; Peshekhonov, Vladimir; Peters, Krisztian; Peters, Yvonne; Petersen, Brian; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petroff, Pierre; Petrolo, Emilio; Petrov, Mariyan; Petrucci, Fabrizio; Pettersson, Nora Emilia; Peyaud, Alan; Pezoa, Raquel; Phillips, Peter William; Piacquadio, Giacinto; Pianori, Elisabetta; Picazio, Attilio; Piccaro, Elisa; Piccinini, Maurizio; Pickering, Mark Andrew; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pin, Arnaud Willy J; Pinamonti, Michele; Pinfold, James; Pingel, Almut; Pires, Sylvestre; Pirumov, Hayk; Pitt, Michael; Plazak, Lukas; Pleier, Marc-Andre; Pleskot, Vojtech; Plotnikova, Elena; Pluth, Daniel; Poettgen, Ruth; Poggioli, Luc; Pohl, David-leon; Polesello, Giacomo; Poley, Anne-luise; Policicchio, Antonio; Polifka, Richard; Polini, Alessandro; Pollard, Christopher Samuel; Polychronakos, Venetios; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Poppleton, Alan; Pospisil, Stanislav; Potamianos, Karolos; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Pozdnyakov, Valery; Pozo Astigarraga, Mikel Eukeni; Pralavorio, Pascal; Pranko, Aliaksandr; Prell, Soeren; Price, Darren; Price, Lawrence; Primavera, Margherita; Prince, Sebastien; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Przybycien, Mariusz; Puddu, Daniele; Purohit, Milind; Puzo, Patrick; Qian, Jianming; Qin, Gang; Qin, Yang; Quadt, Arnulf; Quayle, William; Queitsch-Maitland, Michaela; Quilty, Donnchadha; Raddum, Silje; Radeka, Veljko; Radescu, Voica; Radhakrishnan, Sooraj Krishnan; Radloff, Peter; Rados, Pere; Ragusa, Francesco; Rahal, Ghita; Raine, John Andrew; Rajagopalan, Srinivasan; Rammensee, Michael; Rangel-Smith, Camila; Ratti, Maria Giulia; Rauch, Daniel; Rauscher, Felix; Rave, Stefan; Ravenscroft, Thomas; Ravinovich, Ilia; Raymond, Michel; Read, Alexander Lincoln; Readioff, Nathan Peter; Reale, Marilea; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reed, Robert; Reeves, Kendall; Rehnisch, Laura; Reichert, Joseph; Reiss, Andreas; Rembser, Christoph; Ren, Huan; Rescigno, Marco; Resconi, Silvia; Rezanova, Olga; Reznicek, Pavel; Rezvani, Reyhaneh; Richter, Robert; Richter, Stefan; Richter-Was, Elzbieta; Ricken, Oliver; Ridel, Melissa; Rieck, Patrick; Riegel, Christian Johann; Rieger, Julia; Rifki, Othmane; Rijssenbeek, Michael; Rimoldi, Adele; Rimoldi, Marco; Rinaldi, Lorenzo; Ristić, Branislav; Ritsch, Elmar; Riu, Imma; Rizatdinova, Flera; Rizvi, Eram; Rizzi, Chiara; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robson, Aidan; Roda, Chiara; Rodina, Yulia; Rodriguez Perez, Andrea; Rodriguez Rodriguez, Daniel; Roe, Shaun; Rogan, Christopher Sean; Røhne, Ole; Roloff, Jennifer; Romaniouk, Anatoli; Romano, Marino; Romano Saez, Silvestre Marino; Romero Adam, Elena; Rompotis, Nikolaos; Ronzani, Manfredi; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Peyton; Rosien, Nils-Arne; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rosten, Jonatan; Rosten, Rachel; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Rozanov, Alexandre; Rozen, Yoram; Ruan, Xifeng; Rubbo, Francesco; Rudolph, Matthew Scott; Rühr, Frederik; Ruiz-Martinez, Aranzazu; Rurikova, Zuzana; Rusakovich, Nikolai; Ruschke, Alexander; Russell, Heather; Rutherfoord, John; Ruthmann, Nils; Ryabov, Yury; Rybar, Martin; Rybkin, Grigori; Ryu, Soo; Ryzhov, Andrey; Rzehorz, Gerhard Ferdinand; Saavedra, Aldo; Sabato, Gabriele; Sacerdoti, Sabrina; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Saha, Puja; Sahinsoy, Merve; Saimpert, Matthias; Saito, Tomoyuki; Sakamoto, Hiroshi; Sakurai, Yuki; Salamanna, Giuseppe; Salamon, Andrea; Salazar Loyola, Javier Esteban; Salek, David; Sales De Bruin, Pedro Henrique; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sammel, Dirk; Sampsonidis, Dimitrios; Sánchez, Javier; Sanchez Martinez, Victoria; Sanchez Pineda, Arturo; Sandaker, Heidi; Sandbach, Ruth Laura; Sandhoff, Marisa; Sandoval, Carlos; Sankey, Dave; Sannino, Mario; Sansoni, Andrea; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Santoyo Castillo, Itzebelt; Sapp, Kevin; Sapronov, Andrey; Saraiva, João; Sarrazin, Bjorn; Sasaki, Osamu; Sato, Koji; Sauvan, Emmanuel; Savage, Graham; Savard, Pierre; Savic, Natascha; Sawyer, Craig; Sawyer, Lee; Saxon, James; Sbarra, Carla; Sbrizzi, Antonio; Scanlon, Tim; Scannicchio, Diana; Scarcella, Mark; Scarfone, Valerio; Schaarschmidt, Jana; Schacht, Peter; Schachtner, Balthasar Maria; Schaefer, Douglas; Schaefer, Leigh; Schaefer, Ralph; Schaeffer, Jan; Schaepe, Steffen; Schaetzel, Sebastian; Schäfer, Uli; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R Dean; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Schiavi, Carlo; Schier, Sheena; Schillo, Christian; Schioppa, Marco; Schlenker, Stefan; Schmidt-Sommerfeld, Korbinian Ralf; Schmieden, Kristof; Schmitt, Christian; Schmitt, Stefan; Schmitz, Simon; Schneider, Basil; Schnoor, Ulrike; Schoeffel, Laurent; Schoening, Andre; Schoenrock, Bradley Daniel; Schopf, Elisabeth; Schott, Matthias; Schouwenberg, Jeroen; Schovancova, Jaroslava; Schramm, Steven; Schreyer, Manuel; Schuh, Natascha; Schulte, Alexandra; Schultens, Martin Johannes; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwartzman, Ariel; Schwarz, Thomas Andrew; Schweiger, Hansdieter; Schwemling, Philippe; Schwienhorst, Reinhard; Schwindling, Jerome; Schwindt, Thomas; Sciolla, Gabriella; Scuri, Fabrizio; Scutti, Federico; Searcy, Jacob; Seema, Pienpen; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Sekhon, Karishma; Sekula, Stephen; Seliverstov, Dmitry; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Serkin, Leonid; Sessa, Marco; Seuster, Rolf; Severini, Horst; Sfiligoj, Tina; Sforza, Federico; Sfyrla, Anna; Shabalina, Elizaveta; Shaikh, Nabila Wahab; Shan, Lianyou; Shang, Ruo-yu; Shank, James; Shapiro, Marjorie; Shatalov, Pavel; Shaw, Kate; Shaw, Savanna Marie; Shcherbakova, Anna; Shehu, Ciwake Yusufu; Sherwood, Peter; Shi, Liaoshan; Shimizu, Shima; Shimmin, Chase Owen; Shimojima, Makoto; Shirabe, Shohei; Shiyakova, Mariya; Shmeleva, Alevtina; Shoaleh Saadi, Diane; Shochet, Mel; Shojaii, Seyed Ruhollah; Shope, David Richard; Shrestha, Suyog; Shulga, Evgeny; Shupe, Michael; Sicho, Petr; Sickles, Anne Marie; Sidebo, Per Edvin; Sideras Haddad, Elias; Sidiropoulou, Ourania; Sidorov, Dmitri; Sidoti, Antonio; Siegert, Frank; Sijacki, Djordje; Silva, José; Silverstein, Samuel; Simak, Vladislav; Simic, Ljiljana; Simion, Stefan; Simioni, Eduard; Simmons, Brinick; Simon, Dorian; Simon, Manuel; Sinervo, Pekka; Sinev, Nikolai; Sioli, Maximiliano; Siragusa, Giovanni; Sivoklokov, Serguei; Sjölin, Jörgen; Skinner, Malcolm Bruce; Skottowe, Hugh Philip; Skubic, Patrick; Slater, Mark; Slavicek, Tomas; Slawinska, Magdalena; Sliwa, Krzysztof; Slovak, Radim; Smakhtin, Vladimir; Smart, Ben; Smestad, Lillian; Smiesko, Juraj; Smirnov, Sergei; Smirnov, Yury; Smirnova, Lidia; Smirnova, Oxana; Smith, Joshua Wyatt; Smith, Matthew; Smith, Russell; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snyder, Ian Michael; Snyder, Scott; Sobie, Randall; Socher, Felix; Soffer, Abner; Soh, Dart-yin; Sokhrannyi, Grygorii; Solans Sanchez, Carlos; Solar, Michael; Soldatov, Evgeny; Soldevila, Urmila; Solodkov, Alexander; Soloshenko, Alexei; Solovyanov, Oleg; Solovyev, Victor; Sommer, Philip; Son, Hyungsuk; Song, Hong Ye; Sood, Alexander; Sopczak, Andre; Sopko, Vit; Sorin, Veronica; Sosa, David; Sotiropoulou, Calliope Louisa; Soualah, Rachik; Soukharev, Andrey; South, David; Sowden, Benjamin; Spagnolo, Stefania; Spalla, Margherita; Spangenberg, Martin; Spanò, Francesco; Sperlich, Dennis; Spettel, Fabian; Spieker, Thomas Malte; Spighi, Roberto; Spigo, Giancarlo; Spiller, Laurence Anthony; Spousta, Martin; St Denis, Richard Dante; Stabile, Alberto; Stamen, Rainer; Stamm, Soren; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stanescu-Bellu, Madalina; Stanitzki, Marcel Michael; Stapnes, Steinar; Starchenko, Evgeny; Stark, Giordon; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Stärz, Steffen; Staszewski, Rafal; Steinberg, Peter; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stewart, Graeme; Stillings, Jan Andre; Stockton, Mark; Stoebe, Michael; Stoicea, Gabriel; Stolte, Philipp; Stonjek, Stefan; Stradling, Alden; Straessner, Arno; Stramaglia, Maria Elena; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Stroynowski, Ryszard; Strubig, Antonia; Stucci, Stefania Antonia; Stugu, Bjarne; Styles, Nicholas Adam; Su, Dong; Su, Jun; Suchek, Stanislav; Sugaya, Yorihito; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Siyuan; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Suster, Carl; Sutton, Mark; Suzuki, Shota; Svatos, Michal; Swiatlowski, Maximilian; Swift, Stewart Patrick; Sykora, Ivan; Sykora, Tomas; Ta, Duc; Taccini, Cecilia; Tackmann, Kerstin; Taenzer, Joe; Taffard, Anyes; Tafirout, Reda; Taiblum, Nimrod; Takai, Helio; Takashima, Ryuichi; Takeshita, Tohru; Takubo, Yosuke; Talby, Mossadek; Talyshev, Alexey; Tan, Kong Guan; Tanaka, Junichi; Tanaka, Masahiro; Tanaka, Reisaburo; Tanaka, Shuji; Tanioka, Ryo; Tannenwald, Benjamin Bordy; Tapia Araya, Sebastian; Tapprogge, Stefan; Tarem, Shlomit; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tashiro, Takuya; Tassi, Enrico; Tavares Delgado, Ademar; Tayalati, Yahya; Taylor, Aaron; Taylor, Geoffrey; Taylor, Pierre Thor Elliot; Taylor, Wendy; Teischinger, Florian Alfred; Teixeira-Dias, Pedro; Temming, Kim Katrin; Temple, Darren; Ten Kate, Herman; Teng, Ping-Kun; Teoh, Jia Jian; Tepel, Fabian-Phillipp; Terada, Susumu; Terashi, Koji; Terron, Juan; Terzo, Stefano; Testa, Marianna; Teuscher, Richard; Theveneaux-Pelzer, Timothée; Thomas, Juergen; Thomas-Wilsker, Joshuha; Thompson, Paul; Thompson, Stan; Thomsen, Lotte Ansgaard; Thomson, Evelyn; Tibbetts, Mark James; Ticse Torres, Royer Edson; Tikhomirov, Vladimir; Tikhonov, Yury; Timoshenko, Sergey; Tipton, Paul; Tisserant, Sylvain; Todome, Kazuki; Todorov, Theodore; Todorova-Nova, Sharka; Tojo, Junji; Tokár, Stanislav; Tokushuku, Katsuo; Tolley, Emma; Tomlinson, Lee; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Baojia(Tony); Tornambe, Peter; Torrence, Eric; Torres, Heberth; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Trefzger, Thomas; Tricoli, Alessandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Tripiana, Martin; Trischuk, William; Trocmé, Benjamin; Trofymov, Artur; Troncon, Clara; Trottier-McDonald, Michel; Trovatelli, Monica; Truong, Loan; Trzebinski, Maciej; Trzupek, Adam; Tseng, Jeffrey; Tsiareshka, Pavel; Tsipolitis, Georgios; Tsirintanis, Nikolaos; Tsiskaridze, Shota; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsui, Ka Ming; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsuno, Soshi; Tsybychev, Dmitri; Tu, Yanjun; Tudorache, Alexandra; Tudorache, Valentina; Tulbure, Traian Tiberiu; Tuna, Alexander Naip; Tupputi, Salvatore; Turchikhin, Semen; Turgeman, Daniel; Turk Cakir, Ilkay; Turra, Ruggero; Tuts, Michael; Ucchielli, Giulia; Ueda, Ikuo; Ughetto, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Undrus, Alexander; Unel, Gokhan; Ungaro, Francesca; Unno, Yoshinobu; Unverdorben, Christopher; Urban, Jozef; Urquijo, Phillip; Urrejola, Pedro; Usai, Giulio; Usui, Junya; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Valderanis, Chrysostomos; Valdes Santurio, Eduardo; Valencic, Nika; Valentinetti, Sara; Valero, Alberto; Valery, Loic; Valkar, Stefan; Valls Ferrer, Juan Antonio; Van Den Wollenberg, Wouter; Van Der Deijl, Pieter; van der Graaf, Harry; van Eldik, Niels; van Gemmeren, Peter; Van Nieuwkoop, Jacobus; van Vulpen, Ivo; van Woerden, Marius Cornelis; Vanadia, Marco; Vandelli, Wainer; Vanguri, Rami; Vaniachine, Alexandre; Vankov, Peter; Vardanyan, Gagik; Vari, Riccardo; Varnes, Erich; Varol, Tulin; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vasquez, Jared Gregory; Vasquez, Gerardo; Vazeille, Francois; Vazquez Schroeder, Tamara; Veatch, Jason; Veeraraghavan, Venkatesh; Veloce, Laurelle Maria; Veloso, Filipe; Veneziano, Stefano; Ventura, Andrea; Venturi, Manuela; Venturi, Nicola; Venturini, Alessio; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Viazlo, Oleksandr; Vichou, Irene; Vickey, Trevor; Vickey Boeriu, Oana Elena; Viehhauser, Georg; Viel, Simon; Vigani, Luigi; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinogradov, Vladimir; Vittori, Camilla; Vivarelli, Iacopo; Vlachos, Sotirios; Vlasak, Michal; Vogel, Marcelo; Vokac, Petr; Volpi, Guido; Volpi, Matteo; von der Schmitt, Hans; von Toerne, Eckhard; Vorobel, Vit; Vorobev, Konstantin; Vos, Marcel; Voss, Rudiger; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Peter; Wagner, Wolfgang; Wahlberg, Hernan; Wahrmund, Sebastian; Wakabayashi, Jun; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wallangen, Veronica; Wang, Chao; Wang, Chao; Wang, Fuquan; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Kuhan; Wang, Rui; Wang, Song-Ming; Wang, Tingting; Wang, Wenxiao; Wanotayaroj, Chaowaroj; Warburton, Andreas; Ward, Patricia; Wardrope, David Robert; Washbrook, Andrew; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Ben; Webb, Samuel; Weber, Michele; Weber, Stefan Wolf; Weber, Stephen; Webster, Jordan S; Weidberg, Anthony; Weinert, Benjamin; Weingarten, Jens; Weiser, Christian; Weits, Hartger; Wells, Phillippa; Wenaus, Torre; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Michael David; Werner, Per; Wessels, Martin; Wetter, Jeffrey; Whalen, Kathleen; Whallon, Nikola Lazar; Wharton, Andrew Mark; White, Andrew; White, Martin; White, Ryan; Whiteson, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wiglesworth, Craig; Wiik-Fuchs, Liv Antje Mari; Wildauer, Andreas; Wilk, Fabian; Wilkens, Henric George; Williams, Hugh; Williams, Sarah; Willis, Christopher; Willocq, Stephane; Wilson, John; Wingerter-Seez, Isabelle; Winklmeier, Frank; Winston, Oliver James; Winter, Benedict Tobias; Wittgen, Matthias; Wolf, Tim Michael Heinz; Wolff, Robert; Wolter, Marcin Wladyslaw; Wolters, Helmut; Worm, Steven D; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wozniak, Krzysztof; Wu, Mengqing; Wu, Miles; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wyatt, Terry Richard; Wynne, Benjamin; Xella, Stefania; Xi, Zhaoxu; Xu, Da; Xu, Lailin; Yabsley, Bruce; Yacoob, Sahal; Yamaguchi, Daiki; Yamaguchi, Yohei; Yamamoto, Akira; Yamamoto, Shimpei; Yamanaka, Takashi; Yamauchi, Katsuya; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Hongtao; Yang, Yi; Yang, Zongchang; Yao, Weiming; Yap, Yee Chinn; Yasu, Yoshiji; Yatsenko, Elena; Yau Wong, Kaven Henry; Ye, Jingbo; Ye, Shuwei; Yeletskikh, Ivan; Yildirim, Eda; Yorita, Kohei; Yoshida, Rikutaro; Yoshihara, Keisuke; Young, Charles; Young, Christopher John; Youssef, Saul; Yu, David Ren-Hwa; Yu, Jaehoon; Yu, Jiaming; Yu, Jie; Yuan, Li; Yuen, Stephanie P; Yusuff, Imran; Zabinski, Bartlomiej; Zacharis, George; Zaidan, Remi; Zaitsev, Alexander; Zakharchuk, Nataliia; Zalieckas, Justas; Zaman, Aungshuman; Zambito, Stefano; Zanello, Lucia; Zanzi, Daniele; Zeitnitz, Christian; Zeman, Martin; Zemla, Andrzej; Zeng, Jian Cong; Zeng, Qi; Zenin, Oleg; Ženiš, Tibor; Zerwas, Dirk; Zhang, Dongliang; Zhang, Fangzhou; Zhang, Guangyi; Zhang, Huijun; Zhang, Jinlong; Zhang, Lei; Zhang, Liqing; Zhang, Matt; Zhang, Rui; Zhang, Ruiqi; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Xiandong; Zhao, Yongke; Zhao, Zhengguo; Zhemchugov, Alexey; Zhong, Jiahang; Zhou, Bing; Zhou, Chen; Zhou, Lei; Zhou, Li; Zhou, Mingliang; Zhou, Ning; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Junjie; Zhu, Yingchun; Zhuang, Xuai; Zhukov, Konstantin; Zibell, Andre; Zieminska, Daria; Zimine, Nikolai; Zimmermann, Christoph; Zimmermann, Stephanie; Zinonos, Zinonas; Zinser, Markus; Ziolkowski, Michael; Živković, Lidija; Zobernig, Georg; Zoccoli, Antonio; zur Nedden, Martin; Zwalinski, Lukasz

    2017-05-18

    During 2015 the ATLAS experiment recorded $3.8 \\mathrm{fb}^{-1}$ of proton--proton collision data at a centre-of-mass energy of $13 \\mathrm{TeV}$. The ATLAS trigger system is a crucial component of the experiment, responsible for selecting events of interest at a recording rate of approximately 1 kHz from up to 40 MHz of collisions. This paper presents a short overview of the changes to the trigger and data acquisition systems during the first long shutdown of the LHC and shows the performance of the trigger system and its components based on the 2015 proton--proton collision data.

  2. Some elementary mechanics of explosive and brittle failure modes in prestressed containments

    International Nuclear Information System (INIS)

    Murray, D.W.

    1978-06-01

    Fundamental concepts related to pneumatic pressurization and explosive behaviour of containment structures are reviewed. It is shown that explosive behaviour occurs whenever a pressure equal to the ultimate capacity of the structure is attained. The energy associated with hydraulic pressurization is bounded and shown to be orders of magnitude less than that associated with pneumatic pressurization. It is also shown that structural behaviour prior to attaining the ultimate load capacity is independent of the pressurized medium. The phenomenon of brittle fracture, as it relates to prestressed concrete containments, is explored. A theoretical technique of proportioning cross sections is developed to eliminate the possibility of catastrophic brittle tensile fractures. The possibility of brittle fractures being triggered by failure of some type of 'detail' is also examined. An attempt is made to identify the types of failures for which the state of the art may be inadequate to assess behaviour under overpressure conditions. (author)

  3. Theoretical work on melt-coolant interactions (steam explosions)

    International Nuclear Information System (INIS)

    Arnecke, G.; Jacobs, H.; Stehle, B.; Thurnay, K.; Vaeth, L.; Lummer, M.

    1995-01-01

    The code IVA3 is used for modelling the physical processes related to steam explosions, i.e. the premixing phase preceding the explosion as well as the explosion itself. This code has been replaced by the updated version IVA-KA in May 1994, which encompasses all model and code improvements performed till the beginning of 1994. The following further work on and with IVA-KA has been performed: 1. Inclusion of friction at inner and outer walls, improvement on the drag model, improvement of boundary conditions for outgoing flow, optional inclusion of improved water material data, improvement of the numerical procedure, correction of coding errors. 2. Three FARO-experiments (investigating the behaviour of molten material falling into water) were recalculated with IVA-KA. The time dependent pressure increase is reproduced very well for one experiment, but is not quite satisfactory for a second one. The third one cannot be simulated satisfactorily because of the presence of metallic zirconium in the melt, which is not being modelled by IVA-KA at present. 3. One PREMIX-experiment (similar to FARO, but at 1 bar ambient pressure and with smaller amounts of melt) is also being analyzed with IVA-KA. First results show a good representation of the material distribution during the penetration of the melt into the water. 4. One of the first two QUEOS-experiments performed at KfK has been simulated with IVA-KA. Some results are well reproduced by IVA-KA, but there may be a deficiency of the drag laws. (orig./HP)

  4. The ATLAS High Level Trigger Steering Framework and the Trigger Configuration System.

    CERN Document Server

    Perez Cavalcanti, Tiago; The ATLAS collaboration

    2011-01-01

    The ATLAS detector system installed in the Large Hadron Collider (LHC) at CERN is designed to study proton-proton and nucleus-nucleus collisions with a maximum centre of mass energy of 14 TeV at a bunch collision rate of 40MHz. In March 2010 the four LHC experiments saw the first proton-proton collisions at 7 TeV. Still within the year a collision rate of nearly 10 MHz is expected. At ATLAS, events of potential interest for ATLAS physics are selected by a three-level trigger system, with a final recording rate of about 200 Hz. The first level (L1) is implemented in custom hardware; the two levels of the high level trigger (HLT) are software triggers, running on large farms of standard computers and network devices. Within the ATLAS physics program more than 500 trigger signatures are defined. The HLT tests each signature on each L1-accepted event; the test outcome is recorded for later analysis. The HLT-Steering is responsible for this. It foremost ensures the independent test of each signature, guarantying u...

  5. Predicting Large-scale Effects During Cookoff of Plastic-Bonded Explosives (PBX 9501 PBX 9502 and LX-14)

    Energy Technology Data Exchange (ETDEWEB)

    Hobbs, Michael L. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Kaneshige, Michael J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Erikson, William W. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-10-01

    In this study, we have made reasonable cookoff predictions of large-scale explosive systems by using pressure-dependent kinetics determined from small-scale experiments. Scale-up is determined by properly accounting for pressure generated from gaseous decomposition products and the volume that these reactive gases occupy, e.g. trapped within the explosive, the system, or vented. The pressure effect on the decomposition rates has been determined for different explosives by using both vented and sealed experiments at low densities. Low-density explosives are usually permeable to decomposition gases and can be used in both vented and sealed configurations to determine pressure-dependent reaction rates. In contrast, explosives that are near the theoretical maximum density (TMD) are not as permeable to decomposition gases, and pressure-dependent kinetics are difficult to determine. Ignition in explosives at high densities can be predicted by using pressure-dependent rates determined from the low-density experiments as long as gas volume changes associated with bulk thermal expansion are also considered. In the current work, cookoff of the plastic-bonded explosives PBX 9501 and PBX 9502 is reviewed and new experimental work on LX-14 is presented. Reactive gases are formed inside these heated explosives causing large internal pressures. The pressure is released differently for each of these explosives. For PBX 9501, permeability is increased and internal pressure is relieved as the nitroplasticizer melts and decomposes. Internal pressure in PBX 9502 is relieved as the material is damaged by cracks and spalling. For LX-14, internal pressure is not relieved until the explosive thermally ignites. The current paper is an extension of work presented at the 26th ICDERS symposium [1].

  6. Optical pyrometry of fireballs of metalized explosives

    Energy Technology Data Exchange (ETDEWEB)

    Goroshin, Samuel; Frost, David L.; Levine, Jeffrey [McGill University, Mechanical Engineering, 817 Sherbrooke St. W., Montreal, Quebec, H3A 2K6 (Canada); Yoshinaka, Akio; Zhang, Fan [Defence R and D Canada - Suffield, Box 4000, Stn. Main, Medicine Hat, Alberta, T1A 8K6 (Canada)

    2006-06-15

    Fast-response optical diagnostics (a time-integrated spectrometer and two separate fast-response three-color pyrometers) are used to record the transient visible radiation emitted by a fireball produced when a condensed explosive is detonated. Measurement of the radiant intensity, in several narrow wavelength bands, is used to estimate the temperature of the condensed products within the fireball. For kg-scale conventional oxygen-deficient homogeneous TNT and nitromethane explosive charges, the radiant intensity reaches a maximum typically after tens of milliseconds, but the measured fireball temperature remains largely constant for more than 100 ms, at a value of about 2,000 K, consistent with predictions using equilibrium thermodynamics codes. When combustible metal particles (aluminum, magnesium or zirconium) are added to the explosive, reaction of the particles enhances the radiant energy and the fireball temperature is increased. In this case the fireball temperatures are lower than equilibrium predictions, but are consistent with measurements of particle temperature in single particle ignition experiments. (Abstract Copyright [2006], Wiley Periodicals, Inc.)

  7. Receiver ASIC for timing, trigger and control distribution in LHC experiments

    International Nuclear Information System (INIS)

    Christiansen, J.; Marchioro, A.; Moreira, P.; Sancho, A.

    1996-01-01

    An ASIC receiver has been developed for the optical timing, trigger and control distribution system for LHC detectors. It is capable of recovering the LHC reference clock and the first-level trigger decisions and making them available to the front-end electronics properly deskewed in time. The timing receiver is also capable of recognizing individually addressed commands to provide some slow control capability. Its main functions include post-amplification of the signal received from a photodetector-preamplifier, automatic gain control, data/clock separation, demultiplexing of the trigger and data channels and programmable coarse/fine deskewing functions. The design has been mapped into a standard 1microm CMOS process with all the analogue and timing critical functions implemented in full custom. The jitter measured on the recovered clock is less than 100 ps for input optical powers down to -25 dBm. The time deskewing functions allow the commands and the first level trigger accept signal to be phase shifted up to a maximum of sixteen clock cycles in steps of 0.1 ns

  8. Performance and robustness studies of the trigger for the ATLAS experiment

    CERN Document Server

    AUTHOR|(CDS)2068300; Teixeira-Dias, Pedro

    2008-01-01

    The ATLAS detector is one of two general-purpose particle detectors that will soon begin taking data at the Large Hadron Collider (LHC) at CERN. It is designed to explore a new energy frontier and answer fundamental questions about the nature of matter and the forces that shape the universe. The ATLAS trigger system is designed to select rare physics processes of interest from an extremely high rate of proton-proton collisions produced by the LHC. It is comprised of three levels. The first level is hardware-based. The second- and third-level triggers are software-based and are collectively known as the High-Level Trigger (HLT). The first part of this thesis is a study of the time overhead of the data navigation mechanism used by the HLT. The results of this study highlighted key areas for improvement within the design of the navigation mechanism. The second part of this thesis is a study of the impact of unresponsive electromagnetic calorimeter cells and Front-End Boards (FEBs) on electron trigger efficiencie...

  9. Analysis of a burning fuel on a water sublayer: conditions of triggering mechanism of superheated water explosion ('boilover')

    International Nuclear Information System (INIS)

    Jordan Y Hristov

    2005-01-01

    Full text of publication follows: The communication considers the burning of fuel on water sublayer that commonly occurs during tanks fires of combustible liquids. The main efforts are stressed on the qualitative assessments of the heat transfer mechanisms and the prediction of the boilover onset. Boilover is generally considered as one of the most dangerous fire phenomena. Fires in storage plants can and still do happen and cause severe damage and high losses. The boilover phenomenon is attractive from a fundamental point of view that address to better understanding of its mechanism and theoretical prediction of the critical condition of its onset. The analysis employed various data obtained by different research groups all over the world [1-5]. The evaluation of the suitable functional relationships predicting the pre-boilover time was done on the basis of dimensionless forms of two types of single layer heat conduction models: Surface absorption models [2,3,5] and In-depth absorption models [1,2,5]. Dimensional analysis of the models has detected several dimensionless numbers allowing easy buildup of similarity regression models predicting the pre-boilover time (critical Fourier number correlations) [ 5].The present work continues the study already started on the unified analysis of the boilover phenomenon [5] and the pre-explosion time prediction. The thermal conditions of the water sublayer are considered in order to evaluate the critical conditions for superheated water explosions. The latter have not been considered in the previous studies [1-5] due to both insufficient amount of data and incorrect interpretation of the phenomenon. REFERENCES: 1. Garo JP and Vantelon JP (1999) Thin layer boilover of pure or multicomponent fuel, in: Prevention of Hazardous Fires and Explosions. The transfer to Civil Applications of Military Experiences (Zarko V.E., Weiser V, Eisenreich N and Vasil'ev AA, Eds.), NATO Science Series, Series 1. Disarmament Technologies-vol. 26

  10. Trigger design for a gamma ray detector of HIRFL-ETF

    Science.gov (United States)

    Du, Zhong-Wei; Su, Hong; Qian, Yi; Kong, Jie

    2013-10-01

    The Gamma Ray Array Detector (GRAD) is one subsystem of HIRFL-ETF (the External Target Facility (ETF) of the Heavy Ion Research Facility in Lanzhou (HIRFL)). It is capable of measuring the energy of gamma-rays with 1024 CsI scintillators in in-beam nuclear experiments. The GRAD trigger should select the valid events and reject the data from the scintillators which are not hit by the gamma-ray. The GRAD trigger has been developed based on the Field Programmable Gate Array (FPGAs) and PXI interface. It makes prompt trigger decisions to select valid events by processing the hit signals from the 1024 CsI scintillators. According to the physical requirements, the GRAD trigger module supplies 12-bit trigger information for the global trigger system of ETF and supplies a trigger signal for data acquisition (DAQ) system of GRAD. In addition, the GRAD trigger generates trigger data that are packed and transmitted to the host computer via PXI bus to be saved for off-line analysis. The trigger processing is implemented in the front-end electronics of GRAD and one FPGA of the GRAD trigger module. The logic of PXI transmission and reconfiguration is implemented in another FPGA of the GRAD trigger module. During the gamma-ray experiments, the GRAD trigger performs reliably and efficiently. The function of GRAD trigger is capable of satisfying the physical requirements.

  11. Trigger design for a gamma ray detector of HIRFL-ETF

    International Nuclear Information System (INIS)

    Du Zhongwei; Su Hong; Qian Yi; Kong Jie

    2013-01-01

    The Gamma Ray Array Detector (GRAD) is one subsystem of HIRFL-ETF (the External Target Facility (ETF) of the Heavy Ion Research Facility in Lanzhou (HIRFL)). It is capable of measuring the energy of gamma-rays with 1024 CsI scintillators in in-beam nuclear experiments. The GRAD trigger should select the valid events and reject the data from the scintillators which are not hit by the gamma-ray. The GRAD trigger has been developed based on the Field Programmable Gate Array (FPGAs) and PXI interface. It makes prompt trigger decisions to select valid events by processing the hit signals from the 1024 CsI scintillators. According to the physical requirements, the GRAD trigger module supplies 12-bit trigger information for the global trigger system of ETF and supplies a trigger signal for data acquisition (DAQ) system of GRAD. In addition, the GRAD trigger generates trigger data that are packed and transmitted to the host computer via PXI bus to be saved for off-line analysis. The trigger processing is implemented in the front-end electronics of GRAD and one FPGA of the GRAD trigger module. The logic of PXI transmission and reconfiguration is implemented in another FPGA of the GRAD trigger module. During the gamma-ray experiments, the GRAD trigger performs reliably and efficiently. The function of GRAD trigger is capable of satisfying the physical requirements. (authors)

  12. Tools for Trigger Aware Analyses in ATLAS

    CERN Document Server

    Krasznahorkay, A; The ATLAS collaboration; Stelzer, J

    2010-01-01

    In order to search for rare processes, all four LHC experiments have to use advanced triggering methods for selecting and recording the events of interest. At the expected nominal LHC operating conditions only about 0.0005% of the collision events can be kept for physics analysis in ATLAS. Therefore the understanding and evaluation of the trigger performance is one of the most crucial parts of any physics analysis. ATLAS’s first level trigger is composed of custom-built hardware, while the second and third levels are implemented using regular PCs running reconstruction and selection algorithms. Because of this split, accessing the results of the trigger execution for the two stages is different. The complexity of the software trigger presents further difficulties in accessing the trigger data. To make the job of the physicists easier when evaluating the trigger performance, multiple general-use tools are provided by the ATLAS Trigger Analysis Tools group. The TrigDecisionTool, a general tool, is provided to...

  13. Stellar explosion

    International Nuclear Information System (INIS)

    Suraud, E.

    1987-01-01

    What is the energy source and which physical processes are powerful enough to generate this explosion which scatters the star. The knowledge progress of very dense matter allows the scenario reconstitution. An instability in the star core which is developing during milliseconds is the cause of this explosion [fr

  14. Steam explosion studies review

    International Nuclear Information System (INIS)

    Hwang, Moon Kyu; Kim, Hee Dong

    1999-03-01

    When a cold liquid is brought into contact with a molten material with a temperature significantly higher than the liquid boiling point, an explosive interaction due to sudden fragmentation of the melt and rapid evaporation of the liquid may take place. This phenomenon is referred to as a steam explosion or vapor explosion. Depending upon the amount of the melt and the liquid involved, the mechanical energy released during a vapor explosion can be large enough to cause serious destruction. In hypothetical severe accidents which involve fuel melt down, subsequent interactions between the molten fuel and coolant may cause steam explosion. This process has been studied by many investigators in an effort to assess the likelihood of containment failure which leads to large scale release of radioactive materials to the environment. In an effort to understand the phenomenology of steam explosion, extensive studies has been performed so far. The report presents both experimental and analytical studies on steam explosion. As for the experimental studies, both small scale tests which involve usually less than 20 g of high temperature melt and medium/large scale tests which more than 1 kg of melt is used are reviewed. For the modelling part of steam explosions, mechanistic modelling as well as thermodynamic modelling is reviewed. (author)

  15. Testing the equation of state and electrical conductivity of copper by the electrical wire explosion in air: Experiment and magnetohydrodynamic simulation

    International Nuclear Information System (INIS)

    Barysevich, A. E.; Cherkas, S. L.

    2011-01-01

    We perform experiments on testing the equations of state and electrical conductivity of copper in three different regimes of copper wire electrical explosion, when the inserted energy (i) is slightly exceeded, (ii) is approximately equal, and (iii) is substantially exceeded the energy needed for the wire complete evaporation. Magnetohydrodynamic simulation is performed. The results predicted by the two different equations of state are compared with the experiment. Empirical expression for the copper electrical conductivity is presented. Parameters in this expression is fit on every of two equations of state. Map of copper conductivity is plotted.

  16. TRIGGER

    CERN Multimedia

    W. Smith

    2012-01-01

      Level-1 Trigger The Level-1 Trigger group is ready to deploy improvements to the L1 Trigger algorithms for 2012. These include new high-PT patterns for the RPC endcap, an improved CSC PT assignment, a new PT-matching algorithm for the Global Muon Trigger, and new calibrations for ECAL, HCAL, and the Regional Calorimeter Trigger. These should improve the efficiency, rate, and stability of the L1 Trigger. The L1 Trigger group also is migrating the online systems to SLC5. To make the data transfer from the Global Calorimeter Trigger to the Global Trigger more reliable and also to allow checking the data integrity online, a new optical link system has been developed by the GCT and GT groups and successfully tested at the CMS electronics integration facility in building 904. This new system is now undergoing further tests at Point 5 before being deployed for data-taking this year. New L1 trigger menus have recently been studied and proposed by Emmanuelle Perez and the L1 Detector Performance Group...

  17. GPUs for real-time processing in HEP trigger systems

    CERN Document Server

    Ammendola, R; Deri, L; Fiorini, M; Frezza, O; Lamanna, G; Lo Cicero, F; Lonardo, A; Messina, A; Sozzi, M; Pantaleo, F; Paolucci, Ps; Rossetti, D; Simula, F; Tosoratto, L; Vicini, P

    2014-01-01

    We describe a pilot project (GAP - GPU Application Project) for the use of GPUs (Graphics processing units) for online triggering applications in High Energy Physics experiments. Two major trends can be identied in the development of trigger and DAQ systems for particle physics experiments: the massive use of general-purpose commodity systems such as commercial multicore PC farms for data acquisition, and the reduction of trigger levels implemented in hardware, towards a fully software data selection system (\\trigger-less"). The innovative approach presented here aims at exploiting the parallel computing power of commercial GPUs to perform fast computations in software not only in high level trigger levels but also in early trigger stages. General-purpose computing on GPUs is emerging as a new paradigm in several elds of science, although so far applications have been tailored to the specic strengths of such devices as accelerators in oine computation. With the steady reduction of GPU latencies, and the incre...

  18. TRIGGER

    CERN Multimedia

    Wesley Smith

    Level-1 Trigger Hardware and Software The production of the trigger hardware is now basically finished, and in time for the turn-on of the LHC. The last boards produced are the Trigger Concentrator Cards for the ECAL Endcaps (TCC-EE). After the recent installation of the four EE Dees, the TCC-EE prototypes were used for their commissioning. Production boards are arriving and are being tested continuously, with the last ones expected in November. The Regional Calorimeter Trigger hardware is fully integrated after installation of the last EE cables. Pattern tests from the HCAL up to the GCT have been performed successfully. The HCAL triggers are fully operational, including the connection of the HCAL-outer and forward-HCAL (HO/HF) technical triggers to the Global Trigger. The HCAL Trigger and Readout (HTR) board firmware has been updated to permit recording of the tower “feature bit” in the data. The Global Calorimeter Trigger hardware is installed, but some firmware developments are still n...

  19. Final report on the small-scale vapor-explosion experiments using a molten NaCl--H2O system

    International Nuclear Information System (INIS)

    Anderson, R.P.; Bova, L.

    1976-04-01

    Vapor explosions were produced by injecting small quantities of water into a container filled with molten NaCl. Minimum explosion efficiencies, as evaluated from reaction-impulse measurements, were relatively large. Subsurface movies showed that the explosions resulted from a two-step sequence: an initial bulk-mixing phase in which the two liquids intermix on a large scale, but remain locally separated by an insulating gas-vapor layer; and a second step, immediately following breakdown of the gas layer, during which the two liquids locally fragment, intermix, and pressurize very rapidly. The experimental results were compared with various mechanistic models that had been proposed to explain vapor explosions. Early models seemed inconsistent with the results. More recent theories suggest that vapor explosions may be caused by a nucleation limit or by dynamic mixing combined with high surface-heat-transfer rates. Both types of models are consistent with the results

  20. Toward Improved Fidelity of Thermal Explosion Simulations

    Energy Technology Data Exchange (ETDEWEB)

    Nichols, A L; Becker, R; Howard, W M; Wemhoff, A

    2009-07-17

    We will present results of an effort to improve the thermal/chemical/mechanical modeling of HMX based explosive like LX04 and LX10 for thermal cook-off. The original HMX model and analysis scheme were developed by Yoh et.al. for use in the ALE3D modeling framework. The current results were built to remedy the deficiencies of that original model. We concentrated our efforts in four areas. The first area was addition of porosity to the chemical material model framework in ALE3D that is used to model the HMX explosive formulation. This is needed to handle the roughly 2% porosity in solid explosives. The second area was the improvement of the HMX reaction network, which included the inclusion of a reactive phase change model base on work by Henson et.al. The third area required adding early decomposition gas species to the CHEETAH material database to develop more accurate equations of state for gaseous intermediates and products. Finally, it was necessary to improve the implicit mechanics module in ALE3D to more naturally handle the long time scales associated with thermal cook-off. The application of the resulting framework to the analysis of the Scaled Thermal Explosion (STEX) experiments will be discussed.

  1. Optical detection of explosives: spectral signatures for the explosive bouquet

    Science.gov (United States)

    Osborn, Tabetha; Kaimal, Sindhu; Causey, Jason; Burns, William; Reeve, Scott

    2009-05-01

    Research with canines suggests that sniffer dogs alert not on the odor from a pure explosive, but rather on a set of far more volatile species present in an explosive as impurities. Following the explosive trained canine example, we have begun examining the vapor signatures for many of these volatile impurities utilizing high resolution spectroscopic techniques in several molecular fingerprint regions. Here we will describe some of these high resolution measurements and discuss strategies for selecting useful spectral signature regions for individual molecular markers of interest.

  2. On the granular fingering instability: controlled triggering in laboratory experiments and numerical simulations

    Science.gov (United States)

    Vriend, Nathalie; Tsang, Jonny; Arran, Matthew; Jin, Binbin; Johnsen, Alexander

    2017-11-01

    When a mixture of small, smooth particles and larger, coarse particles is released on a rough inclined plane, the initial uniform front may break up in distinct fingers which elongate over time. This fingering instability is sensitive to the unique arrangement of individual particles and is driven by granular segregation (Pouliquen et al., 1997). Variability in initial conditions create significant limitations for consistent experimental and numerical validation of newly developed theoretical models (Baker et al., 2016) for finger formation. We present an experimental study using a novel tool that sets the initial fingering width of the instability. By changing this trigger width between experiments, we explore the response of the avalanche breakup to perturbations of different widths. Discrete particle simulations (using MercuryDPM, Thornton et al., 2012) are conducted under a similar setting, reproducing the variable finger width, allowing validation between experiments and numerical simulations. A good agreement between simulations and experiments is obtained, and ongoing theoretical work is briefly introduced. NMV acknowledges the Royal Society Dorothy Hodgkin Research Fellowship.

  3. The LHCb vertex locator and level-1 trigger

    CERN Document Server

    Dijkstra, H

    2000-01-01

    LHCb will study CP violation and other rare phenomena in B-decays with a forward detector at the LHC. One of the challenges is to design a fast and efficient trigger. The design of the silicon Vertex Locator (VELO) has been driven by the requirements of one of the most selective triggers of the experiment. The VELO trigger is designed to work at an input rate of 1 MHz. The requirements and implementation of the VELO and the associated trigger are summarised, followed by a description of an upgrade which improves the trigger performance significantly. (3 refs).

  4. The control and prevention of dust explosions

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Papers presented discussed: explosion characteristics and hybrid mixtures explosion characteristics and influencing factors, propagation of dust explosions in ducts, prevention of dust explosions, desensitization, explosion-proof type of construction, explosion pressure relief, optical flame barriers, slide-valves for explosion protection, Ventex explosion barrier valves, grinding and mixing plants, spray driers, dust explosions in silos, and explosion-proof bucket elevators. One paper has been abstracted separately.

  5. Mass Spectrometric Analysis of Eight Common Chemical Explosives Using Ion Trap Mass Spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sehwan; Lee, Jihyeon; KIm, Jeongkwon [Chungnam National Univ., Daejeon (Korea, Republic of); Cho, Soo Gyeong; Goh, Eun Mee [Agency for Defense Development, Daejeon (Korea, Republic of); Lee, Sungman; Koh, Sungsuk [Sensor Tech Inc., Seoul (Korea, Republic of)

    2013-12-15

    Eight representative explosives (ammonium perchlorate (AP), ammonium nitrate (AN), trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), cyclonite (RDX), cyclotetramethylenetetranitramine (HMX), pentaerythritol tetranitrate (PETN), and hexanitrostilbene (HNS)) were comprehensively analyzed with an ion trap mass spectrometer in negative ion mode using direct infusion electrospray ionization. MS/MS experiments were performed to generate fragment ions from the major parent ion of each explosive. Explosives in salt forms such as AP or AN provided cluster parent ions with their own anions. Explosives with an aromatic ring were observed as either [M.H]{sup -} for TNT and DNT or [M]{sup ·-}. for HNS, while explosives without an aromatic ring such as RDX, HMX, and PETN were detected as an adduct ion with a formate anion, i. e., [M+HCOO]{sup -}. These findings provide a guideline for the rapid and accurate detection of explosives once portable MS instruments become more readily available.

  6. Mass Spectrometric Analysis of Eight Common Chemical Explosives Using Ion Trap Mass Spectrometer

    International Nuclear Information System (INIS)

    Park, Sehwan; Lee, Jihyeon; KIm, Jeongkwon; Cho, Soo Gyeong; Goh, Eun Mee; Lee, Sungman; Koh, Sungsuk

    2013-01-01

    Eight representative explosives (ammonium perchlorate (AP), ammonium nitrate (AN), trinitrotoluene (TNT), 2,4-dinitrotoluene (DNT), cyclonite (RDX), cyclotetramethylenetetranitramine (HMX), pentaerythritol tetranitrate (PETN), and hexanitrostilbene (HNS)) were comprehensively analyzed with an ion trap mass spectrometer in negative ion mode using direct infusion electrospray ionization. MS/MS experiments were performed to generate fragment ions from the major parent ion of each explosive. Explosives in salt forms such as AP or AN provided cluster parent ions with their own anions. Explosives with an aromatic ring were observed as either [M.H] - for TNT and DNT or [M] ·- . for HNS, while explosives without an aromatic ring such as RDX, HMX, and PETN were detected as an adduct ion with a formate anion, i. e., [M+HCOO] - . These findings provide a guideline for the rapid and accurate detection of explosives once portable MS instruments become more readily available

  7. Conversion of chemical energy in an explosive by a magnetohydrodynamic method

    International Nuclear Information System (INIS)

    Lebedev, E.F.; Ostashev, V.E.; Svetsov, G.A.

    1983-01-01

    In this paper, the authors examine different methods for realizing the MHD method for converting chemical energy of a condensed explosive into pulsed electrical energy. It is shown that explosive MHD generators, which are compact sources of powerful pulses of electrical energy, are characterized by their relative simplicity, autonomy and maneuverability of firing and they are capable of operating in the frequency-periodic mode. A number of projects have been proposed for explosive MHD generators in the megajoule range. Practical experience has been gained in creating frequency-periodic action generators as well as autonomous setups using superconducting magnetic systems. The increase in the operational efficiency of an explosive MHD generator is primarily related to increasing the magnetic Reynolds number of the flow, which can be attained, in particular, by using different schemes for accumulating the energy of the explosion. The use of a metallic liner, which expands under the pressure of the detonation products, in an explosive MHD generator is, in the practical sense, apparently hopeless. The general information available on the parameters and properties of explosive MHD generators gives a basis for concluding that this generator is a promising source of powerful energy pulses. In a certain range of parameters, it can be an alternative to the use of conventional high-energy pulse devices

  8. Pyranometer offsets triggered by ambient meteorology: insights from laboratory and field experiments

    Science.gov (United States)

    Oswald, Sandro M.; Pietsch, Helga; Baumgartner, Dietmar J.; Weihs, Philipp; Rieder, Harald E.

    2017-03-01

    This study investigates the effects of ambient meteorology on the accuracy of radiation (R) measurements performed with pyranometers contained in various heating and ventilation systems (HV-systems). It focuses particularly on instrument offsets observed following precipitation events. To quantify pyranometer responses to precipitation, a series of controlled laboratory experiments as well as two targeted field campaigns were performed in 2016. The results indicate that precipitation (as simulated by spray tests or observed under ambient conditions) significantly affects the thermal environment of the instruments and thus their stability. Statistical analyses of laboratory experiments showed that precipitation triggers zero offsets of -4 W m-2 or more, independent of the HV-system. Similar offsets were observed in field experiments under ambient environmental conditions, indicating a clear exceedance of BSRN (Baseline Surface Radiation Network) targets following precipitation events. All pyranometers required substantial time to return to their initial signal states after the simulated precipitation events. Therefore, for BSRN-class measurements, the recommendation would be to flag the radiation measurements during a natural precipitation event and 90 min after it in nighttime conditions. Further daytime experiments show pyranometer offsets of 50 W m-2 or more in comparison to the reference system. As they show a substantially faster recovery, the recommendation would be to flag the radiation measurements within a natural precipitation event and 10 min after it in daytime conditions.

  9. TRIGGER

    CERN Multimedia

    by Wesley Smith

    2010-01-01

    Level-1 Trigger Hardware and Software The overall status of the L1 trigger has been excellent and the running efficiency has been high during physics fills. The timing is good to about 1%. The fine-tuning of the time synchronization of muon triggers is ongoing and will be completed after more than 10 nb-1 of data have been recorded. The CSC trigger primitive and RPC trigger timing have been refined. A new configuration for the CSC Track Finder featured modified beam halo cuts and improved ghost cancellation logic. More direct control was provided for the DT opto-receivers. New RPC Cosmic Trigger (RBC/TTU) trigger algorithms were enabled for collision runs. There is further work planned during the next technical stop to investigate a few of the links from the ECAL to the Regional Calorimeter Trigger (RCT). New firmware and a new configuration to handle trigger rate spikes in the ECAL barrel are also being tested. A board newly developed by the tracker group (ReTRI) has been installed and activated to block re...

  10. Chernobyl explosion bombshell

    International Nuclear Information System (INIS)

    Martin, S.; Arnott, D.

    1988-01-01

    It is suggested that the explosion at the Chernobyl-4 reactor in April 1986 was a nuclear explosion. The evidence for this is examined. The sequence of events at Chernobyl is looked at to see if the effects were like those from a nuclear explosion. The question of whether a United Kingdom reactor could go prompt critical is discussed. It is concluded that prompt criticality excursions are possible, but the specific Chernobyl sequence is impossible. (UK)

  11. A study on vapor explosions

    International Nuclear Information System (INIS)

    Takagi, N.; Shoji, M.

    1979-01-01

    An experimental study was carried out for vapor explosions of molten tin falling in water. For various initial metal temperatures and subcooling of water, transient pressure of the explosions, relative frequency of the explosions and the position where the explosions occur were measured in detail. The influence of ambient pressure was also investigated. From the results, it was concluded that the vapor explosion is closely related to the collapse of a vapor film around the molten metal. (author)

  12. Self-triggering reaction kinetics between nitrates and aluminium powder

    International Nuclear Information System (INIS)

    Demichela, Micaela

    2007-01-01

    During the night between the 19 and 20 September 2003, a loud explosion occurred at about 3 km from the town of Carignano that was clearly heard at a distance of some tens of kilometres. The explosion almost completely destroyed most of the laboratories of the Panzera Company that were used for the production of fireworks. The results of the research activities that were carried out using a differential scanning calorimeter (DSC) on the same raw materials that made up the pyrotechnical mixture that exploded are reported in this paper. This activity was carried out to identify the dynamics of the accident. It proved possible to verify how the event was produced because of a slow exothermic reaction which, after about 8 h, caused the self-triggering of 120 kg of finished product. The detonation can therefore be put down to a runaway reaction in the solid phase, whose primogenial causes can be attributed to a still craftsman type production system, not conformed to the rigorous controls and inspections as those required by a safety management system for major risk plants, as the Panzera Company was

  13. The ATLAS Level-1 Trigger Timing Setup

    CERN Document Server

    Spiwoks, R; Ellis, Nick; Farthouat, P; Gällnö, P; Haller, J; Krasznahorkay, A; Maeno, T; Pauly, T; Pessoa-Lima, H; Resurreccion-Arcas, I; Schuler, G; De Seixas, J M; Torga-Teixeira, R; Wengler, T

    2005-01-01

    The ATLAS detector at CERN's LHC will be exposed to proton-proton collisions at a bunch-crossing rate of 40 MHz. In order to reduce the data rate, a three-level trigger system selects potentially interesting physics. The first trigger level is implemented in electronics and firmware. It aims at reducing the output rate to less than 100 kHz. The Central Trigger Processor combines information from the calorimeter and muon trigger processors and makes the final Level-1-Accept decision. It is a central element in the timing setup of the experiment. Three aspects are considered in this article: the timing setup with respect to the Level-1 trigger, with respect to the expriment, and with respect to the world.

  14. Gas pollutants from detonation and combustion of industrial explosives

    Energy Technology Data Exchange (ETDEWEB)

    Campos, J.; Pines, A.; Gois, J.C.; Portugal, A. (University of Coimbra, Coimbra (Portugal). Mechanical Engineering Dept.)

    1993-01-01

    The potential hazards of fumes, from blasting operations in underground mines, have long been recognised. Beyond this normal use of explosives, there are also large amounts of energy substances which cannot be used because their life time is outdated or they are not within the minimal quality requirements. There is a lack of information concerning tests, procedures and theoretical predictions of pollutant concentrations in fumes from detonation and combustion operations with industrial explosives. The most common industrial explosives in Portugal are ammonium nitrate-fuel oil compositions (anfo), and dynamite. Recently, ammonium nitrate based emulsion explosives are more and more used in industrial applications. This paper presents the structure and fundamental thermodynamic equations of THOR computer code to calculate the combustion and detonation products (CO[sub 2], CO, H[sub 2]O, N[sub 2], O[sub 2], H[sub 2], OH, NO, H, N, O, HCN, NH[sub 3], NO[sub 2], N[sub 2]O, CH[sub 4] gases and two kinds of solid carbon - graphite and diamond) for the minimum value of Gibbs free energy, using three well known equations of state - BKW, H9 and H12. Detonation experiments are described and gas analysis discussed. Measured pollutants concentrations (CO, CO[sub 2], NO and NO[sub 2]), as a function of volume of explosion chamber, prove the dependence of expansion mechanisms on CO and NO formation and recombination and validate theoretical predictions. Incineration of explosives in a fluidised bed is described. Products composition from isobare adiabatic combustion of selected explosives has been calculated and correlated with previous calculations for a detonation regime. The obtained results demonstrate the possibility of predicting gas composition of detonation and combustion products of industrial explosives. 22 refs., 14 figs., 1 tab.

  15. Explosively formed fuse opening switches for use in flux-compression generator circuits

    International Nuclear Information System (INIS)

    Goforth, J.H.; Marsh, S.P.

    1990-01-01

    Explosive-driven magnetic flux compression generators (explosive generators) provide for the generation of large amounts of energy compactly stored in a magnetic field. Opening switches for use in explosive generator circuits allow the energy to be used for applications requiring higher power than can be developed by the generators themselves. The authors have developed a type of opening switch that they describe as an explosively formed fuse (EEF). These switches are well suited to explosive generator circuits and provide a considerable enhancement of explosive pulsed-power capability. The authors first experiments with explosively formed fuses occurred while attempting to utilize the enhanced pressure developed in the high-pressure interaction between two detonation fronts. In these tests they attempted to use the interaction to sever conducting plates along lines perpendicular to current flow. The technique worked to some extent, and to ascertain how much advantage was gained from the high-pressure interaction, they substituted an areal detonation in place of the discrete lines required to produce lines of interaction. This paper describes the authors development effort, the state of the art, and the different manifestations of their technique

  16. Cause finding experiments and environmental analysis on the accident of the fire and explosion in TRP bituminization facility

    International Nuclear Information System (INIS)

    Fujine, Sachio; Murata, Mikio; Abe, Hitoshi

    1999-09-01

    This report is the summary of the cause finding experiments and environmental analysis on the accident of the fire and explosion occurred at March 11th, 1997, in TRP bituminization facility of PNC (Power Reactor and Nuclear Fuel Development Corporation). Regarding the cause finding experiments, chemical components have been analyzed for the effluent samples taken from PNC's facility, bituminized mock waste has been produced using the simulated salt effluent prepared according to the results of chemical analysis, thermal analysis and experiment of runaway exothermic reaction have been conducted using the mock waste, and the component of flammable gases emitted from the heated waste have been collected and analyzed. Regarding environmental analysis on the accident, the amount of radioactive cesium released by the accident has been calculated by the comparative analysis using the atmospheric dispersion simulation code SPEEDI with the data of environmental monitoring and the public dose has been assessed. (author)

  17. Explosive compaction of aluminum oxide modified by multiwall carbon nanotubes

    Science.gov (United States)

    Buzyurkin, A. E.; Kraus, E. I.; Lukyanov, Ya L.

    2018-04-01

    This paper presents experiments and numerical research on explosive compaction of aluminum oxide powder modified by multiwall carbon nanotubes (MWCNT) and modeling of the stress state behind the shock front at shock loading. The aim of this study was to obtain a durable low-porosity compact sample. The explosive compaction technology is used in this problem because the aluminum oxide is an extremely hard and refractory material. Therefore, its compaction by traditional methods requires special equipment and considerable expenses.

  18. TRIGGER

    CERN Multimedia

    Roberta Arcidiacono

    2013-01-01

    Trigger Studies Group (TSG) The Trigger Studies Group has just concluded its third 2013 workshop, where all POGs presented the improvements to the physics object reconstruction, and all PAGs have shown their plans for Trigger development aimed at the 2015 High Level Trigger (HLT) menu. The Strategy for Trigger Evolution And Monitoring (STEAM) group is responsible for Trigger menu development, path timing, Trigger performance studies coordination, HLT offline DQM as well as HLT release, menu and conditions validation – this last task in collaboration with PdmV (Physics Data and Monte Carlo Validation group). In the last months the group has delivered several HLT rate estimates and comparisons, using the available data and Monte Carlo samples. The studies were presented at the Trigger workshops in September and December, and STEAM has contacted POGs and PAGs to understand the origin of the discrepancies observed between 8 TeV data and Monte Carlo simulations. The most recent results show what the...

  19. Sub-nanosecond clock synchronization and trigger management in the nuclear physics experiment AGATA

    International Nuclear Information System (INIS)

    Bellato, M; Isocrate, R; Rampazzo, G; Bazzacco, D; Bortolato, D; Triossi, A; Chavas, J; Mengoni, D; Recchia, F

    2013-01-01

    The new-generation spectrometer AGATA, the Advanced GAmma Tracking Array, requires sub-nanosecond clock synchronization among readout and front-end electronics modules that may lie hundred meters apart. We call GTS (Global Trigger and Synchronization System) the infrastructure responsible for precise clock synchronization and for the trigger management of AGATA. It is made of a central trigger processor and nodes, connected in a tree structure by means of optical fibers operated at 2Gb/s. The GTS tree handles the synchronization and the trigger data flow, whereas the trigger processor analyses and eventually validates the trigger primitives centrally. Sub-nanosecond synchronization is achieved by measuring two different types of round-trip times and by automatically correcting for phase-shift differences. For a tree of depth two, the peak-to-peak clock jitter at each leaf is 70 ps; the mean phase difference is 180 ps, while the standard deviation over such phase difference, namely the phase equalization repeatability, is 20 ps. The GTS system has run flawlessly for the two-year long AGATA campaign, held at the INFN Legnaro National Laboratories, Italy, where five triple clusters of the AGATA sub-array were coupled with a variety of ancillary detectors

  20. Sub-nanosecond clock synchronization and trigger management in the nuclear physics experiment AGATA

    Science.gov (United States)

    Bellato, M.; Bortolato, D.; Chavas, J.; Isocrate, R.; Rampazzo, G.; Triossi, A.; Bazzacco, D.; Mengoni, D.; Recchia, F.

    2013-07-01

    The new-generation spectrometer AGATA, the Advanced GAmma Tracking Array, requires sub-nanosecond clock synchronization among readout and front-end electronics modules that may lie hundred meters apart. We call GTS (Global Trigger and Synchronization System) the infrastructure responsible for precise clock synchronization and for the trigger management of AGATA. It is made of a central trigger processor and nodes, connected in a tree structure by means of optical fibers operated at 2Gb/s. The GTS tree handles the synchronization and the trigger data flow, whereas the trigger processor analyses and eventually validates the trigger primitives centrally. Sub-nanosecond synchronization is achieved by measuring two different types of round-trip times and by automatically correcting for phase-shift differences. For a tree of depth two, the peak-to-peak clock jitter at each leaf is 70 ps; the mean phase difference is 180 ps, while the standard deviation over such phase difference, namely the phase equalization repeatability, is 20 ps. The GTS system has run flawlessly for the two-year long AGATA campaign, held at the INFN Legnaro National Laboratories, Italy, where five triple clusters of the AGATA sub-array were coupled with a variety of ancillary detectors.

  1. Performance calculations on the ANFO explosive RX-HD

    Energy Technology Data Exchange (ETDEWEB)

    Souers, P.C.; Larson, D.B.; Tarver, C.M.

    1994-12-31

    This report presents the calculation methods utilized in asessing the detonation performance of the ammonium nitrate-fuel oil (ANFO) utilized in the non-proliferation experiment (NPE) underground explosion at te Nevada Test Site. The composition of the ANFO is discussed.

  2. On the fallout by nuclear explosion experiment and the radioactive iodine in animal organism

    International Nuclear Information System (INIS)

    Tanaka, Giichiro

    1974-01-01

    Radioactive iodine (mainly 131 I, 132 I, 133 I, and 135 I) was measured with fallout, cow milk, human urine, and thyroid glands (human and cattles) after the first nuclear explosion experiment in China. Analysing method was determined by placing emphasis on rapidity and perfect separation from other nuclides. The detectable limit employing this method was about several p Ci. The identification of radioactive iodine was performed with a simultaneous counting type β - ray spectrometer, and 131 I, 132 I, and 133 I were identified by their half lives. 131 I in cow milk increased from around the 4th day after the experiment, and it had been detected for a month continuously, the maximum amount being 437 p Ci/l. In thyroid glands, 131 I was detected for 100 days in a milch cow, the maximum being 88, 1p Ci/g, while it was somewhat low in Japanese cows and pigs. 131 I in the thyroid gland of a human infant (accidentally died after 12 days) was 1.29p Ci/g. 131 I in human urine was 6.3p Ci/l on the 7th day. (Kobatake, H.)

  3. Aspects regarding explosion risk assessment

    Directory of Open Access Journals (Sweden)

    Părăian Mihaela

    2017-01-01

    Full Text Available Explosive risk occurs in all activities involving flammable substances in the form of gases, vapors, mists or dusts which, in mixture with air, can generate an explosive atmosphere. As explosions can cause human losses and huge material damage, the assessment of the explosion risk and the establishment of appropriate measures to reduce it to acceptable levels according to the standards and standards in force is of particular importance for the safety and health of people and goods.There is no yet a recognized method of assessing the explosion risk, but regardless of the applied method, the likelihood of an explosive atmosphere occurrence has to be determined, together with the occurrence of an efficient ignition source and the magnitude of foreseeable consequences. In assessment processes, consequences analysis has a secondary importance since it’s likely that explosions would always involve considerable damage, starting from important material damages and up to human damages that could lead to death.The purpose of the work is to highlight the important principles and elements to be taken into account for a specific risk assessment. An essential element in assessing the risk of explosion in workplaces where explosive atmospheres may occur is technical installations and personal protective equipment (PPE that must be designed, manufactured, installed and maintained so that they cannot generate a source of ignition. Explosion prevention and protection requirements are governed by specific norms and standards, and a main part of the explosion risk assessment is related to the assessment of the compliance of the equipment / installation with these requirements.

  4. Numerical modelling of the effect of using multi-explosives on the explosive forming of steel cones

    OpenAIRE

    De Vuyst, T; Kong, K; Djordjevic, N; Vignjevic, R; Campbell, JC; Hughes, K

    2016-01-01

    Modelling and analysis of underwater explosive forming process by using FEM and SPH formulation is presented in this work. The explosive forming of a steel cone is studied. The model setup includes a low carbon steel plate, plate holder, forming die as well as water and C4 explosive. The effect of multiple explosives on rate of targets deformation has been studied. Four different multi-explosives models have been developed and compared to the single explosive model. The formability of the ste...

  5. Underwater electrical wire explosion: Shock wave from melting being overtaken by shock wave from vaporization

    Science.gov (United States)

    Li, Liuxia; Qian, Dun; Zou, Xiaobing; Wang, Xinxin

    2018-05-01

    The shock waves generated by an underwater electrical wire explosion were investigated. A microsecond time-scale pulsed current source was used to trigger the electrical explosion of copper wires with a length of 5 cm and a diameter of 200 μm. The energy-storage capacitor was charged to a relatively low energy so that the energy deposited onto the wire was not large enough to fully vaporize the whole wire. Two shock waves were recorded with a piezoelectric gauge that was located at a position of 100 mm from the exploding wire. The first and weak shock wave was confirmed to be the contribution from wire melting, while the second and stronger shock wave was the contribution from wire vaporization. The phenomenon whereby the first shock wave generated by melting being overtaken by the shock wave due to vaporization was observed.

  6. Effects of frustration on explosive synchronization

    Science.gov (United States)

    Huang, Xia; Gao, Jian; Sun, Yu-Ting; Zheng, Zhi-Gang; Xu, Can

    2016-12-01

    In this study, we consider the emergence of explosive synchronization in scale-free networks by considering the Kuramoto model of coupled phase oscillators. The natural frequencies of oscillators are assumed to be correlated with their degrees and frustration is included in the system. This assumption can enhance or delay the explosive transition to synchronization. Interestingly, a de-synchronization phenomenon occurs and the type of phase transition is also changed. Furthermore, we provide an analytical treatment based on a star graph, which resembles that obtained in scale-free networks. Finally, a self-consistent approach is implemented to study the de-synchronization regime. Our findings have important implications for controlling synchronization in complex networks because frustration is a controllable parameter in experiments and a discontinuous abrupt phase transition is always dangerous in engineering in the real world.

  7. Historical Survey: German Research on Hydrogen Peroxide/Alcohol Explosives

    Energy Technology Data Exchange (ETDEWEB)

    Parmeter, John E. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-01-01

    Discussion of HP/fuel explosives in the scientific literature dates back to at least 1927. A paper was published that year in a German journal entitled On Hydrogen Peroxide Explosives [Bamberger and Nussbaum 1927]. The paper dealt with HP/cotton/Vaseline formulations, specifically HP89/cotton/Vaseline (76/15/9) and (70/8.5/12.5). The authors performed experiments with charge masses of 250-750 g and charge diameters of 35-45 mm. This short paper provides brief discussion on the observed qualitative effects of detonations but does not report detonation velocities.

  8. Graphics Processing Units for HEP trigger systems

    International Nuclear Information System (INIS)

    Ammendola, R.; Bauce, M.; Biagioni, A.; Chiozzi, S.; Cotta Ramusino, A.; Fantechi, R.; Fiorini, M.; Giagu, S.; Gianoli, A.; Lamanna, G.; Lonardo, A.; Messina, A.

    2016-01-01

    General-purpose computing on GPUs (Graphics Processing Units) is emerging as a new paradigm in several fields of science, although so far applications have been tailored to the specific strengths of such devices as accelerator in offline computation. With the steady reduction of GPU latencies, and the increase in link and memory throughput, the use of such devices for real-time applications in high-energy physics data acquisition and trigger systems is becoming ripe. We will discuss the use of online parallel computing on GPU for synchronous low level trigger, focusing on CERN NA62 experiment trigger system. The use of GPU in higher level trigger system is also briefly considered.

  9. Graphics Processing Units for HEP trigger systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola, R. [INFN Sezione di Roma “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Roma (Italy); Bauce, M. [INFN Sezione di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma (Italy); University of Rome “La Sapienza”, P.lee A.Moro 2, 00185 Roma (Italy); Biagioni, A. [INFN Sezione di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma (Italy); Chiozzi, S.; Cotta Ramusino, A. [INFN Sezione di Ferrara, Via Saragat 1, 44122 Ferrara (Italy); University of Ferrara, Via Saragat 1, 44122 Ferrara (Italy); Fantechi, R. [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); CERN, Geneve (Switzerland); Fiorini, M. [INFN Sezione di Ferrara, Via Saragat 1, 44122 Ferrara (Italy); University of Ferrara, Via Saragat 1, 44122 Ferrara (Italy); Giagu, S. [INFN Sezione di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma (Italy); University of Rome “La Sapienza”, P.lee A.Moro 2, 00185 Roma (Italy); Gianoli, A. [INFN Sezione di Ferrara, Via Saragat 1, 44122 Ferrara (Italy); University of Ferrara, Via Saragat 1, 44122 Ferrara (Italy); Lamanna, G., E-mail: gianluca.lamanna@cern.ch [INFN Sezione di Pisa, Largo B. Pontecorvo 3, 56127 Pisa (Italy); INFN Laboratori Nazionali di Frascati, Via Enrico Fermi 40, 00044 Frascati (Roma) (Italy); Lonardo, A. [INFN Sezione di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma (Italy); Messina, A. [INFN Sezione di Roma “La Sapienza”, P.le A. Moro 2, 00185 Roma (Italy); University of Rome “La Sapienza”, P.lee A.Moro 2, 00185 Roma (Italy); and others

    2016-07-11

    General-purpose computing on GPUs (Graphics Processing Units) is emerging as a new paradigm in several fields of science, although so far applications have been tailored to the specific strengths of such devices as accelerator in offline computation. With the steady reduction of GPU latencies, and the increase in link and memory throughput, the use of such devices for real-time applications in high-energy physics data acquisition and trigger systems is becoming ripe. We will discuss the use of online parallel computing on GPU for synchronous low level trigger, focusing on CERN NA62 experiment trigger system. The use of GPU in higher level trigger system is also briefly considered.

  10. PROGENITOR-DEPENDENT EXPLOSION DYNAMICS IN SELF-CONSISTENT, AXISYMMETRIC SIMULATIONS OF NEUTRINO-DRIVEN CORE-COLLAPSE SUPERNOVAE

    Energy Technology Data Exchange (ETDEWEB)

    Summa, Alexander; Hanke, Florian; Janka, Hans-Thomas; Melson, Tobias [Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Str. 1, D-85748 Garching (Germany); Marek, Andreas [Max Planck Computing and Data Facility (MPCDF), Gießenbachstr. 2, D-85748 Garching (Germany); Müller, Bernhard, E-mail: asumma@mpa-garching.mpg.de, E-mail: thj@mpa-garching.mpg.de [Astrophysics Research Centre, School of Mathematics and Physics, Queen’s University Belfast, Belfast, BT7 1NN (United Kingdom)

    2016-07-01

    We present self-consistent, axisymmetric core-collapse supernova simulations performed with the Prometheus-Vertex code for 18 pre-supernova models in the range of 11–28 M {sub ⊙}, including progenitors recently investigated by other groups. All models develop explosions, but depending on the progenitor structure, they can be divided into two classes. With a steep density decline at the Si/Si–O interface, the arrival of this interface at the shock front leads to a sudden drop of the mass-accretion rate, triggering a rapid approach to explosion. With a more gradually decreasing accretion rate, it takes longer for the neutrino heating to overcome the accretion ram pressure and explosions set in later. Early explosions are facilitated by high mass-accretion rates after bounce and correspondingly high neutrino luminosities combined with a pronounced drop of the accretion rate and ram pressure at the Si/Si–O interface. Because of rapidly shrinking neutron star radii and receding shock fronts after the passage through their maxima, our models exhibit short advection timescales, which favor the efficient growth of the standing accretion-shock instability. The latter plays a supportive role at least for the initiation of the re-expansion of the stalled shock before runaway. Taking into account the effects of turbulent pressure in the gain layer, we derive a generalized condition for the critical neutrino luminosity that captures the explosion behavior of all models very well. We validate the robustness of our findings by testing the influence of stochasticity, numerical resolution, and approximations in some aspects of the microphysics.

  11. Seismic Methods of Identifying Explosions and Estimating Their Yield

    Science.gov (United States)

    Walter, W. R.; Ford, S. R.; Pasyanos, M.; Pyle, M. L.; Myers, S. C.; Mellors, R. J.; Pitarka, A.; Rodgers, A. J.; Hauk, T. F.

    2014-12-01

    Seismology plays a key national security role in detecting, locating, identifying and determining the yield of explosions from a variety of causes, including accidents, terrorist attacks and nuclear testing treaty violations (e.g. Koper et al., 2003, 1999; Walter et al. 1995). A collection of mainly empirical forensic techniques has been successfully developed over many years to obtain source information on explosions from their seismic signatures (e.g. Bowers and Selby, 2009). However a lesson from the three DPRK declared nuclear explosions since 2006, is that our historic collection of data may not be representative of future nuclear test signatures (e.g. Selby et al., 2012). To have confidence in identifying future explosions amongst the background of other seismic signals, and accurately estimate their yield, we need to put our empirical methods on a firmer physical footing. Goals of current research are to improve our physical understanding of the mechanisms of explosion generation of S- and surface-waves, and to advance our ability to numerically model and predict them. As part of that process we are re-examining regional seismic data from a variety of nuclear test sites including the DPRK and the former Nevada Test Site (now the Nevada National Security Site (NNSS)). Newer relative location and amplitude techniques can be employed to better quantify differences between explosions and used to understand those differences in term of depth, media and other properties. We are also making use of the Source Physics Experiments (SPE) at NNSS. The SPE chemical explosions are explicitly designed to improve our understanding of emplacement and source material effects on the generation of shear and surface waves (e.g. Snelson et al., 2013). Finally we are also exploring the value of combining seismic information with other technologies including acoustic and InSAR techniques to better understand the source characteristics. Our goal is to improve our explosion models

  12. Mechanical efficiency of the energy release during a steam explosion

    International Nuclear Information System (INIS)

    Krieg, R.

    1997-01-01

    The mechanical processes during the expansion phase of a steam explosion with intimately fragmented liquid particles is investigated based on elementary principles and analytical solutions. During a short load pulse, the different densities of the water and the melted particles lead to different velocities. After the load pulse, viscosity effects lead to a slow down of the higher velocities and to a corresponding reconversion of the kinetic energy of the mixture into thermal energy. It is shown that both effects are proportional to each other. The ratio between the residual and the applied mechanical energy is defined as the mechanical efficiency of the steam explosion. Using data typical for a steam explosion in a pressurized water reactor, mechanical efficiencies of <50% are estimated. Considering that the thermodynamic efficiencies are quite limited, the very low conversion rates from thermal energy into mechanical energy observed during steam explosion experiments can be more easily understood

  13. Frictional properties of single crystals HMX, RDX and PETN explosives

    International Nuclear Information System (INIS)

    Wu, Y.Q.; Huang, F.L.

    2010-01-01

    The frictional properties of single crystals of cyclotetramethylene tetranitramine (HMX), cyclotrimethylene trinitramine (RDX) and pentaerythritol tetranitrate (PETN) secondary explosives are examined using a sensitive friction machine. The explosive crystals used for the measurements are at least 3.5 mm wide. The friction coefficients between crystals of the same explosive (i.e., HMX on HMX, etc.), crystals of different explosives (i.e., HMX on RDX, etc.), and each explosive and a well-polished gauge steel surface are determined. The frictional surfaces are also studied under an environmental scanning electron microscope (ESEM) to analyze surface microstructural changes under increasing loading forces. The friction coefficients vary considerably with increasing normal loading forces and are particularly sensitive to slider shapes, crystal roughness and the mechanical properties of both the slider and the sample. With increasing loading forces, most friction experiments show surface damage, consisting of grooves, debris, and nano-particles, on both the slider and sample. In some cases, a strong evidence of a localized molten state is found in the central region of the friction track. Possible mechanisms that affect the friction coefficient are discussed based on microscopic observations.

  14. TRIGGER

    CERN Multimedia

    W. Smith

    2010-01-01

    Level-1 Trigger Hardware and Software The Level-1 Trigger hardware has performed well during both the recent proton-proton and heavy ion running. Efforts were made to improve the visibility and handling of alarms and warnings. The tracker ReTRI boards that prevent fixed frequencies of Level-1 Triggers are now configured through the Trigger Supervisor. The Global Calorimeter Trigger (GCT) team has introduced a buffer cleanup procedure at stops and a reset of the QPLL during configuring to ensure recalibration in case of a switch from the LHC clock to the local clock. A device to test the cables between the Regional Calorimeter Trigger and the GCT has been manufactured. A wrong charge bit was fixed in the CSC Trigger. The ECAL group is improving crystal masking and spike suppression in the trigger primitives. New firmware for the Drift Tube Track Finder (DTTF) sorters was developed to improve fake track tagging and sorting. Zero suppression was implemented in the DT Sector Collector readout. The track finder b...

  15. TRIGGER

    CERN Multimedia

    Wesley Smith

    Trigger Hardware The status of the trigger components was presented during the September CMS Week and Annual Review and at the monthly trigger meetings in October and November. Procedures for cold and warm starts (e.g. refreshing of trigger parameters stored in registers) of the trigger subsystems have been studied. Reviews of parts of the Global Calorimeter Trigger (GCT) and the Global Trigger (GT) have taken place in October and November. The CERN group summarized the status of the Trigger Timing and Control (TTC) system. All TTC crates and boards are installed in the underground counting room, USC55. The central clock system will be upgraded in December (after the Global Run at the end of November GREN) to the new RF2TTC LHC machine interface timing module. Migration of subsystem's TTC PCs to SLC4/ XDAQ 3.12 is being prepared. Work is on going to unify the access to Local Timing Control (LTC) and TTC CMS interface module (TTCci) via SOAP (Simple Object Access Protocol, a lightweight XML-based messaging ...

  16. Development of steam explosion simulation code JASMINE

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Kiyofumi; Yamano, Norihiro; Maruyama, Yu; Kudo, Tamotsu; Sugimoto, Jun [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Nagano, Katsuhiro; Araki, Kazuhiro

    1995-11-01

    A steam explosion is considered as a phenomenon which possibly threatens the integrity of the containment vessel of a nuclear power plant in a severe accident condition. A numerical calculation code JASMINE (JAeri Simulator for Multiphase INteraction and Explosion) purposed to simulate the whole process of steam explosions has been developed. The premixing model is based on a multiphase flow simulation code MISTRAL by Fuji Research Institute Co. In JASMINE code, the constitutive equations and the flow regime map are modified for the simulation of premixing related phenomena. The numerical solution method of the original code is succeeded, i.e. the basic equations are discretized semi-implicitly, BCGSTAB method is used for the matrix solver to improve the stability and convergence, also TVD scheme is applied to capture a steep phase distribution accurately. Test calculations have been performed for the conditions correspond to the experiments by Gilbertson et al. and Angelini et al. in which mixing of solid particles and water were observed in iso-thermal condition and with boiling, respectively. (author).

  17. Development of steam explosion simulation code JASMINE

    International Nuclear Information System (INIS)

    Moriyama, Kiyofumi; Yamano, Norihiro; Maruyama, Yu; Kudo, Tamotsu; Sugimoto, Jun; Nagano, Katsuhiro; Araki, Kazuhiro.

    1995-11-01

    A steam explosion is considered as a phenomenon which possibly threatens the integrity of the containment vessel of a nuclear power plant in a severe accident condition. A numerical calculation code JASMINE (JAeri Simulator for Multiphase INteraction and Explosion) purposed to simulate the whole process of steam explosions has been developed. The premixing model is based on a multiphase flow simulation code MISTRAL by Fuji Research Institute Co. In JASMINE code, the constitutive equations and the flow regime map are modified for the simulation of premixing related phenomena. The numerical solution method of the original code is succeeded, i.e. the basic equations are discretized semi-implicitly, BCGSTAB method is used for the matrix solver to improve the stability and convergence, also TVD scheme is applied to capture a steep phase distribution accurately. Test calculations have been performed for the conditions correspond to the experiments by Gilbertson et al. and Angelini et al. in which mixing of solid particles and water were observed in iso-thermal condition and with boiling, respectively. (author)

  18. Tracing explosive in solvent using quantum cascade laser with pulsed electric discharge system

    Energy Technology Data Exchange (ETDEWEB)

    Park, Seong-Wook; Tian, Chao; Martini, Rainer, E-mail: rmartini@stevens.edu [Department of Physics and Engineering Physics, Stevens Institute of Technology, 1 Castle Point on Hudson, Hoboken, New Jersey 07030 (United States); Chen, Gang [School of Optoelectronic Engineering, Chongqing University, Chongqing 400044 (China); Chen, I-chun Anderson [Newport Corporation/Oriel Instruments, 150 Long Beach Boulevard, Stratford, Connecticut 06615 (United States)

    2014-11-03

    We demonstrated highly sensitive detection of explosive dissolved in solvent with a portable spectroscopy system (Q-MACS) by tracing the explosive byproduct, N{sub 2}O, in combination with a pulsed electric discharge system for safe explosive decomposition. Using Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), the gas was monitored and analyzed by Q-MACS and the presence of the dissolved explosive clearly detected. While HMX presence could be identified directly in the air above the solutions even without plasma, much better results were achieved under the decomposition. The experiment results give an estimated detection limit of 10 ppb, which corresponds to a 15 pg of HMX.

  19. Tracing explosive in solvent using quantum cascade laser with pulsed electric discharge system

    International Nuclear Information System (INIS)

    Park, Seong-Wook; Tian, Chao; Martini, Rainer; Chen, Gang; Chen, I-chun Anderson

    2014-01-01

    We demonstrated highly sensitive detection of explosive dissolved in solvent with a portable spectroscopy system (Q-MACS) by tracing the explosive byproduct, N 2 O, in combination with a pulsed electric discharge system for safe explosive decomposition. Using Octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX), the gas was monitored and analyzed by Q-MACS and the presence of the dissolved explosive clearly detected. While HMX presence could be identified directly in the air above the solutions even without plasma, much better results were achieved under the decomposition. The experiment results give an estimated detection limit of 10 ppb, which corresponds to a 15 pg of HMX

  20. Triggering on electrons and photons with CMS

    Directory of Open Access Journals (Sweden)

    Zabi Alexandre

    2012-06-01

    Full Text Available Throughout the year 2011, the Large Hadron Collider (LHC has operated with an instantaneous luminosity that has risen continually to around 4 × 1033cm−2s−1. With this prodigious high-energy proton collisions rate, efficient triggering on electrons and photons has become a major challenge for the LHC experiments. The Compact Muon Solenoid (CMS experiment implements a sophisticated two-level online selection system that achieves a rejection factor of nearly 106. The first level (L1 is based on coarse information coming from the calorimeters and the muon detectors while the High-Level Trigger (HLT combines fine-grain information from all sub-detectors. In this intense hadronic environment, the L1 electron/photon trigger provides a powerful tool to select interesting events. It is based upon information from the Electromagnetic Calorimeter (ECAL, a high-resolution detector comprising 75848 lead tungstate (PbWO4 crystals in a “barrel” and two “endcaps”. The performance as well as the optimization of the electron/photon trigger are presented.

  1. Rate Predictions and Trigger/DAQ Resource Monitoring in ATLAS

    CERN Document Server

    Schaefer, D M; The ATLAS collaboration

    2012-01-01

    Since starting in 2010, the Large Hadron Collider (LHC) has pro- duced collisions at an ever increasing rate. The ATLAS experiment successfully records the collision data with high eciency and excel- lent data quality. Events are selected using a three-level trigger system, where each level makes a more re ned selection. The level-1 trigger (L1) consists of a custom-designed hardware trigger which seeds two higher software based trigger levels. Over 300 triggers compose a trig- ger menu which selects physics signatures such as electrons, muons, particle jets, etc. Each trigger consumes computing resources of the ATLAS trigger system and oine storage. The LHC instantaneous luminosity conditions, desired physics goals of the collaboration, and the limits of the trigger infrastructure determine the composition of the ATLAS trigger menu. We describe a trigger monitoring frame- work for computing the costs of individual trigger algorithms such as data request rates and CPU consumption. This framework has been used...

  2. Detection of chemical explosives using multiple photon signatures

    International Nuclear Information System (INIS)

    Loschke, K.W.; Dunn, W.L.

    2008-01-01

    Full text: A template-matching procedure to aid in rapid detection of improvised explosive devices (IEDs) is being investigated. Multiple photon-scattered and photon-induced positron annihilation radiation responses are being used as part of a photon-neutron signature-based radiation scanning (SBRS) approach (see companion reference for description of the neutron component), in an attempt to detect chemical explosives at safe standoff distances. Many past and present photon interrogation methods are based on imaging. Imaging techniques seek to determine at high special resolution the internal structure of a target of interest. Our technique simply seeks to determine if an unknown target contains a detectable amount of chemical explosives by comparing multiple responses (signatures) that depend on both density and composition of portions of a target. In the photon component, beams of photons are used to create back-streaming signatures, which are dependent on the density and composition of part of the target being interrogated. These signatures are compared to templates, which are collections of the same signatures if the interrogated volume contained a significant amount of explosives. The signature analysis produces a figure-of-merit and a standard deviation of the figure-of-merit. These two metrics are used to filter safe from dangerous targets. Experiments have been conducted that show that explosive surrogates (fertilizers) can be distinguished from several inert materials using these photon signatures, demonstrating that these signatures can be used effectively to help IEDs

  3. KATANA – A charge-sensitive triggering system for the SπRIT experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lasko, P. [Institute of Nuclear Physics, Polish Academy of Sciences,Kraków (Poland); Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University,Kraków (Poland); Adamczyk, M.; Brzychczyk, J. [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University,Kraków (Poland); Hirnyk, P.; Łukasik, J. [Institute of Nuclear Physics, Polish Academy of Sciences,Kraków (Poland); Pawłowski, P., E-mail: piotr.pawlowski@ifj.edu.pl [Institute of Nuclear Physics, Polish Academy of Sciences,Kraków (Poland); Pelczar, K. [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University,Kraków (Poland); Snoch, A. [University of Wroclaw, Wrocław (Poland); Sochocka, A.; Sosin, Z. [Faculty of Physics, Astronomy and Applied Computer Science, Jagiellonian University,Kraków (Poland); Barney, J. [Department of Physics and Astronomy, Michigan State University, East Lansing (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing (United States); Cerizza, G. [National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing (United States); Estee, J. [Department of Physics and Astronomy, Michigan State University, East Lansing (United States); National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing (United States); Isobe, T. [RIKEN Nishina Center, Wako, Saitama (Japan); Jhang, G. [Department of Physics, Korea University, Seoul (Korea, Republic of); Kaneko, M. [Department of Physics, Kyoto University, Kita-shirakawa, Kyoto (Japan); Kurata-Nishimura, M. [RIKEN Nishina Center, Wako, Saitama (Japan); and others

    2017-06-01

    KATANA - the Krakow Array for Triggering with Amplitude discrimiNAtion - has been built and used as a trigger and veto detector for the SπRIT TPC at RIKEN. Its construction allows operating in magnetic field and providing fast response for ionizing particles, giving an approximate forward multiplicity and charge information. Depending on this information, trigger and veto signals are generated. The article presents performance of the detector and details of its construction. A simple phenomenological parametrization of the number of emitted scintillation photons in plastic scintillator is proposed. The effect of the light output deterioration in the plastic scintillator due to the in-beam irradiation is discussed.

  4. The Terabit/s Super-Fragment Builder and Trigger Throttling System for the Compact Muon Solenoid Experiment at CERN

    CERN Document Server

    Bauer, Gerry; Boyer, Vincent; Branson, James; Brett, Angela; Cano, Eric; Carboni, Andrea; Ciganek, Marek; Cittolin, Sergio; Erhan, Samim; Gigi, Dominique; Glege, Frank; Gómez-Reino, Robert; Gulmini, Michele; Gutíerrez-Mlot, Esteban; Gutleber, Johannes; Jacobs, Claude; Kim, Jin Cheol; Klute, Markus; Lipeles, Elliot; Lopez-Perez, Juan Antonio; Maron, Gaetano; Meijers, Frans; Meschi, Emilio; Moser, Roland; Murray, Steven; Oh, Alexander; Orsini, Luciano; Paus, Christoph; Petrucci, Andrea; Pieri, Marco; Pollet, Lucien; Rácz, Attila; Sakulin, Hannes; Sani, Matteo; Schieferdecker, Philipp; Schwick, Christoph; Sumorok, Konstanty; Suzuki, Ichiro; Tsirigkas, Dimitrios

    2007-01-01

    The Data Acquisition System of the Compact Muon Solenoid experiment at the Large Hadron Collider reads out event fragments of an average size of 2 kilobytes from around 650 detector front-ends at a rate of up to 100 kHz. The first stage of event-building is performed by the Super-Fragment Builder employing custom-built electronics and a Myrinet optical network. It reduces the number of fragments by one order of magnitude, thereby greatly decreasing the requirements for the subsequent event-assembly stage. By providing fast feedback from any of the front-ends to the trigger, the Trigger Throttling System prevents buffer overflows in the front-end electronics due to variations in the size and rate of events or due to back-pressure from the down-stream event-building and processing. This paper reports on new performance measurements and on the recent successful integration of a scaled-down setup of the described system with the trigger and with front-ends of all major sub-detectors. The on-going commissioning of...

  5. The ATLAS Tau Trigger

    CERN Document Server

    Dam, M; The ATLAS collaboration

    2009-01-01

    The ATLAS experiment at CERN’s LHC has implemented a dedicated tau trigger system to select hadronically decaying tau leptons from the enormous background of QCD jets. This promises a significant increase in the discovery potential to the Higgs boson and in searches for physics beyond the Standard Model. The three level trigger system has been optimised for effciency and good background rejection. The first level uses information from the calorimeters only, while the two higher levels include also information from the tracking detectors. Shower shape variables and the track multiplicity are important variables to distinguish taus from QCD jets. At the initial lumonosity of 10^31 cm^−2 s^−1, single tau triggers with a transverse energy threshold of 50 GeV or higher can be run standalone. Below this level, the tau signatures will be combined with other event signature

  6. The ATLAS Tau Trigger

    CERN Document Server

    Rados, PK; The ATLAS collaboration

    2014-01-01

    Physics processes involving tau leptons play a crucial role in understanding particle physics at the high energy frontier. The ability to efficiently trigger on events containing hadronic tau decays is therefore of particular importance to the ATLAS experiment. During the 2012 run, the Large Hadronic Collder (LHC) reached instantaneous luminosities of nearly $10^{34} cm^{-2}s^{-1}$ with bunch crossings occurring every $50 ns$. This resulted in a huge event rate and a high probability of overlapping interactions per bunch crossing (pile-up). With this in mind it was necessary to design an ATLAS tau trigger system that could reduce the event rate to a manageable level, while efficiently extracting the most interesting physics events in a pile-up robust manner. In this poster the ATLAS tau trigger is described, its performance during 2012 is presented, and the outlook for the LHC Run II is briefly summarized.

  7. Dynamic Fracture Simulations of Explosively Loaded Cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Arthur, Carly W. [Univ. of California, Davis, CA (United States). Dept. of Civil and Environmental Engineering; Goto, D. M. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-11-30

    This report documents the modeling results of high explosive experiments investigating dynamic fracture of steel (AerMet® 100 alloy) cylinders. The experiments were conducted at Lawrence Livermore National Laboratory (LLNL) during 2007 to 2008 [10]. A principal objective of this study was to gain an understanding of dynamic material failure through the analysis of hydrodynamic computer code simulations. Two-dimensional and three-dimensional computational cylinder models were analyzed using the ALE3D multi-physics computer code.

  8. General phenomenology of underground nuclear explosions

    International Nuclear Information System (INIS)

    Derlich, S.; Supiot, F.

    1969-01-01

    An essentially qualitatively description is given of the phenomena related to underground nuclear explosions (explosion of a single unit, of several units in line, and simultaneous explosions). In the first chapter are described the phenomena which are common to contained explosions and to explosions forming craters (formation and propagation of a shock-wave causing the vaporization, the fusion and the fracturing of the medium). The second chapter describes the phenomena related to contained explosions (formation of a cavity with a chimney). The third chapter is devoted to the phenomenology of test explosions which form a crater; it describes in particular the mechanism of formation and the different types of craters as a function of the depth of the explosion and of the nature of the ground. The aerial phenomena connected with explosions which form a crater: shock wave in the air and focussing at a large distance, and dust clouds, are also dealt with. (authors) [fr

  9. Upgrade of the CMS Global Muon Trigger

    CERN Document Server

    Jeitler, Manfred; Rabady, Dinyar; Sakulin, Hannes; Stahl, Achim

    2015-01-01

    The increase in center-of-mass energy and luminosity for Run-II of the Large Hadron Collider poses new challenges for the trigger systems of the experiments. To keep triggering with a similar performance as in Run-I, the CMS muon trigger is currently being upgraded. The new algorithms will provide higher resolution, especially for the muon transverse momentum and will make use of isolation criteria that combine calorimeter with muon information already in the level-1 trigger. The demands of the new algorithms can only be met by upgrading the level-1 trigger system to new powerful FPGAs with high bandwidth I/O. The processing boards will be based on the new μTCA standard. We report on the planned algorithms for the upgraded Global Muon Trigger (μGMT) which sorts and removes duplicates from boundaries of the muon trigger sub-systems. Furthermore, it determines how isolated the muon candidates are based on calorimetric energy deposits. The μGMT will be implemented using a processing board that features a larg...

  10. Upgrade of the CMS Global Muon Trigger

    CERN Document Server

    Lingemann, Joschka; Sakulin, Hannes; Jeitler, Manfred; Stahl, Achim

    2015-01-01

    The increase in center-of-mass energy and luminosity for Run 2 of the Large Hadron Collider pose new challenges for the trigger systems of the experiments. To keep triggering with a similar performance as in Run 1, the CMS muon trigger is currently being upgraded. The new algorithms will provide higher resolution, especially for the muon transverse momentum and will make use of isolation criteria that combine calorimeter with muon information already in the level-1 trigger. The demands of the new algorithms can only be met by upgrading the level-1 trigger system to new powerful FPGAs with high bandwidth I/O. The processing boards will be based on the new microTCA standard. We report on the planned algorithms for the upgraded Global Muon Trigger (GMT) which combines information from the muon trigger sub-systems and assigns the isolation variable. The upgraded GMT will be implemented using a Master Processor 7 card, built by Imperial College, that features a large Xilinx Virtex 7 FPGA. Up to 72 optical links at...

  11. PERFORMANCE OF THE ATLAS JET TRIGGER AND FUTURE DEVELOPMENTS

    CERN Document Server

    Sherafati, Nima; The ATLAS collaboration

    2017-01-01

    The ATLAS experiment at the LHC uses a two-level trigger system to record interesting events maintaining good signal efficiency at lower energies where pileup dominates. A new challenge is to control the increased trigger rate due to the expected higher pileup for LHC Run 2. This poster presents the jet trigger efficiency as a function of the offline jet transverse momentum for proton-proton collision data at the centre-of-mass energy of 13 TeV. In addition, the efficiencies of global sequential calibrated (GSC) jet trigger, trimmed jet and trimmed dijet triggers are shown.

  12. Sensitivities of ionic explosives

    Science.gov (United States)

    Politzer, Peter; Lane, Pat; Murray, Jane S.

    2017-03-01

    We have investigated the relevance for ionic explosive sensitivity of three factors that have been demonstrated to be related to the sensitivities of molecular explosives. These are (1) the maximum available heat of detonation, (2) the amount of free space per molecule (or per formula unit) in the crystal lattice and (3) specific features of the electrostatic potential on the molecular or ionic surface. We find that for ionic explosives, just as for molecular ones, there is an overall tendency for impact sensitivity to increase as the maximum detonation heat release is greater. This means that the usual emphasis upon designing explosives with large heats of detonation needs to be tempered somewhat. We also show that a moderate detonation heat release does not preclude a high level of detonation performance for ionic explosives, as was already demonstrated for molecular ones. Relating the free space per formula unit to sensitivity may require a modified procedure for ionic explosives; this will continue to be investigated. Finally, an encouraging start has been made in linking impact sensitivities to the electrostatic potentials on ionic surfaces, although limited so far to ammonium salts.

  13. Multi-threading in the ATLAS High-Level Trigger

    CERN Document Server

    Barton, Adam Edward; The ATLAS collaboration

    2017-01-01

    Over the next decade of LHC data-taking the instantaneous luminosity will reach up 7.5 times the design value with over 200 interactions per bunch-crossing and will pose unprecedented challenges for the ATLAS trigger system. We report on an HLT prototype in which the need for HLT­specific components has been reduced to a minimum while retaining the key aspects of trigger functionality including regional reconstruction and early event rejection. We report on the first experience of migrating trigger algorithms to this new framework and present the next steps towards a full implementation of the ATLAS trigger within AthenaMT.

  14. submitter Muon trigger efficiency of the ATLAS Detector at LHC

    CERN Document Server

    Gallus, Petr

    The diploma thesis is devoted to the study of the muon trigger efficiency performance in the ATLAS experiment at the LHC collider. It contains measurements of efficiency of muon triggers of Level 1 and Level 2. Level 1 (LVL1) trigger efficiency of L1 MU20 and L1 2MU20 triggers is measured using Monte-Carlo simulated events. For Level 2 the efficiency of MuFast trigger is analysed in relation to the LVL1 decision. In both examples it is shown that the trigger efficiency depends on the detector geometry and transversal momentum pT of muons. Key words: ATLAS, LHC, trigger

  15. Explosion confinement system for exploitations by sublevels; Sistema de Confinamiento de Explosiones para Explotaciones por Subniveles

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-11-01

    The objective of this project was to develop a explosion suppression system capable to confine and extinguish gas explosions of the type produced in sub level caving faces when blasting to the coal pillar. Existing systems, such as triggered barriers, were considered not to be valid because of size, weight, cost, and other operational constraints. The research activities have been focused in the development of a mixed water/air spray system that should be manually activated some second before blasting. Two prototypes have been developed and tested, the first one using nozzle operating at the standard ranges of pressure that are normally available in underground coal mines, and a second one based in high-pressure nozzles. In this case, bottles containing a pressurized air/water mixtures are required. The works carried out included theoretical studies, hydraulic nozzles characterization, and modelling of the explosion phenomena using the AutoReaGas code. Besides, extensive testing of the prototypes has been carried out in an underground explosion test facility that has been set up specially for this project at the Barredo Pit in Mieres (Asturias). The results obtained show that the low-pressure system is not valid for this particular application, whereas the high-pressure yielded a more promising performance. However, further testing is required to confirm these results.

  16. The UA1 trigger processor

    International Nuclear Information System (INIS)

    Grayer, G.H.

    1981-01-01

    Experiment UA1 is a large multi-purpose spectrometer at the CERN proton-antiproton collider, scheduled for late 1981. The principal trigger is formed on the basis of the energy deposition in calorimeters. A trigger decision taken in under 2.4 microseconds can avoid dead time losses due to the bunched nature of the beam. To achieve this we have built fast 8-bit charge to digital converters followed by two identical digital processors tailored to the experiment. The outputs of groups of the 2440 photomultipliers in the calorimeters are summed to form a total of 288 input channels to the ADCs. A look-up table in RAM is used to convert the digitised photomultiplier signals to energy in one processor, combinations of input channels, and also counts the number of clusters with electromagnetic or hadronic energy above pre-determined levels. Up to twelve combinations of these conditions, together with external information, may be combined in coincidence or in veto to form the final trigger. Provision has been made for testing using simulated data in an off-line mode, and sampling real data when on-line. (orig.)

  17. Cell phone explosion.

    Science.gov (United States)

    Atreya, Alok; Kanchan, Tanuj; Nepal, Samata; Pandey, Bhuwan Raj

    2016-03-01

    Cell phone explosions and resultant burn injuries are rarely reported in the scientific literature. We report a case of cell phone explosion that occurred when a young male was listening to music while the mobile was plugged in for charging. © The Author(s) 2015.

  18. Electron and nuclear dynamics of molecular clusters in ultraintense laser fields. IV. Coulomb explosion of molecular heteroclusters.

    Science.gov (United States)

    Last, Isidore; Jortner, Joshua

    2004-11-01

    In this paper we present a theoretical and computational study of the temporal dynamics and energetics of Coulomb explosion of (CD4)(n) and (CH4)(n) (n=55-4213) molecular heteroclusters in ultraintense (I=10(16)-10(19) W cm(-2)) laser fields, addressing the manifestation of electron dynamics, together with nuclear energetic and kinematic effects on the heterocluster Coulomb instability. The manifestations of the coupling between electron and nuclear dynamics were explored by molecular dynamics simulations for these heteroclusters coupled to Gaussian laser fields (pulse width tau=25 fs), elucidating outer ionization dynamics, nanoplasma screening effects (being significant for Icharges and masses. Nonuniform heterocluster Coulomb explosion (eta >1) manifests an overrun effect of the light ions relative to the heavy ions, exhibiting the expansion of two spatially separated subclusters, with the light ions forming the outer subcluster at the outer edge of the spatial distribution. Important features of the energetics of heterocluster Coulomb explosion originate from energetic triggering effects of the driving of the light ions by the heavy ions (C(4+) for I=10(17)-10(18) W cm(-2) and C(6+) for I=10(19) W cm(-2)), as well as for kinematic effects. Based on the CVI assumption, scaling laws for the cluster size (radius R(0)) dependence of the energetics of uniform Coulomb explosion of heteroclusters (eta=1) were derived, with the size dependence of the average (E(j,av)) and maximal (E(j,M)) ion energies being E(j,av)=aR(0) (2) and E(j,M)=(5a/3)R(0) (2), as well as for the ion energy distributions P(E(j)) proportional to E(j) (1/2); E(j)1) result in an isotope effect, predicting the enhancement (by 9%-11%) of E(H,av) for Coulomb explosion of (C(4+)H(4) (+))(eta) (eta=3) relative to E(D,av) for Coulomb explosion of (C(4+)D(4) (+))(eta) (eta=1.5), with the isotope effect being determined by the ratio of the kinematic parameters for the pair of Coulomb exploding clusters

  19. Suppression of Vapor Explosions in a Water-Molten-Tin System by Augmentation of the Void Fraction

    International Nuclear Information System (INIS)

    Meeks, Michael K.; Baker, Michael C.; Bonazza, Riccardo

    2000-01-01

    Experiments were performed to determine the likelihood of a vapor explosion when injecting an inert gas (nitrogen) and a coolant (water) into a pool of molten metal (tin) in a large-scale chamber (∼20 kg fuel). The injection flow rates of the water and nitrogen gas were the principal experimental variables, with average water flow rates up to 0.05 x 10 -3 m 3 /s and gas flow rates ranging from 0.33 x 10 -3 to 1.67 x 10 -3 m 3 /s. Of 35 successful experiments, 11 resulted in an explosive interaction, as determined by audible signals, videotape, and accelerometer data. The main objective of the investigation was to determine the existence of a boundary between explosive and nonexplosive regions in the water-gas flow rate plane: Such a boundary was indeed identified and approximated by a straight line. Two experiments in which explosive interactions were obtained in the low water/gas flow regions after a relatively long time of coolant injection (∼5 to 10 s) demonstrate the hitherto undervalued importance of the temporal variable

  20. A structured approach to forensic study of explosions: The TNO Inverse Explosion Analysis tool

    NARCIS (Netherlands)

    Voort, M.M. van der; Wees, R.M.M. van; Brouwer, S.D.; Jagt-Deutekom, M.J. van der; Verreault, J.

    2015-01-01

    Forensic analysis of explosions consists of determining the point of origin, the explosive substance involved, and the charge mass. Within the EU FP7 project Hyperion, TNO developed the Inverse Explosion Analysis (TNO-IEA) tool to estimate the charge mass and point of origin based on observed damage

  1. TRIGGER

    CERN Multimedia

    Wesley Smith

    Level-1 Trigger Hardware and Software The final parts of the Level-1 trigger hardware are now being put in place. For the ECAL endcaps, more than half of the Trigger Concentrator Cards for the ECAL Endcap (TCC-EE) are now available at CERN, such that one complete endcap can be covered. The Global Trigger now correctly handles ECAL calibration sequences, without being influenced by backpressure. The Regional Calorimeter Trigger (RCT) hardware is complete and working in USC55. Intra-crate tests of all 18 RCT crates and the Global Calorimeter Trigger (GCT) are regularly taking place. Pattern tests have successfully captured data from HCAL through RCT to the GCT Source Cards. HB/HE trigger data are being compared with emulator results to track down the very few remaining hardware problems. The treatment of hot and dead cells, including their recording in the database, has been defined. For the GCT, excellent agreement between the emulator and data has been achieved for jets and HF ET sums. There is still som...

  2. TRIGGER

    CERN Multimedia

    W. Smith

    Level-1 Trigger Hardware and Software The trigger system has been constantly in use in cosmic and commissioning data taking periods. During CRAFT running it delivered 300 million muon and calorimeter triggers to CMS. It has performed stably and reliably. During the abort gaps it has also provided laser and other calibration triggers. Timing issues, namely synchronization and latency issues, have been solved. About half of the Trigger Concentrator Cards for the ECAL Endcap (TCC-EE) are installed, and the firmware is being worked on. The production of the other half has started. The HCAL Trigger and Readout (HTR) card firmware has been updated, and new features such as fast parallel zero-suppression have been included. Repairs of drift tube (DT) trigger mini-crates, optical links and receivers of sector collectors are under way and have been completed on YB0. New firmware for the optical receivers of the theta links to the drift tube track finder is being installed. In parallel, tests with new eta track finde...

  3. TRIGGER

    CERN Multimedia

    R. Carlin with contributions from D. Acosta

    2012-01-01

    Level-1 Trigger Data-taking continues at cruising speed, with high availability of all components of the Level-1 trigger. We have operated the trigger up to a luminosity of 7.6E33, where we approached 100 kHz using the 7E33 prescale column.  Recently, the pause without triggers in case of an automatic "RESYNC" signal (the "settle" and "recover" time) was reduced in order to minimise the overall dead-time. This may become very important when the LHC comes back with higher energy and luminosity after LS1. We are also preparing for data-taking in the proton-lead run in early 2013. The CASTOR detector will make its comeback into CMS and triggering capabilities are being prepared for this. Steps to be taken include improved cooperation with the TOTEM trigger system and using the LHC clock during the injection and ramp phases of LHC. Studies are being finalised that will have a bearing on the Trigger Technical Design Report (TDR), which is to be rea...

  4. Hydrothermal processes above the Yellowstone magma chamber: Large hydrothermal systems and large hydrothermal explosions

    Science.gov (United States)

    Morgan, L.A.; Shanks, W.C. Pat; Pierce, K.L.

    2009-01-01

    Hydrothermal explosions are violent and dramatic events resulting in the rapid ejection of boiling water, steam, mud, and rock fragments from source craters that range from a few meters up to more than 2 km in diameter; associated breccia can be emplaced as much as 3 to 4 km from the largest craters. Hydrothermal explosions occur where shallow interconnected reservoirs of steam- and liquid-saturated fluids with temperatures at or near the boiling curve underlie thermal fields. Sudden reduction in confi ning pressure causes fluids to fl ash to steam, resulting in signifi cant expansion, rock fragmentation, and debris ejection. In Yellowstone, hydrothermal explosions are a potentially signifi cant hazard for visitors and facilities and can damage or even destroy thermal features. The breccia deposits and associated craters formed from hydrothermal explosions are mapped as mostly Holocene (the Mary Bay deposit is older) units throughout Yellowstone National Park (YNP) and are spatially related to within the 0.64-Ma Yellowstone caldera and along the active Norris-Mammoth tectonic corridor. In Yellowstone, at least 20 large (>100 m in diameter) hydrothermal explosion craters have been identifi ed; the scale of the individual associated events dwarfs similar features in geothermal areas elsewhere in the world. Large hydrothermal explosions in Yellowstone have occurred over the past 16 ka averaging ??1 every 700 yr; similar events are likely in the future. Our studies of large hydrothermal explosion events indicate: (1) none are directly associated with eruptive volcanic or shallow intrusive events; (2) several historical explosions have been triggered by seismic events; (3) lithic clasts and comingled matrix material that form hydrothermal explosion deposits are extensively altered, indicating that explosions occur in areas subjected to intense hydrothermal processes; (4) many lithic clasts contained in explosion breccia deposits preserve evidence of repeated fracturing

  5. Fast processor for dilepton triggers

    International Nuclear Information System (INIS)

    Katsanevas, S.; Kostarakis, P.; Baltrusaitis, R.

    1983-01-01

    We describe a fast trigger processor, developed for and used in Fermilab experiment E-537, for selecting high-mass dimuon events produced by negative pions and anti-protons. The processor finds candidate tracks by matching hit information received from drift chambers and scintillation counters, and determines their momenta. Invariant masses are calculated for all possible pairs of tracks and an event is accepted if any invariant mass is greater than some preselectable minimum mass. The whole process, accomplished within 5 to 10 microseconds, achieves up to a ten-fold reduction in trigger rate

  6. Track Finding for the Level-1 Trigger of the CMS Experiment

    CERN Document Server

    James, Thomas Owen

    2017-01-01

    A new tracking system is under development for the CMS experiment at the High Luminosity LHC (HL-LHC), located at CERN. It includes a silicon tracker that will correlate clusters in two closely spaced sensor layers, for the rejection of hits from low transverse momentum tracks. This will allow tracker data to be read out to the Level-1 trigger at 40\\,MHz. The Level-1 track-finder must be able to identify tracks with transverse momentum above 2--3\\,$\\mathrm{GeV}/c$ within latency constraints. A concept for an FPGA-based track finder using a fully time-multiplexed architecture is presented, where track candidates are identified using a Hough Transform, and then refined with a Kalman Filter. Both steps are fully implemented in FPGA firmware. A hardware system built from MP7 MicroTCA processing cards has been assembled, which demonstrates a realistic slice of the track finder in order to help gauge the performance and requirements for a final system.

  7. Shock waves & explosions

    CERN Document Server

    Sachdev, PL

    2004-01-01

    Understanding the causes and effects of explosions is important to experts in a broad range of disciplines, including the military, industrial and environmental research, aeronautic engineering, and applied mathematics. Offering an introductory review of historic research, Shock Waves and Explosions brings analytic and computational methods to a wide audience in a clear and thorough way. Beginning with an overview of the research on combustion and gas dynamics in the 1970s and 1980s, the author brings you up to date by covering modeling techniques and asymptotic and perturbative methods and ending with a chapter on computational methods.Most of the book deals with the mathematical analysis of explosions, but computational results are also included wherever they are available. Historical perspectives are provided on the advent of nonlinear science, as well as on the mathematical study of the blast wave phenomenon, both when visualized as a point explosion and when simulated as the expansion of a high-pressure ...

  8. Intermittent Explosive Disorder

    Directory of Open Access Journals (Sweden)

    Lut Tamam

    2011-09-01

    Full Text Available Intermittent explosive disorder is an impulse control disorder characterized by the occurrence of discrete episodes of failure to resist aggressive impulses that result in violent assault or destruction of property. Though the prevalence intermittent explosive disorder has been reported to be relatively rare in frontier studies on the field, it is now common opinion that intermittent explosive disorder is far more common than previously thought especially in clinical psychiatry settings. Etiological studies displayed the role of both psychosocial factors like childhood traumas and biological factors like dysfunctional neurotransmitter systems and genetics. In differential diagnosis of the disorder, disorders involving agression as a symptom such as alcohol and drug intoxication, antisocial and borderline personality disorders, personality changes due to general medical conditions and behavioral disorder should be considered. A combination of pharmacological and psychotherapeutic approaches are suggested in the treatment of the disorder. This article briefly reviews the historical background, diagnostic criteria, epidemiology, etiology and treatment of intermittent explosive disorder.

  9. Free radical explosive composition

    Science.gov (United States)

    Walker, Franklin E.; Wasley, Richard J.

    1979-01-01

    An improved explosive composition is disclosed and comprises a major portion of an explosive having a detonation velocity between about 1500 and 10,000 meters per second and a minor amount of a getter additive comprising a compound or mixture of compounds capable of capturing or deactivating free radicals or ions under mechanical or electrical shock conditions and which is not an explosive. Exemplary getter additives are isocyanates, olefins and iodine.

  10. Performance of the ATLAS Trigger System in 2010

    CERN Document Server

    Aad, Georges; Abdallah, Jalal; Abdelalim, Ahmed Ali; Abdesselam, Abdelouahab; Abdinov, Ovsat; Abi, Babak; Abolins, Maris; Abramowicz, Halina; Abreu, Henso; Acerbi, Emilio; Acharya, Bobby Samir; Adams, David; Addy, Tetteh; Adelman, Jahred; Aderholz, Michael; Adomeit, Stefanie; Adragna, Paolo; Adye, Tim; Aefsky, Scott; Aguilar-Saavedra, Juan Antonio; Aharrouche, Mohamed; Ahlen, Steven; Ahles, Florian; Ahmad, Ashfaq; Ahsan, Mahsana; Aielli, Giulio; Akdogan, Taylan; Åkesson, Torsten Paul Ake; Akimoto, Ginga; Akimov, Andrei; Akiyama, Kunihiro; Alam, Mohammad; Alam, Muhammad Aftab; Albrand, Solveig; Aleksa, Martin; Aleksandrov, Igor; Alessandria, Franco; Alexa, Calin; Alexander, Gideon; Alexandre, Gauthier; Alexopoulos, Theodoros; Alhroob, Muhammad; Aliev, Malik; Alimonti, Gianluca; Alison, John; Aliyev, Magsud; Allport, Phillip; Allwood-Spiers, Sarah; Almond, John; Aloisio, Alberto; Alon, Raz; Alonso, Alejandro; Alviggi, Mariagrazia; Amako, Katsuya; Amaral, Pedro; Amelung, Christoph; Ammosov, Vladimir; Amorim, Antonio; Amorós, Gabriel; Amram, Nir; Anastopoulos, Christos; Andari, Nansi; Andeen, Timothy; Anders, Christoph Falk; Anderson, Kelby; Andreazza, Attilio; Andrei, George Victor; Andrieux, Marie-Laure; Anduaga, Xabier; Angerami, Aaron; Anghinolfi, Francis; Anjos, Nuno; Annovi, Alberto; Antonaki, Ariadni; Antonelli, Mario; Antonelli, Stefano; Antonov, Alexey; Antos, Jaroslav; Anulli, Fabio; Aoun, Sahar; Aperio Bella, Ludovica; Apolle, Rudi; Arabidze, Giorgi; Aracena, Ignacio; Arai, Yasuo; Arce, Ayana; Archambault, John-Paul; Arfaoui, Samir; Arguin, Jean-Francois; Arik, Engin; Arik, Metin; Armbruster, Aaron James; Arnaez, Olivier; Arnault, Christian; Artamonov, Andrei; Artoni, Giacomo; Arutinov, David; Asai, Shoji; Asfandiyarov, Ruslan; Ask, Stefan; Åsman, Barbro; Asquith, Lily; Assamagan, Ketevi; Astbury, Alan; Astvatsatourov, Anatoli; Atoian, Grigor; Aubert, Bernard; Auerbach, Benjamin; Auge, Etienne; Augsten, Kamil; Aurousseau, Mathieu; Austin, Nicholas; Avolio, Giuseppe; Avramidou, Rachel Maria; Axen, David; Ay, Cano; Azuelos, Georges; Azuma, Yuya; Baak, Max; Baccaglioni, Giuseppe; Bacci, Cesare; Bach, Andre; Bachacou, Henri; Bachas, Konstantinos; Bachy, Gerard; Backes, Moritz; Backhaus, Malte; Badescu, Elisabeta; Bagnaia, Paolo; Bahinipati, Seema; Bai, Yu; Bailey, David; Bain, Travis; Baines, John; Baker, Oliver Keith; Baker, Mark; Baker, Sarah; Baltasar Dos Santos Pedrosa, Fernando; Banas, Elzbieta; Banerjee, Piyali; Banerjee, Swagato; Banfi, Danilo; Bangert, Andrea Michelle; Bansal, Vikas; Bansil, Hardeep Singh; Barak, Liron; Baranov, Sergei; Barashkou, Andrei; Barbaro Galtieri, Angela; Barber, Tom; Barberio, Elisabetta Luigia; Barberis, Dario; Barbero, Marlon; Bardin, Dmitri; Barillari, Teresa; Barisonzi, Marcello; Barklow, Timothy; Barlow, Nick; Barnett, Bruce; Barnett, Michael; Baroncelli, Antonio; Barone, Gaetano; Barr, Alan; Barreiro, Fernando; Barreiro Guimarães da Costa, João; Barrillon, Pierre; Bartoldus, Rainer; Barton, Adam Edward; Bartsch, Detlef; Bartsch, Valeria; Bates, Richard; Batkova, Lucia; Batley, Richard; Battaglia, Andreas; Battistin, Michele; Battistoni, Giuseppe; Bauer, Florian; Bawa, Harinder Singh; Beare, Brian; Beau, Tristan; Beauchemin, Pierre-Hugues; Beccherle, Roberto; Bechtle, Philip; Beck, Hans Peter; Beckingham, Matthew; Becks, Karl-Heinz; Beddall, Andrew; Beddall, Ayda; Bedikian, Sourpouhi; Bednyakov, Vadim; Bee, Christopher; Begel, Michael; Behar Harpaz, Silvia; Behera, Prafulla; Beimforde, Michael; Belanger-Champagne, Camille; Bell, Paul; Bell, William; Bella, Gideon; Bellagamba, Lorenzo; Bellina, Francesco; Bellomo, Massimiliano; Belloni, Alberto; Beloborodova, Olga; Belotskiy, Konstantin; Beltramello, Olga; Ben Ami, Sagi; Benary, Odette; Benchekroun, Driss; Benchouk, Chafik; Bendel, Markus; Benedict, Brian Hugues; Benekos, Nektarios; Benhammou, Yan; Benjamin, Douglas; Benoit, Mathieu; Bensinger, James; Benslama, Kamal; Bentvelsen, Stan; Berge, David; Bergeaas Kuutmann, Elin; Berger, Nicolas; Berghaus, Frank; Berglund, Elina; Beringer, Jürg; Bernardet, Karim; Bernat, Pauline; Bernhard, Ralf; Bernius, Catrin; Berry, Tracey; Bertin, Antonio; Bertinelli, Francesco; Bertolucci, Federico; Besana, Maria Ilaria; Besson, Nathalie; Bethke, Siegfried; Bhimji, Wahid; Bianchi, Riccardo-Maria; Bianco, Michele; Biebel, Otmar; Bieniek, Stephen Paul; Biesiada, Jed; Biglietti, Michela; Bilokon, Halina; Bindi, Marcello; Binet, Sebastien; Bingul, Ahmet; Bini, Cesare; Biscarat, Catherine; Bitenc, Urban; Black, Kevin; Blair, Robert; Blanchard, Jean-Baptiste; Blanchot, Georges; Blazek, Tomas; Blocker, Craig; Blocki, Jacek; Blondel, Alain; Blum, Walter; Blumenschein, Ulrike; Bobbink, Gerjan; Bobrovnikov, Victor; Bocchetta, Simona Serena; Bocci, Andrea; Boddy, Christopher Richard; Boehler, Michael; Boek, Jennifer; Boelaert, Nele; Böser, Sebastian; Bogaerts, Joannes Andreas; Bogdanchikov, Alexander; Bogouch, Andrei; Bohm, Christian; Boisvert, Veronique; Bold, Tomasz; Boldea, Venera; Bolnet, Nayanka Myriam; Bona, Marcella; Bondarenko, Valery; Boonekamp, Maarten; Boorman, Gary; Booth, Chris; Bordoni, Stefania; Borer, Claudia; Borisov, Anatoly; Borissov, Guennadi; Borjanovic, Iris; Borroni, Sara; Bos, Kors; Boscherini, Davide; Bosman, Martine; Boterenbrood, Hendrik; Botterill, David; Bouchami, Jihene; Boudreau, Joseph; Bouhova-Thacker, Evelina Vassileva; Boulahouache, Chaouki; Bourdarios, Claire; Bousson, Nicolas; Boveia, Antonio; Boyd, James; Boyko, Igor; Bozhko, Nikolay; Bozovic-Jelisavcic, Ivanka; Bracinik, Juraj; Braem, André; Branchini, Paolo; Brandenburg, George; Brandt, Andrew; Brandt, Gerhard; Brandt, Oleg; Bratzler, Uwe; Brau, Benjamin; Brau, James; Braun, Helmut; Brelier, Bertrand; Bremer, Johan; Brenner, Richard; Bressler, Shikma; Breton, Dominique; Britton, Dave; Brochu, Frederic; Brock, Ian; Brock, Raymond; Brodbeck, Timothy; Brodet, Eyal; Broggi, Francesco; Bromberg, Carl; Brooijmans, Gustaaf; Brooks, William; Brown, Gareth; Brown, Heather; Brubaker, Erik; Bruckman de Renstrom, Pawel; Bruncko, Dusan; Bruneliere, Renaud; Brunet, Sylvie; Bruni, Alessia; Bruni, Graziano; Bruschi, Marco; Buanes, Trygve; Bucci, Francesca; Buchanan, James; Buchanan, Norman; Buchholz, Peter; Buckingham, Ryan; Buckley, Andrew; Buda, Stelian Ioan; Budagov, Ioulian; Budick, Burton; Büscher, Volker; Bugge, Lars; Buira-Clark, Daniel; Bulekov, Oleg; Bunse, Moritz; Buran, Torleiv; Burckhart, Helfried; Burdin, Sergey; Burgess, Thomas; Burke, Stephen; Busato, Emmanuel; Bussey, Peter; Buszello, Claus-Peter; Butin, François; Butler, Bart; Butler, John; Buttar, Craig; Butterworth, Jonathan; Buttinger, William; Byatt, Tom; Cabrera Urbán, Susana; Caforio, Davide; Cakir, Orhan; Calafiura, Paolo; Calderini, Giovanni; Calfayan, Philippe; Calkins, Robert; Caloba, Luiz; Caloi, Rita; Calvet, David; Calvet, Samuel; Camacho Toro, Reina; Camard, Arnaud; Camarri, Paolo; Cambiaghi, Mario; Cameron, David; Cammin, Jochen; Campana, Simone; Campanelli, Mario; Canale, Vincenzo; Canelli, Florencia; Canepa, Anadi; Cantero, Josu; Capasso, Luciano; Capeans Garrido, Maria Del Mar; Caprini, Irinel; Caprini, Mihai; Capriotti, Daniele; Capua, Marcella; Caputo, Regina; Caramarcu, Costin; Cardarelli, Roberto; Carli, Tancredi; Carlino, Gianpaolo; Carminati, Leonardo; Caron, Bryan; Caron, Sascha; Carrillo Montoya, German D; Carter, Antony; Carter, Janet; Carvalho, João; Casadei, Diego; Casado, Maria Pilar; Cascella, Michele; Caso, Carlo; Castaneda Hernandez, Alfredo Martin; Castaneda-Miranda, Elizabeth; Castillo Gimenez, Victoria; Castro, Nuno Filipe; Cataldi, Gabriella; Cataneo, Fernando; Catinaccio, Andrea; Catmore, James; Cattai, Ariella; Cattani, Giordano; Caughron, Seth; Cauz, Diego; Cavalleri, Pietro; Cavalli, Donatella; Cavalli-Sforza, Matteo; Cavasinni, Vincenzo; Cazzato, Antonio; Ceradini, Filippo; Santiago Cerqueira, Augusto; Cerri, Alessandro; Cerrito, Lucio; Cerutti, Fabio; Cetin, Serkant Ali; Cevenini, Francesco; Chafaq, Aziz; Chakraborty, Dhiman; Chan, Kevin; Chapleau, Bertrand; Chapman, John Derek; Chapman, John Wehrley; Chareyre, Eve; Charlton, Dave; Chavda, Vikash; Cheatham, Susan; Chekanov, Sergei; Chekulaev, Sergey; Chelkov, Gueorgui; Chelstowska, Magda Anna; Chen, Chunhui; Chen, Hucheng; Chen, Li; Chen, Shenjian; Chen, Tingyang; Chen, Xin; Cheng, Shaochen; Cheplakov, Alexander; Chepurnov, Vladimir; Cherkaoui El Moursli, Rajaa; Chernyatin, Valeriy; Cheu, Elliott; Cheung, Sing-Leung; Chevalier, Laurent; Chiefari, Giovanni; Chikovani, Leila; Childers, John Taylor; Chilingarov, Alexandre; Chiodini, Gabriele; Chislett, Rebecca Thalatta; Chizhov, Mihail; Choudalakis, Georgios; Chouridou, Sofia; Christidi, Illectra-Athanasia; Christov, Asen; Chromek-Burckhart, Doris; Chu, Ming-Lee; Chudoba, Jiri; Ciapetti, Guido; Ciba, Krzysztof; Ciftci, Abbas Kenan; Ciftci, Rena; Cinca, Diane; Cindro, Vladimir; Ciobotaru, Matei Dan; Ciocca, Claudia; Ciocio, Alessandra; Cirilli, Manuela; Ciubancan, Mihai; Clark, Allan G; Clark, Philip; Cleland, Bill; Clemens, Jean-Claude; Clement, Benoit; Clement, Christophe; Clifft, Roger; Coadou, Yann; Cobal, Marina; Coccaro, Andrea; Cochran, James H; Coe, Paul; Cogan, Joshua Godfrey; Coggeshall, James; Cogneras, Eric; Cojocaru, Claudiu; Colas, Jacques; Colijn, Auke-Pieter; Collard, Caroline; Collins, Neil; Collins-Tooth, Christopher; Collot, Johann; Colon, German; Conde Muiño, Patricia; Coniavitis, Elias; Conidi, Maria Chiara; Consonni, Michele; Consorti, Valerio; Constantinescu, Serban; Conta, Claudio; Conventi, Francesco; Cook, James; Cooke, Mark; Cooper, Ben; Cooper-Sarkar, Amanda; Cooper-Smith, Neil; Copic, Katherine; Cornelissen, Thijs; Corradi, Massimo; Corriveau, Francois; Cortes-Gonzalez, Arely; Cortiana, Giorgio; Costa, Giuseppe; Costa, María José; Costanzo, Davide; Costin, Tudor; Côté, David; Coura Torres, Rodrigo; Courneyea, Lorraine; Cowan, Glen; Cowden, Christopher; Cox, Brian; Cranmer, Kyle; Crescioli, Francesco; Cristinziani, Markus; Crosetti, Giovanni; Crupi, Roberto; Crépé-Renaudin, Sabine; Cuciuc, Constantin-Mihai; Cuenca Almenar, Cristóbal; Cuhadar Donszelmann, Tulay; Cuneo, Stefano; Curatolo, Maria; Curtis, Chris; Cwetanski, Peter; Czirr, Hendrik; Czyczula, Zofia; D'Auria, Saverio; D'Onofrio, Monica; D'Orazio, Alessia; Da Rocha Gesualdi Mello, Aline; Da Silva, Paulo Vitor; Da Via, Cinzia; Dabrowski, Wladyslaw; Dahlhoff, Andrea; Dai, Tiesheng; Dallapiccola, Carlo; Dam, Mogens; Dameri, Mauro; Damiani, Daniel; Danielsson, Hans Olof; Dannheim, Dominik; Dao, Valerio; Darbo, Giovanni; Darlea, Georgiana Lavinia; Daum, Cornelis; Dauvergne, Jean-Pierre; Davey, Will; Davidek, Tomas; Davidson, Nadia; Davidson, Ruth; Davies, Eleanor; Davies, Merlin; Davison, Adam; Davygora, Yuriy; Dawe, Edmund; Dawson, Ian; Dawson, John; Daya, Rozmin; De, Kaushik; de Asmundis, Riccardo; De Castro, Stefano; De Castro Faria Salgado, Pedro; De Cecco, Sandro; de Graat, Julien; De Groot, Nicolo; de Jong, Paul; De La Taille, Christophe; De la Torre, Hector; De Lotto, Barbara; De Mora, Lee; De Nooij, Lucie; De Oliveira Branco, Miguel; De Pedis, Daniele; de Saintignon, Paul; De Salvo, Alessandro; De Sanctis, Umberto; De Santo, Antonella; De Vivie De Regie, Jean-Baptiste; Dean, Simon; Dedovich, Dmitri; Degenhardt, James; Dehchar, Mohamed; Deile, Mario; Del Papa, Carlo; Del Peso, Jose; Del Prete, Tarcisio; Dell'Acqua, Andrea; Dell'Asta, Lidia; Della Pietra, Massimo; della Volpe, Domenico; Delmastro, Marco; Delpierre, Pierre; Delruelle, Nicolas; Delsart, Pierre-Antoine; Deluca, Carolina; Demers, Sarah; Demichev, Mikhail; Demirkoz, Bilge; Deng, Jianrong; Denisov, Sergey; Derendarz, Dominik; Derkaoui, Jamal Eddine; Derue, Frederic; Dervan, Paul; Desch, Klaus Kurt; Devetak, Erik; Deviveiros, Pier-Olivier; Dewhurst, Alastair; DeWilde, Burton; Dhaliwal, Saminder; Dhullipudi, Ramasudhakar; Di Ciaccio, Anna; Di Ciaccio, Lucia; Di Girolamo, Alessandro; Di Girolamo, Beniamino; Di Luise, Silvestro; Di Mattia, Alessandro; Di Micco, Biagio; Di Nardo, Roberto; Di Simone, Andrea; Di Sipio, Riccardo; Diaz, Marco Aurelio; Diblen, Faruk; Diehl, Edward; Dieli, Michele Vincenzo; Dietl, Hans; Dietrich, Janet; Dietzsch, Thorsten; Diglio, Sara; Dindar Yagci, Kamile; Dingfelder, Jochen; Dionisi, Carlo; Dita, Petre; Dita, Sanda; Dittus, Fridolin; Djama, Fares; Djilkibaev, Rashid; Djobava, Tamar; Barros do Vale, Maria Aline; Do Valle Wemans, André; Doan, Thi Kieu Oanh; Dobbs, Matt; Dobinson, Robert; Dobos, Daniel; Dobson, Ellie; Dobson, Marc; Dodd, Jeremy; Dogan, Ozgen Berkol; Doglioni, Caterina; Doherty, Tom; Doi, Yoshikuni; Dolejsi, Jiri; Dolenc, Irena; Dolezal, Zdenek; Dolgoshein, Boris; Dohmae, Takeshi; Donadelli, Marisilvia; Donega, Mauro; Donini, Julien; Dopke, Jens; Doria, Alessandra; Dos Anjos, Andre; Dosil, Mireia; Dotti, Andrea; Dova, Maria-Teresa; Dowell, John; Doxiadis, Alexander; Doyle, Tony; Drasal, Zbynek; Drees, Jürgen; Dressnandt, Nandor; Drevermann, Hans; Driouichi, Chafik; Dris, Manolis; Dubbert, Jörg; Dubbs, Tim; Dube, Sourabh; Duchovni, Ehud; Duckeck, Guenter; Dudarev, Alexey; Dudziak, Fanny; Dührssen, Michael; Duerdoth, Ian; Duflot, Laurent; Dufour, Marc-Andre; Dunford, Monica; Duran Yildiz, Hatice; Duxfield, Robert; Dwuznik, Michal; Dydak, Friedrich; Dzahini, Daniel; Düren, Michael; Ebenstein, William; Ebke, Johannes; Eckert, Simon; Eckweiler, Sebastian; Edmonds, Keith; Edwards, Clive; Edwards, Nicholas Charles; Ehrenfeld, Wolfgang; Ehrich, Thies; Eifert, Till; Eigen, Gerald; Einsweiler, Kevin; Eisenhandler, Eric; Ekelof, Tord; El Kacimi, Mohamed; Ellert, Mattias; Elles, Sabine; Ellinghaus, Frank; Ellis, Katherine; Ellis, Nicolas; Elmsheuser, Johannes; Elsing, Markus; Ely, Robert; Emeliyanov, Dmitry; Engelmann, Roderich; Engl, Albert; Epp, Brigitte; Eppig, Andrew; Erdmann, Johannes; Ereditato, Antonio; Eriksson, Daniel; Ernst, Jesse; Ernst, Michael; Ernwein, Jean; Errede, Deborah; Errede, Steven; Ertel, Eugen; Escalier, Marc; Escobar, Carlos; Espinal Curull, Xavier; Esposito, Bellisario; Etienne, Francois; Etienvre, Anne-Isabelle; Etzion, Erez; Evangelakou, Despoina; Evans, Hal; Fabbri, Laura; Fabre, Caroline; Fakhrutdinov, Rinat; Falciano, Speranza; Falou, Alain; Fang, Yaquan; Fanti, Marcello; Farbin, Amir; Farilla, Addolorata; Farley, Jason; Farooque, Trisha; Farrington, Sinead; Farthouat, Philippe; Fassnacht, Patrick; Fassouliotis, Dimitrios; Fatholahzadeh, Baharak; Favareto, Andrea; Fayard, Louis; Fazio, Salvatore; Febbraro, Renato; Federic, Pavol; Fedin, Oleg; Fedorko, Ivan; Fedorko, Woiciech; Fehling-Kaschek, Mirjam; Feligioni, Lorenzo; Fellmann, Denis; Felzmann, Ulrich; Feng, Cunfeng; Feng, Eric; Fenyuk, Alexander; Ferencei, Jozef; Ferland, Jonathan; Fernando, Waruna; Ferrag, Samir; Ferrando, James; Ferrara, Valentina; Ferrari, Arnaud; Ferrari, Pamela; Ferrari, Roberto; Ferrer, Antonio; Ferrer, Maria Lorenza; Ferrere, Didier; Ferretti, Claudio; Ferretto Parodi, Andrea; Fiascaris, Maria; Fiedler, Frank; Filipčič, Andrej; Filippas, Anastasios; Filthaut, Frank; Fincke-Keeler, Margret; Fiolhais, Miguel; Fiorini, Luca; Firan, Ana; Fischer, Gordon; Fischer, Peter; Fisher, Matthew; Fisher, Steve; Flechl, Martin; Fleck, Ivor; Fleckner, Johanna; Fleischmann, Philipp; Fleischmann, Sebastian; Flick, Tobias; Flores Castillo, Luis; Flowerdew, Michael; Föhlisch, Florian; Fokitis, Manolis; Fonseca Martin, Teresa; Forbush, David Alan; Formica, Andrea; Forti, Alessandra; Fortin, Dominique; Foster, Joe; Fournier, Daniel; Foussat, Arnaud; Fowler, Andrew; Fowler, Ken; Fox, Harald; Francavilla, Paolo; Franchino, Silvia; Francis, David; Frank, Tal; Franklin, Melissa; Franz, Sebastien; Fraternali, Marco; Fratina, Sasa; French, Sky; Froeschl, Robert; Froidevaux, Daniel; Frost, James; Fukunaga, Chikara; Fullana Torregrosa, Esteban; Fuster, Juan; Gabaldon, Carolina; Gabizon, Ofir; Gadfort, Thomas; Gadomski, Szymon; Gagliardi, Guido; Gagnon, Pauline; Galea, Cristina; Gallas, Elizabeth; Gallas, Manuel; Gallo, Valentina Santina; Gallop, Bruce; Gallus, Petr; Galyaev, Eugene; Gan, KK; Gao, Yongsheng; Gapienko, Vladimir; Gaponenko, Andrei; Garberson, Ford; Garcia-Sciveres, Maurice; García, Carmen; García Navarro, José Enrique; Gardner, Robert; Garelli, Nicoletta; Garitaonandia, Hegoi; Garonne, Vincent; Garvey, John; Gatti, Claudio; Gaudio, Gabriella; Gaumer, Olivier; Gaur, Bakul; Gauthier, Lea; Gavrilenko, Igor; Gay, Colin; Gaycken, Goetz; Gayde, Jean-Christophe; Gazis, Evangelos; Ge, Peng; Gee, Norman; Geerts, Daniël Alphonsus Adrianus; Geich-Gimbel, Christoph; Gellerstedt, Karl; Gemme, Claudia; Gemmell, Alistair; Genest, Marie-Hélène; Gentile, Simonetta; George, Matthias; George, Simon; Gerlach, Peter; Gershon, Avi; Geweniger, Christoph; Ghazlane, Hamid; Ghez, Philippe; Ghodbane, Nabil; Giacobbe, Benedetto; Giagu, Stefano; Giakoumopoulou, Victoria; Giangiobbe, Vincent; Gianotti, Fabiola; Gibbard, Bruce; Gibson, Adam; Gibson, Stephen; Gilbert, Laura; Gilchriese, Murdock; Gilewsky, Valentin; Gillberg, Dag; Gillman, Tony; Gingrich, Douglas; Ginzburg, Jonatan; Giokaris, Nikos; Giordano, Raffaele; Giorgi, Francesco Michelangelo; Giovannini, Paola; Giraud, Pierre-Francois; Giugni, Danilo; Giunta, Michele; Giusti, Paolo; Gjelsten, Børge Kile; Gladilin, Leonid; Glasman, Claudia; Glatzer, Julian; Glazov, Alexandre; Glitza, Karl-Walter; Glonti, George; Godfrey, Jennifer; Godlewski, Jan; Goebel, Martin; Göpfert, Thomas; Goeringer, Christian; Gössling, Claus; Göttfert, Tobias; Goldfarb, Steven; Goldin, Daniel; Golling, Tobias; Golovnia, Serguei; Gomes, Agostinho; Gomez Fajardo, Luz Stella; Gonçalo, Ricardo; Goncalves Pinto Firmino Da Costa, Joao; Gonella, Laura; Gonidec, Allain; Gonzalez, Saul; González de la Hoz, Santiago; Gonzalez Silva, Laura; Gonzalez-Sevilla, Sergio; Goodson, Jeremiah Jet; Goossens, Luc; Gorbounov, Petr Andreevich; Gordon, Howard; Gorelov, Igor; Gorfine, Grant; Gorini, Benedetto; Gorini, Edoardo; Gorišek, Andrej; Gornicki, Edward; Gorokhov, Serguei; Goryachev, Vladimir; Gosdzik, Bjoern; Gosselink, Martijn; Gostkin, Mikhail Ivanovitch; Gouanère, Michel; Gough Eschrich, Ivo; Gouighri, Mohamed; Goujdami, Driss; Goulette, Marc Phillippe; Goussiou, Anna; Goy, Corinne; Grabowska-Bold, Iwona; Grabski, Varlen; Grafström, Per; Grah, Christian; Grahn, Karl-Johan; Grancagnolo, Francesco; Grancagnolo, Sergio; Grassi, Valerio; Gratchev, Vadim; Grau, Nathan; Gray, Heather; Gray, Julia Ann; Graziani, Enrico; Grebenyuk, Oleg; Greenfield, Debbie; Greenshaw, Timothy; Greenwood, Zeno Dixon; Gregor, Ingrid-Maria; Grenier, Philippe; Griesmayer, Erich; Griffiths, Justin; Grigalashvili, Nugzar; Grillo, Alexander; Grinstein, Sebastian; Grishkevich, Yaroslav; Grivaz, Jean-Francois; Grognuz, Joel; Groh, Manfred; Gross, Eilam; Grosse-Knetter, Joern; Groth-Jensen, Jacob; Grybel, Kai; Guarino, Victor; Guest, Daniel; Guicheney, Christophe; Guida, Angelo; Guillemin, Thibault; Guindon, Stefan; Guler, Hulya; Gunther, Jaroslav; Guo, Bin; Guo, Jun; Gupta, Ambreesh; Gusakov, Yury; Gushchin, Vladimir; Gutierrez, Andrea; Gutierrez, Phillip; Guttman, Nir; Gutzwiller, Olivier; Guyot, Claude; Gwenlan, Claire; Gwilliam, Carl; Haas, Andy; Haas, Stefan; Haber, Carl; Hackenburg, Robert; Hadavand, Haleh Khani; Hadley, David; Haefner, Petra; Hahn, Ferdinand; Haider, Stefan; Hajduk, Zbigniew; Hakobyan, Hrachya; Haller, Johannes; Hamacher, Klaus; Hamal, Petr; Hamilton, Andrew; Hamilton, Samuel; Han, Hongguang; Han, Liang; Hanagaki, Kazunori; Hance, Michael; Handel, Carsten; Hanke, Paul; Hansen, John Renner; Hansen, Jørgen Beck; Hansen, Jorn Dines; Hansen, Peter Henrik; Hansson, Per; Hara, Kazuhiko; Hare, Gabriel; Harenberg, Torsten; Harkusha, Siarhei; Harper, Devin; Harrington, Robert; Harris, Orin; Harrison, Karl; Hartert, Jochen; Hartjes, Fred; Haruyama, Tomiyoshi; Harvey, Alex; Hasegawa, Satoshi; Hasegawa, Yoji; Hassani, Samira; Hatch, Mark; Hauff, Dieter; Haug, Sigve; Hauschild, Michael; Hauser, Reiner; Havranek, Miroslav; Hawes, Brian; Hawkes, Christopher; Hawkings, Richard John; Hawkins, Donovan; Hayakawa, Takashi; Hayden, Daniel; Hayward, Helen; Haywood, Stephen; Hazen, Eric; He, Mao; Head, Simon; Hedberg, Vincent; Heelan, Louise; Heim, Sarah; Heine, Kristin; Heinemann, Beate; Heisterkamp, Simon; Helary, Louis; Heldmann, Michael; Heller, Mathieu; Hellman, Sten; Helsens, Clement; Henderson, Robert; Henke, Michael; Henrichs, Anna; Henriques Correia, Ana Maria; Henrot-Versille, Sophie; Henry-Couannier, Frédéric; Hensel, Carsten; Henß, Tobias; Medina Hernandez, Carlos; Hernández Jiménez, Yesenia; Herrberg, Ruth; Hershenhorn, Alon David; Herten, Gregor; Hertenberger, Ralf; Hervas, Luis; Hessey, Nigel; Hidvegi, Attila; Higón-Rodriguez, Emilio; Hill, Daniel; Hill, John; Hill, Norman; Hiller, Karl Heinz; Hillert, Sonja; Hillier, Stephen; Hinchliffe, Ian; Hines, Elizabeth; Hirose, Minoru; Hirsch, Florian; Hirschbuehl, Dominic; Hobbs, John; Hod, Noam; Hodgkinson, Mark; Hodgson, Paul; Hoecker, Andreas; Hoeferkamp, Martin; Hoffman, Julia; Hoffmann, Dirk; Hohlfeld, Marc; Holder, Martin; Holmes, Alan; Holmgren, Sven-Olof; Holy, Tomas; Holzbauer, Jenny; Homma, Yasuhiro; Hong, Tae Min; Hooft van Huysduynen, Loek; Horazdovsky, Tomas; Horn, Claus; Horner, Stephan; Horton, Katherine; Hostachy, Jean-Yves; Hou, Suen; Houlden, Michael; Hoummada, Abdeslam; Howarth, James; Howell, David; Hristova, Ivana; Hrivnac, Julius; Hruska, Ivan; Hryn'ova, Tetiana; Hsu, Pai-hsien Jennifer; Hsu, Shih-Chieh; Huang, Guang Shun; Hubacek, Zdenek; Hubaut, Fabrice; Huegging, Fabian; Huffman, Todd Brian; Hughes, Emlyn; Hughes, Gareth; Hughes-Jones, Richard; Huhtinen, Mika; Hurst, Peter; Hurwitz, Martina; Husemann, Ulrich; Huseynov, Nazim; Huston, Joey; Huth, John; Iacobucci, Giuseppe; Iakovidis, Georgios; Ibbotson, Michael; Ibragimov, Iskander; Ichimiya, Ryo; Iconomidou-Fayard, Lydia; Idarraga, John; Idzik, Marek; Iengo, Paolo; Igonkina, Olga; Ikegami, Yoichi; Ikeno, Masahiro; Ilchenko, Yuri; Iliadis, Dimitrios; Imbault, Didier; Imhaeuser, Martin; Imori, Masatoshi; Ince, Tayfun; Inigo-Golfin, Joaquin; Ioannou, Pavlos; Iodice, Mauro; Ionescu, Gelu; Irles Quiles, Adrian; Ishii, Koji; Ishikawa, Akimasa; Ishino, Masaya; Ishmukhametov, Renat; Issever, Cigdem; Istin, Serhat; Itoh, Yuki; Ivashin, Anton; Iwanski, Wieslaw; Iwasaki, Hiroyuki; Izen, Joseph; Izzo, Vincenzo; Jackson, Brett; Jackson, John; Jackson, Paul; Jaekel, Martin; Jain, Vivek; Jakobs, Karl; Jakobsen, Sune; Jakubek, Jan; Jana, Dilip; Jankowski, Ernest; Jansen, Eric; Jantsch, Andreas; Janus, Michel; Jarlskog, Göran; Jeanty, Laura; Jelen, Kazimierz; Jen-La Plante, Imai; Jenni, Peter; Jeremie, Andrea; Jež, Pavel; Jézéquel, Stéphane; Jha, Manoj Kumar; Ji, Haoshuang; Ji, Weina; Jia, Jiangyong; Jiang, Yi; Jimenez Belenguer, Marcos; Jin, Ge; Jin, Shan; Jinnouchi, Osamu; Joergensen, Morten Dam; Joffe, David; Johansen, Lars; Johansen, Marianne; Johansson, Erik; Johansson, Per; Johnert, Sebastian; Johns, Kenneth; Jon-And, Kerstin; Jones, Graham; Jones, Roger; Jones, Tegid; Jones, Tim; Jonsson, Ove; Joram, Christian; Jorge, Pedro; Joseph, John; Ju, Xiangyang; Juranek, Vojtech; Jussel, Patrick; Kabachenko, Vasily; Kabana, Sonja; Kaci, Mohammed; Kaczmarska, Anna; Kadlecik, Peter; Kado, Marumi; Kagan, Harris; Kagan, Michael; Kaiser, Steffen; Kajomovitz, Enrique; Kalinin, Sergey; Kalinovskaya, Lidia; Kama, Sami; Kanaya, Naoko; Kaneda, Michiru; Kanno, Takayuki; Kantserov, Vadim; Kanzaki, Junichi; Kaplan, Benjamin; Kapliy, Anton; Kaplon, Jan; Kar, Deepak; Karagoz, Muge; Karnevskiy, Mikhail; Karr, Kristo; Kartvelishvili, Vakhtang; Karyukhin, Andrey; Kashif, Lashkar; Kasmi, Azzedine; Kass, Richard; Kastanas, Alex; Kataoka, Mayuko; Kataoka, Yousuke; Katsoufis, Elias; Katzy, Judith; Kaushik, Venkatesh; Kawagoe, Kiyotomo; Kawamoto, Tatsuo; Kawamura, Gen; Kayl, Manuel; Kazanin, Vassili; Kazarinov, Makhail; Keates, James Robert; Keeler, Richard; Kehoe, Robert; Keil, Markus; Kekelidze, George; Kelly, Marc; Kennedy, John; Kenney, Christopher John; Kenyon, Mike; Kepka, Oldrich; Kerschen, Nicolas; Kerševan, Borut Paul; Kersten, Susanne; Kessoku, Kohei; Ketterer, Christian; Keung, Justin; Khakzad, Mohsen; Khalil-zada, Farkhad; Khandanyan, Hovhannes; Khanov, Alexander; Kharchenko, Dmitri; Khodinov, Alexander; Kholodenko, Anatoli; Khomich, Andrei; Khoo, Teng Jian; Khoriauli, Gia; Khoroshilov, Andrey; Khovanskiy, Nikolai; Khovanskiy, Valery; Khramov, Evgeniy; Khubua, Jemal; Kim, Hyeon Jin; Kim, Min Suk; Kim, Peter; Kim, Shinhong; Kimura, Naoki; Kind, Oliver; King, Barry; King, Matthew; King, Robert Steven Beaufoy; Kirk, Julie; Kirsch, Guillaume; Kirsch, Lawrence; Kiryunin, Andrey; Kisielewska, Danuta; Kittelmann, Thomas; Kiver, Andrey; Kiyamura, Hironori; Kladiva, Eduard; Klaiber-Lodewigs, Jonas; Klein, Max; Klein, Uta; Kleinknecht, Konrad; Klemetti, Miika; Klier, Amit; Klimentov, Alexei; Klingenberg, Reiner; Klinkby, Esben; Klioutchnikova, Tatiana; Klok, Peter; Klous, Sander; Kluge, Eike-Erik; Kluge, Thomas; Kluit, Peter; Kluth, Stefan; Kneringer, Emmerich; Knobloch, Juergen; Knoops, Edith; Knue, Andrea; Ko, Byeong Rok; Kobayashi, Tomio; Kobel, Michael; Kocian, Martin; Kocnar, Antonin; Kodys, Peter; Köneke, Karsten; König, Adriaan; Koenig, Sebastian; Köpke, Lutz; Koetsveld, Folkert; Koevesarki, Peter; Koffas, Thomas; Koffeman, Els; Kohn, Fabian; Kohout, Zdenek; Kohriki, Takashi; Koi, Tatsumi; Kokott, Thomas; Kolachev, Guennady; Kolanoski, Hermann; Kolesnikov, Vladimir; Koletsou, Iro; Koll, James; Kollar, Daniel; Kollefrath, Michael; Kolya, Scott; Komar, Aston; Komaragiri, Jyothsna Rani; Komori, Yuto; Kondo, Takahiko; Kono, Takanori; Kononov, Anatoly; Konoplich, Rostislav; Konstantinidis, Nikolaos; Kootz, Andreas; Koperny, Stefan; Kopikov, Sergey; Korcyl, Krzysztof; Kordas, Kostantinos; Koreshev, Victor; Korn, Andreas; Korol, Aleksandr; Korolkov, Ilya; Korolkova, Elena; Korotkov, Vladislav; Kortner, Oliver; Kortner, Sandra; Kostyukhin, Vadim; Kotamäki, Miikka Juhani; Kotov, Sergey; Kotov, Vladislav; Kotwal, Ashutosh; Kourkoumelis, Christine; Kouskoura, Vasiliki; Koutsman, Alex; Kowalewski, Robert Victor; Kowalski, Tadeusz; Kozanecki, Witold; Kozhin, Anatoly; Kral, Vlastimil; Kramarenko, Viktor; Kramberger, Gregor; Krasel, Olaf; Krasny, Mieczyslaw Witold; Krasznahorkay, Attila; Kraus, James; Kreisel, Arik; Krejci, Frantisek; Kretzschmar, Jan; Krieger, Nina; Krieger, Peter; Kroeninger, Kevin; Kroha, Hubert; Kroll, Joe; Kroseberg, Juergen; Krstic, Jelena; Kruchonak, Uladzimir; Krüger, Hans; Kruker, Tobias; Krumshteyn, Zinovii; Kruth, Andre; Kubota, Takashi; Kuehn, Susanne; Kugel, Andreas; Kuhl, Thorsten; Kuhn, Dietmar; Kukhtin, Victor; Kulchitsky, Yuri; Kuleshov, Sergey; Kummer, Christian; Kuna, Marine; Kundu, Nikhil; Kunkle, Joshua; Kupco, Alexander; Kurashige, Hisaya; Kurata, Masakazu; Kurochkin, Yurii; Kus, Vlastimil; Kuykendall, William; Kuze, Masahiro; Kuzhir, Polina; Kvasnicka, Ondrej; Kvita, Jiri; Kwee, Regina; La Rosa, Alessandro; La Rotonda, Laura; Labarga, Luis; Labbe, Julien; Lablak, Said; Lacasta, Carlos; Lacava, Francesco; Lacker, Heiko; Lacour, Didier; Lacuesta, Vicente Ramón; Ladygin, Evgueni; Lafaye, Rémi; Laforge, Bertrand; Lagouri, Theodota; Lai, Stanley; Laisne, Emmanuel; Lamanna, Massimo; Lampen, Caleb; Lampl, Walter; Lancon, Eric; Landgraf, Ulrich; Landon, Murrough; Landsman, Hagar; Lane, Jenna; Lange, Clemens; Lankford, Andrew; Lanni, Francesco; Lantzsch, Kerstin; Lapin, Vladimir; Laplace, Sandrine; Lapoire, Cecile; Laporte, Jean-Francois; Lari, Tommaso; Larionov, Anatoly; Larner, Aimee; Lasseur, Christian; Lassnig, Mario; Lau, Wing; Laurelli, Paolo; Lavorato, Antonia; Lavrijsen, Wim; Laycock, Paul; Lazarev, Alexandre; Lazzaro, Alfio; Le Dortz, Olivier; Le Guirriec, Emmanuel; Le Maner, Christophe; Le Menedeu, Eve; Lebedev, Alexander; Lebel, Céline; LeCompte, Thomas; Ledroit-Guillon, Fabienne Agnes Marie; Lee, Hurng-Chun; Lee, Jason; Lee, Shih-Chang; Lee, Lawrence; Lefebvre, Michel; Legendre, Marie; Leger, Annie; LeGeyt, Benjamin; Legger, Federica; Leggett, Charles; Lehmacher, Marc; Lehmann Miotto, Giovanna; Lei, Xiaowen; Leite, Marco Aurelio Lisboa; Leitner, Rupert; Lellouch, Daniel; Leltchouk, Mikhail; Lendermann, Victor; Leney, Katharine; Lenz, Tatiana; Lenzen, Georg; Lenzi, Bruno; Leonhardt, Kathrin; Leontsinis, Stefanos; Leroy, Claude; Lessard, Jean-Raphael; Lesser, Jonas; Lester, Christopher; Leung Fook Cheong, Annabelle; Levêque, Jessica; Levin, Daniel; Levinson, Lorne; Levitski, Mikhail; Lewandowska, Marta; Lewis, Adrian; Lewis, George; Leyko, Agnieszka; Leyton, Michael; Li, Bo; Li, Haifeng; Li, Shu; Li, Xuefei; Liang, Zhihua; Liang, Zhijun; Liberti, Barbara; Lichard, Peter; Lichtnecker, Markus; Lie, Ki; Liebig, Wolfgang; Lifshitz, Ronen; Lilley, Joseph; Limbach, Christian; Limosani, Antonio; Limper, Maaike; Lin, Simon; Linde, Frank; Linnemann, James; Lipeles, Elliot; Lipinsky, Lukas; Lipniacka, Anna; Liss, Tony; Lissauer, David; Lister, Alison; Litke, Alan; Liu, Chuanlei; Liu, Dong; Liu, Hao; Liu, Jianbei; Liu, Minghui; Liu, Shengli; Liu, Yanwen; Livan, Michele; Livermore, Sarah; Lleres, Annick; Llorente Merino, Javier; Lloyd, Stephen; Lobodzinska, Ewelina; Loch, Peter; Lockman, William; Lockwitz, Sarah; Loddenkoetter, Thomas; Loebinger, Fred; Loginov, Andrey; Loh, Chang Wei; Lohse, Thomas; Lohwasser, Kristin; Lokajicek, Milos; Loken, James; Lombardo, Vincenzo Paolo; Long, Robin Eamonn; Lopes, Lourenco; Lopez Mateos, David; Losada, Marta; Loscutoff, Peter; Lo Sterzo, Francesco; Losty, Michael; Lou, Xinchou; Lounis, Abdenour; Loureiro, Karina; Love, Jeremy; Love, Peter; Lowe, Andrew; Lu, Feng; Lu, Liang; Lubatti, Henry; Luci, Claudio; Lucotte, Arnaud; Ludwig, Andreas; Ludwig, Dörthe; Ludwig, Inga; Ludwig, Jens; Luehring, Frederick; Luijckx, Guy; Lumb, Debra; Luminari, Lamberto; Lund, Esben; Lund-Jensen, Bengt; Lundberg, Björn; Lundberg, Johan; Lundquist, Johan; Lungwitz, Matthias; Lupi, Anna; Lutz, Gerhard; Lynn, David; Lys, Jeremy; Lytken, Else; Ma, Hong; Ma, Lian Liang; Macana Goia, Jorge Andres; Maccarrone, Giovanni; Macchiolo, Anna; Maček, Boštjan; Machado Miguens, Joana; Mackeprang, Rasmus; Madaras, Ronald; Mader, Wolfgang; Maenner, Reinhard; Maeno, Tadashi; Mättig, Peter; Mättig, Stefan; Magalhaes Martins, Paulo Jorge; Magnoni, Luca; Magradze, Erekle; Mahalalel, Yair; Mahboubi, Kambiz; Mahout, Gilles; Maiani, Camilla; Maidantchik, Carmen; Maio, Amélia; Majewski, Stephanie; Makida, Yasuhiro; Makovec, Nikola; Mal, Prolay; Malecki, Pawel; Malecki, Piotr; Maleev, Victor; Malek, Fairouz; Mallik, Usha; Malon, David; Maltezos, Stavros; Malyshev, Vladimir; Malyukov, Sergei; Mameghani, Raphael; Mamuzic, Judita; Manabe, Atsushi; Mandelli, Luciano; Mandić, Igor; Mandrysch, Rocco; Maneira, José; Mangeard, Pierre-Simon; Manjavidze, Ioseb; Mann, Alexander; Manning, Peter; Manousakis-Katsikakis, Arkadios; Mansoulie, Bruno; Manz, Andreas; Mapelli, Alessandro; Mapelli, Livio; March, Luis; Marchand, Jean-Francois; Marchese, Fabrizio; Marchiori, Giovanni; Marcisovsky, Michal; Marin, Alexandru; Marino, Christopher; Marroquim, Fernando; Marshall, Robin; Marshall, Zach; Martens, Kalen; Marti-Garcia, Salvador; Martin, Andrew; Martin, Brian; Martin, Brian Thomas; Martin, Franck Francois; Martin, Jean-Pierre; Martin, Philippe; Martin, Tim; Martin dit Latour, Bertrand; Martinez, Mario; Martinez Outschoorn, Verena; Martyniuk, Alex; Marx, Marilyn; Marzano, Francesco; Marzin, Antoine; Masetti, Lucia; Mashimo, Tetsuro; Mashinistov, Ruslan; Masik, Jiri; Maslennikov, Alexey; Maß, Martin; Massa, Ignazio; Massaro, Graziano; Massol, Nicolas; Mastrandrea, Paolo; Mastroberardino, Anna; Masubuchi, Tatsuya; Mathes, Markus; Matricon, Pierre; Matsumoto, Hiroshi; Matsunaga, Hiroyuki; Matsushita, Takashi; Mattravers, Carly; Maugain, Jean-Marie; Maxfield, Stephen; Maximov, Dmitriy; May, Edward; Mayne, Anna; Mazini, Rachid; Mazur, Michael; Mazzanti, Marcello; Mazzoni, Enrico; Mc Kee, Shawn Patrick; McCarn, Allison; McCarthy, Robert; McCarthy, Tom; McCubbin, Norman; McFarlane, Kenneth; Mcfayden, Josh; McGlone, Helen; Mchedlidze, Gvantsa; McLaren, Robert Andrew; Mclaughlan, Tom; McMahon, Steve; McPherson, Robert; Meade, Andrew; Mechnich, Joerg; Mechtel, Markus; Medinnis, Mike; Meera-Lebbai, Razzak; Meguro, Tatsuma; Mehdiyev, Rashid; Mehlhase, Sascha; Mehta, Andrew; Meier, Karlheinz; Meinhardt, Jens; Meirose, Bernhard; Melachrinos, Constantinos; Mellado Garcia, Bruce Rafael; Mendoza Navas, Luis; Meng, Zhaoxia; Mengarelli, Alberto; Menke, Sven; Menot, Claude; Meoni, Evelin; Mercurio, Kevin Michael; Mermod, Philippe; Merola, Leonardo; Meroni, Chiara; Merritt, Frank; Messina, Andrea; Metcalfe, Jessica; Mete, Alaettin Serhan; Meuser, Stefan; Meyer, Carsten; Meyer, Jean-Pierre; Meyer, Jochen; Meyer, Joerg; Meyer, Thomas Christian; Meyer, W Thomas; Miao, Jiayuan; Michal, Sebastien; Micu, Liliana; Middleton, Robin; Miele, Paola; Migas, Sylwia; Mijović, Liza; Mikenberg, Giora; Mikestikova, Marcela; Mikuž, Marko; Miller, David; Miller, Robert; Mills, Bill; Mills, Corrinne; Milov, Alexander; Milstead, David; Milstein, Dmitry; Minaenko, Andrey; Miñano, Mercedes; Minashvili, Irakli; Mincer, Allen; Mindur, Bartosz; Mineev, Mikhail; Ming, Yao; Mir, Lluisa-Maria; Mirabelli, Giovanni; Miralles Verge, Lluis; Misiejuk, Andrzej; Mitrevski, Jovan; Mitrofanov, Gennady; Mitsou, Vasiliki A; Mitsui, Shingo; Miyagawa, Paul; Miyazaki, Kazuki; Mjörnmark, Jan-Ulf; Moa, Torbjoern; Mockett, Paul; Moed, Shulamit; Moeller, Victoria; Mönig, Klaus; Möser, Nicolas; Mohapatra, Soumya; Mohn, Bjarte; Mohr, Wolfgang; Mohrdieck-Möck, Susanne; Moisseev, Artemy; Moles-Valls, Regina; Molina-Perez, Jorge; Monk, James; Monnier, Emmanuel; Montesano, Simone; Monticelli, Fernando; Monzani, Simone; Moore, Roger; Moorhead, Gareth; Mora Herrera, Clemencia; Moraes, Arthur; Morais, Antonio; Morange, Nicolas; Morel, Julien; Morello, Gianfranco; Moreno, Deywis; Moreno Llácer, María; Morettini, Paolo; Morii, Masahiro; Morin, Jerome; Morita, Youhei; Morley, Anthony Keith; Mornacchi, Giuseppe; Morone, Maria-Christina; Morozov, Sergey; Morris, John; Morvaj, Ljiljana; Moser, Hans-Guenther; Mosidze, Maia; Moss, Josh; Mount, Richard; Mountricha, Eleni; Mouraviev, Sergei; Moyse, Edward; Mudrinic, Mihajlo; Mueller, Felix; Mueller, James; Mueller, Klemens; Müller, Thomas; Muenstermann, Daniel; Muijs, Sandra; Muir, Alex; Munwes, Yonathan; Murakami, Koichi; Murray, Bill; Mussche, Ido; Musto, Elisa; Myagkov, Alexey; Myska, Miroslav; Nadal, Jordi; Nagai, Koichi; Nagano, Kunihiro; Nagasaka, Yasushi; Nairz, Armin Michael; Nakahama, Yu; Nakamura, Koji; Nakano, Itsuo; Nanava, Gizo; Napier, Austin; Nash, Michael; Nation, Nigel; Nattermann, Till; Naumann, Thomas; Navarro, Gabriela; Neal, Homer; Nebot, Eduardo; Nechaeva, Polina; Negri, Andrea; Negri, Guido; Nektarijevic, Snezana; Nelson, Andrew; Nelson, Silke; Nelson, Timothy Knight; Nemecek, Stanislav; Nemethy, Peter; Nepomuceno, Andre Asevedo; Nessi, Marzio; Nesterov, Stanislav; Neubauer, Mark; Neusiedl, Andrea; Neves, Ricardo; Nevski, Pavel; Newman, Paul; Nguyen Thi Hong, Van; Nickerson, Richard; Nicolaidou, Rosy; Nicolas, Ludovic; Nicquevert, Bertrand; Niedercorn, Francois; Nielsen, Jason; Niinikoski, Tapio; Nikiforov, Andriy; Nikolaenko, Vladimir; Nikolaev, Kirill; Nikolic-Audit, Irena; Nikolopoulos, Konstantinos; Nilsen, Henrik; Nilsson, Paul; Ninomiya, Yoichi; Nisati, Aleandro; Nishiyama, Tomonori; Nisius, Richard; Nodulman, Lawrence; Nomachi, Masaharu; Nomidis, Ioannis; Nomoto, Hiroshi; Nordberg, Markus; Nordkvist, Bjoern; Norton, Peter; Novakova, Jana; Nozaki, Mitsuaki; Nožička, Miroslav; Nozka, Libor; Nugent, Ian Michael; Nuncio-Quiroz, Adriana-Elizabeth; Nunes Hanninger, Guilherme; Nunnemann, Thomas; Nurse, Emily; Nyman, Tommi; O'Brien, Brendan Joseph; O'Neale, Steve; O'Neil, Dugan; O'Shea, Val; Oakham, Gerald; Oberlack, Horst; Ocariz, Jose; Ochi, Atsuhiko; Oda, Susumu; Odaka, Shigeru; Odier, Jerome; Ogren, Harold; Oh, Alexander; Oh, Seog; Ohm, Christian; Ohshima, Takayoshi; Ohshita, Hidetoshi; Ohska, Tokio Kenneth; Ohsugi, Takashi; Okada, Shogo; Okawa, Hideki; Okumura, Yasuyuki; Okuyama, Toyonobu; Olcese, Marco; Olchevski, Alexander; Oliveira, Miguel Alfonso; Oliveira Damazio, Denis; Oliver Garcia, Elena; Olivito, Dominick; Olszewski, Andrzej; Olszowska, Jolanta; Omachi, Chihiro; Onofre, António; Onyisi, Peter; Oram, Christopher; Oreglia, Mark; Oren, Yona; Orestano, Domizia; Orlov, Iliya; Oropeza Barrera, Cristina; Orr, Robert; Ortega, Eduardo; Osculati, Bianca; Ospanov, Rustem; Osuna, Carlos; Otero y Garzon, Gustavo; Ottersbach, John; Ouchrif, Mohamed; Ould-Saada, Farid; Ouraou, Ahmimed; Ouyang, Qun; Owen, Mark; Owen, Simon; Øye, Ola; Ozcan, Veysi Erkcan; Ozturk, Nurcan; Pacheco Pages, Andres; Padilla Aranda, Cristobal; Paganis, Efstathios; Paige, Frank; Pajchel, Katarina; Palestini, Sandro; Pallin, Dominique; Palma, Alberto; Palmer, Jody; Pan, Yibin; Panagiotopoulou, Evgenia; Panes, Boris; Panikashvili, Natalia; Panitkin, Sergey; Pantea, Dan; Panuskova, Monika; Paolone, Vittorio; Papadelis, Aras; Papadopoulou, Theodora; Paramonov, Alexander; Park, Woochun; Parker, Andy; Parodi, Fabrizio; Parsons, John; Parzefall, Ulrich; Pasqualucci, Enrico; Passeri, Antonio; Pastore, Fernanda; Pastore, Francesca; Pásztor, Gabriella; Pataraia, Sophio; Patel, Nikhul; Pater, Joleen; Patricelli, Sergio; Pauly, Thilo; Pecsy, Martin; Pedraza Morales, Maria Isabel; Peleganchuk, Sergey; Peng, Haiping; Pengo, Ruggero; Penson, Alexander; Penwell, John; Perantoni, Marcelo; Perez, Kerstin; Perez Cavalcanti, Tiago; Perez Codina, Estel; Pérez García-Estañ, María Teresa; Perez Reale, Valeria; Peric, Ivan; Perini, Laura; Pernegger, Heinz; Perrino, Roberto; Perrodo, Pascal; Persembe, Seda; Peshekhonov, Vladimir; Peters, Onne; Petersen, Brian; Petersen, Jorgen; Petersen, Troels; Petit, Elisabeth; Petridis, Andreas; Petridou, Chariclia; Petrolo, Emilio; Petrucci, Fabrizio; Petschull, Dennis; Petteni, Michele; Pezoa, Raquel; Phan, Anna; Phillips, Alan; Phillips, Peter William; Piacquadio, Giacinto; Piccaro, Elisa; Piccinini, Maurizio; Pickford, Andrew; Piec, Sebastian Marcin; Piegaia, Ricardo; Pilcher, James; Pilkington, Andrew; Pina, João Antonio; Pinamonti, Michele; Pinder, Alex; Pinfold, James; Ping, Jialun; Pinto, Belmiro; Pirotte, Olivier; Pizio, Caterina; Placakyte, Ringaile; Plamondon, Mathieu; Plano, Will; Pleier, Marc-Andre; Pleskach, Anatoly; Poblaguev, Andrei; Poddar, Sahill; Podlyski, Fabrice; Poggioli, Luc; Poghosyan, Tatevik; Pohl, Martin; Polci, Francesco; Polesello, Giacomo; Policicchio, Antonio; Polini, Alessandro; Poll, James; Polychronakos, Venetios; Pomarede, Daniel Marc; Pomeroy, Daniel; Pommès, Kathy; Pontecorvo, Ludovico; Pope, Bernard; Popeneciu, Gabriel Alexandru; Popovic, Dragan; Poppleton, Alan; Portell Bueso, Xavier; Porter, Robert; Posch, Christoph; Pospelov, Guennady; Pospisil, Stanislav; Potrap, Igor; Potter, Christina; Potter, Christopher; Poulard, Gilbert; Poveda, Joaquin; Prabhu, Robindra; Pralavorio, Pascal; Prasad, Srivas; Pravahan, Rishiraj; Prell, Soeren; Pretzl, Klaus Peter; Pribyl, Lukas; Price, Darren; Price, Lawrence; Price, Michael John; Prichard, Paul; Prieur, Damien; Primavera, Margherita; Prokofiev, Kirill; Prokoshin, Fedor; Protopopescu, Serban; Proudfoot, James; Prudent, Xavier; Przysiezniak, Helenka; Psoroulas, Serena; Ptacek, Elizabeth; Purdham, John; Purohit, Milind; Puzo, Patrick; Pylypchenko, Yuriy; Qian, Jianming; Qian, Zuxuan; Qin, Zhonghua; Quadt, Arnulf; Quarrie, David; Quayle, William; Quinonez, Fernando; Raas, Marcel; Radescu, Voica; Radics, Balint; Rador, Tonguc; Ragusa, Francesco; Rahal, Ghita; Rahimi, Amir; Rahm, David; Rajagopalan, Srinivasan; Rammensee, Michael; Rammes, Marcus; Ramstedt, Magnus; Randrianarivony, Koloina; Ratoff, Peter; Rauscher, Felix; Rauter, Emanuel; Raymond, Michel; Read, Alexander Lincoln; Rebuzzi, Daniela; Redelbach, Andreas; Redlinger, George; Reece, Ryan; Reeves, Kendall; Reichold, Armin; Reinherz-Aronis, Erez; Reinsch, Andreas; Reisinger, Ingo; Reljic, Dusan; Rembser, Christoph; Ren, Zhongliang; Renaud, Adrien; Renkel, Peter; Rensch, Bertram; Rescigno, Marco; Resconi, Silvia; Resende, Bernardo; Reznicek, Pavel; Rezvani, Reyhaneh; Richards, Alexander; Richter, Robert; Richter-Was, Elzbieta; Ridel, Melissa; Rieke, Stefan; Rijpstra, Manouk; Rijssenbeek, Michael; Rimoldi, Adele; Rinaldi, Lorenzo; Rios, Ryan Randy; Riu, Imma; Rivoltella, Giancesare; Rizatdinova, Flera; Rizvi, Eram; Robertson, Steven; Robichaud-Veronneau, Andree; Robinson, Dave; Robinson, James; Robinson, Mary; Robson, Aidan; Rocha de Lima, Jose Guilherme; Roda, Chiara; Roda Dos Santos, Denis; Rodier, Stephane; Rodriguez, Diego; Rodriguez Garcia, Yohany; Roe, Adam; Roe, Shaun; Røhne, Ole; Rojo, Victoria; Rolli, Simona; Romaniouk, Anatoli; Romanov, Victor; Romeo, Gaston; Romero Maltrana, Diego; Roos, Lydia; Ros, Eduardo; Rosati, Stefano; Rosbach, Kilian; Rose, Matthew; Rosenbaum, Gabriel; Rosenberg, Eli; Rosendahl, Peter Lundgaard; Rosselet, Laurent; Rossetti, Valerio; Rossi, Elvira; Rossi, Leonardo Paolo; Rossi, Lucio; Rotaru, Marina; Roth, Itamar; Rothberg, Joseph; Rousseau, David; Royon, Christophe; Rozanov, Alexander; Rozen, Yoram; Ruan, Xifeng; Rubinskiy, Igor; Ruckert, Benjamin; Ruckstuhl, Nicole; Rud, Viacheslav; Rudolph, Gerald; Rühr, Frederik; Ruggieri, Federico; Ruiz-Martinez, Aranzazu; Rulikowska-Zarebska, Elzbieta; Rumiantsev, Viktor; Rumyantsev, Leonid; Runge, Kay; Runolfsson, Ogmundur; Rurikova, Zuzana; Rusakovich, Nikolai; Rust, Dave; Rutherfoord, John; Ruwiedel, Christoph; Ruzicka, Pavel; Ryabov, Yury; Ryadovikov, Vasily; Ryan, Patrick; Rybar, Martin; Rybkin, Grigori; Ryder, Nick; Rzaeva, Sevda; Saavedra, Aldo; Sadeh, Iftach; Sadrozinski, Hartmut; Sadykov, Renat; Safai Tehrani, Francesco; Sakamoto, Hiroshi; Salamanna, Giuseppe; Salamon, Andrea; Saleem, Muhammad; Salihagic, Denis; Salnikov, Andrei; Salt, José; Salvachua Ferrando, Belén; Salvatore, Daniela; Salvatore, Pasquale Fabrizio; Salvucci, Antonio; Salzburger, Andreas; Sampsonidis, Dimitrios; Samset, Björn Hallvard; Sandaker, Heidi; Sander, Heinz Georg; Sanders, Michiel; Sandhoff, Marisa; Sandoval, Tanya; Sandstroem, Rikard; Sandvoss, Stephan; Sankey, Dave; Sansoni, Andrea; Santamarina Rios, Cibran; Santoni, Claudio; Santonico, Rinaldo; Santos, Helena; Saraiva, João; Sarangi, Tapas; Sarkisyan-Grinbaum, Edward; Sarri, Francesca; Sartisohn, Georg; Sasaki, Osamu; Sasaki, Takashi; Sasao, Noboru; Satsounkevitch, Igor; Sauvage, Gilles; Sauvan, Jean-Baptiste; Savard, Pierre; Savinov, Vladimir; Savu, Dan Octavian; Savva, Panagiota; Sawyer, Lee; Saxon, David; Says, Louis-Pierre; Sbarra, Carla; Sbrizzi, Antonio; Scallon, Olivia; Scannicchio, Diana; Scarcella, Mark; Schaarschmidt, Jana; Schacht, Peter; Schäfer, Uli; Schaepe, Steffen; Schaetzel, Sebastian; Schaffer, Arthur; Schaile, Dorothee; Schamberger, R. Dean; Schamov, Andrey; Scharf, Veit; Schegelsky, Valery; Scheirich, Daniel; Schernau, Michael; Scherzer, Max; Schiavi, Carlo; Schieck, Jochen; Schioppa, Marco; Schlenker, Stefan; Schlereth, James; Schmidt, Evelyn; Schmidt, Michael; Schmieden, Kristof; Schmitt, Christian; Schmitt, Sebastian; Schmitz, Martin; Schöning, André; Schott, Matthias; Schouten, Doug; Schovancova, Jaroslava; Schram, Malachi; Schroeder, Christian; Schroer, Nicolai; Schuh, Silvia; Schuler, Georges; Schultes, Joachim; Schultz-Coulon, Hans-Christian; Schulz, Holger; Schumacher, Jan; Schumacher, Markus; Schumm, Bruce; Schune, Philippe; Schwanenberger, Christian; Schwartzman, Ariel; Schwemling, Philippe; Schwienhorst, Reinhard; Schwierz, Rainer; Schwindling, Jerome; Scott, Bill; Searcy, Jacob; Sedykh, Evgeny; Segura, Ester; Seidel, Sally; Seiden, Abraham; Seifert, Frank; Seixas, José; Sekhniaidze, Givi; Seliverstov, Dmitry; Sellden, Bjoern; Sellers, Graham; Seman, Michal; Semprini-Cesari, Nicola; Serfon, Cedric; Serin, Laurent; Seuster, Rolf; Severini, Horst; Sevior, Martin; Sfyrla, Anna; Shabalina, Elizaveta; Shamim, Mansoora; Shan, Lianyou; Shank, James; Shao, Qi Tao; Shapiro, Marjorie; Shatalov, Pavel; Shaver, Leif; Shaw, Christian; Shaw, Kate; Sherman, Daniel; Sherwood, Peter; Shibata, Akira; Shichi, Hideharu; Shimizu, Shima; Shimojima, Makoto; Shin, Taeksu; Shmeleva, Alevtina; Shochet, Mel; Short, Daniel; Shupe, Michael; Sicho, Petr; Sidoti, Antonio; Siebel, Anca-Mirela; Siegert, Frank; Siegrist, James; Sijacki, Djordje; Silbert, Ohad; Silva, José; Silver, Yiftah; Silverstein, Daniel; Silverstein, Samuel; Simak, Vladislav; Simard, Olivier; Simic, Ljiljana; Simion, Stefan; Simmons, Brinick; Simonyan, Margar; Sinervo, Pekka; Sinev, Nikolai; Sipica, Valentin; Siragusa, Giovanni; Sisakyan, Alexei; Sivoklokov, Serguei; Sjölin, Jörgen; Sjursen, Therese; Skinnari, Louise Anastasia; Skovpen, Kirill; Skubic, Patrick; Skvorodnev, Nikolai; Slater, Mark; Slavicek, Tomas; Sliwa, Krzysztof; Sloan, Terrence; Sloper, John erik; Smakhtin, Vladimir; Smirnov, Sergei; Smirnova, Lidia; Smirnova, Oxana; Smith, Ben Campbell; Smith, Douglas; Smith, Kenway; Smizanska, Maria; Smolek, Karel; Snesarev, Andrei; Snow, Steve; Snow, Joel; Snuverink, Jochem; Snyder, Scott; Soares, Mara; Sobie, Randall; Sodomka, Jaromir; Soffer, Abner; Solans, Carlos; Solar, Michael; Solc, Jaroslav; Soldatov, Evgeny; Soldevila, Urmila; Solfaroli Camillocci, Elena; Solodkov, Alexander; Solovyanov, Oleg; Sondericker, John; Soni, Nitesh; Sopko, Vit; Sopko, Bruno; Sorbi, Massimo; Sosebee, Mark; Soukharev, Andrey; Spagnolo, Stefania; Spanò, Francesco; Spighi, Roberto; Spigo, Giancarlo; Spila, Federico; Spiriti, Eleuterio; Spiwoks, Ralf; Spousta, Martin; Spreitzer, Teresa; Spurlock, Barry; St Denis, Richard Dante; Stahl, Thorsten; Stahlman, Jonathan; Stamen, Rainer; Stanecka, Ewa; Stanek, Robert; Stanescu, Cristian; Stapnes, Steinar; Starchenko, Evgeny; Stark, Jan; Staroba, Pavel; Starovoitov, Pavel; Staude, Arnold; Stavina, Pavel; Stavropoulos, Georgios; Steele, Genevieve; Steinbach, Peter; Steinberg, Peter; Stekl, Ivan; Stelzer, Bernd; Stelzer, Harald Joerg; Stelzer-Chilton, Oliver; Stenzel, Hasko; Stevenson, Kyle; Stewart, Graeme; Stillings, Jan Andre; Stockmanns, Tobias; Stockton, Mark; Stoerig, Kathrin; Stoicea, Gabriel; Stonjek, Stefan; Strachota, Pavel; Stradling, Alden; Straessner, Arno; Strandberg, Jonas; Strandberg, Sara; Strandlie, Are; Strang, Michael; Strauss, Emanuel; Strauss, Michael; Strizenec, Pavol; Ströhmer, Raimund; Strom, David; Strong, John; Stroynowski, Ryszard; Strube, Jan; Stugu, Bjarne; Stumer, Iuliu; Stupak, John; Sturm, Philipp; Soh, Dart-yin; Su, Dong; Subramania, Halasya Siva; Succurro, Antonella; Sugaya, Yorihito; Sugimoto, Takuya; Suhr, Chad; Suita, Koichi; Suk, Michal; Sulin, Vladimir; Sultansoy, Saleh; Sumida, Toshi; Sun, Xiaohu; Sundermann, Jan Erik; Suruliz, Kerim; Sushkov, Serge; Susinno, Giancarlo; Sutton, Mark; Suzuki, Yu; Svatos, Michal; Sviridov, Yuri; Swedish, Stephen; Sykora, Ivan; Sykora, Tomas; Szeless, Balazs; Sánchez, Javier; Ta, Duc; Tackmann, Kerstin; Taffard, Anyes; Tafirout, Reda; Taga, Adrian; Taiblum, Nimrod; Takahashi, Yuta; Takai, Helio; Takashima, Ryuichi; Takeda, Hiroshi; Takeshita, Tohru; Talby, Mossadek; Talyshev, Alexey; Tamsett, Matthew; Tanaka, Junichi; Tanaka, Reisaburo; Tanaka, Satoshi; Tanaka, Shuji; Tanaka, Yoshito; Tani, Kazutoshi; Tannoury, Nancy; Tappern, Geoffrey; Tapprogge, Stefan; Tardif, Dominique; Tarem, Shlomit; Tarrade, Fabien; Tartarelli, Giuseppe Francesco; Tas, Petr; Tasevsky, Marek; Tassi, Enrico; Tatarkhanov, Mous; Tayalati, Yahya; Taylor, Christopher; Taylor, Frank; Taylor, Geoffrey; Taylor, Wendy; Teixeira Dias Castanheira, Matilde; Teixeira-Dias, Pedro; Temming, Kim Katrin; Ten Kate, Herman; Teng, Ping-Kun; Terada, Susumu; Terashi, Koji; Terron, Juan; Terwort, Mark; Testa, Marianna; Teuscher, Richard; Thadome, Jocelyn; Therhaag, Jan; Theveneaux-Pelzer, Timothée; Thioye, Moustapha; Thoma, Sascha; Thomas, Juergen; Thompson, Emily; Thompson, Paul; Thompson, Peter; Thompson, Stan; Thomson, Evelyn; Thomson, Mark; Thun, Rudolf; Tic, Tomáš; Tikhomirov, Vladimir; Tikhonov, Yury; Timmermans, Charles; Tipton, Paul; Tique Aires Viegas, Florbela De Jes; Tisserant, Sylvain; Tobias, Jürgen; Toczek, Barbara; Todorov, Theodore; Todorova-Nova, Sharka; Toggerson, Brokk; Tojo, Junji; Tokár, Stanislav; Tokunaga, Kaoru; Tokushuku, Katsuo; Tollefson, Kirsten; Tomoto, Makoto; Tompkins, Lauren; Toms, Konstantin; Tong, Guoliang; Tonoyan, Arshak; Topfel, Cyril; Topilin, Nikolai; Torchiani, Ingo; Torrence, Eric; Torró Pastor, Emma; Toth, Jozsef; Touchard, Francois; Tovey, Daniel; Traynor, Daniel; Trefzger, Thomas; Treis, Johannes; Tremblet, Louis; Tricoli, Alesandro; Trigger, Isabel Marian; Trincaz-Duvoid, Sophie; Trinh, Thi Nguyet; Tripiana, Martin; Trischuk, William; Trivedi, Arjun; Trocmé, Benjamin; Troncon, Clara; Trottier-McDonald, Michel; Trzupek, Adam; Tsarouchas, Charilaos; Tseng, Jeffrey; Tsiakiris, Menelaos; Tsiareshka, Pavel; Tsionou, Dimitra; Tsipolitis, Georgios; Tsiskaridze, Vakhtang; Tskhadadze, Edisher; Tsukerman, Ilya; Tsulaia, Vakhtang; Tsung, Jieh-Wen; Tsuno, Soshi; Tsybychev, Dmitri; Tua, Alan; Tuggle, Joseph; Turala, Michal; Turecek, Daniel; Turk Cakir, Ilkay; Turlay, Emmanuel; Turra, Ruggero; Tuts, Michael; Tykhonov, Andrii; Tylmad, Maja; Tyndel, Mike; Tyrvainen, Harri; Tzanakos, George; Uchida, Kirika; Ueda, Ikuo; Ueno, Ryuichi; Ugland, Maren; Uhlenbrock, Mathias; Uhrmacher, Michael; Ukegawa, Fumihiko; Unal, Guillaume; Underwood, David; Undrus, Alexander; Unel, Gokhan; Unno, Yoshinobu; Urbaniec, Dustin; Urkovsky, Evgeny; Urrejola, Pedro; Usai, Giulio; Uslenghi, Massimiliano; Vacavant, Laurent; Vacek, Vaclav; Vachon, Brigitte; Vahsen, Sven; Valenta, Jan; Valente, Paolo; Valentinetti, Sara; Valkar, Stefan; Valladolid Gallego, Eva; Vallecorsa, Sofia; Valls Ferrer, Juan Antonio; van der Graaf, Harry; van der Kraaij, Erik; Van Der Leeuw, Robin; van der Poel, Egge; van der Ster, Daniel; Van Eijk, Bob; van Eldik, Niels; van Gemmeren, Peter; van Kesteren, Zdenko; van Vulpen, Ivo; Vandelli, Wainer; Vandoni, Giovanna; Vaniachine, Alexandre; Vankov, Peter; Vannucci, Francois; Varela Rodriguez, Fernando; Vari, Riccardo; Varnes, Erich; Varouchas, Dimitris; Vartapetian, Armen; Varvell, Kevin; Vassilakopoulos, Vassilios; Vazeille, Francois; Vegni, Guido; Veillet, Jean-Jacques; Vellidis, Constantine; Veloso, Filipe; Veness, Raymond; Veneziano, Stefano; Ventura, Andrea; Ventura, Daniel; Venturi, Manuela; Venturi, Nicola; Vercesi, Valerio; Verducci, Monica; Verkerke, Wouter; Vermeulen, Jos; Vest, Anja; Vetterli, Michel; Vichou, Irene; Vickey, Trevor; Viehhauser, Georg; Viel, Simon; Villa, Mauro; Villaplana Perez, Miguel; Vilucchi, Elisabetta; Vincter, Manuella; Vinek, Elisabeth; Vinogradov, Vladimir; Virchaux, Marc; Viret, Sébastien; Virzi, Joseph; Vitale, Antonio; Vitells, Ofer; Viti, Michele; Vivarelli, Iacopo; Vives Vaque, Francesc; Vlachos, Sotirios; Vlasak, Michal; Vlasov, Nikolai; Vogel, Adrian; Vokac, Petr; Volpi, Guido; Volpi, Matteo; Volpini, Giovanni; von der Schmitt, Hans; von Loeben, Joerg; von Radziewski, Holger; von Toerne, Eckhard; Vorobel, Vit; Vorobiev, Alexander; Vorwerk, Volker; Vos, Marcel; Voss, Rudiger; Voss, Thorsten Tobias; Vossebeld, Joost; Vranjes, Nenad; Vranjes Milosavljevic, Marija; Vrba, Vaclav; Vreeswijk, Marcel; Vu Anh, Tuan; Vuillermet, Raphael; Vukotic, Ilija; Wagner, Wolfgang; Wagner, Peter; Wahlen, Helmut; Wakabayashi, Jun; Walbersloh, Jorg; Walch, Shannon; Walder, James; Walker, Rodney; Walkowiak, Wolfgang; Wall, Richard; Waller, Peter; Wang, Chiho; Wang, Haichen; Wang, Hulin; Wang, Jike; Wang, Jin; Wang, Joshua C; Wang, Rui; Wang, Song-Ming; Warburton, Andreas; Ward, Patricia; Warsinsky, Markus; Watkins, Peter; Watson, Alan; Watson, Miriam; Watts, Gordon; Watts, Stephen; Waugh, Anthony; Waugh, Ben; Weber, Jens; Weber, Marc; Weber, Michele; Weber, Pavel; Weidberg, Anthony; Weigell, Philipp; Weingarten, Jens; Weiser, Christian; Wellenstein, Hermann; Wells, Phillippa; Wen, Mei; Wenaus, Torre; Wendler, Shanti; Weng, Zhili; Wengler, Thorsten; Wenig, Siegfried; Wermes, Norbert; Werner, Matthias; Werner, Per; Werth, Michael; Wessels, Martin; Weydert, Carole; Whalen, Kathleen; Wheeler-Ellis, Sarah Jane; Whitaker, Scott; White, Andrew; White, Martin; White, Sebastian; Whitehead, Samuel Robert; Whiteson, Daniel; Whittington, Denver; Wicek, Francois; Wicke, Daniel; Wickens, Fred; Wiedenmann, Werner; Wielers, Monika; Wienemann, Peter; Wiglesworth, Craig; Wiik, Liv Antje Mari; Wijeratne, Peter Alexander; Wildauer, Andreas; Wildt, Martin Andre; Wilhelm, Ivan; Wilkens, Henric George; Will, Jonas Zacharias; Williams, Eric; Williams, Hugh; Willis, William; Willocq, Stephane; Wilson, John; Wilson, Michael Galante; Wilson, Alan; Wingerter-Seez, Isabelle; Winkelmann, Stefan; Winklmeier, Frank; Wittgen, Matthias; Wolter, Marcin Wladyslaw; Wolters, Helmut; Wooden, Gemma; Wosiek, Barbara; Wotschack, Jorg; Woudstra, Martin; Wraight, Kenneth; Wright, Catherine; Wrona, Bozydar; Wu, Sau Lan; Wu, Xin; Wu, Yusheng; Wulf, Evan; Wunstorf, Renate; Wynne, Benjamin; Xaplanteris, Leonidas; Xella, Stefania; Xie, Song; Xie, Yigang; Xu, Chao; Xu, Da; Xu, Guofa; Yabsley, Bruce; Yamada, Miho; Yamamoto, Akira; Yamamoto, Kyoko; Yamamoto, Shimpei; Yamamura, Taiki; Yamaoka, Jared; Yamazaki, Takayuki; Yamazaki, Yuji; Yan, Zhen; Yang, Haijun; Yang, Un-Ki; Yang, Yi; Yang, Yi; Yang, Zhaoyu; Yanush, Serguei; Yao, Weiming; Yao, Yushu; Yasu, Yoshiji; Ybeles Smit, Gabriel Valentijn; Ye, Jingbo; Ye, Shuwei; Yilmaz, Metin; Yoosoofmiya, Reza; Yorita, Kohei; Yoshida, Riktura; Young, Charles; Youssef, Saul; Yu, Dantong; Yu, Jaehoon; Yu, Jie; Yuan, Li; Yurkewicz, Adam; Zaets, Vassilli; Zaidan, Remi; Zaitsev, Alexander; Zajacova, Zuzana; Zalite, Youris; Zanello, Lucia; Zarzhitsky, Pavel; Zaytsev, Alexander; Zeitnitz, Christian; Zeller, Michael; Zemla, Andrzej; Zendler, Carolin; Zenin, Anton; Zenin, Oleg; Ženiš, Tibor; Zenonos, Zenonas; Zenz, Seth; Zerwas, Dirk; Zevi della Porta, Giovanni; Zhan, Zhichao; Zhang, Dongliang; Zhang, Huaqiao; Zhang, Jinlong; Zhang, Xueyao; Zhang, Zhiqing; Zhao, Long; Zhao, Tianchi; Zhao, Zhengguo; Zhemchugov, Alexey; Zheng, Shuchen; Zhong, Jiahang; Zhou, Bing; Zhou, Ning; Zhou, Yue; Zhu, Cheng Guang; Zhu, Hongbo; Zhu, Yingchun; Zhuang, Xuai; Zhuravlov, Vadym; Zieminska, Daria; Zimmermann, Robert; Zimmermann, Simone; Zimmermann, Stephanie; Ziolkowski, Michael; Zitoun, Robert; Živković, Lidija; Zmouchko, Viatcheslav; Zobernig, Georg; Zoccoli, Antonio; Zolnierowski, Yves; Zsenei, Andras; zur Nedden, Martin; Zutshi, Vishnu; Zwalinski, Lukasz

    2012-01-03

    Proton-proton collisions at $\\sqrt{s}=7$ TeV and heavy ion collisions at $\\sqrt{s_{NN}}$=2.76 TeV were produced by the LHC and recorded using the ATLAS experiment's trigger system in 2010. The LHC is designed with a maximum bunch crossing rate of 40 MHz and the ATLAS trigger system is designed to record approximately 200 of these per second. The trigger system selects events by rapidly identifying signatures of muon, electron, photon, tau lepton, jet, and B meson candidates, as well as using global event signatures, such as missing transverse energy. An overview of the ATLAS trigger system, the evolution of the system during 2010 and the performance of the trigger system components and selections based on the 2010 collision data are shown. A brief outline of plans for the trigger system in 2011 is presented

  11. B-Identifikation im Level 2 Trigger des ATLAS Experiments

    CERN Document Server

    AUTHOR|(CDS)2072780

    Zur Zeit wird am europäischen Forschungszentrum für Teilchenphysik CERN der neue Proton-Proton-Speicherring LHC und die zugehörigen vier Experimente gebaut. Ziele der Experimente sind unter anderem der Nachweis des Higgs-Bosons sowie detaillierte Studien des top-Quarks. Um möglichst reine Datensätze zu erhalten wäre es hilfreich, diese Ereignisse bereits während der Datennahme möglichst effizient zu selektieren. Dabei würde es helfen, wenn b-Quark-Jets auf Trigger-Niveau erkannt werden könnten. Ziel der Arbeit war die Entwicklung eines Algorithmus zur Identifikation von b-Quark-Jets, welcher die Anforderungen des Level 2 Triggers erfüllt. Das erste Kapitel der Arbeit gibt einen Einblick in die wesentlichen Bestandteile des Standardmodells der Teilchenphysik. In den folgenden zwei Kapiteln wird der Beschleuniger und der ATLAS Detektor sowie das ATLAS-Triggersystem beschrieben. Kapitel vier beschreibt die Möglichkeiten der B-Jet-Identifikation sowie einen Vertexalgorithmus auf Basis der Perigee-Pa...

  12. The non-proliferation experiment

    Energy Technology Data Exchange (ETDEWEB)

    Hannon, W.J. [Lawrence Livermore National Lab., CA (United States)

    1994-12-31

    On September 22, 1993, the Department of Energy detonated more than 1.2 million kg of blasting agent in a tunnel in Rainier Mesa at the Nevada Test Site. The resulting explosion generated seismic, electromagnetic, and air pressure signals that were recorded on instruments deployed at distances ranging from a few meters to hundreds and, in some cases, thousands of kilometers. More than 12 organizations made measurements before, during, and after the explosions. The explosion and its associated experiments are known as the Non-Proliferation Experiment (NPE). Analyses of the measurements made during the NPE and comparisons with similar measurements made on previous nearly nuclear explosions and on a co-located smaller explosion detonated at the same site are providing basic phenomenological insights into what is potentially one of the comprehensive Test Ban Treaty (CTBT)-distinguishing between nuclear explosions and some of the many conventional explosions that occur each year. The NPE is also providing information on the use of chemical explosions to develop empirical discriminants in regions where no nuclear explosions have been recorded. In another verification application, several NPE projects are examining the utility of on-site, pre-shot, shot-time, and post-shot measurements of gas seepage, seismic activity, and other observables as a means of identifying the source of signals that appear like nuclear explosions at regional distances. Two related activities are being considered. First, challenge on-site inspections, conducted after an event has occurred, may be able to use the characteristics of phenomena that persist after the explosion to detect and identify the source of the signals that appeared ambiguous or explosion-like to remote sensors. Second, cooperative, on-site measurements made at the time of a pre-nounced conventional explosion may provide assurance that a nuclear explosion did not occur as part of or in place of the pre-announced explosion.

  13. An Associative Memory Chip for the Trigger System of the ATLAS Experiment

    CERN Document Server

    AUTHOR|(INSPIRE)INSPIRE-00380893; The ATLAS collaboration; Liberali, Valentino; Crescioli, Francesco; Beretta, Matteo; Frontini, Luca; Annovi, Alberto; Stabile, Alberto

    2017-01-01

    The AM06 is the 6th version of a large associative memory chip designed in 65 nm CMOS tech- nology. The AM06 operates as a highly parallel ASIC processor for pattern recognition in the ATLAS experiment at CERN. It is the core of the Fast TracKer electronic system, which is tai- lored for on-line track finding in the trigger system of the ATLAS experiment. The Fast TracKer system is able to process events up to 100 MHz in real time. The AM06 is a complex chip, and it has been designed combining full-custom memory arrays, standard logic cells and IP blocks. It contains memory banks that store data organized in 18 bit words; a group of 8 words is called a pattern. The chip silicon area is 168 mm2; it contains 421 millions of transistors and it stores 217 patterns. Moreover, the associative memory is suitable also for other interdisciplinary appli- cations (i.e., general purpose image filtering and analysis). In the near future we plan to design a more powerful and flexible chip in 28 nm CMOS technology.

  14. Optically isolated electronic trigger system for experiments on a subnanosecond time scale with a pulsed Van de Graaff electron accelerator

    International Nuclear Information System (INIS)

    Luthjens, L.H.; Vermeulen, M.J.W.; Hom, M.L.

    1980-01-01

    An optically isolated electronic trigger system for a pulsed Van de Graaff electron accelerator, producing an external pretrigger pulse 75 ns before arrival of the electron pulse at the target, is described. The total time jitter between trigger signal and electron pulse is 50 ps. The measurement of optical and electrical transients on a subnanosecond time scale with a sequential sampling oscilloscope is demonstrated. The contribution of various parts of the equipment to the total jitter is discussed. Those contributions to the jitter due to the electron transit time fluctuations in the accelerator assuming a constant acceleration voltage gradient and to the shot noise in the photomultiplier detector of the trigger system are calculated to be 5 ps and 12 to 21 ps respectively. Comparison with the experimental results leads to the conclusion that a considerable part of the total jitter may be attributed to acceleration voltage gradient fluctuations, to accelerator vibrations and possibly to density fluctuations in the insulation gas. Possible improvements of the trigger system are discussed. The apparatus is used for pulse radiolysis experiments with subnanosecond time resolution down to 100 ps in combination with subnanosecond time duration electron pulses

  15. An experimental study of an explosively driven flat plate launcher

    Science.gov (United States)

    Rae, Philip; Haroz, Erik; Armstrong, Chris; Perry, Lee; M Division Team

    2017-06-01

    For some upcoming experiments it is desired to impact a large explosive assembly with one or more moderate diameter flat metal plates traveling at high velocity (2-3 km s-1). The time of arrival of these plates will need to carefully controlled and delayed (i.e. the time(s) of arrival known to approximately a microsecond). For this reason, producing a flyer plate from more traditional gun assemblies is not possible. Previous researchers have demonstrated the ability to throw reasonably flat metal flyers from the so-called Forest flyer geometry. The defining characteristics of this design are a carefully controlled reduction in explosive area from a larger explosive plane-wave-lens and booster pad to a smaller flyer plate to improve the planarity of the drive available and an air gap between the explosive booster and the plate to reduce the peak tensile stresses generated in the plate to suppress spalling. This experimental series comprised a number of different design variants and plate and explosive drive materials. The aim was to calibrate a predictive computational modeling capability on this kind of system in preparation for later more radical design ideas best tested in a computer before undertaking the expensive business of construction.

  16. Polarisation Spectral Synthesis For Type Ia Supernova Explosion Models

    Science.gov (United States)

    Bulla, Mattia

    2017-02-01

    Despite their relevance across a broad range of astrophysical research topics, Type Ia supernova explosions are still poorly understood and answers to the questions of when, why and how these events are triggered remain unclear. In this respect, polarisation offers a unique opportunity to discriminate between the variety of possible scenarios. The observational evidence that Type Ia supernovae are associated with rather low polarisation signals (smaller than a few per cent) places strong constraints for models and calls for modest asphericities in the progenitor system and/or explosion mechanism.The goal of this thesis is to assess the validity of contemporary Type Ia supernova explosion models by testing whether their predicted polarisation signatures can account for the small signals usually observed. To this end, we have implemented and tested an innovative Monte Carlo scheme in the radiative transfer code artis. Compared to previous Monte Carlo approaches, this technique produces synthetic observables (light curves, flux and polarisation spectra) with a substantial reduction in the Monte Carlo noise and therefore in the required computing time. This improvement is particularly crucial for our study as we aim to extract very weak polarisation signals, comparable to those detected in Type Ia supernovae. We have also demonstrated the applicability of this method to other classes of supernovae via a preliminary study of the first spectropolarimetry observations of superluminous supernovae.Using this scheme, we have calculated synthetic spectropolarimetry for three multi-dimensional explosion models recently proposed as promising candidates to explain Type Ia supernovae. Our findings highlight the power of spectropolarimetry in testing and discriminating between different scenarios. While all the three models predict light curves and flux spectra that are similar to each others and reproduce those observed in Type Ia supernovae comparably well, polarisation does

  17. The Run-2 ATLAS Trigger System: Design, Performance and Plan

    CERN Document Server

    zur Nedden, Martin; The ATLAS collaboration

    2016-01-01

    In high-energy physics experiments, online selection is crucial to select interesting collisions from the large data volume. The ATLAS experiment at the Large Hadron Collider (LHC) utilizes the trigger system that consists of a hardware Level-1 (L1) and a software based high-level trigger (HLT), reducing the event rate from the design bunch-crossing rate of 40 MHz to an average recording rate of about 1000 Hz. In the LHC Run-2 starting from in 2015, the LHC operates at centre-of-mass energy of 13 TeV providing a luminosity up to $1.2 \\cdot 10^{34} {\\rm cm^{-2}s^{-1}}$. The ATLAS trigger system has to cope with these challenges, while maintaining or even improving the efficiency to select relevant physics processes. In this paper, the ATLAS trigger system for LHC Run-2 is reviewed. Secondly, the impressive performance improvements in the HLT trigger algorithms used to identify leptons, hadrons and global event quantities like missing transverse energy is shown. Electron, muon and photon triggers covering trans...

  18. DZERO Level 3 DAQ/Trigger Closeout

    CERN Multimedia

    CERN. Geneva

    2012-01-01

    The Tevatron Collider, located at the Fermi National Accelerator Laboratory, delivered its last 1.96 TeV proton-antiproton collisions on September 30th, 2011. The DZERO experiment continues to take cosmic data for final alignment for several more months . Since Run 2 started, in March 2001, all DZERO data has been collected by the DZERO Level 3 Trigger/DAQ System. The system is a modern, networked, commodity hardware trigger and data acquisition system based around a large central switch with about 60 front ends and 200 trigger computers. DZERO front end crates are VME based. Single Board Computer interfaces between detector data on VME and the network transport for the DAQ system. Event flow is controlled by the Routing Master which can steer events to clusters of farm nodes based on the low level trigger bits that fired. The farm nodes are multi-core commodity computer boxes, without special hardware, that run isolated software to make the final Level 3 trigger decision. Passed events are transferred to th...

  19. Graphical processors for HEP trigger systems

    Energy Technology Data Exchange (ETDEWEB)

    Ammendola, R. [INFN Sezione di Roma Tor Vergata, Via della Ricerca Scientifica, 1, 00133 Roma (Italy); Biagioni, A. [INFN Sezione di Roma, P.le Aldo Moro, 2, 00185 Roma (Italy); Chiozzi, S.; Cotta Ramusino, A. [INFN Sezione di Ferrara, Via Saragat, 1, 44122 Ferrara (Italy); Di Lorenzo, S. [INFN Sezione di Pisa, L. Bruno Pontecorvo, 3, 56127 Pisa (Italy); Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa (Italy); Fantechi, R. [INFN Sezione di Pisa, L. Bruno Pontecorvo, 3, 56127 Pisa (Italy); Fiorini, M. [INFN Sezione di Ferrara, Via Saragat, 1, 44122 Ferrara (Italy); Università di Ferrara, Via Ludovico Ariosto 35, 44121 Ferrara (Italy); Frezza, O. [INFN Sezione di Roma, P.le Aldo Moro, 2, 00185 Roma (Italy); Lamanna, G. [INFN, Laboratori Nazionali di Frascati (Italy); Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P.S.; Pastorelli, E. [INFN Sezione di Roma, P.le Aldo Moro, 2, 00185 Roma (Italy); Piandani, R. [INFN Sezione di Pisa, L. Bruno Pontecorvo, 3, 56127 Pisa (Italy); Pontisso, L., E-mail: luca.pontisso@cern.ch [INFN Sezione di Pisa, L. Bruno Pontecorvo, 3, 56127 Pisa (Italy); Rossetti, D. [NVIDIA Corp., Santa Clara, CA (United States); Simula, F. [INFN Sezione di Roma, P.le Aldo Moro, 2, 00185 Roma (Italy); Sozzi, M. [INFN Sezione di Pisa, L. Bruno Pontecorvo, 3, 56127 Pisa (Italy); Università di Pisa, Lungarno Pacinotti 43, 56126 Pisa (Italy); and others

    2017-02-11

    General-purpose computing on GPUs is emerging as a new paradigm in several fields of science, although so far applications have been tailored to employ GPUs as accelerators in offline computations. With the steady decrease of GPU latencies and the increase in link and memory throughputs, time is ripe for real-time applications using GPUs in high-energy physics data acquisition and trigger systems. We will discuss the use of online parallel computing on GPUs for synchronous low level trigger systems, focusing on tests performed on the trigger of the CERN NA62 experiment. Latencies of all components need analysing, networking being the most critical. To keep it under control, we envisioned NaNet, an FPGA-based PCIe Network Interface Card (NIC) enabling GPUDirect connection. Moreover, we discuss how specific trigger algorithms can be parallelised and thus benefit from a GPU implementation, in terms of increased execution speed. Such improvements are particularly relevant for the foreseen LHC luminosity upgrade where highly selective algorithms will be crucial to maintain sustainable trigger rates with very high pileup.

  20. Graphical processors for HEP trigger systems

    International Nuclear Information System (INIS)

    Ammendola, R.; Biagioni, A.; Chiozzi, S.; Cotta Ramusino, A.; Di Lorenzo, S.; Fantechi, R.; Fiorini, M.; Frezza, O.; Lamanna, G.; Lo Cicero, F.; Lonardo, A.; Martinelli, M.; Neri, I.; Paolucci, P.S.; Pastorelli, E.; Piandani, R.; Pontisso, L.; Rossetti, D.; Simula, F.; Sozzi, M.

    2017-01-01

    General-purpose computing on GPUs is emerging as a new paradigm in several fields of science, although so far applications have been tailored to employ GPUs as accelerators in offline computations. With the steady decrease of GPU latencies and the increase in link and memory throughputs, time is ripe for real-time applications using GPUs in high-energy physics data acquisition and trigger systems. We will discuss the use of online parallel computing on GPUs for synchronous low level trigger systems, focusing on tests performed on the trigger of the CERN NA62 experiment. Latencies of all components need analysing, networking being the most critical. To keep it under control, we envisioned NaNet, an FPGA-based PCIe Network Interface Card (NIC) enabling GPUDirect connection. Moreover, we discuss how specific trigger algorithms can be parallelised and thus benefit from a GPU implementation, in terms of increased execution speed. Such improvements are particularly relevant for the foreseen LHC luminosity upgrade where highly selective algorithms will be crucial to maintain sustainable trigger rates with very high pileup.